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SUMMARY
Summary of Thesis submitted for Ph.D. degree
by Daphne Jane Gilbert

on

Subordinacy and Spectral Analysis of Schr#dinger Operators

This thesis is conce;;ed with the spectral analysis of Schr#dinger
operators with central potentials, and some related aspects of scattering
theory. After an introductory discussion on the aims of the thesis and its
relation to existing work, the background mathematical material required for
subsequent developments is presented in Chapter II. The theory of subordinacy,
which relates the absolutely continuous, singular continuous and discrete parts
of the spectrum to the relative asymptotic behaviour of solutions of the radial
Schr8dinger equation, is established in Chapter III1 for the case where

L = —d2 + V(r) is regular at O and limit point at infinity. In Chapter IV,

dr2
it is shown that the general eigenfunction expansion theory of Weyl-Xodaira
can be simplified for a Schrdédinger operation in L2(O,a>) whenever the corres-
ponding operator on any finite interval containing the origin has singular
spectrum and the potential is integrable at infinity; an incidental outcome
is an extension of the theory of subordinacy to include cases where L is
singular at both ends of the interval (0,). The simplified expansion theory
enables the class of potentials for which the usual phase shift formula for
the scattering operator holds to be extended in Chﬁptzf V, so as to include
more singular behaviour at the origin than any previously considered. Using
this result, it is shown that a Schr#dinger operator exists for which the theory
is asymptotically complete and the scattering amplitude is a discontinuous
function of energy. Chapter VI is concerned with the inductive construction
of potentials having singular continuous spectrum; there is a particular
emphasis on the generation of singular continuous measures from sequences of

absolutely continuous measures, and some improvements to existing results and

relevant examples are presented. The thesis 1s concluded with a brief indic-

ation of some outstanding problems, and suggestions for further research.
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1
CHAPTER I

INTRODUCTION

The time independent Schridinger equation
"Au + Vu B)\u

is of fundamental importance to the mathematical description of those quantum
mechanical systems where the potential V is independent of time. An elliptic
partial differential operator of the form

-A + V
acting in the Hilbert space l_z(ﬂis)is known as a Schr8dinger operator.

This thesis is concerned with the qualitative spectral analysis of self-
adjoint Schr#dinger operators with spherically symmetric potentials; for such
operators the Hilbert space may be decomposed into mutually disjoint partial
wave subspaces, and the spectral analysis of a Schr8dinger operator in l.z(le)

may be reduced to the spectral analysis of the ordinary differential operators

2
- + Wee 1) + V(ir) re (0,w)

2
dr r?

in each partial wave subspace. ([AJS] Ch.11). For convenience we shall

usually assume the term Lili%l! to be included in V(r) so that the general
r

problem further simplifies to consideration of the ordinary differential

operator

2

L = -9 + Vvi(r) re(0,m) (1.1.1)
dr?
acting in $ = L,(0,m).

The associated one dimensional Schr8dinger equation

2

d
dr?

+ V(rdu = ANu r € (0, o) (1.1.2)

is of the Sturm-Liouville type; we shall draw on the considerable body of
existing theory relating to Sturm-Liouville equations, which have widespread
applications in the physical sciences, as the need arises.

Tt will be assumed throughout that V(r) is locally integrable on (0, 00)
and that non-trivial self-adjoint extensions of the symmetric differential

operator L with domain C;: (the set of infinitely differentiable functions
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.©)) exist. The condition that V(r) be locally
integrable is sufficient to ensure that Weyl's 1limit point, limit circle
classification, which is extensively used during this thesis, applies ([CL]
Ch.9, 82). Note that, although u.eLZ(O,ab) cannot be in the domain of a one-
dimensional Schr#dinger operator unless lmLeL?(O,ao), it is not necessary for
V(r) to be in LZ(O,GD), even locally ([KA] Ch.VI, 84.1). Methods for
establishing self-adjointness for semibounded and unbounded operators are
widely discussed in the literature (eg. [KA] Ch.VI, [RS II],[S1]), and apart
from a short summary of some relevant aspects of operator theory in Chapter
II, §4, which clarifies the role of boundary conditions, will not be further
considered here.

The spectrum of a self-adjoint Schr#dinger operator, or Hamiltonian, H,
represents the possible energy levels of the system and is defined mathe-
matically to be the complement in IR of all A for which the resolvent operator
GL-AI)_1 is bounded. The methods of spectral analysis which we shall adopt
fall into three distinct categories.

The first method, which we call after Glazman ([G]), the direct method,
deduces properties of the spectrum from prior knowledge of the potential,
and, where appropriate, of associated boundary conditions. We contribute a
new method of this type through the theory of subordinacy developed in Chapter
III; provided certain aspects of the asymptotic behaviour of solutions of
Lu = xu can be established for each real x from knowledge of the potential and
boundary conditions, the nature and location of the specturm may be completely
determined. Classically the direct method has been the most usual approach
to the problem of identifying corresponding Hamiltonians and spectra (see eg.
(T2], (@], [DS] Ch.XIII §9. G,H.); however, unlike many examples of this method,
our theory of subordinacy has very general application. Where L is regular at
0 and limit point at infinity we only require that V(r) be locally integrable,
and where L is singular at O and limit point at infinity the only additional

requirement is that V(r) be integrable at infinity.

The second approach to spectral analysis is known as the inverse method
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) | by Gel'fand and Levitan ([GL]). They established
sufficient conditions which ensure that a given monotonically increasing
function,o(%) is the spectral function of some Schréddinger operator, and de-
vised a method for obtaining the operator from pP{XN). In practise it is not
easy to derive Schr#dinger operators analytically from their spectral functions
since the solution of integral equations is involved; however, the inverse
method is invaluable as a tool for testing hypotheses and providing counter
examples. In this role it will be used to clarify the nature and extent of
the correlation between the asymptotic behaviour of solutions of the Schr8dinger
equation and the spectrum in Chapter III, and again during the proof of the
existence of a Schr8dinger operator where the wave operators exist and are
complete, but for which the scattering amplitude is a discontinuous function of
energy, in Chapter V.

The third method of spectral analysis adopted in this thesis is that of
inductive construction of potentials. The starting point here is neither a
given spectrum, nor a given Schr#dinger operator; instead, under carefully
controlled circumstances, sequences of operators with absolutely continuous
spectrum on RY=(0,o) are chosen inductively to ensure a particular type of
spectrum of the limiting operator. In general, therefore, only an overall
conception of the limiting operator and of its spectrum is assumed at the out-
set, more precise details emerging in accordance with the constraints of the
inductive construction. This method, as yet relatively undeveloped, was first
used to show that a potential consisting of a sequence of "bumps" will have
singular continuous spectrum on IRY provided the separation between the "bumps"
increases sufficiently rapidly with distance ([P1]). Some related theoretical
questions, with particular reference to singular continuous spectra will be
considered in Chapter VI, where a new example of an inductively constructed
potential will be presented for which the associated Schrédinger operator with
Dirichlet boundary conditions at the origin has singular continuous spectrum.

The theory of potential scattering is inextricably linked to the spectral

analysis of Schrd8dinger operators, and, indeed, has had a considerable influence
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. —— p--sicular, the decomposition of the spectrum into
absolutely continuous, singular continuous and pure point parts is motivated
by the underlying physical interpretation of the theory. Provided

(1) the spectrum of Ha is singular for some a > O where Ha is a self-adjoint

operator defined by the differential expression (1.1.1) in L2(O,a],

(1ii) the potential is of short range, that is,
Vir) = O(r='+8)) o r — o

then the wave operators exist and are complete so that the absolutely con-
tinuous subspace 34‘Lc.(kl) of { may be identified with the subspace of
scattering states of H ([P4]). Condition (i) ensures that the spectrum of H
is simple, which is necessary for asymptotic completeness ([AM] 8I). The sub-
set of  corresponding to the pure point spectrum consists of so-called bound
states, that is, states which are localised in a finite neighbourhood of the
origin at all times. Whether or no the singular continuous spectrum has

an identifiable physical interpretation is still in some doubt although plau-
sible suggestions supported by rigorous mathematical analysis have been made
([P1] §84); however many potentials whose mathematical form is quite simple
(eg. [P1] 83) or which are of considerable physical interest (see eg. [S2])
give rise to this type of spectrum.

We shall review some aspects of scattering theory in Chapter V in the
light of the theory developed in Chapters III and IV. Using the simplified
eigenfunction expansion and the time-dependent formalism we show that con-
ditions (i) and (ii) above are sufficient to ensure the validity of the usual
phase shift formula for the scatteriné operator (cf. [GR]), and a new proof
of asymptotic completeness emerges incidentially during this process. The
explicit formula for the phase shift, together with our earlier analysis of
the spectrum then enables us to demonstrate that discontinuity of the scattering
amplitude as a function of energy can occur, even when the theory is asymptot-
ically complete.

There is throughout this thesis a special emphasis on "pathological" sing-

ular spectra. It may be partly due to the difficulties of interpretation and



analysis tnat such spectra received little attention during the early
development of quantum mechanics. However, in more recent years, experimental
and theoretical interest in disordered systems and almost periodic potentials,
together with the recognition that absolutely continuous and isolated point
spectra are generically absent in such cases, has led to a vigorous current
literature on all types of singular spectra (eg. [AS], [Bs], [Mo], [P], [s2]).

Our special emphasis on singular continuous and dense singular spectra
does not, however, derive from any belief in their exceptional importance. If
we start from the premise that any comprehensive theory should give equal con-
gideration to all types of spectrum, then it is inevitable that those parts
of the spectrum which are comparatively less amenable to analysis should incur
more labour. Also, the relative neglect until recently of certain types of
singular spectra has meant that some aspects of quantum theory which directly
or indirectly involve such spectra have not been fully developed. Therefore,
where the results of our comprehensive approach have been used to extend or
clarify the limits of some existing theories in Chapter V, it is the aspects
concerning singular spectra which are most prominent because it is these that
have not been fully considered before.

Where possible, we indicate the relationship between the contents of this
thesis and pre-existing work at appropriate points in the text; however, in
order to give some sort of overview, we shall briefly summarise some of the
main features from this point of view.

With the exception of Proposition 2.24 and Theorem 2.25, much of the pre-
liminary mathematical material assembled in Chapter II occurs in some form or
another here and there in the literature. However, the proofs have for the
most part been devised by the author in order to unify the material; sometimes
they may be equivalent to existing proofs, sometimes they may differ. Theorem
2.25, which relates absolutely continuous and singular spectra the growth rate
of the resolvent (H—zI)-1 as z approaches the real axis, is distinct from, yet
complementary to, a theorem by Gustafson and Johnson which characterises the

absolutely continuous subspace of \ in terms of the growth rate of resolvents

({as]).
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vv i@ ao we arc awarc, the theory of subordinate solutions presented in
Chapter III and amplified in Chapter IV §5 is wholly new. This theory provides
the kind of systematic correlation between the behaviour of solutions of the
Schrédinger equation and the nature of the spectrum that was assumed, erron-
eously, to be true by those who identified the spectrum in terms of bounded
solutions (see eg. [KR] pp.71, 82, [G] §58). Later the theory of subordinacy
illuminates the simplified eigenfunction expansion of Theorem 4.9, since where
L is 1limit point at O, the kernel of the corresponding transform is a solution
of (1.1.2) which is subordinate at O.

Some aspects of the eigenfunction expansion theory derived in Chapter IV
appear to have been obtained independently in an alternative but equivalent
formulation by Kac ([K1], [K2]). Since details of this work were inaccessible,
we have been unable to ascertain the extent to which the results and methods
of proof coincide with our own. However, in the brief summary which is
available in translation, there is no mention of the surjective property of the
associated isomorphism, which we prove in the Appendix, nor does the relation-
ship between the simplified expansion and the well-established expansions which
are valid when the differential expression (1.1.1) is regular at O, (see eg.
[CL] Ch.9 §3) appear to have been considered.

The results of Chapter V depend crucially on the theory developed in
Chapter IV. The simplified expansion of Theorem 4.9, which is established
for all operators where the potential is integrable at infinity and the
spectrum of Ha is singular for some a > O (see (i) above), enables us to
verify the phase shift formula for the scattering operator for a far wider
class of potentials than any previously considered. Indeed, we only require
that conditions (i) and (ii) above be satisfied, whereas it is usual to impose

a far stronger condition at the origin, as, for example
V(r):O(r-‘z-E)) as r & O (1.1.3)

while retaining a comparable condition to (ii) at infinity. (eg. (GR], (KU2]).
In terms of the spectrum of H_, (1.1.3) ensures this is isolated pure point

(see Ch.V, §1), whereas condition (i) permits the potential to be highly



——@——== =< wvav veagauy pavvided only that the possibility of absorption is

excluded. Although continuity of the scattering amplitude as a function of

energy has been proved for many potentials (see eg. [AJS], Prop.10.13, [D],

[LE]), the existence of Hamiltonians for which the scattering amplitude is a
discontinuous function of energy has not, to our knowledge, been previously

established.

Our final chapter centres on a theorem due to Pearson ([P1], §2, Thm.1),
which we re-examine with a view to weakening or removing some of the original
conditions. The theorem concerns the generation of singular continuous
measures from sequences of absolutely continuous measures, and is formulated
with the inductive construction of operators with singular continuous spectra
in mind. By means of step function approximations, we show that the continuity
conditions on the generating sequences of periodic functions can be considerably
weakened and the analyticity and strictly positive lower bound conditions
removed entirely. An assessment of Pearson's construction theorem by Avron
and Simon ([AS] Appendix 3) also confirms, using Kakutani's theorem, that
gseveral of the original conditions are not necessary, though in matters of
detail there are a number of differences between their conclusions and ours.

In 82 we use Pearson's method to establish a new class of potentials for
which the spectrum is singular continuous in the interval (inf V(r), sup V(r)),
while in §4 we illustrate the generation of singular continuous measures from
sequences of periodic functions by a specific example for which a surprisingly
detailed analysis is possible. This type of example is not new (see [RN], §24
for a rather different presentation) although we believe that some of our
detailed findings may be.

With a view to our later requirements, we shall begin by introducing some
basic mathematical concepts and establishing some elementary relationships
between them in the following chapter. For simplicity we shall at first suppose
that the differential operator (1.1.1) is regular at 0, and we remark that the
almost exclusive attention given to the limit point case at infinity stems from

the fact that almost all cases of physical and mathematical interest are of

this type.
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CHAPTER II

MATHEMATICAL FOUNDATIONS

§1. Introduction

Let H be a self-adjoint operator arising from the time-independent

Schrédinger equation

_d® ule,N)
dr?

+ V(P ulr,A) = A ulr,)\) rel0, o) (2.1.1)

and a regular boundary condition at 0. In the terminology of H. Weyl ([W3]),

the differential operator

L = - :: ~ V(r) (2.1.2)
r

is in the limit point case at infinity and in the limit circle case at O.

In this chapter we develop some mathematical tools that will be required
in the subsequent spectral analysis of operators of this type.

It is a part of established theory that, associated with each such opera-
tor H, there exists a monotonically increasing spectral function p(A) which
is unique up to an additive constant. ([CL] Ch.9, Thm.3.1). The spectrum of
H is the set of points of increase off:(k), and the decomposition of the
Borel-Stielt jes measure p generated by‘P(AA into its discrete, singular
continuous and absolutely continuous parts gives an indication of the behaviour
associated with different energy levels under time evolution. Broadly speaking,
the discrete spectrum represents the binding energies of the system and the
absolutely continuous spectrum the energy levels at which scattering can be
expected to occur. The interpretation of the singular continuous spectrum
is more speculative; many authors have maintained it has no physical
counterpart ([RS1] Ch.I §1.4), while others have made suggestions which have
yet to be confirmed by experiment ([P1] $4). However, as we shall see in
Chapter V, the study of the singular continuous spectrum has applications to
Situations where it does not explicitly occur, so we shall consider it as
thoroughly as the other parts of the spectrum.

Using the theory developed by H. Weyl and later amplified by E.C.

Titchmarsh we shall show in 83 that the spectral properties of p(A) are



intimately related to the boundary behaviour of an analytic function m{z)

which is defined for Imz>0 by the condition
w,(rz2) + m(2)u,(rz) e L, L0, ) (2.1.3)

Here ul(r,z) and u2(r,z) are those solutions of Lu=2zu which satisfy tne

conditions

u(0,2) = =sin u/(0,2)=cosa

u,(0,2) = cosa u, (0,2) = sinx (2.1.4)
for some « in [O,TM) . We shall show in Chapter III that the boundary

behaviour of m(z) at each point x of the real axis is also related to the
relative asymptotic behaviour of certain linearly independent solutions of
the Schr¥dinger equation (2.1.1) at energy A=X . Thus m(z) will act as
an intermediary, enabling us to characterise the various parts of the spec-
trum in terms of properties of the solutions of (2.1.1).

In 8§84 we give a brief account of operator theory as it applies to second
order linear differential equations of the Sturm-Liouville type, and indi-
cate some relationships between FMA) , m{(z) and H. We also derive criteria
for distinguishing the sets on which the absolutely continuous and singular
spectra are concentrated in terms of the resolvent operator.

First, however, in § 2 we shall briefly summarise some relevant aspects
of measure theory, and then investigate the relationship between the character
of the measure u and properties of the derivative of P(%\ on measurable sets
of points. We remark that our results concerning this relationship do not
depend on a quantum mechanical context, but would apply equally to any

increasing function that is continuous on the right, and the measure gener-

ated by 1it.
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8§2. The Spectral Measure and its Derivative

The spectral function p()\) is monotonically increasing, continuous on

the right and unique up to an additive constant ([CL] Ch.9,§3). For con-
venience we may take p(0)=0 . The right continuity of p(A\) implies
that lp(dl(oo if jeJ<oo , so that if a set function u' is defined on the

algebra Q' of half-open intervals (a,b] of IR by
p'la,bl) = o(b) - pla) (2.2.1)

then ' is a ¢ -finite measure on Q'

The Hahn Extension Theorem states that a ¢-finite measure on an

algebra Q may be uniquely extended to a complete measure on a g-algebra
containing Q.. (2.2.2)
Hence u' may be extended to a complete measure u on a g-algebra Z con-

taining @' ; we shall call u the spectral measure associated with H. By

(2.2.1) the spectral measure of bounded subsets of IR is finite, which is a
stronger property than that of o-finiteness, and implies, in particular that
M is a regular measure ([R] Thm.2,18).

Unless otherwise stated, we shall take as the measurable sets those
subsets of R which are Borel measurable.

A measurable function $()\) is then specified by the requirement that

for each o in IR , {»:¥(\)>«} be a Borel set. (2.2.3)

In the case where a dg-finite measure defined on the algebra Q' of
half-open intervals is extended to a complete measure L on a g-algebra Z_,

we refer to the elements of Z_as L-measurable sets.

If S is any subset of IR, we denote by B¢ the og-algebra of Borel

subsets of S.
Let L ,W be o—-finite measures on Bs .

L is said to be absolutely continuous with respect to K on B if
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K(EY=0 = ((E)=0

for all E in By,. We write L<<k (2.2.4)

L and K are said to be mutually singular on B, if there exist two

sets E1 and E2 in Bs such that

E\NE, =¢ , EUE, =5
and V(E) = w(E,)) = O,
We write L1 K . (2.2.5)

By the Lebesgue Decomposition Theorem v may be uniquely decomposed

into two measures Lac and L such that

where La. S K and lg L+ K .
If we take K to be Lebesgue measure a further unique decomposition may
be accomplished. Replacing v by the spectral measure M, we define set

functions Mg and My by

Mse (E) = ug (ENQ) (2.2.6)
My (E) = mg (ENC) (2.2.7)

for all E in B, , where C= {2eS:ul{A})>0}. Since ©(X\) can have, at
most, a countable number of discontinuities, C is denumerable, from which

may be deduced that Ms.c. and M, are measures. Their uniqueness follows

from the uniqueness of C.

We now have the following decompositions of u on C:

(2.2.8)

f* an.cf+ /*5.

K= Mact Aset P (2.2.9)
M3 1s known as a singular continuous measure, reflecting the facts

that ug  is singular with respect to K and )As'c.({k})=0 for all A in S.

is variously described as discrete, pure point or purely atomic and :is

Mg,

concentrated on a denumerable set of points which have strictly positive
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M-—measure.
Corresponding to the decompositions (2.2.8) and (2.2.9) are unique
decompositions of /o()\) into montonically increasing functions ([HS] Thm.

19.61), viz:

P(A

Pac. (M) + pg (N (2.2.10)
PN = pac (X)) + pg (N + oy (XN (2.2.11)

where loa.c.(b) - /oa_c‘(q) = Mo ((o,b]) etc.,

and p, (0) = ,os'(O) =/°s.c.(m =/°d.(0)‘
The functions pm‘(x),,os‘m,,os_c.(m and ,od()\\ are absolutely

continuous, singular, singular continuous and saltus functions respectively,

so that for Lebesgue almost all A\ on S

tﬁo (M EF 6N d,od'(k\ - 0

S = S.C -
dA dX dX (2.2.12)
where 289_‘_\ is defined to be !im p(XA-&,x+§)

ax d=0 24

whenever the limit exists.

The absolutely continuous, singular, singular continuous and discrete

spectra of H are the sets of points of increase of p, . (\), ,os.()i) */os.c.()\)
and fg])h respectively. We shall show in 84 that this formulation is
consistent with the more usual definitions in terms of resolvent operators.
Although we shall not be particularly concerned with the essential
spectrum, which consists of all the non-isolated points of the spectrum of

H, it may sometimes be mentioned in passing.

We shall continue to denote Lebesgue measure by K unless otherwise

stated. Let 94 (X) denote lim f*(IE) :Ix is an interval of IR
dK k(I )»0 " w(I,)

containing x} for each x in IR for which the limit exists. We remark that,

since u and K are regular measures, it is immaterial whether we take Ix to

range over all intervals, or just over all open, all half-open or all closed

intervals containing X.



Lebesgue's Theorem states that a monotonic function possesses a fini<e

derivative Lebesgue almost everywhere on IR . (2.2.13)

(x) -
Hence 3ﬁ X} and ddﬁ(» exist and are finite and equal Lebesgue
K A lx

almost everywhere on |R ; moreover, by implication, the set

S= {xe\R d/“(’() exists} is Lebesgue measurable. In fact, as we now

dK

show, S is a Borel set.

Let f.(x) = Sup ' {P‘(I ). Ix is an-open interval containing x }
KILA<H k(T

and consider S, = {xelR: f (x)>«}

If x eSd y there exists an open interval C containing x such that
)

X,

(c
K(Cx“k— and /:____L‘:_)>O( Clearly if x' is in de then x' is also in
K(Cx x)

U C,

,‘es& Thus So( is an open set, so that £,(x),

Sd, and so 50,\

consequently F(x) -.:l_l\'_;""aoﬁr\(’d are Borel measurable functions.

Similarly, if

gn()ﬂ = K(‘an§<-|- { Kf'f,‘: : T, is an open interval containing x } then

G(x)= Ilim gn(x) is a Borel measurable function.
n =) o0

Since S = {xelR: F(x)- G(x)=0},5 is a Borel set.

We shall have occasion here and later to use the inverse method of
Gel'fand and Levitan ([GL]). If a monotonically increasing function e\ is
given, the authors obtain necessary and sufficient conditions for the exist-
ence of an operator H whose spectral function is ‘o(k). We shall make
particular use of their result that if p(%) is an arbitrary increasing
function on a finite interval I, then there always exists an operator H,
defined as at the beginning of 81, whose spectral function equals p(X) on
I.

Wé now prove some results which relate the rate of increase of the

measure g to measurable sets of points on which the decomposed parts of am

are concentrated.



2.1 Lemma: If SA is a measurable subset of IR with the property; that for

each x in SA there exists A_ 30 such that AT < A
K(Tx)

for all intervals I, containing x with K(Ix)<Ax , then p<¢< K on SA’
and /u(SA) < AK(SA) .

Proof:

The proof is in three stages. In (i) we show that if SA is a closed
set with the given property then am(Sg)<€ 2AK(SR). In (ii) we extend the
result of (i) to general measurable subsets of IR and deduce that u<<K
on SA. We use the absolute continuity of m on SA in (iii) to prove that
M(8) € AK(SL).

(i) Let SA be a closed subset of IR and let £>0 be given.

Define SA =San Lo,

Since K is a regular measure, there exists an open set S such that

sn' c S (2.2.14)

and K (S) < K(S4) + £ (2.2.15)
2A
For each x in SA we may choose 5x< e)_t to satisfy
[x-& . x+d,]cS (2.2.16)

Clearly Sp gs [x-du x+ ] , and, indeed, since SA is compact,
)
there exists a minimal finite subcover € of SA by sets of the form
(x -8y ,x+8,), where xe S, .
We may write
C:{U‘.:(x‘—é'x”x;-a-cfxi),i:l, ..... ,P}
where the U; are assumed ordered in such a way that, for each i=1,....,

p_11

X. -8 < X - g (2.2.17)

[ X; i*"l Xi,‘

. >
The minimality of € ensures that no two of the left end points of the U:’s




coincide, and also, as we shall now show, that for each i =1, ...,p - 1,
X, < Xy, (2.2.18)
and
Xi+Ox, < Xi,, + Sx;,, (2.2.19)
For if (2.2.18) were false, we should have by (2.2.17)
6x,-+‘"‘5x‘- < x,, -x%; &0
which implies
Xiwy * Sx. & X+ 0Oy (2.2.20)

t4=i

(2.2.17) and (2.2.20) together imply that Ll\_HC.Ui which is impossible

by the minimality of € . Hence (2.2.20) must be false, and so (2.2.18)
and (2.2.19) are proved.
We are now in a position to construct from € a finite cover e’ with

the following properties:

e’ = U.: U=, p } where each LL-: is an interval and
li{ c Ui for each i = 1,...,p.
U:{]Uj’=¢ for all i, j e { 1,...p}such that i & j (2.2.21)
g ; P
..t)‘ u; = ;li; U, (2.2.22)

/ /
We shall prove that for each U; e €&
mlU;) < 2AK(U) (2.2.23)

The detailed construction of ¢' is as follows:

For each i € { 1,...p} such that
p
(.u uj) nu, =¢
/
we set U.“=U|-

If for some i ¢ { 2,...p - 11}

P
( U uJ-)ﬂ U, # ¢ (2.2.24)
j=!
j¥i
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then by ordering of the U, and the minimality of €, either u'._‘n uﬁh ¢
or W;NU;, #@ or both. If (2.2.24) holds for i = 1 or p then unu,+¢
or U,_ N Up+ ¢ respectively.

For each ieil,... .p=11 such that u,n U,-+,=I-'- ¢ , u|-/ and ui:”
are defined in such a way that the midpoint between the left hand endpoint
of Ui-ﬂ and the right hand endpoint of U; is the common left and right
hand endpoint of U‘-I,H and u'-/ respectively.

For each i€ {I,...p-1} such that U;n W;,,# @ the right and left
hand endpoints of U; and U,,, respectively become the right and left hand
endpoints of u{ and uii. respectively.

Each interval u{ is either open or half open, subject to the general
conditions (2.2.21) and (2.2.22). 1In order to prove (2.2.23) we first

show that for each i = 1,...,p,

4

x; e U, (2.2.25)
It is sufficient to show that for each ie{},... -p—l} for which
uln ut‘+l¢¢
(2.2.26)

/
where q; = (x‘- + & .+x'-+‘—é'xh_ Y} 1is the partition point between U;
and U‘-/_H . Since the right and left inequalities of (2.2.26) are immediate

by (2.2.19) and (2.2.17) respectively, (2.2.25) is proved.

Now for each i = 1,....,p, if mizmaxllxi-yi]
)’;eu.‘-

)A(U,‘/) s M [X;-ml-.x."*'m'.]
< A K[x;—-m; ,x,-+m;]
< 2A k(U (2.2.27)

where we have used the hypothesis, m; < 5,“ < _AE’.‘; , and (2.2.25).

Thus we have proved (2.2.23), and it is now straightforward to show that

m(Sp) s 2A KI(S) (2.2.28)
e ’ P
For,S,,‘_\C. igl u; = .’B‘ui S by (2.2.1'4) and (2.2.22), so that by (2.2.22)
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(2.2.27) and (2.2.15),
P
A(52) € Z mluy
1=1
P /
< 2A K U u.‘ )
=1

¢ 2A K(S)

< 2AKI(S )+ ¢

Since &€ was chosen arbitrarily, (2.2.28) now follows. This result applies

equally to S::Snﬂ[p-l,}:] for each p inZ, and so

M50 sZ m(SiVs 2A Z k(S5) = 2AK(SR)
PEZ peZ

as was to be proved.

(ii) Let SA be a Borel subset of IR and let €20 be given.
Let S, = S, n [0,1]
Since M is a regular measure there exists an open set S such that
[0,1J\ S, S

and )4(8)<)4([O,IJ\SA) + £

Define 8, = 3N L0,l] so that 5,¢ S and
0,11\ S, € S, (2.2.29)
Then um(S5,) s m(S)
< m(L0,1INS )+
= mlL01INSY + (S - u(S) + &
so that
pS)<c m(L0IINS) + €
Since [0,11\S, is closed, we have by (2.2.29) and the result of (i)
am(S)y<2A R (10,13\5)) +&

s 2R R(S)+ €

By the arbitrariness of &
m(Sa) € 2AR(S,)

and hence, as in (i), m (Sa) € 2A K(Sy).

Clearly if E is any measurable subset of SA which has K -meacure zero

) B .



18

MANL IR LN K.(E):O

and so by (2.2.4)

M<K on S, (2.2.3C)
(iii) We first show that
}A{Sa)'—"I o_()_.x_ dK (2.2.31)
SA dK
For any subinterval E =(a,b) of IR
)‘La..c.(E) = 'Oa.c.(b) -IOQ-C-(Q)
=J’b dog /M) da
a ai
=Ib dp (3 45
o dXx
- de
=1 £ dr (2.2.32
E dr )

by (2.2.12) and the remarks following Lebesgue's Theorem (2.2.13). Using
the Hahn Extension Theorem (2.2.2) we see that (2.2.32) also holds for
arbitrary measurable subsets E of IR , in particular for E = SA' Since
Mg (S)=0 by (2.2.30), we have m(Sp)= u, (S,) by (2.2.8) and so

(2.2.31) is proved.

From the hypothesis and Lebesgue's Theorem, S‘ﬁ exists and is less than
dr

or equal to A K-almost everywhere on SA. Hence by (2.2.31), u(S,) <A r(S,

as was to be proved.

2.2. Corollary: If SA is a measurable subset of R such that, for each x in

S _d&(")exists and equals zero, then /u(SA) =0

A GK

Proof:

The condition implies that if €» 0 is given, then for each x in SA there

exists Ax>O such that }*(Ix)< e for all intervals Ix containing x with
K (Tx)

KR(I, )< O, . If K(S,)<o00 , the corollary is immediate by Lemma 2.1 and
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the arbitrariness of €. Applying this result to Sq N (p-1,p] for each

P e & , the case K(S)=o follows by the countable additivity of .

2.3 Lemma: If SA is a measurable subset of IR with the property that for

each x in SA there exists A& ,70 such that M (I, > A
K(Ix)

for all intervals I_ containing x with K(L )< A, then ju(.SA) > RAKr(S,)

Proof:

The hypothesis and Lebesgue's Theorem (2.2.13) imply that 92: exists and
dr

is greater than or equal to A K-almost everywhere on SA. Hence from

(2.2.8) and (2.2.32) w (S,) 2 Mo (53)3 Ar(S,Y) which proves the resul

In order to determine more precisely the sets on which the absolutely
continuous, singular continuous and discrete spectra are concentrated we now

investigate the set S which consists of all points of IR at which f‘ﬁ does
ol K

not exist finitely or infinitely. It follows from Lebesgue's Theorem
(2.2.13) that K (S)=0 ; we shall now establish that a(S)=0 also. Our
proof is adapted from Theorem 9.1 of [SA] , and is geometric in character.

We require some notation and definitions, and a preliminary Lemma.

Let A,y be rectangular Cartesian co-ordinates in the plane, and let £())
be a function of bounded variation. Let the discontinuities of f(X)

which are most countable, be denoted by {¢;¥.

The curve [ generated by f(*) is the continuous curve whose graph is

obtained from that of f by adding to the latter segments of each of the

lines A = c; -

If the curve [ is defined in the plane by parametric equations

A= R(t),y = Y(t), then the length of [ on the t-interval [a,b] is
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defined to be
3
Supl=l dt _ ,t) (2.2.33)
where a=t <t <..... t.=b is any partition of [a,b] and

dle )= (LR()- R e LY ()= Y )

Now let [ be the curve generated by the spectral function p(X\) and
let s be the length of [ measured from an arbitrary fixed point of [
in the direction of pCA) increasing. For convenience we shall also use
s to refer to the point of [ at which the length of L is s, whenever there
is no ambiguity. Let R(s) and Y(s) denote the A and y co-ordinates of
the point s, let I denote any interval of [’ containing s, and let R(IY), K(I)
denote K ({R(s):sel})and K({s:sel}y) respectively.

We prove the following:

2.4 Lemma: For Lebesgue almost all s the derivatives

ey - him R(I) | Y'(sy= Hm Y(1)
R(S)‘u(n—)o K(I) )"xm—»o (D)

exist and

i
(LR (s + LY1sYI*)* = |

Proof

R(s) and Y(s) are monotonically increasing functions of s, so that
R’(s) and Y'(s) simultaneously exist and are finite at Lebesgue almost all
points of IRY by Lebesgue's Theorem (2.2.13).

Also, by Pythagorean geometry,

2 2.7
(LR(IN] + LY(T))® ¢ w(I)
for all intervals I, which implies
/ 2 ’ 2 '%
([R(H + LY ? <
whenever R%s) and Y7s) both exist.

+ ¢
We require therefore to show that ®(U)=0 , where U={seR:R(),Yls)

exist and ([R'(SHz + [Y'(S)]a)i < 1}.
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o0
Let U, denote UNLO,k] for each kelN. Since w{uds Z R (U)
K=1

we need only prove that K(U)=0 for each K e¢ N . Define

L
T . ([RDT]? _Y_g_»‘)z il
ni = ts e Uy ([K(I) o AR

for all intervals I containing s with diameter <« L } (2.2.34)
n

To prove that K(U,)=0 for given kelN, we show that

o
u. e U U, (2.2.35)
K= ne= )
and K(Un’k)zo (2.2.36)

for each ne N .
For each s e U there exist LelN such that
L
(LR (s))* + [Y4s))*)?® % < |

and me€IN such that

RIINZ . YCDPYE_ (s3] oy il L
I([K(I)] + K—(I‘)]) (R (N]" + LY ()] )*] < )

for all intervals I containing s such that K (L) < # . Hence

2 L
R(I) Y(Is]l)z .
—=  + + -
([K(I)] [K(I) L < |
for all intervals I containing s such that K(I)(# from which we see

that s e uq,K where q = min {—'L-,';} .

Thus (2.2.35) is proved; we now establish (2.2.36).

For n = p, let € 0 be given. By (2.2.33) there exists a sequence

{so,....sm} of points of [, with 5°=O,sm=k and S, <S04 for each
Le{o0,....m-1}, such that
! (2.2.37)
- 5 < —
SL+| L P
for all Le{O,...... m-1} and
m-1 m-1 €
k = L‘Eo(s‘-*‘—s") < Léod(s‘-'s"*') + 3 (2.2.38)
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Fo - i
r each (e {0,....m-1} for which UP'kf\(sL,SL*,]#:¢
we may, by (2.2.37), set I = ( S, sH_‘] in the defining inequality in

(2.2.34) to give

S - S

dis,s )+ 2 L & 5. -5 (2.2.39)
P
_ (p)
Hence, if {. denotes summation over all indices | for which

Uk N (SL» 5L+|]*¢ , we have by (2.2.38) and (2.2.39)

(p)

K (Up ) € { (s, =3

(p)
$ P%‘ [(5L+|—Sl)-d(5L’$L+l)
&€

<
Since &> O and PeIN were chosen arbitrarily, (2.2.36) is proved for

all nelN ; this completes the proof of the lemma.

In the following we shall refer to arbitrary points of the A-axis as
x. This is merely a convenience of notation bearing in mind the contexts

in which Proposition 2.5 will be applied later.

2.5 Proposition: /_4( {xelR: gﬁ(x) does not exist finitely or
‘ K

infinitely }) =0.

Proof:

Let [ , R(s), Y(s) be as in Lemma 2.4.

Define

u= {xe[R(O),oo):gﬁ(") does not exist finitely or infinitely }

dK
(2.2.40)

We show that P(U\:O.

From Lemma 2.4, R'(s) and Y’(s) both exist and are not simultaneously
zero for Lebesgue almost all s 3 O . Hence, noting the remarks following

Lebesgue's Theorem (2.2.13), we have



_dﬁ (R(s) _ dE(R(s» d R(s)] = Ys)
dK dS dS Rl<S)

for K -almost all s3>0 , so that K ({ seR": .EA(R(S» does not
exist finitely or infinitely })= O i (2.2.41)

Now the length of [ generates a measure on [R(0), ) . For, defining
S(a,bl=R7(b+) - R™'(a+) for all a,b in [R(0),) , we see that S is

a measure on the algebra Q’ of half open subintervals of [ R(0), o0)

which by the Hahn Extension Theorem (2.2.2) may be extended to a urijyue

me~sure on a &-algebra containing Q' . Moreover, by Pythagorean geometry,
S(E) 2 u(E)
for all subintervals E of [R(O),ao) , and consequently the same is also

true of arbitrary measurable subsets E of [ R(0),o).

Since (2.2.41) may now be expressed in the equivalent form:
S({xelR(0),0): dum (RSN 4oes not exist finitely or infinitely})
dx
= 0 , (2.2.40) and (2.2.41) imply m(UY= 0 . The proposition now

follows from the arbitrariness of the point s = O.

We remark that the analogue of Proposition 2.5 for K-measure is

Lebesgue's Theorem, viz: K ({ xe& IR : d (X)) does not exist finitely}d)
aK

=0 . However, Proposition 2.5 leaves open the question of whether

the set {x e IR : Elt (x) =00 } , which has zero Lebesgue measure, can have
AK

positive ju-measure; by a process of elimination, we shall see that Ms

is concentrated on precisely this set. We first use the foregoing pro-
position to generalise Lemma 2.1:

2.6 Proposition: If S is a measurable subset of R with the property that

for each x in S there exists C <o such that lim g (x) < Cx
X naoo "

where
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3,\(:() = 'nf , { #Tx) . I is an interval containing x }
KIZO<H  w(T,) X

then M<K on S.

Proof:

Define h, (x) = M Ux =g, x“"'r—'\])
2
n

Rewriting h,(x) = D.(P(X-i-.rlT)— p(x-_';')),we see
2

that hn(x) is a function of bounded variation, and hence is measurable

for each neIN . It follows that lim inf hn(x) is a measurable function
n —oo

Define S = §{xe5: dm(x)  oxists} ; as we noted in the remarks
d x

following (2.2.13), S’ is a Borel set. Hence, for each k inIN,

S, =5 Nixes: k-1g '"minf h(x) ¢k}

n oo
=ixeS : k-l g X K3
dr
is a measurable set, and by Lemma 2.1, sn<<K oOn Sk' Consequently, << K

on U § : since, moreover }x( S\NU S5.)=0 by Proposition 2.5
K ) k
K e (N kelN

and the definition of S, the result is proved.

2.7 Corollary: (i) If udiw , then ml{xeR: s‘t‘_(’d#oo})=0.
K

(ii) LK if and only if 9&:0 K-almost everywhere
A r

on IR .

Proof:

Proof of (i):

If wui K, then there exists a measurable set S such that K(S)=0

and L(R\S)Y=0 by (2.2.5). Hence m({xeR\S: M 1m0})=0
M dr

and since u<c<K on {xe S:dulx) 4 o3 by Proposition 2.6,
d K



Mmi{xes: :_)‘_("\;‘.-oo})=0 . Hence result.
K

Proof of (ii):

Let E ={xelRrR :9p(x) yxistanda Oc< S“&(x)<oo}
dK dk

If mlK, then M(EY=0 , by (i); hence K(E)=0O by Lemma

2.3, so that, by Lebesgue's Theorem (2.2.13), dr = 0 K -almost
dr

everywhere on R,

Let F = {xelR: 3R iist and equals OJY.
dx

Then F is measurable, u (F)=0 by Corollary 2.2, so if

K(RNFI=0, ulx by (2.2.5).

This completes the proof of (ii), and hence,of the corollary.

We are now in a position to relate the decomposition of the spectrum to

properties of the derivative _c_i& . First we need to clarify the concept

dK

of a measure being '"concentrated" on a subset of IR,

2.8 Definition: A subset of IR is said to be a minimal support of a

measure L if the following conditions are satisfied:

(i) L (IRNS)=0

(ii) If So is a subset of S such that L(50)=O, then K(5°)=0.

We remark that, in general, the spectrum of H need not be the same set
as any of the minimal supports of the spectral measure a. To see this,
we note that according to the inverse method of Gel'fand and Levitan
([GL]), if a,beIR with =@ <a<b <o , there exists an operator
H with spectral measure a such that u({x}) >0 if xe Lla,b] N Q
and u({x})=0 if x e lLa, b]J]N@ . Clearly the spectrum of H, being a

closed set, contains [a, b] whereas, since [a,b]l N @ /xa
L\" ~ \l[y
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minimal support of m on La,bl , k(Mn La,bl)=0for every other minimal

support ™\ of M.

2.9 Theorem: Minimal supports ™M
L PP ’mo.c,»ms,'ms.c.and md_Of MiMacr PsoPs. e,
and My respectively are as follows,where

E = {xelR: Ap(x) exists } :

_ dK

(1) M ={xe€E:0< 3s & %
A K

(i1) ma‘c.:{xe.E:O<:£:Z(x‘<oo}

(iii) ms'r.{er:f'Ji(’“:oo}

dr

(iv) Mg ={xeE: _SA("‘)= oo, m({x})=0}
o8

(v) md‘zier:%(")=w.)u({xﬂ>0}
K

Proof:

We need only prove (ii), (iv) and (v), since (iv) and (v) imply (iii),
and (iii) and (ii) imply (i).

Proof of (ii):

Let S= {xeE: 0< S (xX) o 5}
dr

From Corollary 2.2, Proposition 2.5 and Lebesgue's Theorem (2.2.13),
Ma . (IR\S)=0. To show that S is minimal we prove that if SOES is meas-
urable and w (S,) >0 , then ),‘a_cjso) > 0.

Define S, = {xe Sy cdu(x) —r:_-'\ } for each melIN ., Since
o

0 = Uelem and K({S,)»0 , there exists nelN  such that K(5.)> 0.
m
Hence (Sn) > _‘R K(Sn) (cf. proof of Lemma 2.3), so that }A(Sn) >0.
Since /u,s( s )=0 by Proposition 2.6, this implies that }*“.c.(sn) >0

by (2.2.8)



27

Hence /“a.c.(so) >0 , and the minimality of S is proved.

Proof of (iv):

Let

S={xe€: In XV_ oo | L({xN=0}
dr

Since

IR\S = {xeE: g_/‘i(")=oo,p(2x})>0}
Utxe R: "}“_)'SF /"‘Lx'i'd_x"";] < oo}

Mg c(lR\S):O by (2.2.6) and Proposition 2.6.
Since K(S5)=0 by Lebesgue's Theorem (2.2.13), S is minimal.

Proof of (v):

By definitions (2.2.7) and 2.8,'(“d is the smallest support Of"d'

We remark that according to Definition 2.8,M, as defined in the above
theorem, is a minimal support of both a and )ﬂmc.' While it is quite
possible to recast the definition so as to ensure that minimal supports
of orthogonal measures are always disjoint, we prefer to retain Definition
2.8 for a number of reasons. Firstly, restricting the definition would
mean that a further condition needed to be checked each time a subset of
was shown to be a minimal support, thus complicating proofs. Secondly,
there is no difficulty, at least in principle, in obtaining disjoint
supports from non-disjoint supports of mutually singular measures, on
account of (2.2.5). Finally, as we shall show in 83, the set of all minimal
supports of a measure, as defined in 2.8, is an equivalence class, and
this property is frequently useful when establishing minimal supports.

We also note that, if one type of spectrum is absent on a subset S of

JR , then, although there exists a minimal support of the corresponding

measure which is empty on S, the appropriate minimal support ~f Theorem

2.9 need not be empty on S. To illustrate this point we give a couple of
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examples; we shall have occasion to refer to these again in Chapter IIZ
when we investigate the correlation between the parts of the spectrum and
the existence or otherwise of subordinate solutions of the Schr8dinger

equation (2.1.1).

2.10 Example: It is well-known that an absolutely continuous function may
have an infinite derivative on a non-empty set of points whose
Lebesgue measure is zero. Indeed, given any bounded open interval (a,b)
of IR and any countable or uncountable subset S of (a,b) having Lehesgue
measure zero, there exists an absolutely continuous function whose derivative
is infinite at all points of S ([T1], €11.83, Lemma 1). Hence, by the in-
verse method of Gel'fand and Levitan ([GL]), an operator H exists which has
no singular spectrum on (a,b), but for which Tnsf\[a,B] is an uncountable

set.

2.11 Example: We show that an operator H exists which has no absolutely
continuous spectrum on (-2,2) but for which éﬁi.(o) = 1.
dK
According to the inverse method of Gel'fand and Levitan ([GL]), an
operator H exists whose spectral function is equal to p(X\) on [-2,2],

where p(X) is defined on [—2,2] as follows:

_T_Z\: A€ [-Z,Sin(-g))
S T Aelsin T, 2]
2 2
/o(o) =0
and for each n iniN,
(sin)zn (—g) re [ (sin)zn-'(—%),(sin)z"“(—g))
,o(M - Zng T . \2n+lfTT . \2n-\ T
(sin) (E) xe Lisim™(T ), tsind"(F))
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where (sin)nk denotes (sin(sin....(sin k)...)) n times
To show that p(x) is defined on all of [—2,2] , we prove that

Con n
(sin) (—-1{) and (sin) (1-;) are increasing and decreasing seguences

respectively which converge to O.

Since 0<sinx<X for x in (O,T-;-] , (sin)"” 1{ decreases with n
and converges to some |0 as noYeo . If L;O , Sin I_; L
and so, by the continuity of sin, there exists gy0 such that sin (L-f-E)é: (.

Since there exists Nee!N such that (sfn)n'H(T—;) <l+e if n)l\lE , we

This 1s impossible

have that (sirﬁ""'(-g)< sin(L+E)§Fl. for n 3 Ng

since (.sin)"(-'.;.:) converges to | from above, and hence L = 0.

The proof for (ain\"(—%) is similar.

Now for each nelN , if

(s'°n)2n+i(1%') € )\ < (s'm)zf‘“‘(‘z_")

then (sin) %" (-%:-) $ sin 'A , sin X <(sin)?" (1.2‘:)
and (X)) = (sin )2n (7{)

It follows that

sinx gpb) < sin~' A on (0,1]
and, similarly,

sin ' XA < PIXNY € sinx on [-1,0)
Since p(0)=0 this implies

sind (0,41 sn' &
5 $ g < 5

and, similarly,

sind ¢ pl-6,0] sin”'d
d ) d
From lim 8nd _ lim sin"d _ we deduce that dm (0) o
=20 6 §»0 ¢ ar

as required. Since ofX\) is a saltus function on [-2,0)U (0, 2]
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we have mo..c. N[l-2,2)=10} + <P but no absolutely continuous

spectrum on (-2,2).
In the next section we shall use Theorem 2.9 to obtain a new set of
minimal supports in terms of a function which is analytic in the upper half-

plane where it has positive imaginary part.

§3 The function m(z)

We stated at the beginning of this chapter that if a self-adjoint
operator H is defined by the Schrddinger equation together with a boundary
condition at r = 0, then the corresponding differential expreésion is in the
limit point case at o0, and in the limit circle case at 0. To clarify this
remark, we briefly indicate some of the theoretical background.

In 1909-10 Hermann Weyl produced three remarkable papers on second order
differential equations, which developed and generalised the work of earlier
mathematicians such as Fourier, Sturm and Liouville ([w1], [w2], [w3]). He
obtained an eigenfunction expansion theorem of great generality and estab-
lished the theory of the limit point and limit circle which is, in outline,
as follows:

In considering a general equation lu = zu of the Sturm-Liouville type
with a regular end-point at O, it is found that only the following possi-
bilities can occur:

1) Limit Point Case: For every z in € \JR , lu = zu has just one
solution u which is in l_z[CLoo) , and for every real z there is no more

than one solution in L,[0,00).

2)  Limit Circle Case: all solutions of lu = zu are in L, L0, e0)

for every z in €.

The same distinction may be applied to each of the intervals (O,a],[a,OO)

where O < O < 00 , in particular if O is a singular endpoint ({cL] ch.9,8 ).



The geometric terminology arises because the locus Cb(z) of the set
{mb(z,ﬁ):@eLO,‘\T) ,and be(0,00), 2 R\C are fixed ¥ is a
circle i i i

€ 1n the complex plane, where mb(z,ﬁ) 1s defined by the condition
that the solution u(r)=u,(rz,%) + mb(z,b)ul(r,z,oa) of lu = zu

satisfies the real boundary condition
ulb)cosB + wlb) sin B=0

u,(r,2,&) and uz(r—,'z.ot.) being solutions of lu = zu satisfying
u(0,2,a) = -u(0,2,&) = -sin
u, (0,2,x) = u’(0,2, x) = cosa (2.3.1)

If b2> b‘ y then for each z in € \ R Cb (z) 1lies entirely inside
2

Cb,(Z) and the set of nesting circles be(z)} converges either to a
point, the "limit point", or to a circle, the "limit circle" as b — co.
In the first case the problem is self-adjoint, whereas in the limit circle
case an additional boundary condition is required at co ([CLl Ch.9,84).

If m(z) is the limit point, or any point on the limit circle, U (r, 2, 0) =
u,(rz,a) + m(z)u (rz2,4) is in LZLO,OO) and, if || .+ || denotes the

Lz[O,oo) norm,

2
Hu (rz, )| = Imm(z) (2.3.2)

Imz

where m(z) depends on &.
Possibly due to the influence of functional analysis, with its

emphasis on abstract structure in a wider context, the work of Weyl was not

significantly developed for another thirty years. It was E.C.Titchmarsh

who,aware of the importance to mathematical physics, was primarily responsible

for a revival of interest in second order differential equations of the

Sturm-T.ivuville type in the 1940s. An important outcome of his work was the

formula

. A
,o(M—,a(v) =yl.¢«m0 ;'.T.‘(v Im m(x+iy)dx (2.3.3)
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for points of continuity A\ » oflo()d. The derivation of the related

formula (a slightly different formulation is required if «= 0, see [EK] §52.3)

00
m(z) = J. )\' - d,o(A) + cobtx (2.3.4)
-w -

for z in € \IR stems from the analyticity of m(z) in either half-plane,
which was proved by Weyl in 1935 ([W4]). There are other equivalent
representations of m(2) in current use (see[EK] §2.3); (2.3.3) and (2.3.4)
are derived in ([LS] Ch.2, 85). It should be noted that the spectral
function p(A), although often most conveniently analysed using (2.3.3),
originated as the limit as b-%00 of step functions F%(A\ arising from the
Sturm-Liouville problem on the finite interval [O,b]; the jumps of Fm(x)
being at each eigenvalue, with the discontinuity equal to the inverse of

the square of the L, (0,b] norm of the corresponding eigenvector ([cL] ch.9,83).

Analysis of the spectrum until the late 1950s was generally based on
the idea of locating the points of increase of a spectral function and only
discriminated between the discrete and continuous parts. Titchmarsh
recognised that the isolated points of the spectrum occurred at the poles
of m(z), and that if the set of points to which Imm(z) converged as nyO
was bounded above and away from zero on an interval I, then there was con-
tinuous spectrum on I. ([T2] Ch.5). A subtler appreciation of the
relationship between the spectrum and the boundary behaviour of Imm{(z)
was achieved in 1957 by N.Aronszajn ([A] 52]. His standard supports of
the decomposed parts of the spectral measure are similar to the set of
minimal supports we obtain in Theorem 2.17.

No doubt because the importance of boundary properties of analytic
functions for spectral analysis of differential operators was only recog-
nised comparatively recently, most available literature lacks even a
rudimentary account of those aspects of analytic function theory that are
In the proofs of our results, we shall have frequent occasion

relevant.

to use properties of m(z) as z approaches points on the real axis, so it
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seems appropriate to give an indication of some of the relevant theory.
As this theory developed quite independently, there was no special con-
sideration of functions analytic in the upper half-plane with positive
imaginary part such as m(z). It was usual, in fact, to consider the be-
haviour of a function which was meromorphic on the interior of a unit disc
in the complex plane as a point on the perimeter of the disc was approached
radially, or '"non-tangentially'". Accordingly, we shall first cite some
results for this case, and then show how properties of conformal mappings
may be used to give analogous results for a function meromorphic in the
upper half-plane, with particular reference to m(z).

We require some notation and definitions:

Let f(w) be a function from € to € which is meromorphic on an open
region R, bounded by a smooth boundary B.

A triangular neighbourhood Z&Pﬁjli) of a point p on B is defined to
be the intersection of a neighbourhood U of p in € with an open region lying
entirely in R and bounded by two straight lines intersecting at p; these
straight lines are reflections of each other about the normal to the boundary
at p, and subtend an angle 2x at p (O<o&<g).

Let Spd(u) be the set of limit points of f({w) in Ap.a(u) (this

= n sp‘d(U). U CPI&

-
u O<af.<2

may include the "point" e0); and define CP,“

is called the cluster set at p.

The function f(w) is said to have a non-tangential limit at a point p

on B if the cluster set at p consists of just one point.

The function €(w)) is said to behave restrictedly at a point p on B

if there exists a triangular neighbourhood AP~°‘(U) such that F(AP"(U))=

{f(W): we AP «(UY} is not dense in the whole complex plane.

By the Lebesgue measure of a subset of the perimeter of the unit disc

we refer to its length in the usual sense; thus the Lebesgue measure of an

arc on the perimeter which subtends an angle 0 at the centre is 8.
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The following result was first proved for bounded analytic functions
by F and M. Riesz in 1916 ([RI]) and later for general analytic functions
by Lusin and Privalov ([LP]), who also showed that, in general, it is not
possible to replace the condition of non-tangential convergence by radial
convergence. The extension to meromorphic functions was accomplished by
A. Plessner in 1927 ([PL] Satz II).

(A) If f(w) and g(aﬂ are functions which are meromorphic on the interior of
a unit disc, and which have the same non-tangential limit on a subset of
its perimeter having positive Lebesgue measure, then f(w)= 9(@)).

If we take guo) to be a constant function then the following corollary
is immediate:

(B) If (W) is non-constant and meromorphic on the interior of a unit disc,
then the set of points on its perimeter for which f(w) has = g.ven fixed
value as its non-tangential limit has Lebesgue measure zero.

The next result is due to A. Plessner ([PL] SHtze I, IV).

(C) If f(w) is meromorphic on the interior of a unit disc, and if E is the
subset of points of the perimeter at which f(w) behaves restrictedly, then
f(w) has a finite non-tangential limit Lebesgue almost everywhere on E.

Points on the perimeter at which fw) does not behave restrictedly are
sometimes referred to as Plessner points ([NO] Ch.III).

Further discussion and refinements to the above results may be found
in [cc],[NO].

We now indicate how properties of conformal mappings are used to show
that (A) - (C) also hold for a function which is meromorphic in the upper
half plane, the '"perimeter" in this case being the real line.

Consider the MBbuis transformation ([M] §33):

2 = Ty = ) 2% - i (X2 %)

b-w X241 - 332
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where Q=X+i; . It is clear that the circle lwl=1 is mapped onto the
real line IR, with the pole, w=1 , being mapped to the "improper point'" oo .
Moreover, the region outside the circle lwl=1 is mapped conformally onto

the lower half plane, and the region inside the circle onto the upper
half plane. 1Indeed, it is easily ascertained using elementary geometry
that T(w) maps the circle lwl=| stereographically onto R, with w=i as pole;

w=2%| are fixed points.

Consider now a subset E of B={w:lwl=13 which has Lebesgue measure
zero and is such that the pole as=1i 1is not in the closure of E. We may
cover E with a countable collection of sets {Ci} which are such that each
C;€ B is open in B and the pole w=! is not contained in the closure of
Lij C.’ . This last requirement will ensure that the '"magnification" of the

Ci is bounded under T; that is, that there exists Mg IRT such that

k(T(C;) € MK(C)

for all i. Hence if g>»0 is given, we may choose our cover to be bounded

away from w=) as above, and such that
Zri(c)< &
i ' M

whence it follows that

Z K(T(C)) < €

t
Thus any subset E of the circumference of the circle |wl=1 , which has
Lebesgue measure zero and whose closure does not contain the pole w=i

is mapped by T onto a bounded subset T(E) of IR which also has Lebesgue




measure zero.

Now the unit circle lwl=1 , less the point w=1, may be expressed
as a countable union of closed sets {Si} , each of which does not contain
the point w=i . Therefore, if E & B\ fw=1} nas Lebesgue measure zero,

T(EN Sﬂ nas Lebesgue measure zero for each i, by above. Hence

“(T(EN= (U T(ENS) ¢ 2 w(T(ENS ) =0
!

and so T maps any subset of B\iw=i¥ with Lebesgue measure zero onto a

subset of IR with Lebesgue measure zero. (1)

Let S(z) denote T '(2). We remark that S(z)= 1+12 is also
{+2

a M8bius transformation and a continuous one-to-one mapping of €\{-iJonto
C \Ul

We now show that if a variable point z in the upper half-plane
approaches a point PelR in such a way that it eventually remains in a
particular triangular neighbourhood of p, Ap.ok(V) , then there exists a

triangular neighbourhood of S(p), AS( ”S(u) , such that S(z) eventually
Ph

(w.

remains in AS(P) 8

Since every M¥bius transformation is circle preserving ([M] §45) the

straight lines Ll and L. which bound Apl“(V) are mapped by S onto circles

2
S(Ll) and S(LZ) in the w -plane, each of which passes through S(p) and the
pole w=i. (If one of Lo L, passes through the point w= -1 ,then it
will be mapped by S onto a straight line passing through S(p) and w=r ).

As a variable point z in Ap'd(\/) approaches p, its image S(z) approaches

S(p) from the region within the circle [wl=1 which is bounded by S(Ll)
and S(L2). Since S(p)# i , neither S(Ll) nor S(L2) is tangential to the
circle SORY= {w:wl=1} and hence S(z) is eventually contained in

some triangular neighbourhood AS(P’ ¢5<U) of S(p). (The diagram illus-
}

trates the case where Ipl > | ).

Now if f(z) is a function which is meromorphic in the upper half plane,

but which does not have a non-tangential limit at some point pE€ R , then

there exists a triangular neighbourhood AP.«(V) and a sequence of points



37

{zi} in A?.u\(V) such that z;—-»p but f(zi) does not converge to a limit
as i—»00 . We conclude from our previous remarks that { Wi w; = 5(2‘.)}

is contained in some triangular neighbourhood A (u) of S(p) in

S(p),8

the interior of the disc |w!% | ; and,

using the properties of S, we see that the sequence of points

) Wi: w;= Sz} in the interior of the disc lwl%) converges to the
point w=98(p) on its circumference as £z;}Y converges to p. However, the
function (£ TXw) , which is meromorphic in the interior of the unit disc,
does not have a non-tangential limit at @=5(p) since {(fTXw;)} =
t-F(z,-)} does not converge to a limit as {w;} converges to S(p).
Thus if f(z) does not have a non-tangential limit at the real point z = p,

then (£T ) w) does not have a non-tangential limit at the point @ =S(p)

of the circle \wl=1 . It may likewise be shown that the converse of this

statement is also true and we have, equivalently:

f(z) has a non-tangential limit at the real point z = p if and only

if (FTXw) has a non-tangential limit at the point w=S5(p) on the unit

(i1)

circle lwl=1

Now if g(z) is also a complex function which is meromorphic in the
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upper half plane, and if f(z) and g(z) have the same non-tangential limit
on a subset of R having positive Lebesgue measure, then (#TXw) and
(3T)(w\ are meromorphic in the interior of the unit disc lwl< | , and
have the same non-tangential limit on a subset of {w: |wl=l} having
positive Lebesgue measure, by (i) and (ii). Thus we may state:

(A)' If f(z) and g(z) are functions which are meromorphic in the upper half-
plane, and have the same non-tangential limit on a subset of the real line
having positive Lebesgue measure, then f(z) = g(z).

As before, the corollary is immediate:

(B)' If f(z) is non-constant and meromorphic on the upper half-plane, then
the subset of points of IR for which f(z) has a given fixed valus as its
non-tangential limit has Lebesgue measure zero.

Using the fact that conformal mappings preserve the angles at which

curves intersect ([M] §23), we see that there exists a triangular neighbour-
hood of a real point p on which f(z) is not dense in the whole complex plane
if and only if there exists a triangular neighbourhood of S(p) ¢{iw:lwl=1}
on which (fTYw) is not dense in the whole complex plane. Hence if E is
the subset of IR on which f(z) behaves restrictedly then S(E) is the subset
of the unit circle lwl=1! at which (fTXw) behaves restrictedly. By (C),
#T)w) has a finite non-tangential limit Lebesgue almost everywhere on
S(E), and hence by (i) and (ii), f(z) has a finite non-tangential limit
Lebesgue almost everywhere on E. We have therefore:
(C)' If f(z) is meromorphic in the upper half-plane, and if E is the subset
of IR at which f(z) behaves restrictedly, then f(z) has a finite non-
tangential limit Lebesgue almost everywhere on E.

We now return to the function m(z) which is analytic in the upper half-

plane. Unless otherwise stated we shall assume that the differential
expression L, defined as in (2.1.2), is in the limit point case at e ,
in which case m(z) may be defined by condition (2.1.3). (As necessary, the

o dependence of m(z), ul(r,z), u2(r,z) will be indicated by m(z,x)

u(r,z,a) and uz(r',z,od respectively). From (2.3.2) Imm(2)70 if
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Im 2»0 so that m(z) behaves restrictedly at all points of R

We shall say that m(z) has a normal limit at the point xelR if m{z)

converges to a finite limit or to e as z approaches x from above along <he

normal to the real axis at x.

The following is now easily deduced from (A)', (B)' and (C)':

2.12 Theorem: The function m(z), Zefined and analytic in the upper half-
plane, has the following properties:

(i) m(z) has a finite non-tangential limit Lebesgue almost everywhere on IR;

in particular, m(z) has a finite normal limit Lebesgue almost everywhere on

R.

(ii) The subset of points of IR at which m(z) has a given fixed value as

its normal limit has Lebesgue measure zero.

(iii) If g(z) is analytic in the upper half-plane, behaves restrictedly at

all points of R, and has the same normal limit as m(z) on a subset of R

having positive Lebesgue measure, then g(z) = m(z).

It is presupposed in (ii) that m(z) is not a constant; this is certainly
true in all the cases we consider. If m(z) has a normal limit at % & IR
we denote this limit by m+(x); similarly, if Imm(2)has a normal limit at
x, we denote this by Im m«+(x). Since z = x + iy, it is evident that

m+(x) —_-.yl‘:‘o m(x+iy), and from (2.3.4):

00
_ lim J do (X)) (2.3.5)

whenever the limits exist.

We now prove a number of results relating Im ma+(x) to the derivi-

dé: (x) - our first result is valid irrespective of whether the
dk

tive

spectral measure m is finite or infinite:
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2.13 Lemma: If Imm+(x) exists and equals zero, then SM{X) 41so exists and
daK

equals zero.

sroof:

We first note that E‘ﬁ"‘\ exists and equals zero if and only if
de

lim prlx+ 6)-p(x-6)
§»0 23

exists and equals zero.

Hence it is sufficient to prove that the hypothesis implies that

limm o lx+d8)- (x-S é

$5 0 F exists and equals zero. Since ()-x)z N 62 3 'E"s‘
on (x-&8,x+d1) , we have
x+ 4 0o
0¢ PIX+SN-p(x-38) J' S do(2) SJ’ S do(x)
26 x-& (A=-x)* + &% cw (A~x) 4+ 87

The result is now immediate from the hypothesis and (2.3.5).

The following proposition is also true irrespective of whether u is a

finite or an infinite measure. We use the fact that, for sufficiently

small y, .)'z < decreases with y for every A outside a certain neigh-
(A=-xV +y

bourhocod of x.

2.14 Proposition: If _dli(’d exists finitely or infinitely, then Lm m+(x)
dx

i

also exists, and 9}_“.("\ =1L Imm+(x)
dr w

Proof:

We note that if 941X} exists then tim p(x+d) - p(x-=38)
dK d=0 28

also exists, and the two limits are equal. For the purposes of the proof it

is convenient to use the function &(A) instead of @(A) where S(X\) is

defined as follows:
/‘.S'(M = 0
BN = p(X) —p(2x-A) + p({2x =21

<t see that h-m ,5'(x+<5)

If h 8)-po(x-&) exists,
m o(x+ © P! -

$50 24




also exists and both are equal. Also because of the symmetry of the

integrand about x, ([ — Y deta=|" Y N 0
integrand abou x,J N A =J- —2 ___dg(A) for all > ,
o (X =22+ y? £ X (x-%)z-e-_yzdp J

N [ o]
so that Im ma+(x)= bim ——Lz-—dﬂ(ﬂ whenever the limit exists.
VYO , (x=-XV+y?

du (x)
dnr

Suppose now that exists finitely and equals L.

Then, if €0 is given, there exists ¥ >0 such that,whenever

re(x,x+ %),

€ ~ _ g

2(x-xNL=-20 < 3(XNY < 2(X xXL+.i) (2.3.6)
i . { o®© Y ~

We prove that (i) lim sup -—J T = 45 (X) < L

yyo T I, (X=-x1"+ y

)
(ii) lim inf fx FEFLSE £ N 3

y&O

(i) We first show that we may choose an Me R* such that

J -——gz——:-_dfé'(k) is small for sufficiently small y.
(M,0) (A=xY"+ y

For each y >0

J‘L Y :F de/g‘m=y“um(r—,z)n"<w
X,® b +

by (2.3.2). Hence if Y € (0,1) is fixed and e>0 is given there exists

M > maxi!,§Y such that

j e da(x) < L& (2.3.7)
(M,00) (XA=x)*+ y2 4

We now prove that this inequality also holds for all y<VYyg

Since 0<y <y, <1 and A-x2M 31 on (M), (y -y Y¥

¢ (yk-j)(X-x3z for all A in (M, ) Hence, if N € (M, )

y < jnl 2
(A-x)+ y? (N=x%)"+ ¥,

so that for all ys Y

Te
J dg(n) <« —
J’{M,oo) —xiey: & (2.3.8)
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r. A}
on x, x + M,

Now there exists KelR" such that S(N) s K

by (2.3.7).
so we have, using integration by parts on 'x, x - 1, (2.3.8) anc¢ “he r:

hand inequality in (2.3.6):
J ~
do(
J[x,oo) (h=-x) & y" £
x+527(x—x)p(>\) dx

yK
S 57 3 PR
M+y x ((J\-x)-r-y)
X+M 5 tn-x) (X
e |
x+35 ((X=-x)Y+y?)

K5 ag(n-x)(L+%) i

(M) (x-x)+y

-~
e

-
-

< y K + J
M?+ y* x  Uxn=-xTx y5)
x+ M _
+J Zj(kzx)}(z zd)\ . E
X*; ((xn=-x) + Y ) 4
PAa (L+E) =(n = x) + tant Anx
< M2 +4)’ "’1 [2((x~x)1+yz) zy y
yK x+M Tr&
M [retvew e
rxlr il
< J__}f + 2(L+€.)tan"}. + ykK L Te
2 E Mz 4
o M2Tre
< (Leym o+ TE YT Tek
= '!T(L+e_)
Thus if <mintiy sze}
j K) %K
Y s(\) < L+e
x)"-o-j* dé

)

LU f[x,oo) (X~
where € was chosen arbitrarily. Hence
J ~

Y d/o(X) < L

I _'-j
m;&soup Tix, 00 A=x)+y

L dF )




as was to be proved.

(i1) Using integration by parts on [x,x+ 3') as in (i), we obtain:
J y ~ x+5 4y (n=-x)2(L=~-2)
d J Y 2
[x,0) (X=-x)* +y? g > x ((N-x) + y*)? »
= 4-)'([.--5—:) [ —(x=x) + _tan" )\-XJX*-;
2 2((XN-x)? 2 2
+y*) Y Yy
For sufficiently small y, tan-lg is close toq—zt ; ohat is, y,)o exists
h that kEan'J > T - Te i
suc a an .9.>2 Bl if y<, -
Hence, if < min { “—Iﬁ—
J Yoga-gl
2
y o~
do(
L_x,oo) (A=x)* +y* PN
>4y(L-§)[ nt 2N T “l}
2(y2+y%) 2y Y
-2y (L-=
YUeE) o~ ENT - Te)
3- 2 2 8
> W(lL-¢€)

The arbitrariness of & implies lim inf -—‘-—J 4 ddz) 2 L
yvo T JIx, @) (x=-x)* 4 y? A2

as required.

(i) and (ii) together imply that if _d_/"_‘(’() exists finitely, then
dK

L Im m+(x) also exists and both are equal.

If gﬁ(’d:w , then for each Pe IRT there exists fP>O such that
dK

PN >2(XN=-x)P if Ae (%, §).

Proceeding as in (ii), we obtain

4)(}\-)()2 P

Y dg (2 > J d X
J[x,ao) ()x—x)z-o-ya‘ o [x,c0) (()s-x)zd-y: )*

> M(P-¢€)

for sufficiently small y. The conclusion that Imm+(x)am follow from

the arbitrariness of P.

The proof of the proposition is now complete.
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Although it will not be important for our purposes, it is natural to
enquire whether a converse of Proposition 2.14 is also true. It follows
from the work of L.H. Loomis ([L]) and P. Fatou ([F]) that (i) Im m(2)

has a finite non-tangential limit | at x if and only if ‘_‘.&"0 exists and
dx

equals |.
™

(i1) T m+(x)exists finitely and equals L if and only if the same is true

of Iim P(x+38) - plx - J)Tl'. It is not clear whether these results still

hold if U is infinite; however, it is clear that the converse of Proposition
2.14 cannot be true in general. For, since we may choose p(AJ as we please
on a finite subinterval of IR by the inverse method of Gel'fand and Levitan
([GL]), there exists a spectral function g which is continuous but not

"smooth'" at some point x elR , so that the generalised symmetric derivative

lim pl(x+d)-p(x-d) exists finitely, but Iy (%) goes not. In such a
&0 24 dr

case Im m=(x) exists by (ii) (or, indeed, by our proof of Proposition 2.14),
and so the converse of Proposition 2.14 is refuted by counterexample.

However, as we now show, a converse of Proposition 2.14 is true K-

and p- almost everywhere on R .

2.15 Corollary: (i) Im en+(x) and dulxy gimultaneously exist and are finite
m dK

K-almost everywhere on IR , and are equal when they both exist.

(ii) Lm m+(x) and fﬁ"‘) simultaneously exist (finitely or infinitely)
T dx

M-almost everywhere on IR, and are equal when they‘both exist.

Proof:

Proof of (i):

This is immediate by Lebesgue's Theorem (2.2.13) and Proposition 2.14.

Proof of (ii):

This follows from Propositions 2.5 and 2.14.
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Lemm 2.13 and Proposition 2.14 enable us to obtain a new set of minimal
supports of the decomposed parts of M from Theorem 2.9. We require the

following preliminary result:

2.16 Lemma: If S is a minimal support of a measure ¢ and S' is a subset of R
such that the symmetric difference ({$S \S’)U(S'\S)) has K- and
Mm-measure zero, then 5' is also a minimal support of .

Proof':

We verify that S' satisfies the two conditions of Definition 2.8.
(1) RNS" = ((RNSYU(SNS)] \(5'\9)
so LERNS') & LIRNS) + t(S5\S") -l9'\%)
€ LIRNS) + 20((5\8YU (5'\9))
= L(R\S)
Since S is a minimal support of v, Lv(IR\S)=0 and hence ((IR\S)= 0.
(ii) Suppose So is a subset of S’ such that w {S5,) > O. Since S is a minimal
support of v, and 5,NS is a subset of S such that
K{S;nS) = R(S5,n55") - K(S, N(S'\S))
= K(5,) » O
we have L(S5,nS) » O by Definition 2.8(ii).
Hence 1(5,) = ¢(S5,nS) + (S, n(S'\S) > 0.

Thus 5' satisfies the required conditions and the lemma is proved.

There is now no difficulty in deriving our new set of minimal supports
in terms of Im m+(x). For the set U = {x e IR : Im m+(x) exists

finitely or infinitely, but ifi (%) goes not } is contained in the Borel set
dK

{xeR : 9» (X) 4oes not exist finitely or infinitely } which has K-
dx

and u -measure zero by Lebesgue's Theorem (2.2.13) and Proposition 2.5. Since
the measures K and p are complete, U is K- and m-measurable and K({U) a,.(U) a(
If M is defined as in Theorem 2.9 and m’denotes {x e IR: 0 < Imm#(x) $ oo},

then’ﬂ)gm'by Lemma 2.13 and Proposition 2.14, and TY)'\ me U. Hence,
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’
by Lemma 2.16, M is a minimal support of m. Analogous results for Ma.c

Ms. etc. follow in the same way, and we have:

!
a.c.?

2.17 Theorem: Minimal supports MM', M 'm_,f ,m,' c. and M, of

Py Pae.r Mg Mg e, and)..d are as follows,

where E' = {x € IR:Im m+(x) exists } :

(1) = ix&E':0<Imm+(x3soo}

(ii) = {xeE’: O <Imm+(x)< 0}

= {xeE': Im m+(x)=c 3

c.
(iv) c=1lxe E . Imm+(x) =0 , u(ix})=0}

mn’
m,
(11i1) m;,
m,,
™,

(v) = ixeE': Immax) = 0w, ulixd) > 0}

Our interest in the support of Theorem 2.17 stems from our eventual
aim to derive minimal supports in terms of the asymptotic behaviour of
solutions of the Schr#dinger equation. Since the set of solutions of the
equation Lu = xu does not depend on the particular boundary condition which
is imposed at r = O, whereas the function m(z) does, we first need to
investigate the effect on m(z) of a change of boundary condition.

Let m(z,a)denote the function which is defined for Imz > O by the
condition that u,(r,z,d)+ m(z,x)u,(rz,&) be in LZ[O,oo), where u,(r,z,a)
and U,(r,z, &) are solutions of Lu = zu satisfying (2.3.1). We refer
to the corresponding self-adjoint operator H as the operator arising

from L with boundary condition « and denote it by H(«); every function

f(r) in the domain of H(«) satisfies
M /
cosx F(0) + sinx £ (0) = O (2.3.9)

as we shall se in §4. We prove the following:
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2.18 Lemma: If L is in the limit point case at ea, then

m(z,a,) = L * 0E¥m(z 4,
cot¥ - m(z,x,)

where ¥ = (a,-at,) and Ak, =F o, (mod ).

Proof':

Since there is, up to a multiplicative constant, just one solution

of Lu = zu which is in Lz[O,co) 1f Tm2+0, we have

u(rz,e) + miz,%,)u,(r2,%,) = k Lug(rnz,a,) + miz,4,) u,(r2,4,)]

for some fixed ke@ and all r in LO,®). Using the boundary conditions
(2,3,1) this implies

C€os &, - M(Z,a,)sink, = k(cosa, - m(z,a,) sino )

sina, + m(z,%)cosa, = k(sin«, + m(2,a,) cosa,)

Eliminating k we obtain
Sin(a-a)L1 + m(z,)Im(z,4,)] + cos(,~a,)Im(z,4,) - m(z,a,)]= 0

from which the desired result follows.

Equating the real and imaginary parts of both sides in the expression
for m(z,o(z) yields

2
Imm(z,x)(l +cot®¥) . (2.3.10)
fcot ¥ -Rem(z,a))* + (Im m(z,«,))

Im mlz,u,)=

from which we shall now ascertain, at least up to sets of K-measure zero,
the behaviour as z approaches x normally of Im m(z,o(,_) relative to that of
Im m(Z,%,) in certain fundamental cases. This will enable us to determine
where the spectrum of H(dziis concentrated relative to the spectrum of H(ct,) ’
and also, up to a set of - and K -measure zero, the subset of IR on which

Im m+(x,x) exists and equals zero for at least one boundary condition .

2.19 Lemma: (i) For K-almost all x in IR for which Im m+(x,a,) exists and

equals zero, Im malx &,) also exists and equals zero for every



48

boundary condition A,t K, (modT) except, at most, one.

(ii) For all x in R such that Imm+{x,a&,) exists infinitely, Im m+(x %)
also exists and is zero whenever A, % &, (mod-T).

(iii) For w-almost all x in IR for which Imm+(x,4,) exists and

0< Im M+ (x,d,)<c0, Im M+(x,a,) also exists and O < I m+(x,d,)< o0

for every o, &, (mod1r).

Proof:

Proof of (i):

By (2.3.10), if Re m+(x,o,) exists, then, unless cot (,-a,) =
Rem+(x,a,) , Im m+(X o,) exists and is zero. Since Re m+{x,&,) exists
K -almost everywhere on IR by Theorem 2.12(i), the result is proved.

Proof of (ii):

From (2.3.10),

| + c_otzb’
Im m(z,«)

Im m(z,a,) &

The result is now immediate since cot*¥< oo if o, %+ «, (modT).

Proof of (iii):

This follows from (2.3.10) since Re m+(x,x,) exists finitely for

K.-almost all x in IR by Theorem 2.12(i).

We may further refine part (i) of Lemma 2.19 for all real x which are

in the resolvent set R(«,) of H(«,) . Since m(z,x,) may be continued

analytically to include all points of the resolvent set ([CE] §5), m+(x,x,)

exists finitely and is real for all x in R(«&,) . Hence by (2.3.10),

Im ma(x,a,)=0 for all boundary conditions o, for which

cot(ot, =) £ m+(x,a,) . In the exceptional case we note from Lemma 2.13

and the invariance of the essential spectrum under finite dimensional per-

turbations, that x is an isolated pole of m(z,o(z) and hence is in the

discrete spectrum of H(«x,) Using Proposition 2.14 we then have that

Im m+(x,x,) exist infinitely.
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In order to make precise the implications of Lemma 2.19 for the relation-
ship between the spectra of H(«,) and H(«,) we first prove an elementary
lemma. To lighten the notation, we denote the symmetric difference

(S\S’YU(S/\S) of two sets S and §'by S aS’.

2.20 Lemma: If S, 8’ are subsets of R which are ¢- and K- measurable, and
if the relation ~ is defined by :5~ 5 if and only if 545’ has - and K-
measure zero, then ~ is an equivalence relation. Moreover, the set of all

minimal supports of the measure ¢ is an equivalence class under ~ .

Proof:

Evidently the relation a is reflexive and symmetric, and transitivity

follows from the inclusion
SASY s (Sas’Yu(s’as™y

Hence ~ is an equivalence relation.

Let ™N_be a minimal support of ¢ and let E, = {SsR:S~m 1},
We prove that E‘_ is the set of all minimal supports of ¢ .

If SeE, , then S is a minimal support of L by Lemma 2.16. If m:4= m,
is a minimal support of v, we prove that m: € EL . Since

m.am’ = (RN(M N mMONNIRN(M UMY

= ({LRAM) UIRNM DN ((IRAM) N (RAM/ Y

and 'mum( are minimal supports of v , we have ;(mtA‘Yﬂ:hO by condition
(i) of Definition 2.8. Hence LM\ =0 and, since maMm/ s M_ we have
by condition (ii) of Definition 2.8, k(m \Mm/=0 . Similarly
k(m:\m‘)=o and so K.(m,_A'm‘_') =0 . Hence 'm._,ru m, , so that

m: [ 1 EL . The proof of the lemma is now complete since E; is an equi-

valence class under ~~ .

Let »"“ denote the spectral measure of the operator H arising from L

with boundary condition « . Let Eq. (%), Eg(x) denote the equivalence

(«)

classes of minimal supports of pm g .. and )‘(:) respectively. The next
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theorem indicates the striking contrast between the behaviour of E (&)
a.c.

and Es.(OO as ¢ varies.

2.21 Theorem: (i) E, .(wx,Y=E_  («,) for all boundary conditions «,
and &, .
(ii) If JA;:“')(IR) >0 then Egla)# Eg(x,) for any a,+q,

(modM); moreover, for each pair of distinct boundary conditions (&, , o)

there exist M(«,)€ E (a,) and M(x,)€ Eg (a,) such that M(x,) N Mi(x,) = @.

Proof:

Proof of (i):

@y (2)
Let ~ , ~ denote the equivalence relation of Lemma 2.20 for
L= %) (#2)  respectively, and let the s ts of Th 2.17(ii)
= gl o p Y, e supports o eorem 2. ii

for boundary condition «, and «, be denoted by 'm; c(c(,) and m;c(dz)

respectively.

If Mlx) e B, o(«,) then M(x,) L My  («,) so that
(a)

a.c. !

K{M(a&,)aM’(«,)) = O. Hence, by the absolute continuity of um
pé"i_})(m(u,) AM (%N =0 from which we have M (x,) @ m,a_c-(o(,) .
Now KM% (x)am,’ (x,))= 0 by Lemma 2.19(iii), which implies, by
(a,) ’ (2) /
the absolute continuity of s %' that M, (&)~ M, . («,) .  Hence,
(2) (2) o
by the transitivity of ~ , MI(x,) ~ M, (a,) , 30 that
MR, Ve Eg o (K,).
We need only interchange the suffices 1 and 2 in the above argument to
see that if M(«,) € E, () then MM(ax,) e E_ () . This

completes the proof of (i).

Proof of (ii):

If #;“" (R) » 0, then by Theorem 2.17 (iii) the set

Mx)={xeR:Im m+(x,&,) exists infinitely } is contained in Es‘(d.) and

is non-empty. Moreover, if M™M(eg )= {xeR: Imm+(x,o,) exists infinitely},

M(«,) is contained in Eg (a,) and M YNM(x,)=¢p by Lemma 2.19

(ii). We have now proved (ii), and the theorem is complete.
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We see from this result that whereas the absolutely continuous parts
of the respective spectral measures are equivalent under a change of
boundary condition, the singular parts are orthogonal. This is not al-
together to be expected, given the invariance of the essential spectrum
under finite dimensional perturbations ([WE1]§9.2), and has interesting
implications in situations where there is dense singular spectrum ([A] §s).

In the next chapter we shall relate the boundary behaviour of Tm m(2)
as z approaches xelR normally to the nature of the solutions of Lu = xu.
The crucial distinctior will be between those x for which Im m+(x) exists
finitely and is non-zero, and those x for which there is a boundary con-
dition & such that Im m+(zx)exists and is zero. We anticipate these
results in the next proposition which follows easily at this stage from
Lemma 2.19 and Theorem 2.21.

As Ea.c.("‘) is independent of « , it will now be referred to simply as

Ea.c. .

2.22 Theorem: The set S = { xeIR: there is no boundary condition & for
which Im m+(x,&) exists and equals zero } is in Ea

Proof':

By Theorem 2.21 it is only necessary to show that S is a minimal

support of Ma.c.(“') for some boundary condition &, . Using the notation

¢ y
of Theorem 2.21 we shall therefore show that S ~ ™M ()

Y . this will be established if

Because of the absolute continuity of )Ai?‘c"

we prove that nw(Sa ma.'c_(e(,\) =0 (2.3.11)

Now for k- almost all x in m;'c.(o&ﬁ , Im m—+(x,%y) exists and

is strictly greater than zero for every %, # o, {(modT) by Lemma 2.19(iii).

Hence K (S A& ma_'c_.(«.\h 0.

Also Im m+(x,%,) exists and is finite k- almost everywhere on

R, so that Imm=+(x,n,) exists and 0 Imm+(x,%x,1<00 W -almost

everywhere on S. Since,however, {xelR : Imm+(x,«,) exists and is
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zeroJ NS = ¢ by definition of S, Im m4(x,a,) exists and
O<Imm+(x,n,) < o ® - almost everywhere on S. This implies

Ri(SNxM,  (aN=0.

(2.3.11) is now immediate, and so the theorem is proved.
Before proceeding to consider the relationship between the boundary

behaviour of m(z) and the nature of solutions of the Schr8dinger equation

we introduce some relevant ideas from Hilbert space theory.

§4 The Schrddinger Operator

The early work of Hermann Weyl was gracually absorbed into the wider
framework of linear operators on Hilbert spaces during the twenties and
thirties. Particularly noteworthy was the contribution of Marshall Stone
whose "Linear Transformations in Hilbert Space" contains a very thorough
treatment of second order differential operators ([S] Ch.X, 83). Wwe briefly
indicate some of the more important featurss of the theory f{rom this point
of view.

The relevant Hilbert spaces are of measurable functions which are
Lebesgue square integrable with respect to a given measure. If the measure
is not Lebesgue measure, this will be indicated by a superfix: for example,
the space of u-measurable functions G(X) for which j_: I GO de(N) < @
will be denoted by L':(—-oo, o).

In considering the question of self-adjointness of operators arising

from the differential expression L = -5’——2 + V(r) Green's formula is of

dr

fundamental importance:

j: ((LE)Y3 - FLgNdr = W (f.g) - Wo(f,q)
where Wo (f,g) = btimo wb(-F,s) and

Ww(F,s\ = lim Wb({?,g) , where wb(f,g) ig the Wronskian of f and
b
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g evaluated at r = b. Evidently, if an operatora‘ arising from L is to be
symmetric it is necessary that Weg(f,qg) -WO(F,S).-. O for all f and g
in d)(l‘:i) , and hence if an operator H is to be self-adjoint, the same must
be true for all f and g in P(H).
~

Let D* denote the set of all measurable functions fir) on L0, ™)
for which
(i) f(r) and £'(r) are absolutely continuous functions on every closed

subinterval of L0, 0),
(ii) f(r) and Lf(r) are in L,;0(0,0) , and set
O=iftr)e D, We(f,g)- W,(f,g)=0 for all g in 0"},
Then the operator H mapping f(r) into Lf(r) with domains is symmetric
and closed, and its deficiency indices (the co-dimensions of the ranges
of FI+CI and A= in H=L,[0,n) ) are either (0,0), (1,1) or
(2,2) ([s] Thm. 10.11). It is found that if L has a regular endpoint at
r = 0, then the corresponding operatorg with domains has deficiency in-
dices (1,1) if and only if L is in the limit point case at @, and
deficiency indices (2,2) if and only if L is in the limit circle case at
00 ([S] Thms. 10.13, 10.14). In either case H has self-adjoint extensions
since the deficiency indices are equal. ([RN] §123). L is limit point at
both O and @ if and only if the deficiency indices are (0,0), and in this
case H with domain @ is self-adjoint.

If L is regular at O and in the limit point case at oo, then
ww(f.g) =0 for all f, g in 6‘ and D ={f(r) e D*: f0)=F'(0)=01}.
IfD is extended to ® = { f(r)e 6*: cosk F(O) + sina f(0OY =03,

then the operator H(a) mapping f(r) to Lf(r) with domain® is a proper

closed extension of ﬁ , and all proper closed extensions of H are of

this form. ([S] Thm. 10.16). So in this case {H) :aelRY is the

set of all self-adjoint operators arising from L.

If L is regular at O and in the limit circle case at ® , then the

~

restriction of D*obtained by imposing the requirements cosa £(O)+s5inaf(0)a0



54

and Ww(f(r),um(r,zo,aﬂ:O where Un(rnz,, «) =
u,_(r,z,,«\-o-m(zo,u)u,(r,zo,o&) (see (2.3.1)), Imz, % 0 anc m(z,, o)
is any point on the limit circle, yields a domain® on which the operator
H mapping f(r) to Lf(r) is self-adjoint ([CL] Ch.9, Thm. 4.1).

In the case where L is regular at 0 and limit point at oo there exists
an isometric Hilbert space isomorphism from L, [O,oc) onto L: (-~00,00)

;
(fcL] ch.9, Thms. 3.1 and 3.2). Specifically, if f(r) is in L, [0, )

) w
then F(X) = L.im, u,lr,x, &) f(r)dr (2.4.1)
W—ro Y0

exists and

[T 1Fror > »
o dog (X)) = Io | £0m) 17" de (2.4.2)
where ,oe‘()\) is the spectral measure of H(«) .
Likewise, if G(\) is in L:“(—co,oo) , then
. w
a(r‘) = L.i.m. J. u, (r,% ) GIXN) dey (N) (2.4.3)
-w

and [T1gtN*dr = [¥ 160011 dp(x)

Moreover, the "eigenfunction expansion"

w
Flr) = Ui, [ U te,x, @) FON o (a) (2.4.)
W= "D

where F(A\) satisfies (2.4.1), is valid for arbitrary f(r) in L2 [0,00).
Analogous results hold if L is in the limit circle case at oo ; however,
since the spectrum is discrete in this case ([CL] Ch.9, Thm. 4.1) it is

usual to express the expansion (2.4.4) as a series.

The results of the previous paragraph were originally obtained for

the specific case considered, but arg also related to a far more gen-

eral result. The spectral theory of ordinary differential operators arising

from differential expressions of the Sturm-Liouville type has now been gen-

eralised to include suitable operators of the nth order, irrespective of

whether the endpoints of the interval under consideration are regular or

singular. ([DS] Ch.XIII, 85 We shall show in Chapter IV that the general



55

theory may sometimes be simplified, and that in such cases, relationships
formally analogous to (2.4.1), (2.4.2), (2.4.3} and (2.4.4) may be deduced.
Moreover, many results from the general theory may, with suitable modifi-
cations, be applied to these cases, as we shall prove. We anticipate this
development by applying a result which is well documented for the general
case to the situation where L is regular at 0 and limit point at oo.

Let T denote the transform which maps f(r) € L,(0,0) to F(X) as
in (2.4.1). The following is an application of the general Weyl-Xodaira
theorem ([DS] Ch. XIIZ, 85, Thm. 13(ii)) to our simplified situation (see
also Chapter IV).

If ¢ is a Borel measurable function on IR with support in (0,e«) then

TEAH)FIR)) = BN TEE) = @GN F(N) (2.4.5)
for all f in the domain of ¢(H) . This implies, in particular, that
[Z (g tn)m P ar = [ETISLISIRE S (2.4.6)
®© 2
and < (@MY, £(r) > = j_w GO ITFOIN delN) (2.4.7)

Corresponding to every self-adjoint operator A is a unique ''spectral

family" or "resolution of the identity" iE).} with the following

properties:

(i) Ey s Ey ir XN og A

(ii) Ex = :_’hrg E>N_E

(iii) s. lim. E)‘ =0 , S lim, Ex =1 (2.4.8)
A= —-m A —>+ 00

By means of the spectral family A may be expressed as

A = j_:%AEx

which is known as the Spectral Theorem. A related result is that if

is measurable, finite and defined almost everywhere with respect to

< EA'F , £ for some € e H , then @ (A) commutes
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with E)\ for each A and -
(BMFNrY = J BOVdE#

<@EYEYF) , $(F) > = I_: é(n) d CE,f,§>

for all f in the domain of ¢(A) » this being defined to be the set of all

f in Yy for which
f.,, ‘¢(>‘”zd<5>fﬂ"> = I f)?

converges. ([RN] Ch.IX). Clearly (2.4.5) - (2.4.7) are closely related to
these results, and, indeed, the general theory of Weyl and Kodaira may be
derived using the Spectral Theorem (see eg. [K0O]).

In the context of Hilbert space theory, it is usual to characterise
the spectrum of H in terms of the resolvent as Z(H)= IR\ {xe R : (H-xI)"
is a bounded linear operator on H } . It has been shown that {xeR:H-xI
is bounded on H } = {xe R : m@) is regular at x}, where m(z)
is said to be regular at x €lR if there exists a neighbourhood of x into
which m(z) may be continued analytically. ([CE] §5). Now from (2.3.2)
it is evident that m(z) = m(z), and hence, using Lemma 2.13, we have
{xelR: (H-XI\-l is bounded on H } = {x € IR :there exists a

neighbourhood Nx of x such that Imm+(x) exists and is zero for all X\

in Nx NIR} = {xeIR : there exists a neighbourhood N_ such that
du (N) exists and is zero for all A in N,NIR } . Since
dr
du (x) = 0O if and only if dpe(N) =0 , the characterisation
dK dai X

of the spectrum in terms of the resolvent determines precisely the same
set as do the points of increase of the spectral function.
From this discussion, it is evident that the behaviour of m(z)

precisely reflects that of the resolvent on the resolvent set. It is not

therefore surprising to find that, by means of m(z) and the supports of

Theorem 2.17, we can find minimal supports of Ma.c. and Ms. in terms of

the behaviour of the resolvent.

We shall use the following properties of the dense subset® of Y} = Lz(O,q

which consists of those elements of}{ which vanish outside a finite interval:
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7
(1) If F(rYeD , then F(N), as defined by (2.4.1), is an zral--:: “unction

of A in the entire complex plane.
does not vanish on A.
These and further properties of D were established by M.3.Krein ([AG]

Appendix II, §7). We prove the following:

2.23 Proposition: If Imm+(x) exists finitely or infinitely, then

NR,fll =0(y™)Yas y=Imz ¢ 0 for all £ in D if and only
if Im m+({x)<mo. Moreover, if Imm+(x)=0, then W R,fl = o(y’l/‘)

as _y=Im7.J,O for all £ in ©® .

Proof:

We have (cf.(2.4.6), [LS] Ch.II, §3)

0 2
IR, ¢ 1 = | LF OVl do(N) (2.4.10)
"o (N-x) 4yt

-V
We show first that if f(r)e D and Im m+(x)=l<othen IR, 1= 0(y L)
as y4 O.

Let £{r)e D ; we may suppose without loss of generality that N<h=1,

so that by (2.4.2)

o0
[ TroI g =1 (2.4.11)
From (2.4.10)
* ” * (2.4.12)
g IR, £0% = y LEOVIY dp(0)

-® ()\-x\:-ry"
and from (2.3%.5)

Lim * b do (N) (2.4.13)

yV¥ O "o (N-x)'+ y?

Im m+(x) =

. — + .
Now if & such that O<ec<l 1is ziven, there exists ¥ in IR such that, on

account of (2.4.11),

K 2 V/2
j IF(XNY 1 dp(X) > | - €
-K

and I
Yy < e /a

(XN - %)+ y?

for all y«<! if IN}! » K . Hence, if

S € (-0, K)U(K,o),
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i

J 2 . 2
“s T FFON dotn) < e”2 js IF(MITde() < e

Since f(r) e ®, F(\) is bounded on the compact set |

(2.4.14)

-K,KI by property
(i) above; hence there exists Cf in RY » which depends on f, such that

for A in [-K,K]

LEOOI® < = (e -1 (2.4.15)

Since Imm+(x) = | there exists Y., depending on f, such that

O(*;(l and

IK J do(X) < 21
-k AN =-x)* e y?
for all y < Y{-' by (2.4.13).
Hence, if O <y < YT, » we have by (2.4.14) and (2.4.15),
[~ Y IFONI® do(n)

- () -x)? + y%

= [" Y IFOM P den) + | J IF 12 dp i)
~k A= x) ey o S v-x)* 4 y? F

< (C;_-')ZL + £

L
2
< C. 1
since € was chosen to be less than L. It follows from (2.4.10) that
IR, ¥l =0 (y-l/"L) as y+v 0O and this is true for all f in D as
was to be proved.
It is now immediate that if 0 < L < o then NR,fll = O (y~"2)
as y¥ O for all finD , and that if L = 0, then IR, fl = o(y~'"*)
as y v 0O ; note that we do not assert the uniformity of this convergence.
It remains to show that if Im m+(x) = @ , then there exists
f(r) inD such that IR, fll O(y"/‘) as y v 0.

If ¢» 0 is given, we may, as in part (i) of the proof of Proposition

2.14, choose M e RT and Y > O such that
I ’z de(X) < € (2.4.16)
s (A-x)* +y?

whenever y< Y , where S a (-wo,- M) U(M , ). Horeover, by property
(ii) above, there exists f(r) in ® such that T(£(r)) = F(A) does

not vanish on [—M,M]. Using property (i) above we see that there exists
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IFINY > k >0 (2.4.17)
for all A in [-4,4].
If Im m+(x) = c , then if C in IR™ is given, there exists
Y. ¢ Y such that
Im m@z) » % + € (2.7.18)
for all y < Y. . Therefore, by (2.4.16), (2.4.17) and (2.4.18),
for each C in IR there exists Y.> 0 such that
0
IR, FH1* = s LFOOI?
y IR, I reur el LUSIRETIES
M y 2
F(x (XN
zJ‘-M (r—x) 7 57 I FIN)I® dpe (X))
» k(Im m(z) ~¢)
> C
if y< Y. . Hence IR, fll # O(y""‘)as yv o . The proof of

the proposition is now complete.

In order to show that this proposition is not generally true for all

fin L ,(0,0) , we show that it fails for those f in L, (0, ®) for

which T (f(r)) = F(A) =2 o as )
Let x € IR be such that Im m+(x) = L for some | such that
D<cl ¢ o . The isometric isomorphism T from L, (0,@) onto

L: (- ,®) ensures that if F(X) is defined s-almost everywhere on

o
IR in such a way that _f_w lF()\)lzd,o()s)=l and

lim F(x-2) = lim F(x + e) = oo, then there exists f(r) in
&0+ e—> 0+
L, (0, ®) such that T(F(F)) = F(XN).

From our description of F(A), it is evident that if C» O is given,

there exists & » O such that for all A in [x-&,x+ S

IEOY > Bl_c. (2.4.19)

b decreases with y, and hence it
(x-x)" + y?

Moreover, if y<¢ ) ,
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follows from the Lebesgue Dominated Converzence Theoren that

Lim Y
= 0
3*0le\[x-é‘,x+6] (N=x)* + y? dp (™)

since by (2.3.2) and (2.3.4)

Y
deo (X)) «
Ji (h-x)* + g2 © %

for all y > O,

Therefore, if & » O is given, Y >0 exists such that

J 1
IlR\[x—eS,x+cS] (A_x)1+y;d:°(>‘) < € (2.4.20)

for all y < Y, . Also, since Im m+(x)= | , where O0<l < o,

there exists Yz » O such that

j‘” Y dp()s) pd -L-
~o (A - x)* + y? 2
whenever y < Yz . Combining this with (2.4.20) yields
Y L
de(X) > - - € (2.4.21)
I[x—cf,x-f-é] ()x—x)z-t-y" 2
for all y < Y, where Y =miniY,, Y, } . we may choose € = % ,

and then, using (2.4.19) and (2.4.21), we have for all y< Y

| z LFOD" dp(N)
"o (N - x ) y?
5 j Y LEONDT dp(X)
[x-&,x+8] (h=-x)"+ vy
4C Y do (N)
— P
7 l I[x-é,x*é] (N=-x)* +y?
> C

It follows from (2.4.10) and the arbitrariness of C that there ex:ists

f(r) in Lz(o;w) such that "RlFu + O(y"/z) as y ¥ 0

although Im m+(x)=1 where 0 < L < oo.
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Thus Proposition 2.23 is, in a sense, optimal. Although we shall not
use this proposition later, it is nonetheless relevant to spectral analysis
in that it provides criteria for characterising minimal supports of Ma.c.
and mg in terms of the resolvent operator, and incidentally hi_:hlights
the close relationship between m(z) and (H—z)—l. We have:

2.24 Theorem: Minimal supports TY'IGI.'C‘ , 'm: of Mg .. and M.
respectively are as follows:
m:'c’ = {xelR: IRl =0(y")as y ¥+ 0 for all fin D}

NixelR: IR fll=o(y™)as y & O forall fin D }

n
ms. = {x € IR: there exists f in O such that IR, FU # O(y"")

asy 4 0}

Proof:

This follows immediately from Proposition 2.23 and Lemma 2.16, since
by Propositions 2.5 and 2.14 and Theorem 2.12 the set of x in IR for which

Imm+(x) does not exist has no K- or u-measure.

We remark that Theorem 2.24 is in many respects similar to a result
of K. Gustafson and G.Johnson which states that the absolutely continuous
subspace }la.c.(H) of H is the closure of the set of f in L,(0, o)
for which [[Ryf Il = O (y-'/") as y¥ O uniformly over all x in
IR ([GJ]). Both results feature a dense subset of Yl , and characterise

absolutely continuous properties in terms of the growth rate of the

resolvent.

-1
Returning to the relationship between m(z) and (H-z) we note that
if F(M\) is the characteristic function of a bounded A-interval (a,b],

then J w lF()\)lth (A\) ¢ @ since the m-measure of bounded subsets of
- 0

R is finite. Because T is an isometric isomorphism from L, (0, )

onto L';(-ao,oo) , there exists f{r) in L, (0, ) such that
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T(f(r)) = F(X), and, for this f,

<R, ¥, £> = f(a,b] }‘,Tz dp (N) (2.4.22)

(cf.(2.4.7)). Now for every x in (a,b) there exists éx >0 such that

[x-8x,x+8,]1 € (a,b] s> by (2.4.20)

Lim ® Yy
YVYO Yoo (N-x)*+ y?

. Um Y
dp(X\) = y+0 Y(a,b] (X-x)zﬁ-y" do ()

for each x in (a,b) for which Im m+ (x) exists. For each such x,

by (2.4.22)’

Um
Immelx) = 440 Im <R+ %>
(2.4.23)

which expresses the close relationship between the baundary behaviour of

m(z) and that of the resolvent operator.

Retaining the same f, we have (cr.(2.4.7)),
P = ptay = [ doln)

= ’[(a,

[ x

(

- o0

 FFOOIT dp(n)

2
ax] [FONT dpin)

=<(Ex—Ea)F)~F>
= £ Ex*F ,f 2 (2.4.24)

for all x in (a,b], where X denotes the characteristic function. It is
interesting to note that in (2.4.23) and (2.4.24) the relationship between
the spectral function P(A) and the spectral family {Ex} is similar

-1 )
to that between m(z) and the resolvent (H-z) at the boundary of their

domains of definition.

To conclude, by relating the spectrum to the spectral function, and

the spectral function to m(z) we have shown that each part of the spectrum



is concentrated on subsets of the real line which can be unambiziously
identified in terms of the boundary behaviour of m(z). The link we nhave
established between the boundary behaviour of m(z) and the zrowts raze
of the resolvent gives further insight intc the structural relationships
involved, and, in particular, highlights the close relationship between
m(z) and the resolvent operator.

In the next chapter we shall relate the boundary behaviour of m(z}
to the relative asymptotic behaviour of solutions of the Schr8dinger
equation at each point x, and thereby establish a fundamental corrslation
between the asymptotic behaviour of solutions and minimal supports of each

part of the spectral measure m .



CHAPTER III

SUBORDINACY AND THE SPECTRUM

§1. The Concept of a Subordinate Solution

There is little doubt that the study of the spectrum of the Schr8dinger
equation will continue to engage the attention of mathematical physicists
for much time to come. Although a great diversity of sufficient conditions
are known, each of which, if satisfied by the potential V(r), ensures a
certain type of spectrum (eg.[G] §831, 33), the results to date are far
from comprehensive. One of the more systematic approaches was by E. C.
Titchmarsh, who made use of the relation (2.3.3) between the spectral
function and m(z) to obtain a complete analysis in many important cases ((72])
In theory this approach provides the solution to the problem; m(z) is
uniquely determined by the condition (2.1.3) and from m(z), as we have
shown in Theorem 2.17, minimal supports of the spectral measure, and of its
decomposed parts, may be obtained. In practise, however, the method is
frequently inoperable because it is impossible to obtain sufficiently
detailed information about the solutions to derive m(z) explicitly. What

seems to be required, therefore, is an approach that is no less systematic

but not dependent on such precise information.
In this chapter we shall use the minimal supports of Theorem 2.17 to

derive a new set of minimal supports which are characterised in terms of the

existence or otherwise of a certain type of solution of Lu = xu at each real

point x. Thus we shall use the systematic correlation between m(z) and the

spectrum to obtain an equally systematic correlation between the behaviour

of solutions of the Schrddinger equation and the spectrum. As a result we

shall obviate the need to determine m(z) explicitly, and so a less detailed

knowledge of solutions will be required. Indeed, it will only be necessary

to decide for each real x whether there is one solution of Lu = xu which is

wgmaller" than the others at infinity, and, if so, whether this solution
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satisfies the boundary condition (2.3.9) at 0; information about solutions
of Lu = zu for z in € \IR will no longer be required.

Analysis of the spectrum of Schr8dinger operator through the study of
the behaviour of solutions of the Schr8dinger equation is nothing new.

For example, it has long been known that the discrete part of the spectrum
consists of all real x such that Lu = xu has a solution in L, (0, )
satisfying the boundary condition at 0. The physicists' rule of thumb

that the spectrﬁm is the set of all real x for which the solution of Lu = xu
satisfying the required boundary condition at O is bounded (eg. [BR] Ch.10,
§16, [KR] pp.71,82), while not proved for the general case ([G],958),
nevertheless suggests that a close correlation between the spectrum and the
behaviour of solutions exists. Some interesting results in this connection
have been obtained by E.E.Shnol' ([G], Ch.V) and J. Weidmann ([WE2]).

In introducing the concept of subordinacy it is instructive to consider
the case where V(r) = 0 for all r in [0, ) . For every x in IR~ , there
is just one solution of :22_3 =xuin L, (0,00) and for every x in [0 ,®)
there are no solutions indx2 LZ[CDNm); L is therefore in the limit point
case at oo by Ch.II §3(1). According to the boundary condition (2.3.9) at
0, there may be just one negative eigenvalue or no negative eigenvalues at
all, and for every boundary condition at O, there is absolutely continuous
spectrum on [0, o) ([AG] Appendix II, §9). For each x in R~ , we see
that the solution u(r) = Rl is much smaller at infinity than all
other linearly independent solutions. Not only is its L,_[O,oo) norm

finite whereas the norm of the others is infinite, it is also "pointwise
-Jt=%x)r
g(r)

as r - e for every solution U(r) which is not a constant multiple of u(r).

subordinate" in the sense that the ratio € converges to zero

However, for each x in IR"', the concept of pointwise subordinacy of one

solution relative to another is not applicable, since all solutions are
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oscillatory, and it is not possible to compare the Lz.[ol‘”) norms of
linearly independent solutions since all are infinite. Nevertheless, it is
clear that in this case there is a sense in which linearly independent
solutions are of the same size; one way of making this idea precise, and
which seems apt in the context of Hilbert space theory, arises from the

observation that for x in (0,) the ratio

[y 1ute x ) ar)

N L
(Jo lu.(r',X)lzdr)z (3.1.1)
converges to a limit in |R* as N for every pair of linearly independent
. : ~ 2
solutions u\r,x) and u(r,x) of - : "; =xXu . In contrast, this situation
r
does not hold for any x in (-00,01 ; and because for each such x there

is one solution which is '"smaller" than the others at infinity, we may
formulate the distinction between x in (-o,0] and x in IR* as follows:
For each x in (-00,0] there is a solution u(r,x) of Lu = xu which is such
that the ratio (3.1.1) converges to zero for every linearly independent
solution ﬁ'(r,x), and for each x in IRT , there is no such solution. We
require some notation and a definition.

n
Let ||f(r) ||, denote (JN l'F(r)\zdr')z.
o

N

3.1 Definition: (i) If L is regular at O and limit point at infinity, then

a solution us(r,z) of the Schr8dinger equation

2
—.‘i_“_(_'._:'_z_) + V(M u(r,2) = zulrz)
dr

is said to be subordinate at infinity if, for every linearly independent
solution u(r,z),

lim WNugtr,2)ly o
N - o0 "u(l",l)"N

(ii) If L is not regular at O, then a solution us(r,z) of the Schr¥dinger

equation is said to be subordinate at O (respectively intinity) if for

every linearly independent solution u(r,z)
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Lir (J.:lus(r,z)iz dr-).—z

= 0
avo (jaclu(r,z7lz df‘)i
b i
(respectively L (Jc lus(r,z)lzdr)z o)

bayoo (Lb latr 217 dr)-'i

where c is an arbitrary fixed number in IR and a < ¢ < b .

It is trivial to observe that for each fixed z in € there can be no
more than one linearly independent solution of Lu = zu which is subordinate
at infinity (respectively 0). Moreover, if for fixed z in € there exist
solutions us(r,z) and u(r,z) such tnat us(r,z) is subordinate to u(r,z)
at infinity (respectively 0), then us(r,z) is subordinate at infinity
(respectively 0) to every solution u(r,z) of Lu = zu which is not a constant
multiple of us(r,z).

In this chapter we shall only be concerned with the case where L is
regular at 0; therefore, where we do not qualify the term "subordinate"
it should be understood in the sense of Definition 3.1(i).

Returning to the case of zero potential, we note that 1 and r are
linearly independent solutions at the point z = O, so that here a subordinate
solution is us(r,O) = 1, which is not in L,[(0,00) . This example
shows that subordinate solutions can exist which are not square integrable;
in due course it will become apparent that such solutions are of central
importance where there is singular continuous spectrum.

It is not hard to show that if V(r) = O, then

sinx cosa (z-1) + 14z (3.1.2)

cos®o + zsin?a

m(z,x) =

For, if Imz >0 , the solutions u,(r,z2,a) and u,(r,2,&) as defined

in (2.3.1) may be aetermined explicitly and expressed as linear combina-

. ~-idzr : :
e' 4T Lhich is in L,L0,00) , and e which is not.

tions or ’

Hence, on account of (2.1.3), m(z,o«) may be evaluated using the condit:on

that tne coefficient of e-iﬁr in uy(r,z2,%) + m(z,adu,(r,z,a)
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be zero.

From (3.1.2), if x is in R*then O< Im m<+(x,«) < o for all
boundary conditions et , whereas if x is in (-00,0] | Imm+(x,a)= 0O
unless x = -cot?x and cokx » O , when Im m+(x,x)=00.
(Note that the numerator and denominator of (3.1.2) both contain the factor
JZ sinx + 1 cobtx , SO X =-cot?*x is not a pole if cotx < 0.
Therefore in this case there is a subordinate solution for precisely those
x in IR for which Im m«+(x,a) =0 for at least one boundary condition « ,
and tnere is no supbordinate solution for precisely those x for which
0< Im Mm+(x,) < oo for every boundary condition &« . It turns out
that, with the possible excegtion of subsets of IR having K- and - measure
zero, this situation holds quite generally; one of the main purposes of
this chapter is to prove this assertion, and to assess the implications
for the location of the spectrum.

In the next section we establish some continuity properties of
||u(r‘,z)[|N as a function of y for sets of solutions {u(r,z):zeC}

having certain common properties. This is an important prerequisite to the

proofs of our main results in §3.

§20. Properties of the norm in a finite interval

For each fixedz in € , define unique solutions ul(r,Z), u2(r,z) and

u(k)(r,z) of Lu = zu to satisfy
u (0,z) = -sina u,'(0,2) = cosa
u,(0,2) = cosx u/ (0, 2) = sina
u(k)(r,z) = uz(r,z)-o-ku,(r‘,z) ke @
For each fixed z in € VIR , define
Um (r.2) = uy(r,2) + m(2) u,(rz)

where mi(z2) = m(z,a(\ (See remarks preceding Lemma 2.18). For those

. P : IR RO
x for which m+(x) exists finitely and is real, define
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Mm(x) = m+(x)
U (r,x) = u(r,x) + m(x)u,(r,x)

We shall now rezard u_(r,z), u(k)(r,z) and u,(r,z) as functions of

1 2

both r and z, and examine the behaviour of “ul(r,z)”N,"u(k)(r,z)ﬂN and
uum(r,z)"N when both x and N<¢w are fixed. Since z = x+iy, these norms
are functions of y, defined on (-e,) in the case of "ul(r,zﬂlN and

"u(k)(r,z)“N,and, in general, on IR\{0} in the case of "um(r,zﬂlN.
We shall derive some detailed estimates of l"u(r,zz)"N - ﬂu(r,zl)"Nl

= x+iy_,

for u (r,z) = ul(r,z), u(k)(r,z), um(r,z), where z, 1

z, = x+iy2; and from these obtain continuity properties of "ul(r,z)ﬂN,
"u(k)(r,z)"N and ﬂum(r,z)"N as functions of y.
The proofs of the estimates are contained in the following four

lemmas. Since the method is the same in each case, we shall omit some of

the details in the later proofs. We shall assume throughout that V(r) is

integrable on every finite interval [O,N].

3.2 Lemma: Let z, = x+iy,, with y,>0 be fixed. Then if z, = X+1¥ and

|y2-y1| is sufficiently small

§
[t 200 = Butr, 20l | < 2 Tutrzal

where Xl = 2 Iyz-yll I -u.(r,z.)"N ”um(r,z')"N,If m(x) is defined, then

this inequality also holds for z, = X.

Proof:

The hypothesis ensures that um(r,zl) is defined and that ul(r,zl)

and u (r,zl) are linearly independent solutions of Lu = z u. Reformu-
m

lating the equation Lu = z,u as (L - zl)u = i(y2 - yl)u, and applying

the "variation of constants" formula ([CL] Ch.3, Thm. 6.4) we have, since

W(um(r.zl). ul(r.zl)) = 1:
r .
ulrz,) = 4 (rnz) + um(r,z.)jo u, (t,2)ily =y ult,22)dt

r -
i, u‘(r‘,zl)fo u(t,2)i0y, -y, u,(5,2)dE  (3.2.1)
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We use an iterative scheme to obtain the required estimate from this

equation. Let
(net) r . (n)
u, e,z = u lrz2) + um(r‘,z,\jo u,(t,2V1(y,-y) u,"(t,2,)dt
r .
= ulr 2 f umE2,) i Gy, -y ) u M, 20 dE

{1

and set u, '(r 2,) = u,(r,2,) (3.2.2)

Then
-
ufz)(r,zz) - uf')(;—) z,) = um(r,z,)fo u,(t,2)ily,-ydu,(t,z)dt
- u,(r,zl‘)“‘o" un(t, 21y, -y du (t,z2)dE
so that if rg N |
| uf1)(r,zz) - uf')(r,zk)l
N 2
€ by, =y lup Cr 27 Tute, 2017 e
N
e by, -l m 2 T L 200, c,200de

Since this inequality is preserved if we take the L2[O,N1 norm of both

sides, we have, using the Minkowski and Cauchy-Schwarz inequalities:

I u‘u)(r‘zz) - u.(n(r‘,z.z)llN

< 21y, =y hup(r 2 by Bu, (20

Similarly, if r g N,

lu‘(a)(rlzz) - u,(n(r,zzﬂ
N
¢ lya =y untmzt ] Tu ezl a2y - a2l

a—lyl—leu‘hjzﬂ\jN hxth,zﬂuuffut,zﬁ-up\(t)zﬁidt
° (3.2.4)

so that
a3,z - u e 2z )

¢ 21y, =y, u,(r ) Qumlr 200 Nufﬂ(r,zz) -u\m(r,zl)llN

6 (21y,~y, 1 Hu (nz) iy (e, 22 1)l (r 2
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and, in general,
"u'(n-o-l\(r'zz) - u I(n\ (r, zz“‘N

n
4(2|yz-y.‘"u,(l‘,2,“|N "um(",2|)||N) "ul(rlzl)“N (3'2°5)
Since "ul(r,zl)ﬂN and Ium(r,zl)hN are finite and do not depend on Yoo
the iterations converge in LZ[O,N] norm for all z, such that

|
ZHquzJHN“um(qzﬂnN

ljl-.’l‘ <

In order to show that the iterations converge to the solution, we
first prove uniform pointwise convergence of the iterations {tJf")(r,zz3}
on [O,N].

Since L is regular at 0, there exists K in IRt such that
Iu‘(r,z.ﬂ,lum(r',z')ls K for all r in [0,N]. Hence 1f r € (o,N],
from (3.2.3), lu,"')(r',zz) -u,m(r,zz)l $ 2 ly,-y,| K*N

and from (3.2.4),

N

lul

(r2) —u % 2 01 g 21y, =y, KENu,®(r, 2,)- u,"r,2,)]

¢ K(2K*NI yz-y,\)z

so that, in general,

'U|(n+'\(r022)-ul(n)(rlzﬁ)l & K(ZKzN,yz-yl‘)n

It follows that there is uniform pointwise convergence of the iterations

TufM(r, 20} for all z, such that

]
'71-7.‘ < 7K N

Let @(r)denote Llim u™ (r,2,).
N —y o0

From (3.2.2),
r
Blr) = u(rz) + rl‘.a_’m um(r,z,\jou.(t,z,) 1(y,-Y,) u.‘"\(t,zz\dt
(> <]

~lim u(rz) frum(t,z,)i (y,-¥,) w, M (k, 2,) dt
n — o °

The uniform convergence of the {u,(") (r zz)} ensures that @(r)

is continuous, and hence bounded on [U,N]. We may therefore use the

Lebesgue Dominated Convergence Theorem to take the limits inside the

integrals, and hence by (3.2.1) and the uniqueness of solutions,



P(r) = u (r 2)
Thus if Y5 is sufficiently close to Yy

o0
ul(r’22)= ul(r)zl) + nz_'_' [u)(n-ﬁ-l)(r) 22) -u.(nxﬁ‘,zz)}

for each r in [U,N], and hence by (3.2.5)
N ezl - llu.(r,z,)llNl < flu,(rz) = u (e, 2D

co
< 2 uf""”(r,zz) -u™ (2, 11
n=\

2
< Zlyz—yJ"u,U;zﬂuN lup, (r 20,

-2 lyz-y| | Ilu‘(r,z\)“N "um(r,z,)"N

¥,
m-" i u,(r,z,)llN
(3.2.6)

if |y2—yl| is sufficiently small.
If m+(x) exists finitely and is real, there is no difficulty in

extending this result to the case vy, =% for um(r,x) is defined and has

all the required properties.

The proof of the lemma is now complete.

3.3 Lemma: If m(x) is defined, and ke € is such that k 3 m(x) then

if y >0 is sufficiently small and z = X+1iy,
Y
=y

[N

Mg (r 2, = Buga(rolligl < lugy (ry 2

&y Nugy(nzdlly lup (ry2) 1y
Ik = m(x)]

where Xk =

Proof:

From the definitions of u(k)(r‘,z), um(I‘,Z), w(u(k)(r.z), um(r.z))=

m(z)-k. Since k #* m(x) , and m(z), regarded as a function of y, is

continuous there exists yk> 0 such that

lk-m(2)] > “‘“'z“(xn (3.2.7)




for all y such that Iyl¢ Y« - Hence, if y >0 is sufficiently
small, um(r,z) and u(k)(r,z) are linearly independent solutions o<

Lu = zu.

Reformulating Lu = xu as

Lu - 2y = -iy u
and using the '"variation of constants" formula as before we obtain for
O<y«< Yk

.
u<K)(r',z)fo Um (£, 2) (=i Y Uy (E,x) dE
(m(z)=k)

.
U (. 2) J ey (6,2)0=19) ug gk, x) dt
(m(z) - k)

If we form the iterative scheme

r (
u(k)lr,z)_fo Up, (B, 2)(=iy) u(:: (t,x)dt
(m(z2)-k)

( )
u(k";*'l (r,x) = Uey (ri2) +

-
p (2 Ty (6,2 =iy) u Y (e x )t
(m(2) - k)

and set u(kgl)(r,x) = u(k)(r,z), then using the method of Lemma 3.2

together with (3.2.7) yields the result.

Thus the lemma is proved.

3.4 Lemma: Witn the hypothesis and notation or Lemma 3.3, if y»> 0

is sufficiently small

[“um(r‘,z)llN-llum(r,xWNl
2 mi(z) —m(x) Hu (e 2)]
ST k=m0 (k) N
. m(z) — m(x) { (r z) I
vz [l-—xk * k - m{x) U UmT N
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Proof':
Define umx(r‘,z) = u2(r‘,z)+m(x)u1(r,z). We have
Mu (e 200, - hup Gy
¢ llupy(r,2) —up (e x) Il
¢ llu,, (r,2) - Um (r) 20l + Um, (r2) —u ()
= lm(z2) =m OO, (r 2+ llumx(r,z\-um(r,leN (3.2.8)
Since

U (r2) = u (r,2)

u‘(P,Z\ =
(m(z)-k)

if O« Y € Yi » we deduce from (3.2.7) and Minkowski's inequality

2
Ik - m(x

lu,(r, 2, < )l( l|um(r,z)llNﬁ-llu(k)(r,z)HN) (

3.2.9)

for sufficiently small y.
Now u_ (r,z) and um(r‘,x) satisfy the same boundary conditions at
X
r = 0, and if Y < Y , um(r,z) and ?kSr,z) are linearly independent

solutions of Lu = zu. Since Lu = xu may be reformulated as Lu-zu = -iyu

we have therefore by the 'variation of constants" formula:

-
Ugey (1120 Jy Uy (6,2) (Riydum (E,x )it
u_(r,x) = (r,2) +
m Y (m(2)=k)

um(r,z\f:u(k)(t,Z)(-iy\um(t, x)dt

(m(z)-k)
: : : : (1) _ (r.2) find
Iterating this equation as before with um (r,x) = um r,z), we fin
X
that for sufficiently small y
I i I Y (3.2.:0)
!lum(r‘,x\-umx(r,z) N S ¥, um‘(r,z N .
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Now

(m(z) - m(x))
(m(z)-k)

(m(x)-k)
(m(2)-k)

umx(r,z\ = Ugaylrz) + U, (r2)

Hence for sufficiently small Y, by Minkowski's inequality and (3.2.7)

m(2) ~m(x)
"umx(r,z)"N < 2 kot Iaalm 2+ 2 luim 200,

This, together with (3.2.8), (3.2.9) and (3.2.10) gives the result, ana

the lemma is proved.

3.5 Lemma: Let z, = x+iyl be fixed. Then if z, = x+iy2 and y, ,y, >0

atr 20l = Bt 2, |

{

- f m (zz)—m(z,)lllullr, 2z

£

llu,n(r,z,)HN +

whenever !yz-yll is sufficiently small, where ¥, is as in Lemma 3.2.

If m(x) is defined, then this inequality also holds for z, or z, = X.

Proof:

) — N » 3 '
Define umz(r,zl) = u2(r,zl) + m(zz)ul(r,zl). By Minkowski's
inequality

Illum(r‘, zz)llN—llum(r,z,)llNl ¢ lup(r,2)) =, (r 20
¢ Num(r,z,) - umz(r,z.)ﬂN + Ilumz(r,z,) -up(r 200y

< ﬂum(r,zz)-umz(r,z,)lN + lm(zz)-m(z,‘)] Nu, (r,2),
(3.2.11)

Now if y,» O, ul(r,zl) and um(r,zl) are linearly independent

soluciors of Lu = z,u, and W(um(r,zl),ul(r,zl)) =1; and if m(x) is

defined, ul(r,x) and u (r,x) are linearly inaependent solutions of
m

) and umz(r,zz)

satisfy the same boundary conditions at r = 0. Hence, reformulating

Lu = xu, with w(um(r,x),ul(r,x)) = 1. Moreover, um(r.z2

= i - " iation
the equation Lu = z,u as Lu - zju = 1(y2 yl)u, we have by the "variati
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of constants" formula:
r
Um(r 2,) = “mz(ro z,) + u,(r z‘)Jo u,(t,z,\i(yz-y,)um(t,zz)dt‘
r
-~ u‘(r,z,)fo U (E,2)ily, ~y,) upm(t,2,)dt

Forming the iterative scheme

(n+t) r .
U T (P, 2,) = Um (r2) + um(r,z,).fo ult, z) n(yz-y,)u:‘(t,zz)dt

r
~u(r2) fy umlE,2)ily, -y u®E, 2,) dt
. (1) . .
and setting u_ (r‘,z2) =u (r‘,zl) we obtain, as in Lemma 3.2,

2

¥,

,llum(r; 2, - llumz(r, z) | < llumz(r, M, (3.2.12)

Since umzkr,zl) = um(r,zl)+(m(zz)—m(zl))ul(r,zl),

"umz(r,z.)llN < Hug (r 2 + Im(z))=m(2)) Tu (2

by Minkowski's inequality. Hence the result follows from (3.2.11) and

(3.2.12), so the lemma is proved.

3.6 Corollary: Let x€lR and N<owo be fixed. Then if m(x) is definea,
"ul(r‘,z)"N and llum(r,z)lIN are continuous functions of y
on [0,0) . If in addition, ke € 1is such that Kk3$ m(x) then

“Ltk)(r,z)ﬂN is also a continuous function of y on [0D, ).

Proof:

It is immediate from Lemma 3.2 that for each y, 1n (0,)

¥
l Uu,(lr z,)"N is arbitrarily small for Y5 sufficiently ciose to

7

i defined and finite. Hence
y,» since "ul(r,zl)llN, Ium(r,zl)llN are defi

"ul(r,z)"N is a continuous function of y on [0,00).

Since m(x) is defined the function m(z) is, for fixed x, a continuous

function of y on IR . The continuity of 'um(r.z)UN on [0,) therefore
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follows from Lemma 3.5.
Now u(k)(r,z) = um(r,z)+(k—m(2))ul(r,z) for all y in IR . Hence

if YooY, 2 o]
”u(k) (r,z) 0 SLITONGE R
¢ lugy(riz)) = g, (rz) Il
< lup(r,2) —upn(rz) iy + | -m(zz\lllu,(r‘, 2,) - u(r 2z
+ Im(z) = miz) (A2

’ . } _
Now the bounds of Lemmas 3.2 and 3.5 for lnul(r,uz,HN ﬂul(F,Zl)HN'

and “um(r,zz)HN - ﬂum(r,zl)ﬂN‘ also apply toll ul(r,zz) - ul(r,zl)"N

andllum(r,z ) - um(r,zl)"N respectively by (3.2.6) and (3.2.11), so the

2
final right hand side of this inequality may be made arbitrarily small
by choosing Yo sufficiently close to yy- Since this is true for all y

in [0,00) , llu( (r‘,z)llN is a continuous function of y on [0, ).

k)

The proof is now complete.

3.7 Remarks:

(1) It was necessary to stipulate that m(x) be defined in Corollary 3.6
only because Lemmas 3.2 and 3.5 were used in the proof. However, it is
possible to show that the continuity on (o,©@) of "ul(r,z)ﬂN and
"u(k)(r,z)ﬂN for any k in € is not dependent on the existence of m+(x)
as a finite real limit. To see this, it is only necessary to use the

iterative method of Lemma 3.2 on the formulae:
r -
u,lr,z,) = u,(rz,) + u(k)(r,z,)fo u (£,2)i(y, -y, u, (t,2,)dt
r -
- u,(r, z,)Jo Uy (B,2)i 0y, -y Y u (B, 2,0 dE
r
Uy (M 2g) = Uy (rz)) F Uy (r,z,\fo ul(t,z,)l(yl—j‘)Lﬁkgt,zzﬁdb

—ur2) [ ag (6,2) iy w2 dt

(2) If m+(x) exists and 0 ¢ Imm+(x) ¢ , then if um(r,x)

is taken to be u,(r,x) + me(xJu (74X} porn o 3 5 204 3.5 11 hold



78
for y,=0,y,>0 (or vice versa), and Lemmas 3.3 and 3.4 still hold
for y>0 .
(2) If m+(x) does not exist but there exists a sequence iYn} in RY
such that Yn—)O and m({x+  Y)=>L , where |Ll| ¢ , as N =00
then, if um(r,x) is taken to be uz(r,x)+lul(r,x),
(i) Lemmas 3.2 and 3.5 hold in the sense of Remark (2) if Yo

(respectivelr yl) elY,} and ”Iyz-y | sufficiently small" is replaced by

1
"'n sufficiently large'.

(ii) Lemmas 3.3 and 3.4 hold in the sense of Remark (2) if y € i‘fn}
and "y ?0 sufficiently small' is replaced by "n sufficiently large".

(4) It is not hard to see that Lemmas 3.2 - 3.5, Corollary 3.6 and
Remarks (1) - (3) are also valid for 212,52 in the lower half-plane
provided the necessary obvious adjustments are made. Hencellul(r,z)HN,
"u(k)(r,z)"N are continuous functions of y on IR , and, ir m(x) is

defined,llum(r,z)llN is also a continuous function of y on [R.
We are now in a position to prove our main theorems on subordinacy.
These will be used to derive a new set of minimal supports of the spectral

measure, and of its decomposed parts, in terms of subordinate solutions.

§3. On the existence of subordinate solutions.

Our first objective is to show that if x is fixed and m(z) = m(x+iy)
converges to a finite real 1imit m(x) as j~b(), then there exists a
subordinate solution of the equation Lu = xu. we need a few preliminary

results.

3.8 Lemma: Let xelR be fixed and suppose that m(z) converges to a finite

real limit as y ¥ O . Then if €70 1is given, there exists

N in RY such that

Nu,, Ceyx) <

“u‘ (r. X} “N
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Proof:
Let € be chosen to be less than %.

We may choose Y >0 to satisty

a

£ = sup lm(2) = m(x) + Y (3.3.1)
32 O0<ygY

To see this, note that since the right hand side of (3.3.1) is contin-

uous, strictly increasing with Y and convergent to O as Y40 s, it

assumes every value in (0,® ). It Y is not sufficiently small to ensure

the convergence of the estimates of Lemmas 3.2 and 3.5 for z, = x and

2

z, =2 when y<Y , choose Y, %0 such that Y,<Y and the convergence is

assured for all vy g Y, . We then determine €7 0 by the condition
— = sup Im(2)-m(x)l + Y, (3.3.2)
Oecyg Y,
Let 'E"‘y‘ denote &,Y respectively if convergence of the estimates
of Lemmas 2.2 and 2.5 is assured for all y¢ Y , and. if not, let E.;
denote €&,,Y, respectively. In either case, (3.3.1) or (3.3.2), as

appropriate, ensures that

- £
Im(Z) = mx)l < =— (3.3.3)
~2
and [Imm(2) < & (3.3.4)
32
where Z = x+ig .
since u,(r,Z) is not in L,00,0) , there exists N(J) e RT
such that
~ =1 iz
Iyl llu.(r,z)lN(g) = J2 (3.3.5)
For; and N(Sl') chosen in this way, we have by (2.3.2)
i )1 3|2
um(f',l) IN(g) lIm M(Z)lz
“u,(r,z)llN(g) Iy Uu,(r,z)lN(y)
< £ (3.3.6)
3



80

€
> <

and K‘ = 2|§|“u.(r,§)“N(-j) Hum(r‘,’i)uN(g) < (3.3.7)

LA
4
The estimates of Lemmas 3.2 and 3.5 now enable us to relate

Hu Gy x Y N(J) to the ratio of norms in (3.3.6) .

f ul(r,x)llbl(g)

From Lemma 3.2

~ ¥ ~
lllu‘(r,x)UN(g) - "u,(r‘,z)”N(g)l < ]_|¥‘ ”u'(r'Z)“N(g

)

so that, by (3.3.7),

| - 2%

“u‘(f" X)HN(:”) l.—x‘l ||ul(r‘,ZHlN(§)

‘ ~
4 —2- uu,(r‘,z)"N‘g)
From Lemma 3.5
“lum(r,x)ﬂN(g) SRRl IWEN

¥\
| - ¥,

N

"um(r)’*z')uN(~ + lM(i)—M(X)l

Il AN N
j‘ l—xl u‘(r‘,z) N(j)

so that, by (3.3.3) and (3.3.7),

4- ~ g o~
"um(r,x)"N(g) < ? [ll um(r‘,z\)uN(i) + K "u\(r‘JZHIN(g)]
Hence, by (3.3.6) and the definition of g,
o, G0 Uy g 3 lu Dl gy 3
< €
& €

Thus there exists N = N(¥) with the required property, so the

lemma is proved.

Lemma 3.8 shows that if m+(x) exists finitely and is real, then the
relative smallness of the solution um(r,z) for Im 2z >0 is reflected
in a similar relative smallness of the solution um(r,x) in the sense of

the ratio of norms on carefully chosen finite intervals. To deduce sub-
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ordinacy, however, we must first prove the existence of a continuous
dependence of N(7) on € , such that N(J) becomes arpitrarily largze as

€ > 0.

3.9 Lemma: With the hypotnesis and notation of Lemma 3.8, N(y) = o

as €= 0.
Proof:
we tirst prove by contradiction that N(3J) = oo as ;-) 0.
Suppose it is not true that given any M » 0 , there exists
§M> 0 such that N(g) M for all y < ;M . Then there exists

an M >0 such that for any 7 » O , there exists Iq <7 with N (_\/,)) <M.
Hence there exists a sequence 1 ;k} such that Sjk—) 0 as k > oo
and N(ik) s M for each k.

Using the definition (3.3.5) of N(¥), we see that for each ;k

.~ L~ 2
ﬂul(r, X + |_~/k\l\M p3 llu'(r’x+‘7k)uN(9’k) =J_;:k

which implies that, as ;k l 0,
Nu, (r, x+ ig I, —

This is impossible since, by Corollary 3.6, “ul(r,z)uw1 is a continuous
function of y on IR . This contradiction proves that N(g ) > o as
y =+ 0.

Since € and ; are related by the formula

~2
£ - sup I m(2) -mix) + § (3.3.8)
32 0 <Imz<y

it is clear that ; - 0 as €= 0 .  Hence N(g) - as

€20 and the proof is now complete.

As in (3.3.5), if y >0 , define N(y) to satisfy
\t lu (r,x+iy)l = A2 (3.3.9)
ly Yt J N(y)

The following result will be needed when we show that Tl(y) is a continuous



(0]
N

function ot y.

3.10 Lemma: With the hypothesis and notation of Lemma 3.8, N(y) is

locally bounded.

Proof:

We prove by contradiction that for each §>o there exists @~ ? o)
J
+ - -~ - -~
and MelR such that N(J)¢M™M on Ly ﬁg,y-o-,ss].
Suppose this statement is not true, ie. that N(y) is not locally

bounded. Then if m >0 and K eIRY are given, there exists yn>O such

that Iy,q—yl <M and N (y,)» K. Since wu,(r,2) 4 L,[0,00)
if Imz=# 0 , N elRYT exists such that
“u.(r,'zv)llN = 3 ﬂu.(r,'z")llN(j) (3.3.10)

In particular, for this N and given i » 0, there exists y'q > 0
such that | -yl < and N (vy.,.) > N . That is, using (3.3.5),
y'v] J M j"] g

there exists yn> 0 such that Iyn -y | < i and, if z,] denotes

x-o-iy,'l ,

«L

i X
(y.qlzﬂu,(r‘,z,))“N < ly 12 “u,(r‘,z.,')”N(yn)

K

~ (3.3.11)
151

Ni-

llul(r,z )"N‘g)

Now by Corollary 3.6, llul(r,z)l]N is a continuous function of y, and

hence there exists ¥ » 0 such that

'Hu,(r,z)“N - Uu,(r‘,Z)“NI < Uu‘(r,'f)UN(g)

whenever |y —-g < v . Using (3.3.10), this implies that

whenever |y - JI <
We may choose m = min {v,i}_ 7. Then there exists ”1 with

~e

| _9' | < 3)  for which (3.3.) is satisfied; and since this Y
I 4
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also satisfies ly,\-gl <V we have by (3.3.12)
“u,(r‘,z.,])nN > 2 llu,(r,’i‘)llN(.’.) (3.3.13)
L Lo d -l-
However ly,q - gl < ?_Z implies I 122 so since this y,q
Y.
M

satisfies (3.3.11) we have

lu,(r, z,))HN < 2 llu,(r,i)l\mg)

which contradicts (3.3.13).

Thus the lemma has been proved by contradiction.

We are now in a position to establish the continuity of N(J)

on IRY.

3.11 Lemma: With the hypothesis and notation of Lemma 3.8, N(y) is a

continuous function of 3; on IRT.

Proof':

It is sufficient to prove that for each 9: >0 if &§>0 is
given there exists 58 > 0 such that

,Ilu,(r',z,)“N(y‘) = Elggyl < 8 (3.3.14)

whenever 19' - 9‘, | < 56‘ , where T:‘(SI:), is as in (3.3.5). To see
this, we show that if N(¥) is discontinuous at some point 571 y 0,
then the condition (3.3.14) fails to hold.

If N(Y) is discontinuous at 9" > 0 , there exists K e RV

such that for any given m > O there exists g>0 with ly - 9"\ <

and 'N(g) - N(i’.)l > K . Hence there exists M € RT such that for

any given m >0 there exists § >0 with ly - ;| | < m and
lnu,(r,'i,)umgl) - \lu,(r,i’,)uN(y)\ > M

For, were this not so, we should have ul(r,Z) = 0 on a non-trivial

interval, which is impossible.



Hence to prove the iemma we verify condition (3.3.14).

By (3.3.5), if y >0,

Nu, (r, 21

Sl

N(§)
so tnat llu,(r,Z) 1 N(S) is a continuous function of § on IRT,

Hence if 4 >0 is given, there exists Eg >0 such that

Illu.(r,i)llN(g) - llu.(r,i'.)llN(., | < ‘-i- (3.3.15)

yi)

~ -

if y,y, >0 and 19'-9',|<§5
By Lemma 3.10, there exists M e |RY and By > O such that
N(y) € M whenever 15 -3, 1< By - Moreover, using (3.2.6) we

see that v exists such that

)

Tu (e, 3) = uite, 200, < £

whenever |y - g' | < 1)6 . Hence, if Iy -y,1 < min {/s.j,) vé_}

-~ l

ll\ul(r,i')llN(s) - “u,(r,i’,)"N(y

S lu, (r,2) - u, (r, ZH 1

N(3)

< lu,(r, 2Y - u, e, 200,

< ¢
2 (3.3.16)
Let Jg = min { & By, Vst Then from (3.3.15) ana

(3.3.16)
“lu'(r‘,z')uthl) — Uu,(r,z,)uwg)' < 6

whenever §, Yy, » 0O and Iy - J. | < 3’5 . This is equivalent

to the condition (3.3.14), so the lemma is proved.

3.12 Corollary: It € is sufficiently small, N(¥) is a continuous funcct:ion
of € satisfying the inequality

"“m(r”(\"N(f) < €

“u,(f',X\I N(i)
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Proof ;
As we noted in the proof of Lemma 3.8, the convergence of the estimates
of Lemmas 3.2 and 3.5 for z, = x and z, = Z is assured if § is sufficiently

2 1

small. For such ¥,

llum(r.X)“N(§) -~
< € (see proof of Lemma 3.8), Lemmas 3.9 - 3.11 are

applicable, and € and Y are related by (3.3.8).
From (3.3.8) it is clear that if there exists g > O such that some

property holds for all ¥ <@, then the property also holds for all
. %
£<2 | sup Im(2)-m(x)I+g), Hence Num te, ) N(5) < €

0<7$ﬁ "u,(r,x)“N(§\
for sufficiently small €.

It is also evident from (3.3.8) that for all y which are sufficiently
small in the sense indicated above, ¥ is a continuous function of g. It
follows from Lemma 3.11 that N(F) is a continuous function of & for
sufficiently small §, and hence, also, for sufficiently small €.

The proof of the corollary is now complete.

We are now able to deduce the subordinacy of um(r,x) from Lemma 3.8.
%.1% Theorem: Let x € IR be fixed and suppose that m(z) converges to a
finite real 1limit as y ¥ 0. Then um(r,x) is a subordinate

solution of Lu = xu.

Proof':

Since N(J) is a continuous function of € for sufficiently small €,

we relabel N(y) as N(E).

By Corollary 3.12 there exists an interval (0,a] such that N(&) is a

continuous function of &€ on (0,a] satisfying

uu.(r,X)"N‘E)
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The continuity of N (&) implies that if n such that O <M <a is given, then
there exists KelRY such that K is the least upper bound of N(&) on
[m,al.

By Lemma 3.9, N(&€)—> o0 as € > 0. Hence, since N(€) is continuous
on (0,a], N(E) takes every value in [K,) as & ranges over (0,a], by the
Intermediate Value Theorem. Moreover, if E is in (0,a], then whenever
N(E) > K , € is in (0,7) by the definition of K.

We may reformulate this last statement as follows: If 7 such that
0« T <a is given, then there exists N,.‘(any number greater than K will
do) such that & < 7 whenever N(€)>N-,1 , E€ (0,al.

Hence, from (3.3.17), if n such that O <™ <a is given then there
exists Nyin IRTsuch that

Nu,, (r,x) NCEY .

whenever N (&) » N,],?;'e(o,a].

Since N (&) takes every value in [N-,] , © ) ,» 1t follows that

Lim “um(r,x)"N = 0

N=wo iy (r,x)ll
so that, by Definition 3.1, um(r,x) is a subordinate solution of Lu = xu.

This completes the proof.

In addition to proving that a subordinate solution of Lu = xu
exists whenever m(z) converges to a finite real limit as y4 O , Theorem
3.13 identifies the set of subordinate solutions in this case as scalar
multiples of um(r,x). Given that um(r,z) is in L, (0,0) for each z
in C\NIR , it is not altogether surprising to find that um(r,x) is sub-
ordinate where it is defined.

Of course, m(z) depends on the boundary condition «, at r = O (see
Chapter II, 83); we may indicate this dependence by the notation m(z,u,).

Clearly Theorem 3.13 may also be applied in those situations where, although
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the hypothesis is not satisfied for mi(z,a,) y another boundary
condition «, exists for which m(z,x,) does converge to a finite real
limit as y'$ O . This is the idea behind the following complementary

result:

3.14 Theorem: Let xelR be fixed and suppose that m(z) e as y¥+ 0O

Then ul(r,x) is a subordinate solution of Lu = xu.

The hypothesis implies that m+(x,a,)= o for some given
boundary condition o, . Hence, by Lemma 2.18, m+(x, d,) = ~cob («,~oy)
for any distinct boundary condition xR, . For each such o, m+(x,c;)

is finite and real, so by Theorem 3.13
U lrx,o) = u (rx, ay) + melx, o) u e x, o)
is a subordinate solution of Lu = xu. Now

U (0, X,0,) = cosa, + cot(a, —ay)sino,

sin «,
sin (o, = o,)

and

un,', (0,x,d;) = Sino, — cot (&, — o) cos oy

which implies, by uniqueness,

w,(r,x,0,) = sin (o, —a&)) up (%, &)

That is, u,(r,x,a,) 1is a scalar multiple of a subordinate soiution of

Lu = xu, and so is itself subordinate.

Reverting to the notation of the ypothesis, we have shown that if

m(z)o as Yy ¥ O then ul(r,x) is suborainate; thus the theorem

is proved.

We now prove conversely that, whenever a subordinate solut:ion of
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Lu = xu exists then, as y¥ 0 , either m(z) converges to a finite real
limit or m(z) = oo . We first need some further estimates of

solutions.

3.15 Lemma: If m+(x) exists and is finite, and Imm+(x) =1, then
there exists K e ﬁ?*, which is independent of x, such that

hu ., (e < KL,

Nu, Gy )l

as N=- o , where um+(r,x) = U, (mx) + m+(x)u,(r,x).

Proof:

The method of proof follows the same pattern as that of Theorem 3.13
and requires preliminary arguments similar to those of Lemmas 3.8 - 3.11
and Corollary 3.12.

We first show that if & »0 1is given then there exist £ such that

0 <E%& and N(F) which is a continuous function of & satisfying

il u (r,xYll, , ~
m+ NIEY . 301, + & (3.3.18)

"u‘(r, x) Y N(£)
Let £ >0 be given. Subject to the condition that ;7 O be sufiiciently
small to ensure that for all y < ; tie estimates of Lemmas 3.2 and 3.5,
with z. = x and z1 = z, converge, we choose ;70 and £ & , as in
Lemma 3.8, to satisfy

~1
_& . sup Im(z) = m+(x) + § 3.3.19)
40*L, 0<Imzs<§ (

together with the requirement

~

e < 8L, (3.3.20)

For this € and ;,

¢ @
lm(2) - m+(x)| < 707 < 20 (3.3.21)
]

and JImm(Z) - Im m+x)!? <
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so that, using | lal 7 _lplt] < la-—b‘%|
~1% L £
| Im ()| * < Lz + 4_—0—&,‘1 (3.3.22)
Define NI(€) to satisfy
G e, )0 :
y lhuilrz)ly 2y = 81.',’} (3.3.23)
Then, by (2.3.2) ana 3.3.22)
~ N
‘l“m("fZ)“N(g) . .lIn\wdzﬂ
% € “
< [Lx + 4.0L,"/1J 8lx
. Sl.x . g (3.3.24)
5
and, also using (3.3.20),
X‘ = 2; ||u,(r,{)“N(E) l!um(r,i)llN(g\)
< — [ l% * -—l~7-]
4L L7 402
3 (3.3.25)

<
o)

We now use the estimates of Lemmas 3.2 and 3.5 to relate

u (qx)"N(~)
m+ € to the ratio of norms in (3.3.24).

"ul (r‘, X)" N(E)

From Lemma 3.2,

[

Wu, (r, ) gy — Vu,(r, 20 2] € -y lu, (e, 2V gy

-9
so that, by (3.3.<5),

I -2
=7

ﬂu,(r,i’)”N(E>

4 ~
> T(-) ﬂu,(r‘, ZXHN(E)

From Lemma 3.5, (3.3.21)and(3.3.25),

I um-r(r' X)"N(E) < | -

_Lf; [Humr D g+ ImE- e, (0D ]
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10 5 3 z
< 9 {lup, (r, B gy + 25 N (D ]

Hence, by (3.3.24),

L

llum*.(r,x)llN(g) < 25 o, (DN ay , S8
23

“u.(".X)nN(g) 7 llu,(r,i')"N(E)
< 7 x + 7 & + 23 &

< 30, + ¢

so that we have proved (3.3.18).

Just as in Lemmas 3.9 - 3.11 it may be proved that for sufficiently

small € , N(€) is a continuous function of € and that as &€ —» 0

N(E) — o Moreover, for sufficiently small € , the inequality

(3.3.18) holds, so that arguing as in the proof of Theorem 3.13, we find
that if a sufficiently small m is given then there exists N'v] € R™

such that N(&) takes every value in I'_N-,\, oo ) if & < 7 ,

and

| ~
(Um+(r)X)nN(e) < BOLX +‘q
llu.(r‘, X)“N(E)

for all N(&) > N-,.I Ic foliows that

Mume o0 gy L 0 (L,)
“u&r,x)ﬂN(g)

so the proof of the lemma is now complete.

as N — oo ,

3.16 Lemma: With the hypothesis and notation of Lemma 3.15, suppose

also that ke € is such that Kk =# m+(x) Then

there exists Kk < € IRt which depends on k and x such tiut
)

Uum‘_(r,x)llN < ka "
“u(k)("; x)“N ’

for sufficiently large N.

Proof:

The method of proof is similar to that of Lemma 3.15.

We first show that if €>0 is given then there exist € such that

O< E s ¢& and N(&) which is a continuous function of € satisfying
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l\um+(r,x)llN<g) < g0 L,

m

llu‘(r,x)llN(,E,) I+ (x) = Kk | (3.3.26)

Le: €70 be given. Subject to the condition that g> O be
sufficiently small to ensure that for all y<; the estimates of Lemmas
3.3 and 3.4, with 22 = X and z:L = z, converge, we may, as in Lemma 3.8,

choose 9’ >0 and €& such that

~ 4
€ Imveo -kl Sup Len(2) = m+(x)l + §

32" 28, 0<Imz<y (3.3.27)

and, also, so that & satisfies € < | and

€ oo Elme(x) ~-kl% < 3
25 lmed-kl”2 " o 16%. 25 L4 40
SE £ ik I (3.3.28)
max 2 ) 2 R Y " & —
48.25 Ik - m+(x)] " 150.32% L, 3.32225% |, 4
For this € and ¥y
o~ ~4- - ~1 - . L]
Im(3) - m+(x)] < & lnm-(x)2 ki (& lm+(x) -kl (3.3.29)
32%, 257 L, 32%. 25% 1«
and, as in Lemma 3.15,
“a " T maex) —klvz
IIm m(2)] = < L+ : (3.3.30)
32.25 |2
Define N(E€) to satisfy
~'" ~ | m+(x) -kl
Y ”“wﬂﬁz)hu€)= (3.3.31)

32 L%

Then by (2.3.2), (3.3.30) and (3.3.728

Nu_ (r ) | Lon m(3) ) 7
u,(r,z N(E)

g‘/z i u(k)(r')i')u N (&)

32 L2 (L'/z . a“\m+m-k\"‘>

I u(k)(r,i) “N(E)

X )
() -k 32.25 L
32 L« €
-’- -
e +(x) - k| 10

(3.3.32)
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and, by (3.3.28),

xk = 43 "u(k)(r‘,i) “N(E\) i U (r,2) “N(g)
Im+(x) - ki
< ‘ ( L'h' + gﬂ"w—(x) - kl'/i)
8 L= ’ 32.25 |
X
< L (3.3.33)
5

The estimates of Lemmas 3.3 and 3.4 now enable us to relate

w0 iy

to the ratio of norms in (3.3.32).
b w (m(r,xH\N(é..)

From Lemma 3.3 and (3.3.33)
" U(k)(r,X)uN(E) > TTB_ “ u(k)(r,Z)"N(g)
- %k

7 % lugey Cry 200 2

so, using Lemma 3.4 (see Remarks 3.7(2)), we have

e (r ) o2y < _g[(n 3 o Im(@) = met0Ol] Hup (DN g
3

i W (k) (r, x) 1l NI(E) (1 - ¥y ) ik = m +(x)] “u(k)(r,i)llN(z)

s 2 I m(Z) - m+x)l
3 —Xk) bk - m+(x)]

Hence, by (3.3.28), (3.3.29), (3.3.32) and (3.3.33)

~ ~2
lup, (r,x) g ee) < 53 2 € )( 32 Ly . i) N :
i ug (O e Z \2 32* 2521, \lk-m+t)l 10 150.327 L,
~3
80 | € s&? gt g
= = - * *+ 2, T 2,02
lrn+(x) - ki 4 43.25% k= m+(x)l 150.327 [« 3.32.28°,

80Lx + Y
f o+ (x) -kl

<

so we have proved (3.3.26). It now follows, just as in Lemma 3.15,

that, in the sense jndicated in the statement of the lemma.

ﬂun-n-(f.")“N = O(Lx‘)
TYNGEUN

as N — oo , and the proof of the lemma is compleze.



We rem=rk that, by and large, no particular significance is attached
to the precise numbers involved in the proofs of Lemmas 3.8, 3.15 and
3.16. However, in view of the complexity of the relationships involved,
it is necessary to exercise considerable care in these proofs, and working
with particular numbers gives a precision which cannot be achieved by such
notions as '"'sufficiently small" alone.

Just as in the case of our earlier estimates, Lemmas 3.15 and 3.16
remain valid in a modified sense if there exists a sequence {Y,} in RY
such tnat Y,— 0 and m(x+iY ) converges to a finite limit as n —» .

As this is easily verified by making suitable minor adjustments to the

arguments ot Lemmas 3.15 and 3.16, we omit detailed proofs:

3.17 Remarks If m+(x) does not exist, but there is a sequence iYn}
in IRY such that Yo 0 and m(x+iYn) converges to a finite
limit L as n o0 , then there exist sequences iM,p} and iNq} in

RY such that MP'N - 00 as p,q— ® and, if kK$ Ll ,

q
“u(l)(r)X)"MP _ O(Im L)) “u(t\(r,X)"Nq - O(Iml) (3.3.34)
"ui(r'!)"MP "u(k‘(",x)"Nq
as p,q — o , where uL(r,x) = u2(r,x) +Lul(r,x). To see this,let
igP} , § Yq} e 1Y% and corresponding sequences 1 EP}, { 31}

be related according to equations (3.3.19) and (3.3.27) respectively
in such a way as to ensure the convergence of the iterations of Lemmas
3.2, 3.5 and Lemmas 3.3, 3.4 respectively in the sense of Remarks 3.7(3).

Then the sequences of numbers fMP} and {Nq} satisfying

;i
~ 3 ~ |
Ie llul(r‘,z,,)"MP N S(Iml.).,z

_ -kl
q 32(Iml)',z

4 ~
and A Hu(k)(r, 21)"N

(cf. (3.3.23) and (3.3.31) respectively) also satisfy



"u“)(r,xﬂl

Mp ¢ 30Iml + &

"u,(r,x)ﬂMP P
and
"u(l)(r’x”Nq 80 Iml ~
& —0 - & ec‘
uu(k)(r,x)lqu -kl

respectively, which imply (3.3.34)

We are now aple to prove the following converse to Theorems 3.13

and 3.14:

3.18 Theorem: If a subordinate solution of Lu = xu exists then, as

y ¥ 0 | either m(z) converges to a finite real limit

or mi(z)—> o,

Proof:

We may regard the subordinate solutions as the set of scalar multiples

of u(r,x) = aul(r,x)+bu2(r,x) for some aelR and be € . Since llu(r,x)l\N
llu(r,x)\lN for all N in IRY, u(r,x) is also a subordinate solution of
Lu = xu, and must therefore be a scalar multiple of u(r,x). It follows
that ifa$ 0, then b is real, so that a subordinate solution is always a
scalar multiple of a real solution.

To prove the theorem, it is sufficient to show that
(i) if a subordinate solution of Lu = xu exists at the real point x, and
m(z) converges to a finite limit m+(x) as y¥ 0 , then m+(x) must be real

(ii) if m(z) does not converge to a limit as y»bO then no subordinate

solution can exist.

Proof of (i):

Suppose there is a subordinate solution of Lu = xu at the real point

x, and that m+(x) exists finitely; and let L, = Im m+(x),
U (XY= u, (r,x) + m+(x)u(rx).

Then by Lemmas 3.15 and 3.16 respectively
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Wu ., (rox) I,

= 0(L,)
ffu, (e, <1 X

(3.3.35)
and

Na ey 0N

= 0(L,)
LYONGIE DRIV

(3.3.36)
as N> , where ke € is such that K = m+(x) . Now suppose
that um+(r,x) is not subordinate;

then there exists a solution u(r,x)
which is not a scalar multiple of u (r,x) such that
+

llu(r,x)llN

I‘um+(r)x\ “N

» O

as N=o by Definition 3.1.

That is there exists a solution u(r,x), such
that if K20 is given, Ny € RY exists with

ﬂum_‘_(r)x)llN
ﬂu(r,x)“N

> K forallN?NK

(3.3.37)

However, u(r,x) is a scalar multiple of some element of the solution set

{u, (r,xY3 U {u(k‘(r,x) : ke, k£ mi(x)} since there are no other

solutions of Lu = xu which are linearly independent of um+(r',x).

Hence
(3.3.37) is not compatible with (3.3.35) and (3.3.36), so the supposition

that um+(r,x) is not subordinate is false.

Theretore um+(r‘,x) is subordinate, and a scalar multiple of a real
solution. This implies that m+(x) is real, as was to be proved.

Proof of (i1i):

If m(z) does not converge as y 4 O , let us first suppose that

there exist sequences {y, 3} and {Y,} in RY and \, L in € wita L #+ L,

L], Ll ¢ oo such that yun, Yq > 0 , mix+iy,) =L
and mix+1Y)=> L

as m,n — .

Let u (r,x) =

" = u2(r,x)+lul(r,x)

: +
By Remark 3.17, there exist sequences iMP} and {Nq} in IR

such that MP,Nq—)oo as p,q > ©

, and
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“ LL“.) (f') ’() ” M

P = O0(Iml)
lu ey %)ty (3.8.38)
as p - o and
Hu, \(rx)l

I “(k)("»")"uq
as q oo for all k in € such that K# Ll . If there were a subordinate
solution u(r,x) of Lu = xu which was not a scalar multiple of u (r,x)
(S

then, as above, given any K 2 O |, there would exist P and Q@ in IN such

that

Nu, (r, x)H
I3, MP > K for all p » P

"u(qx\HMP

and

" U(t) (l', x) I N

1T 5 K for all q > Q
ﬂu(r,x)lqu

As before, this is not possible in view of (3.3.38) and (3.3.39), so if
there were a subordinate solution of Lu = xu, um(r‘,x) would be subordinate.

Similarly L{L)(I‘,X) = u2(r,x)+Lul(r,x) would be subordinate; however,
this cannot be the case since uu)(r,x) and l{L)(I‘,X) are linearly independent.
Hence in the case we have considered with Ll JLI<e0 , L¥ L no

subordinate solution of Lu = xu can exist.

Now suppose that L = co, IL| < 00 .

Using the method of Theorem 3.14 together with Remark 3.17 we see

that there exists a boundary condition «, and sequences {mM.} and {Nq}

in IR*such that MP,Nq —> 00 as p,q —> ©.

"u(u(r, x,ocz)"MP

— 0
“u,(r,x,al)llMP
as p— ® and
Hu,,(rx, o)
(0 2 Nq — 0

Uu(k)(r', X, al)”Nq
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a8 Q> for all K % - cot(x,-«,) where %, is the original

boundary condition, and
u(l)(r,x,u,_) = Uplr,x, o) = cob (e, =) u(r x,a,)

Hence, if a subordinate solution were to exist, ut(,g x ~“z) would
be subordinate by the arguments above; and, as in the proof of Theorem
3.14, this implies that u,(r,x) = u (r,x,a,) would be subordinate.

However, this is not possible, since %L§F’X) would also be sub-
ordinate, and ul(r,x) and %L§r,x) are linearly independent. Hence in
this case also, no subordinate solution of Lu = xu can exist.

It follows from the two cases we have considered that if m(z) does
not converge to a limit as y-& O , then no subordinate solution of
Lu = xu exists at the real point x.

The proofs of (i) and (ii) are now complete, and so the theorem is

proved.

Theorems 3.13, 3.14 and 3.18 together form a complete set of necessary
and sufficient conditions for the existence of a subordinate solution of
Lu = xu at the real point x in terms of the behaviour of the function
m(z) as z approaches x along the normal to the real axis at x. For con-

venience we also express these three existence tneorems as a single

result:

3.19 Theorem: A subordinate solution of Lu = xu exists at the real point

x if and only if as yA.o either m(z) converges to a finite
real limit, in which case um(r,x) is subordinate, or m(2) = o© y 1n

which case ul(r,x) is subordinate.

A discussion of some consequences of this theorem is contained in

(p5].
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We recall that ul(r,x) satisfies the boundary condition at r = O.
As we saw in the proof of Theorem 3.14, if m+(x,a,) = for
some ooundary condition «, , then for any distinct boundary condition
%, , mMm*(x,x,) = -cokt (&, -x,) which is finite and real. This

means that the existence theorem may also be expressed in the following

alternative form:

3.20 Theorem: A subordinate solution of Lu = xu exists at the real point
x if and only if there exists a boundary condition & such
that m(z,x) converges to a finite real limit as y<¥ 0 , in which case
U (r, %, ) = u(rx,a) + m+(x,x)u(rx,«)

is subordinate.

It is now straightforward to derive our ultimate set of minimal
supports of the decomposed parts of the spectral measure p:

1 u " "
3.21 Theorem: Minimal supports m“ M., ms.l , Mg ., md. of

M, Mac s Ms ,)Lac and).td are as follows:

(i) m "o R N { x ¢ R : a subordinate solution of Lu = xu

exists but does not satisfy the boundary condition at O }

(ii) ‘m::’c = { x e IR : no subordinate solution of Lu = xu exists §}
(iii) ‘m’s” = {xelR : a subordinate solution of Lu = xu exists which

satisfies the boundary condition at o}

xu exists which

(iv) m:lc = {xelR : a subordinate solution of Lu

satisfies the boundary condition at O but is not in L.ZLO, o) }

(v) m;" = ixe€elIR : a subordinate solution of Lu = xu exists which

—

catisfies the boundary condition at O and is in L. (o, o)}

Proof:

We need only prove (ii) and (iii) since (v) is well-known, (iii) and

(v) imply (iv), and (iii) and (ii) imply (i).
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Proof of (ii):

This is immediate by Theorems 2.22 and 3.20.

Proof of (iii):

To prove that nngf is a minimal support Of./A& we prove that
Tﬂ”;. ~ m; wnere ~ is the equivalence relation of Lemma 2.20, ana
Tn;'is as in Theorem 2.17.

Since scalar multipiies of ul(r,x) are the only solutions of
Lu = xu which satisfy the boundary condition (2.3.9) at r = 0, we see by
Theorem 3.19 that a subordinate solution of Lu = xu exists which satisfies
the boundary condition at 0 if and only if m(z) = o as y¥vO0.

Let S denote ixelR: m(z)=- o, Imm(z) 4 0 as y v 0}.

Clearly m:' = ms, U S » so to prove m;” r~ ‘ms' it is
sufficient to show that m(S) = K(S)= 0.

Now K(S)=s 0 by Theorem 2.12(i), and m is absolutely con-
tinuous with respect to K on S by Lemma 2.1 and Proposition 2.14. Hence

Mm(S)=0 , So that 'ms”' ~ 'm; and (iii) is proved.

The proof of the theorem is now complete.
We survey the implications of these results in the following section.

§4. Ramifications

In the context of ordinary differential equations of the Sturm-

Liouville type, subordinate solutions may be regarded as a generalisation

of square integrable solutions. Indeed, where L is regular at O and in
the limit point case at infinity, subordinate solutions bear precisely

the same relation to the minimal supports of the singular spectral measure

as do the square integrable solutions to the pure point measure, as has

been shown in Theorem 3.21.
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The invariance of minimal supports of the absolutely continuous
measure and the contrasting orthogonality of minimal supports of the singular
measure under a change of boundary condition at r = 0 which was proved in
Theorem 2.21 was not an immediately obvious corollary to Theorem 2.17.
However, the necessity of this behaviour is apparent at once from Theorem
3f21; for clearly the presence or absence of a subordinate solution of
Lu = xu at a given point x is independent of the boundary condition at r =0,
whereas it is impossible for more than one distinct boundary condition of the
type (2.3.9) to be satisfied by a subordinate solution at x.

Since it is customary when considering possible energy levels of a
system to use the spectrum rather than minimal supports of the spectral
measure, we comment briefly on the relationship between the minimal supports
of Theorem 3.21 and the relevant spectra. As we noted in Chapter II 92,
the correlation between minimal supports and the relevant parts of the
spectrum is not exact; it may even happen, as in the case of dense pure
point spectrum, that every minimal support of the spectral measure differs
from the spectrum by a set having positive Lebesgue measure. All our earlier
observations i.1 respect of Theorem 2.17 may be applied, with modifications,
to Theorem 3.21; thus it follows from Example 2.10, using Proposition 2.14
and Theorem 3.14, that an operator H exists which has no singular spectrum
on a subinterval (a,b) of IR, although an uncountable subset X of (a,b) exists
such that for every x in X, Lu = xu has a subordinate solution satisfying

the boundary condition at O. Likewise, using Proosition 2.14 and Theorem

3.19, we deduce from Example 2.11 that a real point x may exist at which there

is no absolutely continuous spectrum of the Hamiltonian in a neighbourhood

of x.

The most striking finding of Theorem 3.21 is undoubtedly that relating

to the support of the singular continuous measure . We have already

commented on the importance of including singular continuous spectrum 1in

any complete treatment of spectral theory of Schrddinger operators, and
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note that it is especially in those cases where singular continuous or dJdense
point spectrum occurs in conjunction with other types of spectrum tnat the
discrimination afforded by Theorem 3.21 may be most useful. It is worzna
noting that Theorem 3.21 also gives a new criterion for locating the absolutely
continuous spectrum, viz. that f%.c. is concentrated on those real x for
which no subordinate solution of Lu = xu exists. Where the spectrum is known
to consist solely of absolutely continuous and isolated pure point parts the
absolutely continuous spectrum may be identified with the closure of the set
of all real x for which no L,;(0,00) solution of Lu = xu exists. In such
cases Theorem 3.21(ii) is unlikely to be of further assistance. However,
where there is a possibility of other types of spectrum, the characterisation
of Theorem 3.21(ii) enables the absolutely continuous spectrum to be distin-
guished from the other constituents of the essential spectrum, at least in
theory.

Theorem 3.21 applies to all self-adjoint operators of the Sturm-Liouville
type which are regular at O and limit point at infinity; however the decom-
position of the spectrum considered here is of particular relevance to
Schr8dinger operators.

To conclude, we have introduced the concept of subordinate solutions,
and shown that supports of each part of the spectral measure may be character-
ised in terms of this concept where the differential operator

L = —d2 +V(r) is regular at O and limit point at infinity. We shall see in

dr2

the next chapter that the description of the spectrum in terms of subordinate

. 3
solutions is possible under more general conditions, and that subordinate

solutions are of fundamental importance in certain eigenfunction expansions

when the spectrum of H is simple and L is limit point at O.
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CHAPTER IV

SIMPLIFICATION OF THE WEYL-KODAIRA THEOREM

81. The Weyl-Kodaira Theorem

In this chapter we no longer suppose that L = —d2 +V(r) is regular at
2

dr

r = 0 and in the limit point case at infinity, but instead suppose that
V(r) is in Ll[a,oo) for each a » O and that the behaviour of V(r) in a
neighbourhood of 0 is such that for some a » 0, the spectrum of the
Schrddinger operator Ha arising from L acting on (O,a] is singular. Of
course, these new conditions on V(r) imply that L is in the limit point
case at ininity ([N] §22, Satz 3), and if L is regular at O the spectrum of
Ha consists of isolated eigenvalues ([N] §24, Satz 5), so there is a wide
class of potentials satisfying both our former and our present assumptions.
However we can no longer assume that L is regular at 0; indeed, L may be
in the limit point case at 0, or, even if L is limit circle at 0, O may be
a singular endpoint ([HP] Lemma 10.4.15). In fact, unless the spectrum of
Ha consists entirely of isolated eigenvalues and their accumulation points,
L must be in the limit point case at O ([H] §19, Bemerkung 2).

In general, therefore, the theory we have described and used in Chapters
II and III no longer applies; however, if the interval (0O,o ) is decomposed
into two parts (O,a] and [a,co), the earlier theory may be applied to each
of the intervals (O,a] and [a,oo) (the precise location of the point a in

(0,00) is immaterial), and from this a general theory has been constructed

which applies to the entire interval (0,2 ). The principal architect of

this generalisation was K.Kodaira who in 1949, at the invitation of H.Weyl,
undertook the task of unifying and generalising previous related work by
Weyl, Stone and Titchmarsh ([KOLDKE]). We shall now state the Weyl-Kodaira
Theorem in the particular form that we requircz, while noting that in its

most general form it applies to arbitrary subintervals of R and to suitable

differential operators of any order ([DS] Ch.XIII, Thm.13).
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We choose a = 1 for simplicity, and first describe some notation. Le<
yl(r,z) and yz(r,z) be solutions of Lu = zu satisfying yl(l,z) = yé (1,z) =1
and y/(l,z) = y2(1,z) = 0. If L is in the limit point case at both 0 and
infinity let mo(z) and md)(z) be defined by the requirements that, if
Imz+ 0, yl(r‘,z) + mo(z) y2(r',z) be in L2(O,l] and yl(r,z) + mw(z)

y2(r,z) be in L_{[1 o) respectively. If L is in the limit circle case at O,

ol

and O is a regular endpoint, then mo(z) is defined by the condition that the

solution y(r,z) = yl(r,z) + mo(z) y2(r,z) satisfies the boundary condition

cosa y(0,z) + sina y'(0,2)= 0O (4.1.1)
for some « in [0,27W). If L is limit circle at O, but O is a singular
endpoint, then if z in €\NIR is fixed, mo(z) is defined by the con-

dition that the solution y(r,z) above satisfy

Lim W (y(r2),y,(rnz) + Mz y,(rz,)) = 0 (4.1.2)

4 O
where mg(z,) is some point on the limit circle ([CL], Ch.9, Thm.4.1).
Let {Mij(z): ij=12 ¥ be defined for Im z % 0 by the
relations
-1
M, (2) = [m(2) - Mo (z))

-
Mip(2) = M, (2) =% (m(2)+ m (2N (M (2) = m(2))

M, (2) = M (2) me(2) (my(z) = me(z)” (4.1.3)

4.1 Weyl-Kodaira Theorem:

Let V(r) be integrable on every compact subinterval of (0,00),

2
and let L = - 4" -VvI(r) be limit point at both O and o0 . Let H be
dr?

the self-adjoint operator arising from L. Then there exists a positive

2 x 2 Hermitian matrix with elements Fﬁj which satisfy

-6
(v) = Lim  lim -LJ. ImM; (x+iy)dx (4.1.1)
P TPy = 5u0 yuo s T
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for i,j = 1,2, such that if f(r) is in L, (0, =) , the limit

Liom, (@
(TE), (0 = Shme 7 Fle)y (e, %) dr
T

w = O

RS Pij
converges in Lz'J (-c0,00) where L, Y(=00,0) is the Hilbert

space of vectors GI(X) = (g‘(A‘),gz()\)‘) with inner product

0

<G, H(N» = Z
j=b2 "=

9; (M) hj(x) dp; (%) (4.1.5)
Moreover, the mapping T defines an isometric Hilbert space isomorphism

Pij
from L,(0, ) onto L, Y (-0, 0) , so that if f(r) is in L,(0, ™),

~ Li.m. w
F(r) = © = oo [‘d i,jz=l,z u\(r,%)(T'F)J-()\) dPiJ‘O‘)

and if O is a Borel measurable function on R such that OB(H)f (r) i3

in L,(0, o) then
(T G(H)‘F)~l(>\) = BOVITE, (N

for i = 1,2.

For ease of reference, we present the results of this theorem in a
slightly modified form. Let @ (X) denose (TF),(x) fori=1,2.

Then if f(r) is in L,(0, o),

. w
£(r) = Lm. 2 (N B (N) do: (N) (4.1.6)
- w-—yooj—w i,j31,2 I ¢J £i
and
o0 o
P20 dr = 2 B0N 800 doy
o ij=1,2 - J J
where

w

Li.m. '( _ d 117
¢_‘()\) = o0 Iy Yi (r,N) F(r) dr (1.1.7)
w —» o
for i = 1,2. The convergence of the integral (4.1.6) is in L, (0,00),
L Py ) .
whereas the convergence in (4.1.7) is 1in Lz J(-o00 ) o ) ; that 1is

00 W w
Lim Z_ I (D (0 -f y.(r‘)\){:("') drX ¢J(>J —fo_ yJ(ﬂ)J €(r) dr‘)d‘ol..()\)
o — 0 l';_]=')2 — o 1 o ' J
w —» ©

=0 (1.'.8)
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If B is a Borel measurable function on IR such that (B(H)Y£)(r) is

in L ,(0,0) then

]

w
(B(HYF)r) = Livm. 2 BNy, . ,
i w - © ‘[w ihj=h2 O\)y’(r'X)¢J(>\§ d'o").(x) (+.1.9)

where the integral converges in Lzﬁo,oo). In particular, if

-0 < V<ML,
(lE, -ENF)NA) = f'u 2 (e, N) @ (N) do (N) (4.1.10)
oY v oij=12 Tt J i o

For further details, see [KO],[DS] Ch.XIII, §5. We remark that the Weyl-
Kodaira Theorem is also valid where L is in the limit circle case at O or
® or both; 1in these cases the spectral matrix is also unique up to an
additive constant once suitable boundary conditions are applied at one or
both endpoints, as appropriate.

It seems not unlikely that, where L is regular at 0, the relationships
of Theorem 4.1 are but an alternative expression of (2.4.1) to (2.4.7).
Before considering more general cases, we tested this conjecture for the
case V(r) = O; this trivig] potential satisfies the requirements that V(r)
be in L.‘[I,oo) and that the spectrum of the operator arising from

L =-d on (O,l] be singular (it is, of course, discrete). Moreover,

m(z) and o(X\) as defined in Chapter II, and mo(z), ma;z)’{fﬁj(k):id =1,25
may, without undue difficulty, be calculated exactly. It was found that

the Weyl-Kodaira theory described above did indeed reduce to the simpler

theory of Chapter II, 84, for all boundary conditions « at r = 0 (see

(2‘3.9)).
In this chapter we shall show that there are many other situations

where the Weyl-Kodaira expansion reduces to a simpler form; and thart,

where L is regular at 0, this girplificatim reduces to the expansion (2.4.4),

at least for those f(r) in the absolutely continuous subspace of H. Thus

the process of simplifying Theorem 4.1 may also be regarded as one of ex-

tending the theory we described in Chapter II.
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Let us first establish some properties of the spectral matrix (P-.)
IJ *

§2. Properties of the spectral matrix

The elements {pij (N):i,j=1,2}% of the spectral matrix are
functions of bounded variation on every finite A -interval, continuous
on the right, and unique up to an additive constant ([CL] Ch.9, Thm.5.1).
For convenience we shall suppose that '°l'j (0Y =0 for each i,j = 1,2.
Moreover, the matrix itself is positive semi-definite ([KO] Thm.1.13),
and the elements pu(x) , Pzz.“‘) are non-decreasing functions of A

as may be ascertained by inspection of (4.1.4) in conjunction with the

formulae
m - m
Im M, (2)= Sk or (4.2.1)
(m_ . —m_ Y + ( )2
OR DR Mer ~ Mwo1
ImMo(2)=TIm M, (z2) = Mor Meox ~ Moz TR - (4.2.2)

moa‘moon.)z + (mgg "maar)

2 2 2 2
maor.(mor + Mmooy - moz(maor + moop.)

(4.2.3)

Im Mzz(?—) =

a 2
(MOR - moop.) + (mo:r - maz)

which are derived from (4.1.3). Note that, for conciseness, we have

denoted Imm,(2),Imm_(2),Re myz),Remy(z) by

Max » Moz » Mon and mp respectively, and that, for
Imz>0 , m_.<0 ,m,.20 ([cL], ch.9, §5).

The spectrum of an operator H whose spectral matrix is (p".)') is
the set of points of increase of ((o;j) . that is, it is the comple-

ment of the set of points x for which Pij (X)) is constant in some neigh-

bourhood of x for each i,j = 1,2 ([DS], Ch.XIII §5, Cor.15).

The spectral matrix (Pij) generates a positive matrix measure

(see [DS] Ch.XIII, §5, Def.6), whose elerents {/u;J' P o= b, 2}
x .o
ar outained by extending the measures {}A‘-J- P,y = 1,23 , wnich

are defined on the algebra of half open subintervals (a,b] o IR by
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X

(see (2.2.2)). It should be noted that Mo and M,, are signed measures
(see [H] Ch.6, 828); that this is so follows from the fact that /°n.()‘)
and /ou (N are functions of bounded variation, and hence each is the
sum of an increasing and a decreasing function which are unique up to
additive constants.

The inverse of (4.1.4) is

—o (A-x) 4+ y?
for each i,j = 1,2 ([KOJ],Thm. 1.13).
Now mo(z) and mao(z) are analytic in € \IR and so each of
iij (z2): i,j =1,21% is meromorphic in @ \ IR by (4.1.3). More-

over, by (4.2.1) and (4.2.3), M, . (z) and M__(z) have positive imaginary

11 22
part in the upper half-plane, and hence behave restrictedly at all points
of IR . Therefore by (C'), Chapter II §3, Mll(z) and 1‘422(2) have a finite

non-tangential limit Lebesgue almost everywhere on IR , and, in particular,
a finite normal limit Lebesgue almost everywhere on IR

p"(k) and Paz () are therefore related to Mll(z) and M22(z)
respectively and to Mu and Moo respectively in precisely the same way that

the spectral function F(A)was related to the function m(z) and to the

spectral measure respectively in Chapter II. Hence all the theory

developed in Chapter II from the basic relationships and properties of P()\),

m(z) and m applies equally to Pj; (XN) ,ij(z) and Mij for j = 1,2.
We now derive a few simple properties which reflect the positive semi-

definite character of the spectral matrix.

4.2 Lemma: For all z in € \NIR,

(Im M) = (Im My, @) & Im M, (2) ImM,,(2)

and, it m,v e R,
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M M
1t Mu@ldx < 2 1In My ()] dx

%)

L
< (J‘P Im M, (2)dx IF Im M_,(2)dx)*
v v

Proof:

Using (4.2.1), (4.2.2) and (4.2.3), we obtain
2
(Im M, (z2))° - ImM (2)Im M ,(2) = Moz Mooz
Since m,. and m__ have opposite signs in € \ IR ([cL] ch.9, §5)
and M12(z) = le(z), the first part of the lemma is proved. The second

part of the lemma follows from the first by the Cauchy-Schwarz inequality;

the proof is now complete.

4.3 Lemma: Every measurable subset of IR which has M, — Or M, .- measure

zero has }4‘2— and/ul‘—- measure zero.

Proof:

Since Mg = My, w2z need only prove the result for Mg -

Let S be a measurable subset of IR .

Now M, and Maq are positive measures in the usual sense whereas
M is a signed measure or charge. Thus

+ -

/"‘nz(s) - J"n(S) = M (8)
where }47; and )4;; are the upper and lower variations of M2
respectively ([H] 828). Moreover, each of {/o;j(x) pi,y=1,2 } isa
function of bounded variation on each finite A-interval, so the

+ - : .
- - - - ded subsets of IR are finite. It
My Mas s MLy My~ Tmeasures of bounde

follows that /J\‘))‘zz‘,)J:; and .fﬂ; are regular measure,([R],

Thm.2.18). Hence

Pnf () = inf {pli(u) : U is openand SS US R} (1.2.9)

and for j = 1,2,

= i .. ¢ Ui n and' scuU<sR} (a4.2.6)
/ujj(S) = inf {.pJJ(U) is ope

Let us now suppose that S is also a bounded subset of IR . Then there

. : + »
exists a bounded open cover U of S and an M 1in IR" such that }‘:.(U)»)"‘zz(u)sM-
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Let €50 be given. Then, from (4.2.5) and (4.2.6), there exists

[ G

a bounded open cover US of S which is contained in U, and for which

+
0 ¢ M2 (Us) < /u‘:'. (S) + %— (4.2.7)

and, for j = 1,2,
) e
. .. (S —_
M tUg) s AR a (4.2.8)
Evidently, also,
Mii (Ug) < My tu)l € M (4.2.9)

for j = 1,2.

Since U_ is open, we may write U, = t) u, - where each U . is an
s S . S, s,i

open subinterval of IR such that usi nNu. .= ¢ if i#:j ) There
) S,]

is no loss of generality if we suppose the endpoints of each US i to be
points of continuity of FDU (X)) for each i,j = 1,2, since the points

of discontinuity are, at most, countably infinite. We have from (4.1.4)

and Lemma 4.2

b, (U = liz/u”_(us,;)l < ?.,_l,.n(us,;)l
Lim 3
- §_ | Lim ?rjusﬂ Im M, (2)dx|
L i d
< = % ,f’o Us,ilIm M, (2)ldx

tim o vd )"i(“"‘ L Im M._(2)dx)*
< IZ(erO n"[us'ilm M, (zddx /"ty 0 n'.[us'\m 22

]

= z ()*u (us,i) )"2.7.( us.i))i
i

L
2

-

¢ (2 p, (ug N T p (ug)))

i L
2 (o, (U F Cuga(ug)?

(1.2.1))
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2

€
If g, (3) =0 , then pu (Ug) ¢ o2 by (4.2.8); it there-
fore follows from (4.2.10),since }“zz(us) <M by (4.2.9), that
|)4|2( Ug) | < % . Consequently by (4.2.7),

\)Jn_(SH 3 ]Jun(S) -/"n.(u.s)l +* lﬂn(us)l
s Tz (5) = w7 (U + 1w (9) =l (U %
< €
The arbitrariness of g implies that }4'1(5) = 0.
Similarly we may show that if u,,(S) =0 then /u,z(S) = 0.
The extension to the case where S is an unbounded subset of IR is
immediate, since S may be decomposed into a countable union of disjoint
bounded sets.

The proof of the lemma is now complete.

The application of Lemmas 4.2 and 4.3 is quite general; we shall now
prove some results which are dependent on the potential V(r) satisfying

specific conditions at O and oo .

§3. The nature of the spectrum

We now suppose that V(r) is in Ll [ ,co) and is integrable on
compact subsets of (O, o) , and that the spectrum of H, is singular.
Note that these conditions on V(r) are equivalent to the condition that
V(r) be in L| La,®) for each a » 0. Also, the spectrum of Hl is
singular if and only if the same is true for each Ha’ where Ha is a self
adjoint operator arising from L in L2(O,a] with boundary conditions y(a,A) =
o, y'(a,)s) = 1. To see this in the case where L is limit point at O,

note that, adapting Theorem 3.21 to the interval (O,a] ’ Ha has singular spec-

trum if and only if K({A: no solution of Lu =Au on (0,a] exists which is

subordinate at 0}) = O.

The truth of our assertion is now immediate since the existence or otherwise

of a solution of Lu =Au on (O,a] which is subordinate at O is independent
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of the precise location of the point a. If L is limit circle at O, every
self-adjoint extension on (O,a] has discrete spectrum, irrespective of the
position of a ([CL] Ch.9, Thm.4.1).

Let us denote the self-adjoint operators arising from L in (C),oo)
and [I, o) by H and H_, respectively. Note that L is regular at the
decomposition point 1, and all functions f(r) in the domains of Hl and Hoo
satisfy the condition f(1) = 0. If L is limit cirile at (, a boundary
condition is also needed at r = O to render Hl and H self-adjoint (as (4.1.1)
or (4.1.2)), whereas if L is limit point at O, this is not required.

To investigate the spectrum of H, we first need some information
aboutlm”(z). The given conditions ensure that the spectrum H_ is absolutely
continuous on (O, o) , and consists of isolated eigénvalues on (-0, 0)
([HI] Thm. 10.3.7). The point O can only be an eigenvalue of H if there
is an L.zt\,co) solution of Lu = O. There are many potentials Vir)

in L, Li1,0) for which there is no such solution (see eg{WE1],Thm.10.30,

[LS] Ch.IV, proof of Lemma 3.2). However, some quite simple potentials in

L.,[I,oo) do have a solution of Lu = O in Lz (1 ,oo) ;  for example,
if V(r) = 2 , 1 is a solution of —d2u + V(r)u = 0. We shall therefore

2 r 2

r dr

take account of this possibility in what follows.
Now mm(z) may be analytically continued across the axis at all points
of the resolvent set ([CE], 85, Thm.(i)). Hence, defining m_(x) to be
N\;;()c) whenever the latter exists finitely and is real, qm(z) is
bounded on L[wv ,/u] x LO,Y] for each compact interval [v,/u]
of IR which is contained in the resolvent set and each Y » O; this

property will be used in a number of the following proofs.

On (0,e) , an explicit expression for m;(x) may be obtained;
for full details of the method, consult (T2], Chapter V, §4.2. We shall
summarise the relevant results.

Applying the "variation of constants' formula ([CL:, Ch.3, Thm.6.41)

to the Schr8dinger equation for r 2 1,
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yi{rnz) = T, (2) sin(NZ(r-1M+ o ( 2eosWz(r-1) + ol1) (2.3.1)

for each i = 1,2, where

| o
T, (z2) = EJ cos (JZ(s-1)) V(s) y,(s,2)ds

I ) (*
T, (2) == + \I——th ws(«fi(s—’))V(s)yz(s,z)ds
©
o (z) =1 - JL'z‘.J. sinWzZ (s-1)V(s)y, (s,2) ds
1 ™o .
o (z2) = "= sin(Jz(s-1) V(s)y,(s,2)ds (4.3.2)

After further refinements to the estimates (4.3.1) for yl(r,z) and

y2(r',z) in the case x,y > 0, the formula mm(z)=‘lim I (R, 2)
R—w y, (R 2)

(cf.([cL] ch.9, §2, (2.13)) yields

T, (x) = i o (x)

T, (x) - i oy (%)

m * (%) =
® (4.3.3)

for each x in (0,m). For these x, Imm;(x)z Talx) () = T () o3 (%) i
T (x) + o;"(x)

Since W(yl(r,Z),y2(r‘,Z)) =1 for all r » 1, it follows from (4.3.1) that
Nz (o (2) ©,(2) - oy (2) T, (2)) = |

for each z in € . This implies that o3(x) and 7,(x) cannot vanish

simultaneously, and that

Imm(x) = l (4.3.4)
x (T2 (%) + o3 (x))
for each x in (0,e0) . Since 0;(x) and <, (x) are continuous, it follows
that Im m;(x) is bounded above and away from zero on each compact
subinterval of (0, o) ; we shall use this property in several of the

following proofs.

It should be noted that the differences in sign between (4.3.3),(2.3.4)

and the analogous results in [T2], loc.cit., are due to the difference in

the boundary conditions.

We now prove a proposition that gives some insizht into the nature and
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location of the negative spectrum of H. The set E of eigenvalues of H
which occurs in this and later results cannot be ignored (alt'nough in
particular cases it may be empty), because the elements of & can be eigen-
values of H and hence may have positive spectral measure. However, E will
not occur explicitly in the simplified eéxpansion which is derived in

Theorem 4.9,

4.4. Proposition: If V(r) is in L,L1,o) and the spectrum of Hl is

singular then
(1) the spectrum of H is singular on (-w, 0].
(ii) if E is the set of eigenvalues of Hw, and if x €E, then x is an
eigenvalue of H if and only if x is also an eigenvalue of Hl'
(iii) if E is as in (ii), then for i,j = 1,2, )_gl.j({xe (-0, 0T\ E:it i3
not the case that mo(x), m”(x) exist and are equal }) = O,

where mo(x), m”(x) are defined to be m:(x),m;(x) respectively

whenever the limits exist finitely and are real.

Proof:

Proof of (i):

Since the spectra of Hl and Hoo are singular on (- ,0) , 1t
follows from Corollary 2.7 and Lemma 2.13, applied to mo(z) and Mo and
to mw(z) and Moo ? that Im m:(x) and Im m;(x) are zero
Lebesgue almost everywhere on (- ,0] . Moreover, M (2) E m(z)
on C\IR , so the set ¢ x € IR: mo-f-(x) = mco-f-(x)]’ has Lebesgue
measure zero by Theorem 2.12(iii). Hence the denominators of (41.2.1)-(4.2.3)

converge to non-zero limits as y+ o Lebesgue almost everywhere on IR

so applying Theorem 2.12(i) to mo(z) and me(z) we conclude that Im M,-J- (z)>0

as y¥ O for Lebesgue almost all x on (-0, 0] , for each i,j = 1,2.

It now follows from Lemma 2.13 and Corollary 2.7 applied to T-tjj(z) and M

for j = 1,2, and from Lemma 4.3, that the spectrum of H is singular on (—co,O],
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Proof of (ii):

We shall use the relationship

_Llim (4.3.5)

440 lym(x+|y)

}A({x}) = p(x+0) -p(x-0) =

which holds quite generally for a function m(z) which is analytic with
positive imaginary part in the upper half-plane and the measure pm related
to m(z) by (2.2.1) and (2.3.3). ([EK] Ch.2, §3).

X 1s therefore an eigenvalue of H«>if and only if

Lim _ . . 4.3.6

440 1y M (x+iy ) >0 ( )
and x is an eigenvalue of H| if and only if

lim .

Y40 iy me(x+iy) >0 (4.3.7)

since mo(z) has negative imaginary part in the upper half plane. Since x
is an eigenvalue of H if and only if at least one of }h'(x) '}Jzz(x)
is non-zero ([DS] Ch.XIII 85, p.1360), x is an eigenvalue of H if and only

if at least one of the limits

: . , li . X
-;'lno iy My (xriy) = iy Mag xeiy)
is strictly positive. From (4.1.3)
_btim UM iv) _lm Y
ALY Y Mulxwiyd = YVO mg- mg

It is clear that this limit cannot be strictly positive unless m - m g,
converges to zero as y V¥ 0O ; that is, since Mor and Mo hae opposite

signs in the upper half plane, unless m and m both converge to zero

T
as er 0 . However, if x is an eigenvalue of Hoothen Im mw+(x\=¢>by
Propositions 2.6 and 2.14 and hence /4.,({ x3)=0 for all x in E.
Also from (4.1.3)
lim —iymMg iym,

_lim UM (x+iy) =
Ge0 iy Maa{x+iy

It is evident from (4.3.6) and (4.3.7) that this limit can only be strictly

Y40 iym, - iy meg

positive if x is both an eigenvalue of Ho and an eigenvalue of Hw.
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We conzlude that if x is an eigenvalue of H_, then )A.,({x})~= O
)

for i,j = 1,2 unless x is also an eigenvalue of Hl' In this case
AolIxh) = o (6x)) =2 ug (Ix3) =20, uy, (1x3) 20

Proof of (iii):

Since the spectrum of H is singular on ( -0 , 0] by (i),

,J.J'J' (L x e (-oo,O] : Im Mj_“-r- (x) does not exist infinitely }) =0

for j = 1,2, by Propositions 2.5 and 2.14 applied to My and M -
Let I be a compact subinterval of IR which is contained in the open

interval between two consecutive eigenvalues of H_. As we noted earlier,

mu:is bounded in any rectangular region of the form I x [O,Y], and

n\“fr(x) exists finitely and is real at all x in I. It follows there-

fore from (4.2.1) and (4.2.3) that for j = 1,2, IN\P4Jy+(x) cannot exist

infinitely on I unless m ;+(x) exists finitely and equals m _ +(x).

Since this is true for all such intervals I, and Im m_+(x)%0,Im mo+(x)sO,

the assertion is proved.

The proof of the proposition is now complete.

We shall now show that the spectrum of H is absolutely continuous

on (0,00).

4.5 Proposition: With the hypothesis of Proposition 4.4, H has purely

absolutely continuous spectrum on (0, o).

Proof:

Let I be a compact subinterval of (0,).
From (4.3.4), Im m+(x) exists finitely at all points of I, and
o0
by our earlier remarks, there exist k, K in IRT such that 0< k < K<
and 2k ¢ Im maoq-(x\()_;. for all x in I. If we identify Im m g (x)

with the limit Im mM ot (x) , the continuity of moo(z) in the

upper half plane implies that Y > 0 exists such that
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K< Im mlz) < K (4.3.8)

for all z in I x [0,Y].

Since mg. ¢ 0 , m_.3 0 for Imz 30 we have from
(4.2.1)
Im M, () g ! < |
Mo ~ Mozt Moz

for all z in the upper half plane. Hence by (4.3.8),

Im M (2) < -‘1(-
for all z in I x [0,Y], and

le GUP Im M“(z) < _‘_,
yv+o

for all x in I. Hence, applying the Lebesgue Dominated Convergence Theorem

to (4.1.4) with i = j =

1, and using the fact that Im my+(x)=0

for Lebesgue almost all x in I, we have

Pn(/")‘/ou(‘v’) FJF lim Im M (x+iy) dx

y VO
T Im mgt+(x)
= — dx
™ ju I+ (x) = m+ (x) 2 (4.3.9)

for all points m,v of I for which M <V . Since this holds for all such

intervals I, we conclude that Cu (X)) is an absolutely continuous

function on compact subintervals of (0, o0o0) and that

dp”()x) Im mg+(N)

d X T I+ (3) = m OO (4.3.10)

for Lebesgue almost all A in (O, o) ([HS] Thm.18.17).

Likewise, using M or < 0, Mepr ? 0 for Im z 30 we have

from (4.2.3)

z 2
2 2
Im M, (2) ¢ —MewzMex _ _Mor Moz M1 Mor Mor Mar
2 ) 2 2 a 2 _ 2
(Mggr= Mozl (Maoz=mep)” (Mg~ Mg + Mgy {mg—my)

If Imz >0 , the first two terms on the right hand side above are

2
™m
bounded above by m ;. and the last term by ®R

Mot

Using the

inequality

2

y b\
sl-o--)
(y_*b), e (c (4.3.11)
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with Yy=mg o, b=- Meor » &= M- , we see that the third tern is
bounded above by \mool-)' . From these bounds and (4.3.3), (4.3.4) it
Moz

is evident that Me |RT exists such that Im M ,(z) <M for all z in

I x (0,Y] and lim sup Im Mzz(Z) < M for all x in I. As in the case
yivo0

of P (X)) we conclude that ‘ozz(x\ is an absolutely continuous

function on (0O, o) and that

dpzz()ﬁ _ (mo-h()\\\z Im mw-i-()\)

dx Tl mge (O = mx (]2 (4.3.12)
for Lebesgue almost all X in (0, c0) . Note that we have used the
fact that m°+ () exists Lebesgue almost everywhere on IR (see Theorem
2.12(1)).

It follows from Lemma 4.3 that p.z(x) and ‘92‘()\3 are also
absolutely continuous functions of A on compact subintervals of (0, o) ;
since the same 1is true of ,o“()ﬂ and (ozz()\) the spectrum of H is
absolutely continuous on (0O, o).

The proof of the proposition is now complete.

We are now in a position to establish the main results of this chapter.

§4, The simplified expansion

We shall prove that if V(r) is in L, L1,00) and the spectrum of
Hl is singular, then for each f in LZ(O, ) an eigenfunction expansion
exists which is formally similar to (2.4.4). 1In the case where L 1is
regular at O, we shall relate our results to the theory we described in

Chapter II, §4.

We need some preliminary lemmas:

4.6 Lemma: Let V(r) de in L‘El ,00) and the spectrum of Hl be singular.

Then if LV‘).A] is a compact subinterval of IR which is 1in the
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resolvent set of Hoo’ and if Y, are points of continuity of pi_j (X)) for

each 1,j = 1,2

. M
Lim L Remy(z) Im M, (2) dx

Pia (M) = p (V) gyieo T

; I W
Paz (M) = pa(v) = ;'I‘o T_T.L Remy(2) Im M, (2) dx

Proof:

From (4.1.4) and (4.2.2),

. M m m -m..m
( \ - (v) = le .l_ I OoR L (o oOR dx
PIQ. /‘A /017. 54’0 T Jy (moa— mwa)z + (MOI— mml)l
- Lim 1 M Mor (mcox.— ™Mor) dx
VO Ty (mog =~ mypp) + (Mg - Mgr)
+ Lim '_J}A mOI(moR‘mmR) d
YVO WJy (myge - m“R\z + {mgp - mmI)z )

(4.4.1)
Now the integrand in the last term of (4.4.1) converges to zero Lebesgue
almost everywhere on l’.v'j.;] (cf. proof of Proposition 4.4(1i)), and,

using Mer ¢ O, Mo % O for ITm z » 0 and the inequality

a%s b2>, | 2ab| ,

mo:(moa‘ mwa)

|
< -
2 2
(meg ~Mepe)?® + (Mg =~ Meor ) 2 (4.4.2)
if y 20 . Hence by the Lebesgue Dominated Convergence Theorem the final
term in (4.4.1) is zero. The first part of the lemma now follows from

(1.2.1).

From (4.2.3),

m ™M (m -m_. ;)
1Mo oL
Im Mu(z) = - © Iz ol -
(mon - Mer) + (mot - mooz:\
+ Mot Mor{Mor = Mor) , Mo {Mer™Mwr = Moz Mor )
b N
(moa‘mwﬂ)z* (mor - MgV (Mo = Muor ) + (Mo —My1)

The first term on the right hand side is positive and bounded above by
mwlif y >0, and the second term is absolutely bounded by 2 lmaogl by

(4.1.2); moreover, as yV 0 each of these terms converges pointwise to zero

4

Lebesgue almost everywhere on [V,).c] (cf. proof of Proposition 4..1(1i)).

Since m (z) may be analytically continued across the real axis at all points
]



of [V,}J) , the second part of the lemma now follows by the Lebesgue
Dominated Convergence Theorem and (4.2.2).

The proof of the lemma is now complete.

4.7 Lemma: With the hypothesis and notation of Lemma 4.6,

"J'"g _U_L Rem,(z) Im M,J(z)dx = j:‘o '1—ij Rem () ImMIJ(zﬁdx

for j =1,2.

Proof:

By (4.2.1), (Remo(z) - Re mm(z))Im M, (2) is absolutely
bounded by ’% and converges to zero Lebesgue almost everywhere on [v,fAJ
(cf. proof of Proposition 4.4(i)). Hence, by the Lebesgue Dominated Con-

vergence Theorem,

. M
lim L (Remy(z) = Rem (2)) Im M, (2)dx = O
yVvo Y
The result now follows for j = 1, since
. M
Lim L1 J. Re mg(2) Im M, (2) dx
yvo mJy

exists by Lemma 4.6. By (4.2.2),
[(Re m,(z) - Re me (2N Im M, (2)]

k3
(moa— mooa) Mot + (mon" mwﬂ)mmk(mot—mwl)l

kY 2 EY 2
(mer = M or) "'(""'c>1"""o<>x3 (mon- Meor) + (mOI—mde)l

<

|
S Mepr * ?El r‘hle
Since n%éz)may be analytically continued across the axis at all points of
[v,)J] , the result follows for j = 2 by the Lebesgue Dominated Convergence
Theorem and Lemma 4.6.

The lemma is now proved.

4.8 Lemma: Let V(r) be in L.[I,aﬂ and suppose that the spectrum of Hl is

singular. Then if E is the set of eig:nvalres of H ,

2
(i) dpn(X) = dpu()\) = m,(N\) cl(o”(X) and d,oz,l(X) = (mo(%ﬂ d[o”()‘)
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M, —almost everywhere on IR \ € , where mo(x)= mo+(>‘) whenever the

limit exists finitely and is real.

(1) (A3 = L X)) = u (X)) = 0 for all X\ in E.

Proof:

Proof of (i):

Let us first consider A in IRY,

From (4.3.10) and (4.2.12), dp,, (XN = {m,(\N*dg (N)  for
Lebesgue almost all A in (0,e) ; the absolute continuity of each of the
measures )Al-J- ensures that this is also true for almost all A\ with respect

to /u"J‘ , for i,j =1,2.

Using m,. < O, m oz 0 forr Imz » O , we have from
(4.2.2)
m e ]
I Im M, (2)] < oz " or 4 er !
- F
( Meor = Mer) + (Mor— M) (mor. mor)
‘mogl lmmﬂ\
RV S -
Mok~ Mer) + ™Moeor oI
I Ml
By (4.3.11) the first term on the right hand side is bounded by w).,z )
o©I

hence, as in Proposition 4.5 we may use the Lebesgue Dominated Convergence

Theorem on compact subinterals of (O, 00 ) to obtain

d/om()s) _ m o+ (X)) Im m o+ (XN) (4.4.3)
dx T I mgr () = m o+ 001
for Lebesgue almost all N in (0,00) . This, together with (4.3.10)
yields

do,, (XY = dp (XY = m (N dp, (N
for almost all A with respect to each of the measures Pfj , 1,3 =1,2.

Let us now consider N in IR

Let v, p be as in the hypothesis of Lemma 4.6. Since m o (x)
exists and is real at all points x in [v,/u_] , we shall denote mm*-(x)

by mM (%) for all x in this interval. We first show that
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M e
Iv dp . (N) = L Mo (X dp (N (4.4.4)

For conciseness, let g(z) denote Im M“(z) (see (4.2.1)). Fron

Lemmas 4.6 and 4.7,

M . T e
[ dp, 0 < ;'f; T’F.[,, Re mglz) glz) dx (4.4.5)

We prove that (4.4.4) implies (4.4.3).

Let €» O be given, and M = }.4”( [v)}.(]) .

Our choice of v,/u implies that mw(z) is uniformly continuous on the
compact set [v,}.c] x LO,K] for each K >» 0O . Hence there exists

YK >0 such that if y <« Y,

3
Im gz = m(x)] < — {4.4.6)
™
for all x in Lv,p] . Moreover, there exists a bounded step function

P
Fix) = & oLix‘- on [v,)..] , wWhere Xi is the characteristic function
i=|

of an interval Si’ such that

£
JF(x) = m(x)| < — (4.4.7)
® | ™
for all x in [v,/u] . There is no loss of generality if we suppose
that the endpoints of each Si are points of continuity of /on‘_j (X)) for

each i,j = 1,2. (4.4.6) and (4.4.7) together imply that if y < T

|F(x) = m . (2)] < 2& (4.4.8)
*h 7™M
for all x in [v,)u].
Let = max o .
=t q e v, .., Py !
By (4.1.4), there exists Y _? 0 such that if y < Yo
» M (4.1.9)
\T‘—T' jv 3(1) dx - Jv d,ou(x)l < M

and for each i = 1,...P, there exists Yi such that
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A - 3 A
'TI‘ Ssi g(z) dx js‘. dp, (M) < 553 (1.4.10)
if y < Y . Moreover, by (4.4.5), there exists Y, » 0 such that
M M
T—'FL Meer(2)glz)dx - Iv de,, (M1 < -é—;- (4.4.11)
Hence if y < min } Yo, Yo Yo 3 U {Y-I :i=1,...pY we have by (4.4.7)-

(4.4.11)

M M
2 dpntn = 7 mg0 dp, 001

¢ [P don 0 - —'“-_j: m e (2) gl2)dx |

v
M -
' p= jv mmRh.) 3(z)dx - jy m o (2 d,o“()s)l

3 (M yy

¢ = o+ 'FL MoV 9@V dx — [7 F N de, ()]

+ j\’u LFNY = m OO dp, (M)
v

2¢ ) M
3 —:,— + ITT:J), me(Z) a(Z)dX - lz—l “ J‘ dpn()\)l
< -2—_,5- + | %_—j: mmﬂ(z)s(z)dx - -‘f Z “iJ ' g(z) dxl

+ Z bex; ‘I—J S(Z)dx —J dp“os”
I=1

3€ t L M (2)

< — ‘1—1'5 Mor(2) g(z)dx TT'J‘» F(x)sz dx |
)J

< :—5:,2- + —T'FL Im o (2) - F(x)lg(z)dx

3¢ 2e 1 (M 4214
< oo gl

o

3 2¢ | (M _ 22 1" de (x)
& -—7-2 + —7_1\':\ l'“-‘jy 9(z3dx Sy d/o“(x)‘ + T J.V Pu
< &

The arbitrariness of & implies
M
[ de, () = J2 o ) dey )

and hence, from Proposition 4.4(i1i),
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M M
L, de, (N) = -L m, () de, (X)) (¢.4.12)

where the real limit mo( A) = mo+(A) exists u,, -almost everywhere.

It may be proved in a similar way that

M M
_fv de,, (N) = SV m_(X) dp . (N) (4.4.13)

However, in this case we may not assume that the analogue of g(z), viz.
Im M (2), is positive nor that ,on()s) is increasing. To overcome
the first difficulty we use the second inequality in Lemma 4.2, and to
overcome the second difficulty we note that ,olz(x) , being a function
of bounded variation on finite A -intervals, may be expressed as the
difference of two increasing functions.

Since each of the measures ).A‘-J- , 1,j = 1,2 is regular, (4.4.12) and
(4.4.13) also hold for all half-open intervals (¥, m] which consist
entirely of points of the resolvent set, irrespective of whether v and u
are points of continuity of the measures jA..J- . It therefore follows from

the Hahn Extension Theorem (2.2.2) that

P (D) = Jo m () de, ()

for arbitrary measurable real subsets I of the resolvent set. Hence

do,, (N = dpy, (XY = mg(X) dpy (N)

M, —almost everywhere on R~ \ E . It follows, similarly,that
dog, (XY = (m 00 dp, (3

p, —almost everywhere on R™\E.

It remains to consider the point 0 if O ¢ E. In this case either
a) O is an eigenvalue of H, or

b) O is not an eigenvalue of H.

In case a) there exists an Lz[l,oo) solution of Lu = 0 on [, @)

which does not satisfy the boundary condition u(1,0) = 0. Hence the result

of Theorem 3.19, applied to m”(z). implies that m“(y) converges to a finite



124

real limit moo(O) as y ¥ O.

Moreover, since O can only be an eizenvalue of
H if at least one of Mi; ({03) »0 , i,j = 1,2 ([DS] Ch.XIII §s,

m +(0) exists finitely and is real, and m (0) = mw(O) by Proposition
4.4(1iii).

R I SR

Therefore, applying the relationship (4.3.5) to M (1o Mg (tol),
) 2

+

MPia (7,0}),}42-:': (103),we obtain from (4.1.3)

= Ui -1y
M, (103) = ‘H:%

(mgly) = mg(y)
M, (101 = ({01) = lim ~iy [ (9 + me(y))
12 M2, 940 2(”‘0()) m———Ta

= mgy(0) my, (101))

Clim Y Mely) mg(y)
My (1O = yi 0 (g (y) = mgly))

< (m (oM 4, (101)

In case b),/AiJ. (f0}¥)=0 for each i,j = 1,2 ([DS] loc.cit.)

In either case these results are sufficient to complete the proof of

(i).

Proof of (ii):

This has already been established in the proof of Proposition 2.4(ii).

The proof of the lemma is now complete.

We now show that under the hypothesis of Theorem 4.8, the Weyl Kodaira

theory may be dramatically simplified.

We first describe some notation. If S SR is measurable, define

A0S) = u (SNE) + u,, (SNE) (1.4.14)

an! for A € R,

y1<r‘x) on & (4.4.15)
ys(r,)\\ =

Yol )Y + m ) yo(r, N) wienever
M (X) = m*T(X) exists finitely and is real on RNE (=nis is,
° o]
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N

as we have shown in Lemma 4.8, p, -udlmost everywhere on IRNE . Let

,3'(%) be the right continuous increasing function arising from /&' (ct.

(2.2.1)), for which ,2; (0) = O.

4.9 Theorem: Let V(r) be in L‘[.l ,oo) , and suppose the spectrum of Hl

is singular. Then each f(r) in Lz(O,oo) has the eigenfunction

expansion

w

Flr) = Lim. vy (P NV FON) dF (8)

W —poC VY-
E Lim. [
where F(X) = - i.m., yslr,x) f(r) dr
W—Haoo ¥y
e ¢
. . . 7 .
the integrals being convergent in L,(0,00) and Ll(-ao‘co) respectively.
The transformation & which maps f(r) to ?()Q is an isometric Hibert space

isomorphism from L,(0,e) onto L':(—oo,oo) . Moreover, if B 1 IR = C

is a Borel measurable function, and O(H)f(r) is in L,(0,), then

. w ~
B(H) f(r) = Li-m. BN yo(r, XY FINYdE (XY (4.4.16)

w—y oo Yo

where the integral converges in L, (0, ®).

Let f(r) be in L,(0, ).
Since E is a bounded subset of IR ([LS] Ch.IV Thm.3.1), we have from

(4.1.6) and Lemma 4.8,

. o w 2
0 = bm ey -2 [T N gi00de (01 dr

w = oo ij=haz -w

: P
T 0 | £(r) - L_ Y2 (r N @, (N)do, (N = J’(—w,un\Ey'(r'“¢'(>\\dp" o

w -y

- (g (mRY B, (N) + yo(r, XY@, (X)) m, (XY de, (N
(-w,WI\E

2
’S(-u WINE yalr N) B5 (0 (m (W de, (M) | dr

tim 5: “:("\ - Sa y2(r,\) ¢1()‘) dpn(k\

T woy oo

2
-J (9,(r, N + M) Yo (r XN(@INY + Mg () @, O 4o (| A
(

-—w,w) \E
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_ lim w w ~ 2 14
= e So l£¢r) = S_w ye(r, ™) G(N d/o()\n dr (4.4.47)
where ¢ (\) on E
G(N) = .
¢, (N + m 4N ¢z(>\\ p-almost everywhere on
IRNE , where g1 is the measure generated by &(X\) . From (4.1.8),

; w
0 = bim []’R\E 1B, 0= 5 5, (r %) £ de 1 dpy, (0

o0

w
+J‘|R\E(¢'(>\\ "'Jo_ yl(r,)\\F(r\ dl")(¢z(>\) —j: yz(r,%)F(r) df\ mo(xs) dPn()‘)

+I . (BN -S:y,_(r,xH(r)er(ﬁ.(x) —f: ¥ (m, N (P der) ma (N do, (X)

RN

+le\ ! ¢2<n-L“’yzcr,m\ccrxdrl‘(motm‘d,o"m # [ 16,00- 7y, ;(ﬂd.-l‘a,,n(x)]

= lim ® ( GOXY - Iw (r, ) ¥(r)dr )zd"'(}s)
RS I o Ysih, r
o0

Hence GO\ = F()) M. —almost everywhere on IR , so from (4.4.17)
£ L.i ¥
(r) = L1.m. (r, %) F(N) dg'{X)
w -y oo I_u s P

as required.

Let fl(r), f2(r) be in LZ(O,OO) , and for i,j = 1,2 define

G Licem. [
Gy = L ¥; (r, NV F (FY dr
o> 0

By Theorem 4.1, Lemma 4.8, and (4.1.5)

00 N TS (2)
Cameerar = & L 3. (% B, N dp )

]'J 21,

T g —
- je B, N B, (M dp,, 0+ JIR\E 800 BTN dp, (N

N 3500 ¢ PYDYREA) :
[ 1B BR00 + 8,700 @00 myN) do, (M) +le\£ B0 @ (N do, (N

= . @5 00 90N dp, 00 + [ (B0 + Mo GONB P00 + m ) G dp, (M)
00 @ @————
=j_m G, (N G (N) dF (N

(N .
where { ¢2J (N\) if X eE
G.(\) = . -
J ¢‘(J)()") + m (\) d);“(k) M, -almost everywhere

on IR\E (j=1,2). As above, it is clear that G'J-(AB = (S‘FJ ) m&-

almost everywhere for j = 1,2.

L
Hence the transformation S preserves inner producte; and, 1in
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~d

particular, S is isometric. To complete the proof that g is an isometric
Hilbert space isomorphism from Lz(O,oo) onto L':(—oo,go) it

~J

therefore to show that S is linear, one-to-one and surjective. The proof
of the surjective property is somewhat cumbersome and is contained in the
A dix. . | . .

ppendix. To prove linearity we show that if fl(r), f2(r‘) are in L, (0, o)

and F (XY, F3 (XY, F(X) denote (5FUNY,(5F N, (Z(F +cf )N

respectively, where ¢ is constant, then
FI(N = F, (M) + e F(X) (4.1.18)

almost everywhere with respect to the measurej:. generated by ,3()\\_

Now if [l * | denotes the Lf(—oo,ao) norm,
HE(N) = (B, (N + c B OV
~ N
¢ | EMN) = fy ys (r N (F,(r) + e £, (F0dr I
«

+ I E(X} - J‘lN j5(:",)&‘F,(r‘)‘::lr"" + lelll on‘\ _jl/N ys(r',)\) Fz(r) el
b "

for all N in IN by Minkowski's inequality. (4.4.18) now follows since
the right hand side converges to zero as N = .

Now suppose (gf,)(k) = (gf'z)()\) . Then, by the linearity of 3

)

~5

( g (+ P ‘an( X)) =0, and hence, since S is isometric,

([ 1f(m)- £,(0%ar) 2 = 0

o]

so that fl(r‘) = fz(r) Lebesgue almost everywhere. It follows that S is

one—-to-one.

Let 8:IR—C be a Borel measurable function. Then if F(r), B(H) F(r)
are in L, (0,m) , (4.4.16) may be proved from (4.1.9) in the same way
that (4.4.17) was proved from (4.1.6).

The proof of the theorem is now complete.

§5. Discussion

Propositions 4.1 and 4.5 not only indicate the nature and location
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of the spectrum of H, they also give some insight into the behaviour of
solutions of the Schr#dinger equation associated with the different parts
of the spectrum.

Let us suppose that L is limit point at 0, so that there is at most
one linearly independent L2(O,l] solution of Lu = xu for real x. We note
from Proposition 4.4 that the singular spectrum is concentrated on two sets,
viz. the set E of eigenvalues of HO, and the set A of all x for which
M+ (x) and m (X)) exist finitely and are equal. Since Im mg(2) and
Im mg(z) have opposite signs in the upper half plane, mr(x) and m 3 (x)
must also be real for all x in A. Hence, applying Theorem 3.19 to each of
the intervals (O,lJ and [1,00), we see that for each x in A there exists a
solution of Lu = xu, viz.

yl(r,x)+mo(x)y2(r,x) = yl(r,x)+m¢£x)y2(r,x),which is subordinate both
at O and at @0 . Moreover, the only other points x in IR at which such
solutions can exist are the eigenvalues of Hypand the point x = 0. To see
this, note from Theorem 3.19 that if there is a solution of Lu = xu which is
subordinate at both O and e , but m r(x) and nw“;(x) do not exist as
finite real limits, then this solution must be u2(r,x) and mgzr(x)a mgrix) =,
As has already been noted in §3, mytr(x) exists as a finite limit for all
x in R N(EU 10}), so mgr(x) and mE(x) can only exist infinitely on
EUVvio}.

Now A has Lebesgue measure zero by Theorem 2.12(iii); hence so also
has AUE U 10} . It follows that the set of all x for which Lu = xu
has a solution which is subordinate at both O and @ is a minimal support
of the singular part of the simplified spectral measurejx . This approach

may be extended to the other parts of the spectrum to give the result

below.
We recall that if L is limit point at O, the spectrum of H1 is

singular if and only if the same is true of the spectrum of the unique

self-adjoint operator Ha arising from L in L2(O,a] with boundary condition



129

u(a,z) = 0, for each a in IRY. Also, since we have assumed throughout that
V(r) is integrable on compact subsets of R¥ not containing the origin,
V(r) is in L,[1,0) if and only if V(r) is in L,[a,®)for each a > 0.

Since the existence of solutions which are subordinate at 0, or at oo,
does not depend on the decomposition point a, we may state our result in

its most general form, as follows:

4.10 Theorem: Let L be in the limit point case at O, and V(r) be in L, [a,®)
for each a > 0. Suppose, moreover, that there exists an a in
+
IR" such that the spectrum of Ha is singular. Then minimal supports

o~ N

m, M,..M, ,M, . andM, of the simplified spectral measure

g, and of ,ﬁa_c ,/."is ,;;s ¢ » Mgy are as follows:

~

™M = R\{xelR: a solution of Lu = xu exists which is not subordinate
at 0 but is subordinate at @ }

{x € IR : no solution of Lu = xu exists which is subordinate

=
>
(2]

fl

at oo }

xu which is subordinate both at O and

ms = {x € IR: a solution of Lu

at o }

~
m s.c. = {x e IR: a solution of Lu = xu exists which is subordinate both
at 0 and at ® , but is not in L, (0, )}

- {x e R: a solution of Lu = xu exists which is subordinate both

z

at O and at @ , and is in Lz(O,ao)J'

We note that if "subordinate at 0", "subordinate at infinity" and ;1
are replaced by "satisfies the boundary condition at O", "subordinate" and

M respectively, then Theorem 4.10 reduces to a particular case of Theorem 3.21,

which applies to the regular limit circle case at 0. Indeed, noting that for

L in the limit circle case at O, the solution y1(r,x)+m°(x)y2(r,x) satisfies

the boundary condition at O, the arguments above for the limit point case at O

may be simply adapted to show that if Vir) e L,[a,ao) cfor each a > 0, then the

conclusions of Theorem 3.21 hold in respect of;i for the singular limit circle

case at O.
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Likewise, adaptations may be made to accommodate the case where L is
limit circle at infinity; in this case m”(z) is a meromorphic function
([cL] ch.9, 84), so that if the spectrum of H_ is singular, much of the
theory of §§:3,4, suitably modified, still holds (of course, here V(r) is
no longer integrable at infinity ([N] 823, satz 3).

The condition on V(r) at infinity in Therrem 4.10 is such that for
each x in IR \ 10} every solution of Lu = xu which is subordinate at
infinity is in Lz [o,oo) for each a » 0. However we prefer to retain
the characterisations of Theorem 4.10 as they stand, bearing in mind that
further generalisations may be possible.

If L is in the limit point case at 0, it may happen that there is some
absolutely continuous spectrum of H_ (for an example see [P2]). In this
case Theorem 4,10 remains true if fﬁ ,?ﬁn.c. etc., are now taken to be the
minimal supports of A& , &, . etc., on IR \ o, (H,) where o (H,)
is the absolutely continuous spectrum of Ha.

It seems not unlikely that when L is regular at 0, some quite straight-
forward relationship exists between the simplified spectral function ﬁ?(%)
and the spectral function e©(X\) described in Chapter II. The following

result which we prove for A 2 0 , suggests that such a relationship may

hold quite generally.

4,11 Proposition: Let V(r) be in L,[0,0) and suppose that L is regular

at 0. Then, if ul(r,z) is that solution of Lu = zu which

satisfies u,(0,2) = -sina , u/(0,2) = c0S&,

o 2
BN NN S ALY ()
dx dx

for Lebesgue almost all A in (0, o),

Proof:

The hypothesis satisfies the conditions of Theorem 4.10, so there
exists a simplified spectral measurej: of H satisfying (4.4.14). Moreover,
since L is regular at O there exists a function m(z) which is analytic in

the upper half plane, and a spectral function o(X\) satisfying (2.3.3) and



(2.3.4). 1In addition the hypothesis implies that V(r) is in L, L1, )

and so
dp()\) 1 1
= _ m m+()\) 1
Y = (4.5.1)
and dg (X = 9, (™) _ I M, *(x) (4.5.2)
dx dx m

for A 0 (cf. proof of Proposition 4.5).
Let u2(r,z) be the solution of Lu = zu which satisfies
uy(0,2) =cosa,u,(0,2) = sinx . By the definition of m (2) , Y (r2)+
M) Y (r,2) is in LoLt,e) fr Imz=% 0 and so, since L
is regular at O, Y. (r,2) + mao(-z.)yl(r-,z) is in L,(0,) for Im z + 0.

Moreover, using W(u2(r,z),ul(r,z)) = 1, we have

u/(l,z)uz(r,z) - u{(l,Z)Lh(f,Z) (4.5.3)

]

y,{r,2)
and
Y2(r,2) = u, (1,2) u,(r,2) - u (1, 2)u,(r2) (4.5.4)

by the uniqueness of solutions. Hence
(ull(l,z) - m_(2)u (1,2 u,(r2) - (u;(l,z) =m (2 u, (), 2)) u(r2)
is in Lz(o)ao) for Im z+% O which implies by (2.1.3) that

(u_{(l,z) - mg(z) uz(l,z))

) (u/(1,2) = mg(2) u,(1,2)

m(z) =

Using W(uz(l,z),ul(l,z)) = 1, this yields

Im m(2)

Imm(z) = (uf(1,2) = Remg(2)u, (1,207 + (Im my(2) u,(1,2))2

Hence, by (4.5.1),
do(r) Im mgr(X)

T TT[(u.’(l.A) —Rcmc;-()du‘(l,)\))l-o- (Imm;()(\) us,(sx),m)‘]
J1.5.

for N » O,

Since L is regular at O, mo(:) is defined by the boundary cond:ition

(4.1.1). Hence
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¥y/(r,2) + mo(2) y,/(r,2) u/(rz)

Yo (r2) + mg(2) y,(r,2) u, (r,2)

which yields

Wiy, (r,2),u,lr,2))
Wiy, (r,2), u,(r,2))

m(z2)

Wiy, G, 2), u,(1,2))
W(Yz(‘ ,2), u,(\,l))

u,%l,z)

u, (1,2) (4.5.6)

Hence by (4.3.10) and (4.5.2)

dg’ (X Im mr () (u, l,l“z
d A TL(u/ (1, %) = Remz () u,(1L,0)" + (Im m O u, (1, 8)*]
for A » O.

This, together, with (4.5.5) gives the result, so the proposition is

proved.

Denoting the subspace of absolute continuity with respect to H by

??(a c(f%) ([KA] ch.X, §2), we have the following:

4.12 Corollary: With the hypothesis of Proposition 4.11, the eigenfunction

expansions of Theorem 4.9 and (2.4.4) are equivalent for all

f in }4OC}H).

Proof:

Let f(r) be in 'J’(“‘c.(H) _ Then

fry = SNime (B, — B F(R)

w o

so by (2.4.4) and (4.4.16)

) w
fir) = Lim 70 e ) FOM dpON) (4.5.7)
w = o© (o]
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Giim., (© =
= anm IO Ys (r, X)) F(X) dS'(N) (4.5.8)

where

. w
FO\) = L""“'J u, (r,X\) f(r) dr
wWw->ymo 0

F(x) = Lim. ¥
and F(A) = Lim. fo Y5 (r, N) F(r) dr

The last two integrals converge in L:(O,oc) and Lf(o, o)

respectively.

Also by (4.4.15), (4.5.3), (4.5.4) and (4.5.6),

I"‘
u (1,2) y (r,2) = [yl(r,z) + %—:—; yz(r,z)] u,(1,2)
ARY)

= [u.'(l,z)u,_(r,z) —ut (L, 2, (r2)) u, 1, 2) +[uz(\,z)u‘(r,z)—u,(l,zSu,_(r‘,z)Ju,'(l,z)

Wlu, (1,2), u,(1,2)) u, (r, 2)
= u,(l‘,z.)

Hence, by Proposition 4.11, (4.5.8) is but an alternative expression of

(4.5.7), and so the corollary is proved.

Thus, where L is regular at 0 and V(r) is in Ll[O,aa), the Weyl-
Kodaira expansion (4.1.6) simplifies to the expansion (2.4.4) described
in Chapter II for all f in jiqu(H);it seems probable that this is also
true for f(r) in the singular subspace '}1S}P4) . If this is so, our
simplified expansion is a natural extension of the expansion (2.4.4) for
all f in .

We observe that when L is limit point at 0, the solutions of Lu =Au
which feature in the transformation S of Theorem 4.9 are, for & -almost
all A in IR , subordinate at 0 for A » O and subordinate at both 0 and
infinity for A< O . Comparing Theorem 4.9 with the analogous results
for the regular limit circle case at O (see Ch.II, §4), we note that, as
in the decomposition of the spectrum, subordinate solutions in the limit

point case at O correspond to solutions satisfying the boundary condition
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in tae limit circle case at O.
According to the brief summary which is available in translation

([K2] §2), it appears to have been shown by Kac that a simplified expansion

exists provided the intersection of the sets { X€e R :-ifiﬁii) exists ani
K
0« d)*a”"( oo} and { AeIR d)*aoo‘) exists and O ¢ dpglX) a:}
d K dr dK

has Lebesgue measure zero ([Kl]); here M, and m_are the spectral measures
of Hl and Hg, respectively. This would imply by Theorems 2.9 and 3.21 that
such an expansion exists provided a solution of Lu = xu exists which is
subordinate at O or at @ (or both) for Lebesgue almost all X\ in R . It
may well be the case, therefore, that the simplified expansion of Theorem
4.9 and the conclusions of Theorem 4.10 hold under weaker conditions than
we have assumed.

However, the question of whether the simplified isometric transform-
ation is surjective, and the relationship between the simplified expansion
and expansions such as (2.4.4) which are obtained directly, do not appear
to have been considered by Kac, nor is the role of subordinate solutions
recognised. From the point of view of the applications to scattering
theory which we condition in the following chapter, the conditions of
Theorem 4.9 are sufficient, and the surjective property of the simplified
transformation g, which is proved in the Appendix, is essential.

In conclusion, we note that under the conditions w: have imposed on

the potential in this chapter,

do.. (XY dp.,(N)
2 Im M“*-(A) Im M, +(\) = Pu faz
T2 dX dx

i doy N L I M) ImM+(N)  (4.5.9)
d X dx T?

for Lebesgue almost all X\ in (0,®), by (4.2.1), (4.2.2), (4.2.3), (4.3.10),
(4.3.12) and (4.4.3). If we suppose that there is some absolutely con-
tinuous spectrum of Hl in (0,m) , so that by Corollary 2.7 and Propo-

sition 2.14 there exists a subset 5 of (Ogn) wi-h positive Lebesgue measure
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such that O ¢ Im me+(X\) < © for all A in S, then the relationships
(4.5.9) cannot hold. To see this, note from the proof of Lemma 4.2 thart

Im M+ Im M+ (\) - Im M,{Q\ImM;"(M:O Lebesgue almost everywhere on
(0,0) only if Im mo+(\) Immg+r(N) = 0 Lebesgue almost everywhere

on (0,®) ; that is, since Immg(x)> 0 for all A, only if Imm+(\)=0

Lebesgue almost everywhere on (O,a:\ . Thus by Lemma 2.13 and Corollary

2.7, the relationships (4.5.9) can only hold if the spectrum of Hl is

singular. Since these relationships are crucial to the simplification of

the Weyl-Kodaira theorem, (without them the results of Lemma 4.8 fail),

it follows that, if V(r) is in L,[1,o) , the conclusions of Theorem

4.9 only hold when the spectrum of Hl is singular on (0, ®).
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CHAPTER V

APPLICATIONS TO SCATTERING THEORY

81 Wave and Scattering Operators

We now apply some of the results of the previous chapter to the scatter-
ing of a single non-relativistic particle in a spherically symmetric potential.
As in spectral analysis, the three dimensional situation is most conveniently
analysed in this case by considering each partial wave subspace separately
(see [AJS], Ch.11).

We briefly indicate some of the relevant ideas and terminology. With
fixed quantum numbers | and m, representing a fixed partial wave subspace,
the one dimensional free Hamiltonian Ho,L is the self-adjoint operator arising

from the differential expression

L d? L+ D
oL =~ + .1.
In the case | = 0, LO L is in the limit circle case at 0, so that Ho o is

not unique; it is necessary, therefore to fix a boundary condition of the
form (2.3.9). Now, defining the free Hamiltonian Ho in the customary way to
be the unique self-adjoint extension of -/A acting on C:(IRS) , it is found
that Ho. is unitarily equivalent to the restriction of Ho to the angular
momentum subspace L = 0, which is unique; it follows that the appropriate
boundary condition is obtained by setting & = O in (2.3.9) (see [aJs], §11.3).

The corresponding total Hamiltonian HL arises from the differential

expression
2
L n——d— + M + V(r) (5.1.2)
L de? r?

A boundary condition may again be required at r = O for some or all L» o,

depending on the nature of V(r); since we shall assume throughout this

chapter that V(r) is integrable at infinity, no boundary condition will be

required at @ for any L ([HI] Thm.10.1.4).

Particles encountering the potential V(r) characteristically exhibit one
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of two modes of behaviour; either at large positive and negative times
the particle is arbitrarily far from the scattering centre, or at all times
it is located within a finite radius of the scatterer; the particle is

salid to be in a scattering state, or a bound state, respectively. 1In most

of the cases usually considered, the scattering states span the absolutely
continuous subspace jAuchH) of H, and the bound states are identified with
linear combinations of eigenvectors of H. This situation may break down,
for example, if some states are asymptotically absorbed ([PZ]); however,
as we shall see, absorption cannot occur for the.class of potentials con-
sidered in this chapter.

If for large positive and negative times, all particles in scattering
states behave like free particles the system is said to be asymptotically
complete. This idea may be formulated in a way that is mathematically more
precise, using wave operators. Noting that e-iHot ) e-ib4t describe

the free and perturbed time evolution of a state vector f, the wave operators

are defined to be

0 : iHE -iH_. ¢t
* = ts.—)h:\. e’ c e Ea.c.(HA (5.1.3)
= t oo

whenever these limits exist, where Ea (Ho) is the projection operator onto
the absolutely continuous subspace ?}(o.cfﬂo) of Ho. The wave operators are
partial isometries with initial set '}4a_c_(kio) and ranges subspaces of

the absolutely continuous subspace '14a_cjt4) of H. If the ranges of.fl:

are equal to j’la.c_(H) the wave operators are said to be asymptotically

complete; if, in addition, the singular continuous subspace j-{s.c_(H) of H

is empty, we refer to strong asymptotic completeness (cf. [AJS] §9.1).

The wave operators satisfy the following intertwining relations

-iHt -iH E
-i *® % ~iHt
e '“°t.ﬂ.+ a .ﬂ.t e (5.1.4)
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*e
where 'Qi'. denote the adjoints of fl,., viz.

s.lim. _iHot _-iHE 4
¢ ¢ M (5.1.5)

+ . . .
M- being the projection operators onto the ranges of Al 4 .

Where the wave operators exist, the scattering operator S is defined

by

b 3
5 =0Xn

(5.1.6)

The scattering operator is a partial isometry with initial set ‘J'(q.c..(Ho)

and range a subspace of ?ta.c.. (Ho) . The range of S is equal to
Aa.c.(H,) if and only if the ranges of .ﬂ..+ and fL_ are equal, so
that, in particular, S is unitary if the wave operators are asymptotically

complete ([AJS], Prop .4.8). Moreover, S commutes with Ho; that is
SH E, . (H) = H 5

which implies that the unperturbed energy is conserved during the scattering
process.

We may apply Theorem 4.9 to see that for each L, the operator Ho,L in
L,(0,0) is unitarily equivalent to multiplication by A in Lfa'L (0,m),
where ﬁo"_ (N) is the simplified spectral function of Ho,l' Note that, if
we take &« = 0 in (2.3.9) for the case | = 0, then for each L, Ho,L has
purely absolutely continuous spectrum which is concentrated on (0,0), so

that szo'L (O' w) = szo'l' (-00,00)‘ Mo.c,(Ho) =j'{ and E:a C.(HO) = I

Similarly, it has been shown (and we shall derive this result independ-
ently during our proofs) that when the wave operators are asymptotically

complete, the restriction SL of S to a partial wave subspace is unitarily

equivalent to multiplication by a function of >~, 5‘_()\) for each L, where

S (N) = exp(2id (X)) (5.1.7)

The function S(X\) defined by

(5.1.8)
S(N) = 2 SL‘X)ELM

IL,m
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where Elm is the projection operator onto the one dimensional subspace of
. 2
unit sphere L2(S ) generated by the spherical harmonic Yl » 1s known as the
m

S-matrix , and 6l(>‘) is known as the partial wave phase shift ([AJS]

Prop.11.6).
The following definitions relate to the scattering of particles with
energy X .

The scattering X-section for a cone C with apex at the scattering centre

is the number of particles scattered into C per unit time divided by the
number of particles in the incoming beam per unit time and per ':nit si'rface
area of the hyperplane orthogonal to the direction of motion of the incoming
particles.

Now suppose that the incoming particles are approximately collimated in
the direction eal , and that the axis of C lies in the direction 2&2. If
the scattering X-section for C is divided by the magnitude of the solid angle

Awsubtended by C at its apex, then the square root of the limit of this

quantity as Aw->»0 is known as the scattering amplitude at energy A , and is

written £(X @ - _cgz).
The square of the scattering amplitude, integrated over all final

directions @, gives the total scattering X-section LL(N).

Where the potential is spherically symmetric, and the wave operators are

asymptotically complete the scattering amplitude and total cross section have

the following representations:

3 @L+D(S(N-NP (e, .2,) (5.1.9)

. - l
fin:0 - w,)= e

where Pl. is the Legendre polynomial of degree L,

D) = —— T (2L+1) sin® &(XN) (5.1.10)
&2 t

(see [AJS] Ptop. 11.7). Note that £L(N\) is independent of the initial

direction @, , and that, by (5.1.7), both f(X: @ — @.) and SL(\) are

sums of continuous functions of the partial wave phase shifts.

In this chapter we shall derive explicit formulae for the phase shifts
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in cases where the potential may be sufficiently pathological at the origin

to produce dense point or singular continuous spectrum of H in at least

1,1
one partial wave subspace. The only conditions we shall require of our
spherically symmetric potential are:

(i) V(ir) = O(r'-“"'e))as r = oo.

(ii) the spectrum of Hl,l is singular ineach partial wave subspace (for
description of Hl, see Chapter 1IV).

The condition gt O is considerably more general than that considered by Green
and Lanford ([GR]). These authors reguired that V(r) be O(r~(2-8€)) ¢
r-»0 which ensures that there is at least one solution of Llu = Xu in

L2(O,1] for each x in IR, and all L (see [KO] 8§5). This implies that there

is no singular continuous spectrum of H for any L, by Theorem 3.21, and

1,1l

that the spectrum of H is nowhere dense ([WE2] Satz 3.3).

1,L

Using the simplified expansion of Chapter IV, we shall adopt a method
similar to that of Green and Lanford, and, as in their derivation, the
existence and completeness of the wave operators will be demonstrated in the
course of the proof. The existence of the wave operators and asymptotic
completeness under conditions (i) and (ii) may be proved independently from
other results which are already known. Kupsh and Sandhas have shown that the
wave operators exist whenever the potential dies away at infinity more rapidly
than the Coulomb potential %, irrespective of the behaviour of the potential
at 0. ([KS]). Moreover, it has been proved by Kuroda that provided the wave
operators exist, the absolutely continuous spectrum of H is contained in that
of Ho’ and the spectrum of H is simple in each partial wave subspace, then
the theory is asymptotically complete ([KUl] Thm. 3.3; see also [[E] for

amendment). Kuroda's second condition is satisfied on account of Proposition

4.5, and that the third condition is satisfied follows from a theorem of

Kac, which proves simplicity of the spectrum whenever the Lebesgue measure of

the set

{xeR : 0 ¢ M) LI N{xeR:0 < Mg (X) ¢ o}
di dr
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is zero, where u,, M, are the spectral measures of Hl and H, 1in some
partial wave subspace ([K2]). Under condition (i), therefore, asymptotic
completeness can only fail if there is absolutely continuous spectrum of
Hl,L for some (. This, while unusual, can occur; an example is due to
Pearson ([P2]).

The explicit formulae we shall obtain for the phase shifts will
enable us to refute the accepted wisdom that the scattering amplitude and
total cross section are continuous functions of energy. First, however,we
shall reformulate the simplified expansion of Theorem 4.9 for elements of

ZP(O.Q.(H) in such a way that the simplified spectral function &(X\)

no longer occurs explicitly.

§2. Reformulation of the simplified expansion theorem

As we shall be solely concerned with a single partial wave subspace in
both this and the following section, we shall as a matter of convenience
regard the term L(l+1) as included in the potential V(r), and denote the

2
r

operators H H. by Ho and H respectively.

o,Ll’ 1
We begin by showing that if, with the hypothesis and notation of Theorem
4.9, the domain of S is restricted to gA, . (H) then its range is L: (0,o),

~ I3
and this restriction of § is an isometric Hilbert space isomorphism from

a. . (H) onto Lf( 0,).

5.1 Proposition: Let V(r) be in L.[I,cp) and suppose the spectrum of H1 is

singular. Then each f(r) in }{a.c.(H) has the eigenfunction
expansion
= Lim (r,2) F (XY dZ(N) (5.2.1)
£ w-ro J(0,w] Js £
where

. w .
F(z = Lj_’"; _ Ys(r, W F(e) dr (5.2.2)
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~

the integrals being convergent in L,(0,o) and Lf(o,oo) respeczively. The

[aned

transformation §, . which maps f(r) in M, (H) to F(X) 1is an iso-

metric Hilbert space isomorphism from L,(0,®) onto LL(0,m). ‘oresver,

if ©:IR= € is a Borel measurable function, and @(R)Y£(r) is in L,(0,m)

then

L-l‘-m, ~ ~
O(HYF(r) = 0 00 (0, ] 8(\) ys(r‘,)d F(X) de 0N (5.2.3)

where the integral converges in Lz(O,oo) .

Proof':
By Proposition 4.4 the spectrum of H is singular on (-0 ,0) and by
Proposition 4.5, H has no singular spectrum on (0,®) . Hence f(r) is in

HAa.c (H) if and only if the probability j( d<f,E,f>  that a

a,bl
measurement of the total energy of a system in the state f will yield a

value in (a,b] is zero for all (a,bl & (-o,0] (see[AJS] Ch.3, §2)

So if f(r) is in Hq o (H) we have by (2.4.8)

£(r) = S U™ (B, - E)F(R)
w ~» O

where % E}} is the spectral family of H. The eigenfunction expansion above
for f{(r) now follows from Theorem 4.9.
To prove that ga.c.is an isometric Hilbert space isomorphism from

Ho. c__(H) onto Lf(o,w> it is only necessary in view of Theorem
4.9 and the fact that }(a.c.(H) and Lf(O,oo) are subspaces of { and
Lf(-oo,«ﬂ respectively, to show that

(i) for each f(r) in '}la.(_.(H) , (ga_c.-F)(X) is zero /ﬁ—almost
everywhere on (-o,0).

(ii) for each ?()\) in Lf(O,ao) which is cero F-—almost everywnere on
(-o0,0) ,(g;‘c_ E)Xr) is in Ha.c (H).

If f(r) is in HAa.c. (H) and F(x) denotes (SFY(A) <chen by (1.4.16)

(E, - E) () = J'(o)b] ¥s(rX) F(X) dg(XN) = 0
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for all (a, ble (~c0,0] . Hence, using the surjective property of §'
proved in the Appendix, F (A)= O j-almost everywhere on (- oo ,01;
since (5, FYA) =E#)X0),(i) is established.
If F(X) is in Lf(o,oo) and is zero ;.;.'-almost everywhere on
- ad =
(-0,01], then «Eb - Eq)(sq.c_F)Xk)=O for every (a,bl € (~w, 0].
Hence the probability that a measurement of the total energy of a system
, . o -1 . .
in the state (Sn c F)Xr) will yield a value in (-, 0] is zero,
R .
and so (SQ.C'F)(r‘) is in '}La'c.(H‘) . We have now proved (ii).
(5.2.1) follows from (4.4.16), by (i).

The proof of the proposition is now complete.

L(L+1)

2
r

We remark that if we take V(r) = for each |, Proposition 5.1

applies also to Ho in each partial wave subspace. In general, ‘S'()‘) depends
both on the potential and on \.

We now state a result which will enable us to show that ys(r,x) is
bounded as r — oo . The proof is elementary and may be found in [T2], Chapter

V,(Lemma 5.2); see also [W] , Chapter I §1, III for a fuller account.

5.2 Gronwall's Inequality: Suppose g(r), h(r) 2 0, g(r) is continuous, and

h(r) is integrable on [R,e0) . If also there exists C in R*
such that
(rY ¢ C + [  g(s)h(s)ds
r + S
9 29

for all r in [R,e), then

q(r) € Ce.xp(_f; h(s)ds)

for all r in [R,®).

This enables us to prove that if the spectrum of H1 is singular, the

solution Ys (r, M) of Lu=2Xxu asymptotically approaches a solution

a -
of - i_u;.g Au as r-—y e for Lebesgue almost all A in (0, w).
dr
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5.3 Lemma: Let V(r) be in Ll[l,aﬂ and suppose the spectrum of Hl is
singular. Then yq (¢, 2} is defined, bounded on the r-interval

[ ,«’) , and converges pointwise to a function of the form

g(Msin('r)':r+6(M\ for Lebesgue almost all X » O.

Proof:

By (4.4.15), ys(r,}\) is defined on (0,®) whenever mgt(X\) exists as a

finite real limit; since the spectrum of H., is singular this is Lebesgue

1
almost everywhere on (0,®) by Corollary 2.7(ii), Lemma 2.13, and Theorem
2.12(1).

Using the variation of constants formula ([CLI Ch.3, Thm. 6.4),

ys(rj)\) = CO$ (ar)': (r‘—lﬂ +- m0(>‘) Sin('r;(r‘l))

Nx
Sinb/X(r=0) 17 o q (fR(p-MV(p) ys(psn) d
+ SRR [ cos (MR(p-M VI(p) y,(p,3) d
cosWR(r=IN ["gin (WX (=10 V(p) (5.2.4)
- RE P (p.2)d <.
NS _[ P Jsip P
for all r3»1 , and all A>0 for which y (r, ) is defined. For such r and A,

we have by Minkowski's inequality

.
lys (r A g 1 Mmeb L (T ey (pu 0 dp
{

NEN NBN
Tdentifying | + Imo N with ¢, V(I with h(r)
AN BN

and Iys(q>dl with g(r), it follows from Gronwall's Inequality that ¥ys(r, N
is a bounded function of r on [1l,w) for each fixed 220 for which ys(r,k)
is defined.

If we set

w ' -
s = 1 - 5'"3’;“’ D Vipyy, (p,A) dp (5.2.5)

and

T(N) = 23_(1). e ’_I_‘J’ cos (Vh (p=-1MV(p) y (p, M) dp (5.2.6)

VAN NS

we have from (5.2.:1)
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Ys (XY = BN cos (WR(r-1) + ¥(A) sin &N (r-1)

00 .
sin(ix(r-p))
‘jr P V(p) ys(p,A) dp (5.2.7)
DY
Since yq(r, M) is bounded for r3 | , and V(r) is integrable on [},0) it
is clear that the final term converges to zero as r— g . Thus as r = o

we have for Lebesgue almost all A > 0O
a 2 _‘i .
Yo (r M) = L@ + ¥200] 2 sin (VR r + S(2)

where

B (XY
TN

tan (SN + X)) = (5.2.8)

Setting 3:'0\\ = B*(NY + ¥*(N\), the lemma is proved.

We now show that the factor g(A) which occurs in Lemma 5.3 also
occurs in the derivative of the simplified spectral function £ (N

Lebesgue almost everywhere on (0, o0).

5.4 Lemma: If V(r) is in L, Ly ,oo) and the spectrum of H1 is singular
then
dg’ (N) !
——— —3
dA LUEYPNI-RI PN

for Lebesgue almost all A > O, where g(X\) is as in Lemma 5.3.

Proof:

With the given conditions,

da’(N) Im m g+ (X)
= 2
dA T'mo()\\-mpﬂ-(k)l
Lebesgue almost everywhere on (0O,®) by (4.3.10) and (4.4.14). Hence for
these A\, from (4.3.3) and (4.3.4)
da (A) l
L - -
dx I [o(A) + mp) o7+ [T, 00 + m, 0 T, (0]F)

where g, (N) )az(x),‘t‘. (N) ,TJM are as defined in (4.3.2). However,

by inspection of (4.3.2), (5.2.5) and (5.2.6) we see that
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o, (XY &+ m (N (N = 8N
TN & m (NYT,L(A) = ¥ (N

whenever m, (N) is defined; that is, Lebesgue almost everywhere on (0,®)
Since a’%)x):,s"()\)-l- ¥*(N) the desired relation follows, and the lemma is

proved.

If we define

a)
Ve (r,A) = Yol M (5.2.9)
g()\)
and
FIN)
g = 5 (™ (5.2.10)

for those A in (0,0) for which ys(r,)s) is defined, we see from Proposition

5.1 and Lemma 5.4 that each f(r) in )&a C(H) has the eigenfunction expansion

i w
feey = LEmo gy (e X)) BN dA 6211
© — 0o Jo s T ( )
where
Liim. [© (5.2.12)
¢()\) = w-ﬁoo _L_ vs(r,)\)'F(r) dr s Lo
o—->0
b N .
the limits being convergent in L, (0,o) and L, (0,) respectively,

where L: (0,o) is the Hilbert space of functions h(A) for which

© 2

j Ih(N]" —L — dx ¢ o
© T A

We observe that, from the isometric property of sa.c. (see Proposition 5.1),

(f: 1§ 1% ar )7 (I: l¢(M\zTr‘J'X dx)? (5.2.13)

Similarly from (5.2.3), if f(r) is in ‘Mq.c.(H) , 6: R C is a

Borel measurable function, and B(H)f(r) is in Lz(ol"") , then by
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Lemma 5.4, (5.2.9) and (5.2.10)

w
B(H)F(r) = Lim. 6 '
. S jo (N) v (r, A) B (N) e dA (5.2.14)

where the integral converges in L, (0, ),

As convenient, we shall use the formulation of Proposition 5.1 or
(5.2.11)-(5.2.14) above when deriving an explicit expression for the phase
shift. We shall sometimes also use a modified version of (5.2.11)-(5.2.14)

above, obtained by substituting A = k2.

§3. An explicit formula for the phase shift

The strategy we shall use in deriving an explicit formula for the
phase shift in a given partial wave subspace follows closely that of Green
and Lanford ([GR]). However, as we noted in $1, our class of potentials
contains elements whose behaviour at 0 is more singular than any considered
by these authors; consequently, we may not assume certain properties of the
solutions '{vs(r,x3'} which were conveniently utilised in their proof. For
example, we may not assume that vb(r,x) is bounded or even integrable on any
r-interval containing the origin, nor may we suppose that for fixed r, Ve (r,\)
is a continuous function of A . As it is frequently necessary to depart from
the methods of Green and Lanford, we consider it best to present our results
in full.

In this section, we shall prove the existence and completeness of the
wave operators under conditions (i) and (ii) of 81, and an explicit formula
for the phase shift will emerge incidentally. We note that the proof of the
existence of the wave operators is formally the same as that of asymptotic
completeness, the roles of H and Ho' and of free and scattering states, being
We shall not therefore give separate proofs for existence and com-

reversed.

pleteness, but merely indicate, when appropriate, the necessary adjustments

required in either case.

To give an indication of the method, we outline the stages of the proof
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for the case of asymptotic completeness. The idea is to 'find" for each
scattering state, the free states to which it converges at large positive and
negative times. The first step is to show that, if f(r) is in W, e (W)

2

and if we replace the solution \/s(r,)\) in the right hand side of

-iHE ; @ -iNE
£.0r) = e T Hr) = bim. L !
t T baw TTjoe Vs(rih) ¢(>\)~f£ oI (5.3.1)

by its pointwise asymptotic limit sin (SN r + AN then the resulting

b

expression, which we shall denote by gt(r), is well-defined, and ft(r) con-
verges strongly to ;t(r) at large positive and negative times. Now gt(r)
does not represent the time evolution of a free state; however it may be
expressed as the sum of two time dependent functions, one of which converges
strongly to a free state at large positive times and to zero at large negative
times, and the other to zero at large positive times and to a free state at
large negative times. Therefore ft(r) converges strongly to these free states
at large positive and negative times, and completeness follows from the
arbitrary choice of f(r). Note that these remarks refer to a fixed partial
wave subspace; the general results will follow quite simply once the particular
results for each subspace are established.

We follow the procedure outlined above, and note that (5.3.1) follows

from (5.2.14), and that v (r, X} = sin(WXr +8(X) as r— o by (5.2.9)

and Lemma 5.3. For f(r) in 'Jfla’c_(H) define FtN (r) = (Eg - Eo)Ft_(r‘) ,

where ft(r) = e_lHt f(r); by (5.2.14)
N it
_ 3 L (5.3.2)
Fut = L[ e vt 00 = 9
Replacing vs(r))\) by sin (NXRr «+ SO , we obtain:
5.5 Lemma : For each fixed N and t,

N =ixt | 1
R — dA
Fon(r) = L]0 e sin (X e v 8D g0
is in Lz (0, o) and {{?tN (")} converges uniformly over t as N — o

in the topology of L, (0, 00).



149

Proof:

[~}

£,(r) = ]N‘i'\t'ﬁ SN g(n) L d
entr) = o & sindA r cos ¢>\E A

L

T
N 1) .

+1‘T—jo e tcos,ﬁ:r smo'(%)¢(>s)%)_\; dX (5.3.3)

Using the theory of Chapter I1I, 84, especially (2.4.1) - (2.4.4), we

. s c e
see that if Ho and Ho are the self-adjoint operators arising from

d*ulr, )

- 1. = Aulr,X) with boundary conditions « =0 and « =3_;_l‘
r
respectively (see (2.3.9)), then the associated spectral functions satisfy
S c
dps (M) _ NN and 9P (M - L respectively for N >0 , and
d X SN dx VAN
u,(rx,0) = Sind A ¢ , u,(r,)\,ﬂ) = cos¥Ar. Since, by (5.2.13),
NN z
N 2 0o 2
N XONN ' dX\ g £~ dr ¢
JO TiA ‘Io
S
cos SOV BN ang  sin SN BN are in Lfo (0,®) and

PN

L:oc(on) respectively. Hence by (2.4.3) and (2.4.5) there exist functions

. S [A .
hs(r) and hc(r) in ?\Q.C'(Ho) = Lz(O,w) and H, . (H) respectively such

[}

that

L)

s e —VHE \ (N ~ixt
(Ej-ENe ° hgn=2X['e

. i
o sinaxr wsé(k3¢()\):’;—x dx (5.3.4)

< -1HEE N Ak .
(E, —E:)e, He ho(r)= #fe e " cosdnr eindS(N) ¢NJ|—X dx (5.3.5)
c
where {E;} C{ESS are the spectral families of HOS and H * respect-

ively. It follows from (5.3.3) that

L, Y s Hhtr)l + fh ()

where § - 1 denotes the Lz(o,oo) norm; hence FtN(r) is in Lz(O,oo)

for each fixed N and t. Moreover, by (5.3.3),(5.3.4) and (5.3.5),
3 s E° —E5ye ot (v BES-ES)e Mot n (ol
llFtN(r) -Fw(r\ll s NE - nr s N Em c

; -iHSE, _ ¢ e
= |l e—'H:t(E:—E:‘)hs(r)ll + le o (Eg-EL )R

= I(EZ-EZ )V hg ()l + T(E - EQVhir)I
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Q
for all t. Since s.lim. ENS, ENc = I, we conclude that {FtN(r) ¥ con-

verges uniformly over t as N—= o in the topology of Lz(O, ®©).

This completes the proof of the lemma.

° . °o
It follows from Lemma 5.5 that Fk(r) = Liem, £ (r) is well-defined

N = oo EN

and in Lz (O,cn) for each t. We shall now show that ft(r) converges

o
strongly to ft(r) at large positive and negative times.

5.6 Lemma:

With the notation of Lemma 5.5,

G g () - f() 0 = 0
lel = o©

where ft (ry = Ftrq(r) for each t.

L.i.m.
N = o0

Proof':

It is sufficient to show that

(1) Um [ e ()1 dr = 0
Ikl 5> YO

for all P such that 0 < P < o .

(i) lim [P £ ()% dr =0
t
let 90 ©

for all P such that 0 ¢ P ¢ o©

00 -3
(111)  Lm j | £,() = £, dr = 0
P> P

uniformly with respect to t.

Proof of (i):

Let P in RY be fixed.

We may define the Dirichlet operator Hd to be the direct sum of Hp and

. . . . . ]
H, ,» where H and H  are self-adjoint operators arising from L in L2(O.PJ

and L2[P,a:) respectively ([N] 824). We write

Hy = H, @ Hg

Note that the domains of Hp and H_ are restricted by boundary conditions at

r = P, and that if L is 1imit circle at r = O a further cond: tion at O is
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required in the case of Hp. Irrespective of the boundary conditions which
are chosen to fix Hp uniquely, the spectrum of Hp is singular owing to the
conditions imposed on V(r).

We shall use the Trace Theorem ([RSIThm. XI. 9) to show that the wave

operators
_Q.._,_. £ ot e e Ma.c'(H) (5.3.6)
* ~ i - H t
S'L . lHt ] d
Py -t—».*_tnao ¢ € Ma.c (Hy) (5.3.7)

exist and deduce that ft(r) converges strongly to a state whose support is
outside of [0,P].
We first show that ((H+i)_l - (Hd +i)_1) is a trace class operator.

Let h(r) be in L2(O¢n). Then there exist gl(r), g2(r) in L_(0, )

2
such that g (r) = (H+1)~T h(r) and g,(r) = (Hd+i)-l h(r). Hence

((H+i)7 = (Hy+ D)) hirm) = g, (rF) = g,(r)
and, since gl(r‘) is in ®(H), gz(r‘) is in O (H}),
2
(_Ji_ + V(PR + V) 9|h~) = (H+i )9‘(r)

dr?
d” : (Hyw i)
(- ppe + Vir) + i) g (r) = ar )9 (r)

It follows that

2
(‘;f‘a + V) + i ){g,(m) = gy(r)) = h(r) - h(r) = 0
r

so that
- | . -
g, tr) - g, () ((H+i) - (Hd-i-l) Jh(r) = g,(r) - g,(r), hire L,(0,0) }
is a subspace of {1 = Lz(O,aa) whose dimension cannot be greater than 4.
That is, ((H+i)-'1 - (Hd+i)-l) is an operator with rank less than or equal

to 4, so is of trace class.

It is now immediate by the Trace Theorem that the wave operators

(5.3.6) and (5.3.7) exist.

Let {Ex(H)}- { E%(Hd)} denote the spectral families of H and H,

respectively.



Since f(r) is in }(a_.c_(H) , € Fte), EL(H) F(r) > is an absolutely

continuous function of X\ ; moreover, since the wave operators above exist,

(see [KA] Ch.X, proof of Thm. 3.2). It follows that

b 4
<‘F(r\,(.ﬂ.t E, (HDY L ) (f0r)) > and, equivalently,
< (.ﬂ..,_. £(r)) E (Hd)("n't £(r)) > are absolutely continuous
functions of A, so that fL, f(r)is in H_ . (H,) ([KA] ch X, §2).

This implies as we now show, that f(r), evolving under H, is evanescent
in [0,P] (for terminology, see [APW]).

Let g(r) be in U, _ (H).

Now g(r‘) = { ap(r) - P (r)} , where gp(r) is in L2(O,P] and

g (r) is in L (P,0); moreover,

2
Ey(H ) = E,(H,) @ E,(H,)
Hence
<{g,(r), g (r)} , (E, (Hp) @ E, (HoN{g,(r), gty
= €g,(r), Ey(Hp) gp(r)> + < g, (r), Ef (H ) g (r) >
= | EA (Hp) gp(m)ll + T EL(H) g ()l
is an absolutely continuous function of A . Since the sum of two positive
functions can only be absolutely continuous if each is absolutely continuous,
we deduce that < SP(r)’Ek( HP)gP(r)) is an absolutely continuous function of
A , so that gp(r‘) is in }ta.c.(HP)‘

However, the spectrum of Hp is singular, so that }{mc. (Hp) = @

and consequently gp(r) = 0 Lebesque almost everywhere on [O,P] .

Thus if g(r) is in }(a.c. (Hd) , g(r) has no support in {0,P].
From our earlier remarks, since f(r) is in H, . (H), fL+ £(r)

. + . .
exist and are in H, . (Hy) . Hence there exist g-(r) with no support
in [0,P] such that

. . - +

t 92+t

or, equivalently, such that



. -1H,t
Lim H‘Ft(r) - e ' gt(r) Il =0
t=2>rXw

Hence

l( P ';Hdt + 2
t—-)mtoojol-F"(r) - e gt(mi*ar =0

which implies, since gi(r) have no support in [O,P],
; P
Lim J [, dr = 0
t =2 two Yo

as was to be proved.

Proof of (ii):

We first use the Riemann-Lebesgue Lemma to show that

Lim J‘P Ift

" N(r')lz dr = 0
>w Vo

for fixed P in RT,

Now sin (W™ r + S(x)) @ (XN _'J_.: is integrable with respect to A
PN

on [O,N] for each N € IRY and each r in (0,0); to see this note that

by (5.2.10) and Lemma 5.4

N —~
—‘-f” 1B O 4y = [ 1g Fonl ' dx
T o A o TSR g* (XN

= [T g Foul dg
o]

N

N ~oNI ([N EOO st
(jo g*(\) dg(\)) (L IEOIN da(n)

&

by

(1"1: ION J—Lf dx)* (5.3.8)

Hence f__ (r) converges pointwise to zero as It| — © for each

tN
fixed N in IR™, by the Riemann-Lebesgue Lemma ([HSI 16.36, 16.37). Since

for all r in (0, 0)

3 a | N g O
,‘FbN(l’)l S F jo -——J./\:—' di

< 28 peee? (5.3.9)
k1

by (5.3.8), we may use the Lebesgue Dominated Convergence Theorem to conclude



that

. P
Lim j' H:tN(r\ 1* dr = ©

el = oo ~O (5.3.10)

for all N in RYand all P such that 0 < P < o .

Now, if &£y 0 is given, there exists NE such that
P o 2 p o X P, ° ° 2 1
(jo [0 e = [T P ae) T ¢ (fTHF - 1 Tae )T
< "'Ft(r') - ":L_N(r')”

< &

for N >N£, since the L2(O,oo) convergence of {'Ft:N(")} to ft(r') is

uniform over t. It follows from (5.3.10) and the arbitrariness of ¢

that

Um jp

I-Ft(r\ll dr = 0
el > @ °

as required.

Proof of (iii):

We first show that for each fixed n in R7Y

I

P

lftn (r') - -Ftn(r')l;dl"
converges uniformly over t to 0 as P , where
PN |
£ (r) = f,/n e Va0 pOv L
Ftn(r) = Jn e.-mt sin (Nh r + S(XY) ¢(>‘\-'__6\_ dX\

'/n

We use the fact that V(r) = O(r-(Hm) as r—> ®© to show that

lFtn(r\ - ‘Ftn(r)l" 2 O(r "8 as r > oo .

Now by (5.2.9), (5.2.10) and Lemma 5.4
° nooSiat . ~ - 2
[£,, () —‘Ftn(r‘)lz = ('[Vn e (ys(r,2) = gIx) sin (W r + 40N FIXNYdg (N N

¢ ([T Iygte ) = g sin (X e + SGO) Fooldzo)”
T4
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N

n o~ n
¢ (J, FOOTEoM ], 1y,r,n) = 900 sin WRr + SONI 450)

<

n
¢ If) (J‘ Lys(r, X)) = g sin(dX e+ SONPAE (M) (5.3.11)
%

n

From the proof of Lemma 5.3, in particular (5.2.7),

ys(rA) = g(A) sin(WXr + &) - [ SInAX (r-p)

Vip) ys (r, pYdp
r JK S P

Hence
n 2

In, Lys (e, x) = g(X) sin (Wh e + SOIONIT dS(N)
n

< nf'/: | 7 sin (R (r=pN VIp) yg (rpdp I " dF ()

Since V(p) = O(p‘“*ex) as p—roo , sin(JA(r-p))Vip)

is in L2(O,oo) for each fixed r » 1. Hence if we define

6‘”’\ (J;\-(P—P))V(P) P)r
he (p) = {
(o]

p&sr
then

J-roo sin (ﬂ_(r—P)) V(p) yg (r,p)dp = (S h. )X

L

for each r» 1, where S is the transform of Theorem 4.9. Consequently, by

Theorem 4.9,

n 0 .
Il/n ljr sin (X (r=pW V(p) ys(r, pYdp " d3(N)

e [T 17 sin (R (r-p VI(p) ys(r,p)dp IF dF 1N
-0 r

o0 2
= jo | h(p)1" dp

IN

j:o ( V(p))z dp
0 (r-(l*-E\)

i

as r - oo . Using this result in (5.3.11), we see that, as r — o

l{:tn(r] - 'Ehm(r)l2 ) (r-(l*!))

. . +
uniformly over t. Consequently for each fixed n in R™,

%) o a
jP |\ctn (r) - fbn(rﬂ dr (5.3.12)
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converges uniformly over t to 0 as P = .

We now deduce (iii).

s c
Let Ho and Ho be the self-adjoint operators described in Lemma 5.5,

) < . .
and let {E'\} and {Ex} denote their respective spectral families. Let {E%}

denote the spectral family of H, and E(n), Es(n), Ec(n) denote (E - T=_ ),
n

1
n
s c c i
- El } and (En - Ei } respectively.
n n

s
(E_

Proceeding as in Lemma 5.5, we have for all t and n
-] ° L 0 . 2 L
(180 = Fe T ae)® - (J7 14, () = £ (r) 7)™
¢ ([ 10F00m) - F ) - (F f (N1t dr )R
< . gr) - En(r) - L (r) - Fen(r) | dr

¢ NE g - f 0l + 1F () - £, (n]
. - ,$ cgc
< HI-Ee) e 5l + MI-Exnde S hnll + MI-ENe o h (rl

. . S c
Since f(r), hs(r), hc(r) are in H, . (H) , }4q_g(k4°) and }4Q‘C.(Ho)
respectively, each of the terms in the final right hand side converges to

zero as v = o . From this result and (5.3.12) it follows that

. «© e 2
Lim JP l‘Fb(r) -Ft(r)l dr = O

P— o

uniformly with respect to t, as required.

This completes the proof of (iii), and hence the lemma.

With the notation of Lemma 5.5,

FeN(” - {::N(‘.) + ;E‘N(r) (5.3.13)
where
° ¥ N _iatk 2i(Xr-T 40 o
o s L I P HET B g

Moreover, reasoning as in Lemma 5.5, we see that
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+ . ° ¢
fo (e = Limo £ = ()
t N = o N
° 4
exist and are in L2(O,d9), and that the convergence of { fg; ()} to

-]

+
fé‘(r3 is uniform over t. Hence, for sufficiently large N.

I {:‘:(r) —fh*;l(r) o, *Ft" (r) - ‘E{N(r\ll and | {‘l‘t(r) - 'EtN('—)"

are arbitrarily small for all t. Therefore, from
1€, 00 - £ - £ D = T h ) = £.5 () = £, ()]
¢ WF Y = F 0+ B FFm - F AN+ BETC - £ (V]

~

and (5.3.13), it follows that for each t

'Ft-.(ﬂ = F () + £ () (5.3.15)

Lebesgue almost everywhere on (0, ).
- -]
We now show that ft(r) converges strongly to f;r(r) at large positive

°_
times and to ft (r) at large negative times.

(-]

5.7 Lemma: tli;“:ao i {t (r) - ‘Fti (PrYll =0 where

: i N =i ti T+ SN
-Ftr(,-)= Li.m, L_I ekte"'»(.b?r T + (%)

= dx
N> 2T Yy A

oy

Proof:

It is sufficient to prove that

Lim Il E ;'(r)'|:= 0
E= +too t

on account of (5.3.15); we first show that

im e (1 = O

t >+

2 _ - ' .
It is convenient to substitute X =K in the expression for ft (r); this

gives
1/7.

° N . - 2
£ (r) = Lim. _L_S e"kr e ke ¢(k1) e
t Naow T Y

- LR 3
(&(k™) 7-)dl<

Using the theory of Fourier transforms, we shall prove that for each € > 0

N
there exists a step function X2 diX-‘ with compact support in (0, )

.
1 =

for which



e KT TIKE (gt iSO Z X)) di | dr )
I =

€
< =
3 (5.3.16)

°-
IlFtN(r)u may then be approximated with arbitrary precision by a finite

sum of time dependent functions; we complete the proof using the Riemann-

Lebesgue Lemma to show that each function in this sum converges to zero as

t o .

Now by (5.2.13),

o0 2y =1 (SN -T )2 L [® 2 2
j0|¢(k)e 2| dk=-2-fo lp I Ly = LIEOIT < o

Hence, since the step functions are dense in L, (0, o) ([HS],Thm.13.23),

we may deduce that if e>0 1is given, there exists a > 0 and a step function

n
z a_)(i , which vanishes outside [a,b] for some b » a, such that
i=y) !
o _ 2 T n 2 I
([Z1gadye 20 7 Lo 1Pdk)? ¢ & (5.3.17)
o] i=1 ! ! 3
We now derive (5.3.16).
y
Let N in IR be such that b< N * < oo . From (5.3.14),
V/ . 2 T
o N 2 . kzt —;(J(k )"—‘)
- | ~-ikr = 2 2
Fen(r) = T Jo e e P () e dk (5.3.18)

L2 . T
-1kt - {8k~ L) :
Now ¢ 'k ¢(kz)e (8 2 is both integrable and square integrable on

.
(O,Né) (cf.(5.3.8) and (5.3.9)). Hence, defining

¢(kz) on (O,Nyz)

¢ (kD = {

o) otherwise
it follows that
- 1 _: k‘l)__T_‘l: N
T [¢ (ke (8¢ )5 o« X ] (5.3.19)
N i=1 1
is in L, (0,0) N L, (0, =) so that

N oo L (SN -Ty o
LJ‘N e-nkre—ukt[qu(kz)el 2 _Zd;’x;] dk
™ Yo

i=1



1

n
O

A
is the Fourier transform FtN(r) of (5.3.19). Hence, by the isometric

property of Fourier transforms ([HS] 21.%2), and (5.3.17),

A

00 I 1 o l
(Io ,‘FtN(erdr\Z < (J-d) IFtN(erdr)i

® -kt 2y -1 (8 -T n L

=1 lg ey D 2)-_§lugxl-]|zdk)‘

I/:_ . k3 |
(Mg STEROD 5 L 1K) E
0

l:t

© HEICHEE n 2 i
([Z1 g0t ")-_Z,ot;X-,ldk)"
I =
< &
3

which proves (5.3.16). It follows from (5.3.16) and (5.3.18) that

=\

° _ 4 -ikr —l c
ES el e ([T " e™ ™2 X akl®an)E
o (o}

( J. | Z oL - I -.kr e-;ktt dk ‘1dr )%‘ +

i=1

< é.llo(-,l (fo f "kr -Ikt

dk \z dr)a + %
(5.3.20)

where we note that Xi is the characteristic function of the interval Ii'

We now show that each of the finite collection of terms of the form

- o a 1
boc, | (.f IJ T kT g ) (5.3.21)

converges to zero as t = + .

Consider the ith term and suppose Ii = (a. ’bi)° From our construction

of |Z' o X , a; 3 a> 0.
. 2
Now, since A = k', .
—ikr -ik't bi  _ixt c-iv'xr
f e e dk = J . e - . dX
I a; 2N
—idX e is i i ( 2b2)fr‘eachr'in
and e is integrable with respect to A on a, ,b, o
2N .
-xkr‘ . tdklz
(0O,0). Hence, by the Riemann-Lebesgue Lemma, l_[. e

converges pointwise to zero.
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Moreover, using integration by parts,

-ikr -ik?t b; )
1f e Takl = | ! d_exp(-i(kr+ k') di |
I, a; -i(r+2kt) dk
- bf b;
= | [ — =l exp(-i(kr+ k‘t))] -J "2 axplilkr - k) dk
i (r+2kt) . a; i(r+2kt)?
l \ bi 2t
S S T N SR
r+ 2b;t F+ 2a;t  ‘a; (r+ 2kt)?
¢ S5
r+ 2at
. TS
Hence for t 21 II KT e RTE i )? is dominated by (___3__..)1
I r+2a

which is in L,(0, o) and so by the Lebesgue Dominated Convergence Theorem
(5.3.21) converges to zero as t — o for each i = 1,...,n.

It follows from (5.3.20) that there exists T » 0 such that for all

N > b2

Il Ft; (Pl < 7L3§ (5.3.22)

whenever t > T.

o

1Y ° -
Since £ (r) = Li.m. ¢ (r) for each t, there exists N_,
t tN t
N -9 x

depending on t, such that, whenever N > Nt’

&

€2y - {;t;(r) I < (5.3.23)

2 . o
Hence for each t > T, we may choose N > max {b ,Nt}, so that the inequalities

in (5.3.22) and (5.3.23) both hold, giving

e (r)l < &

The arbitrariness of € implies Lim | Fé-(f)u =0 ; similarly,
o tay+®
Lim H-F:'(r)ll =0 and the lemma is proved.

t 5 -

It is not hard to see that Lemmas 5.3 - 5.7 also apply in the case of
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the free Hamiltonian in each partial wave subspace. For a fixed parzial wave
subspace we take V(r) = [(l+1), and, to distinguish the results for H from
—_— o}
r ~
~ -]
those of H, denote by g, (Xx) , do (N v P o (N, ys.o(r,x) ' Vs, 0 (r,N) Sa‘c.
the analogues of g(A), §(X), (XY, y (r,X\), vg(r,A\) and 8. . respectively.
Note that, with the proviso that a suitable boundary condition at O be

chosen in the case L = 0, }{a.c_.(Ho\ = L,(0,0) in each partial wave sub-

space. Hence, if g(r) is in L, (0, ),

. 2 ~
g(r) = wl‘_';m“; Vs olr XY G (X)) dg, (N
o H

where

G Liim g
- ." -
Goo‘) = oL Jo_ Js,0 (r,)Js(r) dar

the integrals being convergent in L,. (O,ao) and L:o (O, ©) respectively.

Bearing in mind the comments preceding Theorem 4.10, and the fact that
absolutely continuous spectrum is preserved under a change of boundary con-
dition (see Theorem 2.21), we note that conditions (i) and (ii) of §1, are
equivalent to the hypothesis of the following theorem:

5.8 Theorem: Let V(r) be in L_{a,o) for each a » 0, and suppose there

1!

exists a finite interval (O,b] and a self-adjoint operator Hb
arising from L in L2(O,b] whose spectrum is purely singular. Then the wave

operators exist and are complete.

Proof:

It is sufficient to prove:

(i) If g(r) in Lz(O,oo) is given, then -Fr(r) exist in }(o_c_(H\

such that

: -1 -iHt _ +

Lim | e 'H°t3(r) - e H £-(Y =0

t-otow
(i1) If f(r) in H{_ _(H) 1is given, then 9*—' (r) exist in L, (0, )
such that
: -1 ~1HE
Lim “C.'H"tg:(r-) - e f(~)l 2 O

t 2T
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Proof of (i):

Let g(r) in L ,(0,0) be given.
Then by (5.2.14)
: I
= ° = dem. L L
Jelr) = 9(r) w—> ® 'IT'SO & Vs (N ¢°(>\3JX d>‘(5.3.241)

where ¢o()\§ Gy (M) . Moreover

o t(r) . J_-j‘“’ e_i)«t e‘l‘(ﬂr-1{+5°(>\\)¢ () L d
9 e T w— e 2T o e N5y
is well-defined (cf. Lemma 5.5), and by Lemma 5.6

Lim

£ o * ! 3t(r‘) - 5;(:-)“ = 0

(5.3.25)

We now show that there exist states f(r) and h(r) in H (H) such

a.c.

that with the notation of Lemma 5.6 . (r) = ét'(r) , H:(r‘) = é:(r'§.

Applying Lemma 5.4 in respect of H and HO,

© ~ i (SN =80 ]2
° go(N)
° 9o (N TVR g* (™)
© & (0l
=j‘ 4 >‘) | d)\
© T JX gq (N)
:j‘” | Gy (N1 daL(n)
(o)
= ns(r)uz (5.3.26)
so the functions
~ ti (SN =8, (\)
g(x) &0 et )
QO(A)
are in Lf(O,m) . Hence by Proposition 5.1, (in particular, by the

~

surjective property of S _ . )there exist f(r), h(r) in M, . (H) such that

~ ~ FilSN) = 6,0
(S,.£)MN) = 3 G (A e (5.3.27)

g,(N)

- ~ =i (5N = S (X))
(5., w)MX) = g\ GolX) e (5.3.28)

9o (N
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Evidently by (5.2.14) and (5.3.27)

Fotr) = 7'M £y

@ _iat +i (SN =8, (»))

Lim. e T Tva(rA) B (A e T da
RPN

w— oo T P}

so that with the notation of Lemma 5.6,
-]

- _ li.m. v W _ixt -iWxr =T+ 800 + i (dON =S, (0
Foeey = Lim WJO e e 3 BN\ e J_%\__ax
= é; (f')
Hence by Lemma 5.6
. -tHt ° -
Lim e ' £ - St(r)n =0
t 9 -

and, similarly,
Lim 0 e";Ht

hir) - a7 () =
E D o ) 9. (r) 0

Setting f (r) = f(r), £ (r) = h(r), the result (i) follows from (5.3.25).

Proof of (ii):

The method of proof is identical to that of (i); we note that in this
case the surjective nature of the transformation S:C from }la.c‘(Ho) =L,(0,®)

onto LZP° (O, ) ensures that the elements g-t(r) exist.

The proof of the theorem is now complete.

Using the proof of Theorem 5.8 we may deduce explicit formulae for the
wave and scattering operators in each partial wave subspace. We remark that,
in general, 3()‘) , SO(X), ’Sva.c‘ , g:_c' etc. are dependent on the decompo-
sition point used in the simplification of the Weyl-Kodaira Theorem; we chose
this point, arbitrarily, to be r = 1. However, for almost all A in (0, ®),
ys(ry)ﬁ) is, as a function of r, uniquely defined up to a multiplicative
constant; therefore, since y_(r,A) = S(X)Sin (WNer+d(N)) as row

by Lemma 5.2, &(A)(and similarly 6°(A) ) is independent of the decomposition

point. With this in mind, we have

5.9 Theorem: With the hypothesis of Theorem 5.8
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r18,(M
~o - (x) ~
0. - e q
t - (So.c.) '!’.('J()\) so.c.
e go (M)
~o =1 21 (8N =S, () z,
s = (Sa.c.) e Soc

Proof:

If g(r) is in L, (0, ) = }{a.c‘(Ho) we have from Theorem 5.8(i),(5.3.27)
and (5.3.28),

fLxgle) = ts_’:'i:" et e.-iH°t gir)
L o
= f¥(e
~ -] - |6°(A) ~
= (58,.) (° _ g (™ Gom)
e 1IN o (X)
s - r &,(N) ~
=(ch)l(e ot gIN (T 3)()\))
et W-P 9! go() a-c.
-]
Similarly, if f(r) is in M _(H),
_Q_* 'F s. lLim .‘Hot -1 HE
I (r') = . 'l'.w e e 'F(r)
~o - T idN) ~
= (SG-C.) l(e . 9°(>‘) (SG-C.'F)(A))
ei‘tJo()s\g“\)

and so

x ~ - { - ~ o
S = Q_._ﬂ = ( s ) | 2‘(6()\) JO(X)) 5

e Q.c.

as required.

This completes the proof of the theorem.

It is straightforward to check that the wave operators are isometric
(see, for example, (5.3.26)), and that the scattering operator is unitary

From the definition in 81, we see from Theorem 5.9 that the partial

wave phase shift is

(8(XN) = 8,20

where 8(M)is defined by

tan (SN + TX) = BN
¥(XN)

(5.3.29)
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N

B (X) and ¥ (X) being as in (5.2.5) and (5.2.6) respectively. Defining
,80(%) , ¥, (XY in a similar way to AIX), Y (X)) with Mgy o (XY, ys,o(")‘)'

l(l*;') in place of m (\), ys(r,X\) and V(r) respectively,
r

tan (§,(A) +4X) = Bo(N) (5.3.30)
o lXN)

Hence the partial wave phase shift is given by

(6(NY = 8,(N)) = tan™ (NM o (XN = Bo(X) XX >
Bo (X BN + ¥ (N) ¥ (XN)

Provided conditions (i) and (ii) of 81 are satisfied in each parctial
wave subspace, the existence and completeness of the wave operators for the
full three dimensional problem is now immediate from Theorem 5.9.
Therefore, indicating the l-dependence of d(X) , &, (\) by JS(x,L)
and 60 (X, L) respectively, we have the following formulations of the S-
matrix and of the scattering amplitude from (5.1.8) and (5.1.9)

SIXN) = Z exp(2i(8(x L) = &,(x,1)

L, m

FiN: @ > w )= 2"—[; EC (20 D(expl2i (80,0 = 8,0, N]-1) P @

Our result includes that of Green and Lanford and significantly extends
the class of potentials considered by them. We note that it may be possible
to relax the condition on the potential at infinity so as to include all
potentials which are in Ll [a,oo) for each a > 0. This has been achieved
by Kuroda for the class of potentials satisfying Green and Lanford's conditions

at 0. ([KUZ] ). It is certainly possible to weaken the condition at infinicy

SO as to include all potentials for which

w® 2
L_ P [V(p)] dp < o (5.3.31)

for r > 0. To see this, note that (5.3.31) implies that

(™[ vplapar = [T Ivealee] v [T e vl
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oo
< ka p[\/(p)]zdp < w

where we have used integration by parts. This is sufficient to ensure the
validity of (5.3.12), and hence of Lemma 5.6.
We observe that our proof of the sufficiency of the condition
~{1+&) . . .
Yir) = O(r ) is considerably simpler than that of Green and Lanford

(see [GR] 81IV).

$4. An example of discontinuous scattering amplitude where the

theory is asymptotically complete

It is known that in many cases where the wave operators exist and are
complete, the scattering amplitude is a continuous function of the energy
(see, for example, [AJS] Prop.11.16, [ D] [LE]). The question arises
whether this is true whenever the wave operators exist and are complete.

We must first consider what we mean by continuity in this context. From
our proofs in §8 2 and 3 it will be seen that for each {, S‘_(X) =
exp (2i(8(\)-6,(N\)) is defined for those X 70 for which m _+(x,l) and
mo,é‘- (M,L) exist as finite real limits. However, since each such St(x)
is unitarily equivalent to the scattering operator in a given partial wave
subspace, the Sl(>J we have considered is, strictly speaking, a particular
representative of an equivalence class of functions under the norm
(I:o |- lz_};l/fdk)v.zTo enquire whether, for a given \, Sl()x) is a continuous

r
function of A is more precisely, therefore, to enquire whether the equivalence
class containing Sl()\\ contains a continuous function.

Now the scattering amplitude (5.1.9) can only be a continuous function
of energy if each term

(2L+ 1S (N - 1) P (w . @,)
is a continuous function of A, so in order to establish discontinuity of
the scattering amplitude, it is sufficient to prove that just one of the
terms Sl()\) is not continuous.

In this section we use the inverse method of Gel'fand and Levitan to
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show that a potential exists for which the equivalence class containing SO(A)
does not contain a continuous function although the wave operators exist and are
complete.

The following definitions will be of assistance when describing and

assessing our findings.

5.10 Definitions:

(i) A function F>(x) , defined Lebesgue almost everywhere on a subset D of R

is said to be extendably continuous on D if there exists a function :l(x)

which is everywhere continuous on D such that p(X) = q(x) whenever p(\)
is defined.
(i1) A function p(A) , defined Lebesgue almost everywhere on a subset D of IR

is said to be essentially continuous on D if there exists a subset E of D

having Lebesgue measure zero such that the restriction of p(X\) to D\E is
extendably continuous on D.

(iii) A set is said to be nowhere connected if it contains no connected subsets.

Clearly extendable continuity implies essential continuity, and a subset
of IR is nowhere connected if and only if it contains no intervals.

In Example 5.12, the behaviour of the potential in a neighbourhood of O
is such that SO(A) is defined on a domain which is nowhere connected in [0,1],
but which nevertheless contains almost all the points of [0,1], and, as we
shall show, SO(A) is not essentially continuous on [0,1]. First, however we
establish that a class of potentials exists for which the spectrum of H1 is

bounded and is dense singular on [0,1].

5.11 Lemma: Let p(A\) be a real monotonically increasing function on IR with the
following properties:
(1) P(O\a 0

(i1) P(x) is discontinuous at each point of a countable dense subset of [0,1],
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at each of the points AN, = (Trn)" and at Ao = =1 ; these are the only

discontinuities of p(XN) .

(i11) p X +) = p(X =) =2

(iv) Pa.c. () = Ioa.c.(-°°) ’ ,as.c.(ao) = Ps.c.('“)

Then there exists a potential s(r) on (0,1] such that p(\)}is the spectral

function of one of the self-adjoint operators arising from i 5:23 + G(r) in
dr2

L2(0,1], r = 1 being a regular endpoint.

Proof:

We adapt the inverse method of Gel'fand and Levitan who consider the
inverse problem on a finite interval [0,l) with a boundary condition at O
([GL] §10). We wish to consider the inverse problem on the interval (0,1]
with a boundary condition at 1, so shall make use of the transformation

8 = 1-r which maps the r-interval (0,1] onto the s-interval [0,1). Since

[ ]
d- =4~ , for given V(r) the equation

1

— ulr,)) Vir) ulr,Z) = A ulr,N) (5.4.1)

1, u'(1,k) = h transforms to

with boundary conditions u(1,\)

a

=5 Xs,0) + VIsYTls,A) = NU(s,)\) (5.4.2)
)

with boundary condition u(0,A) = 1, ﬁ’(O,x) = -h where v(s) = 6(1—3), U(s,A) =
u(1-s,A); similarly (5.4.2) transforms to (5.4.1) using the substitution r = 1-s.
It is not hard to see, using Theorem 3.21, that the self-adjoint operators
§1 and E1 associated with (5.4.1) and (5.4.2) and their respective boundary
conditions have the same spectra; for the existence or otherwise of a certain
type of solution of (5.4.1) at each point A is not affected by our transform-
ation. (Note that, as it stands, Theorem 3.21 applies to the r-interval (0,m™),
0 being a regular endpoint; however, it may be modified in the obvious way to

apply to each of the intervals [0,1) and (0,1], with O and 1 respectively

being regular endpoints).
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(-]
Thus if A is an eigenvalue of H1, with corresponding eigenvector u (r,)\),

then A is also an eigenvalue of ﬁ1 with corresponding eigenvector u (s , N)

and conversely. Moreover,

! 2 ! 2
I bu (e, XY de = Io luli-5, N\l ds = Sol Fd (s, 2N)1" ds

0

so that the norms of these eigenvectors are equal for the same eigenvalueX .
Now suppose that T(A) is a monotonically increasing saltus function which

~ ~
is known to be the spectral function of H, for some potential V(s) and some

1
~ -] /] ~
h in IR ; then Y(A) is also the spectral function of H1 for V(r) = V(1-r)

with boundary condition h = -h. To see this, note that since T (M) is a saltus

~e

function, the spectrum of H1 consists solely of eigenvalues and their accumu-

lation points. By our remarks above, the spectrum of H1 consists of the same

eigenvalues and accumulation points; moreover, the "jump" in the spectral

o ~

functions H1 and H1

measure at an eigenvalue is the square of the inverse of the corresponding

will be the same at each eigenvalue, since the spectral

eigenvector ([GL] p.253). The relationship between the boundary conditions of
;11 and ﬁ,l is a consequence of the relationship between \7’(1’) and G(r), as
indicated above.

Therefore to show that the function p(A\) in the hypothesis is the spec-
tral function of some ﬁ1, we need only show that there exists a potential G(s)

and an h in R such that p(N) 1is the spectral function of the corresponding

operator §1. Sufficient conditions for this to be the case are as follows

(see [GL] §10.2):

(1) For each s < 2, the integral

0
J cosh A\ls dp(k)

- ®
exists. (Note that the upper limit of integration differs from that given in
[GL]1§10, which appears to us to be in error (cf. [GL] §54)).

(2) If o(N) = ,o()s\ - -%_—JT for N 2 0 , the function

a(s) = S‘w E’-%_)‘—s- do (\)

has a continuous fourth derivative if 0 € s € 2.
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We note, firstly, that the existence or otherwise of the integral in (1)
is independent of the behaviour of‘p(x\ in any finite interval, and, secondly,
that the existence or otherwise of a continuous fourth derivative of a(s) on
[0,2] is independent of the behaviour of p(X) on (-ew,1]. Therefore, provided
p(N) is chosen suitably for A > ! , and has an infinite set of points of
increase on some finite interval ([GL]§54,10), it may be otherwise arbitrarily
chosen on any finite interval whose right hand endpoint is 1, and be constant
on (-w,c] for some ¢ < 1. That conditions (ii)-(iv) of the hypothesis are
sufficient to ensure suitable behaviour of p(X\) for A > 1 , so that (1) and (2)
above are satisfied, follows from the discussion in [GL] 811; this concludes

the proof of the lemma.

We remark that the asymptotic behaviour as AN 90 of a function P(x\ satis-
fying conditions (i)-(iv) of Lemma 5.11 is such that h ¢ o (cf. [GL], loc.cit.)
or, equivalently, o £ O (cf.(2.3.9)); this fact will be used in Example 5.12.

It follows from Lemma 5.11 that if p(X) satisfies conditions (i)-(iv) of
the hypothesis, then a potential G(r) and a boundary condition h exist such
that p(x) is the spectral function of the associated operator H1 in L2(O,1].
If we retain %(r) but alter the boundary conditions to u(1,N) = O, u’ (1,M)= 1
(that is, equivalently, to h = ®), the essential spectrum of the modified

o
operator H, is the same as that of H, ([DS] Ch.XIII, 86.6). Moreover, abso-

1

lutely continuous spectrum is preserved under a change of boundary condition

(see Thm. 2.21) so the spectrum of H, is also purely singular. It follows that

1

H1 has dense singular spectrum on [0,1] (note that H1 is defined here in accord-
ance with the notation of Chapter IV).

Now let

0(1‘) O< r gl
Vir) =
0 ryl

and let H be the unique self-adjoint operator arising from the differential

expression L = -d2 + V(r) in L2(O,di). Note that L is limit point at O since
2
dr
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the spectrum of H, is dense in [0,1] (see [CL],Ch.9, Thm.4.1), and since V(r)

1
is continuous on (0,1] ([GL] §10), V(r) is in L1[a,a=) for each a > 0. More-
over, as we have noted above, the spectrum of H1 is singular, so the wave
operators exist and are complete in the partial wave subspace L= 0 by Theorem
5.8.

We now use these facts, together with the result of Lemma 5.11, to con-
struct a specific example where the scattering amplitude is a discontinuous
function of energy while the theory is asymptotically complete in the partial
wave subspace L = 0. We shall subsequently deduce that, for this example,

generalised asymptotic completeness holds; that is, in every partial wave

subspace the wave operators exist and are complete.

5.12 Example: Let p(A) satisfy the hypothesis of Lemma 5.11. Then there
exists a potential V(r) which vanishes for r > 1, and an « in (0,T)

such that p{A) is the spectral function of —d2 + V(r) in L2(0,1] with boundary

dr2

condition® at r = 1 (cf. (2.3.9)). For such a p(X), by (2.3.4),

m(z) = J.w _Efffl_ + cota
© (xN-=-2z)

o
= 3 ¥ r cot« (5.4.3)
1= (Xi— 2)

where {x;} are the points of discontinuity of p{N), and ¥, = m(ix;})

for each i in IN, s being the spectral measure generated by p(A\) . Moreover,

) Y.
Imm(z) = 2 y i

izt (x=x;)" + y*

— 0

as y ¢ O Lebesgue almost everywhere on IR, where z = x+iy, X, ¥ € R (cf. Ch.II

§3, esp. Cor. 2.7,and Lemma 2.13). Note that this function m(z) is not only
equal in absolute value to the function m(z) associated with the analogous

operator §1, but also has the same sign. This is because, although the sign

of the boundary condition at r = 1 is opposite to that of the boundary condition

of §1 at r = 0, the regular endpoint is to the right of the singular endpoint

which has a further sign reversing effect (cf. [cL] Ch.9, 85, Ex.1)
For every potential V(r) arising in this way, the wave operators exist

and are complete in the partial wave subspace L = 0, as we noted earlier. To
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show that a potential of this kind exists for which the scatterinz ampl:-ude
is discontinuous we prove:

(i) the {¥,;} may be chosen so that as y { O

R K°
m(z) — 2 !
1=\ X; - X

+ cot x

Lebesgue almost everywhere on IR. We deduce
(ii) the 1¥;} may be chosen so that the phase shift J&(x) is not an

essentially continuous function on (0,1).

Note that for X > 1, 3'3 = 2 by condition (iii) of Lemma 5.11; however,

S=1 Xi : X; € [0,11) may be chosen quite freely, subject only to Z ¥ <o,
¥.e$S

Proof of (1i):

N r
We first show that the { X;} may be chosen so that is in L, (-oo,oo)

A —-Xx
for Lebesgue almost all x in IR , and to this end we prove that if
|
—22,-—”- (5.4.4)

for each i such that X, € [0,1], then

¥, <

do(™ _ 5 ¥ < o (5.4.5)

TP N -x| P21 Iy —x]

for Lebesgue almost all x in IR .

Let X denote {i e IN : x; € [0,1]3.

Then if i e X,
Y. |

¥) = w{{x:1% -x| < ¥ 2'*'Y)
bx; = x|

!
2 i+
by (5.4.4), where K. denotes Lebesgue measure. Hence

<

K ({x : 2 —i—->—l—'})

ieX,iy»k Ix;-x]| 2

R(f{x: —0 5 Ly
P2k 'X"—Xl 2

/A
M

(5.4.6)
2k

Moreover, for each fixed x in IR \ ix;}, and for each x in N,
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ki .

< o0
and, by (5-4-6),
z ¥ ¢
f&)(,i>,k IX"-—X‘ Zk

except on a set whose Lebesgue measure is less than

1 Hence
2k
2 i
_ < o
e X Ix; -xl
(5.4.7)
except on a set whose Lebesgue measure is less than 1 Since k € IN
k
may be chosen arbitrarily, it follows that 2

(5.4.7) is true for Lebesgue almost all x in IR.

To deduce (5.4.5), we need only note that

2 L

| _ p(1-13)
felN\X lx;—xl ‘—|—X‘

< o (5.4.8)

for Lebesgue almost all x in IR.

Now since Imm(z) = O as y ¥ O for Lebesgue almost all x in IR,
2}

Lim m(z) < Lim B ox) o) 4 eot

y¢ o0 Y40 “w (A-x)*4+y?

(5.4.9)
for Lebesgue almost all x in R If V denotes the set of all x in IR for

which (5.4.7) and (5.4.8) hold simultaneously, then K {R\V) = 0O and,
since A-x :

(X -
for each y # O, :.X)
(N=-x)" + 71, (N=-x) + y?!
integrable with respect tom for each x in V and each y > 0 by (5.1.5)

<

IXN - x|

is

There-
fore, the Lebesgue Dominated Convergence Theorem may be applied to the ri:nt

hand side of (5.4.9) to give

P
. PN
L m miz) = j dp( )
yv+ o - 00 (N=~x)
> %
1=

1 (X;-X)

+ cota

+ cot o

for Lebeszue almost all x in IR : this ccmpletes the proof of (i).
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Proof of (ii)

We prove that a sequence {X;} exists such that, if &(x) were to be
essentially continuous,then m+(x) = Iw Lebesgue almost everywhere on [0,1]
which is impossible since m(z) converges to a finite limit Lebesgue almost
everywhere on IR by Theorem 2.12(1).

Our strategy will be achieved if we choose {x;} and {¥;} in such a
way that {x;} is dense in [0,1] and for each K > O, every neighbourhood of
each xie [0,1] contains a subset of positive Lebesgue measure on which
Im(z)l 7 K. In view of (5.4.8) and the fact that cot« < o (see remarks
following Lemma 5.11) it suffices to prove that every neighbourhood of each

xi in [0,1] contains a subset of positive Lebesgue measure on which

)3 ¥

ieX x;-x

Vv
A

Consider {Y¥;} for which

i o= ' ( )
Vo ; 5.4.10
(2%
for each i € X. Clearly ! < — for each i € X, so the conclusion
of (i) holds.
Let X; eix;} ntlo,il] and a neighbourhood Nj of x, be

: ¥;

fixed, and suppose K > 0 is chosen arbitrarily. Since b2 !
ieX,isj-I X;—X

is continuous and hence bounded on every sufficiently small neighbourhood

of x,, we may choose C » K and U-=[X--‘5,"j+6] e N;
j J J
such that xj = 2C and
é
5 ¥; < C on Uj
ieX ,isj=-1 %X =x% e (5.4.11)
Then
¥, :
J > 2C on UJ
Xj - % (5.4.12)
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< ¢2¢C on R \ U

X: - X
J (5.1.1

\
S

and by our choice (5.4.10)of {¥;} ,

s _c
K({x: o > S -]+ , i eX1)
= K({{x : Ix; -xl g —2— ,1€X})
27t
52
€ T+
2 U C
It follows that
K ({ x z ¥ > £ 1)
ieX,izj+rl  x; —-x 4
. 2 K (1 x ¥ — 1)
V€ X iy )+ Ix, - x| 2.2
e 2
2
€ Z T+
=+ 2 JC
|
< > 8j+4C (5.4.14)
and, by (5.4.12) and (5.4.13)
X: Y.
K({ x J 2 2CY) =r{U;) = _J =
P ? (U c 2% C (5.4.15)
Therefore, by (5.4.11), (5.4.14) and (5.4.15),
L Z_ X.‘ !
A . X, —X
1 # g
80 that, using (5.4.15) again,
. |
K({XQNJ': Z XI )C})Z(I—?)K(UJ) > O
1 € X X, ~X

Since C 2 K, N. contains a subset of positive Lebesgue measure on which
J

> K | as required.
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The argument above refers to the function m(z) related by (5.4.3) to the

. 2 .
spectral function p(A) of L = -d”~ + V(r) in L, (0,1] with boundary condition
dr2
& at r = 1. So that we may avail ourselves of the formula for the phase shift

é(x) in the case where V(r) = 0 on [1, ), viz,:

ban ( 6(x) + v ) = _Ax
g (%) (5.4.16)

(see (5.3.29)), we require Lemma 2.18 which relates the functions m(z)
associated with distinct boundary conditions.

Now the function mo(z) = mo(z,O) in (5.4.16) is the function m(z)
associated with L in L2(O,1] with boundary condition O at r = 1 (see Ch.IV, $1).
It follows from Lemma 2.18 (applied to the interval (0,1], L being limit point
at 0) and our conclusiors above concerning m(z) = mo(z, ® ), that if
X € ix;Yy n [0,1) and & > O are given, then every neighbourhood of xj

contains a subset S‘ of positive Lebesgue measure on which mo(x) = 1lim
y+0

mo(z) exists and is real and
| mo(x) 4+ cotxli<e on SE (5.4.17)

Suppose now that &(x) is an essentially continuous function. Then (5.4.16)
and (5.4.17) together imply that
m, (x) = -cotax

Lebesgue almost everywhere on [0,1], from which it follows by Lemma 2.18 that

m(x) = m(x,«) = * o (5.4.18)

Lebesgue almost everywhere on [0,1]. Since (5.4.18) is impossible by Lemma

2.12(i), we have proved by contradiction that &(x) cannot be essentially

continuous on [0.1]; this completes the proof of the lemma.

Thus we have used the inverse method to construct an example showing that

an operator H exists for which the wave operators ‘“: (H,H,) exist and

are complete in the partial wave subspace l = 0 but the scattering amplitude 1s
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a discontinuous function of energy. We now show that, if in Example 5.12

m({A,Y) is chosen suitably, there exists a self adjoint extension H of

~

__ d* Ll 1)
HL— ——dr" + — + Vi(ir)

in C? (R*) for each l = 1,2....such that ‘Qt {H,,H,) exist and are com-
plete, where V(r) is the potential associated with H. We first require the

following:

5.13 Lemma: Let V(r) be as in Example 5.12. Then the self-adjoint operator

H arising from L = _a% 4 V(r) in L2(O,co) is bounded below.

dr2

Proof':

(]
By construction, the operator H, defined by L in L2(O,1] with boundary

1

condition « at r = 1 has no spectrum for XA < ~-|. We now deduce that in

(-00,-1), the spectrum of the operator H, defined by L in L2(O,1] with a

1

Dinchlet boundary condition at r = 1 consists at most of a single eigenvalue,

and hence is bounded below.

Firstly, since essential spectrum is preserved under a change of boundary

condition ([EK], Thm.2.5.2) the essential spectrum of H,| for A< 0 is empty

since the same is true of H1. Suppose that A,, N, are two consecutive eigen-

values of H1 with N, ¢« N, ¢« =1. Then mo(z,O) may be analytically continued

across the open subinterval (X, , »N,) of IR™ ([CE] §5, Thm.), so that if

0) = lim mo(x1+1y,0) and mo(xz,o) = 1lim

X, x, €(XxN_N,) , m(x
1y X 12N 340 740

o 1

mo(x2+iy,0) exist finitely, are real and

m,{(x,,0) mo(x,,0) _ uliX)) . s lIAY)
(x; - x,) (A, = x XX, = x,) (A= %, MN; = x,)
lim dPo(>‘)

yy 0 YR NIN AT LA - (x,+iy)J[ X —(x,+iy)]
where o 1is the spectral function of H,. Since the final integral is bounded

for all X,s%, in (XN,, M) it follows that as x, = N, mo(x1,0) - -~ oo

and as X, = N, , mo(xz,O) - + 00 Therefore, by the analyticity of
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mo(x,o) across (X\,,A,;), mo(x,O) takes every value in IR as x increases
from N,to A,. In particular, there exists )‘3 in (N,,%,) such that mo“‘}’o)
= -cot«, so that by Lemma 2.18 (suitably adapted to the interval (0,1]), X,
is a pole of mo(z,o( ). However, this is not possible since, because 1.11 has no
spectrum in (- co,—1),mo(z, ® ) may be analytically continued across (- w,-1).
Therefore our supposition that two eigenvalues of H1 exist in (- ®,-1) must
be false, so we have proved by contradiction that H1 is bounded below.

It follows that K e R* exists such that mo(z,O) may be analytically
continued across the real axis for all x < -K. Since V(r) =0 forr > 1,
m”(z) =.m°°(z,0) = i/ z (see (3.1.2)) so that the negative spectrum of H _(for
notation see Ch.IV, §3) is empty by Lemma 2.13. Hence m.(z,O) - mo(z,O) is
an analytic function in the region x < -K. Moreover, since there are no
negative eigenvalues of H_, the negative spectrum of H is concentrated on the
set

Z ={xelR : m_(x,0) = m_(x,0)}
by Proposition 4.4. To show that ZN(-o,L) is empty for some L in R,
it suffices therefore to prove that mw(x,O) - mo(x,o) eventually has the same
sign as X = - 00.
Since m_(z,0) = idz,

m _(x, 0y =-J-x

for all1 x < 0. Moreover, by Lemma 2.18, if x < -K,

m_(x,0) = y'-":\o m,(z,0)

ll'm 1 + COhu motz»d)
yvo cotan - mg(2,«)

| + cotax m, (x,«)

cot & — mg (x,0t)

hat 'l
| + cotu« z : +‘°t°‘]
i=1 X, —X

-E ¥;

=1 X; — X




—
~1
W

where we have used the result proved in Zxzample c.12(1).

Caao T

2
-cosec  «
m,(x,0) =

0 - C.Dtd
1=1 X =X

Now, by construction, if m is the spectral measure of H,A = ulin_)) ang
o .
M = m((0,1]), then for x <-1,
[- <]
; ¥ A
i=1

< 2
X; = x - =) z

o0
< A+M J‘ 2

dn
(-1 =x) o (n*m*-x)
A
= LM '
(-1 - x) =%
Hence, as X = - oo,
m,(x, 0) ~cosec o (1 + x) cot 2
+ —— — cosec«
my (x,0) (A+MIJ-x — (V+x) J=x
Similarly, for x < -1,
00 ¢ o]
5 ¥ 5 A L R 3 2
=1 X; -x -1 —-x | — x n=l A'TT?-x
oo
, A+M +3’ 22 dn
| - x ! (n“ﬂ’ -x)
. AsM [' - 2 I
I - x - x m -x
Hence, as X = - o ,
m, (x, 0) cosec’o (1-x) . cob x
4
Meolx,0) (A+rM)V/=x + (l-x)[l-g-fon"l] A—x
w N-x
cosec’u (5.1.79)
It follows that
m,(x,0) 2
) cosec « as X — -
m_(x,0)

Since mo(x,O), m_(x,0) are strictly negative ror lar:: negative x. w-

deduce that if coseczo( 1, m(x,0) - mo(x,O) eventually has ti» same si

88 X — - o,
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It cosec2 & =1, cot ® = 0 and we have from (5.4.19)

‘mg(x,0) < i

mglx,0) b o« X ((AeM)- 2 0=x) 0 T )
(v =-x) mw =% =

Now as X —» = a0 |

(AsMm)- 2 G=X) 407" T (ArM) - 2 J~x tan ' TT
T =% =% ( T =

— A+ M -2

Hence if A » 2, m“(x,O) - mo(x,O) is eventually negative as x —» - o0
if coseczo( = 1.

Thus, whatever the value in (0,T) of the boundary condition &« associated
with ;11, if pmliXg}) is sufficiently large, the spectrum of H is bounded
below.

This completes the proof of the Lemma.

With V(r) as in Lemma 5.13, it is now possible to establish that a self-
adjoint operator exists for which the theory is asymptotically complete in

every partial wave subspace and the scattering amplitude is discontinuous.

5.14 Theorem: Let V(r) be as in Lemma 5.13 with )A({)\o}) 9 2 and for each

L=1,2,....1let Hl. be the Friedrich's extension of the symmetric

semibounded operator

» 2
H = 29 + v LiL+ 1)
3 drz r2
acting in CJ (IR¥). Then, if H  is the unique self-adjoint extension of

L‘Z in Cg (IRT)defined by a Dirichlet boundary condition at O, the wave

dr2

operators {L4 (H ,H_ ) exist and are complete.

Proof:

since V(r) = O(r 9" N g3 r— o, 1+ (H ,H,) exist for each L

((ksS]) and the range of + (HU H,) 1is equal to the subspace of scattering

states of HL([P4] Thm.3). To establish completeness of the wave operators,



181

therefore, it remains to show that no states are asymptotically absorbed.
([(P4] Thm.2). This will be achieved if we show that no k €(0,m) and

£ e H,_ (H_ ) can exist for which

lim Um I F c-;HltF,. I = k
R=>0 t—=* o r<R = | (5.4.20)

where H, . (H, ) 1is the subspace of absolute continuity of H . ([KA] ch.x,

§2) and Fr_ <R is the projection operator defined by

hir) O<r < R

F h(r) =

r< R
0 ry R

To prove that no f £ e M,  (H)and k > 0 exist for which (5.4.20) is true,

it suffices to show that for each Ce(0,00) and f + e ‘}QQ < (H)

SiHE

Lim Umsup ) F e frll = O

r<R E IH I<c

where EIH < C denotes the spectral projection of HL associated with the
L

\-interval (-C,C).

Now, from Lemma 5.13 and the fact that ﬁ-";—‘)- is a positive operator,
r

it follows that the operator
N 2
Ho o= L= 3(- e Zia)
dr?

L r*
. r
with domain C:’ (IRY) is symmetric and bounded below for all g in IR".

Hence, if g > 1 is fixed, g > 0 may be chosenso that

L{L+1) _d?
T e + 3& dr?*

+ V(r)) + ag 2 O (5.4.22)

A - -
Moreover, since HL is bounded below, there exists ¥ in R such that

A
<HL\C,-F> ? Y <£,¥7
for all f in (D(ﬁt) = C:" (RY) . It follows that

CHE,FY + (I=-Y)<#, > > <F £

A a0 +
for all f in C°°° (RY) , 8o defining the HL - form norm in Co (R™) by

'/:.

" * "3 = < ‘ ) '73
where <'F:37s = <GL~F,9> +(l—¥)<f;9>

we have

Lfng » H§ N



182

] w »
for all £ in Co (R™). Hence if f{-'n} is a Cauchy sequence in the fi -
L
. 00
form completion of C, (IR™) (see eg. [RN] §124, [WE1] §5.5), then i€,}
is also a Cauchy sequence in H = L2(O,co), Also, since Hl is the Friedrich's
A
extension ([RN],[WE1], loc.cit.) of H by hypothesis,®(H ) is contained in the

: o
H, -form completion of Cg" (R™); therefore, if h e D(H,), there exists a

sequence {h_} in C:’(IR*) such that

le‘:\n-;m < HL(hm—hn))“"m—hn)> T U'—Y)<(hm-h")’(‘"m-h“)> — 0
, (5.4.23)

By our remarks above, ihn} is also a Cauchy sequence in Y, so from (5.4.23)

L 0 @
momy w0 < CHU# Tﬂ)(hm_hns,(hm-hnn — 0

where a_,g are as in (5.4.22). From

g

iy a _ (L+1) v [ LL+1) d*

H o+ -3 = (1 —x)ytlier) o (-2 + V(r)+ a,]
LY T 3 e 3 rz . T3 6 5 428

it follows that

im ¢ LU+ h Y, (h-h )Y — O

Mm,n—> 00 r
since each term on the right hand side of (5.4.24), regarded as a bilinear form,

s mositd he pflLlteN®
is positive (see (5.4.22)). We deduce that € — so that

Y
©(H,) = (L) (5.4.25)

r

To prove (5.4.21), we need only show that for each C in (0,e),

Frer Equcc

has arbitrarily small norm as R - O. Since range(E IHLI<C) s D(H)

for each C in (0, o), it follows from (5.4.25) that

l
r [Les )™ £
Fr<R EIHL|<C F"<R [l(l'!'l)]l/z r 1HL|<C
Now u_“_*_l_)_l.hﬁ is a closed operator defined on all of § = L2(O,ao),

r l“{l(C
so is bounded by the Closed Graph Theorem ([KA] Ch.III, §4), and, clearly,

i, R
s [}
r<R [l(u\)]""n [La+nl®

| F
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Hence for each C in (0, ), and each L= 1,2,...

I F.cr Elwgcch = 0

as R = 0, which proves (5.4.21) and hence the theorem.

Thus the extension in 83 to the class of potentials for which the phase
shift formula (Thm.5.9) for the scattering operator holds has enabled the
existence of a potential for which the theory is asymptotically complete and
the scattering operator is a discontinuous function of energy to be demon-
strated. The potential V(r) is of finite range, and is such that the spectrum

of every self-adjoint operator H, arising from -a® + V(r) in L2(O,1] is sing-

dr2

1

ular and has a dense singular subset. It seems likely that asymptotic complete-
ness and discontinuity of the scattering amplitude can occur in conjunction

under more general conditions, and that the nature of the spectrum of H, may

1

be of considerable significance in this connection.
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CHAPTER VI

THE CONSTRUCTION OF POTENTIALS WITH SINGULAR CONTINUOUS SPECTRA

81 Introduction

Whether or no the mathematical phenomenon of singular continuous spectrum
has a distinct counterpart in nature, its relevance as a probe for exploring
the limits and the limitations of quantum theory remains. A considerable
literature has been devoted to identifying classes of potentials which ensure
such properties as absence of singular continuous spectrum, asymptotic com-
pleteness of the wave operators and continuity of the scattering amplitude
(eg. [RS IV], Ch.XIII, [AM], [D] ) but it is no less relevant to identify
situations in which the familiar behaviour breaks down. So-called pathological
behaviour not only reveals the existence of limits to established theory, but
also raises important questions of interpretation and realisability which may
lead to new predictions and a reappraisal of accepted ideas.

Such a re-evaluation was undertaken by D.Pearson in "Singular Continuous
Measures in Scattering Theory" ([P1]). This paper challenges the prevailing
view that singular continuous spectrum has no physical interpretation, and,
in the light of supporting examples, suggests that this type of spectrum may
be associated with a characteristic recurrent behaviour of particles in the
appropriate energy bands. Crucial to the construction of Pearson's examples
is a theoretical result concerning the generation of singular continuous
measures from limiting sequences of absolutely continuous measures. ((p1],
Thm.1). This enables certain types of potential to be constructed inductively
in such a way that singular continuity of the limiting spectral measure is
assured; Pearson considered potentials which consist of an infinite sequence
of potential "bumps" whose separation increases rapidly with distance from the
origin. Provided the shape and the width of each "bump" remains invariant
throughout the sequence, and the heights either remain constant or decrease to

zero at infinity, a sufficiently rapid increase in the separation between con-

secutive "bumps" ensures a purely singular continuous spectrum ((P1], Props.1,2)
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This type of inductive construction affords an unusual and promising
approach to the problem of identifying potentials for which the associated
spectrum is singular continuous. With a view to further extending the class
of potentials which can be considered in this way, we reformulate Pearson's
Theorem 1 under more general assumptions in 83, and make a careful comparison
of the original and modified conditions.

We note, however, that even without modification to Theorem 1, Pearson's
method may be applied to demonstrate the presence of singular continuous
spectrum in situations where the potential does not satisfy the hypotheses
of Propositions 1 or 2. We illustrate this point in §2 by showing that such
spectrum can arise when both the width of the "bumps" and the separation be-
tween them becomes arbitrarily large with increase in distance from the origin.
Qur example suggests that slowly oscillating continuous potentials may give
rise to singular continuous spectrum provided the wavelength of the oscill-
ations increases sufficiently rapidly with distance.

In order to give a more precise idea of the type of sequence of absol-
utely continuous measures which can converge to a singular continuous measure,
we construct in §4 a simple example where the value of the limiting measure
of intervals may be computed exactly. Careful choice of the elements of the
sequence ensures that the convergence is, in a sense that will become apparent,
optimal; and the explicit formulae involved show that a precise determination
of a suitable sequence and of the limiting measure may be obtained in specific
cases.

To appreciate more clearly the manner in which Theorem 5.9 extends the
class of potentials for which the phase shift formula for the scottering
operator holds, it is desirable to identify specific examples. In Chapter V,

84, we used the inverse method of Gel'fand and Levitan to show that a potential

exists for which the spectrum of the Hamiltonisnrestricted to L2(0,1] is dense
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singular on (0,1) and otherwise pure point. However, although the inverse
method has wide applicability, as in this case, where confirmation of the

existence of a potential with specific spectral properties is required, it
does not provide a straightforward method for determining the potential ex-
plicitly. It may be that a suitable adaptation of the method of inductive

construction of potentials to the case of a finite interval can provide some
insight into the type of potential which satisfies the hypothesis of Theorem

5.8 but is not of the class considered by Green and Lanford.

§2. A slowly oscillating potential with singular continuous spectrum

In this section we describe a type of potential V(r) for which the
spectrum is singular continuous in the A-interval (1lim inf V(r), 1lim sup
V(r)).

Consider a potential V(r) which alternates between the constant values
0O and 1 on successive intervals of lK*; 0 and 1 are chosen for convenience,
but any potential which alternates between two constant values on successive
intervals oflRT can be reduced to this problem by change of origin and scaling.

The lengths of successive intervals Ino on which V(r) takes the constant
value zero are chosen inductively to ensure singular continuity on (0,1] of

- 2
the spectral measure of the Hamiltonian H arising from -d  + V(r) on [0,00)

er

with boundary condition « = 0 (see (2.3.9)).

We shall show that the lengths of the intervals {I; } on which the potential
takes the value 1 do not affect the prospect of singular continuous spectrum
on (0,1) provided they do not decrease with n. We may therefore choose
KI(I,) = R(I°) for each n, where K denotes Lebesgue measure.

We shall adapt the method of Pearson ([P1], §3) to prove singular contin-

uity of the spectrum on (0,1). For ease of reference here and later, we state

without proof Pearson's Theorem 1.

= 1,2...
6.1 Theorem: Let the functions fn(k,y) (xgkg@ ~ocycoo, N )
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be periodic in y, with period c, continuously differentiable, and satisfy

(i) fn(k,y) > const. > O.

.\ c

() £,0) = L[ f, 0k, y) dy
- -]

(111) Z -m (k) = + ® | ag k g 8

n=1

wnere  mo (k) = Tog (£, (k,y) = L [ log £, (k,y) dy

(iv) For N sufficiently large, f‘n(k,Nk) is an analytic function of k, where
x¢k ¢B.
Given a sequence {N.l} » 1 =1,2,3..., of increasing positive numbers

with il.—r:oo N, = o, define the Lebesgue-Stieltjes measures {v,} vy

v, (Z) _-.Jz _‘r':r| £, (k,N;k)dk

for every subinterval & of [«,81].

Then the sequence {N;} may be chosen such that Y™ 3 (Z) = v (Z)
n— o

exists for every subinterval & of L®,8] and defines a singular continuous

Lebesgue Stieltjes measure on Borel subsets of [«,B).
We require the following preliminary result:

6.2 Lemma: Let iNk} be an increasing sequence in R* such that Ny— o

2 .
as k 2o , and let v denote the spectral measure of -d~ + V(r) in [O’Nk]

dr2

with Dirichlet boundary conditions u(0,A) = u(N ,X ) = 0. If the spectral

measure m of —4° + V(r) in [0,e0) with boundary condition u(0,A) = 0 is

dr'2

continuous, then {vk} converges uniformly to m over subintervals of ary {'ixed

finite interval.

Proof:

We show that if m is continuous and if £>0 and a compact interval I

of R are given, then K in N exists such that for all subintervals LZofl
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v, () - ulZ)l < 2
whenever k > K.
If m is continuous, we may subdivide I into a finite number p of dis-

joint intervals {I,j} s J =1,...p, such that

e

pOL) < = (6.2.1)

for each j = 1,...,p. Since vk(IJ-)converges to)‘(IJ) as kK- x for each

j=1,...p, ([CL], Thm. 3.1(1)), there exists K in IN such that for each
i=1,...,p,
€
'vk(lj) —/A(IJ), < -;—P (6.2.2)

whenever k 3 K

Let Is be any subinterval of I. We may write

n-lI

I.=1 U I. U I (6.2.3)

s 1 j=m+| J r

where Iqs Im’ Irs. In,{m,...,n} € {1,...,p}. Using (6.2.1) and (6.2.2)

we have

lvk(Iq)-}u(I%)l £ vk(Iq‘) + /"(I‘L)

s 2 & 2u(I)
P
< 2&

8 \

whenever k » K, and a similar inequality holds in respect of Ir' It now

follows from (6.2.3), Minkowski's inequality and (6.2.2) that

n-l
o (I - p(T ) ¢ 2 My (1)) S L -’:f < &

J=m+l
whenever k 3 K. Since IS is an arbitrary subinterval of I, the lemma is

proved.

Before proving singular continuity of the spectrum on (0,1) for a

suitably constructed slowly oscillating potential, we show that if V(r) = 0
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. o
on a sequence of intervals {In } of RT , then (0,®) Z:es in tre spectrum

. o
of H provided that K (In) —» ®©® as n=»ow ., This ensures that Propcs:i-:-r

- i

6.4 is a non-trivial result.

6.3 Proposition: Let (an} , {bh } be increasing sequences in R’ with
o] 1
an< bn< an+1 for each n, and let In and In deno-e
[an,bn] and (bn, an+1) respectively. Define
a0
o
o) re U I
Vir)= n=l
© H
| re U I
n=|

Proof:

We show that (H—kz) is unbounded for all k » 0.

Now if f is in D (H),

IF N = B(H =KD UL =-K)EN € N(H=-KDYTIH(L-K)FI

where Il(H -kl = sup IH=-k""gll ana I -0
{g:llgn=13
®© 2 2. .
denotes (S | -1 dr). Hence it suffices to show that for each k>0, it
o

€ » 0 1is given, there exists f(r,k,& ) in O(H)for which

NF(r k,edl 2 1, I(L-k*)1frk,e)ll < e (6.2.:)

Consider the sequence of functions

2 ik(r-P)
r'e

( (z_g)z fef0,1)
™ 2(r - P +iN)

! k(= P)

Ed by = reli,2)
£ kK P) = 7_-_'?‘.)’ |_L(r-z)] , r el
WPy = g (2) 0 PErITS

(Z_'}‘.)% ik (e =P) etz
L ™ (r =P ¢ iN)
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Clearly fN(O,k,P) = 0 for each N elN | k, p e R*

and, since
L ike
Ve (rk Pl < 2 (2_".)7- " =2 6
T/ lreinN) 2:5)
ffrs%,P) is in L,[0,) for each N e IN , k,pe R, ioreover, i7 3 2,

- L ik(r-p) . L Loikr
Le, (o0l > ([ () (ri‘F’+ e AR Cobmer SIS

and, since fN(r,k,P) is a twice differentiable function of r for all
nelN,r,k,Pe RY it may be deduced that

z

d Y
II(—d—rz-k)FN(r,k,PH\ S %7/1 (6.2.7)

for some Ck in RY which is independent of P.

Let ke IR"' be fixed, € >0 be given, and choose MelN such that

C_ < & . Using the properties of f
2

(r,k,P), in particular |l FM(r‘,k,F’)ﬂ T2
M ‘%

M

as P—-> o (cf.(6.2.5)), we see that if K(I:) >0 4as n—w , then

Pe,Le € R* may be chosen with Py 7 2, Le < P,
JPE'{"LQ X € 2

4 > £ (r ke, P dr > 4 - (£) (6.2.9)
Fe-Le

and V(r) = 0 on [F’e-'Le Pe + La]'

b
Let S denote IRT N\ [Pg—L, ,Pg+Lel , and let X denote the charact-
eristic function of the set S. Then, using V(r) ¢ 1 for all r In [O,co))

Minkowski's inequality, (6.2.7) and (6.2.8) we have
U(L—kz){:M(r,k,Pa\u

-1 (-4 - k) ek, P+ V) F (e, P X

dr

pi-

< | (— ;d:z - kz)-FM(r,k,Pe)U + Ss HM(",k,P?_)|‘dr)
r

< &

It follows that fy(r,k,Pg ) is in D(H), so set-:n: flr.x, &) = £,(r,k P )
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we see from (6.2.6) and the above inequality that f(r,k, € ) satisfies
(6.2.4). Since k,e e IRY were chosen arbitrarily, we deduce that (H—kz)-1
is unbounded for all k > O.

We conclude that (0, @ ) is contained in the spectrum of H, and since
the essential spectrum is independent of the boundary condition at 0 ([CE],
Thm.2.5.2), (0, ) is contained in the spectrum of every self adjoint operator
arising from V(r).

This completes the proof of the proposition.
We now describe a class of potentials for which there is singular con-
tinuous spectrum on (0,1). (To avoid confusion, we should point out that our

notation, though similar, does not coincide with that of [P1] §3).

6.4 Proposition: Let V(r) be as in Proposition 6.3, and suppose

(L)) = K(I:) forn = 1,2,3.... Then provided K(I})
increases sufficiently rapidly with n, the operator H arising from V(r) with
Dirichlet boundary condition u(0, N ) = 0 has singular continuous spectrum

on (0,1).

Proof':

2

We consider only A >0 and set M=k .

Let v denote the spectral measure of % + V(r) in [O,bn), with

dr'2

Dirichlet boundary conditions u(O,k) = u(bn,k) = 0, and let p, (k) , p,(k)

denote the spectral function and corresponding spectral measure of

:d—z- + V(r) in [0, ©) with the same boundary condition at 0, where
dr

Vn(r) = { v(r) on [O,an)

0 on [an,co)

} and {1} are determined inductively

1 1
as follows: Suppose the first (2n-1) intervals 110’ I RERD

The sequences of intervals {I,;

o)
01" In have
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been established, and consequently the potential V(r) on [0,b ]. Then
n

a ,, is chosen so that k(1) =K(I;) and b ,1 May be chosen to satisfy

the following conditions, as we shall show below:

(1) \vnﬂ(i) - paa (2 < '

n+i

for all subintervals Z of (0,1).

(ii) The rate of increase of K{I.) as n- e is sufficiently rapid to

ensure that, if £ < (0,1),
= Um
F‘Z)— n—-)oop"(z)

exists for all intervals £ < (0,1) » and defines a singular continuous

measure on Borel subsets of (0,1).
To see that bn+1 may be chosen to satisfy (i), note that Pnasr 1is

determined once a is fixed, whereas Yns

is not determined until b
n+1 n

! +1

is fixed. Hence, since Mns is absolutely continuous on (0,® ), once an+1

is fixed wemay choose bn+ so that (i) is satisfied by Lemma 6.2. We commence

1

the inductive process by choosing a, » O arbitrarily, and setting V(r) = 1

1
on [O,a1).

We now adapt the method of Pearson ([P1] §3) to show that condition (ii)
may be satisfied.

2 . . o ps
Let P(r,k) be the solution of ~¢%u + V(r)u = k°u which satisfies

dr2

' - -
¢(0,k) = 0, ¢(O,k) = 1. Let R(r,k) and 8(r,k) be defined by the relations

R cos b
(r, k) = (6.2.9)
@ (r »
@'(r,k) = Rsinb (6.2.10)

Clearly
2 2 42
Rz=(¢') + k ¢
Moreover, applying the theory of Chapter IV to V_(r) with boundary condition

u(0,k) = 0, and taking H1, H 4 to be the appropriate Hamiltonian operators in
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[O,an] and [an,oo) respectively, we deduce from (%.1.2) with ® =0

, and
from (4.5.5) that for n = 1,2...,
dpn (k) _ 2k”
dk Tl (a, ,k)]* + k* (@la, k)]?*)
_ 2k*®
T LR (K)]*
where Rn(k) = R(an,k)- Thus, if £ € (0,1) is an interval,
mr s B[ .
™Yz [R_K)] e
Let 6,(k) denote B(a,, k) and let N denote K{I') = K(I:\) :
From (6.2.9) and (6.2.10),
6 = &an-‘(_?_l)
k@
so that
2
E_G. = -k + kg v
dr R?*
Since V(r) = 0 on [an,bn], we deduce that
S(bn,k) = Bn(k) - N,k
and,using dR = 0 if V(r) = 0, we obtain
dr
R(b,,k) = R, (k)
Combining these results with (6.2.9) and (6.2.10) yields
¢“’n k) = Rn(k) COs(Bn(k) - Nnk) (6.2.12)
’ K
@'(b,, k) = R_(k) sin(B,(k) - N_k) (6.2.13)
Since V(r) = 1 on (bn’an+1) we have
¢(°n+a)k) ¢(b“ ) k)
= M_ (k) (6.2.14)
¢I(°n+|)k) ¢,(b" ! *)

where the transfer matrix Mn(k) satisfies

’ ) L\(J(\-k")N )
1y N ) Sin "

cosh( (l-—k) n (l_kI-)

I"n (k) = J

= (6.2.1%)
N1 —kz)S]nH(J(l~k")Nn) cosh (J(1=Kk"INR)
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for 0< k ¢ V.

(6.2.12), (6.2.13) and (6.2.14) together imply

2
(Rn-hl(k)) = A_ (k) + B (k) cos(2(B-y)) + C,(k) sin(2(8-y))

R (k) (6.2.16)
where 8 = 6 _(k) , y = Nnk, and omitting the arguments,
An = Lz ( M:n M ann + k-zMn‘Z\ vk M:nz) (6.2.17)
B, = ';f (M:u r K M:'u M:zz - k” anu)
Com kMg Muy = KT MM,

where Mnij is the element in the ith row and the jth column of M (k).
n

Rq (k)

2
If Fn(k,Nnk,en(k\) denotes ( ) for O<¢< k ¢ | , and if
Rae (k)

Z € (0, 1) is an interval, we have from (6.2.11)

2 2 T
/An(Z) = T—r. J.z k :'1-0 F-,(k,Nik,G,-(M)dk

where we have taken [Ro(k)]2 = 1.

We now show that the sequence i‘Fi} satisfies the conditions of Theorem
6.1 (see Remarks 6.5(:4)).

Firstly, for each j in IN , Rj(k) is continuous and non-zero for all r
in [0, ), so for each i in N there exists Ci> 0 such that fi 2 Ci' Moreover,

for each a_, ¢ (an,k) and ¢'(an,k) are analytic functions of k (cf. [LS] pp.

3-5); the same is therefore true of fi(k,Nik, ei(k)) for each 1i.

For each i in N, set N.k = y so that £, (k,N;k, 6, (k)) may be written

In this notation,

as f‘i(k,y,N 'Ni—1) since ei(k) depends on {N1, . }.

1,..
fi is analytic in k and y.
Reformulating the left hand side of (6.2.16) as a(k, ®) + b(k, 8) cos 2y

and using

I w : 2T
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we obtain

LJTFn(k,y.e)dY = ' = ! = |
T Y (A -B2-C2) det M_

It remains therefore to show that if

-
mak) = & [ log £, k,y, 8)dy

o
0
then 2. m (k) = -0 . Using
n=x|
AT
J loa (a+ beosz) dz = 2T L°3 (° * 3 °=‘bz)
© 2
we obtain
mak) = lo (__7-_)
" 3 A+ |
so that, if O <k g | ,
Al =l . L sink® ITRO N,

2k* (1 = Kk?*)
Hence for each k in (0,1), An ; 1 and An increases with n if and only if Nn
increases with n. If, therefore, Nn does not decrease with n, for each k in

(0,1) there exists Kk in (0,1) such that

{ (———3————-) < =K
I NA a0 k

oD
for all n in N, so that 2 m_(k)= - o for each k in (0,1), and the
Nn =l
conditions of Theorem 6.1 are satisfied.
It follows that the sequences {I°} and {I_ 3} may be chosen to satis-

fy conditions (i) and (ii) above, and hence, since the spectral measure of H

is lim v, , so that H has singular continuous spectrum on (0,1).
n - oo

The proposition is now proved.

6.5 Remarks:

(a) If k » 1 the transfer matrix M becomes

nW(k*=1)Y N, )
cos((k*=1) N Sinwt

Mn(k) = (k2=1)
A& =1) sin (JIRE-1) N cos (J*-1IN,)
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which yields

A =] =+ sin 2 (Jk*=1
" 2k* (k*-1) Na)
-l
Therefore, the divergence of Z.‘rnn(k) is no longer immediate, since in
A= ’

general we may not assert that An » const. > 1, or even that An > 1. However,

a0
it may still be the case that 2Z m_(k) diverges, at least for almost all

n=1
k > 1. To satisfy the requirements of the proof of Theorem 6.1, (see [P1],
Thm.1, Step IV), it is also necessary to ensure that, for sufficiently large

m,
n

2: -m, (k) 3 K » ©

= m+1

for almost all k in the interval under consideration, where K is independent
of k. These difficulties indicate that a modified, possibly statistical,
approach is required to ascertain the nature of the spectrum for k 2 1.

(b) Sufficient constraints may be extracted from the details of proof of

Theorem 6.1 to construct particular examples of suitable sequences of inter-

vals {I:}.

(¢) For an alternative derivation of dpp, (k) , see [P3], Lemma 3.
dk

(d) More precisely, we show that {Fi} satisfies the conditions of the

Corollary to Pearson's Theorem 1 ([P1], §2, Cor. to Thm. 1).

§3. On the Generation of Singular Continuous Measures

We now reformulate Theorem 6.1 in such a way that condition (i) may be
replaced by the requirement that fn(k,y) » 0 for each n, and condition (iv)
may be removed entirely. In addition, we no longer require the sequence
{F,\(k,y))' to be continuously differentiable, or even continuous as a

function of y. To achieve this generalisation, we replace condition (iii) by

n
R B, =0 (6.3.1)
N0 ral
where 8_ = sup S' [#,(k,y)]d dy , for some fixed & in (0,1). (the
Kk o

precise value of ® is immaterial).



197

As we shall show in the discussion after the proofs, our result is nct,
strictly speaking, stronger than that of Pearson, because the condition
(6.3.1) implies condition (iii) of Theorem 6.1 but is not implied by it.
However, the removal of condition (iv) and the significant improvement to
condition (i) and to the continuity conditions on {-Fnlkwy)} means that the
approach of Theorem 6.1 is now extended to a considerably wider range of
absolutely continuous measures.

We develop our reformulation in three main stages. First we suppose {f_}
to be a sequence of periodic step functions in one dimension, and then, using
the fact that step functions are dense in L1[O,1], generalise this result to
include sequences of arbitrary bounded periodic functions in one dimension.

2}
(By a step function we mean a function of the form Z o X, , where for
13}

each i = 1,...n, «; € IR and X; is the cbaracteristic function of a bounded
interval). We then proceed to consider the problem in the type of two
dimensional situations envisaged in Theorem 6.1.

We remark that our methods do not depend on the somewhat probabilistic

approach used by Pearson (see [P1], Thm.1, especially Step IV).

6.6 Proposition: Let f(x) 2 O be a periodic function with period 1 such that

‘ »
‘Yo £(x)dx =1 , the restriction of f(x) to [0,1] is a step
function and f£(x) is not almost everywhere constant. Then there exists a
sequence of natural numbers {N,} such that the limit as n = o of the

sequence of measures defined on subintervals Z of [0,1] by

a2y = Jo T £ x) dx

exists and defines a singular continuous measure on Borel subsets of [0,1].

Proof:
Let fk(x) denote f(ka) for each k in IN, and set D = max {y: £(x) - v}

o
Let « such that O< « « | be fixed, and define g(x) = [f(")] ’ gk(X) =

S(ka).
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It is straightforward to show that, since f(x) is not almost everywhere

constant on [0,1],
\
fo glx)dx = g (6.3.2)

for someﬁ such that O <« p < .

We shall prove the proposition in four main stages, as follows:
(i) We show that a sequence of natural numbers iN,} may be chosen induct-

ively to ensure the inequality

_ I
I[z £, (x) dx jzaxl ¢ TR (6.3.3)

holds for every n in IN on each subinterval Z of [0,1]. where Pn is the
n

maximum number of steps in the step function TI ?k(x) on [0,1] and
k=1

Mn+1; Mn is chosen inductively in stage (iv) to guarantee the singularity of
the limiting measure.

We also show that, in addition, {Nn} may be chosen to satisfy

) n (nﬁ'l)/z
So M g, (xYdx & B (6.3.4)
k=1
for all n in IN.

(ii) We prove that if i{N,} satisfies (6.3.3), then v, (£) is uniformly Cauchy

on all subintervals Z of [0,1], and hence that Lim v defines a contin-

n oo
uous measure on subintervals of [0,1].
n
(iii) We show that (6.3.4) implies that, on [0,1], ;Wl 3k<*) converges to

n
zero in measure as n— o , and conclude that the same is true of ;“— Fk(")-
=)

(iv) We deduce that, if {N,} increases sufficiently rapidly with n, and

satisfies (6.3.3) and (6.3.4), then lim v, 1s singular and non-trivial.
n -0

Proof of (i):

Let M1 » 2 be fixed, and let £ € Lo, 1] be an interval with endpoints



—
O
O

a and b, a ¢ b.

C _—_

Choose N, in IN so that ths length of perics _\_
Ny 27D+

1

and let q be the greatest integer such that & < b - o,
Nl
Then if S is an interval with endpoints a, a+: ,
N1
|
KIZNS) ¢« - <
N 2" (D+1) (6.3.5)

i

Moreover, using f1(x) = f(N1x) and the properties of f(x), we obtain

[ +xrax = 2
S N,

Hence, by Minkowski's inequality and (6.3%.5)
VI, Fidax - [ axl

< 1f  #0x0 dx —JSAxl + 1S, o F () dx —fz\sdxl
¢ 0 + (D+1) R(Z\S)

(6.%.6)

l
€ —

2™
We note that this result is independent of the particular subinterval Z of
[(0,1] which is chosen.
Also,

-
JO‘ gl()() dx = foNl ['F(y)l —::J- dy = /8 (6.3.7)

Similarly, we choose N, in N so that

| . i E, }
-— £ min )
N, {ZMZ (D+1)DP, D* P
3/2 2 . .
for some €, < ﬁ - B . This yields

|
2" pr

(‘[Z f,(x) dx - jz dx | <

for every subinterval Z of [0,1].

Moreover, as we now show,

\ 3 c.3.8)
‘[o 9.(x) g,(x) dx < B & (c3
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For, since g,l(x) is a step function on [0,1] we may write
A

where X| is the characteristic funtion of the interval $. € [o,1],;
! s )

there is no loss of generality if we assume Z-‘ N EJ- = ¢ whenever i % j.

Hence
[ ) d 7 J
o 31 (x)g,(x)dx = L *ids, g, (x) dx
For each i in {1,...,P,} let 5; < Zi be that subinterval of Z; sharing the
same left endpoint such that K(Sl-) = in_ where qs is the largest integer
NZ
such that i « K (Z;) . Then for each i = 1,...,P,,
N
2

\ E
.\ S. - !
KIZ; \S;) « N, < 5TF,

so that, using g ¢ D“( D and &; & D,

d‘fz- g.(x) dx = «; J's‘_ 9.(x)dx + a jz.\s. g, (%) dx
[}

< & X B + o; Dr{lZ:\S)

2

2
¢ o; BRIZ)) + %—,—%‘—
aI
= ‘SJZS 3,(x)dx + -F;

for each i = 1,...P1. Hence, by (6.3.7) and our choice of g, ,

Z o j)'} 9. (x) dx ¢ pz + g < B *
)

t=1
so that (6.3.8) is proved.

Continuing in this way, Nn is chosen so that

. . | _z____}
— < min ’ n
N {2"“ (D+0)D"' P, _, D P

n
Using the first bound on 1 , we obtain the general result (6.3.3);
Nn n—=1 b
second bound, and noting that ;ﬂ' g, (x)is a step function bounded above Dby
= |

using the

Ne=-
D 1, the method above gives the general result (6.3.4).

Proof of (ii):

For a given subinterval Z of [0,1],
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n QI‘\
T £, = 2 ¥ X
k=1 i=1

n
< . s . )
where Q € P , and ¥,¢ D for each i = 1""’Qn' Hence, using Minkowski's

inequality and (6.3.3),

g, fz, (e (x) =1) dx |

Q
Ly, (2) - » (2)] = ,‘Z-|

Q
¢ D" §" IIZ Fre (x)dx - le. dx |

N

—_— (6.3.9)

Since this is true for all such interals Z , and {M_}is an increasing
sequence in IN, v (Z) is uniformly Cauchy on all subintervals Z of [0,1].

Hence W(Z) = lim W (Z)exists finitely for each subinterval Z of [0,1],
n-—wo

and since, for each n in N, »  is a positive measure, v (Z) » O for each
interval £ € [0,I1 and v (¢) = O.

To show that v is countably additive on subintervals of [(0,1], we prove
that if {Zk} is a sequence of disjoint intervals in [0,1] such that, for each

P
piniIN, U Zk is an interval, then

k=1
[« <] o0
Since for each p in N,
P P ; {.— (Z)
- L U )= W, (£,) =2 v
v(\:J=1zk) r&i—)mw lJﬂ(k=| zk r\l—r:w k=|vn k k=i "
P
and U Zk is an interval, we have
k:.l
P P
kf.l v (Z,) — k§‘v(zk) (6.3.11)

P
wniformly over p as n — o , by above. Moreover kz V (Zk) increases
al

o0
with p and is bounded above by ¥(Z), where Z = U 2, »9% there exlsts

k=i

Q<o such that
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P

Z. v(ik) - a (5

k=1 -3.12)

as p>ow . This together with (6.3.11) implies that if €9 0 is given, then

there exists Pa , Ng in IN such that whenever P> l’e

P
k=1 3 (6.3.13)

and, for every p in IN ,

P P
L v (2)Y-2 w(zg))] <« &
]k=| " K k= k ' 3 (6.3.14)

whenever n % Ne . Also, since for each n, Y, is a measure, there exists Qg

depending on n such that

© P
&
| va (kU:‘ Zk) - kza, v (EN] <3 (6.3.15)

whenever p Qe . Hence for each n » Ne’ we may choose p > max {PS,QE}
so that (6.3.13), (6.3.14) and (6.3.15) hold simultaneously, giving
0
\vn(kual z,.) - al < e

This together with (6.3.12) implies (6.%.10), so that v is a measure on sub-
intervals of [0,1].

Let 7 > O be given.

Since v (Z) - v(Z)uniformly over all subintervals Z of [0,1] as
there exists N in IN such that ly, (Z)—V(Z)k‘% for all subintervals Z if
n >N ; and since Y, is absolutely continuous for each n, for a given fixed
n > N there exists & > O depending on n such that K(Z) < & = v,(Z) < 32-

It follows that
K(ZY< § = w(Z) <7

so that v is continuous on subintervals of [0,1].

Proof of (iii):

n
From (6.3.4), JT g, (x) converges to zero in L1[O,1], which implies
= |
n .
that Tr 9k(x) converges to zero in Lebesgue measure. That is, for given

kai
€,M >0 there exists N in IN such that
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«

K(‘[xe[O.l]:I‘;|gk(x) > e YY) <

for all n > N, or, equivalently, such that

n
K({xe[0] :TT felx) > e }) « n

n -
for all n » N; hence ;‘I\ f-k(x) converges to zero in Lebesgue measure as

n—= .

Proof of (iv):

Let m, such that O<mn,<| be given, and define

SH,T\‘ = {XG[O.IJ.‘;[\'Fk(x) ? %'}

Since we have chosen M, » 2, and M‘k+1zﬁ M_for each k, it follows from (6.3.9)
that Ivk (Z) -y, (2)] g -'i for all k » 1 and every subinterval £ of [0,1].

In particular, choosing Z = [0,1], we have

(lo,1}) = <

v 2 (6.3.16)

k
for all k in IN , since vl([0,1]) = 1. Therefore for each n ig IN, K(Snm)#O
for all n < lz- .

Let the construction described in (i), with {Mk:k = 1,...K1} chosen
arbitrarily subject to M‘I 2 2, M‘k+1 ; Mk’ be followed until k = K1 is reached

for which K (S ) < M, . That such a K, exists follows from (iii).
Ki.m, ' 1

K,
Since T . (x) is a step function, SK,;"'\. consists of a finite
k=1\
number q, of subintervals of [0,1]. Let MKHA be chosen to satisfy
_M;_.. < N
+
2% 6q, (6.3.17)

so that, using (6.3.9),
LN
'Sql

for all subintervals & of [0,1]. In particular,

iy (2) - vK‘(Z)l

v (Lo.)) = (Lo < T ¢ o
' 'Sq_l 3
and, by Minkowski's inequality,

) <

|v(5K ) - vK.(SKH’Tn 3

1 ]
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and S

Also, by the definitions of vK| K. m

]
Kn

vK‘(IO,I] \ SKH"h) = vkl({xe[o,ll : J\;lfk(x) < ‘%:})

Combining these results, we have

vV (SK|,T\| K‘ K"Tll

= v, (10D = w (100N Sy ) - %

) > v, (S ) - M
3

2 V¥ ([O,I]) - M,

'q1< '\1‘ is now chosen, and the procedure described above is repeated for

k = K,+1,...,K, where K_ is such that K (S

] 2 5 Kz"'lz) < T, - We then obtain

Y (s ) > v(lO,I]) - 112 . Continuing in this way, if the decreasing

KaiN,
sequence {T]m} satisfies 'qm—>0 as m-o o and {Nn},iMn} are chosen inductively

at each stage to satisfy the construction described in (i) and the constraint

(6.3.17), then as m = o,

v (3 ) — v (10,1])

Km’ﬂm

and, by (iii),
S 0
K ( Km ‘N m ) —
That is, the limiting measure v is singular.
The Hahn Extension Theorem ensures that vy may be extended to a measure on

Borel subsets of [0,1], and it follows from (6.3.16) that v is non-trivial.

The proof of the proposition is now complete.

We now generalise Proposition 6.6 using the fact that step functions are

dense in L1. The proof follows a similar pattern to that of Proposition 6.6;

parts (ii) and (iii) are unchanged, while part (iv) requires considerable modi-

fication.

. : h is
6.7 Theorem: Let f(x) 3 O be a bounded periodic function with period 1 whic
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not almost everywhere constant and is such that Jol +(x) dx = | . Then

there exists a sequence of natural numbers {Nn} such that the limit as n —» e

of the sequence of measures defined on subintervals 2 of [0,1] by
j‘ n
v, (Z) = T £ (N_ x) dx
n L k=1 k
exists and defines a singular continuous measure on Borel subsets of (0,1

Proof:

Let the notation be as in Proposition 6.6, except that we now define

D=sup {y: f(x) = y3}. As before,
t
Io S(X) dx = ﬁ
for some 8 such that 0 < g<l.

We first prove a modified version of part (i) of Theorem 6.6.

Choosing M1, N1 as before, (6.3.6) and (6.3.7) may be deduced as in

Theorem 6.6.
3/2 2
Now let 8, > O be such that €, < S - B
Since the step functions are dense in L1([O,1]) ([HS] Ch.Iv, 13.23),
P
there exists a step function _Z A, x; such that
=1
P
I E,
Io Ig'(x) - i{"ui X, | dx < 5D
Thus, using gz(x) € D, we have
F
1 } €,
lfo q,(x) g, (x)dx - _[o gzmiz:‘ a; X, dxl g 2 (6.3.18)
Q

Likewise, there exists a step function Z @; X; such that

Q
|
Io I £,(x) —:L;lp;xil dx < '2—5_2'74;

Thus, using |f2(x)-1| < D, we have

Q l
Uz(ﬂ(x) -1) £,(x) dx - ‘fz (£,(x) ‘”El B dx| < 2 2™

(6.3.19)

for every subinterval Z of [0,1].

Now choose N2 in N sufficiently large to ensure that

|
and IIZ £,(x) dx —Iz dx | < 2 2MpaQ

l e,
N, 2D?P
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Using the first inequality, we may proceed as in the proof of part (i) of

Theorem 6.6 to show that

. P P
jo 3:.(") :L;‘ o Xi dx = if;‘ o jzi g, (x¥dx < g + ';2'

which together with (6.3.18) implies
! 3
jo 3‘(10 g,(x)dx < g "2

Using the second inequality and ;5;5'9 for i = 1,...Q,

Q Q
ljz (-Fz(x)-‘l) ;Z=__| B, X, dx | < E\ p‘.ljii £, (x) dx -fzi dx | € 2.'204:

so that, using (6.3.19), we have

v, (£) - v ()] = Ifz (£, ) =D F ()dx| < Zl”z

on all subintervals X of [0,1].

Continuing in this way, it is evident that a sequence v, may be constructed

which is uniformly Cauchy on all subintervals Z of [0,1], and for which

j. p P (net )/2
o 1 gk(x) dx < f
kal
for all n in N . Note that, at the nth stage, the procedure is to approximate
n-| n-|
T 9 (%) and 11 -Fk (x) respectively by step functions.
k=l k=]

It now follows, as in the proof of Proposition 6.6, that if v, is con-

structed as above to satisfy (6.3%.4) and (6.3.9), then ¥(X) = nl‘:‘wvn(z)

exists and defines a continuous measure on subintervals Z of (0,1] and

n
Tr ‘Fk(X) converges to zero in Lebesgue measure as n —> o.

K
We now prove that if { Nn} increases sufficiently rapidly, then such a
measure Y is singular.

Let ", such that O <M, < _'2: be given.

"
Since 11 -Fk(x) converges to zero in Lebesgue measure as n - o,
kal

. = Y r“.ch
we may follow the construction described above until we reach n K1 for «



207

K{{xelO]: 1T4<x)>“- 1) < T,

kel 5 (5.2.20)

As in Proposition 6.6, we suppose that M1 2 2 and M‘k+1;' Mk for k = 1,...% -1,

1

Since the step functions are dense in L1, there exists a step function

Z. ; X such that

Q

T -
M.
LU At = L Xl ¢ g 6:3.21
Let SK, n, denote {xe[O,\] Zle( X b _7_‘_! } . Since (6.3.16)
) 4

remains true under our present assumptions, it is evident from (6.3.21) that

1
K.(SK‘, ‘r\‘) + 0 for 7, < 5 - We shall prove that

v(SK“,m)) > vw([0,11) - 7, (6.3.22)

and deduce that a continuation of this process will result in singularity of
the limiting measure V.

It follows from (6.%.21) that

k({xelo]]: \Tl’-F(x)-Z otX\> })<

l (6.3.23)
‘8]) | 2

8o that

k({xelO1]: Z «; X, >T|-‘~F(x)+ _J.})<-z!

which, together with (6.3.20) implies

S
R l)nl) < M Q

Since SK n is non-empty, and Z. oy x is a step function, SKu"h
1, =]

consists of a finite number q of intervals. Choosing MK1+1 to satisfy
| < n,
2 Mk, +1 16 q

we have
M,

8q
for every subinterval L of [0,1], since (6.3.9) holds under

v (Z) - ”K.(Z)l <

the construction



)
(W]
[¢8]

we have described in this proof. It follows tnat

lv (101]) = v, (LoD < ™

K 8

—
ON

LF.24)

and, by Minkowski's inequality,

lv (S )

Kl)nl - vKl(SK

)b < %-‘ (6.3.25)

\

In order to deduce (6.3.22), we first relate S’< to she
n*\.

L
7]
ey

%]
b
ct

S1 of [0,1], defined by
K,
S, =1xel0]: T £0) > 1)
k=i 2

Clearly,

K

\

fo(x)dx s 1 (6.3.26)
Z

{ T
[0,1]\S, k=1

and, by definition of Vi
i

K, K,
T £ (x)¥dx - v, (5 ) s T £ (x) d
S‘k=l k K, K1, jsl\sK“mk ! « (%) dx

(6.3.27)

n

Moreover,

sKn'Wl 2

l 4

K Q
< K({xe[O,l]:lTr 'Fk(x) - _Z “1X5l>3—‘})

k =\ !

K.(S,\SK ) = w{{xel0,1]:x€9, , x

12 ]

K|
= k({xel0]: T f(x)>N
k =1} 2

",
8D
by (6.3.23). Using this inequality in (6.3.27), we have

ks

=]
since fk(x) < D for each k. This, together with (6.3.2%),

<

K
} 'r)l
;ﬂ" £ (x)dx - )JK‘(SK”m) <

(6.%.25) and
(6.3.26) implies that

v (S Y » w_ (S )—n'

K“T]' K‘ K.»"]; —8— K
K' TT $ (x)d
_ x)dx ...
= vy ({o,11) - JS.‘ E‘;l ‘Ck(“)dx J'(o.!]\sl k=1 ®
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)y =M

.+ v, (S
Kl Kn’h —8—

> v([0,1]) - ¢

so we have proved (6.3.22).

Continuing in this way, a sequence of sets { Sk } is constructed

m:Nm
satisfying
v (SKm»ﬂm) > v ([0,1]) - Mm
and
K(sKm»ﬂm) < M.
where 1m _} — 0 . Thus u (SKmmm)—)v([O,l]) and K(Skm'ﬂm)-yo

80 that the measure ¥ must be singular.

This completes the proof of the theorem.

The results of Proposition 6.6 and Theorem 6.7 are readily extended to

include the case in which the sequence of measures {vn} is defined by

vy (2) = [ T b, (N, x) dx (6.3.28)
k=l

where for each k, hk(x) may be distinct. If we suppose that for each k,

h (x) is a non-constant periodic function with period 1 such that

J: hk(x) dx = | and that hk(x) is a step function on [0,1], or, respect-
ively, an essentially bounded function, then the proofs of Proposition 6.6

and Theorem 6.7 may be simply adapted as follows:

n
Wherever D" occurs, it is replaced by ET' D, where D_ = ess sup
hk(X); and instead of choosing { €,} to satisfy
(ne1)/y (n+2)/2
€, < B -

Weé now suppose that

nel

N W %
€n-y < 161/ l-t";l /ék (1 - lsm-z)
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= [ lh (x) )" -
where B = . Wb x dx for some fixed « such that 0 ¢ « ¢ | . It

’

may then be shown that, for a suitable sequence {Nn}

1 N « " "
jo ;ﬂ;‘ [h (N x) T dx < g JL B,

n
Evidently, to ensure that Iu h (N, x) converges to zero in L,, it is

. n
sufficient to impose the additional constraint that T By converge to zero

k=
as n-—» @©.

Using these modifications to the hypotheses and proofs of Proposition 6.6
and Theorem 6.7, it is straightforward to show that the sequence of measures
defined by (6.3.28) will converge to a singular continuous measure on [0,1]
for a sufficiently rapidly increasing sequence {rqn}.

We now use the denseness of the step functions in L1 to deduce a two-
dimensional generalisation of Theorem 6.7. We note that, although we do not
require f(k,y) to be a continuous function of y for fixed k, we have found it
necessary to retain a continuity condition in the k-direction. This is to
ensure that on each sufficiently small k-interval Ik, f(k,y) is approximately
constant for each fixed y, so that the two dimensional domain may be partitioned
into a finite number of subdomains on each of which the behaviour of f(k,y)

approximates that of a one-dimensional function. The method of proof of Theorem

6.7 may then be adapted without undue difficulty to this new situation.

6.8 Theorem: Let f(k,y) 2 O be a bounded function on [0,1] x (-, @) which
; ing J Ydy =1
for each fixed k in [0,1] is a periodic function of y satisfying 'Ioﬂ (k,y )dy =

) « <
and for each « with O < & ¢ | is such that Sup _[o [ £(k, )/] dy & |
k

Suppose also that for each y, f(k,y) is a continuous function of k, uniformly in

¥; that is, for each €0 there exists 6!>O which is independent of y such

that 1€ (k,,y)-f(k,,y)l < ¢ whenever |k, -k,l < &g Then there exists

& sequence of natural numbers {Nn} guch that the limit as n-»® of the sequence

of measures { v, ) defined on subintervals £ of [0,1] by
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v, (2) = Sz T £ (k,N; k) dk

=l

exists and defines a singular continuous measure on Borel subsets of (0,1]

Proof':

Let D = sup f(k,y), and let ® with 0<«® < | be given.
k,y

We first show that for each n in IN , if w >0 is given then B in IN
n

exists such that

ljz Flk, Nk de - [ dk ] «on (6.3.29)

for every subinterval £ of [0,1], whenever N3 B .
Let £ be an arbitrary subinterval of [0,1], with endpoints a and b, where
a ¢ b, and let 'qnvo be given.

We may choose B in IN such that

A _An_
B, < 2(D+ 1) (6.3.30)
and so that |k' -k"l ¢ —— implies
Bn
(k' y) - £(k", ) < o (6.3.31)

2

for every y, using the hypothesis of the theorem.
Let Nn in IN be chosen so that an Bn’ and let g be the greatest integer

such that a + g ¢ b. Let Ir' denote (a + r-1, a + r) for each r = 1,...,q, and

Nn Nn Nn

let I denote (a + g, b). If for each r = 1,...,q, k, is some fixed element of

N
n

Ir’ then we have by Minkowski's inequality, (6.3.30)and (6.3.31),
( - dk
lj'z Fk, N k) de - [ dkl

q Yok o+ |
¢ & 1f flk Nk dk ‘Ir,dkl - j: f(k,N K)dk | dk

raj Ir

q
¢ T DG N k) = Flke NGkOLdk

r=t r

q D+l
+ 2 ]_[I f(k, ., N, k) dk - frrdkl v
= r
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<
r

i M

KI{IY + 0 &+ T
l 2

MNa
2
€ "M,
Since X was chosen arbitrarily, (6.3.29) is proved.

We now show that {N,} may be chosen so that, in additiop to satisfying

Nn7, Bn for each n, it also satisfies

1 n n,l
fo T gk, N;k) dk ¢ B (6.3.32)

i
for all n in IN, where g(k,N;k) = [F(k,N;k)]‘ for each i, and

B = sup ‘fo' [{(k,y)]“dj; by hypothesis, 8 < 1.
k

We first show that N1 may be chosen 80 that N‘| b B1, and
j-l Yo
. 3(k,NK)dk ¢ 8 (6.3.33)
]
Choose &, 70 to satisfy &, 8 * -8 . Let N, be such that N, » B,,
l e'
Sm———— < t—
N, 2D (6.3.34)
and such that, whenever |k'-k"| ¢ -NL , then
1
, (3
lg(k',N,k) = g(k", N,K) < -{ (6.3.35)

for all k in [0,1]. That N, may be chosen to satisfy the last condition

* & o
follows from the hypothesis and the inequality lr -s | & lr-sl for

0<o(<l,

Let [0,1] be subdivided into q disjoint intervals I1,...,Iq and one

interval I, which may be vacuous, such that p(I.) = ﬁ- forr =1,...q,

and )J.(I); L . If for each r =

N,
then we have by (6.3.34), (6.3%.35) and our choice of &, .,

1,...4, kr is some fixed element of Ir’

q
!
fcg(k,N,k)dk = Z Ilrs(k,N,k)dk + [ gtk Nk)dk

r=a

9 q
k Z :-_1_ dk ¢ D’((I)
¢ ,E. jr, gk, Nikddk & & Ir, 2

3
< B 2 KI(I) + ¢

r=al

« g4
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go that (6.3.33) is proved.

To illustrate the method of proof of (6.3.32) for n » 1, we give details

forn = 2.

. 'y
Choose €, to satisfy D<e, & B~ 8" and let [0,1] e partitioned into

q equal intervals I1, .. .Iq each of length 1 where 1 is sufficiently small to

ensure that

) €
bg k', y) - gk’ y)1 <« & (6.3.36)

for all y, whenever {k'-k"] < L .

Q

Since g(k,N, k) is in L, ([0,1]), there exists a step function L «; X;
iat

such that
‘[l lq(k N k) g X.ld €2 2
o 3+ k)= i=,°‘i i1 dk < 4D <2 (6.3.37)

where the X‘. are characteristic functions of intervals Ji’ fori-=1,...,Q.
There is no loss of generality if we suppose that each Ji is a subinterval of
some I . Let J, € I_ be denoted by J,

r i r i,r

2 B_ and

We now choose N, to satisfy N2 5

2

€
< 2

J . (6.3.38)
N, 4QD

Then, if for each r = 1,...q, kr is some fixed element of Ir’ we have by

(6.3.36)

2 9
‘ro T g(k,N;k) dk = 2 _frr 9(k,N.k)9(k,Nzk)dk

1= ral

%
« 2 [ qlk,NKk) gk, N k) dk
r=\ Ir

a 3
2
+ rZ_ f 3(k,N.k) 2D dk

T 3
Q €,
s Z [ glk,NKk)glk,,Nk)dk + 7 (6.3.39)
ret I,. Q Qr
Moreover, if the restriction of 2. «; xi to I, is denoted by Z. i xi,r

ia P,

1=
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for each r = 1,...,q, where Pr = Qr—1’ then by (6.%.37)

I: glk,N,k) gk, N k) dk

r

Qe
¢ Z ;. glk., N,k)dk + —X
i=Pp “Tip 4q (6.3.40)
Let each Ji,r be partitioned into a maximum number of disjoint intervals, each
of length 1 _, together with one remaining interval of strictly smaller length.
Ny
Then by (6.3.38)
81
[ wiralke,Nikddk & o 0 g1 (T ) + 77

Ihr

for each r

1,...q, with i e {Pr,...Qr}. Hence using (6.3.37), (6.3.40)

implies

q
)R j g(k,N,k)g(kr,N,_k)dk

r=\ Ir q
r €,
« 2 L laepemo - 350 0 |

1
< (k k) dk + %
Pfos » N, Z
It follows from (6.3.33), (6.3.39) and our choice of €, that
!
jo glik, N, k) glk, Nk) dk & g

so that (6.3.3%2) is proved for n = 2.

In general, at the nth stage €, is chosen to satisfy

n/a (n+2)2
0 < e, & B -

and [0,1] is partitioned into q equal intervals of sufficiently small length

to ensure that for all y

€
] n n
- < —————-—.
l glk’,y ) glk",y)l D o
. k
whenever k' and k" are both elements of the same interval. Jl‘ 3‘*, N.k)

is approximated in L, norm by a step function so that the norm of the

1

e tisfy N_9» B and
difference is less than = N and N is now chosen to satlsly 8, n
L ._'!__.a imating step
teps in the approx
< where Q is the number of step
Nn 4QD"

3 = 2, S the
function. The method of proof of (6.3.32) is then just as forn
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assertion is proved for all n.

We now show that the sequence {qn} in (6.3.29) may be chosen to ensupe

that {v,} is uniformly Cauchy on all subintervals & of [0,1].

Let {M,} be a sequence of natural numbers such that Mn+1:“ Mn for each n,

Rn
and let _Z_ ¥; X; be a step function approximation of 'I!I" f(k,N. k)
1=1 i=1

for which

R
] n n
P0T fG Nk =2 ¥ Xl dk « —
(o] ial 1= ! ! 2.2 n‘HD

I
Let 7, = — , and for eachnin N , let 7 =

2.2™M T 2.2 iR

Then for every subinterval Z of [0,1]

n Rn
[ (F(k, N, kY =D)(TT fik,Njk) - Z ¥, X;) dk |
z

1 =1 i=)

n Rn
s D fz | T f(k,N;k) - Z ¥ X, | dk

1=21 1=
{
2. ZMrH-l

<

and, by (6.3.29),

Rn
L, (UGN, 0 - DOZ v dk |

13
Rn
sp" % |
t=1
i
2 Mas

£ns, (f(k,N ., k)= 1)dkl

<
where Zi is the interval on which X; takes the value 1. We deduce from these
two inequalities

n
v, (2) = v (E)) = Ij:(-F(k,N“ﬂk ~0N T flk, Nk dk |

l
Mn-o-l

/)

2
for all subintervals § of [0,1], so that {»,} is uniformly Cauchy on sub-

intervals of ([0,1].
The remainder of the proof is as in Theorem 6.7, with the sequence {Mn}
chosen to ensure singularity of the limiting measure.

The theorem is now proved.
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6.9 Remarks:

(i) Proposition 6.6 and Theorem 6.7 may be deduced from Theorem 6.3 if we

suppose that f(k,y) is a constant function of k for each fixed y. It would
therefore be possible to amalgamate these three results into a single theorem:
we have preferred to present them separately in order to emphasise the under-

lying ideas. Theorem 6.7 arises from Proposition 6.6, which is the fundamental

result, because step functions are dense in L,; and Theorem 6.8 owes its

existence to the insight afforded by Theorem 6.7.

(ii1) Theorem 6.8 is not the only possible two dimensional extension of Theorem
6.7. For example, suppose f(k,y) is a two dimensional step function on [0,1] x

P
(0,1] so that f(k,y) has the form Z «; X, where each X is the character-

i=1

istic function of a bounded rectangle whose edges are parallel to the rectang-
ular co-ordinates. If f(k,y) is extended to a function on [0,1] x (- e, )
which is periodic in y with period 1, then the conclusions of Theorem 6.8 hold.
To see this, it is only necessary to divide the domain of f(k,y) into a finite
number of strips with edges parallel to the y-axis, on each of which f(k,y)

is a constant function of k for fixed y. The sequence { N“'S may then be
chosen inductively so that the conditions of Proposition 6.6 hold on each strip.
(1ii) Theorem 6.8 may be extended to the more general case where the sequence

of measures {wv,} is defined by

n
v olE) = jz T h;(k,N;k)dk
1=1

where for each i, hi(k,y) may be distinct, but possesses the same general pro-
perties as f(k,y). In this case a sufficient condition which ensures that

v = lim v, defines a singular continuous measure 1S

N> N n
(‘.m -'T ‘ - O
ny oo isl Ly
(this certainly holds unless g, ss i = o ), where for each 1.

! oA . .
i = Szp .fo [f‘-(k,y)] dy and o such that 0« <« 1 is fixed.

- i i11) and (iv).
(iv) Further generalisations may be deduced using the ideas of (iii)

3 for
For example, Theorem 6.8 may be modified to include the ca3€ where fo
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k, € { ko,..ook € [0,1], £(k ,y) is discontinuous at some or a:- ¥, orovided

i ndition on ¢t inui i i i thi _
a uniform condition on the continuity is retained within each K-interval

(kr,k ), r= 1,000,n—1.

r+1

Theorem 6.8, with the modifications described in Remark (1ii), is analogous

to Pearson's result (Theorem 6.1); however the continuity conditions are -=:on

1Y

siderably weakened and the requirements that each of the sequence of functicns
{fn(k,y)} be bounded away from zero and that fn(k,N k) be analytic for large N
have been removed. We now use some well known inequalities to determine some
relationships between the remaining conditions.

For each k in [0,1], we shall consider the behaviour of the sequence of
functions {fn(k,y)} on the y interval [0,1] in the more general context of
sequences of positive functions {'F,,} on a measure space fl with probability
measure M .

Let the expectation of f be denoted by E(f), so that E(f)= [fdm and
suppose that for each n, f £, dpm = .

It is a straightforward consequence of H8lder's inequality that if a + b =

r+s8=1and a,b »0, r,s » O then

LP¢ s/ b
EGE) < (E(F N (ECF ) (6.3.41)
Hence, setting £ = f “', r=0and b = Kl ,
n oy
Ya Vo
(E (4n°“)) e (ECE) T (6.3.42)

for 0 < x, ¢ &, < |.

It may be shown that if f » O is non-constant m-almost everywhere and

E(f) = 1, then for 0 ¢ « < |
E(£Y) & 1

and for s >

E(fP) A

Hence for all ¥ in (0, w),
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% k
T %) = Um T g
n=I k—;oo n=j\ n

exists finitely or infinitely.

The following lemma is simply deduced.

6.10 Lemma: Let o, , ok, such that O0< &, <1, O« x, < | be siven
Then
[- 2]
ok o0
T E(f,) =0 & T E(Ff*) =0
n=|\ n=1
Proof:

The result is trivial for «, = «, .

there is no loss of generality if we suppose tha~ & < o,.

If o, % &,

Then

n=!

o0 Qo
T e(¢)=0 = T E(f;) =0

n=1
=1 in (6.%.11) yields

«
by (6.3.42). Setting f = fn", r=%,5=1
a ®R, D %,

(EC£5N (BN = (BN

A

E(£,5%) s

from which we deduce

o o
T E(F™) =0 = T E(F*1=0
n=| nal

so the lemma is proved.

and the conditions

An analogous result is true for B, ,8, 7 0
x> now show.

=

o
E (Fn“)"O and T E (-Fn's ) = oo are normally equivalent. as

n=\

R=1\

6.11 Lemma: Let B.,B, > be given, and suppose that {f,} is bounded

above uniformly in n. Then

00 o s

T E(£f) =0 & T EED =<

) n= «© d) 0

and T E({:n@)=w for 311(57l if and only if 'ﬂ'lE(Fﬁ a
nel n=

n= |

for all « in (0,1).
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Proof':
Let 8,7 ) be fixed, and suppose g »8, - Setting f = f':' , =1 ,s=8
a B b 8,
in (6.3.41), we obtain
b
E(£5) s (E(¢))
-1
where b = (%—:T) . We deduce
[} o0
(a): If TI". E(#,f‘):co for some g,»1! , then I E('F,f)=oo
n= n=|
for all & » 8,
Setting f = f‘n, r =« in (6.3.41), where 0 ¢ & < | yields
a
(1-0«)/
a (1-a) i-a
s (E(£,%)) (E(F, )
(6.3.43)
If a in (0,1) is fixed, then « may be chosen so that "-n“ is as close to
-a
1 as we please. Hence (6.3.43) implies that
ot a p l“q
1§ (E(f, ) (E(£f)) (6.3.44)
- | -
for all @ in (1, _1 ), with &« = =g li-a) . It follows from (6.3.44)
1-a a ot
) A
i in (0,1), then T E(fy )= o0
that if ..Il_:| E(f%) =0 forall«in (0,1) en -, n
for all 8 in (1, l—l—;),Using Lemma 6.10 and (A) above we conclude:
- .
)
(B): If Tr E($,*) =0 for some & in (0,1), then ;‘Tr‘ E(‘Fnﬁ) = ®
RN=) -

for every IR

To complete the proof of the lemma we need only show that if {f,} 1is
then

o0
bounded above uniformly in n and if T E(F,f) = o for some 8 >1,
n=l

[ -]
;n- E(f£f*)=0 for soe « < I.
=1

. [3 t
From (A) and Lemma 6.10, there is no loss of generality in supposing that g
is an integer and « = _'i .

: how that
Using the Taylor expansion of (1 + y)% it is straightforward to 3
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!
|l + 5y - (l+y),"
yz

—

16

b4

1

whenever -1 € y & 1. Therefore, since (1 + {y - (1+y)?) is increasing for

y31, it follows that for K » 1,

1 + 3y - O+ j)'&' i
y* 16 K2

(6.3.45)
whenever -1 € y & K.
Similarly, if K » 1 and -1 ¢ y ¢ K, there exists C » 0 such that

0« U3 - (1+py) < C (6.3.46)

2

Y

Since p is an integer, the right hand inequality follows immediately from the
Binomial Theorem and y € K, and to see that the left hand inequality is true,
note that the minimum value of ((l+y \‘s—(li-p’ )) on [-1,®) occurs at y = 0
and is zero, so that (""‘-”)‘s" (1 + 8Y) 35 positive for y in [-1,K) N {0},

y?
The case y = O may be shown using L'Hopital's rule.

Setting f = 1+y, we have from (6.3.45) and (6.3.46)

Y
b+ L6 1) - FP o k(8 -1 - g(£,-1))
where k = 1 is constant. Integrating with respect to am yields
16KC
| - E(£,%) » K (E(£f) - 1) (6.3.47)
since { £, du = Jdu =1, and applying the inequality x - 1 % log x

for x » 0 to (6.3.47), we obtain
-log E(£,”) % k log EEF)
@ [
s that if .ﬁ'i E(Ff):oo then T E(G“")-o,

for eachn inIN. It now follow ne |

n=|

where for convenience we have assumed £ > | is an integer.
s the
The first part of the lemma may now be deduced using (A) and (B), and
second part using (B) and Lemma 6.10.

The proof is now complete.



221

Lemma 6.11 fails if the hypothesis that fe,} 1s bounded above is

removed. To see this, consider the sequence of functions defined by

Zn-l [0 ZZn-l— :
—_— on '
2" Zzn-'
f, =
_ 2n -1
'Znt-o-l—-'—;‘ on (2‘ -',I]
2 22!\-—‘
Taking M to be Lebesgue measure, _f-Fn du = Sd/“ =1 for each n, and for « in

(0,1), Iinf £, < 51": du , S0 that

E(£%) > (1 - )

n

oo oo
log T E(F,°) > I log 1 --L)

n=| n=\ 2
Using the inequality log x 2 2 (log %)(1-x) for x in [4,1] yields

log T E(f.) » Z 2(logz) =~ > -2
n=| 2"

n=|

o0
from which it follows that T E(£,°) % 0

n=i

However, for 8 > 3, E(f*)> o as n>w, so that T E(Fff) =

n=|

for some p > I

o
Thus, provided {Fn} is bounded above, the conditions T E (fn") =0

Awnl|

[}
for « in (0,1) and T E(‘Ff) = o for @>1 are equivalent. However, these

LY-3
(-]

conditions are not equivalent to Z. f l°3 f,du = - even if {f,} is
n=1

bounded above and for each n there exists cn in IR such that fn ? cn > 0.

e [ -]
6.12 Lemma: If I E(F:)=0 for some & in (0,1), then Z‘ J l°3 fodma-o.
—_— n=
n=)

Proof:
-_— \

o Ve
The hypothesis implies that for each &« in (0,1), ™ (E(F, YY) =0

Nnal

74 . .
using Lemma 6.10. Now for each n, (E(F,,“ﬂ is a decreasing function of

by (6.3.42), and

. Y
lim (E('Fn“)) «
230

(see [HLP] 86.18). Hence

exp J los Fn d/M
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O
N
=s

exPJloan du ¢ T (E(F,,"‘nv‘ -0

! =i

n

which gives the result.

To see that the converse of Lemma 6.12 is not true in general

» consider
the sequence of functions defined by
a1 on [0, 1]
on n‘2
n 2
fn= 2 n -1 on (1, 1]
2nn2_2n n2
and sSuppose denotes Lebesgue measure. Then
.
E.(fn Y = | + O (l;)
n
so that
)
Z (1 - EC£.™))
n=t g < ® (6.3.48)

had i '
To see that (6.3.48) implies that T E (f,®) » 0, note that if
n=|

© |}
'lT‘l E (fn"‘)ao, then using y <exp(-(1-y)) for 0 <y < | , We have
n=

S . g y
Z log exp(~(1-E(f *Na-wi.c. L (1-E(£) = o
A=

Nalt

However,

flog{:n du = -ln- log 2 + O(.'-a)

n

[ ~]
so that ¥ [ log f, dm = - @ . We note that limsup f =1, so that
n=al

{‘fn} is a bounded sequence of functions.

As a result of the above discussion, we may state:

6.13 Theorem: Let the functions f‘n(k,y), Ogkgl, ~o< y<mo, be periodic
in y with period 1 and satisfy:

(1) os fn(k,y) ¢ K where K < oo is independent of n.

(i1) Iol folk,y)dy =1 for each k in [0,1].

(11i) Either for some & in (0,1)
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[Ld 1 «
T osup [ (F (. yN*ay -0

n=1 k

or for some 8 > |

o0
. f -
r‘\TZI ':F Jo (Falk,yN " dy = o
(iv) For each n, f (k,y) is continuous in k for fixed y, and if €% 0 is given

there exists 68,n which is independent of y such that

|‘Fn(k',y)—9n(k")y)l< € whenever |k' -Kk" | < 55
N

Then the conclusions of Theorem 6.1 hold.

Evidently conditions (i) and (iv) are considerably weaker than the
corresponding conditions in Theorem 6.1; condition (ii) is unchanged, and, as
the discussion above shows, condition (iii) is stronger than Pearson's con-
dition (iii). Thus, in general, Theorem 6.13 does not include Theorem 6.1 as
a special case; however, if there exists-C in IR which is independent of n such
that fn(k,y) 2 C » O for all n, then both conditions (iii) are equivalent (see
[AS],Prop.A.3.3).

We have felt it worthwhile to include the alternative condition with 8 > i
in Theorem 6.13%(iii) since there are many situations where f-Fz , for example,
may be evaluated analytically but f{“ cannot, for any « in (0,1). Where the
sequence {fn(k,y)} is known to be uniformly bounded away from zero, the log-
arithmic condition (iii) of Theorem 6.1, with ¢ = 1, may be used instead of
condition (iii) of Theorem 6.13, as convenient.

A discussion of Theorem 6.1 and its ramifications, due to J.Avron and
B.Simon, deduces Theorem 6.7 using Kakutani's Theorem ([AS] Appendix 3). Their

method of proof leads the authors to the conclusion that some special significance

attaches to the value « = § (where a is used as in Theorem 6.13, condition

(1i1)); however, our approach suggests that this is not the case. Avron and

Simon proceed to deduce a result which is similar to Theorem 6.13; however, the

i s in both k
stronger condition that each of the functions fn(k,y) be continuou

and y is required.
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The methods of Pearson, Avron and Simon,

-—aad

cation of the wealth of strategies that may be utilised in the generation of
singular continuous measures from sequences of periodic functions. & further
method, using the binomial distribution and Chebyshev's inequality, is used on

the example of the following section.

§4 A dense singular continuous measure generated by a sequence of periodic

step functions

So far we have confined our attention to the existence of sequences {N_}
n
of natural numbers which ensure that a sequence {fn(Nnk)} (or {f _(k,N k)}) gen-
n n
erates a singular continuous measure. To give an idea of what rate of increase

of the {Nn} can be sufficient, we analyse a specific example in detail.

6.14 Example: of a dense singular continuous measure on [0,1) which is the
limit of a sequence of absolutely continuous measures, and is ob-
tained from a sequence of periodic step functions.
Starting with the step function f(x) which is periodic with period 1 and

is defined on [0,1) by

{% , xel0,%)
£x) =1 3/2 , xel4,1)

we construct a sequence {-Fk(x)} on [0,1) such that

f,x) = f(x)
k-1
fk(x) = f(2° 'x) for k 2 2
n sr
Note that the range of 1| f . (x) is {? :re0, ....,n}.
k=1

Defining the set function w(£) on subintervals & of [0,1) to be

Lim v _(£) , where
N~»o0

n
Vo (Z2) = S T £, () dx (6.4.1)
T k=1t

£ [0,1)
we show that y defines a singular continuous measure on Borel subsets O ( '

re diadic
and that the » -measure of subintervals of (0,1) whose endpoints &
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rationals may be determined exactly. The main steps of the proof
are as

follows:
(1) We show that for eachn in IN, if r e {0,. 2"-1}
Ce ,
“f‘
v([r )t‘+l )) _ 3
2" 2n 2% (6.4.2)

where o, is the sum of the coefficients in the binary expansion of r.
(i1) We deduce that ¥ is a unique, continuous and everywhere dense measure on
[0’1 ) .

(iii) We use induction to prove that

K({xelO,N: -?r £,.0x) = 1: L O0grsn neN}) =4 (n
k=1 2" 2"(r)(6°4'3)
for all n in IN , where K denotes Lebesgue measure.
(iv) Using the theory of the binomial distribution and Chebyshev's inequality,
we deduce that as n — w0, jt| Fk (x) converges to zero in Lebesgue measure
on [0,1).
(v) We show that for n » r, if m> 0 is given, then
\ g
vn({xelo,l):;rr £ (x)<7m 1) is independent of n, and deduce that the measure » is

singular.

Proof of (i):

We first prove by induction that for n 2 p

() = e ()
where n, p & IN end refo0,.....,2°7"}.

We suppose that (6.4.4) is true for n = q > p and note that our construc-

i r r+ ! inite union
tion of the sequence {Fk ¥ ensures that [—i; T ) is a finite
%-l
ofintervalsoftheformls , S+ | ) , where 86{0,----.2 },
29 29
T Consider one
on each of which 1T £ (%) takes a fixed constant value.
k=!I

L, 28 7YY

such constituent interval, [ t‘ ) t{," ) , where t e {o,..
2

Since
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lz , X e L 2t 2+ 4 |
2w e
‘F (X) = <
Qe+
S xe[REr1 2te2
\ Lzﬁﬁ'l 21.,_')

we have by (6.4.1)

q
t t 4+ | t 1
PO , = L T & (L ‘ 3 t !
°'+([2% 2y » 2 k=) "(2"*) 27 T ‘k(-)

g0 that

r r+1 - r r+ |
v = ¥V -
i+t ({2*’ 24 )) ‘1([2 Y ))
That is, if (6.4.4) is true for n = q % p, then it is also true for n = q+1.

Since 6.4.4) is trivially true for n = p, it is proved fsr n » p by induc-ion.

It follows that if p e IN,

v([;" ,rgpl )) ) vP([_zr?' r;r’i )) (6.4.5)

for each r in 1 0,..., 22 - 1}.

We are now in a position to prove (6.4.2) by induction, and suppose firs-

that the assertion is true for n = q. It is required to prove that

v r r o+ = :3dr
([z‘“' |24 )) 2 2ar?

q 3
where r = Z a. 2" and o, = 2 a,
izo  'avi i=0 4+
T F g+
In the case where r is even, il ‘Fk(x) is constant on < n )
k=I 2 2
L r 4
and fq+1(X) =}on [2_, 2 _2 ) so that by (6.4.5)
21 24
r r+ - r r+| ))
v([z‘-*' L2 )) B v“»"'([z'—*' A
%
J LT £ (x) dx
= r r+l > k
[-E_:GT'—"—ZqH) k=
%
b €k(x) dx

i
-
—
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£ =
2_ 2
2%’ 2%

.
VR S
4 T’ 29

Since the sum of the coefficients in the binar i r
Y eXpansion of —
> and of r are

+
~———

2y
4 9

N

equal, it follows that if (6.4.2) is true for n = qand re{0,...., 2%}

is even, then (6.4.2) is true for n = g+1.

%
In the case where r is odd, T {:k(x) is constant on rz' ';"
k=) 2% ’ 2$

3 L r+\
and fq+1(x) =3 on ;’g ’ :1 ) » 80 that, arguing as above,

u([ r ’r+|))=§_v[% PTH))
2! 247! 4 2a ' 24 (6.4.6)

If (6.4.2) is true for n = q, then

F=1 e+ Sd(""')/z
v [ 2 , 2 )) = -
2y 29 2%
where o((,__n/ is the sum of the coefficients in the binary expansion of -12—1,
2
and hence from (6.4.6)
R — + 1
N r re 3 €=
( [ 29+! > g4+ ) = 9 2(q+N (6.4.7)

However, if &, is the sum of the coefficients in the binary expansion of r,

then

Xp = “(r—l)/z + |

if r is odd, so that from (6.4.7), (6.4.2) is true for n = q+1.

Using (6.4.5)
v([O,-;T)) = ¥ ([0.-';)) =

and
v([z,1) = v,(['z,z;.)),%.,_f

hn
80 (6.4.2) is true for n = 1; this completes the proof of (6.:.2) for eac

inWN, with re{0,....,2"-1}.
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Proof of (ii):

r
If > € [0,1) then & _% p , where X, is as in (i).

2 Hence by (6.:.2),
v([r re | » < (3)P
r 3
2f 2f 4 (6.2.3)
for all r e £0,....,2°-1}, 50 that if €> 0 is given
roor+)
v —_—
([2' 1 )> <€ (6.2.9)

whenever p is sufficiently large.
We prove that ¥ is a measure on Borel subsets of [0,1). This will be

achieved if we show that the function

fix) = Llim v, (0, x)
n — o

is defined at all points x of [0,1) and is bounded, continuous and increasing.

(see [H] §43, Thm.B).

By (6.4.2), f£(x) is defined for all x of the form —;, where
2

F,p € IN, redi1, ... .,ZP—I}.Consider therefore an arbitrary point a in
[0,1) which is not of this form and let € > O be given. By (6.4.9) there
exist p,r €eiN such that

r+|

2 rls
and v [X~ T+t V< e .
2f 2°

Hence by (6.4.4) and (6.4.5)

v([° %)) - v,,([o,.r_?.)) ¢ v (l0.a) < vn([O,"_E‘:'_'»

.—r_ < a <
P

for all n > p, so that

2([0155)) € Uminf va ([0,a0 ¢ Umezp vallone) v([oow)t

i t a;: hence f(x)
It follows from the arbitrariness of & that f(x) i3 defined a

is defined at all points of [0,1).
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To see that x, > x, implies f(xz) > f(x1) for all X{»%, in (0,1). note

that for such x ,x,, there exist r,n in IN such that

x, < r ) r+ |
2" 2"
so that by (6.4.2),

i e > o ([ 0552

< xz

By (6-4-5):
F(Y = » (Lo, 1) = » (LO,N)

so that f(x) is bounded on [0,1).

We now show that f(x) is continuous on [0,1); let a € [0,1) be an arbitrary

point.
For each n in N, there exists an interval
I - ra,n Pa,n + 1
a,n n n -
2 2

. n
with rdne{o,...,z —13} such that ae I

L] ’

5 clearly Io,n c Ia.m

whenever n > m. Hence

v({a}) = v( N Iam)

ne N

= liﬁ! Vv ( I )

a,n
= 0

by (6.4.8). (see [BA], Lemma 3.4).

It follows that v is a unique continuous measure on Borel subsets of

(0,1) ([H] §23 Thms.B,C); and since f is strictly increasing on (0,1), v is

everywhere dense on [0,1).

Proof of (iii):

Suppose that (6.4.3) is true for n = p, 30 that ,
?)

- —
-

P r
K({xelo,l):‘:n'l 'Fk(")-éz'?}) 2

fOP 8.11P=0,.-.,p.

P r
3 d 1et ,I_ denote
Let S, denote {xe[O,l):;ﬂ' Fk(x)s?} and let 4%,
=1
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t , t sl for each t =
2F 2°P

O,...,2P_1,

P
Now 1T Fk(x)

takes constant values on eacn in-
k = ‘

ol
the construction of the sequence { Fk("‘}»

k(1 x eJcIP L () = L
K{ixe I, o F o (x)=21)

Therefore, since re Sp, rsp are finite unions cf such in-=srvals.
= =
K({xe S, Ff  (x)=L1 =1 k(.5

. - 3 =
R({xe e Spt Fpu (0 -?11)
for each r =

O,...,p. Hence

F+\ 3,.
K.({ X € [O,‘) : EE' = 2P+ })

]
x
—_
)]
—

L

2 2P

<p+l)
= r

TP
forr =1,...p, and if r = p+1,

(5
) - _ \p*1/
K(P""\SP“'l):—z—K(PSP) ZP*I - zpvl

Thus if (6.4.3) is true for n = p, it is also true for n

= p+1.
If n=1,

K ({xelO1): Ff(x)

—
(o X
S

i

|

== 1)

A
2

—-—- N

—
S

—

|

kR({xelO,1): f(x) > 1) _'ii

[ )

= 1.

This completes the proof by inducticn

Proof of (iv):

We first show that

K(Txelon): T € 60y
k =\ 2
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as N —» o0,

Now, using (6.4.3) and (:) = ( n )

—~
—
"

kRi{xelo1) - TT fo(x) > 3 2. (:)
k=l 2" {kﬁNfgnskSn} 2"
z (k)

{kelN:Osks%n} 2"

ok "
{keu\lzfsks%n}(:)(—?_—) (%) )

P(Xs én)
8

and varameters n and

p =%, and P denotes probability.

Using Chebyshev's inequality, where V(X) = np(1-r) is the variance of X,

P(Xs 2n) = £ PUUX=-%nly in)

s Vi(x)
2 (n/s)z
3

/S

- n
from which we deduce (6.4.10). (For discussion of the binomial di:ztributicn
and Chebyshev's inequality, see for example [B] Ch.658%8, Ch.7 §:1).

Since 35 < 28, for each & > O there exists N8 in IN such tini

5’8“
oA < & whenever n 3» NE’ Hence
n n Ss/an
{xelo,l):_rrfkhd?e} c {xe[O,H:Jrl £ () 3 > }
k=1 a2
for all n 3 Ng , so that, by (6.4.10),
n
K({ixelO1): ;lT' f (x) > ey) » O
=1
88 n — oo : that is, 'ﬁ- Fk(x) converges -0 zerc in Lebouorus measura
k=1
on [0,1).
Proof of (v):
n
Let S, , denote fxelon): T £(x)smnl
' k=l
We use induction to show that
- (6.4.°")
vr(Sn’,)) = vn(Sn,.,))
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for all r 2 n.

Suppose it is true that w, (S"»"\) =V, (Sn. )

By definition

pt+l
vP+| (sn,'q) = j\sn‘n I' ‘Fk(x) dx

Now Sn n may be expressed as a finite union of
)

cdisjoint irntervals i1}
n I = r r+l P
where eac r = > P » 3P ) for some re{O,....,Z -l},and . each
P
of which Tl £, (x) takes a fixed constant value say. Mopeover
I » P,» sS&y Mopesvan,

for each r such that T _ = S

n,m
)
~ 1 r r+ /2
Fper ) = 5 " [zp, X )
|
- 3 r+ /2 r+
‘FP+l(x) = > on [ -7 - )

by the construction of the sequence fk(x). Hence for each such r
p+!

JI. I‘ f_(x)Vdx = j[

-

. 3
r rrla\ 2 prdx + Irf'/;)r+‘ EPrdx
2P’ 2P l )

2° rAg
= p, k(L)
P
= T Fk(x)dx
which implies I k=1
p+! p
d = T £, (x) dx
sn’fl ;‘—":' -Fk(X) 8 J.s'\)'\ k=1 k
i.e.
vP+l(Sn,‘Y’) = vP(Sn,‘Y])

£ = n, -hi
Since it is trivially true that ¥, (Sn,q).-.vn(sn,,]) forrp o=, this
completes the proof by induction of (6.4.11).

It follows immediately that

v (S Y = v (S ) (6.4.°2)

from which we now deduce the singularity of the measure V.
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Define
~ n
Sn‘q = {Xélo,l): ':IIl -Fk(x) < _é_}

Since T . (x)
k=1

converges to zero in Lebesgue measure as A — o

there exists Nq in IN such that

—

k(i x e [0,1): T 0 >+1}) =k ([0, - k(5 )

n,q
< L
q
whenever n % Nq; that is, such that
s \
K ( Sn,cl) > I - ry
whenever n ) Nq.
Fix n = Nq ; then
K ( gN Y vy 1 - A
94 q
Cn the other hand, by (6.4.12)
g = YV 3
v ( N‘V,,L) Ny (sN q’)

p
hﬁ
:Lz
:
~’
o
x

— d :-l-
J[on)‘l X A

Thus we have determined a sequence of sets {S } whose Lebesgue

N
9,9

meéasure converges to that of [0,1], and whose Y-measure converges to zero as
qQ =» . It follows that the measure v is singular, so the proof of (vi)

is complete.

This example is intimately related to a class of monotonic continuous
functions whose derivatives are zero almost everywhere, considered by F.Ries:
and B. Sz.-Nagy. (see [RN] §24, in particular consider t = ¥, Fn(x) =y ([(1-x," )
also [HS] 18.8).

, @ven
The method used in Example 6.14 does not have general application

insi: interest,
to sequences of step functions. However, apart from its intr
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the example shows that far slower sequence
ue Y
q S {Nn than those cttainak:

1atlie from

the general theory may be sufficient
to generate a si
ngular continuous

thI’lS Ild 3 i ~2 A
. eec, 1nsve solatel

PR Y

of parts (i) and (iv) of the proof shows that such a slowly in
creasing

gequence as IN _: N_= "
q n N, 2"-1 ]} could not have been obtained by the methcd of

Proposition 6.6.
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CONCLUSION

During the course of this work we have established a characterisation of
vvvvv 4 b

each part of the spectrum in terms of solutions of the Schrédinger equation
demonstrated by example that asymptotic completeness does not imply continuir-

of the scattering amplitude as a function of energy, and extended and zereral

ised a number of existing results of relevance to scattering theory and spec-
tral analysis. As with every development, new questions and further problems
arise; it seems appropriate, therefore, to conclude with a brief discussion
of the advantages and limitations of our theories and a tentative consideration
of how they might be applied and in what directions they could be extended.
The: theory of subordinacy developed in Chapter III and extended in
Chapter IV is attractive in several respects. Firstly, unlike many direct
methods in spectral analysis, its validity is independent of the detailed
behaviour of the potential; only very general conditions, as for example,

that the spherically symmetric potentiai V(r) be integrable at infinity and

the spectrum of every self-adjoint operator arising from L on (0,1] be sing-
ular need to be met (see eg. Thms. 3.21, 4.10). Secondly the required esti-

mates of the relative size of solutions of the Schr¥dinger equation at infinity

(and / or O) are comparatively crude; this information should be considerably

easier to obtain than, for example, the detailed xnowledge of m(z) required

by Titchmarsh ([T2] Ch.V), and only a consideration of solutions of Lu =Au

for real values of A is involved. Finally, our 1imited excursion into cases

where there is singular behaviour of the potential at both ends of an interval

: 11
(Thm.4.1o), suggests that considerable extension of the theory, perhaps to a

$ eventually
second order differential operators of the Sturm-Liouville type, may

be possible.

. ential
In the generalisation of the Weyl-Titchmarsh theory to differ

iginal features
equations of any even order by Kodaira ([K02]), all the origin

. ting hypersurfaze:),
remain (for example, nesting circles are generalised to nes ng

in this direction
which suggests that an extension of the theory of subordinacy
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might be relatively straightforward.

The structural correspondence tetween :no

three dimensional Schrédinger operator and the one dimensional Schr#q;
dinger
operator appears to be less exact; for example, there ig nothing quite com

parable to the spectral function ([T3] Ch.XII, §12.10). on the other hand

much of the theory which applies in the one dimensional case has been shown

to apply in a modified form in the three dimensional case (cf. (2], [T3]) and
» ’

of course, with central potentials the three dimensional problem effectively
simplifies to a family of one dimensional problems ([AJS] Ch.11). It therefore
seems not improbable that some adaptation of our theory might apply, and in
view of the importance of the three dimensional Schr#dinger operator in quantum
mechanics, such an investigation would seem to be very worthwhile.

The most pressing immediate problem, which has not been tackled in this
thesis, is to find ways of applying the theory developed so far to specific
gituations. In some cases sufficiently detailed knowledge of the solutions may
be known already, so that an immediate application of Thm. 3.21 or of Thm. 4.10
is possible. However, it is likely that subordinacy will be of most value to
spectral analysis when dense point or singular continuous spectrum is a possi-
bility, and that in such cases suitable estimates of solutions - as of every-
thing else - will be hard to obtain. The possibility of using the theory

indirectly, for example, in conjunction with perturbation methods, should not

therefore be overlooked.
Although the main application of subordinacy must surely be to spectral

analysis, it is worth noting that, where details of the spectrum are known

. : he
already, some new knowledge of the asymptotic behaviour of solutions of t

i be cf
Schrédinger equation is now immediately available. This may not only

: . it also suzgests a
interest so far as properties of solutions &are concerned; it

. e behaviour of
possible line of enquiry for spectral analysis. For, because th
y cases that

i man
solutions can now be related to that of the potential in the

i late causal con-
have been analysed, it may sometimes be possible to extrapo

btained.
nections between them from which further results can be 0
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The simplified eigenfunction expansion ¢+ Chapter IV is of fung tal
sundamenta

theoretical interest and further generalj i
g sations would te of 7alue nct oniy

to quantum mechanics but in many branches of pPhysical science Again, th
. . ere

is the possibility of analogous results for ordinary differential operators of
any even order. It seems quite likely that the Weyl-Kodaira Theorem can be

simplified as in Theorem 4.9 whenever the spectrum is simple and that, in
general, the simplified expansion is a natural extension of the well established

expansion for the case where L is regular at O ([CL] Ch.9, §3). Further inves-
tigation of this problem might well clarify whether the theory of subordinacy
applies under weaker assumptions (cf. Theorem 4.10, which is a by-product of
the groundwork for Theorem 4.9). As noted earlier, some related results which
were unavailable to the author have been obtained by Kac ([K1], [K2]), so before
proceeding further it would be prudent to investigate the precise nature and
scope of this work.

If only those potentials V(r) for which Hc is spectrally simple and the

wave operators L+ (H_,H,) are complete for each C in IR are considered,

2
where Hc is any self-adjoint extension of- 9 & V(R +CX {0,1]);then no further

dr?
weakening of the condition at r = O on the class of potentials for which the

phase shift formula for the scattering operator (Thm.5.9) holds is
possible. However, it may be that the condition at infinity can be weakened in

certain respects; for example, it was shown by Kuroda that the condition

VirY= 0(r~'"*®)  can be replaced by V(r) e L, U ,©) if the potential is

not too singular at O ([KU2]), so a similar improvement could be possible where

the spectrum of each self-adjoint operation H, arising from L on (0,1] is

singular. It may also be worth considering whether certain oscillatory
snfini ted under our
potentials which are not integrable at infinity can be accommodate

weaker conditions at the origin (cf. [RS II1]). p.167).
tors
The proof of the existence of a potential for which the wave opera

i i i tinuous function
are complete even though the scattering amplitude is a discon

jiscontinuity of ne
of energy in Chapter V demonstrates that completeness and dis
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gcattering amplitude can occur in conjunction when the potential i uf'e
8. 1s sufficiently
singular at the origin but absorption does not occur. It may be thas thij
. Laas ls
phenomenon occurs quite generally whenever there is dense singular srec
cecurum

of H, and V(r) = O(r-“*a) as r - o

» and that whenever the spectrun of H is
1

isolated pure point, continuity of the scattering amplitude is assured given a

suitable condition on V(r) at infinity. Certainly the relationship be:tweer -ne

gscattering amplitude as a function of energy and the spectral properties of 5,
seems worthy of further investigation.

The method of inductive construction of potentials, originally devised by
Pearson ([P1]) and discussed in Chapter VI is an interesting alternative
approach to spectral analysis which seems particularly promising where singular
continuous spectrum is concerned. It is difficult to assess the likely future
significance of the method given the rather limited class of problem to which
it has been applied so far; in each case the constructed potential vanishes
on successively larger intervals of IR as r—->w (see eg. Prop.6.4, [P1] Props.
1,2). Initially, an investigation into whether the method could also be applied
when the potential is small, just touching zero glancingly, on successively
larger intervals of IR as r-> o (as for example (| + cosdr )) could lead to a

useful extension of the approach.

While the material of this thesis has for the most part been motivated by

problems in theoretical physics, we hope that some of its contents may also be

of interest in other fields. Only Chapter V is exclusively quantum mechanical

in its subject matter; mathematical topics occurring elsewhere include

3 i ec-ral
ordinary differential equations, eigenfunction expansions, measure and sp

. te
theory and complex analysis. Of particular interest, perhaps, are the intima

i f Sturm-
connections that have been exposed between gpectral properties O

; theory of
Liouville operators, solutions of the associated equations, the ry

measure and boundary properties of analytic functions.
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APPENDIX

We prove that the isometric Hilbert Space isomorphism § of The 4.9
orem 4.

is surjective; that is, we show that for each G(X\) in |_ts'(_mJ w) t
2 ) aere

exists £(r) in L, (0,) such that (5€)X) = G(x) JX-almost ev
- er’y-

where.

Now from the Weyl-Kodaira Theorem, for each given element (@, (\), @, ()
of LEUW (-, ) there exists £(r) in L,(0,) for which ((TF),(A),(TF),(N)
cawerges to (@, (X\), ¢, (X)) in the topology of L:"J'(-ao,ao) . Moreover,
for each (@, (XY, §,(N\)) in L;U (-0, 0) there is a corresponding
element G(X\) in Lf(-ao,co) such that G(X) = @ (X)) + m (XN) @, (M)
= (S£Y N j-almost everywhere (see proof of Thm. 4.9). However, in
general, there appears to be no obvious way in which we may associate a
particular element (@,(X\), @, (X)) of LI (~0,©) with an arbitrary given
element &G (X\) of Lf( -0, ) . ItAseems, therefore, that the surjective

~J

property of S cannot be deduced in a straightforward way from the surjective

property in the general case.

To overcome the problem, we have adapted a proof due to Coddington and
Levison ([CL] Ch.9, Thm.3.2). To illuminate the main steps of the proof, we

present the preliminary stages as a sequence of lemmas.
Throughout this Appendix, Il -ll, will denote the L2[0,1] norm, &,0,, B,

compact subintervals of IR , and 'X.I the characteristic function of an interval

I.

A1 Lemma: If L = _4° + V(r) is in the limit circle case at 0, then

dr2

(r,z)ﬂ, are continuous functions of z on C

I y.(r,l)“““jz

where y1(r,z) and yz(r,z) are defined as in Chapter Iv, 81.

Proof:
ce of principle
We shall give the proof for y1(r,2); there is no differen

in the case of yz(r,z)-
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t],]e ‘rarl e ! ' e

'
y,(r,z) = y,(r,z.) + y,(r,zo)jr yz(v,zo)(Z-zo)y,(v,z)dv

!
- ¥alr, zo)fr y,(V,Zo)(z-zo)y, (v,z2)dv

gso that, proceeding as in Lemma 3.2, we obtain

“y(n-o-l) (r’z) - y}n)(r,Z)“

< Lalz-z0ly,Cnz)l iy, (r2,00,1" Ny (e 2,

where
(ns+1) ! n
o (r,2) = Y. (ryz,) + y,(r,zo)fr 5a(v,z°)(z-z°\jf )(v,z)dv

]
- ¥.(r, 2,) Ir Vi lv, 2,z - 2) jf'n(v,z) dv
Since L is limit circle at 0, y,(r,z ) and yz(r,zo) are in L,[0,1] for
each zo in €. Hence if z and z, are sufficiently close, the iterations con-
verge to the solution y1(r~,z) (cf. proof of Lemma 3.2), and

My, tr2)l, = Dy, (rz 0] < lly,(r:z) - vilr,2 N,

[ -]
(n+i
= I Z y, "Nrz) -y e, ),
n=
s (n+) (n)
< Z| “y"”’ (r,z) -y, (r,z)ll
N>
< &
for some predetermined & » O,
Thus lly (r,z))l, is a continuous function of z at z; the arbltrary

choice of z_ implies that Iy, (r,z)I, is a continuous function of z on €.

The lemma is now proved.

. 4
A.2 Lemma: With the notation of Theorem 4.9, if G()\) isin L, (-0, o)

and

converges in the mean as A — (-~ o, ).

Proof':

Let &(A\) be in L:(-ao,oo).

Consider the integral
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o
j yA(r) P(r) de

]

where P(r) e L, (0, o) vanishes outside [a,b] for some a.b such that
, a

0<a< bc¢ o and

Ya lr) = [, yotr,2) GOn) dzon

If QI =(5 PYXN) then by Theorem 4.9

b
QUINY = [° yitr, %) P(r) dr
(A.2.1)

We prove that

[- ]
fo YalrYPrYdr = [, QNGO d3 i)

for each compact & in (-, ) , and deduce that § yalr)l is Cauchy
in L, (0, ).

Now
(29, Y P Y dr = [7 ] yotr ) GOV Pl d5(0) d (A.2.2)
o yA r = a A ys r, P r ol

We show that yg(r,A) G(XN) P(r) is integrable on [a,b] Xx A  so that
the order of integration may be reversed.

By the Cauchy -Schwarz inequality
[, lystr, @001 a0
2 ‘/l 2 ~ Ya
< (‘fA lystrm X1 da(N)) (SA LGOI dpO) ™ (42,3

From (4.4.14),

o Haa on E
#= Mo on R\E

80 that using Minkowski's inequality, (4.445) and Lemma 4.8 we have

N
(IA lys(r,)\)lzd,é"()\))/zg (I‘Al’s(r,x)xd\e + ys(r,)\\xAnzl d'p (2))

W
S
MICESY

(IA'yl(r))‘) XA\E + mo()\\ yz(r,M xA\E + yz(r‘,\) XAn

%
' (e MK, 'd50))
N (fo.\e 'y.(r,M'zd,é“(x\)"' w (J Im Yo (RN X g g* V2! A Rane’ °F

( * )'/z (I | (rkﬂ‘dfu(k)).& (x.2.%)
- fA\Ely.(r,x)I do, (N + (f Iyatn)
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Now y,(r,»), y,(r, ») are bounded on la,bl x A To see this
. we use

the "variation of constants" formula on the ref
ormulated Schrédinger e
quation
(L-2)y (r,N) = (N=2)y(r, %)

where A, is some fixed point in A. This yields
!
Yolrm A =y (r N+ Y Ny (v, M O =X ,) y, (v ) dv
{
= P Y VA=) y, (v, N) dv (2.2.5)

for r in (0,1]. Hence, since A is finite and Yo lr,No) , yalr,X\,) are
) ’ 1Ne

continuous functions of r on (0,®) , there exist K, M in Rt such that
\
Ly (r200 € Ko+ [ My, (v,\)ldy

for each r in [a,bl N (0,11 and all X in A. If a < 1, we may apply

Lemma 5.2 to give

Ly, tr, M) & K exp [M(1 -a)]
for all r in [a,1] and all A in A . Similarly, if b > 1, there exist K', M’
in R¥such that

Ly, (r, M) = K' exp [M'(b-1)]
for all r in [1,b] and all A in & . Consequently, vy, (r,2) is bounded on
la, bl x A ; 1likewise vy, (r,A\) 1is bounded on la,bl x A.

Since Plu(")»Fzz()“) are functions of bounded variation on compact sub-

intervals of IR , it now follows from (A.2.4) that (J.A I ys(r,)\)P d,&'()«ﬂ'h'

is a bounded function of r on [a,b]. Hence, since P(r) is integrable on [a,b]

and G(\) is in Lf(-ao, 0)
fbf lys(r, XY G(N) PlrYl dg(X) dr ¢ ©
a ‘a
by (A.2.3), and so, from (A.2.1) and (A.2.2),
Q L4
fo jA(r‘) P(rYdr = J.A (J: ’3(r,)\) P(r)dr ) G(N) dp(%)

= [ QO GO\ 40N
A

(A.2.7)

that (r) is
To show that y,(r) is in L,(0,0) , we first prove Ya

continuous on [a,b].
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Since 'y, (r, X)) is bounded on [a,b] x A we deduce from (A.2.35) ¢
.2.5) thas,

if a < 1, then y {r,\) is a continuous function of A for each fixed r in [a,1]

Similarly if b > 1, vy ,{(r,X) 1is a continuous function of X for each fixed pr

in [1,b]. Hence y,(r,>\3, and similarly y.{r, XY, is continuous on la,b]l x A

Now, by (4.4.14), (4.4.15) and Lemma 4.8,

gy lr) = fb (y,(r,%) XA\E *om N y, (e N X, L

T Yalr, N X Y GON) dz ()Y

OANE

A\
= IA v, (r,N\) df G(X) dp, (N\) + IA VA LN djx G(X) do,, (N

+ Z (r e)Gle, |
ii e, € ANE} yalr,ei) e')f‘zz‘{en}) (A.2.7)

A
We show that _f G (N dp i (N) 1is a function of bounded variation on A for
j=1,2. If V, denotes the total variation on A, then (see [HS], proof of

Thm. 18.1),
vV, (§*G(n) dp, (M) & jA LGN dp, (M)
© v tn
o (J7 1emtason” (f de, Y
- 00
V (GO0 dp,0) ¢ J TG00 m 1 dp, ()

1 Iy
(§, 160N dp, ) b ([ 1m (01 dp, ) :

¢ T remragen® dp, ()

-0

whee we have used the Cauchy-Schwarz inequality and Theorem 4.8. Since G (X)

is in L‘;’ (~o,m) by hypothesis, the total variations above are finite,

implies
and hence the continuity of y,(r,2\) and y,(r, X} on la,bl x & p

g us
that the first two terms on the right hand side of (A.2.7) are continuo
functions of r on [a,b]. (see [AP] Thm.7.38) -

To see that

Z ’z(f',ei) G(ei)/“;z((ei}) (A.2.8)

{i:e‘-eAr\El
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is a continuous function of r on [a,b] even ;
»b] 1f the number of ccnstituent rers

is infinite, note that, using the continuity of Y2 (r,X\) on (a,b]l x a

there exists K in IRY such that

fane Watrs M) GOOLdp,, () € K ([ 16001 dgon™ (f

'R
ane 8P OOV

It follows that each sequence of partial sums associated with (A.2.8) is uni-

formly convergent on [a,b], so that (A.2.8) is a continuous function of r on

[a,b].

Thus we have proved that Ya (r) 1is a continuous function of r on (a,b],
and s0 y, (MY X [a,by 18 in L,(0,®) for each finite & in (-=,®) and
each a, b in R™Y,

Now suppose A ,2 &, , and set

P(r) = y, (m x[a ybz(r)x

bl la,bl

Using (A.2.6) and the Cauchy-Schwarz inequality

= YG(N) dG(N)
S (yA‘(r) - yAz(r)) P(r) dr Q (N e

0 IA, N A,

« (L7 1Qo g™ (], A 1G0nlagn™
S V2
= I P(el (SA.\A; L GONIP dg ()
Substituting for P(r), this yields

b ‘2 S 'ra
(f Ly, (o) - Ya (1 dr) g (f o Yeoiagn)

' 2

for each a,b in IRY . This implies

Y as ) 2.
hy, () = yu (i)l s (fy oa, lEON 45 00) (A.2.9)

@  we see that y, (r) isin L,(0,m) for each

Setting A, = A JaN

) 2

s . It
Ain (~w,®o) , since G(X) is in Lf(-w,oo) by assumption

i in L,(0,0) s
therefore follows from (A.2.9) that iy, (r)} is Cauchy in L,

A - (-0, ), and so the lemma is proved.

§ -

. fq_ theres exists u(r) in
Lemma A.2 shows that for each G(X) in L,_( o,o) th

L,(0, ) such that
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= Li.m, Iw
ulrd = LT L Yt GOn as o
To complete the proof that S is surjective, we need to show that (S u)()\) G(2\)
u =

Define § (A) = G(A) - (Su)(N) ,where we note that §(N) is in L% o ,0)
2 - , 0 .

Then it suffices to show that

b 2
J'_” SV dan) =0

(A.2.10)
Now from Theorem 4.9 and Lemma A.2,
Li.m j ®
l.\)—’ot; o ys(r,AB E()\) d;()ﬂ = 0 (A.2.11)
where the integral converges in L, (0, ). Defining
Ty () = IA ys(r, %) EON) da(n)
and
R (r, )= J Ysir, \) SO0 ds (2\)
a a s A-L F (A.2.12)

for r > 0 and L in €\IR we shall show that for each L in €\IR, R, (r, L)
converges in L,(0,®) to the zero function as A - (-w, o), ,and deduce that for

each finite Ain (-0, o), T,(r) = 0. Ve shall then be in a position to

prove (A.2.10).

A.3 Lemma: If | is in €\IR, Rp(r, L) isin L,(0,) for eacha in

(-w0,0), and {Ra(r, L)} converges in the mean to O as

A - ('Oo,oo).
Proof:

4 +
Let RA (r, V) denote R, (r,1) X (o b) for some a, b in R,

Then for fixed A in (-, o) and L in €\ IR , we have for eachr

in [a,b]

“‘2 (r, )] < (e 2) E(X) ld”()s)
a J‘Alys ) ()\—l) P

¢ ' (f 1y teoon? d;;(m"‘([ IS(x)I‘d;m)" (A.2.1)
lIm Ul “a S ERAA A
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so that for each such A and |, R, (r,1) is a bounded function of r cn [a,b’

(cf. (A.2.4)) and hence is in L,(0,m).

Now let A, > A, . Using the method of Lemma A.2 we obtain fcr

each

fixed L in € VR

b [} 2
([ IR, (r,0) =R, (r,1)1%ar ) ¢ | TN |7 n
‘Ia 8, 8. < IA'\A,. (~-0) dg (M)
and

b 2 Y g()\) 2 Y

( IR G, dR)Y ™ <« dz (X))

L 4 IA (x-)| 7

for every a,b in R". Since §(X\)is in Lf(-ao ,0) , we deduce that Ry(r 1)
is in L,(0,w) for each A in (-w,®) , and { R, (r, 1)} converges in
L,(0,0) as A = (-0, o).

We now show that 1 Ra (r, 1)} converges in the mean to 0 as A =*{(-o,m).

We shall prove that R, (r, L) is in D(H) and that
(H-LUY R, (r, L) = T, (r) (A.3.2)

for each L in € \IR and each A in (-,00).

From (4.4.14), (4.4.15) and Lemma 4.8,

(N-1)

(N=-1)
+ z yo (r, &) Blei) L em (A.3.3)
{i:e;eanE} (e;-1)
z
(¢f. (A.2.7)). As in the proof of Lemma A.2, (_S._(%df’,-j(”is a function
%-

,
' L ¥s (r,N)
of bounded variation on A for j = 1,2, and ‘/\("»)‘\' Ya (M) Y, (e M)y

: + h finite A in
are continuous on la,bl x A  for each a,b in R™ and eac

. 3 2. is s
(~w0, o). Moreover, the final sum on the right hand side of (A.3.3)

Hence we may differentiate (A.3.3) with

continuous function of r on [a,b].

the integrals
respect to r, and equate the derivatives of the integrals with

of the derivatives (see [AP] Thm. 7.40), to give
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Rite)=2 R (r L) = Bysir, A) () ~
A ar A& ‘YA \ar m dp‘)x\ (.-\.3..1)

We deduce that, if p is in [a,b], ang i .t 3 .
? y](r)x)—;yi(r,x)"=l,2

)
2

39\-—2 Ralr, L) cap = h":‘o R;(P*'“’lh\ - Ry G L)
_ hu-:o jA ly.’(p+h,:) “ ¥ o) g > (s;)::)d(o,|(>\)
M h“—r:o jA [,2’(p*h,>~: =LY lSA(?:) deia ()
A.3.5

 Let us consider the first term on the right hand side of this equality. For

each fixed p in [a,b] and each h > 0,

.Y,,(P*'""»)\) = y|l(Plx\
h

(A.3.6)

is a continuous function of A , and hence is integrable with respect to

A 5 (N\) do,(N) on A . Moreover, for each A in A and each h < K, (A.3.6)

(x-1)

is dominated by

(N, h) = Sup v/ (p + R, N - y/(p, M)
P ’ 0O<h¢h T

which is a continuous function of A and hon (0,K]1 x A . If we extend

the domain of l",', (X,h) so that

2
r‘P (x,0) = 2 j‘(r,%\

or? r=p

then FP (N, R) is continuous, and hence bounded, on the compact set
[0,K)x A . A similar argument applies to the second and third terms on

the right hand side of (A.3.5), so that, by the Lebesgue Dominated Convergence

Theorem, we may take the limits under the integral signs to give

32 _ a* (r 2 5(%\_4,‘;()& (A.%.7)
a‘.’ RA(P,L\ J'A;—z Sr' (A—l)

*r .oy e
i in R~ are arbitrary,
for all r in [a,b] and each L in € \IR . Since a,b in
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we deduce that (A.3.7) holds for all r in (0, m) and each | in € \ R

Hence

RA (f',L) = —-a—a—R (r, L) + VY(r) R (r L)

=J [-~ Ys(r XY & VIR y.(r, m]LM_rm
(N=-1)

N oyalr, XY SN 4oy
'{A Is (-0 © )

= LR ",l)-l-TA(r)

A (
(A.3.8)

for all r in (0, ) and each L in € N\ IR (Note that we have derived (A.3.8)
without assuming V(r) to be continuous). To deduce (A.3.2), we need to show
that RA(.-,L) is in D(H).

We first show that if L is in the 1limit circle case at O, then RA(r,l)
satisfies the same boundary condition at 0 as yq(r,N).

If L is in the regular limit circle ;:ase at 0, yq(r,N\) satisfies a
boundary condition of the form

cosx yg (O,N) - sinx yg' (0,N) =

for some & in [0, 2T . (see (4.1.1)). 1In this case the definition (A.2.12)

of Ry{r,L) may be extended to include r = 0, so that, by (A.3.4)
. ’
cosx R, (0,L) - sina RA(O,L) -0

1 o,L) = Um R (r L)
since R’ ( o alr

If L is in the singular limit circle case at O, then yalr, X satisfies

a boundary condition of the form

“&"‘o w(ys(r;x\’ > yl(r)zo) + :‘(zo) y%‘r'z°)) =0
[ o

where z, is in €C \IR and m (z,) is some point on the limit circle

A - ’ ‘
associated with z . Clearly y,{r,zp) +m (2,)¥a(r, Zo) = Ys(r2a
and, using the Schr8dinger equation,

"
,Z,) dr
W(y;(r,k) . js (r,zo\) = (N - zo) SO ys(r,)s) ys(r Z,

Hence, by (A.2.12) and (A.3.4),
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WIRARD, y tr 2 = [ A =2 i
alr U ygtr 2 = oty SV, s vyt 20 de a3

Since zg and L in € \IR are fixed and A e R

s there exists K_in R*'
2, °

such that

< K, onA . Hence, if by(r,\) . denotes

(I: ly (r, N 4 )'/z,

IW( R, (r, 1),y (r2,0 < Ka SA RIS Ys(r, M By e, 2 0 d5 (M)

2 I
¢ Ky Bystr, 20 CF T8 ONTdg M ™ (I, ly (e, 0, dg o)
(A.3.9)
by the Cauchy-Schwarz inequality.

Now by Minkowski's inequality, (4.4.14), (4.4.15) and Lemma 4.8,
(IA Hyg (r,N)N% d,s'(m)'/’ < (J'A Il yy Cry MR, d,:(x))'/‘
= (Jy Iy (m M Xy v M) Xy + ¥alr)) Xy, I dzom™
< (S, M de, )« 2 [, 0y, e, N0 Hyste, ML dat 0
+ 2 [, Ny e 3 Uy, N Edp O + [ Uy, e doya3) ™, 5 o)

It follows from Lemma A.1 that lly, (r,AN)ll;, and Wy, {r,X)1l, are bounded
functions of A on A ; therefore, since E(N\)is in L: (—0, ) ,(A.3.9)

and (A.3.10) together imply that CA in IRY exists such that

IwW (R, (r, 1), yelr,zodl & C, ys (r 2z,
for all r < 1. Since ys(r,zo) is in L2(O,1], it follows that

im  W(R, (r,1), ys(r,z,0) = 0
rdv O

Thus for each L in € \ IR and each finite 4, RA(r,l) satisfies the same
. s - 3 3 i a; o-
boiundary condition at O as yg(r,A) if L is in the limit circle case

corndition

That is, if L is limit circle at 0, Rp(r, L) satisfies the boundary

required of all elements of O(H).
. R,(r L)
To complete the proof that RA(I",U is in D(H), we show that LR,

’ s>lutely con-
isin L,(0,o) , and that RA(r,L) and RA(r,l) are abs-lutely



tinuous functions of r on each compact subinterval [a,bt] ¢ (0, )
y e , @ ).

Evidently it may be shown that T, (r) is in L,(0, ) by &
2 ’ chLe

l-2delo s B R 3
methcd used

at the beginning of this lemma to prove that Ralr, 1) is in L,(0,00) ©
! 'Y, I2r each

Lin € \ IR . That L_RA(r,l) 1s in L,(0,®) for each | in € \IR trer Tollows

from (A.3.8).
By (A.3.8), R (r,1) is a solution of (L-U)ulr, L) = T, (r). Therefore

applying the "variation of constants" formula ([CL] Ch.3, Thm.6.4), we have

for 0<r s},

R (rL) = yotr 0y [ SO0 §(n)
&’ T IA - e e SA(_C—G fen )
+ y, (r, L) J‘ .&‘.’_ dpaq (N)

ANE (% - ()

1 \
+ y,(r,L)L Yalv, YT (vYdy - \j,_(r,l.)fr Y. (v, 1) T, (V)dv

where we have used (4.4.14), (4.4.15), Lemma 4.8 and (A.3.8); a similar form-
ula holds for r > 1. The absolute contim:lity of Rb(r,l.) on each compact sub-
interval of RT follows from these formulae since y‘(r, LY Xalr), ¥y (r L) Ty (r)
are integrable on [a,b], and y1(r',L), yz(r,L) are absolutely continuous
functions of r on a,b.

We have now proved that R, (r,L) is in D(H) for each \ in € MR, and
each finite A in (- oo, o).

It therefore follows from (A.3.2) that

I RA(",U“ € “(H-L)_|||ﬂ’tA(r\|( (A.3.11)
for each L in € \ IR and each A in (- ,®) , where
- I
-0 sup H-UY e
Hu-bd - . | Im L]

{felL, 0,0 :01fU=1}
(see [HE] 824 Proof of Thm.3). Taking limits as A 2 (-00,0)in (A.3.11) it

follows from (A.2.11) that RA(r,L) converges in the mean to zero as A = (-©, o).

The proof of the lemma 1s now complete.

(- 0o, 00) whose endpoints are points of

0

A.4 Corollary: For each finite A in

dz(N\) =
continuity of g (M) , Tplr) = jAgs(r,M‘S(M A
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for all r in (0, o).

Proof:
Define
t
FeOY = [ ygte,nyar (s.4.-
where 0¢ a < ¥t < o s0 that F  (N) = (§F, )(X) (see Thesore- £.9). wrens
ft(r) = { 1 as<rsgt
0 otherwise
Since ft(r) is in L,(0,o) for each a and t, F?t()d is in Lf(-;o,;o\,
Now from the final inequality in (A.3.1), we see tha- y (r,%) §(2)
(x - )
is integratle on la,t]l x A for each a,t, A. Hence, usins (4.4.1) and
(A.2.12),
(N) = - t
H Sth) Fo(X) dP(M' = H j js(r,\)ﬂ\—-dﬁhddr
& (X-1L) e “a (n - 1)
- t
\fa Rolr, L) dr |
¢ (t-a) IR, (e, 0]
Taking limits as A — (- o, o) K we deduce that
o L d
E™N F ) apon = 0
e (x-1) (A.4.2)
We now prove that, if t > a,
{7 300 F o0 ) =0
PN dg (X) =
-© ¢ (X)) df (:.4.7)

for all v, u which are points of continuity of & (X\).

Let x, y denote Rel and Iml respectively.

Using §(XN) Et(k) e L® (-w,00) and the Lebesgue Peminated Conversence

Theorem, we deduce from (A.4.2)
0= tim [”1q j‘” EN) () dp(n) dx
yvo v -0 (XN-1)

- Um ([# J'°° b

YYO 9 Lo (n-xV oyt

- yli;no J’: [ban"(x;)—‘) - tan"'(f‘_;;__‘i)] % (X)) ?t()‘y dg (2

E (0 B0 dg(n) dx

= Jw X §(x) Fp (X)) d5 O3
-~ 00 [V,)A]
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T 7 SOV F o0 dainy

for all v and m which are points of continuity of F(N), so that (:.: 2) is

proved.

Using (A.4.1), (A.4.3), (4.4.14), (4.4.15) and Lemma 4.8, we see tnat

M t
C = I,, §(x) fa Ys(r XY dr dg(X)

t
= Sy a1 e 1S vitede d 1Y B0 dp, 00
t
+ j[v/u]\E ja y2tr,nYdr d [ 500 dp,, (00

* J[v,/ulnE [° yatr,n0de d 7 300 dpy, )
Since each integrand in the expanded expression is a continuous function of t
and A on [a,b] x [v,);] for each finite b > a, we may (cf. proof of Lemma A.3)
differentiate under the integral sign with respect to t to give

’CA(t) = O (A.4.4)
for every t in [a,b] and each A-interval A whose endpoints are points of con-
tinuity of g(X). The arbitrary choice of a,b implies that (A.4.4) is true
for all t in (O, o).

The corollary is now proved.

~e

A.5 Proposition: The isometric Hilbert space isomorphism S of Theorem 4.9 is

surjective.
Proof':

On account of Lemma A.2, we need only prove (A.2.10).

Now Y1(1,Z) - 1 for each z in € (see Ch.IV, §1) so, setting r = 1 in the

result of Corollary A.4, we have

J, 800 dg) = 0

for each finite A in (-, ©) whose endpoints are points of continuity of g(X\).

Therefore if i o X; is any step function such that the end-
=1
points of each interval Ii are points of continuity of @ () then

IA(.;_ «; X;) §ON 45N = PN [AM: §(N) dg(x) = 0O
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for each finite Ain (- 6 o)

Let € > O be given. Si is in L?
given. Since §(N)is in L] (-m,®)and the step functions

d in L7 (- ) - -
are dense in L; (-®,®) there exists a step function ¥ «: X .
! (

. such
v=

that

(7 ; = "
-0 S(X) ".Z “;xil dp‘v()\‘) < po ¢
=t (J7 1500 agom™

There is no loss of generality if we suppose the endpoints of each interval

Ii occur at points of continuity of g (A) since the points of discontinuity
of p’()ﬂ are, at most, countably infinite. Hence for each finite A in (-, )

L P8O0 g - f (2« X)) SO0 dpmnl

1 =)
=10 SO0 - 2 X 1dg 0]
¢« (J ! SO dzn)) " IAlf_ «; X: - §<>.H‘d;(>~\)"‘ < e

from which may be deduced by (A.5.1) and the arbitrariness of €
k3
[ L1801 as00 =0

Since IR may be expressed as a disjoint union of finite intervals A, we deduce

(A.2.10), and the proposition is proved.

Proposition A.5 completes the proof of Theorem 4.9.



[A]

[AG]

[AH]

[AJS]

[AM]

[AP]

[APW]

[AS]

[B]

[BA]

[BR]

[Bs]

fccl

[CE]

(cL]

(D]

(DE]

(Ds]

(Ex]

254

BIBLIOGRAPHY

N.Aronszahn: "On a Problem of
Liouville Equations". Americ

(1957).

Weyl in the Theory of Singular Sturm-
an Journal of Mathematics 79, pp.597-610

N.I.Akhiezer and I.M.Glazman: "Theor i i i
: Y of Linear Operators i:
Space". F. Ungar Publishing Co. (1963). ’ + Hiibert

L.V.Ahlfors: "Complex Analysis". McGraw-Hill (1966).

W.0.Amrein, J.M.Jauch, K.B.Sinha: "Scattering Theory in Quantum
Mechanics". W.A.Benjamin, Inc. (1977).

W.0.Amrein and V.Georgescu: "Strong Asyptotic Completeness of the
Wave Operators for Highly Singular Potentials". Helvetica Physica Acta
47, pp.517-533 (1974).

T.Apostol: "Mathematical Analysis". 2nd Edition. Addison-Wesley (1974).

W.0.Amrein, D.B.Pearson, and M.Wollenberg: "Evanescence of States
and Asymptotic Completeness". Helvetica Physica Acta 53, pp.335-351
(1980).

J.A.Avron and B.Simon: "Cantor Sets and Schr8dinger Operators, I:
Transient and Recurrent Spectrum". Journal of Functional Analysis

43, pp.1-31 (1981).

H.D.Brunk: "Introduction to Mathematical Statistics". 2nd Edition.
Blaisdell Publishing Co., U.S.A. (1965).

R.G.Bartle: "The Elements of Integration". John Wiley (1966).

G.Birkhoff and G-C. Rota: "Ordinary Differential Equations". 3rd
Edition. John Wiley (1978).

J.Bellisard and B.Simon: "Cantor Spectrum for the Almost Mathieu
Equation". Journal of Functional Analysis 48, pp.408-419 (1982).

E.F.Collingwood and M.L.Cartwright: "Boundary Theorems for a Function
Regular in the Unit Circle". Acta Mathematica 87, pp.83-146 (1952).

J.Choudhuri and W.N.Everitt: "On the Spectrum of Ordinary Se?ond-
Order Differential Operators". Proceedings of the Royal Society of

Edinburgh, A68, pp.95-119 (1968).

E.A.Coddington and N.Levinson: "Theory of Ordinary Differential
Equations". McGraw-Hill (1955).

E.B.Davies: "Energy Dependence of the Scattering Operator”, Advances

in Applied Mathematics 1, pp.300-323 (1980)-. . . |
P.Dezgt and B.Simon: "On’the Decoupling of Finite Singularities frcm

"
the Question of Asymptotic Completeness in Two(?ogg)Quantum Systems".
Journal of Functional Analysis 23, pp.218-238 976).

N.Dunford and J.T.Schwarz: "Linear Operators", Part II Interscience

(1963).
type Operators with Continuous

M.S.P.Eastham and H.Kalf: "Schrddinger- (1982).

Spectra". Pitman Advanced Publishing Program



(F]

[¢]

[GJ]

(L]

(GR]

(H]

(HI]

[HLP]

[HP]

(HS]

(k1]

(k2]

(KA]

(k0]

[k02]

(XR]

(ks]

(ku1]

255

P.Fatou: "Séries Trigonométriques et Séri
Mathematica 30, pp.335-400 (1306). Series de Taylor". Acta

I:M.Glazma?: "Dire?t Methods of Qualitative Spectral Analysis of
Slngular-leferentlal Operators". Israel Program for Scientifi
Translations, Jerusalem (1965). e

K.Gustafson and G.Johnson: "On the Absolutely Continuous Subspace

( I 9; I) hd | ’

I.M.G?I'fand a?d B.M.Levitan: "On the Determination of a Differential
Equatlon‘from its Spectral Function". American Mathematical Society
Translations Series 2, Vol.I, pp.253-304 (1955).

T.%.Green and O.E.Lanford III: "Rigorous Derivation of the Phase

Shlf? Formula for the Hilbert Space Scattering Operator of a Single

farglgle". Journal of Mathematical Physics, Vol.I, No.2, pp.139-148
1960).

P.R.Halmos: "Measure Theory". Van Nostrand (1954).

E.Hille: "Lectures on Ordinary Differential Equations". Addison-
Wesley (1969).

G.H.Hardy, J.E.Littlewood and G.Polya: "Inequalities". Cambridge
University Press,(193%4).

V.Hutson and J.S.Pym: "Applications of Functional Analysis and
Operator Theory". Academic Press (1980).

E.Hewitt and K.Stromberg: "Real and Abstract Analysis", Springer-
Verlag (1965).

I.S.Kac: "On the Multiplicity of the Spectrum of a Second-Order
Differential Operator". American Mathematical Society Translations 145,

pp.1035-1039 (1962).

1.S.Kac: (In Russian) Izvestija Akademii Nauk SSSR, Ser.Mat.27, p.1081
(1963).

T.Kato: "Perturbation Theory for Linear Operators". Springer-Verlag
(1966) .

m for Ordinary Differential Equations

. ira: "The Eigenvalue Proble
e ond-. Oras s Theory of S-Matrices". American

of the Second- Order and Heisenberg
Journal of Mathematics 71, pp.921-945 (1949) .

of any Even Order and

S e s i fferential Equations
K.Kodaira: "On Ordinary Diffe american Journal of

the Corresponding Eigenfunction Expansions”.
Mathematics 72, pp.502-544 (1950).

H.A.Kpamers: "Quantum Mechanics". Dover Publications (1964).

r Scattering on Singular

s " Operators fo -
J.Kupsh and W.Sandhas: "Mgller Op ] Physics 2, pp-147-154

Potentials". Communications in Mathematica
(1966).

d Unitarity property of the Scattering

. : M Existence an
S.T.Kuroda On the 431-454 (1959) -

Operator". Nuovo Cimento 12, PP-



(ku2]

(L]

[LE]

(LP]

[Ls]

[M]

[M0]

[N]

(o]

(]

[P1]

(p2]

[P3]

(p4]

(P5]

(PL]

(PR]

(R]

256

S.T.Kuroda: "On a paper of Green and Lanford".

i Journal of Maz:n ical
Physics Vol.3, No.5, PP.933-935 (1962) o ematics

L.H.Loomis: "The Converse of the Fat
Functions". American Mathematical S
250 (1943).

ou Theorem forp Positive Harmonic
ociety Transactions 53, pp.23c-

%.Lee; "Operator Methods in Quantum Theory", Thesis, Oxford University
1983%).

N.Lusin and J.Privalov: "Sur l'unicité et la multiplicité des fonctions
?nalyglques". Annales de 1'Ecole Normale Superieure 42, pp.143-191
1925).

B.M.Levitan and I.S.Sarsjan: "Introduction to Spectral Theory".
American Mathematical Society Translations of Mathematical Monographs,
Vol. 39 (1975).

A.J.Markushevich: "Theory of Funtions of a Complex Variable", Vol.I,
(transl. R.A.Silverman). Prentice-Hall (1965).

J.Moser: "An example of a Schroedinger equation with almost periodic
potential and nowhere dense spectrum". Commentarii Mathematid Helvetici
56, pp.198-224 (1981).

M.Neumark: "Lineare Differentialoperatoren. Akademie-Verlag, Berlin
(1963).

K.Noshiro: "Cluster Sets". Springer-Verlag (1960).

L.A.Pastur: "Spectral Properties of Disordered Systems in the One-
Body Approximation". Communications in Mathematical Physics 75,

pp.179-196 (1980).

D.B.Pearson: "Singular Continuous Measures in Scattering Theory".
Communications in Mathematical Physics 60, pp.13-36 (1978).

D.B.Pearson: "An Example in Potential Scattering Illustrating the
Breakdown of Asymptotic Completeness". Communications in Mathematical

Physics 40, pp.125-146 (1975).

D.B.Pearson: "Spectral Properties and Asymptotic Evolution in Potential
Scattering". Proceedings of International School of Mathematical

Physics, Erice, June 1980.

D.B.Pearson: "General Theory of Potential Scattering with Abgorp??o;s)
at Local Singularities". Helvetica Physica Acta 48, pp.639-653 (1975).

D.B.Pearson: "Spectral Properties of Differentia% Equatéogs"éhinshiva
"Applied Mathematical Analysis: Vibration Theory", Ed. G.Roach.

Publishing Ltd. (1982).

. de ihres
A.Plessner: "Uber das Verhalten Analytischer Funkti:::gd:: S:ghematik
Definitionsbereichs". Journal fiir die reine und ang

159, pp.219-27 (1927).

alytischer Funktionen". V.E.B.

: . i haften an
I.I. Privalov: "Rand eigensc Berlin (1956).

Deutscher Verlag der Wissenschaften,
iti T Moiraw-HiZl
W.Rudin: "Real and Complex Analysis" (2nd Edition). Tata

(1974).



[RI]

[RN]

[RSI]

[RSII]

[RSIII]

[RSIV]

(8]

[5A]

[81]

[52]

(T1]

[T2]

[T3]

(w]

[wi1]

[w2]

(W3]

[W4]

[WE1]

257

F. and M.Riesz: "Uber die Randwerte einer anal

t. 3 t
Stockholmer Kongressbericht PP.27-47 (1916). ytischen Funktion".

F.Riesz and B.Sz-Nagy: "Functional Analysis"

(1955). . F.Unger Publishing Co.

M.Reed and B.Simon: "Methods of Modern Mathemati .
cal P cs" +
Academic Press (1972), hysics", Vol.I,

M.Reed and B.Simon: "Methods of Modern Mathematical Physics™
sics Vol.
Academic Press (1975). J » Vol.II,

M.Reed and B.Simon: "Methods of Modern Mathematical Physics", Vol.III,
Academic Press (1979).

M.Reed and B.Simon: "Methods of Modern Mathematical Physics", Vol.IV.
Academic Press (1978).

M.H.Stone: "Linear Transformations in Hilbert Space". American
Mathematical Society Colloguium Publications, Vol.XV (1932).

S.Saks: "Theory of the Integral", 2nd Edition, Hafner Publishing Co.
(1937).

B.Simon: "Quantum Mechanics for Hamiltonians Defined as Quadratic
Forms". Princeton University Press (1971).

B.Simon: "Almost Periodic Schr8dinger Operators: A review". Advances
in Applied Mathematics 3, pp.463-490 (1982).

E.C.Titchmarsh: "The Theory of Functions". 0.U.P. 2nd Edition
(corrected) (1968).

E.C.Titchmarsh: "Eigenfunction Expansions associated with Second-Order
Differential Equations". Vol.I, Clarendon Press, Oxford (1946).

E.C.Titchmarsh: "Eigenfunction Expansions associated with Second-
Order Differential Equations" Vol.II. Clarendon Press, Oxford (1958).

W.Walter: "Differential and Integral Inequalities", Springer-Verlag
(1970).

H.Weyl: "Uber gewBhnliche lineare Differentialgleichung?n @it singullren
Stellen und ihre Eigenfunktionen". Nachrichten der.Kbnlgllchen Ges-
ellschaft der Wissenschaften zu G8ttingen, Mathematisch-physikalische

Klassepp.37-63 (1909).

As [wW1], pp.442-467 (1910).

H.Weyl: "Uber gewohnliche Differentialglei?hungen mit.Singﬁlaritaten
und die zugeh8rigen Entwicklungen willktirlicher Funktionen".
Mathematische Annalen 68, pp.220-269 (1910).

H.Weyl: "Uber das Pick-Nevanlinnasche Interpolgtionsproblfmofgg4s?1335)
infinitesimales Analogen". Annals of Mathematfcs 36, gs.hzbhaﬁdlunge”"
Note: [W1]-[W4] may also be found in: H.Weyl: "Gesammelte n
Vols. I, II, Springer-Verlag (1968).

- 1 1980).
J.Weidmann: "Linear Operators in Hilbert Space". Springer-Verlag (1980)



[(wE2] J.Weidmann: "Zur Spektraltheorie von Sturm-Liouville Operatoren".
Mathematische Zeitschrift 98, pp.268-302 (1967).

[z] A.Zygmund: "Trigonometric Series", Vol.II (2nd Edition). Cambridge
University Press (1959).

(HE] G.Helmberg: "Introduction to Spectral Theory in Hilbert Space",
North Holland Publishing Co. (1969).



	374100_0000
	374100_0001
	374100_0002
	374100_0003
	374100_0004
	374100_0005
	374100_0006
	374100_0007
	374100_0008
	374100_0009
	374100_0010
	374100_0011
	374100_0012
	374100_0013
	374100_0014
	374100_0015
	374100_0016
	374100_0017
	374100_0018
	374100_0019
	374100_0020
	374100_0021
	374100_0022
	374100_0023
	374100_0024
	374100_0025
	374100_0026
	374100_0027
	374100_0028
	374100_0029
	374100_0030
	374100_0031
	374100_0032
	374100_0033
	374100_0034
	374100_0035
	374100_0036
	374100_0037
	374100_0038
	374100_0039
	374100_0040
	374100_0041
	374100_0042
	374100_0043
	374100_0044
	374100_0045
	374100_0046
	374100_0047
	374100_0048
	374100_0049
	374100_0050
	374100_0051
	374100_0052
	374100_0053
	374100_0054
	374100_0055
	374100_0056
	374100_0057
	374100_0058
	374100_0059
	374100_0060
	374100_0061
	374100_0062
	374100_0063
	374100_0064
	374100_0065
	374100_0066
	374100_0067
	374100_0068
	374100_0069
	374100_0070
	374100_0071
	374100_0072
	374100_0073
	374100_0074
	374100_0075
	374100_0076
	374100_0077
	374100_0078
	374100_0079
	374100_0080
	374100_0081
	374100_0082
	374100_0082a
	374100_0083
	374100_0084
	374100_0085
	374100_0086
	374100_0087
	374100_0088
	374100_0089
	374100_0090
	374100_0091
	374100_0092
	374100_0093
	374100_0094
	374100_0095
	374100_0096
	374100_0097
	374100_0098
	374100_0099
	374100_0100
	374100_0101
	374100_0102
	374100_0103
	374100_0104
	374100_0105
	374100_0106
	374100_0107
	374100_0108
	374100_0109
	374100_0110
	374100_0111
	374100_0112
	374100_0113
	374100_0114
	374100_0115
	374100_0116
	374100_0117
	374100_0118
	374100_0119
	374100_0120
	374100_0121
	374100_0122
	374100_0123
	374100_0124
	374100_0125
	374100_0126
	374100_0127
	374100_0128
	374100_0129
	374100_0130
	374100_0131
	374100_0132
	374100_0133
	374100_0134
	374100_0135
	374100_0136
	374100_0137
	374100_0138
	374100_0139
	374100_0140
	374100_0141
	374100_0142
	374100_0143
	374100_0144
	374100_0145
	374100_0146
	374100_0147
	374100_0148
	374100_0149
	374100_0150
	374100_0151
	374100_0152
	374100_0153
	374100_0154
	374100_0155
	374100_0156
	374100_0157
	374100_0158
	374100_0159
	374100_0160
	374100_0161
	374100_0162
	374100_0163
	374100_0164
	374100_0165
	374100_0166
	374100_0167
	374100_0167a
	374100_0168
	374100_0169
	374100_0170
	374100_0171
	374100_0172
	374100_0173
	374100_0174
	374100_0175
	374100_0176
	374100_0177
	374100_0178
	374100_0179
	374100_0180
	374100_0181
	374100_0182
	374100_0183
	374100_0184
	374100_0185
	374100_0186
	374100_0187
	374100_0188
	374100_0189
	374100_0190
	374100_0191
	374100_0192
	374100_0193
	374100_0194
	374100_0195
	374100_0196
	374100_0197
	374100_0198
	374100_0199
	374100_0200
	374100_0201
	374100_0202
	374100_0203
	374100_0204
	374100_0205
	374100_0206
	374100_0207
	374100_0208
	374100_0209
	374100_0210
	374100_0211
	374100_0212
	374100_0213
	374100_0214
	374100_0215
	374100_0216
	374100_0217
	374100_0218
	374100_0219
	374100_0220
	374100_0221
	374100_0222
	374100_0223
	374100_0224
	374100_0225
	374100_0226
	374100_0227
	374100_0228
	374100_0229
	374100_0230
	374100_0231
	374100_0232
	374100_0233
	374100_0234
	374100_0235
	374100_0236
	374100_0237
	374100_0238
	374100_0239
	374100_0240
	374100_0241
	374100_0242
	374100_0243
	374100_0244
	374100_0245
	374100_0246
	374100_0247
	374100_0248
	374100_0249
	374100_0250
	374100_0251
	374100_0252
	374100_0253
	374100_0254
	374100_0255
	374100_0256
	374100_0257
	374100_0258
	374100_0259
	374100_0260

