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Abstract

The mathematical modelling and experimental testing of both dissipative

silencers and catalytic converters is reported here, although dissipative silencers are of

primary interest. The models examined are formulated with a view to introducing them

into commercial software aimed at the acoustic design of automotive exhaust systems.

The porous materials which are commonly employed in dissipative silencers are

examined first, and a semi-empirical model is formulated in order to predict the bulk

acoustic properties of four different fibrous materials. Perforated tubes are also

commonly employed in dissipative silencers separating the central channel from the

absorbent, and the effects of both grazing flow and a backing layer of porous material

upon the acoustic impedance of a perforate plate are examined.

Three different theoretical approaches to modelling dissipative silencers are

reported, and the accuracy of each method is assessed in the light of experimental sound

transmission loss data measured for five different dissipative silencers. Mean flow in

the central channel is a feature of each model, in addition to the use of the new semi-

empirical models for the perforated tube and the absorbent. A simple fundamental

mode model is examined first, employing a straightforward analytical solution. More

complex models are then investigated, incorporating finite element numerical methods.

First, a fully general finite element model is examined and transmission loss predictions

are obtained using both two and three dimensional meshes. A less complex eigenvalue

solution, which also employs the finite element method, is examined next but this does

not require such a high degree of computational effort. Predictions for finite length

silencers are subsequently obtained using three different mode matching formulations.

An examination of the accuracy of the predictions obtained using the different

mathematical models is then carried out, from which conclusions are made concerning

the future usefulness of each model in commercial design software. Finally, the effects

of both mean flow and an axial temperature gradient upon the transmission loss of

catalytic converters are examined. The relative influence the catalytic converter exerts

sound attenuation, as compared to dissipative silencers, is also discussed.

11



Contents

Page

Chapter 1	 General Introduction
	

1

Chapter 2 Sound Propagation in Rigid Fibrous Porous Materials

2.1 Introduction
	

13

2.2 Parallel fibre model
	

17

2.3 Complex density
	 18

2.4 Bulk modulus
	 21

2.5 Extension to bulk material
	

23

2.6 Flow resistivity
	 25

2.7 Low frequency model
	

28

2.7.1 Low frequency complex density for a single pore
	

30

2.7.2 Low frequency bulk modulus for a single pore
	

31

2.7.3 Low frequency bulk acoustic properties
	

31

2.8 Discussion
	 32

Chapter 3 Measurement of the Bulk Acoustic Properties of Rigid

Fibrous Materials, and Comparison with Experiment

3.1 Introduction
	

38

3.2 Experimental method
	

41

3.3 Experimental results
	 44

3.3.1 Steady flow resistivity
	 44

3.3.2 Bulk acoustic properties
	 45

3.4 Implementation of the semi-empirical model
	

50

3.5 Discussion
	 57

111



Page

Chapter 4 The Impedance of Perforated Plates Subjected to Grazing

Flow

4.1 Introduction
	

78

4.2 Experimental method
	

82

4.3 Experimental results
	

89

4.3.1 Acoustic impedance without a porous backing
	

90

4.3.2 Acoustic impedance with a porous backing
	

93

4.4 Discussion
	 96

Chapter 5	 Measurement of the Acoustic Properties of Dissipative

Silencers

5.1 Introduction
	

111

5.2 The test silencers
	 115

5.3 Experimental method for the measurement of the
	

117

transmission loss

5.3.1 Data acquisition
	 119

5.4 Experimental method for the measurement of the insertion
	

124

loss

5.5 Experimental results and discussion
	

125

Chapter 6 A Fundamental Mode Approach to Modelling

Axisymmetric Dissipative Silencers

6.1 Introduction
	 137

6.2 Governing equations
	 140

6.2.1 Acoustic wave equation in the central channel
	

141

6.2.2 Acoustic wave equation in the absorbent
	

145

6.2.3 Boundary conditions at the perforate
	 148

6.2.4 Displacement impedance for region 1
	

149

6.2.5 Displacement impedance for region 2
	

150

iv



Page

6.2.6 Implementation of the boundary conditions at the
	

151

perforate

6.2.7 Transfer matrix or four-pole formulation
	

156

6.3 Results and discussion
	

160

Chapter 7 The Finite Element Method Applied to Dissipative

Silencers

7.1 Introduction
	 174

7.2 Governing equations
	

179

7.2.1 Acoustic wave equation in the central channel
	

181

7.2.2 Acoustic wave equation in the absorbent
	

181

7.2.3 Boundary conditions
	 182

7.3 Finite element discretization
	

184

7.3.1 Matching of the acoustic fields
	

187

7.4 Results
	 191

7.5 Discussion
	 198

Chapter 8	 A Finite Element Eigenvalue Solution for Dissipative

Silencers with Irregular Cross-Sections

8.1 Introduction
	 209

8.2 Governing equations
	 214

8.2.1 Acoustic wave equation in the central channel
	

216

8.2.2 Acoustic wave equation in the absorbent
	

217

8.2.3 Boundary conditions
	 217

8.3 Finite element discretization
	 218

8.3.1 Matching of the acoustic fields
	 220

8.4 Results and discussion
	 225

V



Page

Chapter 9 Mode Matching Techniques for Dissipative Silencers with

Irregular Cross-Sections

9.1 Introduction
	 244

9.2 Governing equations
	 249

9.3 Mode matching using the Cummings and Chang method
	

252

	

9.3.1 Results and discussion
	 255

9.4 A least squares approach to mode matching
	 260

	

9.4.1 Results and discussion
	

266

9.5 Mode matching using a direct integration method
	

269

	

9.5.1 Results and discussion
	 278

9.6 Evaluation of the mode matching techniques
	

280

Chapter 10 Evaluation of the Modelling Techniques for Dissipative

Silencers

10.1 Introduction
	 296

10.2 Evaluation of theoretical models
	

298

10.3 The influence of the perforate on transmission loss
	

303

predictions

10.4 Dissipative silencer design
	

311

Chapter 11 Wave Propagation in Catalytic Converters with Axial

Temperature Gradients

11.1 Introduction
	 327

11.2 Governing equations
	 331

11.2.1 Steady flow solution
	 333

11.2.2 Equations for perturbations
	 336

11.3 Equations of zeroth order in r
	 339

	

11.4 Equations of first order in r
	 342

vi



Page

11.4.1 Isentropic solution	 342

11.4.2 Non-Isentropic solution	 346

11.5 Results	 350

11.5.1 Transmission loss predictions for zeroth order in	 354

.i.

11.5.2 Transmission loss predictions for first order in r 	 360

Chapter 12 Conclusions
	

367

References
	

374

[All figures are located at the end of each chapter]

vi'



CHAPTER 1

GENERAL INTRODUCTION



Pollution is now an everyday aspect of the society in which we live. It is

manifest in many different forms and, over recent years, society has become

increasingly concerned about the impact pollution is having on our environment. Of

particular interest in this thesis is environmental noise pollution. This differs from other

forms of pollution because, although noise can undoubtedly damage the hearing, the

environmental impact of noise seldom does any physical harm. To most people, noise

pollution is simply an annoyance, the degree to which this is true being purely

subjective, although very few people would consider aircraft or road traffic noise as

anything other than noise pollution. Of increasing concern is the growing use of, and

the reliance placed upon, the automobile and the associated effect this has had on both

noise pollution and other forms of pollution. In recent years, public demand for

controlling the growth of vehicular noise has increased and this is currently reflected in

a broadening of Government legislation, designed to curb such pollution. The control of

noise pollution emitted by automobiles forms the subject of this thesis.

To date, Government legislation has concentrated upon reducing the external

noise emissions of vehicles by specifying a maximum noise level to which a "passer-by"

is subjected from an individual vehicle. This is commonly enforced using "drive-by"

tests, in which each new model of vehicle must pass a number of noise level criteria,

measured in different positions remote from the vehicle. In a typical automobile, many

different mechanisms of noise emission exist and, in order to meet the new noise

criteria, manufacturers are being compelled to re-design their products with noise

emissions in mind. The mechanisms which lie behind the generation of noise by

automobiles are both numerous and complex, and the manner in which one re-designs

new products in order to meet legislation is by no means straightforward. Indeed, it is

still commonplace for companies to design the acoustic characteristics of their vehicles

experimentally, employing a trial and error procedure. Clearly, this type of approach is

rather unscientific and is expensive to undertake; additionally, one is not always

guaranteed to obtain any improvement in the vehicle's performance, and the results are

unlikely to be close to optimum. The continued introduction of increasingly more

stringent noise legislation has forced automobile designers to depart from traditional
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methods and place greater emphasis on the use of predictive computer software for the

overall noise emission from vehicles, before experimental validation takes place.

Inevitably, to do this, one must resort to modelling the noise generation mathematically.

Unfortunately, the mechanisms which lie behind noise emissions are numerous and a

completely integrated mathematical model of an entire vehicle's noise emissions is, at

present, impracticable. Consequently, one must focus on each mechanism individually,

using a modelling procedure to refine the acoustic design of individual components

before finally measuring the overall acoustic emissions from the vehicle experimentally.

This is, at present, the only viable way of meeting the noise legislation, without

resorting back to a purely experimental approach.

Of all the noise sources present in a typical automobile, the principal generator

of environmental noise pollution is the engine, although as the acoustic design of both

the engine and its exhaust system are improved, tyre noise is beginning to play a more

significant role. The engine generally emits noise both from the inlet and exhaust and

via structural vibration but, of these noise sources, the exhaust usually provides the

major contribution to noise pollution. A typical exhaust system consists of an exhaust

manifold, into which an internal combustion engine supplies gas flow and radiates

noise. The exhaust gases are carried away from the exhaust manifold and are eventually

communicated, along with the engine noise, to the environment via the tail pipe. To

reduce the rate of emission of both the harmful exhaust gases and the radiated noise

energy, passive elements are commonly employed in the exhaust system. The radiated

engine noise is usually reduced by the use of a silencer, whilst the emission of harmful

exhaust gases is controlled by a catalytic converter, although it is known that the

catalytic converter can also alter the acoustic characteristics of the exhaust system. The

catalytic converter is typically situated close to the outlet of the engine manifold,

upstream of the silencer, in a part of the exhaust system known as the down pipe. This

pipe is then joined, downstream of the catalytic converter, to the silencer. The tail pipe

communicates both the exhaust gases and the radiated noise emitting from the silencer

to the environment. The exhaust noise emitted by an automobile is usually quantified

by measuring the externally radiated tail pipe noise. Therefore, to eliminate the costly
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experimental trial and error design process, one must produce mathematical models of

the entire exhaust system, including the noise source (the engine), in order to predict the

radiated tail pipe noise. Unfortunately, the engine provides a far from ideal sound

source which is very difficult to model acoustically and therefore, at present, a fully

integrated acoustic model of an exhaust system has yet to be realised. Consequently,

research in this field has been concentrated on modelling components of the exhaust

system individually, and this approach is also applied here. The research reported in

this thesis is focused on acoustic modelling of the passive elements present in a typical

automotive exhaust, namely the silencer and the catalytic converter. However, since the

catalytic converter is not inserted into the exhaust for its acoustic characteristics alone,

and subsequently the influence this has on noise emission is much smaller than that of

the silencer - which is inserted specifically to reduce noise emissions - the bulk of this

thesis is concerned with silencers.

The use of an exhaust silencer is the primary method available to the engineer

for reducing exhaust noise emissions from the engine. Exhaust silencers have been in

use nearly as long as automobiles themselves, although the design of these silencers has

often been conducted on an ad hoc basis and it is only relatively recently, especially

with the introduction of micro-computers, that the detailed mathematical modelling of

silencers has taken place. Exhaust silencers are of two main types, reactive and

absorptive (or dissipative). The reactive silencer typically consists of an expansion

chamber in which each area discontinuity introduces an impedance mis-match which

reflects a part of the incident sound energy back towards the engine. Interference effects

between the incident and reflected waves cause a pronounced frequency dependence of

the acoustic performance of expansion chamber silencers. The dissipative silencer

typically contains a porous material which is capable of absorbing acoustic energy and

hence only a part of this energy is either reflected or transmitted. In practice, however,

silencers are neither completely reactive or completely dissipative. The use of both

types of silencer is commonplace and, indeed, they are increasingly being employed

together in the same silencer box, since the performance of each type can - with suitable

design - complement that of the other. For instance, a complex reactive silencer can be
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constructed to be compact and acoustically efficient, but will tend to suffer from a high

back pressure. On the other hand, the use of a simple dissipative silencer will provide

low back pressure, but the low frequency performance of the silencer is poor.

Consequently, the detailed acoustic modelling of both types of silencer is necessary in

order to provide design tools for use in the acoustic design of the exhaust system as a

whole. However, in practice, modelling reactive silencers mathematically has proved to

be more straightforward than modelling dissipative silencers and consequently, at

present, reactive silencer modelling is by far the more advanced of the two.

Commercial PC-based software is now commonplace for use in the design of reactive

silencers (see for example Peat [1]), and good agreement between prediction and

experiment has been reported for complex multi-pass reactive silencer designs. This is

not the case for dissipative silencers, the design of which is complicated by the

introduction of porous sound absorbing materials. The relative dearth of effective

models for dissipative silencers has meant that, in recent years, this type of silencer has

received more attention, with a view to allowing its integration into current reactive

silencer design software. However, at present, software aimed at the design of

dissipative silencers is still not yet sufficiently advanced to allow this to take place.

This thesis is therefore aimed at examining current dissipative silencer models with the

object of either modifying existing models or introducing new ones in order to allow

their incorporation into commercial software aimed at the acoustical design of

automotive exhaust systems.

The study of dissipative silencers began as early as the 1930s, for instance Sivian

[2] applied a simple plane wave approach to modelling a circular pipe lined with rock-

wool. Sivian expressed the behaviour of the porous rock-wool in terms of its normal

acoustic impedance and, in ignoring any axial wave propagation in the absorbent,

treated the liner as "locally-reacting". Morse [3] also analysed a duct with a locally

reacting liner, but extended Sivian's model to higher frequencies by including higher

order modes. Scott [4] later realised that, in most practical situations, axial wave

propagation occurs within the porous material (implying a so called "bulk-reacting"

liner) and to describe the acoustic characteristics of the material, Scott employed two
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frequency dependent complex quantities: the propagation constant and the characteristic

impedance. The early work of Scott et al. was hampered by the unavailability of

computers and, in order to obtain a solution to the problem, it was often necessary to

employ a number of approximations in order to make the problem tractable.

It was not until the advent of the computer that significant advances on the early

dissipative silencer model were made. Bokor [5,6] verified Scott's model by comparing

his predictions to experimental measurements made for the first mode of propagation

only. Kurze and Vér [7], who - like Bokor - studied rectangular ducts lined on opposite

walls, extended Scott's approach to include non-isotropic absorbing material, although

Wassilieff [8] later corrected an error in Kurze and Vér's formulation. Wassilieff went

on to solve the revised equations by using the Newton-Raphson method and obtained

much closer agreement between prediction and experiment than had previously been

observed. The effects of mean flow (the mean gas flow emanating from the engine in

the case of automotive silencers) in the central channel, around which the absorbent

material is usually packed, was introduced by Meyer et al. [9], and later by Ingârd [10].

Tack and Lambert [11] also included mean flow and concluded that, in the low

frequency region, the use of a uniform flow profile is adequate for most purposes. They

were, however, unable to obtain a numerical solution to the problem. A study of both

uniform mean flow and sheared flow was later conducted by Ko [12], who solved an

eigenvalue equation by using an iterative numerical procedure. Peat [13] also included

uniform mean flow in the central channel and employed a simple fundamental mode

formulation in his investigation of a finite length axisymmetric silencer with a bulk

reacting liner. However, for dissipative silencers, the inclusion of purely the

fundamental mode is, perhaps, an over-simplification of the problem. Cummings [14],

in a study of rectangular ducts lined on opposite walls, examined both higher order

modes and the effects of a perforate facing situated between the mean flow in the central

channel and the bulk reacting lining. A perforate was also included by Nilsson and

Brander [15], who studied an infinite circular duct with mean flow in the central

channel. Nilsson and Brander used both numerical and analytical techniques to solve

the governing eigenequation for a number of modes. The models mentioned previously
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do not, however, fully account for the effects of mean flow in a finite length automotive

silencer which also includes a bulk reacting lining.

Various investigations, in addition to Nilsson and Brander [15], have simplified

the problem by assuming the silencer to be of infinite length. For instance, Cummings

and Chang [16] developed an analytical eigenvalue formulation for an axisymmetric

silencer with mean flow in both the central channel and in the absorbent, although the

effects of a perforate were omitted. It is, however, not uncommon for the dissipative

silencer to have a non-circular cross section; consider, for example, a typical oval

shaped automotive exhaust silencer. Unfortunately this presents a number of additional

problems and research concerning silencers of arbitrary cross section has again centred

on the use of various types of eigenvalue formulation. For example, Astley and

Cummings [17] used finite elements to study a silencer of arbitrary but uniform cross

sectional shape, which included a bulk reacting liner and mean flow in the central

channel. They obtained predictions for sound propagation in rectangular ducts lined on

all four walls; circular silencers were later studied using this method by Rathi [18].

Glav [19] also employed numerical methods (the "null field" method and collocation) to

examine silencers with an oval cross section, although mean flow in the central channel

was omitted.

Unfortunately, eigenvalue solutions do not give much physical insight into the

performance of a finite length silencer, and subsequently methods have been introduced

whereby eigenvalue formulations are used to obtain performance predictions for finite

length silencers. This clearly complicates the problem still further and hence the study

of finite length dissipative silencers is less well researched. Nilsson and Brander [20,

21, 22] used the Wiener-Hopf method to study the duct discontinuities in a finite length

axisymmetric dissipative silencer which contained both mean flow in the central

channel and a perforate. Solutions for each duct discontinuity were then combined to

provide predictions for a finite length silencer. Unfortunately this approach is very

complex and it has yet to be applied to irregular cross sections. Cummings and Chang

[23] utilised their original eigenvalue formulation [16] to implement a much simpler

formulation which involved applying a mode matching method to the duct
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discontinuities. However, they ignored the effects of a perforate facing and, like

Nilsson and Brander, they were restricted by their eigenvalue formulation to the study of

axisymmetric silencers. Glav [19] later employed a mode matching approach in the

study of silencers with arbitrary cross-sections, but omitted both mean flow in the

central channel and a perforate facing.

The use of an eigenvalue formulation, in conjunction with an appropriate

treatment of the duct discontinuities, to obtain predictions for a finite length silencer,

has yet to be shown to be a completely satisfactory approach. For instance, predictions

have yet to be obtained for silencers of arbitrary cross-section which includes both mean

flow and a perforate. Furthermore, the use of an eigenvalue formulation restricts

solutions to those silencers which have an axially uniform cross section. Recently an

alternative to the use of an eigenvalue formulation has been applied. This approach has

been based upon the well known finite element method, used in many other areas of

engineering. Previously, Astley and Cummings [17] had used a finite element approach

in an eigenvalue solution, although the finite element method can also be applied to

finite length silencers, giving a more general formulation. The finite element method

was employed by a number of authors (see for example Craggs [24] and Hobbeling

[25]), although it was not until the study by Peat and Rathi [26] was carried out that a

completely three dimensional finite element formulation was introduced, which also

included mean flow in both the central channel and in the absorbent. Peat and Rathi

did, however, omit the effects of a perforate facing and made numerical predictions for a

circular silencer only. The approach of Peat and Rathi is, at present, the most general

method for modelling dissipative silencers to appear in the literature. Unfortunately, a

full finite element solution is very complex and the demand on CPU time is unavoidably

large. However this does appear to reflect the complexity of the dissipative silencer

problem and one must therefore expect to expend more CPU time on dissipative

silencer design than on reactive silencer modelling. Only a brief background to the

development of dissipative silencer modelling has been given here, and greater detail is

given in the introduction to each individual chapter later in this thesis.
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To date, a detailed quantitative assessment of the various dissipative silencer

models described in the literature has yet to take place, and furthermore the practical

application of such models in a commercial design environment has not been examined.

The primary objective of this thesis is to examine dissipative silencer modelling in

detail, with a view to enabling software to be written which will allow design engineers

to optimise the acoustic design of an exhaust system. This inevitably means that, in

addition to employing a modelling procedure which provides sufficiently accurate

predictions, one must also consider the CPU time required to obtain these predictions.

The impetus behind the research described in this thesis was provided by

funding from a combination of the Department of Transport and a number of industrial

sponsors (the Motor Industry Research Association, Arvin Exhausts, Tenneco-Walker

(U. K.) Ltd., Eminox Ltd., Perkins Technology and Ford Motor Company Ltd.). The

research was initiated in response to demand from industry for the upgrading of existing

design software. For instance, because of the reasons stated earlier, most commercial

software aimed at the acoustic design of exhaust systems is limited to reactive silencers

(see for example the LAMPS program described by Peat [1]). Consequently, most

designers either omit any dissipative elements from their models, or account for the

effects of the porous material by including a rather crude equivalent fluid representation,

sometimes employing the somewhat heuristic formulae of Morse and Ingârd [27].

Obviously, this approach to modelling dissipative silencers cannot be expected to

provide accurate predictions and hence the demand for a more complete representation

of the problem. The work reported here was begun with the eventual aim of extending

the LAMPS program for reactive silencers to include dissipative elements (both

silencers and catalytic converters), although the author is not concerned here with the

actual writing of LAMPS style software. Consequently, since the work is aimed at use

in a commercial environment, one must be continually aware of the demands of

industry. Perhaps the most important demand to be made at the beginning of this

research was the need to minimise the use of CPU time. Most of the industrial sponsors

involved with this project are, with the exception of Ford, relatively small and they do

not have access to large mainframe computers. Therefore, the software produced must
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be capable of running quickly and easily on a personal computer, in much the same way

as the LAMPS software does. This criterion is not so easy to satisfy for dissipative

silencers and inevitably places restrictions on the complexity of the models one can use;

it also plays a large part in deciding the direction that the development of the modelling

takes place. With regard to the dissipative silencers themselves, a number of initial

criteria were also specified. It was decided that the model produced must be capable of

accurately predicting the acoustic behaviour of a dissipative silencer over a frequency

range of approximately 0-2kHz, accounting for a possible range of different absorbent

materials in the process. The silencer should also have mean flow in the central

channel, and the surrounding silencer box, in which the absorbent is placed, must be of

arbitrary cross-sectional shape. A perforate may also be present, situated between the

central channel and the absorbent. Finally, one must also be capable of accurately

representing any dissipation of sound energy occurring in the catalytic converter.

The initial criterion introduced by the industrial sponsors at the inception of this

research cannot, at present, be met by any of the current dissipative silencer models

reported in the literature (see the earlier discussion). For example, at present, a

perforate has yet to be included in a model which will accommodate silencers of

arbitrary cross-section. In fact, the necessity of inclusion of a perforate in dissipative

silencer modelling has currently not been firmly established. At present, it appears that

most authors are content to leave the perforate out of their models, assuming that its

acoustic effect is negligible. However, it appears that the acoustic influence of the

perforate has not been examined in enough detail to allow for its exclusion. This is

particularly true in the case of perforates backed by an absorbing material, a

configuration which would often occur in a dissipative silencer. Indeed a perforate

subjected to grazing flow and backed by a porous material has yet to be examined at all,

and consequently this is studied in detail in Chapter 4 of this thesis. Subsequently,

several theoretical models for dissipative silencers are derived, based upon some of the

modelling procedures mentioned previously. In view of the requirement for

computationally rapid solutions, the discussion of theoretical modelling begins in

Chapter 6 with the simple fundamental mode model implemented by Peat [13]. The
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model is extended here to include the perforate, and also to remove the low frequency

approximations employed by Peat, although the silencer geometry is still limited to

being axisymmetric. To model silencers with an arbitrary cross-sectional shape it will

be shown that one must resort to the use of numerical methods, and the implementation

of a full three dimensional finite element model is described in Chapter 7. This is based

upon the method used by Peat and Rathi [26], although the perforate is introduced into

the model here, and also three dimensional solutions are obtained for the first time.

Although the full finite element model in Chapter 7 provides a completely general

approach to modelling dissipative silencers, completely satisfying the aforementioned

criteria relating to modelling an individual silencer, it will be shown that, as one would

anticipate, this model demands a considerable amount of CPU time. Consequently a

method is investigated in which an attempt is made to balance the accuracy of the finite

element approach with the speed of solution inherent in Peat's approximate method.

Accordingly, a mode matching scheme is described in Chapter 9, which utilises a finite

element eigenvalue formulation, described separately in Chapter 8. The finite element

eigenvalue approach implemented by Astley and Cummings [17] is applied in Chapter

8, to allow the modelling of arbitrary cross sections and, in common with previous

models, a perforate is introduced for the first time. Also, in Chapter 9, two new mode

matching formulations are introduced, and the method of Cummings and Chang [23] is

examined in detail. Finally, numerical predictions from each of the theoretical models

described in this thesis are compared extensively to experimental measurements

performed on a number of dissipative silencers, both with and without mean flow. The

various silencers examined are all different, either in size, shape or type of absorbent

material. This then provides a means of validating each of the theoretical models.

With the introduction of the features discussed earlier into the separate

dissipative silencer models, an additional problem, common to all the modelling

procedures described earlier, became evident. The performance of dissipative silencers

is dependent upon the acoustic properties of the porous material employed in the

silencer. It became apparent that, in most of the silencer models discussed previously,

the use of experimental data obtained for the bulk acoustic properties of the absorbing
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material was in error when the data were extrapolated to sufficiently low frequencies.

This effect was recognised by a number of authors, although the problem does not

appeared to have been rectified satisfactorily. For instance, a theoretical microstructure

model of the porous absorber has sometimes been employed at low frequencies, and

used in conjunction with the experimental data at higher frequencies. However, this can

incur a "jump" in material properties at the frequency of transition between the two

methods, depending on the details of how the procedure is implemented. An alternative

approach is to employ a single theoretical model over the entire frequency range, but

this would normally lack the accuracy of the experimental data in the medium frequency

range. At the beginning of this thesis (Chapters 2 and 3) this problem is rectified by

employing a semi-empirical model for the bulk acoustic properties of the porous

material which provides a continuous prediction across the frequency range of interest.

The new model is then integrated into each dissipative silencer model that follows.

The research presented in this thesis is intended to be used as a design tool for

the predictive modelling of dissipative elements employed in typical automotive

exhausts. The integration of this work into a software design package useful in a

commercial environment is left to others. In addition, the analysis of dissipative

silencers is not yet sufficiently advanced to accommodate the dissipative elements that

are sometimes used in complex multi-pass arrangements, with or without reactive

elements. Consequently only "straight-through" dissipative silencers are considered in

this investigation.

The acoustic analysis presented in this thesis is restricted to linear acoustics, and

any non-linear effects caused by "high" sound pressure levels (above approximately

165dB) - such as are often present in an exhaust system - are ignored here. The

treatment of non-linear effects in dissipative silencers, caused by high sound pressures,

is extremely difficult and awaits further work. The effects of temperature gradients in

dissipative silencers are also ignored, although the dissipative silencer models

themselves should still be applicable at high temperatures, although this remains to be

experimentally verified. Other approximations, on which the modelling is based,

include the assumption of a rigid, isotropic, porous absorbent which contains no internal
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mean flow. The consequences of these assumptions about the porous medium are

examined in Chapter 10. The mean flow in the central channel is assumed to have a

Mach number of less than 0.3, so that the mean flow can be treated as incompressible.

In addition the mean flow is also assumed to be uniform (see Tack and Lambert [11])

and therefore an infinitesimally thin boundary layer is assumed to be present adjacent to

the walls of the central channel.

The work in this thesis can be split up into two parts. The first part, Chapters 2

to 5, is concerned with characterising the components which go to make up the

dissipative silencers. This involves the introduction of new semi-empirical models for

both the bulk acoustic properties of the absorbent and the acoustic impedance of the

perforate (Chapters 2 to 4). In Chapter 5, experimental data, obtained for a number of

dissipative silencers, are presented. The following part of this thesis, Chapters 6 to 9, is

concerned with modelling the silencers theoretically, employing the data obtained in the

first part. In Chapter 10, the performances of the various dissipative silencer models are

compared to one another, and some observations are made concerning their future

usefulness as predictive design tools. The modelling of catalytic converters is reported

separately in Chapter 11. Finally, conclusions drawn from the results obtained in this

thesis are presented in Chapter 12.
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CHAPTER 2

SOUND PROPAGATION IN RIGID FIBROUS

POROUS MATERIALS



Section 2.1

Introduction

Fibrous porous materials have long been used for their sound absorbing

properties in exhaust silencers. The materials, in bulk form, are usually packed into a

box surrounding the gas flow emitting from the exhaust. The fibres are often randomly

packed, allowing interconnecting air spaces to permeate the material. The air spaces, or

pores, lie in a random fashion forming irregular shapes throughout the absorbent. When

a sound wave impinges upon the porous material it is propagated as a wave by the air, or

gas, in the pores. In a rigid material the sound wave is dissipated due to irreversible

losses in the viscous and thermal boundary layers close to the fibres. If the material is

flexible, additional loss mechanisms can occur. This dissipation of sound energy is

used to attenuate sound in numerous applications. This chapter is concerned with the

study of sound attenuation in rigid porous media in order to understand their influence

on the behaviour of dissipative silencers.

Sound dissipation in porous media was first studied by Rayleigh [28]. Rayleigh

modelled a porous material as a solid matrix of capillary tubes with sound propagation

in the axial direction. He approximated Kirchhoffs general theory [29] for sound

propagation in tubes to narrow circular capillary tubes in order to model porous

materials. Rayleigh went on to predict the absorption coefficient for porous media. The

capillary tube approach of Rayleigh quickly became the favoured method for

characterising porous materials.

Scott [4] used Rayleigh's approach to show that a porous material could be

completely characterised by two frequency dependent complex quantities, the

propagation constant and the characteristic impedance. In relating the properties of a

single pore to those of a bulk material, Scott introduced the flow resistivity of the

material (see also Carman [30]). This allowed Scott to compare experimental data to

predictions obtained using the capillary tube theory and show that the viscous and

thermal effects in the pores were frequency dependent.
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The viscous and thermal effects present in a single axisymmetric pore were

analysed separately by Zwikker and Kosten [311. The increase in effective density of air

in the pore was represented by the complex density, and the thermal effects by the bulk

modulus. These two quantities were then combined to define the propagation constant

and the characteristic impedance. Zwikker and Kosten stated that this method was an

approximation of Kirchhoffs theory and exact only in the low and high frequency

limits. A full account of a number of capillary tube models, all based on the theory of

Kirchhoff, is reported by Tijdeman [32]. Subsequently, both Tijdeman and Stinson [33]

noted that Zwikker and Kosten's model was in fact valid in a wider frequency range than

first thought, incurring errors only in the intermediate frequency range. Zwikker and

Kosten were the first to notice that the effective density of air in the bulk material was

increased by the random alignment of the pores. This was said to be due to the sound

wave undergoing a more tortuous path through the material, compared to that in a

regular solid matrix. Zwikker and Kosten combined this frequency independent effect

(later known as the tortuosity) with the frequency dependent viscous effects in the pores

to give a frequency dependent structure factor.

The tortuous path of the sound wave was extended by Biot [34] to cover pores of

different shapes. Biot used the limiting cases of circular pores and slit-like pores to

show that the pore shape affected sound attenuation. He combined this effect with the

tortuosity and called it the structural factor. The effect has later become separated from

the tortuosity and become known as the pore shape factor (see Smith and Greenkorn

[35]).

Alternatives to Rayleigh's approach were also examined, for instance both

Zwikker and Kosten [31] and Biot [34] attempted to take account of frame motion. Biot

predicted the existence of two dilatational waves and one rotational wave in a flexible

material, which produced significant departures from the theory of rigid materials.

Attenborough and Walker [36] derived a scattering theory, treating the material as a

random array of parallel elastic fibres, where the fibres are either rigidly fixed or freely

supported. The attenuation of wave energy occurs through viscous and thermal action

on scattering at fibre boundaries. Burns [37] extended the capillary model to include
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fibres in a rigid hexagonal matrix; here, each fibre is within a "cylinder of influence",

along which the sound propagation occurs. Mechel [38,39] also proposed a model

similar to that of Burns. Cummings and Chang [40] extended Mechel's "parallel fibre

model" to include the effects of mean flow in the material. It was shown that mean flow

caused the material to behave anisotropically even if the medium was originally

isotropic. Attenborough [41] gives a comprehensive review of the different theoretical

models available for porous media.

The current thrust of work on porous material has centred on attempts to use a

simple model, similar to Rayleigh's, but to account for the random nature of the material

by the use of the tortuosity and/or the pore shape factor. Johnson et a!. [42] produced

interpolation formulae for a complex tortuosity (equivalent to the structure factor

employed by Zwikker and Kosten [31]), based on limiting behaviour at zero and infinite

frequency. They measured their tortuosity for inviscid flow (equivalent to using an

infinite frequency in a viscous fluid), and used their formulae to extrapolate to lower

frequencies. The tortuosity can be measured for effectively inviscid flow in a number of

ways: electrical conductivity methods [30], using superfluid 4He as the pore fluid [42],

and air saturated ultrasonic wavespeed measurements [43]. The formula of Johnson et

al. is extrapolated to lower frequencies by defining a characteristic length for each pore.

Both Johnson et al. and Allard and Champoux [44] point out that this method is exact

only at very high and very low frequencies, and also the characteristic length is difficult

to measure accurately. It is evident that some confusion can exist due to the differing

definitions for tortuosity. In this thesis, the tortuosity is separated from the complex

density (unlike Johnson et al. [42]) but is still defined as frequency dependent. The pore

shape factor has also been defined as both dependent and independent of frequency. For

instance, Stinson and Champoux [45] showed that the Rayleigh type model

implemented by Attenborough [46] must contain a frequency dependent pore shape

factor if the model is to be correct in the limiting frequencies. However, they then went

on to show how Biot's [34] viscosity correction function could be extended to include

thermal conductivity effects, allowing the definition of a frequency independent pore

shape factor. In a study on extreme ranges in pore size Champoux and Stinson [47]
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proposed that two pore shape factors were necessary. In the same paper, they also

showed how experimental data can be used to obtain a "best fit" for the pore shape

factor. To the best of the author's knowledge, a frequency dependent tortuosity has not

been used together with a frequency dependent pore shape factor.

The use of microstructure models for predictive purposes has led to

simplification of the models in order to reduce computational effort. Both Zwikker and

Kosten [311 and Mechel [48] have introduced low frequency approximations for their

microstructure models. This was done by using small argument approximations for the

Bessel functions appearing in the models. However the models are only of use in

conjunction with experimental data covering the middle to high frequency range.

Chandler-Wilde and Horoshenkov [49] used Padé approximants to simplify both

Attenborough's [46] and Stinson and Champoux's [45] models to cover the entire

frequency range. Allard and Champoux [44] employed the tortuosity predictions of

Johnson et al. [42] to produce a semi-empirical model, valid over the entire frequency

range. However Allard and Champoux's model is restricted by the need to measure the

characteristic length of Johnson et a!.

In this chapter a theoretical model is developed specifically for fibrous materials,

although it is likely that it will also be applicable to other materials such as foams. The

intention of the model is to provide a simple means by which experimental data and low

frequency theoretical predictions can be integrated to produce a continuous set of data

which offers a higher degree of accuracy than the models discussed previously. The

model is based on the parallel fibre model of Mechel [38,39] and Cummings and Chang

[40], this closely resembles the physical characteristics of the fibrous absorbents.

Simplification of the model is achieved by separating the viscous and thermal effects in

the manner of Zwikker and Kosten [31]. The complex density and bulk modulus are

derived for a single pore and then combined to give the bulk acoustic properties. The

flow resistivity of the material is used to eliminate the fibre radius from the model,

allowing the bulk acoustic properties to be written as a function of a dimensionless

frequency parameter. The tortuosity and pore shape factor have both been included in

the model and are defined as real frequency dependent quantities.
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Section 2.2

Parallel Fibre Model

The paiallel fibre model used here is identical to the geometrical model of

Cummings and Chang 4O]. However, since mean flow effects are not accounted for in

this model, the discs used by Cummings and Chang to introduce inertial stresses have

been removed. The model consists of a circular fibre, radius a, surrounded by a

cylinder of influence, radius R. The fibres are assumed to be uniform along their length

and lie in an hexagonal matrix as shown below in Figure 2.1.

C:,
II

F

2K	 SOULIU propagation

Figure 2.1. Geometry of parallel fibre model
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In Figure 2.1 an hexagonal shape for the cylinder of influence is shown, this prevents

any voids appearing in the model. However, in order to simplify predictions the cross

sectional shape of the hexagonal cylinders of influence is to be approximated by a circle.

In the parallel fibre model a hydraulic radius may be used to define the radius of each

fibre. Glass fibres and mineral wools have approximately circular fibres and the

hydraulic radius becomes simply the radius of the fibre. In the case of steel wools, the

fibre cross sections tend to be irregular and an equivalent hydraulic radius has been

assumed here. The volume porosity, , of the material is given by ^ = 1— a2/R2.

Section 2.3

Complex Density

The complex density, first defined by Zwikker and Kosten [31], is a measure of

the increase in effective density of the air in the pore, caused by the presence of a

viscous acoustic boundary layer around each fibre. The linearized Navier-Stokes

equation for a pressure drop in the x direction gives

du'	 1 dp'	 du' 1
(2.1)

where u' is the axial acoustic velocity component, p' is the acoustic pressure, Po is the

mean fluid density, t is time and v is the kinematic fluid viscosity. In equation (2.1) the

radial component of the velocity has been neglected. This is a valid approximation

when the radius of the cylinder of influence is small in comparison with the wavelength

and the axial velocity is much greater than the radial velocity (see Stinson [33] and Peat

[5011) . For a time dependence of e1Dt, where w is the radian frequency and i =	 the

Navier-Stokes equation can now be written as

=_-_-e-'-+v d ( du"\

Po dx	
(2.2)
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or

1dp'{
- 	 r	 —t—u .	 (2.3)
1d	 d) .a1

p0 vdx	 rdr dr	 vj

Let =	 v; then the general solution to equation (2.3) is

u'=	
1	

(2.4)
p0vC

where J, and 1 are Bessel and Neumann functions respectively, of order n and A1 , A2

are constants. The following boundary conditions apply:

atr=R, du'/dr=O, so

(2.5)

atr=a, u'=O, so

1	
_+AJ(a)+AY(a)	 (2.6)

lwPo

The constants are therefore given by

1 dPJ	 Y1(R)

(WP0 dx Jo(Ca)Y1(CR)_Yo(ca)J1(CR)}' 	
(2.7)

and

1 dp'I J1(R)

i0p0 dxlJo(Ca)YR)_Yo(a)Ji(CR)}	
(2.8)

Equation (2.4) may now be written as

1	 LI 1 J0Or)Y1(CR)—Yo(Cr)J1(R)l

icop0 dx	 J0(Ca)Yi(CR)—Yo(Ca)J1(CR)	
(2.9)
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The complex density p(co) is given by [311

p(w)-- _
p'/dx

-	
(2.10)

where (u') is the space averaged velocity over the cross section and is given by:

R

	1 ap'	 1	

S{1-j0)'}2,	
(2.11)

iwp0 d ir(R 2 _a2 )	 J0(a)Y1(R)—Y0(a)J1(R)
a

i.e.	 (u')=—_
1 	 iL	 2a	 [Ji(Ca)Yi(CR)_Yi(Ca)Ji(R)1l____	 ________ _______________________ 	 (2.12)

L 
+R2_a2)LJo(Ca)Yl()_Yo(Ca)Jl(CR)]j

The complex density can now be written as

p(w)=	 Po
2 (1_\rJi(Ca)yCR)_yi(Ca)Ji(CR)l' 	

(2.13)

J[Jo(ça)Yi(çR)_Yo(Ca)Ji(R)j

where aIR has been replaced by V(i-c).

Equation (2.13) defines the complex density for an axisymmetric pore. To

account for pore shapes of irregular cross section the pore shape factor is introduced.

The pore shape factor is introduced in the same manner as that of Biot [34] and

Attenborough [46], hence is redefined as

1w
(2.14)Vv

where s2 (w) is a real frequency dependent pore shape factor. The term a is a measure

of the ratio of the viscous forces to the inertia forces. For small values of a (<1) then

viscous forces are dominant and Poiseuille flow is present; for large values of a (>10)

inertial forces dominate.
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Section 2.4

Bulk Modulus

The bulk modulus is a measure of the thermal effects occurring in a pore. The

compression and rarefaction of the air in the pore generate heat which is conducted

between the air and the fibres. The density and pressure of the air during compression

and rarefaction are not in phase and consequently the bulk modulus is complex. The

bulk modulus is found by solving the energy equation relating the pressure and density

fluctuations (see Tijdeman [32], and also Chapter 11). The linearized form of the

energy equation gives

(dT'	 (92T 1 d7'	 ,
PoCp2Lh	 2 (2.15)

where T' is the temperature, C, is the specific heat of air at constant pressure and '2h is

the thermal conductivity. Equation (2.15) is valid provided that the radial derivatives

>> axial derivatives, for axisymmetric disturbances, and the particle velocity u' is

purely axial (see Cummings and Chang [40]). This equation may be rewritten as

h	 Ig92 T 	 1dT'	 ,	 p'

-iwp0 c	 r dr J	 p0C'
(2.16)

for a time dependence of e'°'. The general solution to equation (2.16) is

T'=_	 + C1J1(ar)+C2Y0(ar),
Po Cp

(2.17)

where a = /iWNpr /V, C1 and C2 are constants, and	 is the Prandtl number. The

following boundary conditions apply:

atr=R, dT'/dr=0, so

21



0=—aC1 J1 (aR)—cxC2 Y1 (czR);	 (2.18)

atr=a, T'=O,so

0=	 +C1J0(aa)^C2Y0(cai). 	 (2.19)
Po Cp

The constants C1 and C2 are therefore given by

' 

E	

Y1(aR)

p0C J0 ()Y1 (aR) —Y0()J1(aR)]'	

(2.20)

and

2 
p0C J0()Y1()—Y0(aa)J1(aR)]	

(2.21)C— 
'[J1(aR)

Equation (2.17) can now be written as

T'= p' 1 J0(ar)Y1(aR)—Z(ar)J1(aR)

p0C	
(2.22)

The bulk modulus ic( w) is defined by Zwikker and Kosten [311 as

-	 P0

K(CO)— (1—RGpO(T')/p')' 	
(2.23)

where RG is the gas constant and (T') is given by

R

(T') 
= p'	 1	 J0(ar)Y1(aR)— J1(aR)Y0(ar) }2rrdr

	 (2.24)
p0C ir(R2_a2)

a

hence

(T') = P'	 1_r J()Y()— J1 (aR)}(cta) 11> (2.25)
p0C

22



Pb(W) q2(co)=	 p(w). (2.29)

where the previous substitution (see equation (2.13)) for aIR has been employed.

Substituting equation (2.25) into equation (2.23) finally defines the bulk modulus as

Po
ic(co)=

2(y— 1) (1_c')[ J1 (aa)1(aR) -J1(aR)1(aa) (2.26)

The shape factor is introduced into the bulk modulus in the same manner as for the

complex density, i.e. a is now redefined as

a= s2(w)1j_i 
O)Npr	

(2.27)

Section 2.5

Extension to Bulk Material

The complex density and bulk modulus for the bulk material can now be

predicted by using the expressions calculated for a single pore. This is done by equating

the average particle velocity in the pore to the average velocity for the bulk material

using the Dupuit-Forchheimer assumption (see Carman[30] and Attenborough [41]):

(u') 
= q2(w) (ui),
	 (2.28)

Q

where (u') is the average velocity in the pore, (ui) is the average velocity in the bulk

material, and q 2 (w) is the frequency dependent tortuosity or dynamic tortuosity. Note

that the dynamic tortuosity has only been introduced when bulk parameters are being

considered. The complex density can now be found for the bulk material by the

substitution of equation (2.28) into equation (2.10) to give
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and

The bulk modulus for the bulk material is found by substituting equation (2.23) into the

continuity equation for a bulk material defined by Zwikker and Kosten [311 (see also

Stinson and Champoux [45]). This gives

(2.30)

The subscript b denotes a bulk quantity.

It can be seen from equations (2.29) and (2.30) that the tortuosity only increases

the effective density of the air in the bulk material. The bulk acoustic properties can

now be written as a function of the bulk complex density and the bulk modulus by using

the formulae of Zwikker and Kosten [311, hence

r=iw J 2Kb ()

I	 (2.31),(2.32)
and Za

where F is the propagation constant and Za is the characteristic impedance. It is

convenient to re-write equations (2.31) and (2.32) in terms of the properties of a single

pore, i.e.

F 
jU{q2((o) P(W)	 1 2	

1

=	 andz
K(W))	

a[q 
(w)p(w)ic(w)]2. (2.33),(2.34)

By using equations (2.13) and (2.26), one may express the bulk acoustic properties as

1

	
(2.35)

2(y-1) 1–'\S1(a)

F J 2	
JS0(a)

—=zq )
	 2 (i-s1k	 1+__I
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Za	 1 1 2	 /[	 2(lc\s1 (O1[ 1 2(y-1) 1—	 Si(a)ll (2.36)

/ [ ça	 )s0 (][ Ca(	 JS0(a)]J'

where

S1() - J1(ça)1(ça/Ii)—Yj(ça)Ji(ça/'..f1—) 	 (2.37)
S0 () - J0(ça)Y(ça/-sJl-2)—Y0(ça)J1(ça/-.Jl—c2)

and

S1(a) =	 (2.38)
S0(cx)

The expressions derived for the bulk acoustic properties above are identical to

those of Mechel [38, 39], with the exception of the introduction of a tortuosity and pore

shape factor in the present analysis. The bulk acoustic properties have been written in

terms of the fibre radius, however, since a value for the average fibre radius is extremely

difficult to measure, it is desirable to re-write the bulk acoustic properties in terms of

something more readily measurable. In the next section the fibre radius is related to the

steady flow resistivity of the bulk material, a quantity which is easily measured by using

non-acoustical means.

Section 2.6

Flow Resistivity

The flow resistivity of a porous material depends upon the velocity profile

present within the pores and is therefore frequency dependent. Cummings and Chang

[40] showed that the flow resistivity comprised both a viscous and inertial component.

Since the mean flow in the material is taken to be negligible, only the viscous flow

resistivity is to be considered here. The viscous flow resistivity has been widely used

for the prediction of the bulk acoustic properties by obtaining values in the low

frequency limit. At very low frequencies, where Poiseuille flow is presentTheviscou
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flow resistivity becomes a purely real quantity, independent of frequency, and is equal to

the steady flow resistivity. The steady flow resistivity is defined as the ratio of the

pressure gradient across the sample to the average flow velocity through the sample at

low flow velocities where viscous forces dominate (see Carman [30]). The steady flow

resistivity is easy to measure using non-acoustical means [30], and is therefore an

attractive quantity to use for eliminating the fibre radius from the model.

For Poiseuille flow in a single pore, the Navier-Stokes equation for steady flow

with a pressure drop in the x direction (see White [51]) gives

idiId ( dli"1
r— I,	 (2.39)

iL dX r 1dr dr)J

where 11 denotes the velocity in the pore, t is the dynamic fluid viscosity and the bar

denotes a time average value. Solving for 11 gives

r2d
(2.40)

4udx

where B1 and B2 are constants. Introducing the boundary conditions:

at r = a, 11=0 and d11/dr =0 at r = R yields

-	 1 dji 2r2+2R2lnrl
4dx{	 aJ

u=--- a (2.41)

Averaging the velocity over a pore cross section gives

______	 ç2la2	 dj5 (i_)+^_ I .	 (2.42)
4pLI (1—c ) dx [	 2]

In

The average velocity for a single pore can now be related to that of the bulk

material by using the Dupuit-Forchheimer assumption (see equation (2.28)). However,
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I-
---= a(ub
dx' (2.48)

since Poiseuille flow is being considered, the dynamic tortuosity at vanishingly low

frequencies assumes a constant value i.e.

urn q2(w)—q,
w-o	 (2.43)

where q is the steady flow tortuosity. The assigning of a steady value for the tortuosity

at low frequencies will be discussed later. The Dupuit-Forchheimer assumption now

becomes:

and therefore

(2.44)

a2	 21
	ln(1 c)+c+— I .	 (2.45)

_____	 -	 2]

The dynamic viscous flow resistivity o, (w) was defined by Zwikker and Kosten

[311, by the use of a modified momentum equation,

-- q2()Pob)()	
(2.46)

dx	 &

where a1, (w) is the (frequency dependent) dynamic viscous flow resistivity. Therefore,

for steady flow,

lirn a(w) -3 a,	 (2.47)

and

where a is the steady flow resistivity. Substitution of equation (2.48) into equation

(2.45) gives
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(i—c)

a2 [ln(1_c)++c2/2]	
(2.49)

Equation (2.49) gives a frequency independent expression for the steady flow resistivity

in terms of the fibre radius. This allows the fibre radius to be eliminated from the

expressions for the bulk acoustic properties, i.e.

'2	 .22	 (i—c2)
(ca) =zq0 s (w)8irc

[ln(1 - ci) + ci + ci2/2]'	
(2.50)

where is a dimensionless frequency parameter (=p0f/a), f denoting frequency.

Equation (2.50) can now be substituted into equations (2.35) and (2.36) to give the full

expressions for the bulk acoustic properties.

Section 2.7

Low Frequency Model

The formulae derived so far can be used to predict the acoustic properties over a

wide frequency range, with the limitations on accuracy in the intermediate range

mentioned previously. The model involves the calculation of Bessel and Neumann

functions, and whilst this does not cause any real problems, it is still desirable to

simplify the model as far as possible in order to reduce computational effort. In this

section, a low frequency model is derived using small argument approximations for the

Bessel and Neumann functions. It will be shown that the low frequency approximation

does not restrict the model since it is still valid over the entire frequency range of

interest. Indeed the upper limit of the low frequency model will be shown to be

coincident with the lower range of applicability of the parallel fibre model imposed

because of the uncoupling of viscous and thermal effects.
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(2.56)

The small argument approximations for Bessel and Neumann functions are listed

by Abramowitz and Stegun [52]. The expressions given here are accurate to the fourth

order in the argument:

J0(z) = 1—-+---,
4 64

J1(z) =Ei__J,

{[ln+

r	 _•i	 2r	 z4	 z -
] 

4[ 2	 1
--Iin—+y-1 +	 in +

2	 zI l 	z -	 i1 z2	 z - 511
=--+—dln—+y-- I--I ln—+

7rz ir[[ 2	 2] 8 [ 2

(2.51)

(2.52)

(2.53)

(2.54)

where z is complex and 5' is Euler's constant. Substituting the low frequency

approximations into the expressions for S1(O/S0() and S1 (a)/S0 (a) gives

	

r 2r	
( )2a	 ( ba) I-	 ____I in(i	 )+(2_')F() a

S1(	 - 4 
L	

- 	 21—)	 8

S0 ()	 _______	 (a)2l
(1_)+[1n(1_Q)+c_F) 

8 ]

and

(2.55)

S1 (a) -
S0 (a)

+—I	 -	 ______
- caJç [	 ( Ca ) 2 Ne,. 

['no	
F1() 

(a)2 Npr

2	 4	 21—	 8

(i - 
+ (a)2 Npr 

ln(1 - + - F () 
(ca)2 Npr

4	 8

where

F()(2')ln(1)+_2	 ______
1_6(1_)2' (2.57)
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and

=	 Iln(i ç

	

F2() 
3-2Q	

) 
c ____

	i—a)	 - -1-J.	
(2.58)

It is possible to asses the accuracy of the low frequency approximations by

comparing equation (2.55) with equation (2.37). In Figure 2.2 such a comparison is

made for 1 = 0.95, and indicates that the low frequency model is accurate up to

approximately = 0.2. As the porosity decreases, the accuracy of the low frequency

approximation decreases, and for a porosity of 0.5 the approximation is accurate up to

= 0.05. However, for a typical fibrous absorbent, the restrictions translate to an upper

frequency limit of approximately 5kHz, which would normally be rather higher than the

upper limit of the frequency range of interest. The upper limit for also translates to

the value of unity for Ca. The splitting of the viscous and thermal effects causes some

degree of inaccuracy in the range 1 ^ a ^ 10 (see Tijdeman [32]), hence the use of the

low frequency model places no restrictions upon the accuracy of results available.

2.7.1 Low Frequency Complex Density for a Single Pore

The low frequency complex density will first be written as a function of Ca; the

steady flow resistivity will be introduced later. Approximations to the fourth order are

maintained for the complex density. Substituting equation (2.55) into equation (2.13)

and simplifying gives

p(w) = ______________ 
I[1n(1_c)+1+2]ln(1—c)	

32 ç3
++-+-

___ __________	

2 3 4(l—)I
p0	 1n(1—)++— I	

ln(1_)++2/2	 + 
()2 

j>•2

(2.59)
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2.7.2 Low Frequency Bulk Modulus for a Single Pore

To obtain accuracy comparable to the complex density it is only necessary to

approximate the bulk modulus to the second order. This approach was also used by

Zwikker and Kosten [31]. Hence, substituting equation (2.56) into equation (2.26) gives

K(w)=p{1+(p[ -

	 ç21l

ln(1 )++_IL
y	 2 jJ

(2.60)

2.7.3 Low Frequency Bulk Acoustic Properties

The low frequency values for the complex density and the bulk modulus can be

combined to give the bulk acoustic properties in the same manner as Section 2.5. The

propagation constant and the characteristic impedance are therefore given by:

	

_____I	
32	 4	 1 2

=	

2()1	 {ln(1_)++2I2]2	
_iJNpr —i 2qs2(w)

and

12

+[1JNpr 2s2(w)
Za- ! q2 (w) ________________________________

-	

1	
[ln(1 - + + 2/2]2 2
	 3

(2.61), (2.62)
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Section 2.8

Discussion

A parallel fibre model for sound propagation in rigid fibrous porous materials

has been derived in this chapter. The approximation of the model to low frequencies

has simplified predictions and has been shown to be acceptably accurate over the

frequency range of interest. The dynamic tortuosity and dynamic pore shape factor have

been added to the model to account for the random nature of the bulk fibrous material.

The model in this chapter will now be compared with other theoretical models in order

to asses their relative merits. First, in order to allow a straightforward comparison

between models, the tortuosity and pore shape factor are set equal to unity across the

frequency range. The inclusion of these quantities will be discussed later.

The parallel fibre model of Section 2.5 produces similar expressions to those of

Burns [37] and Mechel [38,39], this was expected due to the similarity in approach.

However, the low frequency model produced in Section 2.7 is very different from the

low frequency model of Mechel [48]. This is somewhat surprising considering similar

models were used; it is possible that the differences arise from different approximations

for the Bessel and Neumann functions. It is interesting to compare the predictions of

Section 2.7 with the low frequency predictions of Mechel [48], and also those of

Attenborough [46], who produced a low frequency model using Rayleigh's approach.

The more complex microstructure models, such as Attenborough's scattering model

[36], do not lend themselves to straightforward comparison and are not considered here.

Mechel [48] gives approximate expressions for the propagation constant and the

characteristic impedance:

Ii	 .	 1 '_=iJ__i.;j
k0	 (y

Za = 1 F	 (2.63), (2.64)
p0c0 iy^ k0'

and the Rayleigh model gives
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1	 1
rr	 ____ii:	 1	 rr4

=	 =	 [+ - j 2J

(2.65), (2.66)

It is apparent that the major difference between the models is the real part within the

square root. This term is directly related to the complex density and hence the viscous

forces present in the pores. In equation (2.61) the term is a function of porosity,

whereas Mechel and Attenborough do not predict this. For typical values of

y= 1.4 and	 = 0.702, Mechel predicts the real part of the square root to be equal to

0.714, whereas Attenborough predicts 1.133. Equation (2.61) predicts values varying

from 0.8 ( - 1), to 1 ( - 0). This indicates that all three models will differ in their

predictions, especially in the medium to low frequency range where the real and

imaginary parts within the square roots are of similar magnitude.

The differences in the predictions for the viscous forces present can be examined

by looking at the real part of the complex density. Equation (2.59) indicates that for a

single pore at low frequencies the complex density is dependent on porosity only. In

Figure 2.3, the real part of the complex density is plotted against porosity. It can be

seen that in the limit -3 1 then p(a) - Po' i.e. as the fibre radius approaches zero, the

viscosity effects disappear. As the porosity decreases, the real part of the complex

density first increases rapidly and then begins to level off, eventually reaching a limiting

value of 1.2 as -3 0. It is also noticeable that as -* 1 the differences between the

model presented in this chapter and those of Attenborough and Allard and Champoux

[43] increase significantly. Attenborough predicts the real part of the complex density

to be 1.33, whilst Allard and Champoux predict approximately 1.25. Values for a

number of pore shapes based on a Rayleigh type model also differ considerably (see

Craggs and Hildebrandt [53]). The differences again indicate that predictions using a

parallel fibre model will differ significantly from those of a Rayleigh type model.

The real part of the complex density can also be used to show the limitations in

the bulk theoretical models which assume the tortuosity to be constant. Equation (2.59)

shows that at low frequencies the real part of the complex density is independent of
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frequency, and other models such as those of Attenborough [46], Allard and Champoux

[44] and Champoux and Stinson [47], also predict the same behaviour. However, the

experimental data of Delany and Bazley [54] show strong frequency dependence across

the low to medium frequency range examined by the models above. This effect can also

be observed in the experimental data of Mechel [55] and the data in Chapter 3. These

observations have led to the defining of a frequency dependent tortuosity in an attempt

to model the behaviour of the density of air at lower frequencies more closely.

A significant use of the model developed in this chapter is to infer frequency

dependent values for the dynamic tortuosity and pore shape factor from experimental

data on porous media. To date, the tortuosity has been defined as constant, thus

removing viscous effects in order to give the tortuosity physical meaning. This allows

values for the tortuosity to be measured at effectively infinite frequencies (i.e. zero

viscosity). Although Johnson et al. [42] define a dynamic tortuosity, their definition is

different to the one employed in the present study. This is because Johnson et a!. use

the tortuosity as a surrogate for the complex density, whereas here the tortuosity and

complex density are separated. Consequently, in the context of the present study, the

frequency dependence obtained by Johnson et al. can be ascribed to the frequency

dependent complex density and this is used in conjunction with a constant value for the

tortuosity. Johnson et al. pointed out that their definition of tortuosity is in error for

medium to low frequencies and the measurement of the characteristic length of a pore is

also very difficult for random fibrous materials, especially at lower frequencies.

Furthermore, if non-acoustical methods are used to measure the characteristic length,

errors can occur since the acoustic characteristic length can often be different, especially

in materials of widely varying pore radii. Effort has been concentrated in this chapter

on producing a model from where the dynamic tortuosity can be inferred from simple

acoustic measurements.

In this chapter the tortuosity has been defined as a real frequency dependent

quantity. Therefore the tortuosity is linked here to the viscous effects present in the

pores. At very high frequencies, the flow is effectively inviscid and the velocity profile

is almost flat with an extremely thin viscous boundary layer. As the frequency is
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reduced, the velocity profile gradually becomes more nearly parabolic as the viscous

boundary layer grows. Hence the thickness of the viscous boundary layer, and therefore

the effective density of the air, increase as the frequency is reduced. This turns out to

cause a corresponding increase in tortuosity as the frequency is lowered, evidence for

this will be shown in Chapter 3. Eventually, the viscous boundary layer will fill the

pore, causing the viscous effects and hence the tortuosity to reach a maximum. At this

point the dynamic tortuosity is taken to equal the steady flow tortuosity introduced in

Section 2.6. The assumed form for the tortuosity employed here departs from previous

work, thus loosing the physical definition of tortuosity first described by Zwikker and

Kosten [311. The dynamic tortuosity can be thought of here as a phenomenological

variable, introduced in order to improve agreement between theoretical models and

experimental measurement

Once the tortuosity has been defined as real and frequency dependent, the same

definition for the pore shape factor follows. This will be shown in the next chapter, in

addition to calculating the pore shape factor directly from values obtained from the

dynamic tortuosity. A dynamic pore shape factor was shown by Stinson and Champoux

[45] to be necessary for the Rayleigh model, based upon its limiting behaviour at low

and high frequencies. However, pore shape factors do not appear to have been included

in published work on parallel fibre models. Also, it may be noted that a dynamic

tortuosity has never been used in conjunction with a dynamic pore shape factor, for any

type of model. Consequently, new values for the dynamic pore shape factor will be

generated by the present model, and whilst they cannot be directly compared to those for

the Rayleigh model it is anticipated that the results will be similar.

Finally, the definition for the dynamic tortuosity allows a consistent definition

for the steady flow resistivity (see equation (2.49)). The steady flow resistivity is used

to eliminate the fibre radius from the model, and is measured experimentally at low flow

velocities where viscous forces predominate. This occurs when the real part of the

complex density is a maximum, and hence a frequency independent value for the

tortuosity must be used in equation (2.49) to ensure that the steady flow resistivity is

also independent of frequency.
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CHAPTER 3

MEASUREMENT OF THE BULK ACOUSTIC

PROPERTIES OF RIGID FIBROUS MATERIALS,

AND COMPARISON WITH EXPERIMENT



Section 3.1

Introduction

In the previous chapter a theoretical model was developed in order to predict the

acoustic behaviour of porous materials. An alternative approach is to obtain predictions

experimentally; this has the advantage of not being reliant upon the assumptions

necessary in modelling of the microstructure of a porous material. However, it is not

possible to extrapolate experimental data beyond that gathered by the experiment (see

later discussion), and unfortunately the frequency range of data available solely from

experiment is usually limited by the apparatus available. To overcome this problem, the

experimental data obtained at the beginning of this chapter are used later on in this

chapter to predict values for the dynamic tortuosity and dynamic pore shape factor (see

previous chapter), and from here a full semi-empirical model is devised which provides

predictions for the bulk acoustic properties over a much wider frequency range.

Early experimental measurements on porous materials concentrated on

measuring the absorption coefficient. This allowed comparison with Rayleigh's

theoretical predictions for the absorption coefficient [28]. However, as the use of

impedance data became more important, effort began to concentrate on measurement of

the surface impedance of porous materials, and these were performed by both Beranek

[56] and Scott [57]. Scott proposed the use of a transmission line, or impedance tube, in

which the porous material is positioned at one end of a closed tube. A plane sound

wave, of discrete frequency, is set up at the other end of the tube, initiating a standing

wave. The position and sound pressure level of the first maxima and minima are

measured from the point where the surface of the material can be defined. From these

measurements it is possible to infer the surface impedance of the material. A full

description of the theory behind the impedance tube is given by Beranek [58]. Scott's

method for measuring the surface impedance of a porous material quickly became

widespread in use, and is still popular today.
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Subsequent work has concentrated on measuring the more fundamental

properties of a porous material, the propagation constant and the characteristic

impedance. Scott's method has been used to calculate these properties directly (see Bies

[59]) but this involves filling a long tube with material and assuming that no reflections

occur from the rigid termination; the propagation constant and characteristic impedance

are then measured by traversing a microphone within the sample. Obviously this

method requires a large amount of material which is often unavailable; in addition,

traversing the microphone within the material can often prove impracticable.

Consequently, other methods have been devised which allow the bulk acoustic

properties to be inferred from surface impedance measurements performed on small

samples of material. Yaniv [60], following a suggestion by Zwikker and Kosten [311,

first measured the surface impedance of a thin sample with a rigid backing, and then

with a quarter-wavelength air gap behind the material. From the two sets of

measurements the acoustic properties of the material were calculated. However, the

method of Yaniv requires the air space depth to be changed at every discrete frequency,

which can be a laborious task. Smith and Parrot [61] noticed that Yaniv effectively

calculates the propagation constant and characteristic impedance by measuring two

distinct impedances. They showed that the same results could be achieved by

measuring two separate thicknesses of material, while Utsuno et a!. [62] used two

different air space depths behind the material. This removed the necessity to maintain a

quarter-wavelength air gap behind the material and thus both methods have become

popular for calculating the bulk acoustic properties.

The disadvantage of using discrete frequency measurements is the necessity to

perform a number of measurements at each frequency. This is often a laborious and

time consuming task. The advent of FF1' analysers has allowed a method involving a

broad-band random signal to be used; this allows data to be obtained quickly over a

large frequency range. Seybert and Ross [63] first employed broad band noise using a

special purpose impedance tube to perform the experiments. Chung and Blazer [64,65]

also used a custom built tube and measured the transfer function between the acoustical

pressure at two fixed locations in the tube. Fahy [66] later noticed that the standard
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impedance tube of Scott could be used to perform the broad-band tests of Chung and

Blazer. This removed the need to build a special tube and also allowed the distance

between the microphone positions to be altered, thus improving low and high frequency

data. The broad-band noise tests offer a fast and accurate method of gathering surface

impedance data, from which the acoustic properties are calculated in the same way as

for the discrete frequency tests. However, the method does require expensive

equipment, such as an FF1' analyser, and also a PC.

Once the data for the porous materials have been measured, a method for

plotting them is required. This is not a problem with surface impedance data as the

impedance is simply normalised and plotted against frequency. However, although this

method can be used for the acoustic properties (see Yaniv [60]), it is desirable to

normalise the frequency axis as well. Delany and Bazley [54] used the steady flow

resistivity of the material to normalise the propagation constant and characteristic

impedance as a function of frequency divided by the steady flow resistivity. This

allowed experimental data to be obtained for similar materials of differing densities,

which can then be plotted on the same graph. Delany and Bazley found that data for

different fibrous materials collapsed onto one curve, allowing the acoustic properties to

be represented by simple power law relationships. The method of Delany and Bazley

has become the most widely used method for presenting experimental data. Subsequent

work has modified Delany and Bazley's approach to include the mean density of air by

defining a non-dimensional frequency parameter , (where = p0f/o, p0 denoting

mean fluid density, f denoting frequency and o denoting steady flow resistivity). This

corresponds to the frequency parameter in Chapter 2, thus allowing easy comparisons

between theory and experiment to be made.

In order to present the acoustic properties in the manner of Delany and Bazley,

one must measure the steady flow resistivity of the material. This is a simple and well

established experiment (see Zwikker and Kosten [31] and Beranek [58]) and involves

measuring the pressure drop across a known thickness of material for a range of flow

rates. Before the advent of Delany and Bazley's method, the steady flow resistivity was
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measured for use in predictive theoretical models, but it has now become an important

parameter for the presentation of experimental data as well.

This chapter concentrates upon measurement of the bulk acoustic properties of

four fibrous materials commonly found in exhaust silencers; "E glass", "A glass", basalt

wool and stainless steel wool. The experimental measurement of the acoustic properties

is relatively straightforward and well understood, however it was pointed out by Delany

and Bazley [54] that the curve-fitting method cannot be relied upon to provide

predictions outside the range of measured data. Consequently, a semi-empirical model

is developed later in this chapter which is intended to combine the best aspects of the

theoretical and experimental approaches. The two approaches are linked through the

use of the dynamic tortuosity and dynamic pore shape factor discussed in the previous

chapter. This is done by using experimental data to predict the dynamic tortuosity and

dynamic pore shape factor, and then substituting back into the theoretical model of

Chapter 2, defining the acoustic properties in continuous form across a range of

O^^1.

Section 3.2

Experimental Method

Measurements of the propagation constant and the characteristic impedance

were performed using an impedance tube similar to that used by Scott [57]. The surface

impedance was also measured by using Scott's method because the apparatus required to

perform broad-band measurements was not available at the time. In addition, Scott's

method is well understood, and although tedious in implementation, a high degree of

accuracy and confidence in the results is expected. The propagation constant and

characteristic impedance of the material have been calculated by measuring the surface

impedance of two distinct impedances; one where the material has a rigid backing, and

the other with an arbitrary air gap behind the material. This is a combination of the

methods of Yaniv [60] and Utsuno et al. [62]. Experience has shown that this method

41



works best with relatively high flow resistivity materials such as fibre glass and mineral

wools.

The standing wave tube used for the measurements is shown in Figure 3.1. The

probe microphone is free to traverse the tube, its position being recorded by a ruler. The

sound pressure level meter is used to determine the position of the maxima and minima

of the standing wave; the FFT analyser then provides accurate readings for the

frequency and sound pressure level. The size of the tube restricts the frequency

bandwidth over which meaningful results can be obtained to approximately 150Hz to

2kHz. The bulk acoustic properties are given by

F=lnl Z1 l , 	 (3.1)
2L 1i/ZauJ

and

z, = [p0c0 (z2 - z1 ) coth(ik0l) + z1z2 ],	
(3.2)

where z1 is the normal surface impedance of the sample with a rigid backing, z2 is the

normal surface impedance of the sample with an air space between the sample and the

backing plate, L is the thickness of the sample and 1 is the depth of air space (note that

1 must avoid integer multiples of a half wavelength).

The air space behind the absorbent was achieved by locating the sample in a

container with a retractable base (see Figure 3.1). Because of the bulk fibrous nature of

the material it was found necessary to hold the sample in place with a wire gauze. The

wire used in the gauze was approximately 0.5mm in diameter and the gauze had a

percentage open area of approximately 45%, consequently the gauze used was

effectively acoustically transparent. A small (1mm) step was machined into the inside

wall of the container, allowing the wire gauze to be located. The acoustic effects caused

by the area change in the container, whilst small, were included in the calculations. It

was found by trial and error that optimum values for the thickness (or density) of sample

42



and depth of air gap existed, outside which the surface impedance data suffered from

large errors, especially at frequency extremes. A material thickness of 50mm was found

to work well, along with air gaps ranging from approximately 25 to 40mm.

It is desirable to measure data over as wide a range of as possible since this

will improve the accuracy of the curve fitting formulae employed by Delany and Bazley

[54]. Since the frequency range available for measuring data is limited by the size of the

tube, it is necessary to use a range of values for the steady flow resistivity. This was

carried out by manually compressing the samples in order to increase their density, a

similar approach to that used by Delany and Bazley. Obviously there is a limit to how

much it is possible to compress the material and an upper limit on the bulk density

worked out to be approximately 180 kg/rn3 . It was found that when different densities

of material were used the experiment often shifted away from its optimum set up. This

reduced the accuracy of the surface impedance results and the re-setting of the air gap

was often found necessary in order to return to an optimum set up.

The steady flow resistivity was measured by passing a metered air flow along a

tube (see Figure 3.2). The porous sample was located at one end with one side being

open to atmospheric pressure. The pressure drop across the sample was measured using

a manometer. The steady flow resistivity is given by the Ergun equation [30],

—V1= oV+ iiVV I,	 (3.3)

where V is the pressure drop across a sample of length L, V is the volume flow rate

of air, o is the steady flow resistivity, T is the steady inertial flow resistivity and the bar

denotes a steady value. A plot of i\/LV against V will give an intercept of a and a

slope of ij. The samples were manually compressed in the same manner as the

impedance tube tests, allowing the steady flow resistivity to be expressed as a function

of the bulk density of the material.
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Section 3.3

Experimental Results

The experimental data obtained for the four fibrous materials are given in this

section. The bulk acoustic properties are plotted in the format of Delany and Bazley

[54] since this method has been shown to be the most effective way of presenting the

data, this will also allow straightforward comparisons to be made with other published

data and theoretical predictions. It follows therefore that the steady flow resistivity must

be measured first.

3.3.1 Steady Flow Resistivity

The steady flow resistivity, in units of Ns/m 4 (MKS rayls/m), is plotted against

the bulk density of the material in Figure 3.3. A curve fitting procedure has been used

in order to write the steady flow resistivity as a function of bulk density, i.e.

0 = AlpbA2,	 (3.4)

where Pb is the bulk density of the porous material and A1 and A2 are constants given in

Table 3.1 below

Table 3.1. Regression Coefficients for the Steady flow resistivity

A Glass	 E Glass	 Basalt Wool	 Steel Wool

A1	 1.857	 5.774	 3.012	 0.312

A2	 1.687	 1.792	 1.761	 1.615

It is noticeable from Figure 3.3 that on a log-log scale, the empirical curve is a

straight line, this relationship has also been observed by other authors [54,55,59,67].
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The gradient of each curve also appears to be similar to that observed by other authors,

for example, Bies [59] quotes a slope of 1.72 for steel wool and 1.67 for glass fibres.

Mechel [55], in a study on numerous fibrous materials, quotes values ranging from 1.4

to 1.65. Both sets of results are close to the values of 1.615 for steel wool, 1.687 for A

glass and 1.792 for B glass measured here. It is also evident that the empirical curves fit

the experimental data well. The extrapolation of data outside the range of experimental

values is possible for the steady flow resistivity, though in most cases this is not

necessary.

It is of interest to study the effect of the fibre radius upon the steady flow

resistivity. The measurement of an effective fibre radius for a random material such as

those studied here is very difficult. Figure 3.4 shows the distribution profiles of the

fibre diameters for each material quoted by the manufacturer [68], from which it is

obvious that the fibre radius can vary quite significantly. This was confirmed by

examining the materials under a scanning electron microscope; indeed an even wider

range in fibre diameter than those quoted by the manufacturer was observed. This is the

major reason for eliminating the fibre radius from theoretical models. However, even

though an accurate value for the fibre diameter cannot be measured, the values shown in

Figure 3.4 do indicate that the steady flow resistivity is dependent upon the fibre

diameter. It appears that as the average fibre diameter decreases, the steady flow

resistivity increases. This relationship was predicted by Bies and Hanson [67], who

showed that for a material of uniform fibre diameter, the steady flow resistivity is

directly related to the fibre diameter. Consequently, the variation of the steady flow

resistivity with fibre diameter is an important aspect in the design of materials used in

exhaust silencers, and explains why a wide range of material is used.

3.3.2 Bulk Acoustic Properties

The bulk acoustic properties can now be written as functions of the steady flow

resistivity in the manner suggested by Delany and Bazley [54]. Delany and Barley used
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the following empirical formulae to predict the propagation constant and characteristic

impedance:

r'=a+iJ3,

where
ja

-a1,
K0

and

__=1+a56,
poco

Za = Ta + tXa,

= 1 + a3,

__-_ )u8
- a71,

p0c0

(3.5), (3.6)

(3.7), (3.8)

(3.9), (3.10)

The dimensionless frequency parameter c is used here, where = p0f/cr, and a 1 . . . . a8

are the regression coefficients derived from the curve fitting process. The data obtained

for A glass are shown in Figure 3.5 along with the empirical curves from equations (3.5)

and (3.6). In order to reduce the amount of data plotted here, the experimental results

for the other materials are included later, in conjunction with the final semi-empirical

model. The regression coefficients measured for each material are given in Table 3.2

below.

Table 3.2. Regression Coefficients for the Bulk Acoustic Properties

	

A Glass	 E Glass	 Basalt Wool	 Steel Wool

a 1 	 0.2251	 0.2202	 0.2178	 0.1540

a2	 -0.5827	 -0.5850	 -0.6051	 -0.7093

a3	 0.1443	 0.2010	 0.1281	 0.1328

a4	 -0.7088	 -0.5829	 -0.6746	 -0.5571

a5	 0.0924	 0.0954	 0.0599	 0.0877

a6 	 -0.7177	 -0.6687	 -0.7664	 -0.5557

a7	 0.1457	 0.1689	 0.1376	 0.0876

a8	 -0.595 1	 -0.5707	 -0.6276	 -0.7609
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The "quality" of data obtained for the bulk acoustic properties can be studied by

measuring the coefficient of multiple determination (R) and the standard error of the

estimate (as), see Al-Khafaji and Tooley [69]. Table 3.3 gives these values for the four

materials measured; a perfect fit occurs when R -* 1 and ae -*0.

Table 3.3. Quality of Fit for Regression Formulae

A Glass	 E Glass	 Basalt Wool	 Steel Wool

R	 R	 R	 R	 cle

a/k0	 0.994 0.017 0.995 0.018 0.997 0.013 0.995 0.018

13/k0 -1 	 0.947 0.056 0.991	 0.023 0.995 0.018 0.943 0.052

/p0c0 -1	 0.927 0.078 0.984 0.036 0.981 0.039 0.900 0.066

Xa/P0 C0	 0.981 0.029 0.989 0.026 0.994 0.018 0.976 0.042

The best correlation of data appears for the real part of the propagation constant

(a), this is because a is the easiest quantity to measure accurately. The data for the

imaginary part of the characteristic impedance (Xa) also exhibits a similar high degree of

accuracy. The two quantities which suffer the most scattering of data are the imaginary

part of the propagation constant (f3 ) and the real part of the characteristic impedance

(). Both quantities have one subtracted from them before the log is taken, and this has

the effect of exaggerating experimental errors which partially explains the higher degree

of scatter. It is also known that i is inherently the most difficult quantity to measure

accurately, and this fact leads to the largest errors occurring for this quantity. The trend

in observed scatter for the data shown can also be seen in other published results such as

those of Delany and Bazley. It is noticeable that the scatter in the data is more

pronounced for materials of a lower flow resistivity, most notably steel wool. It is

possible that this can be explained by the experimental procedure used. A material of

low flow resistivity has a relatively large fibre diameter and consequently a flat surface

is harder to achieve in the impedance tube, thereby introducing errors into the

measurements. However, it is more likely that the method used, especially for steel
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wool, was not the most appropriate. More accurate results may have been possible by

using two different thicknesses of material in order to calculate the acoustic properties.

Unfortunately this would have involved rebuilding the material holder, and since steel

wool is only of secondary importance, this was not carried out. However, the scattering

of data for all the materials is relatively small and the curve fitting formulae of Delany

and Bazley do provide satisfactory predictions.

Numerous experimental data exists for all types of porous materials. It is useful

to compare the predictions in Table 3.2 with those of Delany and Bazley [54] and

Mechel [55], since they both carried out extensive measurements on fibrous materials.

The regression coefficients quoted by Delany and Bazley and Mechel are given in Table

3.4 below.

Table 3.4. Previously Published Regression Coefficients for Fibrous Materials.

Delany and	 Mechel
Bazley__________ __________ __________

Rock Wool	 Basalt Wool	 Glass Fibre

a1	0.189	 0.235	 0.231	 0.199

a2	 -0.595	 -0.578	 -0.557	 -0.615

a3	0.098	 0.123	 0.103	 0.095

a4	-0.700	 -0.669	 -0.682	 -0.720

a5	 0.057	 0.044	 0.047	 0.020

a6	 -0.754	 -0.763	 -0.715	 -0.928

a7	0.087	 0.135	 0.137	 0.104

a8	-0.732	 -0.636	 -0.605	 -0.701

The data in Table 3.4 show good correlation with the data in Table 3.2 . It

should be noted that the data of Delany and Bazley were obtained for numerous

different materials and collapsed onto one curve, whilst Mechel measured the materials

individually. Consequently, direct comparison between the results of Delany and
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Bazley and those of Table 3.2 is not advisable. This is principally due to the large

number of materials measured by Delany and Bazley, allowing a larger envelope of

values to be used. Experience has shown that the curve fitting coefficients can vary

significantly with changes in the range of 	 values measured. Unfortunately, as

previously discussed, measurements can only be performed over a limited range of

for individual materials. Therefore, in order to achieve a more meaningful comparison

with Delany and Bazley, all the experimental data for the four materials can be

combined on to one plot and the regression coefficients calculated. This allows data to

be plotted over a range of 0.0025 ^ ^ 2. The regression coefficients are given in Table

3.5 below.

Table 3.5. Regression Coefficients for Combined Data

from the Four Materials

	

a 1 = 0.1742	 a2 = —0.6570

	a 3 = 0.1344	 a4 —0.6770

	

a5 = 0.0847	 a6 —0. 6903

	

a7 = 0.1039	 a8 =-0.7009

It is apparent that the regression coefficients are now closer to those of Delany

and Bazley. It is also evident that the results for an individual material are different to

those for a combination of materials, although the differences observed are not large; it

is felt however, that using data for individual materials is more representative of their

actual behaviour. For each material, the comparison between the results in Table 3.2

and those of Mechel in Table 3.4 show good correlation and indicate that the

experimental results obtained in this section are reliable. Consequently, for maximum

accuracy the measurement of data for individual materials is necessary and it is not

sufficient to rely on Delany and Bazley's data.

The major disadvantage associated with using the method of Delany and Bazley

is that the formulae cannot be extrapolated outside the range of experimental data. This

does not cause any problems in the high frequency range, since by varying the bulk
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density of the material data can be obtained up to approximately 5kHz. Problems occur

at low frequencies, especially below about 120Hz, since varying the bulk densities of

the material was not sufficient to provide experimental data for low values of . The

lack of data at small values of becomes even more acute if the formulae are used to

predict the acoustic properties at high temperatures. Christie [70] has shown that the

steady flow resistivity increases with an rise in temperature, thus causing values of c for

a similar frequency to fall well outside the range of measured data. Therefore, a method

for predicting the bulk acoustic properties at low frequencies (or low values of ) is

necessary in order to provide a full range of data. The next section will show how the

theoretical model of Chapter 2 can be used in conjunction with the experimental data

presented here to provide a full set of predictions for the bulk acoustic properties.

Section 3.4

Implementation of the Semi-Empirical Model

A model is described in this section which uses the theory of Chapter 2 in order

to predict values for the dynamic tortuosity and dynamic pore shape factor using the

experimental data shown previously. In order to do this it is helpful to split up the bulk

acoustic properties into the complex density and bulk modulus, in the manner described

in Chapter 2. This will also allow the problems associated with extrapolating

experimental data to be clearly seen. The experimental predictions for the bulk complex

density and bulk modulus are calculated by combining equations (2.32) and (2.33) to

give

[FZa]EXpT 
=iCOPb (OJ) and	 [za/F]EXfl. = h(w)/za).	 (3.11), (3.12)

The bulk complex density and bulk modulus can now be written as
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Ph(W)	 and lCh(W)	 Ii_._l	 ,	 (3.13), (3.14)
po 	 [k p0co EXPT.	

P0	 L F p0c0 
]EXPT.

from which the experimental values can be compared with the theoretical predictions of

equations (2.29) and (2.30). The bulk complex density and bulk modulus calculated

using the experimental data of Delany and Barley [54] and also that obtained for the

combination of four materials (see Table 3.5) are shown in Figure 3.6. Theoretical

predictions for Pb(W) and lCh( O.)) have also been included in Figure 3.6, employing the

full Bessel functions in equations (2.13), (2.26) and (2.50) and a dynamic tortuosity and

dynamic pore shape factor of one. The empirical formulae fitting the experimental data

have been extrapolated to lower values of in order to show why they cannot be relied

upon at low frequencies. It is obvious from Figure 3.6 that the empirical predictions do

not make any physical sense below about = 0.01. This is apparent when the real part

of the complex density and the imaginary part of the bulk modulus become negative.

Obviously it is not possible to have an effective density of air in the pores less than the

mean density of air. Furthermore, in the low frequency limit the bulk modulus must

reach the isothermal value of P0 , which is a purely real quantity. These are strong

physical reasons for not extrapolating experimental data and this leads to the

requirement for theoretical predictions at low values of .

The empirical predictions for the real part of the complex density are of

particular interest here. An increase in the real part of the complex density occurs when

the frequency is reduced, and this eventually reaches a maximum value. Such behaviour

was also predicted in Chapter 2, based upon the behaviour of the viscous boundary layer

in the pores of the material. Consequently it is assumed here that the empirically

predicted data are invalid once the real part of the complex density attains a positive

slope and at this point, the theoretical model must be used on its own.

The comparison between the theoretical and empirical predictions in Figure 3.6

show good correlation except for the real part of the complex density. This is also the

case for the semi-empirical model of Allard and Champoux [44]. Chapter 2 described

how the dynamic tortuosity can be used to improve the predictions for the bulk complex
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density. It is obvious from equation (2.29) that the dynamic tortuosity can be inferred

from the bulk complex density and used to fit the theoretical model exactly to the

experimental data. This semi-empirical approach can be used in the region of the

experimental data, for frequencies below the point where the real part of the complex

density becomes a maximum, beyond which the theoretical model is used on its own

with the tortuosity set to a constant value. Values for the dynamic tortuosity can be

calculated by multiplying equations (2.33) and (2.34) together to give

Fza=jq2(CD)P(CD)
k0 p0c0	 ^:	 Po	

(3.15)

The substitution of a theoretical expression for p(w) into the right hand side of equation

(3.15), and experimental data into the left hand side, allows the dynamic tortuosity to be

inferred. Therefore, substituting the low frequency prediction for p(w)/p0 from

equation (2.59), and using equation (2.50), gives

Za 1	 q2(o)	 2	
{[1n(1_c)+1+2]ln(1_c)+Q+M2/2+c3/3}

[JEXPT. = 2irqs2(w) 
+iq (CL))	

[ln(1_c)+c+2/2]2

(3.16)

It is noticeable from equation (3.16) that the dynamic tortuosity has been separated from

the dynamic pore shape factor in the imaginary part of the equation. This allows for the

independent calculation of the dynamic tortuosity; values of the pore shape factor then

follow from the real part of equation (3.16). This separation is only possible when the

low frequency model is used because the pore shape factor is present within the

argument of the Bessel functions in the full model, preventing separate explicit

expressions being obtained. This is an important reason for using the low frequency

model. Equating the real and imaginary parts of equation (3.16) gives

q2(co) - 
{(i + a3	)(i +a56 ) - a 1 a7 I+a8)]{ln(1 -	 + ^ + c2/2]2	

(3.17)
[ln(jTc)+
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and

1
- 2ir	 [ai2(1+a56)+a78(l+a34)]'	

(3.18)

where a 1 ....a8 are the regression coefficients calculated in the previous section.

Equations (3.17) and (3.18) are the principal results of this chapter. It is now possible to

substitute the predictions for q 2 (o) and s2 (w) into equations (2.61) and (2.62) to give a

full description for the bulk acoustic properties.

In Chapter 2, the dynamic tortuosity and dynamic pore shape factor were

assumed to be real and frequency dependent. Equations (3.17) and (3.18) show these

assumptions to be correct. As mentioned in the previous chapter, this is in contrast to

the work of Johnson et al. [42], who define a tortuosity which is independent of

frequency. The difference between the two predictions occurs because different

definitions for the tortuosity have been used, this is apparent in the differing form taken

by the momentum equation in Chapter 2 compared to that used by Johnson et al.

The calculation of the dynamic tortuosity from equation (3.17) is relatively

straightforward given the porosity of the material. The porosity is given by

= 1— Ps/Pb, where p is the solid density of the fibre. The predictions for the

dynamic tortuosity do however require the assignment of a maximum value at an

appropriate point on the axis. In Figure 3.6 the dynamic tortuosity is plotted on the

same axes as the real part of the complex density and a maximum value can be seen to

occur at approximately = 0.01 for Delany and Bazley's formulae. At this point q 2 (w)

is set equal to q, the steady flow tortuosity. Once this point has been manually

defined, the dynamic pore shape factor can be found from equation (3.18). Again, at the

same point on the axis (see the real part of p(w)), the pore shape factor is set to a

maximum value. Figure 3.7 shows how this method can be used to provide more

accurate predictions for the complex density and the bulk modulus. It can be seen that

the predicted values for the real and imaginary parts of the complex density exactly

match Delany and Bazley's empirical formulae across the range of measured by them.

The values found for q 2 (w) and s2 (w) which were used to achieve the new predictions
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are plotted on the same axes as the real part of the complex density. When the

predictions shown in Figure 3.7 are compared with those in Figure 3.6, it is evident that

the predictions for the bulk modulus have also been improved across the range of

experimental data obtained by Delany and Bazley. It is also noticeable that in the low

frequency limit the correct physical behaviour can be observed.

The method previously described can now be applied to the four fibrous

materials measured earlier on in this chapter. The predictions for the bulk complex

density and bulk modulus were calculated after assigning values to q 2 (w) and s2 (w) for

each material, the results of which are shown in Figures 3.8 to 3.11. As before, the

values calculated for the dynamic tortuosity and dynamic pore shape factor are plotted

on the same axes as the real part of the complex density. It is noticeable from Figures

3.8 to 3.11, that only the experimental data for steel wool reaches a maximum value for

the real part of the complex density. This causes problems in assigning where the

maximum values for the tortuosity should appear for the other materials. It is

anticipated that this problem has occurred because data have not been obtained over a

wide enough range of to produce accurate regression formulae. It is noticeable that

the data of Delany and Bazley and that of Table 3.5, both of which contain a wide range

of data, do achieve maximum values. Also, there is a lack of data for low values of

(where the material was compressed as much as possible), causing errors in the curve

fitting procedure in this region. It is also possible that at such values of the

experimental approach is inappropriate for the very high flow resistivities and low

frequencies. It is expected that the problems encountered with the complex density are

caused by the experimental procedure and that a maximum value for the real part of

p(a) does exist but has not been measured for every material. Indeed, the measurement

of other individual materials not mentioned here, have shown maximum values for the

real part of the complex density.

The point at which a maximum value for the real part of the complex density is

assigned for the materials measured in this chapter has been based on Delany and

Bazley's results, i.e. at approximately = 0.01. However the results for steel wool do

show that some consideration of the material's steady flow resistivity is also necessary.
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Therefore, E glass has been assumed to reach a maximum at the highest value of , next

basalt wool and then A glass. A list of the values assigned to q, along with the point

upon the axis where q 2 (w) = q, are given in Table 3.6 below.

Table 3.6. Values for the Steady Flow Tortuosity

Delany and	 A Glass	 E Glass	 Basalt Wool Steel Wool
Bazley

	

0.011	 0.025	 0.005	 0.0079	 0.079

q	 2.13	 3.77	 5.49	 2.91	 1.44

High gradients in the tortuosity have been avoided since this will lead to 'kinks' in the

bulk modulus, and hence the bulk acoustic properties, when q 2 (w) is set equal to q.

The values obtained in Table 3.6 have been determined purely by inspection of

the real part of the complex density. However, partial justification for the values

determined for q can be gained by examining the average fibre radius of the materials.

Whilst it has been discussed how difficult it is to assign an average fibre radius to a

material, it is interesting to see if the values predicted by equation (2.49) are close to the

manufacturer's quoted range of fibre radii. Table 3.7 gives the range in fibre radius

quoted by the manufacturer for each material (see also Figure 3.4), the steady flow

resistivity for a typical bulk density of 130 kg/rn 3 and the porosity.

Table 3.7. Average Fibre Radius for Materials

	

a(um)	 a(rayls/m)	 Porosity

E Glass	 5-13	 35,454	 0.948

A Glass	 18-26	 6,839	 0.948

Basalt Wool	 6-18	 15,904	 0.954

The fibre radius is given by equation (2.49), i.e.
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a2=_40	 (i—ca)

o [ln(l_c)+c+c2/2]	 (3.19)

Substituting q from Table 3.6 gives predictions for the fibre radii of

Table 3.8. Predicted Average Fibre Radii

a(/im)

EGlass	 19.0

A Glass	 36.6

Basalt Wool	 19.2

The values predicted for the fibre radius are all of the correct order, but tend

towards the high side of the measured radii. However, Attenborough [71], in examining

his scattering theory also predicted a fibre radius that was too high. Attenborough

pointed out that the larger fibre radii have lower contributions to the bulk attenuation,

hence the distribution of the fibre radii is also important. This leads to the observation

that the effective acoustic fibre radius is different to the measured mean fibre radius.

Consequently, predictions from equation (3.19) cannot be expected to be close to the

measurements, and even if an accurate value for the average fibre radius was known, it

could not be used to predict q. However, when one takes into account this effect, the

differences are not great and do seem to verify the approach used and the values

obtained for q.

The assignment of where the real part of the bulk complex density reaches a

maximum defines q 2 (w), q and s2 (w). This allows the full semi-empirical model to

be implemented using equations (2.61) and (2.62). Figures 3.12 to 3.15 show the

predictions obtained for the bulk acoustic properties using the semi-empirical model,

compared with experimental data. These are the final results for the semi empirical

model.
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Section 3.5

Discussion

The semi-empirical model described in the previous section provides excellent

agreement with the experimental data measured for all four materials. It is evident from

Figures 3.12 to 3.15 that the predictions are virtually coincident with the regression

formulae across the entire range of experimental data. Predictions have now been

provided for lower values of , and the correct physical behaviour is observed in the

low frequency limit. The model also has the advantage of providing a continuous

prediction across a range of 0 ^ ^ 1, removing the need to jump between experiment

and theory.

It appears from Figures 3.12 to 3.15 that the semi-empirical model works best

when the scatter of experimental data is small. This is apparent with the predictions for

B glass, where all the curves are very smooth. Basalt wool, and especially A glass,

suffer from a higher degree of scattering and A glass can be observed to have a definite

kink in predictions. Steel wool does not suffer from a "kink" in predictions because the

real part of the complex density reaches a maximum, however the curves are more

undulating than for the other materials and tend not to fit the experimental predictions as

well. Steel wool highlights the penalties associated with using the low frequency model

outside its range of validity. It is evident from Figure 3.15 that although predictions for

a and ; are extremely good, problems occur in predicting i. The real part of the

characteristic impedance shows the semi empirical model beginning to approach - °° as

- 2. This cautions against using the model outside the range 0 ^ ^ 1. An

alternative approach for > 1 is to employ the full Bessel function model with

q 2 (a) = = 1. This avoids singularities in the middle range of values, but will

obviously suffer from the inaccuracies mentioned in Chapter 2. It is of course possible

to revert back to using the regression formulae at higher values of where the

extrapolation of data is possible without introducing irrational predictions. However,

the problems discussed here only occur for materials with a very low steady flow
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resistivity such as steel wool, and since steel wool is only of secondary importance, the

semi empirical model does appear to be satisfactory.

A method for inferring the dynamic tortuosity and dynamic pore shape factor

from acoustic measurements alone has been shown in this chapter. This is in agreement

with Zwikker and Kosten [31], who first introduced the tortuosity and stated that it must

be measured by acoustic means. Zwikker and Kosten went on to predict tortuosity

values ranging from 3 to 7. A wide range of values for the tortuosity have since been

quoted by numerous authors and a range of 1 to 10 appears to be representative for

fibrous materials. Unfortunately, since all corresponding work has defined a frequency

independent tortuosity, measured at effectively infinite frequencies, one cannot draw

direct comparisons with previous work in the present study. Nevertheless, it appears

that the values obtained for the tortuosity in Section 3.4 are acceptable. Comparing the

results for the pore shape factor is more of a problem, since values depend upon the

model used. The parallel fibre models mentioned in Chapter 2 [37,38,39] do not

include pore shape factors, however for other models such as Allard and Champoux's

[44], a range of 0.1 to 10 is quoted, whilst for the Rayleigh model values between 0.5

and 2 are thought to be acceptable [45]. In the literature, various arguments have been

put forward for any number of different values for the tortuosity and pore shape factor.

The values obtained in the previous section seem well within an acceptable range,

however deciding what is not acceptable is almost as difficult.

The results in Table 3.6 indicate that a material of high porosity suffers from a

high tortuosity. However, both types of glass wool have identical porosity but differing

tortuosities, therefore the fibre radius must also be taken into account. This indicates

that the tortuosity increases with a decrease in fibre radius. Beranek [72] predicted a

variation of tortuosity with bulk density (or porosity), however the effects of the fibre

radius were omitted.

The purpose behind producing the semi-empirical model has been to overcome

the disadvantages present in previous models. The low frequency model of Mechel [48]

has often been used to provide predictions outside the range of experimental data.

However, even with the data of Delany and Barley, a jump between the regression
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formulae and the predictions of Mechel is inevitable and this is obviously an undesirable

aspect of the model. Mechel [73] attempted to remove the problems associated with

jumping between experimental and theoretical formulae by modifying Delany and

Bazley's regression coefficients until a smooth transition was ensured. Unfortunately

this will result in the accuracy of the empirical formulae being reduced and it was

noticeable that for the materials measured here the reduction in accuracy was often

unacceptable. Allard and Champoux [44] also attempted to remove the problem of

jumping from experiment to theory and they did this by employing a semi-empirical

model, but as for Mechel's model, accuracy in the region where experimental data are

available was sacrificed. This problem becomes more apparent when individual

materials are examined. The method of Allard and Champoux can be improved by

measuring values for their dynamic tortuosity, though this requires the measurement of

the characteristic length of a pore which is very difficult.

To show the benefits of the new model, comparisons are made here with the

models of both Allard and Champoux and Mechel. In order to provide a meaningful

comparison between the low frequency predictions of Chapter 2 and those of Mechel

(see equations (2.63) and (2.64)), the tortuosity and pore shape factor are both set equal

to unity. Both models are compared in Figure 3.16 along with the regression formulae

of Delany and Bazley, assuming a porosity of 0.95. The formulae of Delany and Bazley

have been extrapolated in order to show how the predictions differ below = 0.01. It is

obvious from Figure 3.16 that although identical parallel fibre models were originally

used, the two sets of predictions are different; this is particularly true at higher value of

. The biggest difference occurs for the real part of the characteristic impedance since

Mechel's model predicts values tending to minus infinity as approaches 0.1 whereas

the new model is valid up to approximately 2. The differences are probably caused by

the use of more accurate approximations for the Bessel functions in Chapter 2. The new

model avoids singularities in the region 0 ^ ^ 1 and appears to be closer to

experimental values across the frequency range. However, it is obvious that both

models are not accurate enough to be used on their own and using either model in

conjunction with experimental curves will involve a jump between the two.
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The model of Allard and Champoux is capable of producing more accurate

predictions than the low frequency models discussed previously. Allard and

Champoux's model is compared with the full Bessel function predictions here

(q 2 (w) = s2 (w) = 1), since both models are valid over the entire range of . Figure 3.17

shows a plot of both models alongside the formulae of Delany and Bazley. As before,

the predictions at low values of are very similar. At higher values of , the

predictions are still close to each other but Allard and Champoux offer a slight

improvement as -4 1 (the point where the theoretical model of Chapter 2 is in error).

The accuracy has been improved over the low frequency models, though neither method

is close enough to the empirical formulae to allow a complete substitution of the

theoretical models in place of experimental data. As before, it is possible to use the

predictions in conjunction with experimental data but a jump is again inevitable.

Finally, the inclusion of the dynamic tortuosity and dynamic pore shape factor

into the model of Chapter 2 is shown in Figure 3.18. It is apparent that this approach

provides the most accurate predictions. The results are very close to the data of Delany

and Bazley across the entire range of experimental data. As the predictions are so close,

the semi empirical model can be used to replace the regression formulae. It can also be

seen that a smooth continuous curve has been obtained.

The extrapolation of the data of Delany and Barley shows the difference in

predictions obtained when the correct physical limits are applied at low values of . It

is evident that for the models described here, when the tortuosity and pore shape factor

are included, the predictions differ significantly especially at low values of ; this

places great importance the accurate measurement of these two quantities.
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CHAPTER 4

THE IMPEDANCE OF PERFORATED PLATES

SUBJECTED TO GRAZING FLOW



Section 4.1

Introduction

The use of perforated plates is common in applications such as exhaust silencers

and the duct linings for jet engines. The perforates usually surround the mean gas flow,

but they are also known to effect the acoustic properties of the system. In exhaust

silencers, perforates can be found in both reactive and dissipative elements. In

dissipative silencers, which are of particular interest here, the perforate is commonly

found in the form of a concentric tube which, in addition to altering the acoustic

performance of the silencer, holds a porous material in a surrounding box, preventing

loss of or damage to the material. In most cases the perforate is subjected to grazing

flow by the exhaust gas from the engine. The study of the acoustic behaviour of

perforates under such conditions is necessary in order to provide a complete

understanding of silencer acoustics. In later chapters it will be shown that, especially

when grazing flow is present, the acoustic impedance of perforates cannot be ignored in

silencer design, and this applies even to perforates with a high percentage open area.

The mechanisms that lie behind the acoustic behaviour of perforates are very

complex, and for the case of grazing flow, still not fully understood. However, it is

possible to introduce many of the concepts behind the behaviour of perforates subjected

to grazing flow by examining the simple case of the perforate behaving like an array of

localised orifices without mean flow. The classical case of a single orifice in an infinite

baffle was studied by Rayleigh [28] and later on by Morse [74]. Numerous studies on

orifices have followed and it is now well known that if the plate thickness and orifice

diameter are small compared to the incident wavelength, the air in a single orifice

behaves as if it were a small piston. The motion of the plug of air is driven by the

pressure differential across the orifice. Some of the air on either side of the orifice,

adjacent to it, moves in synchronisation with the plug of air within the orifice and

creates an "attached mass" effect that may be quantitatively described by "mass end

corrections" that are added to the orifice depth to give the correct total effective mass of
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the air in the orifice. End corrections are required for both the resistive (real) and

reactive (imaginary) components of the acoustic impedance of the orifice. The

dissipation of sound (related to the resistive component) occurs because of irreversible

loses in the viscous and thermal boundary layers close to the orifice. The reactance is

governed by mass inertia effects in addition to viscous effects and is related to the mass

end correction. The end corrections for a simple Helmholtz resonator in a baffle (an

orifice with a backing cavity) are discussed in detail by Ingãrd [75] and Melling [7611.

Ingârd went on to study the effect of allowing the orifice to radiate into a tube; he also

examined an array of Helmholtz resonators and looked at the effect of acoustic

interaction between adjacent holes.

It has long been known that the presence of mean flow (grazing or incident)

increases the resistance and decreases the mass end correction when compared to the no

flow situation (see for example the experimental data of Ronneberger [77]). The

mechanisms behind this observation have been the subject of considerable debate. In an

effort to investigate the physical reasons behind the change in impedance, flow

visualisation techniques and laser anenometry have been used by a number of authors in

order to observe the flow patterns close to the orifice (see for example Baumeister and

Rice [78] and Nelson et al. [79]). Efforts have concentrated on describing how the

sound energy is absorbed in the orifice near field, from where theoretical models have

been attempted. In examining grazing flow across a single orifice, Nelson et al. [80]

deduced that the flow pattern immediately above the orifice was determined by the

interaction of two perpendicular streams of outflow, one consisting of pressure

fluctuations generated by the passage of vortices shed at the upstream lip of the orifice,

and the other made up of pressure fluctuations associated with the reciprocating

potential flow in the neck of the orifice. They predicted that a Coriolis force, due to the

potential flow in the neck, accelerates the vortices in a streamwise direction and this

extracts acoustic energy from the grazing flow. Howe [81] also noticed that the shed

vortices establish a potential difference across the orifice, modifying the reciprocating

potential flow causing the dissipation of acoustic energy. However, it appears that this

explanation of the increase in acoustic energy loss is only applicable to low mean flow
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velocities and/or relatively large orifice radii. Other studies such as that by Ronneberger

[821 show that at higher flow speeds, a free shear layer is set up above the orifice. The

shear layer interacts with the reciprocating potential flow in the orifice neck so that at

the trailing edge of the orifice the shear layer is periodically pumped into and blown out

of the orifice. Ronneberger predicted that the dissipation of acoustic energy occurs due

to the deflection of the outer flow. It is obvious from examination of the literature on

the subject that several different mechanisms have been predicted, which can depend on

parameters such as mean flow speed, boundary layer thickness, orifice diameter and

perhaps orifice depth. It is evident that the problem is a very complex one and it is

perhaps not surprising that a complete understanding of the absorption of acoustic

energy has yet to be found.

The complexity of the problem has meant that only a small number of purely

theoretical models have been attempted and in order to make the models tractable, the

problem has generally been over-simplified. For instance, Howe [811 proposed a model

based upon vortex shedding but did not include a mean shear layer in the model. This

will obviously not be applicable for normal flow speeds where a free shear layer is

known to exist. Howe recognised this problem and attempted to model a free shear

layer with a vortex sheet but was unable to find a solution. Walker and Charwat [83]

proposed a "hinged-lid" model in order to account for the influx and efflux of the free

shear layer at the downstream edge of the orifice. However, the results depend largely

upon where the flow separates and vortex shedding has been ignored. They did

however obtain qualitative agreement with experimental results. Various other

theoretical models have been attempted, generally based upon the behaviour of the free

shear layer (see Ronneberger [77], Kaji et al. [84] and Hersh et a!. [85]), but agreement

with experiment has only been qualitative.

The difficulties apparent in the theoretical modelling of perforates subjected to

grazing flow has resulted in a reliance upon data obtained experimentally. The

experimental measurements on perforates has generally been restricted to measuring an

individual orifice, from here it has been assumed that the results can be extrapolated to

that for a perforate plate by using the knowledge of the percentage open area (or
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porosity) of the perforate. Ronneberger [77] measured the acoustic impedance of a

single orifice under grazing flow and related the impedance to the reciprocal Strouhal

number based upon the mean flow velocity U0, orifice radius a and the radian

frequency w. However, Ronneberger used a very thin boundary layer; similar

measurements under a thin boundary layer were also performed by Narayana Rao and

Munjal [86]. It became apparent in later work (see Goldman and Panton [87]) that the

thickness of the boundary layer affects the impedance of the orifice; this is particularly

important in the study of exhaust silencers where, in most cases, fully developed

turbulent flow is present. Consequently a method for quantifying the boundary layer

thickness has become necessary. Goldman and Panton [87] measured the boundary

layer thickness close to an orifice and were able to show that a young turbulent

boundary layer was present. They proposed using the friction velocity u, to characterise

the boundary layer. This is a measure of the properties of the inner boundary layer (see

Coles [88]), and was used by Goldman and Panton to replace the free stream velocity in

the Strouhal number. Goldman and Chung [89] confirmed that the orifice impedance

was only affected by the inner part of the boundary layer and concluded that the use of

the friction velocity in the Strouhal number was correct. Kooi and Sarin [90], who also

measured the friction velocity, re-defined the parameters used for the resistance and

mass end correction. They wrote the resistance as a function of the inverse Strouhal

number u /fd (where f is frequency and d the orifice diameter) and the mass end

correction as a function of u /f t (where t is the orifice depth). By studying a range of

different plates, Kooi and Sarin found that the resistance could also be written as a

function of t/d and they were able to derive simple algebraic expressions for both the

resistance and mass end correction. Cummings [91], who also studied a number of

different perforates, showed that the mass end correction could also be written as a

function of t/d. This allowed general expressions to be derived which encompass a

number of perforates thus eliminating the need to measure new perforates. Cummings

studied the perforates under a fully developed turbulent flow and found systematic

differences between his results and those of Kooi and Sarin, this was shown to be

caused by Kooi and Sarin using a young turbulent boundary layer. Cummings
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concluded that boundary layer turbulence is an important parameter in the measurement

of perforate impedance and it is necessary to measure them under similar conditions to

those in which they are to be used. The method used by Cummings appears to be suited

to the present investigation, provided the porosity of the plate is accounted for in the

measurements. It is also assumed that any interaction between holes (see Ingârd [75]

and Flynn and Panton [92]) will be successfully accounted for using this method.

A feature of previous work on perforates subjected to grazing flow is that, to the

best of the author's knowledge, the effect of a porous material backing the perforate has

not been measured. The only work to be found combining a perforate with a porous

material appears to be for locally reacting no flow situations, for example the

investigations of Ingãrd and Bolt [93] and Davern [94]. This is surprising considering

the frequent use of porous materials in exhausts. The aim of this chapter is to examine

the effect of backing perforates with a porous material when they are subjected to

grazing flow.

Section 4.2

Experimental Method

The acoustic impedance of six perforates, commonly used in silencers was

measured experimentally. The perforate plates, supplied by Tenneco-Walker (U. K.)

Ltd. and Eminox Ltd., consist of three "flat" plates and three louvred plates. The

perforates were supplied by the manufacturer in the form of small off-cuts from pre-

formed flat sheets. The flat plates are similar to those studied by previous authors,

though despite louvres being common in automotive exhausts, the present investigation

appears to be the first to include louvres.

The experimental arrangement used by Cummings [91] is appropriate here for

the measurements both with and without absorbent. The experimental apparatus used is

shown in Figure 4.1. A square section pipe has been used to carry the air flow from a

variable speed air supply. The air supply was silenced by means of a large dissipative
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silencer close to its outlet. A square pipe was used to allow the small off-cuts of

perforate to be mounted easily into the wall. The use of a square sectioned pipe does

not present any problems so long as the perforate is located away from the corners of the

pipe. Indeed, similar conditions to those encountered in circular pipes can be

reproduced at the centre of the wall of a square pipe. The perforate is located

approximately 2.5m from the air supply, and this allows time for a turbulent boundary

layer to develop. A sinusoidal signal, fed via a power amplifier to a loudspeaker

mounted near the air supply outlet, was used to supply the superimposed sound field.

The perforate, once it has been mounted flush into the pipe wall, is backed by a

cavity to form a Helmholtz resonator. This was done by fixing a small flange to the

perimeter of the perforate and locating the flange in a recess on the outside of the pipe

wall. The cavity was then clamped onto the pipe, sandwiching the flange between the

pipe wall and the cavity. This held the perforate flush with the grazing flow.

Depending upon the tests performed, the cavity was either filled with porous material or

left empty.

The acoustic measurements carried out on the perforates are based upon the two

microphone method used by both Kooi and Sarin [90] and Cummings [91].

Measurements were taken from one microphone located in the cavity (note that the

protective grille was left on the microphone because of the potential presence of a

porous material) and from a microphone located in the pipe wall close to the perforate.

The microphone in the pipe wall was located upstream of the perforate and the grille

was removed to allow it to sit flush with the wall. The two microphones and the

measuring amplifiers were phase-matched to within 0.5° over a range from 70Hz to

1kHz. To do this, the microphones were flush mounted close to each other in a steel

plate and located at the far end of a standing wave tube. White noise was then use to

calibrate the microphones across the frequency range required. To calculate the

impedance of a perforate the only acoustic measurement necessary is the transfer

function between the two microphones. This was performed for discrete frequencies

and the transfer function was manually recorded from the analyser at regular intervals

across a range of approximately 70Hz to 1kHz. To reduce the effect of flow noise the
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transfer function was averaged over a period of time. The lower frequency limit was set

by the capability of the loudspeaker to generate sound pressure levels above those of the

random (flow induced) noise. A mid-range acoustic driver was used for the tests here

and this limited the available sound pressure levels at low frequencies. Above 1kHz the

phase matching of the two microphones was deemed to be outside acceptable limits.

Once the transfer function has been recorded the acoustic impedance of the

perforate can be inferred. Following Cummings [911, let the acoustic pressure at the

microphone in the pipe be p1 , and the acoustic pressure in the cavity p2 . The transfer

function p2 /p1 can the be written in the form

p1 
= re'0,	 (4.1)

The measurements recorded from the FFT analyser are therefore the modulus r and the

phase 0.

A detailed section of the perforate and cavity is shown in Figure 4.2. The total

cross section of all the orifices in the wall is given by A0 , the cross sectional area of the

cavity by A, the thickness of the plate by t (note that this is not the same as the

thickness of the pipe wall) and the diameter of an individual orifice by d. Omitting

time factor e 1 , the acoustic pressure and the velocity in the cavity are given by

P(x) = Pcosk0x,	 (4.2)

and

P0.
u(x)= .	 sink0x,	 (4.3)

lp0c0

where p, is the pressure in the cavity, P is the pressure in the cavity at x = 0 (equal to

p2 ) and k0 is the cavity wavenumber. Note that equations (4.2) and (4.3) assume that

air is present in the cavity. If a porous material is present then k0 is replaced by —iF and

p0c0 replaced by Za where F and Za are the propagation constant and characteristic
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impedance respectively for a porous material, see Chapters 2 and 3. The acoustic

impedance of the perforate z0 is given by

(4.4)
0 = L

where L is the length of the cavity and u0 is the acoustic velocity through the perforate.

Therefore

- _______
zo -	 .	 (4.5)

U0

Continuity of volume velocity at x = L gives

A P0
sink0L. 	(4.6)

A0 ip0c0

The acoustic impedance of the perforate can now be written as

(P0 /p 1 )cosk0L— 1
ZOA(p/)	 .	 (4.7)

sin k0L
A0 ip0c0

By substitution of P = p2 and using equation (4.1), z0 can be re-written in terms of the

experimental measurements,

re cosk0L-1
ZOAikL 

içb•	
(4.8)

re
k ip0c0

Simplifying equation (4.8) gives

-	 A0[—sin 0+ i(rcosk0L— cosO)]	 (4.9)Z0 /000 
A	 rsink0L
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It is convenient to write the perforate impedance in the form

z0 =r0 +icpt,	 (4.10)

where i is the resistance and £ is the effective orifice length, i.e.

A0sifl(/)
1b_PoCo sjflkL	 (4.11)

and

k (rcosk0L—cos)	
(4.12)

k0 A	 rsink0L

The mass end correction is found by subtracting the geometrical orifice length t from

equation (4.12). Again, it should be noted that if a porous material is present in the

cavity, p0c0 is replaced by z and k0 by —if. Equations (4.11) and (4.12) are a

simplified version of the expressions for the resistance and mass end correction used by

Cummings [911.

When a viscous fluid flows in a pipe, the presence of the wall obviously has the

effect of retarding the flow. Consequently the velocity of the fluid will vary from zero

at the wall to the free stream velocity in the centre of the pipe, the region of sheared

flow being known as the boundary layer. When turbulent motion is present in the

boundary layer, the radial variation of the fluid velocity (the velocity profile) exhibits

three distinct regions; one very close to the wall, one far away from the wall and an

intermediate region. The region very close to the wall is dominated by viscosity and the

velocity profile is linear, all turbulent flows are dynamically similar in this region.

Close to the wall the functional dependence of the velocity profile upon parameters such

as the wall shear stress and the fluid viscosity is known as "the law of the wall". The

velocity profile in the outer region of the boundary layer must be referenced to the free

stream velocity and the flow appears to be insensitive to wall roughness parameters.

The functional dependence of the velocity in the outer region (given by Panton [95]) is
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known as the "velocity defect law". The third region in the boundary layer represents

the link between the law of the wall and the velocity defect law. The velocity profile in

this region has a largely logarithmic dependence. Coles [88] was able to show that the

velocity defect law could be combined with the logarithmic region by introducing an

additional functional dependence to the defect law, Coles called this the "law of the

wake". Goldman and Chung [89] measured a number of boundary layer profiles and

showed that these could be successfully represented by a combination of the law of the

wall together with the law of the wake suggested by Coles. They were able to show that

the perforate impedance was dependent solely upon the parameters governing the law of

the wall. The law of the wall supposes that u/ut is a function of yu/v, where u is the

velocity as a function of the distance y from the wall and v is the kinematic viscosity.

Consequently, the relevant parameter for grazing flow over a perforate plate when a

turbulent boundary layer is present is the friction velocity u. This quantity was later

used by both Kooi and Sarin [90] and Cummings [91].

The friction velocity can be written in terms of the wall shear stress 'ç [95],

u*	 (4.13)

Gessener and Jones [96] measured the wall shear stress vector for square pipes and

found that, for a Reynolds number of Re = 3x 10 (based upon the hydraulic diameter of

the pipe), it was inclined at no more than 1° to the axis for the centre region of the pipe.

This justifies the assumption that the experimental results measured here are also

applicable to circular tubes. It is also known that 'c varies around the perimeter of a

square duct. For a square pipe, Fujita [97] predicts to vary from 1 to 1.05 across

the perforates used here ( being the perimental average of 'ç).

Two methods are available for measuring the friction velocity. Cummings [91]

related the friction velocity to the mean pipe velocity by

u* =	 (4.14)
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where i is the mean velocity in the pipe and f1 is the friction factor for the pipe. The

friction factor for turbulent flow in square ducts with smooth walls was found by Fujita

[97] to be given by

f = O.3O6Re,	 (4.15)

for iO4 <Re < i05 and this expression was employed by Cummings [91] in equation

(4.14). This method has the disadvantage of requiring the mean velocity in the pipe to

be measured. This can be a laborious task since it is necessary to take measurements at

a number of locations over the cross section of the pipe. The method is also prone to

errors due to the difficulty in measuring flow rates in the corners of the pipe where

unsteady flow exists.

An alternative approach is to use a Preston tube, a full description of which

given by Patel [98]. The method involves measuring the skin friction directly by

placing a circular Pitot tube on the pipe wall. Patel provides a complete set of

calibration curves for a number of Pitot tube diameters. He applied a curve fit to the

acquired data and the following relationship was found:

= y* +2logio(1.95y* +4.1),	 (4.16)

*	 (z.tpd i	 *	 (id '\

wflere x =1og101	 2 
I andy =1og101	 2 I 

for5.6<x* <7.6.
(4p0v )	 4p0v )

Hence, Ap is the measured pressure difference between the Pitot and static pressures

and	 is the outside diameter of the Pitot tube (a Pitot tube 3mm in diameter was used

here). Equation (4.16) can be solved to give ç and hence u at any individual position

on the wall of the pipe. Consequently, the number of measurements is reduced

compared to the more usual method of Cummings [91]; also the wall shear stress is

measured directly and does not depend upon a relationship between fr and Re.
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Section 4.3

Experimental Results

The perforates measured in the previous section are separated here into two

groups, one containing the "flat" perforates and one containing the louvres. The flat

perforates are to be known here as "plates" and are numbered 1 to 3; the louvres are also

numbered 1 to 3. Each perforate has a different t/d ratio. For the louvres, the diameter

of a circle equivalent in area to that of the orifice has been used. The dimensions and

porosity (fractional open area) of each perforate are given in Tables 4.1 and 4.2 below.

A full description of the geometry of each of the three louvres is given in Figure 4.3.

The dimensions quoted for the louvres in Figure 4.3 are only approximate since the

dimensions of individual holes can vary due to discrepancies in the manufacturing

process, therefore the values given in Table 4.2 were averaged over large sections of

each louvre. It should be stressed here that the grazing flow passes underneath the

louvre in the direction shown in Figure 4.3, this means that the section of the louvre that

has been pressed out lies within the porous material.

Table 4.1. Dimensions of flat perforate plates

Plate	 t / mm	 d / mm	 t/d	 Porosity

1	 1.5	 3.1	 0.484	 0.210

2	 1.5	 2.8	 0.536	 0.205

3	 1	 3.5	 0.286	 0.272

Table 4.2. Dimensions of louvres

Louvre	 t / mm	 / mm	 t/d	 Porosity

1	 1	 2.25	 0.444	 0.04

2	 1	 2.92	 0.342	 0.09

3	 1	 2.73	 0.366	 0.08
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Plates 1 and 2 and louvres 1,2 and 3 were supplied by Tenneco-Walker (U. K.) Ltd. and

plate 3 was supplied by Eminox Ltd.

4.3.1 Acoustic Impedance Without a Porous Backing

The experimental measurements for the acoustic impedance without a porous

backing are presented here in the manner first proposed by Kooi and Sarin [90]. This

method is used here because it has been shown to be a successful way of presenting

data, furthermore it also allows a straightforward comparison to be made between the

results obtained here and those of both Kooi and Sarin [90] and Cummings [91]. Kooi

and Sarin's method involves non-dimensionalising both the resistance and the mass end

correction. Therefore, in defining the normalised acoustic impedance by

(4.17)poco poco	poco

equation (4.9) allows 0 and X to be written as

0_A_sinØ

A rsink0L'	
(4.18)

and

k (rcosk0L—cosØ)
(4.19)

A	 rsink0L

The resistance of the orifice 0 has two components, the resistance induced by the flow,

and the resistance attributable to the viscous boundary layer, 	 where

0= 0 + 0.	 (4.20)

Now	 = (t/d 2 )167rv/f (see Kooi and Sarin [90]), therefore the flow induced

resistance for the orifice is given by
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(4.22)

o =_A_sinØ t ftrv
A rsinkoL d2\I f	

(4.21)

For the total mass end correction ö, the orifice length t is subtracted from the effective

orifice length £ , to give

where £/k0.

The resistance and mass end correction can now be non-dimensionalised in the

same way as that used by Kooi and Sarin [90]. Therefore the resistance is presented in

the form 01 c0 /fd and the mass end correction as 41o , where 8 is the mass end

correction without flow (equal to 0. 849d for an isolated orifice with d << A, A being

the wavelength). This value (also used by Cummings [91]) for ö is used here even

though some inter-orifice interaction effects must inevitably occur. If values for t5

calculated by Ingärd [75] for the impedance of an orifice radiating into a tube are used

here on the basis that each orifice has a surrounding "cylinder of influence", the results

obtained produce radically different plots and it was found that these did not allow

comparison with other published data. In accordance with Cummings [91] the

resistance data are to be plotted against u/fd and the mass end correction against

ui/ft.

The friction velocity was measured by using the Preston tube method since this

method allows the quick and easy measurement of 'ç (see equation (4.16)), from which

u can be calculated. Values for were obtained, once values for L\p had been found,

by solving equation (4.16) by using the Newton-Raphson method. The wall shear stress

was measured at a number of places around the central region of the duct wall and the

friction velocity was averaged over the region. The results were compared to the

measurements obtained using the method of Cummings [91] (described earlier) and

close agreement between the two methods was found (within 10%). Measurements for

the acoustic impedance of the perforates were carried out for four different friction
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velocities, 0.476 mIs, 0.986 mIs, 1.626 mIs and 2.192 mIs. The last value corresponds

to the maximum friction velocity obtainable from the equipment used in the tests. A

full measurement of the boundary layer profile indicated that a developing turbulent

boundary layer was present, though the profile was close enough to that of fully

developed flow to allow the assumption of a fully developed turbulent boundary layer.

To correlate the data, the curve fitting method of Cummings [91] was tried. The

method combines results for the resistance and the mass end correction into separate

algebraic expressions. Cummings used this method exclusively for flat plates, it will be

shown later that the method cannot be applied to louvres. The experimental results

measured for plates 1 to 3 are shown in Figure 4.4 and the left hand side of Figure 4.5,

also shown are the algebraic curve fitting formulae found by using the method of

Cummings (solid line). The resistance is given by

I	 f \0.169

= 26.161 --
fd	 [

—201 ---4.055,
jfd

(4.23)

and the mass end correction by

8

ft
I	 _0.184h1

t I I _______ ii

6Ø	 [ 1.8+	 II	 ' ft	 t
- 1+06 exp1—I	 I 06

d jj

(4.24)

The experimental results for the louvres are shown on the right hand side of Figure 4.5

and Figure 4.6. The louvres require a different method for correlating the data. Each

louvre requires a different curve fitting formulae because it was found to be impossible

to group them as a function of t/d. For the resistance

O C0 
=A

	 2	

(4.25)
fd
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where A1 ... A3 are constants given in Table 4.3 below.

Table 4.3 Curve fitting constants for the resistance of the louvres

louvre	 A1	 A2	 A3

1	 1.424	 1.128	 0.303

2	 -0.528	 3.359	 0.202

3	 0.670	 2.35 1	 0.432

The mass end correction is given by

8— B+B4	-<-,
6o	 '	 ' ftB3

8 = B1 eXp1B2 - B3	 + B	 - >' 
ft B3	

(4.26)

where B1 ... B4 are constants given in Table 4.4 below.

Table 4.4 Curve fitting constants for the mass end correction of the louvres

louvre	 B1	 '2	 B3	 B4

1	 0.7	 0.629	 0.286	 0.2

2	 0.9	 0.413	 0.250	 -0.1

3	 0.9	 0.707	 0.400	 -0.1

4.3.2 Acoustic Impedance With a Porous Backing

The experimental method described earlier for measuring the impedance without

a porous backing can also be applied to measurements with a porous backing.

However, the normalised acoustic impedance must be re-defined to take account of the

porous material, i.e.
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sinØ

p0c0 A rsinkaL'	 (4.27)

and

z A0 (rcoskaL—cos)

rsinkaL	
'	 (4.28)

where z is the characteristic impedance of the porous material and ka = —iF, F being

the propagation constant (see Chapters 2 and 3). Three porous materials were used in

the experiments performed here: A glass, E glass and basalt wool. Each material was

packed into the cavity to give a bulk density of approximately 120kg/rn3.

The resistance and mass end correction can be non-dirnensionalised in the same

manner as before. However, an examination of equations (4.27) and (4.28) indicates

that, because ka and Za cannot be dependent upon u, it is not possible to plot the data as

a function of the friction velocity. This means that the experimental results must be

displayed for individual friction velocities and the frequency used for the abscissa.

Obviously, in most applications, it is desirable to be able to represent the impedance as a

function of the flow speed, thus avoiding the need to re-measure the impedance every

time a new flow speed is encountered. Therefore, instead of correlating the

experimental data as a function of frequency for individual friction velocities, an

attempt is made here to predict the impedance as a function of the friction velocity as

well as frequency. This is to be done by combining theoretical predictions of the effect

of the porous material with the empirical formulae found when a porous material was

not present. This will form a semi-empirical model which can then be compared to

experimental results.

Predicting the effect of the absorbent material is possible by examining the mass

end correction in the cavity. For a single orifice with no porous backing and no mean

flow present, the normalised mass end correction is given by [28],

= 0.4245dk0i.	 (4.29)
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Now, the equivalent mass end correction when a porous material is present can be

written as

Xabs = 0.4245dF.	 (4.30)
poco

When the porous material is present, the mass end correction given by equation (4.29)

must be removed and the mass end correction from equation (4.30) added. Obviously

equation (4.29) contains both real and imaginary terms, therefore the acoustic

impedance must be re-defined as

- O.4245dki +O.4245d—---F.	 (431)
poco	poco

The effect of the porous material on the impedance of the perforate may therefore be

predicted by equation (4.31). The measurements obtained for the perforate without an

absorbent present () and the values given for F' and Za from Chapter 3, can now be

substituted into equation (4.31) to give the full semi-empirical predictions, i.e.

= Of + O +ik0(6+t)+0.4245dkj z 
F

(4.32)

where O. and 6 are given by equations (4.23) and (4.24) respectively. The known

properties of the porous material are therefore used in an attempt to predict the

behaviour of the perforate with a porous backing, solely by using the experimental

measurements made without a porous backing. The effectiveness of the semi-empirical

predictions can be observed by comparing predicted values to the measured impedance

values with a porous material present. Experimental measurements were performed for

the perforates backed by absorbent at three different friction velocities, 0.986 m/s,

1.626m1s and 2.192 mIs. The "flat" plates were measured first and plate 1 was backed

by basalt wool, plate 2 by E glass and plate 3 by A glass. Figures 4.7 to 4.9 show the

experimental results obtained for plates 1 to 3. A number of results are not shown here
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because of the large amount of data obtained, however the results for the highest

friction velocity have all been shown since these are of most relevance to the work

carried out later in this thesis. Figures 4.7 to 4.9 also include the predictions made by

equation (4.32) (solid line), and the empirical formulae for the perforates without porous

backing (see equations (4.23) and (4.24), dashed line). The formulae found when no

absorbent was present have been included in order to show the effect of the porous

material.

The louvred plates were next to be measured with a porous backing, but no

difference between the results with and without the porous material were observed. The

reasons for this will be discussed in the next section.

Section 4.4

Discussion

Experimental results have been obtained for the three "flat" perforate plates and

the three louvres, both with and without a porous backing. The experimental method

used by both Kooi and Sarin [90] and Cummings [91] has been shown to work both

with and without the presence of a porous material. The method used by Cummings to

correlate data has been found to work successfully for the flat plates but not for the

louvres. Attempts were then made to predict the effect of the porous material upon the

impedance of the perforate and compare this with measured data.

The experimental results obtained for the flat plates will be discussed first since

these allow a straightforward comparison to be made with the published data of

Goldman and Chung [89], Kooi and Sarin and Cummings. The correlation of data

obtained without a porous material present agree qualitatively with the other published

data. The resistance of the flat plates exhibit a linear relationship with u/fd, and for

the mass end correction, decreasing values are observed as ui /ft increases. A constant

negative value for the mass end correction has been assumed at very high values of

u /f t in accordance with the assumptions made by Cummings. The presence of
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grazing flow can be seen to increase the resistance of the perforate and removes the

mass end correction at high values of us/ft. Figures 4.4 and 4.5 indicate that the

method used by Cummings to correlate the experimental data works very well for the

flat plates measured here, also the observed spread in experimental data is similar to that

found by other authors. As expected, the spread in the resistance data is small; this is

principally because the resistance can be measured accurately. The difficulties in

measuring the mass end correction have been well documented and this is apparent in

the large scatter of the data present in Figures 4.4 and 4.5. It is also apparent that, when

compared to the data obtained by Cummings for a single orifice, the scatter present in

the results for multi-orifice perforates has increased. This was confirmed by performing

a number of experiments on single and multi-orifice perforates under identical

conditions and comparing the results.

A comparison between the algebraic expressions given by equations (4.23) and

(4.24) with those of Cummings show a systematic difference between the two once a

value has been assigned to t/d. The resistance predicted by Cummings is far greater

than that given by equation (4.23), especially for large t/d ratios. The results for the

mass end correction do appear to be similar although the curves given by equation

(4.24) do not appear to be as steep as c5/ö approaches 1. The differences found are

similar to those Cummings observed between his predictions and those of Kooi and

Sarin. Cummings concluded that the differences between the two were down to

differing levels of boundary layer turbulence. Whilst it is possible that differences

between the present experiment and that of Cummings is due to the use of a less fully

developed boundary layer in the present study, it appears unlikely that this is the only

cause, especially as the resistance differs by so much at higher values of u/fd and this

is found to be a function of t/d. One obvious difference between the results presented

here and those of both Kooi and Sarin and Cummings is the range of data measured. In

Figures 4.4 and 4.5, the resistance has been measured for values of u/fd from close to

zero up to 10, while the mass end correction us/ft has been measured up to 6. For t/d

ratios comparable to those used in the present tests, Cummings measured resistance

values up to approximately 1.7 for t/d=0.488 and 0.42 for t/d=0.225. An examination
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of the experimental data obtained for the resistance in Figures 4.4 and 4.5 (especially

plate 3 where t/d=0.286) indicates that the formulae used is very dependent upon the

data obtained at high values of u/fd. Therefore, it is possible that, because Cummings

only measured a small number of data over a very limited range, his predictions are not

accurate enough for low t/d ratios. This might also caution against combining data

over a large range of t/d ratios. It was also noticeable here that data obtained for plates

with the lowest t/d ratios suffered from the highest degree of scatter, therefore a large

amount of data is essential for low values of t/d. The differences found between the

formulae calculated here and those of Cummings cannot be attributed to the acoustic

interaction between holes in the present tests. Although the majority of the tests were

performed with a section of the normal multi-orifice perforate, further tests were

performed with only a single orifice present and also with 50% of the holes blocked. It

was found that all the experimental data collapsed onto the curves shown in Figures 4.4

and 4.5. From this it can be concluded that single orifice data are valid for predicting

the impedance of mulit-hole perforates and the effect of any acoustic interaction

between the holes is small.

The experimental results obtained for the louvres without the presence of a

porous material show the same qualitative behaviour as the flat plates, though they are

quantitatively quite different from each other. The most obvious difference is that the

resistance curves for the louvres have a non-linear shape. A quadratic curve was found

to fit the resistance data very well for each louvre. For the mass end correction the

louvres appear to attain higher values than the flat plates as uk/ft increases, also they

do not reach a maximum value of ö/ = 1 for lower values of ut/ft. The reasons for

the change in behaviour of both the resistance and the reactance are not entirely clear.

Obviously the holes in the louvres are of a totally different nature from those in the flat

plates since the orifice is oriented normal to the grazing flow and is not circular in

shape. This seems the most likely reason behind why the behaviour of the louvres is so

different, however a detailed knowledge of the flow pattern through the louvres orifice

would be necessary in order to pin-point any physical reasons behind this behaviour.

The louvres do appear to show a similar degree of scatter in the experimental data,

98



although the resistance data do exhibit less scattering at lower values of u/fd.

Unfortunately it was found to be impossible to group the measured data for the louvres

as a function of t/d. This is perhaps not surprising given the fundamental difference in

orifice shape between the louvres. This means that the impedance must be measured

experimentally when a new louvre is encountered.

The addition of a porous material behind the flat perforates can be seen to cause

a large increase in the impedance. Figures 4.7 to 4.9 show that a systematic increase in

both the real and imaginary parts has been measured, compared to the predictions for

the perforates without a porous backing (dashed line). The size of the increase appears

to depend upon the porous material backing the perforate since materials with a high

flow resistivity, such as E glass, cause the largest increase in impedance. The

measurements obtained for the resistance appear to exhibit a similar degree of scatter to

those previously observed, but problems are apparent in the measurement of the mass

end correction. A high degree of scatter can be observed in the mass end correction and

it is noticeable that data below 450Hz was virtually unobtainable. The reason why this

occurs when a porous material is added is not fully understood at present. It is also

observed from the plots on which the frequency is the abscissa that measurements were

unobtainable around 400Hz and 800Hz; it is possible that this problem was caused by

the presence of a pressure node at the perforate and/or non-linearities caused by a

resonance in the cavity.

When measurements were carried out with the flat plates backed by porous

materials it was apparent that the results were very dependent upon the density of the

material immediately adjacent to the holes. This indicates that the porous material has

only a very localised effect upon the orifice impedance. The results shown in Figures

4.7 to 4.9 were obtained by using a regular, flat layer of absorbing material covering the

near field of each orifice. Indeed it can be seen in the resistance data presented here

that, especially at low friction velocities, different trends in the data occur. The reason

for this is that slight inhomogeneity (or "layering") of the material was inevitable when

separate measurements were performed. This localised effect was particularly obvious

when measurements were performed on the louvres backed by a porous material. The
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alignment of the holes in the louvres means that bulk porous materials (in this case E

glass) does not sit immediately adjacent to the orifice. Consequently it was found that

the porous material had no measurable effect upon the acoustic impedance of the

louvres. This appears to back up the observation that the absorbent material only affects

the orifice near field. The consequence of this localised effect is important when using

the data measured here to predict the behaviour of mass produced silencers. In

commercial silencers the porous material is often randomly packed around the perforate

tube, and therefore it can be expected that only a percentage of the material will lie

evenly in the near field of the perforate. This will inevitably lead to the formulae

presented here over-predicting the impedance. Obviously it will be very difficult to

quantify the random nature of the absorbent packing. This problem will be discussed in

greater detail later on in this thesis when comparisons between predictions made by

using the formulae presented here and measurements on actual silencers can be

compared (see Chapter 10).

The semi-empirical predictions for the impedance of the flat plates backed by

absorbent (equation (4.32)) are also shown in Figures 4.7 to 4.9 (solid lines). It is

evident that for the resistance, the measured values are very close to the predictions.

This is especially true for higher friction velocities where the accuracy in measurement

has probably been improved because there is more of an effect to measure. As before,

the main problems seem to occur with the mass end correction. Figures 4.7 to 4.9

indicate that, in most cases, the mass end correction has been over-predicted. The

reasons for this are not clear, however it is possible that experimental error is the cause.

It is also possible that the predictions of equation (4.32) over-simplify the problem and

that some additional mechanism is at work, which reduces the effect of the absorbent

upon the mass end correction. A noticeable feature of the predictions is that at low

frequencies a rise in the mass end correction is predicted; this is in contrast to falling

negative values obtained when the absorbent is not present. Unfortunately the lack of

experimental data at low frequencies does not allow any conclusions to be drawn

concerning the accuracy of these predictions at low frequencies. However, the semi-

empirical predictions do provide good agreement for the resistance and appear to be
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adequate for the mass end correction. Therefore, it appears that equation (4.32) is a

useful method for estimating the effect of the porous material on the behaviour of a

"flat" perforate. This is important because equation (4.32) allows the impedance to be

written for any friction velocity and hence any mean flow speed. This removes the need

to perform experiments upon perforates backed by a porous material, since experimental

data for perforates without absorbent are all that is required.

The principal effect found when a flat perforate plate is backed by a porous

material is a large increase in the acoustic impedance over plates without absorbent

backing. The results show that, even for plates with a large percentage open area, the

acoustic impedance of the perforates must be accounted for when modelling silencers.

This is not so important with louvres since the porous material has no measurable effect

upon their acoustic impedance, but it is still recommended that the values obtained with

no porous backing are included in silencer modelling.
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Figure 4.2. Cross section of pipe and cavity
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CHAPTER 5

MEASUREMENT OF THE ACOUSTIC PROPERTIES

OF DISSIPATIVE SILENCERS



Section 5.1

Introduction

The experimental measurement of exhaust systems is essential to allow

comparisons to be made with theoretical models. This will then allow the accuracy of

the theoretical models to be assessed. The experimental data obtained for silencers,

taken by the methods described in this chapter, were used as the basis for deciding the

route that modelling should take as the research proceeded. The experimental results

presented for the silencers here will be extensively referred to in later chapters; however

the measurements on catalytic converters, although performed by using the same

methods, will be discussed separately in Chapter 11.

A silencer box is only a small component of the overall automotive exhaust

system, which consists of an exhaust manifold into which an internal combustion engine

supplies gas flow and radiates noise, and a more or less complex series of silencer

elements (including catalytic devices) that ends in the tail pipe. The exhaust gases and

noise are communicated to the environment by the tail pipe outlet. It is the effect of the

silencer upon the tail pipe noise that is of interest here. Two distinct approaches are

commonly used in order to test the effectiveness of a silencer experimentally. First, the

effect of a silencer on an exhaust system can be measured by running the engine with

the exhaust system in place and measuring the externally radiated noise. Secondly, the

individual performance of the silencer can be measured by either removing the silencer

from the exhaust system altogether, or measuring it in isolation whilst still on the

exhaust.

Measuring externally radiated noise with the silencer as a part of the exhaust

system is the most popular method, especially with commercial exhaust manufacturers.

This is because such an approach is the only way to measure the true performance of a

silencer. Two different measurements are commonly performed on the silencer system

as a whole, insertion loss measurements and the measurement of the radiated sound

pressure level. The measurement of the radiated sound pressure level involves
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measuring the sound pressure level at several locations remote from the tail pipe. This

test is often the final test on an exhaust system since the type of results that are gathered

are often those required by noise regulations. However, it is very difficult to assess the

relative performance of an individual silencer from these measurements because so

many other unknowns are present. If the measurement of the individual characteristics

of a silencer is a priority (as it is here) then the insertion loss is usually measured. The

insertion loss is calculated, like the radiated sound pressure level, from measurements of

the sound pressure outside the tail pipe, however the measurements are usually taken

much closer to the outlet of the tail pipe. Sound pressure level measurements are taken

both with and without the silencer in place and the insertion loss is given by the

difference between the two (the latter minus the former). The relative performance of a

silencer can now be far more easily assessed and consequently this is the method most

widely used in the empirical design of silencer boxes. An obvious advantage of

measuring the performance of the silencer system as a whole is that only simple sound

pressure level measurements are required outside the exhaust system.

The other experimental approach available to the designer is to measure the

silencer in isolation from the rest of the exhaust system. This is of particular use when

the acoustic characteristics of the silencer box alone are being studied since the method

is capable of providing more direct information on the performance of an individual box

than insertion loss data, which exhibit wave interference phenomena from the

connecting pipework. On the other hand, measurements on an isolated silencer cannot

be expected to provide detailed information on how the silencer will perform in

insertion loss tests. Three different methods exist for measuring a silencer on its own:

transmission loss, noise reduction and attenuation rate. The transmission loss of a

silencer is defined as the fraction of acoustic power the silencer transmits from an

incident wave into an anechoic termination downstream of the silencer. The noise

reduction of a silencer is the difference between sound pressure levels upstream and

downstream of the silencer, while the attenuation rate (in dB per unit distance) is the

measurement of an "infinite" length of silencer transmitting the outgoing wave into an

anechoic termination (this method is only of use with dissipative silencers). The
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attenuation rate of a silencer is usually measured for comparison with a theoretical

eigenvalue analysis of a silencer and provides little physical insight into the potential

performance of a silencer on-engine. Furthermore it only has any real physical

significance for a single mode of sound propagation in the silencer duct, and the

attenuation rate usually varies strongly between modes. It is usual for attenuation rate

data to be given for the "least attenuated mode" but this is of limited relevance to the

multimode sound field in a silencer of finite length. Consequently, the transmission loss

and the noise reduction are the most common quantities to be measured when a silencer

is studied in isolation. It is possible to study a silencer in isolation when it is still part of

the exhaust system, but the measurements can be very difficult to perform because

microphones must be located in the hot exhaust gases. Consequently transmission loss

and noise reduction measurements are usually performed at room temperature under

laboratory conditions. This has led to these experiments being most widely used in

academic research.

A full description of the methods available for measuring silencers is given by

Munjal [99], Sridhara and Crocker [100] and Prasad and Crocker [101]. The final

testing of any silencer must be performed with the silencer as part of the entire exhaust

system, this is because the impedance of the noise source (in this case an internal

combustion engine) can influence the performance of a silencer. Consequently the

insertion loss is the most important measurement for assessing the performance of a

silencer. Unfortunately the insertion loss is not an attractive quantity to use for

assessing the accuracy of theoretical predictions made for individual silencers. This is

because the insertion loss is an extremely difficult quantity to predict accurately using

theoretical models alone. The reason for this is that, in addition to predicting the

performance of the silencer, it is also necessary to predict the engine (or source)

impedance and also the tailpipe radiation impedance. Accurate prediction of the tailpipe

radiation impedance is not too difficult, particularly if measurements are performed with

the tail pipe radiating into an infinite baffle (see Munjal [99]). However predicting the

source impedance presents large problems since the detailed theoretical modelling of the

impedance of a multi-cylinder internal combustion engine is a formidable task and
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accurate models have yet to be obtained. Therefore, purely theoretical methods for

predicting the insertion loss have been forced to assume that the source impedance is

either zero (constant pressure), infinite (constant volume velocity) or characteristic.

However, Prasad and Crocker [101] showed that only values obtained experimentally

were satisfactory for predicting the source impedance of an engine. Since the source

impedance has a large influence upon the insertion loss of a silencer, Prasad and

Crocker found it necessary to resort to empirical measurements. This is obviously an

undesirable approach to theoretical modelling. Since this thesis is concerned only with

the modelling of silencer elements, it would seem to be unwise to draw conclusions

from insertion loss measurements where uncertainty over predictions of the source and

radiation impedance exists. This leads to the necessity of measuring a silencer in

isolation where its performance is independent from the noise source.

The quantity most widely measured to characterise silencers in isolation is the

transmission loss, this is because the noise reduction is not uniquely a characteristic of

the silencer since it is affected by the geometry of the connecting pipes. Obviously, as

previously discussed, it is not practicable to measure the transmission loss of silencers

on-engine, therefore laboratory tests must be used. This does not allow measurements

to be taken at high temperatures unless a hot gas flow facility is available, but on the

other hand the tests are a very useful way of providing experimental data for comparison

with theoretical predictions. The transmission loss tests reported in this chapter were

used as the principal method for obtaining experimental data for comparison with

theoretical predictions. The experiments were performed for a number of mean flow

Mach numbers, which allowed the effect of flow on the theoretical predictions to be

assessed.

It was also decided to perform insertion loss measurements on the silencers. The

measurements of insertion loss presented in this chapter were performed by the

industrial sponsors MIRA. The tests were carried out by MIRA because not all the

relevant apparatus was available in Hull, most notably an anechoic chamber. MIRA

carried out the measurements in an anechoic chamber by using a loudspeaker as the

sound source and allowing the tail pipe to radiate into an "infinite" baffle; mean flow
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was not available. The experiment represents a rather idealised situation because the

source impedance can be fairly accurately assumed to be infinite and the sound is

radiated into an anechoic chamber. Consequently the results cannot be expected to shed

much further light upon the accuracy of the theoretical modelling, though they do

provide a set of independent experimental results for comparison to predicted data.

Finally, it was proposed to perform insertion loss tests with the silencers on-engine in

order to test the final predictions from the modelling. Unfortunately, even for insertion

loss measurements, the experiment is very complicated, principally because the engine

provides a far from ideal sound source. Although MIRA did perform on-engine tests

the results were not of sufficient quality to be included here.

Section 5.2

The Test Silencers

The measurement of the transmission loss and insertion loss of six silencers was

carried out in this investigation. Five of the silencers were dissipative silencers and the

other silencer was an expansion chamber containing no sound absorbing material. The

reactive silencer was included to allow the accuracy of the experimental method to be

assessed since the acoustic performance of a plain expansion chamber is well

understood and theoretical predictions are known to provide accurate correlation with

experiment. The design of the dissipative silencers measured here was kept relatively

simple; this is because the theoretical modelling reported in this thesis is not at a

sufficiently advanced stage to be able to deal with complex multi-box silencers.

Consequently each silencer has a simple "straight-through" design. Each silencer

consisted of a simple box, constant in cross section along its length, surrounding a

concentric perforated tube which is used to carry the air flow through the silencer.

Three circular and two oval (approximately elliptical) cross section boxes were used.

The elliptical boxes were included as an exercise in the modelling of non-circular cross

section silencers. Three of the four materials discussed in Chapter 3 were used as
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acoustic absorbers in the silencers. Steel wool was not used because it is usually only

employed as a "sock" surrounding the perforate, and it was felt that including a sock

would unduly complicate the modelling. The three axisymmetric dissipative silencers

are shown in Figure 5.1 and the two elliptical silencers in Figure 5.2. The reactive

expansion chamber silencer is of the geometry shown in Figure 5.1, but contained no

fibrous sound-absorbing material. Since the silencers were similar only one drawing

has been shown for each type and the relevant dimensions are included in Table 5.1

below. The dimensions for the elliptical silencers refer to approximate dimensions of

the major and minor axes of the ellipse.

Table 5.1. Dimensions of Test Silencers

Silencer	 Length (mm)	 Diameter (mm)	 Absorbent

1	 315	 152.4	 Eglass

2	 330	 203.2	 Eglass

3	 450	 152.4	 A glass

4	 350	 228.6x 127	 basalt wool

5	 450	 203.2 x 101.6	 E glass

Expansion	 315	 152.4	 N/A

Chamber_________________ _________________ _________________

Each silencer was fabricated by the industrial sponsors Eminox Ltd., who only

stock one type of perforate plate (corresponding to plate 3 in Chapter 4, where the plate

thickness is 1mm, the hole diameter 3.5mm and the percentage open area is 27.2%), and

therefore each dissipative silencer uses the same perforate, note that the expansion

chamber did not include a perforate. Eminox also uses mainly E glass in its silencers,

hence its use in three of the five silencers; the other materials were supplied by other

industrial sponsors. The silencers tested were intermediate in size between car and

truck silencers. The inlet and outlet pipe sizes were chosen to fit the existing flow duct

apparatus. The silencer sizes selected were advantageous in that the acoustic
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attenuation of all but the lowest frequencies is large enough to be measurable to

acceptable accuracy.

Section 5.3

Experimental Method for the Measurement

of the Transmission Loss

Early methods developed for measuring the acoustic performance of exhaust

silencers centred around using standing wave tubes, similar to those used for measuring

porous materials in Chapter 3. Gatley and Cohen [102] reviewed a number of

alternative methods to the standing wave tube but concluded that the optimum method

for measuring the transmission loss was to use a standing wave tube terminated by an

anechoic chamber. It has subsequently been asserted by a number of authors (see for

example Munjal [99]) that if transmission loss measurements are to be carried out using

a standing wave tube then an anechoic chamber must be used. The method of Gatley

and Cohen relied upon discrete frequency measurements which are laborious to

perform, and it was not until broad-band measurements were introduced by Seybert and

Ross [63] that results could be taken over a wide frequency range in a single test.

Seybert and Ross found it necessary to modify the traditional standing wave tube by

locating a third microphone downstream of the silencer, before the anechoic

termination, in order to be able to obtain transmission loss results. The standing wave

tube method has been shown to work successfully, though it does have a number of

limitations. The transmission loss is calculated indirectly from measurements of the

maxima and minima of the standing wave, and this often incurs errors in the final

predictions, errors are usually most apparent in the low frequency region (between 100

and 150Hz). Problems can also occur in setting up and measuring standing wave

patterns in a tube with superimposed mean flow since traditional standing wave tube

apparatus do not allow the introduction of mean flow. Finally, a problem that is unique

to the experiments performed here is the lack of an anechoic chamber, and this

117



essentially precludes the use of the standing wave tube method for measuring the

transmission loss.

The limitations present when using a standing wave tube to measure the

transmission loss were considered by Singh and Katra [103]. They proposed using an

impulse technique that involved measuring the transmission loss directly and was also

capable of providing broad-band data. The method involves passing a pulse of short

duration and large peak pressure through the silencer. The incident pulse is captured by

a microphone upstream of the silencer and the transmitted pulse is captured by a

microphone downstream. Singh and Katra captured both the incident and transmitted

pulses at the same time. To do this they relied upon sufficiently large distances between

the upstream microphone and the silencer and the downstream microphone and the end

of the outgoing pipe to avoid reflected pulses. Cummings and Chang [23] modified this

method by measuring the incident pulse and the transmitted pulse separately. They did

this by using only one microphone to capture data, performing the experiment both with

and without the silencer placed in the test rig. One advantage of this method is that

acoustic reflections from the silencer do not appear in the signal at the microphone

measuring the incident pulse. Another advantage of the method is that both the incident

and the transmitted pulse are measured in approximately the same position.

The method used by Cummings and Chang [23] is the most appropriate method

to use here. This is because an anechoic chamber was not available and the room that

was available only had limited space, thereby precluding the use of Singh and Katra's

method. The apparatus was arranged as shown in Figure 5.3. The acoustic source

signal was a rectangular pulse initiated by the function generator which was fed via a

power amplifier to a loudspeaker. The pulse travelled down 3.3m of circular cross

section steel tubing before reaching the silencer. The microphone was situated as close

by as possible to the downstream end of the silencer in order to eliminate any effects

due to the piping between the microphone and the silencer. The additional length of

pipe on the downstream side of the silencer was used in order to avoid reflections from

the end of the pipe appearing back at the microphone too early. Ideally, steel pipe

would have been used, but the laboratory was not of sufficient size to accommodate
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this; therefore a piece of flexible plastic tubing was used, and this appeared to introduce

no adverse effects. The output of the microphone was fed, via a measuring amplifier, to

an FFF analyser and measurements were recorded both with and without the silencer in

place. When the silencer was removed, the short section of steel pipe, into which the

microphone was inserted was connected by a flange to the steel pipe upstream. The

mean flow was supplied by a variable volume flow compressed air supply, and this was

silenced in order to reduce flow and compressor noise. The mean flow velocity was

measured by the use of a Pitot tube at the outlet of the flexible pipe.

5.3.1 Data Acquisition

When the impulse technique is used to measure the transmission loss of a

silencer, the choice of pulse and the way in which the pulse is captured is very

important. In order to obtain accurate measured values for the transmission loss, it is

desirable for the pulse that enters the silencer (the output pulse) to have a number of

characteristics; these were given by Singh and Katra [103] to be: (i) the pulse spectrum

must be adequately uniform over the desired frequency range, (ii) the pulse must have a

relatively short time span to avoid excessive pipe lengths or an excessively long time

window, (iii) the pulse should be wide enough to contain sufficient power spectral

density to ensure a good signal to noise ratio, and (iv) the combined physical limitations

of the loudspeaker and amplifier must not be exceeded. Unfortunately, the combined

response of the power amplifier, loudspeaker and also the side branch, means that the

acoustic signal found at the silencer (the output pulse) does not have a pulse similar in

shape or spectral characteristics to that of the initial electronic signal (or input pulse)

applied to the amplifier. It is possible to overcome this problem by synthesising the

input pulse in order to obtain the desired characteristics in the output pulse. Singh and

Katra [103, 104] synthesised a digital input pulse by means of trial and error in order to

arrive at the desired output pulse. Salikuddin et al. [105] also used signal synthesis, but

they measured the combined response of the amplifier and loudspeaker experimentally,

from where a sharp output pulse with flat frequency response was obtained by feeding
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the convolution of the desired pulse and the inverse Fourier transform of the reciprocal

of the amplifier plus loudspeaker response into the acoustic driver. Signal synthesis is

undoubtedly capable of providing the desired output pulse, however it does require the

re-calculation of the input pulse for each test condition, this can prove to be a laborious

task. Furthermore, problems can arise if the acoustic driver cannot generate sufficient

sound pressure levels at frequencies outside its own frequency band limits.

For the impulse tests performed here, it was decided that, in view of the extra

effort involved in implementing signal synthesis techniques and the frequency

limitations of the loudspeaker, a more straightforward method was necessary. Also, the

tests performed on silencers here are relatively simple and it was anticipated that as long

as the signal to noise ratio was large enough, no problems would be encountered.

Therefore if synthesis of the input signal is not used, the only option is to use an input

pulse with a flat frequency spectra, and this was obtained by varying the pulse length on

the signal generator. The effect upon the output pulse caused by the combination of the

amplifier, loudspeaker and side-branch is shown in Figure 5.4. It is evident that over a

frequency range of 0-2kHz, a fall-off occurs in the pressure amplitude at high and very

low frequencies. This effect upon the output pulse is unavoidable but does not present

too many problems so long as high enough sound pressure amplitudes are used,

although it does appear that at very low frequencies problems might occur. It should

also be mentioned that pressure amplitudes should be kept low enough to avoid acoustic

non-linear effects occurring in the silencer, since transmission loss is normally specified

in the linear regime.

The selected input signal was fed from the signal generator to the power

amplifier and then to the loudspeaker; the radiated acoustic signal was captured by the

microphone which transmitted the signal, via the measuring amplifier to the analyser.

This process was performed for a number of consecutive, identical, pulses. To allow

time domain averaging (necessary for reducing the effects of flow noise, see Salikuddin

[105]) the signal captured by the analyser was triggered by the signal generator. Once

the data capture has been triggered and the pulse stabilised on the screen of the analyser
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the sampling parameters listed by Singh and Katra [1031 must be set. The test

parameters used here are given in Table 5.2 below.

Table 5.2. Sampling Parameters for Test Pulse

Time window B	 0.2 seconds

Number of data points N	 400

Time resolution &	 0.5ms

Sampling frequency f,	 2kHz

Maximum frequency of interest fm	1kHz

Frequency resolution Af	 5Hz

Number of averages	 128-4096

The test parameters are dependent upon each other in the following way

B=NAt,1Xt=1/fc ,fm =fy I2 andAf=1/B.	 (5.1...5.4)

The criteria were set up after discussion with the industrial sponsors, it was decided that

the maximum frequency of interest was to be 1kHz. A high frequency resolution (5Hz)

was also required because the results are to be displayed in the form of continuous

frequency spectra. From these two criteria all the other factors can be set using

equations (5.1) to (5.4) and it can be seen that, although transmission loss data were

measured up to 2kHz, only measurements up to 1kHz were reliable.

Finally, the captured signal must be edited in the time domain in order to obtain

results that are a function of the silencer's performance only and do not include

"spurious" data. Such spurious data usually occur in the form of axial acoustic

reflections that appear in the time window; for instance, once the signal passes through

the silencer it continues on to the termination of the flexible pipe, from here it is

reflected back along the pipe, eventually being captured by the microphone again. This

effect can also occur when the input pulse is reflected back toward the source by the
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silencer, to the loudspeaker and then back down through the silencer again. "Editing

out" of the reflected pulses is necessary in order to simulate the effects of anechoic

terminations on both sides of the silencer. The lengths of piping between the

microphone and the points at which the pulse is reflected determine the time it takes

before reflections appear in the time window. The two lengths of pipe used in this

investigation were made similar so that both the reflections arrived back at the

microphone at approximately the same time. The reflections captured in the time

window can be seen in the top left hand graph in Figure 5.5. The first signal is the

incident pulse and the second is a combination of the reflected pulse emanating from the

loudspeaker and that from the end of the flexible tube; the latter component probably

dominates, since the second signal is almost the inverse of the first, with a diminution in

peak pressure values, characteristic of an acoustic reflection, at low Helmholtz number,

from an open tube termination. Subsequent reflections can be seen in the time window

and these continue until eventually the great majority of their energy is dissipated.

These reflections were edited out from the total signal before the data was transformed

into the frequency domain. This was done by using the analyser's force window which

allows the user to set data equal to zero, removing any spurious signals from the time

window. The effect of employing the force window can be seen in the graph shown in

the bottom left hand corner of Figure 5.5. The edited signal is now characteristic of the

silencer in isolation. The undulations present after the initial spike are internal

reflections associated with the silencer box. When time domain editing is carried out in

this way it is very important to delay the arrival of the reflected pulses as long as

possible in order to allow the internal reflections within the silencer to die away to a

sufficient extent. The low frequency reflections inside the silencer will take the longest

to die down, because they are less highly attenuated than the higher frequency

components, and therefore these are the most prone to interference by external

reflections. Unfortunately, it is impossible not to truncate some low frequency data due

to the finite lengths of piping that must be used. For the measurements performed here,

the low frequency limit is approximately 100Hz.
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The pulses are ensemble-averaged in the time domain in order to remove - as far

as possible - time dependent random flow noise. Depending upon the mean flow speeds

used, it was found necessary to take between 128 and 4096 data samples in the time-

averaging. It should, however, be noted that there is a practical limit to the number of

samples that can be time averaged to advantage. As the number of samples is increased,

the relative benefit derived from time averaging, in terms of the reduction of flow noise,

diminishes. And furthermore, an excessively large number of samples can introduce a

"flow jitter" effect, whereby large-scale turbulence or minor fluctuations in the mean

flow speed can cause small variations in the arrival time of the test pulse at the

microphone, relative to the triggering time. The result of this is a "blurring" of the time

averaged signal and eventual loss of resolution in the data. A figure of 4096 samples

was considered to be the maximum that could be usefully employed. The effect of time

averaging a signal for a Mach number of 0.15 is shown on the right hand side of Figure

5.5. The graph in the top right hand corner shows the signal before time averaging and

the graph in the bottom right hand corner shows the signal after averaging 2048

samples. It is evident that time averaging is capable of considerably smoothing the

results.

The measurements described above need to be carried out in a similar manner

both with and without a silencer. The analyser then captures each signal in the time

domain and transforms it into the frequency domain by applying a discrete Fourier

transform. The frequency spectra can then be downloaded to a PC, which is used to

compute the transmission loss. The transmission loss (TL) is given by

Th=20log--'-,
AT

where A1 is the pressure amplitude of the pulse captured without the silencer present

and AT is the pressure amplitude of the pulse captured with the silencer present. The

results obtained for the six test silencers are described in Section 5.5.

(5.5)
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Section 5.4

Experimental Method for the Measurement

of the Insertion Loss

The insertion loss measurements discussed here were performed in an anechoic

chamber by the industrial sponsors MIRA. The tests constitute a rather idealised

situation because a high impedance source has been used and the tail pipe radiated into

an "infinite" baffle situated inside the anechoic chamber. Furthermore the tests were

carried out at room temperature. It was not expected that this approach would provide

any further insight into the validity of the theoretical models (over and above that

furnished by the transmission loss data), but rather the purpose of the tests was to allow

comparisons to be made between numerical predictions and two completely

independent sets of measured data.

Since the author made no contribution to the experiments, only a brief

description of the method used is given here. The apparatus used by MIRA is shown in

Figure 5.6. The loudspeaker radiated into a small diameter tube in order to simulate a

high impedance source, and this ensured that the output did not vary significantly with

the load impedance. Obviously the use of a loudspeaker in such a manner does not

allow the introduction of mean flow. The tail pipe was terminated by an effectively

infinite baffle and sound pressure data were taken by means of a microphone located at

the mouth of the tail pipe. As in the case of the transmission loss, sound pressure

measurements were taken both with and without the silencer in place. The insertion

loss was found by measuring the acoustic pressure p at the microphone and the supply

voltage to the loudspeaker V. The insertion loss (IL) is then given by

lL=2010gPIVT
p1171

(5.6)
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where p1 and V1 were measured without the silencer present and PT and VT were

measured with the silencer present. The results obtained by MIRA for the insertion loss

are shown in the next section.

Section 5.5

Experimental Results and Discussion

The experimental results obtained for both the transmission loss and the

insertion loss are described in this section. For the transmission loss, measurements

were obtained both with no mean flow and with mean flow Mach numbers of 0.05, 0.11

and 0.15. For the insertion loss, all the results were obtained with no mean flow. A

large amount of data were obtained and, for the sake of brevity, only relatively few of

the results are shown here. However, a larger number of the experimental data are

discussed later on in this thesis, where they are used for comparison to theoretical

predictions.

It was mentioned previously that a plain expansion chamber was fabricated in

order to validate the experimental method. The results for both the transmission loss

and the insertion loss without mean flow are shown in Figure 5.7. For both graphs the

solid line represents the measured data and the dashed line the theoretical predictions.

The theoretical predictions for the expansion chamber were supplied by Peat [106], and

since this thesis is concerned only with the modelling of dissipative silencers, the theory

behind the predictions is not given here. The theoretical method used to obtain the

numerical predictions shown in Figure 5.7 has been extensively compared to other

measured data for reactive silencers and shown to be accurate in the plane-wave

frequency range. It is evident for both the transmission loss and the insertion loss that

the predicted and measured data agree well. This is particularly true of the transmission

loss, where good agreement can be observed between 100Hz and 1.6kHz. This

represents a wider range of agreement than was expected after setting fmax to be I kHz.

The insertion loss data also show good agreement, especially at low frequencies, where
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prediction and measurement shows better agreement than is the case with the

transmission loss data. This effect is probably attributable to the aforementioned higher

"cut-off" frequency imposed by the impulse test technique used to obtain transmission

loss data. The troughs present in the insertion loss data occur because of resonance

effects in the pipes connected to the silencer, and the difference between the predictions

and measurements are likely to be partly caused by errors in the measurement of pipe

lengths and/or temperature. Nevertheless the insertion loss predictions agree closely

with measured data up to 1.6kHz, with the main discrepancies occurring at the peaks in

the data. The differences at the peaks are probably caused partly by the neglect of

acoustic boundary-layer attenuation in the theoretical model and partly by a lack of

sufficient sound energy in the test signal to ensure accurate measurement of the peaks.

However, a comparison between measurement and prediction for both the transmission

loss and the insertion loss indicates that both experimental methods give reliable data.

Once it was established that the experimental methods used were adequate,

measurements were performed on the dissipative silencers. Figure 5.8 shows

transmission loss plots for silencers 1, 2, 4 and 5. For silencer 1 (top left hand corner),

results are shown for no mean flow and it can be seen that a relatively smooth curve has

been obtained. It is noticeable that at frequencies up to 100Hz the data are negative, and

this is attributable to the errors incurred when the reflections are filtered out of the time

window. Although data are presented up to 2kHz, results above 1kHz should be treated

with caution. For silencer 2 (top right hand corner), measurements for the highest

obtainable Mach number (M=0.15) are shown. It can be seen that introducing mean

flow causes the plots to become more irregular because of flow noise, the effects of

which cannot be completely removed. Data are shown for silencer 4 in the bottom left

hand corner, the lower curve for M=0.15 and the upper curve for M=0. It is evident that

mean flow has brought about an overall drop in transmission loss. Indeed a systematic

reduction in transmission loss occurs when the mean flow speed is increased and this

can be seen in the measurements for silencer 5 (bottom right hand corner) where data

for each flow speed have been plotted; the upper curve is for M=0 and successively

lower curves are for M=0.05, 0.11 and 0.15. The insertion losses of silencers 1, 3, 4 and
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5 are shown in Figure 5.9. All the plots shown are for zero mean flow and the curves do

not show the undulations, caused by mean flow, that are evident in the transmission loss

data. For both the insertion loss and the transmission loss, the problems occurring in the

expansion chamber data are also evident for the dissipative silencers. With the

transmission loss, inaccuracies in experimental data occur below 100Hz although, as for

the expansion chamber, the data appear reasonable up to 1.6kHz. Clearly the

introduction of mean flow decreases experimental accuracy and this is particularly true

at the frequency extremes. The insertion loss measurements show better accuracy than

the transmission loss data at low frequencies (below 100Hz), although it appears that

50Hz is the lowest frequency at which the results can be relied upon. At frequencies up

to 1kHz, there is little to choose between the two methods in terms of accuracy, and at

higher frequencies, rather better accuracy can be expected from the insertion loss

technique.

It can be concluded that the transmission loss measurements do appear to be

reliable, at least within the frequency range 100Hz to 1kHz. The insertion loss data can

be used for comparison to theoretical predictions at the lower frequencies where

predictions by transmission loss measurements are inaccurate. The transmission loss is

the most straightforward quantity to predict theoretically, and therefore the bulk of

comparisons between theory and experiment, made later in this thesis, will be made on

the basis of transmission loss data.
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CHAPTER 6

A FUNDAMENTAL MODE APPROACH

TO MODELLING AXISYMMETRIC

DISSIPATIVE SILENCERS



Section 6.1

Introduction

The next four chapters in this thesis will concentrate on modelling the acoustic

behaviour of dissipative silencers theoretically. In Chapters 6 to 9 different methods

will be developed in order to predict both the transmission loss and insertion loss of the

five silencers measured in the previous chapter, and in Chapter 10 the relative merits of

each approach will be compared. Once the theoretical modelling of silencers can be

carried out it will become clear how important the bulk acoustic properties of the

absorbent and the perforate impedance (see Chapters 2, 3 and 4) are to the final results -

hence their inclusion early in the thesis. The most obvious place to start when

modelling silencers is to employ the simplest method available. In general, when

studying duct acoustics, the simplest approach available to the designer is to use a

fundamental mode model.

To introduce the concept of a fundamental mode model for dissipative silencers,

it is useful to first look at the case of a simple rigid walled pipe of circular cross section.

The sound pressure field in a rigid walled cylindrical pipe is governed by the acoustic

wave equation, which is a homogeneous second order partial differential equation. One

method of solving the wave equation is to use the standard mathematical technique of

separation of variables, and the general solution is obtained by writing the sound

pressure as an infinite sum of eigenfunctions which form a complete set. The

eigenfunctions are often known as modes of propagation. For hard-walled cylindrical

pipes, the eigenvalues corresponding to the various modes lie either on the real or

imaginary axes, but they are not complex. Depending upon variables such as excitation

frequency, diameter of pipe and ambient temperature, each mode is either "cut-on" or

"cut-off". The lowest mode propagates at all frequencies, whereas each higher mode

has a well defined cut-off frequency, below which it is evanescent and above which it is

propagating. At the cut-off frequency, the positive motion is normal to the pipe axis and

the axial phase velocity is infinite. The lowest mode is easily identified because it has
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the smallest eigenvalue of all the modes. For circular pipes with no mean flow, the

lowest eigenvalue is equal to the wavenumber of the gas contained in the pipe and is

real valued. This first mode is known as the fundamental mode and its eigenfunction is

independent of transverse position and equal to unity. Consequently the fundamental

mode has a pressure distribution which is uniform across the radial dimension of the

pipe and this has subsequently become known as a "plane-wave". Since the

fundamental mode is the only plane wave solution to exist for a hard-walled pipe,

models that include only the fundamental mode are known as plane wave models. The

plane wave approach to modelling hard-walled pipes is used extensively because the

exclusion of higher order modes does not appear to effect the accuracy of predictions for

most applications.

The fundamental mode approach can also be applied to dissipative silencers,

though the behaviour of the modes changes when a dissipative element is introduced

into the pipe. It is still possible to represent the sound pressure field in a dissipative

silencer as an infinite sum of eigenfunctions, although it has not been proved that these

form a complete set (this will be discussed in later chapters). In a dissipative silencer,

the dissipation of sound energy in the absorptive region causes the eigenvalues for each

mode to become complex and the fundamental mode is no longer a plane wave.

Furthermore, the "ordering" of modes becomes less clear-cut than it is in a rigid walled

duct. There are, in general, no well-defined cut-off and cut-on phenomena, and higher

order modes are capable of undergoing lower attenuations than the fundamental mode at

the same frequency. The "fundamental mode" may therefore not necessarily be the least

attenuated mode in a dissipative duct. The fundamental mode must be identified by

examining the mode shape (or eigenvector) as well as the eigenvalues of each of a series

of individual modes. By convention, the fundamental mode in a dissipative silencer is

taken to be the plane wave like mode (see Cummings and Chang [23]) and this is

usually less strongly attenuated than the first radial mode. The fundamental mode can

usually be easily identified by examining solutions at very low frequencies since at this

point the mode is usually very close to being a plane wave and is almost always the least

attenuated mode.
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In the literature, fundamental mode predictions have usually been performed by

approximating full modal solutions. Full modal solutions usually take the form of an

eigenvalue analysis of an infinite duct and this method has been widely covered in the

literature. Eigenvalue solutions for silencers of general cross sectional shape will be

discussed further in Chapter 8. The solution of particular interest here is the full modal

solution performed by Cummings and Chang [16] who calculated the attenuation of a

number of modes for an axisymmetric dissipative silencer. This solution is useful

because a simple analytical formulation of the problem was found, from which

eigenvalues were calculated numerically by using suitable initial guesses for the axial

wavenumber of an individual mode. Cummings and Chang included mean flow in both

the airway and the absorbent although they did not include a perforate and did not go on

to calculate the transmission loss. The transmission loss of a finite length silencer was

later calculated by Cummings and Chang by using a mode matching approach (see ref.

[23] and also Chapter 9). The approach to solving the eigenequation found by

Cummings and Chang was simplified by Peat [13] who studied only the fundamental

mode solution to the general eigenequation. Peat was able to remove the requirement

for an initial guess by using a low frequency approximation to the eigenequation, this

allowed the derivation of an explicit expression for the fundamental mode. It was also

shown, by using only the fundamental mode, that a simple expression for the

transmission loss could be found. Peat went on to show good agreement between the

fundamental mode predictions and the experimental data measured by Cummings and

Chang [23] for the transn-iission loss of a circular silencer. The results were also

included by Peat in a transfer matrix formulation, which potentially allows

incorporation of predictions into a complete model of an exhaust system, allowing

straightforward calculation of the insertion loss. Mean flow in the absorbent and the

effect of a perforate were omitted by Peat.

The fundamental mode solution implemented by Peat [13] is essentially a quasi

plane-wave approach to modelling dissipative silencers and this appears to be the most

straightforward method to be found in the literature. Consequently this method is to be

used here, especially since the results can be formulated as a transfer matrix, allowing

139



both the transmission loss and insertion loss predictions to be found in a straightforward

manner. The acoustic impedance of the perforate separating the airway from the

absorbent is also included in the model here. In the fundamental mode model it is

assumed that the cross-section of the silencer is axisymmetric, though, as previously

mentioned, predictions for irregular shaped silencers are also reported in this thesis. In

this chapter, the elliptical section silencers will be assumed to have a circular cross

section with a cross sectional area equivalent to that of the ellipse, in order to allow

comparisons between prediction and experiment to be made. This will provide a severe

test of the feasibility of using a plane wave model to tackle silencers of a general shape.

Furthermore, whilst Peat [13] compared predictions against experimental data for a

"small" silencer, the comparisons made here for larger silencers should provide a more

stringent test of the model.

Section 6.2

Governing Equations

The theoretical analysis presented here is based upon the fundamental mode

solution implemented by Peat [13]. The solution is an approximation to the full modal

solution presented by Cummings and Chang [16]. In this method, coupled modal

solutions are sought for the sound field in both the airway and the absorbent, with a

common axial wavenumber linking the two regions. This allows an eigenequation to be

written as a function of the axial wavenumber for an individual mode, from which it is

possible to write an analytical solution for the fundamental mode.

The geometry of the dissipative silencer to be studied in this chapter is given in

Figure 6.1 below:
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Figure 6.1. Geometry of dissipative silencer.

The dissipative silencer is assumed to be axisymmetric with a uniform mean flow of

Mach number M in the central channel (region 1). A perforate liner is present between

the central channel and the surrounding absorbing material (region 2). Mean flow in the

absorbent is assumed to be negligible.

The solution proceeds by first finding the wave equations for regions 1 and 2,

thus allowing a description of the sound pressure field throughout the silencer to be

written. The two wave equations are solved by separation of variables, and hence the

pressure fields are written as infinite sums of eigenfunctions. The two pressure fields

are then linked together by their common axial wavenumbers to form an eigenequation.

6.2.1 Acoustic Wave Equation in the Central Channel (Region 1)

The linearised Euler equation for the sound field in region 1, with mean flow in

the x direction only, is given by

1 Vpc_(9t1
p0

(6.1)
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where u' is the acoustic velocity vector, U = (u , o, o) is the mean flow velocity vector

(U0 being the mean flow velocity in the x direction), p0 is the mean fluid density, p' is

the acoustic pressure and t is time.

The linearised continuity of mass equation, for mean flow in the x direction

only, gives

+p0V.u+(U.V)p =0,	 (6.2)

where p' is a perturbation in the fluid density. To derive the wave equation, we must

first take the divergence of equation (6.1), i.e.

p0	
=V.—-+(UV)(V.u),	 (6.3)

and then differentiate equation (6.2) with respect to time, to give

- V.+(u.V)=o.	 (6.4)
c9u'

Multiplying equation (6.3) by p0 and subtracting from it equation (6.4) gives

V 2 pc_1+p0 (U .V)(V.u)—(U V)L = 0.	 (6.5)

Equation (6.2) can now be used to eliminate the particle velocity term from equation

(6.5) to give

V2pc__(U.V)(1+(U .V)P)(U .v)L = 0,	 (6.6)

and simplifying gives

v 2 pc_.L_2(U . v)(u . v)(u . V)p = 0.	 (6.7)
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If the fluid in the central channel is assumed to be non heat conducting and inviscid

(consistent with the use of the Euler equation), the isentropic relationship between

pressure and density holds, i.e.

p - 1
,	 2'

p 1	 c0

where c0 is the isentropic speed of sound. Substituting equation (6.8) into equation

(6.7) and re-writing gives

V2pc_I_2ihhu1_M2	 -o	 (6.9)c0dth

where the Mach number M = U0 /c0 . Equation (6.9) is the acoustic wave equation for

the central channel with uniform mean flow in the x direction only. For a time

dependence of e 0)t this can be re-written in the form

(6.10)
dx 2 rdr	 dr2

where k0 (= 0)/c0 ) is the wavenumber in the central channel.

A separated solution to equation (6.10) is now sought. The solution for p is

assumed to be of the form of an infinite sum of eigenfunctions, i.e.

Pc =	
+	 pn_IkrX	

(6.11)
n=0	 n=0

where P' is the modal coefficient, 'P" is the transverse modal eigenfunction, k is the

axial wavenumber and i refers to an incident wave, r to a reflected wave. For a single

propagating mode, in this case the fundamental mode, equation (6.11) can be simplified

to give

(6.8)
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= F P1eIr + FiPrje_xtx.	 (6.12)

The pressure field, defined by equation (6.12), is now substituted back into equation

(6.10) and, after simplifying, the wave equation becomes

(6.13)2	 rdr

where	 is the transverse modal eigenfunction (region 1) and k the axial wavenumber

for the fundamental mode for either the incident or the reflected wave. The general

solution to equation (6.13) is

t11 =AiJo(krir)+A(krir),	 (6.14)

where J, and } are Bessel and Neumann functions respectively, of order n, A1 and A2

are constants and kr1 is the radial wavenumber in region 1 and is given by

k 2 _k2_2Mk0k_(1_M2)k. 	 (6.15)r1 - 0

The pressure pj' must be finite at r =0, and therefore A2 = 0. A1 is incorporated into

the modal coefficient to give an expression for the incident wave of

p= pJ0(kr)e.	 (6.16)

Equation (6.16) gives the pressure field for region 1; the same must now be found for

region 2 which will then allow the two regions to be linked together.
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6.2.2 Acoustic Wave Equation in the Absorbent (Region 2)

A modified linearized momentum equation for the propagation of sound in a

bulk reacting porous material was given by Zwikker and Kosten [311 (see also equation

(2.46)), i.e.

q2(w)p0 du'
—Vp = —-+cT(w)u,	 (6.17)

where q 2 (w) is the dynamic tortuosity, a,(w) is the dynamic viscous flow resistivity

and	 is the porosity of the material. All these quantities were introduced in Chapter 2

and they are assumed to be independent of material orientation.

The linearized continuity equation for a porous material was also given by

Zwikker and Kosten as

9P2+PVUFO	 (6.18)

Proceeding in the same manner as for region 1, one may take the divergence of equation

(6.17),

q2(w)p	 du'

	

-V 2p--	 °V.--+a(w)V.u,	 (6.19)

	

-	
dt

and the time derivative of equation (6.18) gives

__	 du'
0	 (6.20)

Now u is eliminated from equation (6.19) by substituting from equations (6.20) and

(6.18) to give
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- PoP2
P2 - (6.22)

V 2 p —q(w) 
i:92p2
___-	 =0.	 (6.21)

p0dt

The relationship between the pressure and density in a porous material is given by [31]

as

where ic(co) is the bulk modulus of the porous material (see Chapter 2). Substituting

equation (6.22) back into equation (6.21) and assuming a time dependence of e t gives

________	 _____ '=0.	 (6.23)p2 —	 P2
ic(a)	 ic(w)

Equation (6.23) is the wave equation for a porous material, assuming that no mean flow

is present within the material. The wave equation can be re-written in a simpler form by

assuming a travelling wave solution of p	 (see for example Cummings and

Chang [40]), where the propagation constant F' (see Chapter 2) is defined by

r2=_pw2dI[1_i 

cr(w) 1
ic(w)	 cop0q2(w)]	

(6.24)

The wave equation for region 2 can now be written as

=0.	 (6.25)
rdr	 dr2

In accordance with the method used for region 1, a separated solution to equation (6.25)

is sought. An incident wave containing only the fundamental mode is considered here,

with the pressure field in the absorbent being given by

p = P2 W2e.	 (6.26)
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Substituting equation (6.26) into equation (6.25) and simplifying gives

2	 1	 22 +_--_i2[F2^kJ=o.	 (6.27)

The general solution to equation (6.27) is

W2 =B1Jo(kr)+B2}(kr),	 (6.28)

where B1 , B2 are constants and k,.2 is the radial wavenumber in region 2 and is given by

k, =_[F2+k].	
(6.29)

The boundary condition of zero normal particle displacement at the silencer walls

therefore applies:

atr=r2 , ?P2/=O,so

0= k[BiJ1(kr)+B2Y1(k,r2)], 	 (6.30)

and therefore

= 
Bi[Jo(kr2r)_ Yo(kr)J1(kr2)] 	 (6.31)

(i	 )

The pressure field in region 2 can now be written as

p = I[Jo(kr)_ 
Y0(kr)J1(kr)]	 (6.32)

i (i '-2)
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6.2.3 Boundary Conditions at the Perforate

The boundary conditions used to derive the two wave equations were zero

normal particle displacement at the walls of the silencer and finite pressure at the centre

of region 1. The remaining boundary conditions occur at the interface between the

porous material and the central channel; this links together the two solutions for regions

1 and 2. As usual, an infinitesimally thin boundary layer is assumed to exist in the

central channel, and therefore the appropriate boundary conditions at the perforate are

continuity of pressure and continuity of normal particle displacement. A simple way of

combining these two boundary conditions is to equate the "displacement impedance" on

either side of the perforate. The displacement impedance was defined by Cummings

[14] as

= p'/iwp0c0 ,	 (6.33)

where E is the displacement impedance, p' is the sound pressure, p 0 is the mean fluid

density, c0 is the speed of sound and	 is the radial acoustic particle displacement

component. The displacement impedances for regions 1 and 2 can therefore be written

as

,
Pi	 and E2e I = .	 =

iwpocO•
(6.34), (6.35)

The displacement impedances on either side of the perforate must now be related. Since

the impedance of the perforate () is given by

:=
1 (J)p0c0
	 (6.36)

where	 corresponds to the term z0 /p0c0 in Chapter 4, the relationship between

E and £2 at r = r takes the form of
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= U'
Dt	 'r' (6.39)

(6.37)

Equation (6.37) is the boundary condition at the perforate which links solutions found in

region 1 to those found in region 2. The assumption of an infinitesimally thin perforate

is implicit in equation (6.37), this approximation is valid since, for the perforates

studied here, the thickness of each perforate is very small compared to the dimensions

of the silencers. In order to implement equation (6.37), values found in Chapter 4 for

the perforate impedance are used and (rj) and E2 (rj) are calculated in the following

way:

6.2.4 Displacement Impedance for Region 1

In order to calculate the displacement impedance it is only necessary to consider

the normal acoustic particle displacement. The Euler equation in the central channel

(equation (6.1)) can be simplified to give

p0 c*	 dr	
(6.38)

where u1' is the acoustic velocity component in the radial direction. The radial particle

displacement is related to the radial velocity (see Cummings and Chang [16]) by

where D/Dt is the substantive derivative and for region 1,

D a	 a
(6.40)

Substituting equation (6.39) into equation (6.38) and eliminating Uç gives
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1 i ' -	
2U	 +UO2.L.	 (6.41)--:----	 °dx

If a time dependence of e 1'' is assumed and d/9x = —ik, then

__?i?L	 [w2 —2U0 ok1 +Uk],	 (6.42)
p0 c

and re-writing gives a radial particle displacement of

=
p0c[k0 - MkJ2	

(6.43)

The displacement impedance for region 1 is now found by substituting equations (6.43)

and (6.16) into equation (6.34) to give

	

i(k0 —Mkj2 J0(k)	
(6.44)

kokr	Ji(krii)

6.2.5 Displacement Impedance for Region 2

The derivation of the displacement impedance for region 2 proceeds along the

same route as for region 1, except that the substantive derivative is given by

Da
Dtat'
	

(6.45)

and therefore

;j:
-	

(6.46)

Substituting equation (6.46) into the momentum equation for a porous material

(equation (6.17)) gives
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poq2(w)jy ()i,	 (6.47)
dr	 ç	 dt

which can be simplified to give

pp0w2q 2 (co)r	 io(w)l ,
	 (6.48)

dr -

The definition of the propagation constant in equation (6.24) allows equation (6.48) to

be re-written as

ap - ic(w)F
(6.49)

The bulk modulus can be replaced by the bulk modulus for the bulk material by using

equation (2.30); the use of equation (3.12) then allows the radial displacement to be

written as

,_ i a
(6.50)

where Za is the characteristic impedance of the porous material (see Chapter 2). The

displacement impedance for region 2 is now found by substituting equations (6.50) and

(6.32) into equation (6.35) to give

Jo( kr ? )Y(kr i) - (kri)Ji(kri)1	 (6.51)

kr

6.2.6 Implementation of the Boundary Conditions at the Perforate

The displacement impedance boundary condition between regions 1 and 2 can

now be expressed by using equation (6.37) to give
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i[k0 - Mk]2 Jo(kij)	 (6.52)

k	 k0k

Equation (6.52) is an eigenequation written in terms of k, which may be written as

k,	
(k)(k)— (k,.,j)Ji(k)]{i[ko - MkJ2 J0 (k)— ckokr Ji(kriui)}

kokr [' Z,

- j, (k,.i r, ){ j0 (k, r1	 (k r) - i ( r ) .j1 (k r2 )J = o.	
(6.53)

Equation (6.53) is identical to the eigenequation found by Cummings and Chang [16]

except that the perforate included here introduces an extra term. The eigenequation can

be written as a function of the common axial wavenumber k by substituting

expressions for k,.1 and k, from equations (6.15) and (6.29) respectively.	 The

eigenequation is valid for any mode present in the assumed solution to equation (6.11).

In the paper by Cummings and Chang [23], the eigenequation was solved by using the

Newton-Raphson method from which a number of different modes was found, including

the fundamental mode, by using an appropriate initial guess for the wavenumber of each

individual mode. The problem with this method is that, although the fundamental mode

is usually easily found, it is possible that higher order modes might be missed due to an

inappropriate initial guess. A more reliable method for finding higher order modes

requires a completely different approach to solving the wave equation and this will be

discussed later on in the thesis.

The silencer model in this chapter is centred on the fundamental mode solution

to equation (6.53). For virtually every practical situation, the lowest eigenvalues (ks.)

are those of the fundamental mode at very low frequencies. An approximate explicit

solution to equation (6.53) has been found by Peat [13]. This was done by applying a

small argument series expansion to the Bessel and Neumann functions in the

eigenequation. The small argument, or low frequency, approximation ensures that only

the fundamental mode is found since there are only two eigenvalues that emerge from

152



this approximation, for the positive and negative propagating mode. Peat's fundamental

mode method is used here but only for very low frequencies.

In the following analysis separate solutions for the incident and reflected waves

appear once the eigenequation in k has been solved. A series expansion for Bessel and

Neumann functions with small arguments was given in Chapter 2 (see equations (2.51)

to (2.54)). if terms of 0((kri ri ) 2 ) and 0((kr2 1) 2 ) are neglected, the low frequency

formulation of equation (6.53) is

k 2	 1{i MKX I 2	0,	 (6.54)
1' Za S1	 k02

where K = k/k0 , and S1 irj2, 2 = jr(r2 _,2) are the cross sectional areas of the

central channel and the absorbent 'region respectively. So that equation (6.54) may be

solved analytically, K must be expanded in the form (see Peat [13])

K =a+13M+W 2 + 	 (6.55)

In the expansion of K, terms of 0(M 3 ) are neglected since in automotive exhausts M

is typically less than 0.3. It is helpful to re-write equation (6.54) to give

2
F1 k +k{[1_MK]2 +iCrJJ J=0,	 (6.56)

2 k0 
J

where

F--—'-
ik0 p0c0 2'	

(6.57)

and k and k, are given by equations (6.15) and (6.29) respectively, i.e.

k2 =k2hl
rj	 °I _2MK_(1_M2)K],	 (6.58)

and
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k2 =_k2[f_+K].	 (6.59)O12
[o

Substituting equations (6.58) and (6.59) into equation (6.56) allows the eigenequation to

be written in ascending powers of K, i.e.

F2-2MF2K–I—+F
rr2

Lo

(6.60)

where

F2 = F1 ----( 1+iC!Q1') and F = 1+i--.	 (6.61), (6.62)
2)	 2

The assumed form for K is

K = a+f3M+ M 2	(6.63)

K=a2+2aJ3M+(2ay+f32)M2, 	
(6.64)

K =a3+3a2$M+(3a2y+3a132)M2,	 (6.65)

K =a4+4a3/3M+(4a3y+6a2132)M2.	
(6.66)

Substitution of equations (6.63) to (6.66) into equation (6.60) gives

F-2ciF2M-2J3F2M2 _[a2 +2aPM+(2aY+P2 )M 2 ]{+ F +I}+a21M2

+2a3 F3 M+6a2f3FM 2 +( _1)[a4 +4a33M+(4cY*y+6a2f32)M2]_a4FM2 =0.

(6.67)

Terms containing similar powers of M, appearing in equation (6.67), are now equated

to give values for the coefficients a, /3 and 'y of
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+P]	 (6.70)

(6.68)2

—4i-1)]/2(	 i)}
Lo	 J

F—a2F

2(F_1)a2_[++F]	
(6.69)

IF2
4(F1-1)a-2a---+F+F

[0

If the values for the coefficients given above are compared to those found by Peat [13] it

is noticeable that two extra solutions appear for a. It is also evident that equations

(6.68) to (6.70) cannot be reduced to those found by Peat simply by setting = 0 since

the denominator of equation (6.68) is equal to zero when = 0. However it is possible

to compare solutions with and without the perforate in the model by taking to be very

small but non-zero. When this was carried out it was found that solutions for a

obtained by taking the negative square root inside the bracket, i.e.

+]_[+	
—4F(13 - 1)]/2(F -

	 (6.71)

produced results identical to those found when the perforate is not included in the model

(note that the positive root outside the brackets in equation (6.71) corresponds to the

incident wave, the negative root to the reflected wave). The two remaining solutions to

equation (6.68) are "non-physical", and correspond to taking the positive square root

inside the brackets, producing values for a tending towards infinity as 0.

Consequently only solutions for a given by equation (6.71) are considered here when

calculating values for K.
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6.2.7 Transfer Matrix or Four-pole Formulation

Once values have been calculated for K it is necessary to find the transmission

loss and insertion loss in order to allow a comparison with the experimental data in

Chapter 5. In the introduction to this chapter it was mentioned that it is desirable to

formulate solutions in the form of transfer matrices. For each individual component of

an exhaust system, such as uniform lengths of pipe, area contractions/expansions and

absorption elements, four-pole formulations can be derived. This involves relating the

state variables at the input of the component to those at the output, via four-pole

parameters. When the four-pole formulation is applied to acoustical problems, the

acoustic pressure and particle volume velocity are commonly adopted as the two state

variables. Therefore the transfer matrix for and individual element or number of

elements can be written as follows

Ip	 [A B11p01

tu'1j[C D]1Uouj	
(6.72)

where A, B, C and D are the four-pole parameters. It should be noted here that the

transfer matrix formulation always assumes a plane wave upstream and downstream of

the element. In order to formulate the transfer matrix for an individual silencer such as

the one considered in this chapter it is necessary to calculate the sound pressure and

axial particle volume velocity at x = 0 and x = 1, i.e.

Ip =0l [A B1IPx_i

t0t[c D]luiJ	
(6.73)

Once the transfer matrix has been calculated for each individual component in the

exhaust it is possible successively to multiply the four-poles to arrive at a final transfer

matrix which is a characteristic of the performance of the exhaust system as whole.

This method is obviously particularly useful for predicting the insertion loss of a
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complete exhaust system. A detailed account of the theory behind four-pole

formulations is given by Munjal [99.

Since the transfer matrix approach requires a plane wave at the inlet and outlet

of the silencer and the fundamental mode in a lined duct is not planar, it is necessary to

average the eigenvectors across the radial dimension in order to yield equivalent plane

wave quantities. Accordingly, the average sound pressure in regions 1 and 2 is given by

-,
P1,2 =	 e' + p i e"r1 ,r2 	'	 (6.74)

where

-	 2,r
JPi2rdr.	 (6.75)

S12 
1,2

The mean values for the eigenvectors are found by substituting equations (6.14) and

(6.28) into equation (6.75) to give

ii; =-_._J1(k,.,,),	 (6.76)k,.ij

and

	

= _[J(k)_ J1(k(k,)]	 (6.77)
kr1 2 [
	

(k)	
]

The formulation of the transfer matrix proceeds by finding p 01 and u 01 , where

1

= ,	
[s1 +s2 ] and U = S1u1'+S2u2'.	 (6.78), (6.79)

The mean sound pressure in region 1 is given by

-	 + p	 (6.80)

	

r	 r1
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and the axial particle velocity in region 1 is found from the momentum equation.

Equation (6.1), for propagation in the x direction only, gives

diZ'

p0 th:	 d0,	
(6.81)

therefore, assuming a time dependence of e'°1 and 9/dx = —ik, the average acoustic

particle velocity in the x direction is given by

-,	 1 

[P	

K.	 —ik.x	 -	 K	 —ik x i	 (6.82)
uxI =

poco	 1'(l—MK 
)e 

I +PFrI	
K)e r

xi

In region 2, the mean sound pressure is given by

=	 + J2eh!X,	 (6.83)

and the momentum equation, for propagation in the x direction only, gives (see

equation (6.17))

p0q2(w)	 '
(6.84)

Equation (6.84) can be re-written as

k PP e1X +k P 
eTX = p0o72(w) 

[i_ 
i2cr(w) -,

I	 xr r 2	 wpoq2(w)]tX2 .	 (6.85)

The right hand side of equation (6.85) can be simplified by substitution from equation

(6.24) and re-writing by using equations (2.30) and (3.12), i.e.

p0 oxj 2 (w) [1— ia (co) 1 Fza

L 
po2(w)]=i	

(6.86)
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The particle velocity in region 2 is therefore given by

-, ik0 
[K P'F e_jX + K pU =-X2	

['Za	
X1 I 1 2	 X r r2 (6.87)

Expressions for p and u can now be found by substituting equations (6.80) and (6.83)

into equation (6.78) and equations (6.82) and (6.87) into equation (6.79) to give

-ik x
p =	 + FFe

where

1
tT,r	

s, +s2 
[Sir +S2P2,r2],

and

U =	 + Ffre_i!X,

where

Xj,r	 I	 I

p0c0I (1MK ) F z

K	 S'I•r	
+P2S22r2].

[	 Xj,r

(6.88)

(6.89)

(6.90)

(6.91)

Therefore at x=0 andx=l, p and u are given by

p(l) = 1'Pe 
111 + Fi;:e_ikxrl,

U(0)=Ifi+Ffr,

-ik
u(l) = If1e Xj' +

(6.92)

(6.93)

(6.94)

(6.95)

The transfer matrix for the silencer is found by eliminating 1 and r from equations

(6.92) to (6.95) to give
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[p(0)l -	 1	 fr'" —'fe'	
(er' _e") i[p1

[u(o)j - [ fr _fd[ f1f1 (e	 _er')	 fre	
_ifieikxIl]Lu(l)l•

(6.96)

The four-pole parameters A, B, C and D are found by comparing equation (6.73) with

equation (6.96). The transmission loss (TL) is then calculated from the four-poles (see

Munjal [99] and Peat [13]) in the following way:

TL = 101og10 A ++Cz + D,	 (dB)	 (6.97)

where z p0c0/S1.

Section 6.3

Results and Discussion

There are two different methods available for calculating the transmission loss of

silencers using the fundamental mode approach. The first method, used by Peat [13],

involves approximating the Bessel and Neumann functions appearing in the

eigenequation and also introducing an approximate solution for the axial wavenumber.

The approximation to the full eigenequation is given by equation (6.54), and

approximating the axial wavenumber allows the solution to be written in the form given

by equation (6.67). Peat introduced a further simplification by approximating the Bessel

and Neumann functions in the eigenvectors of equations (6.76) and (6.77) and this gives

values for 'P and % of unity. The second approach to finding the common axial

wavenumber, and hence the transmission loss, is to solve the full eigenequation

(equation (6.53)) directly by using an approach such as the Newton-Raphson method,

and this approach is termed here the "full fundamental mode solution". This method for

solving the eigenequation was used by Cummings and Chang [16] and requires an initial

guess for the axial wavenumber in addition to numerical algorithms for the Bessel and
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Neumann functions. The full solution also requires the mean values for the

eigenvectors 'P and P2 to be calculated exactly.

The results published by Peat [13] were for a "straight-through" silencer of

outside diameter 76mm and inside diameter 39.6mm. Peat found that, for frequencies

up to 2.5kHz, the solution remained accurate to within 1.5% of the full fundamental

mode solution. However, solutions were not presented for "larger" silencers where it is

expected that errors associated with the approximations present in Peat's method will

become more apparent at lower frequencies. The validity of the approximate

fundamental mode solution can be found by examining the terms involving kr1 and k,.

These are the terms contained within the Bessel and Neumann functions in the

eigenequation, and terms of O((kr ri ) 2 ) and O((k r2 r2 ) 2 ) were ignored in order to

formulate equation (6.54). In Figure 6.2, the complex moduli of krili and k,r2 are

shown for both the silencer used by Peat and silencers 1 and 2 that are discussed in

Chapter 5. It is evident from Figure 6.2 that the approximations used by Peat were valid

for his silencer across the entire frequency range studied, though when larger silencers

are used the approximations appear to be in error across a wider frequency range.

Therefore, for the silencers measured in Chapter 5 it is necessary to employ the full

fundamental mode solution. This does not present any problems since computational

Bessel and Neumann routines are readily available. It is also possible to use the

approximate method of Peat to find an initial guess for k at very low frequencies in the

region where Figure 6.2 indicates the method to be valid, and this procedure was

adopted here. Once an initial guess has been found, it is used to initiate the Newton-

Raphson procedure for solving equation (6.53) at a higher frequency. This procedure is

then repeated by using the new solution for k as an initial value in the iteration until the

desired frequency range has been covered. Consequently, the approximate method of

Peat is very useful for ensuring that the fundamental mode is found for every silencer

and this is the reason why the method has been discussed in full in this chapter.

The fundamental mode solution is only applicable to axisymmetric silencers and

therefore the results for silencers 1, 2 and 3 will be discussed here first. Transmission

loss predictions using the full fundamental mode solution, ignoring the perforate, are
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compared to experimental data for silencers 1, 2 and 3 in Figure 6.3 (M=O) and Figure

6.4 (M=O. 15). The results indicate good agreement between theory and experiment,

especially for the smaller diameter silencers 1 and 3. The accuracy in the predictions

appears to be reduced at higher frequencies, and this is probably because of the neglect

of higher order modes, although conclusions based upon experimental data above 1kHz

should be treated with caution (see Chapter 5). The predictions for silencer 2 appear to

contain the largest errors and again this is probably caused by the neglect of higher order

modes, particularly since higher modes begin to be relatively lightly attenuated at lower

frequencies in silencers of large outside diameter. However, it is possible that omitting

the perforate from the model has also affected the accuracy of the predictions for all

three silencers and that errors are not just a result of the omission of higher order modes;

this question will be discussed later. A comparison between the full fundamental mode

predictions and the approximate solution revealed differences between the solutions of

up to 5% for silencer 2. Such a small error is somewhat surprising considering the

magnitude of k,.i r1 and k r in Figure 6.2. Therefore, especially in the low to middle

frequency range, it appears that the approximate method provides predictions

comparable in accuracy with those obtained by using the full fundamental mode

solution.

The effect of including the perforate in the model will now be examined. The

acoustic impedance of perforates subjected to grazing flow was discussed in Chapter 4

and the values obtained for (equal to z0 /p0c0 ; see Chapter 4) are included in the

model here when M ^ 0. For the case of no mean flow, values for the perforate

impedance without porous backing (C) are given (see Ingârd [75] and Sullivan [107])

by the expression

=	 + ik0 (t + 0.75d),	 (6.98)

where t is the dynamic viscosity of the gas, t is the hole depth and d the hole

diameter. The effect of the porous material upon the mass end correction can be
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accounted for in the same manner as for the grazing flow predictions in Chapter 4.

Therefore the perforate impedance () without flow is given by

=_L_('1
p0c0 L	

+ ik0 (t + o.75d)^ 0.425dko [_. -_f_ i]	 (6.99)

where Za is the characteristic impedance and F the propagation constant of the porous

material. A similar method was used by Bolt [108], who studied the absorption

coefficient of a perforate plate backed by a locally reacting porous absorber. Bolt, who

neglected the viscous resistance, added the mass reactance of the holes to that of the

porous material to predict the combined effect of the perforate plus absorbent. The

absorption coefficient of the porous material with a perforate facing is then read directly

from a design chart, given a knowledge of the acoustic impedance of the unfaced

material. The effect of the porous material on the acoustic impedance of a perforate has

been found to be considerable (see Chapter 4). From the results of the experiments on

perforates subjected to grazing flow, it was concluded that adding the effect of the

porous material to the empirical results obtained in the absence of the porous material

(as above) was valid. The empirical prediction of the acoustic impedance of perforates

without grazing flow has been widely covered in the literature and hence it was felt

unnecessary to perform further experiments, especially in view of the fact that the

addition of the porous material dominates the acoustic impedance of a perforate.

The effect of adding the perforate impedance to the full fundamental mode

solution is shown in Figure 6.5 for silencers 1 and 3 (note that the same perforate, plate

3, Table 4.1, has been used in all the silencers; for this, t = 1mm, d 3.5mm and the

porosity of the plate is 27.2%). It is evident from Figure 6.5 that the perforate has a

substantial effect upon the predicted transmission loss for silencer 1, but not for silencer

3. The large effect in the case of silencer 1 occurs because the perforate is backed by E

glass, which has a high flow resistivity and hence introduces a much larger effect upon

the mass end correction. In contrast, silencer 3 is backed by A glass which has a

relatively low flow resistivity and therefore contributes a much smaller effect. The
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qualitative trend in the results found by adding the perforate is similar to that found by

Peat [109]; for instance, when the perforate impedance is small the transmission loss is

increased only slightly at the higher frequencies, but if the perforate impedance is large

then the transmission loss is increased at lower frequencies and reduced at higher

frequencies. This comparison appears to indicate that the incorporation of the perforate

into the fundamental mode model in this chapter is correct.

A comparison between measurement and prediction for the transmission loss of

silencers 1, 2 and 3, with a perforate present, is shown in Figure 6.6 (M=0) and Figure

6.7 (M=0.15). It is evident from a comparison of the results with those in Figures 6.4

and 6.5 that the inclusion of a perforate in the model has increased the accuracy of the

predictions, especially at higher frequencies (above 1kHz). However, it is difficult to

draw any firm conclusions concerning the higher frequencies because of the uncertainty

over the accuracy of the experimental data. At lower frequencies (100-1kHz), the

experimental data are more reliable and it appears that predictions are more accurate for

silencers 2 and 3, but less accurate for silencer 1. Unfortunately it is difficult to asses

thoroughly the accuracy of the predictions made by including the perforate in the model

since only the fundamental mode has been used in the modelling. For silencers of a

similar size to silencers 1, 2 and 3, higher order modes can have relatively little

attenuation at comparatively low frequencies and this is likely to influence the

transmission loss. Consequently it is possible that any improvement found in the

predictions shown in Figures 6.6 and 6.7 could be fortuitous, especially as it is

anticipated that the acoustic impedance of the perforate may have been overestimated

because of irregular packing of the absorbent (see the discussion in Chapter 4).

Therefore, for definite conclusions to be drawn concerning the modelling of the

perforate in the manner described here (and hence the accuracy of the fundamental

mode model) a more comprehensive silencer model must be implemented, which at

least accounts for the presence of higher order modes. Furthermore, an examination of

the results for silencer 2 indicates that, even accounting for possible inaccuracies in

prediction of the perforate impedance, higher order modes must be included in the

solution since the quality of the predictions is poor. This effect is even more obvious
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when the fundamental mode solution is applied to silencers of non-circular cross-

section, such as ellipses. Obviously, the model described in this chapter can only cope

with axisymmetric silencers, and therefore silencers 4 and 5 are treated here as circular

cross-section silencers with an outer cross-sectional area equivalent to that contained

within the ellipse. The equivalent outer diameter of silencer 4 is 16 1mm and that of

silencer 5 is 139mm. A comparison between prediction and experiment for the

transmission loss of silencers 4 and 5 is shown in Figure 6.8 (without a perforate) and

Figure 6.9 (with a perforate). It can be seen from Figures 6.8 and 6.9 that the

predictions and measurements agree well for frequencies up to approximately 800Hz for

silencer 4 and 500Hz for silencer 5. At higher frequencies the three dimensional nature

of the silencers causes the predictions to differ considerably from the experimental data.

It is evident from a comparison between silencers 4 and 5 that the fundamental mode

solution is less accurate for the more "squashed" of the two ellipses (silencer 5).

Therefore it appears that at low frequencies the transmission loss of a non-

axisymmetrically shaped silencer can be predicted with reasonable accuracy by using

the fundamental mode model, but as the silencer departs further from axisymmetry, the

upper frequency limit at which acceptable accuracy can be found is reduced.

The fundamental mode model used in this chapter can be seen to perform very

well, taking into account its relative simplicity. It is possible that, if models for

axisymmetric dissipative silencers are required, which need to be computationally very

fast and do not require a high degree of accuracy, then a fundamental mode model (full

or approximate) will suffice. However, for silencers of arbitrary cross-sectional shape

anchor large outside diameter, then a more complex model is required, which will allow

properly for the cross-sectional geometry and account for higher order modes.

Moreover, in the context of this thesis, a more accurate model is required in order to

examine further the effect of the perforate, and to allow conclusions to be drawn on the

possible overprediction of the effects of the porous material on the perforate impedance.
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CHAPTER 7

THE FINITE ELEMENT METHOD

APPLIED TO-DISSIPATIVE SILENCERS



Section 7.1

Introduction

In the previous chapter theoretical predictions of silencer transmission loss were

obtained by using a quasi plane-wave approach, but correlation with experimental data

was found to be poor in certain cases, especially for silencers with a large diameter

andlor oval cross section. Consequently a more complete approach to modelling

dissipative silencers is required, and this must account for effects such as the

propagation of higher order modes and the three dimensional nature of a general

silencer. The modelling of silencers with an arbitrary cross-sectional shape, such as an

oval, inevitably requires the use of numerical techniques which allow irregular shapes to

be tackled, though this does require a much higher degree of computational effort as

compared to an analytical solution such as the one described in Chapter 6. In a

commercial environment a consideration of the computational effort or cost required in

modelling exhaust systems may be important and this must be balanced against the

accuracy required in the predictions. In this chapter a fully three dimensional finite

element numerical solution is described, which is probably the most computationally

expensive approach to modelling a dissipative silencer. The model is probably too

computationally demanding for use in most commercial design procedures, but as a

completely general model it is useful for providing "benchmark" theoretical predictions.

Later in this thesis, less complex models are described and the numerical predictions

thereby obtained are compared to those presented in this chapter, which allows

conclusions to be drawn concerning the required degree of refinement and adaptability

that the model must have in order to yield acceptable results. Obviously, with the

continual advancement in computer technology, it is possible that in the future the

model derived here will become more readily usable in a commercial environment.

Finally, the implementation of a completely numerical solution, with its associated

improved prediction accuracy permits the further examination of the acoustic behaviour
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of the perforate, from which definite conclusions on the values used for the acoustic

impedance can be made.

Numerical methods for solving the partial differential equations that govern

problems such as the one studied here have been widely implemented, especially in

recent years with the advancement in computer technology. Perhaps the three most

commonly used approaches available for solving partial differential equations

numerically are: finite difference, finite element and boundary element methods. The

simplest approach is to use a finite difference scheme, which involves splitting up the

domain of the problem into a grid in which a differencing approximation is applied to

each interior point. Unfortunately finite difference methods are not ideally suited to

cope with awkward geometries, and furthermore it is not straightforward to implement a

spatially varying grid spacing, and this makes it unsuitable for use with variables that

may have locally large gradients. Consequently finite differences are rarely used to

study acoustical problems and find wider uses in computational fluid dynamics; finite

and boundary element techniques are most commonly used in acoustics and vibration.

The finite element method involves dividing the domain into small finite segments, and

the behaviour of a variable (in this case sound pressure) is then described by the

governing differential equation over each element. The variable distribution across the

whole domain is found by combining all the elements that make up the domain. The

finite element method is the most general of the aforementioned three numerical

techniques since it can be applied directly to the governing differential equations. In

addition, the method can cope with complex geometries, locally large gradients in the

field variable and linear or non-linear governing equations; additionally, displacement

or pressure boundary conditions may be specified at any point within the domain. An

alternative to the finite element method is the boundary element method in which,

instead of the entire domain being divided into elements, only the boundary of the

domain is divided into elements. This obviously has the advantage of reducing the

number of elements required and hence provides computationally faster solutions than

those obtained by using the finite element method. However the boundary element

method requires fundamental solutions to be found for the governing differential
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equations which are then transformed into integral identities and numerically integrated

over each element on the boundary. Like finite element, the boundary element method

is capable of coping with complex geometries and rapidly changing variables, but it

cannot cope with non-linear variables.

Since the finite element method is the most general of the numerical techniques

it has undergone the widest application to engineering problems. The field of duct

acoustics reflects most other engineering disciplines in that the finite element method is

much more widely established than boundary element methods. Boundary element

methods have been successfully developed in duct acoustics, for example Zhenlin et al.

[110] modelled a reactive silencer with mean flow, but this has been confined to the

study of reactive elements because a fundamental solution to the governing equation in

the absorbent region is, at present, unobtainable. Consequently the finite element

method provides the only viable numerical technique for examining dissipative silencers

with complex shapes.

The foundation for the use of the finite element method in acoustics was laid by

Gladwell and Zimmermann [1111, who described how acoustic problems could be

written in a variational form. Young and Crocker [112] then derived a variational

statement for a simple reactive muffler without mean flow in the central channel, they

were then able to show how the finite element method could be used to provide an

approximate solution to the governing equations. Young and Crocker showed that any

degree of accuracy for the solution could be obtained since it converged to the exact

solution as the number of elements were increased. Young and Crocker later went on to

include flow reversing chambers in their model (see reference [113]) although they

again neglected mean flow and used only simple two dimensional rectangular finite

elements with variable thicknesses, and this restricted the analysis to rectangular

sections. Craggs [114] found that expansion chambers with a circular cross section

could be more successfully modelled by using hexahedral elements. Kagawa et al.

[115] also studied reactive silencers without mean flow but were able to model silencers

of arbitrary non-uniform circular cross section. The effects of uniform mean flow on

non-uniform ducts containing locally reacting walls was later studied by Astley and
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Eversman [116]. The effect of mean flow on a hard walled reactive silencer was studied

by Peat [117], who used finite elements to calculate the four pole parameters for a

silencer. The effects of dissipative elements such as porous materials were first studied,

with the use of the finite element method, by Kagawa et al. [118], who introduced small

amounts of a locally reacting porous absorbent onto the walls of a simple expansion

chamber. Craggs [24] also studied the effect of porous materials by using a locally

reacting model but varied the thickness of the porous material in the model; the surface

impedance of the material was predicted by using the formulae of Delany and Bazley.

Neither Kagawa et a!. [118] nor Craggs [24] included mean flow in the central channel.

The effects of mean flow in the central channel were first incorporated in finite element

models of dissipative silencers in the context of cross-sectional eigenvalue problems for

infinite silencers. Astley and Eversman [119] studied axisymmetric and two

dimensional flow ducts with locally reacting soft walls and found that an acceptable

degree of accuracy could be achieved by using quadratic shape functions coupled with a

modest number of elements. Later, Astley and Cummings [17] introduced an

eigenvalue solution for silencers of arbitrary cross-section that included both mean flow

and a bulk reacting liner; they then applied their model to rectangular ducts lined on all

four walls. The finite element method was applied to finite length dissipative silencers

by Christiansen and Krenk [120], who calculated the insertion loss of a silencer with a

bulk reacting liner by using a recursive technique, although mean flow in the central

channel was omitted. Mean flow in the central channel was added to finite element

models of finite length dissipative silencers by Hobbeling [25] and later by Peat and

Rathi [26]. In addition Peat and Rathi accounted for mean flow within the absorbing

material itself; they computed this flow field, induced by axial pressure gradients, by

using a finite element formulation. Peat and Rathi also accounted for the anisotropy and

inhomogeneity brought about in the porous material when non-uniform mean flow is

present. The results of Peat and Rathi were incorporated in four-pole parameters, from

which predictions for the transmission loss were found. Although the model of Peat and

Rathi is completely general, they only found transmission loss solutions for

axisymmetric silencers, and a perforate between the central channel and the absorbent
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was not included. A full description of the model derived by Peat and Rathi is also

given by Rathi [18], where a formulation is additionally given for a silencer with a non-

uniform central channel.

The approach of Peat and Rathi [261 appears to be the most general method for

modelling dissipative silencers to be found in the literature since it accounts for both

mean flow in the central channel and the presence of a bulk reacting absorbent.

Therefore this method was adopted here and will be described in the following section,

although the effects of mean flow in the absorbent are ignored and absorbent material

properties such as the propagation constant and characteristic impedance are considered

to be independent of material orientation (i.e. the absorbent was assumed to he

isotropic). The model will be extended to include a perforate between the central

channel and the absorbent since earlier chapters indicate that this can have a significant

effect on the final results. Solutions will also be presented for three dimensional

silencers, namely the elliptical silencers 4 and 5 from Chapter 5. The resu! will then

be compared to the experimental data presented in chapter 5 to irdicat rnits on

the accuracy of predictions made by using numerical techniques.

The finite element computer code	 1mented ir	 cç;	 iod

from a program originally written by Rathi [121]. The program was

of examining only two specific silencers, namely the two circular silencer; which appear

in the study by Peat and Rathi [26]. The a	 r odified ..	 im

of two dimensional silencer to be studied and also i.0	 i number of

absorbing materials, using the semi empirical model of Ch2lcr 3, into the progan In

addition, new coding was intD	 I tø	 føi th	 T	 1iZr Lki

silencers and also the inclusion of a perforate.
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Section 7.2

Governing Equations

The finite element analysis of dissipative silencers presented in this chapter is

based upon the method used by Peat and Rathi [26] (see also Rathi [18]). However

mean flow in the absorbent is ignored here and a perforate is included, separating the

central channel from the absorbent material. The porous material is assumed to be

isotropic, and this permits the simplification of the wave equation in the absorbent

region. The inclusion of the perforate in the model has the effect of modifying the

continuity of pressure boundary condition at the interface between the central channel

and the absorbent. This problem wis tackled in the previous chapter by expressing the

pressure and particle displacement boundary conditions in terms of a displacement

impedance, but for the analysis presented here it is more straightforward to implement

the pressure and displacement boundary conditions separately. The general governing

wave equations for both the central channel and the absorbent are identical to those used

for the fundamental mode solution in the previous chapter, but now, instead of using

separation of variables to solve the equations, they are solved directly by using finite

elements to provide an approximate solution. This has the benefit of allowing silencers

with a general shape to be modelled although it should be noted that the central channel

must remain uniform in the following analysis.

The geometry of the dissipative silencer to be studied in this chapter is given in

Figure 7.1 below.
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rforate

Figure 7.1. Geometry of general silencer.

The silencer is assumed to consist of a uniform central channel (region 1) which

carries a uniform mean flow of Mach number M, in the x direction only. The central

channel extends beyond the absorbent box in the form of inlet and outlet pipes which

are of sufficient length to allow the assumption of plane waves at the boundaries

F1 and F0 . Extended inlet and outlet pipes are important because the problem is

eventually formulated into a transfer matrix and this requires plane waves at the input

and output. The perforate liner is used to separate the central channel from the

surrounding isotropic porous material contained in a box of arbitrary shape (region 2).

The perforate lies on the boundary in Figure 7.1. The outer walls of both region 1

and 2 are assumed to be rigid and impervious, and are denoted by F, 1 and F,2

respectively, or collectively by F (= F 1 + 2)•

The solution proceeds by first finding the wave equation for regions 1 and 2.

Solutions to the wave equation are then found by using the weak Galerkin formulation,

the two governing equations being linked by the pressure and normal particle

displacement boundary conditions at the common boundary F. The assembly of the

final stiffness matrix is then carried out by using the gradient evaluation approach

described by Peat and Rathi [26]. In Section 7.4, the numerically predicted transmission

loss for the axisymmetric and elliptical silencers described in Chapter 5 will be
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compared to measured data. A description of the finite element meshes that were used

to generate the predictions will also be given in Section 7.4.

7.2.1 Acoustic Wave Equation in the Central Channel (Region 1)

The wave equation for the central channel, assuming mean flow in the x

direction only, has been derived by combining the linearised Euler and continuity

equations (see Chapter 6) to give

1 d2P2MPM2d2PI'O
c dx9t	 - ,
	 (7.1)

where p1' is the acoustic pressure in region 1, t is time, c0 is the isentropic speed of

sound and M is the mean flow Mach number. Taking a time dependence of ei0ut allows

the wave equation to be re-written as

V2pj?_2ikoM_M2	 (7.2)

where k0 (= w/c0 ) is the wavenumber in the central channel, w being the radian

frequency.

7.2.2 Acoustic Wave Equation in the Absorbent (Region 2)

The wave equation in region 2, assuming that there is no mean flow in the

absorbent and the material is isotropic, is given by (see equation (6.25))

V 2p—F 2 p =0,	 (7.3)

where p is the acoustic pressure in region 2 and F is the propagation constant of the

material, defined in Chapter 2.
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7.2.3 Boundary Conditions

In accordance with Peat and Rathi [26], the acoustic particle velocity normal to

the impervious boundary F (where F = r , + 'w2) is taken to be zero, i.e.

Vp'n=O on
	

(7.4)

for regions R 1 and R 2 , where n is a unit normal vector to the boundary. On the

common boundary F, one must enforce the boundary conditions involving normal

particle displacement and continuity of sound pressure.

The acoustic pressure boundary condition on the common boundary is modified

from that used by Peat and Rathi [26] because of the presence of the perforate. In the

model presented here the perforate is assumed to be infinitesimally thin and hence the

perforate links together the pressures on either side of [' in the following manner (see

Chapter 6)

,-= pi'—p	 on ['s,	 (7.5)
1 (Dp0c02

where 4 is the dimensionless acoustic impedance of the perforate (corresponding to

z0 /p0c0 in Chapter 4), c is the particle displacement component in region 2 normal to

F and p0 is the mean fluid density. The choice of in equation (7.5) allows for a

more convenient implementation of the boundary conditions later in the analysis;

identical results could equally be found by choosing . To allow for the

straightforward use of equation (7.5) it is convenient to re-write the equation in terms of

the acoustic particle velocity vector u, which is given (see equation (6.45)) by

-	 (7.6)
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where	 is the particle displacement vector in region 2. If a time dependence of e' is

assumed then equation (7.5) can be re-written as

1
[Pc2 PciJ'	 (7.7)

p0c0

where n 2 is the unit normal vector in region 2 and p is the pressure on boundary l' in

either region 1 or 2.

The other boundary condition at the perforate is now formulated, namely the

continuity of normal particle displacement, which gives

1Tc'	 (7.8)

where is the particle displacement vector in region 1 and c is the unit normal

vector to the boundary Fc. An expression for the normal particle displacement in region

1 was given in the previous chapter (see equation (6.39)) and, for a time dependence of

e1Wt, this gives

=____
iM aT	

(7.9)
____

The substitution of equations (7.6) and (7.9) into equation (7.8) gives

r i/VIal (7.10)
k0dx]

where the unit normal vector n on the left hand side of equation (7.8) has been

replaced by n1 and n =n =—n2

In order to formulate the overall solution of the problem in terms of four-pole

parameters, Peat [117] showed that it is necessary to solve the entire problem twice.

This involves implementing two independent sets of boundary conditions on the inlet
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and outlet of region 1 (F1 and F0 ). From here, the transmission loss of the overall

system can be evaluated. The two different sets of boundary conditions were defined by

Peat [117] as

constant on F1 , p = 0 on F0	(7.11), (7.12)

and

p=constantonF1, u =0=--ik0 Mp 1 onF0 .	 (7.13), (7.14)

Section 7.3

Finite Element Discretization

In this section, the numerical solution of the wave equations in both the central

channel and the absorbent by the finite element method is described. The theory

underlying the finite element method has been extensively covered in the literature (see

for example Zienkiewicz [122]) and does not therefore require detailed repetition here.

However the basic procedure which underlies the finite element method, involves

dividing the domain of the problem up into elements which are used to represent the

sound pressure by use of an arbitrary interpolation function. The interpolation function

or "shape function" is usually chosen to be a low order polynomial, and in general

quadratic polynomials are used here (see Section 7.4 for a more complete discussion on

the elements used). The shape functions are local, element-based functions and they

assume a value of one at the node to which they refer and the value zero at all other

nodes on the particular element. Since adjacent elements share common nodes, a single

node is associated with the shape functions throughout all the elements which contain

that node. One can then define global, nodal-based interpolation functions, which are

the sum of all the element based shape functions relating to a single node, and these are

known as global basis functions. Therefore, for an individual node, the global basis

function is zero over all the elements which do not contain that particular node.

184



The solution method employed in the present investigation is the method of

weighted residuals, in particular the Galerkin approach, since this allows the finite

element equations to be derived directly from the governing wave equations. It may be

noted that this technique does not require the derivation of a functional, as would be the

case in the variational approach. The Galerkin method is a particular form of the

weighted residual method, which specifies the global basis functions as the weighting

functions. The "weak" Galerkin formulation, which was also used by Peat and Rathi

[26], is implemented in order to reduce the maximum order of the derivative terms in

the governing differential equations. This is important since it reduces the derivatives to

first order only and this allows finite elements to be used which require only the

acoustic pressure to be continuous at the interface between each element. If second

order derivatives remain in the final equations then one must ensure that the elements

also satisfy continuity of the derivative of the acoustic pressure at inter-element

boundaries, and this requires the use of a much more complex element. The use of the

weak Galerkin formulation thereby allows the use of simple elements which need only

satisfy continuity of acoustic pressure and these elements are known as C° continuous

elements. Elements which are required to satisfy continuity of the first derivative of the

acoustic pressure at the inter-element boundaries are known as C' continuous elements,

and so on.

We can approximate the solution to the wave equation in region 1 by a trial

solution,

N1

p i•	 1vJ p ;'J ,
	 (7.15)

where	 (x,y,z) are the global basis functions, p 1'1 is the value of pç at the jth node

and N 1 is the number of nodes in region 1. Applying the Galerkin formulation to

equation (7.2) gives

$	
1=1.......,N,,	 (7.16)
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where [M] is a diagonal matrix given by

(1M2) 00	 (7.17)
[M]=	 0
	

1 0.

0
	

01

The application of Green's theorem to equation (7.16) gives a weak Galerkin

formulation of

5VvJ1 . [MJVpc+2iMko vf1 --_ko2 vJi pi )dV=51v1 [M]Vpj . n 1 dF.	 (7.18)

Substituting the assumed trial solution from equation (7.15) into equation (7.18) gives

[.
	 [M]V/1 +2iMko V'i	 =5i1[M]Vp.n1dF,

(7.19)

The wave equation for region 2 is solved in a similar manner, where the

approximation to the acoustic pressure is given by

N2

p
	

(7.20)

where N 2 is the number of nodes in region 2. Applying the Galerkin formulation to

equation (7.3) gives

5
,1(v2p_r2p)dv=o, 1=1...... . ,N2.	 (7.21)

The application of Green's theorem to equation (7.21) gives a weak Galerkin

formulation of
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5(v1y1.vp+F211p)dv=$1yiVp.n2dF. 	 (7.22)
R 2 	r2

Substituting the assumed trial solution from equation (7.20) into equation (7.22) gives

N2 r

J(v, .V	 = $ 1 [G]Vp .n2,	 (7.23)
i=i [i r2

7.3.1 Matching of the Acoustic Fields

The finite element meshes for regions 1 and 2 must be matched together using

continuity of pressure and displacement at each node along the boundary	 However

the inclusion of the (infinitesimally thin) perforate along this boundary means that the

two regions do not share a set of common nodes. This is evident in equation (7.7), since

must contain nodes on the boundary 	 in region 1, whereas p2 must contain

nodes on the boundary F in region 2. This represents an important difference between

the present model and that used by Peat and Rathi [26] since they were able to combine

the pressure on either side of the boundary into a common node because 	 =	 = p.

The use of the perforate here requires the finite element mesh to be constructed so that

the number of nodes on the common boundary is doubled as compared to an

equivalent mesh based on the method of Peat and Rathi; half the nodes on [' exist in

region 1 and half in region 2. Unfortunately this complicates the generation of the finite

element mesh, the consequences of which will be discussed later on in this chapter.

In addition to the boundary conditions at the perforate, the governing equations

must be solved subject to the hard-wall boundary condition (equation (7.4)) and the

inlet/outlet conditions given by equations (7.11) to (7.14). The hard-wall boundary

condition implies that the surface integral in region 2 (right hand side of equation

(7.23)) is zero except on the perforate boundary F, since F'2 = F2 + ['a. Similarly, the

surface integral on the right hand side of equation (7.19) is zero over although, in

addition to a contribution along ['a, one must also include contributions from the inlet

and outlet surfaces F1 and F0 . The additional inlet/outlet boundary conditions
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associated with equations (7.11) and (7.14) must also be implemented on F1 and F0,

Peat and Rathi [26] noted that these are variously Dirichlet, Neumann and Cauchy

conditions which can be implemented in the standard way (see Zienkiewicz [122]).

The combination of inlet and outlet boundary conditions on F1 and F0 are

grouped together here to form the forcing vector f1 . If the surface integrals associated

with the right hand sides of equations (7.19) and (7.23) form the vectors f and f

respectively then equations (7.19) and (7.23) can be written in matrix form, i.e.

[K 1 , K 1 11p i } { fi}	
(7.24)

[K u, Kc]l pc i	 C

and

[K	 Kc21jPc2l4f l	 (7.25)

[K 2	K22 ]p2 J IOJ

where [K 11 ] is of order (N 1 —N)x(N 1 —N e ), [K22 ] is of order

(N2—N)x(N2—N), [K] and [K] are of order (NxN), and so on. The

vectors p 1 and p 2 are the vectors of p 1' and p2', values which do not lie on F, Pci and

Pc2 are the vectors of p1' and p which do lie on F. The vectors f and f, for node I,

are given by

= $iy1[M]Vp.n1dF, 	
(7.26)

rc

and

= Ji1Vp.n2dF.	
(7.27)

rc

The boundary conditions along the boundary F must now be implemented in

the governing equation via vectors f 1 and f 1 . For region 1 this can be done by first

examining the linearized Navier-Stokes equation (see equation (6.1)) which gives
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iM
1--- lu	 (7.28)VPc=_iPocoko[ k0 dx] 

1•

Substituting equation (7.28) into equation (7.26) gives

f 1 = — ip0c0k0 $ iy [M][1 
iM

rc	
(7.29)

Continuity of normal particle displacement on F (equation (7.10)) can now be

introduced into equation (7.29) to give

f 1 = —ip0c0k0 $ [i iM a 12 (7.30)

where only the unitary elements of [MI are relevant since u'2 n is perpendicular to x.

The gradient evaluation approach described by Peat and Rathi [26] is implemented here

since this method was shown to be more computationally efficient than the gradient

elimination approach. Consequently the trial solution given by equation (7.15) is

substituted directly into equation (7.30) to give

—2zVI	 iijj	 .n2}.	 (7.31)f = {iPocoko J[VII	
. M d	 M2

Continuity of pressure on 1'c (see equation (7.7)) allows equation (7.31) to be re-written

as

=	
dx2	

(7.32)

1 {i	

. Md	 M2dy

k0
rc

where {} is the vector of nodal p values on the boundary Fc in either region 1 or 2.

It is convenient to re-write equation (7.32) in matrix form such that
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{fc}[ " 	:"

	

- C 1	 Cj1	 (7.33)
C2J

where [Ffl and 
[2] 

are (N x N) matrices, the (J,J)th elements of which are given

by

M9i	 M2i
2 )dr.	 (7.34)

rc

The order of differentiation in equation (7.34) can be reduced through the use of Green's

theorem to give, finally,

2M' d= Q $ iy, dF + --- 
J 

iy,	 dF + -- J	 - 'LdF - --- $ ,	
dS,

Ic0 dx dx
rc	 rc	 rc	 S

(7.35)

where Sc is the pair of circuits which mark the ends of the boundary ['a, see Figure 7.1.

A similar process of implementing the boundary conditions at the perforate into

the governing equation for region 2 can now be used. Therefore the momentum

equation in region 2 (see equation (6.17)) gives

—Vp =
	

(7.36)

where ; is the characteristic impedance of the porous material (see Chapter 2). The

substitution of equation (7.36) into equation (7.27) allows the continuity of pressure

boundary condition (equation (7.7)), valid normal to the common boundary only, to be

introduced and, following the method used for region 1, this gives

2_ Irz	 } - {p 1 }]	
(7.37)

I Poo
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Writing equation (7.37) in matrix form gives

{1 c } = [ 1	 2 
i{:: }'

where

.2_ Fz
C -

rc

(7.38)

(7.39)

As before, [F 1 ] and [2] are matrices of order (N X Ne).

The governing equations (7.24) and (7.25) can now be combined into a final

global matrix with the use of equations (7.33) and (7.38) to give

1K 11	K1	0	 0 lIp 1 ]	 1f1

	

K 1 K+I"	 -E'	 0 pcjo

	

C	 CI 0	 in	 .2 K
2	 i 1 0

	

C	 C

L 0	 0	 K2	 K22jp2j {OJ

(7.40)

Equation (7.40) can now be solved for the unknown pressures p at each nodal point on

the finite element mesh.

Section 7.4

Results

The problem has now been formulated into the conventional finite element form,

[K]{p} {f}, where [K] is the square global stiffness matrix, {p} is the vector of

(unknown) nodal pressures and {f} is the vector of applied nodal forces. In the finite

element method the stiffness matrix always embodies the governing equations for each

element, while the forcing vector applies the external boundary conditions. The

standard method for finding the unknown pressures {p} in equation (7.40) proceeds by

first subdividing the domain of the problem into individual elements which are joined
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together by common nodes, the subdivision of the domain into elements forming a mesh

which completely covers the domain.

The generation of a mesh for each of the dissipative silencers measured in

Chapter 5 can be considerably simplified by examining lines of symmetry on the

silencers, and this also has the advantage of substantially reducing the number of

elements and hence the problem size. Obviously the axisymmetric silencers (silencers

1, 2 and 3) contain an axial line of symmetry and therefore only a two dimensional (2D)

mesh is necessary. The elliptical silencers exhibit planar symmetry and therefore only

one quarter of the cross section of the silencer needs to be modelled, although a full

three dimensional (3D) mesh is still necessary. Once the domain of the problem has

been specified it is necessary to choose which individual elements will make up the

mesh. The choice of element type and size has a large influence on both the accuracy of

the final solution and the size of the problem. Fortunately, the silencers studied here do

not involve complex geometries and the generation of a simple regular mesh is

straightforward, especially for the axisymmetric silencers. The choice of individual

elements used for meshing a domain has been widely covered (see Zienkiewicz [122])

and commercial packages are now available which will, once the type and size of

element has been decided upon, automatically mesh the entire domain (a software

package called FEMGEN was used for this purpose in the present analysis). The user

must choose elements which reflect the anticipated variation of the pressure across the

silencer, and in addition, each element must adequately represent any curvature in the

geometry of the domain; this will apply particularly to the elliptical silencers. The

implementation of problems such as the one studied here can be greatly simplified by

choosing elements that approximate the geometry of the domain to the same order as

that used for the trial solution, and such elements are called isoparametric. In general,

experience has shown that using quadratic elements provides the best balance between

accuracy of solution and computational effort. This is because quadratic elements allow

curved boundaries to be modelled but are simple enough to prevent an excessive

increase in the problem size. Therefore, for the axisymmetric silencers, eight noded

quadrilateral isoparametric elements were used. An example of a typical mesh (without
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a perforate present) generated automatically using FEMGEN is shown in Figure 7.2 for

silencer 2. The lengths of the inlet and outlet pipes are three times the radius of the

central channel, and this ensures that plane waves are present on the boundaries

F1 and F0 . For the elliptical silencers, fifteen noded wedge elements were used to mesh

the central channel and twenty noded brick elements to mesh the absorbent region. The

mesh generated by FBMGEN for silencer 5 is shown in Figure 7.3. In order to decide

upon the optimum number of elements to be used to mesh each silencer, preliminary

transmission loss solutions were found for each axisymmetric silencer using different

mesh densities. All the preliminary results were obtained without the presence of a

perforate in the model, and this was because of problems encountered in including the

perforate in the mesh; these problems will be discussed later in this section. The

method of Peat and Rathi [26] was used to establish convergence of the 2D model and

also to find preliminary results for the 3D model. Therefore it is necessary to re-

formulate the governing equations because of the alteration of the continuity of pressure

boundary condition on F, and hence equations (7.35) and (7.39) are now given by

ikpc0 [s [ 
ví	 + .
	 .L±L + _- L 

di/1Jlff.
C

FZa	 ' dii	 k0 dx dii	 k dx dx1]rc
r 2M	 diy, M2dtpd1J1	

(7.41)
dnj 

J

and

(7.42)
F2

I-c

The final global matrix must also be re-written to give

	

[K 1 ,	 K1	 o	 11p11	
1f11

	K1	 (KC2_I2_E2Z)lper=0k	
(7.43)

	

[ 0	 K2	 K22	 ]pj toJ
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Each node on the boundary now shares a common sound pressure Pc' and this

allows a simple mesh to be generated in the standard way. The method of Peat and

Rathi was used to establish convergence of the solution for 2D silencers and from here

the number of elements which gave the best balance between accuracy and

computational demands was found. Once the optimum number of elements was

established, the size of each element was dictated by the geometry of each silencer. The

establishment of convergence for the elliptical silencers proved to be a greater problem

than for the axisymmetric silencers because of the considerable effort, both manual and

computational, required to provide a 3D solution. When the code for the 3D model was

first executed, a 3D mesh for a circular silencer was generated which employed the

same mesh density as for the equivalent 2D model, and the results found were then

compared with the 2D predictions. The use of a 3D model for the axisymmetric

silencers allowed the accuracy of the 3D model to be examined and also established that

the code was functioning correctly. The 3D model was found to give results

comparable in accuracy to the 2D model and hence the mesh density used to model the

ellipses was based upon that used for the circular 3D model. The advantage of this

method was that it avoided the generation of numerous 3D meshes. The optimum

number of elements and nodes for meshing silencers 1 to 5, without a perforate, is given

in Table 7.1 below:

Table 7.1. Dimensions of finite element mesh.

Silencer	 Number of	 Number of nodes

elements____________________

1	 92	 343

2	 114	 413

3	 120	 441

4	 352	 1497

5	 416	 1757
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Once the type, size and number of elements has been decided, the elements and

nodes must be numbered. The numbering of the nodes in each element is very

important since this fixes the manner in which the global stiffness matrix is assembled.

Generally, in the use of the finite element method, the assembly of the element

equations into the global stiffness matrix produces a banded matrix, and this ensures

that the computational speed of solution is optimised. The bandwidth of the global

stiffness matrix depends upon the way the nodes in each element are numbered. In

general, to minimise the bandwidth, the nodes should be labelled across the shortest

dimension, and hence the silencers examined here were numbered radially. This

method of node numbering was performed automatically using the FIEMGEN package

and was found to work well for silencers which did not include a perforate in the model.

An example of the way in which the mesh for a 2D silencer is numbered by the mesh

generator in order to minimise the bandwidth of the stiffness matrix is given in Figure

7.4(a).

When the perforate is present in the model it is necessary to re-number the mesh

since the sound pressures Pc, and Pc2 (see equation (7.40)) on either side of the

boundary F must be calculated. To do this the mesh must be re-numbered in the

manner shown in Figure 7.4(b). This involves assigning two nodes to each co-ordinate

on the boundary F, assuming that the perforate is infinitesimally thin. Unfortunately

the automatic mesh generator was incapable of performing this, and so the boundary had

to be numbered manually by adding extra nodes onto a mesh generated in the standard

way. To maintain a banded matrix, the node numbers had to be rearranged and, for the

2D model, this was accomplished by writing a code which automatically realigned the

numbering for a general silencer whose mesh was generated using FEMGEN.

Unfortunately it proved impossible to write an additional section of code to re-configure

the node numbering on the 3D silencers. Therefore the only way to insert the perforate

into the 3D model was to number each node manually on [' for each individual

silencer, which - in addition to being extremely tedious - also results in an unbanded

matrix. Clearly the number of nodes required to mesh a 3D silencer is substantially

greater than that required for a 2D silencer and therefore the anticipated solution time
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for an unbanded 3D matrix was expected to be prohibitive. Consequently the finite

element solutions presented here which include a perforate are limited to the 2D models

used for the axisymmetric silencers.

One notable consequence of adding the perforate to the model is the

modification of the surface integrals in the governing equations. The derivation of the

global stiffness matrix both with and without a perforate was performed using the

gradient evaluation approach of Peat and Rathi [26] since this provided the most

computationally efficient method. However, when no perforate is present it is

noticeable that a second order derivative is present in the formulation of Peat and Rathi

[26] (equation (7.41)) which implies that C' continuous elements must be used to

ensure inter-element compatibility. Peat and Rathi pointed out that so long as the

element boundaries were aligned to both the axial and radial directions, it was possible

to use elements with C° continuity. However no such restriction occurs when the

gradient evaluation approach is applied to the model with a perforate, since every term

in equation (7.35) is of first order. This is perhaps not too important in the present

analysis although it could be of consequence in the examination of silencers with non-

uniform central channels.

The final assembly of the global stiffness matrix was performed by using the

Finite Element NAG Library [123]. The simultaneous linear equations found in

equations (7.40) and (7.43) were then solved using standard NAG routines. It should be

mentioned here that in all the predictions presented in Figures 7.5 to 7.8 the line integral

around the circuits S, appearing in equations (7.35) and (7.41), has been ignored; this

integral was also omitted by Peat and Rathi [26]. The line integral was omitted because

instability problems occurred in the transmission loss predictions when the integral was

included; the reasons for this are not clear but it is possible that the problems occurred

because the perforate boundary condition is being implemented at nodes on Sc which

are also situated on the hard-walled boundary.

The external boundary conditions necessary for calculating the four-pole

parameters require two complete solutions of the entire problem, one implementing
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equations (7.11) and (7.12) and the other equations (7.13) and (7.14). The four pole

parameters A, B, C and D are then given (see Peat [117]) by

A=iP!
P utJu' =0'out

B='4')u) ' =0pout

=0'out

D=(
1 u0) ' 

=0P out

(7.44), (7.45)

(7.46), (7.47)

The transmission loss (TL) of the silencer is given by

TL= 10log 10 A+B+C+D.	 (7.48)

As a partial check on the formulation for a silencer with a perforate,

transmission loss predictions made by solving equation (7.40) - with = l0 - were

compared to predictions for a silencer with no perforate. The two sets of data were

within 1% of each other indicating that the two dimensional model including the

perforate had been implemented correctly.

The results from the 2D model of the axisymmetric silencers are compared to

experiment in Figure 7.5 to 7.7 respectively. The results are shown for M=0 and

M=0.15, both with and without a perforate. The predictions for the 3D model without a

perforate are compared to experiment in Figure 7.8 for silencers 4 and 5. A discussion

of the accuracy of the predictions made by using the finite element method is given in

the next section and a comparison with other models will be given in Chapter 10.
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Section 7.5

Discussion

The finite element theoretical predictions shown in Figures 7.5 to 7.8 were

obtained by solving either equation (7.43) for the case of no perforate, or equation

(7.40) when a perforate was present, by the use of NAG routines that were run on a

mainframe computer system. A comparison between the number of nodes used to mesh

the axisymmetric silencers and the number required to mesh the elliptical silencers (see

Table 7.1) indicates that there is a large difference in the problem size between the 2D

and 3D models. This difference affects the size of the final global stiffness matrix and

hence the computational time required to solve the problem. if the size of the global

stiffness matrix is N x N, then the computational execution time required in order to

find a solution to the set of equations using NAG routines is proportional to N3.

Consequently it can take considerably longer to solve the 3D problem than it does to

solve the 2D problem. Obviously, when using a mainframe computer system, the

overall time required to find a solution is dependent upon the number of other users on

the system, but in general the 2D model took several hours to solve for the required

number of frequency intervals, whereas the 3D model took several days. The relatively

large amount of computational time required to solve the 3D model influenced the way

in which the mesh density was chosen (this was discussed in the previous section).

When the perforate was added to the 2D model it was found that the addition of the

nodes along the boundary r'1 had little effect upon the overall time required to solve the

problem.

The finite element predictions made without a perforate in the model will be

discussed first and these are compared with experiment on the left hand sides of Figures

7.5 to 7.7 for the axisymmetric silencers and Figure 7.8 for the elliptical silencers.

Without the presence of a perforate, the model used is identical to that formulated by

Peat and Rathi [26], except that mean flow in the absorbent has been ignored here.

Therefore, to establish that the code was working correctly, transmission loss
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predictions were originally obtained for the test silencer studied by Cummings and

Chang [16] since this was the silencer for which Peat and Rathi originally published

results. Once the code produced results identical to those found by Peat and Rathi with

no flow in the absorbent, predictions for silencers 1 to 3 were generated. Peat and Rathi

compared their results to the mode matching predictions of Cummings and Chang [23]

and they found significant discrepancies between the two models at low frequencies;

this problem will be examined further in Chapter 9. In this chapter the finite element

predictions are compared to the experimental data of Chapter 5 since this will allow

further insight into the accuracy of the finite element method. It is evident that, on the

left hand side of Figures 7.5 to 7.7, the predictions shown for the axisymmetric silencers

with no perforate are very close to the measured data across a frequency range of 50Hz

to 1kHz, both with and without flow. It appears that, within this frequency range, the

accuracy of the predictions remain unaffected by the dimensions of the silencer, whereas

this was not the case for the fundamental mode solution. Problems are apparent in

predicting the transmission loss above 1kHz, especially for silencers 1 and 2 where

discrepancies between theory and experiment become larger as the frequency is

increased. It is possible that such discrepancies are a result of experimental error since

the measured data are only reliable up to 1kHz, although if a comparison is made

between experiment and theory for the expansion chamber (see Figure 5.3) it indicates

that it should be possible to achieve closer agreement, at least up to 1.6kHz. One

possible explanation for the discrepancies at higher frequencies is the omission of the

perforate from the model.

The finite element predictions for the elliptical silencers (silencers 4 and 5) are

shown in Figure 7.8, both with and without flow. As previously mentioned, predicted

data are unavailable for the 3D silencers with a perforate included. A comparison

between prediction and experiment in Figure 7.8 indicates very good agreement

between the two. For both silencers, the agreement across the frequency range is of

similar quality to that found for the 2D model. However one problem apparent with the

3D model which did not occur in the 2D formulation is the prediction of a negative

transmission loss at low frequencies (approximately 50Hz). The problem seems to be
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exacerbated by the introduction of mean flow, for example see silencer 5 with M=O. 15

(bottom right hand corner of Figure 7.8). Obviously the prediction of a negative

transmission loss does not make physical sense. It is possible that these problems have

occurred because of the omission of the line integral around Sc, but it is more likely that

numerical problems occurring in the solution of equation (7.43) are responsible.

Numerical errors might result from the size of the matrix necessary to solve the 3D

problems, and this could result in errors being magnified at low frequencies. The

problem of negative transmission loss at low frequencies needs further investigation but,

since the finite element model reported in this chapter is to be used only to provide

"benchmark" predictions, it was decided that no further investigation was warranted at

present.

The finite element predictions obtained with the perforate included in the model

are shown, for axisymmetric silencers only, on the right hand side of Figures 7.5 to 7.7.

The behaviour of the predicted transmission loss, after the introduction of the perforate,

is similar to that noted in the fundamental mode solution. For example, silencers 1 and

2 exhibit a transmission loss that is increased in the lower frequency range but reduced

at higher frequencies. The similarity of this behaviour to that of the fundamental mode

solution appears to indicate that the perforate has been introduced correctly into the

finite element model. The inclusion of the perforate evidently has a significant effect

upon the transmission loss predictions, especially for silencers 1 and 2. The reason why

the effect of the perforate is large for silencers 1 and 2 is that they contain E glass,

whereas silencer 3 contains A glass (see also Chapter 6). The effect of the perforate on

the predictions obtained by using the finite element model is greater than the

corresponding effect upon the fundamental mode model and this is probably because of

the additional effect upon the higher order modes that are implicitly included here. If

the predicted and measured data for silencers with and without perforates are compared,

it is apparent that including the perforate in the model does not necessarily enhance

agreement between prediction and measurement. In particular, at frequencies above

1kHz, over-prediction in the absence of perforates becomes under-prediction with

perforates in the cases of silencers 1 and 2, and vice versa in the case of silencer 3. This
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points strongly to the use of incorrect values for the perforate impedance, since errors in

the theoretical assumptions have now been minimised by the inclusion of higher order

modes. Consequently it is concluded here that the perforate impedance has been over-

predicted and that a more accurate value must be found, applicable to randomly packed

silencers. This is not surprising given that the random packing of the absorbing material

around the perforate can have a large effect upon the impedance of the perforates, for

reasons that were discussed in Chapter 4. In Chapter 10, new values will be assigned to

the acoustic impedance of the perforates, designed to account for the random nature of

the packing in an attempt to obtain better agreement between the predictions presented

here and experimental data.

Taking into account the problems found in introducing representative values for

the perforate impedance into the model, the agreement between prediction and

experiment for both the 2D and 3D finite element models is considered to be good. The

predictions presented in this chapter do indicate that, when a perforate is present in the

test silencer, it is unnecessary to include mean flow in the absorbent. This appears to

validate the simplifications made to Peat and Rathi's model [26] in Section 7.3. The

analysis described in this chapter is a completely general approach to finding

transmission loss predictions and the results are useful for providing "benchmark"

predictions, to which the fundamental mode solution of the previous chapter and also

solutions presented later in this thesis can be compared. This was the original purpose

of implementing the full finite element method, the practical use of the technique for

commercial design purposes being limited because of the large amount of computational

effort required. In the following two chapters, attempts to reduce the computational

effort and provide a model that is capable of achieving accuracy comparable to that

achieved here will be described.
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Figure 7.4. Typical node numbering of elements for 2D mesh. (a) No perforate,
(b) Perforate present (bold nodes indicate two nodes with
common co-oordinate on perforate boundary)
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CHAPTER 8

A FINITE ELEMENT EIGEN VALUE

SOLUTION FOR DISSIPATIVE SILENCERS

WITH IRREGULAR CROSS-SECTIONS



Section 8.1

Introduction

In the previous chapter a full finite element solution for a silencer with arbitrary

shape was described, and although good agreement between prediction and experiment

was observed, the method proved to be computationally very expensive. Consequently,

a method is required which, in addition to accommodating a silencer of arbitrary shape,

is also capable of providing solutions in a computationally efficient way. A common

method used to reduce the numerical size of a problem, and hence reduce computational

expenditure, is to implement an eigenvalue analysis. When an eigenvalue analysis is

applied to exhaust silencers the silencer is assumed to be infinite in length, and the

equations governing the acoustic behaviour of the silencer are written in the form of an

eigenequation by using separation of variables in a manner similar to the method

employed in Chapter 6. Treating the silencer as infinite in length has the advantage of

reducing the dimensions of the problem by one, and hence an axisymmetric silencer can

be represented by a one dimensional model, whilst an elliptical silencer requires only a

two dimensional formulation. This has the potential to reduce significantly the

computational time required to find solutions compared to those obtained by using a full

finite element solution in Chapter 7. This is, however, at the expense of requiring the

silencer to be uniform along its length. This is not unduly restrictive since most

commercial silencers are uniform in their design, and in any case one cannot expect to

model a completely general non-uniform silencer by using a simplified finite element

formulation. The eigenvalue formulation presented here is similar in essence to the

fundamental mode solution derived in Chapter 6 since separation of variables is again

used here in order to find coupled modes for the governing wave equations in the central

channel and the absorbent. However a full eigenvalue analysis automatically involves

finding some of the higher order modes present in the silencer in addition to the

fundamental mode. This has the potential to eliminate some of the problems

encountered in the predictions for large silencers using the fundamental mode approach
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in Chapter 6. The computation of higher order modes does, however, complicate the

prediction of the transmission loss for finite length silencers, since mode matching must

be performed at the inlet and outlet of the lined section in order to utilise the eigenvalue

solutions. Mode matching, employing the eigenvalues and eigenvectors described in

this chapter, is covered in detail in Chapter 9. In this chapter a general method is given

for finding and ordering modes in an infinite dissipative silencer which includes mean

flow in the central channel and also a perforate which separates the central channel from

a bulk reacting absorbent.

Because of its apparent simplicity as compared to the modelling of finite length

silencers, eigenvalue analysis is a popular method for examining dissipative silencers.

The attenuation of modes propagating in circular ducts lined with porous material was

examined by Morse [3], who neglected mean flow in his model and also used a locally

reacting lining. The simplicity of the model allowed Morse to produce a number of

design charts for the ducts studied. Scott [4] extended the model of Morse to include

bulk reacting porous media and showed that large errors in Morse's theory can occur if a

bulk material is approximated as locally reacting. Unfortunately the inclusion of a bulk

reacting absorbent complicated the final eigenequation and the absence of computers

meant that is was a laborious task to solve Scott's equation. It was not until the 1960's,

with the advent of computers, that these problems were overcome. Bokor [5] was able

to solve Scott's equation and find predictions for the fundamental mode of a rectangular

duct lined on opposite walls. Kurze and Vér [7], who also studied rectangular ducts

lined on opposite walls, derived a more general form of Scott's equation by including a

non-isotropic bulk reacting material, and found the attenuation of the fundamental mode

by solving the eigenequation with the Newton-Raphson method. The validity of the

solutions found by Kurze and Vér was later examined by Wassilieff [8], who found their

formulation to contain an error. Wassilieff corrected Kurze and Vér's theory and, in

solving the revised equation by using the Newton-Raphson method, found much closer

agreement between prediction and experiment. Wassilieff also showed that the

corrected expression of Kurze and Vér now reduced to that found by Scott for isotropic

linings.
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The effect of uniform mean flow in the central channel of a lined duct was first

examined by Ingârd [10] and later by Cummings [14], who introduced a perforate

between the central channel and the bulk reacting liner of a rectangular duct lined on

opposite walls. For circular ducts, mean flow in the central channel was included by

Nilsson and Brander [15] who also included a perforate and a bulk reacting lining in

their model. Nilsson and Brander used both numerical and analytical techniques to

solve the governing equations and, in a subsequent set of papers [20,21,22], studied duct

discontinuities and their application to finite length silencers. Analytical formulations

of the eigenequation were also found by Cummings and Chang [16] for the case of an

axisymmetric silencer with mean flow in both the central channel and the absorbent (a

perforate was not included) and by Sormaz [124] for splitter silencers with mean flow

and a bulk reacting absorbent. The formulation of Cummings and Chang was described

in Chapter 6 where modifications to it were described, allowing a perforate to be

included, the eigenequation being solved for all but the very lowest frequencies by the

use of the Newton-Raphson method. Cummings and Chang found solutions for a

number of different modes and later used these to implement a mode matching solution

for a finite length silencer [23]. The method used by Cummings and Chang is, however,

only of use for modelling axisymmetric silencers, and it is also possible that employing

the Newton-Raphson method to find individual modes could result in some modes

being missed. A comprehensive range of predictions for the attenuation of both circular

ducts and rectangular ducts lined on opposite walls is given by Bies et al. [125].

Although Bies et a!. did derive a general theory for ducts with arbitrary cross sections,

their design curves were limited to circular and rectangular ducts.

The solution of a general eigenequation for ducts with arbitrary cross sections

has, inevitably, been carried out by using numerical techniques. For a locally reacting

liner, Astley and Eversman [119] used a Galerkin formulation of the finite element

method to solve the governing equations for ducts with mean flow. Astley and

Cummings [17], in a general formulation, later introduced a bulk reacting liner and

employed a weak Galerkin formulation; a solution was found for a rectangular duct

lined on all four walls. Rathi [18] later used this method to investigate silencers with
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both circular and elliptical cross sections and he also included mean flow in the

absorbent though; as in the model of Astley and Cummings, a perforate was neglected.

Whilst a full finite element scheme has been shown here to provide accurate predictions

for silencers with arbitrary cross sections, simpler approaches have also been tried in an

attempt to reduce computational effort. Some of these simplified numerical solutions

attempted have themselves been variants of the finite element method. This is because

other numerical methods, such as finite difference and the boundary element method,

cannot readily be successfully applied to dissipative silencers with arbitrary cross

sections (the reasons which lie behind this having been outlined in Chapter 7). A

common method used to reduce the computational effort involved in finite element

schemes is to re-formulate the governing equations by using a variational formulation.

Although this approach is related to the finite element method, it does allow the

problem to be simplified and this has the potential to reduce computational demands. A

variational approach was developed by Cummings [126] who used a segmented

Rayleigh-Ritz formulation to study silencers with oval cross sections. In a later paper,

Cummings introduced mean flow into the absorbent [127], but neither models included

a perforate. The Rayleigh-Ritz solution used by Cummings was however limited to the

fundamental mode. Two different numerical eigenvalue solutions were found for a

dissipative silencer of arbitrary cross-sectional shape by Glav, who introduced a null-

field approach [128] and a point matching approach [129]. The null-field approach is

essentially a semi-analytical method, whilst the point matching (or collocation) is

related to the weighted residual finite element approach. Both solutions neglected mean

flow, and it appears also that the null field method is unsuitable for the introduction of

mean flow and the study of complex shapes. The collocation method was shown to

work well with no mean flow but convergence of the solution is very sensitive to the

correct selection of points.

The principal requirement of the model described in this chapter is that it should

be capable of finding the higher order modes existing in lined ducts and also be valid for

silencers with arbitrary cross sections. Consequently the use of numerical methods in

the present study is inevitable. Obviously, the computational effort required to arrive at
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the solution is also an important consideration, although the method must be completely

general and provide a "robust" way of finding the eigenvalues. Of the numerical

schemes described previously, the largest reduction in computational effort appears to

be offered by either the Rayleigh-Ritz formulation of Cummings [127] or the point

matching method used by Glav [129]. However, the solution supplied by Cummings is

applicable to the fundamental mode only, solutions for higher order modes being

dependent upon assigning different trial functions which must resemble the actual mode

shapes. Whilst it is possible that trial functions could be found for higher order modes,

it does not appear to provide a robust method for tackling silencers of arbitrary shape,

especially since the possibility of missing modes also appears likely. The collocation

method implemented by Glav [129] was derived for a silencer without mean flow in the

central channel and hence it was possible to use continuity of normal acoustic particle

velocity as one of the two boundary conditions between the central channel and the

absorbent. The introduction of mean flow would require the re-formulation of this

boundary condition giving continuity of normal particle displacement on the boundary.

Whilst this should not prove to be too difficult, it is anticipated that problems might

arise in achieving convergence of the solution, especially given the sensitivity of the

collocation method to the selection of points. Therefore the method of collocation does

not appear to provide a robust approach to modelling the silencers being studied here.

This narrows down the choice of a numerical method to the solution of a finite element

eigenvalue problem. Whilst a finite element scheme is the most computationally

expensive approach of the eigenvalue formulations discussed here, it does appear to

present the only viable method for meeting the criteria demanded in this chapter.

However, the finite element method implemented here should still be computationally

faster than the approach used in Chapter 7 since the order of the problem has been

reduced by one. The appropriate finite element scheme for finding eigenvalues in

general dissipative silencers was first implemented by Astley and Cummings [17] and

later by Rathi [18]. Therefore the eigenvalue solution derived in this chapter will follow

this method, although modifications are introduced here via the introduction of a

perforate.
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The solution presented in this chapter is concerned solely with the identification

of the modes which constitute the sound field in a silencer. A number of modes with

attenuations low enough to affect the acoustic performance of a silencer will be

identified here and the practical use of these eigenvalues in the design of finite length

silencers will be examined in Chapter 9.

In common with Chapter 7, the finite element computer code employed when

finding predictions in this chapter was modified from a program originally written by

Rathi [121]. The author was again responsible for re-formulating the program to run for

any configuration of silencer, employing either a one dimensional or two dimensional

mesh in the present analysis. In addition, new code was introduced to allow for the

inclusion both of a perforate and the semi-empirical model for a porous material

described in Chapter 3.

Section 8.2

Governing Equations

The finite element eigenvalue solution derived in this section proceeds along the

same lines as that presented by Astley and Cummings [17] and later, in a slightly

modified form, by Rathi [18]. In accordance with the models presented in the two

previous chapters, mean flow in the absorbent is ignored, a perforate is included

separating the central channel from the surrounding absorbent and the absorbing

material is assumed to be isotropic. The formulation of the general eigenvalue problem

is based upon principles similar to those associated with the fundamental mode solution

presented in Chapter 6, and coupled modes are assumed to exist for the sound fields in

both the airway and the absorbent, sharing a common axial wavenumber. Whereas in

Chapter 6 the governing wave equations were solved analytically for silencers of

circular cross section, the use of numerical techniques in this chapter will allow this

restriction to be lifted. The finite element method is used to provide an approximate

numerical solution to the governing wave equations and from here a general
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eigenequation is formulated, valid for silencers of arbitrary cross section. The finite

element method also provides a more reliable means of finding the higher order modes

in a silencer as compared to analytical solutions, which often rely upon using initial

guesses for axial wavenumbers.

The geometry of the dissipative silencer studied in this chapter is given in Figure

8.1 below; note that the silencer is assumed to be of infinite length in the x direction.

Uniform mean flow

y	 Region 2

Figure 8.1. Geometry of silencer.

The dissipative silencer in Figure 8.1 has an outer box of arbitrary cross section

filled with isotropic porous material which surrounds a central channel, also of arbitrary

cross section, that carries uniform mean flow of Mach number M. The central channel

is separated from the porous material by a perforated tube. There is assumed to be no

mean flow in the absorbent. The central channel is denoted region 1, the absorbent

region 2, and the mean flow velocity is assumed to be in the x direction only. The outer

wall of region 1 (the perforate) is denoted by S, the outer wall of region 2, assumed to
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be rigid and acoustically non-transmitting, is denoted by Sw,, where the total surface of

region 2 (S 2 ) is made up of from both S and SW.

The acoustic wave equations for both region 1 and region 2 are now formulated

and the finite element approximations to the governing equations are presented in the

next section.

8.2.1 Acoustic Wave Equation in the Central Channel (Region 1)

The acoustic wave equation in region 1 was derived in Chapter 6 and is given by

9P_0

c	 t 2	 c0 dxdt	 dx2 - ,
	 (8.1)

where p is the acoustic pressure in region 1, t is time, c0 is the isentropic speed of

sound and M is the mean flow Mach number. An eigenvalue formulation requires a

separated solution to equation (8.1) to be found, and therefore the acoustic pressure in

region 1 is assumed to have the form

p'(x,y,z,t) = pi(y,z)et_0,	 (8.2)

where w is the radian frequency and k02 (k0 = w/c0 ) is the common (complex) axial

wavenumber which links region 1 to region 2. Substituting the assumed form for pç

into the governing wave equation gives

0,	 (8.3)

where	 denotes a two dimensional form of the Laplacian operator (y,z plane).
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8.2.2 Acoustic Wave Equation in the Absorbent (Region 2)

The acoustic wave equation in region 2, assuming that no mean flow is present

in the absorbent, was given by equation (7.3) as

V 2 p—F 2 p = 0,	 (8.4)

where F is the propagation constant of the porous material. A separated solution to

equation (8.4) is therefore sought for region 2,

p'(x,y,z,t) = p2(y,z)e'°.	 (8.5)

Substituting the assumed form for p into equation (8.4) gives

vp2_(r2+k2)p2 =0,	 (8.6)

8.2.3 Boundary Conditions

The appropriate boundary conditions are continuity of normal particle

displacement and continuity of pressure on the common boundary S, and zero normal

particle displacement on the boundary S. The general equation for continuity of

normal particle displacement on S was derived in Chapter 7 (see equation (7.13)) and

this gives

u;n,	
[ . Md11—i---- Iu •n 2 ,	 (8.7)

k0 dxj

where u' is the acoustic velocity vector and n the outward unit normal vector in either

region 1 or region 2 (n 1 = — n2 ). The acoustic particle velocity can be expressed in the

same form as the acoustic pressure in equation (8.5), and equation (8.7) may be written
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un 1 =—{1—AMJu•n 2 .	 (8.8)

The introduction of the perforate modifies the continuity of pressure boundary

condition on Sc from that used by Astley and Cummings [17], giving (see equation

(7.7))

Pc2 Pc1 =p0c0u'2.n2,	
(8.9)

where Pc is the sound pressure on boundary S in either region 1 or region 2 and is

the dimensionless acoustic impedance of the perforate (corresponding to z0 /p0c0 ; see

Chapter 4). Note that it is again assumed here that the perforate is infinitesimally thin.

The final boundary condition is the hard-walled boundary condition which gives

Vp2 •n2 =O	 on	 Sw.	 (8.10)

Section 8.3

Finite Element Discretization

A finite element approximation of the governing wave equations is now

formulated in order to solve the problem numerically. To do this a weak Galerkin

formulation, similar to that found in Chapter 7, is used here.

For the wave equation in region 1, we can approximate the acoustic pressure by

a trial solution,

N1

P1
	 (8.11)
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where i/t (y,z) are the global basis functions, p is the value of p1 at the Jth node and

N 1 is the number of nodes in region 1. Applying the Galerkin formulation to equation

(8.3) gives

J iy1 (vp 1 +k[1-2tM] 2 p1 _k21,2 p1 )dRO , 	1=1........,N1.	 (8.12)

Since we are to employ a weak Galerkin formulation, the application of Green's theorem

gives

5t1Vp1.n1dS,	 (8.13)
R 1	Si

where	 denotes the boundary S in region 1. Substituting the assumed trial solution

from equation (8.11) into equation (8.13) gives

{ 
5(vv,	 51Vp1

S1

(8.14)

The wave equation for region 2 is solved in a similar manner, and hence the

approximation to the acoustic pressure in region 2 is given by

N2

P2	 1VJP2,
	 (8.15)

where N 2 is the number of nodes in region 2. Applying the Galerkin formulation to

equation (8.6) yields

j ip(v 2 p _[(F2 +k212)}p2)dR 0,	 I = 1.........,N2.	 (8.16)
R2

The application of Green's theorem to equation (8.16) gives
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J (vyyp2 +[r2 +k2i2 ]vfi p2 k1R= 5y1 Vp2 •n2dS.	
(8.17)

S2

Substituting the assumed trial solution from equation (8.15) into equation (8.17) finally

gives

S (8.18)

IR2S2

8.3.1 Matching of the Acoustic Fields

The boundary conditions are now introduced in a manner similar to that used for

the full finite element approach in Chapter 7. The hard-wall boundary condition on S

(equation (8.10)) implies that the surface integral in equation (8.18) is zero, except over

the perforate boundary in region 2 (Se), since S2 = S + S 2 . It was shown in Chapter

7 that the implementation of the boundary conditions on S is simplified with the help

of the momentum equations in each region. Therefore, in region 1, the linearized

momentum equation is given by (see equation (6.1))

Vp 1 =—ip0c0k0 [1--2iJvI]u 1 ,	 (8.19)

and for region 2 the momentum equation gives (see equation (6.17))

—VP2 =
	

(8.20)

where z is the characteristic impedance of the porous material. Substituting equation

(8.19) into the weak Galerkin form of the wave equation for region 1 (equation (8.14))

gives
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Sc'

(8.21)

Equation (8.21) can now be re-written by using equation (8.7) to give

{
$(v 1 v +k[ 2 (1)2]R}{P} = Jip0coko[1—]2
R 1 	Sc,

(8.22)

For region 2, equation (8.20) is simply substituted into equation (8.18) to give

I (8.23)

[R2	 Sc2

where S 2 denotes the line integral around the boundary Sc.

The right hand sides of both wave equations have now been written in a form

allowing the introduction of the continuity of pressure boundary condition. Therefore

substituting equation (8.9) into the right hand side of both equations (8.22) and (8.23)

gives, for region 1

{ J(v 1v, +k4 2 _(1_)2]R}{P} = { J i[1_2M]	 }{pc,
S1

(8.24)

and for region 2

{ 
J(vi1v +(F 2 +k	 =-J 

$ Fz
	

}[{Pc2}_{Pci }]
a vJ1fdS

1c2 
pØC0

R2

(8.25)

where {Pc} is the vector of nodal Pc3 values on the boundary 5c in either region 1 or 2.
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In order to formulate the final eigenequation which is then solved for A,

equations (8.24) and (8.25) are added together, giving

T $(v 1 v +k[A2	 +(F2 +kA2)lJR}{P2}
R2

5	
a i1 ydS- AM]2 i/li 	 } {pc i }]	

Fz	
}[{Pc2 } - {pc i }] = 0.

p0c0
Sc1

(8.26)

Equation (8.26) now forms a second order eigenvalue problem in A. It is noticeable

that when this eigenequation is compared with the equivalent eigenequation found by

Astley and Cummings [17], the order of the eigenequation in A has been reduced by

two in the present study. This has occurred because of the introduction of the perforate

and the subsequent modification of the continuity of pressure boundary condition. It is

possible that the reduction in the order of the eigenequation found here will reduce the

computational time required to solve the problem.

It is convenient to re-write equation (8.26) in matrix from such that

[A(A)]{p} = {o}, 	 (8.27)

where A(A) can be split up into individual components to give

A(A) =[A]-i-A[B]+A2[C]. 	 (8.28)

Therefore equating orders of A in equation (8.26) allows expressions for the individual

components of A(A) to be written, i.e.

[A]{p} = [K1 ]{1 } - k[M 1 ]{p 1 } +[K 2 ]{p 2 } + F2[M2]{p2}_ (ik0/C)[M 1 ]{Pc2 }

+(ik0/c)[M 1 ]{Pc i } + (r'z0 /p0c0c)[M2 ]{Pc 2 } - ( FZa /poco C)[M 2 ]{Pc, }'	 (8.29)
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[B]{p} = 2Mk[M 1 ]{p 1 } + (2 iMk0 /c)[M 1 ]{Pc2 } - (2iMk0I c)[M1 ]{Pci }'

(8.30)

{C]{p} = k(1 - M2)[M1]{p1} + k[M 2 ]{p 2 } - (ikoM2/C)[Mi ]{Pc2 } + (ik0M2/c)[M1 ]{Pc i }'

(8.31)

where the 
(j,j)th 

elements of the matrices are

[K 1 ]1 = 5Vr1Vfjdydz,

[K 2 ]11 =JVuiVvJjdydz,

[M 1 ]11 =J1jdydz,

[M2]11 =5 11dydz,

[M1]

R2

S1

[M2] = 5iiJilIfidsc.
Sc2

(8.32)

(8.33)

(8.34)

(8.35)

(8.36)

(8.37)

A clearer representation of equations(8.29) to (8.31) can be achieved by expanding the

matrices to give

[[K1]—k[M1]

[A]{p}
= [[Ki ]- k [M1]

0

0

[K1]—k[M1]

[K1]— k[MI]+(ikO/C)[MlC]

-(rza /p0c0 )[M2 I
0

0

_(ik0/c)[ivI1]

[K 2 ] + r2 [M 2 ] + (rza /cp0c0)[M2]

[K2]+r2[M2]

o	 p1

o	 Pc1

[K 2 ]+r2 [M 2] Pc2

[K 2 ]+r2 [M 2 ] i2

(8.38)

[2Mk[M 1 ]	 2Mk[M1]	 0	 lIp1
[B]{p} 

= [2 Mk[M 1 ] 2Mk[M 1 ] - (2iMko/C) [Mic]
 (2iMko/)[Mic J]lPc i }

(8.39)
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k(1— M2)[M1]

k(1- M2)[M]+(ikM2/C)[M]

0

0

Ik(l— M2)[M1]

[c]{P}=[/c0(1_ M2)[M1]
0

0

0

_(ik0I2/){M1 I
k [M2}

k [M2 I

o	 p1

o Pc1

k[M 2 J Pc2

k[M 2 ] i'2

(8.40)

In order to solve equation (8.27) in the standard way it is necessary to re-formulate the

problem. Hence the eigenequation

[[A]+.a[B]+A2[c]]{p} = {o},	 (8.41)

is re-written in the form

[-[cf ' [A] - A[Cf' [B]J{p} A2 {}
	

(8.42)

where [cj' is the inverse of matrix [C]. The problem can now be solved for A in a

manner similar to that used by Astley and Cummings [17], hence re-writing equation

(8.42) gives

[0
[_[CJ_1 [A]

I	 ]{P}AJP1
—[Cf'[B] Ap

(8.43)

where I is an identity matrix.

Equation (8.43) now forms a standard eigenequation of order 2n (n being the

total number of nodes) and this can be solved in the usual way (see the next section).

The solution to equation (8.43) provides eigenvalues which correspond to the common

axial wavenumbers of the modes in the duct and eigenvectors which are equivalent to

the transverse modal eigenfunctions. It is worth noting that the matrix partitioning used

by Astley and Cummings [17] was not necessary here because of the reduction in the

order of the problem, this has the benefit of simplifying the code and also reducing the

size of the final matrix, this potentially allows solutions to be found more quickly. An
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additional reduction in computational effort, common to both the method described here

and that of Astley and Cummings, can be found if no mean flow is present since, when

M = 0, matrix [B] is identically zero. This reduces equation (8.41) to give

[[A]+22[C]]{p} = {o},	 (8.44)

which has a problem size of order n. This represents a halving of the problem size when

no mean flow is present. Again, the solution to equation (8.44) is achieved in the

standard way.

Finally, once the problem has been solved for 2, either with or without mean

flow, the results are commonly presented in the form of attenuation per unit length and

the phase speed for individual modes. For the th mode, the attenuation a and phase

speed c are given by [17]

a1 =-8.6858 Sm(k02i 1 ),	 (dB/m)	 (8.45)

and

c1 =c0/Re(k0A 1 ).	 (mIs)	 (8.46)

It is also of interest to study the shape of each of the individual modes and this can be

done by examining the eigenvectors directly. Results of attenuation, phase speed and

mode shapes for the silencers measured in Chapter 5 are given in the next section.

Section 8.4

Results and Discussion

Solutions to the eigenvalue problem can be found by solving either equation

(8.44), when there is no mean flow in the central channel, or equation (8.43) when mean

flow is introduced. As in previous chapters solutions are also presented here both with
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and without a perforate in the model thus allowing the effect of the perforate to be

studied further. To find the eigenvalues in a dissipative silencer without a perforate

present one may follow exactly the method used by Astley and Cummings [17] and later

by Rathi [18]. This involves re-defining the matching conditions on the boundary T

which in turn alters the final equations. The modified equations for the case without the

presence of a perforate are not given here in order to save space.

The solution of the finite element problem, both with and without a perforate,

was performed here in a manner similar to that used for the full finite element method in

Chapter 7. This involved using the commercial package FEMGEN to generate the finite

element mesh, from which the final matrices in equations (8.43) and (8.44) were

assembled in the standard way using the NAG finite element library [123]. Finally, the

set of linear equations associated with the assembly of equations (8.43) and (8.44) was

solved simultaneously by using the standard routines found in the NAG library.

One of the obvious benefits to be found when using an eigenvalue formulation is

the reduction in the number of elements and nodes that are required to mesh each

silencer when compared to those needed for the full finite element solution. The

eigenvalue formulation requires the axisymmetric silencers to modelled using only a

one dimensional (1D) mesh, whilst the elliptical silencers require only a two

dimensional (2D) mesh. Furthermore, planar symmetry means that it is only necessary

to mesh one quarter of the cross section of each ellipse. This has the potential of

providing considerable savings in computational effort when compared to the method

used in the previous chapter, although it should be noted that equations (8.43) and

(8.44) do not provide banded matrices and this will adversely affect the solution time.

In addition one must also invert the [C] matrix when mean flow is present, placing

additional computational demands.

The type of elements used in this section to mesh each silencer were based upon

the elements used in Chapter 7 since these were shown to provide adequate results.

Therefore, for the axisymmetric silencers, three noded isoparametric line elements were

used and for the elliptical silencers, six noded isoparametric triangular elements were

used to mesh the airway and eight noded isoparametric rectangular elements to mesh the
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absorbent. To determine the optimum number of nodes and elements required for

meshing each silencer the perforate was omitted from the model. The attenuation and

phase speed were then found for the least attenuated mode of the axisymmetric silencers

and convergence of the solution was established after comparison with the analytical

solution found in Chapter 6. The number of elements used to mesh the elliptical

silencers was then based upon the number of elements used for the axisymmetric

silencers. However, it should be noted that the number of elements required to provide

accurate solutions for the least attenuated mode is lower than that required for the

second least attenuated mode and so on. This is because higher order modes have

progressively more complex mode shapes as the mode order increases and hence a

larger number of elements is required in order to represent the shapes accurately.

Unfortunately this problem cannot be solved simply by using a very large number of

elements since this will increase the size of the final matrices, introducing numerical

problems into the solution of equations (8.43) and (8.44). The number of modes and

elements used for silencers 1 to 5 (without a perforate present) are given in Table 8.1

below; these were chosen to provide the best balance between the accuracy required in

the predictions and the minimisation of numerical problems.

Table 8.1. Dimensions of finite element mesh

Silencer	 Number of	 Number of nodes

Elements___________________

1	 20	 40

2	 20	 40

3	 20	 40

4	 24	 75

5	 24	 75

An example of the mesh generated for silencer 5 (without a perforate) is shown in

Figure 8.2.

227



Once the optimum number of elements was found for each silencer, the mesh

was re-configured to include the perforate. This requires a modification of the mesh in

a manner similar to that found when including the perforate in the mesh used in Chapter

7. This involves assigning two different node numbers to each co-ordinate on the

common boundary	 thus allowing the pressures Pc1 and Pc2 to be calculated.

Problems were encountered (as outlined in the previous chapter) when including the

perforate in a three dimensional mesh, but the reduction in the dimensions of the

problem studied here allows these problems to be avoided. This is because it is a

straightforward task to write the additional code required to include the perforate in both

the 1D and the 2D meshes used here. Consequently it should now be possible to

produce transmission loss predictions for the oval section silencers including a

perforate, and this will be covered in Chapter 9.

The computer output obtained from the solution of equations (8.43) and (8.44)

(and also the equivalent equations when no perforate is present [17]) occurs in the form

of an unordered list of eigenvalues and their associated eigenvectors, with the number of

eigenvalues obtained being equal to the number of nodes present in the mesh. It should

be noted that it is commonly accepted that only half of the eigenvalues calculated when

using a numerical scheme such as the one found here are accurate enough for use in

future mode matching schemes. From the list of eigenvalues it is necessary to identify

the modes required and these must be chosen with a view to the mode matching

schemes proposed in Chapter 9. Consequently the least attenuated modes are of

principal interest here, but in the following discussion, no attempt is made to order the

modes with reference to individual mode shapes. An examination of equation (8.45)

indicates that arranging the modes in order of increasing attenuation requires sorting of

the eigenvalues according to the size of their imaginary components. However, it is also

necessary to examine the sign of the imaginary part, since this describes the direction in

which the mode is attenuated. It is only necessary to examine the sign of the eigenvalue

when mean flow is present, since without mean flow the eigenvalues occur in complex

conjugate pairs. The sign of the real part of the eigenvalue is also significant since this

defines the direction in which the mode propagates (though see later comments about
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apparently anomalous combinations of signs of the real and imaginary parts). The

significance of the sign of the real and imaginary components of each eigenvalue can be

summarised by the Argand diagram below:

Propagates x
	

Propagates x

Attenuates x
	

Attenuates x	 9e(A)

Propagates x
	

Propagates x

Attenuates x
	

Attenuates x

In addition to identifying the incident and reflected waves when mean flow is

present, it is also necessary to identify the so-called hydrodynamic modes [17]. This can

easily be done since hydrodynamic modes have a phase velocity of U0 and are

effectively unattenuated. However hydrodynamic modes do not contribute to the sound

field and, once identified, they must be rejected. Hydrodynamic modes were found here

in the eigenvalue solution without a perforate; they were also found by both Astley and

Cummings [17] and Rathi [18], although no hydrodynamic modes were found in the

present work for silencers with perforates. The physical reasons behind the absence of

hydrodynamic modes when a perforate is present are not clear although it is probably a

result of the change in matching conditions on '; indeed other eigenvalue solutions

which include a perforate, see for example Nilsson and Brander [15], do not exhibit

hydrodynamic modes either. The reduction in the order of the eigenvalue problem from

quartic to quadratic, as a perforate is introduced, is probably responsible for the

disappearance of the hydrodynamic modes.

For each frequency analysed the list of eigenvalues must be ordered, sorted into

incident and reflected wave; also, if present, the hydrodynamic modes should be

rejected. In general the solutions performed here cover frequencies from 50Hz up to

2kHz. As the frequency increases, the position of each mode shape in mode numbering

order, based on modal attenuation, can change. For example, the fundamental mode

pattern can begin as the least attenuated mode at 50Hz but become the second least

attenuated mode at 2kHz. This effect is particularly apparent in higher order modes,
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especially when mean flow is present and it is possible that a single mode shape can

shift through a number of positions in the modal order. This phenomenon means that it

is very difficult to track a single mode shape by studying its position in the mode order

based on attenuation alone, and one must usually resort to examining the eigenfunction

as well to check that the same mode shape is being followed. Consequently any mode

matching scheme based solely on mode shapes is very difficult to implement in a robust

way. This is the reason why mode shapes themselves are not tracked in this analysis; it

does, however, require the assumption that a mode matching scheme will work equally

well with a specified number of modes that are ordered on the basis of modal

attenuation or on the basis of mode shapes. It will become evident later on in this

section that this does not cause any problems for the 1D model, although for the 2D

solutions, non-axisymmetric modes can infiltrate into the specified number of least

attenuated modes and, since non-axisymmetrical modes are not required in the mode

matching schemes (see later on), a larger number of eigenvalues must be used to ensure

the retention of a constant number of axisymmetrical modes. This can effect the

convergence of the transmission loss predictions formulated in Chapter 9. This problem

cannot be rectified by simply using a large number of least attenuated modes in the

mode matching scheme since, as previously discussed, numerical problems can appear

when a large number of nodes are used to mesh a silencer.

Solutions are presented in this section for the attenuation and phase speed of the

four least attenuated modes in silencers 1 to 5 covering frequencies up to 2kHz. In

general, the axisymmetric silencers studied here do not exhibit mode shapes jumping

position, though this phenomenon does become evident when the two dimensional

model is used. The mode shapes which correspond to the four least attenuated modes

found in the axisymmetric silencers studied here generally conform to the fundamental

mode followed by the three lowest radial modes. This can be seen in Figure 8.3, where

the modulus of the eigenfunctions for the four least attenuated modes in silencer 2 are

plotted at a frequency of 1kHz for M=O and M=O.15, both with and without a perforate

(r being the radial coordinate and 1?2 the outside diameter of the silencer). The number

of minima exhibited in the modulus of the eigenfunctions determines the order of each
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mode (see Cummings and Chang [23]), although the minima are somewhat indistinct

for the second least attenuated mode (order 1). It is evident that, for silencer 2, the

fundamental mode is far from being a plane wave at 1kHz, the E glass present causing a

high degree of non-uniformity in the modal pressure pattern. The individual mode

shapes do not appear to be greatly affected by either the introduction of a perforate or

mean flow, although this is almost certainly because of the frequency used and the

silencer tested. The attenuation and phase speed of the four least attenuated modes

present in silencers 1 and 3 are plotted in Figures 8.4 and 8.5 for M=0, both with and

without a perforate. The mode shapes for the fundamental mode (least attenuated mode

in these silencers) and the next three radial modes for silencers 1 and 3 correspond to

the same mode order as those shown for silencer 2 in Figure 8.3. It is noticeable that the

mode order corresponding to each modal pressure pattern remains unchanged for

silencers 1 to 3, although this will not necessarily be the case at frequencies above

2kHz. The effect of the perforate on both the attenuation and the phase speed will be

discussed later. The effect of introducing flow into the axisymmetric silencers is shown

for silencer 2 (M=0.15) in Figures 8.6 and 8.7. Both the upstream and downstream

propagating waves are shown, both with and without a perforate. It can be seen that the

least attenuated mode undergoes a much larger attenuation in the upstream direction as

compared to downstream, although this is not generally true for the higher order modes.

One interesting phenomenon that often occurs is the reversal in direction of the phase

speed for higher order modes. At first sight it appears that, for instance, a mode which

is attenuated in the positive direction is propagating in the negative direction.

Cummings [130] also observed this phenomenon but pointed out that, whilst there is a

small power flow in the negative direction in the central channel, a much larger positive

power flow occurs in the liner and this causes a net power flow in the direction of modal

attenuation. The phase speed of these modes can be seen to change abruptly from

negative to positive as the frequency is increased in Figures 8.6 and 8.7. It should be

pointed out, however, that this has not occurred because of a mode jumping position

when the eigenvalues were sorted; indeed the corresponding attenuation still exhibits a

continuous curve.
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The use of a 1D model for the axisymmetric silencers ensures that only

axisymmetrical modes are found and, for the silencers studied here, the jumping of

position of modes was not observed over the frequency range of interest. This provides

an "ideal" set of least attenuated modes: the fundamental mode, the next radial mode

and so on; this ordering of modes is important for examining problems that occur in the

mode matching schemes of Chapter 9. The importance of establishing a set of

axisymmetrical modes using a 1D model is apparent when 2D solutions are studied. In

a 2D solution non-axisymmetric modes appear which, although providing a legitimate

solution to the eigenvalue problem, effect the accuracy of the mode matching schemes.

This is because the mode matching schemes presented in Chapter 9 are designed to find

the transmission loss of finite length silencers, which involves matching solutions to a

plane wave at the input and output pipes of the silencer. Consequently non-

axisymmetric modes cannot effect the final transmission loss predictions and therefore

represent undesirable modes in the least attenuated mode order. These modes can often

appear very low in the least attenuated mode order and this increases the size of the

mode matching matrices since more modes must be used to ensure the retention of a

constant number of axisymmetric modes. If the number of non-axisymmetric modes

present with low attenuations is large then this causes numerical problems in the mode

matching schemes. Clearly it would be desirable to identify each non-axisymmetric

mode and remove it before running a mode matching scheme, but the identification of

non-axisymmetric modes is not always straightforward from an examination of the

attenuation alone and one must usually resort to examining individual mode shapes at

each discrete frequency. This problem was best illustrated by studying a 2D model of

an axisymmetric silencer since the axisymmetrical modes can be identified by

comparing attenuation and phase speed predictions with those found using a ID

solution. A comparison between the 1D and 2D solutions showed a number of non-

axisymmetric modes appearing in the 2D solution ranging anywhere from second in the

mode order upwards, for each axisymmetric silencer. Furthermore, the non-

axisymmetric modes often suddenly appeared with a low attenuation at a certain

frequency, and often this was also accompanied by a phase speed which began reducing
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exponentially from infinity. This phenomenon was also observed by Rathi [18]. It

appears that a number of the non-axisymmetric modes are very highly attenuated at low

frequencies but, as the frequency is increased, they can undergo an abrupt reduction in

attenuation; one also notes a corresponding large jump in the phase speed. This effect,

found originally in 2D axisymmetric models, was also observed in the solutions found

for the oval silencers, although strictly speaking, axisymmetrical modes do not exist in

the oval silencers. For instance, Figure 8.8 indicates that, for silencer 4 without a

perforate and no mean flow, behaviour similar to that found in the axisymmetric

silencers is observed, indicating the presence of modes in the oval silencers similar to

those found in circular silencers. This is particularly apparent in the sudden appearance

(at approximately 700Hz) of a phase speed reducing from infinity for the fourth least

attenuated mode. The attenuation and phase speed of this mode in Figure 8.8 below

700Hz belong to a different mode shape which has simply changed its position in the

least attenuated mode order at 700Hz. Indeed one can identify two different modes

below 700Hz, the attenuation and phase speed of which would remain continuous if a

larger number of modes had been plotted in Figure 8.8. The "non-axisymmetric" mode

has therefore jumped from a much higher attenuation to a low attenuation at

approximately 700Hz. This phenomenon is obviously dependent upon the silencer

studied since it appears to be very difficult to predict, although it does appear that non-

axisymmetric modes are responsible for most of the mode jumping that occurs in 2D

models. Furthermore, as pointed out by Rathi [18], although only one quarter of the

cross section has been utilised as a solution domain in the 2D models used here, it is

possible to mesh the entire cross section of the silencer; but this would simply add

further non-axisymmetric modes, which would complicate matters even more. It

appears that the identification and removal of non-axisymmetric modes is not possible

without investigating the mode shape of each individual mode, and this is obviously

undesirable. Therefore the consequences of including non-axisymmetric modes in

mode matching schemes must be tolerated and these will be discussed further in

Chapter 9.
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The effect of the perforate on both the attenuation and phase speed of silencers

1, 2, 3 and 4 has been shown in Figures 8.4 to 8.8. A comparison between the

attenuation of the least attenuated mode, both with and without a perforate, appears to

show trends similar to those observed in the fundamental mode solution, as one would

expect, and also the full finite element solutions. For instance, when a perforate is

added, silencers 1 and 2 exhibit a small increase in attenuation at lower frequencies but,

above approximately 1kHz, a large decrease occurs, especially for silencer 2. When

porous material with a low flow resistivity, such as A glass is used, the effect of the

perforate (which has previously been shown to be small) is seen to be minimal in the

case of silencer 3. Silencer 4 also indicates little difference in the predictions of the

least attenuated mode with and without a perforate, and this is probably explained by the

use of basalt wool (which has an intermediate flow resistivity) in silencer 4. The effect

of the perforate on higher order modes is less straightforward to quantify, especially for

the axisymmetric silencers where only a small change in attenuation and - perhaps more

obviously - phase speed, occurs. This does however point to the dominant role of the

least attenuated mode in further transmission loss predictions. It is apparent from

examining the data for silencer 4 in Figure 8.8 that, when a perforate is present, an non-

axisymmetric mode has not appeared at 700Hz for the fourth least attenuated mode.

This apparent reduction in the frequency of appearance of non-axisymmetric modes

with very large phase speeds can also be observed for silencer 5 (see Figure 8.9). It

appears that, even if some of the higher order modes shown, in the presence of a

perforate, in Figures 8.8 and 8.9 are non-axisymmetric, they have not undergone the

abrupt changes in attenuation and phase speed found without a perforate. It is not

known why this has occurred or even if this feature is attributable only to the choice of

silencers studied here.

The eigenvalue solution presented in this chapter has been formulated for use in

mode matching schemes and these will be discussed in the next chapter. Experimental

data were deemed unnecessary since a comparison of the solutions found here with

other published data, both theoretical and experimental, appears sufficient for

establishing accuracy of the method (to avoid reproducing large amounts of data, such
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comparisons have not been shown here). Indeed the effect of the perforate on the least

attenuated mode appears consistent with previous theoretical predictions and this

appears to show that the eigenvalue solution with a perforate is valid. Transmission loss

predictions will be presented in the next chapter, utilising the eigenvalue solutions

found here, and the relative computational speed and accuracy of the model presented in

this chapter will be compared to the other theoretical models in Chapter 10.
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CHAPTER 9

MODE MATCHING TECHNIQUES FOR

DISSIPATIVE SILENCERS WITH

IRREGULAR CROSS-SECTIONS



Section 9.1

Introduction

In the previous chapter, eigenvalue solutions were obtained for acoustic modes

propagating in an infinite duct, and these are now utilised in order to find the

transmission loss of a silencer with finite length. The further study of finite length

silencers is necessary because, as discussed in Chapter 5, transmission loss predictions

provide a better indication of the acoustic performance of individual silencer elements

than the attenuation/unit length of infinite lined ducts. The calculation of the

transmission loss of a finite length silencer, described in this chapter, requires the prior

knowledge of the eigenvalues and eigenvectors in each section of the silencer. For the

silencers studied here this includes the eigenvalues and eigenvectors in both the inlet

and outlet pipes and, so long as these are assumed to be rigid walled ducts, the values

are well documented (see for example the book by Morse and Ingãrd [27]). In this

chapter the modal representations of the sound field in each section of the duct are

matched together on either side of the discontinuities present at each end of the silencer.

The matching of the sound pressure fields allows a finite length silencer to be modelled

by using the eigenvalue solutions found for an infinite lined duct and, so long as the

different pressure fields can be matched efficiently, this approach offers considerable

savings in computational time when compared to models such as the one described in

Chapter 7.

Discontinuities in ducts were examined by Miles [131], who introduced higher

order modes and an abrupt area change into a rigid walled duct of circular cross-section.

To do this, Miles enforced continuity of pressure and continuity of volume velocity

across the discontinuity. In order to arrive at a series of independent linear equations,

Miles multiplied the two matching conditions by weighting functions. Miles employed

weighting functions which were orthogonal and this later allowed the solution of the

final equations to be simplified. The approach of Miles is a particular method used in

the study of discontinuities, which has later become known as "mode matching". The
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method of mode matching has since become a popular way of examining duct

discontinuities because of its apparent simplicity and subsequently a number of

variations on the mode matching principle have been implemented. For example,

Aifredson [132] used a mode matching method to study small area changes in ducts, and

used this to model an exponential horn. Aifredson also introduced higher order modes

into the model but showed that this required the alteration of one of the matching

conditions used by Miles: matching continuity of particle velocity was employed, rather

than continuity of volume velocity. The matching conditions employed by Aifredson

have since become universally used, the velocity matching condition implemented by

Miles later being shown to be a special case of Aifredson's condition, applicable when

only the fundamental mode is present. Aifredson employed the orthogonality properties

of Bessel functions in order to supply weighting functions which allowed further

simplification of the problem. The study of duct discontinuities was later extended to

cover reactive exhaust silencers without mean flow by Cummings [133], who examined

a folded annular duct, and El-Sharkawy and Nayfeh [134] who examined a plane

expansion chamber. Both authors modelled the discontinuities by using a mode

matching fonnulation, employing Bessel functions as the weighting functions. The

introduction of mean flow into an expansion chamber is rather more complex, since the

behaviour of the mean flow as it emerges downstream of the first discontinuity is

difficult to model accurately and this disrupts the mode matching procedure, see for

example Cummings [135]. The problem was, however, tackled by Ih and Lee [136],

whose obtained acceptable predictions by including higher order modes and employing

a four-pole formulation. Abom [137] also used four-pole parameters to study higher

order mode effects, but added inlet and outlet pipes to the expansion chamber; mean

flow effects were, however, neglected. Abom also employed a mode matching

formulation to examine each discontinuity, however the eigenfunctions of each section

were used to provide the weighting functions, and these eigenfunctions were shown by

Abom also to be orthogonal.

The study of discontinuities in dissipative silencers is more complex, and less

attention has been applied to this problem than the equivalent case in reactive silencers.
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One reason for this is, perhaps, the difficulty of finding the eigenvalues in the

dissipative section of the silencer. Glav [191 used mode matching to study dissipative

silencers with an arbitrary cross section by employing the duct eigenfunctions as the

weighting functions. Glav neglected mean flow and used a quasi-orthogonality

relationship obtained for the eigenfunctions to simplify the final equations, although a

numerical solution was not pursued. Mean flow was introduced into an axisymmetric

dissipative silencer by Cummings and Chang [23], who also applied the mode matching

method by simply employing the duct eigenfunctions as weighting functions. This

method was shown by Cummings and Chang to give good agreement with experimental

data despite the fact that when mean flow is present the weighting functions are not

orthogonal. Examination of the literature indicates that, to the best of the author's

knowledge, the method of Cummings and Chang is the only mode matching method in

which dissipative silencers containing both bulk reacting lining and mean flow in the

central channel have been studied.

In addition to using mode matching methods to enforce the boundary conditions

at each discontinuity in a dissipative silencer, complex alternative methods have also

been devised. Sormaz [124], in the belief that non-orthogonal weighting functions

should not be used in a mode matching scheme, employed a variational formulation to

match conditions at discontinuities in a splitter silencer which was lined with a bulk

reacting material. A commonly employed alternative to the mode matching method is

the Wiener-Hopf technique, and this approach has been widely developed in the study

of electromagnetic waveguides which are, in most cases, analogous to the problem

discussed here (see for example, the book by Mittra and Lee [138]). This approach

differs from mode matching since instead of expressing the pressure field as a modal

sum from which an infinite set of linear equations is obtained, a single equation - known

as the Wiener-Hopf equation - is derived by taking a Fourier transform of the governing

equations. Nilsson and Brander [21] used a modified Wiener-Hopf technique to study

discontinuities in dissipative silencers with mean flow in the central channel and later

combined two discontinuities to give predictions for finite length silencers [22]. The

advantage of the Wiener-Hopf technique is that it does not depend, as the mode
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matching method does, on the completeness of the eigenfunctions in the dissipative duct

(something which has yet to be proved for dissipative silencers), although the approach

is far more complex than the mode matching method.

Of the methods available for enforcing matching conditions onto eigenvalue

solutions for infinite dissipative ducts with mean flow in the central channel, the mode

matching method appears to be the most straightforward. A study of the alternatives

available, namely a variational solution or the Wiener-Hopf method indicates that these

introduce too high a degree of complexity for easy implementation in practical design

methods. For instance, the variational method of Sormaz [124] requires the separate

implementation of both the real and imaginary parts of the matching conditions and this

produces a very large number of complex equations, such that implementing this

formulation in computer code presents many difficulties. The Wiener-Hopf method is

mathematically the most advanced technique, perhaps used most frequently in the study

of electromagnetic waveguides, and is beyond the scope of this thesis. One is therefore

left with the mode matching method which, at first sight, is a straightforward technique,

offering rapid solutions. However, the mode matching method does suffer from a

number of problems. For example, the most commonly applied mode matching

methods require the use of weighting functions in order to obtain a set of independent

linear equations. It appears that some disagreement exists in the literature over whether

these weighting functions should be orthogonal. In a number of methods, for example

that used by Glav [19], the orthogonality of the eigenfunctions was utilised solely to

simplify the final matrices, and this did not imply that the mode matching technique

itself depended upon orthogonality to yield the correct results. Sormaz [124], however,

asserted that mode matching schemes that employ weighting functions do in fact depend

upon orthogonality for the correct results to be obtained. On the other hand, Cummings

and Chang [23] did appear to be successful in implementing a mode matching scheme

involving the use of non-orthogonal eigenfunctions as weighting functions.

Unfortunately it appears that, in the literature, every mode matching method is applied

to situations in which the orthogonality of the eigenfunctions is guaranteed, except for

the method used by Cummings and Chang. This makes it very difficult to draw definite
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conclusions about the use of non-orthogonal weighting functions in mode matching

schemes. In this chapter the Cummings and Chang method is applied first (see Section

9.3) since this offers the most straightforward method of implementing the matching

conditions at the discontinuities. However it will become apparent later that problems

were found when applying this method, and that these occur only when mean flow is

present, thus coinciding with eigenfunction non-orthogonality. It is difficult to say

whether the problems found when implementing the Cummings and Chang method are

as a result of the mode matching approach itself requiring modal orthogonality, or

simply that orthogonal weighting functions must be used, or even that the weighting

functions used by Cummings and Chang are themselves incorrect. In an attempt to

tackle this problem, a least squares formulation is applied to the matching conditions in

Section 9.4, and this does not require orthogonality from the outset, although weighting

functions do appear later in this method and these were found to be similar to those

employed by Cummings and Chang. Finally, in Section 9.5, a method is proposed

which uses completely different weighting functions from those used in the previous

sections and consequently this method is completely independent of the question of

orthogonality.

The chapter begins with a listing of the matching conditions necessary for the

analysis of dissipative silencers, subsequently the three aforementioned mode matching

schemes are presented separately. The mode matching schemes are called here, the

"Cummings and Chang method", the "least squares method" and the "integral method".

Each method is treated here as a black box, the input being the eigenvalues and

eigenvectors obtained in the previous chapter, and the output being transmission loss

predictions for a finite length silencer. The results and the problems found in each

method are discussed within their individual sections. The performance of each method

is independent of the input, and hence the effect of the perforate is irrelevant in the

initial testing of each matching scheme. Therefore the perforate is only included in the

final transmission loss predictions and these are given in Section 9.6.
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Section 9.2

Governing Equations

The implementations of two of the three mode matching schemes presented later

in this chapter begin with the same modal representation of the sound pressure in each

element of the silencer, and in addition they also involve the application of the same

matching conditions to each discontinuity. This section outlines the basic modal

representation and matching conditions used in Sections 9.3 and 9.4; a completely

different formulation is used in Section 9.5.

The silencer is divided into four sections: the inlet and outlet pipes, which are

denoted by regions 3 and 4 respectively, the central channel, denoted by region 1 and the

absorbent which is denoted by region 2, see Figure 9.1 below.

Plane A—)f
	

1<	 Plane B

Perforate

Region 4

et Pipe

Sc

Figure 9.1. Geometry of dissipative silencer.

The silencer, of length 1 , has discontinuities in planes A and B and a uniform

mean flow of Mach number M in the central channel. A section through the silencer is
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shown in Figure 9.1, and it must be stressed that the cross section of the silencer can

assume any shape, according to the model used in Chapter 8, although it must remain

uniform along its length. Each section of the silencer has been numbered in the manner

shown to avoid confusion with previous chapters. In the three mode matching methods

outlined in this chapter, it is assumed that the eigenvalues and eigenfunctions are known

for regions 3 and 4 and also for the combination of regions 1 and 2 (denoted collectively

as region c).

A modal expansion for both the acoustic pressure and the acoustic particle

velocity is now employed, and this has a form similar to that used in Chapter 6.

Therefore the acoustic pressure in regions 1 and 2 is given by

pc' =	
qn_iko +	

(9.1)
n=o	 n=o

where k0 is the wavenumber in the central channel, p' is the acoustic pressure in the

chamber (regions 1 and 2), P? is the modal coefficient, 'I" is the transverse modal

eigenfunction, A' is the dimensionless axial wavenumber (or eigenvalue) and i refers to

an incident wave, r to a reflected wave. For the inlet pipe (region 3) the acoustic

pressure is given by

p3' 
=	 e_1k01+M) + pe h101_M) +	 Re°	 (9.2)

n=1

and for the outlet pipe (region 4) by

e_0x'i1+M) + t(	 Rine0,	
(9.3)

n=I

where x' = x+l, P° is the modal coefficient for the fundamental mode, R" is the

transverse modal eigenfunction and 7" is the dimensionless eigenvalue for a hard-

walled circular duct (see Morse and Ingrd [27]). The fundamental mode (n =0) has

been separated from the modal sum in regions 3 and 4 since it can be readily shown that
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= i/(i+ M), y —i/(i— M) and Rj°r = 1. In equation (9.2) it is assumed that a plane

wave is incident upon the silencer, hence F(n = 1.....	 is zero, whilst in equation

(9.3) it is assumed that the outlet pipe is anechoically terminated, therefore

P(n_—O,....,00) is zero.

Use of the Euler equation allows the axial component of the particle velocity in

region 1, u 1 , to be written as

x	 +	 x	 P9mne0	 (9.4)
=	 (i - M) ' I	 (i - M) rc

and in region 2 as

p0c0u =	 —P 'P"e"° +__PnPe_Ik0,	 (95)
0 FZ	 n=0 FZa

where p0 is the mean fluid density, c0 is the isentropic speed of sound, u is the acoustic

particle velocity in the x direction, F is the propagation constant and z the

characteristic impedance of the bulk porous material. In regions 3 and 4, the axial

particle velocity is given by

p0c0u = e_1k01+M) - eO_M) +	 _ PRe'<°"	 (9.6)
(1—)

and

	

pOcou.4 = POe_ikox'/(l+M) + t	 yI

	

n=1	 Mfl)''	
(9.7)14

Matching conditions must now be applied to the sound fields at the

discontinuities (planes A and B) in order to represent a finite length silencer. The

matching conditions to be applied at each discontinuity (according to Cummings and
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Chang [23]) are continuity of pressure and continuity of axial particle velocity, so that

on plane A,

p3' p, over areaS1 on plane A,	 (9.8)

u1'= u, over area S1 on plane A,	 (9.9)

u =0, over areaS2 on plane A,	 (9.10)

and for plane B

p=p, overareaS1 onplaneB,	 (9.11)

u=u, overareaS1 onplaneB,	 (9.12)

u2' = 0, over areaS2 onplaneB.	 (9.13)

The implementation of matching conditions (9.8) to (9.13), using the modal

representations given by equations (9.1) to (9.7), is discussed in the context of the

Cummings and Chang method and the least squares method in the following two

sections.

Section 9.3

Mode Matching using the Cummings and Chang Method

In the introduction to this chapter it was noted that, in the literature, the only

mode matching scheme to be applied to discontinuities in dissipative silencers

containing mean flow was the method implemented by Cummings and Chang [23].

Fortunately this method is straightforward to apply, and transmission loss predictions

can be found in a computationally efficient manner. The method described here follows

exactly the formulation used by Cummings and Chang, and so only a brief description is

given here. Solutions obtained by the use of this method will be discussed later in this

252



section, in addition to an examination of some of the problems encountered when

implementing the method.

The method applied by Cummings and Chang is essentially the standard mode

matching technique in which duct eigenfunctions are employed as the weighting

functions in order to form a set of linearly independent equations. The formulation used

by Cummings and Chang ignores higher order modes in the inlet and outlet pipes since,

for applications such as automotive exhausts, the effect of higher order modes, in what

are usually small pipes, can reasonably be assumed to be negligible provided these

modes are evanescent. Incidentally, the introduction of higher order modes into the

inlet and outlet pipes in the method described here is by no means straightforward.

The method proceeds by the multiplication of the pressure and velocity matching

conditions by the duct eigenfunctions, integration then being carried out over each

region. Therefore the rejection of higher order modes in regions 3 and 4 (see Figure

9.1) allows the continuity of pressure in plane A (equation (9.8) to be written as

P"dS 1 )	 (9.14)rc j5.	 r
n=O

where S1 is the area of region 1. The implementation of continuity of axial particle

velocity in plane A involves grouping together equations (9.9) and (9.10) to give a

single matching condition for the velocity. To form a set of linearly independent

equations the matching condition is multiplied by m and integrated, i.e.

L, u 3 '1'1mdS1 = I u' '{mdS.
Je Xc (9.15)

The use of equations (9.4) to (9.6) allows equation (9.15) to be written as

(
po + p0)I pmds.c(pnJ 441nqsnqJm5^pnf I4nsnqImds)	 (9.16)

13	 r3 Js1	 IC S	
r

n=O

where
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11= 20loc1IP0l.
'I	 '41 (9.20)

An	 I(lMr)'
i,r =

rza

region 1
	

(9.17)

region 2

The same procedure is applied to plane B and this gives a continuity of pressure

matching condition of

s1 i = t(ie"°" I 'P"dS1 + pn111

JS1
n=O	

Js1
(9.18)

and continuity of axial particle velocity of

	

J5, 
'PmdS1 = ( Pe'° f	 '"1mdS + Pe°' $
	

TF1mdS)
'C	 .S r (9.19)

The problem has now been written as a doubly infinite set of linear equations. To find a

solution, equations (9.14), (9.16), (9.18) and (9.19) must be truncated at a suitable point

in order to form a set of equations which can be solved simultaneously. In the method

used by Cummings and Chang both the modal sums were truncated at the same number

of modes (N). The solution was split up by Cummings and Chang who, in an attempt

to increase computational accuracy, adopted an iterative method as follows.

Initially, P is arbitrarily put equal to unity (real), and the Pr" (for

n = 0,1......,N) are put equal to zero in plane A. The equations (9.14) and (9.16) (with

m=0,1......,N) are solved for P (for n=0,1......,N) and F°. Next, equations (9.18)

and (9.19) (with m = 0,1......,N) are solved for	 (n = 0,1......,N) and F, using these

values. Then, the P' values thus obtained are used in the solution to equations

(9.14) and (9.16) as before (still with P, = 1+iO) to find a new set of 	 values. This

process is repeated until the modal amplitudes show an insignificantly small change in

successive iteration cycles. The transmission loss of the silencer is then given by
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9.3.1 Results and Discussion

In this section, transmission loss predictions are presented, which were obtained

by using exactly the same method as that employed by Cummings and Chang [23]. The

values used for	 and Am were supplied from the solution of the eigenvalue problem in

Chapter 8, allowing an extension of the method to include silencers with irregular cross

sections. The use of the finite element method, described in Chapter 8, also means that

the eigenfunctions are supplied in the form of pressure values at individual nodes,

relevant to a finite element mesh which, for the individual silencers studied here, were

given in Chapter 8. In order .to assess the accuracy of the mode matching routine,

transmission loss predictions were originally sought using eigenfunctions obtained for

the axisymmetric silencers only (without a perforate), since the one dimensional finite

element predictions for the eigenfunctions in Chapter 8 provide a set of axisymmetrical

modes. It is therefore reasonable to assume here that any problems encountered when

applying the mode matching scheme to axisymmetric silencers is not a direct result of

numerical problems occurring due to the eigenfunction solutions, such as those

associated with the non-axisymmetric modes found in the two dimensional solution.

An examination of both the predictions and the experimental results obtained by

Cummings and Chang [23], when neglecting mean flow in the absorbent, appears to

show some anomalies. For instance, a study of the experimental transmission loss

results found for a positive Mach number, indicate that a rising transmission loss occurs

at low frequencies, as the frequency falls (below approximately 200Hz). This is

unlikely to reflect the true performance of the silencer, although such measurements are

not uncommon. For instance, if one examines the experimental data measured for

silencers 1 to 5 with mean flow present in Chapter 5, one finds that, at such frequencies,

a similar trend occurs. Such trends in experimental data at very low frequencies are

almost certainly caused by experimental error and this is usually exacerbated by flow

noise when mean flow is present. One would therefore naturally question the

experimental data measured by Cummings and Chang in the same frequency range but

with a negative Mach number. Indeed the transmission loss data measured by
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Cummings and Chang with M=-0.196 do show the expected trend down to

approximately 200Hz, although this trend is reversed over the final number of data

points below 200Hz indicating experimental error. Furthermore, for a Mach number of

-0.163, Cummings and Chang have measured a transmission loss of approximately

12dB at frequencies as low as 100Hz, a behaviour that, based on other published data

for silencers of a similar size, does appear to be unlikely and is, again, probably caused

by experimental error. As discussed previously, the discrepancies which have been

found in the experimental data of Cummings and Chang are not unexpected, but it is

surprising that, when mean flow is present, the mode matching predictions seem to

indicate good agreement with experiment, even below 200Hz. For a Mach number of

0.163, the mode matching predictions computed by Cummings and Chang rise at very

low frequencies; furthermore when M=-0.163, a transmission loss of approximately

12dB is predicted below 200Hz. This behaviour is surprising since one would

intuitively expect the transmission loss of the silencer to tend towards zero as the

frequency approached zero, regardless of the direction of mean flow and this behaviour

has indeed been predicted by others (see for example Peat [13] and Peat and Rathi [26]).

These apparent discrepancies observed in the predictions of Cummings and Chang were

also noted by Peat and Rathi [26], who compared their full finite element predictions

with Cummings' and Chang's mode matching method. Peat and Rathi observed

significant differences between their finite element predictions and the predicted data of

Cummings and Chang, and they tentatively proposed that the differences between the

two models were caused by errors occurring in the Delany and Barley formulae used by

Cummings and Chang at very low frequencies. However it does appear unlikely that

this can be the sole cause of the discrepancies observed at low frequencies and therefore

it is worthwhile re-examining the predictions found by Cummings and Chang.

Iii light of the above discussion, the Cummings and Chang method was first used

here to generate numerical predictions for the particular silencer measured by

Cummings and Chang. For consistency with their method, the Delany and Barley

formulae were used to predict the bulk properties of the absorbent, rather than the semi-

empirical model described in Chapter 3. Figure 9.2 shows the mode matching
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predictions obtained for Cummings' and Chang's silencer, first without mean flow in the

central channel (using 6 modes), then with a Mach number of 0.197 and -0.197 using

only 1 mode, and finally with a Mach number of 0.197 using 6 modes. It is immediately

obvious that there are some significant differences between the predictions obtained

here and those found by Cummings and Chang, although the predictions found without

mean flow do appear to be identical. When mean flow is introduced, and when only 1

mode is present, the predictions obtained here now exhibit the correct limiting

behaviour at low frequencies. This sheds further doubt upon the numerical predictions

of Cummings and Chang, especially since the higher order modes should have little

effect upon the transmission loss at very low frequencies. To check the mode matching

method used here further, the predictions obtained using only one mode were compared

to those obtained by using the full finite element method described in Chapter 7. Both

models were observed to be in good agreement across the frequency range but

especially, as one would expect, at low frequencies. Therefore one can conclude that

differences between Cummings' and Chang's predictions and the finite element

predictions obtained by Peat and Rathi [26] are not the result of different applications of

porous material data. The most significant discrepancies between the mode matching

predictions found here and those obtained by Cummings and Chang appear when higher

order modes are introduced into a solution which also contains mean flow. The

predictions shown for M=0. 197 in Figure 9.2, using 6 modes, are substantially different

from those obtained for a single mode and also the multi-mode solutions of Cummings

and Chang, especially at low frequencies where the multi-mode solution implemented

here predicts a negative transmission loss below 100Hz. At very low frequencies,

predictions found using 1 mode and 6 modes should be similar, or at least the

differences should be similar to those observed between a single mode solution and a

full finite element solution. Consequently the results obtained indicate that problems

have also occurred when implementing the mode matching scheme here. The reasons

behind the differences observed between the results published here and those obtained

by Cummings and Chang are unknown, but the author is led to conclude here that errors

must be present in the predictions obtained by Cummings and Chang, especially
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considering their poor correlation with the finite element method. Unfortunately one

must also conclude that the mode matching method itself is flawed, since problems are

now evident when higher order modes are introduced into solutions which contain mean

flow. These predictions, shown in Figure 9.2, indicate a large difference between the

single mode and multi-mode solution, and this occurs no matter how many higher order

modes are used. Furthermore, the convergence of the solution when mean flow was

present also caused problems, since the results often fluctuated significantly, making

identification of convergence difficult. This problem could not be solved by simply

using a large number of modes since if more than 12 modes were used numerical

problems became apparent.

In order to investigate Cummings' and Chang's method further, predictions were

also made (without a perforate) for silencers 1 to 5, both with and without mean flow,

and these are shown in Figures 9.3 to 9.5. It is evident that, when no mean flow is

present, the correlation between the multi-mode predictions and experimental data is

good and is at least comparable to the accuracy found when using the full finite element

method in Chapter 7. Indeed when studying the elliptical silencers, the problems

observed at low frequencies when using the full finite element method are no longer

encountered here. When mean flow is introduced, the mode matching predictions still

appear to be good when only one mode is used. Again, in most cases, the mode

matching predictions provide accuracy comparable to that found using the full finite

element method, although the correlation is not as good as that found for no mean flow.

However problems are again observed when higher order modes are introduced with

mean flow and these are at their most obvious in the low frequency range. Although a

negative transmission loss is not found in Figures 9.3 to 9.5, there is still a significant

difference between the single and multi-mode predictions at low frequencies. It appears

that the largest discrepancies are found for the silencers which contain absorbent

materials with a low flow resistivity, see for example the predictions found for silencers

3 and 4 (Figure 9.4), which contain A glass and basalt wool respectively. This

observation correlates with the somewhat larger discrepancies found for the Cummings

and Chang silencer, since this silencer contained a material with an even lower flow
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resistivity than those studied here. Therefore it appears that the size of the errors

encountered when implementing the multi-mode solution are linked to the flow

resistivity of the absorbent. However, after the study of an additional five silencers

here, one must still conclude that the mode matching predictions obtained by using the

Cummings and Chang mode matching method are unreliable, principally when mean

flow is used in conjunction with higher order modes.

The exact reasons which lie behind the failure of the Cummings and Chang

method when mean flow is introduced are difficult to pinpoint; however, it is perhaps

more than coincidental that the problems have occurred when the eigenfunctions are

known to be non-orthogonal. The use of non-orthogonal eigenfunctions in this analysis

merely has the effect of introducing non zero contributions to off-diagonal elements in

the matrices obtained from equation (9.16) and (9.19). It is not clear why the inclusion

of off-diagonal contributions should cause any problems to the solution of the matrices,

although it is possible that they build instabilities into the final numerical solutions.

Despite the problems found with Cummings and Chang's method it does appear

to provide satisfactory predictions when the modes are orthogonal. This is the case

when no mean flow is present (for any number of modes) and when 1 mode is used in

the presence of mean flow (where the question of orthogonality is irrelevant). In fact,

the predictions found when only one mode is present appear to provide good correlation

with experimental data for the silencers studied here. Furthermore, when mean flow is

present, the predictions are, in most cases, within 1 or 2 dB of those found using the full

finite element method. However, it is intended in this chapter to provide a more general

mode matching model, one which can be used in the study of much larger silencers and

this inevitably requires the introduction of the higher order modes. Consequently, a new

method is tried in the next section which attempts to resolve the problems found here.
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Section 9.4

A Least Squares Approach to Mode Matching

The problems apparent when applying the mode matching method of Cummings

and Chang [23] mean that it is necessary to examine other methods. A well known

alternative to the Galerkin type of approach used in the previous section is the least

squares method. The least squares method simply requires that the sum of the square of

the errors over the entire range of the independent variable be reduced to zero.

Therefore applying the least squares formulation to the mode matching method requires

that the sum of the square of the errors found in each matching condition (equations

(9.8) to (9.13)) must be reduced to zero. The original motivation behind employing this

method was the desire to remove the question of orthogonality which arose in the mode

matching formulation described in Section 9.3. However it will become apparent later

in this section that a form of weighting function is still required in the least squares

method studied here. Consequently, although the method itself should not depend upon

orthogonality, if these weighting functions are indeed "incorrect" for use in this type of

problem, then the solutions found in this section may behave in the same way as those

found previously. One advantage that is gained by using a least squares formulation is

that the introduction of the higher order modes into the inlet and outlet ducts is

relatively straightforward. Consequently these higher order modes are included here for

completeness.

The basic principles behind the least squares approach are very simple. For

instance, the continuity of pressure matching condition on plane A (equation (9.8))

requires that p =	 over area S1 . In the least squares approach it is assumed that an

error is present in this matching condition and this is called the error function where

SI = Pt — P,
	 (9.21)
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and C1 is the error function associated with equation (9.8). The mean square sum of the

errors over area S1 is now minimised. Therefore, if the sum of the mean square errors is

called the deviation function, then

D1 =JEdS1,	
(9.22)

where D1 is the deviation function associated with equation (9.8). To ensure that the

deviation function is a minimum, one must equate the partial derivative of D1 , with

respect to the unknown variables in equation (9.21), to zero. Therefore, if the modal

representations for p' and p3' (equations (9.1) and (9.2)) are substituted into equation

(9.21),

, =+')_(p0+p0+y PR'
'3	 '3	 r3 r J'	 (9.23)

n=o

and taking the partial derivatives of the deviation function with respect to F' and F

gives

= _2S{(1rI' +	 + + V PnRn) }i mdS , = 0,	 (9.24)Z—'n=i r3

S1 n=O

and

dD1

	

am	
2J{(1P1n +	 + 1 +	 PR)}PdS1 = 0.	 (9.25)

	

1r	 S1 n0

Two independent equations have now been formulated from the continuity of pressure

matching condition over plane A; it is, however, noticeable that "weighting functions"

similar to those found in the previous section are now present.
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The least squares process must now be repeated for the other five matching

conditions. For continuity of axial particle velocity over plane A, equations (9.9) and

(9.10) give error functions of

E2 =p0c0 (u —u' ) and E3 =p0c0u,
xI (9.26), (9.27)

where £2 is the error function associated with equation (9.9) and 	 the error function

associated with equation (9.10). For the particle velocity matching condition the two

error functions are combined, giving

D2 = JedS1 +5sdS2.	
(9.28)

Substituting equations (9.4), (9.5) and (9.6) into equations (9.26) and (9.27) allows the

partial derivative of D2 to be taken with respect to 	 and P, giving

=0
n=O

(9.29)

and

dD2
___- 25{(1	 + pp)_(p0 - p°	 PnvnRn)}A1dsI

13	 r3	 ..jnI	 r3 r	 r

1 ,r	 Sj	 10

+	 = 0,	 (9.30)
S2 fl=O

where

=	 (9.31)

The same procedure is now repeated for plane B, where the error functions £4 , £5 and

£6 are given by
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e4 = p — p, E5=p0c0(u—u' ) and e6=p0c0u.
X4 (9.32), (9.33), (9.34)

The deviation functions for plane B are then defined as

= 5 EdS 1 and D4 =5 edS1 +5 edS2.	 (9.35), (9.36)

The substitution of equations (9.1) and (9.3) into equation (9.32) and equations (9.4),

(9.5) and (9.7) into equations (9.33) and (9.34), allows the partial derivatives of the

deviation functions to be taken, and for the continuity of pressure matching condition

this gives

= _25{(Pek0u1 +	 - ( p0 + 'V°° Pn R.n )}1 mdSi = 0	 (9.37)
)	 14	 L-(n=I 14 1

9Pm
S1 n=0

and

_____ -	 +	 e_1"i_(P0	 = 0.
)	 14	 n=1 '4

dprn -
Ic, rc 	 S1 n=0

(9.38)

For the continuity of axial particle velocity matching condition over plane B,

-	 + APe 0 _(P0 +	 PnrR)}1mR[nds1 = 0

)	
14	 n=I 141	 I

dPm
14	 n=0

(9.39)

and

dD4 = 2$ {(	 1fle0 + Ae 0 _(P 0 	 PnYnR)}APe01dSi

)	
14	 n=1 141	 I

ICaptm
S1 n=0

+25
 {
t (:	 l + ie ' )}	 e'dS2 =0.
n=0

(9.40)
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A set of eight independent equations has resulted from enforcing the matching

conditions on planes A and B using the least squares method. To find the transmission

loss of the silencer it is now necessary to solve these eight equations to find I. To do

this it is first necessary to eliminate 	 and	 from the eight equations. For plane A,

this can be done by first adding equation (9.24) to equation (9.29), and this gives

${({i+ ]i q'1" +[ i+ A	 = 2IJR'dS1.
Si n=O Si

(m=1,2......	 (9.41)

To eliminate I° from equations (9.25) and (9.30), one must first multiply equation

(9.25) by A and then add this to equation (9.30), which gives

S{t([i+	 +[i+

51 n=O

+ $ { (' + p'i' )}mmds2 =2 1 5 A1m'P1mdS1.
S2 fl=O Si

(m=0,1......	 (9.42)

The same procedure is now applied to the equations found for plane B, and here

equation (9.39) is subtracted from equation (9.37) to give

5 {t ([i - 1r]1:'e' +{i -
	 -	 [i - }f;R}R1mds, = 0,

s1 n=O

(m=1,2......	 (9.43)

and multiplying equation (9.38) byA and subtracting from it equation (9.40) gives
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(9.45)

(9.46)

J{t ([' -	 + [ i—	 -	 [1— ç' ]i;i }kmPdS

St

- $	
(i	 + P AFe°' )lmrndS =0.

s2 Ln=O	 J

(m=O,1.	 (9.44)

Equations (9.41) to (9.44) can be combined into a single matrix equation which can then

be solved directly for	 Fr', F and	 once the incident plane wave has been

assigned unit amplitude (i.e. F° = (i + iO)). First, however, the infinite series must be

truncated and this is carried out at the same point for m and n, denoted here by N. In

order to show how equations (9.41) to (9.44) are combined into a single matrix

equation, it is convenient to write each equation in matrix form. Accordingly, defining

the following matrices as

[K 1 ] =$[1+Jl'I'ds,	 (n=O,1......,N), (m=1,2......,N)
SI

[K 1 ] =$[1+J1':ds,	 (n=0,1......,N), (m=1,2......,N)
SI

= 5[i + ] mqqmds1 + $
	

m'PP1mdS2
Si

(n=O,1......,N),(m=0,1......,N) 	 (9.47)

[K 2 ]	 +JAAmJ1:w1mds2

(n=0,1......,N),(m=0,1......,N)

[M1]A _J[1+iç]RRds1	 (n=1,2......,N), (rn=1,2......,N)
SI

[M2]A=_J[1+1c]AimRw1mdsI	 (n=1,2......,N), (m=0,1......,N)
Si

[K 1 ] = $[ i —	 (n = 0,1......, N), (m = 1,2......, N)
Si

[K1] = $[1_AJRme_0dS,	 (n=0,1......,N), (m= 1,2......,N)

[K2]= 5[i-	 - S

(n=0,1......,N),(m0,1......,N)

(9.48)

(9.49)

(9.50)

(9.51)

(9.52)

(9.53)
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(n=O,1	 . ,N),(m0,1.,N)

(n=1,2......,N), (m=1,2......,N)

(n=1,2......,N),(m=O,1......,N)

(m=1,2......,N)

(m=O,1......,N)

(9.54)

(9.55)

(9.56)

(9.57)

(9.58)

[K]

[K2]
	

[K2]A [M2]A

0

[K2] [K2]
	

0

TL= _2OlocrIP0I.
'l	 '41 (9.60)

[K2] = 5 {i - A,' ]A	 eh10dSi - 
$ A

Si	S2

[M1]B = 5[lYn]RnRmds

[M2]B 5[i Yn]mInkPrndS

[R 1 ]= 2JR'dS1

[R 2 ] = 25 A1mtImdS1

allows equation (9.41) to (9.44) to be written in the form

o	 Ip1	 f[R1]1

o JPrJftR2]
[M1]B IPr3 ri

	

[1v12]B LJ	 L ° i

(9.59)

Equation (9.59) provides solutions for Ir(n=0,N), P"(n=0,N), P(n=l,N) and

p (n = 1, N). These solutions are then substituted back into equation (6.37) to find a

value for P,. The transmission loss (TL) is then given by

9.4.1 Results and Discussion

It was mentioned at the beginning of this section that, although the derivation of

the least squares method does not rely on eigenfunction orthogonality, problems do

begin to appear. This is evident after examination of the matrices which make up

equation (9.59). For example, the [K 2 ] matrices contain integration of products of the

duct eigenfunctions similar to those appearing in the Cummings and Chang method.

Therefore if this non-orthogonality relationship is the root cause of the problems found

in Section 9.3, one would also expect to encounter problems in this section too.
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In the previous section, the problems associated with the mode matching scheme

were at their most obvious when studying the silencer used by Cummings and Chang

[23], and therefore this silencer is modelled first in this section. Transmission loss

predictions obtained by using the least squares method for Cummings' and Chang's

silencer are shown at the top of Figure 9.6, both with and without mean flow. The

solutions shown in Figure 9.6 were both found using 8 modes, i.e. N =8 in equation

(9.59). When no mean flow is present, the least squares formulation provides

predictions very close to those found using the Cummings and Chang method (see

Figure 9.2). Incidentally, when mean flow was not present, the least squares approach

took longer to converge than the Cummings and Chang method, hence the use of more

modes in Figure 9.6. Also, slight differences between the predictions of the two models

are evident at higher frequencies, though this is probably attributable to the inclusion of

higher order modes in the inlet and outlet pipes in this section. When mean flow is

introduced, problems similar to those found in the previous section are apparent. For

instance, a negative transmission loss is once again predicted below 100Hz. The least

squares predictions, including mean flow, are shown in Figure 9.6 for 8 modes only. No

comparison with the single mode solution is shown since it was only for 8 modes that

the solution was found to converge. Indeed the convergence of the least squares method

proved to be somewhat erratic and, as with the Cummings and Chang method,

numerical instabilities appeared for more than 12 modes. In fact the least squares

method provided very inaccurate predictions when using only one mode. The reasons

behind this are not clear, although it is possible that it was caused by solving the whole

problem in a single step, in contrast to the iterative procedure employed in the

Cummings and Chang method.

Transmission loss predictions were also obtained for the axisymmetric silencers

of Chapter 5 (silencers 1, 2 and 3) in order to confirm the trends shown in the top of

Figure 9.6. The least squares predictions for silencers 1, 2 and 3 are shown in Figures

9.6 and 9.7, both with and without flow. Further predictions were not obtained for the

oval silencers since these were not expected to provide any additional information about

the accuracy of the model. Figures 9.6 and 9.7 indicate that, for silencers 1 to 3, the
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least squares method predicts results similar to that found using the Cummings and

Chang method. For instance, when no mean flow is present, the predictions correlate

well with experimental data and they are also very similar to those found using the

Cummings and Chang method. However, the problems found with the convergence of

the least squares solutions are apparent when no mean flow is present, and these can be

observed for silencer 2 (M =0, top left of Figure 9.7) where a slight kink in the

predictions is apparent around 1400Hz. When mean flow is introduced, the problems

with convergence are more obvious, for example see silencer 3 (Figure 9.7), where the

predictions can be seen to undulate at the lower frequencies. When mean flow is

present the predictions obtained by using the least squares method are again similar to

that from the Cummings and Chang method, though unfortunately this also extends to

under-predicting the transmission loss below approximately 200Hz.

The comparison between prediction and experiment for silencers 1 to 3 using the

least squares method, and also the predictions found for Cummings' and Chang's

silencer, indicate that the problem of non-orthogonality has not been eradicated by the

use of the present solution. Problems identical to those found in the previous section

have been observed and this means that non-orthogonality is not a problem linked solely

to a single method. This points to a fundamental problem, common to both methods,

which warns against the use of non-orthogonal eigenfunctions in mode matching

techniques.

It is concluded here that the non-orthogonality of the eigenfunctions is

responsible for the problems found both in this section and also the previous section.

While the reasons behind this observation are unknown, it is worthwhile pursuing

another mode matching scheme in which the orthogonality question is removed

completely. In the next section a new mode matching method is presented, which does

exactly this.
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Section 9.5

Mode Matching Using a Direct Integration Method

The implementation of continuity conditions at a discontinuity in a dissipative

silencer by the use of a mode matching method has been found to be fraught with

unforeseen difficulties. Problems have been found in the use of both the Cummings and

Chang method [23] and a least squares formulation. Whilst the application of these

methods should not, in itself, depend upon orthogonality of the eigenfunctions,

problems have undoubtedly occurred which do appear to be linked to the orthogonality

question. In this section a completely different approach is implemented, which has the

advantage of eliminating any uncertainties about the orthogonality of the eigenfunctions.

The approach applied in this section is based upon a method employed by Smith [139,

140] in the study of fluid flow in rivers. The method is called here - for want of a better

name - the integral method, since integration is applied directly to the governing wave

equations. This method does not initially require modal expansion of the pressure

fields, since the governing wave equations are multiplied by weighting functions which

are then integrated. Instead of originally assuming a modal expansion for the sound

pressure fields in regions 1 and 2, it is necessary, at a later stage in the method, to define

a modal pressure distribution upon the walls of each discontinuity, i.e. upon planes A

and B in region 2. This pressure distribution is required to fit the relevant boundary

conditions along these walls and, whilst this does not present any problems for

axisymmetric silencers, defining pressure distributions along the wall of silencers which

have a an arbitrary cross sectional shape, including ellipses, was found to be impossible.

Nevertheless, the method is useful for providing a comparison with the two previous

mode matching formulations, since it does appear to show that orthogonality problems

can be avoided. The integral method is the final mode matching scheme implemented

in this chapter and, whilst is does not provide a completely general solution to the

problem, it does perhaps point a way in which future work can proceed.
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The method implemented in this section begins by first integrating the wave

equations found in regions 1 and 2 (see Chapter 6). The wave equation in region 1, for

an axisymmetric silencer (see Figure 6.1), is given (see equation (6.10)) by

!__(rEf"+(i_	 -+kp' = 0,	 (9.61)
r9r	 dr)

where p' is the acoustic pressure, M is the mean flow Mach number and k0 is the

wavenumber in the central channel. For region 2, the wave equation is given (see

equation (6.25)) by

1 d(	 ___

_T-)	 2
(9.62)

where F is the propagation constant of the porous material in region 2. The two wave

equations are subject to the same boundary conditions as those found in Chapter 6 (see

also Figure 6.1 for the notation used here), hence for the hard walled boundary

at r=r2,	 (9.63)

and

dx'
	 r1 ^r^r2 at x=0 and x=1.	 (9.64)

Finally, continuity of normal particle displacement on the common boundary gives

dpi'	 Ri	

2
M 1 ('

= [_ij]	 J' (9.65)
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where a_ refers to dimension ij in region 1, a^ refers to dimension r in region 2 and

R = jk0PøCø/Fza, Za being the characteristic impedance of the porous material in region

2.

The method now proceeds by multiplying each wave equation by the same

weighting function and then integrating each equation over its domain. Therefore for

region 1,

Ii a apj"\	 ___

5 
5Ice_ 1 mx1_rJ+(1_ M2)	 — 2iMk 0 -+ kP}rdrdx= 0,

00

(m=1,2.......	 (9.66)

where	 is the transverse modal eigenfunction and A m the axial wavenumber for the

dissipative silencer (found in Chapter 8). Integrating equation (9.66) by parts gives

_[rpT 
ii 

a (r?'Prdr}dx
0	 drj0 [	 .	 j	 dr )

p]1

+(i— M2)5Fm{[e_ikOm	

0	
[] 

—k2 1e_imxPFdx}rdr
0	 0 mJ

0

—2iMk0 5 m {[e_mx ']' + jkøm 5 e_mx PiFdx}rdr + k $5 
me_mxp rd 0.

0
000	 0

(9.67)

Simplifying equation (9.67) then gives

$ 
e_ik0mx	 (r1 )r1

0

-	 pj'(r1 )}dx

U	

+ ({i — M2Ij1COAm — 2iMko)[emxpJ1}rdr
xdpI1

+jIm{(1_M2)[e_iko2m 

-i;;- 0

	

+5 
emx 5	 '1'm[(1+ .am M)2 - n ] }rdrdx= 0.

0	 0	
rd	 )

(9.68)
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The same procedure is now applied to the wave equation in region 2, and multiplying

equation (9.62) by the weighting function and integrating over the domain gives

Ii	 '

5 S 1mmx t; 1 T)	 2	 P}rdrdx= 0
0 i+

(9.69)

Integrating equation (9.69) by parts gives

r dr(dr)1'2}
m_[r-_p2j2 ' 1 d

+J'
r2	

11	
1

m	
0 

+ikom{e_1 mxp'J — k 2 A2 1e_mxP}rdr
0	 0 mJ

u+ 0

_2 $ e_mx {s: 'mPth}th = 0.
0

(9.70)

Equation (9.70) can be simplified with the use of the hard wall boundary conditions

given by equations (9.63) and (9.64), to yield

{ 'I,(r)r"$ e_1(0mx -	 I	 - r2
0

)+r/-
\

p2

ko2( m J'T'm {P2 (1)e	 - p(0)}rdr

	

'	 ,Iia
+kA)}rdrdx= 0.

5 P2 - -

	

+5 e'mI	
r

0

(9.71)

The procedure used for the two wave equations is also applied to the boundary

condition along the common boundary. Since the domain of this boundary covers a

length 1 only, then

5
I	 .M a 1 	 pne_0mjR[1

0	 1 L -	 ;] - -i+ - ()a 

}d =0. (9.72)
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Integration by parts gives

Jemx{

R(2) _(.i'.) }dx
di- ^	 dr

	

1	 1

M 2 R	 d 1dp	 1 +iko 2 m leiko mx(2 	- k225ek0m	 dx'-	 1:)a jo	 j	
°	

I¼ 9i )a+	 f'0

1	

xP	 dx'=O.2iMR {[e_mJ dp'\ 1

	

J	
(9.73)-	 ldi•) J 

+ jkj2im $ 
e_itm

Simplifying equation (9.73) gives

1	 1
J e_mR{l+)mM]202"\	 (dp

0	 r)a -	 )a

- iMR (2 AM)[_1(2) ]' - M2R [e_0mx	 1' = o.	 (9.74)
dr	 k2 I

a+	 0 L	 a dr

Now, if the weighting function Yme_ 0mx is taken to be the spatial factor for a mode of

propagation that satisfies the governing wave equations, substitution of Pme k0mx into

equations (9.61) and (9.62) yields

1 dl	 m"_(r—_,)+ 'Ym k4(1 - 2mM)2 -
	

= 0	 (9.75)

and

1 dl
_r__)_Wm{F2 +k]=O.	 (9.76)

Similarly the boundary condition given by equation (9.65) results in
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R(1 2mM)2('m"
-	 1-;:-) + = (9.77)

The relationships given by equations (9.75) to (9.77) have been derived previously (see

Chapter 6). It is evident that equations (9.75), (9.76) and (9.77) can be used to eliminate

terms from equations (9.68), (9.71) and (9.74) respectively, so long as the Mach number

used in equations (9.75) to (9.77) is reversed. Therefore provided that the solutions

found for the eigenfunction 'Pm and the eigenvalue Am are calculated using a Mach

number of sign opposite to that used in the present derivation, equations (9.75) to (9.77)

can be successfully used to simplify equations (9.68), (9.71) and (9.74). Note that the

derivation assumes that, for a single propagating mode, m = 1 denotes an incident wave

and m = 2 a reflected wave. Therefore carrying out this simplification gives

Je
_ikoAmx '(71),1I .'P.L I

i	 {
- r	 pç(r, )}dx

9',J
+1 sm {(1_ M 2 )[e0m	 +({i_ M 2 JikA _2iMko )[e OmX '1 '}rdr= 0,

p1 Jo

(9.78)

{ 'Pm(1
J	 -	 (rJa+ + 

Ti

0

koAm 5'Pm {p (l)e u" 0m' - p (0)}rdr = 0 (9.79)

and

(	 ('\	 (\
5 e° 11 + Am M]2	

-	
}dx

-.1

- iMR 
(2 + AmM)[eikOmxVPJ 

1' 
MR [euAtnx -{.-)

	
= 0.

dr I	 'Co	 dx: dr+ Jo

(9.80)
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The solution now proceeds by combining equations (9.78), (9.79) and (9.80) to form a

final, single equation, which can then be solved. It is convenient here to add

R(l + Am M)2 x (9.79) to both (9.78) and (9.80) and this gives

{wm() 

(dp'\$ e_0mx	 r1
0

mJPF(r)}

Il
+Im{(i_ M2)[em -- +([i— M2]jk0A _2iMko)[ek0mxPc]1}rdr

+R(1+AmM)25e-ikOmX{_( ) i-)
ijr1	+rjI__!J P2

dr0	 di-

"2

+R(1 + 2L m M) 2 jkoAm 5 m{p(l)e_0m1 - p (0)}rdr

(	
(dpç\	 (cp

	

+5	 R{1 + Am M]2

	

o	 -	 Ja }

1	 NI 2 R	 jkmX d ('	 1

E l
- 

iMR (2 + A m M)[e m	-	 e	 = 0
k0 0	 a+J0

(9.81)

Equation (9.81) can be simplified by use of the boundary condition imposed at the

common boundary between regions 1 and 2 (equations (9.65) and (9.77)), allowing

equation (9.81) to be re-written as

(1— M 2 'i'm [emx	rdr + ik0 ({i - M 2 1Am —2 M)J 'ibm [emxpc]'rdr
dx ]0	 0

"2

+jko Am R(l + Am M)2 5W {P (l)e0m' - p (0)}rdr

- iMR (2+A M) -.	
] - MR [e_omx d (dp'\ '

E 

e Ikm	 ______

k0	
m	 dr	 k2 I	 =0.

0 L	 u+o

(9.82)
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Now, if p in plane A is denoted by PA' p in plane B by PB' p in plane A by p0 and

p in plane B by p1 , then equation (9.82) can be re-written to give

(1— M2	 .L' _L1 1 rdr+ iko ([1 - M 2 ]2I m - 2M)5,[e"0 p - p]rdr
c9xL	 xJo]	 0

+jk0A m R(1 + 2imM)2 $ 'I'm {PBe_0m1 - PA }rdr

_ iMR (2+Am M)[e_ikom1 ?P_I	 1=0.
k0 Ia+	 a+J

(9.83)

At this point it is necessary to assume a modal pressure distribution for both PA and PB

Both pressure distributions are assumed to have the same form and they are both subject

to the hard wall boundary condition	 A,B I9r = 0 at r = i. Both the pressure

distributions are also chosen to give dp B /r = 0 at r = r, since when this restriction

was relaxed, the final numerical solution proved to be very unstable. An arbitrary

function is chosen here which fits both these boundary conditions and it is given by

PA,B = po +C (r_)[(r_)_(i —)(1—n/2)],	 (9.84)
n=1

where C is the modal coefficient in either plane A or plane B. The use of the

relationship

	

dp'I	 ik0

	

xL	 (1+M)'"	
(9.85)

and the substitution of the assumed pressure distribution for PA and PB' allows equation

(9.83) to be re-written as
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r1 	 r
—(i— M2)5f1m (i ik0 e0m'p1	 1rdr

[+M)	 dxo]

- M 2 ]2t m - 2M)J	 - po]rdr
0

+jk02R(1 + AmM)2j{eom1[po + c (r— lj 
) 2 [(r - )_ - r1 )(i _n/2)]]

'1

—[p0 + C (r _, )2 [(r - r1 ) - (r2 - r1 )(i - n/2)f ]}'mru1r =0.

(9.86)

Grouping together the unknowns in equation (9.86) gives

Pi{ikoem1(rn[1_ M 2 ]_ M_1)Jrdr}_	 {(i_ M2)51mrdr}
dx0

_C{komR(1+ m M)2 J ( r )2 [(r - r1 ) - (r2 -	 - n/2)] rdr}

+ {i om (i + m M)2 em' $ '(r - )[(r - r1 ) - (r2 - r1 )(i - n/2)] rdr}

r1

= Po{iko([1 - M 2 J m - 2M)5 1 rdr+ jk0mR(1 + Am M)2 [1— e 0mh ]1 mT&}

(m = 1,2......, N), (n = 1,2......, N - i)	 (9.87)

Equation (9.87) is the final equation which must be solved for p1 ,	 /ax 0 , C and C,,

once p0 has been set equal to unity (real). The left hand side of equation (9.87) forms a

matrix of size (N x N), from which values for and 2Lm must be supplied from the

eigenvalue solution performed in Chapter 8 (with the Mach number reversed). The

eigenvalues and eigenfunctions are supplied in groups of incident and reflected modes

so that, in equation (9.87), m = 1 refers to the incident least attenuated mode, m = 2

refers to the reflected least attenuated mode, and so on.

Finally, the transmission loss (TL) of the silencer is given by
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i(1—M)aI 1
1+	 (9.88)

(1+M)	 k0
Th=2Olo{

2	 p1	

j

9.5.1 Results and Discussion

The purpose behind the mode matching method employed in this section was the

avoidance of integrals which contained products of the duct eigenfunctions. An

examination of the final equation (equation (9.87)) shows that the integrals are now only

performed on a single eigenfunction. Therefore any question about the orthogonality of

the eigenfunctions has been removed. The final solution of equation (9.87) appears to

be straightforward, especially when N = 1, which allows the elimination of C and C.

However the inclusion of higher order modes does require a function for the pressure to

be found at the end plates of the silencer, and this must satisfy the appropriate boundary

conditions. Equation (9.87) gives one possible formulation for PA and PB for use in

axisymmetric silencers from which the modal coefficients C and C can then be

found. Unfortunately it was found to be impossible to find an equivalent modal

pressure distribution for the oval silencers. Consequently, all the multi-mode

predictions obtained from the integral method are limited to axisymmetric silencers.

However one can still find predictions for the oval silencers so long as only one mode is

used. This does however require the integration of the eigenfunctions over the

equivalent area denoted in the integral signs in equation (9.87).

In the previous two sections the silencer studied by Cummings and Chang [23]

was modelled first. Therefore the predictions obtained for the Cummings and Chang

silencer by using the integral method are shown in Figure 9.8, for M=O and M=O.197.

These were obtained using 8 modes, since this was the point at which the transmission

loss predictions converged. Predictions are also shown in Figure 9.8 for a single mode

when mean flow is present, since this shows the effect of adding higher order modes to

the model. The accuracy of the solutions found when only one mode was present (with

M=O. 197) was comparable to that found when using the Cummings and Chang method.
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Once higher order modes were introduced here, the solutions were very unstable for

small numbers of modes, only stabilising when more than about 6 modes were included.

Indeed, the solutions found for between 2 and 4 modes were very inaccurate, far more

so than those derived from the previous two methods. This effect is perhaps attributable

to the addition of the assumed pressure distribution at the end plates, and the

convergence of the solution might be improved by a better choice of function for PA and

PB The solution was found to begin diverging when more than about 12 modes were

included, which is again attributable to numerical problems. When no mean flow is

present, the integral method provides predictions comparable to those found by using

the two previous methods. However, when mean flow is included, in addition to higher

order modes, a negative transmission loss is no longer predicted (see Figure 9.8). A

comparison between the predictions found by using 1 mode and those found by using 8

modes shows almost identical results at low frequencies. This appears to indicate that

the integral method works correctly when higher order modes are present. At higher

frequencies only a small difference is observed because of the presence of higher order

modes, although this difference will be minor because of the relatively small dimensions

of the silencer studied by Cummings and Chang.

Multi-mode solutions were also found for silencers 1, 2 and 3, and these are

shown in the bottom of Figure 9.8 and Figure 9.9, both with and without mean flow.

Again, it is evident that, when no mean flow is present, the predictions found using the

integral method are close to the experimental data and also similar to those found in the

two previous sections. When mean flow is present, the accuracy of the prediction has

improved slightly over the previous methods, and this is especially true at low

frequencies where under-prediction is no longer a problem. Unfortunately, for the

reasons mentioned earlier, predictions for the ellipses could only be obtained using one

mode, and these are shown in Figure 9.10. However, for a single mode, the predictions

found using the integral method are very similar to those obtained using the Cummings

and Chang method. Actually the predictions for the elliptical silencers in Figure 9.10

are surprisingly good considering only one mode has been used and, as in the case of the

Cummings and Chang method, no problems appear at low frequencies, an area where
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numerical problems had previously occurred with the full three dimensional finite

element solution.

The results obtained using the integral method show good agreement with

experiment and the method has been shown to be capable of eradicating the problems

associated with the non-orthogonality of modes which are apparent in the previous two

sections. Indeed, the solutions obtained here appear to reinforce the observation that

one must avoid using non-orthogonal eigenfunctions in mode matching schemes.

Unfortunately the model derived in this section cannot be applied to the study of higher

order modes in silencers with arbitrary cross sections. Since the original intention of

this chapter was to find a scheme by which transmission loss predictions could be

computed for silencers of arbitrary cross-sectional shape, the method does not satisfy

this criterion. Therefore, in the future, further modification of this method is needed in

order to find a way of examining arbitrary cross-sectional shapes, although such a task is

beyond the scope of this thesis.

Section 9.6

Evaluation of the Mode Matching Techniques

In this chapter, three different mode matching techniques have been

implemented in order to model a finite length silencer using only the eigenvalue

solutions found in Chapter 8. It was found here that the implementation of a mode

matching scheme for dissipative silencers which also contain mean flow in the central

channel is far more difficult than at first appeared. Of the three methods investigated,

the first two methods (the Cummings and Chang and least squares methods) gave

virtually identical predictions, both exhibiting problems when mean flow in addition to

higher order modes were present. It was tentatively concluded that these problems were

caused by the non-orthogonality of the eigenfunctions - something which was common

to both methods - although no proof of this was given. The integral method,

implemented last, appears to reinforce this observation since when the non-
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orthogonality question was removed, acceptable results were obtained. However the

integral method suffers from its own problems, limiting solutions for silencers with

arbitrary cross-sectional shape to one mode only. Consequently problems have occurred

with all three mode matching schemes and not one of them fully fits the initial criterion.

The method of mode matching requires further examination, which is beyond the scope

of this thesis, although the author suggests that the integral method of Section 9.5

appears to provide the best hope for providing a stable mode matching scheme in the

future. Also, it is by no means certain that non-orthogonality was solely responsible for

the problems found in the first two methods and therefore this question also requires

further investigation. However it is possible that one might have to resort to more

complex ways of matching the continuity conditions over the discontinuities. Two

alternative methods were mentioned in the introduction and these are the variational

method used by Sormaz [124] and the Wiener-Hopf method implemented by Nilsson

and Brander [22].

Although the mode matching schemes were not successful in every situation,

most of the predictions made for the silencers studied here appear to be reasonably

satisfactory. The three methods can still be useful for design purposes, despite their

limitations, and therefore in view of this it is useful to study further the relative

performance of each method. Both the Cummings and Chang method and the least

squares method gave similar transmission loss predictions, both with and without mean

flow, although the least squares method converged less readily than the Cummings and

Chang method. Obtaining convergence for the integral method proved to be difficult,

even when mean flow was not present. This cautions against the use of the integral

method in its current form, since convergence cannot be assumed to have occurred for a

given number of modes; and so, at present, one must manually examine the convergence

of each solution for individual silencers. Consequently it is concluded here that, of the

three mode matching schemes implemented in this chapter, the Cummings and Chang

method is currently the most useful for design purposes since, in most cases, it provides

solution of accuracy comparable to the other two methods but provides a stable

convergence of solution. Therefore, although the Cummings and Chang method must
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be employed without the inclusion of higher order modes when mean flow is present,

the result are sufficiently good to allow its use in silencer design, and subsequently this

method will be used to provide the mode matching predictions further on in this thesis.

A problem common to all three mode matching schemes was the divergence of

the solution once more than about 12 modes had been included. This problem is

thought to be caused by numerical instabilities occurring when executing the code and

this is why it is largely unrelated to the mode matching method used. It is possible that

this effect could cause serious problems when studying two dimensional eigenvalue

problems. This is because mode matching with one dimensional modes required the use

of at least 8 axisymmetrical modes in order to achieve convergence. Now, the

transmission loss solution requires only axisymmetrical modes, but in two dimensional

problems non-axisymmetric modes exist (see Chapter 8), and these modes make no

contribution to the convergence of a solution. Therefore if, for example, 8

axisymmetrical modes are required for convergence but 6 non-axisymmetric modes

already exist before 8 modes are reached, then the numerical problems associated with

the solution of large matrices will occur before all the necessary axisymmetrical modes

have appeared unless the non-axisymmetric modes can be eliminated from the mode

matching procedure. This has the potential to inhibit convergence, especially if a large

number of axisymmetrical modes are needed in two dimensional solutions. This effect

could not be studied here because of the problems encountered when introducing higher

order modes into the two dimensional solutions. However it does have the potential to

cause large problems in mode matching solutions, although it is anticipated that this

effect will only be apparent in extreme cases, such as in the study of large silencers with

cross sections of arbitrary shape.

Finally it is interesting to study the effect of the perforate on the mode matching

predictions. Since it has been decided that only the Cummings and Chang method will

be employed further, predictions obtained for silencers containing perforates are given

here for the Cummings and Chang method only. Indeed it is only necessary to study the

effect of the perforate on one method, because the same trends ought to be common to

the other methods since they have a common input. The mode matching predictions
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obtained for silencers 1, 2, 4 and 5, including perforates, are given in Figures 9.11 and

9.12. It is evident from Figure 9.11 that the effect of the perforate on the transmission

loss of the axisymmetric silencers is similar to that observed in the full finite element

predictions in Chapter 7. Again it can be observed that at lower frequencies, the

predictions are slightly higher than those found without a perforate (see Figures 9.3-9.5),

whilst above approximately 1kHz the predictions are rather lower. It was mentioned in

Chapter 7 that the perforate impedance has probably been over-predicted, and this effect

will be discussed further in the context of the mode matching method in Chapter 10. It

is interesting also to examine the effect of the perforate upon the oval silencers, and this

is shown in Figure 9.12. For silencer 4 there appears to be very little difference between

the predictions with and without a perforate at low frequencies, whilst only a small

difference (of the order of 5dB) occurs at 2kHz. The effects of the perforate on the

transmission loss predictions for silencer 4 are smaller than those found for silencers 1

and 2 and this is to be expected because the porous material present in silencer 4 (basalt

wool) has a much lower flow resistivity than E glass, which is present in silencers 1 and

2. Silencer 5 does contain E glass, and the effect of the perforate is indeed larger than

that found for silencer 4, although in view of the results obtained for silencers 1 and 2,

one might have expected the effect of the perforate to have been greater. It is possible

that the smaller effect of the perforate upon the elliptical silencers, compared to that

found for the axisymmetric silencers, might be caused by their difference in shape,

although this is by no means certain. A fuller discussion of the effect of the perforate in

mode matching solutions for both axisymmetric and elliptical silencers will be given in

Chapter 10.

One may conclude that applying the mode matching method to dissipative

silencers is by no means straightforward and requires further investigation. However

the results presented in this chapter do appear to be acceptable for design purposes in

the cases of the silencers studied and it is possible, even with the use of only one mode,

that the Cummings and Chang method would provide sufficiently good predictions for

use in commercial silencer design software. In addition, this method has the potential to

reduce CPU costs compared to the full finite element method described in Chapter 7.
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The relative merits of the Cummings and Chang mode matching model, the

fundamental mode model and the finite element model are discussed in the next chapter.
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CHAPTER 10

EVALUATION OF THE MODELLING TECHNIQUES

FOR DISSIPATIVE SILENCERS



Section 10.1

Introduction

In this thesis, three different theoretical approaches to predicting the behaviour

of finite length exhaust silencers have been examined. The fundamental mode model

(see Chapter 6) was examined first in view of its relative simplicity and because the

model proved capable of providing transmission loss predictions with minimal

computational effort. However correlation between the fundamental mode predictions

and experimental data was poor, especially for large silencers and those with a non-

circular arbitrary cross sectional shape. Therefore a more complete approach was

implemented in Chapter 7, and this involved applying a full finite element analysis to

the dissipative silencer. The finite element model provided a much better correlation

between prediction and experiment for both the axisymmetric and the oval silencers.

Unfortunately the improvement in prediction accuracy obtained by using the finite

element method was gained at the expense of a large increase in computational effort.

Finally, a mode matching model was implemented (see Chapter 9) which utilised

eigenvalue solutions obtained by using a finite element method (see Chapter 8). The

mode matching approach provided better correlation with experimental data than the

fundamental mode method but, as with the full finite element method, this was at the

expense of an increase in computational effort. However the mode matching

predictions did offer some saving in computational effort when compared to the full

finite element method, whilst maintaining good correlation with experimental data. The

question which arises from the three models studied is: which model best fits the initial

design criteria? In this chapter, the three different theoretical models are compared to

one another, from which recommendations are made concerning the future usefulness of

each model as a design tool. To avoid confusion, the model implemented in Chapter 7

is called here the finite element model and the model implemented in Chapter 9 is

termed the mode matching model, despite the use of finite elements being common to

both methods.
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In this chapter the comparison between the three models is based upon

predictions obtained for the five silencers described in Chapter 5. The silencers were

designed differently in order to asses the capability of each theoretical model in relation

to aspects such as size, shape and absorbent material. In previous chapters, the

experimental data obtained in Chapter 5 were used as the sole basis for estimating the

accuracy of each model, and from here decisions were made concerning the direction in

which future modelling should go. However, to avoid constant duplication of results,

the different theoretical models were not directly compared to one another.

Accordingly, in this chapter the relative merits of each model are assessed by direct

comparisons between the models. It is assumed here that the finite element model

provides the best theoretical predictions available and that these can be used, in addition

to the experimental data, as a basis for examining the accuracy of both the fundamental

mode and mode matching predictions which both contain simplifications. This is

particularly useful at higher frequencies, where doubts about the accuracy of the

experimental data exists. From here conclusions can be drawn about the degree of

complexity that one must incorporate in the model to obtain acceptable predictions.

The relative suitability of each of the theoretical models for use in silencer

design is evaluated in the next section, and this is based upon criteria laid out in the

introduction to this thesis (Chapter 1). To re-cap, the criteria require that the theoretical

model must be capable of predicting the performance of a dissipative silencer over a

nominal frequency range of 0-2kHz. The model must also account for a silencer of

arbitrary cross-sectional shape which also includes mean flow in a central channel

separated from the absorbent by a perforated plate. Finally the model must also be

capable of providing an iterative design tool which can be used on a PC. This final

point places some restrictions upon the degree of complexity which can be included in

the model. In the next section, the performance of each model against each of these

criteria, and also against each other, is examined. Initially, this is to be done without the

inclusion of a perforate because, as was mention in previous chapters, some doubt still

exists about the values being used for the perforate impedance. The effect of the

perforate on transmission loss predictions is examined separately in Section 10.3, in
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which an attempt is made to find corrected values for the perforate impedance. Finally,

in Section 10.4, insertion loss predictions are compared to the experimental data

obtained in Chapter 5 in order to provide an alternative test upon the accuracy of the

predictions found using the theoretical models studied here. Also, a brief discussion is

given on the consequences of the transmission loss results found for the silencers

studied here, and also the future design of exhaust silencers.

Section 10.2

Evaluation of Theoretical Models

The relative merits of each of the three theoretical models are discussed in this

section, based upon the criteria mentioned in the introduction to this chapter.

Transmission loss predictions obtained using the fundamental mode, finite element and

mode matching models are compared with experimental data in Figures 10.1, 10.2 and

10.3, for silencers 1 to 5 (without a perforate). It is evident from these figures that all

three models give similar predictions at low frequencies (below approximately 200Hz),

especially for the axisymmetric silencers. This is to be expected since only the

fundamental mode should affect the transmission loss at such frequencies. However,

when one examines frequencies above 200Hz, a progressive difference between the

three predictions occurs. For the fundamental mode solution it is obvious, from a

comparison between prediction and experiment, that relatively poor correlation is

achieved at higher frequencies, especially above 750Hz. This is particularly true for the

oval silencers since the fundamental mode model is capable of predictions for circular

silencers only, and therefore an equivalent area prediction must be used. At higher

frequencies the experimental data are potentially inaccurate above 1kHz, and therefore it

is more informative to compare the fundamental mode predictions to those found by

using the finite element method. Above 1kHz, the fundamental mode model provides

relatively poor correlation with both the mode matching and the finite element

predictions for each of the silencers studied. It is perhaps surprising that the
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fundamental mode model is in such poor agreement with the mode matching predictions

since, when mean flow is present, only a single mode has been used to find the mode

matching predictions. It is thought that these discrepancies are caused by the use of

different weighting functions in each model since, when only the least attenuated mode

is assumed to propagate, the matching of volume velocity in the fundamental mode

solution is equivalent to matching particle velocity in the mode matching solution. For

instance, the fundamental mode model applies an area weighting to the matching

conditions whereas the mode matching method employs the duct eigenfunctions as the

weighting functions. This implies that the mode matching method places a greater

weighting on matching the continuity conditions in the central channel, but the reasons

behind why this improves the overall transmission loss predictions obtained using the

mode matching method when compared to the fundamental mode model are, at present,

unclear. The fundamental mode model does, however, offer one advantage over the

other two methods since transmission loss predictions can be computed quickly and

easily on a PC. In addition there is no need to resort to finite element packages such as

the finite element NAG routines required here for use in the other two methods.

However, in producing a very fast and simple solution, accuracy is inevitably sacrificed

and, unless one only requires a model accurate up to approximately 500Hz, the

predictions are not good enough to allow the method to be used as a design tool.

One is now left with a choice between the two numerical formulations. This is,

perhaps, inevitable in view of the need to account for arbitrary cross-sectional shapes.

Since the full finite element model described in Chapter 7 provides a completely general

approach to modelling silencers it has been assumed here that this method provides the

most accurate numerical results of the three methods studied. This allows the mode

matching model to be compared to these "benchmark" finite element predictions to

ascertain its accuracy A comparison between the finite element and mode matching

predictions shows that, in most cases, the predictions agree remarkably well. This is

particularly true for the axisymmetric silencers when no mean flow is present, the

correlation no doubt being helped by the introduction of higher order modes in the mode

matching predictions. When mean flow is introduced, only a single mode is used in the
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application of the mode matching method and the predictions differ to a greater extent,

especially at higher frequencies, although the correlation between the two still remains

good. For the oval silencers the correlation between the two methods is again good for

silencer 5 (see Figure 10.3), although a larger difference between the two methods is

observed for silencer 4. The reasons behind the increase in the discrepancies between

the two models for silencer 4 are not clear although the effect cannot be caused by the

neglect of higher order modes in the mode matching solution, since similar behaviour is

also observed when no mean flow is present and higher order modes are included. One

rather surprising aspect observed in the present results is the apparently small effect of

the higher order modes on the correlation between the mode matching predictions and

those found using the finite element method. Indeed, whilst the higher order modes do

offer a slight improvement in predictions when no mean flow is present, the additional

difference between the mode matching and finite element predictions caused by the

neglect of higher order modes when mean flow is present is small and amounts to no

more than about 2dB. While one would expect these differences to increase above

2kHz, within the frequency range of 0-2kHz studied here, the effect of the higher order

modes does seem to be relatively small. This confirms that the discrepancies found

when applying the fundamental mode model to axisymmetric silencers are caused

principally by the use of different weighting functions. If it is assumed that the finite

element predictions are the most accurate of those discussed here, then a comparison

between the mode matching and the finite element predictions indicates that the mode

matching method retains enough accuracy potentially to replace the full finite element

method. However, before a recommendation of the most effective theoretical model is

made, one must also examine the relative CPU time required to solve the finite element

and the mode matching model.

A major reason behind implementing the mode matching method was the need

to reduce the computational time demanded by the full finite element model. For the

Cummings and Chang mode matching scheme (see Section 9.3), the time taken to solve

the problem is dominated by the finite element solution of the eigenvalue problem.

Since the eigenvalue problem requires only the cross section of the silencer to be
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meshed it offers a large reduction in the number of nodes required when compared to

the full finite element solution. This appears to offer the benefit of faster solution times,

but unfortunately this is not always the case. It is certainly true that in the modelling of

the oval silencers, in which a full three dimensional mesh is required by the finite

element model, the jump in problem size from the two dimensional to the three

dimensional induces a very large increase in computational effort. Consequently, the

use of a two dimensional eigenvalue solution will always lead to computationally faster

transmission loss predictions. However for the axisymmetric silencers, the difference

between the time required to solve a two dimensional full finite element problem and a

one dimensional mode matching problem is not as large as one would expect. Part of

the reason for this is that the formulation of the full finite element problem

automatically results in a banded matrix, whereas this is not the case for the eigenvalue

matrices. This problem is exacerbated when mean flow is present, since the eigenvalue

matrix is doubled in size compared to its zero mean flow matrix. In addition, it is also

necessary to invert a matrix when computing the eigenvalues. Indeed when mean flow

was present, transmission loss predictions obtained using the mode matching method

could take even longer to solve than those obtained using the full finite element method.

This observation obviously depends upon the number of nodes used to mesh each

problem. In Chapter 8, the mesh sizes used for the eigenvalue problem were chosen in

order to find accurate solutions for a number of higher order modes in addition to the

least attenuated mode, and this required a relatively high mesh density. If the mode

matching model implemented in Chapter 9 is run with similar mesh densities to those in

Chapter 8 then, especially when mean flow is present, the mode matching solutions take

longer to compute than the finite element solutions obtained using the mesh sizes listed

in Chapter 7. This is a surprising result, although the solution times for the eigenvalue

matrices do appear to be very sensitive to the number of nodes used. Fortunately,

transmission loss solutions found by using the mode matching method do not require

the higher order modes to be predicted to such a high degree of accuracy, and therefore

one can reduce the number of nodes used. The reduction in the number of nodes then

allows a faster solution to be obtained by using the mode matching method than that for
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the finite element method. However, one must caution against reducing the number of

nodes too far since, especially if other mode matching schemes are used which require a

large number of modes in order to achieve convergence, a sufficient number of nodes

must be retained in order to calculate even the second and third least attenuated modes

accurately. Fortunately this is not a problem in the present case, since the Cummings

and Chang mode matching method only works adequately for a single mode when mean

flow is present and therefore a relatively coarse mesh is possible. Consequently, in

general, the Cummings and Chang mode matching predictions can be obtained more

rapidly than the equivalent finite element predictions, something which is always true

for the elliptical silencers. Therefore the mode matching method does appear to be

successful at reducing CPU time in addition to retaining a high degree of accuracy.

Since the finite element and mode matching models both use numerical

approaches relying upon finite element formulations, the amount of input required from

the user at the start of the problem is important. Clearly, if either model is to be used for

design purposes, then it is necessary to generate a completely new mesh for each

silencer studied. For the axisymmetric silencers this does not present too much of a

problem. For instance a one dimensional mode matching mesh is very simple to

produce and does not even require the use of a specialised mesh generator. A two

dimensional finite element mesh is not quite so straightforward but it is, nevertheless,

not too time consuming to generate, especially considering the simple rectangular

elements which can be used. Significant problems only occur in modelling oval

silencers using a full finite element model. This requires the use of a full three

dimensional finite element mesh such as the one shown in Figure 7.3, and hence

considerably more effort on the part of the user is necessary, even with the aid of a

commercial mesh generator. In contrast, only a simple two dimensional mesh is

required by the mode matching model in order to study silencers with arbitrary cross

sectional shapes. Therefore, if ease of use is a consideration, then the mode matching

method appears to be more practicable to use than the full finite element model.

Apart form the computational expense associated with the finite element

predictions, problems have also occurred in the predictions themselves. This only came
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to light in the case of the oval silencers which required three dimensional modelling. At

very low frequencies (below 100Hz) the predictions become unstable and, in some

cases, even become negative (see Figure 10.3 and also Figure 7.8). This effect was

discussed in Chapter 7 and it was concluded that this is caused by numerical problems,

but it is obviously an undesirable effect, especially if a robust silencer model is required.

In contrast, the mode matching predictions obtained for silencers 4 and 5 at low

frequencies seem to be stable and produce reasonable answers, and thus one would

expect fewer problems to occur with the mode matching model. However, the author is

by no means certain that the mode matching method, in the form implemented here, is

free from problems. This is because various fundamental aspects of the mode matching

approach - particularly stability and convergence criteria - are far from fully understood,

and the Cummings and Chang method probably needs further testing in order to

establish its robustness. However, so long as only a single mode is used when mean

flow is present, the author is confident that the mode matching method will be free from

problems for silencers of the type studied here.

It may be concluded from this assessment of the three theoretical models that a

mode matching formulation, based upon the approach used by Cummings and Chang

[23], offers the best balance between accuracy of predictions, speed of solutions, ease of

use and robustness.

Section 10.3

The Influence of the Perforate on Transmission Loss Predictions

A perforated plate is often employed in silencers, to separate the absorbent

material from the central channel of the silencer, and this has been introduced into each

of the theoretical models examined in this thesis. At present it is common practice to

ignore the effect of the perforate, indeed the number of models in the literature that

include a perforate is small; examples of the few investigations including perforates are

those of Cummings [14], and Nilsson and Brander [15]. Evidence justifying the neglect
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of the perforate was cited by Peat [109], who studied the effect of perforate porosity on

plane wave transmission loss predictions obtained for a silencer identical to that

examined by Cummings and Chang [23]. Peat concluded that, unless a perforate of low

porosity was used (below approximately 10%), the additional effect of the perforate on

transmission loss predictions was negligible. Consequently, most theoretical models of

automotive dissipative silencers ignore the effect of the perforate and this was the case

in the original formulation of the models studied here. The perforate was introduced

into the theoretical models discussed in this thesis in the belief that its behaviour had not

yet been investigated comprehensively enough to permit its complete omission.

Furthermore, in Chapter 4, it was found that when a porous material was backing a

perforate it could significantly increase the impedance of the perforate, an effect which

had not been considered before. In this section the effect of the perforate is studied

further, and conclusions are drawn concerning its future use in theoretical modelling.

The acoustic impedance of the perforate alters the pressure boundary condition

between the central channel and the absorbent. Semi-empirical expressions for the

perforate impedance are given in Chapter 4, for the case when mean flow is present.

When mean flow is not present, perforate impedance values given in the literature are

used [107] since different attenuation mechanisms are now present and one cannot

simply employ the semi-empirical predictions given in Chapter 4 with the friction

velocity set equal to zero. The additional effect of the absorbent material is added to the

predictions without mean flow in the same way as that carried out for the semi-

empirical model in Chapter 4. The introduction of these impedance values into the

three completely independent theoretical models showed that the qualitative effect of

the perforate on each silencer was similar, indicating that the impedance of the perforate

has been introduced correctly into the three models. This is particularly noticeable for

silencers 1 and 2, both with and without flow, since all three models predict an increase

in transmission loss at lower frequencies and a reduction at higher frequencies. Indeed,

the finite element method and mode matching predictions are very similar, although one

would expect this from the similarity observed in the predictions found without a

perforate. However the effect of the perforate on the fundamental mode solution is
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much smaller than that in the two numerical methods, especially at high frequencies.

The reasons for this are, at present, not entirely clear, although the effect is probably

linked to the choice of weighting functions in the fundamental mode model. In

addition, the effect of the perforate on transmission loss predictions can be observed to

depend upon the type of silencer modelled; for instance the predictions for silencers 3

and 4, which contain materials with a relatively low flow resistivity, indicate that for

these silencers, the perforate has a much smaller influence on the transmission loss than

that when a high flow resistivity material is employed. This indicates that the effect of

the perforate on transmission loss predictions depends upon which type of theoretical

modelling has been used and the details of the silencer. Consequently, one cannot draw

definite conclusions about the influence of the perforate until predictions have been

obtained for a number of different silencers using an accurate and versatile theoretical

model such as the finite element model described in Chapter 7.

The author is confident that, for the models implemented in this thesis, the

perforate impedance has been introduced correctly. However, when one examines the

transmission loss predictions obtained with a perforate included, given in the previous

chapters, one finds that an improvement in correlation with experimental data does not

necessarily occur as the perforate is introduced. Consequently the values used for the

perforate impedance must be questioned. It has been discussed in previous chapters that

the additional effect of the porous material on the perforate impedance has a substantial

influence upon the transmission loss predictions. For absorbent materials with high

flow resistivities, such as E glass, this effect has been shown to produce differences in

the transmission loss as high as 10dB at the higher frequencies. The additional effect of

the absorbent depends heavily upon the localised influence of the porous material on the

acoustic streamlines adjacent to the holes in the perforate. In Chapter 4, the semi-

empirical predictions obtained for the acoustic impedance of the perforate were made

with the assumption that a uniform density of material was present immediately adjacent

to the perforate. This is, however, unlikely to be the case in silencers such as the ones

studied here, in which the absorbent materials have not been uniformly packed and will

contain "voids" adjacent to the perforate holes. Consequently it is suggested here that

305



the influence of the absorbing material on the acoustic impedance of the perforate is

reduced in a randomly packed silencer, since the density of the absorbent material

adjacent to the holes is not uniform. To account for this "random" effect it is proposed

here to use an empirical constant in order to reduce the effective average density of the

absorbent material adjacent to the holes. Obviously, it is not practicable to measure the

bulk density of the material adjacent to the holes in each silencer, and therefore the

constant must be obtained by trial and error, once comparisons have been made between

predictions and experimental data. Unfortunately this method relies upon assuming that

the experimental data found in Chapter 5 are accurate over the entire frequency range of

interest. In Chapter 5, transmission loss measurements were presented over a frequency

range of 0-2kHz, but the method used to find this data is such that only frequencies

lying in the range lOOHz-lkHz were reliable. An area of uncertainty therefore exists

between 1kHz and 2kHz, in which one cannot be sure of the accuracy of the

experimental data. This frequency range also represents the region in which the effect

of the perforate is at its greatest. However, as described in Chapter 5, a measurement

technique identical to that used for the dissipative silencers was also applied to a plain

expansion chamber and a comparison between prediction and experiment indicated

good agreement up to approximately 1600Hz. Therefore it is possible that the

measurements found for the dissipative silencers may be sufficiently reliable up to

approximately 1600Hz. Whilst it is not expected that the values measured between

1kHz and 2kHz are quantitatively very accurate, it is nevertheless hoped that the

qualitative trends observed provide a good indication of the silencers' actual

performance. Therefore the acoustic impedance of the perforate is to be altered here

through the use of an adjustable constant which is changed by trial and error until a

value is obtained which provides the "best fit" between prediction and experiment over

a frequency range of 0-1600Hz. The question which now arises is: how should this

constant be defined? The author believes that the impedance of the perforate depends

upon the local density of the absorbent material, adjacent to the holes. In a randomly

packed silencer, one would expect a range of material densities adjacent to each hole

and, after examining the problem experimentally, it became evident that the area of
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lowest material density provided the greatest influence on the impedance of the

perforate. For example, small areas in which no material was present often occurred

adjacent to the holes, and this had the effect of significantly reducing the overall

acoustic impedance of the perforate. Also it appears that the manner in which the

silencers studied here were manufactured has, to some extent, caused the voids to

appear adjacent to the perforate. Consequently, the effective density of the material

adjacent to the perforate is less than the overall bulk density of the material in the

silencer box. Therefore it is proposed here that the random packing of the material

adjacent to each hole should be quantified by an adjustable parameter which is related to

the localised density of this material. The constant will be called here the "perforate

coefficient" and is less than or equal to unity, the effective localised density of the

material adjacent to each hole being made equal to the average bulk density of the

material in the silencer box multiplied by the perforate coefficient. Values for the

perforate coefficient should be unique to each silencer, although it is anticipated that a

value can be found, characteristic of individual materials so that it is unnecessary to find

experimental data for every silencer studied. For the silencers studied here values for

the perforate coefficient were obtained by trial and error after making a number of

different numerical predictions by using the full finite element method. The process

involves "fitting" the finite element predictions to the experimental data across the

entire frequency range of 0-2kHz, although the biggest differences occur at higher

frequencies and so this area tended to dominate the procedure. It was observed that,

when the perforate coefficient was reduced below unity, the finite element transmission

loss predictions for silencers 1 and 2 reduced slightly at the lower frequencies and

increased at higher frequencies. Unfortunately, the influence of the perforate coefficient

was much greater on the predictions at high frequencies so that, whilst good correlation

could be obtained above 1kHz, no significant improvement was observed at lower

frequencies. This behaviour can be observed for silencers 1 and 2, both of which

contain E glass, in Figure 10.4. Transmission loss curves for a perforate coefficient of

0.55 are shown in Figure 10.4 and one can observe no significant improvement at the

lower frequencies over those predictions for the same silencer with a perforate, that are
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given in Chapter 7. The same perforate coefficient was also applied to the mode

matching model and the transmission loss predictions for silencers 1 and 2 are shown in

Figure 10.5. It is evident from both Figures 10.4 and 10.5 that introducing the perforate

coefficient has improved predictions at the higher frequencies, both with and without

mean flow. Unfortunately this benefit is not universally observed at lower frequencies.

This is particularly true for the finite element predictions when no mean flow is present

since, especially for silencer 1, the predictions are consistently higher than experiment

up to about 1kHz. This is rather disappointing since the corresponding predictions

found without a perforate were very good for this particular silencer. The predictions

obtained using the mode matching method do appear to offer a small improvement on

the finite element predictions when no mean flow is present although, when mean flow

is present, this improvement is not maintained at higher frequencies. It is perhaps

tempting here still to explain the discrepancies between prediction and experiment at the

lower frequencies in terms of an overprediction of the influence of the porous material

on the perforate, suggesting that one should use still lower values for the perforate

coefficient. However, it was observed that, even if the additional effect of the absorbent

material was totally removed from the model when no mean flow was present,

differences of approximately 1dB were still observed for silencers 1 and 2. This means

that the perforate impedance on its own, without the additional effect of the absorbent,

can still cause differences between the transmission loss predictions with and without a

perforate. This behaviour is in contrast to that observed by Peat [109]. However, the

difference between the results found here and the observations of Peat might be

explained by the fact that, in addition to the use of a different theoretical model here,

different values for the perforate impedance have also been used. This is apparent if one

examines the values used for the imaginary part of the perforate impedance, since Peat

[109] used a value of 0.25 inside the bracket (see equation (6.98)) whereas in the present

analysis, a value of 0.75 has been used. At low frequencies, the imaginary component

of the impedance dominates the influence of the perforate upon the transmission loss,

and consequently it is not surprising that an increase in the effect of the perforate has

been observed here. Subsequently it was found that, no matter how small the value for
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the perforate coefficient was, the predictions still did not agree well with experimental

data at low frequencies. Indeed this effect was particularly noticeable in the case of

silencer 3, since the additional effect of the A glass present in silencer 3 is small because

of its low flow resistivity, and so any changes in the transmission loss predictions are

caused principally by the effects of the perforate itself. Therefore, the application of the

perforate coefficient only caused significant differences in the transmission loss

predictions for silencer 3 at higher frequencies and hence this is not shown here.

Consequently, whilst it is possible to use the perforate coefficient to obtain better

correlation between prediction and experiment over the entire frequency range, one is

still left with a slight overprediction of the transmission loss at low frequencies.

In addition to altering the transmission loss predictions, the perforate changes

the theoretical formulations of each of the models and also other aspects of the physical

behaviour of the silencer. One significant consequence of including a perforate in a

dissipative silencer is the influence it exerts over the mean flow in the absorbent. The

author believes that the presence of a perforate prevents significant levels of mean flow

from being induced in the absorbent, and therefore in each of the theoretical models

implemented in this thesis, mean flow in the absorbent has been neglected. This

observation was confirmed by measuring the pressure drop along the length of the

absorbent in the silencer box, from which mean flow values can be inferred. For each

of the dissipative silencers studied here, the mean flow values inferred from pressure

drop measurements were extremely small, indicating a virtual absence of mean flow in

the absorbent which is thought to be caused by the presence of the perforate; the solid

part of the perforated tube largely preventing the penetration of the mean flow, in the

flow passage of the silencer, into the porous absorbent. A similar observation was also

made by Peat [109]. Consequently the presence of the perforate allows the theoretical

models to be simplified, and this is especially true for the finite element formulation

described in Chapter 7, where it is now unnecessary to include the non-linear mean flow

field in the absorbent (see the investigation of Peat and Rathi [26]). The perforate has

been found to effect the formulation of the theoretical models in other ways; for

instance, both the finite element model of Chapter 7 and the eigenvalue model of
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Chapter 8 have been simplified. For the finite element model, the perforate now allows

the use of C° continuous elements in the finite element mesh (see Chapter 7), whereas

for the eigenvalue solution, the final matrices have been significantly reduced in size.

Indeed this introduction of the perforate into the eigenvalue problem has introduced a

slight saving in the computational time required to solve the problem. The underlying

reasons why the perforate has had such an effect upon the problem formulations is

linked to the new matching conditions at the boundary, although why this should cause

a simplification of the problem is not fully understood. Unfortunately the inclusion of

the perforate does place additional demands upon the formulation of the finite element

mesh. For instance an extra set of nodes must be included along the boundary in which

the perforate lies. Since the commercial package used to generate each mesh in this

thesis could not cope with the addition of these extra nodes, the mesh had to be

reformulated manually. This process was found to present no problem for the one and

two dimensional solutions, although it could not be performed for three dimensional

solutions. Therefore if the perforate is to be included in a full finite element formulation

in the future, the model will probably require the use of a specialised mesh generator.

The inclusion of a perforate has been shown in this section to improve the

correlation between prediction and experiment at higher frequencies, so long as one

accepts the experimental data obtained in this frequency range as being of adequate

accuracy. The predictions at low frequencies do, however, cause concern. Even if one

ignores the additional effect of the porous material on the perforate impedance, the

transmission loss predictions including a perforate are still too high. The discrepancy at

low frequencies is particularly significant because, when one implements the finite

element model without a perforate, the predictions in this low frequency range are very

good. It is not known why the perforate induces a deterioration in the predictions at low

frequencies, or indeed if there are any other problems with the modelling not associated

with the perforate which could be affecting these predictions. Since the largest

problems seem to occur only for silencer 1, it is perhaps possible that problems unique

to this silencer have caused the discrepancies. However the author would doubt this and

it is probably necessary to investigate the behaviour of the perforate more closely in the
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future. What cannot be disputed is that, if the perforate impedance values reported in

Chapter 4, or at least those of Ingârd [75J, are correct, then for plate porosity values such

as those used here (approximately 26%), the perforate cannot be ignored. However at

the moment it is perhaps sensible to omit the perforate from the theoretical formulations

until a more complete understanding has been obtained, although the author believes

that this omission will lead to an overprediction of the transmission loss at high

frequencies.

Section 10.4

Dissipative Silencer Design

A review of the three different theoretical approaches to designing dissipative

silencers, described earlier in this thesis, has been given in this chapter. The usefulness

of each of these models depends ultimately upon the design environment in which they

are to be used. It is assumed that most detailed mathematical models such as those

investigated here, are used as a replacement for either an experimental trial and error

design procedure, or extremely simplified theoretical models. The models developed

here will be useful for providing accurate predictions as a part of an iterative design

procedure, from which a final silencer prototype can be obtained. Only then will it be

necessary to fabricate a silencer and test it "on-engine". The usefulness of each

theoretical model depends, to a large extent, on the computing capacity at the disposal

of the designer. It is entirely possible to use the full finite element method implemented

in Chapter 7, if one has a large amount of CPU time available. This approach will

provide the best predictions in addition to permitting the modelling of silencer boxes

which have a completely arbitrary shape. However, dialogue with the industrial

sponsors involved in this project has revealed that most of them felt that the full finite

element model was probably too complex for use as an everyday design tool. Therefore,

since the fundamental mode model provides predictions which are regarded as

insufficiently accurate, one is left with the Cummings and Chang mode matching
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method. The mode matching method probably offers the best balance between

computational expense and accuracy of predictions, and it does appear perfectly

possible to implement this model on a PC. It should be noted, however, that to allow

use of the mode matching formulation the silencer studied must be uniform along its

length. The principal advantages offered by the mode matching method are the ease

with which one can initiate solutions, since only a simple one dimensional or two

dimensional mesh is required, and also the speed of solution available. However, if one

requires the mode matching scheme to provide numerical predictions with an accuracy

comparable to that of the measured data for the silencers studied here, then the number

of elements used in the finite element mesh cannot be reduced too far. This was

especially true for the two dimensional models; for example a two dimensional study of

silencer 1, which involved the use of only four elements, introduced an error of 2dB at

2kHz. Consequently one must balance speed and accuracy and the choice is left to the

designer. However it must be stressed here that the Cummings and Chang mode

matching model, as currently implemented, has a number of limitations and, in addition,

various fundamental aspects of the formulation are still not fully understood. At

present, this means that the model should preferably be restricted to silencers of sizes

roughly similar to those in the current investigation. Such restrictions should not cause

difficulties in the design of automotive silencers in general, but the author would not

recommend the use of this method in the design of large air conditioning ducts, for

example.

So far in this chapter, the relative merits of each of the theoretical models have

been discussed. It is also of interest to examine how the results presented at the

beginning of this thesis (in Chapters 2 to 4) affect the final predictions; this principally

concerns the values of parameters calculated for the absorbent materials and the

perforate. The effects of one of the perforates studied here was discussed in the

previous section, and unfortunately these are still not fully understood. For instance, the

perforate coefficient improved predictions at high frequencies but not a low frequencies.

Furthermore, if one must define a perforate coefficient for each individual silencer, then

the models cannot be used without reference to experimental data and this defeats the
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object of using a predictive theoretical model for design purposes. It is possible,

however, that a perforate coefficient can be assigned to a particular material, and that

this can then be applied to any silencers containing the same material. This does appear

feasible in view of the predictions for silencers 1 and 2 shown in Figure 10.4. In

formulating transmission loss predictions in Chapters 6 to 9, the effects of a single

perforate on the transmission loss are examined. However, in view of the results

obtained for a number of different perforate plates in Chapter 4, it appears possible to

alter the acoustic performance of a silencer simply by changing the perforate. For

example, the other flat perforates studied in Chapter 4 have lower porosities than that

discussed in Section 10.3, and hence it is likely that they will have a larger influence on

the transmission loss. This should manifest itself as a slight increase in the transmission

loss at lower frequencies (below about 700Hz), and a reduction in the transmission loss

at higher frequencies. It is therefore possible to change the type of perforate used in the

silencer so as to increase the transmission loss in a given frequency range. From the

results reported in this thesis, it would appear that, if a flat perforate is used, a perforate

with a large percentage open area will induce an increase in the transmission loss at high

frequencies and only a small decrease in transmission loss at lower frequencies, whilst a

perforate of low porosity (around 5%) might increase the transmission loss at low

frequencies, but reduce the transmission loss at high frequencies. Another design

possibility is to use louvres which, unlike the flat perforates, do not allow the absorbent

material to introduce an additional effect in the acoustic impedance of the perforate. It

is expected that this will cause an increase in the transmission loss at frequencies above

1kHz. Only a rough, qualitative guide to the potential advantages to be gained from

changing the perforate has been given here, although the author is certain that the

careful design of a perforate can provide considerable benefits to the performance of

dissipative silencers.

The relative behaviour of each of the porous materials in the context of the

theoretical models reported in the previous chapters also deserves a mention here. First,

it is worthwhile to recall how the propagation constant (F) and the characteristic

impedance (Za) of the materials are introduced into each theoretical model. if one
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examines the formulations in Chapters 6 to 9, it is clear that, in every case, the product

FZa appears. This is important since equation (3.13) indicates that ['Za is equal to the

bulk complex density of the material multiplied by iW. The principal reason behind the

implementation of the semi-empirical model discussed in Chapter 3 was that physically

implausible values for the bulk complex density were obtained at low frequencies when

experimental data, expressed in the form of Delany and Barley coefficients (see Figure

3.6), were extrapolated to frequencies below the range of Delany's and Barley's data

[54]. Since the complex density appears in every theoretical formulation, potential

errors could be introduced if these "non-physical" values are used, especially in iterative

schemes such as those discussed in Chapters 6 and 9. Consequently the benefits

bestowed by the semi empirical model are important, at least for the elimination of non-

physical predictions. It is also interesting to examine the relative performance of each

of the materials used in the dissipative silencers. Obviously one cannot do this by

examining the results obtained for the silencers measured in Chapter 5, since different

shapes and sizes of silencer have been used. However, if one runs a number of

solutions with different materials in a single silencer, distinct differences are observed in

the behaviour of the three materials. In general, at low frequencies (below 500Hz),

materials with a low flow resistivity provide the best sound attenuation. This is because

the high flow resistivity materials offer a much higher resistance (and impedance

mismatch) to the penetration of sound waves with long wavelengths into the material.

Therefore - as one would expect - in this region, A glass provides the best sound

attenuation. However, even at frequencies around 500Hz, the low flow resistivity of A

glass introduces a relatively poor performance in comparison to other materials. This is

because it is no longer capable of dissipating the progressively shorter wavelengths

(with increasing frequency) to the same degree as the materials with a higher flow

resistivity. Consequently in the intermediate frequency range (approximately 500Hz to

1200Hz) the higher flow resistivity materials tend to yield the higher sound attenuation.

Of the materials examined here, E glass, which has the highest flow resistivity, offered

the greatest sound attenuation in the middle frequency range. At the higher frequencies

(above 1200Hz), A glass still performed poorly, but basalt wool, somewhat
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unexpectedly, produced higher attenuations than E glass. This effect has probably been

caused by the extremely high flow resistivity of E glass, since for this particular material

there is still - even at these relatively high frequencies - a significantly greater

impedance mismatch than is the case with materials having a lower flow resistivity,

such as basalt wool. It appears that the greatest benefits to be found when choosing a

porous material are to be gained at higher frequencies, since at low frequencies there is

little to choose between the three materials (a maximum of approximately 1dB in

transmission loss for the silencers studied here). Consequently the material which

provided the best balance between sound attenuation at both low and high frequencies,

was found to be basalt wool. Basalt wool is also, ironically, the cheapest of the three

materials examined here. Furthermore, basalt wool has a low enough flow resistivity to

prevent a significant increase in the acoustic impedance of the perforate, and this offers

further benefits at higher frequencies. These are, however, only preliminary

observations, made after the examination of only a few of the silencers studied here.

The real purpose of this thesis is to provide design tools that enable these observations

to be investigated in more detail.

In Chapter 3, four porous materials were studied; however only three, A glass, E

glass and basalt wool, have been included in silencer models. Steel wool was omitted

because it is usually only included as a "sock" which fits around the perforate. The

purpose of the steel wool is to protect the main sound absorbing material from the

erosive effects of the gas flow. The inclusion of a steel wool sock complicates the

theoretical modelling since, for the finite element models, a large increase in mesh

density is required in order to model the steel wool effectively. Consequently, in view

of the relatively small influence that steel wool imparts upon the acoustic properties of a

typical silencer it has been ignored in the present investigation. However in view of the

results found for the other materials, it appears that steel wool does have the potential to

provide a small increase in the sound attenuation at very low frequencies. At high

frequencies steel wool reduces the effective diameter of the silencer, becoming

effectively acoustically transparent. The steel wool will however provide some
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advantages, since its additional effect on the impedance of the perforate will be

negligible, thus increasing the transmission loss at higher frequencies.

One final point concerning the bulk acoustic properties of the porous materials

in this investigation is the question of anisotropy. The experimental data measured, and

the modelling performed, in this thesis have been based on the assumption that the

porous material encased in the silencer box behaves in an isotropic manner. For the

silencers studied here, each porous material was originally packed in an essentially

random fashion, and so the local distribution of the material would clearly not be

isotropic. However it has been assumed here that the bulk acoustic properties of the

material can be averaged over the entire volume of the silencer, thus allowing the bulk

behaviour of the material to be treated as isotropic. Indeed, for randomly packed

silencers, the designer is left with no other option, since it would be impossible either to

measure the detailed packing characteristics of the silencer, or to proceed to represent

them in a finite element based model such as the mode matching solution. The author

acknowledges that some manufacturers do use manufacturing techniques such as the

winding of the absorbent around a perforate tube - which will render the bulk acoustic

properties equal in the radial and axial directions, but not the circumferential direction -

although such methods are uncommon because of the expense involved, if the effects

of anisotropy were required to be included, it is not too difficult to introduce them in the

models presented previously, since the formulations upon which these models were

based already include anisotropy (see for example Rathi [18]). However, an

examination of the correlation between prediction and experiment for the silencers

studied here, particularly without a perforate, indicate that the inclusion of material

anisotropy is unnecessary for randomly packed silencers.

Eventually, the theoretical models developed in this thesis will be incorporated

into a more general model which will account for the performance of the exhaust system

as a whole. The modelling of a complete exhaust system requires a knowledge of the

acoustic behaviour of components such as the exhaust and tail pipes. One also requires

a knowledge of the impedance of the sound source and the performance of other

dissipative elements such as catalytic converters. The integration of dissipative silencer
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elements into a complete exhaust system is beyond the scope of this thesis, although a

number of experimental insertion loss results for a simple exhaust system which

included an exhaust pipe and a tail pipe, were given in Chapter 5. It is interesting to

include the theoretical predictions from previous chapters in a model from which the

insertion loss can be calculated for comparison with experimental data. Insertion loss

predictions are calculated by combining the four pole data for each section of the

exhaust system in the manner described in Chapter 6. Since the experimental insertion

loss data were taken under laboratory conditions (see Chapter 5), comparisons between

prediction and experiment will provide little further insight into the quality of the

theoretical prediction for the exhaust systems of internal combustion engines. Also, the

mode matching solution has yet to be formulated into a four pole matrix and therefore

this cannot be integrated into insertion loss predictions at present. Consequently only

insertion loss predictions obtained by the use of the full finite element of Chapter 7 are

included here, although this does offer an insight into the closest available correlation

between theory and experiment. In addition, the perforate is not included in the

following insertion loss predictions because of the uncertainty about the values used for

the perforate impedance. A comparison between the full finite element predictions and

the insertion loss measurements is shown, for no mean flow only, in Figures 10.6 and

10.7, for silencers 1 to 5. It is evident from Figures 10.6 and 10.7 that the trend shown

in the correlation between prediction and experiment is similar to that found for the

transmission loss predictions, namely that the correlation is generally good up to

approximately 1kHz, but begins to deteriorate at higher frequencies. However, some

discrepancies do occur at the lower frequencies and these are almost certainly caused by

the incorrect modelling of components in the experimental apparatus other than the

dissipative silencer. This uncertainty about the accuracy of the predictions for these

additional components is the reason why experimental transmission loss data were used

for comparison purposes in previous chapters. Nevertheless the insertion loss

predictions do provide good correlation with experiment and the model appears capable

of offering accuracy at least comparable to that found for the expansion chamber

described in Chapter 5 (see Figure 5.7).
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The ultimate test of the theoretical modelling carried out in this research is a

comparison of predictions with insertion loss measurement obtained "on-engine".

Clearly with a silencer situated on-engine, it is necessary to make predictions for high

temperatures (up to 700°C in some cases). However, the absence of experimental

insertion loss data at higher temperatures in the present work precludes the evaluation of

high temperature theoretical predictions at present. However, including the effects of

high temperatures on the absorbent material should cause no difficulties so long as one

uses the semi empirical model of Chapter 3. This is because this model contains all

relevant gas properties and it also provides the correct limiting behaviour as the

frequency tends to zero. Christie [70] found that at higher temperatures the flow

resistivity of fibrous materials changes, increasing with temperature up to approximately

500°C. Consequently at higher temperatures, the flow resistivity for the materials

studied here would be increased, and this is equivalent to a lowering of frequency at

room temperature. Therefore, the semi empirical model would be even more important

for providing the correct limiting predictions below the frequency range of data

measured at room temperature. The amount of work carried out on the behaviour of

porous material at high temperatures is small and therefore further work needs to be

carried out to confirm the observations of Christie, although at present the actual

inclusion of high temperature effects in the models studied here does not present any

problems.

In this chapter the author has made some observations based upon the results

obtained from three theoretical models. These are only intended to provide a rough

guide to future silencer design. The real purpose of the work presented in this thesis is

the provision of tools with which the designers can decide for themselves what

combination of parameters must be used to give the required silencer performance. It is

hoped that in the future, the theoretical models described here can be successfully

incorporated into a more complete model of the whole exhaust system, from which the

designer will eventually be able to predict the "drive-by" performance of an exhaust

system fitted to an engine. Such models are still a long way from completion, although
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the results presented in this thesis do indicate that the performance of dissipative

silencers can, at least, be modelled accurately.

319



CC

a)
1

CC

CC

CC

a)
E.

•a)
C
e'

•.:1 a)
C.) •'

C	 C-C —
— 0

..,-.' I-.

, a).-

C— 0 a

oEC	 O'3)Ctr

C

a.

ci

C
C

CCC

CC

C
C

CC-
0
E

a.)

0
ECC

—	 a)

CC

a)

C	 )C E
'3)

FJ

CC

C
C

C C C Cen
(HP) sso'T UO!SSiWSUJj

a.

a.

ci

C C C C
en	 —

(HP) ssoi UO!SS!WSUJI

C C C C
en

(aP) sso'-J UO!SS!WSUJJ

I1	 -	 en	 —
(aP) sso'l uoissu.usuJj

320



O C 0 C C
en	 C'	 —

(HP) sso'J uo!ssiwsuu

C

I-

C-

a.

C,

C
C

00C

0C

C)
C

a)

CC

0 0 0 0
.o	 'i	 en	 CI	 —

(HP) sso -j uoss!uJsu1I

0C

n
0tCo
0a)—	 C;

C

C,

C
C

0
C

C00

C

L

a;

C,

0 0 0 0 0 C
o tt	 - en C'	 —
(ar) sso' UOiSSRUSUij

C C 0 0 C C
C 'I	 en C'	 —

(HP) SSO'J UOiSSHuJSUJJ

o
C	 a.)
o-
c'	 C

a)
-
C
E

o —C	 C

l'

.—	 'a)
E

CC—
'a)

4-.

o	 'a)
C E

'a)

C
C

'a)
E.
. —

C	 •'a)CC	 fla)c'I	 —
.	 'a)
o .1:

Co

1L
o	 E
—	 0 bO

CE
CC-
L,

O.

0
0

321



70

60

'—'50
rn

140

E30

20

10

0

60

50

40

C
.30
E

10

0

Silencer 5, M=0

0	 500	 1000	 1500	 2000
Frequency (Hz)

SilencerS, M=0.15

0	 500	 1000	 1500	 2000
Frequency (Hz)

Figure 10.3. Comparison of theoretical predictions with experiment.

Experiment; - " , Fundamental mode model;
Mode matching model; 	 , Finite element model.

322



CC
-4

CC

C

I-
0

(/D

C C C C
-4

(HP) sso'j uoissiuJsuJJ,

C
0

Ii)

0

CC	 8

C
C

CCC

CC
-4

'1
CC

o C 0 C—
(HP) SSO'J UOiSs!uJSuJj

C

I-

C,

C
C

CCC
(1

C
C

F',C

c'1

CC
t)-4
Ii)

C
—	 I

Co

C C C Cc'1	 -4
(HP) SSO1 UOTSSTWSUJJ

C	 C	 0
-4

( p) sso'j uOLssnUsuJj

323



C	 C	 C—
(aP) sso' UO!SSRUS1IJj

C	 C	 C—
(aP) sso' UO!SS!WSUJI

It

C

C
C

C
C

N

C C)
C

a)

C
C

C
C
C

C
C

C
o0	 0

a)
I-

C
C
Ir	 C)

N	 ti)

C
C

Al
CC
It

C
C

C
C
C

C

a)C)
a)

(/D

C C C C

(tip) SSO'J UOLSS!WSUJL
o o C 0—

(sip) sso'j UOLSSRUSUJj

0

a)
C)

C
C
C	 0

C)
a)

C)
C

a)

0

Ir
_ d

0

I

324



50

40

220

110

50

40

p220

F0
0

-10

-20
0

Silencer 1, M=0

200 400 600 800 1000 1200 1400 1600
Frequency (Hz)
Silencer 2, M=0

-10

-20
0

60

50

40

30

20

.10

-10

-20

-30

200 400 600 800 1000 1200 1400 1600
Frequency (Hz)

Silencer 3, M=0

0	 200 400 600 800 1000 1200 1400 1600
Frequency (Hz)

Figure 10.6. Comparison between prediction and experiment for the insertion loss.
Experiment;	 , Finite element predictions.

325



50

40

-10

-20
0

Silencer 4, M=0

200 400 600 800 1000 1200 1400 1600
Frequency (Hz)

60

50

0
..
0
ti)
rI

0

-10

Silencer 5, M=0

-20
0
	

200 400 600 800 1000 1200 1400 1600
Frequency (Hz)

Figure 10.7. Comparison between prediction and experiment for the insertion loss.
Experiment;"	 , Finite element predictions.

326



CHAPTER 11

WAVE PROPAGATION IN CATALYTIC CONVERTERS

WITH AXIAL TEMPERATURE GRADIENTS



Section 11.1

Introduction

This thesis is concerned with the modelling of dissipative elements which go to

make up the typical exhaust system of an automotive engine. So far, attention has

concentrated on those elements which have been inserted into the exhaust specifically to

reduce sound emissions from the engine. However, in recent years, an additional

dissipative element in the form of a catalytic converter, inserted upstream of the silencer

boxes, has become commonplace in automotive exhaust systems. The primary function

of the catalytic converter is, of course, to reduce emissions of harmful exhaust gases,

such as carbon monoxide and nitrous oxides, but it is known that they are also capable

of dissipating sound energy. When compared to the silencer boxes studied in previous

chapters, the catalytic converter only provides a small contribution to the acoustic

performance of the exhaust system as a whole, although this effect is still significant

enough to require its inclusion in the acoustic analysis of a complete exhaust system.

The active part of a typical catalytic converter consists of a uniform honeycomb

of small, parallel, open pores which run axially along the length of the catalytic

converter "brick" or "monolith". Usually, the catalytic converter substrate is formed

from a ceramic which has pores that are approximately square in cross-section although

in recent years metallic substrates have also been used, and these contain pores which

are approximately triangular in cross-section. For both the metallic and ceramic bricks,

a porous "washcoat" is applied to the substrate and this later facilitates the introduction

of the catalyst itself. The washcoat has very small pores and consequently has a high

total surface area and this increases the effective surface area of the brick, allowing the

amount of catalyst applied to the brick to be increased. In the case of the ceramic

bricks, the washcoat is commonly made largely from aluminium oxide, onto which the

catalytic layer (for example platinum) is applied. An electron micrograph showing the

juxtaposition of the washcoat and the ceramic substrate is given in the paper by Astley

and Cummings [141].
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Catalytic converters are commonly arranged in the form of two bricks, one

downstream of the other (see for example Glav et a!. [142]). The bricks are situated

close to the exhaust manifold where temperatures in the region of 1000K exist. At such

temperatures, an exothermic reaction between the exhaust gas and the catalyst occurs

and this induces a temperature rise in the brick of the order of lOOK. Experiments have

shown that the majority of this temperature rise occurs within the first 20mm of axial

distance along the first brick, which is usually approximately 150mm long. The

temperature in any subsequent bricks remains approximately constant.

The pores in the catalytic converter, once the washcoat has been applied,

typically have a width of the order of 1mm, and therefore, in light of the studies in

Chapters 2 and 3, one would expect significant viscous and thermal boundary layers to

be present, which in turn cause the dissipation of sound energy. Accordingly, in this

chapter, the dissipation of acoustic energy in catalytic converters is examined, with

particular reference to the influence of temperature gradients upon the sound

propagation. In order to provide a meaningful comparison with previous chapters, the

dissipative characteristics of catalytic converters are quantified here by transmission loss

predictions, and these are later compared to experimentally measured data.

Since catalytic converters consist of small capillary tubes, the modelling of their

acoustic behaviour has been based upon parallel-tube idealisations of sound propagation

in porous materials, such as those implemented by Zwikker and Kosten [311 and

Tijdeman [32]. For instance, Roh et a!. [143] found the propagation constant and

characteristic impedance for a porous material with straight rectangular tubes as a series

expansion. The study by Roh et al. was undoubtedly aimed at catalytic converters,

although this was not explicitly stated in their paper. The predictions obtained by Roh

et al. did, however, require the use of an anomalous tortuosity factor (see Chapter 2)

greater than unity - even though all the tubes were straight and parallel to the direction

of sound propagation - in order to agree well with experimental measurements

performed on a ceramic catalyst. Arnott et al. [144] later showed that the tortuosity

factor was linked to the additional acoustic effect of wall porosity (the tests were carried

out on a ceramic substrate with no washcoat applied to it). The model was re-

328



formulated by introducing a locally reacting wall impedance (considered to be purely

reactive) to account for the wall porosity, and good agreement was then observed with

experiment without the need to resort to the use of a tortuosity factor other than unity.

The investigations by both Roh et al. and Arnott et al. were the first in which the

acoustic effects of the small pores located in the substrate of ceramic bricks were

reported. However, both models were essentially porous material models similar to

those described in Chapters 2 and 3, in which the effects of mean flow were ignored.

In actual engine exhaust systems, the capillary tubes in catalytic converters

contain a mean gas flow emanating from the engine, and this can induce a Mach number

in the tubes of between 0.2 and 0.3. The introduction of mean flow into the porous

material models described earlier complicates the problem and, because catalytic

converters have only recently become commonplace in exhaust systems, current

understanding of the mean flow effects in catalytic converters is relatively limited. The

effects of mean flow were first examined by Glav et a!. [142], who modified the basic

zero flow porous material theory of Morse and Ingârd [27] by use of Ingârd and

Singhal's [145] work concerning sound attenuation in turbulent pipe flow. Glav et al.

found good agreement between prediction and experiment at low frequencies when no

mean flow was present, but they did not make predictions when mean flow was present

and therefore it is unclear how accurate these predictions might have been. However in

view of the rather heuristic nature of the work of Ingãrd and Singhal it is unlikely that

this method provides sufficient accuracy when mean flow is present. Peat [146] used an

approximate variational solution to obtain analytical expressions for the attenuation and

phase speed in cylindrical capillary tubes with mean flow. He used parabolic forms for

the velocity and temperature profiles, and this limited the validity of the model to shear

wavenumbers (s) of less than four (where s = RJp0w/ji, R being the tube radius, p0

the mean fluid density, Co the radian frequency and u the dynamic viscosity). It was

shown by Peat that the variational formulation could be simplified by assuming that the

disturbances occur isentropically, although in view of the viscous effects occurring in

the pores this is perhaps an unrealistic representation of the physics of the problem.

However this assumption did allow Peat to find solutions both with and without a radial
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velocity component, from which it was concluded that the effects of the radial velocity

were negligible. This observation then allowed Peat to formulate a non-isentropic

solution. Astley and Cummings [141] later used finite elements to examine mean flow

effects in capillary tubes with non-circular cross sections. They computed the

attenuation and phase speed for both circular and square cross sectioned tubes using a

non-isentropic formulation, both with and without mean flow. The use of finite

elements permitted Astley and Cummings to disregard the assumptions made about the

shape of the velocity and temperature waveforms by Peat [146], and this subsequently

allowed the model to be extended to higher values of the shear wave number. Ih et al.

[147] also relaxed Peat's shear wave number restriction and this was done by using

transverse functional variations for the velocity and temperature, from which the

governing equations were reduced to a form such that the solutions could be expressed

in terms of confluent hypergeometric functions. Recently, Jeong and th [148] obtained

non-isentropic solutions for capillary tubes with internal mean flow by using numerical

methods. This involved applying Runge-Kutta and shooting methods to initiate a

recursive solution to the governing equations, and it also allowed the effects of the

radial velocity to be included in a non-isentropic solution. Jeong and Ih did however

omit radial and axial temperature gradients. They were, however, the first authors to

compute transmission loss predictions for a catalytic converter with mean flow in the

pores. This was accomplished by equating the acoustic pressure and mass velocity at

the inlet and outlet of the brick in order to obtain a transfer matrix from which the four-

pole parameters were then calculated. Jeong and Ih compared their transmission loss

predictions to experimental data obtained for several bricks placed end to end and they

found good agreement between prediction and experiment.

The first treatment of temperature gradients in catalytic converters has only very

recently been reported by Peat [149]. He assumed that a linear axial temperature

gradient was present and ignored radial velocity components. An analytical solution

was developed by using low-order expansions for both the Mach number and the

temperature change parameter, although this restricted the final solution to Mach

numbers below 0.1. The analysis in this chapter is intended to extend the work of Peat
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to include higher order terms in the expansion of the problem, so that Mach numbers of

up to 0.3 can be examined. This does, however, require the introduction of numerical

methods. In this chapter, numerical formulations for both isentropic and non-isentropic

acoustic disturbances are given in a formulation that includes the effects of the

temperature gradient in the catalyst pores. It will, however, become obvious later on in

this chapter that employing a treatment which will allow the Mach numbers to be as

high as 0.3 presents a number of new problems and, at present, no solution to these has

been found. However, the development of theoretical models for predicting the acoustic

behaviour of catalytic converters is still at an early stage, and the models presented here

await further development before they can become fully integrated into the design of a

complete exhaust system.

Section 11.2

Governing Equations

The analysis of the acoustic behaviour of a catalytic converter can be reduced to

that of a single capillary duct, the dimensions of the catalyst brick only being inserted

when the transmission loss is to be calculated. The equations of continuity, momentum

and energy for axisymmetric flow through a uniform capillary duct were given by Peat

[146], and in this section, these equations are modified in order to introduce a linear

axial temperature gradient into the problem.

If the radial velocity component in the capillary duct is neglected, then the

continuity equation is given by

9	 du
—+u—+p—=0

dx	 dx	 '	 (11.1)

where p is the density, u is the axial velocity component, t is time and x is the axial

co-ordinate. The components of the momentum equation, in the axial and radial

direction, are given by
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(du	 du	 dp (d2u lduP+U) -	 ++ (11.2)

and

dp0	
(11.3)

subject to the usual boundary layer approximations [146], where p is the pressure, 1u is

the dynamic viscosity and r is the radial co-ordinate. Finally, the energy equation is

given by

	

( dT dT" dp (d2T 1dT"	
(j2 (=—+KI —+-- I+u—+jtI -	 xPCp+J &

	 2 r dr)	
,r),	 (11.4)

where C is the specific heat at constant pressure, T is the temperature, K is the thermal

conductivity and Q denotes a steady state heat generation per unit volume of fluid. The

fluid in the capillary duct is assumed to behave in the manner of a perfect gas, so that

the equation of state is given by

p=pR0T,	 (11.5)

where R0 is the gas constant.

In accordance with Peat [146], it is now assumed that the mean flow through the

capillary duct is a superposition of laminar steady flow and a small harmonic acoustic

disturbance of radian frequency w. A linear axial temperature dependence is also added

to the problem and this is introduced in the manner recently suggested by Peat [149].

Therefore, if a linear temperature change is assumed to occur over a duct length of 2 L,

then

= i(i+ ),	 –1^^1,	 (11.6)
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where = x/ L, 7 denoting the mean temperature in the centre of the duct ( = o), i

denoting the local value of the steady state temperature and r being a constant, called

here the "temperature change parameter". The fluid variables are now expanded in the

form [149]

p = p0 [(1 -	 + ap'()eiat }	 (11.7)

u=c0 [M(l+'r)f( T1)+au'(i 11)e ]	 (11.8)

p = p[i 
+ 2g() + ap()e)t 

1	 (11.9)
j& 1T=T0[(1+v)+aT'()e .i 	 (11.10)

where a << 1, M is the steady flow Mach number, c0 is the isentropic speed of sound

and g() and f(ij) are steady flow variables. The variables M, p0 , c0 , p0 and T0 are

mean values relating to the centre of the duct ( = o), whilst p', u', p' and T' denote

dimensionless acoustic perturbations. The normalised radius 11= r/R, where R is the

radius of the capillary duct. The complex propagation constant of the duct, which was

originally included in the expansion of the fluid variables by Peat [146], is included later

on in this analysis.

The substitution of the expanded form of the variables into equations (11.1) to

(11.5) allows an expansion in a to be obtained; the zeroth order relates to the steady

flow solution, whilst higher order terms relate to "acoustic" perturbations (though this

term should, strictly speaking, be reserved for isentropic disturbances). In the present

analysis a << 1, and therefore the acoustic perturbations are to be limited to the first

order in a.

11.2.1 Steady Flow Solution

The steady flow solution is obtained after substituting equations (11.7) to (11.10) into

the governing equations and equating zeroth orders in a; therefore for the continuity

equation this gives
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(11.11)
d

and for the equation of state

1+M 2g()=1—r 2 .	 (11.12)

The equations of continuity and state are satisfied only if terms of both O[ r2 I << 1 and

O[M 2 g()] << 1. The radial momentum equation (11.3) is clearly satisfied, whilst the

axial momentum equation simplifies to give

2	 ldg (i+v) 1 d 1 df"

ydRe(R/L)ijdi7ldi1J'	
(11.13)

where Re = p0c0 MR/u, the mean flow Reynolds number based upon the duct radius,

and y is the ratio of specific heats. Equations (11.11) to (11.13) are sufficient to allow

expressions for g() and f(ij) to be obtained, and these are later used in the solution of

the acoustic equations (first order in a). However, in order to obtain solutions for g()

and f(T7), it is first necessary to consider a series solution to equation (11.13).

Consequently g() and f(ij) are expanded in terms of the temperature change

parameter r, hence

g()= g0()+rg1(c)+r2g2()+...., 	 (11.14)

and

f(rj) = f0 (i)+ j' ( i)+ r2f2(17)+	 (11.15)

Substituting the assumed forms for g() and f(ij) into equation (11.13) for zeroth

order in 'r yields the equations

Re(R/L)	 1 d í dfo')=constant	 (1l.16a,b)
y	 d	 iidiñdii)
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The solutions to equations (11.16), which satisfy the no-slip condition at the wall, are

simply those of Poiseuille flow, i.e.

fo(T,)=2(1_r,2)	 (11.17)

and

8y

d - Re(R/L)	
(11.18)

Peat [146] pointed out that this solution to the axial momentum equation does not fully

satisfy the energy and state equations, but, in accordance with other authors, this

imbalance is ignored here. In the paper by Peat [149], g1 () and f1 (i) were not found

since the equations for perturbations were only developed to first order in M and v and

it turned out that this did not require the knowledge of g1 () and f1 (i). However, in

the present analysis, orders of Mr are retained and this requires solutions for g 1 () and

f1 (i) to be obtained. Therefore, retaining first order terms in r gives

Re(R/L)dg 1	 1 d ( df1_4Re(R/L)(1_2)2 = constant.	 (11.19a,b)______	 =
y	 d	 rjdij	 dil

Solving equations (11.19), subject to the same boundary conditions as before, gives

fI =_Re(R/L)[_(172_1)+9(1_1J6)]	 (11.20)

and

8y

d	 Re(R/L)	
(11.21)

Solutions have now been obtained for dg 1 /d and f1(T1)' neglecting O(r2), and these

are now employed in the equations for perturbations derived in the following analysis.
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11.2.2 Equations for Perturbations

Equating the first order terms in a in equations 11.1 to 11.5, gives a continuity

equation,

ap,
	

(11.22)

where k is a non-dimensional wavenumber (k = wL/c0 ). The momentum equations in

the axial and radial directions are given by

aU 
Mrf(i)u'------ k 1 

d 1 du"\
-

and

dr

(11.23)

(11.24)

where s is the shear wavenumber ( = R,.jp0 w/4u). In the following section both

isentropic and non-isentropic disturbances are examined, if one assumes that the

disturbances are isentropic then for the first order in a, the equation of state gives

p' =p'y(i+ z).	 (11.25)

When non-isentropic disturbances are examined, one must also employ the energy

equation which for the first order in a, is given by

dT'	 __	 _____ 1 a	 1+ik['1JpFik(1-)T'+Mf(i)---+ru +rMf()p'=

___	 kM	 ) a! au' u' a 1 aj1

[	 dir]
2--+--I ri-I J, (11.26)
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where a is the square root of the Prandtl number (= juC/K). Finally the equation

of state gives

p' = (i— )T'+(l+ 'r)p'.	 (11.27)

It is now necessary to write the acoustic variables as a series expansion in 'r. This also

involves introducing the propagation constant as defined by Peat [146]. The acoustic

variables are now expanded in the forms

p'=e[p..+tp'B()+ .....J

.......]

- kF r	 + 'p () + .....]p—e LPA

T'=e[T+1f)+ .....
1

(11.28)

(11.29)

(11.30)

(11.31)

for positive travelling waves, where F is the complex propagation constant for the

capillary duct and terms of O(2) have been neglected. One can now substitute the

expanded acoustic variables back into the acoustic equations, and an order expansion in

r is obtained. Therefore, substituting equations (11.28) to (11.31) into equations

(11.22), (11.23) and (11.26) gives, for zeroth order in 'r,

ip' + MfØFp' +Fu = 0,

Fp	 lid 1 dii'"
iu;; + Mf0Fu. = -

,y

(11.32)

(11.33)

11	 +1	
d

1 __I	 -) 
1y-1'

(i+Mf0F)7X = a2 s2	 r )	
52

(11.34)

for the continuity, axial momentum and energy equations respectively. The zeroth order

expansion in r for the equation of state gives
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p=p',+T.	 (11.35)

The first order expansion in r for the continuity, axial momentum and energy

equations then gives

ikp +Mf0 [p +kFp +ckFp' +dp/]+Mf1kFp

+kFu + du /d - kFu -	 0,

ik(u —uj+ Mf0 [u +kFu +di4/c9J+ Mf1kFu

= --- 1kFp	 i\
d] s21dla)

and

	

,	 k id(d1'

	

ik(T— T)+ Mfo[P +kFT 
+-]+ Mf 1 kI'T +UA	 521J

+ik[' 1 JP +Mfo[' 1J[krP +kFp ^]^Mfi11JkFP

8kM
- 2 

(y-1)[u)+u)1.
s	 [dii	 c9ii	 ]

(11.36)

(11.37)

(11.38)

The first order expansion in i for the equation of state is given by

p=p+7—(7—p'A).	 (11.39)

Equations (11.32) to (11.39) represent the zeroth and first order expansions in 'r for the

acoustic equations (first order in a), and these will be solved in the next two sections.

Two different approaches to solving these equations can be applied. First, one can

assume isentropic disturbances and this simplifies the equations derived here since it

allows the energy equation to be decoupled from the continuity and momentum

equations. The assumption of isentropic disturbances allows one to write
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=
	

(11.40)

for the zeroth order in r, and

(11.41)

for the first order in r. Unfortunately, this assumption rather oversimplifies the

problem and the benefits of employing equations (11.40) and (11.41) can be outweighed

by the subsequent reduction in the accuracy of the predictions.

Section 11.3

Equations of Zeroth Order in t

An examination of equations (11.32) to (11.41) indicates that, as one would

expect, it is possible to separate the zeroth order solution from the first order solution.

The equations for zeroth order in r are given by equations (11.32) to (11.34), coupled

with equation (11.35) for non-isentropic disturbances and equation (11.40) for

isentropic disturbances. A comparison between the equations obtained in the previous

section and those derived by Peat [149], indicates that the inclusion of O(rM) terms has

complicated the problem and one can no longer employ an analytical solution. Instead,

it is necessary to resort to the use of numerical methods.

The zeroth order equations obtained in the previous section are identical to those

derived by Jeong and Ih [148], if one takes into account the omission of the radial

velocity component in the present analysis. Jeong and Tb computed non-isentropic

solutions by using Runge-Kutta and shooting methods, from which a recursive solution

was proposed. The method implemented by Jeong and Tb is followed here in order to

provide the zeroth order solution. To do this it is necessary to rewrite the velocity and

temperature perturbations as
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u=Fs2puA /y	 and	 TA=tAPA,	 (11.42), (11.43)

where UA and tA are defined by these equations. Equations (11.32) to (11.34) are now

be re-written and, employing equation (11.35) to eliminate the density terms, one arrives

at a non-isentropic formulation for the continuity, momentum and energy equations of

and

F2S2UA/7+ i + Mf0T - ( itA + MfOFtA) =

1 
d ( duA _ s(i + MfOF)uA11)

1 d ( dtA 	 ___2 52 (i + MfOF)tA 
= - 7; 

1 Ja2 2(i + Mf01')

+8[7 1JQ.22rMd()

(11.44)

(11.45)

(11.46)

The continuity equation can only be satisfied in the integral sense, hence

F2s2 (uA)/y+i+ MF-i(tA )- MF(fO tA ) =
	

(11.47)

where ( ) denotes an average value on the duct cross-section.

Equations (11.45) to (11.47) must be solved subject to the relevant boundary

conditions. It is assumed here that the walls of the duct are rigid and that they have a

much greater thermal conductivity than the fluid, so

UA = tA =0
	

at
	

ij=1,	 (11.48)

and symmetry yields

du	 dt
—=--=0 at ij=0.
drj dr

(11.49)
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The method used by Jeong and Ih for solving equations (11.45), (11.46) and (11.47) is

as follows. First, one must make an initial guess for F, which is then substituted into

the momentum equation (11.45). Finding an initial guess for F is not a problem since,

if one initiates the solution at a very low frequency (and hence low shear wave number),

one can use the analytical method of Peat [146] to provide the initial guess. The

solution of equation (11.45) provides values for UA which can then be substituted

into the energy equation (11.46). This equation is then solved for values of tA(17) (again

with the same initial guess for F). One can now compute the cross-sectionally averaged

values (uA) and ( tA) which, when substituted into equation (11.47), allow a new value

for F to be calculated. This new value for F is then substituted back into equation

(11.45) and the whole process is repeated until convergence in F is obtained.

The solution of both equation (11.45) and (11.46) was carried out by using

Runge-Kutta and shooting methods. The values calculated for F were found to

converge to within O(iO) in percentage error after 5 iterations for the incident wave

and 9 iterations for the reflected wave. The solution procedure was then repeated at a

higher frequency by using the value found for F at the previous frequency as the initial

guess, and so on until the desired frequency range has been covered.

The solution described in this section has been for the non-isentropic case since

this is the most accurate solution (requiring the fewest approximations) and predictions

can readily be computed both with and without mean flow. However, if computations

for the isentropic case are to be made, one simply eliminates the density from equation

(11.32) by using equation (11.40) and it is no longer necessary to calculate values for

tA(11). The isentropic solution has been described previously in the literature and is

therefore not included here. The solutions obtained by using the non-isentropic method

described in this section are formulated into transmission loss predictions in Section

11.5, where comparisons are also made with experimental measurement.
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Section 11.4

Equations of First Order in 'c

The equations for the first order in 'r are given by equations (11.36) to (11.38) in

Section 11.2, and these are combined with either equation (11.39), for non-isentropic

disturbances, or equation (11.41) for isentropic disturbances. In this section, both

isentropic and non-isentropic solutions are examined, since the non-isentropic solution

for the first order in 'r is considerably more complicated than the zeroth order solution

described previously. In accordance with the equations of zeroth order in r, the

temperature and particle velocity variables are re-defined here (see equations (11.42)

and (11.43)) as

U_fS2PUB/7	 and	 7'=tBP.	 (11.50), (11.51)

11.4.1 Isentropic Solution

The assumption of isentropic disturbances allows the energy equation to be

decoupled from both the continuity and momentum equations. Consequently equations

(11.40) and (11.41) can be used to eliminate the density terms from the continuity

equation (11.36). This has the advantage of simplifying the continuity equation, when

compared to the non-isentropic formulation, and in addition the energy equation can be

discarded. Therefore, by substituting equations (11.40) and (11.41) into (11.36), and

introducing the re-defined velocity and temperature variables, the continuity equation

for first order in 'r can be re-written as

Mf0 kF--+ 
a(/;)1 

Mf1k +kFu0 
dUB

f52 L p	 j Fs2 L p;	 dc	 + S	 + -5- - 
kFUA - UA =0.

(11.52)
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Similarly, the axial momentum equation (11.37) can be re-written as

Mf0s2
zs2(uB_uA)+ 

k	
uA+kruB+_-)+MflrsuA =

[ p	 kF	 d	 ] ijdr1	 &'ll

	 (11.53)

The problem has now been written in terms of two equations, (11.52) and (11.53), and

two unknowns, UB and p. Unfortunately, first derivatives with respect to appear for

both unknowns in each equation which means that one cannot solve the two equations

directly. Therefore it is necessary to expand the unknowns further in orders of . Peat

[149] also applied this approach to solving the continuity and momentum equations and

suggested that the unknowns be expanded in the forms

4=B. +B 1 +B2 2	 (11.54)
PA

and

uB=uB(77)+uB(T)+uB(11)1. 	 (11.55)

He pointed out that B 0 serves only to adjust the absolute value of the acoustic pressure

at = 0 and may be taken to be zero if p is regarded as p	 in all cases. Therefore,

substituting the assumed forms for p/p and UB into both the continuity and

momentum equations (setting B 0 = 0) gives an expansion for the zeroth, first and

second order terms in . For the continuity equation this gives

M(f0 )B 1 M(f1)k +kF(uB0 )+(uBI ) — (uA) = 0,	 (11.56)+ —T
Fs2	 S

M(fo) (krB 1 +2B2 )+kF(uB1 )+2(uB2 )—kr'(uA ) = 0 (11.57)
FS21 —1)^--i
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and

( + Mf0r)B2 + F2 s2 (uB2 ) = 0,	 (11.58)

where ( ) denotes a cross-sectionally averaged value. In accordance with the solution

for zeroth order in 'r, the continuity equation can again only be satisfied in the integral

sense. The momentum equation for the zeroth, first and second order terms in

respectively is given by

• 2	 Mf0s2	 __________	 B1	 du\
iS 

+ k 
(uA + UB + kFuB0 ) + MfIFs2uA +_ =

kF ijdij	 di	
(11.59)

j2(	 UA)+ Mf0s2 
(kr'uB1 +2uB2 )+B I +2=-L.X du8

kIT	
(11.60)

and

(+MfOr')S2 UB2 +B2 =!1 duB2

d11	 d
(11.61)

If one examines the similarity between equations (11.61) and (11.45), in addition to the

fact that all the velocity components are subject to the same no-slip boundary conditions

at the wall, it follows that

UB =B2uA.	 (11.62)

If this relationship is substituted into equation (11.58), it is found that equation (11.58)

is now redundant. Therefore one is left with five equations and five unknowns.

The isentropic problem can now be solved either with or without mean flow.

Neglecting mean flow is obviously undesirable when examining a catalyst "on-engin&',

although this approximation does simplify the continuity and momentum equations

considerably and the subsequent solution is useful for providing an indication of the

likely influence of temperature gradients when mean flow is introduced. Therefore,
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setting M 0, and making use of equation (11.62), one arrives at two momentum and

two continuity equations which have the forms

is2u +!.- 
1 d ( duB0

Bo kF	 diI dij J
(11.63)

d ( duB1

kF	
(11.64)

kF(uB() ) + ( ) -	 = o
	

(11.65)

- i)+ kr'(uBI )+2(uB2 ) kr'(u) = 0.	 (11.66)

Equations (11.63) to (11.66) can now be solved for B 1 , B 2 , uB0 (71) and UB 1 (17). The

solution proceeds by first guessing a value for B 1 and solving equation (11.63) for

UB0(11). Next, if equation (11.65) is substituted into equation (11.66), one fjds that

i =kF ( B0 ) +Bi _1 .	 (11.67)
k['	 (UA)

Substituting equation (11.67) into equation (11.64) therefore allows a solution to be

found for UB 1 (ri). Once values for (uB 0 ) and (uB1) have been calculated they are

substituted into equation (11.65), from which an error in the equation is obtained. A

new guess for B 1 is then chosen, based upon the error found in equation (11.65), and

this guess is substituted back into equation (11.63). The process is repeated until the

error in equation (11.65) has been minimised. For the capillary ducts studied here, the

modulus of the left hand side of equation (11.65) was required to be of the order of

in order to obtain a "converged" solution. The predictions obtained using the method

outlined above are presented in Section 11.5.
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The introduction of mean flow does not, at first sight, appear to alter the problem

as compared to that without mean flow. For instance, one can combine equations

(11.56) and (11.57) to give

kF -[

kF	 \+Bl 1
(UB)	

- ]/ l+iMF).	 (11.68)

(uA,

It is then possible to guess values for B 1 and (uB0), and substitute equation (11.68) into

equation (11.60), from which one can calculate UB1 (i). This then allows equation

(11.59) to be solved for U8() (ii). If one then substitutes the computed values for (U0)

and (uB 1 ) into equation (11.56), new values for B 1 can be calculated directly.

Converged values for B 1 could not, however, be obtained using this method. The

problems with convergence appear to be linked to the calculation of a new value for B1,

using equation (11.56), since one must divide by M to obtain B 1 . At vanishingly small

values of M it is apparent that large values of B 1 will occur and this will undoubtedly

influence the convergence of the solution. This appears to indicate that, at present, the

problem has not be well posed and that the set of equations need to be solved by using a

different technique. The development of such a method is, however, beyond the scope

of this thesis.

11.4.2 Non-isentropic Solution

The non-isentropic solution is more complicated than the isentropic solution

since the energy equation can no longer be de-coupled from the continuity and

momentum equations. Consequently, one must solve the energy equation, in addition to

employing equations (11.35) and (11.39) to eliminate the density terms from the

continuity equation. Accordingly, the continuity equation (11.36) now assumes the non-

isentropic form
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ik[4_tB + (tA - o]+ MfO[tA +kF ._. tB J+ aF'tA]+ MfIk['(l—tA)

kF2s2 
+ Fs

2 aUB kF 2s2 	 I's2
+	 UB_____	

-____ - UA 
=0, (11.69)

and the energy equation assumes the form

I's2ik(tB - etA) + Mf0 [(1_tA ) + kFt11 

+	 J] + 
MflkFtA +	 UA =

ik('' 
1')4± 

Mf0('	
v1)]+ Mf1kF(' 1

H')PA	 .r)[ p	 a

_8kFM l f1 	 d(JluB)1	 k 1 a (	
( 11.70)

y J[ di + di	
22

The momentum equation remains unchanged from that used in the isentropic solution

(see equation (11.53)). The unknowns in the continuity, momentum and energy

equations must now be expanded in the same manner as that implemented in the case of

the isentropic solution, hence p/p and UB are defined by equations (11.54) and

(11.55) respectively, whilst the temperature is expanded in the form

T'__B_t (n)+tB1()+tB2()2.	 (11.71)F

PA

Substituting the expanded form of the unknowns into equations (11.69) and (11.70)

gives zeroth, first and second order expansions in . The continuity equation gives,

respectively, the zeroth, first and second order integral forms in perturbations

—iky(tB() ) + My[(fOtA) - kF(fOtB0 )] + MkFy{(f1 ) - (fotA )1

+kr2 s2 (uB ) + Fs2[(uBl ) — ( UA)] = 0,	 (11.72)
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_iky{B 1 (tB ) + 2(tA ) - ii + MkF'y[B1 (fo) - (jotI ) + (fOtA)}

+ k]I' 2 s2 [(uBI ) - (uA )J + 2F'S 2 ( UB 2 ) = o	
(11.73)

and

iy{B 2 - (tB2 )J+ MI'y{B2 (f0 ) - (fOtB2 )] + F2s2 (uB2 ) = O	
(11.74)

The energy equation yields the zeroth, first and second order perturbation equations

Fs2___
ikt B0 +MfO [(1—tA )+kFtB + tB ]+ MfI kTtA +UA = MfO[Y 1JB +Mf1kFtJJ

8kFM 
_ 1 r a	 a	 1 k 1 a ( dtB

)	 )j +	
)'	

( 11.75)

i ( tBI tA)+ Mforf tB i +__ = .( y_1 B + MfoF 7 1J[B +i+]
kF)	 7)

8FM 
—1 a	 1 1 a(

-	 7
(11.76)

and

(i+MfOF)tB2	 7;1 J . +MfrIB 8FM('nl a	 1 1 a ( atB

(11.77)

The expanded forms of the momentum equation are identical to those obtained for the

isentropic case (see equations (11.59) to (11.61)). Consequently, equation (11.62) is

also valid for the non-isentropic case. In addition, if one compares equation (11.77) to

equation (11.46), it follows that

tB _B2tA.	 (11.78)
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if equations (11.62) and (11.78) are substituted into equations (11.74), one finds that

equation (11.74) is redundant. This means that six equations are now left, containing

six unknowns.

A solution for the case with no mean flow is, as with the isentropic case,

obtained first here because of its simplicity. Setting M = 0 allows the momentum,

continuity and energy equations in zeroth and first order perturbations respectively, to

be written as

Momentum

•2	 B	 ld(duB
(S UB	 0

kIT 17d17	 dij
(11.79)

is2(uBI UA )+ B l 	 (11.80)
kIT	 17d17	 di)

continuity

—iky(tB ) + kr2s2(uB ) + r2s2{(uBI ) - (u k )] = 0	 (11.81)

iky{B i — ( tB 1 )+2(tA )— 1]+2Fs 2B2 (uA ) + kF2s2[(uB ) - (uk )] = 0	 (11.82)

Energy

ITs2	 k 1 d ( dtB\
lkt fl() +UA = v.22 (11.83)

i ( tB1 —tA) —j(	 B1 = 1
	

(11.84)
' )	 s217d17 d17)

It is now possible to solve equations (11.79) to (11.84) for B 1 , B 2 , UB 0 ( 17), uB1(17),

tB0 () and tB i () in a manner similar to that employed for the isentropic case.
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Guessing an initial value for B 1 allows UB0 (ri) to be calculated in equation (11.79) and

tBI (11) in equation (11.84). Substituting equation (11.81) into equation (11.82) gives

- kF 
(uB) +
	 - i)+ F(tB0)— y(tB +2y(tA ).	 (11.85)

-	 (uA)

Once equation (11.83) has been solved for values of tB( ( 11), one can substitute equation

(11.85) into equation (11.80), from which values for u (Ti) can be obtained. The

values calculated for (tB 0 ), (UBO) and (uBI) are then substituted into equation (11.81),

from which an error is found. A new guess for B 1 is then chosen and the process is

repeated until the error in equation (11.81) is minimised. Adequate convergence of the

non-isentropic solution was found to occur once the modulus of the error in equation

(11.81) was of the order of 1 0. The non-isentropic predictions obtained using this

method are given in the next section.

The method used for finding the non-isentropic predictions without mean flow

shares many similarities with that used for the isentropic disturbances. In light of the

problems found when introducing mean flow into the isentropic case, the author

anticipates that the inclusion of mean flow into the non-isentropic case will give rise to

similar difficulties. Consequently, the inclusion of mean flow in the non-isentropic

solution awaits the formulation of a successful method for solving the isentropic case.

Section 11.5

Results

The majority of the theoretical studies conducted on sound propagation in

capillary tubes has concentrated on calculating the attenuation and phase speed of the

forward and backward propagating acoustic waves. In fact, Jeong and Ih [148] are the

only authors so far to have extended this approach to cover the transmission loss of a

finite length catalytic converter. It is attractive to study the characteristics of the

350



catalytic converter in the form of transmission loss predictions since, in previous

chapters, dissipative silencers were also represented in this way. This therefore allows

the relative influences of the catalytic converter and dissipative silencer on the

dissipation of sound in an exhaust system to be readily examined.

To determine the transmission loss of a catalytic converter, Jeong and Ih [148]

found the acoustic pressure and the mass particle velocity at each end of the catalyst

brick. From here, a transfer matrix relating the sound pressure and mass velocity

between these two end points was obtained, each component of the transfer matrix

corresponding to a four-pole parameter (see Chapter 6). The transfer matrix method of

calculating the transmission loss employed by Jeong and Ih is also followed here.

Therefore, the acoustic pressure in the capillary tube is given by equation (11.30), i.e.

p' - e'-	 LPAWI ' 	( 11.86)

whilst the mass velocity is given by

w' = p0Su' poc0Se[u ( ri) + 'n4(17)],	 (11.87)

where w' is the mass velocity in the capillary duct and S is the cross-sectional area of

the duct. In accordance with Jeong and Ih, equation (11.86) is divided by p (see

Sections 11.3 and 11.4) and, after substitution from equation (11.54), this gives

(11.88)
PA

The mass velocity is divided here by pp 0 , and, after use of equations (11.42), (11.50)

and (11.55), equation (11.87) yields

w'	
(11.89)

Co
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=11+ ( + Be)]
p;	 I. (11.93)

and

To satisfy equation (11.89) fully, one must take the cross-sectionally averaged values for

the particle velocity, hence

w'	 r's2
+	 ) +( )+	

)2)]	 (11.90)
ppo - Co

To obtain a transfer matrix it is necessary to calculate the pressure and mass velocity for

both the incident and reflected waves at each end of the capillary duct. Therefore at

p = 11+ (_B + Br)]
	

(11.91)

and

_______ - F'i,rS'2 r 1	 i,r	 i,r	 i,r	 i,r

- 
0 [u) +((uB 0 ) — (uB 1 ) +(UB) )], (11.92)

where superscript i refers to an incident wave, r to a reflected wave (note that B 0 = 0 -

see Section 11.4). Similarly at = +1,

W' - fl,r	 r	 i,r	 i,r	 i,r

I () + () + (UB) + (UB2 ))]
ppo	 C0 L

(11.94)

Now, if we define

F r =1+(—B+B),	 (11.95)

F r =1^(B+B),	 (11.96)
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(11.97)

(11.98)

(11.104)

(11. 105)

G' =
0	

+	 - (UB 

)j 
+ (	

)i.r)]

= ',r' r
	 i,r	 i,r	 i,r	 i,r 1

0 [(

uA) +((uBO ) +(uB l ) +(UB) )],2

then at x = - L, the pressure can be written as

P O = AFe"" + BFre_rrL
	

(11.99)

and the mass velocity as

WO 	 + BGetht,	 (11.100)

where A and B are constants and k0 = w/c0 . Similarly at x = L,

pL = AF i e_ij + BFe"0"
	

(11.101)

and

WL = AGe_1k0 + BGe_L.	 (11.102)

The transfer matrix for the capillary duct is now given by

f 
po[[j	

a1211P'j

lw°f - [a21 a22 ilwLJ'
(11. 103)

where a11 , a12 , a21 and a22 are the four pole parameters. One can obtain expressions for

the four-pole parameters by eliminating the constants A and B from equations (11.99) to

(11.102), giving

1
a11 = 3-[GFe_2k01 - G' Fre_2korr]21

1
a12 =	 - FiFre_2or1U}
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(11. 106)

(11.107)

where

D={GFj _'F'J.2	 '2 2 (11. 108)

1
a21 =	 -

1
a22 =	 - GFe_2k0rL]

The transmission loss (TL) of the catalytic converter is then given by

TL = 201og 10 {a11 + a12 /cc0 + c2c0a21 + a22/2},	 (11.109)

where	 is the percentage open area, or porosity, normal to the cross section of the

catalyst brick.

11.5.1 Transmission Loss Predictions for Zeroth Order in 'r

The theoretical predictions obtained for the zeroth order in 'r solution obviously

do not include a temperature gradient. It is therefore appropriate for numerical

predictions to be compared with experimental data obtained at room temperature and

standard measurement techniques such as those discussed in Chapter 5 can be used.

The measurement of the acoustic performance of a catalytic converter at much higher

temperatures presents a number of problems and it is assumed here that, for the zeroth

order in 'r predictions, observations concerning the comparison between predicted and

measured data made at room temperature are also applicable at high temperatures.

In this section, a comparison between prediction and experiment is given for two

very different types of catalytic converter. The first type is the common ceramic brick,

supplied here by Johnson Matthey. Two ceramic bricks will be examined; the first had

a length of 133mm and a diameter of 99mm, whilst the second was 150mm long and

77mm in diameter. Both ceramic bricks contain the same substrate, denoted by the
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manufacturer as CGW/400/6, the figure 400 representing the number of cells per square

inch. Each of these cells, or capillary ducts, has a square cross-section. A side of each

cell is approximately 1mm long and the walls are typically 0.16mm thick. The ceramic

bricks also have a washcoat applied to them which increases the thickness of each wall

by approximately 60jim. The washcoat also tends to migrate towards the corners of

each cell causing them to fill in slightly, and this has the effect of rounding the corners

of the cells, typically with a radius of the order of one-fifth of the wall thickness (see

also Astley and Cummings [141J). Once the washcoat has been applied, the porosity

(c2) of both ceramic bricks was measured to be approximately 64%. The second type of

catalytic converter to be studied here is a metallic brick and this was also supplied by

Johnson Matthey. The metallic catalytic converters are produced in much smaller

lengths than the ceramic ones, the brick studied here being 75mm in length with a

diameter of 98mm. The substrate in the metallic brick used here is called by the

manufacturer "interatom". The metallic bricks are typically constructed by sandwiching

together alternating corrugated and non-corrugated sheets of substrate material, and this

means that the capillary pores are no longer square in cross-section. Once a washcoat

has been added to the metallic substrate, the pore typically assumes an approximately

polygonal shape. However, the pores in the metallic catalysts are similar in size to those

in the ceramic catalyst, the largest dimensions being of the order of 1mm. The use of a

metallic substrate allows the cell walls to be made much thinner than in the case of the

ceramic catalyst. For the metallic brick studied here, a wall thickness of approximately

40#m was typical prior to the application of the washcoat. The layer of washcoat added

to the metallic brick is also much thinner and this typically increased the width of the

cell by approximately 20um. The use of thinner walls means that the metallic catalyst

has a higher porosity than a ceramic one, which, for the brick studied here, was

measured to be 76%.

In the theoretical analysis presented earlier on in this chapter it was assumed that

a capillary tube was of a cylindrical cross section. This is obviously not the case for

either the ceramic or metallic catalytic converters. Astley and Cummings [141] have

studied non-circular cross-sectional geometries, such as those encountered here, by
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using a finite element formulation. In the present modelling procedure, taking into

account the cross-sectional shape in detail would prove complicated and the

introduction of such a method into the first order in r solutions would present many

problems. Instead, the author believes that sufficient accuracy can be achieved simply

by determining the hydraulic radius for each pore and then implementing the cylindrical

model discussed in the previous sections, for a circular pore radius equal to the

hydraulic radius of the actual pore. Consequently, an average value for the hydraulic

radius (Rh) was calculated from the measured pore geometry for each brick and this

gave values of Rh = 0.5 17mm for the metallic brick, and Rh = 0.562mm for both types

of ceramic brick. The effect of using the hydraulic radius to represent non-circular

cross-sections was examined by employing a simple variational model to compute

transmission loss predictions for a capillary pore with a square cross-section and with a

circular cross-section. A comparison between the transmission loss predictions

obtained for a square cross-section and those obtained employing the hydraulic radius

showed little difference, indicating that accuracy has not been sacrificed in the present

analysis by using the hydraulic radius to represent non-circular cross-sections.

In order to asses the accuracy of transmission loss predictions to zeroth order in

'r, experimental data were obtained at room temperature. The transmission loss

measurements on the catalytic converters were performed in exactly the same way as the

tests carried out on the dissipative silencers in Chapter 5. Transmission loss tests on

several catalytic converters were carried out, beginning with the measurement of

individual ceramic and metallic bricks. Since each brick is rather short in length, it can

produce only small levels of sound attenuation and consequently problems in accuracy

can occur when attempts are made to measure this. This was particularly noticeable

when measuring the metallic catalyst since it is only 75mm long and hence the

transmission loss is very small. When a small transmission loss is being measured,

experimental error is particularly noticeable, especially when mean flow is present and

such small sound attenuations can often become swamped by the effects of flow noise.

In an attempt to overcome this problem, four ceramic catalysts were joined together so

as to produce a much higher transmission loss. Following a method suggested by Jeong
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[150], the individual capillary tubes in the four catalyst bricks were lined up by using

wires, and the bricks were then taped together to form one large brick. This allowed an

effective brick length of 0.6m to be measured, which would provide a transmission loss

similar in magnitude to that measured by Jeong and lb [148], who combined six ceramic

catalysts to achieve a length of 0.66m.

In view of the experimental difficulties prevailing when mean flow is present,

the measurements for the individual ceramic catalyst (length 0.133m) and the metallic

catalyst are compared to non-isentropic predictions without the presence of mean flow

in Figure 11.1. In Figure 11.2, non-isentropic transmission loss predictions are

compared with experiment for the combination of four ceramic catalysts, both with and

without flow. It is evident from Figures 11.1 and 11.2 that the transmission loss

measured for a single brick is small, especially for the metallic catalyst, and that it is

desirable to increase the effective length of the bricks in order to measure a more

substantial effect. However, the most striking feature of both Figure 11.1 and 11.2 is

the large discrepancy between prediction and experiment for the ceramic catalysts.

Indeed, for the 0.6m length, the measured transmission loss is more than double that

predicted by the non-isentropic formulation of Section 11.3. It is possible that a part of

the underprediction in Figure 11.2 is caused by the incorrect alignment of holes when

forming the 0.6m length of brick although, in view of the results obtained for the single

ceramic brick in Figure 11.1, this is unlikely to be the major cause. The discrepancies in

Figures 11.1 and 11.2 were not, however, observed by Jeong and lb [148], who obtained

very good agreement between prediction and experiment using the same non-isentropic

formulation as that implemented here. One must therefore conclude that, either large

errors have occurred in the present experimental investigation, or a different ceramic

catalyst has been measured here, as compared to that used by Jeong and lb. In view of

the quality of experimental data obtained for the dissipative silencers in Chapter 5, it is

very likely that the discrepancies are caused by differences in the type of ceramic

catalyst between the present study and that of Jeong and Ih, and indeed this was later

confirmed by Jeong [150]. One is still left, however, with the large discrepancies in

Figures 11.1 and 11.2, although if one examines Figure 11.1, it appears that no such
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problems occur in the case of the metallic catalyst. It is possible that the porosity of the

walls of the capillary tubes in the ceramic catalysts was influencing the propagation of

sound in the tubes. Indeed, such an effect had already been identified by Amott et al.

[144], who found it necessary to introduce a reactive wall impedance into their

theoretical model to take account of the acoustic effect of the very small pores in the

walls of the substrate. However, Amott et al. restricted their analysis to ceramic bricks

without a washcoat, and it was originally thought that the introduction of a washcoat

would reduce the acoustic effect of the walls, especially as the washcoat has much

smaller pores (see Astley and Cummings [141]). However, the predictions obtained

here appear to indicate that the pores in the washcoat, in addition to those in the

substrate, are influencing sound attenuation.

In order to investigate the effects of wall porosity, the normal impedance of one

end of a washcoated ceramic brick was measured parallel to the capillary tubes, with the

opposite end being terminated in a rigid metal plate. Figure 11.3 shows a comparison

between values predicted for the normal impedance of the ceramic catalyst, using a non-

isentropic formulation, and those measured experimentally by the use of a standing

wave tube (see Chapter 3). It is evident from Figure 11.3 that large discrepancies

between prediction and experiment also occur for the normal impedance measurements

and one can therefore conclude that a wall porosity effect must be present. Clearly, to

model the ceramic catalysts studied here one must therefore include the wall porosity

effects, but it is important first to establish the accuracy of the model implemented in

Section 11.3. To do this, the wall porosity effect can be removed by blocking the small

pores in the walls of the capillary tubes. This was done by soaking the ceramic catalyst,

which included a washcoat, in dilute varnish and allowing the solvent to evaporate.

This method was also employed, concurrent to the work performed here, by Bernard et

al. [151]. A number of surface impedance tests was performed on the varnished brick,

using an increasing number of coats, until the addition of a further coat of varnish

produced a negligible effect. In Figure 11.3, the surface impedance data obtained after

the application of four coats of varnish is compared, both with the theoretical

predictions and the data obtained without varnish. It was observed that, after each
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additional coat of varnish, the measured impedance values moved progressively closer

to those predicted, finally converging to the values shown for four coats of varnish in

Figure 11.3. It is evident from Figure 11.3 that the addition of the varnish has produced

a significant improvement in the correlation between prediction and experiment. This

effect was also apparent when transmission loss measurements were performed on a

varnished brick. For example Figure 11.4 shows much closer agreement between

prediction and experiment for the ceramic catalyst brick (0. 15m long) with four coats of

varnish applied, than for the unvarnished brick (the latter results are not shown here, but

the data for M=0 are similar to those in Figure 11.1 for a brick O.133m long).

From an examination of the results presented in Figures 11.1 to 11.3, one must

conclude that, to the zeroth order in 'r, the combined effects of porosity of both the

substrate and the washcoat have a significant influence upon the acoustic performance

of a ceramic catalyst. If one removes this effect, either by examining a metallic brick or

by applying varnish to a ceramic brick, one finds very good agreement between the non-

isentropic predictions of Section 11.3 and measured data. Also, the quality of these

predictions does not seem to be affected by the assumption that the capillary tubes are

circular in cross-section; the use of the hydraulic radius appears to be sufficient for

examining cells with arbitrary cross-sections. It does, however, appear that, in order to

characterise the acoustic performance of the ceramic bricks studied here accurately, one

must include wall porosity effects in the model. A method for achieving this was

suggested by Arnott et a!. [144], although they did not examine the additional effects of

the washcoat. The application of a washcoat would probably require the addition of

both reactive and resistive terms to the impedance values used by Arnott et al., and

values for these must be measured experimentally. Furthermore one must also include

the radial velocity in the theoretical model if the wall porosity is being included and,

whilst this does not present too many problems for the zeroth order in r solution (see

Jeong and Ih [148]), it does appear to complicate the first order in r solution.

Predicting the effects of wall porosity on the performance of a ceramic catalytic

converter and including them in a model which also accounts for an axial temperature

gradient is beyond the scope of the work presented in this thesis.
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11.5.2 Transmission Loss Predictions for First Order in 'r

The study of the predictions obtained in Section 11.4 for the first order in r solution are

limited to a comparison with zeroth order theoretical predictions only. This is because

measuring the effects of a temperature gradient on a catalytic converter experimentally

requires exothermic reactions in the catalyst to be induced, and to do this the catalyst

must be subjected to a temperature of the order of 1000K. Performing such an

experiment is difficult at present, especially since, in addition to raising the temperature

to 1000K, one must then measure the acoustic characteristics at this temperature.

For a ceramic catalytic converter of the type examined in the zeroth order

solution previously described, the exothermic reaction induces a temperature rise in the

order of lOOK over a distance of approximately 20mm. If this temperature rise is

assumed to be linear then, substituting a mean temperature of 1000K back into equation

(11.6), one obtains a value for the temperature change parameter r of 0.05. In order to

simplify the calculations here, the temperature gradient is assumed to exist over the

complete length of the capillary duct, with the same value of 'r=0.05. The predictions

obtained for the ceramic catalyst (0. 15m in length), with a hydraulic radius of 0.56mm

and a porosity of 0.639, are given in Figure 11.5, for a mean temperature of 1000K.

Both the isentropic and non-isentropic solutions are given, with r=0 and 'r=0.05. Mean

flow has not been included since, as discussed in Sections 11.3 and 11.4, the solutions

including mean flow are at present unobtainable. It is evident from Figure 11.5 that,

regardless of the temperature gradient, the increase in mean temperature increases the

transmission loss of the catalytic converter. However it is apparent that the introduction

of a temperature gradient does reduce this effect slightly. For the isentropic case, the

temperature gradient causes a constant reduction in the transmission loss, of the order of

0.5dB over the entire frequency range. For the non-isentropic case, a reduction in

transmission loss is also predicted, although this is no longer constant over the

frequency range. At very low frequencies, the non-isentropic case appears - as one

would expect - to give similar predictions to those obtained by using the isentropic

solution. However, as the frequency increases, the difference between the solutions for
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r=O and r=O.05 decreases. It appears that as the frequency tends towards infinity, the

two solutions converge. If one compares the isentropic and non-isentropic solutions, it

is evident that, especially when a temperature gradient is present, the isentropic solution

provides a serious underprediction of the transmission loss as the frequency is increased.

For the particular catalyst in Figure 11.5, the isentropic solution is of the order of 1.8dB

lower at 2kHz. This gives some indication of the size of error involved when assuming

isentropic disturbances and, for catalytic converters such as those studied here, cautions

against the use of isentropic solutions. Unfortunately, the effects of mean flow cannot

be included in the present study, although it is probably safe to assume that the effect of

the temperature gradient, when mean flow is present, is similar to that observed in

Figure 11.5. This observation does, however, remain to be proved and, in the light of

the discrepancies between the isentropic and non-isentropic predictions in Figure 11.5,

to do this one must solve the non-isentropic problem with mean flow. This presents a

number of problems since, as discussed in Section 11.4, the non-isentropic solution with

mean flow is complex and a solution awaits further work. However, from the result

with 'r=O.OS presented in Figure 11.5, it does seem that the effect of the temperature

gradient is relatively small and it is possible that it can be ignored in most situations.

This is particularly true if one is including the catalytic converter in a complete model of

the exhaust system, since the additional effect of the temperature gradient will be

minimal and probably impossible to measure when the catalytic converter is

incorporated with other dissipative elements such as the silencers studied in previous

chapters. However, when subjected to the high temperatures prevailing close to the

exhaust manifold, the catalytic converter itself does appear to have a significant

influence on the dissipation of sound in an exhaust system and, although this influence

is small compared with dissipative silencers, it should nevertheless be included. This is

particularly true at very low frequencies where the dissipation of sound by the catalytic

converter is of a similar order to that found for the dissipative silencers, and it is at these

frequencies where the catalyst will provide the most beneficial influence.
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CHAPTER 12

CONCLUSIONS



The research reported in this thesis has included an examination of the acoustic

design of dissipative elements commonly found in automotive exhaust systems, namely

dissipative silencers and catalytic converters. The study of dissipative silencers has

formed the bulk of the thesis because - as expected - these attenuate sound energy to a

far greater extent than do catalytic converters. Work has concentrated here on

formulating methods for modelling dissipative silencers mathematically, with a view to

employing such models in future commercial design software. This has involved

examining a number of different theoretical approaches, which have varied in their

relative complexity. The models were compared both with one another and with an

extensive range of experimental data taken prior to modelling, and final conclusions

were drawn concerning the mathematical model which was best suited to the

requirements of the industrial sponsors. The procedure employed in this thesis has

involved examining existing modelling techniques and then modifying these to suit the

specific requirements. In general this has required the extension of previous modelling

techniques to include a perforate between the central channel and the absorbent, and the

introduction of a new semi-empirical model describing the acoustic properties of the

absorbent.

Of primary importance to the performance of dissipative silencers is the

behaviour of the porous material. In Chapters 2 and 3 a new semi-empirical method

was introduced for predicting the bulk acoustic properties of the porous materials used

in subsequent silencer modelling. This was accomplished first by theoretically

modelling the absorbent by the use of a parallel fibre microstructure model, and then

approximating this model to low frequencies only. From here, new values for a

frequency dependent tortuosity and pore shape factor were inferred by employing

experimental data measured using the standard impedance tube method. The model

allows predictions for the bulk acoustic properties to remain accurate in the region in

which experimental data is available, but provides a seamless transition to theoretical

predictions at frequencies below those obtainable via experiment, thus ensuring that the

correct limiting behaviour is observed. The semi-empirical model was shown to work

well for materials of medium to high flow resistivity such as those employed in the

367



present study (A glass, E glass and basalt wool). For materials with a much lower flow

resistivity, such as steel wool, the semi-empirical model does not work quite so well,

principally because the high frequency limit of the approximations inherent in the

microstructure model is approached at lower frequencies than for the medium to high

flow resistivity materials. Therefore if one is to employ this model with low flow

resistivity materials, further examination is necessary to establish the range of validity of

this model. Nevertheless, for materials typically present in bulk form inside automotive

dissipative silencers, the new semi-empirical method was seen to work well.

A feature of the majority of the dissipative silencer models reported in the

Literature is the omission of the perforate. It was commonly thought that perforates

with a high porosity, such as those studied here, had very little influence on the acoustic

properties of dissipative silencers. Whilst it was known that the introduction of grazing

flow substantially changes the acoustic impedance of a perforate, the additional effect of

a porous material backing the perforate had not previously been studied. In Chapter 4

the effect of a porous material on the acoustic impedance of a perforate subjected to

grazing flow was discussed and a semi-empirical model was proposed, employing data

found for perforates without a porous backing and combining these with theoretical

predictions of the effect of the absorbent backing. The validity of the semi-empirical

predictions was assessed by taking experimental data for a number of perforates backed

by porous materials, and good agreement between prediction and experiment was

observed. It was concluded that the porous material causes a large increase in the

acoustic impedance of a perforate and one can no longer ignore the effect of perforates

in the modelling of dissipative silencers. The size of this increase in impedance was

also found to depend upon the flow resistivity of the backing material, the largest

increase occurring with high flow resistivity materials. In addition, the effect of the

porous material was found to be very localised and to depend heavily upon the density

of the material immediately adjacent to the holes. This later had consequences in the

prediction of the impedance of perforates situated in a randomly packed silencer, since

one cannot fully describe the behaviour of the perforate without a detailed knowledge of

the packing density adjacent to the perforated tube. The study in Chapter 4 also
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includes, for the first time, an examination of the acoustic impedance of louvred plates.

Louvres were found to behave in a significantly different way from flat plates and one

can no longer obtain universal formulae for the acoustic impedance of a louvre without

a porous backing. In addition, the presence of a porous material backing a louvre was

found to produce no additional increase in the acoustic impedance of the perforate.

The semi-empirical models for absorbents and perforates, described in Chapters

2, 3 and 4, were later introduced into the theoretical modelling of the dissipative

silencers themselves. This presented no additional problems associated with the bulk

acoustic properties, but the introduction of a perforate required a re-formulation of each

theoretical model in order to account for the change in the boundary conditions between

the central channel and the absorbent. The fundamental mode model was studied first

because of its apparent simplicity and this model was extended here to include the

perforate. In addition, the low frequency approximations introduced by Peat [13] were

removed to allow larger silencers to be examined. Indeed, the experimental data

obtained in Chapter 5 allowed the performance of the fundamental mode model to be

studied far more closely than before, and it was observed that, whilst the model

performed relatively well for "small" silencers, the prediction accuracy for larger

axisymmetric silencers and oval shaped silencers was poor. It also later became

apparent that the area weighting functions employed by Peat introduced further

approximations into the model and that, in the future, better results may be achieved by

employing the duct eigenfunctions as the weighting functions. However, even

accounting for this improvement, one cannot expect the fundamental mode model to

yield accurate predictions for a full range of dissipative silencers and in particular the

oval shaped silencers that are commonly employed in automotive exhausts.

It became clear after examining the fundamental mode predictions in Chapter 6

that if one requires a model for dissipative silencers which have an arbitrary cross-

sectional shape, then numerical methods must be used and this is best performed by

using finite elements. In Chapter 7 the fully general finite element model of Peat and

Rathi [26] was examined. The model was modified here to omit mean flow in the

absorbent and also to include a perforate. Unfortunately the inclusion of a perforate
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required the re-configuration of the finite element mesh and this prevented the inclusion

of a perforate in three dimensional solutions. However results were still obtained using

a three dimensional mesh for oval shaped silencers without a perforate for the first time.

The accuracy of the predictions using the full finite element method was found to be

very good, and this was unaffected by either the size or shape of the silencer. Indeed, of

all the theoretical predictions examined in this thesis, the highest degree of accuracy

obtainable when comparing prediction to experiment was provided by the full finite

element method. However, penalties are associated with the use of the full finite

element method since one must employ large amounts of CPU time to find solutions

and for this particular method the demand on CPU time proved to be prohibitive. Also,

the full finite element method itself was not without its problems although these were

limited to the three dimensional solutions. For example, at very low frequencies, a

number of "non-physical" predictions were obtained and the reasons behind this need

further investigation. Also, in future, a more specialised mesh generator is required in

order to allow a perforate to be included in three dimensional predictions.

In Chapters 8 and 9, work concentrated on reducing the CPU time necessary to

implement a finite element scheme. This involved assuming the silencer to be infinite

in length and employing an eigenvalue solution (see Chapter 8) which was then coupled

with a mode matching solution in Chapter 9 in order to obtain predictions for a silencer

of finite length. Whilst this method does require the cross-section of the silencer to be

uniform along its length, it did allow the dimensions of the problem to be reduced by

one as compared to the full finite element approach. The eigenvalue solution employed

in Chapter 8 was based upon the method of Astley and Cummings [17], but was re-

formulated here to include a perforate. The reduction in the dimensions of the

eigenvalue solution allowed a two dimensional mesh to be formulated for the oval

shaped silencers and this allowed the perforate to be included for the first time in

predictions for oval shaped silencers. The eigenvalue formulation in Chapter 8 was

shown to provide a "robust" method for finding the least attenuated modes, and did not

suffer from the problems, such as missing modes, which can often occur in iterative

schemes. The eigenvalue solution was formulated with the intention of providing data
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for the mode matching schemes of Chapter 9, and hence no attention was paid to mode

shapes, the modes simply being ordered on the basis of attenuation alone. This

approach worked well for the silencers of the size and shape studied here, although

when a two dimensional mesh was used, non-axisymmetric modes appeared in the

solution; these could be a potential source of problems in predictions for larger silencers

or those with a greater area expansion ratio. Therefore in future a closer examination of

the eigenvalue solution is probably necessary in order to ascertain the range of validity

of the model when using this in conjunction with a mode matching scheme.

The eigenvalue solutions described in Chapter 8 were employed in the three

separate mode matching solutions discussed in Chapter 9. It was originally intended to

employ the straightforward mode matching method of Cummings and Chang [23], but

after a detailed examination of the method, it was found to give non-physical

predictions when higher order modes were introduced in the presence of mean flow.

The reasons why this problem occurred are still not entirely clear, although the problems

are thought to be caused by the use of non-orthogonal weighting functions. In an

attempt to overcome this problem a least squares mode matching approach was

attempted, but similar problems to those encountered in the Cummings and Chang

method were observed. To overcome this, a new mode matching method was

employed, and this involved integrating the governing equations directly, thus removing

the orthogonality question. The non-physical predictions of the previous two mode

matching schemes were eliminated and good agreement between prediction and

experiment was observed, although the convergence of the solution was erratic and

higher order modes could not be introduced into solutions for oval shaped silencers. It

became apparent after studying the three different mode matching schemes that the

implementation of continuity conditions at an abrupt area change in a dissipative

silencer using a mode matching formulation is fraught with difficulty and the problem is

still not fully understood. It appears that one should not employ non-orthogonal

weighting functions in mode matching solutions, although the reasons behind this are

not clear. In future the mode matching approach requires further investigation, although

it might eventually be necessary to abandon a mode matching formulation altogether
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and employ alternative methods such as the Wiener-Hopf method. However, for the

type and size of silencer studied here, it was shown in Chapter 10 that the Cummings

and Chang mode matching method employing only one mode works well and does not

undergo too large a reduction in accuracy when compared to the full finite element

model described in Chapter 7. Indeed, since only one mode is sufficient, it is possible to

employ a relatively coarse finite element mesh in the eigenvalue solution and this has

the potential to reduce CPU time significantly. However, this method does require

further investigation, especially if it is to be used in the design of much larger silencers

such as those found in air conditioning ducts.

Finally, in Chapter 11, catalytic converters were studied, and these were shown

to provide only a small contribution to the overall sound transmission loss in a

dissipative exhaust silencer. If one compares the predictions obtained for both the

"straight-through" dissipative silencers and the catalytic converters studied here, then it

would appear that at medium to high frequencies, the relative effect of the catalyst is

small, although at very low frequencies the catalyst is capable of producing significant

levels of sound attenuation. In Chapter 11, a model was formulated which - for the first

time - incorporated a temperature gradient, together with a mean flow Mach number of

between 0.2 and 0.3. When no mean flow was present, the temperature gradient was

observed to reduce the overall transmission loss slightly, although the effect did depend

upon whether an isentropic or non-isentropic formulation was employed. Indeed

significant differences between the isentropic and non-isentropic solutions were

observed, especially at high frequencies, and it appears that if a catalytic converter is to

be modelled accurately then one must employ a non-isentropic formulation.

Unfortunately, numerical solutions to the problem including both mean flow and a

temperature gradient have yet to be realised and therefore in future different methods

need to be found for solving the final equations. Furthermore, a comparison between

prediction and experiment without a temperature gradient indicated, for the catalysts

studied here, the presence of a substantial wall porosity effect. It is apparent that this

effect must be included in the future modelling of catalytic converters in order to obtain

accurate prediction of attenuation. Nevertheless, when one removes the wall porosity
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effect, a comparison between experiment and prediction indicated that the model

without a temperature gradient provides quite accurate predictions. The difficulty in

obtaining experimental data for a catalyst with a temperature gradient means that the

accuracy of the temperature gradient model remains as yet unspecified. Further research

is required in order to resolve this question.

Of the research reported in this thesis, the author believes that the results

indicating the influence of the perforate are the most significant. It appears that the

perforate can substantially alter the performance of a dissipative silencer, particularly at

high frequencies, even with perforate porosities as high as 27%. The design of the

perforate potentially offers significant further scope for improvement in dissipative

silencer design and this should be reflected in further investigations into the physics of

the behaviour of the perforate, which at present is still not fully understood.

In general, the mathematical modelling presented in this thesis has shown good

agreement with experimental data, both for the dissipative silencers and the catalytic

converters. It appears that one can successfully predict the behaviour of dissipative

silencers to a high degree of accuracy, at least over a frequency range of 0-1kHz. The

problems associated with the demands upon CPU time appear to have been solved - as

far as possible - by use of the Cummings and Chang mode matching method employing

one mode. It therefore appears perfectly possible to formulate predictive software for

dissipative elements in automotive exhausts which is both accurate and relatively fast in

execution. It has also been shown here that it is possible to achieve modelling accuracy

for dissipative silencers that is comparable to that presently available in the design of

reactive silencers, although the modelling of dissipative silencers is inevitably more

complex than that of reactive silencers and it remains to be seen how the relative

computational times for numerical solution compare. It is hoped that, in future, the

dissipative silencers models examined here can be combined with models for reactive

elements, such that complex multi-pass silencers can be modelled. Ultimately, such

software will play an integral role in predicting the external noise radiated from an

exhaust system as a whole, and allow for the more efficient acoustic design of

automotive exhausts.
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