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Subordinacy and Spectral Analysis of Schr~dinger Operators 

This thesis is concerned with the spectral analysis of Schr~dinger 

operators with central potentials, and some related aspects of scattering 

theory. After an introductory discussion on the aims of the the:,is and its 

relation to existing work, the background mathematical material required for 

subsequent developments is presented in Chapter II. The theory of subordinacy, 

which relates the absolutely continuous, singular continuous and discrete parts 

of the spectrum to the relative asymptotic behaviour of solutions of the radial 

SchrBdinger equation, is established in Chapter III for the case wtere 

2 L = -d + V(r) is regular at 0 and limit point at infinity. In Chapter IV, 

dr2 

it is shown that the general eigenfunction expansion theory of Weyl-Kodaira 

can be simplified for a SchrBdinger operation in L2 (O,oo) whenever the corres­

ponding operator on any finite interval containing the origin has singular 

spectrum and the potential is integrable at infinity; an incidental outcome 

is an extension of the . theory of subordinacy to include cases where L is 

singular at both ends of the interval (O,~). The simplified expansion theory 

enables the class of potentials for which the usual phase shift formula for 

the scattering operator holds to be extended in Chapter V, so as to include 

more singular behaviour at the origin than any previously considered. Using 

this result, it is shown that a Schr~dinger operator exists for which the theory 

is asymptotically complete and the scattering amplitude is a discontinuous 

function of energy. Chapter VI is concerned with the inductive construction 

of potentials having singular continuous spectrum; there is a particular 

emphasis on the generation of singular continuous measures from sequences of 

absolutely continuous measures, and some improvements to existing results and 

relevant examples are presented. The thesis is concluded with a brief indic-

ation of some outstanding problems, and suggestions for further research. 
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CHAPTER I 

INTRODUCTION 

The time independent SchrBdinger equation 

-6.u + Vu ,. ~~ 

is of fundamental importance to the mathematical description of those quantum 

mechanical systems where the potential V is independent of time. An elliptic 

partial differential operator of the form 

-tl, -4- V 

acting in the Hilbert space L2. (IR~) is known as a Schradinger operator. 

This thesis is concerned with the qualitative spectral analysis of self-

adjoint Schradinger operators with spherically symmetric potentials; for such 

operators the Hilbert space may be decomposed into mutually disjoint partial 

wave subspaces, and the spectral analysis of a Schradinger operator in L1 (IR 3) 

may be reduced to the spectral analysis of the ordinary differential operators 

+ 
l(l+ ,) 

.. 2. 

r E (0,00) 

in each partial wave subspace. ([AJSJ Ch.11). For convenience we shall 

usually assume the term l (l +1' ) to be included in V(r) so that the general 

" problem further simplifies to consideration of the ordinary differential 

operator 

L = - .... V (I") r~ (0,00) (1.1.1) 

acting in '}{.: L 2. ( 0 I 00 ) • 

The associated one dimensional Schradinger equation 

... VCr) IA = ~u r' € (0,00) (1.1.2) 
dr-a 

is of the Sturm-Liouville type; we shall draw on the considerable body of 

existing theory relating to Sturm-Liouville equations, which have widespread 

applications in the physical sciences, as the need arises. 

It will be assumed throughout that V(r) is locally integrable on (O,~) 

and that non-trivial self-adjoint extensions of the symmetric differential 

operator L with domain Co: (the set of infinitely differentiable functions 



· _ ... ",,---- ._----- -

2 

" , ao )) exist. The condition that V (r) be locally 

integrable is s~ficient to ensure that Weyl's limit point, limit circle 

classification, which is extensively used during this thesis, applies ([CL] 

Ch. 9, J 2) • Note that, although u ~ L2 (0, cC) cannot be in the domain of a one­

dimensional Schr~dinger operator unless Lu ~ L2 (0, DO ), it is not necessary for 

V(r) to be in L2 (0,00), even locally ([KA] Ch.VI, 94.1). Methods for 

establishing self-adjointness for semibounded and unbounded operators are 

widely discussed in the literature (eg. [KA] Ch.VI, [RS II],[S1]), and apart 

from a short summary of some relevant aspects of operator theory in Chapter 

II, 94, which clarifies the role of boundary conditions, will not be further 

considered here. 

The spectrum of a self-adjoint Schr~dinger operator, or Hamiltonian, H, 

represents the possible energy levels of the system and is defined mathe-

matically to be the complement in IR of all A for which the resolvent operator 

-1 
(H-~I) is bounded. The methods of spectral analysis which we shall adopt 

fall into three distinct categories. 

The first method, which we call after Glazman ([G]), the direct method, 

deduces properties of the spectrum from prior knowledge of the potential, 

and, where appropriate, of associated boundary conditions. We contribute a 

new method of this type through the theory of subordinacy developed in Chapter 

III; provided certain aspects of the asymptotic behaviour of solutions of 

Lu = xu can be established for each real x from knowledge of the potential and 

boundary conditions, the nature and location of the specturm may be completely 

determined. Classically the direct method has been the most usual approach 

to the problem of identifying corresponding Hamiltonians and spectra (see ego 

[T2], [G], [DS] Ch.XIII §9. G,H.); however, unlike many examples of this method, 

our theory of subordinacy has very general application. Where L is regular at 

o and limit point at infinity we only require that V(r) be locally integrable, 

and where L is singular at 0 and limit point at infinity the only additional 

requirement is that V(r) be integrable at infinity. 

The second approach to spectral analysis is known as the inverse method 

/' . 4.( XSC&tt.WQ $¥, 
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l by Gel'fand and Levitan ([GL]). They established 

sufficient conditions which ensure that a given monotonically increasing 

functionp(~) is the spectral function of some Schr6dinger operator, and de­

vised a method for obtaining the operator from p(~). In practise it is not 

easy to derive Schr6dinger operators analytically from their spectral functions 

since the solution of integral equations is involved; however, the inverse 

method is invaluable as a tool for testing hypotheses and providing counter 

examples. In this role it will be used to clarify the nature and extent of 

the correlation between the asymptotic behaviour of solutions of the Schr6dinger 

equation and the spectrum in Chapter III, and again during the proof of the 

existence of a Schr6dinger operator where the wave operators exist and are 

complete, but for which the scattering amplitude is a discontinuous function of 

energy, in Chapter V. 

The third method of spectral analysis adopted in this thesis is that of 

inductive construction of potentials. The starting point here is neither a 

given spectrum, nor a given Schr6dinger operator; instead, under carefully 

controlled circumstances, sequences of operators with absolutely continuous 

spectrum on IR+::. (0.00) are chosen inductively to ensure a particular type of 

spectrum of the limiting operator. In general, therefore, only an overall 

conception of the limiting operator and of its spectrum is assumed at the out­

set, more precise details emerging in accordance with the constraints of the 

inductive construction. This method, as yet relatively undeveloped, was first 

used to show that a potential consisting of a sequence of "bumps" will have 

singular continuous spectrum on IR+ provided the separation between the "bumps" 

increases sufficiently rapidly with distance ([P1]). Some related theoretical 

questions, with particular reference to singular continuous spectra will be 

considered in Chapter VI, where a new example of an inductively constructed 

potential will be presented for which the associated Schr6dinger operator with 

Dirichlet boundary conditions at the origin has singular continuous spectrum. 

The theory of potential scattering is inextricably linked to the spectral 

analysis of Schr6dinger operators, and, indeed, has had a considerable influence 

iM 
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..-~~- ;icular, the decomposition of the spectrum into 

absolutely continuous, singular continuous and pure point parts is motivated 

by the underlying physical interpretation of the theory. Provided 

(i) the spectrum of H is singular for some a > ° where H is a self-adJ·oint a a 

operator defined by the differential expression (1.1.1) in L
2

(O,a], 

(ii) the potential is of short range, that is, 

v (r) = 0 ( r - ( I + E.)) as r -t 00 

then the wave operators exist and are complete so that the absolutely con-

tinuous subspace '().-l Q. c.. l H ) of It may be identified with the subspace of 

scattering states of H ([P4]). Condition (i) ensures that the spectrum of H 

is simple, which is necessary for asymptotic completeness ([AM] §I). The sub-

set of~ corresponding to the pure point spectrum consists of so-called bound 

states, that is, states which are localised in a finite neighbourhood of the 

origin at all times. Whether or no the singular continuous spectrum has 

an identifiable physical interpretation is still in some doubt although plau-

sible suggestions supported by rigorous mathematical analysis have been made 

([P1] S4); however many potentials whose mathematical form is quite simple 

(eg. [P1] §3) or which are of considerable physical interest (see ego [S2]) 

give rise to this type of spectrum. 

We shall review some aspects of scattering theory in Chapter V in the 

light of the theory developed in Chapters III and IV. Using the simplified 

eigenfunction expansion and the time-dependent formalism we show that con-

ditions (i) and (ii) above are sufficient to ensure the validity of the usual 

phase shift formula for the scattering operator (cf. [GR]), and a new proof 

of asymptotic completeness emerges incidentially during this process. The 

explicit formula for the phase shift, together with our earlier analysis of 

the spectrum then enables us to demonstrate that discontinuity of the scattering 

amplitude as a function of energy can occur, even when the theory is asymptot-

ically complete. 

There is throughout this thesis a special emphasis on "pathological" sing-

ular spectra. It may be partly due to the difficulties of interpretation and 
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wla~ya~a ~na~ sucn spectra received little attention during the early 

development of quantum mechanics. However, in more recent years, experimental 

and theoretical interest in disordered systems and almost periodic potentials, 

together with the recognition that absolutely continuous and isolated point 

spectra are generically absent in such cases, has led to a vigorous current 

literature on all types of singular spectra (eg. [AS], [BS], [MO], [p], [S2]). 

Our special emphasis on singular continuous and dense singular spectra 

does not, however, derive from any belief in their exceptional importance. If 

we start from the premise that any comprehensive theory should give equal con­

sideration to all types of spectrum, then it is inevitable that those parts 

of the spectrum which are comparatively less amenable to analysis should incur 

more labour. Also, the relative neglect until recently of certain types of 

singular spectra has meant that some aspects of quantum theory which directly 

or indirectly involve such spectra have not been fully developed. Therefore, 

where the results of our comprehensive approach have been used to extend or 

clarify the limits of some existing theories in Chapter V, it is the aspects 

concerning singular spectra which are most prominent because it is these that 

have not been fully considered before. 

Where possible, we indicate the relationship between the contents of this 

thesis and pre-existing work at appropriate points in the text; however, in 

order to give some sort of overview, we shall briefly summarise some of the 

main features from this point of view. 

With the exception of Proposition 2.24 and Theorem 2.25, much of the pre­

liminary mathematical material assembled in Chapter II occurs in some form or 

another here and there in the literature. However, the proofs have for the 

most part been devised by the author in order to unify the material; sometimes 

they may be equivalent to existing proofs, sometimes they may differ. Theorem 

2.25, which relates absolutely continuous and singular spectra the growth rate 

of the resolvent (H-ZI)-1 as z approaches the real axis, is distinct from, yet 

complementary to, a theorem by Gustafson and Johnson which characterises the 

absolutely continuous subspace of)l in terms of the growth rate of resolvents 

([GJ]). 
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...,'" ... <;U. Q.O WI;; c::u.-I;; ClWc::u.-I;;, the theory of subordinate solutions presented in 

Chapter III and amplified in Chapter IV §5 is wholly new. This theory provides 

the kind of systematic correlation between the behaviour of solutions of the 

SchrBdinger equation and the nature of the spectrum that was assumed, erron-

eously, to be true by those who identified the spectrum in terms of bounded 

solutions (see ego [KR] pp.71, 82, [G] 958). Later the theory of subordinacy 

illuminates the simplified eigenfunction expansion of Theorem 4.9, since where 

L is limit point at 0, the kernel of the corresponding transform is a solution 

of (1.1.2) which is subordinate at 0. 

Some aspects of the eigenfunction expansion theory derived in Chapter IV 

appear to have been obtained independently in an alternative but equivalent 

formulation by Kac ([K1], [K2]). Since details of this work were inaccessible, 

we have been unable to ascertain the extent to which the results and methods 

of proof coincide with our own. However, in the brief summary which is 

available in translation, there is no mention of the surjective property of the 

associated isomorphism, which we prove in the Appendix, nor does the relation-

ship between the simplified expansion and the well-established expansions which 

are valid when the differential expression (1.1.1) is regular at 0, (see ego 

[CL] Ch.9 §3) appear to have been considered. 

The results of Chapter V depend crucially on the theory developed in 

Chapter IV. The simplified expansion of Theorem 4.9, which is established 

for all operators where the potential is integrable at infinity and the 

spectrum of H is singular for some a > ° (see (i) above), enables us to a 

verify the phase shift formula for the scattering operator for a far wider 

class of potentials than any previously considered. Indeed, we only require 

that conditions (i) and (ii) above be satisfied, whereas it is usual to impose 

a far stronger condition at the origin, as, for example 

as ,. , 0 (1.1.3) 

while retaining a comparable condition to (ii) at infinity. (eg. [GR], [KU2]). 

In terms of the spectrum of H , (1.1.3) ensures this is isolated pure point 
a 

(see Ch.V, §1), whereas condition (i) permits the potential to be highly 
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---""--- -- - ............ 0 ....... ' ,t' ... vvided only that the possibility of absorption is 

excluded. Although continuity of the scattering amplitude as a function of 

energy has been proved for many potentials (see ego [AJS], Prop.10.13, [D], 

[LE]), the existence of Hamiltonians for which the scattering amplitude is a 

discontinuous function of energy has not, to our knowledge, been previously 

established. 

Our final chapter centres on a theorem due to Pearson ([P1], §2, Thm.1), 

which we re-examine with a view to weakening or removing some of the original 

conditions. The theorem concerns the generation of singular continuous 

measures from sequences of absolutely continuous measures, and is formulated 

with the inductive construction of operators with singular continuous spectra 

in mind. By means of step function approximations, we show that the continuity 

conditions on the generating sequences of periodic functions can be considerably 

weakened and the analyticity and strictly positive lower bound conditions 

removed entirely. An assessment of Pearson's construction theorem by Avron 

and Simon ([AS] Appendix 3) also confirms, using Kakutani's theorem, that 

several of the original conditions are not necessary, though in matters of 

detail there are a number of differences between their conclusions and ours. 

In §2 we use Pearson's method to establish a new class of potentials for 

which the spectrum is singular continuous in the interval (inf V(r), sup V(r)), 

while in 54 we illustrate the generation of singular continuous measures from 

sequences of periodic functions by a specific example for which a surprisingly 

detailed analysis is possible. This type of example is not new (see [RN], §24 

for a rather different presentation) although we believe that some of our 

detailed findings may be. 

With a view to our later requirements, we shall begin by introducing some 

basic mathematical concepts and establishing some elementary relationships 

between them in the following chapter. For simplicity we shall at first suppose 

that the differential operator (1.1.1) is regular at 0, and we remark that the 

almost exclusive attention given to the limit point case at infinity stems from 

the fact that almost all cases of physical and mathematical interest are of 

this type. 
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CHAPTER II 

MATHEMATICAL FOUNDATIONS 

§1. Introduction 

Let H be a self-adjoint operator arising from the time-independent 

Schr6dinger equation 

,.. E. (0, (0) 
(2.1.1) 

and a regular boundary condition at O. In the terminology of H. Weyl ([W3]), 

the differential operator 

d2. L = - -- -I- V (r) (2.1.2) 
dr2. 

is in the limit point case at infinity and in the limit circle case at o. 

In this chapter we develop some mathematical tools that will be required 

in the subsequent spectral analysis of operators of this type. 

It is a part of established theory that, associated with each such opera-

tor H, there exists a monotonically increasing spectral function piX) which 

is unique up to an additive constant. ([CL] Ch.9, Thm.3.1). The spectrum of 

H is the set of points of increase of fJ (X), and the decomposition of the 

Borel-Stieltjes measurefl generated by p(X\ into its discrete, singular 

continuous and absolutely continuous parts gives an indication of the behaviour 

associated with different energy levels under time evolution. Broadly speaking, 

the discrete spectrum represents the binding energies of the system and the 

absolutely continuous spectrum the energy levels at which scattering can be 

expected to occur. The interpretation of the singular continuous spectrum 

is more speculative; many authors have maintained it has no physical 

counterpart ([RS1] Ch.I § 1.4), while others have made suggestions which have 

yet to be confirmed by experiment ([P1] §4). However, as we shall see in 

Chapter V, the study of the singular continuous spectrum has applications to 

situations where it does not explicitly occur, so we shall consider it as 

thoroughly as the other parts of the spectrum. 

Using the theory developed by H. Weyl and later amplified by E.C. 

Titchmarsh we shall show in §3 that the spectral properties of p(~) are 
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intimately related to the boundary behaviour of an analytic function m(z) 

which is defined for 1m z.:> 0 by the condition 

Here u1 (r,z) and u2 (r,z) are those solutions of Lu=~u which satisfy t~e 

conditions 

u; ( 0 I 2) = COS 0<. 

U~(OI2.) = sino( (2.1.4) 

for some 0<. in (O,1r) . We shall show in Chapter III that the boundary 

behaviour of m(z) at each point x of the real axis is also related to the 

relative as~mptotic behaviour of certain linearly independent solutions of 

the Schr~dinger equation (2.1.1) at energy A=X Thus m(z) will act as 

an intermediary, enabling us to characterise the various parts of the spec­

trum in terms of properties of the solutions of (2.1.1). 

In §4 we give a brief account of operator theory as it applies to second 

order linear differential equations of the Sturm-Liouville type, and indi­

cate some relationships between peA) , m(z) and H. We also derive criteria 

for distinguishing the sets on which the absolutely continuous and singular 

spectra are concentrated in terms of the resolvent operator. 

First, however, in § 2 we shall briefly summarise some rel evant aspects 

of measure theory, and then investigate the relationship between the character 

of the measure~ and properties of the derivative of p(A) on measurable sets 

of points. We remark that our results concerning this relationship do not 

depend on a quantum mechanical context, but would apply equally to any 

increasing function that is continuous on the right, and the measure gener-

ated by it. 
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52. The Spectral Measure and its Derivative 

The spectral function ptA) is monotonically increasing, continuous on 

the right and unique up to an additive constant ([CL] Ch.9,§3). For con-

venience we may take prO) = 0 The right continuity of peA) implies 

that 1,0((,)1< 00 if lei" 00 , so that if a set function fA' is defined on the 

algebra a' of half-open intervals (a,b] of IR by 

p(b) - p(a) (2.2.1) 

then)A' is a C' -fini te measure on ai, 

The Hahn Extension Theorem states that a a-finite measure on an 

algebra Q may be uniquely extended to a complete measure on a ~-algebra 

containing C1. (2.2.2) 

Hence jJ.' may be extended to a compl ete measure jA on a a--al gebra 1: con-

taining Q' we shall call)A the spectral measure associated with H. By 

(2.2.1) the spectral measure of bounded subsets of IR is finite, which is a 

stronger property than that of~-finiteness, and implies, in particular that 

j4. is a regul ar measure ([R] Thm. 2,18) . 

Unless otherwise stated, we shall take as the measurable sets those 

subsets of ~ which are Borel measurable. 

A measurable function f(~) is then specified by the requirement that 

for each 0( in )R , {~:f(>-.»o(} be a Borel set. (2.2.3) 

In the case where a CT-fini te measure defined on the al gebra ct' of 

half-open intervals is extended to a complete measure ~ on a a-algebra ~~, 

we refer to the el ements of l:\. as '" -measurabl e sets. 

If S is any subset of IR , we denote by ~s the a-algebra of Borel 

subsets of S. 

Let L. , U be ~-fini te measures on s., . 

L. is said to be absolutely continuous with respect to K on ~~ if 



1 1 

I.(E)=O 

for all E in /B~. We wri te L <. < K (2.2.4) 

Land K are said to be mutually singular on 8$ if there exist two 

sets El and E2 in ~s such that 

We wri te l. ..L. K . (2.2.5) 

By the Lebesgue Decomposition Theorem ~ may be uniquely decomposed 

into two measures L and loS. such that 
Q.C. 

L _ 
L + '-5. Q.C. 

where L <<. K and LS. J.. K . a.c. 

If we take K to be Lebesgue measure a further unique decomposition may 

be accomplished. Replacing L by the spectral measure}A, we define set 

functions .fA- and p by s.c. d. 

Ps.c.(E)::: "us.(E\C) 

fA a. (E) = )As. (En c.) 

for all E in Ss' where C = t~ES:fA({A))>O}. 

(2.2.6) 

(2.2.7) 

Since p(>') can have, at 

most, a countable number of discontinuities, C is denumerable, from which 

may be deduced that )A and fA~. are measures. Their uniqueness follows 
S.C. GO 

from the uniqueness of C. 

We now have the following decompositions of]A on C: 

fA = JA~.c. + r~. (2.2.8) 

fA JA 0.. C. + )A- s.c. + )-'- d.. (2.2.9) 

~~.c.is known as a singular continuous measure, reflecting the facts 

that,Ps. is singular with respect to K and r ({}..})=o for all>. in S. 
~ ~~ 

~ is variously described as discrete, pure point or purely atomic and is 
ct. 

concentrated on a denumerable set of points which have strictly positive 
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}A -measure. 

Corresponding to the decompositions (2.2.8) and (2.2.9) are unique 

deC01'p)sitions of ptA) into montonically increasing functions ([HSJ Thm. 

19.61), viz: 

peA) = ,oa,c.(AI + ('s.()..) 

f>()..) = Pea.c. ()..) -t- P~.cJ)..) + Pd. (>-') 

where Pa.e.(b) - Pa..c.Co.) = fAa.c. ((a, bJ) etc., 

and ,oQ.C..f 0 ) =,os (0) =,0 (0) = .0. (0). . s.c. r CII. 

(2.2.10) 

(2.2.11) 

The functions (') (') (~) Po-c. AlPS. A ) {Js.c. " and Pd.()..) are absol utely 

continuous, singular, singular continuous and saltus functions respectively, 

so that for Lebesgue almost all ~ on S 

where de()...) 
d).. 

des c. fA) _ 

d).. 

is defined to be lim 
O~O 

whenever the limit exists. 

o 
(2.2.12) 

The absolutely continuous, singular, singular continuous and discrete 

spectra of H are the sets of points of increase of ,oQ.c.t>--) IPS. (oX) ) Ps.cJ)...) 

and PrJ.'A) respectively. We shall show in §4 that this formulation is 

consistent with the more usual definitions in terms of resolvent operators. 

Although we shall not be particularly concerned with the essential 

spectrum, which consists of all the non-isolated points of the spectrum of 

H, it may sometimes be mentioned in passing. 

We shall continue to denote Lebesgue measure by K unless otherwise 

stated. Let ~ (X) 
dK 

. I is an interval of IR • oX 

containing x} for each x in ~ for which the limit exists. We remark that, 

since~ and K are regular measures, it is immaterial whether we take Ix to 

range over all intervals, or just over all open, all half-open or all closed 

intervals containing x. 
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Lebesgue's Theorem states that a monotonic function possesses a fini:e 

derivative Lebesgue almost everywhere on IR . (2.2.13) 

Hence ~ ex) and de ().)/ exist and are finite and equal Lebesgue 
dK. dA x 

almost everywhere on IR·, moreover by 1· mpl1· cat1· on th t , ., e se 

5 = {X E \R: dJA (X) exists} is Lebesgue measurabl e. 
dt<. 

In fact, as we now 

show, S is a Borel set. 

Let f n (X) = sup { }A (I.J: I is an -open interval containing x } 
K.(Ix)< ~ KlIj() x 

and consider 50( = t X E IR : f rJX) "> 0( } 

If X E. So( , there exists an open interval ex,a(. containing x such that 

t«Cxoe.)<.land jA{CX,d,»oe.. Clearly if x' is in ex,.J then X' is also in 
I n K{Cx,o(.) '" 

5 d 5 U ex d-
0(.' an so d.. = S I Thus s~ is an open set, so that t~(x), and, 

J(€ c,(. 

consequently F{x) = tiM fn(x) are Borel measurable functions. 
n-toO 

Similarly, if 

9 (x) = i nf { )J. (Ix) : I is an open interval containing x} then 
n K(Ix)<r!\ Kl"Ix) x 

G (x):: lirn 9n(X) is a Borel measurable function. 
n~oO 

Since S = {x E IR; F{x)- Q{x) =O}, 5 is a Borel set. 

We shall have occasion here and later to use the inverse method of 

Gel' fand and Levi tan ([GL1). If a monotonically increasing function p(>') is 

given, the authors obtain necessary and sufficient conditions for the exist-

ence of an operator H whose spectral function is f(~)' We shall make 

particular use of their result that if p(~) is an arbitrary increasing 

function on a finite interval I, then there always exists an operator H, 

defined as at the beginning of 51, whose spectral function equals p(~) on 

I. 

We now prove some results which relate the rate of increase of the 

measureJA to measurable sets of points on which the decomposed parts of fA 

are concentrated. 



2.1 Lemma: If SA is a measurable subset of IR with the property that for 

each x in SA there exists ~~)O such that 

for all interval s Ix containing x with K (Ix) <. Ax' then )A <. <. K on SA' 

and )-'. ( SA) ~ A K ( SA) • 

Proof: 

The proof is in three stages. In (i) we show that if S is a closed 
A 

set with the given property then lACSA) $ 2.A t<.(SA)' In (ii) we extend the 

resul t of (i) to general measurabl e subsets of IR and deduce that )J. < <. K 

on SA' We use the absolute continuity of~ on SA in (iii) to prove that 

}.dSA ) , A K( Sp.) • 

(i) Let SA be a closed subset of lR and let E.)O be given. 

Define S~ = SA n (0) I] _ 

Since K is a regular measure, there exists an open set S such that 

and 

s~ Co S 

K(5) < K(S') + ~ 
A 2A 

For each x in 51 
A 

we may choose 

(x - crx ,X + OJ<] c 5 

o <~ 
x 2. 

to satisfy 

Clearly S c Us [>e.-oJ( ,x-t- axJ, and, indeed, since 
A X Eo A 

(2.2.14) 

(2.2.15) 

(2.2.16) 

Sl 
A 

is compact, 

there exists a minimal finite subcover ~ of S~ by sets of the form 

We may write 

e. = { U. == (x, - ox. ) xi + 6)(. ) , i = I, ..... I pI 
• I I 

where the U. are assumed ordered in such a way that, for each i = 1, .... , 
t 

p - 1, 

X--o <x. -6'x I J( i 1+, i .. , 
(2.2.17) 

) 

The minimal i ty of.(. ensures that no two of the 1 eft end points of the U i S 
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coincide, and also, as we shall now show, that for each i = 1, ... ,p - 1, 

and 

(2.2.19) 

For if (2.2.18) were false, we should have by (2.2.17) 

6x . - Ox. < X· - Yo.. ~ 0 
1+1 , 1+1 , 

which implies 

X· + d x ~ XI' + 0)('1 1+1 i+1 (2.2.20) 

(2.2.17) and (2.2.20) together imply that Ui+,CU i which is impossible 

by the minimality of e. Hence (2.2.20) must be false, and so (2.2.18) 

and (2.2.19) are proved. 

We are now in a position to construct from e a finite cover e' with 

the following properties: 

I e I = { u..~ ) i = I ) . . . . . p } where each U· is an interval and , 

u( S U j for each i = 1, ... ,p. 

I I ¢ 
UJ'\Uj= for all i, j E { 1, ... p}such that i 

P I P 
U U· ::::: U LA· .. = , I t'= , 

, 

I / 

We shall prove that for each U i t: e 

The detailed construction of ~' is as follows: 

For each i e { 1, ... P } such that 
p 

(.~, Uj) () U j =¢ 
1;i 

I 
we set U j = U i . 

If for some i ~ { 2, ... p - 1 } 

=l=j (2.2.21) 

(2.2.22) 

(2.2.23) 

(2.2.24) 
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then by ordering of the U,' and the minimal i tj of e, either U. n u. ~ '" 
1-, 1T''f' 

or U j () U i -+,1= ¢ or both. If (2.2.24) holds for i : 1 or p then U, n Uz =* ¢ 

or up_In Up# ¢ respectively. 

I I 
For each i eo t I I •••• p- I} such that U· n U· =F "", U· and U. 

I 1+1 'Y I .+, 
are defined in such a way that the midpoint between the left hand endpoint 

of Ui+l and the right hand endpoint of Uj is the common left and right 

I I . 
hand endpoint of Ui +\ and Uj respectlvely. 

For each i £ t I •... p -11 such that u· ('\ u. ..... rl., the right and left 
I 1 +1 -r 't' 

hand endpoints of Uj and Ui+, respectively become the right and left hand 

endpoints of U( and Ui~' respectively. 

I 
Each interval Uj is either open or half open, subject to the general 

conditions (2.2.21) and (2.2.22). In order to prove (2.2.23) we first 

show that for each i = 1, •.. ,p, 

(2.2.25) 

It is sufficient to show that for each i ~ {I, .... p-I} for which 

(2.2.26) 

I 

is the partition point between U j 

d U I Since the right and 1 eft inequal i ties of (2.2.26) are immediate an i+, . 

by (2.2.19) and (2.2.17) respectively, (2.2.25) is proved. 

Now for each i = 1, .... ,p, if mj = max I I Xi - 'fi J 
'Y j E: tl.i 

(2.2.27) 

where we have used the hypothesis, m i ~ OJ(. < A xi , and (2.2.25). 
I Z. 

Thus we have proved (2.2.23), and it is now straightforward to show that 

JA(S~) ~ (2.2.28) 

P I 

S I U U· 
For, A C. i:8 I I 

p 

U Uj 5 S 
I ,. I 

by (2.2. 14) and (2.2.22), so that by (2.2. 2~) 



( 2 . 2. 27) and (2.2. 15) , 

p 

)A(S~) ~.L jJ-(U() 
,=1 

P I 

~ 2A K ( . U U i ) , =, 

<; ZAK.(S~) + £ 

17 

Since £ was chosen arbitrarily, (2.2.28) now follows. This result applies 

equally to S~::: S~ n (p-I ,pl for each p in 7L, and so 

as was to be proved. 

(ii) Let SA be a Borel subset of IR and 1 et E. ., 0 be given. 

Let S~ = SR f\ (0)\] 

Since}( is a regular measure there exists an open set S such that 

[0,1) \ S~ s S 

and fA. (5) < )A ( lO, I] \ S~ ) + £ 

Define 5, = S () lO, I J so that S, S S and 

[0, I] \ S, S S~ (2.2.29) 

Then )A (5, ) .$ fA (5) 

~ -"" ( (OJ 1 ] \ S~ ) .... e. 

= ).A ( (0, 1 J \ 5,) +)-' ( s. ) -.f4 ( S~) + ~ 

so that 

~ ( S~ ) < }A ((0, J J \ 51) + E 

Since (0)1] \.5, is closed, we have by (2.2.29) and the result of (i) 

fA(5~) < 2.A K. ([0,1)\5,) +e. 

~ 2A to( (5~ ) -to E 

By the arbitrariness of £ 

fA ( S ~) ~ Z A K (S~ ) 

and hence, as in (i) I }.It. (SA ~ ~ 2. A K ( S,q) . 

Cl early if E is any measurabl e subset of SA .... hich has K -me3~ure zero 
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]A \ ~ J:::: LM K. (E ') = 0 

and so by (2.2.4) 

(2.2.2C) 

(iii) We first show that 

For any subinterval E = (a,b] of IR 

}J- 0.. C. (E) = f' Gl. c. ( b) -;0 a. c. (Q ) 

:: Sb a"oa.c.( >.) d>. 
a d>' 

= sb deC>.) d~ 
o dA 

(2.2.31) 

(2.2.32) 

by (2.2.12) and the remarks following Lebesgue's Theorem (2.2.13). Using 

the Hahn Extension Theorem (2.2.2) we see that (2.2.32) also holds for 

arbitrary measurable subsets E of IR , in particular for E = SA' Since 

JA-S.CSA):O by (2.2.30), we have j-4(SA) = .f-\~.c..( SA) by (2.2.8) and so 

(2.2.31) is proved. 

From the hypothesis and Lebesgue's Theorem, ~ exists and is less than 
dK 

or equal to A K-almost everywhere on SA' Hence by (2.2.31), "..u(SA) ~A K(SA 

as was to be proved. 

2.2. Corollary: 

Proof: 

If S is a measurable subset of ~ such that, for each x in 
A 

SA' ~(x) exists and equal s zero, then fA (SA) :::: 0 
dK 

The condition implies that if £)0 is given, then for each x in SA there 

exists l::lx> 0 such that for all interval s I containing x wi :::, 
x 

K ( I ~ ) < 6)t(. If K ( S" ) <. (X) , the coroll ary 1S immediate by I..emma 2.1 and 
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"Lhe arbi trariness of E. Applying this result to S,q n (p-IJpJ for each 

p E. Z , the case K{S~); d:J follows by the countabl e addi ti vi ty of)J.. 

2.3 Lemma: If SA is a measurabl e subset of IR with the property that for 

each x in SA there exists 6.x"10 such that "M(J: x ) ~A 
K(Ix ) 

for all intervals I containing x with 
x 

Proof: 

K. (I,x ) < ~ X ' then j.J. (SA) at A K(~) 

The hypothesis and Lebesgue's Theorem (2.2.13) imply that ~ exists and 
oh<. 

is greater than or equal to A K-almost everywhere on SA' Hence from 

(2.2.8) and (2.2.32) )A- (SA ) ~rQ.c..cSA)~AK.( SA) which proves the resul1 

In order to determine more precisely the sets on which the absolutely 

continuous, singular continuous and discrete spectra are concentrated we now 

investigate the set S which consists of all points of IR at which ~ does 
ah<. 

not exist finitely or infinitely. It follows from Lebesgue's Theorem 

(2.2.13) that K (.s) == 0 ; we shall now establ ish that }A (5):. 0 al so. Our 

proof is adapted from Theorem 9.1 of [SA], and is geometric in character. 

We require some notation and definitions, and a preliminary Lemma. 

Let A.y be rectangular Cartesian co-ordinates in the plane, and let f(A) 

be a function of bounded variation. Let the discontinuities of f(A) 

which are most countabl e, be denoted by {c i 1 . 

The curve r generated by f(~) is the continuous curve whose graph is 

obtained from that of f by adding to the latter segments of each of the 

1 ines A:::: c· . 
I 

If the curve r is defined in the plane by parametric equations 

A = R (t),)' =- YCt), then the length of [1 on the t-interval [a,b: 1S 
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defined to be 

r 

sup I. d (t
L

_ 1 t:
l

) 
l=1 I 

(2.2.33) 

where Q = t o < t, < ..... tr-:::Ib is any partition of [a,b] and 

Now let r be the curve generated by the spectral function peA) and 

let s be the length of r measured from an arbitrary fixed point of r 

in the direction of p(A) increasing. For convenience we shall also use 

s to refer to the point of r at which the length of r is s, whenever there 

is no ambiguity. Let R(s) and Y(s) denote the A and y co-ordinates of 

the point s, let I denote any interval of r containing s, and let RCI),K(I) 

denote K({R(s): seI})and K({S: 561) respectively. 

We prove the following: 

2.4 Lemma: For Lebesgue almost all s the derivatives 

)"(5) = Jim '((I) 
K(I)~O KtI) 

exist and 

Proof 

.1. 
([R"(s)]~ + ['('(S)]2):&' = 

R(s) and Y(s) are monotonically increasing functions of s, so that 

R'(S) and y~(s) simultaneously exist and are finite at Lebesgue almost all 

points of IR+ by Lebesgue's Theorem (2.2.13). 

Also, by Pythagorean geometry, 

.l.. 
(lR(I)]2-rlY(!)]z')2. ~ KCl) 

for all intervals I, which implies 
.L 

«( R"CS)]2 + l '("(5)]2.) ~ ~ 

whenever R"(s) and y'(s) both exist. 

We require therefore to show that K (U)~ 0 , where U = { s 4£ IR~ R'(s),Yts) 

exist and ClR'(5)J~ ... [Y'(s)J~y1 < J}. 
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~ 

Let Uk denote U () (0) k] for each k ~ IN . Since K (U)~ L K(U k ) 
k:1 

we need only prove that K(Uk )= 0 for each k E IN . Define 

, 
U = {s e. U : ([ R (I )] 2. + [Y (1)12.) l' + ...!.. ~ 

Fl , k k K ( r) K cr )J n 

for all intervals I containing s with diameter < ~ } 
n 

To prove that K.(Uk}=Q for given k e iN , we show that 

and Klu k):O 
Fl, 

for each n € IN . 

For each S E. Uk there exist L E.IN such that 
I 

( [f(/(S)J2. + (y,(s)]2.)"i: + ! ~ I 
l 

and m E IN such that 

for all intervals I containing s such that 

([R(!~12 r.",(('1:)J2.)1 ~ ~ 1 
K ( 1. )1 + lK ( I) + l 

K(I)<..!. 
,." 

(2.2.34) 

(2.2.35) 

(2.2.36) 

Hence 

for all intervals I containing s such that K(I)<~ from which we see 
m 

that S Eo Utt,k where q = min { t ' *' 1 . 

Thus (2.2.35) is proved; we now establish (2.2.36). 

For n = p, let i.) 0 be given. By (2.2.33) there exists a sequence 

l e {o) .... m-I}, such that 

1 
~ - (2.2.37) 

p 

for all L €. { 0 ) ...... m - I )' and 

",_I m-\ 

k = L (Sl - SL) ~ ~ d ( SL I SL-rl) + € 
L~O 1'1 l=O P 

(2.2.38) 
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For each l E. {O), ... m- \ '} for which U "( s s ] .. ~ p,k L I L+ I T' 7' 

we may, by (2.2.37), set I - (s s ] 
- L' \.+1 in the defining inequality in 

(2.2.34) to give 

-r Sl+ I - S l (2.2.39) 
F 

Hence, if 
~ (p) 
L denotes summation over all indices l for which 
l 

U PI k n ( S l I ~ L -+-1] * ¢ , we have by (2.2.38) and (2.2.39) 

K ( U P, k) , 

( f. 

Since e. > 0 and pE-1N were chosen arbitrarily, (2.2.36) is proved for 

all n E./N ; this completes the proof of the lemma. 

In the following we shall refer to arbitrary points of the A-axis as 

x. This is merely a convenience of notation bearing in mind the contexts 

in which Proposition 2.5 will be applied later. 

2.5 Proposi tion: }.J. ( { X e. IR : ~ (x) does not exist finitely or 
dK 

infinitely}) = O. 

Proof: 

Let r , R(s), Y(s) be as in Lemma 2.4. 

Define 

u = tXE:[R(O»)oO):~(X) does not exist finitely or infinitely} 
dK 

(2.2.40) 

We show that fl. ( U) = 0 . 

From Lemma 2.4, R' (~) and Y"(s) both exist and are not simultaneously 

zero for Lebesgue almost all 5 ~ 0 . Hence, noting the remarks following 

Lebesgue's Theorem (2.2.13), we have 



~ (R(s)) 

dK 
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= [de (R(s)) / d R(S)] = "f'(S) 

ds -; ds R,/(S) 

for K-almost all s~o , so that t<. ({ S Eo IR.T : 2(RCs)) does not 
dK 

exist finitely or infinitely })= 0 (2.2.41) 

Now the length of ~ generates a measure on (R(O),~). For, defining 

S(o,bJ:; R-'(b+) - R-'(Q+) for all a,b in lR(O),oo) , we see that S is 

I 
a measure on the al gebra Q. of hal f open subinterval s of (R (0) I cD ) 

which by the Hahn Extension Theorem (2.2.2) may be extended to a uri~ue 

me?s'""re on a O"-al gebra containing a:'. Moreover, by Pythagorean geometry, 

for all subintervals E of (R(O),CX)) , and consequently the same is also 

true of arbitrary measurabl e subsets E of t R (0) J (0). 

Since (2.2.41) may now be expressed in the equivalent form: 

5 ( { X Eo ( R (0) ) co ) : ~ (R(~)) does not exist finitely or infini tely}) 
dK 

-= 0 ,(2.2.40) and (2.2.41) imply ..JoA(U)-= O. The proposition now 

follows from the arbitrariness of the point s = o. 

'He remark that the analogue of Proposition 2.5 for K-measure i s 

Lebesgue I s Theorem, viz: K (-{ X (: IR : ~ (x) does not exist fini tel y ~) 
dK 

:0 However, Proposition 2.5 leaves open the question of whether 

the set {x E lR : ~ (x\ = 00 } , which has zero Lebesgue measure, can have 
QK 

positive~-measure; by a process of elimination, we shall see that ~s. 

is concentrated on precisely this set. We first use the foregoing pro-

position to generalise Lemma 2.1: 

2.6 Proposi tion: If S is a measurabl e subset of IR wi th the proper~y t:13t 

for each x in S there exists Cx<' (X) such that Ii rYl 9 (x) < ex 
F\~oO " 

where 
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I is an interval containing x } 
x 

then }I- « K on S. 

Proof: 

Define h" (x) _ )A « x - ~ I X + ~ ] ) 
Z -n 

Rewriting n ( .0 ( X -+- .L ) - P ( x -1.. )1 we see '2,-" n 

that h (x) is a function of bounded variation, and hence is measurable 
n 

for each n ciN. It follows that lim info h (x) is a measurable function 
n 

n ~oO 

Define S I ::s { X ~ 5 : d..,,,,d}(.1 exists} 
dx 

as we noted in the remarks 

following (2.2.13), 5' is a Borel set. Hence, for each k in~, 

= {X€S/: k-I ~ ~(x) < k} 
ciK 

is a measurable set, and by Lemma 2.1,f"<.<.K on Sk. Consequently,jL« K 

on U Sk 
kerN 

; since, moreover I fJ'- ( 5 '\ U Sk) = 0 by Proposition 2.5 
k61N 

and the definition of S, the result is proved. 

2.7 Corollary: (i) If }4J..K , then fA ({x E: R: ~ (x) -+ oo}) = D. 
elK 

(ii) }-'..J.. K if and only if ~ = 0 K-almost everywhere 
oh<. 

on IR. 

Proof: 

Proof of (i): 

If .fA..l K , then there exists a measurabl e set S such that K (5) - 0 

and fA (IR \ 5 ) = 0 

and since )A < <. K on 

by (2.2.5). Hence )A (t x€. lR'\ 5; d)A (x):;: 00) = 0 
dK. 

{X e 5: ~ (1(,. ) ~ ~ } 

oK 
by Proposition 2.6, 



Hence result. 

Proof of (i i ) : 

Let ~ (x ) exist:: and 
dK 

If )-4~ K , then )J. ( E) = 0 ,by (i); hence K( E)= 0 by Lemma 

2.3, so that, by Lebesgue's Theorem (2.2.13), 

everywhere on R. 

~ = 0 K -almost 
dK 

Let F :: t X £ IR. ~ (x ) 
dx 

exist; and equal sO} . 

Then F is measurable, j4(F)=O by Corollary 2.2, so if 

K. (I" , F )::. 0, jA..LK. by (2.2.5). 

This completes the proof of (ii), and hence,of the corollary. 

We are now in a position to relate the decomposition of the spectrum to 

properties of the derivative ~. First we need to clarify the concept 
dK 

of a measure being "concentrated" on a subset of IR • 

2.8 Definition: A subset of ~ is said to be a minimal support of a 

measure ~ if the following conditions are satisfied: 

( i ) L (fR. \ 5 ) = 0 

(ii) If S is a subset of S such that 1.(5
0
)::.0, then K(So)::O. 

o 

We remark that, in general, the spectrum of H need not be the same set 

as any of the minimal supports of the spectral measure~. To see this, 

we note that according to the inverse method of Gel 'fand and Levitan 

( [GL] ), if a I b Eo IR wi th -00 < Cl <. b < 00 there exists an operator 

H wi th spectral measure}-' such that }.J. ({ x }) > 0 if x E (a I b J n ~ 

and )AC{ x l) ~ 0 if X Eo La I b] ,,~. Clearly the spectrum of H, being a 

closed set, cont3ins (a,b] whereas, since (a,b] n <Q. 
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minimal support of )J. on La 1 b] ) K (m " (0 I bl) = 0 for every other minimal 

support m of ).A. • 

2.9 Theorem: Minimal supports m m Tn m and m of u 1A r 
I O.e. 1 S.' S.c. d . .-",/ Q.C.'~S.I .5.c. 

and )Ad. respectively are as follows,where 

E -= { X E IR : ~ (x) exists}: 
cAK. 

rn = { X £ E : 0 < ~ (x) } ~oo 
dK 

(i) 

(ii) m = { x. e. E 
G.c.. 

o < d)A (x) <. 00 } 

dK 

~(K) = co J 
dK. 

(iv) l'ns.c.-={xeE: ~(~)= 00
1 

j.A({x.})=OJ 

(v) 

elK 

_ -[ x. e. E = d ,4 (x) = 00 , ~ ( { x. j) ., 0 1 
dK 

Proof: 

We need only prove (ii), (iv) and (v), since (iv) and (v) imply (iii), 

and (iii) and (ii) imply (i). 

Proof of (i i) : 

Let 5 = {x €. E : 0 < ~ (,x) < 00 1 
dK 

From Corollary 2.2, Proposition 2.5 and Lebesgue's Theorem (2.2.13), 

}AQ,c,cIR \ 5) =0, To show that S is minimal we prove that if SoSS is meas-

urabl e and K ( So) } 0 , then )-40.. c. ( So) ,. 0, 

Define 5.,., = {X £ So : ~ ex) > .!..} for each me IN. Since 
otK ", 

50 = U Sm and K{ So)"> 0 , there exists n e.IN such that K (5",) ~ O. 
m€.JN 

Hence ).4 ( S",) ~ ~ K (S",) (cf. proof of Lemma 2.3), so that }.4 (5,,) '> 0, 

Since A ( S" ) = 0 
S. 

by (2.2.8) 

by Proposition 2.6, this implies that )44.C. (S~) ., 0 
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Hence )-Aa.c.(So) ') 0 , and the minimality of S is proved. 

Proof of (i v) : 

Let 

s - { ){ E: E: ~ (x) = oa I )J. ({ x. }) = O} 
dK 

Since 

U £xe IR: lim I;,r II [x - ~J X ;- d J 
.r.r- < 00 } 
0-+0 1.6 

)w\s.l'R\S):O by (2.2.6) and Proposition 2.6. 

Since K( 5) = 0 by Lebesgue's Theorem (2.2.13), S is minimal. 

Proo f 0 f (v): 

By definitions (2.2.7) and 2.8, rna. is the small est support of ).Ad: 

We remark that according to Definition 2.8,nn, as defined in the above 

theorem, is a minimal support of bothfA and fA . While it is quite 
(.l.c. 

possible to recast the definition so as to ensure that minimal supports 

of orthogonal measures are always disjoint, we prefer to retain Definition 

2.8 for a number of reasons. Firstly, restricting the definition would 

mean that a further condition needed to be checked each time a subset of 

was shown to be a minimal support, thus complicating proofs. Secondly, 

there is no difficulty, at least in principle, in obtaining disjoint 

supports from non-disjoint supports of mutually singular measures, on 

account of (2.2.5). Finally, as we shall show in S3, the set of all minimal 

supports of a measure, as defined in 2.8, is an equivalence class, and 

this property is frequently useful when establishing minimal supports. 

We also note that, if one type of spectrum is absent on a subset S of 

IR, then, although there exists a minimal support of the corresponding 

measure which is empty on S, the appropriate minimal su~port ~f Theorem 

2.9 need not be empty on S. To illustrate this point we give a couple of 
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examples; we shall have occasion to refer to these again in Chapter I=: 

when we investigate the correlation between the parts of the spectrum and 

the existence or otherwise of subordinate solutions of the Schr~dinger 

equation (2.1.1). 

2.10 Example: It is well-known that an absolutely continuous function may 

have an infinite derivative on a non-empty set of points whose 

Lebesgue measure is zero. Indeed, given any bounded open interval (a,b) 

oflR and any countable or uncountable subset S of (a,b) having Lebesgue 

measure zero, there exists an absolutely continuous function whose derivative 

is infinite at all points of S ([T11 Sll.83, Lemma 1). Hence, by the in-

verse method of Gel'fand and Levitan ([GL1), an operator H exists which has 

no singular spectrum on (a,b), but for which ms.fi [alb] is an uncountable 

set. 

2.11 Example: We show that an operator H exists which has no absolutely 

continuous spectrum on (-2,2) but for which ~ (0) = I . 
dK. 

According to the inverse method of Gel'fand and Levitan ([GL]), an 

operator H exists whose spectral function is equal to peA) on [-2,2:, 

where p(~) is defined on (-2,2] as follows: 

PIA)={-i 
P (0) == a 

and for each n inlN, 

2n (1f) (sin) 2. 

A E: (-Z,sin(-"I)l 

~e.Lsin~.Z] 
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where (sin)nk denotes (sin(sin .... (sin k) ... )) n times 

To show that p(~) is defined on all of [-2,2], we prove that 

(sin) t\ {- I) are increasing and decreasing sequences 

respectively which converge to o. 

Since 0 < 51'" x <. X 

and converges to some 

for x in (0) 'K ] 
:2-

l ~ 0 as 1"\ ~ (JO • 

) (sil"\)'" ! 
'2. 

If L * 0 

decreases with n 

oS in L * L 
and so, by the continuity of sin, there exists f)O such that sin (L+€)~ l. 

Since there exists Ne e. IN such that (S\n )I'\+I(~) <. L~e if n ~ Ne ' we 

have that (sin )I"\-t-I (1)<. sin (L~ E) ~ L for n ~ N E This is impossible 

converges to l from above, and hence L = O. 

The procbf for (~in)1"\ (-~) is similar. 

Now for each n E IN if 

then (sin) 2.", (1) ~ 

It follows that 

on (O,lJ 

and, similarly, 

on [-1,0) 

Since ,0(0) = 0 this implies 

SI'f"! 6 
t5 ~ 

and, similarly, 

From Ii f'Tl 

6~o 

~ [0,0" J 
(5 

11m 
O~O 

. -I 5 
~ 

sin 

~ 

sin-I 0 ~ , 
o 

we deduce that ~ (o) = 
cjK 

as required. Since f>(~) is a sal tus function on (-1 , 0 ) U (0, 2 ] 
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we have in 0.. c. n [- Z I Z ] = \ o} =F <P but no absolutely continuous 

spectrum on (-2,2). 

In the next section we shall use Theorem 2.9 to obtain a new set of 

minimal supports in terms of a function which is analytic in the upper half-

plane where it has positive imaginary part. 

§3 The function m(z} 

We stated at the beginning of this chapter that if a self-adjoint 

operator H is defined by the Schr~dinger equation together with a boundary 

I 

condition at r = 0, then the corresponding differential expression is in the 

1 imi t point case at 00, and in the 1 imi t circl e case at O. To cl arify this 

remark, we briefly indicate some of the theoretical background. 

In 1909-10 Hermann Weyl produced three remarkable papers on second order 

differential equations, which developed and generalised the work of earlier 

mathematicians such as Fourier, Sturm and Liouville ([W1], [W2J, [W3]). He 

obtained an eigenfunction expansion theorem of great generality and estab-

lished the theory of the limit point and limit circle which is, in outline, 

as follows: 

In considering a general equation lu ; zu of the Sturm-Liouville type 

with a regular end-point at 0, it is found that only the following possi-

bilities can occur: 

1} Limit Point Case: For every z in ~')R , lu = zu has just one 

solution u which is in L,lOJoo) , and for every real z there is no more 

than one sol ution in L Z [0 I (X)) . 

2} Limi t Circl e Case: all sol utions of I u = zu are in Lz. L 0 , 00 ) 

for every 'z in tt. 

The same distinction may be applied to each of the intervals (0,0], [0,00) 

where 0 < a < CX) , in particul ar if ° is a singul ar endpoint ([ CL j Ch. 9,~' ). 
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The geometric terminology arises because the locus Cb{z) of the set 

b e ( 0 • 00), 2 € JR \ a: are f:'xed) is a 

circle in the complex plane, where nnb(z,~) is defined by the condition 

that the solution U (I"') = U 2 (1"', 2 ,0<.) + m b(2 1 b)u,(r".1.0(.) of lu = zu 

satisfies the real boundary condition 

u (b) cos(3 + \.A. '(b) Sin f3 = 0 

U I 
( 1"', Z , ... ) and U (- "2 .-.I) 

~ 2. '. ,,,,, being solutions of lu = zu satisfying 

-- / 
- 1...(,. ( 0, 'Z 10() = - Sin 0<. 

u /' ( 0 I 2. I IX) - c. os oc. (2.3.1) 

If bz.) b, ' then for each z in a: \ IR 

C b (z.) and the set of nesting circl es 
I 

C b (z) lies entirel y inside 
2-

{ Cb (2)} converges ei ther to a 

point, the "limit point", or to a circle, the "limit circle" as b ~ 00. 

In the first case the problem is self-adjoint, whereas in the limit circle 

case an additional boundary condition is required at 00 ([CLI Ch.~S4). 

If m{z) is the limit point, or any point on the limit circle, u", (r", Z, oe) = 

U1. Cr ,7.,O(..) + m(z)ul(~ZId.) is in L2.[O.oo) 

L 2. to J 00) norm, 

Im m (z) 

Imz 
where m{z) depends on ~. 

and, if II . II denotes the 

(2.3.2) 

Possibly due to the influence of functional analysis, with its 

emphasis on abstract structure in a wider context, the work of Weyl was not 

significantly developed for another thirty years. It was E.C.Titchmarsh 

who ,aware of the importance to mathematical physics, was primarily responsible 

for a revival of interest in second order differential equations of the 

Sturm-rivuvi1~e type in the 1940s. An important outcome of his work was the 

formula 

lim 
:t,J, 0 

(2.3.3) 
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for points of continuity ~,v of p(~). The derivation of the related 

formula (a slightly different formulation is required if ~= 0, see [EK] §2.3) 

S
oo 

m('%.) = __ ,_ 
A-Z (2.3.4) 

-00 

for z in ([ \/R stems from the analyticity of m(z) in either half-plane, 

which was proved by Weyl in 1935 «(W4]). There are other equivalent 

representations of m(Z) in current use (see[EK] §2.3); (2.3.3) and (2.3.4) 

are derived in ([1S] Ch.2, §5). It should be noted that the spectral 

function p(A) , although often most conveniently analysed using (2.3.3), 

originated as the I imi t as b -')00 of step functions Pb(A) arising from the 

Sturm-Liouville problem on the finite interval [O,b]; the jumps of ~D(~) 

being at each eigenvalue, with the discontinuity equal to the inverse of 

the square of the L 1 (D,b] norm of the corresponding eigenvector ([CL] Ch.9.§3). 

Analysis of the spectrum until the late 1950s was generally based on 

the idea of locating the points of increase of a spectral function and only 

discriminated between the discrete and continuous parts. Titchmarsh 

recognised that the isolated points of the spectrum occurred at the poles 

of m(z), and that if the set of points to which Imm(z.) converged as :t.J, 0 

was bounded above and away from zero on an interval I, then there was con-

tinuous spectrum on I. ([T2] Ch.5). A subtler appreciation of the 

relationship between the spectrum and the boundary behaviour of lnnrn(z) 

was achieved in 1957 by N.Aronszajn ([A] §2]. His standard supports of 

the decomposed parts of the spectral measure are similar to the set of 

minimal supports we obtain in Theorem 2.17. 

No doubt because the importance of boundary properties of analytic 

functions for spectral analysis of differential operators was only recog-

nised comparatively recently, most available literature lacks even a 

rudimentary account of those aspects of analytic function theory that are 

relevant. In the proofs of our results, we shall have frequent occasion 

to use properties of m(z) as z approaches points on the real axis, so it 
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seems appropriate to give an indication of some of the relevant theory. 

As this theory developed quite independently, there was no special con-

sideration of functions analytic in the upper half-plane wit~ positive 

imaginary part such as m(z). It was usual, in fact, to consider the be-

haviour of a function which was meromorphic on the interior of a unit disc 

in the complex plane as a point on the perimeter of the disc was approached 

radially, or "non-tangentially". Accordingly, we shall first cite some 

results for this case, and then show how properties of conformal mappings 

may be used to give analogous results for a function meromorphic in the 

upper half-plane, with particular reference to m{z). 

We require some notation and definitions: 

Let few) be a function from C to ~ which is meromorphic on an open 

region R, bounded by a smooth boundary B. 

A triangular neighbourhood ~P/.(U) of a point p on B is defined to 

be the intersection of a neighbourhood U of p in ( with an open region lying 

entirely in R and bounded by two straight lines intersecting at p; these 

straight lines are reflections of each other about the normal to the boundary 

at p, and subtend an angle l~ at p (0 < 0(. <. "'!!: ) • 
:2. 

Let Sp,a«U) be the set of limit points of -FlU)) in Ap,QI.(U) (this 

may include the "point" 00); and define ep,c(' = n Sp.~(U). U Cp,d.. 
U O<ot<~ 

is called the cluster set at p. 

The function few) is said to have a non-tangential limit at a point p 

on B if the cluster set at p consists of just one point. 

The function few) is said to behave restrictedly at a point p on 8 

if there exists a triangular neighbourhood Ap,o(,(U) such that of (~P'" (U )}= 

is not dense in the whole complex plane. 

8y the Lebesgue measure of a subset of the perimeter of the uni t disc 

we refer to its length in the usual sense; thus the Lebesgue measure of an 

arc on the perimeter which subtends an angle e at the centre is S. 
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The following result was first proved for bounded analytic functions 

by F and M. Riesz in 1916 ( [RI J ) and later for general analytic funct::"ons 

by Lusin and P:::-ivalov ( [LP] ) , who also showed that, in general, it is not 

possible to replace the condition of non-tangential convergence by radial 

convergence. The extension to meromorphic functions was accomplished by 

A. Plessner in 1927 ([PLJ Satz II). 

(A) If ~(w) and 9(~) are functions which are meromorphic on the interior of 

a unit disc, and which have the same non-tangential limit on a subset of 

its perimeter having posi ti ve Lebesgue measure, then f (w): 9 (w) . 

If we take 9(w) to be a constant function then the following corollary 

is immediate: 

(B) If ~(w) is non-constant and meromorphic on the interior of a unit disc, 

then the set of points on its perimeter for which few) has ~ g~ven f:xed 

value as its non-tangential limit has Lebesgue measure zero. 

The next result is due to A. Plessner ([PLJ S~tze I, IV). 

(C) If few) is meromorphic on the interior of a unit disc, and if E is the 

subset of points of the perimeter at which few) behaves restrictedly, then 

few) has a finite non-tangential limit Lebesgue almost everywhere on E. 

Points on the perimeter at which fCw) does not behave restrictedly are 

sometimes referred to as Plessner points ([NO] Ch.III). 

Further discussion and refinements to the above results may be found 

in [CC], [NO] . 

We now indicate how properties of conformal mappings are used to show 

that (A) - (C) also hold for a function which is meromorphic in the upper 

half plane, the "perimeter" in this case being the real line. 

Consider the Mtlbuis transformation ([M] §33): 

z. = T(w) _ 
i~-I z.~_i(X2+~Z_I) -
i-w X4+(l-!)' 
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where (A)=X+i~ • It is clear that the circle 'wl=\ is mapped onto the 

real 1 ine IR, with the pol e, Ct.) = i , being mapped to the "improper point" 00 • 

Moreover, the region outside the circle I~I:' is mapped conformally onto 

the lower half plane, and the region inside the circle onto the upper 

half plane. Indeed, it is easily ascertained using elementary geometry 

that TCc.l) maps the circle hAlle' stereographically onto IR , with CtJ:i as pole; 

w = ± I are fixed points. 
-to 1 

.... ..... 
- I JR 

- i 

Consider now a subset E of B = {w : Iwl ":& 13 which has Lebesgue measure 

zero and is such that the pole ~:i is not in the closure of E. We may 

cover E with a countable collection of sets {Ci J which are such that each 

. c.j = B is open in B and the pol e tAl: t is not contained in the closure of 

u C· • I • This last requirement will ensure that the "magnification" of the 
I 

C. is bounded under T; that is, that there exists M Ei IR+' such that 
l. 

for all i. Hence if e>O is given, we may choose our cover to be bounded 

away from w = i as above, and such that 

whence it follows that 

~ K (T (Cj)) < e. , 
Thus any subset E of the circumference of the circle Iwl= I , which has 

~ebesgue measure zero and whose closure does not contain the pole ~2; 

is mapped by T onto a bounded subset T(E) of ~ which also has Lebesgue 
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measure zero. 

Now the uni t circle /,., I = 11th . t b ....., ,ess e pOln U):'I, may e expressed 

as a countable union of closed sets {5i~ , each of which does not contain 

the point (,.)":1 i. Therefore, if E ~ B , S #.' = " } h L b ~~ as e esgue measure zero, 

T ( EnS i) has Lebesgue measure zero for each i, by above. Hence 

K ( T ( E. )) = K. ( U T ( E f"\ 5,)) ~ 
• I 
I 

r. K. ( T ( E (\ 5j n = 0 
I 

and so T maps any subset of 5 \ 1. w= i) ' .... .1. th Lebesgue measure zero onto a 

subset of IR wi th Lebesgue measure zero. (i) 

LetS(z) denote T-'(z). We remark that S('1.): I+iz. 
\+2. 

is also 

a M~bius transformation and a continuous one-to-one mapping of c(. ,{-i]onto 

ct \til, 

We now show that if a variable point z in the upper half-plane 

approaches a point p61R in such a way that it eventually remains in a 

particular triangular neighbourhood of p, Ap,rio. (V) , then there exists a 

triangular neighbourhood of S(p), ~S (U), such that S(z) eventually 
(P)'~ 

remains in 6 S(P)'~ (U). 

Since every M~bius transformation is circle preserving ([MJ §45) the 

straight lines L1 and L2 which bound 6p,~(V) are mapped by S onto circles 

S(L
1

) and S(L
2

) in the ~-plane, each of which passes through S(p) and the 

pol e (.rJ =-1 • (If one of L
1

, L2 passes through the point CAl = - i ,then it 

will be mapped by S onto a straight line passing through S(p) and w=I ). 

As a variable point z in ~ (V) approaches p, its image S(z) approaches 
p, til. 

S(p) from the region within the circle '~l=\ which is bounded by S(L1 ) 

and S(L
2

). Since S(P)~ i , neither S(L
1

) nor S(L2 ) is tangential to the 

circle 5(IR) = {w:lw(::.I} and hence S(z) is eventually contained in 

some triangular neighbourhood 

trates the case where I p' > 1 

A S() (U) 
P 1(3 

) . 

of S(p). (The diagram illus-

Now if f(z) is a function which is meromorphic in the upper half plane, 

but which does not have a non-tangential limit at some point pelR , then 

there exists a triangul ar neighbourhood Apl~ (V) and a sequence of points 
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{ Z i 1 in D.p.rJ.. (V) such that Zj...lt P but f( zi) does not converge to a limit 

as i ...... 00 We conclude from our previous remarks that {CA)j: Wi = S(Zj)} 

is contained in some triangular neighbourhood A ( U ) 
S(p),fd of S(p) in 

the interior of the disc I CAl" \ and, 

5 (p) ~ b p,oe. .... ..... .... .... ......... 
.......... ..... .... ..... .... ........... .... 

IR 

using the properties of S, we see that the sequence of points 

in the interior of the disc I w I ~ I converges to the 

point w= S(p) on its circumference as t z,j '} converges to p. However, the 

function (f T)(w) , which is meromorphic in the interior of the unit disc, 

does not have a non-tangential limit at tu=S(p) since {(TTXwj)} = 

.ooes not converge to a limit as (c.),l converges to S (p) . 

Thus if fez) does not have a non-tangential limit at the real point z = p, 

then (-FT)(Cal) does not have a non-tangential limit at the point 6.) = SCp) 

of the circle lw' == , It may likewise be shown that the converse of this 

statement is also true and we have, equivalently: 

f(z) has a non-tangential limit at the real point z = p if and only 

if (~T)(w) has a non-tangential limit at the point CtJ = S( p) on the uni t 

circle lw I = , (ii) 

Now if g(z) is also a complex function which is meromorphic in the 
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upper half plane, and if f(z) and g(z) have the same non-tangential limit 

on a subset of R having positive Lebesgue measure, then (FT)(CA)) and 

(9 T)( (.&)) are meromorphic in the interior of the uni t disc I w' ~, , and 

have the same non-tangential limit on a subset of {w:' wi = I } 
positive Lebesgue measure, by (i) and (ii). Thus we may state: 

having 

(A)' If f(z) and g(z) are functions which are meromorphic in the upper half-

plane, and have the same non-tangential limit on a subset of the real line 

having positive Lebesgue measure, then f(z) - g(z). 

As before, the corollary is immediate: 

(B)' If f(z) is non-constant and meromorphic on the upper half-plane, then 

the subset of points of JR for which f(z) has a given fixed value as its 

non-tangential limit has Lebesgue measure zero. 

Using the fact that conformal mappings preserve the angles at which 

curves intersect ([MJ §23), we see that there exists a triangular neighbour­

hood of a real point p on which f(z) is not dense in the whole complex plane 

if and only if there exists a triangular neighbourhood of SCp) ~{(,&):'C&l' - J} 

on which Cf-r)(~) is not dense in the whole complex plane. Hence if E is 

the subset of R on which f(z) behaves restrictedly then S(E) is the subset 

of the unit circle 'wl= I at which CfT)(CAl) behaves restrictedly. By (C), 

(~T)(~) has a finite non-tangential limit Lebesgue almost everywhere on 

S(E), and hence by (i) and (ii), f(z) has a finite non-tangential limit 

Lebesgue almost everywhere on E. We have therefore: 

(C)' If f(z) is meromorphic in the upper half-plane, and if E is the subset 

of IR at which f(z) behaves restrictedly, then f(z) has a finite non­

tangential limit Lebesgue almost everywhere on E. 

We now return to the function m(z) which is analytic in the upper half­

plane. Unless otherwise stated we shall assume that the differential 

expression L, defined as in (2.1.2), is in the limit point case at~ , 

in which case m(z) may be defined by condition (2.1.3). (As necessary, the 

ct dependence of m(z), u
1
(r,z), u

2
(r,z) will be indicated by m('1,ct) 

) and ""("'tZI~) respectively). From (2.3.2) Immlz.),O lA. (,., z. ,OJ. ... 
if 



Im ~ >0 so that m(z) behaves restrictedly at al';' points of IR . 

We shall say that m(z) has a normal limit at the point XtlR if m(z) 

~verges to a finite limit or to ~ as z approaches x from above along :~e 

normal to the real axis at x. 

The following is now easily deduced from (A)', (B)' and (C)': 

2.12 Theorem: The function m(z), de~ined 3nd analytic in the upper half-

plane, has the following properties: 

(i) m(z) has a finite non-tangential limit Lebesgue almost everywhere on IR; 

in particular, m(z) has a finite normal limit Lebesgue almost everywhere on 

IR. 

(ii) The subset of points of R at which m(z) has a given fixed value as 

its normal limit has Lebesgue measure zero. 

(iii) If g(z) is analytic in the upper half-plane, behaves restrictedly at 

all points of IR, and has the same normal limit as m (z) on a subset of IR 

having positive Lebesgue measure, then g(z) = m(z). 

It is presupposed in (ii) that m(z) is not a constant; this is certainly 

true in all the cases we consider. If m(z) has a normal limit at ~ ~IR 

e denote thl"S ll"ml"t by m+(~)· sl"ml"larly, if Imm(~)has a normal limit at w .'- , .. 

x, we denote this by 1m rn+<x). Since z = x + iy, it is evident that 

mT (x) = ~ i.;o m C X ~ i '1) ) and from (2.3.4): 

I ) - li", SoO :t df?(A) 
rnm-t-()C. -'j.JtO -00 ().._x)2.+'j1. 

(2.3.5) 

whenever the limits exist. 

We now prove a number of resul ts relat::'ng 1m m+(x) 

our first result is valid irrespective of ~hether the 

spectral measure~ is finite or infinite: 



40 

2.13 Lemma: If Imm+()c.) exists and equals zero, then ~(x.) also 
dK 

equals zero. 

?roof: 

ex:'s::s 

We first note that ~(x) exists and equals zero if and only if 
dK 

lim p(XTO)-,.o(X-c5') 

0..,0 ,0 
exists and equals zero. 

Hence it is sufficient to prove that the hypothesis implies that 

l irn to (x-t-c5)- ,.o(x -0) 
o~O 20' 

exists and equals zero. S
. cS '> I 
lnce ().._)C.)1. +~,,, 2.d 

on (x - ~, X + c:5 ) ,we have 

The result is now immediate from the hypothesis and (2.3.5). 

The following proposition is also true irrespective of whether ~ is a 

finite or an infinite measure. We use the fact that, for sufficiently 

small y, ( Y'1 :I. decreases with y for every ~ outside a certain neigh-
A-x) +'1 

bourhood of x. 

2.14 Proposi tion: If ~ (x) exists fini tely or infini tely, then 1m m+( x) 
dK 

also exists, and 

Proof: 

~(x) = 
dK 

.!... 1m m"1" (x) 
1T' 

We note that if ~()(.) exists then lim 
dK ,,-.0 

e(x-+O) -f(x-c5) 

2& 
also exists, and the two limits are equal. For the purposes of the proof it 

is convenient to use the function ;0 (>..) instead of p( A) where p (~) is 

defined 3S follows: 

~(~) _ 0 

pC-A) _ to().) -,o(2x-)o..) + ".u(tZx-)d> 

If lim ,o(X+-d)-,.o(X-o) exists, ... '(> see that J'm 
6~o 2d O~O 



also exists and both are equal. Also because of the symmetr'y of t~e 

integrand about x, SaD Y dp('>') =foO Y dp(A.) for' al: y '> 0 
_ ~ (')( -A.)~ + 'jl. X ( X _~)4 .,... :J 1 

so that 1m m+<x)- lim S'" :fa. d1()..) whenever the li.mit exists. 
:JJ,O x (x-A) -t-'ja. 

Suppose now that d~(x) exists finitely and equals l. 
dK 

Then, if e.) 0 is given, there exists'S> 0 such that, whenever 

2 ( ~ - X )( l - i ) < P (A) <. 2 ( ).. - X '/.. L -to ~ ) 

We prove that (i) lim sup l J ao :I dp ( A) ~ L 
y~ 0 1f X ().. - x,)z, + 12. 

(ii) lim inf I 

~.JJ 0 1T 

(i) We first show that we may choose an M e lR+ such that 

( y ~(~) is small for sufficiently small y. 
J ( M I 00) c.~ - )( )2. + :J 2. 

For each ::J > 0 

f ' :/ d,o ( A) = ':f 1\ U m (I"", 4) 1\ < 00 
L)(,(J)) (X_ A )2+;j'1 

(2.3.6) 

by (2.3.2). Hence if' Y k e (0, I) i;:; fixed and e> 0 is given there exists 

M ) max t l,~) such that 

(2.3.7) 

We now prove that this inequality also holds for all :J < 'j k. 

Since 0 < ':J < ':Jk < , and )..- x ~ M ) 

< (:fk-:;IHA-x)2. for all>. in eM ,(0) Hence, if ~ ~ (M ,00) 

y < 
(,>. _ X )2 -t ":f 2. 

so that for all 'j $ 'ik 

(2.3.8) 
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by (2.3.7). Now there exists K E IR~ such that p(A) ~ K on r.,{ 
t. ~ ... , X + '.'~ .. - , 

so we have, using integration by parts on r 
.. x, x ... 

hand inequality in (2.3.6): 

~ M2. :l 
+'} 

2:/ A-X r- d" 
+ f 

x+ M ( ) v 

• 2.2. ,,+ 
X+) «A-x) +'1 ) 

+ 4 +-(L £) [ -(A-x) 
'j :z. 2 (( ). - x )3. + 'j 2.) 

+ [ 

)l K ] x+M 

( >.. - x)2. + ':t 4 x ... ) 
+ -rr e. 

4-

+ + 

<. (L or ~ )'1f 

= 1f(L+e:.) 

I J :I d"o ().) < l + £ 
-- 2. 1 (-
lr [)(.,oo) (A-X) ... '1 

where e was chosen arbitrarily. Hence 

'I"' (2 3 8) ..... . 
• 'l~ , •• ar:c ... !le 

, -I).. -x] x ... ) 
+ -tan 

if 

2)' 'j)( 

4 

M 2.1f e. 
v < 
..J 8K 
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as was to be proved. 

(ii) Using integration by parts on (x I X + ~ ) as in (i), we obtain: 

) J x + ~ _4~1_( A_-~x_)2_(_L __ --=-: _) d A 

)( (().-xl+'/J.)'J... 

I .L. -I >-_X]X+ ~ 
+ -~an --

2'1 Y x 

For sufficiently small y , tan-I i is close to-rr 
'j Z. 

"!:h3t is, 'j I> 0 exists 

such that 11"e --
8L 

if 1 < '::J I . 

> 4),(L-!)[ -') + ~tan-ll.] 
2 2(r 2 +,)'Z) 2..1 Y 

> -2.Y(L"'~) 
) 

+ 2(l- ~)('lf _ 1t"'€) 
2 Z. ttL 

> If(L-e.) 

The arbitrariness of e implies li rn in f -L S ~ dfr(~ ) ~ L 
~~O ~ (x,oo) (>'-X)4+ 'j'l. 

as required. 

(i) and (ii) together. imply that if d)-"- (x) exists finitely, then 
dK 

=ir Im m+(x) also exists and both are equal. 

If ~ ex) = 00 , then for each P£.IR+ there exists )p > 0 such that 
oK 

,o(h»2().-x)P if A€'()(', ~). 

Proceeding as in (ii), we obtain 

f ':I dp(> .. ) > S ,4y()..-X)2P dA 
[x,oo) (A_X):z.+)'4 [xlco) (A_X)'~+)'2)4 

) 1f( p- Eo) 

for sufficiently small y. The conclusion that Im m+(x) ~oo follo'N:~ from 

the arbitrariness of P. 

The proof of the proposition is now complete. 
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Although it will not be important for our purposes, it is natural to 

enquire whether a converse of Proposition 2.14 is also true. It follows 

from the work of L.H. Loomis ([L]) and P. Fatou ([F]) that (i) 1m m('%.) 

has a finite non-tangential limit l at x if and only if ~(x) exists and 
('he: 

equals .1... 
11" 

(ii) 1m rT\+(x) exists finitely and equals L if and only if the same is true 

of tim to C x + 0) - p( x - J ) TT'. It is not clear whether these results still 
o""'tO 20' 

hold if L is ~te; however, it is clear that the converse of Proposition 

2.14 cannot be true in general. For, since we may choose P(A) as we please 

on a finite subinterval of lR by the inverse method of Gel'fand and Levitan 

([GL]), there exists a spectral function~ which is continuous but not 

"smooth" at some point )( E.IR , so that the generalised symmetric derivative 

L~M fO(X+d)-,,(X-c) 
0-+0 '2. a 

exists finitely, but ~ (~) does not. 
dK 

In such a 

case 1m m+(x) exists by (ii) (or, indeed, by our proof of Proposition 2.14), 

and so the converse of Proposition 2.14 is refuted by counterexample. 

However, as we now show, a converse of Proposition 2.14 is true +(-

and )1-- almost everywhere on IR • 

2.15 Corollary: (i) Im "*Uc) and .2(~\ simultaneously exist and are finite 
11'" elK 

t<,-almost everywhere on rR , and are equal when they both exist. 

(ii) Im m+()C) 
11" 

and 2,(x) 
dK 

simultaneously exist (finitely or infinitely) 

}l-almost everywhere on R, and are equal when theY,both exist. 

Proof: 

Proof of (i): 

This is immediate by Lebesgue's Theorem (2.2.13) and Proposition 2.14. 

Proo f of (i i ) : 

This follows from Propositions 2.5 and 2.14. 
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I.ama 2.13 and Proposition 2.14 enable us to obtain a new set of minimal 

supports of the decomposed parts of~ from Theorem 2.9. We require the 

following preliminary result: 

2.16 Lemma: If S is a minimal support of a measure l and 5' is a subset of ~ 

such that the symmetric difference (lS, S')U (5\ S)) has K- and 
, 

}A-measure zero, then 5 is also a minimal support of "'. 

Proof: 

, 
We verify that 5 satisfies the two conditions of Definition 2.9. 

( i ) IR \ 5 I = {l IR. '\ 5) U (S , 5 I )] ,( 5' , 5 ) 

so \. ( IR , 5')" L ( \R ,5) + L ( 5 , S ') - l l 5', 5 ) 

'= l (IR '\ 5) + 2 '- (~5, S') U (5' , 5 )) 

= LUR,S) 

Since S is a minimal support of L, l (IR \ 5) = 0 and hence L (IR ,5') = o. 

(ii) Suppose So is a subset of 5' such that &.<. (50) .,. O. Since S is a minimal 

support of "', and So n S is a subset of S such that 

K ( Son 5) =- K ( 5 tI n 5 I) - K ( So n , 5 I , 5 ) 

"J 0 

we have \. ( So n 5) > 0 by Definition 2.8 (ii ) . 

Hence l ( 50) = L (So n 5) + L (So n ( 5' \ 5)) ') 0 . 
, 

Thus 5 satisfies the required conditions and the lemma is proved. 

There is now no difficulty in deriving our new set of minimal supports 

in terms of 1m m+Cx) • For the set u = {x £ IR: Imrn+(x) exists 

fini tely or infinitely, but d}A (x) does not} is contained in the Borel set 
dK 

{ )( e IR : dJA (x) does not exist finitely or infinitely} which has K­
d)( 

and }A-measure zero by Lebesgue's Theorem (2.2.13) and Proposition 2.5. Since 

the measures K and)A. are complete, U is K- and p.-measurable and K (U ) ::& J.A (U ) • l 

If m is defined as in Theorem 2.9 and lTl' denotes {x ~ JR: 0 < 1m mi- ()(), 00 } I 

then 'n') S nJ I by Lemma 2.13 and Proposition 2.14, and 1'Y} I '111 s u. Hence, 
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I 
by Lermna 2. 16, m is a minimal support of )A. Analogous results for II 

'-a.c. ' 

}ls. etc. follow in the same way, and we have: 

2.17 Theorem: M· . I ~, m' m ' , ~n~ma supports III, fl.C.' S. \ m I.C. and md of 

po J po Q. c.. ' )4 s. ' )A s. c . and)A d. are as follows, 

where E I = {~ e IR: 1m m-t-()C) exists} : 

(i) m' = tx~ E': 0 < Imm+Cx) $ 00) 

(ii) "N'\ I __ {V.L E': I } 
"1 ,. t;; 0 < mrY'\+(~) < 00 Q.t. 

(iii) Im m+Cx) = cO } 

(iv) I [ E I m s. c . = )f. E. 

(v) m' = ~x EE': ImM+(x) = 00 J u.({x~) ~ 01 d. r-

Our interest in the support of Theorem 2.17 stems from our eventual 

aim to derive minimal supports in terms of the asymptotic behaviour of 

solutions of the Schr~dinger equation. Since the set of solutions of the 

equation Lu = xu does not depend on the particular boundary condition which 

is imposed at r = 0, whereas the function m(z) does, we first need to 

investigate the effect on m(z) of a change of boundary condition. 

Let ",(2,~)denote the function which is defined for Imz > ° by the 

condition that L.\2,(r,z,oI.) + m(z,d.)u,(r,z,o() be in L
2

[0,00) , where u,er, Z,G() 

and u '2. C,., z, 0( ) are solutions of Lu = zu satisfying (2.:3.1). We refer 

to the corresponding self-adjoint operator H as the operator arising 

from L with boundary condition« and denote it by H(~); every function 

fer) in the domain of H(<<) satisfies 

cosO( fCO) + :Sl" oc f'(O) - 0 

as we shall srein §4. We prove the following: 
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2.18 Lemma: If L is in the limit point case at 00 , then 

m (,,0'.1) = , + col:'rm(z,o(,) 
C.Ot'lJ - m (1, c(, ) 

where I:. (~, -oC.'1.) and 0'2..-+ 0( I (mod 1T) . 

Proof: 

Since there is, up to a multiplicative constant, just one solution 

of Lu = zu whl." ch 1" s ~ n L L 0 ) ~ ~,oo .If I.m 'Z. .0 , we have 

U2.Cr,z,O'.,) + mC'Z.,o(,)l-',(~,."o(,,) =- k [ (f"" .J) ( ) ( )] , , • .. • 1.& 1 J 2. J ..... 1 + m 'Z., o(.~ "', r-, z., oc: z. 

for some fixed kEG: and all r in (0,00). Using the boundary conditions 

(2,3,1) this implies 

c 0,5 Ot I - m ('%1 tX, ) .sin oc.., =:. k ( co 5~2. - m ("Z.,Ot2.) si" 0( ~ ) 

6ln at, + M (%,Ot,) coso(.-= k (s'noc.~ + m (Z,O('~~ C.O.5ot:z.) 

Eliminating k we obtain 

from which the desired result follows. 

Equating the real and imaginary parts of both sides in the expression 

(2.3.10) 

from which we shall now ascertain, at least up to sets of K-measure zero, 

the behaviour as z approaches x normally of 1m m(z,oC:z.} relative to that of 

Imrn(~,~,) in certain fundamental cases. This will enable us to determine 

where the spectrum of HCc(l)is concentrated relative to the spectrum of H (<<,) , 

and also, up to a set of }A- and K -measure zero, the subset of ~ on which 

1m rn+(x,fX) exists and equals zero for at least one boundary condition a(. 

2.19 Lemma: (i) For K-almost all x in IR for which Im m+(x,ol,) exists and 

equals zero, I~nn~Xt~) also exists and equals zero for every 
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boundary condition 0(1'" 0(, (mod1r) except, at most, one. 

(ii) For all x in IR such that Im-+(x , J ,) eXl· sts .• ,.... infini tely, 1m m+(x. ~C(1) 

also exists and is zero whenever oc. 1 ~ 01,., (mod"'lT). 

(iii) For K-almost all x in IR for which 1m m+ (x '~I) exists and 

0< Im m+Cx,ot.,)<. 00) Im m-to(lC'o(1) also exists and 0 < Imm+(x.ol
1

)<. 00 

for every at 2, =#: 0(., (modT). 

Proof: 

Proof of (i): 

By (2.3.10), if Re. 1n+(X,c(,) exists, then, unless c.ot (oc.,-otl.) = 

Re m+(x, oc.,) J Im m+(x lo(1~ exists and is zero. Since Reo. m+( X,C( ,) exists 

K -almos t everywhere on IR by Theorem 2. 12 ( i ), the resul tis proved. 

Proo f 0 f (i i ) : 

From (2.3.10), 

The result is now immediate since Coot. '2. r <. cD if (mod1r) . 

Proof of (iii): 

This follows from (2.3.10) since Re fn+(x,oC,) exists finitely for 

K -almost all x in JR by Theorem 2.12 ( i) . 

We may further refine part (i) of Lemma 2.19 for all real x which are 

in the resolvent set R( 0(,) of HCc(,) 

analytically to include all points of the resolvent set ,(eEl §5), ~+(X'o(l) 

exists finitely and is real for all x in R(ot.,) Hence by (2.3.10), 

lrt\ m+Cx.olJ,> = 0 for all boundary conditions ""2. for which 

c.otCoe,-oc,,) =I'- m+(x /"'.) . In the exceptional case we note from Lemma 2.13 

and the invariance of the essential spectrum under finite dimensional per-

turbations, that x is an isolated pole of nn(z/~l) and hence is in the 

discrete spectrum of Heat 2. ) Using Proposition 2.14 we then have that 

exist infinitely. 
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In order to make precise the implications of Lemma 2.19 for the relation-

ship between the spectra of H (cx,) and H (0(2,) we first prove an elementary 

lemma. To lighten the notation, we denote the symmetric difference 

(5 , 5') U ( 5' \ 5) of two sets Sand 5' by J 
S AS. 

2.20 Lemma: If S, 5' are subsets of R which are L - and to<.- measurable, and 

if the relation,.., is defined by : 5,.., S"" if and only if 5 A S' has L- and K-

measure zero, then ~ is an equivalence relation. Moreover, the set of all 

minimal supports of the measure Co is an equivalence class under fV. 

Proof: 

Evid.ently the relation fV is reflexive and symmetric, and transitivity 

follows from the inclusion 

5 A 5/~ 5 ( 5 A S"") U (5 J AS") 

Hence ~ is an equivalence relation. 

Let lY'l .. be a minimal support of L and let E I. = { 5 - IR : 5 '"'-I m l } • 

We prove that E~ is the set of all minimal supports of L • 

J 

If 5 e E.. , then S is a minimal support of L by Lemma 2.16. If m" =#=- l\1 L 

is a minimal support of L, we prove that m: E. E L' Since 

l'Yl .. ~ m .. ~ = (IR ,( m L fl TTl;)), C IR " ( WI L U "t'Y1:)) 

=- (C IR \ m,,) U ( ,R \ lY\:)) , (( JR \ m .. ) n , (R \ m: )) 

and 'Pl m I are minimal supports of to , we have t. em" A 'YYl~)=O by condition 
'-' .. 

(i) of Definition 2.8. Hence L em ,m '):0 and, since m L \ 'YYl: s m,- we have 
" '" 

by condition (ii) of Definition 2.8, k.(m .. ,"M .. ') = 0 Similarly 
, 

I«m:,m,)=o and so K( mI.Am[) =0. Hence ml. ~ Tn\" , so that 

l'\1 ~ ~ EL • The proof of the lemma is now complete since EI. is an equi-

valence class under 'V • 

Let )A(~) denote the spectral measure of the operator H arising from L 

wi th boundary condition 0( • Let Ea. (.. (0( ) I E s.(C() denote the equivalence 

(CI( ) 
classes of minimal supports of JA- Q.e.. 

and ~ (0(,) respecti vely. The next 
e. 
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theorem indicates the striking contrast between the behaviour of E (~) 
Q.c.. 

and Es.(oc.) as Of. varies. 

2.21 Theorem: ( i ) E ( ) E ( Q.c.. ~. : Q.c.. 0(2) for all boundary condi tions ~I 

and O(z.. 

(ii) If )A (C(, ~ (IR) > 0 
6. 

then for any Ql2, *' oc., 

(mod1r); moreover, for each pair of distinct boundary conditions (~, I«~) 

there exist mCc(.)e.Es.(do,) and m(O(,)£Es.(~2.)such that 'lYHoC,)n 7rl(cc1.): ¢. 

Proof: 

Proof of (i): 

(.) (2.\ -j-Let denote the equivalence relation of Lemma 2.20 for 

respectively, and let the supports of Theorem 2.17(ii) 

for boundary condition oC, and o(a, be denoted by 'M' (0(,) and 1'\1 Q'.c...( cC2,) a.. c.. 

respectively. 

K " 1'Yl ( ~. ) A 'tY1" (0(, » = O. Hence, by the absolute continuity of )oL!~~.) J 

).4 ~~~) (m (oc,) Am '«)(,)) -= 0 from which we have lYl (oc.) ~) m'ca.c.. ( oc.) . 

Now K" m Q.~. (0(.) 6. lY\Q~c. (0(2.)) ":a 0 by Lemma 2 .19( iii), which implies, by 

Hence, 

by the transitivity of - , 30 that 

We need only interchange the suffices 1 and 2 in the above argument to 

completes the proof of (i). 

Proof of (i i ) : 

If J.A. (0(.) (IR) ) 0 
•• 

This 

then by Theorem 2.17 (iii) the set 

m(C(I)={x~IR:Im m+Cx,d.,) exists infinitely) is contained in ES.(DC,) and 

is non-empty. Moreover, if m (~) = ( x e. R : 'Im m-t-(l(, oCz ) exists infini tely 1, 

by Lemma 2.19 

(i i ) . We have now proved (ii), and the theorem is complete. 
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We see from this result that whereas the absolute1y continuous parts 

of the respective spectral measures are equivalent under a change of 

boundary condition, the singular parts are orthogonal. This is not al-

together to be expected, given the invariance of the essential spectrum 

under finite dimensional perturbations (IWE1]§9.2), and has interesting 

implications in situations where there is dense singular spectrum ([AJ §5). 

In the next chapter we shall relate the boundary behaviour of Irn m(z) 

as z approaches xc.1R. normally to the nature of the solutiC!1S of Lu = xu. 

The crucial distinctior. w";'ll be ·oetween those x for which Im m+(x) exists 

finitely and is non-zero, and those x for which there is a boundary con-

di tion ~ such that IM m+<'Z.,C() exists and is zero. We anticipate these 

results in the next proposition which follows easily at this stage from 

Lemma 2.19 and Theorem 2.21. 

As Eel.c:. (ot.) is independent of C( , it will now be referred to simply as 

2.22 Theorem: The set 5 -= {)( ~ IR: there is no boundary condition or-. for 

which Im m-t-(x,oC.) exists and equals zero} is in E a.c. 

Proof: 

By Theorem 2.21 it is only necessary to show that S is a minimal 

t &' I) for some boundary condition oC I • Using the notation suppor 0.1 )4a..c:.. \. cc., 

5 <.!) m' (-J) of Theorem 2.21 we shall therefore show that .- Q.c:.. ~I • 

Because of the absolute continuity of )A(~') G. e. 

we prove that ~ ( 5 A mCl~ c. ( c( I )) :. 0 

, 
Now for K,.- almost all x in m a..c.. ( c( I) , 

, this will be established if 

(2.3.11) 

1:m m+(x.,C(~) exists and 

is strictly greater than zero for every o(2.~ ct. (mod1f') by Lemma 2.19(iii). 

Hence K (S A 'M Q~ Co. ( aI. , )) ': 0 . 

Also IMm+h',~,) exists and is finite K- almost everywhere on 

IR, so that Im rt\+ (X, D/., ) 
exists and 0, Im m+ ('" ,oC,) ~ 00 K-almost 

everywhere on S. Since ,however, ( x e fR : Im m .... ()(, aI.. ) exists and is 
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zero 3 n s = 4> by definition of S, Im m+ (x/at,) exists and 

o < I m m+ ( )( ,0(. ,) <. 00 

,,( 5 , TYl Q. C:. ( 0( I)) = 0 . 

K - almost everywhere on S. This implies 

(2.3.11) is now immediate, and so the theorem is proved. 

Before proceeding to consider the relationship between the boundary 

behaviour of m(z) and the nature of solutions of the Schr~dinger equation 

we introduce some relevant ideas from Hilbert space theory. 

§4 The Schrtldinger Operator 

The early work of Hermann Weyl was gra~ually absorbed into the wider 

framework of linear operators on Hilbert spaces curing the twenties and 

thirties. Particularly noteworthy was the contribution of f.13.rshall Stone 

whose "Linear Transformations in :-Ulbert SiJaCe" contains a very thorough 

treatment of second order differential operators ([S1 Ch.X, §3). Ne briefly 

indicate some of the more important features of the theory from this point 

of view. 

The relevant ~ilbert spaces are of measurable functions which are 

Lebesgue square integrable with respect to a given measure. If the measure 

is not Lebesgue measure, this will be indicated by a superfix: for example, 

Soo 11 
the space of )A -measurable functions G(A) for which J GC~) dp{)..) < co 

-eo 
I' 

will be denoted by L~ (-00, 00) . 

In considering the question of self-adjointness of operators arising 

from the differential expression 

fundamental importance: 

d1. 
L = -- + VCr) 

d,.2. 
Green's formula is of 

SOO «Lf)~ - f(L'3)}dt" - W'oo(f'9) - Wo (f'9) 
o 

W (f) lim I./
L

(f,9) where 0 ,g = b '" 0 vv D 

w 00 ( f, 9):' lim W b (f , 9 ) 
b~ at) 

and 

where Wb (f ,g) is the Wronskian of f and 
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-g evaluated at r = b. Evidently, if an operator H arising from L is to be 

symmetric it is necessary that W (f tl) W (f ) 0 
GO ''"J - 0 .9::' for all f and g 

..... 
in ~ (H), and hence if an operator H is to be self-adjoint, the same must 

be true for all f and g in ~ (H). 
IV 

Let 10· denote the set of all measurable functions f(r) on to,a)) 

for which 

(i) f(r) and f'(r) are absolutely continuous functions on every closed 

subinterval of C. 0,00) , 

(ii) f(r) and Lf(r) are in L1.l 0,00) and set 

""" -.. ~ = {f (f') E l> : W ~ (f , 9) - W 0 (f , '3 ) = 0 for all g in is·}. 
,.., ,.., 

Then the operator H mapping f(r) into Lf(r) with domainD is symmetric 

and closed, and its deficiency indices (the co-dimensions of the ranges 
N -of H +,-I and H - ~I in d-l = L ~ lo ) IX) ) ) are ei ther (0,0), (1,1) or 

(2,2) ([S] Thm. 10.11). It is found that if L has a regular endpoint at - ...., 
r = 0, then the corresponding operator H with domain () has def':ciency in-

dices (1,1) if and only if L is in the limit point case at ~ , and 

deficiency indices (2,2) if and only if L is in the limit circle case at 
,.., 

00 ([S] Thms. 10.13, 10.14). In ei. ther case H has self-adjoint extensions 

since the deficiency indices are equal. ([RN] §123). L is limit point at 

both 0 and ~ if and only if the deficiency indices are (0,0), and in this 

,.., -case H wi th domain G:) is self-adjoint. 

If L is regular at 0 and in the limit point case at 00, then 

\./ (f ) 0 for all f, g in~" and 5 = {fer) e 1>*: f(C) = fiCo) = o}. YVoo ,9:: ~ 

- ) -.. f'} If!> is extended to cD :: {.(!(r € a) : C06~ fCo) + 5Lnoc. (0) - 0 I 

then the operator Heed :napping f( r) to Lf( r) wi th domain (I) is a proper --closed extension of H , and all proper closed extensions of H are of 

this form. ([S1 Thm. 10.16). So in this case {H(~): d. E.IR } is the 

set of all self-adjoint operators arising from L. 

If L is regular at 0 and in the limit circle case at ~ , then the 

restriction of 0" obtained by imposing the requirements cOSC( fCO) + ~inCi.f'(O). 0 
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and 
where U rn ( r, Zo , of.) = 

1m z 0 *' 0 and m ( z 0 I ac) 

is any point on the limit circle, yields a domain~ on which the operator 

H mapping fer) to Lf(r) is self-adjoint ([CL] Ch.9, Thm. 4.1). 

In the case where L is regular at 0 and limit point at ~ there ex~sts 

an isometric Hilbert space isomorphism from L 2. l 0, 00 ) 
onto L ~ C - 00 , 00 ) 

([CL] Ch.9, Thms. 3.1 and 3.2). Spec;f;c 11 "f f( ) " L l ) .... .... a y, ~ r ~s in 2. 0, c:c 

(2.4.1) 

exists and 

(2.4.2) 

where p do. ()\) is the spectral measure of H (0<.) • 

Likewise, if G(~) is in L ~.( - 00 , 00 ) , then 

(2.4.3) 

Moreover, the "eigenfunction expansion" 

c..) 

fer) = l.i.m. J u.{r,A lcC) F(~) dp",(A) 
c..) ~ (/:l -~ 

(2.4.4) 

where F(~) satisfies (2.·:-1.1), is valid for arbitrary fer) in L1. [0 , 00). 

Analogous results hold if L is in the limit circle case at 00; however, 

since the spectrum is discrete in this case ([CL] Ch.9, Thm. 4.1) it is 

usual to express the expansion (2.4.4) as a series. 

The results of the previous paragraph were originally obtained for 

the specific case considered, but a~~ also related to a far more gen-

eral result. The spectral theory of ordinary differential operators arising 

from differential expressions of the Sturm-Liouville type has now been gen-

eralised to include suitable operators of the nth order, irrespective of 

whether the endpoints of the interval under consideration are regular or 

singular. ([OS: Ch.XIII, 55, We shall show in Chapter IV that the general 
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theory may sometimes be simplified, and that in such cases, relationships 

formally analogous to (2.4.1), (2.4.2), (2.4.3) and (2.4.4) may be deduced. 

Moreover, many results from the general theory may, with suitable modifi-

cations, be applied to these cases, as we shall prove. We anticipate this 

development by applying a result which is well documented for the general 

case to the situation where L is regular at 0 and limit point at ~. 

Let T denote the transform which maps fCr-) e L2, (0,00) to F (}.) as 

in (2.4.1). The following is an application of the general Weyl-Kodaira 

theorem ([ns] Ch. XIII, §5, Thm. 13(ii)) to our simplified situation (see 

also Chapter IV). 

If ¢ is a Borel measurable function on IR with support in (0 I co) then 

(2.4.5) 

for all f in the domain of ¢ (H) This implies, in particular, that 

(2.4.6) 

and 
GO - l. < (¢ ( H ) .f )Cr-) ) f ( ,.) > = S ¢ (~ ) J F ( ).. ) \ d,o (A) 

-00 
(2.4.7) 

Corresponding to every self-adjoint operator A is a unique "spectral 

family" or "resolution of the identity" with the following 

properties: 

( i ) 

(ii) 

(iii) 

E~ s. lim. 
E.~ 0 

s. lim. E ~ : 0 
~ ..... -eo 

if 

s. lim. E ~ = I 
~ .-It + eo 

By means of the spectral family A may be expressed as 

.0 

A = S ~ J E~ 
-tID 

(2.4.8) 

1 Th A related result is that if which is known as the Spectra eorem. 

is measurable, finite and defined almost everywhere with respect to 

for some .f e d--l , then ¢ (A) commutes 
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cO :: J_
GO 

¢ (>.) d E}.f 

= I_: ~(~) d(E>.f,f,) 

for all f in the domain of ~ (A), this being defined to be the set of all 

f in di for which 

I_: 1 ~(A)\:I. d~ E>..f=,f > _ D¢(A)f ,,2-

converges. ([RN] Ch.IX). Clearly (2.4.5) - (2.4.7) are closely related to 

these resul ts, and, indeed, the general theory of !vveyl and Kodaira may be 

derived using the Spectral Theorem (3ee ego [KO]). 

In the context of Hilbert space theory, it is usual to characterise 

the spectrum of H in terms of the resolvent as 1. (H) = IR , { )( Eo IR : (H - X If' 

is a bounded linear operator on Ii } It has been shown that {x Eo IR: (H -)( r: 
is bounded on il J -- { X £ IR m(z) is regular at x}, where m{z) 

is said to be regular at x elR if there exists a neighbourhood of x into 

which m(z) may be continued analytically. ([CE] §5). Now from (2.3.2) 

it is evident that m(~) = m(z)', and hence, using Lemma 2.13, we have 

"I 
{x E. IR : (H -)C.I) is bounded on 1t 1 = {x (: IR ~ there exists a 

neighbourhood N of x such that Imm+Cx) exists and is zero for all ~ x 

in N x n IR } -- {. oX E. IR there exists a neighbourhood N such that 
x 

a,M (A) exists and is zero for all A in N ~ n IR } - Since 
dt<. 

d;.-. (x) = 0 
dt< 

if and only if the characterisation 

of the spectrum in terms of the resolvent determines precisely the same 

set as do the points of increase of the spectral function. 

From this discussion, it is evident that the behaviour of m{z) 

precisely reflects that of the resolvent on the resolvent set. It is not 

therefore surprising to find that, by means of m{z) and the supports of 

Theorem 2.17, we can find minimal supports of }J. ca. c. and f" s. in terms of 

the behaviour of the resolvent. 

We shall use the following properties of the dense subset 5) of a-t = L1. (O,ee 

which consists of those elements of~ which vanish outside a finite interval: 
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(i) If fer) E ~ , then F<)") , as defined by (2.4.1), is an aI'.a_-,--:::..::: :-·...l.r'"'..ct:.on 

of A in the entire complex plane. 

(ii) For each finite interval ~ of ,et there exists f(r) l'n Ir\ ) f' IV sue::' tr:a t F (). 

does not vanish on~. 

These and further properties ofD were established by M.J.Krein ([AG] 

Appendix II, § 7) . We prove the following: 

2.23 Proposition: If lmm+(x) exists finitely or infinitely, then 

1\ R 7. f 1\ = 0 ('j -112) as 'j -= 1m z. ,1. 0 for all f in () if and only 

if 1m M+hc.) (00. Horeover, if Imm+(x)= 0, then \\ Rz.f:l = 0('1-
1/1

) 

as ::J = 1m z. + 0 for all f in {) . 

Proof: 

We have (cf.(2.4.6), [L3J Ch.II, §3) 

IIRzf \I = Joo (2.4.10) 
-00 

1/ 

We show first that if f(r) E 0 and 1m m+{)(.) = L< a?,then /I R 21= 11 = 0 ('1- 2. l ) 

as ':I.l" 0 . 

Let .f{ r-) E. [) we may suppose without loss of generality that II -f /\ :. I ) 

so that by (2.4.2) 

00 

S _ 00 I F" (~ ) I 2. dp (A) :; I (2.4.11) 

From (2.4.10) 

:l 

':i /I R 7. f 1\ - J ~ 
-QC) 

:t I F (~ ) ,1 df' ( >- ) 
L).._)(.)":l +:/1 

(2.4.12) 

and from (2.3.5) 

1m m+(x) - S
~ 

li m 
"::J .l- 0 -00 

(2.4.13) 

Now if £ such that o < E < l is given, . IR+ there exists ~ ln such that. on 

account of (2.4.11). 

SKI 2. I) \ ,''-I F (A) dp \ A ., - E 
-I< 

and 
:t 1/2-

< e 
(>-. - ". ) 1 + "j'l 

I)" I ijK Hence, ~ ...... S c: (-oo,K) UCK,OO), 
for all "j ( I if . J._ 



I::J 

~ I F' (X ) I ~ d,o (). ) 
y 

")0 

(2.4.14) j5 (>. - Ie;" -to 

Since f ( ,.) e D F(~) is bounded on the compact set (-~,K~ by • property 

(i) above; hence there exists C
f 

l' n IR~ wh1' ch dep d f , • en s on ,such that 

for A in [-K,K] 

(2.4.15) 

Since Imm+C)<.) :: l there exists Y , depending on f, such that f 

o < '(.f < and 

J K 'j 
df'(~) 2 l 

(A-Xrz,+ '12. 
< 

-t< 

for all y < Y f by (2.4.13). 

Hence, if 0 < 'J < Y.,: , we have by (2.4.14) and (2.4.15), 

s~ 
-00 ( ), _ It ~ ~ + 12. I F C >.)1' d,o C).. ) 

JK 
- ( '12. IF{~)I~d,.a()..) 

-K ).. - x) + 'j 2-

< -i (C~ - ') 2 l ... e 

< C; l 

since £ was chosen to be less than L. It follows from (2.4.10) that 

U R z ~ 11 -= 0 ( 1 - 1/2. l) as :J -l- 0 and this is true for all f in [) as 

was to be proved. 

It is now immediate that if 0 < l < 00 then 11 R z f II -= 0 ('i -'h) 

as y '" 0 

as 'j + 0 

for all f in 0 , and that if L = 0, then U R z ~ I = 0 ( 'j .11 .. ) 

; note that we do not assert the uniformity of this convergence. 

It remains to show that if Im m+ (x) • <XI ,then there exists 

fer) inO such that U Rzf U -+ 0 (:1-'/3.) as y '" 0, 

If eo > 0 is given, we may, as in part (i) of the proof of Proposi tion 

2.14, choose M Eo IR + and Y > 0 such that 

:t d,o (A) < £ 
(). - xl2. ... ':J1. 

(2.4.16) 

whenever y < Y , where 5 = ( - 00 I - M) U (M I 00) • j.1oreover, by property 

(ii) above, there exists fer) in 0 such that T(.f'C,.» • F (A) does 

not vanish on (-M,~]. Using property (i) above we see that there exists 
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k ) 0 such that 

I F (~ ) \ :l > k , 0 (2.4.17) 

for all X in [-~.1,;1]. 

If 1m m+Cx) = 00 , then if C in IR+ is given, there exists 

'( c < Y such that 

(2.;: .18) 

for all ,,< v ." Ie; Therefore, by (2.4.16), (2.4.17) and (2.4.18;, 

for each C in JR+ there exists Y c'> 0 such that 

'j II Rzf 1\1 - s.o 'f I F(A)I Z dp (A) - x ) z. + -010 ( A - '12-

~ J_: 'j I Fe,,) 1& dl' ()..) 
().. - x)2. T ,:/1 

,. k. (Im mCz) -E ) 

~ C 

if Y < Y c . Hence U Rz of Il :1= OC 'i"'h) as :J '" 0 
':'he proof of 

the p~ition is now complete. 

In order to show that this proposition is not generally true for all 

f in L 2. (0 , eo) , we show that it fails for those f in L 1 (0, DO) for 

which T (of (,.» 'Il: F C ~) -+ 00 as 

Let )( IS JR be such that 1m m+ (x) ::: l for some l such that 

o < l < 00 The isometric isomorphism T from L" ( 0 , 00) onto 

L.{ ( - CIO , co) ensures that if F (A) is defined )J--almost everywhere on 

J co a 
IR in such a way that -co I F (A)I d.p(~) = I and 

L. rn 
l. ~ 0 ... 

F{x- a.) = lim F(x ... e,) = 00, then there exists f(r) in 

e. ~ 0+ 

L2. (O,CO) such that T(fC,.)) = F(A). 

From our description of F (~), it is evident that if C ') 0 is given, 

there exists tS > 0 such that for all" in [J( - c5 J X + 0] 

4c - (2.4.19) 

l 

Moreover, if "J < & , Y decreases with y, and hence it 
().._x)1. + 1& 
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follows from the Lebesgue Dominated Conver6 ence Theore~ that 

Lim J 'j 
dp(~) 0 

(>..- )()~ 
::. 

':J ~ 0 IR \. [x-o,x.,.cS) + 't 3. 

since by (2.3.2) and (2.3.4) 

f'R ':/ df' (~ ) < ($) 
().._X)l + '11. 

for all 'j > o. 

Therefore, if e. > 0 is given, '(I ') 0 exists such that 

(2. L1 .20) 

for all 'j < Y, Also, since I m m + ('1-.) = l , where 0 < l <: O()) 

there exists Y 1 ) 0 such that 

S CIO 'j d,o ( A) > 1 
-00 ().. - x)7.. + ':J '- 2 

whenever Combining this with (2.4.20) yields 

f y 
df' (>. ) > t 

€ (2.4.21) -
[x-o,x+~J (>. -)( ) ~ .,. 'j ~ Z 

for all y < y , where Y :: min { Y. ) Y 1 J \ve may choose £ = l . 
4-

and then, using (2.4.19) and (2.4.21), we have for all 'Y < Y 

> 
4-C 

l 

) C 

':J \F(~)I~ dp (>') 
(>.-~)~ + '11 

It follows from (2.4.10) and the ar~itrariness of C t:~,!t there ex~sts 

f(r) in L 1 (OJ OO ) such t:lat U R~f U +- 0('1-'/1) as 'j ~ 0 

al though 1m m -r(X) = l where 0 < L <: 00. 
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Thus Proposition 2.23 is, in a sense, optimal. Although we shall not 

use this proposition later, it is nonetheless relevant to spectral analysis 

in that it provides criteria for characterising minimal supports of u 
J Q. Co. 

and 1.1. roSe in terms of the resolvent operator, and incidentally !li6hlights 

the close relationship between m{z) and {H_z)-l. We have: 

2.24 Theorem: ~inimal supports l\1 1/ Tn II 
Q.C. , a. of }J. Q.~. and Y' s. 

respectively are as follows: 

'W'\ II _ { II! 
''1 a.c. - )( e IR: IIRz.f U::. O(j-~) as ':J ~ 0 for all f in [)} 

,{ X e. IR: II Rzfll:. o(~-I/~)as j + 0 for all f in ()} 

m II 
S. 1:1 {)( Eo IR: there exists f in () such that II Rz of II • 0 ('; -'11.) 

as ':J '" 0 } 

Proof: 

This follows immediately from Proposition 2.23 and Lemma 2.16, since 

by Propositions 2.5 and 2.14 and Theorem 2.12 the set of x in ~ for which 

Im m+{x) does not exist has no ~- or )A-measure. 

We remark that Theorem 2.24 is in many respects similar to a result 

of K. Gustafson and G.Johnson which states that the absolutely continuous 

subspace }l Q.c. (H) of H is the closure of the set of f in L 2. CO, QD) 

for which as "'J.J, 0 uniformly over all x in 

IR ([GJ]) . Both results feature a dense subset of Il , and characterise 

absolutely continuous properties in terms of the growth rate of the 

resolvent. 

-1 
Returning to the relationship between m(z) and (H-z) we note that 

if F(A) is the characteristic function of a bounded ~-interval {a,b], 

J 
00 a 

then I F ( ,,) I dp (~) < 00 

-00 

since the~-measure of bounded subsets of 

R is finite. Because T is an isometric isomorphism from L 3. (0 I 00) 

onto L~(-GO,oo}, there exists f(r) in L 1 (O,oo) such that 



62 

T (f ( ,.)) = F ( A ) • and, for this f, 

, 
)t. - z dp (~) (2.4.22) 

(cf. (2.4.7)). Now for every x in (a, b) there exists Ox) 0 suc~ that 

[X - cS X , X + c5 x] S (Q J b] s) by (2.4.20 ) 

l o I co 1m 
"i .l,. 0 -GO 

- lim J 1 
- ':I.J, 0 ( Q, b] 7""( }.--......;x=-:-) '=""2. -+-~-1 d P (A) 

for each x in (a, b) for which 1m I"t'\ + (X) exists. For each such x, 

by (2. 4. 22 ) , 

(2.4.23) 

which expresses the close relationshl"p between the b d b oun ary ehaviour of 

m(z) and that of the resolvent operator. 

Retaining the same f, we have (cf.(2.4.7) ). 

- J( 1 I F(>.)\~ dpCA) 
Q,X 

=. < ( E)( - EQ) f ) f ) 

-- (2.4.24) 

for all x in (a,b], where X denotes the characteristic function. It is 

interesting to note that in (2.4.23) and (2.4.24) the relationship between 

the spectral function p(A) and the spectral family {E ~ } is similar 

-1 
to that between m(z) and the resolvent (H-z) at the boundary of their 

domains of definition. 

To conclude, by relating the spectrum to the spectral function, and 

the spectral function to m(z) we have shown that each part of the spectrum 



is concentrated on subsets of the real L_:1e ','/hich can be unambi~'lously 

ident~fied in terms of the boundary behav~~ur o~ m(z). 7he link ~e have 

established bet'.veen the boundary '::lehaviour of 11 (z) and t:-;e 6:'~·,·it.-; :'2-:e 

of the resolvent gives further insight into the str'lctura~ r~lat:onships 

invol~ed, and, in particular, hi~hlights the close relationship bet~ee~ 

m(z) and the resolvent operator. 

In the next chapter ~e shall relate the boundary behaviour of m(z) 

to the relative asymptotic behaviour of solutions of the Schr~dinge:, 

equation at each point x, and thereby establish a fundamental c8rr2la~ion 

between the asymptotic behaviour of solutions and mini~al supports of e3ch 

part of the spectral measure ~ . 
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CHAPTER III 

SUBORDINACY AND THE SPECTRUM 

il. The Concept of a Subordinate Solution 

There is little doubt that the study of the spectrum of the Schr~dinger 

equation will continue to engage the attention of mathematical physicists 

for much time to come. Although a great diversity of suff1c1ent conditions 

are known, eacn of which, if satisfied by the potential V(r), ensures a 

certain type of spectrum (eg. [GJ §§31, 33), the results to date are far 

from comprehensive. One of the more systematic approaches was by E. C. 

Titchmarsh, who made use of the relation (2.3.3) between the spectral 

function and m(z) to obtain a complete analysis in many important cases ([~2J) 

In theory this approach provides the solution to the problem; m(z) is 

uniquely determined by the condition (2.1.3) and from m(z), as we have 

shown in Theorem 2.17, minimal supports of the spec~ral measure, and of its 

decomposed parts, may be obtained. In practise, however, the method is 

frequently inoperable because it is impossible to obtain sufficiently 

detailed information about the solutions to derive m(z) explicitly. What 

seems to be required, therefore, is an approach that is no less systematic 

but not dependent on such precise information. 

In this chapter we shall use the minimal supports of Theorem 2.17 to 

derive a new set of minimal supports which are characterised in terms of the 

existence or otherwise of a certain type of solution of Lu = xu at each real 

point x. Thus we shall use the systemat1c correlation between m(z) and the 

spectrum to obtain an equally systematic correlation between the behaviour 

of solutions of the Schr6dinger equation and the spectrum. As a result we 

shall obviate the need to determine m(z) explicitly, and so a less detailed 

knowledge of solutions will be required. Indeed, it will only be necessary 

to decide for each real x whether there is one solution of Lu = xu which is 

"smaller" than the others at infinity, and, if so, whether this solution 
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satisfies the boundary condition (2.3.9) at 0; information about solutions 

of Lu = zu for z in c., JR will no longer be required. 

Analysis of the spectrum of Schr6dinger operator through the study of 

the behaviour of solutions of the Schr6dinger equation is nothing new. 

For example, it has long been known that the discrete part of the spectrum 

consists of all real x such that Lu = xu has a solution in L 1 (0, 00) 

satisfying the boundary condition at 0. The physicists' rule of thumb 

that the spectrum is the set of all real x for which the solution of Lu = xu 

satisfying the required boundary condition at ° is bounded (eg. [BR] Ch.10, 

§16, [KR] pp.71,82), while not proved for the general case ([G],§58), 

nevertheless suggests that a close correlation between the spectrum and the 

behaviour of solutions exists. Some interesting results in this connection 

have been obtained by E.E.Shnol' ([G], Ch.V) and J. Weidmann ([WE2]). 

In introducing the concept of subordinacy it is instructive to consider 

the case where VCr) = ° for all r in [0 ,00) . 

2 is just one solution of -d u 
2 

= xu in L:z. [0 I 00 ) 

For every x in IR- , there 

and for every x in (O I <X) ) 

. . dx there are no solut~ons ~n L:z. [0 I 00); L is therefore in the limit point 

case at 00 by Ch.II,§3(1). According to the boundary condition (2.3.9) at 

0, there may be just one negative eigenvalue or no negative eigenvalues at 

all, and for every boundary condition at 0, there is absolutely continuous 

spectrum on {O. 00 ) ( [AG] Appendix II, § 9) . For each x in IR , we see 

-J(-x)r 
that the solution u ( r) = e is much smaller at infinity than all 

other linearly independent solutions. Not only is its L2, [0 I 00) norm 

finite whereas the norm of the others is infinite, it is also "pointwise 

subordinate" in the sense that the ratio converges to zero 
La (r) 

as r~ ~ for every solution u(r) which is not a constant multiple of u(r). 

However, for each x in ~+, the concept of pointwise subordinacy of one 

solution relative to another is not applicable, since all solutions are 
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oscillatory, and it is not possible to compare t:he L [0 ) 2. 1(Xj norms of 

linearly independent solutions since all are ~te. Nevertheless, it is 

clear that in this case there is a sense in which linearly independent 

solutions are of the same size; one way of making this idea precise, and 

which seems apt in the context of Hilbert space theory, arises from the 

observ a tion that for x in (0 ,00) the ratio 

( f: I LA {r, l< ) 12. d r ) i 
(5: I u.CI"', X )lZdl"')~ (3.1.1) 

converges to a limit in IR+ as N ~ <XI for every pair of linearly independent 

solutions u\r,x) and u(r,x) of _ d2.u ::.)( Ll 
d ,..1 In contrast, this situation 

does not hold for any x in C - 00 ,OJ ; and because for each such x there 

is one solution which is "smaller" than the others at infinity, we may 

formulate the distinction between x in (- ex;, I 01 and x in IR+ as follows: 

For each x in (-00,0] there is a solution u(r,x) of Lu = xu which is such 

that the ratio (3.1.1) converges to zero for every linearly independent 

solution u(r,x), and for each x in IR+, there is no such solution. We 

require some notation and a definition. 
J. 

Let Ilf(r) liN denote (SN If( .... )l2.dr)~. 
o 

3.1 Definition: (i) If L is regular at ° and limit point at infinity, then 

a solution u (r,z) of the Schrtldinger equation 
s 

_cJ
2 uc,..,z) of- VC,.)c.tCr-,z) = z,uCr,z,) 

dr1. 

is said to be subordinate at infinity if, for every linearly independent 

solution u(r,z), 

Li m \l Us C,., %.) 11 N :. 0 

N~OO "tA. Cr, %.) II N 

(ii) If L is not regular at 0, then a solution us(r,z) of the Schrtldinger 

°d to be subordl.°nate at ° (respectively int"inity) if for equation is sal. 

every linearly independent solution u(r,z) 
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lim 
Q~ 0 
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= 0 

- 0 ) 

where c is an arbitrary fixed number in IR + and 0 < c. < b . 

It is trivial to observe that for each fixed z in ~ there can be no 

more than one linearly independent solution of Lu ~ zu which is subordinate 

at infinity (respectively 0). Moreover, if for fixed z in C there exist 

solutions u (r,z) and u(r,z) such tnat u (r,z) is subordinate to u{r z) 
s s ' 

at infinity (respectively 0), then u (r,z) is subordinate at infinity 
s 

(respectively 0) to every solution u(r,z) of Lu = zu which is not a constant 

multiple of u (r,z). 
s 

In this chapter we shall only be concerned with the case where L is 

regular at 0; therefore, where we do not qualify the term "subordinate" 

it should be understood in the sense of Definition 3.1(i). 

Returning to the case of zero potential, we note that 1 and rare 

linearly independent solutions at the point z = 0, so that here a subordinate 

solution is u (r,O) = 1, which is not in L 2 (0,00) 
s 

This example 

shows that subordinate solutions can exist which are not square integrable; 

in due course it will become apparent that such solutions are of central 

importance where there is singular continuous spectrum. 

It is not hard to show that if V(r) = 0, then 

m(z,o() -
sin ex cosO(. (z. - I) + i JZ 

cos:lex + Z si n 2 oc.. 
(3.1.2) 

For, if I.m z ') 0 , the solutions u, (r, '2 10() and u 1. ( r I 'Z , a(. ) as defined 

in (2.3.1) may be Qe~ermined explicitly and expressed as linear combina-

tions ot' e. i l1 r , which is in , and e.-in,. which is not. 

Hence, on account of (2.1.3), m(z,~) may be evaluated using the condition 

that tne coefficient of e- iJir in u 1 (r,'Z II)() 1'- ""(-Z,~)U'("'IZ.,C() 
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be zero. 

From (3.1.2), if x is in R+ then o < 1m m-r(,x I oe.) <. 00 for 

boundary condi tions Q(. , whereas if x is in (- 00 , 0] I 1m m + (x 10(.) = 0 

unless x = - c.o t 2 oc. and c.o b 0( ) 0 , when 1m m+ (x. I c( ) = 00 , 

(Note that the numerator and denominator of (3.1.2) both contain the factor 

JZ. Since + i CoOCo<. , so X = -c.of:.2.o<,. is not a pole if co t: ex <. 0 \ . 

Therefore in this case there is a subordinate solution for prec~sely those 

x in IR for which 1m m + (X ,oC) = 0 for at least one boundary condition 0(. , 

and tnere is no sUDordinate solution for precisely those x for which 

for every boundary condition «. It turns out 

that, with the possible exce~tion of subsets of IR having K- and~- measure 

zero, this situation holds quite generally; one of the main purposes of 

this chapter is to prove this assertion, and to assess the implications 

for the location of the spectrum. 

In the next section we establish some continuity properties of 

Ilu(r,z) liN as a function of y for sets of solutions {u(r,Z): Z € a:.} 

having certain common properties. This is an important prerequlslte to the 

proofs of our main results in §3. 

§2. Properties of the norm in a finite interval 

For each fixe"d z in C[ , define unique solutions u1 (r, Z), u2 (r, z) and 

u(k)(r,z) of Lu = zu to satisfy 

. 
:: - :SIn r:A 

Ul.(O,Z,) _ c.os~ !"Ai. ( 0, ~ ) = Sin d. 

U ( k) (r"', 2) = U2. ( r , 'Z) + k lA I (r I 7. ) k € a::. 

For each fixed z in ~'IR , define 

Um(r"I'Z.) 

where m ( 'Z. ) = m (7., G( ) 
d ' L 2 18) For ~:lOse (See remarks prece lng emma. . 

x for which m+(x) exists finit~ly and is real, je~~ne 
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m(x)=mT(X) 

We shall now regard U
1

(T,Z), u(k)(r,z) and u
2

(r,z) as functions of 

both rand z, and examine the behaviour of Jlu1 (r,z)1l N,lIu (k) (r,z)n N and 

lIum (r, z)1I N when both x and N (cO are fixed. Since z = x+iy, these norms 

are functions of y, defined on (- 00, 00) in the case of "u
1 

(r, z)1I Nand 

in the case of II u (r, z )11 • 
m N 

We shall derive some detailed es~imates of '" u (r,z2)"N - nu (r,z1)Il N I 

for 

z2 = x+iY2; and from these obtain continuity properties of Uu
1

(r,z)"N' 

lIu(k) (r,z)II Nand B um(r,z)lI N as func-cions of y. 

The proofs of the estimates are contained in the following four 

lemmas. Since the method is the same in each case, we shall omit some of 

the details in the later proofs. We shall assume throughout that VCr) is 

integrable on every finite interval [O,N]. 

3.2 Lemma: Let zl = x+iY1' with '1,,>0 be fixed. Then if z2 = x+iY2' and 

IY2-Yl' is sufficiently small 

III u , (,., z. 2. )" N - II U I ( r, Z. )" N' < 

this inequallty also holds for z1 = x. 

Proof: 

The hypothesis ensures that u
m

(r,z1) is defined and that u1(r,zl) 

and u (r z ) are linearly independent solutions of Lu = z1u . 
m '1 

lating the equation Lu = z2u as (L - z1)u = i(Y2 - Yl)u, and 

Reformu-

applying 

the "variation of constants II formula ([cLl Ch.3, Thm. 6.4) we have, since 

W(um(r,zl)' u1(r,zl» = 1: 

( ) () + u (r z )J" LC , (i: 1 z,)i(':I1o.·'1.)U.Ct,Z1) dt u, ,.. Z 2. ':II U , r, Z, "" I C) 

(3.2.1) 
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We use an iterative scheme to obtain the required estimate from this 

equation. Let 

(,,+1)( ) sr ( ) 
U, r,2. 2 :. U.(r-,'Z,) +U,.,,(r,2,) 0 u,(t','Z..)iC)'2.-1,)U,n (t,z'2,)dt 

- u, ( ,.. J Z.I ) for LA rn (I:) 2., ) i (':I '2. - 'j 1 ) u .en) ('t: J Z ~) d t 

and set U 1 ( ,..) z., ) (3.2.2) 

Then 

:. U m ( r-, 'Z..) S: u, (t J 'Z., ) i ('11. - ~ • ) u, (t , 2. 1) d t 

- u.Cr)'2.,)S: UrY'\(t,z.)i(Y1.-'j.)u,(t,2. I )dl: 

so that if r ~ N ) 

(3.2.3) 

Since this inequality is preserved if we take the L
2

[O,N] norm of both 

sides, we have, using the Minkowski and Cauchy-Schwarz inequalities: 

Similarly, if r ~ N • 

~ 1 '1'1. - ':J. \ \ u ton ( r, 'Z.,) \ S: I u , , t 1'2.1 ) 11 "", ('1 \ (t I Z'2,) - u ~I) ( Co J "Z 2. ) I d t: 

+ lYl.-),.\lu\Cr-,'Z..)\ r; \u. m (c,z)lIu.('1)(t,'Z.2.) - U~I) Ct.) z.l.)\dt 

(3.2.4) 

so that 

u u (3)(,.. .., ) - u ('l){r- Z )U 
, ' "2, , ' '2. 



71 

and, in general, 

(3.2.5) 

Since U u l (r. Zl). N and I um (r. zl)"N are finite and do not depend on y 2' 

the iterations converge in L
2

[a,N] norm for all z2 such that 

In order to show that the iteratl'ons converge t o the solution, we 

first prove uniform pointwise convergence of the iterations {u(n)(~ z~)} 
I } ... 

on [a ,N] . 

Since L is regular at a, there exists K in IR 1- such that 

ILt,(t",z.,)l)I"'rn(r,'2.,)J~ K for all r in [O,N]. Hence lf r E. [a,N1, 

from (3.2.3), 

and from (3.2.4), 

I u ~ 3) (,.. ~ Z 2.. ) - U I (2.) ( r, Z 2. ) I!: 2 I 'j 2. - '1, I K 2. N I u I (2) ( ,., '2 1 ) _ 

"= K (2.K 1 NI':h._y,\)2 

so that, in general, 

It follows that there is uniform pointwise convergence of the iterations 

{u en) (r z. )1. 
I I '2. J for all z2 such that 

I Y-a. - 'f. \ < 

Let rj)(r) denote Lim u fnl (~IZl.)' 
n-+ao 

From (3 • 2 • 2) , 

is continuous, and hence bounded on [U,NJ. We may therefore use the 

Lebesgue Dominated Convergence Theorem to take the limits inside the 

integrals, and hence by (3.2.1) and the uniqueness of solutions, 
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Thus if Y2 is suffic~ently close to Yl' 

QQ 

u,(r)22,) = u,(r"!Z) + ~ 
n=1 

for each r in Lu,N] , and hence by (3.2.5) 

'"u ,(r'Zl.)lI~ - lIu,(r, z,)IINI ~ II·· (r 2 ) ('" 'U '-' • ~..,. I ) 4 - lA, 'I 2., I N 

-- ~, 

1-<$ , 

if iY2-Yli is sufficiently small. 

(3.2.6) 

If m+(x) exists finitely and is real, there is no difficulty in 

extending this result to the case Yl = x, for um(r,x) is defined and has 

all the required propertles. 

The proof of the lemma is now complete. 

3.3 Lemma: If m(x) is defined, and ke«= is such that k -+ m{x) then 

if 'J > 0 is sufficiently small and z = x+iy, 

where 

?roof: 

From the definitions of u(k)(r,z), um(r,zJ, w(u(~)(r,z), um(r,zJ)= 

m{z)-k. Since k? rn(~) , and m(z), regarded as a function of y, is 

continuous there exists 'jk > 0 such that 

Ik-m{x)l 
) Z 
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for all y such that I 'j \ < Y k Hence, if 'j '> 0 is sufficie:: tly 

smalL, um(r,z) and u(k)(r,z) are linearly independent solutions 0: 

Lu = zu. 

Reformulating Lu = xu as 

Lu - 2.U -= -i)' l.I 

and using the "variation of constants" formula as before we obtain for 

urnCr,z)S: U(k)(t:,2)C-i~) uCk)(t,x) dt 

( m (,) - k ) 

If we form the iterative scheme 

rr . e,,) 
u,." ( ,.. I 2. ) J 0 1...1 (k ) ( t: ,1. ) ( - I 'J) u Od (t J X ) d t 

(m (2.) - k ) 

(1) () () th . th thod of Lemma 3.2 and set u(k) r,x = u(k) r,z, en uSlng e me 

together with (3.2.7) yields the result. 

Thus the lemma is proved. 

3.4 Lemma: Witn the hypo~hesis and notation of Lemma 3.3, if Y > 0 

is sufficiently small 

~ Z I m(z.) -m(x)IUu(k)(r)z')II N 
I - 2r k k - m ex) 

~k 

-~ k 
I m C ~) - rY'\ ( " ) I] \1 l) ( ,., z. ) \I 

+ k-m()() m N 



Proof: 

Since 

Define urn (r,z) = u
2

(r,z)+m(x)u
1
(r,z). We have 

x 

IlIum{r",z)/lN - lIu rn (r,x.)II
N

f 

~ lIu rn (r,z) -u m (r,x)II
N 

~ "un, (I"'~ Z) - U m Cr, z)IIN + 1\ u""" (r,,) - u (r x)1I 
x "'x ,." I N 

= J m ('Z) - m ( 'I( ) , /I t..(, (r, 2. ) liN + lilA (r 2. ) - I.A C r X) 1/ 
mx I mIN (3.2.8) 

LA I (r, z.) -
U /"'1"\ (r , -z.) - ""k ('-, z.) 

(m(z.)-k) 

if 0 < 'i < 'i k 1 we deduce from (3.2.7) and Minkowski IS inequality 

for sufficiently small y. 

Now u (r,z) and u (r,x) satisfy the same boundary conditions at 
m m 

x 
r = 0, and if Y< Yk ' um(r,z) and Yk)r,z) are linearly independent 

solutions of Lu = zu. Since Lu = xu may be reformulated as Lu-zu = -iyu 

we have therefore by the "variation of constants" formula: 

loA (k) C r I z. ) for U m (t J 'Z ) ( - j ~ ) U m ( t J X ) d t 

Cm(z)-k) 

\.t ron (r, 4. ) I: U (k) (~ I 2.) (-11 ) u", (t , )to ) d t: 

(m(z)-k) 

( 1 ) 
Iterating this equation as before with urn (r,x) = 

that for sufficiently small y 

u (r,z), we find 
m 

x 

~k n II u «(" I 1C) - U m ( r, 2 ) II N ~ ~ l\ u"" (,., z) N 
m x 1- k )( 

(3.2. ~O) 
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Now 

Hence for sufficiently small y, by Minkowski's inequality and ( 
3.2.7) 

II lA ( ,.» Z ) • ~ 2 I m (z.) - m ( ~ ) file r ) 11 
m)( N k _ m (x.) UCk) J Z N 

This, together with (3.2.8), (3.2.9) and (3.2.10) g;ves .. the result, ana 

the lemma is proved. 

3.5 Lemma: Let zl = x+iY1 be fixed. Then if =' d 0 z2 x+~y 2 an 1. ) '12. ') 

r, 
I - ~ , + -1---'1- 1 m("Z~)-M('Z.)IUu,(r,z..)UN 

I 

whenever IY2-Y11 is sufficiently small, where ~I is as in Lemma 3.2. 

If m(x) is defined, then this inequality also holds for zl or z2 = x. 

Proof: 

Define u
m2

(r,zl) = u2 (r,zl) + m(z2)u
1
(r,zl). By Minkowski's 

inequality 

Now if '1,) 0, u1 (r,zl) and um(r,zl) are linearly independent 

so'.u~i.Ol'ls ~f Lu = zlu, and W(um(r,zl),u1 (r,zl» = 1; and if m(x) is 

defined, u
1

(r,x) and um(r,x) are linearly inaependent solutions of 

Lu = xu, with W(u
m

(r,x),u1 (r,x» = 1. Moreover, u (r,z2) and u (r,z2) 
m m

2 
satisfy the same boundary conditions at r = O. Hence, reformulating 

the equation Lu = z2u as Lu - z1u = i(Y2-Y1)u, we have by the "variatlon 
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of constants" formula: 

lA~Cr.2.2.) = LlM1.Cr,Z..) + u,...,(r.z.,)S: U.CI:.2,)iC"jl-y,)u",(I:,'2
z
)dl:­

- u, Cr. z. ) fo" u "" C t: , 'Z., ) i ( 'f 2 - "1. ) LA '"" C t: I Z2 ) dt 

Forming the iterative scheme 

(1 ) 
and setting urn (r,z2) = u (r,zl) we obtain, as in Lemma 3.2, m

2 

by Minkowski's inequality. Hence the result follows from (3.2.11) and 

(3.2.12), so the lemma is proved. 

3.6 Corollary: Let xc IR and N <00 be fixed. Then if m(x) is definea, 

/luI (r,z)IJ
N 

and Uum(r,z)U
N 

are continuous functions of y 

on (0,00). If in addition, k e (. is such that k =1= m (x) then 

n~k)( r, z)1I N is also a continuous function of y on (0, 00 ) • 

Proof: 

It is immediate from Lemma 3.2 that for each Yl 1n lo,oo) 

~. 
_ 't l U LA, (,., z,,) liN is arbitrarily small for y 2 sufficiently ciose t::o 

Y1' since Uu
1

(r,zl)lI N, lum(r,zl)U N are defined and finite. 

U u
l 
(r, z >II N is a continuous function of y on [0 I 00 ) • 

Hence 

Since m(x) is defined the function m(z) is, for fixed x, a continuous 

function of y on IR • The continuity of I u (r,z)1 on to/co) therefore m N 
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follows from Le~ma 3.5. 

Now u(k)(r,z) = um(r,zJ+(k-m(zJ)u1tr,z) for all y in IR. Hence 

if 0 '11 1'i3. ~ 

4 U uCk) (r ,2.:4) - lACk) (r, 2 1 ) liN 

~ UI..4~(rjZ2) -1..4".,(I'""I,.)I\N + II.< -rt'I(21)ll\u,(r,z~) - u.(r,z.)II N 

final right hand side of this inequality may be made arbitrarily small 

by choosing Y2 sufficiently close to Yl. Since this is true for all y 

in (°/00) , UU(k)(r,z)U N is a continuous function of y on (0,00). 

The proof is now complete. 

3.7 Remarks: 

(1) It was necessary to stipulate that m(x) be defined in Corollary 3.6 

only because Lemmas 3.2 and 3.5 were used in the proof. However, it is 

possible to show "that the continuity on COiro) of lIu
1

(r,z)U
N 

and 

lI u (k)(r,z)U
N 

for any k in ~ is not dependent on the existence of m+(x) 

as a finite real limit. To see this, it is only necessary to use the 

iterative method of Lemma 3.2 on the formulae: 

uJr,'2 2 ) = u.(r.z,) + U(k)(r,z,)So"U,(t:'IZ,) i('jz.-'j,) u.(t,z.~)dt: 

- u. (r, z. ) S: lACk) (I; , Z.) i ( '1'1 -'1.) U I ( t; , Zl) d I: 

U{k) (r, 21 ) ~ UCk) Cr, 7..) -r U CIc ) (r", z..) So" u. (e) 2.) i C~h -11) ~k~ t, 21,) dt: 

- U I (rJ Z. ) S: U (k) ( t , 2.) i ( 'j l. - 'j I ) U( II: ~ t I Z 2 ) d t 

(2) If m+(x) exists and o < Im m-t(x) ( aJ , then if u (r,x) 
m 

is taken to be u?(r,x) + m+(x)u (~,x), L 3 2 d _ 1 emmas. an 3.5 st~ll hold 
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for 'i, = 0 ';2.") 0 (or vice versa), and Lemmas 3.3 and 3.4 still hold 

for 'J > 0 

(3) If m+ (x) does not exist but there exists a sequence {'( n} in IR + 

such that Y" ~ 0 and m ()( + i '( n) ~ L ,where 'L I < 00 , as n ~ 00 

then, if um(r,x) is taken to be u
2

(r,x)+Lu
1

(r,x), 

(i) Lemmas 3.2 and 3.5 hold in the sense of Remark (2) if Y2 

(respectivel:' Y1) E. i YnJ and" iY2-Y1i sufficiently small" is replaced by 

"n sufficiently large". 

(ii) Lemmas 3.3 and 3.4 hold in the sense of Remark (2) if 'j ~ \ '( n } 

and "'j) 0 sufficiently small" is replaced by "n sufficiently large". 

(4) It is not hard to see that Lemmas 3.2 - 3.5, Corollary 3.6 and 

Remarks (1) - (3) are also valid for zl,z2'z in the lower half-plane 

provided the necessary obv~ous adjustments are made. Hence Uu
1

(r,z)U
N

, 

!lu(k) (r,z)"N are continuous functions of y on IR , and, iI' m~x) is 

defined, Il urn (r, z) UN is also a contlnuous function of y on IR • 

We are now in a position to prove our main theorems on suborainacy. 

These will be used to derive a new set of minimal supports of the spectral 

measure, and of its decomposed parts, in terms of subordinate solutions. 

§3. On the existence of subordinate solutions. 

Our first objective is to show that if x is fixed and m(z) = m(x+iy) 

converges to a fini te real limit m ~ X) as 'j.l, 0, then there exists a 

subordinate solution of the equation Lu = xu. we need a few preliminary 

results. 

3.8 Lemma: Let x e. IP- be fixed and suppose that m(z) converges to a finite 

real limit as "j .If 0 . Then if £")0 is given, there exists 

N in IR~ such that 

Hum(t"j)()U
N < E 

Ilu, (r. x) liN 
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Proof: 

Let E be chosen to be less than Yz. 

We may choose Y > 0 to sat~st·y 

E.'" 

32. 
= ~up Im(-z) - m(x)\ T '( 

O<'1~'( 
(3.3.1) 

To see this, note that since the right hand side of (3.3.1) is contin-

uous, strictly increasing with Y and convergent to 0 as Y ~ 0 , it 

assumes every value in (0, co). It· Y is not sufficiently small to ensure 

the convergence of the estimates of Lemmas 3.2 and 3.5 for z2 = x and 

z1 = z when '1 < Y, choose Y1 '> 0 such that Y, < Y and the convergence is 

assured for all 'j' '(I We then determine £ 1 ) 0 by the condition 

sup Im('2.)-m(x)1 + "(, (3.3.2) 
0<'1''(' 

,... #OJ 

Let £. ':J denote £ I Y respectively if convergence of the estimates 

of Lemmas 2.2 and 2.5 is assured for all 'it: '( 
#J "W 

, and. if not, let e. 1'1 

denote E" '( 1 respectively. In either case, (3.3.1) or (3.3.2), as 

appropriate, ensures that 

£ 
< -

4 
.... ~ 

and lIm m(z)/ < ~ 
32. 

N • ..., 

where %. = x +, 'j . 

Since u1 (r,z) is not in L 2. (0,00) 

such that 

(3.3.3) 

(3.3.4) 

, there exists N ( g) 6 IR+ 

(3.3.5) 

Fory and N(y) chosen in this way, we have by (2.3.2) 

Uu mCt',i)II Ncg ) 

Uu ,(r,z)II N (9) 

-< !. 
8 

(3.3.6) 
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I'V 

and ~\ = 2Igl"lA,(r~z. )/IN(),) II~M(r,i)lIN()) < ~ I 
<. -

4 
(3.3.7) 

The estimates of Lemmas 3.2 and 3.5 now enable us to relate 

II IAm(r) x)1I N(9) 

II u,(r j x)1I N(g} 

FroJll Lc=mma 3.2 

to the ratio of norms in (3.3.6) . 

Illu,(r)x)U N (9) - lIul(r-/z)IINej)l ~ 't, IIU1("/2)IIN(~) 
1- Y, oJ 

so that, by (3.3.7), 

II I - Z}( 
L.t,(t"'I X )II N (j) ~ I 1I1.4,(r, z)Il N (9) 

I - ~, 

From Lemma 3.5 

so that, by (3.3.3) and (3.3.7), 

,.., 
Hence, by (3.3.6) and the defl.ni tion of £ , 

II U m ("1 x) II N (g) 

llt.4,(r- j x) UNC)) 

8 
~ 

3 
UUm("'~Z) /IN(),) 

IlU l (t"/Z)U N {j) 

Thus there exists N = N(y) with the required property, so the 

lemma is proved. 

Lemma 3.8 shows that if m+(x) exists finitely and is real, then the 

relat~ve smallness of the solution u (r,z) for 1m Z ')0 
m 

is reflected 

in a similar relative smallness of the solution u (r,x) in the sense of 
m 

the ratio of norms on carefully chosen finite intervals. To deduce su~-
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ordinacy, however, we must first prove the existence of a continuous 

dependence of N(7) on i , such that N(~) becomes arbitrarily large as 

e ~ O. 

3.9 Lemma: Wi -ch the hypothesis and notation of Lemma 3.8, N (:;) ~ 00 

as l ~ O. 

Proof: 

we !irst prove by contradiction that as 9' ~ O. 

Suppose it is not true that given any M 7 0 ,there exists 

.-.J 

1M> 0 such that N <g) ~ M 
.... 

for all y < 'j M Then there exists 

such that for any ~ ~ 0 , there exists wi th N CJ.." ) ~ M . 

Hence there exists a sequence t:; k 1 such that 11< ~ 0 as k -? 00 

for each k. 

Using the definition (3.3.5) of N(y), we see that for each Yk 

nUl ('(", X + i 1 k ) 11 M ~ nUl ( ,..) x ... i 1k) UN (..., ) =Jt 
'ik ':Jk 

which implies that, as ; k .J, 0 , 

/I I.A I (r, x + i 9 k ) l\ M -? 00 

This is impossible since, by Corollary 3.6, UU1(r,z)U~ is a continuous 

function of y on IR. This contradiction proves that N c:; ) ~ 00 as 

y ~ O. 
IV _ 

Since £ and yare related by the formula 

,...2. 
£ -
32. 

sup 1,..,,(2) - m(x)1 + '1 
o <:rm z. '5:j 

(3.3.8) 

it is clear that -; ~ 0 as l~ 0 Hence N (j) ~ OCI as 

and the proof is now complete. 

As in (3.3.5), if ':J ) 0 , define N(y) to satisfy 

.L 
\'j\2. lIu , C'("/ x + i j)I!N('j) ::aJ'2. (3.3.9) 

The following resul t will be needed when we show that ~J(y) is a continuous 
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~ 

function or" y. 

3.10 Lemma: With the hypothesis and notation of Lemma 3.8, N(y) is 

locally bounded. 

Proof: 

We prove by contradiction that for each y> 0 there exists (3 _ ) 0 
'i 

and M E.IR+ such that N (9) ~ M on [. -; - ~1 I t ~ (3)] . 

Suppose this statement is not true, ie. that N(y) is not locally 

bounded. Then if "1 > 0 and K ~ lR+ are given, there exists :t.,," 0 such 

an d N ( Y TJ) ) K . Since u. (r, 2.) 4 L.z.lO, ~) that I 'fYJ - ~ I < "YJ 

if I rn z +- 0 N E. IR + exists such that 

In particular, for this Nand given 1'] > 0 , there exists 1.,., > 0 

such that 1'1., - j I <. 'l'} and N (1..,.,) > N 

there exists 1T) > 0 such that ')'" - 9' I < l'J 

)( + I 1" , 
.l 

f Y." 12. JI tAl' r, Z"1) UN 

That is, using (3.3.5), 

and, if z" denotes 

(3.3.11) 

Now by Corollary 3.6, Itu1(r,z)UN is a continuous function of y, and 

hence there exists )J"> 0 such that 

whenever I 'j - ~ I < 1I Using (3.3.10), this implies that 

II u, ( r) ~) /I N > z II u. (r- J z: ) II N (5 ) (3.3.12) 

whenever I":J - g I < }) 

We may choose Then there exists with 

for which (3.3. :0) is satisfied; and since this 
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also satisfies I )''T\ -'1' < }) we have by (3.3.12) 

HO\,lever , 'j..,., _ j I < 3"1 
4 

satisfies (3.3.11) we have 

implies 

/lu,(r-, z...,)U N < 2I1u,Cr,z)II
NC9

) 

which contradicts (3.3.13). 

I 

"2 4. Z 

Thus the lemma has been proved by contradiction. 

(3.3.13) 

so since thlS 'i"'7 

We al~e now in a position to establish the continuity of N ('i) 

on IR +. 

3.11 Lemma: With the hypothesis and notation of Lemma 3.8, N(y) is a 

continuous function of y on IRT. 

Proof: 

It is sufficient to prove that for each i,"> 0 if cS"> 0 is 

given there exists )~ > 0 such that 

(3.3.14) 

whenever ,~ - Y, I < ~ J , where ~(~), is as in (3.3.5). To see 

this, we show that if N (y) is discontinuous at some po; nt 'i, ') 0 , 

then the condition (3.3.14) fails to hold. 

If N(y) is discontinuous at ~I ~ 0 there exists K ~ IR. '+" 

such that for any given "\ > 0 there exists g) 0 wi th I:; - :;, , < "T) 

and I N ( J) - N ( ) I) I ~ K. Hence there exists M € IRT such that for 

any given "1" 0 there exis ts ~ > 0 IN i th I i-i. I <. "Y] and 

In u l«(")z,)II N(_) 
'11 

v U 1 ( r , ZI ) n N ( j )' ? M 

For, were this not so, we should have u1(r,~) = 0 on a non-trivial 

interval, which is impossible. 
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Hence to prove the lemma we ver~fy condition (3.3.14). 

By (3.3.5), if y') 0, 

II ... I (r, z) II N ( Y ) = ~ 

so tnat II t.41 ('-1 2 ) 1/ Neg) is a conti.nuous function of y on IR 1" • 

Hence if t5 > 0 is given, there eXlsts S 15 > 0 such that 

I " U 1 ( r) 2) If N (_) - "u, (r 12, ) 1/ N ( ..., ) I < 
':J Y 1 

(3.3.15) 

if y) y, > 0 

By Lemma 3.10, there exists M e. JR + and 13 g > 0 such that 

N (y) ~ M whenever I:; - 9. I < ~ ~ . 

see exists such that 

Ilu,(r,i) - u,C'-IZI)'M < 

whenever I 3 - y, I < v 0 

o 
2. 

Hence, if 

}IILA 1 (r 1 i')II N(9) -lIu,(r)i ,J II N (9)1 

<. o 
2. 

Let '5 c5 =: min { ! ~ ) ~; I V 0 } 

(3.3.16) 

-whenever ~) 'j I ') 0 and 

Moreover, using (3.2.6) ~e 

(3.3.16) 

Then from (3.3.15) ana 

This is equivalent 

to the condition (3.3.14), so the lemma is proved. 

3.12 Corollary: I1' £' is sufficiently small, N(y) is a continuous func':.:.on 

.-oJ 

of £ satisfying the inequality 

II urn ('-,.)() /I N ('1) 

lIu,(f"',x)1 NCy) 

,." 

< e. 
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Proof: 

As we noted in the proof of Lemma 3.8, the convergence of the estimates 

of Lemmas 3.2 and 3.5 for z2 = x and z1 = z is assured if y is sufficiently 

small. For such y, 

II U m {r,x)n N (j) 

II u , (r, x ) It N (9' ) 

..., 
< E (see proof of Lemma 3.8), Lemmas 3.9 - 3.11 are 

tv _ 

applicable, and £ and yare related by (3.3.8). 

From (3.3.8) it is clear that if there exists ~ > 0 such that some 

property holds for all y < f3 ' 
5~ liz. - ~ ) eo < 2 (sup lm(~) - mhcH .... p " 

o <"1$,f! 

..., 
for sufficiently small E. 

then the property also holds for all 

Hence Ilumlr,x)IIN(~) 

II u, (r,)() n N(~) 

N 

< E 

It is also evident from (3.3.8) that for all y which are sufficiently 

small in the sense indicated above, y is a continuous function of e. It 

follows from Lemma 3.11 that N(y) is a continuous function of i for 

- -sufficiently small y, and hence, also, for sufficiently small ~. 

The proof of the corollary is now complete. 

We are now able to deduce the subordinacy of u (r,x) from Lemma 3.8. 
m 

3.13 Theorem: Let X ~R be fixed and suppose that m(z) converges to a 

finite real limit as y ~ O. 

solution of Lu = xu. 

Proof: 

Then u (r,x) is a subordinate 
m 

Since N(y) is a continuous function of £ for sufficiently small £, 

we relabel N(y) as N(l). 

By Corollary 3.12 there exists an interval (O,a] such that N(i) is a 

continuous function of i on (O,a] satisfying 

lu",,(r,x)1I N(i) 

lUI (r,x 1 U Nel) 

< -e 
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The continuity of N (€:) implies that if l') such that 0 <" < Q is given, then 

there exists K e.IRT such that K is the least upper bound of N (e ) on 

[", Q ] • 

By Lemma 3.9, N ee) ~ 00 as e..., o. Hence, since N (e) is continuous 

on (0, a], N ( £') takes every value in (K J 00) as e ranges over (0, a], by the 

Intermediate Value Theorem. Moreover, if £ is in (O,a], then whenever 

N (£) :> K , £' is in (0.7]) by the definition of K. 

We may reformulate this last statement as follows: If ~ such that 

o < " < a is given, then there exists N"l( any number greater than K will 

do) such that £' <" whenever N Ce»N?} I e~ <O,al. 

Hence, from (3.3.17), if '1 such that 0 < " < a is given then there 

exists N~inlRTsuch that 

II LAm (r, x) II NCl) 

II U I (,.-, X ) II N (§') 

whenever N ( e') > N", £ e (0, CI ] • 

Since N(E') takes every value 

lim lIu"", (r,x)II
N 

N~ao lIu,(r,x)II N 
so that, by Definition 3.1, u (r,x) is 

m 

This completes the proof. 

in IN''1 J 00) , it follows that 

= 0 

a subordinate solution of Lu = xu. 

In addition to proving that a subordinate solution of Lu = xu 

exists whenever m(z) converges to a finite real limit as y~ 0, Theorem 

3.13 identifies the set of subordinate solutions in this case as scalar 

mult1" pIes of u (r x) G1" ven that u (r, z) 1" s in L 2. [0 J ~) for each z , . m m 

inC,'R , it is not altogether surprising to find that u (r,x) is sub­
m 

ordinate where it is defined. 

Of course, m(z) depends on the boundary condition ~, at r = 0 (see 

Chapter II, § 3) ; we may indicate this dependence by the notation m (7., at I )" 

Clearly Theorem 3.13 may also be applied in those situations where, although 
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the hypothesis is not satisfied for m ( 11 d. I) , another boundary 

condi tion 0(2. exists for which m ('Z., 0(.) does converge to a fini te real 

limi t as ':J ~ 0 This is the idea behind the following c8~plementary 

result: 

3.14 Theorem: Let x E. IR be fixed and suppose that rn (z.) ~ '" as "j + 0 

Then u
1

(r,x) is a subordinate solution of Lu = xu. 

Proof: 

The hypothesis implies that m+(x, 0(..) = co for some given 

boundary condition «. Hence, by Lemma 2.18, m+(x , otl.) - -cot: (O(I-eel,,) 

for any distinct boundary condi tion ~ z' For each such 0(4 \ m + ( X J 0(.1. ) 

is finite and real, so by Theorem 3.13 

is a subordinate solution of Lu = xu. Now 

. 
sin 0(. 

= 

and 

= -C.OS 0(. 

which implies, by uniqueness, 

U (r X ..J ) - c', n (d. ~ - 0( .) loA __ ( r J x J 0< ~ ) 
I I jUl., - oJ ... '" .. 

( ~) is a scalar multiple of a subordinate sOiution of That is, lAlrlX, I 

L and s o is itself subordinate. u = xu, 

th t ~' of the ',lypothesis, we have shown that if Reverting to e no a~~on 

as "j ~ 0 

is proved. 

then u (r,x) is suborainate; thus the theorem 
1 

We now prove conversely that, whenever a subordinate solution of 
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Lu = xu exists then, as 'j -It 0 , ei ther m (z) converges to a finite real 

limi t or m (z.) --; 00 • We first need some further estimates of 

solutions. 

3.15 Lemma: If m+(x) exists and is finite, and 1m m+(x) ': Lx t~en 

there exists K E. IR +, which is independent of x, such that 

II um+(r)x)n N ~ K Lx 

nUl (I"', lC )U N 

as N ~ a:; , where UJ"t'\+ (I"', x) - lAl,(rJ x) + rYI-i-(x) IA, (1"',)(.). 

Proof: 

The method of proof follows the same pattern as that of Theorem 3.13 

and requires preliminary arguments similar to those of Lemmas 3.8 - 3.11 

and Corollary 3.12. 

,01 

We first show that if E. ") 0 is given then there exist Eo such that 

o < e ~ £ and N (f) which is a continuous function of e satisfying 

I/u m + (r,x)II NCl ) 

lI u ,(r,x)U NC E') 
< 30 l x + £" (3.3.18) 

Let €. ") 0 be given. Subject to the condition that:;., 0 be sufiiciently 

small to ensure that for all ~< ~ t~e estimates of Lemmas 3.2 and 3.5, 

wi th z2 = x and zl = z, converge, we choose 'i) 0 
..... . 

and Eo ~ £ , as In 

Lemma 3.8, to satisfy 

-- sup ImC-z.) - rn+o{x)l -+- '1 
o < Im I. , :; 

(3.3.19) 

together with the requirement 

e (3.3.20) 

_ 'V 

For this £ and y, 

-z. 
\ m (i:) - m + ( X) \ <. 4-;2. l x 

..., 
& 

<. -ZO (3.3.21) 

I 

and , Im m(i') I m m -+- ()C. ) 11 < 
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so that, using I I Q 1 j - I b \ -I 1 ~ I a - b I ~ 

I • 

Ilmm(z)l"i < l~ + 
x 

Define N ('£) to satisfy 

I 

i 
4- 0 l ',. 

~ 

;a lIu,Cr / z)II N {e) = cal'h 
x 

Then, by (2.3.2) ana 0.3.22) 
I 

II u t\'\ ( ,. 1 Z ) /I N (t) 

11..". ("I z) 1/ Neg) 

lIm m(.z)/2. 
I g-a Hu,{r,'Z:)lI N (l) 

<. [ L:z. -+- £' ] 8 l !t1. 
,. 40 L ~2. )I. 

and, also using (3.3.20), 

< ,[ l ~2. + I ~] 
4- L ~1" 4- 0 L x. 1 

)C 

3 
< -

I 0 

(3.3.22) 

(3.3.23) 

(3.3.24) 

(3.3.25) 

We now use the estimates of Lemmas 3.2 and 3.5 to relate 

" U m+ (rl x) If N (£) 

II lA, (r l x) 11 N(e) 

to the ra~io of norms in (3.3.24). 

From Lemma 3.2, 

~, 

J - 't I 

so that, by (3.3.~5), 

From Lemma 3.5, (3.3.21)and(3.3.25), 
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Hence, by (3.3.24), 

Ilu m + Cr) x)1I N(e) 
~ 

25" II lAm (r, i) U N(E:) Sa - ... 
IIU I (r, x) IINti} 7 lJu,(r-,z)Il N(£,) 2.'g 

2S.g Lx 2: ~ .d.. ..... 
< + 7 E. + e 

7 2.~ 

so that we have proved (3.3.18). 

Just as in Lemmas 3.9 - 3.11 it may be proved that for sufficiently 

small e , N( E) is a continuous function of £' and that as i 4 0 

N (E) ~ co -Moreover, for sufficiently small E , the inequality 

(3.3.18) holds, so that arguing as in the proof of Theorem 3.13, we find 

that if a sufficiently small" is glven then there exists N." E:. IR'" 

such that N (e:) takes every value in l N.." I 00 ) if l < "'1 

and 

IlI.A m+ (r) x) a N (e) 
30 Lx + 1') < 

IllA,(r} x) II "H€) 

for all N(l') ') N, Ie fOl.LowS that 

If u I'V'I + ( r I X ) II N ( £) = o (Lx) 
lIu,er', y.) II NCe) 

as N -7 00 , so the proof of the lemma is now complete. 

3 16 L a · Wl'th the hypothesis and notation of Lemma 3.15, suppose . emm. 

also that k Eo u: is such that k * m+ (x) Then 

there exists K k x j! IR + which depends on k and x such t:L .. .:.C 
I 

U um ... (r) x.)IlN 

liLA (k) ( r I x ) UN 

for sufficiently large N. 

Proof: 

The method of proof is similar to that of Lemma 3.15, 

#OJ 

We first show that if £ ') 0 is given then there exist E su-::h that 

and N (l) which is a continuous function of £ satisfying 
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+ e (3.3.26) 
Im-t-(x) - k \ 

Le:: Eo) 0 be given. Subj ect to the condi tion that 1 ') 0 be 

sufficiently small to ensure that for all 'i < ~ the esL .. mates of Lemmas 

3.3 and 3.4, with z2 = x and zl = z, converge, we may, as in Lemma 3.8, 

choose ; ') 0 and e ~ e such that 

g4- lm +(x)-kl 

3'2."'. 25
1 Lx 

sup I m(l.) - m+Cx)\ + ') 
o < 1m z ~ J 

and, also, so that l satisfies e < I and 

max 

For this i and y 

I M (i) _ m + ()() \ < e: 4 1 m .... (x) - k \ 
32.1.. 25'1 Lx 

and, as in Lemma 3.15, 

.... z. III", 
E. I n"'I+(X) - k 

Define N (l) to satisfy 

32.. 25 

I m-t-(x) - k I 
32 l ~/7. 

Then by l2.3.2), (3.3.30) and (3.3.·2~ 

lIum(r)z)UNCe) 

II U (k) ( r) i' ) 1\ N (i' ) 

< 
32 

Im1-(x)-k\ 

32 LA 

Imi-(x)-k! 

+ 

... 
e. 
10 

(3.3.27) 

(3.3.28) 

(3.3.29) 

(3.3.30) 

(3.3.31) 

(3.3.32) 
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and, by (3.3.28), 

~ k = 4 g II u (k) ( r) Z:) II N ( l) n \.A m (r J Z:) \\ N (6' ) 

< 

< I 

5 

\ m+ (x) - k I 

( l ~1. + 

(3.3.33) 

The estimates of Lemmas 3.3 and 3.4 now enable us to rela~e 

II \.Am+Cr)X.)\lN(£') 

" \A. (k) C I'" , X ) 1\ N (e) 

to the ratio of norms in (3.3.32). 

From Lemma 3.3 and (3.3.33) 

\- ~k 

so, using Lemma 3.4 (see Remarks 3.7(2)), we have 

... ,,_ + ok + 2 m z - m + ( x) U m l r-J i) \I N ( e) 1/ u. m + ( r J X) U N ( ;:r) S [ (I v ) I ( -) I] II 

II14Ck)(I"'Jx)IlN(l} 3 (I - ~k) Ik - m~()(,)1 l\u(k)(r,i)I1 N (l) 

I m (i) - m ~ ex) I 
1 k - ,.,,-r(x)1 

Hence, by (3.3.28), ( 3.3.29), ( 3.3.32) and (3.3.33) 

11 U m+ (r- J x ) n N ( i ) ~ S (~ to 

II lA(k)(r-Jx)U N(€) 3 Z 

,y 

80 Lx - e 
T - + + 

I m-rb<.) - k l + 
gO Lx. .-

<. + e 
I m-t-(x.) -kl 

so we have proved (3.3.26). It now follows, just as in Lemma 3.15, 

that, in the sense indicated in the statement of the lemma. 

as N --t 00 
, and the pr~of of the lemma is comple~~. 

,..3 
£ 

1. 4l 3.32.25 ; 
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We rem~'l< th?t, by and large, no particular significance 1.S attached 

to the precise numbers involved in the proofs of Lemmas 3.8, 3.15 and 

3.16. However, in view of the complexity of the relationships involved, 

it is necessary to exercise considerable care in these proofs, and working 

with particular numbers gives a precision which cannot be achieved by such 

not:"ons as "suffic1.ently small" alone. 

Just as in the case of our earlier estimates, Lemmas 3.15 and 3.16 

remain valid in a modified sense if there exists a sequence {Yn } in IR+ 

such tnat Y r'\ ~ 0 and m (x+i Y ) converges to a finite limit as n ~ cO • 
n 

As this is easily verified by making suitable minor adjustments to the 

arguments of Lemmas 3.15 and 3.16, we omit detailed proofs: 

J .17 Remarks If m+ (x) does not exist, but there is a sequence {'f n } 

in IR+ such that '(,,~O and m(x+iY ) converges to a finite 
n 

limit L as n-too then there exist sequences IMpl and i N ct } in 

IR+ such that Mp, N, -t 00 as P'9~oo and, if k. l t 

OClm l)) O( Im l) (3.3.34) 

as p, CJ ~ 00 , where ul(r,x) = u
2

(r,x) +lu
1
(r,x). To see this,let 

and corresponding sequences {lp}' { l, } 

be related according to equations (3.3.19) and (3.3.27) respectively 

in such a way as to ensure the convergence of the iterations of Lemmas 

3.2, 3.5 and Lemmas 3.3, 3.4 respectively in the sense of Remarks 3.7(3). 

Then the sequences of numbers f Mpl and {N,J satisfying 

.1 I 
~& Uu.C,.,z,. }II M = 8 (1m L ) "& p p 

-i 
U u(k) (r , z,)O N, It - k I 

and 1, 
:: 

3Z CIm l) '/z 

(cf. (3.3.23) and (3.3.31) respectively) also satisfy 



and 

It U Cl ) (I'"/)()II --.;.... ___ Mp 

liLt I (,.., x) IlM 
p 

Ilu(l)(r,x)G
N , 

RU(k)(r,K)llN 
q 

94 

< 301m l + i p 

80Iml 
< 

, l - k I 
+ 

respectively, which imply (3.3.34) 

We are now aole to prove the following converse to Theorems 3.13 

and 3.14: 

3.18 Theorem: If a subordinate solution of Lu = xu exists then, as 

; either m(z) converges to a finite real limit 

or m ('Z.) ~ 00. 

Proof: 

We may regard the subordinate solutions as the set of scalar multiples 

of u(r,x) = aU1 (r,x)+bu2 (r,x) for some a e.IR and be £O. Since lIu(r,x)"N= 

Hu(r,x)"N for all N in IR~, u(r,x) is also a subordinate solution of 

Lu = xu, and must therefore oe a scalar multiple of u(r,x). It follows 

that if a. 0 , then b is real, so that a subordinate solution is always a 

scalar multiple of a real solution. 

To prove the theorem, it is sufficient to show that 

(i) if a subordinate solution of Lu = xu exists at the real point x, and 

m(z) converges to a finite limit m+(x) as y~ 0 , then m+(x) must be real 

( i i) if m ( z) does not converge to a 1 imi t as y ~ 0 then no subordinate 

solution can exist. 

Proof of (i): 

Suppose there is a subordinate solution of Lu = xu at the real point 

x, and that m+(x) exists finitely; and let l. = Im "'-toe,,). 

u ex),:: uz(r)x) of- m+(x)u.(r,-.). 
m+ 

Then by Lemmas 3.15 and 3.16 respectively 
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U\A m+ C r I )( ) \I N 
O<lX) 

llu,Cr,x)\lN 
- (3.3.35) 

and 

flu m+(r)x)I\N o (Lx) -
Ii U (k) (I"", X) /IN (3.3.36) 

as N -t GO , where kE.([ is such that 
k * r'n+()(. ) Now suppose 

that um+(r,x) is not subordinate; then there exists a solution u(r,x) 

which is not a scalar multiple of u (r,x) such that 
m+ 

llu(t'",x)II
N 

lIu m.(r-J x ) liN 
o 

as N -; c() by Definition 3.1. That is there exists a solution u (r, x), such 

that if K > 0 is given, NK ~ IR+ exists with 

flum+(r}x)"N 

IIt"dr, x) \iN 
') K for all N ') N K (3.3.37) 

However, u(r,x) is a scalar multiple of some elemen~ of the solution set 

solutions of Lu = xu which are linearly independent of u (r,x). Hence m+ 

(3.3.37) is not compatible with (3.3.35) and (3.3.36), so the supposition 

that u (r,x) is not subordinate is false. 
m+ 

Therelore u (r,x) is subordlnate, and a scalar multiple of a real 
m+ 

solution. This implies tnat m+(x) is real, as was to be proved. 

Proof of (i 1 ) : 

If m(z) does not converge as 1 ~ 0 , let us first suppose that 

there exist sequences {1m 1 and { '(n 1 in IR+ and l, L in a::. wi t~~ L *" L I 

Ill)ILI <00 such that 'jm l Y r'\ -; 0 

and as m J n ~ 00 . 

Let u (r,x) = u (r,x)+lu
1

(r,x) 
Il) 2 

By Remark 3.17, there exist sequences IMp} anci tN,} in If~+ 

such that M p , N ct ~ co as 
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111.A.(l) Cr})() II M 
o (Im l ) p = 

IllA.(r,x) U
M p 

(3.3.38) 

as p~oo and 

II U (l ) (r, x ) 1\ N o ( Im L ) CJ, ': 

11 tA(k)Ct",x)II N 9 

(3.,j.39) 

as ~~OO for all k in 4: such that k =#= L If there were a subordinate 

solution u(r,x) of Lu = xu which was not a scalar mUltiple of u (r,x), 
(l) 

then, as above, given any K? 0 , there would exist P and Q in IN such 

that 

> K for all p ') p 

and 

"U(l) (r, x) /I N 
Cf 

nulrJ)()U Nq 

) K for all 9 ') Q 

As before, this is not possible in view of (3.3.38) and (3.3.39), so if 

there were a subordinate solution of Lu = xu, u (r,x) would be subordinate. 
(L) 

Similarly ~fr,x) = u
2

(r,x)+Lu
1 

(r,x) would be subordinate; however, 

this cannot be the case since ~Jr,x) and ~Lfr,x) are linearly independent. 

Hence in the case we have considered wi th I L I ) J L I <. 00 I L '* L no 

subordinate solution of Lu = xu can exist. 

Now suppose that L:::. 00 ) I L \ <. 00 . 

using tne method of Theorem 3.14 together with Remark 3.17 we see 

that there exists a boundary condi tion c:(l. and sequences {M p} and {N If } 

in IR+ such that M p , N" ~ ao 

as 

II U (L) ( r, x , 0( 1. ) II M p 

U LA I (r 1)( I ott ) \I M 
p 

P -t 00 
and 

/I uCL) (r,)(, 0(.1) /I N 
~ 

U u Od ( r'", )( I ex 1. ) II N 
9 

~ 0 

~ 0 

as p, 9 -+ 00. 
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as ct..lt 00 for all where ~I is the original 

boundary condition, and 

Hence, if a subordinate solution were to exist , ""L (r, x ,ot2.) would 

be subordinate by the arguments above; and, as in the proof of Theorem 

3.14, this implies that u. ( ,.. J x) = LA I (,., ~ , d.. ) would be subordinate. 

However, this is not possible, since ~ (r,x) would also be sub­
lL) 

ordinate, and u
1

(r,x) and ~Lfr,x) are linearly independent. Hence in 

this case also, no subordinate solution of Lu = xu can exist. 

It follows from the two cases we have considered th~t if m(z) does 

not converge to a 1 imi t as 'j..lt 0 , then no subordinate solution of 

Lu = xu exists at the real point x. 

The proofs of (i) and (ii) are now complete, and so the theorem is 

proved. 

Theorems 3.13, 3.14 and 3.18 together for~ a complete set of necessary 

and sufficient conditions for the existence of a subordinate solution of 

Lu = xu at the real point x in terms of the behaviour of the function 

m(z) as z approaches x along the normal to the real axis at x. For con-

venience we also express these three existence tneorems as a single 

result: 

3 19 Th A subord;nate solution of Lu = xu exists at the real point • eorem: • 

x if and only if as 'f J, 0 either m( z) converges to a finite 

real limit, in which case um(r,x) is subordinate, or m(7.)"" 00 ,in 

which case u (r,x) is subordinate. 
1 

A discussion of some consequences of this theorem is contained in 

[PS]. 
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We recall that u
1

(r,x) satisfies the boundary condition at r = O. 

As we saw in the proof of Theorem 3.14, if m .... (x, ol,) 2 CIO for 

some ooundary condition ~I , then for any distinct boundary condition 

means that the existence theorem may also be expressed in the following 

alternative form: 

3.20 Theorem: A subordinate solution of Lu = xu exists at the real point 

x if and only if there exists a boundary condition « such 

that m(z, O() converges to a finite real limit as "j oJ, 0 , in which case 

u m (r,)( ,et) = U'l.(r-,x,oc) + M-t-(X,ol)U,(",l' ,0() 

is subordinate. 

It is now straightforward to derive our ultimate set of minimal 

supports of the decomposed parts of the spectral measure~: 

3.21 Theorem: Minimal supports m /11 m /II lY\ III m III mill of 
1 Q.c. ) S.) s. c. I tA. 

fA J4 tl. c. , .fA 5. )-L s. c.. and }J.~. aJ:"e as follows: 
) 

, 

(i) m UI 
-= lR , { )( e. IR. . a subordinate solution of Lu = . 

exists but does not satisfy the boundary condition at 0 } 

(ii) mill 
A.c. -- no subordinate solution of Lu = xu eXists} 

xu 

(iii) ", III 
S. - a subordinate solution of LU = xu exists which 

(iv) 

(v) 

-
satisfies the boundary condition at 0 } 

TYl 11/ :. {. X e. IR 
t.c. 

a subordinate solution of Lu = xu exists which 

satisfies the boundary condition at 0 but is not in L 1 l 0, 00) I 

1'n ", = 1.". e IR d. 
a subordinate solution of Lu = xu exists which 

satisfies the boundary condition at 0 and is in L~ [0 I 00) 1 

Proof: 

We need only prove (ii) and (iii) since (v) is well-known, (iii) and 

(v) imply (iv), and (iii) and (ii) imply (i). 
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Proof of (ii): 

This is immediate by Theorems 2.22 and 3.20. 

Proof of (iii): 

III 
To prove that m s. is a minimal support of )J-:,. we prove that 

m III 'V m I 
s. s. wnere - is the equivalence relation of Lemma 2.20, ana 

VVI I . 
IIIS.1S as in Theorem 2.17. 

Since scalar multiplies of u1 (r,x) are the only solutions of 

Lu = xu which satisfy the boundary condition (2.3.9) at r = 0, we see by 

Theorem 3.19 that a subordinate solution of Lu = xu exists which satisfies 

the boundary condition at ° if and only if m(z.) ~ eX) as y -V 0 . 

Let S denote {x E IR: m C z.) ~ 00, 1m m (z) -f+ 00 as ":J,J, 0 }. 

Clearly 'W\ /I, _ 'W'\ IUS 
I 'I s. - , I, s. , so to prove 

sufficient to show that )A ( 5) = K. ( .s ) = o. 

mill rn ' 
s.,-v S. it is 

Now K (S) = 0 by Theorem 2.12(i), and~ is absolutely con-

tinuous with respect to K on S by Lemma 2.1 and Proposition 2.14. Hence 

fACS)=O , so that m IIJ 'V m I 
s. ~. and (iii) is proved. 

The proof of the theorem is now complete. 

We survey the implications of these results in the following section. 

§4. Ramifications 

In the context of ordinary differential equations of the Sturm-

Liouville type, subordinate solutions may be regarded as a generalisation 

of square integrable solutions. Indeed, where L is regular at ° and in 

the limit point case at infinity, subordinate solutions bear precisely 

the same relation to the minimal supports of the singular spectral measure 

as do the square integrable solutions to the pure point measure, as has 

been shown in Theorem 3.21. 
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The invariance of minimal supports of the absolutely continuous 

measure and the contrasting orthogonality of minimal supports of the singular 

measure under a change of boundary condition at r = ° which was proved in 

Theorem 2.21 was not an immedi~tely obvious corollary to Theorem 2.17. 

However, the necessity of this behaviour is apparent at once from Theorem 

3.21; for clearly the presence or absence of a subordinate solution of 

Lu = xu at a given point x is independent of the boundary condition at r =0, 

whereas it is impossible for more than one distinct boundary condition of the 

type (2.3.9) to be satisfied by a subordinate solution at x. 

Since it is customary when considering possible energy levels of a 

system to use the spectrum rather than minimal supports of the spectral 

measure, we comment briefly on the relationship between the minimal supports 

of Theorem 3.21 and the relevant spectra. As we noted in Chapter II 52, 

the correlation between minimal supports and the relevant parts of the 

spectrum is not exact; it may even happen, as in the case of dense pure 

point spectrum, that every minimal support of the spectral measure differs 

from the spectrum by a set having positive Lebesgue measure. All our earlier 

observ~tion~ i~l respect of Theorem 2.17 may be applied, with modifications, 

to Theorem 3.21; thus it follows from Example 2.10, using ~ition 2.14 

and Theorem 3.14, that an operator H exists which has no singular spectrum 

on a subinterval (a,b) of IR , although an uncountable subset X of (a,b) exists 

such that for every x in X, Lu = xu has a subordinate solution satisfying 

the boundary condition at 0. Likewise, using Proosition 2.14 and Theorem 

3.19, we deduce from Example 2.11 that a real point x may exist at which there 

is no absolutely continuous spectrum of the Hamiltonian in a neighbourhood 

of x. 

The most striking finding of Theorem 3.21 is undoubtedly that relating 

to the support of the singular continuous measure fls: We have already 

commented on the importance of including singular continuous spectrum in 

any complete treatment of spectral theory of Schr6dinger operators, and 
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note that it is especially in those cases where singular cont~nuous or dense 

point spectrum occurs in conjunction with other types of spec~r~~ t~a~ ~he 

discrimination afforded by Theorem 3.21 may be most useful. It is wor~h 

noting that Theorem 3.21 also gives a new criterion for locating the absolutely 

continuous spectrum, viz. that ~ is concentrated on those real x for a.c. 

which no subordinate solution of Lu = xu exists. Where the spectrum is known 

to consist solely of absolutely continuous and isolated pure poin~ parts the 

absolutely continuous spectrum may be identified with the closure of the se~ 

of all real x for which no L2(OJOO) solution of Lu = xu exists. In such 

cases Theorem 3.21(ii) is unlikely to be of further assistance. However, 

where there is a possibility of other types of spectrum, the characterisation 

of Theorem 3.21(ii) enables the absolutely continuous spectrum to be distin-

guished from the other constituents of the essential spectrum, at leas~ in 

theory. 

Theorem 3.21 applies to all self-adjoint operators of the Sturm-Liouville 

type which are regular at 0 and limit point at infinity; however the decom-

position of the spectrum considered here is of particular relevance to 

Schrtldinger operators. 

To conclude, we have introduced the concept of subordinate solutions, 

and shown that supports of each part of the spectral measure may be character-

ised in terms of this concept where the differential operator 

L = _d2 +V(r) is regular at 0 and limit point at infinity. We shall see in 

dr
2 

the next chapter that the description of the spectrum in terms of subordinate 

solutions is possible under more general conditions, and that subordinate 

solutions are of fundamental importance in certain eigenfunc~ion expansions 

when the spectrum of H is simple and L is limit point at O. 
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CHAPTER IV 

SIMPLIFICATION OF THE WEYL-KOOAIRA THEOREM 

§1. The Weyl-Kodaira Theorem 

In this chapter we no longer suppose that L = _d2 +V(r) is regular at 

dr2 

r = 0 and in the limit point case at infinity, but instead suppose that 

V(r) is in L1 [a,oo) for each a ~ 0 and that the behaviour of V(r) in a 

neighbourhood of 0 is such that for some a ) 0, the spectrum of the 

Schr~dinger operator Ha arising from L acting on (O,a] is singular. Of 

course, these new conditions on V(r) imply that L is in the limit point 

case at ininity ([N] §23, Satz 3), and if L is regular at 0 the spectrum of 

Ha consists of isolated eigenvalues (rN] 624, Satz 5), so there is a wide 

class of potentials satisfying both our former and our present assumptions. 

However we can no longer assume that L is regular at 0; indeed, L may be 

in the limit point case at 0, or, even if L is limit circle at 0, 0 may be 

a singular endpoint ([HPJ Lemma 10.4.15). In fact, unless the spectrum of 

H consists entirely of isolated eigenvalues and their accumulation points, 
a 

L must be in the limit point case at 0 ([ill §19, Bemerkung 2). 

In general, therefore, the theory we have described and used in Chapters 

II and III no longer applies; however, if the interval (O,~) is decomposed 

into two parts (Ota] and [a,~), the earlier theory may be applied to each 

of the intervals (O,a] and [a,~) (the precise location of the point a in 

(O,oo) is immaterial) t and from this a general theory has been constructed 

which applies to the entire interval (O,oo). The principal architect of 

this generalisation was K.Kodaira who in 1949, at the invitation of H.Weyl, 

undertook the task of unifying and general ising previous related work by 

Weyl, Stone and Titchmarsh ([KO]!~]). We shall now state the Weyl-Kodaira 

Theorem 1n the particular form that w~ requir~, while noting that in its 

most general form it applies to arbitrary subintervals of R and to suitable 

differential operators of any order ([OS] Ch.XIII, Thm.13). 
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We choose a = 1 for simplicity, and first describe some notation. Le~ 

Y1(r,z) and Y2(r,z) be solutions of Lu = zu satisfying Y1(1,z) = y; (l,z) =1 

I 
and y (l,z) = Y2(1,z) = O. If L is in the limit point case at both ° and 

infinity let mo(z) and m~ (z) be defined by the requirements that, if 

Im 'Z'I- 0 } 

Y2(r,z) be in L
2

[I, OO ) respectively. If L is in the limit circle case at 0, 

and ° is a regular endpoint, then m (z) is defined by the condition ~~at the 
o 

solution y(r,z) = Y1(r,z) + mo(z) Y2(r,z) satisfies the boundary condition 

cos CA 'j (0 J z) + sin 0( 'j 1(0 I z) = 0 (4.1.1) 

for some <X in (0) 21f) . If L is limit circle at 0, but ° is a singular 

endpoint, then if z in d: \. IR­
o 

is fixed, m (z) is defined by the con­
o 

dition that the solution y(r,z) above satisfy 

(4.1.2) 

where is some point on the limit circle ([CL], Ch.9, Thm.4.1). 

Let 

relations 

{M" (2.): i,J' =, ,4 } 
IJ 

be defined for 

Mil (z) ::: (mo(z.) - M oc (7.)) 
-I 

Im z. '=I: 0 

M1'l.(z.) -=- M (,):::.L (m (4) + mQC(7.))( rn ol'Z,) 
2,1 4 0 

4.1 Weyl-Kodaira Theorem: 

by the 

(4.1.3) 

Let V( r) be integrable on every compact subin~erval of (0. 00) I 

and let L = .... Vc,-) be limit point a1: both ° and 00 • Let H be 

the self-adjoint operator arising from L. Then there exists a positive 

2 x 2 Hermitian matrix with elements Pij which satisfy 

(J.l.J) 
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for i,j = 1,2, such that: if f(r) is in L'l, (0,00) 

( T f )', (~) = l. i . m. J W f ( r") '" . (r" )..) d r-

, the limi"': 

a---ltO JI' 
t.U ~ 00 cr 

to .. 
where L 2. IJ ( - 00 I 00 ) converg2s in L ,oij ) 

2. (-dJ,oO , is the Hi:ber-c 

space of vectors G ()..) = (g I <>. ) 192, (A)) with inner product 

(4.1.5) 

Moreover, the mapping T defines an isometric Hilbert space isomorphism 

from L 'l. (0 , co) on to 

fer) = l.i.m·S
w 

L u\{r",~)(Tf)J'(A) dp"(~) 
w ~ 00 .. -I 2 I IJ 

-(,oJ I,J - • 

and if a is a Borel measurable function on R such that e ( H) f (r- ) 13 

in Ll(O,co) then 

(T 9CH)f)., (~) = e()")(Tf)',(~) 

for i = 1,2. 

For ease of reference, we present the results of this theorem in a 

slightly modified form. Let de'lo-:e (T f)· (>..) 
I 

fjr i = 1,2. 

Then if f(r) is in L2,{O' co) I 

(4.1.6) 

and 

where 

rpi()...) 

c..) 

l.i.m. J ,,;Cr",)..)f(r-)dr 
- cr ---'t 0 a- J 

(-1.1.7) 

to ~oo 

for i = 1,2. The convergence of the integral (...1.1.6) is in L2,(O,oo). 

whereas the convergence in (4.1.7) is in L 2 f ij ( - <X) I 00 ) 
; that is 

=0 (.~. ' .8) 
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If e is a Borel measurable function on IR such that (e (H) f)( r) is 

then 

(-1.1.9) 

where the integral converges 1'n L (0 00) 2. J • In particular, if 

-00 < V <-~ < 00 I 

(4.1.10 ) 

For further details, see [KO], [DS] Ch.XIII, §5. We remark tha~ the Weyl-

Kodaira Theorem is also valid where L is in the limit circle case at 0 or 

00 or both; in these cases the spectral matrix is also unique up to an 

additive constant once suitable boundary conditions are applied at one or 

both endpoints, as appropriate. 

It seems not unlikely that, where L is regular at 0, the relationships 

of Theorem 4.1 are but an alternative expression of (2.4.1) to (2.4.7). 

Before considering more general cases, we tested this conjecture for the 

case V(r) = 0; this bciviai potential satisfies the requirements that V(r) 

be in L I II J (0) and that the spectrum of the operator arising from 

L = _d2 on (0,1] be singular (it is, of course, discrete). Moreover, 

dr
2 

m ( z) an d ,c ( >. ) as defined in Chapter II, and m (z), m (z), tD .. (~):iJj='I2.~ o QO f IJ 

may, without undue difficulty, be calculated exactly. It was found that 

the Weyl-Kodaira theory described above did indeed reduce to the simpler 

theory of Chapter II, §4, for all boundary conditions d at r = 0 (see 

(2.3.9» . 

In this chapter we shall show that there are many other situations 

where the Weyl-Kodaira expansion reduces to a simpler form; and th3t, 

where L is regular at 0, this sL~DUlcatian reduces to the expansion (2.4.4), 

at least for those f(r) in the absolutely continuous subspace of H. Thus 

the process of simplifying Theorem 4.1 may also be regarded as one of ex-

tending the theory we described in Chapter II. 
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Let us first es~ablish some proper~ies of the spectral ma~rix ( ) PiJ' . 

§2. Properties of the spectral matrix 

The elements of the spec~ral matrix are 

functions of bounded variation on every finite A -interval, continuous 

on the right, and unique up to an addit:ve constan~ ([CL] Ch.9, Thm.5.1). 

For convenience we shall suppose that r'l .. (0) == 0 
"J 

for each i,j = 1,2. 

Moreover, the matrix itself is positive semi-definite ([KOj Thm.1.13), 

and t:1.e elements p (A) ( '\. ) 
U ) P1.1 ,.. 

are non-decreasing func~:ons of ~ 

as may be ascertained by inspection of (4.:.4) in conjunction with the 

formulae 

mool:. (rn:x + fT\~) - mOl:,( rnoo~ + m;~) 

(mOA. - moOR.)-:\. + (Mo:r - mQOJ:)2. 

(4.2.1) 

(4.2.2) 

(4.2.3) 

~hich are derived from (4.1.3). Note that, for conciseness, we have 

denoted 

mo:t moo:t. mOR and tT\ooR respectively, and that}for 
) • 

1m z.) 0 mOl:~ 0 , moor. ~ 0 ( [CL] , Ch.9, § 5) . 

The spectrum of an operator H whose spectral matrix is (p .. ) 
IJ 

is 

the set of points of increase of (p .. ) ~~~t is, it is the comple-
IJ 

ment of the set of points x for which f' .' (.>.. ) 
I) 

is constan~ in some neigh-

bourhood of x for each i,j = 1,2 ( [OS], Ch.XIII §5, Cor.15). 

The spectral matrix (0.' ) rl) 
generates a positive matrix measure 

(see [os] Ch.XIII, §5, Oef.6), whose ele~ents 

ar p o~tain~d 0y extending the measures * { u. .. 
r-IJ 

{ .JA ij : I I j -= I I 1 J 
, ... :~ich 

are defined on the algebra of half open subintervals (a,b] a~ R by 
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fA ij * (Q I b) = P ij (b) - Pi} (a ) 

(see (2.2.2)). I~ should be noted that ~I~ and)A1I are signed measures 

(see [H] Ch.6, §28); tha-c this is so follows from the fact that PI1 (A) 

and Pl.l (~) are functions of bounded variation, and hence each is ~~e 

sum of an increasing and a decreasing function which are unique up to 

additive constants. 

The inverse of (4.1.4) is 

(4.2.4) 

for each i,j = 1,2 ([KO],Thm. 1.13). 

Now m (z) and m (z) are analytic in a:. " IR and so each of o GO 

{M ij (z): i,j = 1)2. ~ is meromorphic in a: 'IR by (4.1.3). More-

over, by (4.2.1) and (4.2.3), M11 (z) and M
22

(z) have positive imaginary 

part in the upper half-plane, and hence behave restrictedly at all points 

of IR. Therefore by (C I ), Chapter II § 3, MIl (z) and M22 (z) have a fini te 

non-tangential limit Lebesgue almost everywhere on ~ , and, in particular, 

a finite normal limit Lebesgue almost everywhere on IR • 

are therefore related to M
I1

(z) and M22 (z) 

respecti vely and to fAu and}Au respectively in precisely the same way that 

the spectral function p(A) was related to the function m(z) and to the 

spectral measure ~ respectively in Chapter II. Hence all the theory 

developed in Chapter II from the basic relationships and properties of f(~)J 

m{ z) and)A applies equally to Pjj (A) I M jj ( z.) and u.... for j = 1,2. 
"oJ) 

We now derive a few simple properties which reflect the positive semi-

definite character of the spectral matrix. 

4.2 Lemma: For all z in C" \R J 

an d, i:l~ .fA J V E. ~ J 
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Proof: 

Us ing (4.2.1), (4.2.2) and (4.2.3), we 

( I rn M 1'1 ('Z.)) '1 - I m M II ( 'Z.) 1m M '1 '1 (z) 

ob"tain 

Since mOl: and moo~ have opposite signs in ~"IR ( [CL] Ch. 9, § 5) 

and M12 (z) = M21 (z), the first part of the lemma is proved. The second 

part of the lemma follows from the firs"t by the Cauchy-Schwarz inequality; 

the proof is now complete. 

4.3 Lemma: Every measurable subset of IR. which has }All - or fA l1.- measure 

zero has u - and La - me33ure zero. 
"'-12 r'2' 

Proof: 

Since W2 need only prove the resul t for }J 14 • 

Let S be a measurable subset of IR • 

Now }-' II and .f41:z. are posi ti ve measures in the usual sense whereas 

JUI1 is a signed measure or charge. Thus 

.... 
"MIl. (5) - .fA 17. (5) - .f't--;' (5) 

where }.A ~ and)A ;1 are the upper and lower variations of jA 12. 

respecti vely ([H] .§ 28) • Moreover, each of {f' iJ ().) : j J j = I J 2.} is a 

function of bounded variation on each finite A-interval, so the 

-to 
)oJ- 11- J .fA 2'; )? I;: J.? 14-

measures of bounded subsets of ~ are finite. It 

follows that .fAil) JAl.'ll ?,"';. and are regular measure, ( [RJ ' 

Thm.2.18). Hence 

:t 
~ I'l. (5) = 

+ 
inf {~I;'(U) U is open and 5 c. U £ IR } ( .j .2.5) 

and for j = 1,2, 

?jj (5) inf {u··lU) : 
"JJ 

u is open and (.1.2.6) 

Let US now suppose that S is also a bounded subset of IR. Then there 

exists a bounded open cover U of S and an :', in JR-t- such clat }J1I(U)'.J"Al.l(U),M. 
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Let e. ') 0 be given. Then, from (4.2.5) and (4.2.6), t!1ere exists 

a bounded open cover U of S whic~ is contained in U, and for which 
s 

and, for j = 1,2, 

+ !. 
J..J. - (.5) + -

r 12 ~ 

jA" (Us) ~ Ll •. (5) + JJ ~-JJ 

'2 
Eo 

9M 

Evidently, also, 

for j = 1,2. 

Since U is open, we may write 
s 

u = U· :S, L 

open subinterval of IR such that Us' () U . = ¢ 
) I 5, J 

(4.2.7) 

(4.2.8) 

(.:1.2.9) 

where each U . 
S,l 

if i;(: j 

is an 

There 

is no loss of generality if we suppose the endpoints of each U . to be 
S,l 

points of continuity of P .. (A ) 
IJ 

for each i,j = 1,2, since the points 

of discontinuity are, at most, countably infinite. We have from (4.1.4) 

and Lemma 4.2 

, 
::: L (jAil (US)i) J-!1.'l. (US,i)) i 

I I 

, (~JAn (Us,i ))1 (f fAll (US,i»)"i 
I 

I .1. 

-= ()-4u (Us)) 'i (/"4'l(U 5 ))1. 

(.1.2.1') 
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If .f" II ( 5) :: 0 , then by (4.2.8); it there-

fore follows from (4.2.10),since by (4.2.9), that 

I)A 1'2 (US) I c:: !. Consequently by (4.2.7), , 
\)-'1'1.. (5)1 ~ l,}-ll'1 (S) - jAl'2.(U,s)J "'" 1)-1,'2. tUsH 

~ l..,u,~ (5) - f',; (Us)\ + l..,ul~ (5) -?;-;. (Us)l + !. , 
The arbitrariness of e. implies that )A 12. ( 5) = O. 

Similarly we may show that if )A2.2. (5) = 0 then )-'12,. (5) :::: O. 

The extension to the case where S is an unbounded subset of IR is 

immediate, since S may be decomposed into a countable union of disjoint 

bounded sets. 

The proof of the lemma is now complete. 

The application of Lemmas 4.2 and 4.3 is quite general; we shall now 

prove some results which are dependent on the potential V(r) satisfying 

specific conditions at ° and 00 • 

§3. The nature of the spectrum 

We now suppose that V(r) is in L 1 ( t I co ) and is integrable on 

compact subsets of (O} CX)) , and that the spectrum of HI is singular. 

Note that these conditions on V(r) are equivalent to the condition that 

V(r) be in L, (aloo) for each a ) 0. Also, the spectrum of H1 is 

singular if and only if the same is true for each H , where H is a self a a 

adjoint operator arising from L in L2(0,aJ with boundary conditions y(a,~) = 

0, y'(a,~) = 1. To see this in the case where L is limit point at 0, 

note that, adapting Theorem 3.21 to the interval (O,a], Ha has singular spec­

trum if and only if K({A: no solution of Lu =AU on (O,aJ exists which is 

subordinate at O}) = 0. 

The truth of our assertion is now immediate since the existence or otherwise 

of a solution of Lu = A u on (0, aJ which is subordinate at ° is independent 
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of the precise location of the point a. If L is limi~ circle at 0, every 

self-adjoint extension on (O,a] has discrete spectrum, irrespec~ive of the 

position of a ([CL] Ch.9, Thm.4.1). 

Le~ us denote the self-adjoint operators arising from L in (0 , (0 ) 

and II I (0) by Hand H GO respectively. Note that L is regular a~ the 

decomposition point 1, and all functions f(r) in the domains of HI and H~ 

sa~isfy the condition f(l) = O. If L is limit cjr~le at 0, a boundary 

condi~ion is also needed at r = 0 to render HI and H self-adjoint (as (4.1.1) 

or (4.1.2)), whereas if L is limi~ point at 0, this is not required. 

To investigate the spectrum of H, we first need some information 

about m~(z). The given conditions ensure that the spectrum H~is absolutely 

continuous on (0 J (0) , and consists of isolated eigenvalues on (- 00 10) 

([HI] Thm. 10.3.7). The point 0 can only be an eigenvalue of H if there 

is an L 2 ( , J 00) 

in L I [ I, co) 

solution of Lu = O. There are many potentials V(r) 

for which there is no such solution (see eg{WE1],Thm.lO.30, 

[LSJ Ch.IV, proof of Lemma 3.2). However, some quite simple potentials in 

do have a solution of Lu = 0 in L 2 (J I 00) for example, L'['/ OO ) 

if V(r) = 2 
2 

r 

1 is a solution of 
r 

2 -d u + V(r)u = 0. We shall therefore 

dr
2 

take account of this possibility in what follows. 

Now m (z) may be analytically continued across the axis at all poin~s 
GO 

of the resolvent set ([CE], S5, Thm.(i)). Hence, defining m (x) to be 
GO 

whenever the latter exists finitely and is real, m (z) is 
ClIO 

bounded on [y 1)-4] ><. l 0 I Y J for each compact interval (v,jU) 

of IR which is contained in the resolven~ set and each Y > 0; this 

property will be used in a number of the following proofs. 

On (0 ,ao) ,an explici t expression for m; ( x ) may be obtained; 

for full details of the method, consul~ [T2] , Chapter V, 94.2. We shall 

summarise the relevant results. 

Applying the "var:ation of constants" formula ([CL:, Ch.3, 7i1m.6.-l) 

to the Schr~dinger equation for r > 1, 
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for each i = 1,2, where 

L, (z) - .~ S 00 CO~ ( .rz: ( s - I )) V ( s) '1 (5 I z.) d s 
...,Z J J 

'Ll. ( z.) I =- I JOO + - c.os(..J~(S-I'))V(s) 'V (5 z) ds rz I J2. I 

0"', (z.) 

(4.3.2) 

After further refinements to the estimates (4.3.1) for y (r,z) and 
1 

Y2(r,z) in the case x,y > 0, the formula 

(cf. ([cLl Ch.9, §2, (2.13)) yields 

1:., ex) - i 0""1 ( )(.) 

1: 1 ( x) - i CTl. ( x) 

m (2.) =-li m 
00 R~oo 

(4.3.3) 

for each x in (0 / 00 ). For these x Im m; (x):= ""(1.(><) cr,(x) - '1:, (x) 0-2 (x) 
2( 1. 1:1 x)? Oi (x) 

Since W(Yl(r,z)'Y2(r,z)) = 1 for all r> 1, it follows from (4.3.1) that 

..rz. (CT, ('Z.) "'2.( z.) - cr~ (-z) 1:", (z. » = I 

for each z in C • This implies that ~ (x) and '1:'1 (x) cannot vanish 

Simultaneously, and that 

(4.3.4) 

for each x in (OICO). Since a;.(x) and ~z.()() are continuous, it follows 

tha t I t"t'\ m + (x ) 
ac 

subinterval of (0 I (0) 

following proofs. 

is bounded above and away from =ero on each compact 

we shall use this property in several of the 

It should be noted that the differences in sign between (4.3.3),(4.3.4) 

and the analogous results in (T2J, loc.cit., are due to the difference in 

the boundary conditions. 

We now prove a proposition that gives some insl~~t ln~~ the nature and 
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location of the negative spectrum of H. The se~ E of eigenvalues of H 

which Occurs in this and later results cannot be ignored (al~hough in 

particular cases it may be empty), because the elemen~s of E can be eigen-

values of H and hence may have positive spec~ral measure. However, E will 

not occur explicitly in the simplified expansion which is derived in 

Theorem 4.9. 

4.4. Proposition: If VCr) is in Llel,oo) and the spectrum of H is 
1 

singular then 

(i) the spectrum of H is singular on (- 00 I 0 J . 

(ii) if E is the set of eigenvalues of H , and if x £ E, then x is an 
GO 

eigenvalue of H if and only if x is also an eigenvalue of H . 
1 

(iii) if E is as in (ii), then for i,j = 1,2, )A" ({x ~ (-«lJD]" E:it i, 
IJ 

not the case that m (x), m (x) exist and are equal }) = OJ 
o 00 

where mo(x), moo(x) are defined to be m:(x)Jm!(~) respectively 

whenever the limits exist finitely and are real. 

Proof: 

Proof of (i): 

Since the spectra of HI and HOC) are singular on ( - ao ,0] it 

follows from Corollary 2.7 and Lemma 2.13, applied to mo(z) and ~o ' and 

to moo(z) and JAoo ' that 1m m!(x) and Im m; (x) are zero 

Lebesgue almost everywhere on (-00,0) Moreover, m 0 ( 1.) 1= mao ('Z. ) 

on «: , IR so the set has Lebesgue 

measure zero by Theorem 2.12(iii). Hence the denominators of (J.2.1)-(4.2.3) 

converge to non-zero limi ts as 'j + 0 Lebesgue almost everywhere on JR 

so applying Theorem 2.12(i) to mo(z) and moo(z) we conclude that I,."Mij (-z.)-.O 

as "j "" 0 for Lebesgue almost all x on (- QO I OJ , for each i, j = 1,2. 

It now follows from Lemma 2.13 and Corollary 2.7 applied to ~jj(z) and Pjj 

for j = 1,2, and from Lemma 4.3, that the spectru~ of H is singu13r on (-oo,oJ, 
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Proof of (i i) : 

We shall use the relationship 

Li rn i 'j m ( X + i 'j ) 
'j oJ, 0 

(4.3.5) 

which holds quite generally for a function m(z) which is analytic with 

positive imaginary part in the upper half-plane and the measure ~ related 

to m(z) by (2.2.1) and (2.3.3). ([EK] Ch.2, §3). 

x is therefore an eigenvalue of H if and only if 
00 

li m' ( .) > 0 
'jJtO - l'j moo x + l'j 

and x is an eigenvalue of HI if and only if 

tim 
'j.J, 0 

(4.3.6) 

(4.3.7) 

since m (z) has negative imaginary part in the upper half plane. Since x 
o 

is an eigenvalue of H if and only if at least one of fAu (x) , )oJ 1.2. ()( ) 

is non-zero ([DS] Ch.XIII S5, p.1360), x is an eigenvalue of H if and only 

if at least one of the limits 

Li m i'j M (X -+- i \I ) 
'j~O II .J 

_lim M ( .) 
I 'j 12. X + I " 

':J~O J 

is strictly positive. From (4.1.3) 

tim 
'j~O 

:::; - 1'1 

It is clear that this limit cannot be strictly posi tive unless m 0 - moo 

converges to zero as 'j '" 0 ; that is, since mor a:id mQOX ha-_'e opposite 

signs in the upper half plane, unless mor and mao~ both converge to zero 

as 'j + 0 . However, if x is an eigenvalue of H then Im m + hc.)= IJ:) by co 00 

Proposi tions 2.6 and 2.14 and hence )A 1& ({ X }) = 0 

Also from (4.1.3) 

li m i" M ( X + i'j) -
'j.J, 0 .J 1.:L 

lim 
'j~ 0 

-i1m(X).i'jmo 

i'j mo - i'J moo 

for all x in E. 

It is evident from (4.3.6) and (4.3.7) that this limit can only be strictly 

positive if x is both an eigenvalue of Ho and an eigenvalue of H~. 
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~e con~lude that if x is an eigenvalue of H , then f IX) .fA" < X})=O 
IJ 

for i,j = 1,2 unless x is also an eigenvalue of H
1

. In this case 

JA II ( { )( 1-) = ;.' Il. ({ )( l) =)-t 'l.1 ( { xl) = 0 ) J-ll. '1 ( £ xl) ~ 0 . 

Proof of (iii): 

Since the spectrum of H is singular on by (i), 

does n01: exist infini tel:; }) = 0 

for j = 1,2, by Propositions 2.6 and 2.14 applied to }All and 

Let I be a compact subinterval of IR which is con1:ained in the open 

interval between two consecutive eigenvalues of H~. As we noted earlier, 

moo is bounded in any rectangular region of the form I x [0, yJ, and 

Moo+(X) exists finitely and is real at all x in I. 11: follows there-

fore from (4.2.1) and (4.2.3) that for j = 1,2, Im M,' +(x) 
JJ 

cannot exist 

infinitely on I unless ~o+(x) e:dsts [ini tely and equals m 00+ ()(.) . 

Since this is true for all such intervals I, and 1m m +()C.)~o) Imm +()C.)~ OJ 
OC) 0 

the assertion is proved. 

The proof of the proposition is now complete. 

We shall now show that the spectrum of H is absolutely con1:inuous 

on (O, (0) , 

4.5 Proposition: With the hypothesis of Proposi1:ion 4.4, H has purely 

absolutely continuous spectrum on (O, 00) , 

Proof: 

Let I be a compact subinterval of (0,00). 

From (4.3.4), Iro m+(x) exis1:s fini1:ely at all points of I, and 
00 

by our earlier remarks, there exist k, K in IRT such that 0 <. k. <. K <. cD 

and 2k < Im m +()(,) < ~ for all x in I. 
00 2 

If we identify I""" rY) 00 (~) 

wi th the limi t Im t'Y'loo+ (x) , the cont:.nuity of moo{z) in :h~ 

upper half plane implies that Y ? 0 exists such that 
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k < Im moo('2..) < K 

for all z in I x [0 yi , J. 

Since for Im 2. .., 0 

(4.2.1) 

I,." M \I (z.) , ~ 

moo 4 - m 01. mooJ: 

for all z in the upper half plane. Hence by (4.3.8), 

In') M" (z.) < ..L 
k 

for all z in I x [O,Y], and 

li m au p 
)'~O 

1m MII(z) < 
, 
k 

(4.3.8) 

we have from 

for all x in I. Hence, applying the Lebesgue Dominated Convergence Theorem 

to (4.1.4) with i = j = 1, and using the fact that Im TYlo+(x.):: 0 

for Lebesgue almost all x in I, we have 

f,. (r) - P II ( v) = ..!. j}J. lim Im Mil ( X + i 'J) dx 
'TT 1.1 'j.Ji 0 

= _, Sf" 1m N"I co "'()(') dx 
1\ V Im o ,..(><.)-m

oo
-t-()C.)I2. (4.3.')) 

for all pOints)J-) y of I for which .J-A < V. Since this holds for all such 

intervals I, we conclude that ,.oil (>.. ) is an absolutely continuous 

function on compact subintervals of ( 0 , 00 ) 

for Lebesgue almost all>" in ( 0 I 00 ) 

Likewise, using m ox ~ 0 J m 00 I. :, 0 

from (4.2.3) 

If Im z ') 0 , the first two terms on the 

bounded above by rnQOI. ' and the last term by 

inequality 

2 
'j 

+ (~)' 

and that 

(4.3.10) 

([HS] Thm.18.17). 

for Im z. ') 0 we have 

right hand 
t 

mooR 

m(X)I 

z. 
mo~ mooR 

(m GOr - m
O

'I)1. 

side above are 

Using the 

(~.3.11) 



117 

with c. = mOOl: ' we see that the third t;e['~ is 

bounded above by From these bounds and (4 3 3) (4 3 4) . •• , •• It: 

r"n ooI 

is evident that: M e IRT exis't:s such that: I m M '27. (7.) < M for all z in 

I x (0, YJ and lim sup Im Ml.J. (z.) <. M 
'i~O 

for all x in I. As in t~e case 

of we conclude that is an absolutely continuous 

function on and that 

2 
(moi-(~)) Im moo+, (>..) 

1r 1 m o"+ (}..) - m~ (.~ )\2. (4.3.12) 

for Lebesgue almost all ~ in (0,00) Note that we have used "the 

fact that m 0+ (~) exists Lebesgue almost everywhere on JR (see Theorem 

2.12(i). 

It follows from Lemma 4.3 that ~ (~ ) 
'-11. 

and ~ (~) are also 
'2.1 

absolutely continuous functions of)" on compact subintervals of (0 I 00) j 

since the same is true of .0 ().. ~ ,- II and f (~) the spectrum of H is 
l'2. 

absolutely continuous on (0 I 00 ) • 

The proof of the proposition is now complete. 

We are now in a position to establish the main results of this chapter. 

§4. The simplified expansion 

We shall prove that if V(r) is in L 1[.1 I fX) ) and the spectrum of 

H1 is singular, then for each f in L z. ( 0 j 00) an eigenfunction expansion 

exists which is formally similar to (2.4.4). In the case where L is 

regular at 0, we shall relate our results to the theory we described in 

Chapter II, § 04. 

We need some preliminary lemmas: 

4.6 Lemma: Let VCr) ~c in L, (1,00) and the spectrum of Hl be singul,lr. 

Then if [)) I ,fA ] is a compact subinterval of IR which is in the 
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resolven"t set of Hoo' and if }).Lt. are points of con-cinui+-y f () 'r- .... 0 p .. A 
IJ 

each i, j = 1,2 

Proof: 

= lim 
':J,J, 0 

UM 
':J.Ji 0 

From (4.1.4) and (4.2.2), 

lim -
'j ~ 0 

+ lim 
'j oJ, 0 

2- J fA tv\OR ( mooI. - m or ) 

1r V (mo~ - \"'1"\00 R)4 ~ (m OJ:. - mooI.):l 

~J}A ""'Ol: (mOR. - fY'lCCR) 

T v ( m oR - mOOR.) 7.. ... { rT"\ ox - mOOl:)l. 

(4.4.1) 

f·~r 

dx 

dx 

Now the integrand in the last term of (4.4.1) converges to zero Lebesgue 

almost everywhere on [)J I? 1 (cf. proof of Proposition 4.4(i)), and, 

using mOJ:' 0 I mOO1. ~ 0 

2 2 

for Tm z. .., 0 and the inequali"ty 

a + b ~ 12ab I, 

I m or. ( mOR - mOOR) I 1. 
( ~ 2. , 2 

m OR -mOOR.) + (N\oJ:-moox) (4.4.2) 

if Y >0. Hence by the Lebesgue Dominated Convergence Theorem the final 

term in (4.4.1) is zero. The first part of the lemma now follows from 

From (4.2.3), 

I M () mcO.I. M 03: ( mco~ - MOt.) 
n, 22 z = - ------~--~~--~=---~~---

(mOR. - moo~ ) ~ + (mor. - Moor. y~ 

"" 01: MoOR. ("' OR - n1 00 ~) m OR ( (T'\ OR m cor - mor. "'00 R. ) + + 
( rr'\OR - mool't 1'4 + C "'OJ: - ""00 x )'a. (""Olt - m ooR )2. +- (mo~ - fY'OOI.)1-

The first term on the right hand side is positive and bounded above by 

m if" ) 0, and the second term is absolute ly bounded by ± I m«:l R,I by 
001 ./ 

(4 •. 1.2); moreover, as y~O each of these terms converges point~ise to zero 

Lebesgue almos t everywhere on [v I fA ] (c f. proof 0 f Propos i t ion .1 •. l{ i ) } . 

Since m (z) may be analytically continued across the real ax:s at all ~oints 
GO 
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of lv)~1 , the second part of the lemma now follows by the Lebesgue 

Dominated Convergence Theorem and (4.2.2). 

The proof of the lemma is now complete. 

4.7 Lemma: With the hypothesis and notation of Lemma 4.6, 

l . I j# L Sf" 1m - Rem (z)Im M),('Z.)dx = im ~ Re.m lz)ImM .(z)dx 
'j ~ 0 1r ~ 0 J j ~ 0 if )) OQ lJ 

for j = 1,2. 

Proof: 

bounded by ~ and converges to zero Lebesgue almost everywhere on [Vl~] 

(cf. proof of Proposition 4.4(i)). Hence, by the Lebesgue Dominated Con-

vergence Theorem, 

The result now follows for j = 1, since 

exists by Lemma 4.6. By (4.2.2), 

Since ~Jz)may be analytically continued across the axis at all points of 

lYI~] , the result follows for j = 2 by the Lebesgue Dominated Conver~ence 

Theorem and Lemma 4.6. 

The lemma is now proved. 

4.8 Lemma: Let V(r) be in L.(Il oo) and suppose that t:1e spectrum of HI is 

singular. Then if E is the set of e i g..:nval1'ed of H , 

1-

(i) dpl'1(~) = dPl.l(}..) = mo().)dplI (")and dP~'l.(A) ~ (mo(A)) dp'I(}..) 
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}-' 1\ -almost everywhere on IR, E 

limit exists finitely and is real. 

for all ~ in E. 

Proof: 

Proof of (i): 

Let us first consider>. in IR +. 

From (4.3.10) and (4.3.12), d p 'l.'4 (A) = (Mo(.>',))'l. dp II ()..) for 

Lebesgue almost all ~ in (O,ao) ; the absolute continuity of each of the 

measures pu ensures that this is also true for almost all ~ ~it~ respect 

to .l.l.' , for i, j = 1,2. 
/"IJ 

Using m OJ: ~ 0 ) m
OOI 

~ 0 for Im z. ) 0 

(4.2.2) 

moo~1 mo~1 
+ 

, we have from 

mo~ I mC:01ll1 

(mOI. - ""'CO! t 
I moo~ \ 

moo:t 

1Moo\ 
By (4.3.11) the first term on the right hand side is bounded by ( ) 1,'1 

rYlco.I 

hence, as in Proposition 4.5 we may use the Lebesgue Dominated Convergence 

Theorem on compact subinterals of (0 I 00) to obtain 

(4.4.3) 

for Lebesgue almos t all ~ in (0 I 00 ) This, together with (4.3.10) 

yields 

for almost all)", wi th respect to each of the measures fA· . 
I J 

i,j = 1,2. 

Let us now consider A in IR - • 

Let )), t" be as in the hypothesis of Ler:l;na 4.6. Since m OCT ( X. ) 

exists and is real at all points x in (V/fA] , we shall denote rY\GC~{x..) 

by moo (~) for all x in this interval. We first S~2· ... t:ut 
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(4.4.4) 

For conciseness, let g( z) denote I- M (2.) , , , 1\ (see (4.2.1)). Fro~ 

Lemmas 4.6 and 4.7, 

(4.4.5) 

We prove that (4.4.4) implies (4.4.3). 

Let £, .... 0 be given, and M - u (l,' '-4.1) r - /_'11 v)/. • 

Our choice of v)~ implies that mc(z) is uniformly continuous on t~e 

compac t set [ )) ) jJ.] )( (0 I K ] for each K ') 0 . 

'( K > 0 such that if '1 <. Y K 

\ n'\OOR(Z) - moo(x) I <.. 
e 
1M 

Hence there exists 

(4.4.6) 

for all x in Lv) fA ] Moreover, there exists a bounded step function 

p 

- I.. oC.·X. on , where X. is the characteristic function 
• I' 
I = I 

of an interval S., such that 
1 

J F( x.) - moo(x) I < E -7M 

I 

(4.4.7) 

for all x in [)} ) fA] . There is no loss of generality if we suppose 

that the endpoints of each S. are points of continuity of p .. (A) for 
1 IJ 

each i,j = 1,2. (4.4.6) and (4.4.7) together imply that if 'j <. '(K 

I F(x.) - m
otlA 

(z) I < 2£ -
7M 

for all x in [}J,jA J. 

Let Q = 0(. 
I 

By (4.1.4), there exists Y L. ') 0 

\ ~ J~ <3(z.) dx 
IT y 

such that if '1 <: '(L. 

and for each i = 1, ... P, there exists Yi such that 

(4.4.8) 
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(.:.1.Ll.I0) 

if Y 'j < 'i . r~oreover, by (4.4.5), there exists '( N "> 0 3:";'C~ t:-:at 

(4.4.1l) 

Hence if Y < min i '( K I Y L. ,Y N 1 u t Y i : i: I, ... p) we have by (4.4.7)­

(4.4.11) 

IS: df''l.(A) - S: moo()..') dplI (}.) \ 

~ IJ}oA d,ol'l.()..) - ..!.- r".u mGCR(z~ g(-z.)d)(1 
)J r 1r Jv 

£ 

7 

z€ 
1 

2£ 
~ 

1 

3e 
I 

"3E 
7 

3E -1 

3E. -7 

< E. 

+ S: I F ( A) - rn 00 ( ~ ) \ d f II ()...) 

p 

- i~ I cI; S Si c1p " () .. ) I + J 2... 1).1 rn 00 R (z.) :3 ( z.) d x 
1T" )I 

p 

-' ~ lX' J g(z.) dx I 
"If i ~I I Si 

.... I ~ J)4 M ooR lz.),9l4)dx 
).I 

+ .t I ol i I I ~ S . 3l z) d)(. - J s. df'11 ()...) I 
1::.1 11 51 I 

+ , !. Sf4 m (z) a(z) dx - 2.. SfA Flx) 3{Z.) dx \ 
11" v OCR..J 11'" v 

+ 1- JJA I m (7.) - F ( x ) I 9 (z.) d )(. 
11" y OCR 

The arbitrariness of £ impl~es 

l~ df' (A) ::a Jf4 m ~ (A) d,cll (A) 
v I'l. V 

and hence, from Proposition 4.4(iii), 
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where the real limit mo( A) = moT(A) exists J-'" -almost everywhere. 

It may be proved in a similar way that 

(4.4.13) 

However, in this case we may not assume that the analogue of g(z), viz. 

Im M.'4 ('2.) , is posi ti ve nor that ,.0''4 ( ~ ) is increasing. To overcome 

the first difficulty we use the second inequality in Lemma 4.2, and to 

overcome the second difficulty we note that ~,~(~) , being a function 

of bounded variation on finite ~ -intervals, may be expressed as the 

difference of two increasing functions. 

Since each of the measures fA" , i,j = 1,2 is regular, (4.4.12) and 
IJ 

(4.4.13) also hold for all half-open intervals (~,)4] which consist 

entirely of points of the resolvent set, irrespective of whether V and)4 

are points of continuity of the measures )4~ . 

the Hahn Extension Theorem (2.2.2) that 

It therefore follows from 

for arbitrary measurable real subsets I of the resolvent set. Hence 

)J. II -almost everywhere on R - , e. 

..... -almost everywhere on IR - ,E . r-u 

It follows, similarly,that 

It remains to consider the point ° if 0 • E. In this case either 

a) 0 is an eigenvalue of H, or 

b) ° is not an eigenvalue of H. 

In case a) there exists an Ll, [I J 00) solution of Lu = 0 on (I, 00 ) 

which does not satisfy the boundary condition u(l,O) = O. Hence the result 

of Theorem 3.19, applied to m~(z), implies that m.(y) converges to a finite 
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real limi t m~/ 0) as y ..\, o. r,10reover, since 0 can only be an ei 6envalue of 

H if at least one of Ll .. (SOl.) .... 0 [ 1 ,. IJ l J r ,i ,j = 1,2 (DS Ch. XIII § 5, ;J .1.36:) , 

mo-t-(O) exists finitely and is real, and me(O) = moo(O) by Proposition 

4.4(iii). 

Therefore, applying the relationship (4.3.5) to ).l1l(\O}), )-414(10)), 

+ + 
i"1'l- (101),)A2.~ (~O))/we obtain from (4.1.3) 

.Mil (1.01) - l; m 
';1410 

-i';l 

JA''2.(101) 

).-\1.'1.(\0)) 

::. .u (to}) ::: lim 
.r-21 'j.J,O 

= mo (0) }-til (10)) 

-i"j (""0('1)+ m~('1)) 

2.(m o ("j) - m~(~)) 

= lim 
'j~O 

- i'j """ o( 'j) Moo ('j ) 

(m o ('1) - moo{~)) 

2. 
~ (m e ( 0)) .fA 1\ ( ~ 01 ) 

In case b),J""ij (fO}): 0 for each i,j = 1,2 ([DSJ loc.cit.). 

In either case these results are sufficient to complete the proof of 

( i ) . 

Proof of (i i) : 

This has already been established in the proof of Proposition 2.4(ii). 

The proof of the lemma is now complete. 

We now show that under the hypothesis of Theorem 4.8, the Weyl Kodaira 

theory may be dramatically simplified. 

We first describe some notation. If 5 S ~ is measurable, define 

;;. ( 5) - }J \I ( 5 , E) + }J2'4 ( 5 II E ) (-1. 4 .14) 

an-; for A e. IR. I 

(4.4.15) 

-",lenever 

exists finitely anJ is real on ( ~., . s 
••.. .I. is, 
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as we have shown in Lemma 4.8, ~,,-ulmost everywhere on IR, E Le~ 

~(A)be the right continuous increasing function arising from ~ (c:. 

(2.2.1», for which p (0) = O. 

4.9 Theorem: Let V(r) be in L, L I j 00) , and suppose the spectrum of H 
1 

is singular. Then each f(r) in L1(Ojoo) has the eigenfunction 

expansion 

fer) = l.i.m. SW "is (riA) F(~) dp{)..) 
w -700 -tA,) 

where F ( >-) _ l. i . m. S W "j ~ ( r-. A ) f ( r) d r 
CJ.) ~ 00 a-
O'"~O 

p 
the integrals being convergent in L~(O/oo) and L2 (-OO,co) respec~ively. 

The transformation 5 which maps f(r) to F(~) is an isometric Hibert space 

isomorphism from L2.(O/oo) onto L:C-001oo). Moreover, if e : IR ~ a: 

is a Borel measurable function, and e(H)f(r) is in L:z.(O)oo) , then 

(4.4.16) 

where the integral converges in L ~ ( 0 I (X) ) • 

Proo[: 

Let f(r) be in Ll. (O,~), 

Since E is a bounded subset of IR ([LS] Ch.IV Thm.3.1), we have from 

(4.1. 6) and Lemma 4.8, 

0 lim S 00 I Fer) -
W~OO 0 

-.~ JW )'i(rl~) ¢j().)d,oij()..) 14 dr 
IIJ~II2. -w 

lim 
Iooo 'of (r) - w-;oo 

- J 'j (r A) ~ (A)d.o (~) - S 't,(r- / A) <!>,()..)dpil (X) 
E 4 I '+'4 ' 2.1. (-Ul.W) \ E. 

-5 ('j,(r,~) ~ r'T1 o ()..)'j'l(r,>.))(ct>,O,) ~ tTl o ()...) ¢l.()..»)i~,,()..l\'1-:1r 
(-w, w) ,e 
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where 

lR " E , where;;" is the measure generated by pC)..) • From (4.1.8), 

o ::. ~i~ [J IR \ E I ¢ I ()..) - S: )' J ( r. )..) f ( r) d r' \1. d p" (~) 
cr-t 0 

:: 

Hence 

+S (¢.<~)-s.W~,(r,)")FCr-)dr-)(¢:2-()...)-SW" .. (r,)..)F(r-)dr)m (~)dp ()..) 
IR,E a' (j" J.. (j" 

-t-S ((/:>7.{)..) - JiAS :f'2.(r,~)~Cr) drX Q>, (~) -S; 'iJ Cr, ~)f(r) dr) m(j()..) dOI\(>') 
lR,e (j" ,--

l" Joe> SW :2-'m (G()..) - ':isCr,),.)f(r)dr) d.o{A) 
W~DO -co '3' (-
0"'-+ 0 

GoC)...) == F C).. ) P. -almost everywhere on fR , so from (4.4.17) 

of (I"') :. l. j • m. S w 'j ~ , ,. I ).) F ()..) dp ()..) 
w ~ 00 -(.aJ 

as required. 

l.i.m. 
u)~<X) 

O"'~ 0 

By Theorem 4.1, Lemma 4.8, and (4.1.5) 

where 

, and for i,j = 1,2 define 

u -almost everywherp 
r'U 

IR \ E (j = 1,2). 

,.., 
As above, it is clear that G-j(A) = (Sfj )()..) }J--

almost everywhere for j = 1,2. 
-.# 

.. . 5 rves l' nner produc t,~· " Hence the trans"ormat10n prese and, in 
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-.J ... 
particular, S is isometric. ~o complete the D.roof that S is an ;-o~etr' -:::> "I lC 

..... 
Hilbert space isomorphism from L2 (0 / 00) onto l; (- ao, 00) U: re"a::":1S 

t"'V 

therefore to show that S is linear, one-to-one and surjec:~ve. The proof 

of the surjective property is somewhat cumbersome and is contained in t:he 

Appendix. To prove linearity we show that if f1 (r), f
2

(r) are in Ll, (0 I c::o) 

- -., -
and F I ()...) I F 2. l A ) \ F ( A ) 

respectively, where c is constant, then 

-F ()..) + (4 . .1.18) 

almost everywhere with respect to the measure~ generat:ed by ~()...). 

Now if JI . /I denotes the L f (- «» 00) norm, 

- - ,.; 

" F ( ~) - ( F I (>-) + c F2. (A ~ 1/ 

~ 11 F()"') - J~ 'js(r/~)(f,(r) + cf4 (r))dr 1\ 
N 

+ II F, ().) - J N ~ S (r I ~ ) f I (r ) d ,.. n + I c.1 II F4 (A ) - J IN) 5 ('-J ). ) t 2 (,-) d r 1\ 

~ ~ 
for all N in IN by Minkowski' s inequali ty. (4.4.18) now follows since 

the right hand side converges to zero as N ~ 00. 

Now suppose (5' f I)()...) = (5 flo )()I..) Then, by the linearity of 51 

( g ( f I - f 1 )) ( A ) = 0, and hence, since S is isometric, 

( S GO 1 -F \ ( r) - f 2 ( r) 1:4 d r ) 1/2 = 0 
o 

AJ 

so that: f
1

(r) = f
2

(r) Lebesgue almost: everywhere. It follows that 5 is 

one-to-one. 

are 

that 

Let e: IR-+C be a Borel measurable funct:ion. Then if fer) 9CH)r(,-) 
t 

in L4 ( 0, ex:> ) (4.4.16) may be proved from (4.1.9) in the same way , 

(4.4.17) was proved from (4.1.6). 

The proof of the theorem is now complete. 

§5. Discussion 

and 4.5 not only indicate the natur~ and location 
Propositions 4.4 
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of the spectrum of H, they also give some insight into the behaviour of 

solutions of the Schrtldinger equation associated with the different parts 

of the spectrum. 

Let us suppose that L is limit point at 0, so that there is at most 

one linearly independent L2 (0,1] solution of Lu = xu for real x. We note 

from Proposition 4.4 that the singular spectrum is concentrated on two sets, 

viz. the set E of eigenvalues of H~, and the set A of all x for which 

moT()(,,) and moo+C)(.) exist finitely and are equal. Since Im mo (2) and 

have oppos i te signs in the upper half plane, m 0+ ()(.) and m + (Yo) 
QO 

must also be real for all x in A. Hence, applying Theorem 3.19 to each of 

the intervals (0,1] and [1,00), we see that for each x in A there exists a 

solution of Lu = xu, viz. 

at ° and at ~. Moreover, the only other points x in IR at which such 

solutions can exist are the eigenvalues of H~and the point x = 0. To see 

this, note from Theorem 3.19 that if there is a solution of Lu = xu which is 

subordinate at both ° and 00 , but mo+C)I.) and mcxt<x) do not exist as 

finite real limits, then this solution must be u2(r,x) and "'OT(X)a "'001" (x) =00. 
As has already been noted in §3, mGO+(x) exists as a fini te limi t for all 

x in IR' ( e. lJ to)) , so mo .... (~) and me: (x) can only exist infinitely on 

E u to} . 

Now A has Lebesgue measure zero by Theorem 2.I2(iii); hence so also 

has A U E U to l It follows that the set of all x for which Lu = xu 

has a solution which is subordinate at both ° and~ is a minimal support 

of the singular part of the simplified spectral measure):. This approach 

may be extended to the other parts of the spectrum to give the result 

below. 

We recall that if L is limit point at 0, the spectrum of HI is 

Singular if and only if the same is true of the spectrum of the unique 

self-adjoint operator Ha arising from L in L2(0,a] with boundary condition 
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u(a,z) = 0, for each a ~n IRT. Al . h • so, s~nce we ave assumed throughout that 

VCr) is integrable on compact subsets of R+ not containing the origin, 

VCr) is in L,[I,OO)if and only i:f VCr) is in L,[o,oc):for each a> O. 

Since the existence o:f solutions which are subordinate at 0, or at 00, 

does not depend on the decomposition point a, we may state our result in 

its most general :form, as :follows: 

4.10 Theorem: Let L be in the limit point case at 0, and VCr) be ;n L l ) • ,Q,oo 

for each a > O. Suppose, moreover, that there exists an a in 

IR+ such that the spectrum of Ha is singular. Then minimal supports 

..., -
1'\1 , Tt1 Q • C. ,. IT} s. ' lYl s. c • and meJ.O:f the simpli:fied spectral measure 

,.. and :f 1'>1 "'-I .., }J.' 0 P u A.A. u. are as follows: 
Q.C.'/ S.' r S.c.' r-d 

;<v 

l'Yl : IR, {x E. IR: a solution o:f Lu = xu exists which is not subordinate 

at 0 but is subordinate at ~} 
,..; 

'YT) = {x € IR no solution o:f Lu = xu exists which is subordinate 
Q. c. 

at oo} -m s. = { )( E IR a solution of Lu = xu which is subordinate both at 0 and 

at co } 

'" lYl s. c. = { )( E IR: a solution of Lu = xu exists which is subordinate both 

at 0 and at 00 , but is not in L2, (0, co ) } 

m d. = {x e.. R a solution of Lu = xu exists which is subordinate both 

at 0 and at 00 , and is in L 2 ( 0 , cO ) } 

-We note that i:f "subordinate at 0", "subordinate at in:fini ty" and }J'-

are replaced by "satisfies the boundary condition at 0", "subordinate" and 

~respectively, then Theorem 4.10 reduces to a particular case of Theorem 3.21, 

which applies to the regular limit circle case at O. Indeed, noting that for 

L in the limit circle case at 0, the solution Y1(r,x)+mo (x)Y2(r,x) satisfies 

the boundary condition at 0, the arguments above for the limit point case at 0 

may be simply adapted to show that if Vlrl e L,[o,oo) for each a > 0, then the 

conclusions o:f Theorem 3.21 hold in respect o:fjA :for the singular limit circle 

case at o. 
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Likewise, adaptations may be made to accommodate the case where L is 

limit circle at infinity; in this case m~(z) is a meromorphic function 

([CL] Ch.9, §4), so that if the spectrum of Ha is singular, much of the 

theory of §§ 3,4, suitably modified, still holds (of course, here V(r) is 

no longer integrable at infinity ([N] §23, Satz 3). 

The condition on V(r) at infini~y ~n The~rcm 4.10 is such that for 

each x in IR \ '01 every solution of Lu = xu which is subordinate at 

infini ty is in L l (a I ~ ) for each a ) o. However we prefer to retain 

the characterisations of Theorem 4.10 as they stand, bearing in mind that 

further generalisations may be possible. 

If L is in the limit point case at 0, it may happen that there is some 

absolutely continuous spectrum of H (for an example see [P2]). In this 
a - "" case Theorem 4.10 remains true if Tn 'TTl , •. c:. etc., are now taken to be the 

minimal supports of J1 »;;. Q. c.. etc., on lR \ a- ( H Q) where (J' ( H Q ) Q.c:.. a.c. 

is the absolutely continuous spectrum of H • 
a 

It seems not unlikely that when L is regular at 0, some quite straight-

forward relationship exists between the simplified spectral function p(~) 

and the spectral function p(~) described in Chapter II. The following 

result which we prove for ~ > 0 , suggests that such a relationship may 

hold quite generally. 

4.11 Proposition: Let V(r) be in L,(O,oo) and suppose that L is regular 

at O. Then, if u
1
(r,z) is that solution of Lu = zu which 

satisfies ,"",(0,2) - -Sino( , u,'(O,z.) • C05~ I 

tip C>-.) 

d~ 

I. = (u, (I. ~ )) 
de ().) 
d~ 

for Lebesgue almost all " in (0, 00 ) • 

Proof: 

The hypothesis satisfies the conditions of Theorem 4.10, so there 

exists a simplified spectral measure): of H satisfying (4.4.14). Moreover, 

° there eX1'sts a function m(z) which is analytic in since L is regular at 

the upper half plane, and a spectral function p(~) satisfying (2.3.3) and 
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(2.3.4). In addition the hypothesis implies that V(r) is in ll(IJoo) 

and so 

d,o ( >.) - 1m m+()..) 
(4.5.1) -cL>. lr 

and de ().) d,oll (~ ) 1m MII+{x) (4.5.2) - -d). dA 1r 

for ).. ') 0 (cf. proof of Proposition 4.5). 

Let u2 (r,z) be the solution of Lu = zu which satisfies 

U~(OlZ.)::' c.oseY.) uleO I 1.) -= si"ex.. By the definition of moo('2.) , '1,(;,'1.)+ 

f ,r Im ~ ~ 0 and so, since L 

for I,." 2. * O. 

Moreover, using W(u
2

(r,z),u
1 

(r,z» = 1, we have 

(4.5.3) 

and 

"j 2. (r, 2) - LA l. (1 I 'Z.) lAl ( r I Z ') - U I ( 1 ) 'Z.) u ~ (r
l 

2. ) (4.5.4) 

by the uniqueness of solutions. Hence 

( U I I C I I z) - m 00 ( z) U I ( I , Z )) "" 2 (r, z. ) - (\.\ ~ ( I) '1.) - m co( z ) u 2. ( I) '1. ) ) ~ I ( r) 2. ) 

is in l2.(O)oo) for Im z.:jr. 0 which implies by (2.1.3) tha-c 

m{-z..) 
(u;(I,Z) - moo(z.) u 2 (l,Z)) 

-= - (U/(I)'l.) - t'rt oo (7.) UI(I,Z.») 

Using W(U2 (l,z),U
1

(1,z» = 1, this yields 

IM t'f'\ 00 (z. ) 
Im m(z.) _ 

( III ) - Rern_(z)u,(ljZ))2. -+- (Imm-.(z)IA,(I,Z))4 u1''Z....... --

Hence, by (4.5.1), 

d,ol>.) Im m oe,.,.()..) 

d>. = -rr[(U:(I,A) - Rem "'(~)UI(I~A))1.+ (r""'rn~(~)ul(I,~))1) 
~ (J.5.5) 

for ~ "> O. 

Since L is regular at 0, mo (=) is defined by the boundary conJltion 

(-l.l.l). Hence 
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':J .' (,. ,'Z) + m 0 ( '2.) 'J': ( r, 2. ) 

'j,(r,'2.) + r'no('Z.) '12.«("'2.) 
= 

which yields 

m o {2.) 
W(':II (r, '2.) I U, Cr, z.)) 

-
W('J'l.(r)z.), LA,(r,z,)) 

WCy, (, I z.), U,(I,Z)) 
= -

W('j1.(\ ,'2.), u,(1,2.») 

, 
u,(l,%.) 

-
u,(I,z.) 

Hence by (4.3.10) and (4.5.2) 

for ).. ') O. 

(4.5.6) 

This, together, with (4.5.5) gives the result, so the proposi~ion is 

proved. 

Denoting the subspace of absolute continuity with respec~ to H by 

d1. (H ) ([KA] Ch. X, § 2), we have the following: 
a.. e. 

4.12 Corollary: With the hypothesis of Proposition 4.11, the eigenfunc~ion 

expansions of Theorem 4.9 and (2.4.4) are equivalen~ for all 

f in "}t ( H) . a.c. 

Proof: 

Let f(r) be in"}t (H) . Then 
". c. 

_ s. Ii".,. (E - Eo) f ( ,... ) 
- w-l)oO W 

so by (2.4.4) and (4.4.16) 

f(r) - l.i.m. Jc..) u,CrJX) F(~} dp(>') 
W-.oO 0 

(4.5.7) 
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= (.i.m. 
Ct.l-.+ao 

where 

and F(~) =- lei.m.J"" 'j (r-,~) f(r-}dr­
w""'oo 0 s 

The last two integrals converge in 

respectively. 

to 
L2.(O,oo) 

Al so by ( 4 .4. 15), ( 4 • 5. 3), ( 4 • 5. 4) and (4. 5. 6) , 

UI("Z)~s("'z,} = [~I(rJ'Z.) + U,'CI,'Z..) ~~CrJ2.)] "',(I,z.) 
u.(I,z.) 

(4.5.8) 

and 

:. [u," ( I , Z ) I.A 2. ( 1"', z.) - u ~ ( I , 2) U I ( r, Z )] u, ( I, z) + [U2. (\ I -.z. ) u J,.. ,Z ) -u, (I, 'Z. ) u", (r, 1.)] l.l; CI J'Z. ) 

= 'vJ ( u 2. ( 1) z.) I lA I ( I , z.)) lA, (r, z.) 

Hence, by Proposition 4.11, (4.5.8) is but an alternative expression of 

(4.5.7), and so the corollary is proved. 

Thus, where L is regular at 0 and V(r) is in L1 [0, GO), the Weyl­

Kodaira expansion (4.1.6) simplifies to the expansion (2.4.4) described 

in Chapter II for all f in 1'ta .c . (H) ; it seems probable that this is also 

true for f( r) in the singular subspace CJ-{ s. (H) • If this is so, our 

simplified expansion is a natural extension of the expansion (2.4.4) for 

all f in '}(.. 

We observe that when L is limit point at 0, the solutions of Lu = AU 

which feature in the transformation S of Theorem 4.9 are, for jr-almost 

all).. in IR , subordinate at 0 for ~ ., 0 and subordinate at both 0 and 

infinity for ~ < 0 • Comparing Theorem 4.9 with the analogous results 

for the regular limit circle case at 0 (see Ch.II, §4), we note that, as 

in the decomposition of the spectrum, subordinate solutions in the limit 

point case at 0 correspond to solutions satisfying the boundary condition 
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in t~e limit circle case at o. 

According to the brief summary which is available in translation 

([K2] §2), it appears to have been shown by Kac that a simplified expansion 

djJo(~) . 
exists provided the intersection of the sets {A E IR: d K eXlsts an= 

o < dJAO(A) ( oo} and { A e lR 
OK. 

dJ"Qc/~) exists and 0 < df-'oo(~) < <X) } 

OK dK 

has Lebesgue measure zero ([K1j); hereJAo and~~are the spectral measures 

of Hl and H~respectively. This would imply by Theorems 2.9 and 3.21 that 

such an expansion exists provided a solution of Lu = xu exists which is 

subordinate at 0 or at 00 (or both) for Lebesgue almost all>. in IR. It 

may well be the case, therefore, that the simplified expansion of Theorem 

4.9 and the conclusions of Theorem 4.10 hold under weaker conditions than 

we have assumed. 

However, the question of whether the simplified isometric transform-

ation is surjective, and the relationship between the simplified expansion 

and expansions such as (2.4.4) which are obtained directly, do not appear 

to have been considered by Kac, nor is the role of subordinate solutions 

recognised. From the point of view of the applications to scattering 

theory which we condition in the following chapter, the conditions of 

Theorem 4.9 are sufficient, and the surjective property of the simplified 

..v 
transformation S, which is proved in the Appendix, is essential. 

In conclusion, we note that under the condition~ w: have im~osed on 

the potential in this chapter, 

(4.5.9) 

for Lebesgue almos tall >. in (0 I 00), by (4.2.1), (4.2.2), (4.2.3), (4.3.10), 

(4 3 2) d (4 4 3) If we suppose that there is some absolutely con-.. 1 an ..• 

tinuous spectrum of Hl in (0) 00) so that by Corollary 2.7 and ?f'OpO-

si tion 2.14 there exists a subset :3 of (0,00) w:' ':h posi ':1 ve Lebesgue me3sure 
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such that for all A in S, then ~he rela~ionshi~s 

(4.5.9) canno~ hold. To see this, note from ~he proof of Lemma 4.2 ~hat 

1m M IIT ( A) Im M 7..7.:t- ()..) - 1m M
'
'2.i"C>.) 1m M1)<A): 0 Lebesgue almost everywhere on 

(0 ) (X») only if 1m mo+ (A) 1m m (1:)+ (>. ') = 0 Lebe 86ue almost e'/er~:' . .,r:--!ere 

on (O I tX») ) that is, since Im 1'Yl~ (>. ') '1 0 for all).., only if Immi'()..)=O o 

Lebesgue almost everywhere on CO}oo). Thus by Lemma 2.13 and Corollary 

2.7, the relationships (4.5.9) can only hold if the spectrum of H1 is 

singular. Since these relationships are crucial to the simplification of 

the Weyl-Kodaira theorem, (without them the resul~s of Lemma 4.8 fail), 

it follows that, if V(r) is in L. (1,00') I the conclusions of Theorem 

4.9 only hold when the spectrum of Hl is singular on (0, eo). 
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CHAPTER V 

APPLICATIONS TO SCATTERING THEORY 

il Wave and Scattering Operators 

We now apply some of the results of the previous chapter to the scatter-

ing of a single non-relativistic particle in a spherically symmetric potential. 

As in spectral analysis, the three dimensional situation is most conveniently 

analysed in this case by considering each ~ial wave subspace separately 

(see [AJS], Ch.ll). 

We briefly indicate some of the relevant ideas and terminology. With 

fixed quantum numbers land m, representing a fixed partial wave subspace, 

the one dimensional free Hamiltonian H L is the self-adjoint operator arising 
0, 

from the differential expression 

(5.1.1) 

In the case l = 0, Lo,l is in the limit circle case at 0, so that Ho,o is 

not unique; it is necessary, therefore to fix a boundary condition of the 

form (2.3.9). Now, defining the free Hamiltonian H in the customary way to o 

be the unique self-adjoint extension of - ~ acting on C: (IR ') , it is found 

that H ~s upitarily equivalent to the restriction of H to the angular 
0.0 0 

momentum subspace L = 0, which is unique; it follows that the appropriate 

boundary condition is obtained by setting ~= ° in (2.3.9) (see [AJS] , §11.3). 

The corresponding total Hamiltonian Hl arises from the differential 

expression 

(5.1.2) 

A boundary condition may again be required at r = ° for some or all L ~ 0, 

depending on the nature of V(r); since we shall assume throughout this 

chapter that V(r) is integrable at infinity, no boundary condition will be 

required at GO for any l ([HI] Thm.10.l.4). 

Particles encountering the potential V(r) characteristically exhibit one 
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of two modes of behaviour; either at large positive and negative times 

the particle is arbitrarily far from the scattering centre, or at all times 

it is located within a finite radius of the scatterer; the particle is 

said to be in a scattering state, or a bound state, respectively. In most 

of the cases usually considered, the scattering states span the absolutely 

continuous subspace drt (H) of H, and the bound states are identified with a.c. 

linear combinations of eigenvectors of H. This situation may break down, 

for example, if some states are asymptotically absorbed ([P2]); however, 

as we shall see, absorption cannot occur for the class of potentials con-

sidered in this chapter. 

If for large positive and negative times, all particles in scattering 

states behave like free particles the system is said to be asymptotically 

complete. This idea may be formulated in a way that is mathematically more 

-iHot: -ii-4t: 
precise, using wave operators. Noting that e I e describe 

the free and perturbed time evolution of a state vector f, the wave operators 

are defined to be 

iW~ -iHoe ) '" - S.lim. e.. E (H .J.'-+ - .. a..C. 0 
- t~:too 

(5.1.3) 

whenever these limits exist, where E (H) is the projection operator onto 
a.c. 0 

the absolutely continuous subspace "}tQ.c..(Ho) of Ho' The wave operators are 

partial isometries with initial set --U (H) and ranges subspaces of a-'a.c.. 0 

the absolutely continuous subspace of H. If the ranges of.n:t 

are equal to }(. Q. e. ( H ) the wave operators are said to be asymptotically 

complete; if, in addition, the singular continuous subspace "}ls.c.(H) of H 

is empty, we refer to strong asymptotic completeness (cf. [AJS] §9.1). 

The wave operators satisfy the following intertwining relations 

-iHt 
.n.:t 

-i~ot: 
e 1l± - e. 

-i Ho~ .n. '* n.* - i H t: (5.1.4) 
e. + :II. + e 
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.n ~ where T denote the adjoints of 11:!:, viz. -
e iHot: e. -i HI: M ± 

(5.1.5) 

M! being the projection operators onto the ranges of 11+ . 

Where the wave operators exist, the scattering operator S is defined 

by 

5 
(5.1.6) 

The scattering operator is a partial isometry with initial set 1{Q.~. (Ho) 

and range a subspace of wU (H) 
~\o a.c.. 0 The range of S is equal to 

if and only if the ranges of it and fL are equal, so 
+ -

that, in particular, S is unitary if the wave operators are asymptotically 

complete ([AJS], Prop .4.8). 

--

Moreover, S commutes with H . that is 
0' 

which implies that the unperturbed energy is conserved during the scattering 

process. 

We may apply Theorem 4.9 to see that for each l, the operator H L in 
0, -L2.(O,cx» is unitarily equivalent to multiplication by~ in L~O,LCOJOO)' 

where PO,l ()..) is the simplified spectral function of H
o

, l' Note that, if 

we take oc. = ° in (2.3.9) for the case l = 0, then for each l, H L has 
0, 

purely absolutely continuous spectrum which is concentrated on (o,~), so 

- -that L",,.oO,L (° 1 00) :a L./'O,L (-00,00), 3't o .c..<Ho);:}t and E (H) = 1. .... a.c. 0 

Similarly, it has been shown (and we shall derive this result independ-

ently during our proofs) that when the wave operators are asymptotically 

complete, the restriction Sl of S to a partial wave subspace is unitarily 

equivalent to multiplication by a function of A,S\. ().} for each l, where 

The function S (~) defined by 

S(~) = (5.1.8) 
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where Elm is the projection operator onto the one dimensional subspace of 

unit sphere L2 (8
2

) generated by the spherical harmonic Y
lm

, is known as the 

S-matrix ,and cS l (A) is known as the partial wave phase shi::-t ([AJSJ 

Prop.ll.6). 

The following definitions relate to the scattering of particles with 

energy ~. 

The scattering X-section for a cone C with apex at the sca~tering cen~re 

is the number of particles scattered into C per unit time divided by the 

number of particles in the incoming beam per unit time and per '..:n~ t sl'r~ace 

area of the hyperplane orthogonal to the direction of motion of the incoming 

particles. 

Now suppose that the incoming particles are approximately collimated in 

the direction ~I ' and that the axis of C lies in the direction ~2' If 

the scattering X-section for C is divided by the magnitude of the solid angle 

AlA) subtended by C at its apex, then the square root of the limi t of this 

quantity as A~~O is known as the scattering amplitude at energy }.. , and is 

The square of the scattering amplitude, integrated over all final 

directions ~z. gives the total scattering X-section .n. (~). 
Where the potential is spherically symmetric, and the wave operators are 

asymptotically complete the scattering amplitude and total cross section have 

the following representations: 

f'('- . fA) .......... t.'\ ) - I < ClL+ 1)(5l(~) -I) Pll~l· ~2.) T ". _ 1"-7::'.. - ~ L 
.. 2.i~.>. l 

(5.1.9) 

where P
L 

is the Legendre polynomial of degree l, 

.n.(~) = (5.1.10) 

( [ J 7) Note that .n (A) is independent of the ini tial see AJS Prop. 11. • 

and .n (~) are direction~, ' and that, by (5.1.7), both f(~:~,-t!!!2.) 

sums of continuous functions of the partial wave phase shifts. 

In this chapter we shall derive explicit formulae for the phase shifts 
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in cases where the potential may be sufficiently pathological a~ the origin 

to produce dense point or singular continuous spec~rum of H in at leas~ 
l,l 

one partial wave subspace. The only conditionswe shall require of our 

spherically symmetric potential are: 

(ii) the spectrum of H l is singular in ea:h ;partial wave subspace (for 1, 

description of H
1

, see Chapter IV). 

The condition at ° is considerably more general than that considered by Green 

and Lanford ([GR]). These authors required that V( r) be 0 (r -(:1- e)) as 

r -.a, 0 which ensures that there is at least one solution of LI u = xu in 

L2 (O,1] for each x in ~, and all L (see [KO] §5). This implies that there 

is no singular continuous spectrum of H
1

,L for any L, by Theorem 3.21, and 

that the spectrum of H
1

,l is nowhere dense ([WE21 Satz 3.3). 

Using the simplified expansion of Chapter IV, we shall adopt a method 

similar to that of Green and Lanford, and, as in their derivation, the 

existence and completeness of the wave operators will be demonstrated in the 

course of the proof. The existence of the wave operators and asymptotic 

completeness under conditions (i) and (ii) may be proved independently from 

other results which are already known. Kupsh and Sandhas have shown that the 

wave operators exist whenever the potential dies away at infinity more rapidly 

than the Coulomb potential !, irrespective of the behaviour of the potential 
r 

at O. ([KS]). Moreover, it has been proved by Kuroda that provided the wave 

operators exist, the absolutely continuous spectrum of H is contained in that 

of H , and the spectrum of H is simple in each partial wave subspace, then 
o 

the theory is asymptotically complete ([KU11 Thm. 3.3; see also [rE] for 

amendment). Kuroda's second condition is satisfied on account of Proposition 

4.5, and that the third condition is satisfied follows from a theorem of 

Kac, which proves simplicity of the spectrum whenever the Lebesgue measure of 

the set 

o < d}o' , ( )() < ao} n { x .. IR: 0 <. d)AGD (X ~ < 00 } 

dK OK 
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is zero, where}A, J }lao are the spectral measures of Hand H in some 
1 co 

partial wave subspace «(K21). Under condition (i), therefore, asymptotic 

completeness can only fail if there is absolu~ely continuous spectrum of 

Hl,L for some i. This, while unusual, can occur; an example is due to 

Pearson ([P2]). 

The explicit formulae we shall obtain for the phase sh~ will 

enable us to refute the accepted wisdom that the scattering ampli~ude and 

total cross section are continuous functions of energy. First, however,we 

shall reformulate the simplified expansion of Theorem 4.9 for elements of 

~ Q. Co. (H) in such a way that the simplified spectral function p (~ ) 

no longer occurs explicitly. 

12. Reformulation of the simplified expansion theorem 

As we shall be solely concerned with a single partial wave subspace in 

both this and the following section, we shall as a matter of convenience 

regard the term l(l+l) as included in the potential V(r), and denote the 

2 
r 

operators Ho,l' Hi by Ho and H respectively. 

We begin by showing that if, with the hypothesis and notation of Theorem 

-
4 9 th d . f -S . t . t d to -U (t-4) then its range is L"fOCO,ao), ., e oma1n 0 1S res r1C e c:I'""Q.C. 

-and this restriction of 5 is an isometric Hilbert space isomorphism from 

-1t Q. Co. (H) onto L ~ ( 0 J CO ) • 

5.1 Proposition: Let V(r) be in L, [I,ao} and suppose the spectrum of H1 is 

singular. Then each f(r) in ~Q.c..(H) has the eigenfunction 

expansion 

(5.2.1) 

where 

(5.2.~) 
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the in-cegrals being convergent in L 2, (0,00) and L ~(o, co) respec-:: vel]. 

-transfor;:1at':on S Cl.C. which maps f(r) in 'J.( (H) Q.c.. to F(~) is an iso-

metric Hilbert space isomorphism from L2,(O,oo) onto LPCO ,..,...) 1 ,........ ~:oreCl\jer , 

if e: IR~ C is a Borel measurable function, and S{H)·Hr) :..'" i"'. L (0 ) ~ ~.l 1 ,00, 

then 

(5.2.3) 

where the integral converges in L 2. (0,00) . 

Proof: 

By Proposition 4.4 the spectrum of H is singular on (-ac,O) and by 

Proposi tion 4.5, H has no singular spectrum on (0, GO) • Hence f( r) is in 

'31a..c..(H) if and only if the probability J( 1 d<f,E).f) 
Q,b 

that a 

measurement of the total energy of a system in the state f will yield a 

value in (a,b] is zero for all (a, b l Eo (- CiO J oj 

So if f(r) is in "}(Cl.c..(H) we have by (2.4.8) 

f<r) _ s. lim. (Ew - Eo) fer) 
W4000 

(see[AJSI Ch.3. §2) 

where \ E~l is the spectral family of H. The eigenfunction expansion above 

for f(r) now follows from Theorem 4.9. 

To prove that 5 is an isometric Hilbert space isomorphism from 
Q.c:. 

"}{ Cl. c. (H ) onto ~ ) L2, (0 J 00 it is only necessary in view of Theorem 

4.9 and the fact that I-<Cl.C. (H) and L~ (0,00) are subspaces of/t and 

respectively, to show that 

~ 

(i) for each f(r) in d1.~.c.(H) , (Sa.c. f )()..) is zero ~-almost 

everywhere on (- 00 ) 0 ) . 

(ii) for each F(>. ~ which is ;::ero ;;. -almost ever~;',oJhere on 

(-00 o~ (5-' F)(r) is in J..{Q..c..(H). 
) , a.c.. 

( ) 
-1A ( H) and F"'(~) denotes (5 f )( A) t:,t?:1 by (.1. .1.16) 

If f r is in cJ"Q.C:. 
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for all (Q, b 1 s (- co , 0]. Hence, using the sur j ecti ve property of S 
-proved in the Appendix, F (A) = 0 ;t-almost everywhere on (- co , 0] j 

since (5 ~)(A) =(5-F~) (i) is a.c. , established. 

-If F (>-.) is in L { ( 0, oc ) and is zero )A-almost everywhere on 

Hence the probability that a measurement of the total energy of a system 

in the .... -I -state (S F )( r ) 
Q.C. will yield a value in C - 00 to] is zero, 

(S-'F)(r) is in 
a·c. 

and so We have now proved (ii). 

(5.2.1) follows from (4.4.16), by (i). 

The proof of the proposition is now complete. 

We remark that if we take V(r) = l (l +1) 
2 

r 
for each l, Proposition 5.1 

applies also to Ho in each partial wave subspace. In general, p()..) depends 

both on the potential and on t. 

We now state a result which will enable us to show that 1s(r,~) is 

bounded as r --t 00 • The proof is elementary and may be found in [T2], Chapter 

V,(Lemma 5.2); see also [w], Chapter I §1, III for a fuller account. 

5.2 Gronwall's Inequality: Suppose g(r), h(r) ~ 0, g(r) is continuous, and 

h (r) is integrable on t R • cO ) If also there exists C in ~+ 

such that 

C3(r) E C + S .. 9(s)h(s)ds 
R 

for all r in [R,co) , then 

gCr-) " Ce.xp(S; h(5)ds) 

for all r in ll't, ex) ) • 

This enables us to prove that if the spectrum of H1 is singular, the 

solution y s (r, >. ) 

d au 
of - - c ~u as 

dl"'~ 

of Lu = ~'" asymptotically approaches a solution 

for Lebesgue almost all ~ in (0, (0). 
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and suppose the spec~rum of H is 
1 

singular. Then Ys (~,~) is defined, bounded on the r-i~~erval 

( \ I 00) I and converges pointwise to a function of the form 

Proof: 

By (4.4.15), 'jsCr,>-.) is defined on (O,eo) whenever mo+CA) exists as a 

finite real limit; since the spectrum of HI is singular this is Lebesgue 

almost everywhere on (0.00) by Curollary 2.7(ii), Lemma 2.13, and Theorem 

2.l2(i). 

Using the variation of constants formula ([cLI Ch.3, Thm. 6.4), 

"sC'-,)d = c.os (J>: (t'"-I)) + m (~) sin (~(r-I)) 
J 0 ~ 

+ sin~(r-n) It'" c.os(~(p-I))V(p) 'is(p)A) dp 
~ l 

- c.oS{~(r"-I)? Jrsin (JA(p-I))V(p) :1s(p.>.)dp (5.2.4) 
~ , 

for all ,.~, , and all )...,>0 for which';is('-,'A) is defined. For such r and~, 

we have by Minkowski's inequality 

I~~(r, ~)\ , I .... lmo(~ )1 
.M 

Identifying 1 4- I m o ().)\ 

~ 

+ ~ Sr"'VCp)11 ~5(p)}.)1 dp 
oM' 

with c, IVC,.), with h(r) 

~ 

and I~S(~/A)\ with g(r), it follows from Gronwall's Inequality that 'j5('-'~) 

is a bounded function of r on t I J 00 ) for each fixed ).. "7 0 for which 'j 5 (rJ )...) 

is defined. 

If we set 

_ Sal , 

and 

S;n (Jr(p-')~ V(p) 'is (p,>') dp 

~ 

we have from (5.2 .. 1 ) 

(5.2.5) 

(5.2.6) 
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(5.2.7) 

Since '1s(,..,)...) is bounded for r ~ l ,and V(r) is integrable on {f,CIO) i~ 

is clear that the final term converges to zero as r ~ 00. Thus as r ~ 00 

we have for Lebesgue almost all A '> 0 

where 

, 
y~(r,~) -+ [~:l()...) + t2{A)]'isi,,(~,. + cS'(~)) 

~Qn (6(~) +~) _ ~(A) 
((( ~) 

Setting Cj:l ()...) = fJ:l (A ) + 'If a. ( A), the lemma is proved. 

(5.2.8) 

We now show that the factor 9(A) which occurs in Lemma 5.3 also 

occurs in the derivative of the simplified spectral function Ii (~ ) 
Lebesgue almost everywhere on (0. 00) • 

5.4 Lemma: If VCr) is in L I L, ,(0) and the spectrum of H1 is singular 

then 

= 

for Lebesgue almost all A") 0, where 9 (~) is as in Lemma 5.3. 

Proof: 

With the given conditions, 

dp(~) 1m ""co"1- (A) - . 
dA T 1"'0 l)') - mCID'i- (A)1

1 

Lebesgue almos t everywhere on (0, ~ ) by (4.3.1 0) and (4.4.14). Hence for 

these ~, from (4.3.3) and (4.3.4) 

where a; CA) , 0" ~ (~ ) ,1:'. C)l.) I ~ 3. C ~ ) are as defined in (4.3.2). However, 

by insoection of (4.3.2), (5.2.5) and (5.2.6) we see that 
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whenever mo ()I.) is de :ined; that is, Lebesgue almost everywhere on (0 I eo ) 

Since 92.(~) = 132.(A) -to ~2.(h) the desired relation follows, and the lemma is 

proved. 

If we define 

V'sCr,X) 
j$lr, ~) --
CJ(~ ) 

(5.2.9) 

and 

-¢ ()I.) F(~) 
~ 

~CA) (5.2.10) 

for those). in (O,ao) for which 'is (r/~) is defined, we see from Proposition 

5.1 and Lemma 5.4 that each f(r) in It (H) has the eigenfunction expansion c.c.. 

(5.2.11) 

where 

¢().) = l.i.m. J'" Vs'r",A) f(,.) d,. 
W~oO a' 

(5.2.12) 

0"'-+ 0 

the limits being convergent in LI (0,00) respectively, 

where L:- (0 J ft) ) is the Hilbert space of functions h. (X ) for which 

,.., 
I., b t f th' t' roperty of 5 (see Proposition 5.1), we 0 serve tha, rom e ~some r~c p Q. C. 

Lemma 5.4 and (5.2.10), 

I 

d~)'i 
(5.2.13) 

Similarly from (5.2. 3 ~, ~f f( r' is in '}{ ".c.. (H) , e: IR ~ C is a 

Borel measurable function, and e (H) f (r ) 
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Lemma 5.4, (5.2.9) and (5.2.10) 

(5.2.14) 

where the integral converges in L ( 0 ) 2. ,00. 

As convenient, we shall use the formulation of Proposition 5.1 or 

(5.2.11)-(5.2.14) above when deriving an explicit expression for the phase 

shift. We shall sometimes also use a modified version of (5.2.11)-(5.2.14) 

above, obtained by substituting A= k2 . 

§3. An explicit formula for the phase shift 

The strategy we shall use in deriving an explicit formula for the 

phase shift in a given partial wave subspace follows closely that of Green 

and Lanford ([GR]). However, as we noted in 11, our class of potentials 

contains elements whose behaviour at 0 is more singular than any considered 

by these authors; consequently, we may not assume certain properties of the 

solutions {Vs (r. ). ) } which were conveniently utilised in their proof. For 

example, we may not assume that Vs(r,~) is bounded or even integrable on any 

r-interval containing the origin, nor may we suppose that for fixed r, vs(r,X) 

is a continuous function of ~. As it is frequently necessary to depart from 

the methods of Green and Lanford, we consider it best to present our results 

in full. 

In this section, we shall prove the existence and completeness of the 

wave operators under conditions (i) and (ii) of §1, and an explicit formula 

for the phase shift will emerge incidentally. We note that the proof of the 

existence of the wave operators is formally the same as that of asymptotic 

completeness, the roles of H and H , and of free and scattering states, being 
o 

reversed. We shall not therefore give separate proofs for existence and com-

pleteness, but merely indicate, when appropriate, the necessary adjustments 

required in either case. 

To give an indication of the method, we outline the stages of the proof 
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for the case of asymptotic completeness. The idea is to "find" for each 

scattering state, the free states to which it converges at large positive and 

negative times. The first step is to show that, if f(r) is in I'\Q.c. (H).J 

and if we replace the solution V=>( r J )... ) in the right hand side of 

(5.3.1) 

by its pointwise asymptotic limit sin (~r + c5 ()t..)) , then the resulting 
o 

expression, which we shall denote by ft(r), is well-defined, and ft(r) con-
o o 

verges strongly to ft(r) at large positive and negative times. Now f. (r) 
t 

does not represent the time evolution of a free state; however it may be 

expressed as the sum of two time dependent functions, one of which converges 

strongly to a free state at large positive times and to zero at large negative 

times, and the other to zero at large positive times and to a free state at 

large negative times. Therefore ft(r) converges strongly to these free states 

at large positive and negative times, and completeness follows from the 

arbitrary choice of f(r). Note that these remarks refer to a fixed partial 

wave subspace; the general results will follow quite simply once the particular 

results for each subspace are established. 

We follow the procedure outlined above, and note that (5.3.1) follows 

from (5.2.14), and that vs(r,).,) 4 sin(~r TO()...)) as r~ 00 by (5.2.9) 

and Lemma 5.3. For f(r) in I1
Q

• c .(H) define -Ft:.N (,..) = (EN - Eo )ft:. (r-) I 

where ft(r) = e-
iHt 

f(r); by (5.2.14) 

(5.3.2) 

we obtain: 

5.5 Lemma For each fixed ~ and t, 

o 

is in L 1 (0 , co ) converges uniformly over t as N -"t oc) 

in the topology of L % (0 I 00) . 
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Proof: 

I J N -i>..t I + "TT" e. co s J;. r 5 i n 6' ( ).) ¢ (A) - d)' 
'1 0 ~ 

(5.3.3) 

Using the theory of Chapter II, §4, especially (2.4.1) - (2.4.4), we 

see that if H sand H c are the self-adjoint operators arising from 
o 0 

_ d'l.u(r,>") _ ~ u(r,~) 
dr2. 

with boundary conditions ~ = 0 and 0( = 31r 
2. 

respectively (see (2.3.9)), then the associated spectral functions satisfy 

deo
s (~) = J>.. and dP: ().) = , 
d~ d~ ~ 

respectively for A > 0 

( 0) sin~C'" ( 3lT") " u. ,.., ~ , = ..r;; ) u. r,)..) - = COS"I). r. Since, by (5.2.13), 
)... 2. 

fN I (/> C}..) ,a. :rx. d A .s J 00 I f (r) I ~ d r" "CO 

o 1r " 0 

c.os 00 .. ) ¢ ()..) 
.u and are in and 

and 

L:oC. CoJCO ) respectively. Hence by (2.4.3) and (2.4.5) there exist functions 

h (r) and h (r) in J.t (H s):= L.,(O,co) and lt Q .c.. (HoC.) s c Q.c.. 0 .. 
respectively such 

that 

s ,,-iH!t: \ iN -ihl:. I 
(E..,-E )e. hsCr) = - e sin.fi.r c.DSc5{)..)¢(A)-;;: d)' 

o it"' 0 1oJA. 
(5.3.4) 

where {E:} , { E: ) s d H c t are the spectral families of H an respec -o 0 

ively. It follows from (5.3.3) that 

o 

Uf~N(r) 1\ ~ II h~(r)U -+- Bhc(r)U 

• 
where •. U denotes the L2. (0 I co ) norm; hence feN (,. ) is in L~(O/QO) 

for each fixed N and t. Moreover, by (5.3.3),(5.3.4) and (5.3.5), 
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for all t. S' l' s c 0 1nce s. 1m. EN ,EN = I, we conclude that {f (_) t eN' J con-

verges uniformly over t as N -t 00 in the topology of L (O ) 2. I 00 , 

This completes the proof of the lemma. 

o o 

It follows from Lemma 5.5 that oft (r) - L. i, 1"1"\. f bN (r) is well-defined 
N-ItoO 

and in Ll (0 I <Xl ) for each t. We shall now show that ft(r) converges 
o 

strongly to ft(r) a~ large positive and negative times. 

5.6 Lemma: 

With the notation of Lemma 5.5, 

li m 
0 

H: \ .-, co 
1\ +t:(r) - ft: (r) 1\ 

0 
l.i,n'\, 

0 

where oft: (r-) = of t N (r) 
N~oo 

Proof: 

It is sufficient to show that 

for all P such that 0 <. P <. <X) , 

(ii) li rn S P , f t (r)\2. df' :: 0 
,,:,~oo 0 

for all P such that 0 <. P <. dJ 

(iii) lim 
p~oo 

uniformly with respect to t. 

Proof of (i): 

Let P in R-t- be fixed. 

= 0 

for each t. 

We may define the Dirichlet operator Hd to be the direct sum of Hp and 

Hoc ' where Hp and Hoc are self-adjoint operators arising from L in L2 (O,P] 

and L2 [p, 00) respective ly ([N] §24). We wri te 

Hd = Hp ~ Hoc 

Note that the doma~ of H and H~ are restricted by boundary conditions at 
p 

r = P, and that if L is limit circle at r = 0 a furthe:- cond.:.tion 3( 0 is 
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required in the case of H . Irrespective of the boundary conditions '.vhich 
p 

are chosen to fix H uniquely, the spectrum of H is singular owing to the 
p p 

conditions imposed on V(r). 

We shall use the Trace Theorem ([RSnqThm. XI. 9) to show that the wave 

operators 

fiT 
s. li,.". iHd t - i H t:. 

M (H) = e e. 
t ~!oo Q. c.. 

(5.3.6) 

* s. L.·m. iHt -iHd t n T :: 
t~!:oo 

e. e M Q. c. ( Hd .) (5.3.7) 

exist and deduce that ft(r) converges strongly to a state whose support is 

outside of [O,p]. 

We first show that ((H+i)-1 - (H d +i)-1) is a trace class operator. 

such 

Let h(r) be in L2(O,~). Then there 

-1 
that g1(r) = (H+i) h(r) and g2(r) 

exist g1 (r), g2 (r) in L2 (0, 00 ) 

-1 = (Hd+i) h(r). Hence 

and, 

lH + i ) 9. (r) 

+ i ) 91. ( ,.) - ( H d +- j ) 9. ( r) 

It follows that 

so that 

is a subspace of d-t.:I L1(OJ oo ) whose dimension cannot be greater than 4. 

That 
-1 -1 

is, ((H+i) - (Hd+i) ) is an operator with rank less than or equal 

to 4, so is of trace class. 

It is now immediate by the Trace Theorem that the wave operators 

(5.3.6) and (5.3.7) exist. 

Let {E ~ (H ) } I { E ~ (H d) ~ denote the spec:r31 fa~ilies of H and Hd 

respectively. 
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Since fer) is in J.-ta..c.(H) ) < ;CI"')) E).(H)fCr-) > is an absolu~ely 

continuous function of A; moreover, since the wave operators above ex:s~, 

(see rKA] Ch.X, proof of Thm. 3.2). It follows tha~ 

* < fe,.), (!l+ E~ (H d ) 11+ )(fCr) '> and, equivalently, 

are absolutely continuous 

func~ions of A , so that n + fer) is in (l~. c.. ( H d ) ( [KA] Ch x, § 2) . 

This implies as we now show, that fer), evolving under H, is evanescent 

in [0, pJ (for terminology, see [APW]). 

Let g(r) be in }l",c. CH d ). 

Now ~ (r-) = { 9 p (I"') I 900 (r)} ) where gp(r) is in L
2

(O,P] and 

Hence 

< {9 p (r), C]GOC,.)} I (E~ (Hp) (£) E,\ (HOC)) {'3 p (I"')) 900(r)}) 

= < 9p(r)) E~{Hp) 

II E>.(H p )9p(r)/1 

9 p Cr)'7 + < 900'''), E,). (Hoc) Sao C!"') > 

+ U E ~ ( Hao) 90c (r) II 

is an absolutely continuous function of A. Since the sum of two positive 

functions can only be absolutely continuous if each is absolutely continuous, 

we deduce that <. <3 p (,.) J E). ( ~p) 9 p(r-» is an absolutely continuous function of 

A , so that g (r) is in 41 (H p )' p Q.c.. 

However, the spectrum of H is singular, so that }t Q. C. (H p) :: ¢ 
p 

and consequently g (r) = 0 
p 

Lebesque almost everywhere on [O,p]. 

Thus if g(r) is in 'I-t".c. (H d ) , g(r) has no support in [O,p]. 

From our earlier remarks, since fer) is in J-tQ,c. (H)) !l.+ fer) 

exist and are in I{ Q. G, (H d ) 

in (O,P] such that 

lim 
t-..,:too 

or, equivalently, such that 

, + Hence there eXlst g-(r) with no support 
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t-'1~oo 

Hence 
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lim fP 1 f () -;Hdi: 1" ( )I:z. J
o 

~ r- - e 9 - r dr 
t-')~OO 

=.0 

+ which implies, since g-(r) have no support in [O,p], 

li m S P I f (r) I ~ d r = 0 
t--->"too 0 t 

as was to be proved. 

Proof of (i i) : 

We first use the Riemann-Lebesgue Lemma to show that 

LiM 

11:1....,00 J 
p 0 

I f tN (r) I ~ dr = 0 
o 

for fixed P in IR ~. 

Now is integrable with respect to A 

on [0, NJ for each N e IR. + and each r in (0, 00 ) ; to see this note that 

by (5.2.10) and Lemma 5.4 

-' IN )¢()..}1 
d~ 

IT" 0 5 

• 

SN 190.) F()"') I r d~ :: 
0 Tr~ 91(~) 

- IN 1 .9()..) F()..) I d,O'0 .. ~ 
0 

~ ( J N 94 (}..) d p( ~ )) ~ (S N 
o 0 

I f'().. ) \:z. dP-(>,,)) t. 

N I 

~ (~S ~ d>.) ~ /I f (,..) II 
1T"o~ 

(5.3.8) 

Hence f tN (r) converges pointwise to zero as It I ~ 00 for each 

fixed N in IR~, by the Riemann-Lebesgue Lemma ([HSI 16.36, 16.37). Since 

for all r in (0,00) 

d>. 

(5.3.'3) 

by (5.3.8), we may use the Lebesgue Dominated Convergence 7heorem to conclude 



tha1: 

Lim 
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for all N in lR'or and all P such that 0 < P < 00 • 

Now, if €. '> 0 is given, there exists N £ su·ch that 

< e. 

• 
for N "> Ne, since the L2 (0, (0) convergence of {ft;N (,.) } 

(5.3.10) 

uniform over t. It follows from (5.3.10) and the arbitrariness of E 

that 

lim 
1t:.14oo 

as required. 

S 
p 0 2-

o 1ft (ro) I dr - 0 

Proof of (iii): 

We first show that for each fixed n in IR or 

soo 
p 

o 

, f tFl (r) - f t n (r) I ~ d r 

converges uni formly over t to 0 as P ~ 00 , where 

-iAC 1 
e. Vs (r

l 
)..) ¢ (~) - d).. 

~ 

e. -i~c Sin (~ (' + eH)..)) ¢ (),.) ~ d~ 
G 

We use the fact that V (,.) = 0 ( r - (I + E)) as r ~ ao 

o 

I f t.n (r) - ft:n (,.) 11 :a 0 ( r -, I ... E)) as r ~ 00 • 

Now by (5.2.9), (5.2.10) and Lemma 5.4 

to show that 

~ (In ':ls((').) - 9{).) SI·n(..J>:.r -+-J'(>..)) F(A)I dP"'(A))2.. 
~ 
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~ II f ( r ) 1/ (J n I 'j 5 (r J ~) - 9 (). ) S I'" (.p:: r + c5 C\ )) l:l d,o ( ~ )) 
}-n 

From the proof of Lemma 5.3, in particular (5.2.7), 

Hence 

n f
l/n 

I 'j s C,., A) - ':J (.)...) si n (r>: ,.. ... cf ( A) \2. dp 0, ) 

(5.3.11) 

f n ItO . 1-
~ n I 511'\(~("-p))V(p)'js(rJP)dpl dp()..) 

\;n r 

Since V(p):. 0 (p-{I+E)) as p~ 00 I sin (,JXlr-p)V{p) 

is in L2(O,~) for each fixed r > 1. Hence if we define 

{ 

ainC5lr-p))V(p) p~'" 
n,.(p) = 

o p<r 

then 

-for each r ~ 1, where 5 is the transform of Theorem 4.9. Consequently, by 

Theorem 4.9, 

as ,. -t 00 Using this result in (5.3.11), we see that, as r ~ 00 

o '1 ( -Cli-&)) 
I of ~n (r) - f i: n (r ) I = 0 r 

uni formly over t. Consequently for each fixed n in ~ + , 

ftC 
P 

(5.3.12) 
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converges uni formly over t to 0 as P ~ 00. 

We now deduce (iii). 

s c 
Let H and H be the self-adjoint operators described in Lemma 5.5, 

o 0 

and let {E:} and {E~} denote their respective spectral families. Let ~ E } 
l. }.. 

s c 
denote the spectral family of H, and E(n), E (n), E (n) denote (E _ r ) n 'I ' 

n 

(E s _ E s) and (E c _ E c) t' I respec l.ve y. 
n 1 n 1 

n n 

Proceeding as in Lemma 5.5, we have for all t and n 

S
ao • 1 I 

( p I of 1:" (r) - f I:n ( r ) I d,.) 1: 

~ (J pao , ( f t (r) - f I: n (r")) - ( f to (r) - f t" ( r)) 11 d r ) i 
o 0 

~ IIft,(r)--tt:n(r)\I + !\tt::(r) -fl:n(r)\I 

( -iHt: II II( 5 ~ -tH~c 1\ II Co -iHC.t: ~ U I-ECn))e f<rl + I-E (n),e hs(r) + tCI-E(n))e 0 hc.(r)/1 

and /(\.c.(H~) 

respectively, each of the terms in the final right hand side converges to 

zero as n ~ 00. From this result and (5.3.12) it follows that 

uniformly with respect to t, as required. 

This completes the proof of (iii), and hence the lemma. 

With the notation of Lemma 5.5, 

0 0 • 

f t: N (r) :: f ~-tN (r) + f 1:: (r) (5.3.13) 

where 

o + 
f -l:N (r) (5.3.1.l) 

Moreover, reasoning as in Lemma 5.5, we see that 
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N;oo 
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o + 
f - (l") 

tN 

ecist and are in L2 (0, co ), and that the convergence of 
0+ 
f t (r) is uniform over t. Hence, for sufficiently largE:; N. 

o 0 

and II f t: (,-) - f t N (r) II 

are arbitrarily small for all t. Therefore, from 
o o. 0 • • 

lIf\(r) - ~t+(r) -f~- (r) /I - U f/:'N(r) - fl;~ (r) - fl:~ (r)!1 

o. • • ... 

to 

~ It tt:(r) - f CN ("') 1\ +- II ft:+(r) - f~~ (r)\I T 1\ f;(r) - fl:~ ( ... ) 1\ 

and (5.3.13), it follows that for each t 

o 

.ft. Cr ) = (5.3.15) 

Lebesgue almost everywhere on (0, ao ) • 

We now show that ft(r) converges strongly to ;~+(r) at large positive 
o _ 

times and to f
t 

(r) at large negative times. 

o 

5.7 Lemma: lim It f
t 

(r) - f t± (r) II 'C 0 
t: ~!: 00 

where 

t
°:t l .,...... I IN -iAt: ti(~r -"IT ... c5(~)) ¢( ) I d" 

(r) = ...... - e. e. ~ >- - "-
of: N4GO 2.1T 0 ~ 

Proof: 

It is sufficient to prove that 

o -
IIf+Cr)/I::.0 

i; 

on account of (5.3.15); we first show that 

o 

liM flf;(r)U = 0 
~~+oo 

1 

It is convenient to substitute >- 2 k 

gives 

l.i.m. 
N ~ 00 

• 
in the expression for ft-(r); this 

Using the theory of Fourier transforms, we shall prove that for each E) 0 

there exists a step function 0(. X· , I 
wi th compact support in (0,00) 

for which 
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n I 

L 0(, X· ) dk Il.d,- )'i 

o 

< E 
3 

i: I ' 1 

(5.3.16) 

IIf t:(r)U may then be approximated with arbitrary precision by a finite 

sum of time dependent functions; we complete the proof using the Riemann-

Lebesgue Lemma to show that each function in this sum converges to zero as 

Now by (5.2.13), 

Hence, since the step functions are dense in L 1 ( 0 I <X») ([HSJ ,Thm.13.23), 

we may deduce that if e.) 0 is given, there exists a ) 0 and a step function 
n 

1: ex.X, , 
i :: It' 

which vanishes outside [a,bJ for some b > a, such that 

(5.3.17) 

We now derive (5.3.16). 

Let N in IR + be such that From (5.3.14), 

o ",'/2. k:z. _'(&,Ck")_1!:) 

f - = ..L S e- i kr ... -i t n.. (k2.) e 1 2. d k 
tN (r) .... 't' 

1r 0 
(5.3.18) 

-i k'll:,./... '1) -i lcHk'1) - ~) 
Now e 'f'(k e is both integrable and square integrable on 

~ ( 0 ,N 2) (c f . ( 5.3.8) and (5.3.9». Hence, defining 

{ ¢ (k4) ~ on (0, N 2) 

¢N(k'l) = 
0 otherwise 

it follows that 

_ik'1l: [ ~ -i(oO<")-!f) 
n 

L 0( i Xi ] (5.3.19) e ¢NCk)e. 
i = I 

is in L, (0,00) n Ll,(OJ oo ) so that 

N Yz. 1 1f" t\ 

- i k,. _ik1. t '1 -i ( d (K ) - "1 ) - L 0<. 'X, ] dk , 
So ( ¢N Ck ) e. - e. e . " If 1:\ 
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A 

is the Fourier transform ftN(r) of (5.3.19). Hence, by the i~ometric 

property of Fourier transforms ([HS] 21 W2) d (5 3 17) • ..J ,an •. , 

=(j<30 I - ik1t l¢ (1) -i(O'(k~)-1f) ~ ]1 1 )1 e N k e - ~ 0(. x.,. dk 
-(I() i = I 1 I 

~ (S N Ill, I ¢ (k 1.) e -i (ere k~) - I) _.!. 0(' X. 11 d k ) t 
o I ~I I I 

( J 00 I rio (k'l.) e.- i ( d( k 1.) - ~) ~ 2..L 
~ ~ - L. 0(. X· I dk ) 1. o . I I I 

< !. 
3 

1= 

which proves (5.3.16). It follows from (5.3.16) and (5.3.18) that 

n (leo I f -ikr _d(2.t; \1. ) 1 
I 0( i I \ 0 :t. e e d k dr + ~ 

3 
I 

(5.3.20) 

where we note that )C. is the characteristic function of the interval I .. 
I 1 

We now show that each of the finite collection of terms of the form 

-ikr -i k~t (2. ) ! 
e .. dk d,. (5.3.21) 

converges to zero as t -t + 00. 

of 

and 

Consider the ith term and suppose I. = (a. ,b.). From our construction 
111 

1'\ 

L 
i'a J 

(){. X. 
I I 

OJ ~ a > O. 

2 
Now, since A = k , 

b~ _ik2. t 
e dk S 

j -i>d: 
:::. 1. e 

Qj 

e. 
. r.­

-1'IIAr 

d~ 

2 2 
is integrable with respect to ~ on (a. ,b. ) for each r in 

1 1 

(0, 00 ) • Hence, by the Riemann-Lebesgue Lemma, I II. e.-ik ,.. e-ik't: dk 11 

I 

converges pointwise to zero. 
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Moreover, using integration by parts, 

IS e- ikr e-
ik1

t: dk I 
I-

_ I Sb; I ~ e" p ( - i (k r + k ~ l; )) d k I 
-i (r+ 21.<1:) dk I Qj 

= I l 
+ 

r + laj t 

3 

r + 2 a.t 

Hence for t ~ I J is dominated by ( 3 )1. 
r -to 20. 

which is in L I ( 0 I 00 ) and so by the Lebesgue Dominated Convergence Theorem 

( 5.3.21) converges to zero as t --1 00 for each i = l, ... ,n. 

It follows from (5.3.20) that there exists T ~ 0 such that for all 

o 

II f t:~ (r) II < 
2.E -3 

whenever t "> T. 

Since L. i . m. 
N~oo 

depending on t, such that, whenever N > Nt' 

o • 

II of ; (r) - f t~ (r) II < 
e. 
3 

(5.3.22) 

for each t, there exists Nt' 

(5.3.23) 

Hence for each t > T, we may choose N > max {b
2

,Nt }, so that the inequalities 

in (5.3.22) and (5.3.23) both hold, giving 

o 

IIf~(r)n < e. 

The arbitrariness of £ implies similarly, 

o 

lil"T'\ U.f. T (,-)1l = 0 
t.....,-oo e 

and the lemma is proved. 

It is not hard to see that Lemmas 5.3 - 5.7 also apply in the case of 



161 

the free Hamiltonian in each partial wave subspace. For a fixed par~:al wave 

subspace we take V(r) = l(l+l), and, to distinguish the results for H from 
o 

those of H, denote by -S° 
I a.c:.. 

Note that, with the proviso that a suitable boundary condition a~ ° be 

chosen in the case L = 0, ~Q.c..(Ho) = L'1(O,oo) in each partial wave sub-

space. Hence, if g(r) is in Ll, (0 100)) 

where 

s; 'Js,O (r,A),9(r) dr 

the integrals being convergent in Ll. (0 j CO) and respectively. 

Bearing in mind the comments preceding Theorem 4.10, and the fact that 

absolutely continuous spectrum is preserved under a change of boundary con-

dition (see Theorem 2.21), we note that conditions (i) and (ii) of §1, are 

equivalent to the hypothesis of the following ~heorem: 

5.8 Theorem: Let V(r) be in L1[a,~) for each a > 0, and suppose there 

exists a finite interval (O,b] and a self-adjoint operator Hb 

arising from L in L
2

(0,b] whose spectrum is purely singular. Then the wave 

operators exist and are complete. 

Proof: 

It is sufficient to prove: 

(i) If g(r) in L2, (O ,00) is given, then of:!: (r-) exist in }ta.c:.(H) 

such that 

lim 
t~~OO 

e.-
iHt f -: (r) 1\ = 0 

(ii) If f(r) in ~4.c..(H) is given, then 9't (r) exist in L2, (0, 00) 

such that 

li M 

t ~! 00 
It - i Hot:. +) - i Her ( ) n 0 eo 9 - (r - e T" == 
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Proof of (i): 

Let g(r) in L 2. (O,~) be given. 

Then by (5.2.14) 

-i~ot l' I SW -i)..l: 9 -to (r ) : e 9 (r-) = ,I. m. - e " (,. ~) ¢ (~) .L dA 
t..I.)~OO 1f 0 5,0 I 0 .rx (5.3.24) -

where ¢ (A) = 6'0 (~) Moreover 
o 90 ()-.) 

0;-- L I J'" -iAb ".t(J>:r--"1T",+cSo ().))¢ , a - (,..) = . I. m . (" \ 
Jt i.U-+ 00 'i1r 0 e e 0 f'J 

~ 
d~ 

is well-defined (cf. Lemma 5.5), and by Lemma 5.6 

lim II .. 1" 11 
i; -)":too 9-c(r) - ~; (,..) = 0 (5.3.25) 

We now show that there exist states f(r) and h(r) in d-'to"c., (H) S'...lch 

;. • 0+ .+ 
that with the notation of Lemma 5.6 Ti:-(r) = 9~(r) ) he (r-) = 9t: (r). 

SeO 
o 

Applying Lemma 5.4 in respect of Hand H , 
o 

9 
()..) 6-

0
(>,) eo"t i CO'C)..) -aoe).)) , dp (}..) 

90 ()..) 

':leA) fr.c>,) [ 2 __ 1 __ 

9o(~) If' JK 92.(>.) 

dA 

Jl
9

(r)U:z. 

so the functions 

.... 

(5.3.26) 

are in L; ( 0 J 00 ) Hence by Proposition 5.1, (in particular, by the 

-surjective property of 5
Q
.r.)there exist f(r), h(r) in l1 a.c..(H) such that 

9 (A ) fro (>.) e. -to i (0 (A) - <5 0 (~ )) 

9o().) 

9 (A ~ fro (A) eo -i ( <5' C>- ) - croc A)) 

90 (~) 

(5.3.27) 

(5.3.28) 



Evidently by (5.2.14) and (5.3.27) 

= 

e.- iHt fer) 

l. i.m. 
('u~QO 
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so that with the notation of Lemma 5.6, 

Sw -i>.i: -i (..[Kr- - "[ T c5().)) ~ () Ti(o(>..)-oo().)) 
e e. 2. 'fJ ).. e. ..LdA 

o 0 ~ 

0 
l. i. m. + t- ( r ) I - -w-t OO If 

= g; (r ) 

Hence by Lemma 5.6 

lim II e -iHt:. 1=(,..) 
CI _ 

- 9t:(,-)1I ::. 0 
t --) - co 

and, similarly, 

Setting f-(r) = f(r), f+(r) = h(r), the result (i) follows from (5.3.25). 

Proof of (ii): 

The method of proof is identical to that of (i); we note that in this 

case the surjective nature of the transformation 
"'io 
5 a.c.. from 1t Q. e. (H 0) = L l. ( 0 J CO ) 

+ . ensures that the elements g-(r) eX1st. 

The proof of the theorem is now complete. 

Using the proof of Theorem 5.8 we may deduce explicit formulae for the 

wave and scattering operators in each partial wave subspace. We remark that, 

in general, 
- ,.yo 

9 ( A ) » 9 0 ().., )) 5 Q. c.. , S Q. Co. etc. are dependent on the decompo-

sition point used in the simplification of the Weyl-Kodaira Theorem; we chose 

this point, arbitrarily, to be r = 1. However, for almost all A in (0 / aD) , 

ys(r,A) is, as a function of r, uniquely defined up to a multiplicative 

constant; therefore, since ys(r/A) --) 9(>-') sin (..J>::'r-+O(A)) as r-;oo 

by Lemma 5.2, O(A) (and similarly 0o(A) ) is independent of the decomposition 

point. With this in mind, we have 

5.9 Theorem: With the hypothesis of Theorem 5.8 
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... ioo ()..) 
S(}..) ov -I e- -Sl.+ = ( 5 Q.C:. ) 1:. i c)()..) 

5 Q.c:.. 
e. 90 (~ ) 

-0 -J 2i (O'(A) - 00 (>-.)) -S - ( S ) e. SO 
Q. c. Q.c.. 

Proof: 

If g(r) is in L2. (0,00) :: I{tl.c:.(H o) we have from Theorem 5.8(i),(5.3.27) 

and (5.3.28), 

Jl! g(r-) = SLim iHt -iHot . . e e. 9(r) 
t.-,!:CXl 

= f ± ( r) 

_ (S~.c.)-J (e t °o().) 90-.. ) 

~:t ic5'(>.) 9o{).) 

Similarly, if f(r) is in}l (H) 
Q. C;. I 

and so 

S. l.·m. e. i HI) t:. e -i He fer) 
t:.~~oo 

G. CA) ) 

*= 5 -=.n n -+ 
= { SO )-1 e. 2, (cSCAl - °0 ().) S 0 

Q. c. Q. C. 

as required. 

This completes the proof of the theorem. 

It is straightforward to check that the wave operators are isometric 

(see, for example, (5.3.26», and that the scattering operator is unitary. 

From the definition in SI, we see from Theorem 5.9 that the partial 

wave phase shift is 

where O(~)is defined by 

tan (<S(A) + 5) :2 f!(~~ 
~(~) 

(5.3.29) 



165 

f3 ().) and to,) being as in (5.2.5) and (5.2.6) respectively. Defining 

in a similar way to ~ ().. ) l ¥ (). ) wi th m ()..) v (r-). ) 
0,0 IJS,O' , 

in place of moe>-), )'5(r-,)..) and V(r) respectively, 

t Cl.n ( 6
0 
(~) + ..0:) _ f3 0 ( A ) 

¥o()..) 

Hence the partial wave phase shift is given by 

(5.3.30) 

( 0(> .. ) - eS o (}..)) _ 1:an- J (~{).) (S'o(~~ - "doO,) (f().. ~ ) 

~o ().. ) ,8 ( )..) + If 0 ()..) ~ ().. ) 

Provided conditions (i) and (ii) of §1 are satisfied in each partial 

wave subspace, the existence and completeness of the wave operators for the 

full three dimensional problem is now immediate from Theorem 5.9. 

Therefore, indicating the l-dependence of cS (~) I 6
0 

( ).. ) by cS ( ). ) L ) 

and 0o(}..,L) respectively, we have the following formulations of the S-

matrix and of the scattering amplitude from (5.1.8) and (5.1.9) 

5 ( >.. ) 2-
l, m 

f(>..: Gt.) 4~) 
-, -2. 

Our result includes that of Green and Lanford and significantly extends 

the class of potentials considered by them. We note that it may be possible 

to relax the condition on the potential at infinity so as to include all 

potentials which are in L [a,~) for each a > O. This has been achieved 
1 

by Kuroda for the class of potentials satisfying Green and Lanford's conditions 

at O. ([KU2]). It is certainly possible to weaken the condition at infinitj 

so as to include all potentials for which 

for r > O. To see this, note that (5.3.31) implies that 

00 

[,. fa [ V (p I]' d p 1" + 

(5.3.31) 

J
OC

r 
1. 

l V (r)] d,­
k 
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< 00 

where we have used integration by parts. This is sufficien~ to ensure the 

validity of (5.3.12), and hence of Lemma 5.6. 

We observe that our proof of the sufficiency of the condition 

VCr) -_ O(r-C1+e.) . d 1S consi erably simpler than that of Green and Lanford 

( see [ GR] § IV) • 

54. An example of discontinuous scattering amplitude where the 

theory is asymptotically complete 

It is known that in many cases where the wave operators exist and are 

complete, the scattering amplitude is a continuous func~ion of the energy 

(see, for example, [AJS] Prop.11.16, [D] [LE]). The question arises 

whether this is true whenever the wave operators exist and are complete. 

We must first consider what we mean by continuity in this context. From 

our proofs in § § 2 and 3 it will be seen that for each L, 5 l ( ~) = 
e)(.p(2.i(cS(A)-c5o(~)) is defined for those >..,0 for which m +-(~,l) and 

o 

mo,t().,l) exist as finite real limits. However, since each such Sl(~) 

is unitarily equivalent to the scattering operator in a given partial wave 

subspace, the Sl (~) we have considered is, strictly speaking, a particular 

representative of an equivalence class of functions under the norm 

00 'A 112. ( So I· l a X 2. d ~ ) . To enquire whether, for a given L, 5 l (}.) is a continuous 
-rr 

function of A is more precisely, therefore, to enquire whether the equivalence 

class containing 5 l (A) contains a continuous function. 

Now the scattering amplitude (5.1.9) can only be a continuous function 

of energy if each term 

( 2 l + , )( 5 l (~) - I) P l (~\ . ~ z. ) 

is a continuous function of ~, so in order to establish discon~inuity of 

the scattering amplitude, it is sufficient to prove that just one of the 

terms Sl ( A) is not continuous. 

In this section we use the inverse method of Gel'fand and Levitan to 
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show that a potential exists for which the equivalence class containing S (~) 
o 

does not contain a continuous function although the wave operators exist and are 

complete. 

The following definitions will be of assistance when describing and 

assessing our findings. 

5.10 Definitions: 

(i) A function p C ~) , defined Lebesgue almost everywhere on a subset D of IR 

is said to be extendably continuous on D if there exists a function ~(~) 

which is everywhere continuous on D such that p(~) = '\ (~) whenever p(~) 

is defined. 

(ii) A function p(~) , defined Lebesgue almost everywhere on a subset D of IR 

is said to be essentially continuous on D if there exists a subset E of D 

having Lebesgue measure zero such that the restriction of p (~) to D' E is 

extendably continuous on D. 

(iii) A set is said to be nowhere connected if it contains no connected subsets. 

Clearly extendable continuity implies essential continuity, and a subset 

of IR is nowhere connected if and only if it contains no intervals. 

In Example 5.12, the behaviour of the potential in a neighbourhood of 0 

is such that S (A) is defined on a domain which is nowhere connected in [0,1], 
o 

but which nevertheless contains almost all the points of [0,1], and, as we 

shall show, S (~) is not essentially continuous on [0,1]. First, however we 
o 

establish that a class of potentials exists for which the spectrum of H1 is 

bounded and is dense singular on [0,1]. 

5.11 Lemma: Letf(~) be a real monotonically increasing function on ~ with the 

following properties: 

(i) fCO) c 0 

(ii) p(~) is discontinuous at each point of a countable dense subset of [0,1], 
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at each of the points ~ t'\ = (lr n) 2. and at A 0 = -, 

discontinui ties of fJ C)') • 

these are the only 

(ill) fJ ( An"') - P ( ).. n -) = 2. 

(iv) D (00) - JO_.e.C-co) 
,- Q. e. , ... , ('s.c. (00) ::; Ps.c.. (-00) 

o 
Then there exists a potential VCr) on (0,1J such that p().) is the spectral 

02 0 

function of one of the self-adjoint operators arising from L =-d + VCr) in 

dr2 

L2(0,1J, r = 1 being a regular endpoint. 

Proof: 

We adapt the inverse method of Gel'fand and Levitan who consider the 

inverse problem on a finite interval [O,l) with a boundary condition at ° 
([GLJ §10). We wish to consider the inverse problem on the interval (0,1J 

with a boundary condition at 1, so shall make use of the transformation 

s = 1-r which maps the r-interval .(0,1 J onto the s-interval [0,1). Since 
o 

, for given VCr) the equation 

-- ~ u(r,~) 

with boundary conditions u(1,~) 
, 

= 1, u (1,~) = h transforms to 

(5.4.2) 

_, NON 

with boundary condition u(o,~) = 1, u (0,).) = -h where V(s) = V(1-s), u(s,~) = 

u(1-s,A); similarly (5.4.2) transforms to (5.4.1) using the substitution r = 1-s. 

It is not hard to see, using Theorem 3.21, that the self-adjoint operators 
o ow 

H1 and H1 associated with (5.4.1) and (5.4.2) and their respective boundary 

conditions have the same spectra; for the existence or otherwise of a certain 

type of solution of (5.4.1) at each point X is not affected by our transform­

ation. (Note that, as it stands, Theorem 3.21 applies to the r-interval [0,-), 

° being a regular endpoint; however, it may be modified in the obvious way to 

apply to each of the intervals [0,1) and (0,1J, with ° and 1 respectively 

being regular endpoints). 
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o 
Thus if X is an eigenvalue of H1, with corresponding eigenvector u(r,~), 

'V 

then X is also an eigenvalue of H1 with corresponding eigenvector u ( 5 , A) 

and conversely. Moreover, 

JI 1-

- lu('-s,~)1 ds 
o 

so that the norms of these eigenvectors are equal for the same eigenvalue~. 

Now suppose that ~(A) is a monotonically increasing saltus function which 

"" IV 

is known to be the spectral function of H1 for some potential V(s) and some 
~ 0 0 ~ 

h in IR ; then 't(~) is also the spectral function of H1 for V(r) = V(1-r) 
,.., 

with boundary condition h = -h. To see this, note that since ~(A) is a saltus 

function, the spectrum of H1 consists solely of eigenvalues and their accumu-
o 

lation points. By our remarks above, the spectrum of H1 consists of the same 

eigenvalues and accumulation points; moreover, the "jump" in the spectral 
o _ 

functions H1 and H1 will be the same at each eigenvalue, since the spectral 

measure at an eigenvalue is the square of the inverse of the corresponding 

eigenvector ([GL] p.253). The relationship between the boundary conditions of 
o IV 0 _ 

H1 and H1 is a consequence of the relationship between V(r) and V(r), as 

indicated above. 

Therefore to show that the function pCA) in the hypothesis is the spec-
o ~ 

tral function of some H1, we need only show that there exists a potential V(s) 

and an h in ~ such that p(~) is the spectral function of the corresponding 

-operator H
1

. Sufficient conditions for this to be the case are as follows 

(see [GL] § 10.2): 

(1) For each s < 2, the integral 

J 
0 

co sn .Ji>J s dp(X) 
-00 

exists. (Note that the upper limit of integration differs from that given in 

[GL]§10, which appears to us to be in error (cf. [GL] §4)). 

(2) If o-().) - f'(~) -~,J"X for ~ ~ 0 , the function 

Q(,,) = I oo C.06~S dCT(~) , ~ 

has a continuous fourth derivative if 0' s ~ 2. 



170 

We note, firstly, that the existence or otherwise of the integral in (1) 

is independent of the behaviour of peA) in any finite interval, and, secondly, 

that the existence or otherwise of a continuous fourth derivative of a(s) on 

[0,2] is independent of the behaviour of pC)..) on (-(10,1]. Therefore, provided 

p<>') is chosen suitably for ~ '> I , and has an infinite set of points of 

increase on some finite interval ([GL]§§4,10), it may be otherwise arbitrarily 

chosen on any finite interval whose right hand endpoint is 1, and be constant 

on (-~,c] for some c < 1. That conditions (ii)-(iv) of the hypothesis are 

sufficient to ensure suitable behaviour of p(X) for ~ > I , so that (1) and (2) 

above are satisfied, follows from the discussion in [GL] §11; this concludes 

the proof of the lemma. 

We remark that the asymptotic behaviour as >.~~ of a function pC~) satis-

fying conditions (i)-(iv) of Lemma 5.11 is such that h ~ ~ (cf. [GL], loc.cit.) 

or, equivalently, ~ + 0 (cf.(2.3.9)); this fact will be used in Example 5.12. 

It follows from Lemma 5.11 that if p(>') satisfies conditions (i)-(iv) of 
o 

the hypothesis, then a potential VCr) and a boundary condition h exist such 

that peA) is the spectral function of the associated operator H1 in L2(0,1]. 

If we retain VCr) but alter the boundary conditions to u(1,~) = 0, u'(1,~)= 1 

(that is, equivalently, to h = ~), the essential spectrum of the modified 
o 

operator H1 is the same as that of H1 ([DS] Ch.XIII, §6.6). Moreover, abso-

lutely continuous spectrum is preserved under a change of boundary condition 

(see Thm. 2.21) so the spectrum of H1 is also purely singular. It follows that 

H1 has dense singular spectrum on [0,1] (note that H1 is defined here in accord-

ance with the notation of Chapter IV). 

Now let 

{ 
0 

V ( ,. ) o < r $ 

V (r 1 t:: 

0 r , , 

and let H be the unique self-adjoint operator arising from the differential 

2 expression L = -d + VCr) in L 2(0, co ). 

dr2 
Note that L is limit point at 0 since 
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the spectrum of H1 is dense in [0,1J (see [CLJ,Ch.9, Thm.4.1), and since VCr) 

is continuous on (0,1 J ([GLJ § 10), VCr) is in L1 [a, 00) for each a > O. More-

over, as we have noted above, the spectrum of H1 is singular, so the wave 

operators exist and are complete in the partial wave subspace l = 0 by Theorem 

5.8. 

We now use these facts, together with the result of Lemma 5.11, to con-

struct a specific example where the scattering amplitude is a discontinuous 

function of energy while the theory is asymptotically complete in the partial 

wave subspace l = O. We shall subsequently deduce that, for this example, 

generalised asymptotic completeness holds; that is, in every partial wave 

subspace the wave operators exist and are complete. 

5.12 Example: Let peA) satisfy the hypothesis of Lemma 5.11. Then there 

exists a potential VCr) which vanishes for r > 1, and an ~ in (O,lr) 

such that p( A) 
2 is the spectral function of -d + VCr) in L2(0,1] with boundary 

dr
2 

condi tion C(. at r = 1 ( cf. ( 2 . 3 .9) ) . For such a p ()..), by (2.3.4), 

m ('Z) - JOO dp()..) 
+ (.0 i: ~ 

-GO ()..- z.) 
GO 

(fj (5.4.3) L + (.O~ 0( 

". = I (x" -, 'Z. ) 

where lx i} are the points of discontinuity of p (~), and "t j 1I:'p II Xi}) 

for each i in IN , fA- being the spectral measure generated by p (~). Moreover, 

GO 

1m m(z) :c r 
i = I 

-~) 0 

as y J. 0 Lebesgue almost everywhere on fR, where z = x+iy, x, y 61R (cf. Ch.II 

83, esp. Cor. 2.7,and Lemma 2.13). Note that this function m(z) is not only 

equal in absolute value to the function m(z) associated with the analogous 

-operator H
1

, but also has the same sign. This is because, although the sign 

of the boundary condition at r = 1 is opposite to that of the boundary condition 

of H1 at r = 0, the regular endpoint is to the right of the singular endpoint 

which has a further sign revers ing effec t (cf. [ CL] Ch. 9, § 5, Ex. 1 ) 

For every potential VCr) arising in this way, the wave operators exist 

and are complete in the partial wave subspace l = 0, as we noted earlier. To 
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show that a potential of this kind exists for which the scatteri:-,.;: a."1pl:' "cllc.e 

is discontinuous we prove: 

(i) the t 'J i ~ may be chosen so that as y '" ° 
00 l5'. , 

+ cot: 0(. me%.) ~ L 

Lebesgue almost everywhere on IR. We deduce 

(ii) the tti } may be chosen so that the phase shift o(~) is not an 

essentially continuous function on (0,1). 

Note that for x. > 1, 
l 

~i = 2 by condition (iii) of Lemma 5.11; however. 

5= { ~. : x· £ [O,I]} may be chosen quite freely, subject only to 
I , 

l5'. 
I 

¥. E. 5 
I 

<00. 

Proof of (i): 

We first show that the { ~; } may be chosen so that is in L~ (-oo,ctJ) 
~ - x 

for Lebesgue almost all x in IR , and to this end we prove that if 

~. , < 2. 2i + 3 

for each i such that x. e [0,1], then 
l 

I~ 
00 

dp(~) i. ~. 
< cfj - I 

-00 '''-xl i ::2 I I )(i - x I 

for Lebesgue almost all x in IR 

Let X denote {i e. IN : X i E. [0, I J } . 

Then if i E. X, 

( ¥. 
K(lX: ' 

I Xj -)t.\ 2. ; + I ) = ",(tl' I Y.j -xl <. 2rj Z i+I}) 

< 

by (5.4.4), where K denotes Lebesgue measure. Hence 

K ({ x 
i e 

~ 

< 

< 

L 
lr· , ,. 

X , i ~ k I x· -x \ , 

I. t< ({ X 

" E. X I ~ k 
00 

L. 
i = k 2 i -+ , 

I ,k 

2k 
} ) 

~. 
I ., 

2.', + I I xi - )( I 
} ) 

lR S} ~ f h :( ;n IN , Moreover, for each fixed x in \ l)( i , 3T'.l. or eac ~ 
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k - I 

L ~. 
I < 00 

i = I lx- -xl 
I 

and, by (5.4.6), 

cr· , 
i EX' ..... k 

J I ~ I x· - x \ , 

except on a set whose Lebesgue measure is less than 1 . Hence 

2k 

lr· I < 00 

i e X I x· - X \ , 

except on a set whose Lebesgue measure is less than 1 Since k E. IN 

may be chosen arbitrarily, it follows that 

(5.4.7) is true for Lebesgue almost all x in IR. 

To deduce (5.4.5), we need only note that 

co 

[ ~. 
I 

)A(~-I}) '-I -x , 
+ L 2. 

<. 00 (5.4.8) 
l: IN, X n =, Ix· - x I , 

for Lebesgue almost all x in IR. 

Now since Imm(-z) --'t 0 as y J, 0 for Lebesgue almost all x in IR, 

lim 

'j -l- 0 
m (z.) = Sal 

-00 

c~ - x) 
------ d,o(~) +- Coot ClC. 
(~-x)~ +"'12. 

for Lebesgue almost all x in lR. If V denotes the set of all x in IR for 

which (5.4.7) and (5.4.8) hold simultaneously, then K.(R, V) = 0 and, 

since for each y =F 0, 
()..-x) 

is 
I" - x I (A-X)~ + 

integrable with respect tOil for each x in V and each y > 0 by (5. 1 .5). There-

fore, the Lebesgue Dominated Convergence Theorem may be applied to :he ri,-:--:t 

hand side of (5.4.9) to give 

li "' m (z.) t: dp ().) 
+ c..ot oc. = 

'j ~ 0 ( A - x ) 
00 

2(. L. c..o t ~ - I + 

I = 1 < x-, -x) 

for Lebesi;ue almost all x in IR: this corr.pletes t:-;'e proof of (i). 
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Proof of (ii) 

We prove that a sequence {¥' i } exists such that, if cS(x) were to be 

essentially continuous, then m+(x) = + 
- ~ Lebesgue almost everywhere on [0,1] 

which is impossible since m(z) converges to a finite limit Lebesgue almost 

everywhere on IR by Theorem 2. 12 (i) . 

Our strategy will be achieved if we choose {x i} and { ~ i} in such a 

way that {Xj 1 is dense in [0,1J and for each K > 0, every neighbourhood of 

each x. E [0,1J contains a subset of positive Lebesgue measure on which 
l. 

Im(z)1 ~ K. In view of (5.4.8) and the fact that cot 0( < 00 (see remarks 

following Lemma 5.11) it suffices to prove that every neighbourhood of each 

x. in [0,1J contains a subset of positive Lebesgue measure on which 
l. 

~. 
I ~ K. 

Xi - X 

Consider {Y j } for which 

l· I (5.4.10) 

for each i € X. Clearly I < 
( 2 ") i 

I for each i ~ X, so the conclusion 
2 2i + , 

of (i) holds. 

Let )( j E { Xi} n [0, I ] and a neighbourhood N. of x. be 
J l. 

fixed, and suppose K > 0 is chosen arbitrarily. Since l: 
i£X,;~j-1 

is continuous and hence bounded on every sufficiently small neighbourhood 

of x., we may choose C ~ K and U j = [x j - d , x j + cS] So N j 
J 

such that 
~. 

J = 2C and -
c5 

y. 
I <. C on u· 

l· I 

LEX ~i J 
,j-l Xi - X 2. (5.4.11) 

Then 

r· J ~ 2C on U· 
J 

)c. - X 
J 

(5.4.12) 
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< 2 C 

and by our choice (5.4.10) of t ¥ i } 

K ( {x : ~. 
~ 

C 
i eX}) , 

Xi - x 2 1- J +1 

= K ({ X Ix.' -x/ , 

~ 
22 

2 7i + j C. 
It follows that 

K ({ )( L ~. 
I ~ 

i ~ X ) ~ j + x· , -x-

~ L K {{ X 

i £ X I ~j+1 

GO 22 
E L 2 7i T j 

i = j + I C 

< ca' + 4 
2 J C 

and, by (5.4.12) and (5.4.13) 

r· J 

on 

, 

C -
2. 

} ) 

'I. 
I 

R \. u· 
J 

2 

~ 
I x· - x I 

I 

t. 
J -

(5.1.13) 

, i ~ X }) 

e } ) 
2.2 i-j 

(5.4.14) 

K ({ x 2 C }) ~ K ( Uj ) = (5.4.15) - -- 2. "j C x· - X C 
J 

Therefore, by (5.4.11), (5.4.14) and (5.4.15)' 

K.({xe U· L l(. 
~ C } ) I 

K ( Uj ) I < J i eX 2+ 
i *j 

Xi - X 

so that, using (5.4.15) again, 

K ( l X e Nj : L 
ie.X 

~. 
I 

Xi - x 

Since C ~ K, N. contains a subset of positive Lebesgue measure on which 
J 

~. 
I ~ K. I as required. 

i e X X - X 
I 
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The argument above refers to the function m(z) related by (5.4.3) to the 

spectral function p(X) of L = _d
2 

+ V(r) in L2 (0,1] with boundary condition 

dr
2 

~ at r = 1. So that we may avail ourselves of the formula for the phase shift 

6(x) in the case where V(r) = ° on [1,00), viz,: 

l:an ( cS"(x) + JX) 
(5.4.16) 

(see (5.3.29», we require Lemma 2.18 which relates the functions m(z) 

associated with distinct boundary conditions. 

Now the function m (z) = m (z,O) in (5.4.16) is the function m(z) o 0 

associated with L in LiO,1J with boundary condition ° at r = 1 (see Ch.IV, S1). 

It follows from Lemma 2.18 (applied to the interval (0,1J, L being limit point 

at 0) and our conclusiom above concerning m( z) = m (z, 0<. ), that if 
o 

)t. e {x·) n [0,1) 
J ' 

and t > ° are given, then every neighbourhood of x. 
J 

contains a subset S, of positive Lebesgue measure on which mo(x) = lim 
y,1.O 

m (z) exists and is real and 
o 

Suppose now that d(x) is an essentially continuous function. Then (5.4.16) 

and (5.4.17) together imply that 

Lebesgue almost everywhere on [0,1J, from which it follows by Lemma 2.18 that 

m (x.) '= m(x, O() = '!. CIO (5.4.18) 

Lebesgue almost everywhere on [0,1J. Since (5.4.18) is impossible by Lemma 

2.12(i), we have proved by contradiction that o(x) cannot be essentially 

continuous on [0.1J; this completes the proof of the lemma. 

Thus we have used the inverse method to construct an example showing that 

an operator H exists for which the wave operators A! l t4 , H 0 ) 
exist and 

are complete in the partial wave subspace l = ° but the scattering amplitude is 



177 

a discontinuous function of energy. We now show that, if in Example 5.12 

in 

is chosen suitably, there exists a self adjoint extension H of 
l 

+ + V (r) 

for each l = 1,2 •.•. such that 11 + ( H II H ) exist and are com-_ 0 

plete, where VCr) is the potential associated with H. We first require the 

following: 

5.13 Lemma: Let VCr) be as in Example 5.12. Then the self-adjoint operator 

2 H arising from L = -d + VCr) in L2(0,~) is bounded below. 

dr2 

Proof: 
o 

By construction, the operator H1 defined by L in L2(0,1] with boundary 

condi tion ~ at r = 1 has no spectrum for A < -I. We now deduce that in 

(-~,-1), the spectrum of the operator H1 defined by L in L2(0,1] with a 

Dinchlet boundary condition at r = 1 consists at most of a single eigenvalue, 

and hence is bounded below. 

Firstly, since essential spectrum is preserved under a change of boundary 

condition ([EK], Thm.2.5.2) the essential spectrum of H1 for ~< 0 is empty 
o 

since the same is true of H
1

• Suppose that At, ~z. are two consecutive eigen-

values of H1 wi th ~ I <. "z. <. - I. Then mo (z, 0) may be analytically continued 

across the open subinterval (" I ' ~1) of IR - ([CE] §5, Thm.), so that if 

m (x
1

,0) = lim m (x1+iy,0) and mo(x2,0) = lim 
o y.&.O 0 y~O 

mo (X
2
+iy,0) exist finitely, are real and 

- + mO(~110) - Mo(X"O) 

("z - ",) 
- ( A, - X I )( ~ I - )( 2. ) 

where flo is the spectral function of H1· Since the final integral is bounded 

for all x1,x2 in (~" ~2.) it follows that as )(, ~ ~ I 

and as \.. (0) Therefore, by the analyticity of 
)(2. -+ "J. , mo x2' -.., +00 • 
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m (x, 0) across ( A I J A 2. ) , m (x, 0) takes every value in JR as x increases o 0 

from ~I to ~2.' In particular, there exists ~! in (}..., )..2,) such that m
O

().3'0) 

= -cot., so that by Lemma 2.18 (suitably adapted to the interval (0,1]), ~3 

• is a pole of m (z, 0(. ) • However, this is not possible since, because H has no 
o 1 

spectrum in (- 00, -1 ), mo (z, «.) may be analytically continued across (- 00, -1). 

Therefore our supposition that two eigenvalues of H1 exist in (-~,-1) must 

be false, so we have proved by contradiction that H1 is bounded below. 

It follows that K E. IR + exists such that m (z, 0) may be analytically 
o 

continued across the real axis for all x < -K. Since VCr) = ° for r > 1, 

m (z) = m (z,O) = i~ (see (3.1.2» so that the negative spectrum of H (for . . ~ ~ 

notation see Ch.IV, §3) is empty by Lemma 2.13. Hence m (z,O) - m (z,O) is 
• 0 

an analytic function in the region x < -K. Moreover, since there are no 

negative eigenvalues of H., the negative spectrum of H is concentrated on the 

set 

1: ': t ~ E IR -: m 0 ( ~ , 0) = m GO ( " I 0) } 

by Proposition 4.4. To show that I n (- 00 , L) is empty for some L in IR-, 

it suffices therefore to prove that m (x,O) - m (x,O) eventually has the same 
GO 0 

sign as )( ~ - 00 • 

Since mflO( z, 0) = i./Z, 

M ao(x, 0) =-,J-i 

for all x < 0. Moreover, by Lemma 2.18, if x < -K, 

mo(X'O) := lim motz,O> 
'j.J,O 

lim +' eot. at mO(~lo() -- '1+ 0 co t: aI. - ""0('1.,0() 

+ c.ot <" rno(~lo() --
c.ot 0( - "'0 (",0() 

00 "to 
+ c.ot: ~ ] [ r. c. at: ac. I 

+ 
i = I )to - )C. 

I -- 00 

-L If· I 
i = l .xi - ~ 



where we have used the result proved in Exa~ple 5.12(i). He~ce 

1-
- c.osee 0( 

r· ) Xi~)( 
Now, by construction, if }A is the spectral measure of H

1
,A = .)..d{ >'0) a.."".d 

M = ,}A([0,1]), then for x <-1, 

00 

< A M 
00 

L Z. 
(-1 -xl 

+ .... 
(- x) n = 1 lnl.lf't_x. ) 

A+M + f~ 2. 
dn 

(-l -x) (n~1T1 - x ) 0 

<. 

A+M I 
+ 

(-1 -x) J-:::;. 
Hence, as )(. ~ - 00 , 

> 
1 - co sec 0( (I + )() 

Similarly, for x < -1, 

L ~. 
I ,. 

i = I 

Hence, as x. ~ - ao I 

A 

i-x 

A+M 

I - x 

A +M 
1-)( 

M + + 
-x 

cosec.Zoe (I-x) 
0( 

(A + M ) J- x. 

2-
-~) cosec 0<. 

It follows that 

1 
----i) co s ec 0(. as 

+ 

00 

L 2. 
n = I 

2..L -I 1T" 1 
~Qn --

1r ~ 

cot c:(. 

+ 

X --t -00 

Since m (x,D), m (x,D) are strictly negative f:r la~;~ nega:ive x. ~0 
o GO 

deduce that if cosec 2
0( -L 1, m (x,O) - m (x.O) eventually has ::-:,:> same sj o. r GO 0 

as )( ---t - ao . 
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2 If cosec «= 1, cot ~ = ° and we have from (5.4.19) 

< 
1 

Now as )( ~ - 00 , 

+ ~ (( A -t- M ) -
(l-,c) 

(A + M) - .!.. (I - )(. ) 
1r .r=x 

2. (1 - )( ) 
-rr ,J-x 

~A+M-2. 

~ -I 1T' ) 
on ~ 

Hence if A ~ 2, m (x,O) - m (x,O) is eventually negative as )( .-It - (10 
GO 0 

J.'f 2 1 cosec ~ = • 

Thus, whatever the value in (O,~) of the boundary condition ~ associated 
o 

with H
1

, if )A(~ xol) is sufficiently large, the spectrum of H is bounded 

below. 

This completes the proof of the Lemma. 

With V(r) as in Lemma 5.13, it is now possible to establish that a self-

adjoint operator exists for which the theory is asymptotically complete in 

every partial wave subspace and the scattering amplitude is discontinuous. 

5.14 Theorem: Let V (r) be as in Lemma 5. 13 with }A ( { ~ 0') ." 2. and for each 

l = 1,2, •••. let HL be the Friedrich's extension of the symmetric 

semibounded operator 
,.. 

-d~ 
Hl - -drl 

+ V(r) .... 

acting in eGO 
0 

( tR +). Then, if H is the unique self-adjoint extension of 
o 

_d2 in C: (IRT) defined by a Dirichlet boundary condition at 0, the wave 

dr2 

operators .n + (H H) exJ.' st and are complete. 
t' 0 

Proof: 

Since VCr) = O(r-<I-t-£.1) as ,.~ ~ 1 Jl~ (H t ,Ho) exist for each L 

([KS]) and the range of n t (H l , H 0) is equal to the subspace of scattering 

states of H
L
([P4] Thm.3). To establish completeness of the wave operators, 
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therefore, it remains to show that no states are asymptotically absorbed. 

([P4] Thm.2). This will be achieved if we show that no k (: (0, QQ) and 

f! E. d1 Q.c.. (H L ) can exist for which 

lim 
R-a,O 

-iH t: 
llF"'<R eo. L ft 1\ = k 

(5.4.20) 

where l't".c.(H l ) is the subspace of absolute continuity of Hl([KA] Ch.X, 

§2) and F r <. R is the projection operator defined by 

r ~ R 

To prove that no .f '!: .: J1".c..(Hl ) and k > 0 exist for which (5.4.20) is true, 

it suffices to show that for each C ~(O, 00) and f:t E. -U (H) 
~, Q.. c.. l 

-i HL~ 
JI 1=" ... < R E I~Lf<c. e. f:t Il = 0 

where denotes the spectral projection of Hl associated with the 

~-interval (-C,C). 

Now, from Lemma 5.13 and the fact that is a positive operator, 

it follows that the operator 

1\ 

H l = + 

with domain 11 . loT. is symmetric and bounded below for a g 1n ~ 

Hence, if g > 1 is. fixed, ag > 0 may be chosen so that 

UL'tI) 
r:a. 

(5.4.22) 

Moreover, since Hl is bounded below, there exists 'r in IR such that 

for all f in 
,.. aG + 

G) ( H L) = Co ( IR ). It follows that 

~ <f,f~ 

for all f in C: (IR+) I so defining the H L - form norm in C 0
00 

(IR"') by 

II 
1/2-

.") 
s 

where 
A 

( 1. ') <H'- ') +(I-¥)<f,9> T1!J ~ = IT,C,3 

we have 
II f n s ~ II of II 
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for all f in C: (JR"'). Hence if f of n 1 ,.. 
is a Cauchy sequence in the H

L
-

form completion of C 0«:) ( IR + ) (see ego [RN] §124, [WEn §5.5), then if,,} 

is also a Cauchy sequence in ~ = L2(0,~). Also, since Hl is the Friedrich's 
A 

extension ([RN],[WE1], loc.cit.) of Hl by hypothesis,~(HL) is contained in the 
1\ 

H L -form completion of Co
oo 

(fRT ) i therefore, if h ~ 6) ( H l ) I there exists a 

sequence {h.,,] in C: ( IR+) such that 

A lim 
m,n ~ 00 

< H l ( h m - h n ) ) (h In - h n ) ") 1" (I - y) < ( h rY'\ - h ... ) J (h rn - h n ) -+ 0 
(5.4.23) 

By our remarks above, {h n) is also a Cauchy sequence in}{, so from (5.4.23) 

lim 
M,n-+ 00 

where a ,g are as in (5.4.22). From g 

= (, __ ') l(L+l) or _, [UL+I) 
Cj .-2. '3 r2. 

it follows that 

< l(l+l) (h -h ) (h -h ) 
2. ......" J m n r 

o 

V(r))+ Q, 1 
(5.4.24) 

since each term on the right hand side of (5.4.24), regarded as a bilinear form, 

is positive (see (5.4.22)). We deduce that h E a> ( (L (l r+ I)) '" ) so that 

ID ( H L 1 5 [) ( lU l; I)) ~z ) 
To prove (5.4.21), we need only show that for each C in (0,00), 

Fr<R E'Hll<C 

has arbitrarily small norm as R ~ o. Since range ( E IHlJ < c) = G) (H l ) 

for each C in (0, GO), it follows from (5.4.25) that 

F r < REI H l ,< C = F ... <: R l L ( l + I ) ] 1/1 

r 

r 

Now L l ( l i" I ) 1 ~1. E is a closed operator defined on all of ~ = L2 (0, ao ) , 
r IHll<C 

so is bounded by the Closed Graph Theorem ([KA] Ch.III, §4), and, clearly, 

n F r g ~ 
r < R r l ( l + , ) ) '/I. 

R 

l L ( L + I ) 1 IIa. 
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Hence for each C in (0,00), and each l = 1,2, ..• , 

n F,. < R E lH II < C n ~ 0 

as R~ 0, which proves (5.4.21) and hence the theorem. 

Thus the extension in §3 to the class of potentials for which the phase 

shift formula (Thm.5.9) for the scattering operator holds has enabled the 

existence of a potential for which the theory is asymptotically complete and 

the scattering operator is a discontinuous function of energy to be demon-

strated. The potential V(r) is of fllUte range, and is such that the spectrum 

of every self-adjoint operator H1 arising from _d2 + V(r) in L
2

(0,1] is sing­

dr2 

ular and has a dense singular subset. It seems likely that asymptotic complete-

ness and discontinuity of the scattering amplitude can occur in conjunction 

under more general conditions, and that the nature of the spectrum of H1 may 

be of considerable significance in this connection. 
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CHAPTER VI 

THE CONSTRUCTION OF POTENTIALS WITH SINGULAR CONTINUOUS SPECTRA 

S1 Introduction 

Whether or no the mathematical phenomenon of singular continuous spectrum 

has a distinct counterpart in nature, its relevance as a probe for exploring 

the limits and the limitations of quantum theory remains. A considerable 

literature has been devoted to identifying classes of potentials which ensure 

such properties as absence of singular continuous spectrum, asymptotic com-

pleteness of the wave operators and continuity of the scattering amplitude 

(eg. [RS IV], Ch.XIII, [AM], [D] ) but it is no less relevant to identify 

situations in which the familiar behaviour breaks down. So-called pathological 

behaviour not only reveals the existence of limits to established theory, but 

also raises important questions of interpretation and realisability which may 

lead to new predictions and a reappraisal of accepted ideas. 

Such a re-evaluation was undertaken by D.Pearson in "Singular Continuous 

Measures in Scattering Theory" ([P1]). This paper challenges the prevailing 

view that singular continuous spectrum has no physical interpretation, and, 

in the light of supporting examples, suggests that this type of spectrum may 

be associated with a characteristic recurrent behaviour of particles in the 

appropriate energy bands. Crucial to the construction of Pearson's examples 

is a theoretical result concerning the generation of singular continuous 

measures from limiting sequences of absolutely continuous measures. ([P1], 

Thm.1). This enables certain types of potential to be constructed inductively 

f th ' ~.....:ting spectral measure is in such a way that singular continuity 0 e ~~ 

assured; Pearson considered potentials which consist of an infinite sequence 

of potential "bumps" whose separation increases rapidly with distance from the 

origin. Provided the shape and the width of each "bump" remains invariant 

throughout the sequence, and the heights either remain constant or decrease to 

zero at infinity, a sufficiently rapid increase in the separation between con­

secutive "bumps" ensures a purely singular continuous spectrum ([P1], Props.1,2) 
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This type of inductive construction affords an unusual and promising 

approach to the problem of identifying potentials for which the associated 

spectrum is singular continuous. With a view to further extending the class 

of potentials which can be considered in this way, we reformulate Pearson's 

Theorem 1 under more general assumptions in §3, and make a careful comparison 

of the original and modified conditions. 

We note, however, that even without modification to Theorem 1, Pearson's 

method may be applied to demonstrate the presence of singular continuous 

spectrum in situations where the potential does not satisfy the hypotheses 

of Propositions 1 or 2. We illustrate this point in §2 by showing that such 

spectrum can arise when both the width of the "bumps" and the separation be­

tween them becomes arbitrarily large with increase in distance from the origin. 

Our example suggests that slowly oscillating continuous potentials may give 

rise to singular continuous spectrum provided the wavelength of the oscill­

ations increases sufficiently rapidly with distance. 

In order to give a more precise idea of the type of sequence of absol­

utely continuous measures which can converge to a singular continuous measure, 

we construct in §4 a simple example where the value of the limiting measure 

of intervals may be computed exactly. Careful choice of the elements of the 

sequence ensures that the convergence is, in a sense that will become apparent, 

optimal; and the explicit formulae involved show that a precise determination 

of a suitable sequence and of the limiting measure may be obtained in specific 

cases. 

To appreciate more clearly the manner in which Theorem 5.9 extends the 

class of potentials for which the phase shift formula for the scottering 

operator holds, it is desirable to identify specific examples. In Chapter V, 

14, we used the inverse method of Gel'fand and Levitan to show that a potential 

exists for which the ~~ of the ~UxrlBnrestricted to L2(O,1] is dense 
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singular on (0,1) and otherwise pure point. However, although the inverse 

method has wide applicability, as in this case, where confirmation of the 

existence of a potential with specific spectral properties is required, it 

does not provide a straightforward method for determining the potential ex-

plicitly. It may be that a suitable adaptation of the method of inductive 

construction of potentials to the case of a finite interval can provide some 

insight into the type of potential which satisfies the hypothesis of Theorem 

5.8 but is not of the class considered by Green and Lanford. 

§2. A slowly oscillating potential with singular continuous spectrum 

In this section we describe a type of potential V(r) for which the 

spectrum is singular continuous in the A-interval (lim inf V(r), lim sup 

V(r) ) . 

Consider a potential V(r) which alternates between the constant values 

° and 1 on successive intervals of R+ ; ° and 1 are chosen for convenience, 

but any potential which alternates between two ~onstant values on successive 

intervals of 'R~ can be reduced to this problem by change of origin and scaling. 

The lengths of successive intervals I 0 on which V(r) takes the constant 
n 

value zero are chosen inductively to ensure singular continuity on (0,1] of 

2 
the spectral measure of the Hamiltonian H arising from ~ + V(r) on [0,00) 

with boundary condition ~ = 0 (see (2.3.9)). 
dr

2 

{ I n
' 1. We shall show that the lengths of the intervals J on which the potential 

takes the value 1 do not affect the prospect of singular continuous spectrum 

on (0,1) provided they do not decrease with n. We may therefore choose 

for each n, where K denotes Lebesgue measure. 

We shall adapt the method of Pearson ([P1], §3) to prove singular contin-

·t (0 1) For ease of reference here and later, we state U1 y of the spectrum on , • 

without proof Pearson's Theorem 1. 

6.1 Theorem: Let the functions f (k,y) ( Q( , k, f3 , -aD < 'j < 00 , n = 1,2 •.. ) 
n 
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be periodic in y, with period c, continuously differentiable, and satisfy 

(i) f (k,y) ~ const. > 0. n 

(ii) f n (\<) = , Je c: 0 -frt(k':f) d'j = 
GO 

(iii) L - mn (k) = 
n-=\ 

+ 00 , o(,k,,s 

where 

(iv) For N sufficiently large, fn(k,Nk) is an analytic function of k, where 

0(, k ,,~. 

Gi ven a sequence t N i } , i = 1,2,3 ... , of increasing posi ti ve numbers 

with l.·t'I"\ N, 
400 I 

:: co , define the Lebesgue-Stieltjes measures {lin} by 

= S 1: 

n 

v n (r ) 1r ;'. (k, N i k ) d k 
i :: I 

for every subinterval I. of [at I ~ J , 

Then the sequence {N i} may be chosen such that l i I"n V (I.):: 11 (~) 
n 4QO n 

exists for every subinterval I- of l~J~] and defines a singular continuous 

Lebesgue Stieltjes measure on Borel subsets of C oc. J ~) • 

We require the following preliminary result: 

6.2 Lemma: Let INk 1 be an increasing sequence in IR't' such that Nlc ----+ GO 

2 
as k -+ GO , and let v

k 
denote the spectral measure of -d + V(r) in [O,NkJ 

dr
2 

with Dirichlet boundary conditions u(O,~) = u(Nk'~ ) = 0. If the spectral 

measure ~ of _d2 + V(r) in [0,00) with boundary condition u(O, ~ ) = ° is 

dr
2 

continuous, then {V
k

} converges uniformly to)J. over subintervals of arv fixed 

finite interval. 

Proof: 

We show that if fA is continuous and if Eo> 0 and a compact interval I 

of R are given, then K in tJ exists such that for all subintervals I of I 
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whenever k ~ K. 

IffA is continuous, we may subdivide Il.'nto f" a l.nl.te number p of dis-

joint intervals { Ij} , j = 1, ... p, such that 

)A ( :s ) < ,: (6.2.1) 

for each j = 1, ... , p. Since 11k (Ij ) converges to)J- (I
j

) as k -+ IJO for each 

j = 1, .•. p, ([eL], Thm. 3.1 (i)), there exists K in IN such that for each 

j = 1, ••. ,p, 

'Yk (Ij ) - )4 (I j) J < e -
4p 

(6.2.2) 

whenever k ~ K 

Let I be any subinterval of I. We may write s 

n -I 

Is - I, U I, U Ir . J J =M+I 
(6.2.3) 

where I 5 I , I c: I , { m, ... , n} S {1, •.• , P }. Using (6. 2 . 1) and (6. 2 . 2 ) q m r n 

we have 

I Y k (I,) - J" CI,,>I ~ ).Ik(1",) + }Ia ( I" ) 

E 
e. 

Z)-'(Im) -- + 
4p 

< 3~ -8 

whenever k ~ K, and a similar inequality holds in respect of I. It now 
r 

follows from (6.2.3), Minkowski's inequality and (6.2.2) that 

n -. 
I \J k ( Is) - p (I s) I , ,I. , v k ( r j) - ).A ( I j ) I ... ~ < £ 

J :: mT I 4 

whenever k ~ K. 

proved. 

Since I is an arbitrary subinterval of I, the lemma is 
s 

Before proving singular continuity of the spectrum on (0,1) for a 

suitably constructed slowly oscillating potential, we show that if V(r) = 0 



189 

of l' ntervals {I o} of /R T 
( 0 ) on a sequence n' then I GO :::"es in t:::~ spectr'.lIJ1 

o 
of H provided that Ko(I n ) "4 00 as 1'\ ~oo. ~r:is e~~S'.lres that P~8pCS=--:=-cr: 

6.4 is a non-trivial result. 

6.3 Proposition: Let {Qn},{b n } be increasing sequences ' \R + .. " ... ' In ",_~:l 

a < b < a for each n, and let I 
0 

and I 
1 

deno-:e n n n+1 n n 

[a ,b ] and (b , a 1 ) respectively. Define n n n n+ 
cO 

0 yo e U I 0 

" :: I 
n 

VCr) = 
00 

'r €. U II 
n 

n:: I 

Then if K (I~) -+ 00 as n...., 00, (0) (0) lies in the spectrum of every self adjoint 

operator arising from L = _d2 + V(r). 

dr
2 

Proof: 

2 -1 
We show that (H-k) is unbounded for all k , O. 

Now if f is in [) (H) I 

Ilfll = II(H-kl.)-'(L-k~)fll' II(H-k1.)-'UU{L-k~)fll 

( 
1. -I 

where II H - k) II :. sup U(H _kl.)-'gll 

{9~1I911=IJ 
and II ' n 

1/2. 

denotes (SGO I ' \ ~ dt" ), Hence it suffices to show that for each k) O. if 
o 

£ ) 0 is given, there exists f(r,k,l ) in ~(H)for which 

l\f(r,K,e')l\ ~ 

Consider the sequence of functions 

I 1 ik(r-P) 

l~ )2 r e r .. [0, I ) 

2(r-P+iN) 

I 

_ .!..(t"_z.)1) 
ik(r-P) 

re.[I,2) 
fN(r,k, P) ~2:r [ e , - 2 (r-P+iN) 

J. ikCr--P) 
re(2 / cO) (*r eo. 

(r--Pt'iN) 
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Clearly fN(O,k,P) = ° for each N €. IN j kip e. IR+ ar ... c: , S :"~.ce 

(6.2.5) 

fJr,k,p) is in L2 [0,(0) for each N E. IN j k j P e.. /R+ . l'loreove::" ~ -' P ~ 2. 

and, since fN(r,k,p) is a twice differentiable function of r for all 

n ~ IN • t"') k • P e. 1Ri" it may be deduced that 

(6.2.7) 

for some C
k 

in R+ which is independent of P. 

Let ke.lR1- be fixed,£>O be given, and choose M~IN such that 

. Using the properties of fM (r, k, p), in particular \I f M k) k, P)U t 2 

as P ~ 00 (cf.(6.2.5», we see that if K (I~) --. 00 as n~ 00 , then 

P e. , L £ E. lR T may be chosen wi th P e "7 2) L e <. P E. ) 

(6.2.8) 

and V ( r) = ° on l p £ - L e. ) P E. -r L Eo J . 
Let S denote IR+ \. L p E. - L e. J P E. + L e.] , and let X s denote the charac t-

eristic function of the set S. Then, using V(r) ~ 1 for all r :n [0,00), 

Minkowski's inequality, (6.2.1) and (6.2.8) we have 

U ( L - k 2.) .f M ( r 1 k ) PE, ) U 

:s 1\ (- f. -kl.)i=M(r)k)Pe.) + V(r)fM(r',kjPe.)Xsl1 

I 

-r ( S s If M ( r) k, P e. ) I"dr ) 1: 

< e. 

It f 11 th t f ( k P ) l.·s l.·n lr'\(LJ), so set~~:~- r(r.:<. t..) = f .... (r,k'PE ) o ows a M r, , E ~ n 
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we see from (6.2.6) and the above inequality that f(r,k, £ ) satisfies 

(6.2.4). Since k)t E IR+ were chosen arbitrarily, we deduce that (H_k2)-1 

is unbounded for all k > 0. 

We conclude that (0, ~ ) is contained in the spectrum of H, and since 

the essential spectrum is independent of the boundary condition at 0 ([CEJ, 

Thm.2.5.2), (0, 00) is contained in the spectrum of every self adjoint operator 

arising from VCr). 

This completes the proof of the proposition. 

We now describe a class of potentials for which there is singular con-

tinuous spectrum on (0,1). (To avoid confusion, we should point out that our 

notation, though similar, does not coincide with that of [P1] §3). 

6.4 Proposition: Let VCr) be as in Proposition 6.3, and suppose 

K.(I~) = K(I:) for n = 1,2,3 .... Then provided K(I:> 

increases sufficiently rapidly with n, the operator H arising from VCr) with 

Dirichlet boundary condition u(o,~) = ° has singular continuous spectrum 

on (0,1). 

Proof: 
2. 

We consider only >.. ') 0 and set }. = k . 

Let ~ denote the spectral measure of _d
2 

+ 
n 

dr2 
VCr) in [O,b ), with 

n 

Dirichlet boundary conditions u(O,k) = u ( b , k) = 0, and 1 e t P n (k) , fA f'\ ( k ) 
n 

denote the spectral function and corresponding spectral measure of 

_d2 
_ + VCr) in [0, co) with the same boundary condition at 0, where 
dr2 

v (r) 
n 

The sequences of 

on [O,a ) 
n 

on [a, «J) 
n 

intervals {I:l and {InD
} are determined inductively 

1 1 0 

r r · t (2 1) intervals 1 1
0 ,11 , ... 1n_1 ,In have as ollows: Suppose the ~rs n-
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been established, and consequently the potential VCr) on [O,b ]. Then n 
a n+1 

is chosen so that K(I~):= KCI~) andb 
n+1 may be chosen to satisfy 

the following conditions, as we shall show below: 

(i) 1 \In+, (I) - )J.n ..... (1:) I <. 

for all subintervals E of (0,1). 

(ii) The rate of increase of t<.. ( I ~ ) as" ..., 00 is sufficiently rapid to 

ensure that, if ~ ~ (0, I ) I 

Lim IJ. (I) 
n~ 00 ron 

exists for all intervals l:. S (0, J) , and defines a singular continuous 

measure on Borel subsets of (0,1). 

To see that bn+1 may be chosen to satisfy (i), note that ~n+1 is 

determined once an+1 is fixed, whereas Yn?1 is not determined until b n+1 

is fixed. Hence, since }4n .... 1 is absolutely continuous on (O,CIO), once an+1 

is fixed we may choose b 1 so that (i) is satisfied by Lemma 6.2. We commence n+ 

the inductive process by choosing a
1 
> ° arbitrarily, and setting VCr) = 1 

on [O,a
1
). 

We now adapt the method of Pearson ([P1] §3) to show that condition (ii) 

may be satisfied. 

Let ~(r,k) be the solution of _d2u + V(r)u = k2u which satisfies 

dr2 

Clearly 

I 
= 0, ¢ (0, k) = 1. 

¢(r,k) = 

¢'(r, k) = 

Let R(r,k) and 6(r,k) be defined by the relations 

R cos e 
k 

(6.2.9) 

(6.2.10) 

R 3. =. (¢,)3. + k ~ ¢ 2-

Moreover, applying the theory of Chapter IV to Vn(r) with boundary condition 

u(O,k) = 0, and taking H
1

, H ~ to be the appropriate Hamiltonian operators in 
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[0, an] and [an' 00) respectively, we deduce from (:~. 1 .2) with 0(. = 0 , and 

from (4.5.5) that for n = 1,2 ... , 

d~t'\ (k) 

dk 
= 

= 

2 k
1 

IT" ( l ¢ , (Q 'f\ ) k )] 1. + k'2. [ ¢ (Q" I k ) ] 3. ) 

2k1 

If l R,,(k)]z' 

where R (k) = R(a ,k). Thus, if 1: S (0I') is an interval, n n 

(6.2.11) 

Let 9,,(k) denote 8(o",k) and let N
n 

denote K (I
n
o) = K(l~) . 

From (6.2.9) and (6.2.10), 

e = tQn -. (~J 
so that 

de 
dr 

- -k + 

Since V(r) = 0 on [a ,b ], we deduce that 
n n 

e l b", I k) = a" (k) - N" k 

and, using dR = ° if V(r) = 0, we obtain 
dr 

R (b" I k) = R" (k ) 

Combining these results with (6.2.9) and (6.2.10) yields 

¢ (b P\ I k ) = R n (k) Cos ( e" ( k) - N p\ k ) 

k 

¢ I (b" I k) -= R n (k) sin ( e" (k) - N n k ) 

Since V(r) = 1 on (b ,a 1) we have 
n n+ 

where the transfer matrix M (k) satisfies 
n 

:!I1'"",(J(\-k~)N,,) ) 

J(I-k'") 

c:o~h (J(I-k~)Nn) 

(6.2.12) 

(6.2.13) 

(6.2.14) 

(6.2.1':') 
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for 0 < k , \. 

(6.2.12), (6.2.13) and (6.2.14) together imply 

7. 

(
R n ... , (k)) • An(k) + 8 n(\<) cos(l(e-j)) 1" Cn(k) &in(lCe-1» 

R n (k) 

where e = e n C I. ) y N k and 0 • tt . th K , = n' m1 1ng e arguments, 

a. I l M " -1 2. 1 ... 
Un = k M M - I. - M - ) i "''' + n'2.l - n12 K nl7. 

kM n " Mnl'l. 

(6.2.16) 

(6.2.17) 

where M .. is the element in the ith 
n1J row and the jth 

( 

1 
column of M (k). 

n 

If f n (k,N nK,9 n (k) denotes R n (k) f 
R" .. ,(k)) or 

I. So (0 1 I) is an interval, we have from (6.2.11) 

l"n(2:) = .!oJ k 2 jr f j (k,N j k,9 i Ck))dk 
1r 1 ,:0 

where we have taken [R (k)]2 = 1. o 

o < k .. 1 , and if 

We now show that the sequence {f j 1 satisfies the conditions of Theorem 

6.1 (see Remarks 6.5(. d)). 

Firstly, for each j in ~ , R.(k) is continuous and non-zero for all r 
J 

in [0, co ), so for each i in I'J there exists C.) 0 such that f. ~ C.. Moreover, 
1 1 1 

for each a , ¢ (a ,k) and ,,("(a ,k) are analytic functions of k (cf. [LS] pp. 
n n ~ n 

3-5); the same is therefore true of f.(k,N.k, 9.(k)) for each i. 
111 

For each i in N , set N.k = Y so that f. (k,N.k, 9. (k)) may be written 
1 1 1 1 

as f
i

(k,y,N
1

, ••• N
i

_
1

) since 9
i

(k) depends on {N
1

, ... Ni _1 }. In this notation, 

fi is analytic in k and y. 

Reformulating the left hand side of (6.2.16) as a(k, e) + b(k, e) cos 2y 

and using 

2T 

Q + b cos z. 
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we obtain 

= c: I 
de'=. M n 

It remains therefore to show that if 

00 

then ~ mn(k) = - 00 Using 
" :II I 

S411" l 0 ~ CaT b GO 5 z.) d 2- = 21r LO«J (a + ; Q"- b~) 
0 

we obtain 

M n (k) = l0'3 ( 2. ) 
An+ I 

so that, if 0 <: k , I I 

Hence for each k in (0,1), An ~ 1 and An increases with n if and only if Nn 

increases with n. If, therefore, N does not decrease with n, for each k in 
n 

(0,1) there exists ~ in (0,1) such that 

lo ( 2 ) 
9 A",(k)+\ 

for all n in N, so that r. m"Ck) = - 00 for each k in (0,1), and the 
n -I 

conditions of Theorem 6.1 are satisfied. 

It follows that the sequences {InO} and {I ~ j may be chosen to satis­

fy conditions (i) and (ii) above, and hence, since the spectral measure of H 

, so that H has singular continuous spectrum on (0,1). 

The proposition is now proved. 

6.5 Remarks: 

(a) If k ? 1 the transfer matrix M becomes 
n 

M n (k) .. 

sin(,J'( k"-,) N n ) 

.J(k1.- ,) 

e os (JOe 1. -l) N" ) 
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which yields 

+ 
2k2.(k 1 _1) 

GO 

Therefore, the divergence of I. m (k) is 
n:l' n 

no longer immediate, since in 

general we may not assert that An ~ const. > 1, or even that A > 1. 
n However, 

00 

it may still be the case that L m (k) 
n = I n 

diverges, at least for almost all 

k > 1. To satisfy the requirements of the proof of Theorem 6.1, (see [P1], 

Thm.1, Step IV), it is also necessary to ensure that, for sufficiently large 

m, 
n 

- m. lk) ~ K , > 0 
,= m+1 

for almost all k in the interval under consideration, where K is independent 

of k. These difficulties indicate that a modified, possibly statistical, 

approach is required to ascertain the nature of the spectrum for k ~ 1. 

(b) Sufficient constraints may be extracted from the details of proof of 

Theorem 6.1 to construct particular examples of suitable sequences of inter-

vals {I:}. 

(c) For an alternative derivation of dpn (k) , see [P3J, Lemma 3. 
dk 

(d) More precisely, we show that {f i ) satisfies the conditions of the 

Corollary to Pearson's Theorem 1 ([P1], § 2, Cor. to ThIn. 1). 

S3. On the Generation of Singular Continuous Measures 

We now reformulate Theorem 6.1 in such a way that condition (i) may be 

replaced by the requirement that f (k,y) ~ 0 for each n, and condition (iv) 
n 

may be removed entirely. In addition, we no longer require the sequence 

{ ~" (k J'J )} to be continuously differentiable, or even continuous as a 

function of y. To achieve this generalisation, we replace condition (iii) by 

lim 
n~ao 

n 

1f 
rsl 

II: 0 

where ~ r" sup J I [of r (k, 'J ) ] 0( d 'J 
k 0 

precise value of~ is immaterial). 

(6.3.1) 

for some fixed ~ in (0,1). (the 
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As we shall show in the discussion after the proofs, our result is net, 

strictly speaking, stronger than that of Pearson, because the condition 

(6.3.1) implies condition (iii) of Theorem 6.1 but is not implied by it. 

However, the removal of condition (iv) and the significant improvement to 

condi tion (i) and to the con tinui ty conditions on {.f n l k I ;t ) } means that the 

approach of Theorem 6.1 is now extended to a considerably wider range of 

absolutely continuous measures. 

We develop our reformulation in three main stages. First we suppose {fn} 

to be a sequence of periodic step functions in one dimension, and then, using 

the fact that step functions are dense in L
1
[0,1], generalise this result to 

include sequences of arbitrary bounded periodic functions in one dimension. 
n 

(By a step function we mean a function of the form L Q( i X i 
I = I 

where for 

each i = 1, ... n, 0( i e JR and ~. is the characteristic function of a bounded 
I 

interval). We then proceed to consider the problem in the type of two 

dimensional situations envisaged in Theorem 6.1. 

We remark that our methods do not depend on the somewhat probabilistic 

approach used by Pearson (see [P1], Thm.1, especially Step IV). 

6.6 Proposition: Let f(x) ~ ° be a periodic function with period 1 such that 

II f(x)d}(. -= 1 , the restriction of f(x) to [0,1] is a step 
o 

function and f(x) is not almost everywhere constant. Then there exists a 

f t 1 b {N 1 such that the limit as n""" 00 of the sequence 0 na ura num ers n 

sequence of measures defined on subintervals ~ of [0,1] by 

~n(I.) 
n 

= J 1T f (N k )() dx 
z: k = 1 

exists and defines a singular continuous measure on Borel subsets of [0,1]. 

Proof: 

each k in IN, and set D = max{y: f(x) = '11. Let fk(X) denote f(Nkx) for 
• 

Let CI( such that 0 < 0( ~, be fixed, and define g (x) = [f (x)] , gk (x) = 
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It is straightforward to show that, since f(x);s t • no almost everywhere 

constant on [0,1], 

(6.3.2) 

for some fJ such that 0 < f3 < I. 

We shall prove the proposition in four main stages, as follows: 

(i) We show that a sequence of natural numbers iNn) may be chosen induct­

ively to ensure the inequality 

(6.3.3) 

holds for every n in N on each subinterval r of [0,1 ]. where P is the 
n 

n 

maximum number of steps in the step function If -Pk(lt.) on [0,1] and 
\(=1 

Mn+1~ Mn is chosen inductively in stage (iv) to guarantee the singularity of 

the limiting measure. 

We also show that, in addition, {Nn1 may be chosen to satisfy 

for all n in IN. 

(;;) We prove that ;f ~ N} sat;sf;es (6.3.3), then l'n (I) is uniformly ()luchy •• .... ~ n ......... 

on all subintervals 2:. of [0,1], and hence that li m v n 
"-.00 

uous measure on subintervals of [0,1]. 
n 

defines a contin-

(iii) We show that (6.3.4) implies that, on [0,1], 1f 9k(~) converges to 
Ie =1 

t'\ 

zero in measure as n -t 00 , and conclude that the same is true of 1r fk (lIC.) • 
k-t 

(iv) We deduce that', if iNn} increases sufficiently rapidly with n, and 

satisfies (6.3.3) and (6.3.4), then lim \In is singular and non-trivial. 
n.-,oo 

Proof of (i): 

Let M1 ~ 2 be fixed, and let f. ~ l 0 J I] be an interval wi th endpoi~ts 



a and b, a < b. 

Choose N1 in IN so that t::--l'3 length of per:'c::~ _ <. 

and let q be the greatest integer such that q 
N\ 

< 

N\ 

b - a. 

Then if S is an interval with endpoints a, a+= • 

N1 

< 

Moreover, using f 1(x) = f(N 1x) and the properties of f(x), we obtai~ 

f .fa (x) dx 9-
5 Na 

Hence, by Minkowski's inequality and (6.3.5) 

\ S1. fa{x) dx - J~ dy.1 

~ IS fl(x) dx - S dxl 
5 s 

o + CD + I ) K (~ " 5 ) 

(6.3.6) 

We note that this result is independent of the particular subinterval! of 

[0,1J which is chosen. 

Also, 

- f3 

Similarly, we choose N2 in IN so that 

I 

N:z. 
< m;n {-M------­

Z 2. CD + I) D P a 

for some e: I < f3 3/2 
- f3 2. This yields 

- S dx I 
~ 

for every subinterval ~ of [0,1J. 

Moreover, as we now show, 

2. M2, D F 
I 

(6.3.7) 
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For, since g1(x) is a step function on [0,1] we may write 
p. 

C],{)() - ~ OCj 'Xi 
i =, 

where X, is the characteristic funtion of the interval 1:; = [0, I] i 

there is no loss of generality if we assume r. " I.. _ ,J. 
I J - ~ whenever i + j. 

Hence 

J
I 

o 9,(x)92,(X) dx 
p. 

OI.ift:. - r. 92.(x)dx 
i = I , 

For each i in {1, ..• , P, } let S. , ~ l: i be that subinterval of Ii sharing the 

same left endpoint such that K' Sj) _ <t. i 
N2 

where q. is the largest integer 
1. 

such that ttj 
N1 

< K ( L.j ) Then for each i = 1, ... ,P1' 

KCI,j,5 j ) < < 
E., 

N1 }) 2. P, 

so that, using 9 ~ Do« l' and o{.l:., , ..... D, 

c( is «3z. Cx.) dx = 0(. S 9:z.(x)dx + ~. J ~1C)t)dx , s· I I..' S. I' I , , I 

~ ~. '\., 
I-

Nz, 
P + cC.. ]) K ( I.. , Si) 

I I 

!t f3 ~ (II) 1-
n2. £. 

~. 

]) 2. P I 

• 

= ~ S r. 9. (x) dx + !!. 
PI I 

for each i = 1, .•• P
1

• 

PI 

Hence, by (6.3.7) and our choice of £, ) 

L. ()(. J 92. ex) dx 
i = I I r j 

so that (6.3.8) is proved. 

Continuing in this way, N
n 

is chosen so that 

I . {I &.-, } 
N

n 
< min 2. Mn (D+ J) 1> n-I Pn -. ' :0 n Pn -, 

It (6 3 3)· using the Using the first bound on-1-, we obtain the general resu ." 
Nn n-I 

second bound, and noting that 1T ~k(x)is a step function bounded above by 
kal 

on-1, the method above gives the general result (6.3.4). 

Proof of (ii): 

For a given subinterval ~ of [0,1], 
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n 

1T ~k hr.) 
k = I 

't. 'X. 
, I 

n 
where ~ ~ Pn , and ~i' D for each i = 1 •••• , Q • 

n Hence, using Minkowski's 

inequality and (6.3.3), 

l ))n+1 (I..) - }.In (I.) \ 

, D" Q 
" 

2.M"~1 D"P 
n 

~ 
1 

(6.3.9) 
ZM"+I 

Since this is true for all such interals ~ , and {lv'\ f'\ 1 is an increasing 

sequence in IN , Vn ('t) is uniformly Cauchy on all subintervals I. of [0,1]. 

Hence v(I.) = lim 'VnCI.)exists finitely for each subinterval I. of [0,1], 
n -I) co 

and since, for each n in IN, lJ., is a posi ti ve measure, 11 (I..) ~ 0 for each 

interval l: S lo, J] and 1I (¢) = O. 

To show that v is countably additive on subintervals of [0,1], we prove 

that if t I.k } is a sequence of disjoint intervals in [0,1] such that, for each 

U
p ~ 

p in IN , I-
k =-1 k 

is an interval, then 

Since for each p in N) 

p 
and U l:.k 

k =-1 
p 

l.. 
k -I 

:& li m 
n.-, 00 

p 

lJ n (U !k) = 
k. = I 

is an interval, we have 

GO 

L. 'm I. 1)" { E k ) 
n-,)oo k=1 

p 

uniformly over p as n --., QC , by above. Moreover I.. }.J ( Ik ) 
k=1 

00 

(6.3.10) 

(6.3.11) 

increases 

wi th p and is bounded above by V ( I), where !. - U r.. k 
k. sl 

, so there exists 

Q (00 such that 
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p 

L. 
k=I 

a (6.3.12) 

as p -. 00 • This together with (6.3.11) implies that if E ') 0 is g:'ven, then 

there exists Pe , Nt in IN such that whenever p ) Pe. 

p 

I!. )) ( 1:k ) - al < £ -
k= I 3 (6.3.13) 

and, for every p in IN J 

£ -
3 (6.3.14) 

whenever n ') N e . Also, since for each n, v" is a measure, there exists Q, 

depending on n such that 

00 p 

I )) n ( k~' 1:k ) - !-:a.1 v~ ( l:k) I < e 
3 (6.3.15) 

whenever p) Q e. Hence for each n ') N £' we may choose p'> max {P 6:, Q E } 

so that (6.3.13), (6.3.14) and (6.3.15) hold simultaneously, giving 
00 

, Vn ( U II.<) - Q) < £. 
k -= I 

This together with (6.3.12) implies (6.3.10), so that V is a measure on sub-

intervals of [0,1]. 

Let "1 ) 0 be given. 

Since \I n (I) ~ v(I.)uniformly over all subintervals 1: of [0,1] as 

there exists N in IN such that 'vn (1:) - v(IJI<" for all subintervals 1: if 
2. 

n ) N; and since Vn is absolutely continuous for each n, for a given fixed 

n ) N there exists <5 ~ 0 depending on n such that K (I.) < 0 -+ Yn (I-) < !. 
It fOllows that 

K(I.) < 0 ~ )I(~) <." 

so that ~ is continuous on subintervals of [0,1]. 

Proof of (iii): 
n 

From (6. 3 . 4 ), 1f '3 k (x ) 
k-I 

converges to zero in L1[0,1J, which implies 

n 

that 1T ~~(x) converges to zero in Lebesgue measure. That is, for 
'< ~, ~ 

g:ve=-'. 

t, "l ., 0 there exists N in IN such that 
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n 

K ({XE [0.1]: 1r '3k(X) 
k:, 

) e. 0( }) < 

for all n ') N, or, equivalently, such that 

" K.({X Eo [011]: J1:, fk(x) ) e. }) < 
n 

for all n ') N; hence 1r ~ k ( x ) 
\(=\ 

converges to zero in Lebesgue measure as 

n ~ 00. 

Proof of (i v) : 

Let "r\, such that 0 < 'T\ 1 < I be given, and define 
n 

5 n "'" = {x 6 l O. I] : 1r fk ()() ') !.} 
) ." k=\, 

Since we have chos en M1 ~ 2, and f\+ 1 "+ ~ for each k, it follows from (6.3.9) 

that l)Jk ( I. ) - v, (!.) I ~ ~ for all k ') 1 and every subinterval L of [0,1]. 

In particular, choosing I = [0,1J, we have 

VI( (lo. I]) I -2. (6.3.16) 

for all k in IN since V I ( [0,1 J) = 1. Therefore for each n i~ IN) K ( Sn) "1) * 0 

for all 'Vl < ~ • 

Let the construction described in (i), with {f\:k = 1, ... K1} chosen 

arbitrarily subject to M1 ~ 2, ~+1 + f\, be followed until k = K1 is reached 

for which K (SK "n) , ) .,' 
K, 

< "t'), • That such a K1 exists follows from (iii). 

Since ,,- ~k (x ) 
k=\ 

5 I 

is a step function, K, ' "'1. consists of a finite 

number q1 of subintervals of [0,1J. Let ~1+1 be chosen to satisfy 

< 
6 9. , 

so that, using (6.3.9), 

1)l(I.) -v
K

(2'.}l <.1'1, 
, 3Ci, , 

for all subintervals ~ of [O,1J. In particular, 

'}JC[o.I]) - v
K 

([o.Il)I < ..It. 
, 31\ 

I 

and, by Minkowski's inequality, 

I 1I ( 5 K ) - V ~ (5~ ,,) I < ~ ,,"1, "I I' 1 ~ 

(6.3.17) 
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Also, by the definitions of vK and 5 . K,.", 
K, 

'V K (to,I] \ SK ) = 
1 .,1'}. 

V K ({xelO,I] 
• 

1f fLc(x) !t '1,}} 
'" -I , 

"l, -:5 

Combining these results, we have 

'V ( SK. ) 1l, ) ,. Y
K 

( 5 ) - "1. 
I K I ,1"), 3 

- vt< (lO,/]) - V ( 10, I] ,SK )- ". - K. -, I, "'1, 3 

~ }I ((0,']) - ". 
'h. < '1, is now chosen, and the procedure described above is repeated for 

k = K1+1, •.. ,K2 where K2 is such that to( ( 5 K -n ) < '1.. . We then obtain 
2. J -'1. .. 

v (5 K " ) ~ )J (10, I]) - 1'] • Continuing in this way, if the decreasing 
:l\ 2. 2-

sequence iT) 1 satisfies '" ~ 0 as m~oo and {N } iM } are chosen inductively 
",I"" n' n 

at each stage to satisfy the construction described in (i) and the constraint 

( 6 . 3 . 1 7), then as m ~ d:J , 

and, by (iii), 

K ( SKrt\ ''1''1 ) -t 0 

That is, the limiting measure ~ is singular. 

The Hahn. Extension Theorem ensures that ~ may be extended to a measure on 

Borel subsets of [0,1], and it follo~s from (6.3.16) that V is non-trivial. 

The proof of the proposition is now complete. 

We now generalise Proposition 6.6 using the fact that step functions are 

dense in L
1

• The proof follows a similar pattern to that of Proposition 6.6: 

parts (ii) and (iii) are unchanged, while part (iv) requires considerable modi-

fication. 

6.7 Theorem: Let f(x) J 0 be a bounded periodic function with period 1 which is 
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not almost everywhere constant and is such that S I ~ (JC) dx : , 
o ':::en 

there exists a sequence of natural numbers {N n} such that the limit as "-t GO 

of the sequence of measures defined on subintervals I of [0,1] by 
n 

V n ( I) ':: I 1T .f ( N \( )( ) dx 
t k= I 

exists and defines a singular continuous measure on Borel subsets of [0,1:. 

Proof: 

Let the notation be as in Proposition 6.6, except that we now define 

D = sup {y: f(x) = y }. As before, 

J
I 

o 9 (x) dx : ~ 

for some p such that 0 < (3 < I . 

We first prove a modified version of part (i) of Theorem 6.6. 

Choosing M1, N1 as before, (6.3.6) and (6.3.7) may be deduced as in 

Theorem 6.6. 
3/'2. 

~ ~ z. Now let Ii » 0 be such that £1 <, - r-

Since the step functions are dense in L1([0,1]) ([HS] Ch.IV, 13.23), 
P 

there exists a step function I. ~. X· such that • 1 I 
1=1 

I P 

f I t2 ()() - .I. Cltj 'X. I dx 
0;11 1=' I 

< 

Thus, using g2(x) E D, we have 

I f' 
IJlg(x)aCx)dx - I C~h(X).I. o(iXjd,,1 

o I J'2. 0, :al 
Q 

Likewise, there exists a step function ,r. f3i Xi 
I :.1 

I Q 
J I f I (~) - .r f3, Ie i I d x < 
o I~' 2. D 2 Ma 

Thus, using If2 (x)-1 I ~ D, we have 

such that 

Q 

II (fa (x)-l)~ (~)d)( -s (~.t(x)-l):r. (3jx, j dxl, 
l 3. I 1: 1:1 

for every subinterval ~ of [0,1]. 

Now choose N2 in ~ sufficiently large to ensure that 

I 
- < 
N1. 

I, 
and I J f (x) d x - J d x I < 2. Z ... , D Q 

I: 1 I. 

(6.3.18) 

(6.3.19) 
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Using the first inequality, we may proceed as in the proof of part (i) of 

Theorem 6.6 to show that 

I P 

J 9 ~(){) L ce. 'X.. d" -
o i =, ' , 

P 

i~1 eli Sri 9.(x)dx "'~. + .. ~ 

which together with (6.3.18) implies 

S ~ 9, ()(.) 9'2. (X) d ~ < f3 3,,. 

Using the second inequality and 

Q 

\ S1 (f,.(J(.) --l) ?::, ~i Xi dx 1 

so that, using (6.3.19), we have 

on all subintervals r of [0,1J. 

~i ~ 1> for i = 1, ... Q, 

Q 

~ .[ f3i IS f 1 lx)dx ,= I Ii 

Continuing in this way, it is evident that a sequence ))n may be constructed 

which is uniformly Cauchy on all subintervals I of [0,1], and for which 
I n (~I~ 

S 1f <31- (;<.) d". <. ~ 
o k.~ 1 to;. 

for all n in ~. Note that, at the nth stage, the procedure is to approximate 

respectively by step functions. 

It now follows, as in the proof of Proposition 6.6, that if v" is con­

structed as above to satisfy (6.3.4) and (6.3.9)' then ).1(I.) = lim "'"(I) 
"-.,00 

exists and defines a continuous measure on subintervals ~of [0,1] and 
n 

1f Tk (x) converges to zero in Lebesgue measure as n -t fS) • 

k .. , 

We now prove that if { N") increases sufficiently rapidly, then such a 

measure V is singular. 

I 
Let '1, such that 0 ~ 'l"), < i be given. 

n 
Since 1r f k (~ ) converge s to zero in Le be sgue me asure as n ~ co J 

k a 1 

we may follow the construction described above until we reach n = K for .... r.:..ch 
1 
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\0<, 

K({)(elO,IJ:tr fk(,r.) > ~}) < ~ 
k~' i 2. 

(6.3.20) 

As in Proposition 6.6, we suppose that M1 ~ 2 and ~+1 ~ Mk for k = 1, ... :-: _1. 

1 

Q 
Since the step functions are dense in L

1
, there exists a step function 

L ~·X. 
. I ' I 1= 

such that 

Let 5 k denote 
I ,'Tli 

1. 
't), 

(6.3.21) 

Q 

{XE.[O,\]: r. «iX,,, ~}. 
. I I /I 
I: T 

Since (6.3.16) 

remains true under our present assumptions, it is evident from (6.3.21) that 

K ( 5 K, ' "1 ) =F 0 for -n < .!... We shall prove that 
. II 2. 

v(5 K )) 
, ) 'Y} I 

~ ).1([0,1]) - ", (6.3.22) 

and deduce that a continuation of this process will result in singularity of 

the limiting measure V. 

It follows from (6.3.21) that 

1<, Q 1) 11 "'l 
.d{ X e.lO)ll : \ -rr .fk(x.) - f:. o(j Xl \ '> ...! })< 'a; 1<1 < _I (6.3.23) 

k=J ,:1 8 Z 

so that 
Q K, 

K. ( { X E l 0 I 1) : Lat· x. ) IT fk ( )t) + ~ }) < ~ 
i=\ ' , k =1 9 2. 

which, together with (6.3.20) implies 

< 

Since SK is non-empty, and 
I» ", 

Q 
I:. 0(. X. . " I =. I 

is a step function, SK " 
,. I 

consists of a finite number q of intervals. Choosing MK1+1 to satisfy 

", < 

we have 

\v(I.)- vK(l..)l <.1.!.. 
I 8'1. 

for every subinterval I of [0,1], since (6.3.9) holds under the construction 
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we have described in this proof. It follows tnat 

\ V ( l 0, I ] ) - V f< (l 0 I I ]) I < ~ 
, 8 

and, by Minkowski's inequality, 

I V ( 5 K "" ) - V K (SK ) I < "1. 
I , .,. • I 'l'J. 8 

In order to deduce (6.3.22), we first relate 5 

S1 of [0,1J, defined by 

5, = { x e [0 I I] 

Clearly, 

K, 
"IT fk (x) .,. "1, } 
k =01 Z. 

'1, 
2. 

and, by definition of v K I 

I 

Moreover, 

K ( S J 

< 
'1, 
8 DJ(· 

K" ". 

by (6.3.23). Using this inequality in (6.3.27), we have 

'TJ. 

B 

(6.:::.2~) 

(6.3.25) 

(6.3.26) 

(6.3.27) 

since fk(x) ~ D for each k. This, together with (6.3.~l), (6.~.25) ~.d 

(6.3.26) implies that 

V K (S K TI) - :!..s' 
, I 'II K, 
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••• -to YI( (S ) 
, K" 1'}. 

- 1). -! 
~ v{rO,I]) - TJ, 

so we have proved (6.3.22). 

Continuing in this way, a sequence of sets {S K } is constructed 
'" ' "l"., 

satisfying 

and 

K (SK ) 
m I "rr'\ < 

where {" m} ~ 0 Thus 

so that the measure y must be singular. 

This completes the proof of the theorem. 

The results of Proposition 6.6 and Theorem 6.7 are readily extended to 

include the case in which the sequence of measures {lin} is defined by 

n 

V" (!) = J 1f hie (N k )() dx (6.3.28) 
l k-=I 

where for each k, ~(x) may be distinct. If we suppose that for each k, 

~(x) is a non-constant periodic function with period 1 such that 

and that ~(x) is a step function on [0,1], or, respect-

ively, an essentially bounded function, then the proofs of Proposition 6.6 

and Theorem 6.7 may be simply adapted as follows: 

Wherever Dn occurs, it is replaced by where Dk = ess sup 

~(x); and instead of choosing {en} to satisfy 

(n+I)/1 (n ... 1)/1 

! n -I < P - f> 
we now suppose that 

""( ~~) 
~ k I - fn+l 

k -I 
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J 
I IX 

where f3 k = [ h k ( x) 1 dx 
o 

for some fixed ~ such that It 

may then be shown that, for a sui table sequence {N } 
n 

J
I n -' • n 

1r [h k ( N k X )] W\ d)( ~ f> 1"1 1f ~ ~12. 
o k=1 k=1 

n 
Evidently, to ensure that 1f hI( (N k x ) 

It ~, 
converges to zero in L

1
, it is 

" sufficient to impose the additional ~~t that 1f ~k 
k=1 

converge to zero 

as n -t> 00 • 

Using these modifications to the hypotheses and proofs of Proposition 6.6 

and Theorem 6.7, it is straightforward to show that the sequence of measures 

defined by (6.3.28) will converge to a singular continuous measure on [0,1] 

for a sufficiently rapidly increasing sequence {N I\} . 

We now use the denseness of the step functions in L1 to deduce a two­

dimensional generalisation of Theorem 6.7. We note that, although we do not 

require f(k,y) to be a continuous function of y for fixed k, we have found it 

necessary to retain a continuity condition in the k-direction. This is to 

ensure that on each sufficiently small k-interval Ik , f(k,y) is approximately 

constant for each fixed y, so that the two dimensional domain may be partitioned 

into a finite number of subdomains on each of which the behaviour of f(k,y) 

approximates that of a one-dimensional function. The method of proof of Theorem 

6.7 may then be adapted without undue difficulty to this new situation. 

6.8 Theorem: Let f(k,y) ~ ° 
for each fixed k in [0,1J is 

and for each ~ with 0 < « < , 

be a bounded function on [0,1] x (- 00, QQ) which 
, 

a periodic function of y satisfying 10.fk (k, Y )dy :: J 

J' lc( < 
is such that sup [f (k, 'J d'1;' I . 

k 0 

Suppose also that for each y, f(k,y) is a continuous function of k, uniformly in 

y; that is, for each £ ') 0 there exists eft) 0 which is independent of Y such 

whenever J k, - k 1 I <. cS e. . Then there exists 

{ } h that the limit as n..., OD of the sequence a sequence of natural numbers N n suc 

of measures {"n} defined on subintervals r of [0,1] by 
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n 

lIn{l.) = ~t ~ f(k.Nik)dk 
I ~ , 

exists and defines a singular continuous measure on Borel subsets of [0,1]. 

Proof: 

Let D = sup f(k,y), and let oc.. with O<.oC.<" I be given. 
k,y 

We first show that for each n in IN , if ''In ') 0 is given then B in tN 
n 

exists such that 

(6.3.29) 

for every subinterval I. of [0,1 J, whenever N ~ B . 
n n 

Let ~ be an arbitrary subinterval of [0,1J, with endpoints a and b, where 

a < b, and let '1" ") 0 be given. 

We may choose B in iN such that 
n 

2.(D .... I) 
(6.3.30) 

and so that I k I _ k U I < .....!.- implies 
8", 

(6.3.31) 

for every y, using the hypothesis of the theorem. 

Let N in IN be chosen so that N ~ B , and let q be the greatest integer 
n n n 

such that a +~ ~ b. Let I denote (a + r-1, a + r) for each r = 1, ... ,q, and 
N n 

r N
n 

N
n 

let I denote (a +~, b). If for each r = 1, •.. ,q, kr is some fixed element of 
N 

n 

I , then we have by Minkowski's inequality, (6.3.30)and (6.3.31), 
r 

III-F (k, N" k) - .(: (k r • N"k)l dk 
r 

" D + , 
+ ~ 1 J f (k N k) dk - f dk I .. 

I r'" I,. N n 
r =1 r 

... S. dk 
I 



"n < 
2 

'l. 

L K (I,.) 
r=1 

+ 0 

212 

+ '1" 
1 

Since I was chosen arbitrarily, (6.3.29) is proved. 

We now show that {N n } may be chosen so that, J.'n add't' t J. J.on 0 satisfying 

N ~ B for each n, it also satisfies n n 

I " 

S 1r 9 lk ,N i k) dk 
a i-' 

for all n in IN, where 0 (k, N I,k) = [f(k,NI°k.»)ct. f h ' J or eac J., and 
, 0( 

~ = s~p fa Lf(k,y)J d'j j by hypothesis, 13 < , , 
k 

We first show that N1 may be chosen so that N1 ~ B
1

, and 

J~ 9 ( k, N I k) dk 

(6,3.32) 

(6.3.33) 

1'2-Choose !,) 0 to satisfy e, ~ ~ - ~ . Let N1 be such that N1 ~ 81, 

< 
N. 2.D (6.3.34) 

and such that, whenever I k' - k ., I < , then 
N, 

19(k',N,k) - l3(kl/,N,k)l < f. 
(6.3.35) 

for all k in [0,1J. That N1 may be chosen to satisfy the last condition 

a( do (l( 

follows from the hypothesis and the inequality I r - S I ~ I r - 5 I for 

0< «< l. 

Let [0,1J be subdivided into 

interval I, which may be vacuous, 

q disjoint intervals I
1

, ••• ,Iq 
and one 

1 
such that },Clr ) - N , for r = 1, ... q, 

and )A- ( I) + ~ . If for each r = 1, ... q, k is some fixed element of I r , 
r 

• 
then we have by (6.3.34), (6.3.35) and our choice of 8. I 

+ it CJ (Ie. , N ,k) d k 

Cl 
... L J ~ dk • 1) K. ( I) 

r:1 I,. 1 
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so that (6.3.33) is proved. 

To illustrate the method of proof of (6.3.32) for n ) 1, we give details 

for n = 2. 

Choose £2, to satisfy 0 < e 2. ~ f3 - f3~h. and let [0,1] be partitioned into 

q equal intervals 1 1, ... I
q 

ensure that 

each of length 1 where 1 is sufficiently small to 

'g(k',j) _~(k","j)) < (6.3.36) 

for all y, whenever \ k I - k II I < l , 
Q 

Since g(k,N1 k) is in L1 ([0,1]), there exists a step function r. <Xi 'X j 
i Q I 

such that 

Q 

J Irq ( k , N ,k) - ,'2. «i X i I d k 
o 1=1 

(6.3.37) 

where the Xi are characteristic functions of intervals J i , for i = 1, ••• ,Q. 

There is no loss of generality if we suppose that each J, is a subinterval of 
1 

some I. Let J, S I be denoted by J, • 
r 1 r 1,r 

We now choose N2 to satisfy N2 ~ B2 and 

I £:l, - <. 
N,. 4QD'2. 

(6.3.38) 

Then, if for each r = 1 , •.. q, k r 
is some fixed element of I , we have by 

r 

(6.3.36) 

, ,. 
J lf 9 ( k, N; k) dk 
o i.:.1 

~ 

= L 
r =1 

II 9(k,N
1
k)g(k,N 1k)dk ,. 

~ ~ 
~ r I CJ (k IN, k ) ~ ( k,. , N 1 k) dk ... 4 (6.3,39) 

,..a I,. 
Q 

Moreover, if the restriction of l:. 0( i X. i 
\:1 

Q,. 

to Ir is denoted by!. ati,t" li,r 
i • P,. 
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for each r = 1, •.. ,q, where Pr = Qr-1' then by (6.3.37) 

f'I, ~ ( k, Nt k) 9 (k .. t N,. k) d k 
r 

+ (6.3.40) 

Let each Ji,r be partitioned into a maximum number of disjoint intervals. each 

of length 1-, together with one remaining interval of t' s r~ctly smaller length. 

N2 

Then by (6.3.38) 

J oe. i r gCk r ) Nz.k) dk 
1j r 

) 

I 

, 0(, r f3 K (j. ) 
£2, 

+ , I, r 4Q 

for each r = 1, .•. q, wi th i e. {p , .•. Q ~. Hence using (6.3.37 ), (6.3.40) 
r r 

implies 

~ 

= f3 J .L 
I = , 

ct· X,. dk 
I I + 

+ 

e" -2. 

3 It,. 

4-

It follows from (6.3.33), (6.3.39) and our choice of €~ that 

J~ 9( k) N, k) 9(k, N,.k) dk , f3 

so that (6.3.32) is proved for n = 2. 

In general, at the nth stage en is chosen to satisfy 

o < € n 6 (3 n/'1 

and [0,1J is partitioned into q equal intervals of sufficiently small length 

to ensure that for all y 

< 4 J) n-' n-' 
whenever k' and k" are both elements of the same interval. 

1f ~(k, N,.k) 
r=1 

is approximated in L1 norm by a 

difference is less than tn 
4-Q'D n 

step function so that the norm of the 

, and N is now chosen to satisfy Nn l Bn and 
n 

I - < where Q is the 
number of steps in the approximating step 

function. The method of proof of (6.3.32) is then just as for n = 2. S~ the 
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assertion is proved for all n. 

We now show that the sequence {'Y\ 'l in (6 3 29) 
-I n J •• may be chosen to ensure 

that {lJ n} is uniformly Cauchy on all subintervals L of [0,1]. 

Let {~n} be a sequence of natural numbers such that M ~ M for each n. 
Rn n+1 ip n ' 

and let r. ~i x., be a step function approximation of -IT- of (k, Nile. ) 
i= 1 i = I 

for which 

f ' I lfn 
o i::d 

fCk, Njk) 't. X· ) dk 
I I <. 

2.2 Mn +'D 

Let "1. = 2.2 M , 
, and for each n in ~ , let 

" 

- M 
0+1 - 2.2. n+1 D" Rn 

Then for every subinterval ~ of [0,1] 
n 

IJ (.f(k,Nn't-lk)-I)(}T +Ck,Njk) 
t I =, )(. x.. ) dk I 

I I 

n Rn 
~ b I l}r f(k,Njk) - ~ 

I ,=, I = I 'to X.. I dk. I , 

< 

and, by (6.3.29), 

Rn 
I I I (of ( k,N n + I k) - I) ( i~ I Y i X. i ) d k I 

I I~nr.. (.(:(k,N"+I k) - I) dk 1 , 

where l. is the interval on which X. takes the value 1. We deduce from these 
• I 

two inequalities 

" JJ1:(.f(k,N"-fol k -I)!. ~(k,Nik)dkl 

Z Mn+1 

for all subintervals l of [0,1], so that {Vn } is uniformly Cauchy on sub­

intervals of [0,1]. 

The remainder of the proof is as in Theorem 6.7, with the sequence {M" 1 

chosen to ensure singularity of the limiting measure. 

The theorem is now proved. 
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6.9 Remarks: 

(i) Proposition 6.6 and Theorem 6.7 may be deduced from Theorem 6.3 if we 

suppose that f(k,y) is a constant function of k for each fixed y. It would 

therefore be possible to amalgamate these three results into a single theorem; 

we have preferred to present them separately in order to emphasise the under­

lying ideas. Theorem 6.7 arises from Proposition 6.6, which is the fundamental 

result, because step functions are dense in L1; and Theorem 6.8 owes its 

existence to the insight afforded by Theorem 6.7. 

(ii) Theorem 6.8 is not the only possible two dimensional extension of Theorem 

6.7. For example, suppose f(k,y) is a two dimensional step function on [0,1] x 
p 

[0,1] so that f(k,y) has the form ~ oC.j ox, i where each 'X.. is the character­
I 

istic function of a bounded rectangle whose edges are parallel to the rectang-

ular co-ordinates. If f(k,y) is extended to a function on [0,1] x (-00,«)) 

which is periodic in y with period 1, then the conclusions of Theorem 6.8 hold. 

To see this, it is only necessary to divide the domain of f(k,y) into a finite 

number of strips with edges parallel to the y-axis, on each of which f(k,y) 

is a constant function of k for fixed y. The sequence {N n } may then be 

chosen inductively so that the conditions of Proposition 6.6 hold on each strip. 

(iii) Theorem 6.8 may be extended to the more general case where the sequence 

of measures {)In 1 is defined by 

n 
1f hi ( k , N, k) dk 
,:1 

where for each i, h. (k,y) may be distinct, but possesses the same general pro-
1. 

perties as f(k,y). In this case a sufficient condition which ensures that 

lim V 
n ... co n 

defines a singular continuous measure is 
n 

l,·m 1f A 0 = 0 . r- , n...., GO •• , 

(this certainly holds unless ~ i ...., as 

~ i = 6U P So' [~i (k,'1)] Cif.d1 and ~ such that 0 <. 0( <. 1 
k 

) where for each i. , 

is fixed. 

us ;ng the ideas of (iii) and C.o:'. (iv) Further generalisations may be deduced ~ 

For example, Theorem 6.8 may be modified to include the case where for 
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k e \ k1,·· .,k 1 S [0,1], f(k ,y) is discontinuous at some or r n r 

a uniform condition on the continuity is retained wi thin each ~-:.:-: te!"la2. 

(k,k 1)' r= 1, ... ,n-1. r r+ 

Theorem 6.8, with the modifications described in Remark (iii), is analogous 

to Pearson's result (Theorem 6.1); however the continuity conditions are 2cn-

siderably weakened and the requirements that each of the sequence of funct:'cns 

{fn(k,y») be bounded away from zero and that fn(k,N k) be analytic for large N 

have been removed. We now use some well known inequalities to determine some 

relationships between the remaining conditions. 

For each k in [0,1], we shall consider the behaviour of the sequence of 

functions {f (k,y») on the y interval [0,1J in the more general context of 
n 

sequences of posi ti ve functions { f n 1 on a measure space 1l with probability 

measure fA . 

Let the expectation of f be denoted by E(f), so that E.tf)::. f f dr and 

suppose that for each n, S of n d r ::, . 
It is a straightforward consequence of H~lder's inequality that if a + b = 

r + s = 1 and a,b ) 0, r,s ~ ° then 

E (f) 

Hence, setting f = f ct., r = 
n 

'lot, 
( E (f 1)(,») 

n 

for 0 < 0(, < fX 2. <. I. 

° and b 
0(, 

=- , 

'I tJ. 
( E (f ct-a») 1 

n 

(6.3.41) 

(6.3.42) 

It may be shown that if f ~ ° is non-constant p-almost everywhere and 

E(f) = 1, then for 0 < at. ~ I 

E(f ct
) ~ 

and for is .,. I 

ECf JS ) > :p 
, 

Hence for all r in (0, GO), 
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Ir. 
lirn 1T 
k~oo n:\ 

exists finitely or infinitely. 

The following lemma is simply deduced. 

6.10 Lemma: Let 0(. ) ot. 2. such that 0 <. 01. <. I 0 < 0{ <. I 
I J l. be ~::.. ':e:--,. 

Then 

cO 

1T E(f04 l
) = 0 

" ,,= , 
00 

IT 
n ::. I 

E ( f 0(1.) = 0 
n 

Proof: 

The result is trivial for <X I = oC 2. ' 

If 0( I .. «2. there is no loss of generality if we s t' 0( ,. uppose c'.a- ,< 0(1' 

Then 
00 

11 E(f 0(2.) - 0 n 
n = \ 

by (6. 3 . 42 ) . Setting f = 

from which we deduce 
00 

Tf E (t 0(,) : 0 
n 

n :: I 

so the lemma is proved. 

00 

=* ""IT E ( f ",0(, ) -
n=1 

0(2- IX, f , r = s = 1 
n a 04z. b Q(.l. 

An analogous result is true for ~ I ' (52. ,. 0 
00 

0 

in (6.3.11) yields 

and the conditions 

IT E (f no() ::: 0 and 
00 
1f E (f! ) =. 00 are normally equivalent. as " .. ;.: 

n:. I n:::\ 

6.11 Lemma: Let 131) (32. ,>' be given, and suppose that {fn ) 
is bounded 

above uniformly in n. Then 
00 00 

E ( f ~l) 1T E ( f ~l ) ~ IT :: co - cD 1'\ 

"=1 
n n = I 

00 .0 

E(fol.):aO 
and 1r E ( of nfiJ ) ::: for all ~ ~ I if and only if 1f 

00 
(\ 

n = I n: I 

for all ex in (0,1). 
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Proof: 

Let (!J, ., I be fixed, and suppose ~ ') 13, . 

in (6.3.41), we obtain 

E (f!') s (E ( f: )) b 

where b = (~I::). We deduce 
00 

Setting f = f 15. 
n r = 1 - -

a ", 

(A) : If 1T E ( f nf31 ) :. 00 

'" -= I 

for sorre fd I ') I , then ""'Tr E (f n~) = 00 

n = I 

for all ts )0 ~, • 

Setting f = fn' r = ~ in (6.3.41), where 
a 

I ~ 

If a in (0,1) is fixed, then oc. may be chos-en so that ,- Q '" 
I-Q 

1 as we please. Hence (6.3.43) implies that 

I , (E (fnot nQ (E Cf!)),-Q 

yields 

(6.3.43) 

is as close to 

(6.3.44) 

for all f5 in (1, _1_), 
1-a 

E (of n~ ) 

with It follows from (6.3.44) 

co 00 

that if 7f -0 for all 0( in (0, 1 ), then 1r E ( f! ) · co 
":a I "=1 

for all ~ in (I I I ~ 0( ). Using Lemma 6.10 and (A) above we conclude: 
~ ~ 

(B): If 1r E (of" o() = 0 for some Q(, in (0,1), then 1r E (of!) 111 tID ,,=, n_1 

for every !3" I. 

To complete the proof of the lemma we need only show that if {~n} is 
«J 

bounded above uniformly in n and if 1f E ( f!) = tID for some fJ '? I , then 

00 

lr E C f ,,"') = 0 for sone oc < I. 
":1 

n=1 

From (A) and Lemma 6.10, there is no loss of generality in supposing that~ 

is an integer and 0( = l. . 
2. 

Using the Taylor expansion of (1 + y)t it is straightforward to show that 
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1 , + 1 j 

16 

whenever -1 , Y ~ 1. 
1 

Therefore, since (1 + *y - (1+y)~) 1.·s . , 1.ncreasing f:Jr 

y ~ 1, it follows that for K ) 1, 

, ) 'I .. 
1 + '1'1 - (1+':1 .. 

'j" 16 K 2. 
(6.3.45) 

whenever -1 , Y ~ K. 

Similarly, if K ~ 1 and -1 , Y ~ K, there exists C ~ 0 such that 

o ~ (6.3.46) 

Since ~ is an integer, the right hand inequality follows immediately from the 

Binomial Theorem and y ~ K, and to see that the left hand inequality is true, 

note that the minimum value of (( I + ~ )~ - (\ +(3 'j » on [-1, CD) occurs at y = 0 

and is zero, so that (r-t-;j)I3- ('+~"1) is positive for y in [-1 , K)' lOi. 
y" 

The case y = 0 may be shown using L'Hopital's rule. 

Setting f = 1+y, we have from (6.3.45) and (6.3.46) 
n 

where k = 1 is constant. Integrating with respect to}, yields 

16K2C 

E ( f n 1/2) ~ k (E (f!) - I) (6.3.47) 

since J ~ n d)A :: J d.J" = I 

for x ) 0 to.(6.3.47), we obtain 

and applying the inequality x - 1 l log x 

- I 0 ~ E ( of n '/'2.) ~ k J 0 ~ E (f. n~ ) 
GO 

for each n in 1N. It now follows that if -rr 
A ~ '1&) 

E ( f r- ) = co then II E (f" • 0 , 
" ".1 n :.1 

where for convenience we have assumed fJ > I is an integer. 

deduced using (A) and (B), and th~ 
The first part of the lemma may now be 

second part using (B) and Lemma 6.10. 

The proof is now complete. 
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Lemma 6.11 fails if the hypothesis that {~ 1 Tn is bounded above is 

removed. To see this, consider the sequence of functions defined by 

= 

l n _I 

2n 

'2 n-' + 

on 

2n on 

[0, 1n-1 ] 2. - I 

'2 2.n-1 

( 
2.1n-l_ I I) 

2. 2."-1 ' 

Taking~ to be Lebesgue measure, S fnd)A = SOJA = I for each n, and for ~ in 

(0,1), inf fn < S fnfJ. d)4 , so that 

ex) GO 

log lr E(fno() ) L 
n=1 1'\:1 

lOQ ( I - -L ) 
.J ,n 

Using the inequality log x J 2 (log t)(1-x) for x in [t,1] yields 

GO 00 

lo~ 1r ECfno() .., 2- 2 (lo9i)~ ) - z 
f\ :. , f'\ -= I '2," 

00 

from which it follows that Tr E (~/') +- 0 
" =-1 

However, for ~ ~ 3 , E ( f t ) ~ 00 
n:1 

E{fl!) - 00 n as n ~ ao, so that IT 

for some f3 > I · 

Thus, provided {f n} is bounded above, the conditions If E ( of n") - 0 

00 

for 0( in (0,1) and Tf E ( f t) ::a QO for,s ,., are equivalent. However, these 
n::z , 

GO 

conditions are not equivalent to 1: I l09 fn dp = - (J{) even if {+n} is 
n= 1 

bounded above and for each n there exists c in IR such that f l c :> 0. n n n 

6.12 Lemma: 

Proof: 

~ GO 

If 1f E (f fto() IS a for some ot in (0, 1 ), then r. 
n ::, 

00 ',,, 

The hypothesis implies that for each oc. in (0,1), 1r (E ( f ". )) = 0 
n-I 

'It/. f 
using Lemma 6.10. Now for each n, (E C t rt 0( )) is a decreasing function 0 

by (6.3.42), and 

'/a( 
lim (E(~no()) - et.p llo9 fn OJ-' 

Ol.t.O 

(see [HLP] 56.18). Hence 



222 

GO 

o , nl! , e. x p J Lo 9 f n d JA , iT- (E ( f / ) ) '/ fI. = 0 
,,~ I 

which gives the result. 

To see that the converse of Lemma 6.12 is not true in general, consider 

the sequence of functions defined by 

1 on [0, 1 ] 

2n n2 

n 2 
( 1] f = 2 n -1 on _1, n 

2nn2_2n n2 

and suppose fA denotes Lebesgue measure. Then 

E (of '/2, ) 
n = + 

so that 

00 

L 
n = I 

( '/'1. 
1- ECf n )) < 00 

To see that (6.3.48) implies that 
n = I 

co 

(6.3.48) 
- I, 

E (of n '1) .., 0 J note that if 

'ho .".. E (fn ) .0, then using y < exp(-(1-y)) for 0 < 'j < 1 ,we have 
n=1 

~ '/: 00 I, 
La l09 V(p(-Cr-E(f 1,)):a-GO,i.e. 1: (I - E (fn ~)) 1:; GO 

h=1 n I'\:al 

However, 

GO 

= - ..!... Lo ~ 2. 
r'l 

so that r. S l09 fn 0.1" = - 00 • We note that lim sup f = 1, so that 
n n 

1'\ .. I 

{ f n 1 is a bounded sequence of functions. 

As a result of the above discussion, we may state: 

6.13 Theorem: Let the functions f (k,y), 0 ~ k , " - GO < 't < 00, be periodic 
n 

in y with period 1 and satisfy: 

(i) o , fn (k,y) E K where I<. < 00 is independent of n. 

(ii) J I f n (k , y) dy = I for each k in [0,1]. 
0 

(iii) Either for some ~ in (0,1) 
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00 

J' 1T sup (f" Ck, 'j »Q. d"j = 0 
n = I k 

0 

or for some f3 >1 
oQ 

I' 1T inf (fnCk,))'& d'j = 00 
n= I k 0 

(iv) For each n, fn (k,y) is continuous in k for fixed y, and if e. ') 0 is given 

there exists de,~ which is independent of y such that 

I of n ( k' ) ":J ) - f n (k 'I) j) l < e whenever I k I - k" , < 0 
£ ,n . 

Then the conclusions of Theorem 6.1 hold. 

Evidently conditions (i) and (iv) are considerably weaker than the 

corresponding conditions in Theorem 6.1; condition (ii) is unchanged, and, as 

the discussion above shows, condition (iii) is stronger than Pearson's con-

dition (iii). Thus, in general, Theorem 6.13 does not include Theorem 6.1 as 

a special case; however, if there exists -C in IR which is independent of n such 

that fn(k,y) ~ C > 0 for all n, then both conditions (iii) are equivalent (see 

[AS],Prop.A.3.3). 

We have felt it worthwhile to include the alternative condition withp? I 

in Theorem 6.13 (iii) since there are many situations where J f ~ , for example, 

may be evaluated analytically but r f at cannot, for any 0( in (0,1). Where the 

sequence {f (k,y)} is known to be uniformly bounded away from zero, the log-
n 

arithmic condition (iii) of Theorem 6.1, with c = 1, may be used instead of 

condition (iii) of Theorem 6.13, as convenient. 

A discussion of Theorem 6.1 and its ramifications, due to J.Avron and 

B.Simon, deduces Theorem 6.7 using Kakutani's Theorem ([AS] Appendix 3). Their 

method of proof leads the authors to the conclusion that some special significance 

attaches to the value c( = t (where d. is used as in Theorem 6.13, condi tion 

(iii)); however, our approach suggests that this is not the case. Avron and 

Simon proceed to deduce a result which is similar to Theorem 6.13; however, the 

stronger condition that each of the functions fn(k,y) be continuous 1n both k 

and y is required. 
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The methods of Pearson, Avron and Simon, and our own proofs are an i::di­

cation of the wealth of strategies that may be utilised in the generation of 

singular continuous measures from sequences of periodic functions. A further 

method, using the binomial distribution and Chebyshev's inequality, is used on 

the example of the following section. 

§4 A dense singular continuous measure generated by a sequence of periodic 

step functions 

So far we have confined our attention to the existence of sequences {N } 
n 

of natural numbers which ensure that a sequence {f (N k)) (or {f (k,N k)}) gen-
n n n n 

erates a singular continuous measure. To give an idea of what rate of increase 

of the {N ) can be sufficient, we analyse a specific example in detail. n 

6.14 Example: of a dense singular continuous measure on [0,1) which is the 

limit of a sequence of absolutely continuous measures, and is ob-

tained from a sequence of periodic step functions. 

Starting with the step function f(x) which is periodic with period 1 and 

is defined on [0,1) by 

f(x) = { ;/2 
we construct a sequence {fit. (~)) on [0,1) such that 

f 1 (x) = f(x) 

fk(X) = f(2k- 1x) for k ~ 2 

n 
3

r 

Note that the range of 1T fit.. (x) is { -
k. =, 2 n 

re.O, .... ,n}. 

Defining the set function v(1) on subintervals of [0,1) to be 

l i "' v n ( to ) , where 
"'-+00 

{6.4.1} 

measure on Borel subsets of [0,1), 
we show that v defines a singular continuous 

[ 1) whose endpoints are dladi~ 
and that the )I -measure of subintervals of 0, 
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rationals may be determined exactly. The main steps of the proof are as 

follows: 

(i) We show that for each n in IN , if ,. E. {O I •••• , 2 n _ I } • 

y ([_r r ... I ) ) :-
In' 2 n (6.4.2) 

where Q( I'" is the sum of the coefficients in the binary expansion of r. 

(ii) We deduce that ~ is a unique, continuous and everywhere dense measure on 

[0,1). 

(iii) We use induction to prove that 

for all n in IN , where K denotes Lebesgue measure. 

(iv) Using the theory of the binomial distribution and Chebyshev's inequality, 
n 

we deduce that as n -t (J()) 1r "\ ex) 
k-\ 

converges to zero in Lebesgue measure 

on [0,1). 

(v) We show that for n ~ r, if "l > 0 is given, then .,. 
v ({XE(O,t):1f ~k()()<1)}) is independent of n, and deduce that the measure )J is 

n k:, 

singular. 

Proof of (i): 

We first prove by induction that for n ~ p 

)I (l...!:-.. I r + I )) { r. r """} ) 
l'\ ,," 2.' - lJ P \l2.r ' 2 P 

(6.4.4) 

where n) p ~ IN and 

(6 ) 1.·s true for n = q ~ p and note that our construc­We suppose that .4.4 

tion of the sequence t fac } [_r . _,. ... , ) ensures that . 
2P 2' 

is a finite union 

of intervals of the form l-L 
2.' 

s +' ) 
2"-

where 2 '-'} IE. {O, .... , ) 

on each of which 
C\ 

1f ~k(x) 
k :. I 

takes a fixed constant value. Consider one 

such constituent 

Since 

interval, [~ , 
2\ 

i: -to , ) 
,~ 

, where 2 ~ -I} tE.{O ..... ·• . 



, 
-
2. 

fct,+1 (x) -
3 
2. 

we have by (6.4.1) 

= 

= 

so that 

= 
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[ It X £ 
2ct.+ ' • 

[ 2 t + J x ~ 

21\.+1 • 

t ;~ )) 

2t + I ) 
2 q, ... I 

2. t + 2 

+ 

2"'" I 

:5 
2. 

) 

That is, if (6.4.4) is true for n = q ~ p, then it is also true f·2r n = q+1. 

Since ~.4.4) is trivially true for n = p, it is proved fJr n ~ p by induc~ion. 

It follows that if p E. IN , 

= (6.4.5) 

for each r in { 0, ... , 2P - 1} . 

We are now in a position to prove (6.4.2) by induction, and suppose fi~~~ 

that the assertion is true for n = q. It is required to prove that 

)J ([ ~ r + I )) 
3«r 

2,<\.i'1 ' '2ct+1 
- 2. 2.(q.+ I) 

\ ~ 

where r- = L Q. 2i and d. r = E a. 
i -= 0 let+' i=o '\-t-' 

,. 
[;~ , 

r +1 ) IT fk(x) is cons t 3.:-:':: on 1-
In the case where r is even, 2\ k= I 

[ ~\ .!:. +.!.. ) so that h'T (6.4.5) and f 1 (x) = t on 2. 2. ~ .) 

q+ 2.q. 

V ([ 2 ~+ I r+1 )) ( [ r r+1 )) - 'Vq,+1 2. 9."" , , 
2. ct1- I 2 Cl,+ I 

'\. 

-- J [a~+1 ' 1f .f (x)d" r+-I) k 

z.C\1"I 2 k=1 

* J [i 
C\, 

!:. + I ) 
Tf + ("') d1C. 
k'::l I 

k 
:2 

,I\. 2~ 

= 
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I [~ 1:+ 1 ) - \I 2 2 - -
4- ct. 2") 2." 

- \J [ ;\ ~ .. I ) 

C\- 2." 

Since the sum of the coefficients in the binary r expans ion of - and of r are 
2 

equal, it follows that if (6.4.2) is true for n = q and r £ {O
l

' ••• ,2 C\..I_I} 

is even, then (6.4.2) is true for n = q+1. ,. 
In the case where r is odd, 1r fie. (x) 

k 21 

3 [.t. "+l) 
is constant on [ ~ ,_r_2;_~_) 

and f q + 1 (x) = 2" on ~C\.) : ,. so that, arguing as above, 

~ ( [ r+-I )) 
, 2.4\+1 (6.4.6) 

If (6.4.2) is true for n = q, then 

c( (r _ 1)/ 

3 _~'Z. 

2. '-C\. 

r-1 where 0{ (r-I)I2. is the sum of the coefficients in the binary expansion of -2-' 

and hence from (6.4.6) 

v ([_r 
2 q.+ I ' 

r ... I 

2. ",+1 )) = 
3 oC.(r- \)/2. + I 

2 %(" ... n (6.4.7) 

However, if ~r is the sum of the coefficients in the binary expansion of r, 

then 

-- oC ( ,. _ 1 ) /2. + 

if r is odd, so that from (6.4.7), (6.4.2) is true for n = q+1. 

Using (6.4.5) 

~ (( 0 , i- ) V t ( [ 0 ,t» 3° - .. -- - 22-- 4-
and 

)1([1-. I) = lI. ([.!. ! )} 
2. • 2. 

3 
:a -

4 

so (6.4.2) is true for n = 1; this completes the proof of (6.J.2) for each ~ 

in N , wi th ,. £ {O I • • • • , Z n - I 1 . 
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Proof of (ii): 

If ~ E [0, 1) then c(,. ~ P , where at,. is as in (.) # 1. Hence by (6.~.2), 

(6.~.3) 

for all r £ -{ 0 , .... , 2 P - I}, so that if £ > 0 is given 

(6.':.9) 

whenever p is sufficiently large. 

We prove that v is a measure on Borel subsets of [0,1). This will be 

achieved if we show that the function 

fCx) :: lim 11 [o,x) 
,,~oo n 

is defined at all points x of [0,1) and is bounded, continuous and increasing. 

(see [H] 943, Thm.B). 

By (6.4.2), f(x) is defined for all x of the form ~, where 
2 

r, p € IN , r e. { I J •••• ) 2. P -I}. Consider therefore an arbitrary point a in 

[0,1) which is not of this form and let e > 0 be given. By (6.4.9) there 

exist p, r € IN such that 

r < Q < r+ J -zP 2' 

and " ([ ;p , r+ I 
)) < €. • 

2 P 

Hence by (6.4.4) and (6.4.5) 

for all n ~ p, so that 

" \I n ([ 0 , f,; )) 

- V ([ 0 '7 )) 

It follows from the arbitrariness of I that f(X) is defined at a: 

1s defined at all points of [0,1). 

hence rex) 



229 

To see that x2 > x1 implies f(x2) > f(x
1

) for all x
1

,x
2 

in [ 

that for such x1 ,x2 , there exist r,~ in IN such that 

x < 
I 

r -
so that by (6.4.2), 

By (6.4.5), 

f (I) • ).I ([ o,r)) 

r + I 

2" 
< )(2. 

r + t )) 
2" 

lJ,([O,I)) 

so that f(x) is bounded on [0,1). 

0,1), note 

We now show that f(x) is continuous on [0,1); let a £ [0,1) be an arbitrary 

point. 

For each n in ~, there exists an interval 

[ 
ro,,, '"oln + 1 ) 

I Q, 1'\ = I 
2" 2" -

with r E: i 0, ... ,2 n_ l } such that a E I ; clearly I c I 
Q,n a,n Q,n a , '" 

whenever n > m. Hence 

)I ({a}) = 1I ( n la.n) 
n Eo IN 

:. II rn v ( I Q, n ) 
n -+ 00 

= 0 

by (6.4.8). (see [BA], Lemma 3.4). 

It follows that v is a unique continuous measure on Borel subsets of 

[0,1) ([H] §23 Thms.B,C); and since f is strictly increasing on [0,1), 11 is 

everywhere dense on [0,1). 

Proof of (iii): 

Suppose that (6.4.3) is true for n = p, so that 

r 3 r 

. 1T of. (x) - - }) = 

. k _I k 2" 

for all r = O, ••• ,p. 
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[ 
t t + J) for each t = 0, .•. , 2P -1 . 
2 p 1 2 p 

P 
Now 1f f L ()(. ) takes constant values on . ... eac:;. 

k = I 

the construction of the sequence {fie ( x ) 1 , 

I 

2. 
K ( t x Eo tI p 

K. ( { x E tI p fp+,(x) = ~)) =.!. k( I) , ,t P 

Therefore, since r-1 S, S are finite unions of such ~~~~rval p r p -.1 ~ ~ s. 

K({ ,r.e 

for each r = O, ... ,p. Hence 

p"" 
K({X. E lO,I): 1f = 

k :.\ 

= ~ )) = 
2. 

I K ( 5) 
1 r -I P 

=: K ( r 5 p+ \ ) 

=: ~ K{rSp) + ~ K(",_, 5 p) 

= 
I [( ~ ) + ( r P- I )] 

:2 2 P 

= 
(p; I) 

2 p+1 

for r = 1, ... p, and if r = p+1, 
(P ~ I ) 

K (p+ I 5 p -to I ) 
I K(pSp) 

p+1 
=- - = 2 p+ I -2 2 p" 1 

Thus if (6.4.3) is true for n = p, it is also true for n = 

If n = 1, 

flx)-..!..~) = 
I -:2 

I 

2. 

K({XE[O,J): f.(x)= ~}) = ~ 

so that (6.4.3) is true for n = 1. 

This completes the proof by induc::-: cn . 

Proof of (i v) : 

We first show that 

(~ ) 
= 21 

= oz' 

n ~" 
.3 }) ~ 0 

K{fxC! [0,'): 1\ ·~\(x) ) 
k =, ,n 

p+1. 

(6.L '0J 



as n --.,. 00. 

Now, using 

K ( { x e [0, I) 

= 
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( 6 . 4 • 3) and (:) : (n ~ k ) 

n 5i. " 
Tr +k (x) ~ 

:3 8 

k = I ~n 

L 
{ k e IN : 0 ~ k ~ 3 n )-

3 

L 
{ke.lN: O~k ~ ~n} 

8 

} ) 

(~ ) -

(~ ) 

whereX is a random variable with binomial distribution a~~ ~arameters n and 

p =!, and P denotes probability. 

Using Chebyshev's inequality, where Vex) = n~(1-~) is t~8 V~~~3~2e of X. 

p (X ~ ~ n ) I P ( I X - 2... n I ~ 1. n ) - 'I 8 2- ~ 

~ Z 

V (x) 

("/8 )' 
8 - n 

from which we deduce (6.4.10). (For discussion of the binomial di.=+:ributicn 

and Chebyshev's inequality, see for example [B] Ch.6§38, Ch.? §~~). 

Since 35 
$,.. n 

for each e > 0 there exists N e 2-:-" IN such t:~, ~ 

3 8 
< e 

2," 
whenever n ~ N £. Hence 

n n 

{ x e l 0, I ) ~ 1r + k ( )() ? Eo} S {xt: (0,1): 1f fk(~) ~ 
k :a I k = I 

for all n ~ Ne ) so that, by (6.4.10), 

K. ( { X £ (O} I ) 

as n ~ 00 that is, 

on [0, 1 ) . 

Proof of (v): 

n 

1r fk (X) > e l) ~ 0 
k = I 

n 

Let 5 denote {x t: [0, I): T f k ( )() , " }. 
","1 k~1 

We use induction to show that 

} 

(6.~. ,,) 



for all r ~ n. 

Suppose it is true that 
2crr.e p ~ ... "/ ... 

By definition 

)) P+ I (S", "t) ) 

Now 5 may be expressed 
I'l) " 

as a finite union of :iisjoint i:-:ter':a::'s t I r ) , 

where each I _ [~ r+ I ) 
r - 2 P ) 2 P for some r E {O, .... ) 2. P - I }, and ::--. eac:: 

of which takes a fixed constant value p , r' say. 

for each r such that Irs 5" I" 
fp+l (x) = I 

2. 

3 
2. 

on 

on 

by the construction of 
p+1 

the sequence fk(x). Hence for each such r 

J 1f fk{x)dx 
I.,. k = 1 

which implies 

S 
p'" , 

1f 
5", "1 k =-1 

i. e. 

= J [ ; p , r; :"-) 
I 
- P dx 2 r 

= Pr K ( I r ) 
p 

j If fk()C.)dx 
lr k-= I 

+ Il,. til; ,!..±...!) 
2" 2." 

Since it is trivially true that v,.. (5","l) = v"(S,,,""1) 

completes the proof by induction of (6.4.11). 

It follows immediately that 

v (5 ) = )..In ( 5" ." ) 
"" I I 

from which we now deduce the singularity of t~e measure ~. 

3 Pr dx 
z. 

(6.4. '2) 
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Define 

- f\ 

5 = n. <t 1T .fL(X) , I} 
k=1 ~ "'\ 

Since converges to zero in Lebesgue 

there exists N in IN such that 
q 

whenever n ~ Nq ; that is, such that 

-K ( Sn,,\ ) 
whenever n ~ N • 

q 

Fix n = N . then 
q' 

) I-...!.. 
\ 

I K (SN 0) ~ - -ca.'" 
0.1 the other hand, by (6.4.12) 

< I 

" 

= I -
~ 

measure as n -+ GO 

,w 

k. (5 ) 
".~ 

Thus we have determined a sequence of sets {SN } whose Lebesgue 
«t.,ct. 

• 

measure converges to that of [0,1J, and whose ~-measure converges to zero as 

~ -+ QO. It follows that the measure V is singular, so the proof of (vi) 

is complete. 

This example is intimately related to a class of monotonic continuous 

functions whose derivatives are zero almost everywhere, considered by F.Ries~ 

and B. Sz.-Nagy. (see [RNJ 524, in particular consider t = t, Fn(:<) • \1,.([1-:<,' I); 

also [HS] 18.8). 

The method used in Example 6.14 does not have general application. e·;·~n 

to sequences of step functions. However, apart from its intrinsi~ 1n~e:-,est, 
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the example shows that far slower sequences {NnJ than those obtai~able r~cm 

the general theory may be sufficient to generate a singular continuous 

measure from a suitable sequence of periodic functions. Indeed, inspe~t::~ 

of parts (i) and (iv) of the proof shows that such a slowly increasing 

sequence as {N n : N
n 

-= 2"-' 1 could not have been obtained by the me::--.cd of 

Proposition 6.6. 
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CONCLUSION 

During the course of this work we have 
established a character:sation of 

each part of the spectrum in terms of solutions of the SchrMd;nger 
u • equation, 

demonstrated by example that asymptotic completeness d oes not imply continuity 

of the scattering amplitude as a function of energy, and extended and ge~eral-

ised a number of existing results of relevance to scattering theory and spec­

tral analysis. As with every development, new questions and further problems 

arise; it seems appropriate, therefore, to conclude with a brief discussion 

of the advantages and limitations of our theories and a tentative considerati2n 

of how they might be applied and in what directions they could be extended. 

The: theory of subordinacy developed in Chapter III and extended in 

Chapter IV is attractive in several respects. Firstly, unlike many direct 

methods in spectral analysis, its validity is independent of the detailed 

behaviour of the potential; only very general conditions, as for example, 

that the spherically symmetric potential V(r) be integrable at infinity and 

the spectrum of every self-adjoint operator arising from L on (0,1] be sing-

ular need to be met (see ego Thms. 3.21, 4.10). Secondly the required esti­

mates of the relative size of solutions of the Schr~dinger equation at infinity 

(and I or 0) are comparatively crude; this information should be considerably 

easier to obtain than, for example, the detailed knowledge of m(z) required 

by Titchmarsh ([T2] Ch. V), and only a consideration of solutions of Lu = AU 

for real values of A is involved. Finally, our limited excursion into cases 

where there is singular behaviour of the potential at both ends of an interval 

(Thm.4.10), suggests that considerable extension of the theory, perhaps to all 

the sturm-Liouville type, may eventua~ly 
second order differential operators of 

be possible. 

of the Weyl-Titchrnarsh theory to differential 
In the generalisation 

[ ]) 11 the original features 
equations of any even order by Kodaira (K02 , a 

nesting hypersurfa;::e,:'). 
remain (for example, nesting circles are generalised to 

of subordinacy in this direction 
which suggests that an extension of the theory 
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might be relatively straightforward. 
The structural correspondence between 

three dimensional Schr6dinger operator and the d' . 
one ~ens10nal SchrOdinger 

operator appears to be less exact; for e I xamp e, there is nothing quite com-

parable to the spectral function ([T3] Ch.XII, S12.10). On the other har.d. 

much of the theory which applies in the one dimens1'onal case has been showr. 

to apply in a modified form in the three dimensional case (cf. [T2]~ [T3]) and, 

of course, with central potentials the three dimensional problem effectively 

simplifies to a family of one dimensional problems ([AJS] Ch.11). It therefore 

seems not improbable that some adaptation of our theory might apply, and i~ 

view of the importance of the three dimensional Schr~dinger operator in quantum 

mechanics, such an investigation would seem to be very worthwhile. 

The most pressing immediate problem, which has not been tackled in this 

thesis, is to find ways of applying the theory developed so far to specific 

situations. In some cases sufficiently detailed knowledge of the solutions may 

be known already, so that an immediate application of Thm. 3.21 or of Thrn. 4.10 

is possible. However, it is likely that subordinacy will be of most value to 

spectral analysis when dense point or singular continuous spectrum is a possi-

bility, and that in such cases suitable estimates of solutions - as of every-

thing else - will be hard to obtain. The possibility of using the theory 

indirectly, for example, in conjunction with perturbation methods, should not 

therefore be overlooked. 

. t' of subordl.·nacy must surely be to spectral Although the main appll.ca l.on 

where deta1'ls of the spectrum are known analysis, it is worth noting that, 

of the asymptotl.·c behaviour of solutions of the already, some new knowledge 

Schr~dinger equation is now immediately available. This may not only be c~ 

. oncerned' it also suggests a interest so far as properties of solut10ns are c , 

because the behaviour of 
Possible line of enquiry for spectral analysis. For, 

. 1 in the many cases that 
solutions can now be related to that of the potent1a 

to extrapolate causal ccn­
have been analysed, it may sometimes be possible 

It can be obtained. 
nections between them from which further resu s 
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The simplified eigenfunction expansion c~ Chapter IV l'S 
of ~"':.mdamental 

theoretical interest and further generalisations would 
be of 7alue !'let onl:; 

to quantum mechanics but in many branches of phYSical science. 
Again. there 

is the possibility of analogous results for ordinary differential operat~rs of 

any even order. It seems quite likely that the Weyl-Kodaira Theorem can be 

simplified as in Theorem 4.9 whenever the spectrum is simple and that, in 

general, the simplified expansion is a natural extension of the well established 

expansion for the case where L is regular at ° ([CL] Ch.9, §3). Further inves­

tigation of this problem might well clarify whether the theory of subordinacy 

applies under weaker assumptions (cf. Theorem 4.10, which is a by-product of 

the groundwork for Theorem 4.9). As noted earlier, some related results which 

were unavailable to the author have been obtained by Kac ([K1], [K2]), so before 

proceeding further it would be prudent to investigate the precise nature and 

scope of this work. 

If only those potentials V(r) for which H is spectrally simple and the 
c 

wave operators 11! (H c.' Ho) are complete for each C in IR are considered, 

where H is any self-adjoint extension of- d2. ... V(,.) ... C. 'l to,I],then no further 
c dr1 

weakening of the condition at r = 0 on the class of potentials for which the 

phase shift formula for the scattering operator (Thrn.5.9) holds is 

possible. However, it may be that the condition at infinity can be weakened in 

certain respects; for example, it was shown by Kuroda that the condition 

V () L [I aD) if the potential is can be replaced by r f I I 

not too singular at 0 ([KU2]), so a similar improvement could be possible where 

. H arising from L on (0,1] is the spectrum of each self-adjoint operatlon 1 

singular. h th r certain oscillatory It may also be worth considering wee 

be accommodated under o'-~:' 
potentials which are not integrable at infinity can 

weaker conditions at the origin (cf. [RS III]. p.167). 

hi h the wave operators 
The proof of the existence of a potential for w c 

amplitude is a discontinuous funct~on 
are complete even though the scattering 

d d~scontinuity of =~e 
of energy in Chapter V demonstrates that completeness an • 
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scattering amplitude can occur in conjunction when the 
Potentia~_, l'~ .. P~· - ~ S'...u::: :.cie:-:t:'y 

singular at the origin but absorption does not oc 
cur. It may be t~a~ this 

phenomenon occurs quite generally whenever there is dense 
singular s~ect~~ 

of H, and V(r) = 0 (r -(, +e)) as r -t 00, and 
that whenever the spectr'J.:71 of H is 

1 
isolated pure point, continuity of the scatt . erlng amplitude is assured give~ a 

suitable condition on V(r) at infinity. Certainly the relationship betwee-.. . :ne 

scattering amplitude as a function of energy and the spectral properties of ~ 

seems worthy of further investigation. 

The method of inductive construction of potentials, originally devised by 

Pearson ([P1]) and discussed in Chapter VI is an interesting alternative 

approach to spectral analysis which seems particularly promising where singular 

continuous spectrum is concerned. It is difficult to assess the likely future 

significance of the method given the rather limited class of problem to which 

it has been applied so far; in each case the constructed potential vanishes 

on successively larger intervals of IR as r~oc (see ego Prop.6.4, [P1] Props. 

1,2). Initially, an investigation into whether the method could also be applied 

when the potential is small, just touching zero glancingly, on successively 

larger intervals of IR as r ..... 00 (as for example (\ + ('os,r,:)) could lead to a 

useful extension of the approach. 

While the material of this thesis has for the most part been motivated by 

problems in theoretical physics, we hope that some of its contents may also be 

of interest in other fields. Only Chapter V is exclusively quantum mechanical 

in its subject matter; mathematical topics occurring elsewhere include 

e and spec ~ :'81 
ordinary differential equations, eigenfunction expansions, measur 

theory and complex analysis. 

connections that have been 

Of particular interest, perhaps, are the intimate 

spectral properties of Sturm­exposed between 

ti s the theory of 
Liouville operators, solutions of the associated equa on, 

measure and boundary properties of analytic functions. 
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APPENDIX 

We prove that the isometric Hilbert space isomorphism 5 of Theorem 
4·9 

is surjective; that is, we show that for each G-(~) in LP ( 
z - 00 J 00 ) the!"e 

exists fer) in L1.(O,oo) such that (Sf )(A) = ~('") .... 
Q"" ).J. -almost every-

where. 

Now from the Weyl-Kodaira Theorem, for each given element (¢I (~), t.62, (~)) 
(J' -

of L,.'J (-oc, 00) there exists fer) in L1 (0,00) for which «(Tf).().),(Tf)I.().)) 

ecnverges to ('P, ().), "'2. (~)) in the topology of Lf'ii ( ) 'fJ 2 - 00 , 00 _ Moreover, 

for each ('P, (A), ~l. (). )) 
f" in L 2 IJ (- 00 ,ao) there is a corresponding 

element G- ().) in L f (- 00 J co) 

-= (5 f. )( A) p,-almost everywhere (see proof of Thm. 4.9). However, in 

general, there appears to be no obvious way in which we may associate a 

particular element (¢, ().) I ct>" (A)) of with an arbitrary given 

element Go (). ) of P L2., ( - 00 , 00 ) It seems, therefore, that the surjective 
IV 

property of 5 cannot be deduced in a straightforward way from the surjective 

property in the general case. 

To overcome the problem, we have adapted a proof due to Coddington and 

Levison ([CL] Ch.9, Thm.3.2). To illuminate the main steps of the proof, we 

present the preliminary stages as a sequence of lemmas. 

Throughout this Appendix, II -II. will denote the L2[0, 1] norm, ~,~ I , ~'1 

compact subintervals of IR , and X I the characteristic function of an interval 

1. 

A.1 Lemma: If L = _d2 + VCr) is in the limit circle case at 0, then 

dr2 

II 1\ II ( ) 11 continuous functions of z on (. ':J I (r , 'Z.) I, '1 'l. ,. I Z. II, are 

h () ) f · d 1.. n Chapter IV, § 1 . were Y1 r,z and Y2(r,z are de lone as 

Proof: 

We shall give the proof for Y1(r,z); 

in the case of Y 2 (r, z) • 

i no difference of pri~~~ple there s 

..... 



~, , 

240 

Using the "variation of constants" f ([ 
ormula CL], Ch.:, ~-~.6.!), fte 

have 

'j . ( r ) z) = '1 , ( r I Z 0) + ':J I ( r I Z 0 ) J: "'J '1 ( V • z 0) l ~ - z.o) 'j I C V , 2.) dv 

- 'iZ.Cr"IZO) I; Y,(vJzo)(z-z.o)y,(v,z) dv 

so that, proceeding as in Lemma 3.2, we obtain 

( J ' C (",) - Y'L ", %0) r~' v) '%0 )( '% - Zo) '1. ('1 J Z. ) dv 

Since L is limit circle at 0, Y1(r,zO) and Y2(r,zo) are in L
2

[O,1] for 

each Zo in 4:. Hence if z and Zo are sufficiently close, the iterations con­

verge to the solution Y1(r,z) (cf. proof of Lemma 3.2), and 

Illy,Cr,z>lI, - 1I':J,(r,zo)I,1 ~ 1l'j,(r,'Z.) - ,:/,(r,zo)!t. 

GO 

L 
n =- I 

< d 
for some predetermined 0 ') O. 

Thus II ,:/, (r"', z) II, is a continuous function of z at zo; the arbitrary 

choice of Zo implies that 11 "::J I (r I z)ll, is a continuous function of z on c:. . 

The lemma is now proved. 

. f Go C ~) is in L: (- GO • dO ) A.2 Lemma: With the notation of Theorem 4.9, ~ 

and 

then '1 A (r 1 is in L z (0 , 00 ) for each ll. C C - 00 t CD' 

converges in the mean as 6. ~ (- 00 , fS)) • 

Proof: -Let G- (A) be in L: ( - 00, 00 ) • 

Consider the integral 
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where P ( r) E l %. ( 0, QO) vanishes outside [a,b] for some a,b such that 

o < a < b < 00 and 

':J A (r) = Jh. "Js (r,)..) G-(~) dp()..) 

If Q ().) = (g P)(" ) then by Theorem 4.9 

Q C ~) = S: '1 s (r, ).) PC,.) d,.. 

We prove that 

for each compact II in (- 00 , QO), and deduce that {y ,. (r) } 

in L 2. (0 I QC) ) • 

Now 

We show that )'s(r,)..) G-(A) per) is integrable on [Q ,bl X £::. 

the order of integration may be reversed. 

By the Cauchy -Schwarz inequality 

From (4 • 4. 1 4) , 

;. = {}J- 7.'2. 

JA .. 

on 

on 

(A.2.1) 

is Cauchy 

(A.2.2) 

so that 

so that using Minkm-lski' s inequality, (4.4.15) and Lemma 4.8 we have 

(i-.2.!) 
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Now 'j I (r , ~) , ":12. (r, ~) are bounded on (Q b 1 x 6 T . 
, . 0 see th1s we use 

the "variation of constants" formula on the ref 1 
ormu ated Schr~dinger equation 

where ).. 0 is some fixed point in 6.. This yields 

(A.2.5) 

for r in (0, 1 ] • Hence, since 6 is finite and ':J, ( r I ). 0) , '12. (,. I ),. 0 ) are 

continuous functions of r on (0 ,ao) , there exist K, M in R~ such that 

for each r in [a, b] n ( 0, I] and all )... in A. If a < 1, we may apply 

Lemma 5.2 to give 

I Y I ( r) A ) I .. K exp [ M (I - a)] 

for all r in [a,1] and all ~ in 6. Similarly, if b > 1, there exist K', M' 

+ in IR such that 

, Y I ( r , >. ) I ~ K' e.xp l M' ( b - I)] 

for all r in [1, b] and all A in 6. Consequently, y, (r-, ") is bounded on 

la, b] )( 6. ll.'kewl.'se v (r \.) l.'S bounded on la, bI x 1\ , 
.11 ,'" '-' 

Since p (~) I:> (A) are functions of bounded variation on compact sub-
\I 'r 2.~ 

intervals of IR , it now follows from (A.2.4) that <J6 I Y5(r/~)la df(~)) 
'/ .. 

, b d f t' f [b] Hence, since per) is integrable on [a,b] 1S a oun ed unc l.on 0 r on a, . 
.., 

and G Od is in L: (- 00 I 00) 

I: fA I ysCr,).) GoO,) pc ... ) I dIe).) d~ < "" 

by (A.2.3), and so, from (A.2.1) and (A.2.2), 

f 000 

~ A (r) P ( r) d,.. = J A ( J ~ ;#, (r-, ).) P (r) d,. ) G- (~) d,o (~ ) 

- J QCA) GoC>.) d,oC~) 
A 

(A.2,6) 

To show that :J A (r) 

continuous on [a,b]. 

is in 1.
2

(O,GO) , we first prove that 1A (r) is 
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Since is bounded on l Q bl " , x ~ we deduce from (A.2.S) t~a:, 

if a < 1, then y,(r)~) is a continuous function of ~ for each fixed r in [a.1:. 

> 1, y,(r",>-') Similarly if b is a continuous function of ~ for each r~ d .. _xe r 

in [1, b] . Hence ". (r, A), and similarly v .. (r-
j 
"), 1."s c t" 

J J .." on l.nuous on L a I b] x 6" 

Now, by (4. 4 . 1 4), ( 4 . 4 . 1 5 ) and Lermna 4. 8 , 

(;'.2.7) 

We show that S ~ G (~) df ij 0 .. ) is a function of bounded variation on A for 

j = 1,2. If V6 denotes the total variation on ~ , then (see [RS], proof of 

Thm. 18.1), 

~ J I C;(~) mo(~)l d,oll (X) 
A 

" "a , (S~ 'U{~)l1df'II{~)) J.<I
A

lm o n.)\1. d,o\l(}.)) 

~ ~ ~ 
< (J \Cil~)I1.df(A))~(J df17.(>')) 

_~ A 

wh~ we have used the Cauchy-Schwarz inequality and Theorem 4.8. Since er(>.) 

~ 

is in L~ (- 00 , 00 ) the total variations above are finite, by hypothesis, 

( ~ , on 1 Q • b 1 " 6 and hence the continuity of y.('-,>.) and '12. r, 
implies 

that the first two terms on the right hand side of (A.2.7) are continuous 

functions of r on [a,b]. (see [AP] Thm.7.38). 

To see that 

(A.2.8) 

{ i 

-
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iEl ~l continuous function of r on [a, b] even if the number of 
ccnstit~e~t :e~s 

is infinite, note that, using the continuity of y l. ( r I ),. ) on t Q I b 1 )( 6 

there exists K in ~T such that 

It follows that each sequence of partial sums associated with (A.2.8) is uni­

formly convergent on [a,b], so that (A.2.8) is a continuous function of r on 

[a,b]. 

Thus we have proved that 'iA (r) is a continuous function of r on [a,b], 

and so 'Y A (r') X [Q. b] is in L 2 (0 • oc) for each finite 6 in (- 00 • GO) and 

each a, b in IR 1'. 

Now suppose 6. I ::;, l:l7. ' and set 

P ( r) = j A, l r) X [Q. b 1 - Y A 1 ( r) X (0. b 1 

Using (A.2.6) and the Cauchy-Schwarz inequality 

(aD l'j lr) - 'til. (r)) per) d,. '& fA '6. Q(~)G-(~)dF(") 
Jo A, ~1 I 2-

1/ ,.) 111 

E (S_: \ Q (~ ) \:l elf C ~ )) " ( I A, ' A&' Go (~)\ d P (~) 

• U Per)1 (S \ G(}.)l" d,ol).)) 
6..'6,,, 

Substituting for P(r), this yields 

JRi". for each a, b in This implies 

'Iz. 

\i (S IG-(~)I'd~()')) 
" ':J t:.. ( r ) - 'Y A 7. ( r ) E A, , A" ,-, 

'I" (A.2.9) 

Setting AI = A ) A,. = ¢ t ( ,.) is in l1 ( 0 I 00) we see tha YA 
fer each 

Ain (-cOlao) , since G (" ) is in Lf ( - GO, 00) by assumption. 

therefore follows from (A. 2.9) that {"j A t,.) J 

A ~ (- 00. 00 ), and so the lemma is proved. 

is Cauchy in L1 (0, GO) 

It 

as 

~ 

Lemma A. 2 shows that for each G(~) in l~ ( - 00 , aD ) 
there exists u(r) i~ 

L1 (0,00) such that 

------
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U(r"') ~ l.i.m. 
W -I) 00 

To complete the proof that 5 is surjective, we need 

Define ~ ex) = G(~) - (Su)(X) ,where we note that ~ (A) 

Then it suffices to show that 

Now from Theorem 4.9 and Lemma A.2, 

to show that (5 u )()..) _ (i.( >-. ). 

'. 10'" 
1 S 1n L 1 (-.xl. GO) . 

(A.2.10) 

(A.2.11) 

where the integral converges in L (0 .-) 2, . 'JW • Defining 

and 

= J "Y s ( r, ~) 5 (A) dp (X) 
A 

R 6. (r, t) = J 6 'j s (r, )..) 
~ l>.) 
X - l 

dpCA) 
(A.2.12) 

for r > 0 and l in (: \ IR ,we shall show that for each l in C' IR, R A (,., l) 

converges in L2,(O,oo) to the zero function as ~~(-oo,ao),and deduce that for 

each finite A in (- 00, OQ), ~.!). (,.) = O. \Ve shall then be in a position to 

prove (A. 2 • 1 0 ) • 

A.3 Lemma: If l is in e,"R I R.!). (I", l) is in L2, (0,00) for each b. in 

(- co • (0) I and {R ~ (r) l )} converges in the mean to 0 as 

Proof: 

o 
Let R b. ( ... , l ) denote R A (r, l) X [0, b) for some a, b in IR~. 

and l ],' n 1", lR, we have for each r 
Then for fixed II in (- 00 I 00) " 

(A,~,1) 
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so that for each such A and l R- ( . , 0. (',ll 1S a bounded f'J.."1ction of !" cr; 

(cf. (A. 2.4)) and hence is in L ( 0 ) 1 ,(Xl. 

Now let l!:a :> t:.. U' , 1.' slng the method of L emma A.2 we obtain fer each 

fixed l in 

( J
b 

Q I R A, ( r, l) - R 0.
1 

(r I l ) I ~ dr )'/1. , (1 
AI' 6.1 

( J 
A 

'g(x) 

(~ - l) 

~ ().) 

(~ - l) 

for every a, b in lRi". Since 5 ().) is in L,a' (- 00 --) 1 , ..,.., , we deduce that R (,. l) 
6 • 

is in L 1. (0 ,00) for each 6. in (- 00 , -- ) { ..,... ,and R ~ (f', l ) } converges in 

L 2. (0 J «J ) as ~ ~ ( - 00, co) . 

We now show that \ R A (,. , L ) } converges in the mean to 0 as t:::. ~ (-ao,aD). 

We shall prove that R l (' L) A. I 
is in 0 (H) and that 

(H -l) RA (r, L) = 'LA (r .. ) (A.3.2) 

for each L in C ,IR and each A in (- 00 , 00 ) . 

From (4.4.14), (4.4.15) and Lemma 4.8, 

R~ (r, l) - SA 11{""~) d S>' ~ (~) 
d,oll (>.) 

(). - L) 

+ I~ 'i1("'~) d f~ ~(~) 

l>.-L) 
dpl2. (~) 

+ i. "J 2. ( ,. I ej ) 

5 (ej) 
f"12.l{e.j 1) 

{j :ejEAnE} (e,. -l) 
(A.3.3) , 

(cf. (A. 2 .7) ) • As in the proof of Lemma A.2, J>' ! ().) dp .. (}.)is a function 
(,,-l) 'J 

of bounded variation OIl A for j = 1,2, and y,«(',"')' ~2.{r,~),y,'(".).), ":12.'(,.,>,) 

are continuous on la, b 1 X 6. for each a, b in R'" and each finite t:a in 

(-oo,co). Moreover, the final sum on the right hand side of (A.~.3) is a 

continuous function of r on [a,b]. Hence we may differentiate (A.3.3) with 

respect to r, and equate the derivatives of the integrals with the integrals 

of the derivatives (see [AP] Thro. 7.40), to give 



247 

:I ()..) 
(A - l ) 

We deduce that, if p is in [a,b], and if' a 
Y j (,. I X) :. - v. (r ).) 

d"./' , , I::: 1,2, 

= 

+ 

+ 

li "' 
h~O 

lim 
h~ 0 

lim 
h 4 0 

lim 

"'~o 

. Let us consider the first term on the . ght h r1 and side of this equality. For 

each fixed p in [a,b] and each h > 0, 

y,'(p ... k,~) - ':J/(PI~) 
h 

(A.3.6) 

is a continuous function of X , and hence is integrable with respect to 

fx 't: 
~ (~) dpn(X) on A. Moreover, for each A in A and each h < K, (A.3.6) 

()..-L) 

is dominated by 

sup 
""" O<h~h 

"':J/(p -to hJ ).) - y.'Cp,).)I 

k 

which is a continuous function of A and h on (0 J K 1 )(. l::J.. If we extend 

the domain of rp (A, h) so that 

r (~ 0) = ~ ",(r,~)1 
P' ar" J r=p 

then r p ()..) h ) is continuous, and hence bounded, on the compact set 

[ 0 I K ) )( A, A similar argument applies to the second and third terms on 

the right hand side of (A.3.5), so that, by the Lebesgue Dominated Convergence 

Theorem, we may take the limits under the integral signs to give 

for all r in [a,b] and each l in £, lR 

!(~) d,o(~) 
eX - L ) 

CA.'.7) 

Since a,b in R .... are arbi~:"i:'::, 
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we deduce that (A. 3.7) holds for all r in (0 I co) 
and each l i:" C \ R. 

Hence 

L R~ (1"', l) 
a1. 

= - - R (I'" l) + VCr) RA (I"', l) 1 A I or 

J~ [ a~ !(~) ~ 

- 0"2. '.1~("'J~) ... VCr) ~~("'J~)] dp ()..) 
(~ - l ) 

= JA 
).. '1s(r,~) ~()..) d-C),) 

()..-l) P 

(A.3.8) 

for all r in (0, (J) and each l in ([., IR (Note that h did (A 3 ) we ave er ve .. 8 

without assuming V(r) to be continuous). To deduce (A.3.2), we need to show 

that R A (,.. ) l ) is in lD ( H ) . 

We first show that if L is in the limit circle case at 0, then R A (I'" I l) 

satisfies the same boundary condition at 0 as "j ~ (I"', )..) • 

If L is in the regular limit circle case at 0, Y~(I"'I)..) satisfies a 

boundary condition of the form 

cos of. ':J s (0, X) - S I"n '" "j s' ( 0 J }..) = 0 

for some ~ in [0, 2~). (see (4.1.1». In this case the definition (A.2.12) 

of RA lr, L) may be extended to include r = 0, so that, by (A.3.4) 

Co 0 S ()( R A ( 0 I l) - sin d. R 'A ( 0, l) - 0 

since R 'A ( 0) L) = li m R ~ (r, l ). 
I"'ol-O 

If L is in the singular limit circle case at 0, then y~lr,~) satisfies 

a boundary condi tion of the form 

(i m 
(" .a, 0 

,-Ie ( \.) "(I'" ~) ... ~(zo)"~(r,zo)) ':a 0 
W ":is r," ,..11 1 0 J 

where z is in C , IR 
o 

and ~ ('Z 0) is some point on the limit circle 

associated with z • 
o 

) + :;.. (% 0) "j'l ( 1"', Z 0) • ':J ~ (,., 10 1 · Clearly ':J, (r I Zo 

and, using the Schr~dinger equation, 

W ( y ~ (,., ~ ) I 'Y s (,.. I Z 0 ) = (A - ~ D ) I: y 5 (,. , )\) y s ( I'" I % 0) cI ,. 

Bence, by (A.2.12) and (A.3.4), 
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Since z and l in «:., IR 
o 

IA-Zj 
are fixed and ). E. R , there exists K . IR+ A 1:: 

such that 0 ( K 
A -l A on ~. Hence, if I y (r, ~) \I r denotes 

(J; I 'j (I'" J ~ ) \ ~ d r ) 'h., 

,KA U'j:;(r,zo)l\,. (SA r 'S(}..)I"l.d,o(~))'/2.(SA ll:1s('-J~)llrtdp(>..))'/t. 

(A.3.9) 

by the Cauchy-Schwarz inequality. 

Now by Minkowski's inequality, (4.4.14), (4.4.15) and Lemma 4.8, 

( JAil 'j s (r,)..) II zr dp (~ ) ) '1:t ~ ( SA II '.J ~ (r) ~ ) I ~I d1 (X ) ) '1& 

- (fA 1I':1,(r,).) XA'E'" "'o().)'j,.cr,~)XA,e + Yt.(r,)..)XAnE";dp().))'1J. 

~ (I A, J' ":J. ( r, ~ ) n I ~ d f' \I (). ) + 2 J A ,e U'y I (,., >.. ) "l II Y:l ( ,., >.. ) II, d f' I i (" ) 

+ 2 fA' E 11 'j, ( ,. , ). ) U I U ~ 1 ( r) ~ } Did p;; 0\) + J A U:h (r-, ).1' ~ d f'n (~ )) III ( A • 3 • 1 0 ) 

It follows from Lemma A. 1 that II ":J I (r,). ) II, and U '.f 2. (,., " ) 11, are bounded -
functions of A on A; therefore, since S ().) is in L ~ ( - DO I (X) ) 

and (A.3.10) together imply that CAin IR+ exists such that 

for all r < 1. 

lim 
r .I, 0 

Since y (r,z ) is in L
2

(0,1], it follows that 
s 0 

,(A.3.9) 

Thus for each l in C' IR and each finite A, RA (,-, l) satisfies the same 

boiundary condition at 0 as y~(rJ).) if L is in the limit circle case a;. O. 

That is, if L is limit circle at 0, RA(r, l) satisfies the boundary cc:r.(ii~1on 

required of all elements of 4)(H). 

To complete the proof that RA Cr, L} is in !) (H) , we show that l RA (,., l ) 

is i L (0 ) R ( L) and R~(r,l) are abs~:'utely con-
n 1 ,aD , and that A r, .. 



tinuous functions of r on each compact subinterval [a,b~ c~ __ (O,(X). 

Evidently it may be shown that LAC,.) is in Lz,(o,GO) by t::e :::e:::sd 
t.:.se:: 

at the beginning ot' this lemma to prove that R",,(r.l) is in L.,(o.oo) :"'C)r 
~ 4 - eac:-. 

lin d:' IR . That LR~(r.l) is in L:z.(O.oo) for each lin C'IR t::er. :~Jllows 

from ( A. 3 • 8) . 

By (A.3.8), R6 (r,l) is a solution of (L-L)utr,l) = 't
A

(r).:'!1erefore, 

applying the "variation of constants" formula ([eL] Ch.3, Thm.6.4), we have 

for 0 <. ,. ~ , , 

RA(r,l) ~(A) J d p ,,().) + 'J'1(r,l) 
(~- L \ A 

I s (~) 
dp'11. (A ) 

AnE (~-l) 

+ ':J J (r, l ) J I 'j 2. (v J l ) '( ~ ( v ) d v - 'j 2. l r, l ) f' 'j, ( v, l) "t 6. (v) d v 
r r 

where we have used (4.4.14), (4.4.15), Lemma 4.8 and (A.3.8); a similar form-

ula holds for r > 1. The absolute continuity of R6. (r, l) on each compact sub­

interval of R -to follows from these formulae since ';1, Cr, L) "'CA(r) , Y2,(r.l) 'tA (r) 

are integrable on [a,b], and Y1(r,l), Y2(r,L) are absolutely continuous 

functions of r on a,b. 

We have now proved that R~(r,L) is in I)(H) for each lin (." IR , and 

each finite A in (- 00 ,00 ). 

It therefore follows from (A.3.2) that 

II Ro.(r)l)ll 

for each l in <C , IR and each 1:1 in (- oc , 00 ) , where 

II(H-l)-'l1 .sup IICH-l)-'f" 
II: 

{, Eo L:z.(O,00) : If» c I} 
, 1", II 

( [ 
Q ) Tak-lng l';m-lts as A...,(-oo,ClO)in (A.3.11) it 

see HE] ~24 Proof of Thrn.3 • • • • 

in the mean to zero as ll. ... (- ao, 00). 
follows from (A.2. 11) that RA (r, L) converges 

The proof of the lemma is now complete. 

... ) whose endpoints are points of 
Corollary: For each f~n~ te A ~n (- 00 , oc 

J (r A) S ( ~) d,o ( A) • 0 
continuity of p ().) , l'A (t") C A 'Js ' 
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for all r in (0, 00 ) • 

Proof: 

Define 

,... 
where 0 <: a. < t: < 00 so that Ft. ().) = (5 f t ) ( ).. ) 

{ ~ a ~ r tit t 

otherwise 

Since ft(r) is in Ll. (0 ,00) for each a and t, F~ ()..) 

• 9) . _ ·,....,:l..-.u . . "' .. ~.-

Now from the final inequality in (A.3.1), we see th~:- 'is(r , ).) S(~) 
(~ - l ) 

is integratie on l a I t I )(, A fop each a,t,~. Hence, usi:-:,,: (A.4.1) and 

(A.2.12), 

IS ~(A) F~(A)dp(A)1 
A (A - L ) 

Taking limits as 6. ~ (- 00 , 00) ,we deduce that 

SCQ 
-110 

seA) FtlA) df(~) 
{}.. - l } 

= o 
(A.4.2) 

We now prove that, if t > a, 

S eM) 

-00 

.-..; 

S()..) F~(A) dp<>') = 0 

for all v, JA which are points of continuity of p (A ) . 

Let x, y denote Re. land Im L respectively. 

- P ) Using S ( )..) F to (A ) t L (- 00 I 00 
and the Lebesgue CC!'1i!13.ted '':::n':e:,,:e:1ce 

Theorem, we deduce from (A.4.2) 

o = lim 
't~O 

J}J 1m SOC) 
v -00 

= lim J}A Soc 
":J -l- 0 v -00 

s ()\ ) F l: (>.) dp ()..) d x 
(A - L) 

_ l i", J GO [c 0" -I ( ~ - J-A ) _ co n -I ( X - V)] 
'j~O -QO \ ':/ Y 

= JaO 1f X. slA) F~()") dF(~) 
-GO [y ,}"] 
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for all v and p which are points of continuity of p- (\.) , 
~ so that (~.1.3) is 

proved. 

Using (A.4.1), (A.4.3), (4.4.14), (4.4.15) and Lemma 4.8, we see t::at 

0- J: S(~)J='1sCr'X)drdpC~) 

-= J[v
J

}4] ,E 1: ':f,(r,)..)dr d S). s()..) dpll(~) 

+ J ] Jt :t:z.(r/~)dr elS). 5(>') dfI1(~) 
[V/fA 'E Q. 

+ J( 1 r~ '12. (r, x) d,. d J~ ~ C>.) dP11 ().) 
V,P flE 0-

Since each integrand in the expanded expression is a continuous function of t 

and ~ on [a,b] x [vJ~] for each finite b > a, we may (cf. proof of Lemma A.3) 

differentiate under the integral sign with respect to t to give 

"t A (t ) o (A.4.4) 

-
for every t in [a,b] and each ~-interval A whose endpoints are points of con-

tinuity of ~(~). The arbitrary choice of a,b implies that (A.4.4) is true 

for all t in (0 I co) . 

The corollary is now proved. 

-A.5 Proposition: The isometric Hilbert space isomorphism 5 of Theorem 4.9 is 

surjective. 

Proof: 

On account of Lemma A.2, we need only prove (A.2.10). 

Now Y1(1,z) = 1 for each z in (.(see Ch.IV, §1) so, setting r 

result of Corollary A.4, we have 

J ~(~) dp(~) - 0 

= 1 in the 

A 

f () whose endpo1.' nts are points of continui ty of p ( ~ ) . 
or each fini te A in - OC) / 00 

Therefore if " I. 0( i X· is any step function such that the end-
I 

i = I 

points of each interval I. are points of continuity of p(~) then 
1. 

& 0 
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for each finite t:::. in (- QO I GO). 

Let e > 0 be given. Since S (A) is in L~ (-GO,ao)and the step functions -are dens e in L ~ (- 00 , 00 ) 
n 

there exists a step function Lat· X . 
i :. I I I 

such 

that 

J 
(JD n 112, E 

( I ~(~) - r o(j X,I3. dpCA )) <. ---------
-GO i= I (S_: ,!(~)\1.dp() .. ))'h 

There is no loss of generality if we suppose the endpoints of each interval 

I. occur at points of continuity of p(~) since the points of discontinuity 
l. 

of p fA) are, at most, countably infinite. Hence for each finite t:::. in l - 00 , aD ) 

I J I 5 ( ~ ) \ 2. dp ("') - SA (.1 0( i Xi) ~ (~) d P (A ) \ 
A I.' 

n 

:1& I SA ! (~ ) [ ~ (~) - i~' 0( i Xi] dp (A ) 1 
I/o n ~l 

~ (J A I S ( ). )\ 2. d 1 ().. ) ) 7. ( J A ' i~ I al i Xi - ~ ( ~) \ 1. d l ().. ) ) <. I. 

from which may be deduced by (A.5.1) and the arbitrariness of E 

J A I S ().) 11. Op ( ).) = 0 

Since IR may be expressed as a disjoint union of finite intervals ~, we deduce 

(A.2.10), and the proposition is proved. 

Proposition A.5 completes the proof of Theorem 4.9. 
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