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Abstract 
 

Background: 

Chemotherapy resistance is a major obstacle in effective neoadjuvant treatment for locally 

advanced breast cancer. The ability to predict tumour response would allow chemotherapy 

administration to be directed towards only those patients who would benefit, thus 

maximising treatment efficiency. This project aimed to identify predictive protein 

biomarkers associated with chemotherapy resistance, using proteomic analysis of fresh 

breast cancer tissue samples.  

 

Materials and Methods:  

Chemotherapy-sensitive (CS) and chemotherapy-resistant (CR) tumour samples were 

collected from breast cancer patients who received neoadjuvant therapy consisting of 

epirubicin with cyclophosphamide followed by docetaxel. Comparative proteomic analysis 

was performed, to identify differentially expressed proteins (DEPs) between CS and CR 

invasive ductal carcinoma samples, using 2-dimensional polyacrylamide gel electrophoresis 

(2D-PAGE) with MALDI-TOF/TOF mass spectrometry and antibody microarray analysis. 

DEPs were submitted to Ingenuity Pathway Analysis (IPA) to identify any canonical 

pathway links, confirmed using western blotting and clinically validated in a pilot series of 

archival breast cancer samples, from patients treated with neoadjuvant chemotherapy.  

 

Results: 

Five datasets were generated by antibody microarray analysis, revealing 38 targets. Of 

these, 7 DEPs were identified in at least 2 datasets and these included 14-3-3 theta/tau, BID 

and Bcl-xL. Three datasets were generated using 2D-PAGE with MALDI-TOF/TOF MS, 

containing 132 unique DEPs. These included several isoforms of 14-3-3 proteins. The 

differential expression of 14-3-3, BID and Bcl-xL was confirmed by immunoblotting in 

samples used for the discovery phase. Clinical validation using immunohistochemical 

analysis of archival breast cancers revealed 14-3-3 theta/tau and tBID to be significantly 

associated with chemotherapy resistance.  

 

Discussion:  

The use of comparative proteomic techniques using fresh clinical tumour samples, for the 

search for putative biomarkers of chemotherapy resistance has been successful. Two DEPs; 

14-3-3 theta/tau and tBID have passed through all stages of the biomarker discovery 

pipeline, and present themselves as putative predictive biomarkers of neoadjuvant 

chemotherapy resistance in breast cancer. 
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Chapter 1.  Clinical Introduction to Breast Cancer 

1.1 Breast Cancer Epidemiology 

Breast cancer is the most commonly occurring cancer in the UK, despite it predominantly 

affecting females, and the second-leading cause of cancer-related deaths. In 2004, breast 

cancer incidence in females represented approximately one third of total malignancies in 

the UK (Westlake and Cooper 2008) and mortalities were the second highest after lung 

cancer, representing 17% of all female cancer deaths (Westlake and Cooper 2008) (Figure 

1). Incidence rates for breast cancer in females were 24% higher than those for the cancer 

of highest incidence in males (Westlake 2009). Incidence rates are continuing to rise 

(Figure 2), with close to 47,700 new cases reported in the UK in 2008, of which 5,360 were 

reported within local Northern and Yorkshire Cancer networks (Northern and Yorkshire 

Cancer Registration Information Service [NYCRIS], Leeds). Currently, it is estimated that 

women in the UK have a 1 in 8 lifetime risk of developing breast cancer.  

1.2 Breast Cancer Aetiology 

Breast cancer results from the accumulation of genetic abnormalities and mutations which 

lead to malignant transformation of cells in the breast. There are several factors which may 

contribute to the development of breast cancer, of which female gender, old age and 

country of birth are the strongest disease risk factors (Hulka and Moorman 2001). Other 

factors include mutations in the cancer susceptibility genes (BRCA1, BRCA2, p53, PTEN, 

ATM) (section 2.2.1) family history, high mammographic density, early menarche, late 

menopause, high post-menopausal bone density, higher age at first full-term pregnancy, 

post-menopausal obesity, use of oral contraceptives, hormone replacement therapy and 

exposure to ionising radiation (Hulka and Moorman 2001; Key, Verkasalo et al. 2001; 
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Sakorafas, Krespis et al. 2002; Schwab, Claas et al. 2002). Alcohol consumption has also 

been linked to increase risk of breast cancer (Li, Baer et al. 2009). Models are available to 

estimate the risk of breast cancer development for an individual; namely the Gail Model 

and the Claus Model (McTiernan, Kuniyuki et al. 2001).  

 

  
Figure 1:Incidence and mortality rates (female) for major cancers 2004-2006 in the 

UK 

Breast cancer incidence rates, at 122 per 100,000 people, are currently the highest out of all 

malignancies. The mortality rates for breast cancer are slightly lower than lung cancer (28 

and 31 per 100,000 people respectively), displaying the second-highest mortality rate 

(Westlake 2009) 

 

1.3 Histological types of breast cancer 

Breast tissue has many constituents including: lobules, which are milk-producing glands; 

ducts, which transport milk to the nipple; nerves; lymph vessels; pectoral muscle; adipose 

and connective tissue, which line the vessels (Figure 1). The two most common types of 

invasive breast cancer include invasive ductal carcinoma (IDC) and invasive lobular 

carcinoma (ILC) which represent 70-80% and 10% of cases respectively 
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(CancerResearchUK 2002). Other types of breast cancer are rare and include inflammatory, 

tubular, mucinous and medullary breast cancers.  

Non-invasive pre-cancerous lesions which may develop into cancer are termed ‘ductal 

carcinoma in situ’ (DCIS) and ‘lobular carcinoma in situ’ (LCIS), depending on their 

location of origin. These lesions are not regarded as true cancer; however their presence 

increases the risk of developing invasive breast cancer.   

 
Figure 2: Breast cancer incidence continues to rise 

Incidence rates of breast cancer continue to rise, whilst mortality rates decrease. This may 

due to the introduction of the breast screening program as well as the introduction of the 

drug tamoxifen for the treatment of early breast cancer. 

Office for National Statistics 2010. 
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Figure 3: Structure of the breast 

The structure of the breast, showing the location of the lobules (milk-producing glands) and 

ducts (which lead from the lobules and deliver milk to the nipple) representing the origin of 

70-80% and 10% of breast cancers respectively.  

Adapted from (AmericanCancerSociety 2008) 

 

1.4 Diagnosis and Classification  

Diagnosis of symptomatic breast disease is through triple assessment, which constitutes 

clinical (palpation), radiological (mammography and ultrasound) and histological 

assessment (fine needle aspirate or core needle biopsy). 

Upon diagnosis, breast cancers are classified according to the AJCC (American Joint 

Committee on Cancer) Staging Manual, where factors assessed include tumour size, lymph 

node involvement and presence of metastases. This is referred to as the tumour-node-

metastases (TNM) staging system (Singletary and Connolly 2006) (Table 1). These TNM 

categories can then be grouped into five stages (0 to IV) (Singletary, Allred et al. 2002), 

where higher stages are associated with poorer survival rates (Singletary and Connolly 

2006) (Figure 4). Other factors which affect prognosis and management include tumour 
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grade, lymphovascular invasion, hormone receptor status (section 1.6.1) and presence or 

absence of multifocal disease. 

Table 1: TNM Staging System for Breast Cancer Classification 

The TNM staging system is used to classify breast cancer according to its size, lymph node 

involvement and presence of metastases.  This aids the prognosis and management of the 

disease (Singletary and Connolly 2006). 
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Figure 4: Survival rates 0-5 years after diagnosis, according to breast cancer stage 

This data was obtained from the West Midlands during 1990-1994, followed up to 2004 

and published in 2008. The above graph shows the percentage survival 0-5 years after 

diagnosis according to breast cancer stage. Five year survival rates were 92% for Stage I, 

73% for Stage II, 50% for stage III and 13% for Stage IV. (Cancer Research UK).  

 

1.5 Treatment 

From a clinical perspective, the treatment administered for breast cancer is dependent upon 

the stage, grade and type of disease, as well as tumour and patient characteristics. The 

definitive treatment for early breast cancer is surgery, but may also include chemotherapy, 

in the ‘neoadjuvant’ (pre-surgery) or ‘adjuvant’ (post-surgery) setting, radiotherapy, and 

hormone therapy. Treatment can also be tailored to suit the molecular status of the tumour 

and specific therapies can be administered.  Trastuzumab (Herceptin
®
), for example, may 

be administered for the treatment of human epidermal growth factor receptor 2 (HER2) 

positive tumours, or Tamoxifen for tumours expressing the estrogen receptor (section 

2.2.2). Treatment for locally advanced breast cancer (LABC), which is defined as a tumour 

> 5cm (T3) or with fixed skin or chest involvement (T4) and/or extensive axillary 

involvement (N2-N3), (Espinosa, Morales et al. 2004; Mathew, Asgeirsson et al. 2009) 
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(Table 1) may involve combination therapy, including chemotherapy, surgery and 

radiotherapy. However, increasing numbers of patients are choosing breast conserving 

therapy (BCT). This involves the use of neoadjuvant chemotherapy, which aims to shrink 

the tumour prior to resection, to increase the chance of breast conserving surgery (BCS), 

rather than a mastectomy. Neoadjuvant chemotherapy currently administered in Hull and 

East Yorkshire NHS Trust includes 4 cycles of EC [epirubicin (90 mg/m
2
), 

cyclophosphamide (600 mg/m
2
)] followed by 4 cycles of docetaxel (100 mg/m

2
). 

Following this, surgical intervention is applied to remove the remaining tumour mass; this 

may involve BCS or a full mastectomy, depending upon the response to neoadjuvant 

chemotherapy. Radiotherapy may then also be administered which aims to target any 

residual tumour cells thus maximising eradication of the tumour and reducing the chance of 

recurrence. 

The European Organization for Research and Treatment of Cancer (EORTC) Trial 10902 

determined that neoadjuvant chemotherapy does increase rates of BCS, however it shows 

no difference in overall survival (OS) or disease free survival (DFS) (van der Hage, van de 

Velde et al. 2001). The NSABP-B-18 randomized clinical trial demonstrated the 

effectiveness of doxorubicin / cyclophosphamide combination neoadjuvant chemotherapy, 

where 80% patients showed ≥ 50% reduction in tumour size, of which 36% showed a 

complete clinical response (Fisher, Bryant et al. 1998). This is discussed further is section 

2.3. 

1.6 Prognostic and Predictive Factors 

Prognostic and predictive factors in breast cancer are considered when decisions regarding 

disease management and therapeutic strategy are made. Prognostic factors are used to 

‘predict patient clinical outcome independently of treatment’, whereas predictive factors 
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predict the ‘response of a patient to a specific therapeutic modality, as well as tumour 

sensitivity or resistance to the therapy’ (Liu, Huang et al. 2010; Weigel and Dowsett 2010). 

However, several factors have both prognostic and predictive relevance, thus enabling the 

clinical to tailor treatment accordingly, as well as having some knowledge of how the 

tumour may respond.  

1.6.1 Prognostic factors 

The main prognostic factors in breast cancer include histological type, grade, lymph node 

involvement, lymphovascular invasion, metastasis, hormone receptor status, proliferation 

rate of tumour cells and tumour size. The TNM staging system (Table 1) encompasses three 

of these factors, which are of greatest prognostic value; tumour size, lymph node 

involvement and metastasis. A useful prognostic tool, for invasive breast carcinoma 

patients, which combines nodal status, tumour size and histological grade, is the 

Nottingham Prognostic Index (NPI). These three factors were initially found to be 

independently associated with survival upon multivariate analysis, and were combined to 

form the NPI, which has now been validated in several studies (Lee and Ellis 2008). 

Patients are grouped into one of six prognostic groups, ranging from ‘excellent prognostic 

group’ to ‘very poor prognostic group’ (Blamey, Ellis et al. 2007).  

On a molecular level, there are few biomarkers that have been transferred to the clinic as 

routine prognostic markers. To date, the only routine markers currently used include 

estrogen receptor (ER) and human epidermal growth factor 2 (HER2). A major adverse 

prognostic factor is ERBB2 (HER2) gene amplification and protein over-expression; this is 

associated with increased risk of relapse and shorter overall survival (section 2.2.2) (Ross, 

Fletcher et al. 2003; Weigel and Dowsett 2010).  
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More recently, gene expression profiling has discovered signatures with prognostic 

abilities. The discovery of molecular subtypes within breast cancer (Perou, Sorlie et al. 

2000) allows tumours to be classified according to their hormone receptor expression, and 

also presents a powerful prognostic tool, as each of these subtypes display very different 

prognoses (section 2.2.2). Gene expression signatures have also been discovered which 

predict disease outcome, the most significant of which is the 70-gene signature; 

Mammaprint
®
, which is able to distinguish between good and bad prognosis tumours (van 't 

Veer, Dai et al. 2002; van de Vijver, He et al. 2002). This signature has been customised 

into the high-throughput diagnostic array ‘Mammaprint
®
’ (Glas, Floore et al. 2006) and is 

currently incorporated in the prospective randomised Phase III Clinical Trial ‘MINDACT’ 

(Microarray In Node negative Disease may Avoid ChemoTherapy) (Cardoso, Piccart-

Gebhart et al. 2007). Another gene signature with prognostic ability is Oncotype DX
®
; a 

21-gene signature, which is able to predict recurrence in ER positive tumours treated with 

tamoxifen (Paik, Shak et al. 2004; Albain, Barlow et al. 2010), and is currently being tested 

for its clinical use in the Phase III Clinical Trial ‘TAILORx’. These, along with other gene 

expression signatures have been extensively reviewed (Bonnefoi, Underhill et al. 2009; de 

Snoo, Bender et al. 2009; Slodkowska and Ross 2009; Sotiriou and Pusztai 2009; Stadler 

and Come 2009; Espinosa, Vara et al. 2011).  

1.6.2 Predictive factors 

There are contradicting arguments regarding tumour size and therapy response, however it 

is largely believed to show inverse correlation; smaller tumours show a better response to 

treatment (Fernandez-Sanchez, Gamboa-Dominguez et al. 2006; Mieog, Hage et al. 2006). 

Different tumour types also respond differently to neoadjuvant chemotherapy. Invasive 

lobular carcinomas have been shown to have lower rates of complete response to 
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neoadjuvant anthracycline/taxane chemotherapy when compared to invasive ductal 

carcinomas; 3% and 15% response rates respectively (Cristofanilli, Gonzalez-Angulo et al. 

2005). However, overall outcome was shown to be better for invasive lobular carcinoma 

patients, who showed longer rates of DFS and OS (Cristofanilli, Gonzalez-Angulo et al. 

2005). On a molecular level, the expression of ER and HER2 has also been associated with 

response to neoadjuvant anthracycline chemotherapy in breast cancer. Tumours displaying 

over-expression of HER2 are associated with high rates of pathological complete response 

(pCR) to neoadjuvant chemotherapy (Weigel and Dowsett 2010) (section 2.4.2.7). In 

contrast, tumours showing ER expression have demonstrated poor rates of pCR to 

neoadjuvant chemotherapy (section 2.4.2.7) (Kim, Sohn et al. 2010). The above-mentioned 

gene expression profiling and the discovery of gene expression signatures have also been 

associated with the prediction of therapy response (section 2.4.3). 

1.7 Monitoring response to treatment  

Neoadjuvant chemotherapy is not beneficial for all patients; some tumours display 

resistance to chemotherapy, where progression may be seen with an increase in tumour 

size, and require early surgical intervention. It is not currently possible to distinguish 

between those patients who will benefit from neoadjuvant chemotherapy and those who 

will not. For this reason, tumour response to treatment is carefully monitored clinically and 

radiologically, to avoid continuation of neoadjuvant chemotherapy treatment in the event of 

tumour progression. Radiological imaging using dynamic contrast enhanced-magnetic 

resonance imaging has been shown to be more accurate and sensitive than traditional x-ray 

mammography and ultrasound methods for the assessment of breast tumours (Julius, Kemp 

et al. 2005; McLaughlin and Hylton 2011). Tumour response can be assessed 

radiologically, using RECIST (Response Evaluation Criteria In Solid Tumours) criteria 
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(Therasse, Arbuck et al. 2000; Eisenhauer, Therasse et al. 2009) by measuring the longest 

diameter of the tumour before, during and after the treatment course. RECIST guidelines 

were introduced to internationally standardise the reporting of tumour response to therapy 

when new chemotherapeutic agents are tested in clinical trials. These criteria can therefore 

be used to assess tumour response to therapy in the clinical setting. Tumour response is 

assessed as described in Table 2 (Therasse, Arbuck et al. 2000). Occurrence of new 

metastasis during neoadjuvant chemotherapy must also be considered as progression 

regardless of changes in tumour size. Histopathological reports from the tumour resection 

must also be acknowledged to fully assess response to neoadjuvant chemotherapy. It has 

been reported that after neoadjuvant chemotherapy, particularly in ER+/HER2- tumours, 

when assessing the extent of residual disease, there may be inaccuracies when using 

dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) measurements, in 

comparison to histopathological measurements (Chen, Feig et al. 2008; Wright, Zubovits et 

al. 2010; Loo, Straver et al. 2011). This should therefore be considered when determining 

therapy response; tumour measurements determined within the final pathology report may 

be the most accurate parameter. 

When tumour response to treatment is determined, decisions regarding therapy and its 

continuation or termination can be made. In the event that tumours do not respond, or even 

progress during treatment, the course may be aborted and a different approach may be 

taken to treat the tumour. A pathological complete response (pCR) following neoadjuvant 

chemotherapy, is a strong indicator of survival and has been associated with highest rates of 

DFS (Kuerer, Newman et al. 1999; Smith, Heys et al. 2002; Ladoire, Arnould et al. 2008).  
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Table 2: Summary of the Response Evaluation Criteria In Solid Tumours (RECIST) 

Guidelines (Therasse, Arbuck et al. 2000; Eisenhauer, Therasse et al. 2009) 

Response Criteria 

Complete Response (CR) Complete disappearance of the tumour 

Partial Response (PR)  30% decrease in tumour size 

Stable Disease (SD)  30% decrease and  20% increase in tumour size 

Progressive Disease (PD)  20% increase in tumour size 

1.8 Resistance to Treatment  

Using neoadjuvant chemotherapy as an example, a major pitfall in effective treatment is 

tumours which display resistance to the chemotherapeutic agents targeting them. The 

desired effect when treating a tumour with neoadjuvant chemotherapy would be its 

complete disappearance. However, chemotherapeutic drugs may not have this desired 

effect; they may not have any effect and the tumour may not change in size. More 

detrimentally, the tumour may increase in size during therapy, allowing disease 

progression. In this situation, the patient will have been exposed to high levels of cytotoxic 

agents and suffered unpleasant side-effects for no therapeutic gain. The ability to predict 

whether an individual tumour will respond to neoadjuvant chemotherapy or display 

resistance to it would therefore be extremely valuable. Within a clinical setting, this may 

involve screening diagnostic core biopsy samples for the expression of predictive 

biomarkers of response. Treatment could then be tailored accordingly on an individual 

patient basis, selecting the most appropriate and effective treatment, with minimal side 

effects 
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Chapter 2.  Molecular Introduction to Breast Cancer 

2.1 Normal Tissue Homeostasis 

Efficient functioning of a system, organ or tissue relies on the maintenance of a carefully 

controlled and regulated, stable internal environment; homeostasis, which provides the 

perfect balance of cell proliferation and cell death (Vermeulen, Berneman et al. 2003). 

Tissue homeostasis is a complex process, involving a fine balance between several critical 

pathways, the principle ones being the cell division cycle, DNA damage response, DNA 

repair and apoptosis.  

2.1.1 The Cell Cycle 

The cycle of cell division is a four-stage process by which cells ultimately divide to 

produce two identical daughter cells, that is tightly controlled by cyclins and cyclin-

dependent kinases (cdk’s) (Giacinti and Giordano 2006). The two main phases are the S 

phase, where DNA is replicated, and the M phase, where the cell divides to produce two 

daughter cells. Between each of these two phases, there are ‘gaps’, where cells grow in 

response to growth signals; G1 and G2 (Figure 5) (Garrett 2001; Shah and Schwartz 2001). 

Where cell division is not appropriate, the cell is able to reversibly enter the G0 phase. At 

critical points within the cell cycle, such as prior to transition to the subsequent phase, 

DNA damage checkpoints exist, which ensure that the cell cycle does not proceed in the 

presence of DNA damage. Four of the main checkpoints include the G1/S checkpoint, the 

intra-S-phase checkpoint, the G2/M checkpoint and the spindle checkpoint. The G1/S and 

G2/M checkpoints are able to induce cell cycle arrest in the presence of DNA damage; 

however the G2/M checkpoint also monitors DNA replication. The intra-S-phase 

checkpoint recognises stalled replication forks and prevents mitosis of cells where DNA 
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replication is incomplete (Houtgraaf, Versmissen et al. 2006). The spindle checkpoint 

monitors the formation of the mitotic spindle, and prevents mitosis where spindles are 

incorrectly formed (Garrett 2001). An additional checkpoint is the restriction point, which 

differs from the above-mentioned checkpoints as it does not specifically assess the genome 

(Garrett 2001). The restriction point ensures that cells have received sufficient growth 

signals to be able to complete one cycle of cell division; where this is not shown, cells enter 

the G0 phase (Garrett 2001) (Figure 5). The regulation of cell cycle progression is 

determined by a number of factors, including the association of cdk’s with their respective 

cyclins, phosphorylation state, interaction with cdk inhibitors (INK4 and CIP/KIP families) 

and the specific proteolysis of cyclins via the ubiquitin-proteasome pathway (Nakayama 

and Nakayama 2005).   

2.1.2 DNA damage response pathway 

The DNA damage response (DDR) is a complex mechanism, involving a balance between 

the phosphorylation, ubiquitination, acetylation and sumoylation of the main promoters of 

the pathway, which is required to initiate the DNA damage signal (Huen and Chen 2008). 

Mediators involved in the response are also dependent upon the type of DNA damage; 

DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs) or formation of 

DNA adducts. Two of the most important proteins involved in the DNA damage response 

are Ataxia telangiectasia mutated (ATM) and ATM and RAD3-related (ATR). They 

respond to DSBs (ATM), SSBs (ATR) and stalled DNA replications forks (ATR), and their 

main substrates are Chk2, p53 (ATM) and Chk1 (ATR) (Hurley and Bunz 2007; Flynn and 

Zou 2011). The phosphorylation of their substrates leads to the activation of important 

regulators of the cell cycle, and the regulation of S phase (G1/S checkpoint) and M phase 

(G2/M checkpoint) progression through the cell cycle (section 2.1.1) (Houtgraaf, 
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Versmissen et al. 2006; Hurley and Bunz 2007; Huen and Chen 2008). The activation of 

several important proteins is dependent upon ATM/ATR. An example of such a protein is 

H2AX, which is one of the mediators of the initial signal, but more importantly is 

responsible for the accumulation of MDC1. This is an important regulator of damaged 

chromatin which is also responsible for the accumulation of other important mediators, 

such as BRCA1 (Huen and Chen 2008), which is important for DNA damage-induced cell 

cycle checkpoint activation (Wu, Lu et al. 2010). An important regulator of the cell cycle, 

which is able to respond to DNA damage, is the p53 tumour suppressor protein, encoded by 

the TP53 gene. In the event of DNA damage, it is able to induce cell cycle arrest, via 

proteins such as p21 (CIP1/WAF1) (Figure 5), after which DNA repair or apoptosis may be 

initiated (sections 2.1.3 and 2.1.4). Upon detection of DNA damage, p53 is stabilised, 

which then up-regulates p21, which is able to bind to the cyclin D/cdk 4 complex and 

prevent G1/S transition, as well as the cyclin B/cdk1 complex which prevents G2/M 

transition. Up-regulation of p21 at the G2/M checkpoint by p53 is accompanied by the up-

regulation of 14-3-3 sigma which is able to sequester the cyclin B/cdk1 complex and 

prevent it reaching its nuclear targets thus preventing cell cycle progression (Garrett 2001). 

The effect is accentuated by the activity of ATM; upon DNA damage detection, ATM is 

up-regulated, which activates proteins including Chk2. Chk2 is able to block degradation of 

p53 by MDM2, which is an E3 protein ligase involved in the ubiquitin-proteasome 

degradation pathway targeting p53 for degradation by the 26S proteasome. Chk2 therefore 

acts by stabilising p53 levels thus promoting induction of cell cycle arrest (Garrett 2001).  
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Figure 5: Overview of the cell division cycle and DNA damage response  

The cycle of cell division consists of 4 sequential phases; G1, S, G2 and M. Progression 

through the cell cycle involves cell growth in response to growth signals (G1), replication of 

DNA to produce 2 sister chromatids (S), further cell growth in preparation for division (G2) 

and the division the cell into two daughter cells, each containing identical DNA copies (M). 

Throughout the cycle, there are several DNA damage checkpoints, to ensure damaged cells 

do not proliferate. The restriction point is a different type of checkpoint, which assesses 

whether the cell has received sufficient growth signals to complete one round of the cell 

division cycle, rather than detecting DNA damage. The whole process is tightly controlled 

and regulated by cyclins and cyclin-dependent kinases (cdk’s), which are themselves 

controlled by important proteins such as p53, the ‘guardian of the genome’, and ATM. In 

the presence of DNA damage, caused be reactive oxygen species for example, these 

proteins have the ability to arrest the cell cycle, and initiate DNA repair mechanisms or 

apoptosis (Garrett 2001; Nakayama and Nakayama 2005; Giacinti and Giordano 2006). 

Upon detection of DNA damage, p53 is up-regulated and initiates the expression of genes 

which cause cell cycle arrest (or apoptosis). An example of such a protein is p21 which, 

when initiated by p53, binds to the cyclin D/cdk4 complex, causing cycle arrest at the G1/S 

transition. The p21 protein can also cause G2/M arrest by binding to the cyclin B/cdk1 

complex. At the G2/M checkpoint, p53 also causes up-regulation of 14-3-3σ, which is able 

to sequester the cyclin B/cdk1 complex and prevent it reaching its nuclear targets. Another 

protein sensitive to DNA damage, ATM, further stabilises p53 by initiating Chk2 

expression which is able to block the action of MDM2, an E3 protein ligase promoting p53 

ubiquitin-proteasomal degradation; therefore promoting cell cycle arrest (Garrett 2001).  

 



 

18 

 

2.1.3 DNA repair 

There are several mechanisms of DNA repair, which are employed depending upon the 

type of damage incurred and the stage of the cell cycle (Branzei and Foiani 2008). The 

main types of DNA repair include mismatch repair (MMR), base excision repair (BER), 

nucleotide excision repair (NER), homologous recombination (HR) and non-homologous 

end joining (NHEJ) and repair via the Fanconi anemia (FA) pathway (Christmann, Tomicic 

et al. 2003; Branzei and Foiani 2008; Reed 2010). The most genotoxic type of DNA-

damaging lesion is a double strand break (DSB), which is exerted by many 

chemotherapeutic agents (section 2.3) (Asakawa, Koizumi et al. 2010), and it has been 

reported that a single un-repaired DSB in an essential gene is enough to cause cell death by 

apoptosis (Christmann, Tomicic et al. 2003). In the event of a DSB, the DNA repair 

pathways utilised to repair the damage include HR and NHEJ (Houtgraaf, Versmissen et al. 

2006), which are less error-prone and more error-prone respectively (Christmann, Tomicic 

et al. 2003). For agents which form DNA-adducts, or intra-strand cross-links (ICLs), such 

as bifunctional alkylating agents (section 2.3.2), a more complex DNA repair mechanism is 

required, involving a combination of NER (Houtgraaf, Versmissen et al. 2006) the FA 

pathway, translesion synthesis and HR (Kondo, Takahashi et al. 2010; Reed 2010), which 

is also dependent upon the stage in the cell cycle (Vasquez 2010). ICLs cause blocked 

replication forks, which lead to the activation of ATR and subsequent activation of 

members of the FA core complex (Kratz, Schopf et al. 2010). This FA complex catalyses 

the monoubiquitination of FANDC2 (MacKay, Declais et al. 2010), which then travels to 

the site of DNA damage, where it co-localises with a recently reported nuclease, FAN1 

(Smogorzewska, Desetty et al. 2010). FAN1 has been reported as a repair nuclease, which 

exhibits exonuclease and endonuclease activity (Kratz, Schopf et al. 2010; MacKay, 
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Declais et al. 2010; Smogorzewska, Desetty et al. 2010), yet its exact role is not fully 

understood. Subsequently, incisions are made either side of the ICL, involving MUS81-

EME1 and possibly the NER proteins ERCC1 and XPF, creating DSBs (Kondo, Takahashi 

et al. 2010), to ‘unhook’ the ICL (MacKay, Declais et al. 2010). Translesion synthesis then 

fills the gap, involving Rev3, Rev7 and Rev1 (Kondo, Takahashi et al. 2010), and the ‘un-

hooked’ ICL lesion is subsequently removed by excision repair (MacKay, Declais et al. 

2010). HR is then initiated to complete the repair process and repair DSBs, but may also 

involve NHEJ (Kondo, Takahashi et al. 2010).  

For the repair of DSB’s by HR, a template is required, in the form of the sister chromatid, 

so this repair mechanism can only function after DNA replication has occured in the late S 

phase or G2 phase of the cell cycle (Figure 5). Following recognition of the DSB and the 

recruitment of several required activation mediators (ATM, BRCA1, BRCA2, RAP80 etc), 

HR is mediated by the Rad52 epistasis group, involving Rad51, Rad52 and Rad54. 

Nucleolytic resection of the DSB is initiated by MRN (MRE-11-Rad50-NSB1) complex, 

after which Rad52 binds to the exposed 3’ ends. Interaction between Rad52, RPA and 

Rad51, which has located the intact copy of the section of the genome on the sister 

chromatid, leads to sister chromatid exchange and subsequent DNA synthesis and ligation 

(Christmann, Tomicic et al. 2003; Houtgraaf, Versmissen et al. 2006; Branzei and Foiani 

2008; Asakawa, Koizumi et al. 2010; de Campos-Nebel, Larripa et al. 2010; Zou 2010). In 

contrast, the NHEJ DNA repair mechanism does not require a template and usually takes 

place in the G0/G1 phase of the cell cycle. NHEJ is performed by the Ku heterodimeric 

protein, comprised of Ku78 and Ku80 binding to the two ends of a DSB, following which 

the two ends are joined by DNA-PK and the DNA ligase IV/XRCC4 complex (Houtgraaf, 

Versmissen et al. 2006; Branzei and Foiani 2008). Efficient DNA repair is essential for the 



 

20 

 

maintenance of genomic stability, and is therefore a critical component of cell and tissue 

homeostasis.  

2.1.4 Apoptosis 

Apoptosis was initially described in 1972 by John Kerrs, and is a physiological form of cell 

death (Lawen 2003). It is a protective mechanism, also involved in normal growth and 

development, which acts to remove damaged or unwanted cells without raising an 

inflammatory response (Lawen 2003), thus maintaining tissue homeostasis. Several of the 

proteins involved in cell cycle control and proliferation are also involved in apoptosis, thus 

despite being two distinct processes, they are closely related (Shah and Schwartz 2001; 

Vermeulen, Berneman et al. 2003). There are two main pathways involved in the initiation 

of apoptosis, which are referred to as the ‘intrinsic’, or ‘mitochondrial’, and ‘extrinsic’ 

pathways however both converge at the activation of the executioner caspase, caspase 3 

(Hengartner 2000) (Figure 6). The intrinsic pathway, which progresses via the 

mitochondria, is initiated following a variety of internal signals, such as the DNA damage 

pathway, and is thought to be the pathway most widely associated with cancer pathogenesis 

(Hanahan and Weinberg 2011). 

2.1.4.1 Intrinsic pathway 

The intrinsic pathway of apoptosis is mediated via the mitochondria and is tightly 

controlled by the balance between anti- and pro-apoptotic proteins, largely members of the 

Bcl-2 family (Ghobrial, Witzig et al. 2005). Two of the main proteins required for the 

initiation of apoptosis by the intrinsic pathway are cyctochrome c, which is required for 

caspase activation, and apoptosis protease-activating factor-1 (Apaf-1) (Chowdhury, 

Tharakan et al. 2006).  In the event of DNA damage, or following a death signal, BH3-only 
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domain proteins, such as Bid, Bad and PUMA, are activated and transfer signals to the 

mitochondria where they facilitate the accumulation of pro-apoptotic proteins, such as Bax 

and Bak, at the mitochondrial membrane (Ghobrial, Witzig et al. 2005; Chowdhury, 

Tharakan et al. 2006). These proteins associate with the outer mitochondrial membrane, 

and a change in membrane permeability results in the release of apoptosis-inducing factor 

(AIF) and cytochrome c (Hengartner 2000; Chowdhury, Tharakan et al. 2006). 

Smac/DIABLO is also released from the mitochondria during apoptosis initiation, which 

binds to inhibitors-of-apoptosis (IAP) proteins, preventing their anti-apoptotic activity 

(Hengartner 2000). Cytochrome c, along with pro-caspase 9, binds to Apaf-1 to form the 

apoptosome (Harrington, Ho et al. 2008). This then activates the caspase cascade, resulting 

in execution of apoptosis via nuclear breakdown, resulting in cell death (Ghobrial, Witzig 

et al. 2005) (Figure 6). 

2.1.4.2 Extrinsic pathway 

The extrinsic pathway involves death receptors from the tumour necrosis factor (TNF) 

superfamily, such as death receptor 4 (DR4) being activated by interaction with a death 

ligand, such as the tumour necrosis factor-related apoptosis inducing ligand (TRAIL). Upon 

activation, death receptors trimerize and form a death-inducing signalling complex (DISC), 

involving recruitment of Fas-associated death domain (FADD) protein and pro-caspase-8 

(Fadeel and Orrenius 2005; Jin and El-Deiry 2005; Fulda and Debatin 2006; Falschlehner, 

Emmerich et al. 2007; Harrington, Ho et al. 2008; Indran, Tufo et al. 2011). Activation of 

caspase 8 subsequently leads to the activation of the main executioner caspase of apoptosis; 

caspase 3 (Walsh, Cullen et al. 2008). This can occur directly or indirectly, via the 

mitochondrial pathway and cleavage of Bid (Fadeel and Orrenius 2005; Fulda and Debatin 

2006) (Figure 6). 
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Figure 6: Apoptosis Pathways 

The extrinsic pathway of apoptosis (right) is initiated by the binding of a death ligand, such 

as TRAIL, to a death receptor, such as DR4. Recruitment of FADD and pro-caspase 8 

molecules form the death-inducing signalling complex (DISC). This leads to the activation 

of caspase 8, which can be inhibited by c-FLIP, and subsequent activation of caspase 3, 

leading to apoptosis. Caspase 8 can activate caspase 3 either directly or via the intrinsic, 

mitochondrial, pathway by interaction with Bid, which is activated when it is cleaved to 

truncated (t)Bid. The intrinsic pathway of apoptosis (left) is initiated in response to a death 

signal, such as DNA damage. Pro-apoptotic members of the Bcl-2 family (Bid, Bax) 

transfer the signal to the mitochondria, which can be inhibited by anti-apoptotic members 

(Bcl-2, Bcl-xL). Changes in mitochondrial membrane permeability cause the release of 

cytochrome c, along with apoptosis-inducing-factor (AIF) and Smac/DIABLO, which acts 

to neutralize the activity of inhibitors-of-apoptosis (IAP) proteins. Cytochrome c binds to 

Apaf-1, along with pro-caspase 9, to form the apoptosome. This then activates the caspase 

cascade, resulting in apoptosis. The two pathways converge at the executioner caspase, 

caspase 3, from which apoptosis follows by nuclear degradation (Hengartner 2000; 

Harrington, Ho et al. 2008). 

 

To summarise, some of the main pathways involved in tissue homeostasis; cell division 

cycle, DNA damage response, DNA repair and apoptosis, each involve a plethora of 
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different mediators, which are tightly controlled and regulated, by processes including 

phosphorylation and degradation by the ubiquitin-proteasome pathway. There is a relevant 

degree of cross-talk between the pathways, and not all mediators are mutually exclusive to 

any one of the pathways; for example the p53 protein is able to induce cell cycle arrest as 

well as initiate apoptosis.  

In the event of DNA damage, the DNA damage response pathway is initiated, and 

subsequently the cell cycle is arrested via activation of the cell cycle checkpoints. The cell 

is then given time to repair the damage, following which cell cycle progression may 

continue if the repair is successful. Where this is not possible, the cell should be directed 

towards apoptosis (Figure 7) or entry into a quiescent state. This process is reliant upon 

effective functioning and balance between tumour suppressor genes and oncogenes as well 

as control of the cell division cycle. Incorrect functioning of this process may leave un-

repaired DNA damage, which may cause mutations leading to genomic instability and 

ultimately oncogenesis (Houtgraaf, Versmissen et al. 2006).  
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Figure 7: Summary of response to DNA damage 

In the event of DNA damage, the DNA damage response initiates DNA repair either 

directly or via the activation of checkpoints within the cell cycle. Cell cycle arrest is also 

initiated to allow time for damaged DNA to be repaired. If DNA repair is successful, the 

cell cycle may progress. However if DNA repair is not successful it may either enter a 

quiescent state or may be directed towards apoptosis. Where DNA repair is unsuccessful, 

and apoptosis is not initiated, mutations may arise causing genomic instability, which may 

cause oncogenesis (Houtgraaf, Versmissen et al. 2006). 

Adapted from (Houtgraaf, Versmissen et al. 2006).  
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2.2 Breast Cancer 

2.2.1 Hallmarks of Cancer 

Oncogenesis, or carcinogenesis, is a multi-factoral process by which a cell is transformed 

from a normal cell into a malignant cancer cell. The seminal paper by Hanahan and 

Weinberg, published in 2000, described the ‘hallmarks of cancer’; the alterations a cell has 

to undergo and characteristics it develops in order for it to be regarded as a malignant cell. 

These include self-sufficiency in growth signals, insensitivity to growth inhibitory signals, 

evasion of programmed cell death (apoptosis), limitless replicative potential, sustained 

angiogenesis and tissue invasion and metastasis, with underlying genomic instability 

(Hanahan and Weinberg 2000). This has been recently reviewed following substantial 

progress in understanding over the last decade, and two emerging hallmarks have been 

added, in addition to the initial six hallmarks; reprogramming of energy metabolism and 

evading immune destruction (Hanahan and Weinberg 2011). The importance of the tumour 

microenvironment, and the heterotypic signalling within it which allow the development of 

complex malignancies, has also been emphasised (Hanahan and Weinberg 2011). 

For each type of cancer, there are common genetic alterations, which may or may not be 

hereditary, which may act as a predisposition towards the changes in cell characteristics 

listed above and overall disruption of normal tissue homeostasis. Generally, these are likely 

to involve gain-of-function mutations in oncogenes, which promote survival and 

proliferation, and loss-of-function mutations in tumour suppressor genes, which normally 

protect against uncontrolled proliferation and promote DNA repair and cell cycle 

checkpoint control (Lee and Muller 2010). In breast cancer, frequently altered genes 

include ERBB2 (HER2), PI3K, TP53, BRCA1, BRCA2 and PTEN, as well as important 

regulators of the cell cycle; cyclins and cyclin-dependent kinases, which have been 



 

26 

 

extensively studied (Osborne, Wilson et al. 2004; Lee and Muller 2010). However, a 

popular approach is to obtain gene expression profile signatures, rather than the study of 

specific genes/proteins, which accommodates the complexity of the disease. There is an 

enormously high level of molecular heterogeneity within breast cancer, even between 

tumours of the same type, grade and stage, and is complicated by the fact that cells within 

the tissue are at different levels of differentiation and maturation (Keller, Lin et al. 2010). It 

is therefore imperative to understand the disease at the molecular level, in order to improve 

understanding of factors affecting prognosis and treatment response 

2.2.2 Breast cancer at a molecular level  

The molecular diversity within breast tumours has been demonstrated using global 

expression microarray analysis of mRNA (Perou, Sorlie et al. 2000; Sorlie, Perou et al. 

2001). This highlighted variation in expression patterns between tumours, and revealed five 

molecular subtypes of breast cancer, which are biologically different and exhibit distinct 

clinical behaviour.  The ERBB2+ subtype shows high expression of human epidermal 

growth factor receptor (HER2). Luminal subtypes (A and B) demonstrate estrogen receptor 

(ER) expression. Basal-like tumours are negative for ER, progesterone receptor (PR) and 

HER2, and are also known as ‘triple-negative’ tumours. These subtypes reflect the distinct 

luminal and basal epithelial cells found in the mammary gland, with basal cells (cytokeratin 

5/6 positive) lying closest to the basement membrane and luminal cells forming the upper 

differentiated layer. The fifth subtype, normal-like tumours are less characterised, but 

resemble normal breast tissue. More recently, another molecular subtype was identified; 

claudin-low, the majority of which are negative for the ER, PR and HER2 (triple negative), 

but can be distinguished by their expression of tight junction proteins claudin 3,4 and 7 as 

well as E-cadherin (Prat, Parker et al. 2010; Prat and Perou 2011). Luminal A subtype 
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tumours, which have high ER expression, display the best prognosis, demonstrated by 

longest time to development of distant metastasis and longest overall survival, whereas 

ERBB2+ and triple negative tumours are associated with poor prognosis, demonstrated by 

shortest time to development of distant metastasis an shortest overall survival time (Figure 

8) (Sorlie, Perou et al. 2001; Sorlie, Tibshirani et al. 2003; Cheang, Voduc et al. 2008). A 

panel of four immunohistochemical markers (PR, ER, HER2 and Ki67) has been identified 

which can distinguish between Luminal A and Luminal B tumours (Cheang, Chia et al. 

2009). Luminal B tumours have been shown to have higher rates of proliferative gene 

expression (MKI67, CCNB1 and MYBL2) and 30% of Luminal B tumours were found to 

express HER2 and associated genes (ERBB2 and GRB7) (Cheang, Chia et al. 2009). TP53 

gene mutations were seen in 13% of Luminal A tumours, 71% of ERBB2+ and 82% of 

triple negative tumours (Sorlie, Perou et al. 2001). Each of these tumours clearly display 

very different prognoses and can therefore almost be regarded as different diseases (Figure 

8). This highlights and emphasises the heterogeneity of breast cancer as a disease, and even 

within the above-mentioned molecular subtypes a high degree of heterogeneity is still 

observed, especially within the luminal subtypes.  

Determination of molecular subtype, by routine testing of ER PR and HER2 receptor status, 

is therefore used as a prognostic marker, and to aid determination of therapeutic strategy. 

Molecular subtype has also been associated with response to neoadjuvant chemotherapy 

(section 2.4.2.7). This is confirmed from the core needle biopsy taken at the diagnostic 

stage, using immunohistochemistry and/or fluorescent-in-situ-hybridisation (FISH). The 

HercepTest
™ 

(Dako) may also be used for the determination of HER2 status, however 

routine immunohistochemistry can also be performed using the A0485 antibody 

(Selvarajan, Bay et al. 2004). 
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Figure 8: Differences in clinical outcome between molecular subtypes of breast cancer 

Kaplan-Meier analysis (Sorlie, Tibshirani et al. 2003), showing differences in clinical 

outcome between subtypes, identified by gene expression analysis of two patient cohorts; 

A: time to distant metastasis development, from analysis of previously published gene 

expression data by van’t Veer et al (van 't Veer, Dai et al. 2002) and B: overall survival, 

from gene expression analysis of the Norway/Stanford cohort, containing 122 tissue 

samples (Diehn, Sherlock et al. 2003). Both sets of data show Luminal A tumours to have 

the greatest disease-free survival period as well as overall survival (Sorlie, Tibshirani et al. 

2003).  

 

2.3 Breast Cancer treatment using neoadjuvant chemotherapy 

Neoadjuvant chemotherapy is used as the primary treatment for locally advanced breast 

cancer, and aims to reduce the volume of the tumour prior to surgical resection of the 

remaining tumour mass, thus increasing the likelihood of breast conserving surgery (BCS) 

rather than a full mastectomy. Chemotherapeutic agents ultimately aim to inhibit the 

proliferation of tumour cells (section 2.1.1) and cause cell death by induction of apoptosis, 

(section 2.1.4) potentially via the DNA damage response pathway (section 2.1.2). An 

anthracycline in combination with cyclophosphamide, followed by a taxane is currently the 

gold standard regimen for neoadjuvant chemotherapy (Chuthapisith, Eremin et al. 2006); a 

popular example of which comprises epirubicin/cyclophosphamide (4 cycles) and 

sequential docetaxel (4 cycles), which is currently used within the Hull and East Yorkshire 
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NHS Trust Hospitals. The National and Surgical Adjuvant Breast and Bowel Project 

(NSABP)-27 trial demonstrated increased rates of pathological complete response (pCR) 

when docetaxel was used following anthracycline/cyclophosphamide (Buzdar 2007).  

2.3.1 Anthracyclines 

The first of the antibiotic group of anthracyclines to be introduced were doxorubicin and 

daunorubicin in the 1960’s (Minotti, Menna et al. 2004), however problems with 

cardiotoxicities led to the development and introduction of epirubicin. Epirubicin is a 

sterioisomer of doxorubicin, showing only a difference in the orientation of the hydroxyl 

atom (axial-to-equitorial epimerization) on the C-4’of the hexapyranosyl sugar, which has 

little effect on the mode of action but shows increased therapeutic index, a shorter half life 

and less side-effects (Minotti, Menna et al. 2004; Charak, Jangir et al. 2011). Several 

mechanisms of action have been proposed for epirubicin; however the exact mechanism by 

which it exerts its cytotoxic effect remains unclear (Charak, Jangir et al. 2011). The 

mechanisms proposed, with the principal ones highlighted (*) include: 

 DNA intercalation, alkylation and cross-linking* 

 Generation of free radicals causing DNA damage and lipid peroxidation 

 Interference with DNA unwinding and helicase activity 

 Inhibition of topoisomerase II* 

 Induction of apoptosis via topoisomerase II inhibition (Minotti, Menna et al. 2004)  

2.3.1.1 Topoisomerase II inhibitors 

One of the main mechanisms of action of epirubicin is thought to be the inhibition of 

topoisomerase II (Cleator, Parton et al. 2002). Topoisomerase II is a nuclear enzyme that 

creates transient DSBs in DNA to allow the cell to manipulate the topology of the DNA 
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(Hande 2008), after which the DNA is re-ligated and the structure is restored, without 

alteration of the sequence. This occurs during replication or repair processes (Cleator, 

Parton et al. 2002), and is closely linked to the cell cycle (Kellner, Sehested et al. 2002). 

Anthracyclines act by stabilising the covalent DNA-Topoisomerase II complexes and 

ultimately preventing re-ligation of the cleaved DNA (Hande 2008; de Campos-Nebel, 

Larripa et al. 2010), thus causing the most potent DNA lesion; a DSB. This type of lesion 

causes the initiation of the DNA damage response, and DNA repair by NHEJ and HR 

mechanisms (section 2.1.3), or may ultimately lead to apoptosis; the desired effect of the 

chemotherapeutic agent, resulting in the removal of the malignant cell from the system. If 

topoisomerase II causes a transient DSB in the gene of an important protein, such as p53 (a 

critical mediator of cell cycle control and apoptosis), in the presence of epirubicin, the 

inhibition of re-ligation by epirubicin of this important protein has huge ramifications upon 

normal control mechanisms (Kellner, Sehested et al. 2002). This may lead to the selection 

of therapy-resistant clones, where malignant cells survive by evasion of normal apoptotic or 

DNA repair pathways.  

2.3.1.2 DNA intercalators 

The other main mechanism of action of epirubicin is thought to be intercalation of the drug 

into DNA bases and prevention of synthesis and replication (Charak, Jangir et al. 2011). 

Charak and co-workers demonstrated the intercalation of epirubicin with DNA via guanine 

and cytosine bases and external binding through the phosphate backbone, using fourier 

transform infrared spectroscopy and UV-visible spectroscopy (Charak, Jangir et al. 2011). 

Following DNA intercalation at the 5’-G-C-3’ site, doxorubicin, which is closely related to 

epirubicin, has been shown to form a formaldehyde-mediated DNA adduct, which is 

stabilised by hydrogen bonding to the complementary DNA strand (Spencer, Bilardi et al. 
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2008). This type of DNA adduct has been shown to initiate both NHEJ and HR (section 

2.1.3) mechanisms of DNA repair, along with cell cycle arrest. 

2.3.1.3 Other mechanisms of action 

Several other mechanisms have been proposed, to describe the method by which 

anthracyclines may exert their effects (listed above). However, for some of these proposed 

mechanisms, including free radical formation, lipid peroxidation and types of DNA 

damage, there is both disproving and approving evidence; summarised by (Minotti, Menna 

et al. 2004). 

One of the other less well-recognised mechanisms by which anthracyclines may act, 

describes the involvement of the proteasome. The 26S proteasome (comprised of a 20S 

core and two 19S capping structures) is an imperative mediator of critical processes 

controlling normal homeostasis; the function of many mediators required for the execution 

of several important pathways (cell cycle division, DNA damage response and DNA repair) 

relies on the activity of the ubiquitin-proteasome pathway. It has been proposed that 

following entry to the cell via passive diffusion, the translocation of anthracyclines to the 

nucleus is facilitated by the 26S proteasome (Kiyomiya, Matsuo et al. 2001). Research 

based on doxorubicin describes the binding of the drug to the 20S subunit of the 26S 

proteasome, forming a complex, and the subsequent translocation to the nucleus where 

doxorubicin dissociates from the proteasome and binds to DNA, for which it has higher 

affinity (Minotti, Menna et al. 2004). The nature of the complex formed between the 20S 

proteasome subunit and the drug molecule is said to be reversible and non-competitive, 

however other research has shown the action of the 26S proteasome to be inhibited by 4 

different anthracyclines in a dose-dependent manner (Fekete, McBride et al. 2005).  
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2.3.2 Cyclophosphamide 

Cyclophosphamide is a nitrogen mustard derivative and acts as a bischloroethylamine 

bifunctional DNA alkylating agent, of the oxazaphosphorine family (Middleton and 

Margison 2003). It is administered as a pro-drug and requires metabolic activation by 

cytochrome P450 enzymes in the liver (Murata, Suzuki et al. 2004), specifically CYP2B6, 

CYP3A4 and CYP2C9 (Zhang, Tian et al. 2005). Cyclophosphamide is activated to its 

cytotoxic metabolite by 4-hydroxylation of C-4 on the ring structure, producing 4-hydroxy-

cyclophosphamide, which exists in equilibrium with its tautomer; aldophosphamide 

(Baumann and Preiss 2001). The metabolite 4-hydroxy-cyclophosphamide subsequently 

breaks down to produce reactive intermediates; phosphoramide mustard (PM) and acrolein 

(Murata, Suzuki et al. 2004; Goldstein, Roos et al. 2008). PM is then converted into an 

aziridinium ion, which then alkylates guanine residues of DNA at the N7 position, forming 

N
7
G: N

7
G cross-links. Formation of these cross-links on opposite DNA strands (intrastrand 

cross-links) block replication forks and are regarded as the main cytotoxic lesion (Hansen, 

Ludeman et al. 2007; Kondo, Takahashi et al. 2010). This type of DNA lesion requires a 

complex DNA repair process, including a combination of NER, FA and HR DNA repair 

mechanisms (Kondo, Takahashi et al. 2010) (section 2.1.3). Using a cyclophosphamide 

analogue, mafosfamide, Goldstein and co-workers proposed that apoptosis may be induced 

by the blockage of replication caused by the DNA intrastrand cross-links (Goldstein, Roos 

et al. 2008). Blockage of replication can cause DNA DSBs, which then leads to the 

recruitment of ATM, subsequent activation of Chk1/Chk2 and stabilisation of p53, 

ultimately leading to apoptosis. Goldstein et al, demonstrated up-regulation of both 

intrinsic and extrinsic pathway mediators of apoptosis; PUMA and Fas, upon mafosfamide 

treatment (Goldstein, Roos et al. 2008).  
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2.3.3 Taxanes 

The taxane family of anti-cancer agents includes paclitaxel and docetaxel, also known as 

Taxol
®
 and Taxotere

® 
respectively. Docetaxel was introduced after paclitaxel, and is said to 

be the more cytotoxic of the two agents, displaying a broad range of anti-tumour activity 

(Herbst and Khuri 2003), including inhibition of cell proliferation and induction of 

apoptosis. Docetaxel is a semi-synthetic agent derived from the needles of the European 

Yew tree (Taxus baccata) (Li, Hussain et al. 2005). The main mechanism of action of 

docetaxel is to cause cell death by ‘mitotic catastrophe’, where it prevents normal 

microtubule dynamics by binding to the main component of microtubules; the beta-tubulin 

heterodimer (Montero, Fossella et al. 2005; Morse, Gray et al. 2005). Taxanes actually 

promote the formation of microtubules during mitosis, unlike other anti-microtubule agents 

which prevent their assembly, however by binding to the beta-tubulin units they prevent the 

normal depolymerisation of microtubules, causing a state of hyperstabilisation (Herbst and 

Khuri 2003). The binding of docetaxel to beta-tubulin disrupts centrosome organisation in 

late S phase, G2 and M phases, leading to incomplete mitosis, therefore preventing cell 

proliferation and initiation of apoptosis (Herbst and Khuri 2003; Montero, Fossella et al. 

2005; McGrogan, Gilmartin et al. 2008). Another proposed method of cell death by 

docetaxel is by interaction with the anti-apoptotic protein, Bcl-2, and inhibition of its 

activity by phosphorylation (Herbst and Khuri 2003; Kraus, Samuel et al. 2003), thus 

promoting apoptosis of the malignant cell. Studies by Li et al, involving gene expression 

profiling of cells treated with docetaxel identified a large range of differentially expressed 

genes related to microtubules, cell cycle arrest and apoptosis in prostate cancer cells, 

showing the broad range of cytotoxic influences initiated by docetaxel (Li, Li et al. 2004; 

Li, Hussain et al. 2005).  
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2.4 Chemotherapy resistance 

Resistance to chemotherapy is responsible for a high percentage of cases where treatment 

fails to be effective.  Resistance may be either ‘intrinsic’, where tumour cells are innately 

resistant to chemotherapy prior to treatment or ‘extrinsic’, where tumour cells acquire 

resistance during administration of chemotherapeutic agents.  

The basic mechanisms of chemotherapy resistance include increased drug efflux / 

decreased influx, drug/target modification, drug detoxification, altered apoptosis and DNA 

repair (Coley 2009), and different chemotherapeutic agents may confer resistance in 

different ways. However, this does not describe mechanisms at a molecular level. It has 

been suggested by many that drug resistance is likely to be a complex multi-factorial 

phenomenon, involving several different mechanisms. This may explain why, as yet, no 

marker of chemotherapy-resistance has reached routine clinical use. 

2.4.1 History and basis of multi-drug resistance 

The phenomenon of multi-drug resistance (MDR) was first demonstrated by Biedler and 

Riehm in 1970, when they developed an in vitro model using hamster cells that displayed 

resistance to actinomycin D, as well as cross-resistance to a range of other compounds. 

Subsequently, the study of chemotherapy resistance rapidly emerged. One of the most 

studied proteins, now known to be associated with MDR in cancer is P-glycoprotein (P-gp). 

This protein was discovered using proteomics techniques in 1976, although the term 

‘proteomics’ had not been coined. It was first identified in by Rudolph Juliano and Victor 

Ling, where it was recognised as a surface glycoprotein which could modulate drug 

permeability in hamster ovarian cell lines displaying colchicine resistance (Juliano 1976). 

Polyacrylamide gel electrophoresis was exploited to determine that the relative amount of 

surface labelled P-gp was proportional to the level of drug resistance exhibited (Juliano 
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1976). This original and pioneering work set the basis for understanding the mechanisms of 

drug resistance at a molecular level. P-gp is a member of the adenosine triphosphate (ATP)-

Binding Cassette (ABC) transporter family of transmembrane proteins, which utilise ATP 

for the transfer of substances across membranes. Its mechanism of action involves the 

direct transport of hydrophobic compounds to the outside of the cell, using ATP and 

intrinsic ATPase (Ling 1997), thus eliminating substances from the cell by acting as an 

efflux pump. P-gp, and its ability to transport drugs across membranes, now characterises 

the ‘classical’ MDR phenotype, which is recognised by cross-resistance against natural 

anti-cancer agents including taxanes, anthracyclins and vinca alkaloids (Lage 2003) as well 

as sensitivity to chemosensitisers which reverse resistance, such as verapamil and 

cyclosporin (Lage 2003). It is important to note that MDR via a P-gp-independent 

mechanism, known as ‘atypical’ MDR, is also possible. This may involve altered drug 

targeting, by altered topoisomerase II for example, or increased detoxification by 

glutathione S-transferase (Gonzalez-Angulo 2007). There have been several clinical studies 

involving the use of P-gp inhibitors to reverse MDR. Early P-gp inhibitors included 

verapamil and cyclosporine, yet their use was limited by associated toxicities (Thomas and 

Coley 2003). The clinical use of subsequent P-gp inhibitors, such as dexverapamil and 

valspodar, were also limited by toxicity and their interference with drug metabolism, by 

acting as competing substrates for CYP3A4 enzymes (Thomas and Coley 2003). These 

agents have been shown to affect drug distribution, where one study using murine breast 

cancer models, showed increased update of doxorubicin in cells proximal to blood vessels, 

yet decreased update in distal cells, showing limitations in therapeutic efficacy of 

doxorubicin when treated in combination with P-gp inhibitors (Patel and Tannock 2009) 

An example of a more recently-introduced P-gp inhibitor is tariquidar, which has shown to 
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overcome limitations associated with earlier P-gps, and inhibit both P-gp and Breast Cancer 

Resistance Protein (BCRP) (Kannan, Telu et al. 2011), and is being tested for its clinical 

use for the reversal of MDR.  

2.4.2 Predictive markers of chemo-resistance 

There are several markers which can be used to predict tumour response to a certain extent, 

giving the clinician an idea of how an individual breast tumour may respond to treatment. 

General factors affecting response include tumour size, tumour type (section 1.6.2) and 

molecular subtype, determined by hormone receptor expression (section 2.4.2.7). More 

specifically, a positive response to chemotherapy relies on efficient functioning of 

mediators of important pathways such as the cell cycle, DNA damage response, DNA 

repair and apoptosis; these mediators are responsible for delivering the desired effect of the 

chemotherapeutic agent, cell death. Therefore, alterations or defects in the mediators of 

these important pathways could result in the desired effect not being achieved; cell evasion 

of apoptosis and development of chemotherapy resistance. Putative biomarkers for the 

prediction of response to neoadjuvant chemotherapy have been widely studied and 

reviewed, however results have been inconsistent and sometimes contradictory (Kennedy, 

Quinn et al. 2004; Coley 2008; Tewari, Krishnamurthy et al. 2008), which explains why 

none of them have yet been transferred to the clinic. Some of the most widely studied 

putative biomarkers include: 

2.4.2.1 Adenosine triphosphate-binding cassette (ABC) transporters 

Adenosine triphosphate-binding cassette (ABC) transporters are a large family of cell 

membrane proteins, consisting of > 40 members, which are thought to play an important 

role in drug influx/efflux. The three main members of ABC transporters include P-
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glycoprotein (P-gp/ABCB1/multi-drug resistance 1 (MDR1)), MDR-associated protein 

(MRP1/ABCC1) and breast cancer resistance protein (BCRP/ABCG2) (Chuthapisith, 

Eremin et al. 2006; Coley 2008). Overexpression of the most well-recognised ABC 

transporter, P-gp, has been associated with resistance to several anti-cancer agents, 

including anthracyclines and taxanes, in several cancer types, including ovarian, breast and 

head and neck cancers (Chuthapisith, Eremin et al. 2006), as a result of increased drug 

efflux. Expression of P-gp in tumour cells is thought to reduce the accumulation of 

intracellular xenobiotics, resulting in sub-optimal concentrations for exertion of cytotoxic 

effects (Coley 2008). Meta-analysis has shown that, on average, 40% of breast cancers are 

shown to express P-gp, and that its expression increases the chance of chemotherapy-

resistance by 3-fold (Coley 2008). 

2.4.2.2 p53 status  

The tumour protein p53 plays a critical role in the response to DNA damage, by initiating 

cell cycle arrest and inducing apoptosis. It is therefore of little surprise that defective 

functioning of this fundamental protein is likely to have a variety of effects on the cellular 

response to chemotherapeutic agents. Point mutations or deletions in the p53 gene (TP53) 

are said to be present in over 50% of all cancers, and in 25% of sporadic breast cancers 

(Coley 2008). The relationship between pCR and p53 expression is slightly controversial, 

yet the general assumption is that p53 mutations increase the risk of chemotherapy 

resistance. An extensive study by Geisler and co-workers demonstrated TP53 mutations 

within certain domains of the p53 protein to be associated with resistance to neoadjuvant 

doxorubicin in locally advanced breast cancer (Geisler, Lonning et al. 2001; Aas, Geisler et 

al. 2003), but acknowledged the controversy associated with p53 and therapy resistance 

(Lonning 2010). Mutations in the TP53 gene have also been associated with resistance to 
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epirubicin (Chrisanthar, Knappskog et al. 2011) administered in the neoadjuvant setting in 

breast cancer patients. In contrast, TP53 gene mutations were seen in 82% of triple negative 

breast tumours (Sorlie, Perou et al. 2001), yet it is this subtype which shows the highest 

response rates to neoadjuvant chemotherapy (section 2.4.2.7) (Rouzier, Perou et al. 2005). 

This controversy may be due to the difference between predicting response and prognosis; 

it is not necessarily true that a factor predictive of a positive response to treatment will 

predict a positive prognosis.   

2.4.2.3 Topoisomerase II alterations 

Topoisomerase II is the main target for anthracycline-based chemotherapy, however studies 

relating the expression of topoisomerase II with prediction of therapy response have been 

controversial (Tewari, Krishnamurthy et al. 2008; Oakman, Moretti et al. 2009; Lonning 

2010). It would seem logical to presume that increased expression of topoisomerase II 

would yield a greater response to anthracyclines due to higher availability for drug-target 

interactions. This was demonstrated by Konecny and co-workers where amplification of the 

gene encoding topoisomerase II (TOP2A) was significantly associated with higher pCR to 

anthracycline-based neoadjuvant chemotherapy in breast cancer patients (Konecny, Pauletti 

et al. 2010). Brase and co-workers also demonstrated a significant association between 

increased TOP2A expression and increased rates of pCR in breast cancer patients who 

received neoadjuvant anthracycline chemotherapy (Brase, Schmidt et al. 2010). Studies 

have also suggested that the increased rate of pCR observed in HER2 positive tumours 

(section 2.4.2.7)  may be due to the co-amplification of the TOP2A gene, which is located 

on the same chromosome (chromosome 17) (Brase, Schmidt et al. 2010; Miyoshi, 

Kurosumi et al. 2010). TOP2A gene amplification has been observed in ~40% of HER2 

positive breast cancers (Jarvinen, Tanner et al. 2000). This was also demonstrated by 
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Konecny and co-workers, where they reported HER2 amplification to be significantly 

associated with increased pCR to anthracycline-based neoadjuvant chemotherapy, but only 

when the TOP2A gene was co-amplified, suggesting a putative role for TOP2A gene status 

as a predictive marker of response to chemotherapy in HER2 positive breast tumours 

(Konecny, Pauletti et al. 2010). Despite being a promising marker of response, meta-

analysis and extensive reviews by Di Leo and co-workers has shown that further studies are 

required before topoisomerase II gene status can be transferred to the clinic as a predictive 

marker of response to anthracycline chemotherapy in breast cancer patients (Di Leo and 

Isola 2003; Di Leo, Biganzoli et al. 2008; Oakman, Moretti et al. 2009).  

2.4.2.4 Tumour cell proliferation (Ki67 status) 

Many studies have been carried out to determine the relationship between tumour cell 

proliferation, analysed by Ki67 expression, and chemotherapy response, yet this is another 

area where reports are controversial (Chuthapisith, Eremin et al. 2006; Tewari, 

Krishnamurthy et al. 2008). Gene expression profiling revealed that higher expression of 

cell proliferation gene clusters (including CDC20, E2F1, MYBL2, FBXO5, MCM2, MCM6, 

CDC25B and TOP2A) correlated with higher pCR to neoadjuvant anthracycline and 

paclitaxel chemotherapy in breast cancer patients (Gianni, Zambetti et al. 2005). In 

contrast, Geisler and co-workers have shown significant association between increased cell 

proliferation, (by high mitotic frequency) and resistance to doxorubicin, in locally advanced 

breast cancer (Aas, Geisler et al. 2003). A high Ki-67 score, which is a marker of cell 

proliferation, was also associated with lack of response to neoadjuvant anthracycline and/or 

taxane chemotherapy in breast cancer (Caudle, Gonzalez-Angulo et al. 2010).  
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2.4.2.5 DNA damage response and BRCA1 alterations 

BRCA1 is involved in several pathways that respond to DNA damage, including cell cycle 

control, DNA repair (by HR) and transcriptional regulation. However, decreased expression 

of this protein is associated with ~ 30% of sporadic breast cancer cases (Kennedy, Quinn et 

al. 2004). BRCA1 mutations prevent the repair of DSBs, so the cell has to rely on the 

activity of poly(ADP-ribose)polymerase-1 (PARP-1), which is a critical component for the 

initial phases of the DNA damage response leading to repair of SSBs (Dianov and Parsons 

2007; Eustermann, Videler et al. 2011). This has lead to the investigation of PARP 

inhibitors such as Olaparib monotherapy, and so far studies have shown promising results, 

showing anti-tumour effects in breast tumours carrying BRCA1/BRCA2 mutations 

(Lonning 2010). A review by Kennedy and colleagues has described loss of BRCA1 

function, through mutation, to be associated with sensitivity to DNA-damaging 

chemotherapeutic agents, such as anthracyclines (due to loss of effective DNA repair) 

(Kennedy, Quinn et al. 2004). However, they have also described BRCA1 to be involved in 

modulating the response to chemotherapeutic agents which act as spindle poisons, such as 

taxanes, (due to its involvement in the mitotic checkpoint), thus loss of BRCA1 function 

would actually confer resistance to this class of chemotherapeutic agents (Kennedy, Quinn 

et al. 2004). Data analysis carried out by Sorlie et al, found breast tumours with BRCA1 

mutations to be mainly of triple negative subtype (Sorlie, Tibshirani et al. 2003), and it is 

this subtype which displays highest rates of pCR, to combination (anthracycline and 

taxane) neoadjuvant chemotherapy (Rouzier, Perou et al. 2005). A study by Asakawa and 

co-workers used clinical breast tissue samples to analyse the ability of various factors, 

including tumour size, nodal status, subtype and DNA damage response score to predict 

response to neoadjuvant EC plus docetaxel. The DNA damage response (DDR) score was 



 

41 

 

based on assessment of BRCA1, Rad51, H2AX and conjugated ubiquitin. Multivariate 

analysis with tumour size, nodal status, subtype and DDR revealed that only the DDR was 

significantly able to predict response to neoadjuvant chemotherapy (p=0.0402) (Asakawa, 

Koizumi et al. 2010). This therefore highlights the importance of the DDR pathway, and 

highlights its potential role as a predictive factor of chemotherapy response.  

2.4.2.6 Breast cancer stem cell markers 

More recently, the potential importance of cancer stem cells (CSCs), or tumour-initiating 

cells, has emerged, including their involvement in therapy resistance. Breast CSCs are 

classified by their high expression of CD44 and no or low expression of CD24 

(CD44+/CD24-) (Nguyen, Almeida et al. 2010). Another characteristic of breast CSCs is 

their elevated expression of BCRP (ABCG2) (Chuthapisith, Eremin et al. 2010), thus 

increasing their ability to promote chemotherapy resistance via increased drug efflux. This 

is supported by their ability to cause rapid efflux of Hoechst 33342 dye from within the 

cell, demonstrated by flow cytometry (Hirschmann-Jax, Foster et al. 2005). Several studies 

have shown that the population of breast CSCs has increased following neoadjuvant 

treatment with several different agents including anthracyclines and taxanes (Li, Lewis et 

al. 2008; Nguyen, Almeida et al. 2010); the therapy has resulted in selection of this 

chemotherapy-resistant sub-population of cells. These cells have been associated with the 

poor-prognosis basal-like tumours, and more specifically with basal-like tumours with 

BRCA1 mutations, where one study found that 16/17 tumours with BRCA1 mutation 

contained cells positive for the CD44+/CD24- phenotype (Honeth, Bendahl et al. 2008). 

The most recently defined molecular subtype, claudin-low (section 2.2.2), which is a poor-

prognosis subtype, has been shown to be the only molecular subtype which is enriched for 

tumour-initiating cells/ breast CSCs (Perou 2010).  
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2.4.2.7 Molecular Subtype (ER, PR and HER2 status) 

As well as being a good prognostic factor, breast tumour molecular subtype, identified by 

gene expression analysis, can also be a good predictive marker of tumour response to 

neoadjuvant chemotherapy. Basal-like and ERBB2+ breast tumours have been associated 

with highest rates of pathological complete response (pCR); averaging 36% and 40% 

respectively, after neoadjuvant chemotherapy administration (Rouzier, Perou et al. 2005; 

Carey, Dees et al. 2007; Chen, Chang et al. 2008) whereas luminal tumours have shown 

lowest pCR rates at 6% (Rouzier, Perou et al. 2005; Carey, Dees et al. 2007). However, 

regardless of increased chemosensitivity, the basal-like and ERBB2+ molecular subtypes of 

breast cancer show the poorest disease-free survival (Carey, Dees et al. 2007). This 

demonstrates that tumours with a good-prognosis signature (luminal subtypes) are less 

sensitive to chemotherapy than tumours with a poor-prognosis signature (triple negative). 

The reason for the increased rates of pCR in the triple negative tumours is likely to be 

associated with the finding that TP53 gene mutations were associated with 82% of triple 

negative tumours (Sorlie, Perou et al. 2001), but are also associated with BRCA1 mutation 

(defective DNA repair) status (Sorlie, Perou et al. 2001; Sorlie, Tibshirani et al. 2003); thus 

damaged DNA is not being repaired, so the cell would naturally be directed towards 

apoptosis. A defective DNA repair signature, by mutations in BRCA1 has shown to be able 

to predict response to anthracycline-based neoadjuvant chemotherapy (Asakawa, Koizumi 

et al. 2010; Rodriguez, Makris et al. 2010). The expression of ER, PR and HER2 proteins, 

which reveal the breast tumour molecular subtype (section 2.2.2), are routinely screened at 

the time of diagnosis, to aid prognosis and choice of therapeutic strategy. Research has 

been carried out to assess the individual ability of ER and HER2 proteins as single 

predictive markers of response to chemotherapy, however findings have been inconclusive 
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and their expression has mainly been significantly associated with prognosis (Tiezzi, 

Andrade et al. 2007; Oakman, Moretti et al. 2009; Asakawa, Koizumi et al. 2010). 

2.4.3 Predictive gene expression signatures  

Several gene signatures for predicting chemotherapy response in breast cancer have been 

reported, the principal one being the 70-gene signature (van 't Veer, Dai et al. 2002). This 

was originally discovered for predicting breast cancer outcome, and was customised into 

the high-throughput diagnostic array ‘Mammaprint
®
’(Agendia) (Glas, Floore et al. 2006). 

Its prognostic value is currently being assessed in the prospective randomised phase III 

clinical trial ‘MINDACT’ (Microarray In Node negative Disease may Avoid 

ChemoTherapy) (Cardoso, Piccart-Gebhart et al. 2007), however it has also been 

specifically recognised as a predictor of response to several chemotherapeutic agents, 

including anthracyclines and taxanes, administered to breast cancer patients in the 

neoadjuvant setting (Straver, Glas et al. 2010). Breast tumours with a good-prognosis 

signature showed a 0% pCR rate (0/23), yet 20% (39/144) of tumours with a poor-

prognosis signature achieved a pCR to neoadjuvant chemotherapy. This agrees with other 

studies (2.4.2.7), where breast tumours with a poor prognosis have shown to be more 

sensitive to chemotherapy. The biological function of the 70 genes associated with this 

signature have been interpreted using Ingenuity Pathway Analysis (section 10.1.1), and 

have been shown to reflect the six hallmarks of cancer, which were originally described by 

Hanahan and Weinberg (2000) (section 2.2.1) (Tian, Roepman et al. 2010). Another gene 

signature, the 21-gene recurrence score, which was customised into the ‘Oncotype DX
®
’ 

assay (Genomic Health), was originally reported to quantify risk of recurrence in 

tamoxifen-treated ER+ breast cancer patients (Paik, Shak et al. 2004). It is currently being 

evaluated within the TAILORx (Trial Assigning Individualised Options for Treatment 
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[Rx]) clinical trial (Sparano and Paik 2008)); however it has also been linked with 

prediction of pCR to neoadjuvant chemotherapy. The 21-gene recurrence score was 

positively associated with pCR, where breast cancer patients at greatest risk of recurrence 

showed the greatest rates of pCR to neoadjuvant paclitaxel and doxorubicin (Gianni, 

Zambetti et al. 2005). More recently, the importance of the tumour microenvironment, 

particularly tumour-associated stroma, is being recognised for its predictive values (Farmer, 

Bonnefoi et al. 2009). Farmer and co-workers identified a 50-gene stroma-related signature, 

which is able to predict anthracycline-based chemotherapy response to breast cancer in the 

neoadjuvant setting (Farmer, Bonnefoi et al. 2009). Several other multigene signatures have 

been proposed, which have been reported to be predictors of sensitivity to different 

anthracycline and taxane chemotherapeutic agents in breast cancer (Bonnefoi, Underhill et 

al. 2009; Colombo, Milanezi et al. 2011), however none have yet been incorporated into 

randomised trials or transferred to the clinic.   

2.4.4 Overview of putative markers of response to neoadjuvant chemotherapy in breast 

cancer 

Extensive research has been performed, as outlined above, which has presented and 

analysed a variety of different gene and protein markers and signatures, as markers 

predictive of response to neoadjuvant chemotherapy in breast cancer; some showing great 

promise. The above-mentioned putative biomarkers, and the molecules associated with 

them, which may be associated with the phenomenon of chemotherapy resistance are listed 

in Table 3.  

Despite this extensive research, predictive biomarkers of chemotherapy resistance have not 

yet been transferred to the clinic. The only markers which are routinely tested in the clinic 

include ER, PR and HER2, which are used to give an indication of prognosis and potential 
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therapeutic strategy, but do not act as predictive markers of neoadjuvant chemotherapy 

response. Resistance to chemotherapeutic agents presents a large obstacle in effective 

tumour treatment. In this instance, patients receive cytotoxic drugs for no therapeutic gain, 

in which time tumour progression may occur. The ability to predict how a tumour may 

respond to therapy, by using a panel of predictive biomarkers as a screening tool at the time 

of diagnosis, would allow individualisation of treatment, thus maximising treatment 

efficacy on an individual patient basis. However, the phenomenon of chemotherapy 

resistance appears to be a complex multi-factoral process, which requires further research. 

The use of proteomics, as a tool to identify putative predictive biomarkers of resistance to 

neoadjuvant chemotherapy in breast cancer, will be discussed in Chapter 3.  

 

Table 3: A summary of putative predictive biomarkers of chemotherapy resistance in 

breast cancer 

A summary of gene signatures, pathways, families/groups of molecules and single 

molecules which have been described as putative predictive biomarkers of chemotherapy-

resistance in breast cancer are listed. The pathways and molecules associated with the 

mechanism of action of chemotherapeutic agents (most relevant to this project) have also 

been listed, as alterations in these molecules may also potentially be associated with 

chemotherapy resistance. The ‘70-gene signature’, which comprises the Mammaprint
®
 

diagnostic array, has been shown to represent the original six hallmarks of cancer: (1) self-

sufficiency in growth signals, (2) insensitivity to growth inhibitory signals, (3) evasion of 

apoptosis, (4) limitless replicative potential, (5) sustained angiogenesis and (6) tissue 

invasion and metastasis (Hanahan and Weinberg 2000). Genes within the ‘70-gene 

signature’ associated with these hallmarks are shown in the table. Genes which are present 

within >1 of the predictive gene signatures are highlighted (n=3).  

 

Putative predictive 

biomarker 
Associated molecules 

Gene signatures 

Mammaprint
®
  

70-gene signature 

 

(van’t Veer 2002) 

ALDH4A1 

AYTL2 

BBC3 

CCNE2 

CDC42BPA 

CDCA7 

FLT1 

GMPS 

GNAZ 

GPR180 

GPR126 

GSTM3 

PALM2 

PECI 

PITRM1 

PRC1 

QSCN6L1 

RASSF7 

Genes 

associated 

with the ‘6 

Hallmarks of 

Cancer’ 
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(Tian, 2010) CENPA 

COL4A2 

DCK 

DIAPH3 

DTL 

EBF4 

ECT2 

EGLN1 

ESM1 

EXT1 

FGF18 

HRASLS 

IGFBP5 

KNTC2 

LIN9 

MCM6 

MELK 

MMP9 

MTDH 

NUSAP1 

ORC6L 

OXCT1 

RECQL5 

RFC4 

RTN4RL1 

RUNDC1 

SCUBE2 

SLC2A3 

STK32B 

TGFB3 

TSPYL5 

WISP1 

LGP2 

NMU UCHL5 

JHDM1D 

AP2B1 

MS4A7 

RAB6B 

LOC100288906 

C9orf30 

ZNF533 

C16orf61 

SERF1A 

C20orf46 

LOC730018 

LOC100131053 

AA555029_RC 

Genes not 

associated 

with the ‘6 

Hallmarks of 

Cancer’ 

Oncotype DX
®

 

21-gene signature 

 

(Paik, 2004) 

 

ACTB 

BAG1 

BCL2 

CCNB1 

CD68 

CTSL2 

ER 

GAPDH 

GRB7 

GSTM1 

GUS 

 

HER2 

Ki67 

MMP11 

MYBL2 

PGR 

 

RPLPO 

SCUBE2 

STK15 

Survivin 

TFRC 

Stroma-related  

50-gene signature  

 

(Farmer 2009) 

ADAM12 

AEBP1 

ANGPTL2 

ASPN 

C1QTNF3 

C1R 

CALD1 

CDH11 

COL10A1 

COL1A2 

COL3A1 

COL5A2 

COL6A1 

COL6A3 

COPZ2 

CSPG2 

CTSK 

DACT1 

DCN 

DPYSL3 

ECM2 

FAP 

FBLN1 

FBN1 

GAS1 

HTRA1 

ITGBL1 

LOXL1 

LRP1 

LRRC17 

MFAP2 

MGC3047 

MMP11 

MMP14 

MMP2 

NDN 

OLFML2B 

PCOLCE 

PDGFRB 

PDGFRL 

PEDF 

PLAU 

POSTN 

RARRES2 

SFRP4 

SNAI2 

SPARC 

SPON1 

TGFB3 

THBS2 

Pathways, families and groups of molecules  

DNA Damage 

Response (DDR) 

DDR score (Asakawa 2010): BRCA1, Rad51, H2AX and conjugated 

ubiquitin 

ABC drug 

transporters  

P-glycoprotein (P-gp/ABCB1/multi-drug resistance 1 (MDR1)) 

MDR-associated protein (MRP1/ABCC1) 

Breast cancer resistance protein (BCRP/ABCG2) 

Tumour cell 

proliferation 

Ki67 

Gene clusters CDC20, E2F1, MYBL2, FBXO5, MCM2, MCM6, 

CDC25B and TOP2A 

Molecular subtype  ER, PR and HER2 

Breast cancer stem 

cell markers 

CD44, CD24, BCRP/ABCG2 and BRCA1 mutations 

Single molecules 

p53 TP53 

Topoisomerase II TOP2A 
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Chemotherapy 

drug 

Pathways and molecules associated with the mechanism of action 

of chemotherapeutic agents 

Anthracyclines 

 (e.g. epirubicin, 

doxorubicin) 

Main drug targets: Topoisomerase II, guanine and cytosine bases  

Effect: DNA double strand breaks, initiation of DNA repair 

pathways: NHEJ and HR (ATM, BRCA1, BRCA2, RAP80, Rad51, 

Rad52, Rad54,Ku78, Ku80, DNA ligase IV/XRCC4 complex etc), 

induction of apoptosis 

Other associated molecules: 26S Proteasome (20S subunit) 

Cyclophosphamide 

Main drug target: Guanine bases 

Effect: Blockage of replication, DNA double strand breaks, induction 

of apoptosis. ICL DNA repair: NER, HR, FA (as above, plus 

FANDC2, FAN1, MUS81-EME1, ERCC1, XPF, Rev1, Rev3, Ref7 

etc) 

Other associated molecules: PUMA and Fas 

Taxanes 

 (e.g. docetaxel, 

paclitaxel) 

Main drug target: beta-tubulin (microtubules)  

Effect: Inhibition of mitosis, prevention of proliferation, induction of 

apoptosis 

Other associated molecules: Bcl-2 
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Chapter 3.  Proteomic techniques and the identification of 

biomarkers of chemotherapy resistance 

3.1 Biomarker discovery pipeline 

The search for biomarkers generally consists of four phases; discovery, where mass 

spectrometry (MS) - or microarray-based approaches may be used to generate large lists of 

differentially expressed proteins (DEPs); data mining, to analyse discovery-phase data 

using knowledge bases to prioritise candidates to carry forward; confirmation, where 

techniques such as western blotting or ELISA are used to confirm the differential 

expression of candidates from the discovery phase, and validation where putative 

biomarkers are evaluated in the clinical context, which may use immunohistochemistry. 

The number of samples used increases throughout this process, and the number of potential 

candidates decrease (Figure 9). 

 
Figure 9: Stages of the biomarker discovery pipeline 

The number of candidates decreases as false-positive and weaker candidates are removed. 

The number of samples increases to improve and challenge the strength of the candidates 

and to ensure extensive clinical validation before significant observations can be reported. 
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One of the main challenges encountered during biomarker discovery in clinical samples is 

accessing the low-abundant proteins of interest. This is made difficult by the huge dynamic 

range of protein concentrations in serum, covering 10 orders of magnitude (Anderson and 

Anderson 2002). The most abundant protein present in serum is albumin, which constitutes 

55% of the serum proteome (Anderson and Anderson 2002). In fact, only 22 proteins 

account for 99% of serum (Tirumalai, Chan et al. 2003) (Figure 10). The remaining 1% 

therefore represents the low abundant proteins of interest. Depletion of the highly abundant 

proteins and accessing the proteins of interest presents challenges and therefore highlights 

potential limitations of such research.   

 
Figure 10: Pie charts representing the 22 major proteins of the human serum 

proteome  

Ninety percent of the human serum proteome is composed of 10 proteins (pie chart to left). 

The remaining 10% (pie chart to right) is composed of a further 12 known proteins as well 

as the low abundant proteins, which are of interest in biomarker discovery, representing 1% 

of the serum proteome (not to scale). Accessing these low abundant proteins is made 

difficult by the huge dynamic range; 10 orders of magnitude separate these proteins from 

the most abundant protein, albumin (Anderson and Anderson 2002).   

From (Tirumalai, Chan et al. 2003).  
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3.2 Proteomics  

The term ‘proteome’ was first introduced in 1994 by Marc Wilkins and refers to the 

proteins expressed by the genome. The study of the proteome was coined ‘proteomics’, 

and describes the large-scale global study of the proteome, and is the most recently 

introduced global screening technique following transcriptomics and genomics. 

The choice of molecular level for studying cancer-associated alterations is complicated by 

the different ways that genes may be transcribed into a variety of functionally distinct 

proteins, which can themselves undergo essential post-translational modifications. The 

human genome is relatively static and gene mutations may not have any functional 

relevance in the resulting mRNA or protein species. Due to alternative splicing 

mechanisms, one gene can produce more than one protein species. Levels of mRNA and 

protein expression are dynamic and constantly changing over time, according to the state 

and microenvironment of the individual cell. The global mRNA-based analysis of gene 

expression with microarrays (transcriptomics) does not address post-translation events and 

therefore may lead to lack of correlation between mRNA and the functional proteome. A 

lack of correlation may also occur due to protein expression levels lagging behind the peak 

in mRNA production or mRNA may undergo such high turn-over that no protein is 

expressed. Proteins can undergo a wide variety of post-translational modifications which 

affect protein stability, localisation and function (Hoffman, Sniatynski et al. 2008). 

Therefore the analysis of protein expression may provide the most realistic picture of the 

functional aberrations within a cancer cell, as it arguably provides access to the most 

accurate molecular repertoire. 

Proteomics, the global analysis of protein expression in a given proteome, has been an 

important developing area of cancer research. The recent developments in mass 
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spectrometry (MS), which have enabled high sensitivity and automation of protein 

identification, facilitated an increased interest in global proteomics-based research. 

Although previously called ‘fishing expeditions’, today the term ‘discovery science’ is 

respectfully used for such large scale studies (Baak, Janssen et al. 2005). Initial experiments 

using established cell lines are now giving rise to the analysis of complex tissue and 

biological fluids to establish protein changes associated with disease (Aldred, Grant et al. 

2004). 

Proteomics can be used as a comparative tool to identify differences in protein expression 

between two samples, such as normal versus disease or chemotherapy-sensitive versus 

chemotherapy-resistant. This enables differentially expressed proteins (DEPs) to be 

identified which may be associated with a certain disease phenotype. 

Current proteome analysis methods can be separated into gel-based MS methods (for 

example two-dimensional polyacrylamide gel electrophoresis with matrix assisted laser 

desorption ionisation time of flight MS; 2D-PAGE/MALDI-TOF-MS), gel-free MS 

methods (for example liquid chromatography with electrospray ionisation MS; LC/ESI-

MS), and microarray-based methods (for example antibody microarrays).  

3.3 Gel-based MS methods 

This type of method is based upon achieving effective separation of proteins in a sample, 

using gel electrophoresis followed by identification of the protein using mass spectrometry.  

3.3.1 1D-PAGE separation 

One-dimensional PAGE (1D-PAGE) is used to separate proteins by molecular weight in a 

denaturing polyacrylamide gel. Protein samples must be extracted or resuspended in a 

suitable buffer (e.g. Laemmli buffer) composed of a detergent (e.g. sodium dodecyl 
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sulphate; SDS) to solubilise membrane proteins and disrupt protein-protein interactions; a 

reducing agent (e.g. β-mercaptoethanol) to reduce protein disulphide bonds prior to 

denaturing SDS-PAGE; protease inhibitors to block the function of protease enzymes 

which digest proteins; phosphatase inhibitors to block the action of phosphatase enzymes 

which remove phosphate groups from phosphorylated proteins by hydrolysing phosphoric 

acid esters; glycerol to increase the density of the sample so that it sinks into the well of the 

polyacrylamide gel; and dye (e.g. bromophenol blue) to visualise the protein sample during 

gel loading and electrophoresis. The protein mixture is loaded into the gel and separated out 

into individual protein bands; the molecular weights of which can be estimated from the co-

electrophoresis of a ladder of molecular weight marker proteins.  

3.3.2 2D-PAGE separation 

Two-dimensional electrophoresis was first reported by O’Farrell in 1975, where the 

technique was developed to separate proteins in the 1
st
 dimension according to their 

isoelectric point (pI), known as isoelectric focusing (IEF), and by molecular weight in the 

2
nd

 dimension, using sodium dodecyl sulphate PAGE electrophoresis (O'Farrell 1975). 2D-

PAGE is a proteomic method widely used to achieve a higher level of separation by 

resolving proteins into individual spots prior to MS analysis, which has been extensively 

reviewed (Rabilloud 2002).  

3.3.2.1 Sample Preparation 

Proteins are extracted from their source; either cell line or tissue origin by chemical or 

mechanical means. Sample preparation is carried out to ensure the sample is in a suitable 

physicochemical state for IEF. The sample must therefore be solubilised in an appropriate 

buffer containing suitable components, which may involve reduction and denaturation of 
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the protein sample (Shaw and Riederer 2003). The buffer comprises a detergent (e.g 

CHAPS) to solubilise membrane proteins and disrupt protein-protein interactions; a 

chaotrope (e.g urea/thiourea) to disrupt hydrogen bonded structures in the protein sample 

and to increase solubility; protease inhibitors; phosphatase inhibitors; a reducing agent (e.g. 

dithiothreitol; DTT) to reduce disulphide bonds between cysteine residues so that all 

proteins in the sample have the same linear shape; ampholytes to establish a stable pH 

gradient for use in IEF; and dye (e.g. bromophenol blue) to visualise the protein sample. 

3.3.2.2 Separation in the 1
st
 Dimension: Isoelectric Focusing 

IEF involves the horizontal separation of proteins in the sample according to their 

isoelectric point (pI); the point at which the proteins carry no net electrical charge (Figure 

11) (Gorg, Drews et al. 2009). The proteins migrate towards the electrode with the opposite 

charge and gain or lose protons along the pH gradient. The net charge and mobility 

decrease and each protein will stop at the point in the pH gradient that is equal to its pI. 

Immobilised pH gradient (IPG) strips are used to create a stable pH gradient (Rabilloud, 

Valette et al. 1994; Rahimpour, Soheili et al. 2007). They are acrylamide derivatives of 

simple buffers known as ‘immobilines’ which do not exhibit amphoteric behaviour and co-

polymerise with the gel matrix and form an appropriate pH gradient. These strips are 

‘rehydrated’ with the sample and when an electric current is applied, the proteins in the 

sample migrate to their pI. 
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Figure 11: Stages of protein separation by isoelectric focusing (IEF) – 1

st
 dimension 

The sample is pipetted along the back of a well in a rehydration tray. The IPG strips are 

then rehydrated with the sample overnight. Rehydrated IPG strips are then transferred into 

the IEF tray, which is placed in the IEF cell for IEF.  

3.3.2.3 Separation in the 2
nd

 dimension: by molecular weight 

Sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE) is used to 

separate proteins vertically according to molecular weight, following separation by pI 

(Figure 12). SDS is an anionic detergent which is used to denature the proteins and give 

them a net negative charge, which ensures that they migrate towards the anode (Garfin 

2003). It also disrupts hydrogen bonds, blocks hydrophobic interactions and unfolds the 

proteins. The IPG strips containing the protein sample must be equilibrated prior to the 

SDS-PAGE step to further denature proteins, maintain solubility, and establish an 

appropriate pH. DTT may be added to reduce any re-formed disulphide bonds and 

iodoacetamide (IAA) can be used for carbamidomethylation, by alkylating free thiol 

groups, thus preventing re-formation of disulphide bonds. The equilibrated IPG strip is 

placed at the top of the gel and proteins then migrate through the gel and are separated 
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according to molecular weight. The resolution of protein spots (and therefore the level of 

proteome interrogation) is dependent on the size of gel and the pH range analysed. 

Maximal proteome analysis requires the largest gel size combined with a series of ultra-

narrow range pH strips but this approach has to be balanced against time and cost, as well 

as sample availability. The complexity of the protein sample can be reduced by conducting 

a pre-fractionation step. For example, methodologies are available to enrich for nuclear 

proteins (Fu and Fenselau 2005) membrane-associated proteins (Tan, Tan et al. 2008) and 

phosphorylated proteins (Morandell, Stasyk et al. 2006).  

 

Figure 12: Stages of protein separation by SDS-PAGE – 2
nd

 dimension 

The IPG strip containing proteins separated horizontally by pI is placed at the top of the 

SDS-PAGE gel. Molten agarose is placed within the well at the top of the gel, and the IPG 

is set within it. Proteins are then separated vertically by molecular weight. Separated 

proteins can then be visualised using a stain such as Coomassie blue.  
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3.3.2.4 Visualisation of Proteins 

Following 1D-PAGE or 2D-PAGE, proteins are visualised by staining which is required for 

protein excision and quantitative analysis. The stain of choice must be compatible with 

downstream mass spectrometry, and a commonly used stain is coomassie blue, which has a 

detection limit of approximately 10 ng of protein (Garfin 2003), and is relatively 

inexpensive and easy to use. Other available stains include silver and fluorescent stains, 

which are more sensitive than Coomassie staining, however if proteins are to be 

subsequently identified, the technique used for this purpose must have a matching level of 

sensitivity.  

3.3.2.5 Identification of differentially expressed proteins 

Two groups of samples (e.g. ‘chemotherapy-sensitive’ and ‘chemotherapy-resistant’) can 

be analysed to identify differentially expressed proteins between them. At least 3 technical 

replicates (3 individual gels per sample) should be performed, as well as multiple biological 

replicates to account for analytical and the high degree of sample variability observed in 

clinical samples, and to reduce false positive results (Smith, Qutob et al. 2009). The use of 

dual colour Cy3/Cy5 fluorescent labelling in two dimensional difference gel electrophoresis 

(2D-DIGE) allows the co-electrophoresis of differentially labelled samples in the same gel 

(Von Eggeling, Gawriljuk et al. 2001). This can improve the comparison of samples by 

removing gel to gel variability. After separation using 2D-PAGE, and protein visualisation, 

proteins that are differentially expressed (typically a 2-fold difference in expression is 

accepted as significant) between the two samples are determined using a software package 

(Marengo, Robotti et al. 2005), such as PDQuest (Bio-Rad). Differences in spot pattern and 

intensity between the gels are identified by relative quantification and individual DEP spots 

are highlighted. These can then be excised manually using a scalpel, or robotically.  
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3.3.2.6 In-gel digest 

Protein bands separated by 1D-PAGE can be cut from the gel lane in thin slices of 

approximately 1mm width, each containing a mixture of proteins. Proteins from 2D-PAGE 

are cut out as individual protein spots. In order to release the proteins from the gel matrix, it 

is necessary to digest the proteins into peptides. This initially involves the de-staining and 

washing of protein spots with ammonium bicarbonate / acetonitrile solutions, prior to 

protein digestion. This is commonly achieved using an enzyme such as trypsin, which 

specifically cleaves proteins at the C-terminal side of lysine and arginine residues (Olsen, 

Ong et al. 2004). The peptides can then be analysed by mass spectrometry, and identified 

with the use of a database containing in silico tryptic peptides from known proteins. If 

necessary, ZipTip
®

 pipette tips can be used to purify and concentrate the peptide samples.  

3.3.2.7 Protein identification by mass spectrometry 

Mass spectrometry is a complex and powerful analytical technique which is used to 

determine the chemical composition of a sample, and is used in an increasing number of 

applications, including analysis of biomolecules. Over the past decade, levels of sensitivity, 

detection, speed and analytical range have increased immensely, which has enabled new 

levels of application and the development of new methods. The basic principle of mass 

spectrometry is to produce ions and determine their mass. This is achieved by ionising the 

sample, separating ions according to their mass-to-charge ratio (m/z), detecting ions and 

determining their m/z ratio alongside relative abundance. This process may also include 

fragmentation of selected ions. A mass spectrometer is essentially comprised of three 

components; an ion source, a mass analyser and a detector. There may be more than one 

mass analyser, depending on the level of analysis required. A computer also forms part of 

the system, which is responsible for the processing of data generated.  
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There is a wide variety of ionisation methods, however the two main methods used for 

ionisation of peptides are matrix assisted laser desorption ionisation (MALDI) and 

electrospray ionisation (ESI) (Aebersold and Goodlett 2001; Aebersold and Mann 2003; 

Lin, Tabb et al. 2003). ESI is commonly coupled to liquid-based separation whereas 

MALDI is used for solid samples co-crystallised with matrix onto a rigid sample plate. 

MALDI is generally coupled with a time of flight (TOF) mass analyser and 2D-PAGE is 

usually combined with MALDI-TOF-MS for identification of the proteins contained in 

excised DEP spots (Aebersold and Goodlett 2001; Aebersold and Mann 2003; Lin, Tabb et 

al. 2003). 

The introduction of MALDI by Karas and Hillenkamp in 1985 dramatically improved the 

analysis of proteins, peptides and other large molecules (Penque 2009). This ‘soft’ 

ionization technique allows energy from the laser to be transferred to the analyte indirectly, 

via an organic matrix, thus reducing sample damage and decomposition. For MALDI, there 

are several acidic organic matrix molecules the sample can be mixed with, examples of 

which include 2, 5, dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid 

(CHCA). The matrix solution also contains an organic solvent such as acetonitrile (ACN) 

to prevent sample aggregation, water, and may also contain trifluoroacetic acid (TFA). An 

example of a matrix solution is CHCA [5 mg/ml] in 50% ACN; 0.1 % TFA (aq). The 

peptides are mixed with matrix solution and spotted onto a MALDI target plate. The 

organic solvent evaporates to leave a homogenous co-crystallised mixture of peptides and 

organic matrix. The matrix molecules used have strong absorption at the laser wavelength, 

so that when the laser is fired, energy is absorbed by the matrix molecules. This 

accumulation of energy results in expansion of the matrix and co-release of peptide 

molecules and matrix molecules into the gas phase (Lin, Tabb et al. 2003). Peptide 
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molecules are ionized and enter the gas phase via indirect energy transfer from laser pulses 

via the matrix molecules, thus minimising sample damage and degradation (Figure 13).  

There are different types of lasers which can be used for MALDI, the most common of 

which are nitrogen lasers and neodymium:yttrium aluminium garnet (Nd:YAG) lasers. In 

recent years, Bruker Daltonics introduced the Bruker smartbeam laser, which combines 

the best attributes of nitrogen and Nd:YAG lasers; laser performance and speed, 

respectively, ultimately delivering maximal peak intensity.   

The role of the mass analyser is to separate and sort ions according to their mass-to-charge 

(m/z) ratio. There are several different types of mass analysers which are currently used for 

proteomics; quadrupole; ion trap; time-of-flight; fourier transform ion cyclotron resonance 

and fourier transform orbitrap (Aebersold and Mann 2003), within which differences are 

seen regarding type of field applied, method of ion transmission and kinetic energy rates. 

The performance of a mass analyser depends on the resolution, mass accuracy, analysis 

speed, transmission and mass range of the machine. A type of mass analyser commonly 

used for peptide analysis is the time-of-flight (TOF) mass analyser (Aebersold and Mann 

2003), which is well suited to the pulsed nature of MALDI. MALDI-TOF-MS is a favoured 

technique for generating peptide mass fingerprint (PMF) information, which allows the 

identification of unknown proteins, as it is a robust, sensitive technique (to femtomole or 

attomole levels) and is capable of analysing a large mass range (Lin, Tabb et al. 2003).  

The first type of TOF mass analyser to be introduced was a linear TOF analyser. Ions 

generated from the sample are accelerated by an electric field, gaining equal kinetic energy, 

and are subsequently separated according to the time taken to travel down a field-free flight 

tube, from which the m/z is determined. This is performed under a vacuum to ensure 

collisions do not occur before ions reach the detector. The flight time (t) is relative to the 
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mass (m) of the ion by the following equation: t = (m/z)
1/2

 (Hillenkamp, Karas et al. 1991). 

The resolution of the TOF mass analyser was initially improved by the introduction of 

delayed pulsed extraction, rather than continous extraction. This allowed differences in 

kinetic energy between ions of the same m/z to be corrected, therefore improving resolution 

by reducing peak broadening. Further improvements to resolution were seen when the 

reflectron was introduced. This corrects for ions of the same m/z arriving at the detector at 

different times due to differences in kinetic energy, by acting as an ion mirror. Ions with 

greater kinetic energy, and therefore velocity travel deeper into the reflectron than those 

with less kinetic energy, so that ions with the same m/z reach the detector at the same time. 

The detector then detects the ions upon their collision with it and produces a spectrum 

known as a PMF (Yates 2000) (Figure 13). 

 
Figure 13: MALDI-TOF MS 

The target plate, containing matrix and peptide molecules is inserted into the mass 

spectrometer. Peptide samples are ionised using MALDI, and subsequently travel down the 

flight tube where they are reflected back by the reflector towards the detector. The peptide 

ions hit the detector, which calculates the m/z of each ion and their intensity, which is 

displayed as a PMF. This is then submitted to a database such as MASCOT, for database 

searching and protein identification.  
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3.3.2.8 Protein identification 

The list of selected PMF peaks is submitted to a database search (using a search engine 

such as Mascot from Matrix Science), which compares it to PMFs of theoretical protein 

tryptic digests, using databases such as the National Centre for Biotechnology Information 

non-redundant (NCBI nr) protein database or the International Protein Index (IPI) database. 

The latest version of the IPI Human database (released on 27
th

 September 2011) contains 

339,363 referenced entries in total.  

3.3.2.9 Tandem mass spectrometry 

Tandem mass spectrometry enables the analysis of biomolecules to be performed in much 

greater depth. For protein analysis, this method involves fragmentation of peptides which 

allows sequencing and structural information to be elucidated. There are several different 

types of fragmentation which require different energies and vary between different mass 

spectrometers, including post-source decay (PSD), laser induced dissociation (LID), 

collision-induced dissociation, (CID), surface induced dissociation (SID), electron-transfer 

dissociation (ETD) and electron-capture dissociation (ECD) (Sleno and Volmer 2004). A 

common method of peptide fragmentation is collision-induced dissociation (CID). This 

involves the collision of ions with inert gas molecules, which generates vibrational internal 

energy within the ion, transforming it into an excited state. This results in decomposition of 

the activated ion and ultimately fragmentation by cleavage at the weakest bonds.  Peptide 

chain cleavages may occur at either the C
1
-C, C-N or N-C

1
 bond, yielding six types of 

fragment ions; respectively an, bn and cn where the positive charge remains at the N-

terminal fragment and xn, yn and zn where the positive charge remains at the C-terminal 

fragment. Within peptides, the weakest bond is the amide bond, thus generating mainly bn 

and yn ions upon fragmentation (Wysocki, Resing et al. 2005). Protein identification by 
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tandem MS can be performed with the addition of a second mass analyser, which separates 

fragment ions further to give amino acid sequence data, thus increasing the accuracy and 

confidence of the identification. Different commercially available machines may have 

modified methods for analysis of molecules by tandem MS, such as the Ultraflex III 

(Bruker Daltonics), which will be discussed in chapter 9. 

3.4 Gel-free methods 

For many years 2D-PAGE/MS, which is a global, comparative, quantitative proteomic 

technique, was the gold standard for analysis of protein expression and biomarker 

discovery. However, there are several drawbacks associated with gel-based proteomic 

techniques. DEPs may not be recovered from the gel, whilst contamination with keratins 

can be introduced during the numerous experimental stages. Throughput is low and gel to 

gel reproducibility can be a challenge. Co-migration of proteins can cause problems during 

the excision and identification steps as there may be more than one protein present in the 

gel spot excised. This results in a mixed PMF from more than one protein, making a 

positive identification unfeasible. In addition 2D-PAGE may exclude extreme examples of 

hydrophobic, acidic, basic, small, large and low-abundance proteins. Membrane-spanning 

hydrophobic proteins and high molecular weight proteins may not dissolve in the IEF 

buffer and will therefore not enter the gel used for the 2
nd

 dimension of separation (He, Liu 

et al. 2007). Also, low-abundant proteins may be masked in the gel by high-abundant 

proteins. Therefore, in more recent years, there has been a move towards gel-free MS 

methods for proteome analysis. These gel-free methods are based on the high-throughput 

“shotgun” analysis of peptides from a digested complex protein sample using a high 

performance liquid chromatography (HPLC) method for the separation of proteins within 

the sample, prior to identification using MS (Wu and MacCoss 2002). There are several 
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types of HPLC which can be used for the separation of complex protein samples, including 

ion exchange, reverse phase, affinity or a multidimensional approach which combines more 

than one separation method prior to MS (Yates, Ruse et al. 2009). An example of such an 

approach may involve two-dimensional cation exchange chromatography, where separation 

is based on charge, coupled to a reverse phase column, where separation is based on 

hydrophobicity. This is a popular approach, known as multidimensional protein 

identification technology (MudPIT) (Yates, Ruse et al. 2009). The separated sample may be 

eluted directly into the ionisation source, commonly ESI, in preparation for mass analysis. 

3.4.1 ESI MS 

ESI produces charged solvent droplets when a high electric potential is set between a 

capillary and the inlet to a mass spectrometer (Lin, Tabb et al. 2003). Typically peptides or 

proteins are analysed as positive ions using the capillary as an anode and the mass 

spectrometer inlet as the cathode. The sample to be analysed is digested in an appropriate 

solvent (such as 10:90 acetonitrile/water with 1% acetic acid) and injected directly into the 

instrument. ESI produces mainly doubly charged ions of tryptic peptides which allows the 

determination of m/z. Ions are generated directly from the solution by a fine spray. As the 

droplet size decreases, due to solvent evaporation, the electric charge density on the surface 

increases. Mutual repulsion between like charges on the surface break the surface tension 

and ions begin to leave the droplet and enter the gas phase (Ho, Lam et al. 2003). Ions are 

then accelerated into the mass analyser for determination of m/z and abundance. ESI is 

readily coupled to HPLC as it uses a steady stream of solvent to continuously produce ions. 

The peptide mixture is first separated by HPLC, which is coupled on-line to ESI-MS to 

gain product ion data. ESI sources are combined with tandem mass spectrometry (MS/MS), 

which comprises at least two stages of mass analysis for the generation of peptide sequence 
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data. An ESI source can be coupled to a variety of mass analysers including quadrupole, 

ion trap, orbitrap or Fourier transform ion cyclotron resonance systems (Ahmed 2008; 

Yates, Ruse et al. 2009), offering a variety of combinations which differ in cost, 

complexity, sensitivity, accuracy and function. 

3.4.2 Quantitative Shotgun Proteomics  

Unlike proteomic analysis based on 2D-PAGE/MS, traditional shotgun proteomics was not 

initially a comparative or quantitative approach and was mainly used for the identification 

of proteins in a given sample. However, recent methodological advances in MS have 

allowed the emergence of quantitative gel-free MS-based shotgun proteomic approaches 

(Chen and Yates 2007).  

Stable isotopes can be used to differentially label protein samples, providing a comparative 

and quantitative LC-MS/MS analysis. Stable isotope labelling by amino acids in cell 

culture (SILAC) is employed to label proteins during cell culture prior to mass 

spectrometry analysis (Chen and Yates 2007). Isotope-coded affinity tagging (ICAT) 

reagents can be used to label paired protein extracts (Gygi, Rist et al. 1999) or the multiplex 

analysis of up to 8 samples can be achieved using isobaric tags for relative and absolute 

quantification (iTRAQ) technology (Ross, Huang et al. 2004; Aggarwal, Choe et al. 2006; 

Choe, D'Ascenzo et al. 2007). Label-free approaches have also been developed for 

quantitative shotgun proteomics. These include absolute quantification (AQUA), selected 

reaction monitoring (SRM) and multiple reaction monitoring (MRM) assays (Kim and Kim 

2009; Pan, Aebersold et al. 2009). 
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3.5 Microarray-based methods 

The use of conventional MS-based proteomic approaches relies on an initial sample 

separation or fractionation step, which may reduce the range of proteome interrogation, as 

well as the identification of proteins from a public database. However, some proteins may 

not generate a sufficient number of peptides via this technique to gain a significant 

identification, or the specific form of protein may not be represented in the database. 

Microarray-based proteomics offers a range of methods to complement traditional MS-

based approaches. Microarray-based proteomic methods can be employed in ‘reverse-

phase’ (where multiple test samples are immobilised for simultaneous screening with an 

antibody or probe) or ‘forward-phase’ (where multiple monoclonal antibodies are 

immobilised for simultaneous screening using protein lysates) (Caiazzo, Maher et al. 2009). 

Antibody microarrays are a relatively new and powerful tool, which offer high-throughput 

multiplex screening on non-fractionated complex proteomes from a variety of clinical and 

biological samples. Proteomic analysis of chosen samples can be performed 

simultaneously, with high sensitivity and specificity, detecting proteins within the ng/ml 

range, whilst overcoming some of the problems associated with gel-based and MS-based 

approaches, such as the dynamic range of complex proteomes. Antibody microarrays 

therefore offer a valuable complementary technique to traditional MS-based approaches 

(Kopf, Shnitzer et al. 2005; Kopf and Zharhary 2007). It is important to note that antibody 

microrrays cannot be considered as a ‘global’ proteomic approach, as they are only able to 

analyse the expression of proteins that correspond to the pre-selected antibodies printed on 

to the slide. Antibodies chosen can be related to proteins involved a specific signalling 

pathway (for example apoptosis), or a variety of different signalling pathways. An antibody 

microarray is a collection of antibodies spotted in an ordered pattern onto a nitrocellulose-
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coated glass microscope slide. Key technological issues which are considered during the 

design of an antibody microarray platform include: (1) antibody content; (2) array design / 

format; (3) array fabrication (4) assay design (5) sample handling and (6) data handling 

(Wingren and Borrebaeck 2008; Borrebaeck and Wingren 2009). The antibodies printed 

onto the array should be highly-specific and well-characterised to minimise potential 

problems with lack of specificity or cross-reactivity (Borrebaeck and Wingren 2009). The 

antibody microarray can be used to compare protein expression profiles of two samples (for 

example, chemotherapy-sensitive versus chemotherapy-resistant). Protein samples can be 

directly labelled with fluorescent dyes (conventionally Cy3 or Cy5), which are mixed in 

equal amounts and co-incubated with the slide (Figure 14) The expression of a protein is 

detected when it competitively binds to its corresponding antibody spotted on the slide. A 

drawback associated with this type of assay is that the fluorescent label may interfere with 

the antigen-antibody interaction, which may limit detection (Sanchez-Carbayo 2006). It is 

therefore important to optimise parameters such as the dye-to-protein molar ratio to ensure 

that a balance is achieved, and a protein is not under- or over-labelled. The slide is analysed 

using a fluorescent scanner and the relative amount of each dye present on each antibody 

spot (levels of Cy3 versus Cy5), corresponding to the relative abundance of protein bound 

from each sample, is measured by signal intensity (Figure 14). Differentially expressed 

proteins between samples are then identified, by relative fluorescence of the dyes, and fold 

changes between samples can be calculated, where a 2-fold difference in expression is 

generally accepted as a significant finding (Smith, Watson et al. 2006). The expression of 

hundreds of proteins can be analysed simultaneously. An example of a large-scale 

commercially available antibody microarray kit is the Panorama
®
 Antibody Microarray-

XPRESS Profiler725 from Sigma Aldrich. This array contains 725 antibodies, (listed in 
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Appendix 1) spotted (robotically) in duplicate, onto a nitrocellulose-coated glass slide, and 

is capable of analysing the expression of a wide variety of proteins, including those 

involved in cell-signalling, apoptosis, cell cycle control and proliferation. The use of 

antibody microarrays is expanding, and has been recognised as a powerful tool in cancer 

proteomics (Kopf and Zharhary 2007), including breast cancer (Celis, Moreira et al. 2005; 

Celis, Moreira et al. 2005; Smith, Watson et al. 2006), as well as biomarker discovery and 

potential for the development of diagnostic assays (Brennan, O'Connor et al. 2010). 

However, due to the current high cost of commercially available kits, replicate antibody 

microarray experiments can become expensive and protein identifications will always be 

limited to those antibodies immobilised on the slide. 
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Figure 14: Antibody microarray workflow 

Proteins are extracted from the two samples selected for comparative analysis, and labelled 

with different fluorescent dyes; Cy3 (control) and Cy5 (test). Unbound dye is removed to 

leave protein-dye complexes, and samples are co-incubated with the antibody microarray 

slide in equal amounts to allow competitive protein binding. The relative abundance of each 

protein in each sample is determined by measuring the relative fluorescence of each dye on 

each antibody spot. Differentially expressed proteins are identified where proteins show ≥ 

2-fold change in expression between each sample.  
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3.6 Techniques for the confirmation and validation of putative biomarkers 

3.6.1 Data mining 

The selected proteins identified within the discovery phase, to be carried forward to the 

confirmation phase, can be a long and difficult process as proteins must be selected in a 

logical and meaningful manner. A useful tool to aid the prioritisation of proteins, which are 

to be carried forward, is software which analyses and interprets the data using knowledge 

bases (section 10.1.1). An example of such software is Ingenuity Pathway Analysis (IPA) 

(Ingenuity Systems Inc., USA) (Jimenez-Marin, Collado-Romero et al. 2009). Protein lists 

can be uploaded into IPA software, where they are mapped against the Ingenuity 

Knowledge Base, to highlight direct relationships between candidate proteins using 

networks and canonical pathways. This highlights and prioritises the candidates of most 

interest, whilst aiding understanding and presenting potential hypotheses, giving 

researchers informative direction for downstream confirmation.  

3.6.2 Western Blotting 

Due to the high throughput, simultaneous analysis of large numbers of proteins when using 

proteomic techniques there is a high chance of false discovery (Qian and Huang 2005). 

Therefore, a second independent technique (for example western blotting) is used to 

confirm the identification and expression change of individual putative biomarkers which 

have been suggested from proteomic studies. Western blotting, also known as 

immunoblotting, was first introduced in 1979 (Towbin, Staehelin et al. 1979), yet it was not 

termed western blotting until a paper was published naming it this in 1981 (Burnette 1981). 

Firstly, protein extraction from cell line origin or tissue is achieved by chemical or 

mechanical lysis of the cells in the presence of Laemmli buffer, which contains reagents 
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such as sodium dodecyl sulphate (SDS) that induce the unfolding and reduction of proteins 

which is required for effective separation by molecular weight. Extracted proteins are then 

separated by 1D-PAGE, according to molecular weight and subsequently transferred onto a 

nitrocellulose membrane. Nitrocellulose membranes have a high affinity for proteins, which 

accommodates the transfer of proteins from the gel. Once the proteins from the extract are 

on the nitrocellulose membrane, it is necessary to ‘block’ the free sites on the membrane 

where proteins have not bound, using a blocking solution (consisting of bovine serum 

albumin or non-fat dried milk powder). This prevents binding of the antibodies to the 

membrane as opposed to the target protein of interest. It is then possible to ‘probe’ for 

specific proteins with antibodies to these proteins, by incubation with the ‘primary 

antibody’, which is specific to the protein under investigation. After washing steps to 

remove unbound antibody, a method widely used for the visualisation of protein expression 

is the use of chemiluminescent detection, using a horseradish peroxidise (HRP) conjugated 

‘secondary antibody. A chemiluminscent agent is used to initiate a reaction with the HRP, 

which produces luminescence in proportion to the amount of protein. The luminescence can 

be used to visualise the protein band by exposing the membrane to a photographic film. 

Densitometry can then be used to give a ratio of the level of protein between samples. To 

ensure that equal amounts of protein have been loaded onto the gel the membrane is probed 

with an anti-‘housekeeping’ antibody (for example anti-GAPDH, anti-beta-actin or anti-

alpha tubulin) which should demonstrate constant levels of expression and act as a loading 

control (Aldridge, Podrebarac et al. 2008). Densitometry can be used to normalise gel 

loading differences and compare the intensity of the bands produced by the primary 

antibody from each sample, producing a quantitation of the fold-change in expression. 

Immunoblotting relies on the availability of a reliable specific primary antibody to the 
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precise protein species which has been identified by the proteomic analysis. Conventional 

immunoblotting is a low-throughput technique but, if the appropriate antibodies are 

represented, the method can be performed using high-throughput membrane-based 

techniques such as PowerBlot (Yoo, Piechocki et al. 2002) or Profiler array membranes 

(Oliveras-Ferraros, Vazquez-Martin et al. 2008). An alternative approach to 

immunoblotting formats is provided by the enzyme-linked immunosorbent assay (ELISA), 

where the protein lysate and test primary antibody are analysed in a microtitre plate-based 

experiment. 

3.6.3 Clinical Validation  

Putative protein biomarkers which successfully pass through technical confirmation 

experiments are then further analysed using methods which can provide clinical validation. 

This relies on the availability of a sufficient number of suitable clinical samples, each with 

the required clinical information. The proteomic methodologies described do not give any 

information regarding the cellular localisation of putative protein biomarkers. 

Immunohistochemistry (IHC) is a low through-put technique which can be used to validate 

the expression and localisation of a protein of interest in whole sections of formalin-fixed, 

paraffin-embedded (FFPE) clinical tissue samples on glass microscope slides. High 

throughput IHC can be achieved if effort is first invested in the production of a suitable 

tissue microarray (Camp, Neumeister et al. 2008). For this, cores of tissue are taken from 

hundreds of different donor FFPE samples and co-embedded into a single new recipient 

FFPE block. A single slide of the composite tissue section (consisting of up to 800 

individual tissue core samples) can then be simultaneously screened for expression of one 

test protein using IHC. For non-tissue based assays an ELISA format, with an immobilised 

capture antibody, can be used to simultaneously screen protein samples from multiple 
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clinical samples. Alternatively MS-based assays (such as MRM analysis) could be designed 

for the quantitation and validation of putative biomarkers in clinical samples. After 

successful validation and rigorous testing of putative biomarkers from this discovery 

pipeline (McShane, Altman et al. 2005), a few may eventually find a role in clinical use. 

3.7 Proteomics research to identify biomarkers of chemotherapy resistance in breast cancer 

Several global methods have been used in the attempt to identify markers of response to 

chemotherapy in breast cancer, including genomic, transcriptomic and proteomic 

approaches. To date, proteomics-based studies are largely in vitro based, identifying 

differential expression between parental and chemotherapy-resistant cell sub-lines. The first 

requirement for proteomic analysis is sample acquisition and a relatively large quantity of 

sample is required for proteomics due to the inability to amplify at the protein level. The 

non-invasive collection of biofluids (such as blood serum, plasma, tumour interstitial fluid, 

nipple aspirate fluid etc) for proteomic identification of circulating predictive biomarkers is 

an attractive approach however there are a number of technical drawbacks (Schrohl, Wurtz 

et al. 2008; Tuck, Chan et al. 2009). A major challenge to the proteomic analysis of blood 

samples is based on the very broad dynamic range (approximately 10 orders of magnitude) 

(section 6.1.1.2) of protein expression levels in plasma (Anderson and Anderson 2002). The 

most abundant protein present in serum is albumin and, in fact, 95% of the protein content 

of serum is made up of around 20 highly abundant proteins, removal of which is possible 

prior to proteomic analysis in order to decrease masking the expression of low abundant 

putative biomarkers (Roche, Tiers et al. 2009). The extreme low abundance of protein 

biomarkers which may be of potential clinical relevance also necessitates the highest level 

of sensitivity in the mass spectrometry instrument. The proteomic profile of proteins which 

are released by cancer cells into the surrounding interstitial fluid or blood can also be 
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analysed for biomarker discovery. This type of cancer “secretome” analysis has yielded a 

number of putative biomarkers (Xue, Lu et al. 2008). Tumour interstitial fluid may carry 

the highest concentration of tumour-specific proteins and a proteomic analysis of breast 

cancer interstitial fluid was able to identify over 1000 proteins involved in a vast array of 

biological activities (Celis, Gromov et al. 2004). Predictive biomarkers of chemotherapy 

response in breast cancer patients may also be identified from the tumour interstitial fluid 

proteome (Cortesi, Barchetti et al. 2009). The type of biological fluid analysed also depends 

on the type of biomarker being searched for; this may be diagnostic, prognostic or 

predictive. For example, a diagnostic biomarker which could be identified from a blood 

sample would be more clinically accessible than a diagnostic biomarker present within the 

tumour interstitial fluid.  

Cultured cell lines or clinical samples of tumour tissue can be analysed using proteomics, 

however tissue samples may be more technically challenging (section 6.1.1). Although the 

use of cell lines as models of breast cancer can not accurately mimic the tumour in its 

biological microenvironment (Lacroix and Leclercq 2004), research using cell lines has 

been prominent in the proteomics literature since they are much easier to handle within 

controlled conditions.  

The majority of published proteomics-based studies for the identification of biomarkers of 

chemotherapy-resistance in breast cancer are based upon research using cell lines, which 

are used as in vitro models to simulate a clinical scenario. This requires the in vitro 

establishment of new chemotherapy-resistant cell sub-lines using a choice of strategies 

(Watson, Lind et al. 2007), so that their proteome can be compared to that of the parental 

cell line and DEPs can be identified. Many DEPs have been identified from chemotherapy-

resistant breast cancer cell sub-lines, mainly derived from luminal-type (ER-positive) 
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MCF-7 parent cells (Lacroix and Leclercq 2004), using 2D-PAGE/MS as a global 

proteome screening technique. The DEPs (with at least a 2-fold change in expression) 

identified by these published studies are summarised in Table 4. An MCF-7 cell sub-line 

demonstrating low-level resistance to the alkylating agent cisplatin was established by 

treating MCF-7 cells with 7 cyclic, 24-hour treatments of 50 uM cisplatin and 15 DEPs 

were identified in the resistant MCF-7 cells using 2D-PAGE/MALDI-TOF-MS (Smith, 

Welham et al. 2007) (Table 4). Semi-quantitative immunoblotting was used for technical 

confirmation of a subset of DEPs and independently identified the differential expression of 

the cytokeratin 17, glutathione-S-transferase mu 3 and peroxiredoxin 4 proteins in the 

resistant cells (Smith, Welham et al. 2007).  

An MCF-7 sub-line which was 246 times more resistant to the taxane paclitaxel than 

parental cells was established by Wosikowski et al (Wosikowski, Regis et al. 1995) and 

subsequently analysed using 2D-PAGE/MALDI-TOF-MS (Chuthapisith 2007) (Table 4). 

The authors reported that immunoblotting of 14-3-3 epsilon, cytokeratin-19, HSP27, sorcin 

and stathmin provided results which were in agreement with the 2D-PAGE analysis. IHC 

analysis of HSP27, sorcin and stathmin in a small series of archival clinical samples from 

patients treated with neoadjuvant doxorubicin/cyclophosphamide followed by docetaxel did 

not reveal a statistical correlation with response (Chuthapisith, Bean et al. 2009). 

A number of topoisomerase II poisons (eg doxorubicin, etoposide, mitoxantrone) (Nitiss 

2009) have been analysed using drug-resistant MCF-7 sub-lines and proteomic approaches. 

Several studies have focused on the analysis of the anthracycline antibiotic doxorubicin 

(adriamycin; Adr) in drug-resistant MCF-7 cell sub-lines. The original long-established 

doxorubicin-resistant MCF-7/AdrR (or MCF-7/ADR) sub-line created in 1986 (Batist, 

Tulpule et al. 1986) has recently been re-classified since it was shown to be derived from 
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ovarian cancer cells (Liscovitch and Ravid 2007) and therefore proteomic studies which 

may have been performed on this cell line have been excluded from this discussion. The 

MCF-7/AdrVp sub-line was established by selecting MCF-7 cells which survived 

incremental doses of doxorubicin in the presence of the P-glycoprotein membrane pump 

inhibitor verapamil (Vp), resulting in 900-fold resistance to doxorubicin. Nuclear proteins 

were sub-fractionated prior to analysis by 2D-PAGE/MALDI-TOF-MS and MS/MS, 

revealing 7 differentially expressed proteins (Fu and Fenselau 2005) (Table 4). An 

alternative doxorubicin-resistant MCF-7 cell sub-line, MCF7/AdVp3000, again established 

in the presence of Vp, was analysed using 2D-PAGE/MALDI-TOF-MS (Liu, Liu et al. 

2006). Sub-cellular fractionation was not carried out in this case and the proteins which 

demonstrated greater than 2-fold change in expression are shown in Table 4. Due to an 

association with the p53 pathway, the 14-3-3 sigma (stratifin) protein was selected for 

further in vitro functional analysis, which confirmed the association of 14-3-3 sigma over-

expression with drug-resistance in this cell sub-line (Liu, Liu et al. 2006). 

A sub-line of MCF-7 which was 28 times more resistant to etoposide (VP-16) than parental 

cells was established by selection in increasing drug concentrations. Pre-fractionation of 

nuclear proteins and analysis by 2D-PAGE/MALDI-TOF-MS and MS/MS revealed a 

number of differentially expressed proteins which were also identified in doxorubicin-

resistant sub-lines (Fu and Fenselau 2005) (Table 4). Furthermore the analysis of nuclear 

proteins from an MCF-7 sub-line which was 4000-fold resistant to mitoxantrone revealed a 

number of differentially expressed proteins that were also seen in doxorubicin- and/or 

etoposide-resistant cells (Fu and Fenselau 2005) (Table 4). The down-regulation of the 

cytoskeletal proteins alpha tropomyosin, cytokeratin 8, cytokeratin 19 and septin 2 was 
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seen in all three sub-lines which were resistant to the topoisomerase II poisons doxorubicin, 

etoposide or mitoxantrone (Fu and Fenselau 2005) (Table 4). 

Alternative approaches to 2D-PAGE have been used in a few studies of drug-resistant 

MCF-7 sub-lines. The mitoxantrone-resistant MCF-7 sub-line described above was further 

analysed by MS following pre-fractionation of plasma membrane proteins (Rahbar and 

Fenselau 2005). This approach identified 15 further proteins which demonstrated a 

difference in expression of at least 2-fold between resistant and parental cells. Antibody 

microarray analysis has not been utilised as yet in MCF-7 drug-resistant cell lines, however 

a doxorubicin-resistant sub-line derived from triple-negative MDA-MB-231 cells was 

analysed using a cell signalling microarray slide composed of 224 antibodies (Smith, 

Watson et al. 2006). Decreased expression (at least 2-fold) of cyclin B1, cyclin D2 and p-

ERK was identified from the microarray and confirmed by immunoblotting in the drug-

resistant cells. 

Several proteomics-based studies have been carried out using fresh breast cancer tissue 

samples however these are mainly based on comparisons between the proteome of normal 

versus malignant tissue rather than investigations of chemotherapy response (Deng, Xing et 

al. 2006; Othman, Majid et al. 2008). These proteomic studies have addressed the technical 

issues regarding the heterogeneity of breast cancer tissue through the use of laser capture 

microdissection (Hudelist, Singer et al. 2006), the presence of high-abundance proteins 

from contaminating blood serum through the use of depletion strategies (Kim, Bae et al. 

2009) and also successfully utilised the limited amount of tissue available in pre-treatment 

diagnostic biopsies (Bisca, D'Ambrosio et al. 2004). A search for biomarkers which predict 

response to neoadjuvant chemotherapy using proteomic methods in breast cancer tissue has 

not been published as yet. However a 2D-PAGE/MALDI-TOF-MS investigation of breast 
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cancer samples from patients treated post-operatively with cyclophosphamide/ 

methotrexate/5-fluorouracil revealed a number of putative biomarkers which correlated 

with tumour recurrence (Nimeus, Malmstrom et al. 2007).  

 

Table 4: Proteins demonstrating differential expression in chemotherapy-resistant 

MCF-7 cell sub-lines identified by 2D-PAGE/MS.  

Putative biomarkers demonstrated an increase () or decrease () in expression of at least 

2-fold in resistant cells. Drugs, to which resistance is being displayed, which are most 

relevant to this project; anthracyclines (doxorubicin) and taxanes (paclitaxel) are shown in 

bold.  

Drug 

resistance 
Drug mechanism Putative biomarker Reference 

Cisplatin 

DNA damaging 

agent 

Beta-tubulin type 3 () Smith, 2007 

Cisplatin Cytokeratin 17 () Smith, 2007 

Cisplatin Electron transfer flavoprotein beta () Smith, 2007 

Cisplatin Glutathione-S-transferase mu 3 () Smith, 2007 

Cisplatin 
Heterogeneous nuclear ribonucleoprotein A3 

() 
Smith, 2007 

Cisplatin HSP 27 () Smith, 2007 

Cisplatin 
Hydroxyprostaglandin dehydrogenase-15 

(NAD) () 
Smith, 2007 

Cisplatin Isocitrate dehydrogenase 3 () Smith, 2007 

Cisplatin Matrix metalloproteinase 9 () Smith, 2007 

Cisplatin Peptidyl-prolyl isomerase  Smith, 2007 

Cisplatin Peptidyl-prolyl isomerase B () Smith, 2007 

Cisplatin Peroxiredoxin 4 () Smith, 2007 

Cisplatin Proteasome beta 1 subunit () Smith, 2007 

Cisplatin Ribosomal protein P0 () Smith, 2007 

Cisplatin Tropomyosin 1-alpha ()  Smith, 2007 

Paclitaxel 

Anti-microtubule 

agent 

14-3-3 epsilon () Chuthapisith, 2007 

Paclitaxel Cytokeratin 19 () Chuthapisith, 2007 

Paclitaxel HSP 27 () Chuthapisith, 2007 

Paclitaxel Phosphoglycerate kinase-1 () Chuthapisith, 2007 

Paclitaxel Proliferating cell nuclear antigen () Chuthapisith, 2007 
Paclitaxel Sorcin () Chuthapisith, 2007 
Paclitaxel Stathmin () Chuthapisith, 2007 
Doxorubicin  

Topoisomerase II 

poison 

14-3-3 sigma (stratifin) () Liu, 2006 

Mitoxantrone 40S ribosomal protein SA () 

40S ribosomal protein SA () 

Fu, 2005 

Etoposide Fu, 2005 

Doxorubicin Alpha tropomyosin () 

Alpha tropomyosin () 

Alpha tropomyosin () 

Fu, 2005 

Mitoxantrone Fu, 2005 

Etoposide Fu, 2005 

Doxorubicin ATP Synthase  () Chuthapisith, 2007 

Doxorubicin Cathepsin D, chain B () Chuthapisith, 2007 

Doxorubicin Cyclophilin B () 

Cyclophilin B () 

Fu, 2005 

Etoposide Fu, 2005 

Doxorubicin Cytokeratin 8 () Fu, 2005 
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Mitoxantrone Cytokeratin 8 () 

Cytokeratin 8 () 

Fu, 2005 

Etoposide Fu, 2005 

Doxorubicin 

Doxorubicin 

Cytokeratin 19 () 

Cytokeratin 19 () 

Cytokeratin 19 () 

Cytokeratin 19 () 

Fu, 2005 

Chuthapisith, 2007 

Mitoxantrone Fu, 2005 

Etoposide Fu, 2005 

Mitoxantrone Glucose-regulated protein 78K (GRP78) () Fu, 2005 

Mitoxantrone HMG-1 () 

HMG 1 () 

Fu, 2005 

Etoposide Fu, 2005 

Doxorubicin Mitotic checkpoint protein BUB 3 ()  Fu, 2005 

Mitoxantrone Nucleolin () 

Nucleolin () 

Fu, 2005 

Etoposide Fu, 2005 

Mitoxantrone PARP-1 () 

PARP-1 () 

Fu, 2005 

Etoposide Fu, 2005 

Doxorubicin Peroxiredoxin 2 () Chuthapisith, 2007 

Doxorubicin Peroxiredoxin 6 () Chuthapisith, 2007 

Mitoxantrone Prohibitin () Fu, 2005 

Doxorubicin Protein disulphide isomerase () Chuthapisith, 2007 

Doxorubicin Septin 2 () 

Septin 2 () 

Septin 2 () 

Fu, 2005 

Mitoxantrone Fu, 2005 

Etoposide Fu, 2005 

Doxorubicin Septin 7 () Fu, 2005 

Doxorubicin Triose-phosphate isomerase (),() Chuthapisith, 2007 

 

To summarise, the use of clinical proteomics is potentially an excellent approach for the 

discovery of predictive biomarkers that can be used in the future for individualisation of 

treatment for breast cancer patients. Complementary techniques such as 2D-PAGE/MS and 

antibody microarrays allow the simultaneous analysis of many proteins in a single sample, 

which is required for profiling complex cellular changes in cancer.  

The above-mentioned studies present a list of putative biomarkers of chemotherapy 

resistance, identified by 2D-PAGE/MS in breast cancer MCF7 cell lines. When comparing 

these putative biomarkers of anthracycline / taxane chemotherapy resistance to those 

presented in Table 3 (section 2.4.4), there appears to be little overlap, or obvious common 

theme. There is therefore a need for further research into the search for putative biomarkers 

of neoadjuvant chemotherapy resistance in breast cancer using proteomics techniques, 

where methods utilising clinical tumour tissue have not yet been reported.  
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Protein markers which are already in routine clinical use include ER, PR and HER2. These 

markers provide information on molecular subtype and prognosis, and are used to 

determine the type of therapy administered. However, despite this partially-tailored 

therapy, successful treatment can still not be guaranteed. In order to maximise treatment 

efficiency, greater understanding of the tumour proteome is required, facilitating the ability 

to predict therapy response on an individual tumour basis. This is an area which would 

benefit greatly from further research as a major obstacle in effective tumour treatment is the 

occurrence of tumour resistance to therapeutic agents being administered. In the event of 

tumour resistance to therapy not only are resources wasted but, more importantly, patients 

are exposed to cytotoxic drugs which cause unpleasant side-effects unnecessarily, and the 

tumour still remains. As discussed, using global approaches several proteins have been 

identified as putative biomarkers of therapy response from cell line models, however as yet 

none have been validated for routine use in the clinical setting. 

3.8 Project Aim 

The aim of this project is to use proteomics technologies for the detection of proteins 

associated with chemotherapy resistance in breast cancer, specifically with the use of 

clinical tumour tissue obtained from locally advanced breast cancer (LABC) patients who 

received standard (epirubicin/cyclophosphamide plus docetaxel) neoadjuvant 

chemotherapy. The specific aims of the project are: 

 Collection of clinical samples and clinical information 

 Optimisation of proteomics methods for breast cancer tissue, based on existing 

methods for breast cancer cell lines and overcoming problems associated with the 

use of tissue. 
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 To identify biomarkers of chemotherapy resistance using the biomarker discovery 

pipeline; 

o The generation of lists of differentially expressed proteins (DEPs) using 2D-

PAGE coupled to MALDI TOF/TOF MS and antibody microarray analysis 

o Performance of data-mining with the use of Ingenuity Pathway Analysis 

software to identify potential relationships between DEPs and significant 

canonical pathways the DEPs may be involved in. 

o The confirmation of the DEPs using western blotting 

o Clinical validation of DEPs using immunohistochemistry, to assess their 

clinical relevance and predictive ability using pre-treatment samples, in 

order to identify putative markers of chemotherapy resistance in breast 

cancer. 

The identification of protein biomarkers which predict tumour response to chemotherapy 

will be of great value to both the patient and the clinician, as occurrence of tumour 

resistance to therapy is currently a major obstacle in effective tumour treatment. In the 

event of tumour resistance to therapy, patients are exposed to strong cytotoxic drugs for no 

therapeutic gain, during which time the tumour may even progress. The ability to predict 

response to chemotherapy at the diagnostic stage would allow treatment to be tailored to the 

individual patient, and administration of chemotherapeutic agents to only those who are 

likely to show a positive response. 
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Chapter 4.  Materials and Methods 

4.1 Culture of Cell Lines 

4.1.1 Human Caucasian Breast Adenocarcinoma ‘MCF7’ Cell Line 

This adherent cell line was originally established from the pleural effusion of a breast 

adenocarcinoma in a Caucasian 69-year old female. The cells exhibit epithelial-like 

morphology, are ER and PR positive and are therefore of Luminal subtype (section 2.2.2).   

4.1.2 Thawing Cells 

Cells which had previously been stored at minus 80 C were thawed quickly, inside a 

sealed plastic bag, in a water bath at 37 C. Once thawed, the cells were transferred to a 30 

ml screw-cap universal tube and were then diluted with 9 ml of culture media (1:10 

dilution) over 1-2 min, to allow the cells to acclimatise to their new environment. The cell 

suspension was then spun at 1600 rpm for 3 min, which pelleted the cells thus removing 

them from the DMSO (section 4.1.4) which they had been stored in whilst frozen. This was 

necessary as DMSO is toxic to cells when they are not frozen. The supernatant was 

discarded and the cells were re-suspended in an appropriate volume of fresh tissue culture 

media (Appendix 2), pre-heated to 37 C, in either a T25 (25 cm
2
 area on largest side) or 

T75 (75 cm
2
 area on largest side) flask depending upon the size of the pellet. The flask of 

cells was then placed in an incubator in a humid atmosphere at 37 C with 5% CO2.   

4.1.3 Culturing Cells 

All equipment, including the tissue culture hood, water bath and incubator was cleaned 

thoroughly at regular intervals with virkon disinfectant and 70% alcohol to ensure the area 
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was contaminant-free before cells were removed from the incubator. To maintain this clean 

environment, and reduce the risk of infection, sterile technique was adopted at all times 

during cell culture and all equipment was sprayed thoroughly with 70% alcohol before 

placing in the Class II tissue culture hood. Cells were cultured in RPMI tissue culture 

media (Appendix 2) at 37 C, in an atmosphere of 5% CO2, to represent the conditions in 

the human body and to maintain the pH of the media.   

Cells were cultured in T75 flasks, which were changed along with the media, 3 times each 

week.  The medium was pre-warmed in the water bath at 37 C for 30 min before use to 

ensure the cells experienced a minimal amount of stress when they were transferred into 

their new environment. Adherent cells were removed from their flasks by trypsinisation 

using pre-warmed TrypLE Select (#12563, Invitrogen). Trypsin was added to the flask to 

remove adherent cells, at a volume of 3 ml (for T25 and T75 flasks), gently agitated to 

ensure complete coverage of cells, and incubated at 37 C for 3-5 min. The flasks were 

lightly tapped to ensure the cells were no longer adhered, and 7 ml media was added to 

saturate the action of the trypsin. The cell suspension was centrifuged at 1600 rpm for 3 

min and the pellet of cells was re-suspended in a suitable volume of medium and 

transferred to a new flask.   

4.1.4 Freezing Cells 

Cells were frozen when they reached 80% confluence. They were frozen in ‘freezing 

media’, which consists of tissue culture media containing 10% dimethyl sulphoxide 

(DMSO) (#D2650, Sigma Aldrich). Cells from each flask were pelleted and slowly re-

suspended in 1 ml of freezing medium and transferred into a cryovial. The cells were then 

stored at minus 80 C or in liquid nitrogen. 
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4.2 Collection of Clinical Samples 

Patient selection for fresh tissue samples: 

This study was approved by the South Humber Local Research Ethics Committee (ref 

07/Q1105/43), and included patients receiving neoadjuvant chemotherapy for locally 

advanced breast cancer from 2007 onwards at Hull and East Riding Hospitals NHS Trust, 

Hull. The treatment regimen consisted of 4 cycles of EC [epirubicin (90 mg/m
2
) + 

cyclophosphamide (600 mg/m
2
)] followed by 4 cycles of docetaxel (100 mg/m

2
), given at 

3-weekly intervals. Five of the patients included in the study were assigned to the Neo-

tAnGo randomised phase III clinical trial of sequential epirubicin + cyclophosphamide and 

paclitaxel ± gemcitabine. This was followed by resection of the residual tumour. Patient 

consent was obtained for a tumour sample to be taken at the time of definitive surgery, 

which was snap-frozen in liquid nitrogen and stored at minus 80 C until required. Tumour 

samples collected varied in size from 2 mm
3
 to > 2 cm

3
 and the number of pieces of solid 

tumour provided (in separate microcentrifuge tubes) by the surgeon ranged from 1 to 3. 

Consent was also obtained to allow access to relevant patient clinical information which 

included chemotherapy details, radiological and pathological results and reports for 

determination of response as well as molecular typing (ER/PR/HER2 status). The 8 tumour 

samples that were used for proteomic analysis (Figure 15) were all ductal tumours of 

luminal subtype. A consort chart is shown (Figure 15) which outlines which clinical 

samples were used for proteomic analysis and optimisation of methods. All samples are 

listed in Table 13 (section 5.3.1) and full clinical information is given in Appendix 5.  
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Patient selection for archival pre-treatment core biopsy samples: 

Pre-treatment core biopsy samples from a previously characterised sample group 

(Garimella 2007) were used for this study. Ethical approval had previously been granted for 

the study entitled ‘monitoring the effects of chemotherapy in breast cancer patients using 

magnetic resonance imaging and molecular markers’ from the Hull and East Riding 

Research Ethics Committee (ref 03/00/038). All patients in this cohort were recruited 

between 2000 and 2002 from the Hull and East Riding NHS trust, and had histologically-

proven breast cancer with a primary tumour of ≥ 3cm. In total, 35 archival tissue samples 

were obtained from 36 locally advanced breast cancers (one patient had bilateral breast 

cancer). These comprised 75% ER-positive tumours and 69% PR-positive tumours. Patient 

consent was obtained to allow access to pre-treatment core biopsy samples and to perform 

serial DCE-MRI scans (pre-treatment, after 2
nd

 cycle of chemotherapy, and post-treatment) 

so that tumour response to therapy could be monitored. Patients were treated with 6 cycles 

of 5-fluorouracil (200 mg/m
2
), epirubicin (60 mg/m

2
) and cyclophosphamide (600 mg/m

2
) 

(infusional FEC), administered at 3-weekly intervals. Tumour response was assessed after 

the 2
nd

 cycle using DCE-MRI scans. Patients who showed a response continued with the 

full course of treatment, and where no response was observed, chemotherapy was 

terminated. Following this, definitive surgery was performed to remove residual tumour. 
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Figure 15: Consort chart outlining where clinical tumour resection samples have been used for proteomic analysis 

Of the 38 breast tumour samples collected, 34 were carried forward to be considered for proteomic analysis (listed in Table 13). For samples 

which were included in more than one experiment (
2
) is shown. Four samples were excluded from the study and became ‘optimisation 

samples’, due to ambiguity regarding sample composition (A), insufficient information to accurately determine tumour response to treatment 

(B, C) and incorrect sample handling (D).  
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4.3 Panorama Antibody Microarray XPRESS725 Profiler  

The Panorama Antibody Microarray XPress Profiler725 (#XP725, Sigma Aldrich) was 

used to compare protein expression in two different samples. Clinical breast tumour 

samples selected for antibody microarray analysis are shown in Figure 15.   

Solutions which required preparation included: 

 Protease Inhibitor Cocktail: 0.3 ml of dH20 was added to the vial provided (#P4495, 

Sigma Aldrich) and the reconstituted solution was then stored at -20 C. 

 Benzonase Working Solution: 2 µl of Benzonase Ultrapure (#B8309, Sigma 

Aldrich) was added to 18 µl of Extraction/Labelling Buffer to give a solution of 5 

units/µl.   

4.3.1 Protein Extraction 

For all proteomics work, polypropylene microcentrifuge tubes were used, to minimise 

contaminations from plastics and to prevent proteins/peptides being retained on the surface 

of the tubes. Proteomics-grade distilled water was also used throughout. Proteins were 

extracted from the tissue using the Antibody Microarray Extraction/Labelling buffer 

supplied in the kit. To each 10 ml of Extraction/Labelling buffer, 50 µl of the reconstituted 

Protease Inhibitor Cocktail, 100 µl of Phosphatase Inhibitor Cocktail II and 1.2 µl of the 

Benzonase Working Solution was added and kept on ice until required. This was then 

referred to as Buffer A. The addition of these reagents helps to maintain protein 

composition by inhibiting their breakdown in the sample and the Benzonase is added to 

remove nucleic acid present in the sample.  Breast tumour tissue was removed from the 

minus 80 C freezer and weighed. Work following this was carried out as quickly as 

possible in a Class II Tissue Culture Hood, using sterile technique to avoid contamination, 
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and the tumour tissue was kept on ice to ensure minimal protein degradation. The tissue 

was then placed in a sterile petri dish on ice, cut into small pieces using a disposable scalpel 

and washed by bathing and agitating gently in chilled PBS to remove any residual blood. 

Four volumes (w/v) of Buffer A was added to the tissue and the tissue was then 

homogenised using a TissueRuptor (#9001273, Qiagen) with a disposable probe (#990890, 

Qiagen) on ice in the tissue culture hood. The sample was then centrifuged for 10 s at 

10,000 x g in a microcentrifuge tube. If the sample contained fat, as a layer at the top of the 

supernatant, the supernatant below this was carefully removed using a pipette and 

transferred into a fresh microcentrifuge tube. Centrifugation and discarding the layer of fat 

was repeated until as much of the fat as possible had been removed from the sample and the 

supernatant was stored in a clean microcentrifuge tube. The protein concentration of the 

sample was then determined by the Bradford assay (section 4.3.3). 

4.3.2 Protein Precipitation 

Due to the heterogeneity of breast tissue and the nature of working with tissue rather than 

cell lines, it was thought it may be beneficial to precipitate the protein out of solution and 

re-suspend it in fresh buffer, thus cleaning and purifying the sample. This was achieved 

using the ProteoExtract® Protein Precipitation Kit (#539180, Calbiochem), which is 

suitable for use with 2D-PAGE. Before use, the Precipitation Agent was prepared using 

reagents supplied in the kit. To one bottle (29 ml) of Precipitant 1, 1.7 ml of Precipitant 2 

was added as well as 1.7 ml Precipitant 3 and 1.7 ml Precipitant 4 and the solution was 

mixed. This was referred to as Precipitation Agent and was stored at -20 C for 1 hour 

before use. The Wash Solution was also prepared in advance; 150 ml of high quality 

ethanol was added to the bottle (65 ml) of Wash Solution to reconstitute, mixed and stored 

at -20 C. To precipitate the proteins, 800 µl of cold Precipitation Agent (-20 C) was 
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added to 200 µl of sample in a microcentrifuge tube. This was vortexed and incubated at -

20 C for 60 min. The sample was then centrifuged for 10 min at 10,000 x g to pellet the 

protein.  The supernatant was carefully removed. The pellet was washed by adding 500 µl 

of cold (-20 C) Wash Solution and vortexing briefly. The sample was then centrifuged for 

2 min at 10,000 x g to pellet the protein and the Wash Solution was carefully removed. The 

pellet was allowed to dry for 5 min at RT and subsequently re-suspended in Buffer A.   

4.3.3 Protein Quantification 

The protein concentration of the tissue extract was determined using the Bradford protein 

assay, which is compatible with reagents used in Antibody Microarray analysis. The 

Bradford Reagent (#B6916, Sigma Aldrich) consists of Brilliant Blue G in phosphoric acid 

and methanol. Brilliant Blue G is a dye which forms a complex with the proteins in the 

solution, and the formation of the complex causes a shift in the absorbance of the dye from 

465 to 595 nm. The absorbance of the sample is therefore proportional to the amount of 

protein present in the sample. The linear protein concentration range is 0.1 to 1.4 mg/ml, 

where bovine serum albumin (BSA) was used as the standard. Eight BSA protein standards 

were prepared, diluted in Buffer A, in microcentrifuge tubes, ranging from concentrations 

of 0.1 to 1.4 mg/ml and 5 µl of each was placed in separate wells in a 96-well plate. Tissue 

extracts of unknown protein concentration were also placed into separate wells in the 96-

well plate at a volume of 5 µl. Bradford Reagent was mixed gently and brought to room 

temperature and 250 µl was added to each standard and each sample. The 96-well plate was 

then mixed for 30 s on the spectrophotometer (Multiscan MS plate reader, Labsystems) and 

incubated at room temperature for 5 min. Absorbance was subsequently measured at 595 

nm. The protein concentration of each known protein standard was plotted against the 
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absorbance at 595 nm to produce a standard curve. The protein concentration of the tissue 

extracts was then calculated using the equation of the line.  

4.3.4 Protein Labelling 

This procedure was carried out in a darkened room, as the fluorescent dyes are sensitive to 

light. Proteins extracted from chemotherapy-sensitive tumour samples were labelled with 

Cy3 (#PA23001, GE Healthcare) fluorescent dye and proteins extracted from 

chemotherapy-resistant tumour samples were labelled with Cy5 (#PA25001, GE 

Healthcare) fluorescent dye. The extract was diluted to a protein concentration of 1 mg/ml 

in Buffer A. Labelling required the addition of 1 ml of tissue extract to the respective dye 

vials.  The vial was then mixed by vortexing and incubated at RT for 30 min. During this 

incubation the vial was vortexed every 10 min.   

Sigma Spin Columns (#S0185-8EA, Sigma Aldrich), supplied in the Antibody Microarray 

kit, were used to remove any unbound dye from the sample. The storage buffer contained in 

the column was removed by centrifugation for 2 min at 750 x g and discarded. A volume of 

150 µl of each of the labelled samples was passed through the columns by centrifugation 

for 4 min at 750 x g and the eluates were retained. The eluate obtained is the labelled 

protein sample, which is light-sensitive. The protein concentration was determined again 

using the Bradford protein assay (section 4.3.3), which was expected to be close to 1 

mg/ml.   

4.3.5 Determination of dye-to-protein molar ratio 

The Dye to Protein Molar Ratio (D:P ratio) was determined by measuring the absorbance of 

the Cy3-labelled and Cy5-labelled protein samples at 552 nm and 650 nm respectively, 

with Buffer A as a blank. This was calculated as shown below, which was specified in the 
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Antibody Microarray kit, and as recommended, samples were only used if their D:P ratio 

was  2 

                       
    

    
    

                       
    

    
    

Y (mg/ml) = protein concentration after labelling with fluorescent dyes 

                           
 

      
           

           
                             

                                    
 

4.3.6 Antibody Incubation 

This procedure was carried out in a darkened room. Equal amounts of protein (90 µg) from 

each sample were mixed with 5 ml Array Incubation Buffer (supplied in the Antibody 

Microarray kit), which was then placed in the first well of the quadriPERM Cell Culture 

Vessel supplied in the kit. The Antibody Microarray slide supplied in the kit was washed 

briefly in PBS before incubation with the samples in the well. The slide was incubated with 

the protein samples for 40 min on an orbital shaker at low speed, protected from the light. 

After this period, the slide was washed 3 times in Wash Buffer (supplied in the kit) for 5 

min on an orbital shaker, protected from the light, followed by a 2 min wash with ultrapure 

distilled water under the same conditions. The slide was then allowed to air-dry for 30 min, 

protected from the light before scanning.  

4.3.7 Scanning and Analysis 

The antibody microarray slide containing antibody-protein complexes was scanned using a 

GenePix Personal 4100A Microarray scanner (Axon Instruments) with 532 and 635 nm 
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lasers. GenePix Pro software (Axon Instruments) was used to grid the antibody microarray 

slide and to apply protein names in the form of a list with their respective location on the 

array slide.  Negative controls on the antibody microarray slide were flagged as negative 

and all antibody-protein spots were manually edited to ensure accurate analysis. This 

involved manually editing and re-positioning the circle generated by the computer which 

defines the area of the spot (feature), to ensure correct representation of the spot for 

analysis and to ensure background pixels are not included in the analysis of the spot. Acuity 

software (Axon Instruments) was used to identify differentially expressed proteins between 

the two samples (chemotherapy-sensitive and chemotherapy-resistant tumours). 

Normalization was carried out based on the Lowess method, and spot criteria were applied 

to only include spots which contained < 3% saturated pixels, spots with ‘relatively’ uniform 

intensity and background, those which were detectable above the background and those 

which were not flagged (negative controls), as a form of quality control. Log ratios were 

given based on the relative intensity of each Cy3 / Cy5 dye-labelled sample protein. Fold 

changes ≥1.8 were considered significant, and fold changes ≥1.5 were also recorded for 

each experiment, as supporting data. Experiments were considered successful when the 

percentage of ‘substances matched’, provided by the software during analysis, was ≥ 90.  

This ensured that only slides of good quality were carried forward for data interpretation. 

The direction of fold change, showing an increase or decrease in the expression of a 

particular protein in chemotherapy resistant samples was given at the analysis stage. 

However, this was not expressed in the results, as dye-swap experiments were not 

performed to confirm this. The reason for this is that the advantage of performing a dye-

swap experiment did not out-weigh the cost of repeating the experiment, and more 

importantly, sufficient clinical sample was not available for labelling with an additional 
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fluorescent dye. The value of differential expression has therefore been given, as a fold 

change in expression, but the direction of change was elucidated at the confirmation stage 

using western blotting and following further clinical validation using 

immunohistochemistry.  

 

4.4 Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled to matrix-

assisted laser desorption/ionization time-of-flight/time of flight (MALDI-TOF/TOF) 

mass spectrometry  

All 2D PAGE / MS work was carried out using high-grade chemicals, which were personal 

to the user, in a PCR hood using polypropylene plastic-ware. nitrile gloves, hair protection 

and a lab coat were worn at all times, and extra care was taken throughout to reduce the risk 

of keratin contamination. 

4.4.1 Protein Extraction 

Clinical breast tumour samples selected for 2D-PAGE/MALDI TOF/TOF MS analysis are 

outlined in Figure 15. 2D extraction buffer (Appendix 2) was prepared immediately before 

it was required; it was made fresh for each use and could not be stored on ice due to the 

precipitation of urea out of solution. It is important to use fresh buffer each time as a major 

factor affecting the accuracy of this technique is carbamylation, which results from the 

breakdown of urea to cyanate which can react with amino groups of proteins (Garfin 2003) 

and affect IEF. Breast tumour tissue was removed from the minus 80 C freezer and 

weighed. Work following this was carried out as quickly as possible in a Class II Tissue 

Culture Hood, using sterile technique to avoid contamination, and the tumour tissue was 

kept on ice to ensure minimal protein degradation. The tissue was then placed in a sterile 
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petri dish on ice, cut into small pieces using a disposable scalpel and washed by bathing 

and agitating gently in chilled PBS to remove any residual blood. The tissue was divided 

into pieces ≤ 0.1g and transferred to microcentrifuge tubes containing 1 ml of 2D extraction 

buffer. Tissue  0.1 g had previously been tested, but there was insufficient 2D extraction 

buffer to extract sufficient protein from this amount of tissue. The microcentrifuge tubes 

containing sample were sonicated for 15 min, with 5 min incubation on ice every 5 min to 

prevent excess heating of the sample. The tubes were then vortexed for 5 min (30 s on 

followed by 30 s off throughout to prevent excess foaming) and incubated for 16 hours at 4 

C with end-over-end rotation. Centrifugation for 20 min at 10,000 x g at 4 C was used to 

remove tissue debris and fat from the sample, followed by further centrifugation for 5 min 

under the same conditions, twice to ensure complete removal of fat. The supernatant was 

transferred into a clean chilled microcentrifuge tube and stored at minus 80 C until 

required.   

4.4.2 ReadyPrep 2-D Cleanup Kit  

The ReadyPrep 2-D Cleanup Kit (#163-2130, Bio-Rad) was used to prepare the samples for 

isoelectric focusing (IEF) by concentrating the protein in the sample and removing 

components which interfere with IEF, such as lipids, salts and nucleic acids. The kit was 

able to clean up 200 µl of sample per 1.5 ml microcentrifuge tube; the sample was therefore 

divided between microcentrifuge tubes before commencing. All reagents used were 

supplied in the kit, excluding the dH2O (proteomic-grade). Wash Reagent 2 was stored at – 

20 C for 1 hour before use. Six hundred µl of Precipitating Agent 1 was added to each 

tube, mixed thoroughly by vortexing and incubated on ice for 15 min. Six hundred µl of 

Precipitating Agent 2 was also then added to each tube, and mixed by vortexing. The tubes 

were then centrifuged at maximum speed (~12,000 x g) for 5 min to form a pellet. The 
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tubes were removed promptly and the supernatant was carefully removed by pipetting. The 

tubes were re-centrifuged at maximum speed for 10 s and any remaining supernatant was 

carefully removed by pipetting. Forty µl of Wash Reagent 1 was then added to each tube on 

top of the pellet. The tubes were then centrifuged at maximum speed (~12,000 x g) for 5 

min and the supernatant was removed by careful pipetting. Twenty five µl of dH2O 

(proteomic-grade) was then added to the tubes containing the pellet, and the tubes were 

vortexed. One ml of pre-chilled (-20 C) Wash Reagent 2 was added to each tube along 

with 5 µl of Wash 2 Additive. The tubes were vortexed and incubated at -20 C for 30 min. 

During the 30-min incubation, the tubes were vortexed every 10 min for 30 s. After this 

incubation, the tubes were centrifuged at maximum speed for 5 min to form a tight pellet. 

The supernatant was carefully removed by pipetting and centrifuged again to ensure all 

remaining liquid was removed. The pellet was air-dried for  5 min until translucent. The 

pellets were then re-suspended in 200 µl of fresh 2D extraction buffer by pipetting and 

vortexing.   

The samples, which had been cleaned up by the ReadyPrep 2-D Cleanup Kit were then 

quantified using the 2-D Quant Kit (#80-6483-56, GE Healthcare) (section 4.4.3) to ensure 

accurate loading of the sample (200 µg protein per gel) was achieved.  

4.4.3 Protein Quantification 

The 2-D Quant Kit (#80-6483-56, GE Healthcare) was used to determine the concentration 

of protein extracts which are to be used for IEF and 2D-PAGE. This quantification kit was 

chosen based upon reagent compatibility. The assay is based upon the binding of copper to 

the proteins, and unbound copper is measured by absorbance. The colour intensity is 

inversely proportional to the protein concentration. Working Colour Reagent was prepared 

by mixing 100 parts of Colour Reagent A to 1 part of Colour Reagent B, as stated in the kit 
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protocol. Six BSA protein standards were prepared, ranging from 0-50 µg by adding 

increasing volumes of 2 mg/ml BSA solution to microcentrifuge tubes. Samples to be 

quantified were added in duplicate to microcentrifuge tubes at volumes of 2 µl and 5 µl. To 

each tube, 500 µl Precipitant was added and the tube was vortexed and incubated for 3 min 

at RT. The same amount (500 µl) of Co-Precipitant was added to each tube and vortexed. 

The tubes were centrifuged at 10, 000 x g for 5 min to pellet the protein. The supernatant 

was carefully removed by pipetting. To each tube, 100 µl of Copper Solution and 400 µl of 

dH2O were added and the tube was vortexed to re-suspend the protein. One ml of Working 

Colour Reagent was added to each tube, mixed by inversion and incubated at RT for 15 

min. The absorbance of each sample and standard was read at 480 nm, on a Multiscan plate 

reader (Labsystems) with dH2O as a blank in a 96 well plate. The protein concentration of 

the samples was then calculated from the equation of the line produced from the standard 

curve.  

4.4.4 Isoelectric Focusing 

Two hundred micrograms of protein sample was pipetted along the back of an 11 cm 

disposable Rehydration/Equilibration Tray (#165-4025, Bio-Rad), at a volume of 185 µl 

(Figure 11). This was performed in triplicate for each sample. ReadyStrips IPG strips (pH 

4-7; 11 cm) (#163-2015, Bio-Rad) were rehydrated with the sample by placing them gel-

side down into the sample in the rehydration tray, ensuring equal coverage of sample along 

the strip. The sample was left to absorb into the strip for 1 hour before 3 ml of mineral oil 

(#163-2129, Bio-Rad) was added into the well. This prevented evaporation of the sample 

during the rehydration process, where the IPG strip was incubated with the sample for 16 

hours at RT.   
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The Protean
®
 IEF tray (#165-4020, Bio-Rad) was cleaned and dried thoroughly prior to 

use. Paper electrode wicks (#165-4071, Bio-Rad) were placed over the electrodes in the 

tray and 8 µl of dH2O was pipetted onto each. Rehydrated IPG strips were transferred to 

corresponding wells in the focusing tray gel-side down and covered with 3 ml of mineral 

oil. The Protean
®
 IEF tray was transferred to the Protean

®
 IEF Cell (#165-4001) and IEF 

was performed using a 3-step program consisting of 20 min at 250 V (linear); 150 min at 

8000 V (linear); 20 000 V-hours at 8000 V (rapid), which lasted 5.5 hours in total. The 

focused IPG strips were transferred into a clean Rehydration/Equilibration tray gel-side up 

and stored at minus 80 C until required for SDS-PAGE (for no longer than 1 month). 

4.4.5 Sodium-dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

The IPG strips were defrosted and equilibrated in preparation for SDS-PAGE. Stock 

equilibration buffer (EB) was used to prepare EB-1 and EB2 (Appendix 2) which contained 

DTT and IAA respectively. These agents ensure the effective separation of proteins in the 

2
nd

 dimension by ensuring they are in the right conditions; they are saturated with SDS 

which gives the proteins a negative charge ensuring their migration to the anode during 

separation; DTT and IAA prevent reformation of disulphide bonds by reduction and 

alkylation.  The IPG strips were transferred into a clean rehydration tray and incubated with 

4 ml of EB-1 for 10 min on an orbital shaker. This was discarded and the IPG strips were 

then incubated with 4 ml of EB-2 in the same way but also covered with foil as IAA is 

sensitive to light. During this period, 1% overlay agarose solution (Appendix 2) was 

repeatedly heated (on a medium heat) to melt it and maintain it in a liquid state. Criterion™ 

pre-cast gels (8-16% Tris-HCl polyacrylamide gel; 11 cm) (#345-0105, Bio-Rad) were 

prepared by washing wells with dH2O and blotted dry immediately before required with 

filter paper. IPG strips were washed briefly in Tris-glycine running buffer (#161-0772, Bio-
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Rad) before being blotted and placed at the top of the gel. Molten agarose was transferred 

into the main well of the gels and the IPG strips were pushed into it, ensuring that no air-

bubbles were present. The agarose was allowed to set for 5 min. Both chambers of the tank 

were filled with Tris-glycine running buffer and Precision Plus Protein Standards Dual 

Colour Marker (#161-0374, Bio-Rad) was added to its designated well. The gel was run for 

65 min at a constant voltage of 200 V, 500 mA and 300 W.   

4.4.6 Staining of Proteins 

After running, gels were removed from their casing and washed 3 times for 5 min in dH2O 

in a nalgene staining pot on an orbital shaker. Bio-safe Coomassie Stain (#161-0787, Bio-

Rad) was used to stain the gels for 1 hour on an orbital shaker. The gels were de-stained for 

16 hours on an orbital shaker at RT in dH2O. Following this, the gels were washed again 3 

x 5 min before scanning with a GS800 calibrated densitometer (Bio-Rad) and imaging with 

Quantity One (Bio-Rad) software. 

4.4.7 PDQuest Analysis Software 

PDQuest Analysis Software is a complex tool which is used to detect and analyse protein 

spots on and between gels and identify differentially expressed protein spots between 

groups of gels (e.g ‘test’ and ‘control’). Gels were ‘test’ (chemotherapy-resistant sample) 

and ‘control’ (chemotherapy-sensitive samples), in triplicate. Spot detection parameters 

were set by identifying faint, weak and clusters of protein spots. This software 

automatically detected and matched spots, however all spots were edited and defined 

manually and re-matched to ensure spots had been identified and matched correctly across 

all gels, which took 4-5 days for an experiment consisting of 6 gels. Spots which contained 

more than one protein, were part of a cluster or could not be matched with confidence were 
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not included. Matched spots were then normalised using ‘total quantity in valid spot’ 

parameters. A dataset was then automatically created and the criteria for differentially 

expressed protein spots was applied; only spots with a fold change  2, of 95% significance 

were identified. For clusters of spots, or large spots where it was difficult to determine how 

many spots were present, a 3-D viewer tool was used. Analysis, which identified and 

quantified differentially expressed protein spots, used Boolean quantification and the 

Students t-test. Differentially expressed protein spots were highlighted on gels and 

histograms were provided to demonstrate the difference in protein expression between 

chemotherapy-sensitive and chemotherapy-resistant samples.   

4.4.8 Spot excision 

Protein spots to be excised were identified and excised using a disposable scalpel (which 

was washed in ddH2O between uses) on ProteoWorks Plus Gel Cutting Sheets (#165-7057, 

Bio-Rad). Spots were excised from 2-3 respective gels of the same sample type only (e.g 

chemotherapy-resistant gels) and transferred into 0.5 ml Protein LoBind microcentrifuge 

tubes (#022431064, Eppendorf). Spots were only excised when they contained a single 

protein, were not part of a streak or a cluster and were not adjoining another protein spot.  

4.4.9 In-gel digestion 

This procedure involved the tryptic digestion of proteins into peptides within the gel in 

order to release them from the gel. It is essential to minimise sample loss and contamination 

by following a basic protocol which does not include an excessive number of steps. 

Ammonium bicarbonate 100 mM stock solution was prepared by dissolving 0.395 g in 50 

ml ddH2O. From this, 25 mM ammonium bicarbonate (50% ACN) and 25 mM ammonium 

bicarbonate (aq) were prepared.  
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4.4.9.1 De-stain 

Gel pieces were de-stained by incubating with 100 µl of 25 mM ammonium bicarbonate 

(50% ACN) for 20 min at room temperature. The supernatant was removed and this step 

was repeated. Following this, gel pieces were washed by incubating with 100 µl of 

acetonitrile (ACN) for 5 min at room temperature. Gel pieces were then dried by vacuum 

centrifugation for 20 min.  

4.4.9.2 Digest 

Trypsin Gold (#V5280, Promega) was reconstituted with 50 mM acetic acid to a 

concentration of 0.1 mg/ml (stock). Twenty microlitres (2 µg) of stock trypsin was diluted 

with 80 microlitres of 25 mM ammonium bicarbonate (aq) [0.02 µg/ul], of which 10 µl was 

added to each eppendorf containing gel pieces. Gels were given 5-10 min to re-hydrate, 

after which they were covered with 5-15 µl of 25 mM ammonium bicarbonate (aq), whilst 

keeping the volume as low as possible. The gel pieces were then incubated for 16 hours at 

37 C, during which the proteins were digested into peptides. 

4.4.10 Preparation of MALDI matrix and plate-spotting 

The MTP384 target plate polished steel TF (#209520, Bruker Daltonics) was cleaned by 

wiping with 2-propanol and ddH2O and sonicating in 2-propanol followed by a 70% 

ddH2O: 30% ACN and 0.1% Trifluoroacetic acid (TFA) solution, as recommended by 

Bruker. The matrix consisted of a freshly-prepared 5 mg/ml solution of 4-hydroxy-α-

cyanocinnamic acid (CHCA) (#70990, Fluka) in 50% ACN and 0.1% TFA (aq) (v/v). One 

microlitre of each peptide sample was spotted directly onto the target plate, immediately 

followed by 1 µl of matrix solution. Calibrant consisting of six known peptides (section 
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4.4.11) was also spotted onto designated locations on the plate (1 µl) followed by 1 µl of 

matrix solution.  

4.4.11 MALDI-TOF/TOF Mass Spectrometry 

The MALDI-TOF/TOF MS which was used was an Ultraflex III (Bruker Daltonics). Mass 

spectra were obtained in reflectron mode from positive ions generated by a Nd:YAG 

smartbeam laser. Data were acquired using FlexControl (version 3.3, Bruker Daltonics) in 

AutoXecute mode (comprising AutoXMethods and AutoXSequences) to enable automation 

of MS calibration and sample data acquisition. Mass Spectra were acquired over a mass 

range of m/z 800-4000. Final mass spectra were externally calibrated using an adjacent spot 

containing 6 known peptides (des-Arg
1
-Bradykinin, 904.681; Angiotensin I, 1296.685; 

Glu
1
-Fibrinopeptide B, 1750.677; ACTH (1-17 clip), 2093.086; ACTH (18-39 clip), 

2465.198; ACTH (7-38 clip), 3657.929). Calibrant was spotted for every 8 sample spots 

(Figure 16) 

Plate layout Key: 

   

   

   
 

 Sample 

 Calibrant 
 

Figure 16: Layout of target plate for MALDI TOF/TOF MS 

Calibrant was spotted for every adjacent 8 spots of peptide sample  

 

For acquisition of MS spectra, 50 laser shots were fired at 16 random positions to yield a 

sum of 800 shots.  For acquisition of MS/MS spectra, 500 shots were used to check the 

precursor ion and 2500 laser shots were used for fragment ions. Monoisotopic masses were 

obtained using a SNAP averagine algorithm (C 4.9384, N 1.3577, O 1.4773, S 0.0417, H 

7.7583) and a signal-to-noise threshold of 2. From the PMF generated for each spot, the 10 
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highest peaks, with a signal-to-noise threshold >30, were automatically selected for MS/MS 

fragmentation. Fuzzy control was used to optimise the laser power for MS/MS acquisitions. 

Fragmentation was performed in LIFT mode without addition of collision gas. The default 

calibration method was used for MS/MS spectra, which involved base-line subtraction and 

smoothing (Savitsky-Golay, width 0.15 m/z, cycles 4). Monoisotopic peaks were detected 

using a SNAP averagine algorithm (C 4.9384, N 1.3577, O 1.4773, S 0.0417, H 7.7583) 

with a signal-to-noise threshold ≥ 6. Flex Analysis software (version 3.3, Bruker Daltonics) 

was used to perform the spectral processing and peak list generation for both MS and 

MS/MS spectra. Processed peak lists were submitted to Mascot (version 2.1, Matrix 

Science Ltd) for database searching (IPI Human) via the ProteinScape interface (version 

2.3, Bruker Daltonics). Search criteria were specified, which included; enzyme, trypsin; 

fixed modifications, carbamidomethyl (C); variable modifications, oxidation (M); peptide 

tolerance, 250 ppm; MS/MS tolerance, 0.5 Da; Instrument, MALDI-TOF/TOF.  

4.5  Ingenuity Pathway Analysis 

Data generated by antibody microarray analysis and 2D-PAGE MALDI-TOF/TOF MS was 

analysed using IPA (Ingenuity Systems, www.ingenuity.com). Each set of data, containing 

a list of gene symbols, which had been checked against the IPI and NCBI databases, was 

uploaded into IPA software online.  

The Ingenuity Knowledge Base is the core facility and repository behind IPA, holding all 

the biological and chemical information, functional annotations and modelled relationships 

for genes, proteins, complexes, disease states, cells, tissues etc in a well-structured and 

accessible manner. The Ingenuity Knowledege Base is a comprehensive database 

containing manually reviewed, accurate information. Within the Ingenuity Knowledge Base 

there are four types of information, including both experimental- and literature-based 

http://www.ingenuity.com/
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sources, which is all manually reviewed: (1) Ingenuity® Expert Findings, which contains 

experimentally-demonstrated information; (2) Ingenuity® ExpertAssist Findings, from 

recently published journal abstracts; (3) Ingenuity® Expert Knowledge, containing 

signalling and metabolic pathway information, which is curated from a team of Ingenuity 

experts ; (4) Ingenuity® Supported Third Party Information, which is selected from a range 

of specific sources and databases including Entrez Gene, Gene Ontology and RefSeq.  

For network generation, each gene was mapped to the corresponding gene within the 

Ingenuity Knowledge Base, and an ‘annotated dataset’ was generated. Genes which were 

successfully mapped into the Ingenuity Knowledge Base were called ‘network eligible’ 

molecules, and were subsequently overlaid onto a global molecular network developed 

from the information contained within the Ingenuity Knowledge Base. During analysis of 

data, networks of ‘network eligible’ molecules were then algorithmically generated based 

on their connectivity. The general settings allowed the maximum number of ‘molecules per 

network’ and ‘networks per analysis’ to be included, to highlight direct relationships 

between human molecules which had been reported in both tissues and cell lines.  

Canonical pathway analysis of the dataset involved the identification of pathways within 

the IPA library of canonical pathways that were most significant to the dataset. All 

molecules mapped within the dataset were considered for canonical pathway analysis. The 

significance of the association between the dataset and the canonical pathway was 

measured by two factors; 1) A ratio of the number of molecules within the dataset that can 

be mapped into a pathway, divided by the total number of molecules involved in that 

pathway, 2) Fisher’s exact test was performed to determine the probability that the 

association between the dataset and the canonical pathway identified had occurred by 

chance, which was displayed as a p-value. 



 

105 

 

4.6 Western Blotting  

4.6.1 Protein Extraction 

4.6.1.1 From cultured cells 

Western blot (WB) extraction buffer was prepared (Appendix 2) and to each ml, 10 µl each 

of Phosphatase Inhibitor Cocktail 1 (#P2850, Sigma Aldrich), Phosphatase Inhibitor 

Cocktail 2 (#P5726, Sigma Aldrich) and Protease Inhibitor (#80-6501-23, Amersham 

Biosciences) was added as well as 50 µl 2-Mercaptoethanol (#M-7522, Sigma Aldrich). 

Cells were grown to 80% confluence, pelleted by centrifugation at 1600 rpm for 3 min and 

re-suspended in PBS 3 times to wash and ensure removal of the media from the cells. The 

cell pellet was then re-suspended in 250 µl of WB extraction buffer containing inhibitors 

and vortexed for 5 min. WB extraction buffer contained Tris-HCl buffer; glycerol, which 

helped to weigh down the protein sample enabling it to run efficiently; SDS, which 

denatured proteins to polypeptides and applied a net negative charge to the proteins; 

bromophenol blue, which is the standard dye used for visualisation of the protein samples 

as they run down the gel; beta-mercaptoethanol, which ensured proteins were fully 

denatured. It was then placed on an end-over-end rotator for 16 hours at 4 C, to aim for 

maximum extraction of protein, and then centrifuged at 10,000 x g for 15 min at 4 C to 

remove cell debris. The supernatant was transferred into a fresh chilled microcentrifuge 

tube and stored at minus 80 C.   

4.6.1.2 From breast tumour tissue 

Clinical breast tumour samples selected for western blotting are shown in Figure 15. WB 

extraction buffer was prepared (Appendix 2), containing 10 µl each of Phosphatase 

Inhibitor Cocktail 1 (#P2850, Sigma Aldrich), Phosphatase Inhibitor Cocktail 2 (#P5726, 
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Sigma Aldrich) and Protease Inhibitor (#80-6501-23, Amersham Biosciences) and 50 µl 2-

Mercaptoethanol (#M-7522, Sigma Aldrich) per ml. 

Breast tumour tissue was removed from the minus 80 C freezer and weighed. Work 

following this was carried out as quickly as possible in a Class II Tissue Culture Hood, 

using sterile technique to avoid contamination, and the tumour tissue was kept on ice to 

ensure minimal protein degradation. The tissue was then placed in a sterile petri dish on ice, 

cut into small pieces using a disposable scalpel and washed by bathing and agitating gently 

in chilled PBS to remove any residual blood. The tumour was then transferred into 800 µl 

WB extraction buffer containing inhibitors in a universal tube and homogenised on ice 

using a TissueRuptor (#9001273, Qiagen) with a disposable probe (#990890, Qiagen). The 

tissue was homogenised for 3 x 20 s, with 20-second gaps between each to prevent excess 

heating. After homogenisation the tissue extract was transferred into a chilled 

microcentrifuge tube and centrifuged at 13,000 x g for 5 min at 4 C. The supernatant was 

transferred into a clean chilled microcentrifuge tube and the pellet and layer of fat (due to 

the high proportion of adipose tissue present in breast tissue) was discarded. This was 

repeated 3-5 times until there was no fat remaining and the tissue extract was stored at 

minus 80 C. 

4.6.2 Protein Quantification 

The RCDC (Reducing agent Compatible, Detergent Compatible) Protein Quantification kit 

(#500-0119 to -0122, Bio-Rad) was used, which is a colourimetric assay based upon the 

Lowry Assay was used due to its compatibility with components used in this procedure. 

Five BSA protein standards were prepared ranging from 0.25 to 1.5 mg/ml, as 

recommended in the assay protocol, by diluting a 2 mg/ml stock of BSA with dH2O in 

microcentrifuge tubes. Sample to be quantified was diluted to 1:2, 1:5 and 1:10 dilutions to 
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ensure its concentration fell within the assay range. RC Reagent I was added to each tube at 

a volume of 125 µl, vortexed and incubated at RT for 1 min. RC Reagent II was added to 

each tube, at a volume of 125 µl, vortexed and centrifuged at 15,000 x g for 5 min. This 

precipitated the protein out of solution so a pellet remained in the tube. The supernatant was 

discarded and the tube was inverted on absorbent paper to ensure maximum removal of the 

liquid. Working Reagent A was prepared, which included 20 µl of Reagent S for every 1 ml 

of Reagent A. This was added to each tube at a volume of 127 µl and vortexed to re-

suspend the protein. One ml of Reagent B was added to each tube and incubated at RT for 

15 min. Standards and samples to be quantified were transferred to a 96-well plate where 

their absorbances were read at 690 nm using a Multiscan plate reader (Labsystems). 

4.6.3 One-dimensional gel electrophoresis 

Protein extracts were diluted with WB extraction buffer (Appendix 2) containing 5% 2-

Mercaptoethanol (#M-7522, Sigma Aldrich) to achieve 25 µl of 20 µg of protein, 

depending on the optimised conditions of the antibody to be probed for. The proteins in the 

extracts were then denatured by heating at 95 C in a thermocycler for 5 min. They were 

then placed on ice to prevent reversal of protein denaturation, vortexed and centrifuged at 

maximum speed (~12,000 x g) for 30 s. Twenty µl of extract was then loaded into 

appropriate wells in a 12% Precise Protein Gel (#25222, Thermo Scientific) with Tris-

HEPES-SDS running buffer (#28368), alongside 10 µl of Precision Plus Protein WesternC 

Standard (#161-0376, Bio-Rad), as a marker of molecular weight. The gel was run at a 

constant voltage of 140V for 40 min. 
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4.6.4 Transfer of proteins onto nitrocellulose membrane 

Proteins that had been separated by molecular weight were transferred onto a nitrocellulose 

membrane. This was achieved using the iBlot dry transfer system (Invitrogen). When using 

the iBlot, ‘iBlot gel transfer stacks, nitrocellulose’ (#IB3010-01, Invitrogen) were used. 

Firstly, the ‘bottom’ disposable transfer stacks containing membranes were placed in the 

machine. Following this, gels were placed on top of the membrane in the required 

orientation. Filter paper soaked with dH2O was placed on top of the gels and air bubbles 

were removed using a roller. The ‘top’ disposable pack containing the anode was placed on 

top of the membrane followed by a sponge containing an electrode. The standard transfer, 

as recommended by the manufacturer was used, which ran for 7 min, and transferred the 

proteins from the gel onto the nitrocellulose membrane.  

4.6.5 Blocking of binding sites on the membrane 

Once the proteins had been transferred onto the membrane, the free binding sites on the 

membrane were blocked. This was achieved by incubating the membrane with ‘blocking 

solution’ (5% low-fat milk powder (Marvel), diluted in TBS-Tween20) in a Nalgene 

staining box on an orbital shaker for 1 hour at RT or 16 hours at 4 C. This was necessary to 

prevent unwanted binding of antibodies to the membrane when probing for a specific 

protein. This may occur due to the high affinity membranes have for proteins.   

4.6.6 Immunoblotting 

The primary antibody to the protein of interest was optimised and diluted to its optimum 

concentration in blocking solution. It was incubated with the membrane for 2 hours at RT 

on an orbital shaker. Following this, the membrane was washed 3 times with TBS-Tween20 

(5 min per wash) on an orbital shaker, to remove any unbound antibody. The membrane 
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was then incubated with a HRP-conjugated secondary antibody to the animal the primary 

antibody was raised in (Table 5). This was diluted to its optimum concentration in blocking 

solution and incubated with the membrane for 1 hour at RT on an orbital shaker. For 

visualisation of the Precision Plus Protein WesternC Standard molecular weight marker, 1 

µl of Precision Protein StrepTactin-HRP conjugate (#161-0381, Bio-Rad) was also added 

to the blocking solution containing secondary antibody. Three washes of 5 min each with 

TBS-Tween20 were carried out on an orbital shaker.   

4.6.7 Loading controls 

To test for accurate loading of proteins into the gel, thus allowing fair comparisons to be 

made between samples, proteins which should be present in all cells at equal concentrations 

are probed for. These are known as ‘housekeeping proteins’; here -actin was used as the 

loading control (Table 5).  

4.6.8 Detection of proteins 

In order to detect the proteins, the membrane was incubated with equal amounts 

Supersignal West Pico Stable Peroxide Solution and Supersignal West Pico Luminol 

Enhancer Solution from the Supersignal West Pico Chemiluminescent Substrate Kit 

(#34078, Thermo Scientific) for 5 min in the dark with frequent gentle manual agitation. 

The membrane was then placed between transparent plastic sheets and placed in an 

intensifying cassette with CL-XPosure Film (#34090, Thermo Scientific) and developed 

using 250 ml each of GBX Developer (#P7042, Sigma Aldrich), by gentle manual agitation 

in a developer tray until bands appeared, followed by 30 s incubation in 250 ml 5% Acetic 

Acid and then 250 ml GBX Fixer (#P7167), with gentle manual agitation in a plastic tray. 

The developed films were then allowed to air-dry before scanning and densitometry.     
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4.6.9 Densitometry 

Densitometry was used to quantify the density of bands on films, representing expression 

of a particular protein in the chosen protein extract. The film was scanned using a GS800 

Calibrated Densitometer (Bio-Rad) and Quantity One software (Bio-Rad) was used to 

normalise the protein of interest against the loading control and quantify relative densities 

of bands in order to calculate fold changes between samples. 

Table 5: Table of primary antibodies used for western blotting 

The table lists the primary antibodies used for analysis of protein expression by western 

blotting. The secondary antibody used at all times was goat anti-rabbit IgG-HRP (#SC-

2030, Santa Cruz), which was applied at 1:1000 in 5% milk for 1 hour at room temperature, 

 

Antibodies  
Concentration and 

blocking agent 
Incubation period Details 

Beta-actin 1:1000 in 5% milk 2 hours 
Rabbit polyclonal 

(#ab8227, Abcam) 

14-3-3 (beta, eta, tau 

and sigma) 
1:1000 in 5% milk 2 hours 

Rabbit polyclonal 

(#ab9063, Abcam) 

BCL2L1 (Bcl-xL) 1:400 in 5% milk 16 hours 
Rabbit monoclonal 

(#ab32370, Abcam) 

BID 1:200 in 5% milk 16 hours 
Rabbit monoclonal 

(#ab32060, Abcam) 

14-3-3 epsilon 1:2500 in 5% milk 2 hours 
Rabbit polyclonal 

(#ab43057, Abcam)  

14-3-3 zeta 1:1000 in 5% milk 2 hours 
Rabbit polyclonal 

(#ab51129, Abcam)  

4.7 Immunohistochemistry 

Formalin-fixed, paraffin-embedded pre-treatment core biopsy tissue samples were retrieved 

for the 36 samples (from 35 patients) from the previously described sample cohort 

(Garimella 2007) (section 4.2) (REC 03/00/038). The sections were cut to a thickness of 4 

µm, mounted onto Superfrost Plus microscope slides (#00594, Menzel-Glaser) and 

incubated at 37 °C overnight. Each immunohistochemical staining experiment contained a 

negative control, from which primary antibody was omitted.  
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4.7.1 De-waxing and rehydration 

Tissue sections were de-waxed by incubating in warm (~50 °C) Histoclear II (#HS-200, 

National Diagnostics) for 10 min, followed by two 10 s incubations (with gentle agitation) 

in separate solutions of Histoclear II (#HS-200, National Diagnostics). Sections were 

rehydrated by incubating (with gentle agitation) for 10 s in 100% ethanol. This was 

repeated three times, using 3 separate ethanol solutions. Sections were then rinsed in 

running tap water for 1 min.  

4.7.2 Blocking of endogenous peroxidase  

The endogenous peroxidase of red blood cells was blocked by incubating with methanol 

containing 30% hydrogen peroxide for 20 min.  

4.7.3 Antigenic site retrieval  

Antigenic site retrieval was achieved by boiling slides in a stainless steel pressure cooker 

(Prestige) containing 1500 ml of 1:100 Antigen Unmasking Solution (#H-3300, Vector 

Laboratories) at full pressure (103 kPa) for 3 min. Slides were then transferred into 1 x Tris 

Buffered Saline (TBS).  

4.7.4 Blocking of non-specific binding sites within sections 

Slides were assembled onto a sequenza system (Shandon, Basingstoke, UK) for 

immunohistochemical staining, using TBS-washes to ensure accurate assembly. Non-

specific binding sites within sections were blocked by incubating slides with 100 µl of 1 x 

casein (#SP-5020) in TBS for 10 min, where the StreptABComplex/HRP Duet Kit 

(#K0492, DakoCytomation Ltd) was used downstream. Where the R.T.U VECTASTAIN 

Universal Quick Kit (#PK-7800, Vector Laboratores Ltd) was used downstream, blocking 
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was achieved with 100 µl of pre-diluted normal horse serum, provided in the kit, for 10 

min. Slides were then washed twice for 5 min in TBS.  

4.7.5 Incubation with primary antibody 

Depending upon the visualisation kit used downstream, primary antibody was diluted in 

either: 

 0.2 x casein (#SP-5020, Vector Laboratories) in TBS (StreptABComplex/HRP 

Duet Kit (#K-0492, DakoCytomation Ltd)) 

 1.5% normal horse serum (provided) in TBS (R.T.U VECTASTAIN Universal 

Quick Kit (#PK-7800, Vector Laboratores Ltd)) 

Antibody details and dilutions used are listed in Table 6. One hundred microlitres of diluted 

antibody was incubated with the tissue sections for 2 hours at room temperate. The negative 

control was incubated with 100 µl of either 0.2 x casein or 1.5% normal horse serum.  

4.7.6 Antibody detection 

Antibody detection was achieved using one of two kits (the first has now been 

discontinued).  

4.7.6.1 StreptABComplex/HRP Duet Kit  

Antibody detection was achieved using the StreptABComplex/HRP Duet Kit (#K-0492, 

DakoCytomation Ltd) kit following manufacturers’ instructions. Reagent C (biotinylated 

goat anti-mouse/rabbit secondary antibody) was diluted 1:100 in TBS, of which 100 µl was 

applied to each slide and incubated for 30 min. The slides were then washed in TBS for 5 

min. Reagents A (streptavidin) and B (biotinylated peroxidase) were diluted together with 

TBS, each at 1:100, of which 100 µl was incubated with each slide for 30 min. The slides 



 

113 

 

were rinsed again for 5 min in TBS before the slides were dismantled from the sequenza 

system into fresh TBS.  

4.7.6.2 R.T.U VECTASTAIN Universal Quick Kit  

The R.T.U VECTASTAIN Universal Quick Kit (#PK-7800, Vector Laboratories Ltd) 

procedure was carried out according to manufacturers’ instructions, however incubation 

times described were found to be sub-optimal. Optimisation of the protocol resulted in 

doubling the incubation times described by the manufacturer. One hundred microlitres of 

pre-diluted biotinylated pan-specific universal secondary antibody was incubated with each 

slide for 20 min. The slides were then washed in TBS for 5 min. Slides were then incubated 

with pre-prepared streptavidin/peroxidise complex reagent; 100 µl for 10 min. Slides were 

then washed again for 5 min in TBS, dismantled from the sequenza system and transferred 

into fresh TBS.  

4.7.7 Antibody Visualisation 

Antibody visualisation was achieved using 0.02% diaminobenzidine (DAB) in TBS 

containing 0.125% hydrogen peroxide (30% w/w solution). Slides were incubated in the 

solution until brown staining of the sections could be seen under a light microscope; this 

did not exceed 30 min, due to precipitation of DAB.  

4.7.8 Enhance, counterstain and differentiate 

The contrast of the staining was enhanced by incubating in 0.5% copper suphate in 0.9% 

saline for 5 min. Sections were then counterstained using filtered Harris’ Haematoxylin 

(#HHS32, Sigma Aldrich), by incubating (with gentle agitation) for 20 s. Excess 

haematoxylin was removed by washing slides in running tap water. The counterstain was 
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differentiated by incubating (with gentle agitation) for 10 s in acid alcohol (70% alcohol, 

1% HCl (conc)), followed by washing slides in running tap water.  

4.7.9 Rehydration, clearing and mounting 

Tissue sections were rehydrated by taking slides through 3 solutions of 100% ethanol, with 

gentle agitation for 10 s in each. Sections were cleared in Histoclear II (#HS-200, National 

Diagnostics), by taking slides through 3 solutions with gentle agitation for 10 s in each. 

Slides were mounted onto cover-slips using Histomount (#HS-103, National Diagnostics) 

and allowed to dry overnight.  

4.7.10 Antibodies used for Immunostaining 

Table 6: Primary antibodies used for immunohistochemical staining  

Antibody Details Dilution Detection kit 

14-3-3 tau 
Mouse monoclonal (#T5942, Sigma 

Aldrich) 
1:50 Dakocytomation 

tBID 
Rabbit polyclonal (#ab10640, 

Abcam) 
1:50 Vector Laboratories 

Bcl-xL 
Mouse monoclonal (#B9429, Sigma 

Aldrich) 
1:35 Vector Laboratories 

 

4.7.11 Histological scoring of immunostained tissue sections  

Scoring systems were developed after observation of all slides across the sample series, and 

were unique for each staining localisation. Scoring was performed by two observers, 

independently, after consultation with a consultant histopathologist. In the event of 

disagreement between the two observers, a third observer was introduced, so a majority-

based score could be assigned.  
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Table 7: Scoring method for cytoplasmic immunostaining 

% Coverage 

within invasive 

tumour 

>50% >50% >50% >50% 

Symbol - -/+ + ++ 

Intensity Weak Weak-moderate Moderate Strong 

Score Negative Positive 

 

Table 8: Scoring method for immunostaining of the nuclear membrane 

Staining in 20% of tumour cells Staining in <20% of tumour cells 

Positive Negative 

  

Table 9: Scoring method for nuclear staining 

Intensity 
Weak 

(0 points) 

Moderate 

(1 point) 

Strong 

(2 points) 

Nuclear staining coverage in  50% 

tumour 
Patchy (0 points) Solid (1 point) 

Points Score 

0 Negative 

1 Negative 

2 Positive 

3 Positive 

4.7.12 Fishers Exact test for determination of statistical significance 

In order to assess the statistical significance between histological scores and chemo-

resistance in breast cancer, two-tailed Fishers exact tests were performed from 2 x 2 

contingency tables, which generated exact probability (P) values. Where P values were ≤ 

0.05, the null hypothesis was rejected and the association between histological scores and 

chemo-resistance was deemed significant. Calculations were performed using GraphPad 
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Software Inc (USA) (at http://www.graphpad.com/quickcalcs/contingency1.cfm), with data 

entered as shown in Table 10. 

 

Table 10: A 2 x 2 contingency table for the Fishers exact test  

A 2 x2 contingency table for calculation of statistical significance using the Fishers exact 

test. Values were entered (x) for numbers of chemotherapy-sensitive and chemotherapy–

resistant negative and positive scores.  

 Negative Positive 

Chemotherapy-sensitive x x 

Chemotherapy-resistant x x 

 

4.7.13  Determination of inter-observer variability using the Kappa statistic 

The Kappa statistic was used to determine the variability between observers for histological 

scoring, which not only determines the agreement between observers but also takes into 

account agreements that could have occurred by chance. 

 

Table 11: A 2 x 2 contingency table for the Kappa statistical test 

A 2 x 2 contingency table for determination of inter-observer variability using the kappa 

statistic. Agreement between observers is seen at a and d, and disagreement is seen at b and 

c.   If there is 100 % agreement, values at b and c would be equal to 0.  

 
Observer 1 

  Positive Negative Total 

Observer 2 
Positive a b m1 

Negative c d m0 

 Total n1 n0 n 

 

http://www.graphpad.com/quickcalcs/contingency1.cfm
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In order to calculate the kappa coefficient, two parameters were intially determined: 

Observed agreement (Po): This was the percentage agreement seen between the two 

observers 

   
   

 
 

Chance agreement (Pc): This was calculated to determine how much agreement 

would have occurred by chance alone 

     
  

 
   

  

 
      

  

 
   

  

 
   

The Kappa coefficient (k) was then determined using the equation:  

  
      

    
 

 The calculated value for the Kappa coefficient was then interpreted using the criteria listed 

in Table 12. 

Table 12: Criteria for interpretation of the kappa coefficient  

Criteria for determination of inter-observer variability in histological scoring using the 

kappa coefficient 

 

Kappa coefficient Inter-observer variability 

0 Agreement occurred by chance 

0.01 – 0.20 Slight agreement 

0.21 – 0.40 Fair agreement 

0.41 – 0.60 Moderate agreement 

0.61 – 0.80 Substantial agreement 

0.81 – 1.00 Almost perfect agreement 
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Chapter 5.  Clinical tumour sample collection 

5.1 Introduction 

5.1.1 Ethical approval 

In order for clinical research studies to be carried out within the NHS, ethical approval must 

be obtained from a Research Ethics Committee (REC) and the NHS Trust Department for 

Research Governance. Before applications can be made, it is necessary to produce a project 

document, which includes all information regarding the background of the project, its aims 

and objectives, study design, protocol and methods, as well as details of those involved in 

the study and any sponsorship, along with any necessary documentation such as Patient 

Information Sheets and Patient Consent Forms. Once the project document is complete, the 

application process can commence, which is carried out via the Integrated Research 

Application System (IRAS). IRAS amalgamates the process of determining which relevant 

bodies approval is required from, for the specific project, and generates all forms required 

from the ‘full set of project data’. Once the project has been submitted to the relevant 

bodies, all details and information about the study are considered. The REC then provides 

their opinion regarding the project, which may be ‘favourable with/without conditions’, 

‘provisional’, where more information may be required, or ‘unfavourable’. Once approval 

from both the Trust and REC has been gained, the study may commence.   

5.1.2 Clinical samples for proteomic analysis 

The use of clinical samples for identification of protein biomarkers has many advantages 

over the use of cell lines (section 6.1.1). However, there is a strong requirement for pre-

analytical standardisation encompassing standardised specimen acquisition, handling and 
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storage, as well as sample preparation (Apweiler, Aslanidis et al. 2009). This presents a 

major challenge, but is a requirement for reproducible and accurate results, as variability in 

these processes can alter molecular composition and therefore experimental data (Moore, 

Kelly et al. 2011). It is also important that studies using clinical samples report details of 

the handling of the samples to improve consistency and reproducibility. The Biospecimen 

Reporting for Improved Study Quality (BRISQ) recommendations highlight criteria which 

should be reported and applied to any study using tissue samples (Moore, Kelly et al. 

2011). Details include, and are not limited to, biospecimen type, anatomical site, disease 

state of the patient, relevant clinical information, sample collection mechanism, 

stabilisation mechanism, type of long-term preservation, storage temperature and shipping 

temperature (Moore, Kelly et al. 2011). 

The quality of data generated from clinical samples is heavily reliant upon sample 

conditions immediately following excision from the patient. It is important to recognise 

tissue excised from patients is still alive. It will therefore be suddenly exposed to ex vivo 

stress, and will begin to adapt to its new conditions; hypoxia, temperature change, 

ischaemia, accumulation of cellular waste, lack of electrolytes and lack of vascular 

perfusion (Espina, Mueller et al. 2009). These conditions will induce changes in cellular 

signal-transduction pathways related to the cellular stress response and wound repair, thus 

distorting the tumour proteome. The level of distortion is dependent upon the time-delay 

between tissue excision and stabilization, either by immersion in fixative or snap-freezing 

in liquid nitrogen (Espina, Mueller et al. 2009). It is therefore paramount that excised tissue 

is stabilized as soon as possible (< 20 minutes), to regulate the process of clinical sample 

collection and to avoid the introduction of pre-analytical variables (Apweiler, Aslanidis et 

al. 2009; Espina, Mueller et al. 2009). 
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5.2 Methodology 

5.2.1 Ethical approval for this study 

The study upon which this thesis is based, entitled ‘the identification of biomarkers 

associated with therapy response in breast cancer’, was approved by the South Humber 

Research Ethics Committee (ref 07/Q1105/43) in 2007. Letters confirming ethical approval 

from the REC can be seen in Appendix 3. The study recruited patients with locally 

advanced breast cancer who had received standard neoadjuvant chemotherapy prior to 

surgical resection of the remaining tumour, at Castle Hill Hospital (Hull and East Yorkshire 

Hospitals NHS Trust) from 2007 onwards. Approval was granted to allow: 

 Locally advanced patients receiving standard neoadjuvant chemotherapy to be 

recruited to the study, after being given a Patient Information Sheet (Appendix 4), 

discussion with a clinician, and signed recorded consent 

 A sample of surplus residual tumour, to be taken during routine surgery for 

resection of residual tumour 

 Storage of the tumour sample for future research 

 Access to patients’ medical notes for information relevant to the study 

 Access to the diagnostic core biopsy specimen, stored in the Histopathology archive 

5.2.2 Study design 

An outline of the study is depicted in Figure 17. Initially, patients who matched the 

requirements of the study were identified by the clinicians in the Breast Unit at Castle Hill 

Hospital. They were informed of the research study, and if patients wished to participate 

they were provided with an information sheet and a signed record of consent was taken. 

This may have been towards the end of the chemotherapy treatment, prior to surgery. 
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During surgical resection of the residual tumour, breast surgeons took a small sample of 

macroscopic tumour, which was immediately stabilised by snap-freezing in liquid nitrogen. 

Tumour samples provided by the surgeon varied in size from 2 mm
3
 to 2 cm

3
, and the 

number of pieces of tumour tissue provided ranged from 1 to 3. Tumour samples were then 

stored at minus 80 C until required. After allowing time for histopathological tests and 

reports to be completed, patient notes were accessed by a clinician involved in the study, 

and relevant data was recorded. This included details regarding the type of tumour, the 

molecular subtype of the tumour (section 2.2.2), the chemotherapy administered, tumour 

sizes pre- and post-treatment from dynamic contrast enhanced – magnetic resonance 

imaging (DCE-MRI) and ultrasound (US) scans, as well as the pathology reports from both 

the core biopsy specimen taken upon diagnosis and the tumour resection.   

5.2.3 Clinical tumour sample collection 

Taking into consideration the influence sample acquisition has upon downstream analysis 

(section 5.1.2), tumour samples were obtained for research from the tumour after 

macroscopic examination by a surgeon, to ensure the quality of the sample. Samples were 

snap-frozen in liquid nitrogen as soon as possible, where they remained until they reached 

the laboratory where they were transferred to a minus 80 C freezer for long-term storage. 

Samples were processed as they were required, which was performed on ice, with the 

addition of phosphatase and protease inhibitors to minimise sample degradation.  
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Figure 17: Flow diagram illustrating study design 

Study workflow from patient presentation at the clinic through to proteomic analysis in the 

laboratory. Where tumours have shown a complete response to neoadjuvant chemotherapy, 

it is not possible to obtain a sample for the study from the tumour resection. These patients 

could be included in future archival studies to validate putative biomarkers. 

 

5.2.4 Classification of response to neoadjuvant chemotherapy 

Tumour response to treatment was calculated, for all samples collected, by a specialist 

oncologist and patients were assigned to one of two groups; (1) responders (chemotherapy-

sensitive) or (2) non-responders (chemotherapy-resistant). To determine response, data 

from pre-treatment imaging (DCE-MRI and US) was compared to data from post-treatment 

scans (DCE-MRI and US) as well as the pathological report of the tumour resection, whilst 

considering RECIST guidelines (Therasse, Arbuck et al. 2000; Eisenhauer, Therasse et al. 
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2009), where tumour size was determined by measuring the longest diameter. Pre-treatment 

DCE-MRI data was compared to the post-treatment pathological report, as inaccuracies in 

DCE-MRI measurements after neoadjuvant chemotherapy have been reported, in 

comparison to histopathological measurements (Wright, Zubovits et al. 2010; Loo, Straver 

et al. 2011). Where only US data was available pre-treatment, US data post-treatment was 

also considered. Response calculations were determined in agreement with a specialist 

oncologist and breast surgeon. For the purpose of this study, patients were divided into one 

of two groups, as described previously (Garimella 2007): 

 Responders (chemotherapy-sensitive) 

o These include patients who showed a partial response (≥ 30% decrease in 

tumour size) 

 Non-responders (chemotherapy-resistant)  

o These included patients who showed either stable disease (< 30% decrease 

and < 20% increase in tumour size) or progressive disease (≥ 20% increase 

in tumour size or development of metastases during therapy) 

For patients receiving the combined anthracyclin (EC) and taxane (docetaxel) regimen, to 

be classified as a ‘responder’ the patient must have responded to both components. Where 

progression was seen during any one of the components, the patient was categorised as a 

‘non-responder’.  

5.3 Results 

5.3.1 Clinical tumour sample series 

In total, tumour samples were obtained from 38 patients. Of the 38 tumour samples some 

had to be excluded from the study, for reasons such as the inability to confidently determine 
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tumour response to therapy, and incorrect storage/handling, leaving a total of 34 clinical 

tumour samples. A summarised table of clinical tumour samples involved in the study is 

shown in Table 13, and the full version of the table including measurements used for 

response determination can be found in Appendix 5.  

Of the 34 clinical tumour samples, 27 (79%) were invasive ductal carcinoma (IDC), 5 

(14%) were invasive lobular carcinoma (ILC) and 2 (5%) were other rare types 

(metaplastic and tubular) (Figure 18). Within the breast tumour samples, 26/33 (78%) were 

luminal (ER+), 2/33 (6%) were HER2+ and 5/33 (15%) were triple negative molecular 

subtypes (section 2.2.2) (Figure 19). Molecular subtype could not be determined for one of 

the samples due to lack of HER2 status. All ILC samples within the series were of luminal 

molecular subtype. Overall, IDCs of luminal molecular subtype (ER+) represented the 

largest proportion of the samples, representing 20/34 cases (58%). The majority of patients 

received standard neoadjuvant chemotherapy for Hull and East Yorkshire NHS Trust, 

comprising 4 cycles of EC [epirubicin (90 mg/m
2
) + cyclophosphamide (600 mg/m

2
)] 

followed by 4 cycles of docetaxel (100 mg/m
2
), given at 3-weekly intervals. Not all patients 

completed the full 8 cycles (Table 13), which may have been due to tumour progression 

during the chemotherapy, poor tolerance of associated side-effects or previous exposure to 

the chemotherapeutic agents. Five out of the 34 patients were assigned to the Neo-tAnGo 

randomised phase III clinical trial of sequential epirubicin + cyclophosphamide and 

paclitaxel ± gemcitabine doses, with 4 treatment arms (Earl, Vallier et al. 2009), which 

ended in 2007 and aimed to identify the best drug combination and order of administration. 

Of the 34 tumour samples, 18/34 (52%) were classified as ‘chemotherapy-sensitive’ and 

16/34 (47%) were classified as ‘chemotherapy-resistant’. 
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Table 13: Summarised data for clinical tumour samples 

Table listing clinical tumour samples (n=34), showing the type of breast carcinoma, the 

receptor status (ER/PR/HER2), molecular subtype and therapy administered, represented 

by EC: epirubicin + cyclophosphamide, D: docetaxel, P: paclitaxel, G: gemcitabine, with 

the number of cycles. Reduced doses are indicated* (also see Appendix 5) Response was 

classified as chemo-sensitive (CS) or chemo-resistant (CR).  

Sample # Type 
Receptor status Molecular 

Subtype 
Therapy administered 

Response  

(CS/CR) ER PR HER2 

#1 Ductal   +  -  - Luminal EC x 4, D x 4 CR 

#3 Ductal  -  -  + HER2+ Neo-tAnGo: EC x 6 CR 

#4 Ductal  +  +  - Luminal Neo-tAnGo: EC x 4, P x 4 CR 

#5 Ductal  -  -  - Triple Negative Neo-tAnGo: PG x 4, EC x 4 CR 

#6 Ductal  +  +  - Luminal Neo-tAnGo:EC x 4, PG x 4  CS 

#7 Ductal  +  +  - Luminal EC x 4, D x 2*  CS 

#8 Ductal  -  -  - Triple Negative Neo-tAnGo: EC x 4, P x 4 CS 

#9 Ductal  +  +  + Luminal EC x 4  CR 

#10 Metaplastic  -  -  ?   EC x 4, D x 4 CS 

#11 Ductal  +  +  - Luminal EC x 4, D x 4 CS 

#12 Ductal  +  +  ? Luminal EC x 4, D x 2* CS 

#13 Ductal  -  -  + HER2+ EC x 4, D x 1 CR 

#15 Ductal  +  +  - Luminal EC x 4, D x 4 CS 

#16 Ductal  +  +  ? Luminal EC x 4, D x 4 CR 

#17 Lobular  +  +  - Luminal EC x 3 CR 

#18 Ductal  +  +  - Luminal EC x 4, D x 2 CS 

#19 Ductal  +  -  - Luminal EC x 2 CR 

#20 Ductal  -  -  - Triple Negative EC x 4 CR 

#22 Ductal  +  -  - Luminal EC x 4, D x 4 CS 

#23 Ductal  +  -  - Luminal EC x 4, D x 3* CS 

#24 Lobular  +  +  - Luminal EC x 4, D x 4 CR 

#25 Ductal  +  +  + Luminal EC x 2, D x 4*  CR 

#27 Tubular  +  +  - Luminal EC x 4, D x 4 CS 

#28 Ductal  +  +  + Luminal EC x 4, D x 2* CS 

#29 Ductal  +  -  -  Luminal EC x 4, D x 4*  CS 

#30 Ductal  +  -  + Luminal EC x 4, D x 4 CS 

#31 Ductal  +  +  + Luminal EC x 4, D x 3*  CS 

#32 Lobular   +  +  - Luminal EC x 6  CR 

#33 Lobular  +  +  - Luminal EC x 4, D x 4 CR 

#34 Lobular  +  +  - Luminal EC x 4, D x 4 CS 

#35 Ductal  -  -  - Triple Negative EC x 5 CR 

#36 Ductal  -  -  - Triple Negative EC x 4, D x 1 CR 

#37 Ductal  +  +  - Luminal EC x 4, D x 4*  CS 

#38 Ductal  +  +  - Luminal EC x 4, D x 4 CS 
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Figure 18: Types of Invasive Breast 

Carcinoma within the clinical sample 

series 

The largest proportion of samples within the 

series was represented by ductal carcinomas; 

27/34 (79%); Lobular carcinomas 

represented 5/34 cases (15%); 2/34 cases 

(6%) represented ‘other’, which included the 

rare tubular and metastatic carcinomas. 

Figure 19: Representation of molecular 

subtypes within invasive carcinoma 

samples 

The largest proportion of breast tumour 

samples were of luminal molecular subtype 

(ER+), with 26/34 cases (79%); HER2+ and 

triple negative types represented 2/34 (6%) 

and 5/34 (15%) respectively. Molecular 

subtype could not be determined for 1 case.  

 

5.4 Discussion 

In total, clinical tumours samples were obtained from 34 locally advanced breast cancer 

patients who had received neoadjuvant chemotherapy treatment. This involved a sample of 

macroscopic tumour being taken by a surgeon during standard surgical resection of the 

remaining tumour mass. The relevant factors outlined in the BRISQ guidelines, including 

all relevant clinical information, were recorded for each patient, and factors relating to 

sample collection method, stabilisation mechanism, type of long term storage, and shipping 

and storage temperatures were kept constant throughout.  

The largest proportion of the clinical breast tumour samples collected was represented by 

IDC samples, which comprised 79% (27/34) of samples. This could be expected, as IDC is 

79% 
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6% 

Representation of types of 
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the most common type of invasive cancer, and represents 70-80% of cases clinically. Two 

recent reports from large study cohorts have described the prevalence of each molecular 

subtype of breast cancer; (1) Out of 1487 patients diagnosed with invasive breast cancer 

over 2004-2005 in Italy, 70.3% were classified as luminal A, 15.6% luminal B, 6.0% 

HER2+ and 8.1% triple negative (Caldarella, Crocetti et al. 2011); (2) Out of 1945 patients 

diagnosed with invasive breast cancer between 1976-1997 in America, 65.8% were 

classified as luminal A, 14.3% luminal B, 4.9% HER2+ and 10.4% triple negative 

(Dawood, Hu et al. 2011). Therefore, on average, invasive breast tumours of luminal 

subtype represent 83% of cases, HER2+: 5.5% and triple negative: 9.3% of cases. The 

breast tumour clinical samples collected within this study, show a similar representation of 

each molecular subtype; luminal: 79% (26/34), HER2+: 6% (2/34) and triple negative: 15% 

(5/34).  

Of the 34 tumour samples collected, 18/34 (52%) were classified as ‘chemotherapy-

sensitive’ and 16/34 (47%) were classified as ‘chemotherapy-resistant’. These figures do 

not reflect the clinical situation, as samples were not available for the tumours which 

showed a pathological complete response to neoadjuvant chemotherapy, and therefore not 

represented within the collection of 34 tumour samples.  

Clinical breast tumour samples which have been collected for the study include the main 

histological types and molecular subtypes of invasive breast cancer. Differences in tumour 

response to neoadjuvant chemotherapy were observed, and the response of each individual 

tumour was determined by a specialist oncologist. This allowed the categorisation of 

clinical breast tumour samples into chemotherapy-sensitive and chemotherapy-resistant 

types. These clinical samples may now therefore be used for comparative proteomic 

analysis, to identify biomarkers of chemotherapy resistance in breast cancer.  
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Chapter 6.  Clinical tissue samples – optimisation of methods 

and preliminary work 

6.1 Introduction 

6.1.1 Cell lines versus clinical samples 

The choice of samples currently available, for the identification of biomarkers of 

chemotherapy resistance in breast cancer using proteomic analysis, within the laboratory 

are cell lines and clinical tissue samples. Both of these have their own limitations, which 

are briefly outlined and compared in Table 14. 

Table 14: Comparison of cell line models with clinical tissue samples 

Cell lines Clinical tissue samples 

Easy to handle in controlled conditions Difficult to handle and process in controlled 

conditions 

Homogeneous sample Heterogeneous sample 

Unlimited amount Limited amount 

Inaccurate representation of a tumour 

cell 

Actual representation of a cell from a 

tumour microenvironment 

 

6.1.1.1 Cell lines 

Current methodologies and proteomics platforms within the laboratory have previously 

been established for use with cell line models (Smith, Watson et al. 2006; Smith, Welham 

et al. 2007). Cell lines are standardised homogenous collections of cells, which present an 

in vitro model of the disease. Their use has several advantages; they can be cultured to 

unlimited amounts, are homogeneous, and are easy to store and handle. However, the use of 

cell lines also carries several disadvantages; the principle of which being that continuous 

culturing over long periods of time can cause alterations in the genotypic and phenotypic 
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characteristics of the cell (Bahia, Ashman et al. 2002; Burdall, Hanby et al. 2003; Watson, 

Greenman et al. 2004). It has been shown that alterations exist in the characteristics of 

commonly used cell lines, such as MCF7 (Bahia, Ashman et al. 2002) and MDA-MB-231 

(Watson, Greenman et al. 2004) between laboratories and cultures of different time points, 

thus making the accuracy of these in vitro models questionable. Cross-contamination and 

mis-identification of cell lines has also been observed, the most well known example of 

which is the cross-contamination of cell lines with HeLa cells. This wide-spread problem 

was initially identified by Stanley Gartler, where he discovered that 18 cell lines of 

‘independent origin’ were all HeLa cells (Gartler 1967). Further studies were carried out by 

the late Walter Nelson-Rees (Masters 2010), and it was suggested at one point that all cell 

lines should be regarded as HeLa cells unless proved otherwise. Initially, these findings 

appeared to have little impact, yet more recently, disclosure of cell line origin and their 

authentication is increasingly required for publication. Microbial contamination of cell 

lines, with microorganisms such as mycoplasma is also a major, but largely underrated 

problem (Masters 2000). Mycoplasma infections are thought to be present in 15-35% of 

cell lines in continuous culture, and have the potential to cause several different types of 

effects on eukaryotic cells; alterations in protein synthesis, receptor and surface antigen 

expression, cell morphology and proliferation characteristics, for example (Drexler and 

Uphoff 2002). However, solutions are available to the above-mentioned shortcomings 

regarding the use of cell lines; validation of the cell line identity, by short-tandem-repeat 

profiling for example; purchase of cell lines from reputable repositories rather than other 

laboratories; routine testing for infections such as mycoplasma; avoiding over-culturing and 

high passaging of cells by regularly returning to original frozen stocks of low passage 

number, and careful laboratory aseptic technique (Masters 2000; Drexler and Uphoff 2002; 
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Burdall, Hanby et al. 2003; Buehring, Eby et al. 2004; Capes-Davis, Theodosopoulos et al. 

2010; Masters 2010). In summary, high quality-control is necessary when using cell lines in 

order to be confident of their accuracy as an in vitro model and confident in the data 

generated from them.  

6.1.1.2 Clinical Samples 

Clinical samples give researchers the opportunity to perform analysis on samples from 

more clinically relevant sources. Clinical samples may include biological fluids (serum, 

blood and tumour interstitial fluid, for example) and tissue (normal or diseased). However, 

the complexity of these samples is reflected by the complexity of the approach required to 

gain access to the relevant information hidden within. As described previously (section 

3.1), 22 proteins constitute 99% of serum, thus making low-abundant proteins of interest 

difficult to access. The well-recognised graph by Anderson and Anderson (Figure 20) 

(Anderson and Anderson 2002), clearly demonstrates the dynamic range of the serum 

proteome, spanning 10 orders of magnitude between the most abundant protein (albumin; 

normal level 35-50 x 10
9
 pg/ml) and a low abundant protein (e.g. interleukin-6; normal 

level 0-5 pg/ml). This therefore explains why it is difficult to identify such a low abundant 

protein within the serum; as described by Anderson and Anderson, ‘it would be like trying 

to identify one person after screening the whole worldwide population: 1 in 6.2 billion’ 

(Anderson and Anderson 2002). In order to improve access to the low-abundant proteins, 

and remove the high-abundant proteins which mask them, pre-fractionation steps such as 

depletion strategies may be employed. Different depletion strategies may be used, using 

different commercially-available products, which have been compared for their efficiency, 

specificity and reproducibility (Bjorhall, Miliotis et al. 2005). The approach used also 

depends on the number of highly abundant proteins to be depleted. This may include 
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albumin ± immunoglobulin (Ahmed, Barker et al. 2003; Steel, Trotter et al. 2003; Kim, Bae 

et al. 2009), or the top six, twelve or twenty serum proteins (Bjorhall, Miliotis et al. 2005; 

Echan, Tang et al. 2005; Roche, Tiers et al. 2009). Depletion strategies seem popular, and 

successful, but should be tailored to the specific method being applied.  

 

Figure 20: Dynamic range of normal human plasma proteins 

The classic log-scale graph by Anderson and Anderson (2002), giving reference intervals 

for 70 proteins within the plasma. The difference between the most abundant protein 

(albumin) and the least abundant protein (interleukin-6), spans 10 orders of magnitude. 

Haemoglobin is shown (far left) as a reference point. The classic plasma proteins are shown 

to the left (high abundance), tissue leakage markers in the centre and cytokines to the right 

(low abundance).  

Abbreviations: TPA: tissue plasminogen activator, CEA: carcinoembryonic antigen, GCSF: 

granulocyte colony-stimulating factor, TNF: tumour necrosis factor 

From (Anderson and Anderson 2002) 

 

When working with clinical samples such as tumour tissue, one of the main challenges is 

that it is more difficult to store and handle in a controlled manner (section 5.1.2),  is usually 

of limited supply, and access requires ethical approval and patient consent. Another 
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technical issue, associated with breast tumour for example, is the heterogeneity of the 

tissue. Macroscopically dissected tumour contains a dense area of tumour, yet it may also 

contain microscopic areas of normal cells, stroma, adipose tissue and inflammatory cells. 

Depending on experimental design, approaches such as laser capture microdissection 

(LCM), which is most effective on archival tissue, may be used to enrich for tumour cells 

within the sample to be analysed (Curran, McKay et al. 2000; Craven, Totty et al. 2002; 

Ball and Hunt 2004; Morrogh, Olvera et al. 2007). However, this has to be balanced by 

sample availability, sample degradation and contamination, and the downstream analytical 

technique(s) being applied.  

Laser capture microdissection (LCM) is a powerful technology which was introduced to 

overcome the problem of tissue heterogeneity, by allowing the procurement of enriched 

populations of cells from tissue sections under direct microscopic visualisation (Curran, 

McKay et al. 2000) for the study of DNA, RNA and protein (Ball and Hunt 2004; Morrogh, 

Olvera et al. 2007). The main advantage of using LCM prior to molecular evaluation is that 

the sample under investigation contains a highly enriched population of the cells of interest, 

thus increasing the accuracy of the data produced. This approach acts as an alternative to 

the ‘averaging out’ approach employed by un-microdissected samples. Although the use of 

LCM seems very appealing, many aspects have to be considered. Firstly considerations 

must be made regarding the pre-LCM procedures of tissue fixation and staining, and their 

compatibility with downstream applications, and the risk of artefacts (Craven, Totty et al. 

2002).  

LCM requires the staining of tissue sections, for visualisation of cell populations, and this 

must be compatible with downstream applications. Different staining methods, including 

the use of haematoxylin and eosin, methyl green and toluidine blue, have shown to have 
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different effects upon protein recovery, IEF and protein visualisation (Craven, Totty et al. 

2002; Ball and Hunt 2004). Moreover, the success of LCM is said to be tissue-dependent 

(Craven, Totty et al. 2002).  

For proteomic analysis, fresh frozen tissue is often required. The use of LCM with fresh 

frozen tissue and the subsequent proteomic analysis by LC MS/MS and western blotting 

has been achieved (Johann, Rodriguez-Canales et al. 2009). However, the main concern 

regarding the use of fresh frozen tissue is protein degradation; at this stage protease 

inhibitors cannot be employed, which may result in loss of proteome integrity, leading to 

sample bias, and inaccurate data. In order to overcome the issue of sample degradation, the 

use of formalin-fixed paraffin-embedded (FFPE) tissue would be required. However, this 

complicates downstream proteomic analysis due to the cross-linking of proteins (Ball and 

Hunt 2004). Different fixation methods have different effects upon proteins, depending 

upon the type of reagents used, and non-cross-linking reagents such as methanol have been 

preferred for proteomic research (Gutstein and Morris 2007). However, FFPE is the 

standard method of fixation used for pathological specimens, so the ability to use FFPE for 

proteomic analysis may make the use of clinical samples more accessible. Within recent 

years, the use of FFPE for proteomic analysis has developed dramatically, with the 

introduction of a method involving the heat-mediated reversal of cross-links (Nirmalan, 

Harnden et al. 2008), allowing LC MS/MS (Nirmalan, Hughes et al. 2011) as well as 

western blotting (Nirmalan, Harnden et al. 2009).  

The most critical limitation of performing LCM, on any sample type, prior to proteomic 

analysis is sample loss, and the ability to retain sufficient sample for downstream 

applications (Craven, Totty et al. 2002). This is due to the selection of specific regions of 

the tissue section only, not the whole tissue section. Sufficient sample must be obtained to 
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run 2D-PAGE (e.g. 200 µg of protein per gel), including technical replicates as well as 

antibody microarray analysis and western blotting. It is possible to increase the sensitivity 

of 2D-PAGE by using fluorescent dyes, which can also be run on one gel, therefore 

decreasing the amount of sample required (Ball and Hunt 2004). Another option would be 

to pool clinical samples, yet this is largely dependent on the range and type of sample 

availability, and may introduce sample bias. The reduced sample availability following 

LCM would also demand optimal protein extraction techniques, of which there are several 

options, however this still needs to be tailored to the downstream application, the type of 

tissue and the amount of tissue (Gutstein and Morris 2007). A movement towards 

microprotemics has also been suggested to overcome issues with small sample sizes 

(Gutstein, Morris et al. 2008). When performing comparative proteomics analysis, care 

must also be taken not to introduce bias as a result of LCM (Gutstein and Morris 2007); for 

example, changes in protein abundance, or protein modification/degradation, by 

fixation/staining methods could introduce false differential expression.  

LCM is a very useful and powerful technique, the efficacy of which can be determined by 

protein yield and the percentage of enrichment (Craven, Totty et al. 2002); however its use 

is very dependent upon the nature of the experiment, the aim of the research and the sample 

type. A balance must be achieved between time, expense, protein modifications and protein 

degradation, as well as contamination (Curran, McKay et al. 2000; Craven, Totty et al. 

2002).  

Despite the technical hurdles associated with the use of clinical samples, their use 

potentially has a great advantage over in vitro cell line models. The cells / molecules being 

analysed from clinical samples originate from the true biological microenvironment; they 

have been influenced by their surroundings and other cells in contact with them, so 
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arguably provide a far more accurate representation of the clinical scenario. More recently, 

the importance of the tumour microenvironment is being recognised (Liotta and Kohn 

2001), particularly the tumour-associated stroma (Farmer, Bonnefoi et al. 2009). Therefore, 

arguably, the use of clinical tumour samples is more beneficial than using cultured cell 

lines, as cultured cells do not truly represent the tumour in its biological microenvironment 

(Geho 2004).   

6.1.2 Proteomics using clinical tissue samples 

In order for proteomic analysis to be carried out using clinical tissue samples, protein 

extraction methods first had to be established and optimised for each of the analytical 

techniques being applied. A different approach is required, in comparison to cells lines; the 

most obvious reason for this being that tissue samples are a tangible collection of 

structurally organised cells, and not a single-cell suspension.  

6.1.2.1 Sample preparation  

Sample preparation of tissue for proteomic analysis generally consists of two phases: (1) 

tissue disintegration and (2) tissue solubilisation in an appropriate lysis buffer for protein 

extraction (Gromov, Celis et al. 2008). Tissue disintegration involves the breaking-up of a 

solid piece of tissue into smaller pieces, to increase the surface area, and solubilisation 

involves cell suspension within a lysis buffer and subsequent protein extraction. This can 

be achieved using several methods, which are dependent upon downstream applications and 

the possibility of sample contamination should also be considered. Methods include 

mechanical homogenisation by instruments such as the TissueRuptor (Qiagen), sonication, 

grinding in liquid nitrogen, cryostat sectioning (Gromov, Celis et al. 2008) enzymatic 

digestion and pressure cycling technology (Smejkal, Witzmann et al. 2007). For 
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proteomics, grinding in liquid nitrogen and mechanical homogenisation appear to be most 

popular.   

The choice of extraction/lysis buffer is dependent upon the downstream application, due to 

reagent compatibilities and the required physicochemical state of the protein. Generally, 

different lysis buffers are used for different applications, which complicate the sample 

preparation process. However, Gromov et al recently reported a single lysis solution which 

is suitable for both array-based proteomics and 2D-PAGE protein separation, extracting 

proteins from a variety of clinical tissues (Gromov, Celis et al. 2008).  

6.1.3  Proteomic methods 

The proteomic methods used to analyse the samples include antibody microarrays (section 

3.5), 2D-PAGE MALDI-TOF/TOF MS (section 3.3) as well as western blotting (section 

3.6.2). These all require a minimum protein concentration of 1 mg/ml, and a total volume 

of 1 ml, with proteins suspended in their own respective buffers.  

6.1.3.1 Core biopsy samples 

If predictive biomarkers of chemotherapy resistance were transferred to the clinic, they 

would be used as a screening tool at the diagnostic stage. This may involve screening core 

biopsy samples, and predicting tumour response to treatment based on the expression of 

selected protein biomarkers. Therefore, in order to identify predictive markers of resistance 

the proteomic analysis of the pre-treatment core biopsy samples would be desirable. 

However, this would only be possible where proteomics techniques for use with small 

amounts of clinical tissue (of core biopsy size) were established. Due to the invasive 

procedure involved with taking core biopsy samples, the number of core biopsies taken for 

proteomic analysis would have to be kept to a minimum. In order to assess the feasibility of 
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performing proteomic analysis on core biopsy samples, protein yield must initially be 

determined. This would determine whether sufficient protein could be obtained from an 

ethically-reasonable number of cores. The first study which used core biopsies samples for 

proteomic analysis was carried out in Italy, and involved taking at least 5 core biopsy 

samples from each patient (Bisca, D'Ambrosio et al. 2004); this is a large number of core 

biopsy samples, which may not currently be approved by the Ethics Commitee or gain 

patient consent. 

6.2 Methods 

6.2.1 Antibody microarray – based methods 

6.2.1.1 Protein extraction  

Protein was extracted, using ‘Buffer A’ from the antibody microarray kit (#XP725, Sigma 

Aldrich), as described in section 4.3.1, from tumour resection samples (Figure 15). 

6.2.1.2 Protein precipitation 

Protein was precipitated from the sample using the ProteoExtract® Protein Precipitation 

Kit (#539180, Calbiochem), as described in section 4.3.2.  

6.2.1.3 Protein quantification 

Protein quantification for proteins extracted in ‘Buffer A’, from the antibody microarray kit 

(#XP725, Sigma Aldrich), were quantified using the Bradford protein assay, as described in 

section 4.3.3.  



 

140 

 

6.2.1.4 Determination of protein yield from core biopsy samples 

This was achieved by taking an ‘optimisation sample’ of tumour resection, collected as part 

of the existing study (Figure 15) and taking core biopsy samples from it with the use of a 

core biopsy gun. This was performed by a surgeon, which involved securing the tissue 

sample to an ‘Easi pad’ using a stitch, and the core biopsy gun was used to obtain a series 

of core biopsy samples from the tumour mass. Due to the size of the tissue, protein yield 

could only be determined from 1, 3 and 6 core biopsy samples. Protein was then extracted 

using 500 µl ‘Buffer A’, provided in the antibody microarray kit and subsequent sonicaiton 

for 15 minutes (with 5 mins on ice every 5 mins) and incubation for 16 hours at 4 ºC on an 

end-over-end rotator. This was followed by centrifugation to clarify the sample, and the 

protein concentration was determined using the Bradford Assay (section 4.3.3).  

6.2.2 One-dimensional gel electrophoresis 

One-dimensional gel electrophoresis was performed as described in section 4.6.3. Proteins 

separated on the gel were visualised using Bio-safe Coomassie Stain (#161-0787, Bio-Rad), 

as described in section 4.4.6.  

6.2.3 2D-PAGE MALDI-TOF/TOF MS – based methods 

6.2.3.1 Protein extraction  

Protein extraction for 2D-PAGE was performed using the extraction method described in 

section 4.4.1 upon ‘optimisation samples’ (Figure 15). 
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6.2.3.2 Sample preparation 

The ReadyPrep 2-D Cleanup Kit (#163-2130, Bio-Rad) was used to clean-up the samples 

in preparation for IEF (section 4.4.2). The protein in the sample was quantified using the 2-

D Quant Kit (#80-6483-56, GE Healthcare) (section 4.4.3).  

6.2.3.3 2D-PAGE 

Separation in the first dimension by pI; isoelectric focusing (IEF), was performed as 

described in section 4.4.4. Subsequently, separation in the second dimension by molecular 

weight, using SDS-PAGE, was performed as described previously (section 4.4.5). Proteins 

were visualised using Bio-safe Coomassie Stain (#161-0787, Bio-Rad), as described in 

section 4.4.6.  

6.2.3.4 Excision of protein spots and in-gel tryptic digest 

Protein spots were excised from the gel as described in section 4.4.8. Proteins were then 

digested into peptide using the method described in section 4.4.9. 

6.2.3.5 Peptide analysis by MALDI-TOF/TOF MS and protein identification 

Peptide samples were analysed by MALDI-TOF/TOF and data was submitted to MASCOT 

using specified search parameters for protein identification via the IPI human database, as 

described in section 4.4.11. 

6.2.4 Western blot 

One dimensional gel electrophoresis was performed, as described previously (section 

4.6.3). Proteins were then transferred onto a nitrocellulose membrane using the iBlot 

system (section 4.6.4), which was subsequently blocked for 1 hour with 5% non-fat milk 

and immunoblotting was performed as previously described (section 4.6.6). Protein 
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expression was visualised using the Supersignal West Pico Chemiluminescent Substrate Kit 

(#34078, Thermo Scientific) and CL-XPosure Film (#34090, Thermo Scientific), as 

described previously (section 4.6.8).  

6.3 Results 

6.3.1 Antibody Microarray 

Protein extraction for antibody microarray analysis involved the mechanical 

homogenisation of the tumour resection sample in lysis ‘Buffer A’, as illustrated in Figure 

21.  

 

 
Figure 21: Sample preparation and protein extraction from clinical tissue samples for 

antibody microarray analysis 

The steps involved in the extraction of protein for clinical samples.  
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6.3.1.1 Relationship between tissue weight and protein yield 

Several protein extractions using antibody microarray extraction buffer (‘buffer A’) were 

performed (n=11), with the aim to correlate tumour sample size (by eye) with tumour mass 

(in grams) and protein yield (Table 15). However, there was no correlation between tumour 

sample size (by eye) or mass (g) and protein yield (mg/ml) (Figure 22). Tumour samples 

which were approximately the same size by eye showed great variability in weight and 

protein yield. This was due to the high amount of tissue heterogeneity observed between 

tumour samples, despite carefully removing macroscopic fat from the sample prior to 

extraction. 

 

Table 15: Extraction of protein from breast tumour resection samples 

Protein was extracted from ‘optimisation samples’, using the method described within the 

antibody microarray protocol, and clinical samples prior to antibody microarray analysis 

(Figure 15). Tumour samples were weighed, protein was extracted and the protein 

concentration was determined using the Bradford Assay. This data is displayed as a graph 

in Figure 22. 

 

Tumour resection sample Weight (g) Protein concentration of extract (mg/ml) 

Optimisation sample 0.5 2.03 

Optimisation sample 0.4 1.23 

Optimisation sample 0.7 0.78 

Optimisation sample 0.4 0.67 

#9 0.8 3.45 

#11 0.4 4.99 

#12 0.16 2.64 

#15 0.5 3.11 

#18 0.3 2.43 

#19 1.3 4.53 

#25 0.3 3.05 
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Figure 22: Correlation between breast tumour tissue weight and protein yield 

Scatter graph showing poor relationship between breast tumour resection sample weight (g) 

and protein yield, calculated by extracting protein from breast tumour sample with the 

method described for antibody microarray analysis and protein quantification using the 

Bradford assay (#B6916, Sigma Aldrich) (Table 15). The R
2
 value of 0.1, calculated by the 

trend-line shows poor linear reliability.  

 

6.3.1.2 Precipitation of protein using ProteoExtract Protein Precipitation Kit  

As illustrated in Figure 21 a layer of fat was observed during the protein extraction method. 

Removal of this fat was achieved by repeated centrifugation. However, this also resulted in 

the reduction of sample volume. As an alternative approach, for the purification of the 

sample, the protein was precipitated out of the solution using the ProteoExtract Protein 

Precipitation Kit (#539180, Calbiochem) and re-suspended in fresh Buffer A. This was 

tested using 200 µl of the protein extracts from samples #11 and #19. Ten µg each of: #11 

(precipitated and non-precipitated); #19 (precipitated and non-precipitated) (n=4) were 

loaded in duplicate and run on a 1D gel which was subsequently stained with Bio-safe 

Coomassie Stain (#161-0787, Bio-Rad) to visualise the proteins present on the gel. Samples 

where the protein had been precipitated appeared to have lost protein, especially proteins of 
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high molecular weight. This was shown by darker bands in the non-precipitated samples in 

the 250 kDa protein region (Figure 23). Protein concentration was determined using the 

Bradford Assay, in both non-precipitated and precipitated protein samples from tumours 

#11 and #19 (Figure 24).  

Due to the loss of high molecular weight proteins (Figure 23), as well as a reduction in 

protein concentration (Figure 24), this strategy for the purification of samples was not used 

for further work. The initial approach, involving repeated centrifugation and careful 

removal of the fat layer by pipetting was preferred. The associated reduction in sample 

volume was not apparent enough to affect subsequent experiments.  

 

 
Figure 23: Breast tumour lysate optimisation of protein precipitation 

Protein (10 µg) extracted from breast tumour resection tissue (samples #19 and  #11; Figure 

15) was run on a 1D gel and stained with Bio-safe Coomassie Stain (#161-0787, Bio-Rad). 

For 200 µl of each protein extract, protein was precipitated (P.P) using the ProteoExtract 

Protein Precipitation Kit (#539180, Calbiochem) and the rest of the extract remained (N.P). 

Protein samples which had been precipitated particularly lost high molecular weight 

proteins, shown by darker bands at 250 kDa in non-precipitated samples. This is quantified 

in Figure 24.  
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Figure 24: Graph showing protein concentration for precipitated and non-

precipitated tumour extracts 

Protein concentration (samples from  Figure 23) was determined using the Bradford Assay 

(#B6916, Sigma Aldrich) and calculated for extracts where the protein was precipitated 

using the ProteoExtract Protein Precipitation Kit (#539180, Calbiochem) and where protein 

was not precipitated. Precipitation of protein from sample # 19 showed a 73.5% loss of 

protein. Protein precipitation of sample #11 showed a 24.3% decrease in protein 

concentration.   

 

6.3.2 Two-dimensional polyacrylamide gel electrophoresis (2D PAGE)  

6.3.2.1 Optimisation of extraction method 

The tissue extraction method used for antibody microarray analysis involved the 

mechanical homogenisation of the tissue in ‘Buffer A’ extraction buffer, using a 

TissueRuptor (Qiagen) (section 4.3.1). However, when using this method with 2D 

extraction buffer, excess foam was produced due to the presence of detergent, which 

resulted in sample loss. As an alternative method, samples in 2D extraction buffer were 

sonicated, in a sonicator water bath, for 15 minutes in total (section 4.4.1). Initially, an 

‘optimisation sample’ (Figure 15) was used to determine how much protein could be 

extracted from a 0.3 g piece of tumour. The protein extraction procedure was performed as 

described (section 4.4.1), however the 0.3 g tissue sample was extracted with 1 ml of 2D 
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extraction buffer, in a single microcentrifuge tube. This was then quantified, showing a 

protein yield of 2.2 mg/ml. Subsequently, 200 µg of protein, for each 2D-PAGE replicate, 

was cleaned-up using the 2D Cleanup Kit (Bio-Rad). This involved only cleaning up the 

amount of protein required for 2D-PAGE, thus only using the necessary amount of clean-up 

kit reagents. This protein extract was separated by 2D PAGE in duplicate and visualised 

with Bio-Safe Coomassie Stain (#161-0787, Bio-Rad). The resulting images were poor 

quality due to a lack of protein. The 2 gels were identical, one of which is shown in Figure 

25. 

 

 
Figure 25: 2D-PAGE with breast tumour tissue extract (insufficient protein) 

Breast tumour resection ‘optimisation sample’ (Figure 15) protein extract (200 µg) 

separated by 2D-PAGE and stained with Biosafe Coomassie Stain (#161-0374, Bio-Rad). 

This gel is poor quality as insufficient protein was loaded. The method of sample 

preparation and protein extraction therefore requires further optimisation.  

 

To improve the quality of 2D PAGE gels and ensure sufficient protein load, samples were 

quantified after clean-up instead of before. However, this required cleaning-up the whole 

sample, which is a more expensive approach as it requires larger volumes of clean-up kit 
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reagents. Despite this, protein quantification after cleanup would ensure that 200 µg of 

protein is accurately loaded for 2D PAGE. 

As an attempt to achieve maximal protein yield, during the protein extraction procedure, 

another ‘optimisation sample’ (Figure 15) was divided between 4 microcentrifuge tubes 

(containing <0.1 g tissue), and each extracted in 1 ml 2D extraction buffer, with sonication 

and a 16-hour incubation on and end-over-end rotator at 4 °C (section 4.4.1). The total 

protein extracted from each sample was re-suspended into 1 microcentrifuge tube with a 

final volume of 1 ml during the clean-up procedure (section 4.4.2). The sample was 

quantified (section 4.4.3), and 200 µg was separated by 2D PAGE and stained with Bio-

Safe Coomassie Stain (#161-0374, Bio-Rad) (Figure 26). 

 

 
Figure 26: Breast tumour tissue extract separated by 2D PAGE 

Breast tumour resection ‘optimisation sample’ (Figure 15) protein extract (200 µg) 

separated by 2D-PAGE and stained with Biosafe Coomassie Stain (#161-0374, Bio-Rad).  
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The successful identification of proteins, from clinical samples separated by 2D PAGE, 

using MALDI TOF/TOF MS for peptide analysis was confirmed. As a preliminary test, 

proteins were extracted from a clinical breast tumour resection ‘optimisation sample’ 

(Figure 15) and were separated by 2D-PAGE (Figure 27). A selection of protein spots 

(Figure 27) were excised, digested into peptides using trypsin and analysed by MALDI-

TOF/TOF MS for subsequent protein identification. The protein identifications, with 

associated data for the spots shown in Figure 27 are shown in Table 16 (n=5).  

 

 
Figure 27: Breast tumour tissue extract separated by 2D PAGE for protein 

idenification using MALDI-TOF/TOF MS 

Breast tumour resection ‘optimisation sample’ (Figure 15) protein extract (200 µg) 

separated by 2D-PAGE and stained with Biosafe Coomassie Stain (#161-0374, Bio-Rad). 

A selection of protein spots (1-5) were excised from the gel for protein identification by 

MALDI-TOF/TOF MS.  
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Table 16: Preliminary test for proteins identification by MALDI-TOF/TOF MS 

peptide analysis 

Peptide samples were analysed using MALDI-TOF/TOF MS analysis.  

Spot 

# 
Protein 

Estimated 

mass 

Actual 

mass 
pI Score 

# matched 

peptides 

% sequence 

coverage 

1 
Topoisomerase 

alpha-3 chain 
27000-30000 29243 4.8 285 6 25 

2 14-3-3 gamma 26000-29000 28456 4.8 101 1 5 

3 Transthyretin 14000-17000 15991 5.5 290 4 48 

4 Vimentin 45000-55000 53676 5.1 212 6 15 

5 
Heat shock 

protein beta-1 
22000-25000 22826 6.0 286 5 29 

6.3.3 Western Blot 

6.3.3.1 Molecular weight markers 

Molecular weight markers which were in use in the laboratory were Precision Plus Protein 

Standards Dual Colour (#161-0374, Bio-Rad) and Cruz Marker MW Standards (#SC-2035, 

SantaCruz). The former appeared on the membrane and did not appear upon film 

development and the latter did not appear on the membrane yet it appeared after film 

development. They were therefore used in combination and used two wells on the gel when 

running a western blot. Cruz Marker Molecular Weight Standard did not appear 

consistently, which caused inaccuracies when predicting molecular weight of bands and 

band intensity was too high (Figure 28). Precision Plus Protein WesternC Standards (#161-

0376) is a marker that is visible on the gel during electrophoresis, on the nitrocellulose 

membrane and on the film after development (Figure 28). It is beneficial as it has both 

properties, which would only use 1 well of the gel when running a western blot.  
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.A  B  

Figure 28: Western Blot Molecular Weight Marker 

A Comparison of markers; 1: Precision Plus Protein Standards Dual Color (#161-0374, 

Bio-Rad) This marker is visible on the membrane; 2: Cruz Marker MW Standard (# SC-

2035) Santa Cruz; 3: Precision Plus Protein WesternC Standards (#161-0376, Bio-Rad). 

Molecular weights are shown in kDa. B Precision Plus Protein WesternC Standards (# 161-

0376, Bio-Rad). This marker was visible on the gel, the membrane when transferred and on 

the film when developed, after labelling with Precision Protein StrepTactin-HRP conjugate 

(#161-0381, Bio-Rad), with a 10 µl load.  

 

6.3.3.2 Western blotting with tissue samples  

The extraction of proteins using Laemmli buffer was limited by the detergent constituent, 

which caused excess froth to be produced during homogenisation. Another limiting factor 

was the limited supply of clinical tissue samples available for the different extraction 

methods. In order to overcome this, protein extracts in antibody microarray buffer (section 

4.3.1) were separated by one-dimensional gel electrophoresis, diluted in excess Laemmli 

buffer, to obtain the required physicochemical state of the protein, for western blotting 

(section 4.6.3).  
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6.3.3.3 Antibody Optimisation 

In order to anlayse protein expression within clinical samples using western blotting, 

antibodies were tested for their suitability, and optimised. These antibodies included 14-3-3 

(specific to beta, eta, tau and sigma isoforms), 14-3-3 epsilon, 14-3-3 zeta, Bcl-xL, BID and 

beta-actin, to be used as a loading control, which were optimised according to the 

conditions described in Table 5 (section 4.6.6) (Figure 29).  

6.3.4 Determination of protein yield from core biopsy samples 

To determine the number of core biopsy samples required to obtain 1 mg/ml of protein, 

which is the amount required for all proteomic analysis, a series of core biopsy samples 

were obtained from an ‘optimisation sample’ of tumour resection (Figure 15). The tissue 

sample was secured to an ‘Easi pad’ using a stitch, and a core biopsy gun was used to core 

biposy samples from the tumour mass (Figure 30). This was performed by a surgeon.  

Protein was extracted from 1, 3 and 6 core biopsy samples, using the antibody microarray 

extraction buffer ‘Buffer A’, and the method described (seciton 4.3.1), and quantified using 

the Bradford Assay (seciton 4.3.3). This is shown in Table 17. Based on this single 

preliminary test, the minimum number of core biopsies required for 1 ml of 1 mg/ml 

protein would be six core biopsy samples. 
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Figure 29: Antibodies optimised for western blotting with clinical samples 

All antibodies optimised show a clear band at their expected molecular weights. The 

concentrations and incubation times for each antibody are shown Table 5 (section 4.6.6). A: 

14-3-3 (ab9063) (this is specific to 14-3-3 beta, eta, tau and sigma isoforms, explaining 

why a single band is not observed) B: 14-3-3 epsilon (ab43057). C: 14-3-3 zeta (ab51129). 

D: Bcl-xL (ab32370). E: BID (ab32060). F: beta-Actin (ab8227), as a loading control. 
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Figure 30: Collection of core biopsy samples for determination of protein yield 

Core biopsy samples were taken from a tumour resection ‘optimisation sample’ (Figure 15) 

in order to determine protein yield. The sample was secured to an ‘Easi pad’ using a stitch 

(A). The core biopsy gun (B), was then used to obtain a core biopsy sample from the 

tumour mass (C). This was performed by a surgeon.  

 

Table 17: Protein yield from core biopsy samples 

Protein was extracted from 1, 3 and 6 core biopsies, which had been taken from a tumour 

resection ‘optimisation sample’ (Figure 15), in a total volume of 0.5 ml. Samples were 

quantified using the Bradford Assay, shown as protein concentration in mg/ml. The actual 

amount of protein obtained is shown (mg). The amount of protein required for all 

proteomic techniques is 1 mg, at a concentration of 1mg/ml. 

 

Number of core 

biopsy samples 

Protein 

concentration 

Actual amount of 

protein obtained 

Amount of 

protein 

required 

Sufficient? 

1 0.81 mg/ml 0.405 mg 

1.00 mg 

X 

3 1.1 mg/ml 0.550 mg X 

6 2.03 mg/ml 1.015 mg √ 

 

6.4 Discussion 

This chapter aimed to achieve the optimisation of established proteomic methodologies for 

use with clinical tissue samples, for the first time within the laboratory. The sample 

preparation methods have now been optimised for clinical tumour tissue (approximately 5-

10 mm
3
 in size), for each of the proteomics techniques, including antibody microarray 

analysis, 2D-PAGE/MS and western blotting.  
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The chosen sample preparation methods include mechanical homogenisation of tissue using 

a TissueRuptor, as well as sonication. Protein precipitation during sample preparation, as an 

attempt to clarify the sample, resulted in loss of protein, especially proteins of high 

molecular weight; therefore this was not selected for future work. Instead, repeated 

centrifugation was performed to clarify the sample by removal of fat. The lack of 

correlation between sample size and weight is a result of tissue heterogeneity, so can be 

expected for the type of clinical tissue samples being used.  

Depletion strategies have not been tested at this stage; however this is an option to consider 

for future work. Other techniques such as LCM have been considered, however due to low 

sample availability, and the potential for detrimental effects such as protein degradation or 

modification, as well as effects on downstream proteomic techniques being employed, such 

as IEF, this was considered to be inappropriate.  

These proteomic platforms are therefore now ready for comparative proteomic experiments 

using clinical tissue samples (chapter 8, chapter 9 and section 10.3.3).  

As a consideration for future work, the protein yield from core biopsy samples was also 

assessed. If predictive biomarkers of chemotherapy resistance were transferred to the clinic, 

screening would be required at the diagnosis stage, where core biopsy samples are taken. In 

order to identify predictive biomarkers, the most clinically relevant sample to analyse 

would therefore be core biopsy samples. However, obtaining core biopsy samples is an 

invasive procedure, which causes discomfort and is therefore unpleasant for patients. It is 

therefore unethical to ask for multiple cores to be taken for research purposes at this stage. 

In order to obtain ethical approval for the collection of core biopsy samples, optimisation of 

methodologies is required so that analysis could be performed on the lowest number of 

cores possible. In order to assess the feasibility of performing proteomic analysis on core 
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biopsy samples, and to determine how many core biopsy samples would be required, a 

single preliminary test has been performed. This demonstrated that to obtain sufficient 

protein for the current proteomics methods, 6 core biopsy samples would be required, 

which would be regarded as unethical if requested from a single patient. In this situation, 

sample pooling could be considered, as well as advancing methodologies and increasing 

their sensitivity, therefore requiring a fewer number of core biopsy samples. However, in 

order to fully assess this, further preliminary testing, with replication would be required, yet 

the possibility of performing proteomic analysis on core biopsy samples does show 

promise. The number of core biopsies required could be reduced by making appropriate 

alterations to proteomics methods; such as the use of 2D-DIGE, which would require 

smaller protein samples (section 3.3.2). The amount of protein required for antibody 

microarray analysis is small (0.15 mg), yet the current manufacturer’s recommended 

process for labelling the proteins with fluorescent dyes requires 1 ml of protein extract at 1 

mg/ml (1 mg). The labelling procedure is therefore more demanding of protein 

concentration than the antibody microarray platform. For future work, the possibility of 

reducing the amount of protein required for the labelling process should therefore be 

considered.  

 

 

 

 

 

 

 



 

157 

 

 

 

CHAPTER 7: 
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Chapter Aim: 

To analyse multiple antibody microarray experiments, to identify any RIDEPs in the data 

and to establish guidelines for quality control and fold change cut-off values 
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Chapter 7.  Repeatedly identified differentially expressed 

proteins (RIDEPs) from antibody microarray proteomic 

analysis  

7.1 Introduction  

Forward-phase antibody microarrays are a powerful new tool in the field of comparative 

proteomics and the search for clinical biomarkers (Kopf, Shnitzer et al. 2005; Kopf and 

Zharhary 2007). They offer rapid expression analysis of multiple proteins in a sample 

simultaneously, via incubation with antibodies immobilised on a glass slide. Some of the 

problems associated with gel-based and mass spectrometry (MS)-based proteomics 

methods can be overcome using antibody microarray analysis and this may therefore be 

considered a valuable complementary proteomic technique (Alhamdani, Schroder et al. 

2009). The search for protein biomarkers generally consists of three phases; discovery, 

where MS- or microarray-based comparative proteomic approaches may be used to 

generate long lists of differentially expressed proteins (DEPs); confirmation, where 

additional techniques such as western blotting or ELISA are used to confirm the differential 

expression of candidate proteins from the discovery phase, and validation where putative 

biomarkers are evaluated in the clinical context (Rifai, Gillette et al. 2006; Paulovich, 

Whiteaker et al. 2008). The success of this biomarker discovery pipeline therefore relies 

heavily on the quality of the data generated in the discovery phase and the selection of 

DEPs carried forward to the confirmation phase. This is complicated by the fact that a 

number of candidate proteins generated by any proteomics approach may be false-positive 

results (Rifai, Gillette et al. 2006; Paulovich, Whiteaker et al. 2008). It is therefore 
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important that data generated in the discovery phase is interpreted carefully, and 

confirmation and validation of differential protein expression is carried out rigorously. 

Recent meta-analysis studies have reported a number of repeatedly identified differentially 

expressed proteins (RIDEPs) from MS-based proteomics research carried out in a range of 

different species and tissues (Petrak, Ivanek et al. 2008; Mariman 2009; Ponomarenko, 

Lisitsa et al. 2009; Wang, Bouwman et al. 2009). Petrak et al produced a dataset containing 

the identity of DEPs identified from 2D-PAGE/MS studies using human and rodent tissue, 

published within 3 volumes of ‘Proteomics’ (volumes 4-6; 2004-2006). The dataset 

contained proteins identified from experiments using total cellular homogenates, and 

excluded experiments which used bodily fluids, subfractionated tissues and tissue culture 

supernatants (Petrak, Ivanek et al. 2008). The appearance of each protein within the dataset 

was calculated, and this did not include the direction of differential expression of each 

protein (increase or decrease). The total number of proteins within the dataset was 4700, 

from 169 published articles comprising 186 experiments, which each reported an average 

of 25 DEPs. Ninety-nine of the 186 articles involved the study of human cells, comprising 

108 individual experiments, 70 of which were cancer-related (Petrak, Ivanek et al. 2008). 

Based on the 186 sets of data generated by two-dimensional polyacrylamide gel 

electrophoresis (2D-PAGE) coupled to MS methods Petrak et al (2008) identified the top 

15 RIDEPs from studies using human and rodent samples (Petrak, Ivanek et al. 2008). The 

most frequently identified RIDEPs from human tissue were heat-shock protein 27 and 

enolase 1, which were identified in 31% and 29% of experiments respectively (Table 18). 

Other protein families identified repeatedly were the keratins, annexins and peroxiredoxins 

(Petrak, Ivanek et al. 2008).  
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Table 18: ‘TOP 15’ RIDEPs identified from 2D-PAGE/MS experiments  

The table lists the ‘TOP 15’ RIDEPs identified from 2D-PAGE/MS data using human 

samples (Petrak, Ivanek et al. 2008) 

 

TOP 15 Human RIDEPs  

Protein 

Identified in 

percentage of 

experiments (%) 

Protein 

Identified in 

percentage of 

experiments (%) 

HSP27 31 HSC71 17 

Enolase 1 
29 

Peptidyl-prolyl 

isomerase A 
16 

Triosephosphate 

isomerase 
20 

Cytokeratin 8 
16 

Pyruvate kinase 

M1/M2 
19 

Cathepsin D 
15 

Peroxiredoxin 1 
19 

ATP synthase beta 

subunit 
14 

Peroxiredoxin 2 19 Grp78/Bip 13 

Vimentin 19 RhoGDI 1 13 

Annexin A4 18  

 

These findings were supported by Wang et al (2009) using data from 66 biologically 

different studies encompassing in vivo and in vitro experiments on 20 tissue types from 5 

species where DEPs were identified using 2D-PAGE coupled with MS analysis (Wang, 

Bouwman et al. 2009). A list of 44 RIDEPs was generated and this included 73% of the top 

15 RIDEPs from both human and rodent tissue previously identified by Petrak et al (2008) 

(Petrak, Ivanek et al. 2008; Mariman 2009; Wang, Bouwman et al. 2009). More recently, a 

meta-analysis to identify colorectal cancer-associated proteins from published proteomics 

studies, largely based on 2D-PAGE/MS, generated a list of RIDEPs (Jimenez, Knol et al. 

2010). This list of putative colorectal cancer-associated proteins included a number of 

RIDEPs previously reported by Petrak et al (2008) and Wang et al (2009) (Petrak, Ivanek 

et al. 2008; Mariman 2009; Wang, Bouwman et al. 2009). It has been hypothesised that 

RIDEPs may be related to the cellular stress response and should be treated with caution in 
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the selection of proteins for the confirmation stage of the biomarker discovery pipeline 

(Mariman 2009; Wang, Bouwman et al. 2009). 

The studies presented above have generated lists of RIDEPs from MS-based proteomic 

studies and, currently, there are no reports of such proteins from non MS-based proteomic 

studies. The identification of any RIDEPs based on data from antibody microarray 

experiments, which provide a valid complementary approach to MS-based proteomics, is 

essential for the informed decision-making process in the verification phase of putative 

biomarkers revealed by this method.  

7.2 Materials and Methods 

7.2.1 Panorama Antibody Microarray XPRESS Profiler725 Kit 

Five experimental sample groups encompassing a range of oncology-related research on 

human tissue, cells or cell lines were analysed using the Panorama Antibody Microarray 

XPRESS Profiler725 Kit (XP725, Sigma Aldrich), which is able to identify the differential 

expression of a wide range of proteins including those involved in apoptosis, cell 

signalling, cell cycle, cell adhesion and proliferation. The 725 antibodies are listed in 

Appendix 1. Biological replicates within these 5 sample groups generated a total of 13 

experiments. Some of the experimental work, in experimental sample groups 1-4, was 

performed by others, from 2007 onwards using the same protocol, but all analysis was 

retrospectively performed personally (section 7.2.9).  

7.2.2 Experimental sample group 1: Stimulation of the B-cell receptor in malignant B-cells 

from patients with chronic lymphocytic leukaemia (n=1) 

Approval was obtained from the Hull and the East Riding Local Research Ethics 

Committee (ref 05/Q1104/33) for the study entitled ‘chronic lymphoproliferative disorders, 
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factors regulating the survival of mature malignant B cells’ and a blood sample was 

collected with informed consent from a patient with chronic lymphocytic leukaemia (CLL). 

In order to identify DEPs following activation of the B-cell receptor, peripheral blood 

mononuclear cells were isolated from whole blood and the B-cell receptor was artificially 

stimulated by cross-linking the BCR for 5.5 hours with goat anti-human IgM antibody 

(#109-006-129, Jackson ImmunoResearch Laboratories Inc) at a final concentration of 

10ug/ml. Control (unstimulated) cells for comparison were produced using the relevant 

isotype control (#005-000-006, Jackson ImmunoResearch Laboratories Inc). Cells were 

washed twice in 5 ml cold PBS before protein extraction was achieved by suspending cells 

in 1ml of ‘Buffer A’ (section 4.3.1). Samples were incubated on an end-over-end rotator for 

5 min at 4°C and subsequently centrifuged at 10,000 x g for 2 min, after which the 

supernatant was retained. This experimental work was performed by Dr Gina Eagle.  

7.2.3 Experimental sample group 2: Treatment of human lung cancer and mesothelioma 

cell lines with a COX-2 inhibitor (n=2) 

In order to identify DEPs following treatment of human cells with the specific COX-2 

inhibitor DuP-697 two cell lines were selected. COX-2 positive lung cancer cells (A549) 

and malignant pleural mesothelioma cells (MSTO-211H) were exposed to DuP-697 

(#1430, Tocris Bioscience) for 72 hours using a dose based on the IC50 which was 

previously determined for each cell line (O'Kane, Eagle et al. 2010). Control (untreated) 

cells for comparison were produced using the drug carrier dimethyl sulfoxide alone. Cells 

were washed twice in 5 ml of cold PBS before protein extraction was performed as above 

(section 4.3.1). This experimental work was performed by Dr Gina Eagle.  
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7.2.4 Experimental sample group 3: Biomarkers of the radiotherapy-resistant phenotype in 

human breast cancer cell lines (n=3) 

In order to identify DEPs associated with a radiotherapy resistant phenotype in human 

breast cancer cells three novel radio-resistant cell line derivatives MCF7RR, MDA-MB-

231RR and T47DRR (Smith, Qutob et al. 2009) were compared with the respective 

parental (radio-sensitive) cells. Protein extraction was performed as above (section 4.3.1). 

The experimental work was performed by Dalia ELFadl.  

7.2.5 Experimental sample group 4: Biomarkers of the radiotherapy-resistant phenotype in 

human oral cancer cell lines (n=2) 

In order to identify DEPs associated with a radiotherapy resistant phenotype in human oral 

cancer cells two novel radio-resistant cell line derivatives were established using PE/CA-

PJ41 and PE/CA-PJ49 parent cells following the protocol described previously (Smith, 

Qutob et al. 2009). Protein extraction was performed for radio-resistant and parental (radio-

sensitive) cells as above (section 4.3.1). Experimental work was performed alongside Dalia 

ELFadl.  

7.2.6 Experimental sample group 5: Biomarkers of chemotherapy response in human breast 

cancer tissue (n=5)  

Ethical approval was obtained (REC 07/Q1105/43) and breast cancer samples were 

collected with informed consent from patients who had received neoadjuvant chemotherapy 

(epirubicin/cyclophosphamide followed by docetaxel) for locally advanced breast cancer 

(section 4.2). Samples were snap-frozen in liquid nitrogen and stored at minus 80°C until 

required. Chemotherapy-sensitive and chemotherapy-resistant samples were identified by 

calculation of the extent of tumour response to chemotherapy using the Response 
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Evaluation Criteria In Solid Tumours guidelines (Therasse, Arbuck et al. 2000; Eisenhauer, 

Therasse et al. 2009). In order to identify DEPs associated with chemotherapy response in 

ER-positive ductal breast cancers 5 sample pairs (Table 21) were analysed, each comparing 

a chemotherapy-sensitive and a chemotherapy-resistant sample. For protein extraction the 

tissue was weighed, dissected into small pieces and washed in cold phosphate buffered 

saline. It was then transferred to 4 volumes (w/v) of Buffer A and mechanically 

homogenised on ice using a TissueRuptor (Qiagen Ltd). The extract was then centrifuged 

until a transparent supernatant was obtained (section 6.3.1) (Figure 21).  

7.2.7 Protein Labelling 

Protein Concentrations were determined using the Bradford Assay (#B6916, Sigma 

Aldrich) (section 4.3.3). In all experiments, proteins from control (untreated/sensitive) 

samples were labelled with Cy3 (#PA23001, GE Healthcare) and proteins from test 

(treated/resistant) samples were labelled with Cy5 (#PA25001, GE Healthcare) fluorescent 

dyes according to the manufacturers protocol (section 4.3.4). Protein extracts were diluted 

to 1 mg/ml in ‘Buffer A’, and labelled by incubating 1 ml of the extract with the respective 

dye vials for 30 min at room temperature in the dark. During this time, vials were vortexed 

every 10 min. Un-bound dye was removed from the samples using SigmaSpin columns, 

leaving only dye-protein complexes.  

7.2.8 Protein Binding 

Prior to protein binding, dye-to-protein (D/P) molar ratios were calculated for each sample, 

and as recommended in the kit protocol, only samples with a D/P ratio >2 were carried 

forward (section 4.3.5). In a darkened room, equal amounts (50-150 µg) of labelled protein 

from each sample pair was mixed with array incubation buffer (provided), applied to the 
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array slide and incubated 45 min in a quadriPERM cell culture vessel on an orbital shaker 

at low speed. Following this, the slide was washed three times in wash buffer (provided) for 

5 min and once in ultrapure water for 2 min under the same conditions. The slide was then 

allowed to air-dry for 30 min (section 4.3.6).  

7.2.9 Image acquisition and analysis 

The hybridised antibody microarray slides were scanned using a GenePix Personal 4100A 

Microarray Scanner (Axon Instruments) with 532 and 635 nm lasers. GenePix Pro software 

(Axon Instruments) was used to grid the antibody microarray slide and to apply protein 

names in the form of a list with their respective location on the slide. Negative controls on 

the antibody microarray slide were flagged as ‘absent’, and all antibody/protein spots were 

manually edited (section 4.3.7). This manual editing process took approximately 6 hours 

for each antibody microarray slide. Acuity software (Axon Instruments) was then used to 

identify differentially expressed proteins. Editing and analysis of all 13 antibody microarray 

slides, from the 5 experimental sample groups described was carried out personally, to 

produce 13 sets of data which had been analysed by the same individual. Data 

normalisation was carried out based on the Lowess method, and spot quality control criteria 

were applied to only include spots with <3% saturated pixels, those which were not flagged 

as absent and those that had relatively uniform intensity and were detectable above the 

background (section 4.3.7). Experiments which showed ‘percentage substances matched’ 

values of 90 were carried forward (section 7.4), which indicates how many of the pairs of 

antibody spots were recognised and therefore reflects the quality of the slide and the quality 

of the experiment. Calculated log ratios for the relative expression of each protein were 

converted into fold changes. 
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7.3 Results 

Antibody microarray data was obtained from 13 individual experiments using the XPRESS 

Profiler725 assay to identify DEPs from a range of projects utilising human tissue, cells or 

established cell lines. Analysis of all antibody microarray slides was carried out by the 

same individual (VH) to reduce inter-observer variability. Experiments were considered 

successful only when the percentage of ‘substances matched’, provided by the software 

during analysis, was ≥90% thus ensuring that good quality data had been produced for a 

high proportion of the 725 antibodies on the microarray in each experiment. Based on the 

data generated from all 13 experiments it was decided that a fold change of ≥1.8 would be 

considered significant. In addition, fold changes ≥1.5 were also recorded for each 

experiment but this data was only considered as supporting evidence if there was other data 

indicating that the protein was a significant DEP. A total of 13 RIDEPs were seen, each 

appearing in at least 4/13 (30%) antibody microarray analyses from at least 2 experimental 

sample groups (Table 19). 
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Table 19: RIDEPs from antibody microarray analysis 

A total of 13 different antibody microarray assays were performed using 13 samples derived from 5 experimental sample groups. The Table 

shows RIDEPs seen in at least 4/13 (30%) antibody microarray analyses from at least 2 experimental sample groups. Significant expression 

fold-change (1.8) is indicated in bold. For proteins which show 1.8-fold change in expression, supporting data from other experiments is 

shown upward of 1.5-fold. Values below 1.5 were considered to be not significant (---). Any proteins which did not pass the analysis criteria 

for experimental quality control are indicated as . 

 Experimental sample group # 

Protein 

(Ab #) 

#1 

BCR 

stimulation 

(CLL cells) 

 

#2 

COX-2 inhibitor 

(lung cancer 

and 

mesothelioma 

cell lines) 

#3 

Radio-resistance (breast cancer cell 

lines) 

 

#4 

Radio-resistance 

(oral cancer cell 

lines) 

#5 

Chemo-resistance 

(breast cancer tissue) 

 

  n=1 n=2  n=3  n=2  n=5 

 

003 A549 
MSTO-

211H 

MDA-

MB-

231RR 

T47DRR MCF7RR 
PE/CA-

PJ41 

PE/CA-

PJ49 
11/19 15/9 15/19 12/25 18/25 

Zyxin (#Z0377) 3.14 4.39 4.74 3.07 2.99 1.70 --- 1.54 7.80 2.01 2.21 2.02 2.63 

BID (#B3183) 3.05 2.42 2.54 --- --- --- 2.05 2.33 --- 2.16 1.55 1.97 1.96 

MyD88 (#M9934) 4.53 --- --- --- 2.08 2.02 --- --- --- --- 2.08 2.18 --- 

IKKa (#I6139) --- 2.37 1.99 --- --- --- --- 2.29 1.61 --- --- 2.03 --- 

Bcl-xL (#B9429) --- 2.13 2.24 --- --- --- --- --- --- 2.26 --- 1.57 2.62 

Chondroitin 

sulphate (#C8035) 
--- 1.85 1.54 --- 1.79 --- 2.30 1.98 1.56 --- 2.00 --- --- 

14-3-3 theta/tau 
(#T5942) 

--- 1.64 2.22 --- --- --- --- --- 1.54 1.90 2.29 2.55 1.52 

Centrin (#C7736) 2.00 2.51 2.04 --- --- --- --- --- 1.51 --- --- 1.90 --- 

SLIPR MAGI3 

(#S4191/#S1190) 
3.22 2.15 1.92 --- --- --- 1.84 1.77 --- --- --- --- --- 

Pinin (#P0084)  7.67 7.32    --- ---  2.54 2.39 1.53 --- 

Protein kinase C 
(#P5704) 

2.10 --- --- 1.92 --- 1.91 2.10 --- --- --- --- --- --- 

Smad4 (#S3934) 3.56 1.87 1.61 1.81 --- 1.96 --- --- --- --- --- --- --- 

Siah2 (#S7945) 5.22 --- --- 1.92 2.05 1.50 2.10  --- --- 1.66 --- --- 
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7.4 Discussion 

7.4.1 Quality control 

The percentage of ‘substances matched’ by the software on the microarray slide is indicated 

following analysis. This represents how many of the ‘substances’ (pairs of antibodies 

spotted on the slide) were detected after passing the quality control criteria which were 

applied, thus determining the overall quality of the experiment. There are currently no 

recommendations in the literature regarding thresholds for quality control for antibody 

microarray analysis, and no evidence of other studies comprising this number of 

experiments (n=13), which have been analysed by the same individual. Therefore, based on 

personal experience, due to the extent of antibody microarray data analysis which has been 

performed, a quality control threshold is being proposed. After analysing multiple antibody 

microarray experiments, the proposed level of ‘% substances matched’ is ≥90%. This 

would ensure that only slides which are of high quality are considered for result 

interpretation. Any slides which fall below this bench-mark should be carefully 

investigated, especially for spot quality, spot morphology and non-specific dye background 

problems.  

7.4.2 Fold change cut-off 

Following the convention in expression microarray analysis, a 2-fold change in expression 

has previously been utilised to indicate a significant DEP using antibody microarray 

platforms (Ghobrial, McCormick et al. 2005; Smith, Qutob et al. 2009; Wu, Wang et al. 

2010). The decision to pass a DEP into the verification stage of the biomarker discovery 

pipeline is usually based on reaching a threshold level of significant fold change. The fold 

change cut-off employed when using the XPRESS Profiler725 antibody microarray has 
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ranged from ≥1.5-fold to ≥2.5-fold (Mohri, Mohri et al. 2009; Uemura, Nakanishi et al. 

2009; Wu, Wang et al. 2010). Here, 13 individual data-sets have been assessed and it was 

noticed that proteins which were appearing in multiple experiments within a sample group, 

were occasionally falling short of the 2-fold threshold. Fold changes in expression ≥1.8 

have therefore been considered to be significant, to ensure potentially interesting proteins 

are not overlooked. In addition fold changes ≥1.5 were also recorded, as supporting 

evidence, for each protein once a value of ≥1.8 was reached in one experiment. This 

ensures that all fold change data of ≥1.5 is considered for each set of biological replicates 

before prioritisation decisions are made for the confirmation stage. 

7.4.3 RIDEPs 

A cluster of approximately 900 genes has been reported in yeast which responds to stressful 

environmental changes as a protective mechanism, usually where conditions become sub-

optimal (Gasch, Spellman et al. 2000). The aim of the cellular stress response is to protect 

against adverse environmental conditions that may perturb cell homeostasis and proteins 

which are responsible for the cellular stress response are highly conserved across the three 

superkingdoms Archaea, Bacteria and Eukarya (Kultz 2003). Approximately 300 

conserved proteins constitute the ‘minimal stress proteome’(Kültz 2005). Of the 300 

proteins, 44 known functional proteins have been identified which are ubiquitously 

conserved in all 3 superkingdoms (Kültz 2005). The functional roles of these proteins 

include redox regulation, energy metabolism and the DNA damage/repair response, 

processes which are all essential for management of stress and maintenance of cell 

homeostasis. The enolase, GAPDH and peroxiredoxin proteins feature amongst the 44 

which have been listed as part of the minimal stress proteome and this formed the basis of 

the hypothesis that the RIDEPs identified by Petrak et al (2008), which included these 
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proteins, appeared due to a cellular stress response (Petrak, Ivanek et al. 2008; Mariman 

2009). These lists of RIDEPs should be considered when interpreting proteomics data from 

the discovery phase.  

Antibody microarray analysis has identified 13 RIDEPs which were seen in at least 4/13 

(30%) XPRESS Profiler725 antibody microarray analyses from at least 2 experimental 

sample groups. None of these proteins have previously been reported as RIDEPs in 2D-

PAGE/MS-based experiments (Petrak, Ivanek et al. 2008; Mariman 2009; Wang, 

Bouwman et al. 2009) and this may be due to the technical differences between the 

platforms, which produce the complementary nature of proteomic techniques, (Smith, 

Qutob et al. 2009), sample differences or cut-off values employed. 

The most frequently identified protein was zyxin which demonstrated significant 

differential expression in 10/13 (76%) experiments from 4/5 sample groups. Zyxin is a 

focal adhesion LIM domain protein involved in maintenance of actin stress fibres and 

apoptotic signalling (Hervy, Hoffman et al. 2010; Smith, Blankman et al. 2010). Its 

possible role in homeostasis and the position as the top RIDEP in these antibody 

microarray experiments has resulted in this putative biomarker being treated with caution 

since the differential expression of zyxin may be a result of cellular stress. Other proteins 

identified frequently across all experiments include BID, MyD88, BclxL, 14 3 3 theta/tau, 

SLIPR MAGI3, Protein Kinase C, Smad4 and Siah2 which have all been linked with a 

functional role in cell apoptosis. There are many antibodies against apoptosis-related 

proteins on the XPRESS Profiler725 antibody microarray slide and this family of proteins 

may be anticipated to produce candidate biomarkers for the types of experimental sample 

groups which have been presented, however these RIDEPs would need careful verification. 

In recent publications which have also used the XPRESS Profiler725 antibody microarray 
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for human cell or tissue research (Mohri, Mohri et al. 2009; Uemura, Nakanishi et al. 2009; 

Wu, Wang et al. 2010) 3 of these RIDEPs (BID, MyD88 and BclxL) were also reported in 

at least 1 study. 

7.5 Conclusions 

The phenomenon of RIDEPs may exist not only in mass spectrometry-based proteomic 

experiments, but also in antibody microarray proteomics and a preliminary list of 13 

RIDEPs has been produced from the XPRESS Profiler725 antibody microarray platform 

for the first time. This information will be useful when interpreting experimental data and 

considering which DEPs should be prioritised for verification.  
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CHAPTER 8: 

ANTIBODY MICROARRAY ANALYSIS FOR 

THE IDENTIFICATION OF BIOMARKERS OF 

CHEMOTHERAPY RESISTANCE 

 

Chapter Aim: 

To use the antibody microarray proteomics platform for the identification of putative 

biomarkers of neoadjuvant chemotherapy resistance in breast cancer using clinical tumour 

tissue samples, forming part of the discovery phase of the biomarker discovery pipeline. 
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Chapter 8.  Antibody microarray analysis for the identification 

of biomarkers of chemotherapy resistance 

8.1 Introduction 

This chapter involves the examination of luminal (ER+) breast cancer samples from 

patients treated with neoadjuvant chemotherapy in order to identify proteins which may be 

associated with therapy resistance. In order to achieve this, the antibody microarray 

platform was employed to assess the differential expression of 725 protein targets 

simultaneously per experiment, forming part of the ‘discovery’ phase of the biomarker 

discovery pipeline (section 3.1 and section 3.5). The quality-control thresholds, fold-change 

cut-off values and RIDEPs associated with the antibody microarray platform were outlined 

in Chapter 7. The results presented in this chapter include the same five pairs of breast 

cancer samples which were described in Chapter 7 for the identification of RIDEPs.  

8.1.1 Antibody microarrays 

Antibody microarrays offer a complementary approach to techniques such as 2D-PAGE / 

MS for the discovery of biomarkers, and have the ability to identify the differential 

expression of multiple proteins simultaneously, between two samples (section 3.5). They 

consist of small amounts of antibodies, arranged on a solid support such a glass microscope 

slide, which is coated with a substrate such as nitrocellulose (Alhamdani, Schroder et al. 

2009). There are several commercially available antibody microarrays, an example of 

which is the Panorama
®

 Antibody Array – XPRESS Profiler725, by Sigma Aldrich. This 

platform contains 725 antibodies (listed in Appendix 1) specific to a variety of proteins 

involved in important biological pathways, such as cell signalling, gene regulation and 
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apoptosis, and is able to detect protein levels as low as nanograms per millilitre (Kopf, 

Shnitzer et al. 2005). Antibodies on the Panorama
®
 Antibody Array platform are 

robotically spotted onto nitrocellulose-coated slides under controlled conditions, after 

which the slide is blocked with a specific proprietary blocking buffer to minimise 

background staining (Kopf, Shnitzer et al. 2005). The most common detection method 

currently used for antibody microarrays is the fluorescence-based detection method 

(Pavlickova, Schneider et al. 2004; Borrebaeck and Wingren 2009). This involves the 

labelling of proteins with fluorescent dyes, thus allowing protein expression to be 

determined when it binds to the corresponding antibody on the slide. Each sample is 

labelled with a different fluorescent dye, commonly Cy3 and Cy5 dyes (Gu, Sivanandam et 

al. 2006). An example of such dyes are the cyanine Cy3 and Cy5 mono-functional N-

hydroxysuccinimidyl ester (NHS-ester) dyes (#PA23001 and #PA25001, GE Healthcare) 

which label proteins by binding to free amino groups on lysine amino acid residues. The 

array slide is scanned at two wavelengths, typically 532 nm and 635 nm, to analysis Cy3- 

and Cy5-labelled samples respectively. These two images are then combined to produce a 

ratio image (Figure 31). The relative intensity of each dye on each antibody spot can be 

used to determine relative expression of a specific protein in each sample. The differential 

expression of a protein is determined when a significant fold change in expression is 

observed between the two samples; in this chapter, a fold change of ≥ 1.8 is deemed 

significant (section 7.4.2). Following analysis of each spot on the antibody microarray, a 

list of differentially expressed proteins is generated.  
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Figure 31: Scanning of antibody microarray slides 

When using the fluorescence-based detection method of protein expression, where proteins 

are labelled with Cy3 and Cy5 dyes, the array slide is scanned at two different wavelengths 

(532 nm and 653 nm). The two images are then combined, to give a ratio image from which 

the relative intensity of each dye can be determined for each antibody. Where the difference 

in relative intensity of each dye is ≥ 1.8-fold, this represents the significant differential 

expression of this protein.  

 

8.2 Methods 

8.2.1 Fresh tumour samples 

Following Research Ethics Committee approval (ref 07/Q1105/43) patients receiving 

neoadjuvant chemotherapy for locally advanced breast cancer at Castle Hill Hospital in 

Hull were identified. The standard treatment regimen consisted of 4 cycles of 90 mg/m
2 

epirubicin with 600 mg/m
2 

cyclophosphamide (EC) followed by 4 cycles of 100 mg/m
2 

docetaxel given at three-weekly intervals prior to surgical resection. All patients completed 

at least 6 cycles of chemotherapy unless early surgical intervention was indicated due to 
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disease progression. Following surgical resection a fresh sample of macroscopic residual 

breast cancer was immediately snap-frozen in liquid nitrogen and stored at minus 80
o
C 

until required. All samples selected for analysis were ductal, ER positive (luminal) 

tumours. Considering Response Evaluation Criteria In Solid Tumours guidelines (Therasse, 

Arbuck et al. 2000; Eisenhauer, Therasse et al. 2009), clinical response was determined by 

a specialist in Oncology using pre-treatment dynamic contrast enhanced-magnetic 

resonance imaging (DCE-MRI) data, post-treatment histopathological measurement of 

residual primary tumour and clinical observation of metastasis during therapy. For one case 

where DCE-MRI data was not available, pre-treatment and post-treatment ultrasound scans 

were compared for tumour measurements. For the purpose of this study, samples were 

designated as ‘chemotherapy sensitive’ (CS; samples #11
CS

, #12
CS

, #15
CS

 and #18
CS

) where 

a partial response (at least 30% decrease in primary tumour size) was seen. Samples were 

designated as ‘chemotherapy resistant’ (CR; samples #9
CR

, #19
CR

 and #25
CR

) where disease 

progression was observed during therapy and/or where there was no significant decrease in 

primary tumour size. These 7 clinical samples (Table 20) were selected based upon sample 

availability, and according to the amount of protein each sample yielded, they were used to 

create five pair-wise combinations (Table 21), in order to maximise the data generated.  

Table 20: Clinical samples selected for antibody microarray analysis 

Seven clinical samples were selected, which were all ductal tumours of luminal subtype 

(ER+). Tumour response was determined based on tumour size pre-and post-neoadjuvant 

chemotherapy treatment and categorised as chemotherapy-sensitive
CS

 or chemotherapy-

resistant
CR

 by a specialist oncologist.  

Sample # Hormone Status Tumour response 

9
CR ER+ PR+ HER2+ 8% size increase. Stable Disease 

11
CS ER+ PR+ HER2- 40.5% size reduction. Partial Response 

15
CS

 ER+ PR+ HER2- 69.2% size reduction. Partial Response 

18
CS

 ER+ PR+ HER2- 78.1% size reduction. Partial response 

19
CR

 ER+ PR- HER2- 71.4% size increase. Progressive disease 

25
CR ER+PR+HER2+ 26.9% size reduction. Stable Disease 
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Table 21: Pair-wise combinations of samples used for 5 antibody microarray 

experiments 

Five experiments were performed, where protein expression was compared between 

chemotherapy-sensitive samples
CS

 and chemotherapy-resistant samples
CR

. 

 

Experiment # Chemotherapy-sensitive
CS

 sample Chemotherapy-resistant
CR

 sample 

1 #11
CS

 #19
CR

 

2 #15
CS

 #9
CR

 

3 #15
CS

 #19
CR

 

4 #12
CS 

#25
CR 

5 #18
CS 

#25
CR

 

8.2.2 Antibody microarray analysis 

The Panorama Antibody Microarray XPRESS Profiler725 Kit (#XP725, Sigma Aldrich) 

which comprises 725 antibodies spotted in duplicate onto a nitrocellulose-coated glass 

microscope slide was used as previously described (section 7.2). In brief, total protein 

lysates from CS samples were fluorescently labelled with Cy3 (#PA23001, GE Healthcare) 

and lysates from CR samples were labelled with Cy5 (#PA25001, GE Healthcare). Prior to 

protein binding, dye-to-protein molar ratios were determined for each sample to ensure that 

the ratio was ≥ 2. A total of 5 comparative experiments were performed, each comparing a 

CR and a CS sample. Equal amounts of protein from each sample (90 µg) were incubated 

with the slide for 45 minutes on an orbital shaker at low speed. Data normalisation and 

analysis was performed as described previously and experiments were considered 

successful when the percentage of ‘substances matched’ was ≥ 90 (section 7.4). To denote 

differentially expressed proteins (DEPs), fold changes ≥ 1.8 were considered significant, 

with fold changes ≥ 1.5 also recorded for each experiment for use as supporting data. As 

previously described (section 4.3.7), the direction of fold change (increase or decrease in 

expression of a protein) was not shown, as dye-swap experiments had not been performed 

(section 4.3.7). Subsequent western blotting and clinical validation using 

immuohistochemistry were used to determine the direction of fold change.  
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8.3 Results 

Five antibody microarray experiments were performed, which involved the comparison of 

protein expression in chemotherapy-sensitive samples with protein expression in 

chemotherapy-resistant samples, in order to identify differentially expressed proteins 

(DEPs) associated with chemo-resistance. This generated 5 sets of data, with a total of 38 

DEPs. Seven of these DEPs were significantly (≥ 1.8-fold) identified in at least two 

experiments (zyxin, 14-3-3 theta/tau, tBID, pinin, Bcl-xL, RIP and MyD88) (Table 22). 

The RIDEPs identified in chapter 7, which are present within this list of 38 DEPs include 

zyxin, BID, MyD88. IKKa, Bcl-xL, chondroitin sulphate, 14-3-3 theta/tau, centrin, pinin 

and siah2 (n=10) (Table 19) (section 7.3). 

Table 22: DEPs in chemotherapy resistant tumour tissue identified by 5 antibody 

microarray experiments comparing CR and CS samples.  

Significant expression fold change ( 1.8) is indicated in bold. For proteins which show  

1.8-fold change in expression, supporting data from other experiments is shown upward of 

1.5-fold. Values considered to be not significant (---) and antibody spots which did not pass 

the analysis criteria for experimental quality control () are also indicated.  

 

Ab # Protein  Gene  11
CS

/19
CR

 15
CS

/9
 CR

 15
CS

/19
 CR

 12
CS

/25
 CR

 18
CS

/25
 CR

 

Z0377 Zyxin ZYX 7.80 2.01 2.21 2.02 2.63 

T5942 
14-3-3 

theta/tau 
YWHAQ 1.54 1.90 2.29 2.55 1.52 

B3183 tBID BID --- 2.16 1.55 1.97 1.96 

P0084 Pinin PNN  2.54 2.39 1.53 --- 

B9429 Bcl-xL BCL2L1 --- 2.26 --- 1.57 2.62 

R8274 RIP RIPK1 2.07 --- --- 2.56 --- 

M9934 MyD88 MYD88 --- --- 2.08 2.18 --- 

P3203 
Protein Kinase 

Cb2 
PRKCB 3.20 --- --- 1.70 --- 

P3078 
Protein Kinase 

Cb1 
 --- --- --- 2.06 --- 

T5530 Tau MAPT 1.63  2.04  --- 

I6139 IKKa CHUK 1.61 --- --- 2.03 --- 

C8035 
Chondroitin 

sulfate 
ACAN 1.56 --- 2.00 --- --- 

F7926 
FAK 

(pTyr397) 
PTK2 --- --- 1.51 --- 1.95 
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Ab # Protein  Gene  11
CS

/19
CR

 15
CS

/9
 CR

 15
CS

/19
 CR

 12
CS

/25
 CR

 18
CS

/25
 CR

 

F8926 
FAK 

(pTyr577) 
 ---  --- 2.20 --- 

C7736 Centrin CETN1 1.51 --- --- 1.90 --- 

P9371 PINCH 1 LIMS1 --- --- 1.51 1.90 --- 

T9191 TRAIL TNFSF10 --- --- 1.83 1.62 --- 

S0315 SAPK3 MAPK12 --- 3.76  --- --- 

R8529 RALAR RALA ---  3.70  --- 

C8854 Caspase 13 CASP13 --- --- 2.69 --- --- 

T2780 Tropomyosin TPM1 --- 2.67 ---  --- 

S4047 S6 Kinase RPS6KB1 --- --- --- 2.44 --- 

R5145 Rsk1 RPS6KA1 --- --- --- 2.33 --- 

H9286 

Acetyl 

Histone H3 

AcLys9 

H3F3A --- --- --- 2.21 --- 

D5567 
Dimethyl 

Histone H3 
 2.14 --- --- --- --- 

D1314 DRAK1 STK17A --- 2.18 --- --- --- 

C3956 cMyc MYC --- --- --- 2.17 --- 

M9317 MeCP2 MECP2 --- --- --- 2.17 --- 

Ab # Protein  Gene  11
CS

/19
CR

 15
CS

/9
 CR

 15
CS

/19
 CR

 12
CS

/25
 CR

 18
CS

/25
 CR

 

E2520 
Epidermal 

Growth Factor 
EGF --- --- --- 2.13 --- 

M6194 Munc13 1 UNC13A --- --- --- 2.08 --- 

T1827 TBP TBP --- --- --- 2.08 --- 

S5313 Sir2 SIRT1 --- --- --- 2.08 --- 

H9912 hSNF5 INI1 SMARCB1 --- --- --- 2.03 --- 

A8604 Annexin V ANXA5 --- --- --- 2.02 --- 

P1601 
Protein Kinase 

Ba 
AKT1 2.10 --- --- --- --- 

R4904 Reelin RELN 1.95  ---  --- 

P6834 Ki-67 MKI67 1.92 --- --- --- --- 

D1286 
Desmosomal 

protein 
DSC1 --- --- 1.92 --- --- 

H9411 HDAC4 HDAC4 --- --- --- --- 1.89 

T0825 Transportin 1 TNPO1 --- --- --- 1.84 --- 

S9809 Sp1 SP1 --- --- --- 1.82 --- 

 

8.4 Discussion 

A list of 38 differentially expressed proteins (DEPs) associated with chemo-resistance has 

been identified, using antibody microarray analysis on fresh tumour tissue. Seven DEPs 
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were significantly identified in more than one experiment (zyxin, 14-3-3 theta/tau, tBID, 

Pinin, Bcl-xL, RIP and MyD88). Following the identification of several RIDEPs (section 

7.4.3), of which zyxin was the most common, the selection of proteins for further analysis 

must be carefully considered. This data will be further analysed in chapter 10, to include 

the data mining, confirmation and clinical validation phases of the biomarker discovery 

pipeline.  

The 14-3-3 theta/tau isoform of the 14-3-3 family of proteins, which is the only isoform 

present on the array slide, was found to be differentially expressed by at least 1.5 fold in 5/5 

experiments. The 14-3-3 family of proteins have previously been implicated in resistance to 

anthracycline or taxane therapy in breast cancer cells (section 3.7) (Liu, Liu et al. 2006). 

This will be discussed further in chapter 10. Another factor which has a well-established 

putative role in chemotherapy response, and is a critical biological process responsible for 

the execution of cell death, is the apoptosis pathway (Pommier, Sordet et al. 2004; 

Chuthapisith 2007) (section 2.1.4). Proteins identified, which are associated with this 

pathway therefore warrant further investigation; this includes tBID, Bcl-xL and MyD88.  

In order to analyse and interpret the data, and to aid the selection of candidates for 

confirmation and validation phases, the list of DEPs identified by antibody microarray must 

now be carried forward to the data mining stage. This involves the use of Ingenuity 

Pathway Analysis (IPA) software, which identifies relationships between protein candidates 

and highlights canonical pathways these candidates may be associated with. This will be 

described in chapter 10. 
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Chapter Aim: 

To use 2D-PAGE MALDI-TOF/TOF MS analysis for the identification of putative 

biomarkers of neoadjuvant chemotherapy resistance in breast cancer using clinical tumour 

tissue. This will form part of the discovery phase of the biomarker discovery pipeline. 
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Chapter 9.  Two-dimensional gel electrophoresis and mass 

spectrometry for the identification of biomarkers of 

chemotherapy resistance 

9.1 Introduction 

This chapter involves the use of comparative two-dimensional polyacrylamide gel 

electrophoresis (2D-PAGE) coupled with matrix-assisted laser desorption/ionisation time-

of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) (section 3.3), to identify 

potential protein biomarkers associated with chemo-resistance, using clinical tumour tissue 

samples. This forms part of the ‘discovery’ phase of the biomarker discovery pipeline, 

aiming to generate a list of differentially expressed proteins (DEPs) between 

chemotherapy-sensitive and chemotherapy-resistant tumour samples. There are several 

stages involved in the 2D-PAGE/MS process, which are outlined in Figure 32. 

 
Figure 32: 2D-PAGE/MS workflow 

An outline of the workflow and steps involved in the discovery of differentially expressed 

proteins (DEPs) using 2D-PAGE coupled to mass spectrometry. 
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9.1.1 MALDI TOF/TOF mass spectrometry 

The mass spectrometer being used for the analysis of peptides for protein identification is a 

Bruker Ultraflex III MALDI-TOF/TOF mass spectrometer (Bruker Daltonics). As 

previously discussed (section 3.3.2.7), a mass spectrometer is composed of three 

components; an ion source, a mass analyser and a detector.  

The target plate, containing sample/matrix is inserted into the machine, after which it is 

transferred via the vacuum lock into the system. Ions are formed using the MALDI 

technique, with a pulsed ion extraction (PIE) method. This method reduces differences in 

kinetic energy, which is due to differences in energy distribution, between ions of the same 

mass. If ions of the same mass arrive at the detector at different times due to differences in 

kinetic energy, it results in peak broadening and decreases resolution. The PIE method is 

composed of three components; P1 (target plate), P2 (electrode) and ground potential 

(electrode) (Figure 33), where ions are exposed to different electric potentials, which results 

in ions with higher initial energy (faster) being exposed to less electric potential, and ions 

with  lower initial energy (slower) being exposed to more electric potential. This corrects 

for differences in kinetic energy, and ensures ions of the same mass arrive at the detector at 

the same time. Peak broadening and loss of resolution is also minimised by the use of the 

reflectron, which also corrects for differences in velocity between ions of the same mass. 

Following ionisation, ions travel down the flight tube, are reflected by the reflector, and 

subsequently reach the micro-channel-plate detector. Ions with higher mass will reach the 

detector after ions with a lower mass. The detector determines the m/z of each ion and its 

relative abundance in the sample, and presents this data in the form of a peptide mass 

fingerprint (PMF). This can be submitted to MASCOT where the masses observed can be 
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compared to theoretical tryptic digests within a protein sequence database, in order to 

achieve protein identification.  

Tandem mass spectrometry involves further fragmentation of ions within the initial PMF, 

and provides a more confident and accurate protein identification. The Ultraflex III offers 

both laser-induced dissociation (LID) and the high energy collision-induced dissociation 

(CID), the former of which is most commonly used for protein identification (Suckau, 

Resemann et al. 2003), and in combination with the patented LIFT device, offers high 

resolution, mass accuracy and sensitivity. For MS/MS, the laser intensity is increased, 

which increases the yield of precursor ions per shot (Suckau, Resemann et al. 2003). 

Increasing voltage and laser intensity, gives ions more internal energy and upon collision 

with nitrogen ions, fragmentation occurs. The most intense peaks from the PMF, for 

example the highest 10 peaks, are selected for MS/MS one by one. Following 

fragmentation by LID, ion ‘families’, consisting of the precursor ion and its fragments 

travelling together, are selected by the precursor ion selector (PCIS) (Suckau, Resemann et 

al. 2003) and directed towards the LIFT cell. Ions enter the LIFT cell, where they are 

accelerated and given amounts of kinetic energy proportional to their mass, so that ions 

only of the same mass arrive at the detector at the same time.  

The main types of peptide fragments obtained from MS/MS, produced by the cleavage of 

the C
1
-C, C-N or N-C

1
 bond. Where the charge remains on the N-terminus, a, b and c 

fragments are produced and where the charge remains the C-terminus, x, y and z fragments 

are produced (Figure 34). The most frequent cleavage site is the C-N bond, the cleavage of 

which yields b and y fragments. In these experiments, using the Ultraflex III in LIFT mode 

without the addition of a collision-gas, we can expect to see mainly b and y fragments 

(Figure 34) (Shenar, Sommerer et al. 2009). The amino acid residue can be determined by 
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calculating the mass difference between two consecutive fragments (e.g. b1 and b2). The 

spectra generated by MS/MS illustrate the fragmentation pattern of each precursor ion, by 

the mass of each ion produced; this is similar to a PMF, and may be referred to as a peptide 

fragmentation fingerprint (PFF). The masses observed can be compared to the theoretical 

peptide fragment ion masses in a database, using MASCOT, and protein identification can 

be proposed. For confident and stringent protein identification, matching of two peptides is 

desirable. One peptide-match is commonly accepted, however for publication-purposes 

extra information is sometimes required (section 9.3.6).   

 

 

Figure 33: Schematic of the Ultraflex III MALDI-TOF/TOF mass spectrometer 

An Ultraflex III MALDI-TOF/TOF mass spectrometer, equipped with a Smartbeam laser 

(designed to combine the best attributes from nitrogen and Nd:YAG lasers), was used to 

analyse peptide samples. A peptide mass fingerprint (PMF) is generated initially, by 

ionisation of the sample and determination of its m/z ratio upon reaching the detector, by 

calculation of the time taken to travel down the flight tube. Peaks can then be automatically 

selected for MS/MS, fragmented and analysed using the LID-LIFT method. The 

submission of the spectra to a sequence database, via MASCOT, then allows protein 

identification upon comparison with known sequences in the database, by knowledge of 

digest and fragmentation chemistry. 
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Figure 34: Peptide fragmentation (Roepstorff and Fohlman notation)  

The main types of peptide fragments obtained from MS/MS, produced by the cleavage of 

the C
1
-C, C-N or N-C

1
 bond. Where the charge remains on the N-terminus, a, b and c 

fragments are produced and where the charge remains the C-terminus, x, y and z fragments 

are produced. The number (subscript) represents the number of amino acid residues within 

the fragment. The weakest bond, and therefore most frequent cleavage site, is the C-N 

bond; the cleavage of which yields b and y fragments. For experiments presented within 

this chapter, using the Ultraflex III in LIFT mode without the addition of a collision-gas, 

the type of fragments expected would be mainly b and y fragments (shown as solid 

coloured line). The mass difference between two adjacent ions (e.g. between b2 and b3) will 

reveal the amino acid residue, thus uncovering the peptide sequence.  

 

9.2 Methodology 

9.2.1 Clinical Samples  

Clinical samples were selected based upon sample availability and paired according to 

tumour type, molecular subtype, chemotherapy treatment regimen and response to 

chemotherapy. All tumour samples used were ductal tumours of luminal (ER+) subtype. 

Four clinical tumour samples (#15
CS

, #19
CR

, #1
CR

 and #18
CS

) were selected (Table 23) and 

used to create three pair-wise combinations, depending upon protein yield from each, to 

maximise the data generated from the samples (Table 24). Three of these samples (#15
CS

, 

#19
CR

 and #18
CS

) were also analysed by antibody microarray analysis (section 8.2.1).  
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Table 23: Clinical samples selected for 2D-PAGE/MS analysis 

Four clinical samples were selected, which were all ductal tumours of luminal subtype 

(ER+) and were all negative for the expression of HER2. Tumour response was determined, 

based on the change in size pre- and post-treatment as well as consideration of tumour 

progression in the event of metastasis. Based upon this, tumours were classified as 

chemotherapy-sensitive (CS) or chemotherapy-resistant (CR) 

 

Sample # Hormone Status Tumour response 

15
CS

 ER+ PR+ HER2- 69.2% size reduction. Partial Response 

18
CS

 ER+ PR+ HER2- 78.1% size reduction. Partial response 

19
CR

 ER+ PR- HER2- 71.4% size increase. Progressive disease 

1
CR

 ER+ PR- HER2- Progressive disease (metastasis during therapy) 

 

Table 24: Pair-wise combinations of clinical samples for three 2D-PAGE/MS 

experiments 

Due to sample availability, four clinical tumour samples were used to generate three pair-

wise combinations for three 2D-PAGE/MS experiments   

 

Experiment 

# 

Chemotherapy-sensitive (CS) 

Sample 

Chemotherapy-resistant (CR) 

sample 

1 #15
CS

 #19
CR

 

2 #15
CS

 #1
CR

 

3 #18
CS

 #1
CR

 

 

9.2.2 Protein extraction  

Following optimisation of methods in section 6.3.2, proteins were extracted from each 

tumour sample in 2D extraction buffer with sonication, as described previously (section 

4.4.1). Samples were stored at minus 80 C in polypropylene microcentrifuge tubes. 

9.2.3 Protein clean-up and quantification 

The ReadyPrep Cleanup Kit (#163-2130, Bio-Rad) was used to prepare samples for 

isoelectric focusing (IEF) by removing contaminants such as lipids, salts and nucleic acids. 

The procedure was carried out according to manufacturers’ instructions, as described in 

section 4.4.2. Following the clean-up of samples, samples were quantified using the 2-D 
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Quant Kit (#80-6483-56, GE Healthcare). The procedure was performed according to 

manufacturers’ instructions, as described in section 4.4.3. 

9.2.4 2D PAGE 

9.2.4.1 1st
 dimension (IEF) 

ReadyStrips IPG strips (pH 4-7; 11cm) (#163-2015, Bio-Rad) were rehydrated with 200 µg 

of protein sample, for 16 hours. This was performed for each sample, in triplicate. IEF was 

performed using a 3-step program, consisting of 20 min at 250 V (linear); 150 min at 8000 

V (linear) and 20 000 V-hours at 8000 V (rapid), as described in section 4.4.4.  

9.2.4.2 2nd
 dimension (SDS-PAGE) 

Following IEF, proteins within the IPG strip were equilibrated with DTT and IAA, which 

involved the reduction and alkylation of the proteins in preparation for SDS-PAGE, as 

described in section 4.4.5. IPG strips were then placed at the top of a Criterion
™

 pre-cast 

gel (11 cm 8-16% Tris-HCl polyacrylamide gel) (#354-0105, Bio-Rad), embedded in 1% 

overlay agarose. Proteins were separated by mass at 200 V, 500 mA and 300 W for 65 min, 

as previously described (section 4.4.5). 

Proteins were visualised by staining with Bio-safe Coomassie Stain (#161-0787, Bio-Rad) 

for 1 hour, following be de-staining for 16 hours in ddH2O, on an orbital shaker.  Gels were 

scanned using a GS800 calibrated densitometer (Bio-Rad) and Quantity One software (Bio-

Rad) (section 4.4.6). 

9.2.5 PDQuest 

For each experiment, three gel images for each sample (chemotherapy-sensitive and 

chemotherapy-resistant) were up-loaded into PDQuest software. Spots were manually 
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detected and matched across all six gels, and PDQuest software was used to identify the 

significant (fold change 2, p<0.05) difference in expression of a protein spot between 

chemotherapy-sensitive and chemotherapy-resistant samples, using Boolean quantification 

and the Students t-test, as described in section 4.4.7. Histograms showing relative 

abundance of each spot within the six gels were provided for each DEP. Within PDQuest, 

chemotherapy-sensitive gels were coded red, and chemotherapy-resistant gels were coded 

green, as represented by the histograms.     

9.2.6 Spot excision and in-gel digest 

DEP spots selected by PDQuest were manually excised and transferred into LoBind 

eppendorf tubes (#022431064, Eppendorf) (section 4.4.8). Following this, gel pieces were 

washed and de-stained in 25 mM ammonium bicarbonate solution and proteins were 

digested overnight into peptides using Trypsin Gold (#V5280, Promega), as described in 

section 4.4.9.2. 

9.2.7 Identification by MALDI-TOF/TOF MS 

Peptides from each spot were mixed with an equal amount of 5 mg/ml 4-hydroxy-α-

cyanocinnamic acid (CHCA) matrix, in 50% ACN and 0.1% TFA (aq), and spotted onto an 

MTP384 polished steel target plate (Bruker Daltonics). Mass spectra were obtained using 

the Ultraflex III MALDI-TOF/TOF MS (Bruker Daltonics) in reflectron mode over a mass 

range of 800-4000 m/z, from positive ions generated by a Nd:YAG Smartbeam laser, as 

described in section 4.4.11. From the PMF generated, the 10 highest peaks, with a signal-

to-noise threshold >30, were automatically selected for MS/MS fragmentation. 

Fragmentation was performed in LIFT mode without addition of collision gas. The default 

calibration method was used for MS/MS spectra, as described in section 4.4.11. Flex 
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Analysis software (version 3.3, Bruker Daltonics) was used to process the spectra and 

generate peak lists for both MS and MS/MS spectra. MS/MS data was submitted to Mascot 

(version 2.1, Matrix Science Ltd) for searching of the IPI Human database, via the 

ProteinScape interface (version 2.3, Bruker Daltonics). The search criteria that were 

specified are listed in Table 25. 

Table 25: Search criteria specified for protein identification  

Enzyme: Trypsin 

Missed cleavages 1 

Fixed modifications: Carbamidomethyl (C) 

Variable modifications: Oxidation (M) 

Peptide tolerance: 250 ppm 

MS/MS tolerance: 0.5 Da 

Instrument: MALDI-TOF-TOF 

 

9.3 Results 

9.3.1 2D-PAGE  

Three experiments were performed, which involved the direct comparison of proteins 

extracted from a chemotherapy-sensitive (CS) tumour to proteins extracted from a 

chemotherapy-resistant (CR) tumour, in order to identify DEPs between the two disease 

phenotypes (Table 24); Experiment 1: #15
CS

 versus #19
CR

; Experiment 2: #15
CS

 versus 

#1
CR

; Experiment 3: #18
CS

 versus #1
CR

. Within each experiment, each sample (CS and CR) 

was separated by 2D-PAGE in triplicate, to provide 3 technical replicate gels. One example 

of a CS gel and a CR gel stained with Coomassie stain is shown for each experiment; 

experiment 1 (Figure 35); experiment 2 (Figure 36) and experiment 3 (Figure 37). 
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A  

B  

Figure 35: 2D-PAGE gel images stained with Coomassie blue protein stain 

(Experiment 1) 

Protein extracts were separated by 2D PAGE; horizontal separation by pI in the pH range 

4-7, and vertical separation by size on an 11 cm polyacrylamide gel, run with a molecular 

weight marker (kDa). Proteins were visualised using Coomassie blue protein stain. A: 2D-

PAGE separation of sample #15
CS

. B: 2D-PAGE separation of sample #19
CR

. The 

separation of each of the two samples was performed in triplicate, giving 6 gels in total.  
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A  

B  

Figure 36:  2D-PAGE gel images stained with Coomassie blue protein stain 

(Experiment 2) 

Protein extracts were separated by 2D PAGE; horizontal separation by pI in the pH range 

4-7, and vertical separation by size on an 11 cm polyacrylamide gel, run with a molecular 

weight marker (kDa). Proteins were visualised using Coomassie blue protein stain. A: 2D-

PAGE separation of sample #15
CS

. B: 2D-PAGE separation of sample #1
CR

. The separation 

of each of the two samples was performed in triplicate, giving 6 gels in total.  
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A  

B  

Figure 37: 2D-PAGE gel images stained with Coomassie blue protein stain 

(Experiment 3) 

Protein extracts were separated by 2D PAGE; horizontal separation by pI in the pH range 

4-7, and vertical separation by size on an 11 cm polyacrylamide gel, run with a molecular 

weight marker (kDa). Proteins were visualised using Coomassie blue protein stain. A: 2D-

PAGE separation of sample #18
CS

. B: 2D-PAGE separation of sample #1
CR

. The separation 

of each of the two samples was performed in triplicate, giving 6 gels in total.  
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9.3.2 PDQuest 

Analysis was performed using PDQuest software to identify DEPs (≥ 2-fold; p < 0.05) 

between CS and CR samples. For each experiment, different numbers of DEPs were 

identified by PDQuest; experiment 1, 250 DEPs; experiment 2, 308 DEPs; experiment 3, 

179 DEPs. As an example, the first 10 consecutive DEPs that were carried forward are 

shown for each experiment. This includes the histogram for each DEP, which shows the 

intensity of the spot in 3 x CS gels (red) and 3 x CR gels (green), as well as an example of a 

spot from a CS gel and an example of a spot CR gel. These are shown for experiment 1 

(Figure 38), experiment 2 (Figure 39) and experiment 3 (Figure 40).  
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Spot 10201 Spot 11104 

  
Spot 11203 Spot 11204 

  
Spot 11208 Spot 11212 

  
Spot 11213 Spot 11302 

  
Spot 11304 Spot 11307 

  
Figure 38: Histograms and DEP spots from PDQuest analysis (Experiment 1) 

The first 10 spots identified by PDQuest as DEPs (≥ 2 fold; p <0.05) have been selected as 

examples. The chemotherapy-sensitive (sample #15
CS

) is shown in red, and the 

chemotherapy-resistant (sample #19
CR

) is shown in green. Histograms show differences in 

spot density between each sample, representing fold change in expression, in triplicate. 

DEPs are highlighted with the yellow box, and the DEP is shown in respective CS and CR 

gels.  
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Spot 20021 Spot 20104 

  
Spot 20107 Spot 21003 

  
Spot 21004 Spot 21007 

  
Spot 21105 Spot 21109 

  
Spot 21111 Spot 21112 

 
 

Figure 39: Histograms and DEP spots from PDQuest analysis (Experiment 2) 

The first 10 spots identified by PDQuest as DEPs (≥ 2 fold; p <0.05) have been selected as 

examples. The chemotherapy-sensitive (sample #15
CS

) is shown in red, and the 

chemotherapy-resistant (sample #1
CR

) is shown in green. Histograms show differences in 

spot density between each sample, representing fold change in expression, in triplicate. 

DEPs are highlighted with the yellow box, and the DEP is shown in respective CS and CR 

gels.  
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Spot 30021 Spot 30108 

  

Spot 31009 Spot 31015 

  
Spot 31103 Spot 31105 

  

Spot 31106 Spot 31108 

  

Spot 31110 Spot 31111 

  

Figure 40: Histograms and DEP spots from PDQuest analysis (Experiment 3) 

The first 10 spots identified by PDQuest as DEPs (≥ 2 fold; p <0.05) have been selected as 

examples. The chemotherapy-sensitive (sample #18
CS

) is shown in red, and the 

chemotherapy-resistant (sample #1
CR

) is shown in green. Histograms show differences in 

spot density between each sample, representing fold change in expression, in triplicate. 

DEPs are highlighted with the yellow box, and the DEP is shown in respective CS and CR 

gels.  
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9.3.3 Selection and identification of DEPs 

Following identification of DEPs by PDQuest analysis, selected spots were manually 

excised from the gels, digested into peptides by trypsin and analysed using the Ultraflex III 

MALDI-TOF/TOF MS (Bruker Daltonics). The spots which were selected for excision 

included spots which contained 1 protein (checked by 3D viewer within PDQuest), spots 

which were not part of a cluster or overlapping other protein spots, and were not part of a 

streak.  

The number of DEPs identified in each of the 3 experiments, along with the number that 

were excised from the gel for protein identification and the number for which a protein 

identification was achieved, is listed in Table 26. All the proteins identified from all 

experiments (n=250), with their corresponding data, are listed in Appendix 10.  

 

Table 26: The number of DEPs identified for each experiment, with relation to the 

number initially identified by PDQuest and analysed by MALDI TOF/TOF MS.  

The number of protein identifications achieved following MALDI-TOF/TOF peptide 

analysis is also shown, for each experiment, to determine the identification rate. On 

average, the identification rate following MALDI-TOF/TOF analysis was 66%.  

 

Experiment 

Total number 

of matched 

spots in 

PDQuest 

Number of 

DEPs 

identified by 

PDQuest 

Number of DEP 

spots excised, 

digested and 

analysed by 

MALDI TOF/TOF 

MS 

Number of protein 

identifications 

following MALDI-

TOF/TOF MS 

1 737 250 120 (48%) 68 (56%) 

2 573 308 139 (45%) 99 (71%) 

3 336 179 118 (65%) 83 (70%) 

total 1646 737 377 (51%) 250 (66%) 

average 548 245 125 (51%) 83 (66%) 
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9.3.4 Examples of mass spectra 

An example of a peptide mass fingerprint (PMF) and an example of a fragmented peptide 

mass spectrum (PFF), obtained with the Ultraflex in LIFT mode is shown in Figure 41. An 

annotated fragment ion spectrum is also shown (Appendix 6). 

9.3.5 Example of a Mascot summary report page 

An example of a Mascot summary report page is shown in Figure 42. The most relevant 

information (highlighted in Figure 42) includes the protein name, its gene symbol, 

accession number, protein mass, the score, the number of peptides matched (‘expect’ value 

≤ 0.05), the sequence of the peptides matched, their scores, ‘expect’ values and mass error. 

By clicking on the accession number, the ‘protein view’ is given, from which the pI of the 

protein and the percentage sequence coverage can be obtained. By clicking on the query 

number for a peptide, the ‘peptide view’ is given (Appendix 7), which shows a mass 

spectrum with labelled fragment ions, and a table containing the matched fragment ions, 

highlighting those used for scoring.  

9.3.6 A protein identification with a single peptide match 

Protein identification may be presented as a single peptide match, or may show several 

matched peptides. The greater number of peptides matched represents a more confident 

protein identification, yet the ‘expect’ value, which states the likelihood that the peptide 

match occurred by chance, must also be considered. If protein identification with a single 

peptide match is not sufficient, extra information can be given as supporting evidence. This 

may include annotated spectra and/or lists of fragment ions, which can be obtained from 

ProteinScape (Appendix 6) ‘peptide view’ within Mascot (Appendix 7) or using spectrum 

annotation software such as Prophossi, which was designed to automate the validation of 
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phosphopeptide spectra generated by tandem mass spectrometry (Martin, 2010), but can 

also be used for the annotation of non-phosphopeptide mass spectra 

(http://www.compbio.dundee.ac.uk/prophossi/bin/prophossi-cgi.pl) (Appendix 8). 

A

 
B

 
Figure 41: Examples of mass spectra 

A: A PMF produced using an Ultraflex III mass spectrometer (Bruker Daltonics), showing 

m/z plotted against intensity. B: A fragment ion mass spectrum of the peptide observed at 

1548.7107 from the PMF above, obtained using the Ultraflex III in LID-LIFT mode. 
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Figure 42: An example of a Mascot concise protein summary page  

This is an example of a Mascot concise protein summary page, where the information 

which needs to be extracted is highlighted. This includes the accession number, the mass of 

the protein matched, the score, the number of peptides significantly matched (‘expect’ 

value ≤ 0.05), the protein name, the sequence of the peptides matched and their scores, 

‘expect’ values and mass error values. By clicking on the accession number, a separate 

page; ‘protein view’ is given, from which the pI and percentage sequence coverage is 

required. The values given for pI and protein mass should be compared to the 2D-PAGE 

gel when identifying a protein, to ensure these parameters are where they are expected. The 

Mascot search results may also give ‘proteins matching the same set of peptides’, or may 

give other protein matches with lower scores or number of peptides matched. The most 

appropriate protein identification can be elucidated by comparing protein masses, pI and 

the number of peptides in the sample matched to that protein.  

 

9.3.7 Differentially expressed proteins identified by 2D-PAGE MS 

Each of the three 2D-PAGE MS experiments produced a list of protein identifications 

following peptide analysis of excised DEP spots; experiment 1: 68 protein identifications; 

experiment 2, 99 protein identifications; experiment 3, 83 protein identifications, giving a 

combined list of 250 protein identifications (Appendix 10) However, within each of these 

experiments, several of the excised DEP spots yielded the same protein identification, due 

to different post-translational modifications (PTMs). The total list of DEPs for each 

experiment, after removal of replicate protein identifications for each experiment is: 

experiment 1, 53 DEPs; experiment 2, 85 DEPs; experiment 3, 77 DEPs, as shown in Table 

27.  

Combining the lists of DEPs generated from each experiment, highlighted the unique DEPs 

which had been identified overall, and those which had been identified across multiple 

experiments. This combined list included a total of 132 unique DEPs, which had been 

identified by performing three 2D-PAGE MALDI-TOF/TOF MS experiments. This is 

summarised in Table 28, showing the number of proteins which were identified in 3/3, 2/3 

and 1/3 experiments. Proteins which were identified in at least two experiments (n=57) are 
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listed in Table 29. Supplementary data is given for the protein identifications which only 

have one peptide match (n=3) (Appendix 11). Proteins identified in only one experiment 

(n=75) are listed in an additional table (Appendix 9). 

Table 27: The number of unique DEPs identified from each experiment, with relation 

to the number initially identified by PDQuest and analysed by MALDI TOF/TOF MS.  

The number of peptide samples identified by MALDI-TOF/TOF analysis is also shown, for 

each experiment, to determine the identification rate. On average, the identification rate 

following MALDI-TOF/TOF analysis was 66%. This is different to the total number of 

unique DEPs identified in each experiment (last column) due to presence of duplicate 

identifications as a result of PTM. 

Experiment 

Total 

number of 

matched 

spots in 

PDQuest 

Number of 

DEPs 

identified 

by 

PDQuest 

Number of 

DEP spots 

excised and 

analysed by 

MALDI 

TOF/TOF MS 

Number of 

peptide 

samples 

identified 

following 

MALDI-

TOF/TOF MS 

Number of 

DEPs 

identified 

(after removal 

of duplicates) 

1 737 250 120 (48%) 68 (56%) 53  

2 573 308 139 (45%) 99 (71%) 85 

3 336 179 118 (65%) 83 (70%) 77 

total 1646 737 377 (51%) 250 (66%) 215 

average 548 245 125 (51%) 83 (66%) 71 

 

Table 28: The number of DEPs which have been identified in 3/3, 2/3 and 1/3 

experiments 

Number of experiments a 

DEP was identified in: 
 Number of DEPs 

3/3 √ √ √ 26 

2/3  √ √ 31 

1/3   √ 75 

 Total number of DEPs 132 

 

Where a protein was not identified as a DEP in an experiment, this may have been due to 

one of several reasons; (1) the protein may not have been differentially expressed; (2) the 

protein may have been differentially expressed but not excised from the gel following 

PDQuest (due to poor spot quality, for example); (3) the protein may not have been 
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identified during peptide analysis by MS. Proteins which are not represented as DEPs in an 

experiment are therefore referred to as ‘status unknown’ (Table 29). Highly abundant 

serum proteins (section 3.1 and section 5.1.2) that have been identified (n=3) and ‘Top 15’ 

RIDEP proteins (section 7.1) (n=4) that have been identified as DEPs are also shown in 

Table 29.   

Table 29: Differentially expressed proteins associated with chemotherapy resistance, 

identified using 2D-PAGE MALDI-TOF/TOF MS 

Three comparative 2D-PAGE MALDI-TOF/TOF MS experiments were performed to 

identify differentially expressed proteins (DEPs) associated with chemotherapy resistance. 

The table lists (alphabetically by gene symbol, from the IPI database) those DEPs identified 

in at least two experiments (n=57), showing ≥ 2-fold change in expression, along with the 

direction of change (↓↑). Protein identifications with 1 peptide match are indicated (
1
). 

Where a protein is not identified as a DEP, --- is shown, to represent status unknown. 

Proteins within the ‘22 proteins comprising ~99% of the serum proteome’ are indicated* 

(n=3), as well as those present in the TOP15 (human) RIDEP list* (n=4). 

 

Protein 
Gene 

Symbol 
#15

CS
 v #19

CR
  #15

CS
 v #1

CR
  #18

CS
 v #1

CR
  

Activator of 90 kDa heat shock 

protein ATPase homolog 1 
AHSA1 

↑
1 

↑ --- 

Annexin A3 ANXA3 --- ↑ ↑ 

Serum amyloid P-component APCS ↓ ↓ ↓
1 

Apolipoprotein A1* APOA1 ↓ ↓ ↓
1 

Adenine phosphoribosyltransferase APRT ↑
1 

--- ↑
1 

Rho GDP-dissociation inhibitor 1* ARHGDIA --- ↑ ↑ 

Rho GDP-dissociation inhibitor 2 ARHGDIB ↑ ↑ ↑
1 

ATP synthase subunit beta, 

mitochondrial* ATP5B ↑ --- ↑
1 

Barrier-to-autointegration factor BANF1 --- ↑ ↑
1 

Macrophage-capping protein CAPG --- ↑ ↑ 

Isoform 2 of F-actin-capping 

protein subunit beta CAPZB ↑ ↑ ↑
1 

T-complex protein 1 subunit beta CCT2 ↓
1 

↑ --- 

Creatine kinase B-type CKB ↓ ↓ ↓ 

Chloride intracellular channel 

protein 1 CLIC1 ↑ ↑ ↑
1 

Coactosin-like protein COTL1 --- ↑
1 

↑ 

Cellular retinoic acid-binding 

protein 2 CRABP2 ↑
1 

↑ ↑ 
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Protein 
Gene 

Symbol 
#15

CS
 v #19

CR
  #15

CS
 v #1

CR
  #18

CS
 v #1

CR
  

Isoform 1 of Eukaryotic translation 

initiation factor 5A-1 EIF5A --- ↑ ↑ 

Ferritin light chain FTL ↓ ↓
1 

↑ 

Glycerol-3-phosphate 

dehydrogenase [NAD+] 

cytoplasmic GPD1 ↓ ↓ --- 

Glutathione S-transferase  

omega-1 GSTO1 --- ↑ ↑ 

Glutathione S-transferase P GSTP1 ↓ ↑ ↑ 

HEBP2 protein (fragment) HEBP2 --- ↑ ↑ 

highly similar to Heat-shock 

protein beta-6 HSPB6  ↓ ↓ --- 

Keratin, type I cytoskeletal 19 KRT19 ↑/↓ ↑ ↑
1 

Keratin, type II cytoskeletal 8* KRT8 ↑ ↓ --- 

Isoform 1 of Acyl-protein 

thioesterase 1 LYPLA1 ↑
1 

↑
1 

--- 

Microtubule-associated protein 

RP/EB family member 1 MAPRE1 --- ↑ ↑ 

Microfibril-associated glycoprotein 

4 MFAP4 ↓ ↓
1 

--- 

Myosin regulatory light chain 12B MYL12B ↑ ↑ ↑ 

Isoform 1 of Nucleoside 

diphosphate kinase A NME1 ↑ ↑ ↑ 

Protein disulfide-isomerase P4HB ↑ --- ↑ 

Platelet-activating factor 

acetylhydrolase IB subunit beta PAFAH1B2 --- ↑
1 

↑ 

Prohibitin PHB --- ↑ ↑
1 

Inorganic pyrophosphatase PPA1 --- ↑ ↑ 

Peroxiredoxin 3 isoform b PRDX3 ↑ ↑ ↑ 

Proteasome subunit alpha type-

1(isoform long) PSMA1 --- ↑ ↑
1 

Proteasome subunit beta type-3 PSMB3 --- ↑ ↑ 

Proteasome activator complex 

subunit 1 PSME1 ↑ ↑ ↑ 

Proteasome activator subunit 2 PSME2 --- ↑ ↑ 

Histone-binding protein RBBP4 RBBP4 --- ↑ ↑ 

Ribonuclease inhibitor RNH1 ↑ ↑ ↑ 

RPSA 40S ribosomal protein SA RPSAP15 ↑ ↑ ↑ 

Protein SEC13 homolog SEC13 ↑
1 

↑ ↑ 

 Isoform 1 of Alpha-1-antitrypsin* SERPINA1 ↓ ↓
1 

--- 

Stathmin STMN1 ↑ ↑
1 

↑ 

Tubulin-specific chaperone A TBCA ↑
1 

↑
1 

↑
1 

Isoform 3 of Tropomyosin alpha-1 

chain TPM1 ↓ ↑ ↑ 
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Protein 
Gene 

Symbol 
#15

CS
 v #19

CR
  #15

CS
 v #1

CR
  #18

CS
 v #1

CR
  

Isoform 2 of Tropomyosin alpha-3 

chain TPM3 ↑ ↑ ↑ 

Isoform 2 of Tropomyosin alpha-4 

chain TPM4 --- ↑ ↑ 

Tumor protein, translationally-

controlled 1 TPT1 ↑ ↑
1 

↑ 

Transthyretin* TTR --- ↓ ↓
1 

Vimentin* VIM ↓ ↓ ↑ 

14-3-3 protein beta/alpha YWHAB --- ↑ ↑ 

14-3-3 protein epsilon YWHAE ↑ ↑ ↑
1 

14-3-3 protein gamma YWHAG --- ↑ ↑ 

14-3-3 protein theta YWHAQ ↑ ↑ ↑ 

14-3-3 protein zeta/delta YWHAZ ↑ ↑ ↑ 

9.4 Discussion 

The successful extraction of protein from a clinical breast tumour tissue sample, and the 

separation of these proteins by 2D-PAGE (section 6.3.2), as well as the successful 

identification of a selection of these proteins using MALDI-TOF/TOF (section 6.3.2) paved 

the way for comparative proteomic analysis using clinical tumour tissue. Sufficient protein 

for proteomic analysis was extracted from approximately 5-10 mm
3
 of tissue, which 

allowed 3-6 technical replicates to be performed, as some samples were used more than 

once within the pair-wise combinations for the three experiments (#15
CS

 and #1
CR

).  

Previous 2D-PAGE experiments based upon samples from cell lines, performed within the 

laboratory, using the same experimental equipment, have shown much lower numbers of 

DEPs identified by PDQuest. One study used 2D-PAGE/MS to compare protein expression 

between 3 parental breast cancer cell lines (MCF7, MDA-MB-231 and T47D) and their 

radio-resistant sublines (MCF7RR, MDA-MB-231RR and T47DRR). From the three 

experiments, the average number of DEPs identified by PDQuest from experiments 

performed within the same range (pH range 4-7; 11 cm gels), was 17 (Smith, Qutob et al. 

2009). Whereas, within this project based upon clinical tissue samples, the average number 
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of DEPs identified by PDQuest across the three experiments was 245. Therefore, whilst 

allowing for user-variability within PDQuest software, there is > 10-fold increase in the 

number of DEPs identified from breast cancer clinical tissue samples compared to breast 

cancer cell lines. However, this is understandable as cell lines are a homogenous collection 

of cells, so proteins extracted are from only one type of cell which should only exhibit 

subtle differences in protein expression. In contrast, breast clinical tumour samples contain 

a variety of different cells (cancerous cells, fibroblasts, pre-maligant cells, inflammatory 

cells, adipocytes etc), as well as serum which diffuses into the tissue, thus showing a 

greater variety of protein expression, whilst also increasing the risk of false discovery. 

Also, the clinical samples to be comparatively analysed cannot be matched exactly; clinical 

samples used within these experiments were all matched according to histological type 

(invasive ductal carcinoma) and molecular subtype (ER+, luminal), yet other differences 

will exist between individuals, as well as expected breast tumour heterogeneity. 

Working with clinical samples is a well-recognised challenge, due to their limited supply, 

their complexity and the dynamic range of serum proteome (section 5.1.2 and section 

6.1.1.2). As previously discussed, approaches such as depletion strategies can be employed 

to improve access to the low abundant proteins of interest. When working with tumour 

tissue, techniques such as laser capture microdissection (LCM) can be employed, which are 

able to select tumour cells, thus increasing the proportion of tumour cells within the sample 

(section 6.1.1.2). However this needs to be balanced with time, sample interference, sample 

degradation, downstream applications and their sensitivity, as well as tissue availability.  

Table 27 shows the number of DEPs identified from each experiment, the number of those 

that were excised and carried forward for MALDI-TOF/TOF MS analysis, and the number 

of those that were identified. On average, the number of DEPs identified by PDQuest was 
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245. This varied depending on the quality of the gels, and the ability to match the spots 

across CS and CR gels. The average proportion of DEPs excised and carried forward to 

peptide analysis by MS was 51%. Due to the heterogeneous nature of the samples being 

used, a high level of stringency was adopted, to minimise false discovery rates. Spots were 

only excised from gels when not present within a streak or a cluster of spots, not 

overlapping another spot, and only when the spot was composed of a single protein 

(checked by 3D viewer within PDQuest). The average number of identifications obtained 

by MALDI-TOF/TOF peptide analysis was 66%. When the Ultraflex MALDI-TOF/TOF 

instrument was introduced, the rate of protein identification from 2D-PAGE gels (pH range 

5-10), of human endothelial cell line lysates, with standard sample preparation and 

automated processing was reported to be 77% (74 identifications were obtained from 96 

excised and digested protein spots) (Suckau, Resemann et al. 2003).  

In these experiments, where protein identification was not achieved from a peptide sample, 

this may have been due to poor quality or low sample concentration. Some peptide samples 

were ‘mis’-identified as albumin; in this instance, peptides within the sample were matched 

to the albumin protein, yet the molecular weight of the identification did not match the 

molecular weight of the spot excised from the 2D-PAGE gel. If depletion strategies, for the 

removal of albumin and other highly-abundant proteins, had been employed during sample 

preparation, this may have been avoided, and identification rates may have been higher. 

This is something that could be considered for future work.  

The contaminatin of 2D-PAGE gel protein spots with keratins from the operative and the 

laboratory environment is a common problem, and such contamination may hinder the 

identification of proteins at the mass spectrometry stage. Differentially expressed proteins 

identified as keratins within an experiment may be a true finding and originate from the 
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experimental sample, or may have been introduced as a contaminant by the laboratory 

environment (Lyngholm, Vorum et al. 2011). This was previously a problem within this 

laboratory, and common keratin peaks had to be excluded from MS data for protein 

identification. This thesis describes a far more simple in-gel digest method, which reduces 

the chance for contamination and as a result keratin contamination was not an issue at the 

protein identification stage, and exclusion of keratin peaks was not required. Several 

keratins were identified as DEPs within the data, namely keratins 7, 8, 17, and 19 

(Appendix 10). These are all epithelial keratins, and the expression of keratins 7, 8 and 19 

have all been associated with invasive ductal carcinoma of the breast (Moll, Divo et al. 

2008).  

The total number of unique DEPs identified from each 2D-PAGE MALDI-TOF/TOF 

experiment was 53 DEPs (experiment 1), 85 DEPs (experiment 2) and 77 DEPs 

(experiment 3). Combining the data from the 3 experiments generated a list of 132 unique 

DEPs, and highlighted those which had been identified by more than one experiment. There 

were 26 DEPs which had been identified in 3/3 experiments, 31 DEPs which had been 

identified in 2/3 experiments and 75 DEPs which had been identified in 1/3 experiments 

(Table 28). Due to the nature of the experiments performed, it is necessary to be stringent 

when carrying DEPs forward to subsequent data mining and confirmation phases. In order 

to prioritise the DEPs, and reduce the number of DEPs in the dataset which are likely to be 

false discoveries, only those which have been identified in more than one experiment 

(n=57) will be carried forward. This will be reported in Chapter 10. 

Another aspect to consider is the identification of the highly-abundant proteins which 

comprise the plasma proteome, which diffuse into the tissue. The identification of these 

proteins as DEPs associated with chemotherapy resistance should be interpreted with 
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caution, as it is usually the low-abundant proteins that are of interest as biomarkers. 

Therefore, the proteins identified as DEPs, which belong to the group of 22 proteins that 

make up ~99% of the plasma proteome (Tirumalai, Chan et al. 2003) (section 3.1), have 

been highlighted (Table 30). Out of the 22 major plasma proteins, 3 have been identified as 

DEPs; apolipoprotein A-1, alpha-1-antitrypsin and prealbumin (transthyretin).  

 

Table 30: The 22 proteins which constitute ~99% of the plasma proteome   

The 22 major plasma proteins (Tirumalai, Chan et al. 2003) are listed, and those which 

been identified as DEPs in 2D-PAGE MALDI-TOF/TOF experiments are highlighted (red) 

along with the number of experiments 
(1-3/3)

 they were identified in. 

 

Albumin Alpha-2-macroglobulin Apolipoprotein A-1
3/3 Ceruloplasmin 

IgG total IgM total Apolipoprotein B C4 Complement 

Transferrin Alpha-1-antitrypsin
2/3 Alpha-1-acid 

glycoprotein 

Complement 

Factor B 

Fibrinogen C3 Complement Lipoprotein (a) C1q Complement 

IgA total Haptoglobin Factor H C9 Complement 

C8 complement
 

Prealbumin (transthyretin)
2/3

  

 

The phenomenon of repeatedly-identified differentially expressed proteins (RIDEPs) within 

2D-PAGE-based experiments, reported by Petrak et al, (Petrak, Ivanek et al. 2008) must 

also be considered when interpreting data. Within their study, Petrak and co-workers 

compiled a list of DEPs which had been published within 3 volumes of the Proteomics 

journal, from 2004 to 2006, based upon 2D-PAGE data using human tissues. From this, 

they assembled a list of the ‘TOP15’ proteins most frequently identified and advised 

‘extreme caution’ when interpreting the differential expression of these RIDEPs (Petrak, 

Ivanek et al. 2008). The ‘TOP15’ proteins are listed in Table 18 (section 7.1), and those 

have been identified within the three experiments are highlighted, along with the number of 

experiments they were identified in. In total, 6 of the 15 RIDEPs have been identified as 

DEPs (Table 31).  
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Table 31: DEPs identified which are included in the ‘TOP15’ RIDEPs 

The ‘TOP15’ RIDEPs from 2D-PAGE studies are listed. Those which have been identified 

within the three 2D-PAGE MS experiments are highlighted (red), including the number of 

experiments
 (1-3/3)

 they were identified in. 

 

HSP27 

(HSPB1)
1/3 

Enolase 1 Triosephosphate 

isomerase 

Pyruvate 

kinase M1/M2 

Peroxiredoxin 1 

Peroxiredoxin 2 Vimentin
3/3 

Annexin A4
1/3 HSC7 1 

(HSPA8) 

Peptidyl-prolyl 

isomerase A 

Cytokeratin 8 

(KRT8)
2/3 

Cathepsin D ATP synthase 

beta subunit
2/3 

Grp78/Bip 

(HSPA5) 
Rho GDI 1 

(ARHGDIA)
2/3 

 

When assigning a protein identification, the ‘expect’ value, which states the likelihood that 

the peptide has been matched by chance is considered, where a lower score indicates a 

more confident match. It is a way of determining the quality of a match and also considers 

the score and identity threshold. The number of peptides matched is also considered, where 

a higher number of matched peptides indicate more confidence in the matched protein. 

Other factors such as number of missed cleavages and the significance threshold should 

also be considered. Where a protein identification is obtained with a single peptide match, 

the Molecular and Cellular Proteomics (MCP) journal stipulate in their guidelines that a 

MS/MS spectral overlay, showing labelled fragment ions and their masses, is provided for 

publication purposes. Two or more matched peptides are desirable for confident protein 

identification. Several of the DEPs identified show protein identifications with 1 peptide 

match, which have been highlighted in Table 29, and this will be considered for proteins 

being carried forward through the biomarker discovery pipeline. Of the DEPs which are 

being carried forward to the data mining phase (identified in at least two experiments), 

three of these show only one peptide match in each experiment; adenine phosphoribosyl 

transferase (APRT), isoform 1 of acyl-protein thioesterase 1 (LYPLA1) and tubulin-specific 

chaperone A (TBCA). Supplementary data, showing MS/MS annotated spectra and 
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fragment ions, is given for each of these protein identifications (Appendix 11). Although 

these three identifications show only one peptide match in each experiment, confidence in 

the identification is also increased by the fact that they have been identified in at least two 

experiments.  

Table 4 (section 3.7), lists DEPs from chemotherapy-resistant breast cancer (ER+) MCF7 

sublines identified by 2D-PAGE MALDI-TOF MS and MS/MS analysis. When comparing 

this list of DEPs to the list of DEPs generated during these 3 experiments using breast 

cancer (ER+) clinical samples, there are several similarities. These are listed in  

Table 32, showing the DEPs identified within these 3 experiments, and the drug(s) to which 

they have been associated with as a putative markers of resistance (n=11). The DEPs which 

are present in the ‘TOP15’ list of RIDEPs in 2D-PAGE studies are also highlighted, as they 

should be interpreted with caution (Petrak, Ivanek et al. 2008). The main biological 

functions of the 11 proteins (Figure 43) include cell growth and/or maintenance (4/11) and 

cell communication (4/11). Other biological processes included protein metabolism, 

metabolism (energy pathways) and DNA repair. Effective cell growth and maintenance, as 

well as effective cell communication are paramount for normal tissue homeostasis (section 

2.1). In order for cell death to be induced in cancerous cells by chemotherapeutic agents, 

these pathways also need to be effective in order for important processes such as cell cycle 

arrest and induction of apoptosis to be executed (section 2.1.2 and section 2.1.4). 

Resistance to chemotherapy occurs when chemotherapeutic agents fail to achieve their 

desired effect, which is ultimately the removal of the malignant cell from the system by the 

induction of apoptosis. Therefore alterations, by the differential expression, in critical 

mediators of important cellular processes, such as cell communication and signal 

transduction, have the potential to affect the efficacy of chemotherapeutic agents.  
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Table 32: DEPs identified, which have also been associated with drug resistance in 

breast cancer (ER+) MCF7 cell lines, using 2D-PAGE MALDI-TOF MS and MS/MS 

analysis 

The DEPs identified within this chapter, as putative biomarkers of chemo-resistance, which 

have also been identified within other 2D-PAGE/MS experiments based upon MCF7 cell 

lines are listed (n=11). The number of experiments they were identified in
1-3/3

 and the 

direction of expression (≥ 2 fold change) (↑/↓) is also shown. Where these DEPs were 

identified in MCF7 cell line studies, the direction of expression (≥ 2 fold change) (↑/↓) is 

shown, as well as the drug the resistance was associated with. The proteins which also 

listed on the ‘TOP15’ list of RIDEPs are highlighted*(n=3). The drugs which are most 

relevant to the study; anthracyclines (doxorubicin) and taxanes (paclitaxel) are shown in 

bold.  

 

Putative biomarkers
1-3/3

 from 

clinical tissue 

Putative biomarkers from MCF7 chemo-

resistant cell lines 

Heat shock protein beta -1
1/3 

(HSP27) 

(↑) * 

↓ Cisplatin (Smith, 2007)   

↓ Paclitaxel (Chuthapisith, 2007) 

Tropomyosin alpha-1 chain
3/3

 (↑/↑/↓) 

↓ Cisplatin (Smith, 2007)  

↓ Doxorubicin (Fu, 2005) 

↓ Mitoxantrone (Fu, 2005)  

↓ Etoposide (Fu, 2005) 

14-3-3 epsilon
3/3

 (↑) ↑ Paclitaxel (Chuthapisith, 2007) 

Keratin 19
3/3

 (cytokeratin 19) (↑/↓) 

↓ Paclitaxel (Chuthapisith, 2007)    

↑ Doxorubicin (Chuthapisith, 2007)  

↓ Doxorubicin (Fu, 2005) 

↓ Mitoxantrone (Fu, 2005)   

↓ Etoposide (Fu, 2005)  

Proliferating cell nuclear antigen
1/3

 (↑) ↑ Paclitaxel (Chuthapisith, 2007) 

Stathmin
3/3

 (↑) ↑ Paclitaxel (Chuthapisith, 2007) 

14-3-3 sigma
1/3

 (↑) ↑ Doxorubicin (Liu, 2006) 

40S ribosomal protein SA
3/3

 (↑) 
↑ Mitoxantrone (Fu, 2005) 

↑ Etoposide (Fu, 2005) 

ATP synthase beta
2/3

 (↑)* ↑ Doxorubin (Chuthapisith, 2007)  

Keratin 8
2/3

 (cytokeratin 8) (↑/↓)* 

↓ Doxorubicin (Fu, 2005) 

↓ Mitoxantrone (Fu, 2005) 

↓ Etoposide (Fu, 2005) 

Prohibitin
2/3

 (↑) ↑ Mitoxantrone (Fu, 2005).  
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Figure 43: The biological processes of the putative biomarkers identified within both 

the clinical tissue experiments and the MCF7 breast cancer cell line models from the 

literature (n=11) 

The main biological processes of the putative biomarkers of chemotherapy resistance 

include cell growth and/or maintenance (4/11) and cell communication (4/11). Other 

processes include protein metabolism, DNA repair and metabolism (energy pathways).  

 

Within the DEPs generated within this chapter, by the discovery phase of the biomarker 

discovery pipeline, the proteins which attract attention are the 14-3-3 family of proteins. 

There are seven mammalian isoforms of 14-3-3 (beta/alpha, epsilon, gamma, eta, theta/tau, 

sigma and zeta/delta). Five of these (beta/alpha, epsilon, gamma, theta/tau and zeta/delta) 

have been identified in at least 2 out of the 3 2D-PAGE MALDI-TOF/TOF experiments. 

14-3-3 proteins have previously been associated with doxorubicin and paclitaxel 

chemotherapy resistance in breast cancer cells (Liu, Liu et al. 2006; Chuthapisith 2007), 

and the isoform which was present on the antibody microarray slide (14-3-3 theta/tau) was 

shown to be differentially expressed by at least 1.5-fold in 5/5 antibody microarray 

experiments, as described in chapter 8 (Table 22). These proteins are ubiquitously 

expressed, and have been shown to have over 300 protein targets (Sluchanko and Gusev 

2010), related to apoptosis, cell cycle control, proliferation, transcription and regulation of 

the cytoskeleton (Sluchanko and Gusev 2010), which is also associated with cytokinesis 

during the mitosis phase of the cell cycle (section 2.1.1) via interaction of 14-3-3 with 

Biological Processes of DEPs identified 

(n=11) 

Protein 

metabolism 
Cell growth and/or 

maintenance 
Cell 

communication 
DNA repair 

Metabolism ; 

Energy pathways 
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microtubules (Robinson 2010; Zhou, Kee et al. 2010). One of the main roles of 14-3-3 

proteins is as apoptosis-related proteins, where they possess anti-apoptotic properties via 

interaction with pro-apoptotic mediators, such as Bad, Bim and FOXO3a (Sunayama, 

Tsuruta et al. 2005; Memos, Kataki et al. 2011; Tzivion, Dobson et al. 2011). 14-3-3 

proteins have even been shown to interact with the ‘guardian of the genome’; p53 

(Rajagopalan, Sade et al. 2010), by increasing its stability via interaction with MDM2 

resulting in the prevention of p53 degradation via the ubiquitin-proteasome pathway 

(section 2.1.2) (Rajagopalan, Sade et al. 2010). 14-3-3 gamma and epsilon have also been 

associated with increased DNA-binding by p53, leading to cell cycle arrest and apoptosis 

(Rajagopalan, Sade et al. 2010). It has been shown that the ability of 14-3-3 to sequester 

Bad, and prevent translocation to the mitochondria, may be regulated by the 

phosphorylation of 14-3-3 by JNK (Sunayama, Tsuruta et al. 2005). It is thought that 14-3-

3 is able to sequester pro-apoptotic proteins in response to pro-survival signals, including 

those mediated by Akt (Sunayama, Tsuruta et al. 2005; Tzivion, Dobson et al. 2011). An 

interesting study by Choi and colleagues demonstrated over-expression of 14-3-3 sigma in 

hepatocellular carcinoma, and showed subsequent silencing of 14-3-3 sigma, which 

resulted in increased chemotherapy-sensitivity to cisplatin in hepatocelluar carcinoma 

(Choi, Hur et al. 2011), by causing cell cycle arrest and inhibition of tumour cell growth. 

The 14-3-3 proteins therefore offer a plethora of different mechanisms by which resistance 

to chemotherapy may be conferred, and therefore warrant further research as potential 

putative biomarkers of chemotherapy resistance. This will be analysed further in chapter 

10. 
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The nature of the three 2D-PAGE MALDI-TOF/TOF experiments performed in this 

chapter has provided a list of DEPs, which may be potential biomarkers of chemotherapy 

resistance. However, the amount and quality of DEPs generated may be improved by the 

addition of other alternative methods in the sample preparation stage, including pre-

fractionation methods, depletion strategies to remove highly abundant proteins, as well the 

2D-PAGE stage, where analysis could be performed within different pH ranges with larger 

polyacrylamide gels to obtain a high degree of separation. Nevertheless, this also has to be 

balanced be sample availability, as when working with clinical samples there is often a 

limited supply.  

The use of antibody microarray analysis (Chapter 8) as an alternative, yet complementary 

approach, to the discovery of DEPs as potential biomarkers is extremely valuable. DEPs 

identified by antibody microarray analysis may not be the same as those identified by 2D-

PAGE MALDI-TOF/TOF; data from both platforms will be compared and analysed further 

in Chapter 10. This has been apparent within the laboratory, where 2D-PAGE MALDI-

TOF/TOF and antibody microarray analysis has been performed on the same breast cancer 

cell line samples, and different lists of DEPs have been generated (Smith, Qutob et al. 

2009). This emphasises the complementary approach of the two methods, which together 

provide the opportunity to identify a wider range of DEPs.  

The DEPs identified by 2D-PAGE MALDI-TOF/TOF which will be carried forward to the 

data mining phase of the biomarker discovery pipeline, which will be described in Chapter 

10, will only include those which have been identified in at least two experiments, as listed 

in Table 29 
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CHAPTER 10: 

DATA MINING, CONFIRMATION AND 

CLINICAL VALIDATION 

 

 

 

Chapter Aim: 

To analyse the data generated within the discovery phase of the biomarker discovery 

pipeline, from antibody microarray and 2D-PAGE/MS platforms, for the prioritisation of 

putative biomarkers to be carried forward. To carry a selection of DEPs identified forward 

through the confirmation and clinical validation phases 
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Chapter 10.  Data mining, confirmation and clinical validation 

10.1 Introduction 

The importance of data mining has been increasingly reinforced over recent years, to 

encourage thorough interpretation and determination of the biological relevance behind the 

large lists of proteins generated within the discovery phase of the biomarker discovery 

pipeline. Following this, greater understanding can be applied during the selection of 

protein candidates to be carried forward to confirmation and clinical validation phases. 

10.1.1 Data mining 

There are several different approaches and a variety of different tools available for data 

mining. This may involve grouping proteins by biological function, pathway analysis, 

protein-protein interaction networks, using knowledge bases and applications such as Gene 

Ontology, PPI Spider, PANTHER, DAVID, STRING, Reactome, IntAct, ArrayUnlock and 

Ingenuity Pathway Analysis (Deutsch, Lam et al. 2008; Viswanathan, Seto et al. 2008; 

Antonov, Dietmann et al. 2009; Jimenez-Marin, Collado-Romero et al. 2009; Deighton, 

Kerr et al. 2010; Malik, Dulla et al. 2010; Croft, O'Kelly et al. 2011; Szklarczyk, 

Franceschini et al. 2011). Ingenuity Pathway Analysis (IPA) was launched in 2003, and 

uses the manually-curated Ingenuity Knowledge Base to provide a wide range of high-

quality detailed information, including direct and indirect protein interaction networks, 

common biological functions and canonical pathways present within a dataset. It provides 

great insight by allowing data to be modelled within complex biological pathways and 

networks (Jimenez-Marin, Collado-Romero et al. 2009; Deighton, Kerr et al. 2010), thus 

aiding generation of hypotheses and selection of targets to be carried forward to clinical 

validation.  
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10.1.2 Confirmation 

The confirmation phase of the biomarker discovery pipeline is used to confirm the 

differential expression of the protein targets carried forward following data mining, which 

were identified during the discovery phase. An example of a technique which can be used 

to assess the expression of a single protein in chemotherapy-sensitive and chemotherapy-

resistant samples is western blotting, as discussed previously (section 3.6.2). 

10.1.3 Clinical validation  

Clinical validation represents the final phase of the biomarker pipeline, where the clinical 

relevance of each putative biomarker is assessed, to analyse their role as potential 

prognostic or predictive biomarkers. Proteins which were confirmed to be differentially 

expressed during the confirmation phase are carried forward to the validation phase, where 

their differential expression is assessed again, but in a clinical context, commonly using 

archival tissue samples. This may be performed using immunohistochemistry, as previously 

discussed (section 3.6.3), which is ideally suited to archival samples. A large sample cohort 

should be used at this stage, in order to fully assess the strength of each putative biomarker.  

10.2 Methodology 

10.2.1 Protein selection for data-mining  

10.2.1.1 Antibody microarray data 

Protein targets identified by antibody microarray analysis have been carried forward to the 

data mining stage from chapter 8 (section 8.3, Table 21). In total, 38 proteins were 

identified in the discovery phase, and 37 of these were mapped into the Ingenuity 

Knowledge Base and included in the analysis (Table 33). 
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Table 33: DEPs in chemotherapy resistant tumour tissue identified by 5 antibody 

microarray experiments comparing CR and CS samples.  

Significant expression fold change ( 1.8) is indicated in bold. For proteins which show  

1.8-fold change in expression, supporting data from other experiments is shown upward of 

1.5-fold. Values considered to be not significant (---) and antibody spots which did not pass 

the analysis criteria for experimental quality control () are also indicated. One gene 

identifier (indicated *) was not mapped in the Ingenuity Knowledge Base. Highlighted 

protein targets were selected for confirmation and pilot validation experiments. 

 

Ab # Protein  
Gene 

identifier 
11

CS
/19

CR
 15

CS
/9

 CR
 15

CS
/19

 CR
 12

CS
/25

 CR
 18

CS
/25

 CR
 

C8035 
Chondroitin 

sulfate 
ACAN 1.56 --- 2.00 --- --- 

P1601 
Protein Kinase 

Ba 
AKT1 2.10 --- --- --- --- 

A8604 Annexin V ANXA5 --- --- --- 2.02 --- 

B9429 Bcl-xL BCL2L1 --- 2.26 --- 1.57 2.62 

B3183 tBID BID --- 2.16 1.55 1.97 1.96 

C8854 Caspase 13 CASP13* --- --- 2.69 --- --- 

C7736 Centrin CETN1 1.51 --- --- 1.90 --- 

I6139 IKKa CHUK 1.61 --- --- 2.03 --- 

D1286 
Desmosomal 

protein 
DSC1 --- --- 1.92 --- --- 

E2520 
Epidermal 

Growth Factor 
EGF --- --- --- 2.13 --- 

H9286 

Acetyl 

Histone H3 

AcLys9 H3F3A 

--- --- --- 2.21 --- 

D5567 
Dimethyl 

Histone H3 
2.14 --- --- --- --- 

H9411 HDAC4 HDAC4 --- --- --- --- 1.89 

P9371 PINCH 1 LIMS1 --- --- 1.51 1.90 --- 

S0315 SAPK3 MAPK12 --- 3.76  --- --- 

T5530 Tau MAPT 1.63  2.04  --- 

M9317 MeCP2 MECP2 --- --- --- 2.17 --- 

P6834 Ki-67 MKI67 1.92 --- --- --- --- 

C3956 cMyc MYC --- --- --- 2.17 --- 

M9934 MyD88 MYD88 --- --- 2.08 2.18 --- 

P0084 Pinin PNN  2.54 2.39 1.53 --- 

P3203 
Protein Kinase 

Cb2 
PRKCB 

3.20 --- --- 1.70 --- 

P3078 
Protein Kinase 

Cb1 
--- --- --- 2.06 --- 

F7926 
FAK 

(pTyr397) 
PTK2 

--- --- 1.51 --- 1.95 

F8926 
FAK 

(pTyr577) 
---  --- 2.20 --- 

R8529 RALAR RALA ---  3.70  --- 
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Ab # Protein  
Gene 

identifier 
11

CS
/19

CR
 15

CS
/9

 CR
 15

CS
/19

 CR
 12

CS
/25

 CR
 18

CS
/25

 CR
 

R4904 Reelin RELN 1.95  ---  --- 

R8274 RIP RIPK1 2.07 --- --- 2.56 --- 

R5145 Rsk1 RPS6KA1 --- --- --- 2.33 --- 

S4047 S6 Kinase RPS6KB1 --- --- --- 2.44 --- 

S5313 Sir2 SIRT1 --- --- --- 2.08 --- 

H9912 hSNF5 INI1 SMARCB1 --- --- --- 2.03 --- 

S9809 Sp1 SP1 --- --- --- 1.82 --- 

D1314 DRAK1 STK17A --- 2.18 --- --- --- 

T1827 TBP TBP --- --- --- 2.08 --- 

T9191 TRAIL TNFSF10 --- --- 1.83 1.62 --- 

T0825 Transportin 1 TNPO1 --- --- --- 1.84 --- 

T2780 Tropomyosin TPM1 --- 2.67 ---  --- 

M6194 Munc13 1 UNC13A --- --- --- 2.08 --- 

T5942 
14-3-3 

theta/tau 
YWHAQ 1.54 1.90 2.29 2.55 1.52 

Z0377 Zyxin ZYX 7.80 2.01 2.21 2.02 2.63 

 

10.2.1.2 2D-PAGE/MS data 

Protein targets identified by 2D-PAGE MALDI-TOF/TOF MS analysis have been carried 

forward from chapter 9 (section 9.3.7 Table 29) for data mining. This includes proteins 

which were identified in at least two experiments (n=57). In total, 55 of these proteins were 

mapped into the Ingenuity Knowledge Base and included in the analysis (Table 34). 

10.2.2 IPA 

Data was analysed using IPA (Ingenuity Systems, www.ingenuity.com). Each set of data, 

containing a list of gene symbols, which had been checked against the IPI and NCBI 

databases, was uploaded into IPA software online.  

Genes which were successfully mapped into the Ingenuity Knowledge Base were referred 

to as ‘network eligible’ molecules, as described in section 4.5. Networks of ‘network 

eligible’ molecules were then algorithmically generated based on their connectivity.  

http://www.ingenuity.com/
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Canonical pathway analysis of the dataset involved the identification of pathways within 

the IPA library of canonical pathways that were most significant to the dataset. All 

molecules mapped within the dataset were considered for canonical pathway analysis, as 

described in section 4.5. 

 

Table 34: DEPs associated with chemotherapy resistance, identified using 2D-PAGE 

MALDI-TOF/TOF MS 

Three comparative 2D-PAGE MALDI-TOF/TOF MS experiments were performed to 

identify differentially expressed proteins (DEPs) associated with chemotherapy resistance. 

The table lists (alphabetically by gene symbol, from the IPI database) those DEPs identified 

in at least two experiments (n=57), showing ≥ 2-fold change in expression, along with the 

direction of change (↓↑). Two gene identifiers (indicated*) were not mapped into the 

Ingenuity Knowledge Base. Highlighted protein targets were selected for confirmation 

and/or pilot validation experiments.  

 

Protein 
Gene 

identifier 
#15

CS
 v #19

CR
 #15

CS
 v #1

CR
 #18

CS
 v #1

CR
 

Activator of 90 kDa heat shock 

protein ATPase homolog 1 
AHSA1 ↑

 
↑ --- 

Annexin A3 ANXA3 --- ↑ ↑ 

Serum amyloid P-component APCS ↓ ↓ ↓
 

Apolipoprotein A1 APOA1 ↓ ↓ ↓
 

Adenine phosphoribosyltransferase APRT ↑
 

--- ↑
 

Rho GDP-dissociation inhibitor 1 ARHGDIA --- ↑ ↑ 

Rho GDP-dissociation inhibitor 2 ARHGDIB ↑ ↑ ↑
 

ATP synthase subunit beta, 

mitochondrial 
ATP5B ↑ --- ↑

 

Barrier-to-autointegration factor BANF1 --- ↑ ↑
 

Macrophage-capping protein CAPG --- ↑ ↑ 

Isoform 2 of F-actin-capping 

protein subunit beta 
CAPZB ↑ ↑ ↑

 

T-complex protein 1 subunit beta CCT2 ↓
 

↑ --- 

Creatine kinase B-type CKB ↓ ↓ ↓ 

Chloride intracellular channel 

protein 1 
CLIC1 ↑ ↑ ↑

 

Coactosin-like protein COTL1 --- ↑
 

↑ 

Cellular retinoic acid-binding 

protein 2 
CRABP2 ↑

 
↑ ↑ 

Isoform 1 of Eukaryotic translation 

initiation factor 5A-1 
EIF5A --- ↑ ↑ 
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Protein 
Gene 

identifier 
#15

CS
 v #19

CR
 #15

CS
 v #1

CR
 #18

CS
 v #1

CR
 

Ferritin light chain FTL ↓ ↓
 

↑ 

Glycerol-3-phosphate 

dehydrogenase [NAD+], 

cytoplasmic 

GPD1 ↓ ↓ --- 

Glutathione S-transferase  

omega-1 
GSTO1 --- ↑ ↑ 

Glutathione S-transferase P GSTP1 ↓ ↑ ↑ 

HEBP2 protein (fragment) HEBP2* --- ↑ ↑ 

highly similar to Heat-shock 

protein beta-6 
HSPB6  ↓ ↓ --- 

Keratin, type I cytoskeletal 19 KRT19 ↑/↓ ↑ ↑
 

Keratin, type II cytoskeletal 8 KRT8 ↑ ↓ --- 

Isoform 1 of Acyl-protein 

thioesterase 1 
LYPLA1 ↑

 
↑

 
--- 

Microtubule-associated protein 

RP/EB family member 1 
MAPRE1 --- ↑ ↑ 

Microfibril-associated glycoprotein 

4 
MFAP4 ↓ ↓

 
--- 

Myosin regulatory light chain 12B MYL12B ↑ ↑ ↑ 

Isoform 1 of Nucleoside 

diphosphate kinase A 
NME1 ↑ ↑ ↑ 

Protein disulfide-isomerase P4HB ↑ --- ↑ 

Platelet-activating factor 

acetylhydrolase IB subunit beta 
PAFAH1B2 --- ↑

 
↑ 

Prohibitin PHB --- ↑ ↑
 

Inorganic pyrophosphatase PPA1 --- ↑ ↑ 

Peroxiredoxin 3 isoform b PRDX3 ↑ ↑ ↑ 

Proteasome subunit alpha type-

1(isoform long) 
PSMA1 --- ↑ ↑

 

Proteasome subunit beta type-3 PSMB3 --- ↑ ↑ 

Proteasome activator complex 

subunit 1 
PSME1 ↑ ↑ ↑ 

Proteasome activator subunit 2 PSME2 --- ↑ ↑ 

Histone-binding protein RBBP4 RBBP4 --- ↑ ↑ 

Ribonuclease inhibitor RNH1 ↑ ↑ ↑ 

RPSA 40S ribosomal protein SA RPSAP15* ↑ ↑ ↑ 

Protein SEC13 homolog SEC13  ↑ ↑ 

 Isoform 1 of Alpha-1-antitrypsin SERPINA1 ↓ ↓
 

--- 

Stathmin STMN1 ↑ ↑
 

↑ 

Tubulin-specific chaperone A TBCA ↑
 

↑
 

↑
 

Isoform 3 of Tropomyosin alpha-1 

chain 
TPM1 ↓ ↑ ↑ 

Isoform 2 of Tropomyosin alpha-3 

chain 
TPM3 ↑ ↑ ↑ 
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Protein 
Gene 

identifier 
#15

CS
 v #19

CR
 #15

CS
 v #1

CR
 #18

CS
 v #1

CR
 

Isoform 2 of Tropomyosin alpha-4 

chain 
TPM4 --- ↑ ↑ 

Tumor protein, translationally-

controlled 1 
TPT1 ↑ ↑

 
↑ 

Transthyretin TTR --- ↓ ↓
 

Vimentin VIM ↓ ↓ ↑ 

14-3-3 protein beta/alpha YWHAB --- ↑ ↑ 

14-3-3 protein epsilon YWHAE ↑ ↑ ↑
 

14-3-3 protein gamma YWHAG --- ↑ ↑ 

14-3-3 protein theta YWHAQ ↑ ↑ ↑ 

14-3-3 protein zeta/delta YWHAZ ↑ ↑ ↑ 

  

10.2.3 Confirmation: western blotting 

Western blotting was performed using the method previously described, following 

optimisation of antibodies (section 6.3.3.3), using the samples shown in Figure 15. Briefly, 

protein lysates were diluted with Laemmli buffer (62.5 mM Tris-HCl [pH 6.8], 2% SDS, 

5% β-mercaptoethanol, 1% protease inhibitor mix and 0.00125% bromophenol blue). 

Twenty micrograms of protein was separated by molecular weight using one-dimensional 

gel electrophoresis on a pre-cast 12% ‘Precise Protein’ polyacrylamide gel (#25222, Pierce) 

at a constant voltage of 140 V for 40 min. Proteins were transferred onto nitrocellulose 

membrane using the iBlot dry transfer system (#IB3010-01, Invitrogen). The membrane 

was blocked in 5% non-fat milk on an orbital shaker, followed by incubation with primary 

and subsequently secondary anibodies (diluted in blocking buffer), as described in Table 5. 

Bands were detected using the Supersignal West Pico Chemiluminescent Substrate Kit 

(#34078, Pierce). Films were scanned using a GS800 calibrated densitometer (Bio-Rad) 

with Quantity One software (Bio-Rad), which was also used for data normalisation of 

proteins of interest against a loading control. Fold changes ≥ 2 were considered significant.  
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10.2.4 Clinical validation: immunohistochemistry 

10.2.4.1 Archival pre-treatment core biopsy samples 

Pre-treatment archvial core biopsy samples were obtained from a previously characterised 

cohort (Garimella 2007) (section 4.2) (REC 03/00/038). Patient consent was obtained to 

allow access to pre-treatment core biopsy samples from patients with locally advanced 

breast cancer who were treated with neoadjuvant anthracycline based chemotherapy 

(Garimella 2007). All patients in this cohort had histologically proven breast cancer with a 

primary tumour of at least 3cm and were treated with 6 cycles of 60 mg/m
2 

epirubicin and 

600 mg/m
2
 cyclophosphamide with 200 mg/m

2 
infusional 5-fluorouracil (infusional FEC), 

administered at 3-weekly intervals. Serial DCE-MRI scans were performed in order to 

assess tumour response. In total, 35 archival tissue samples were obtained with 36 locally 

advanced breast cancers (one patient had bilateral breast cancer). These comprised 75% 

ER-positive tumours. 

10.2.4.2 Immunohistochemistry 

Immunohistochemistry was performed as previously described (section 4.7). Following 

blocking of endogenous peroxidase, 4 µm tissue sections were boiled for 3 min in a 

pressure cooker containing Antigen Unmasking Solution Low pH (#H-3300, Vector 

Laboratories). Blocking serum (#PK-7800, Vector Laboratories) was applied for 10 min. 

Following incubation with primary antibody a biotinylated secondary antibody from the 

Vectastain Universal Quick kit (#PK-7800, Vector Laboratories) was applied for 20 min. A 

steptavidin/peroxidase complex reagent from the Vectastain Universal Quick kit (#PK-

7800, Vector Laboratories) was applied for 10 min and visualisation with achieved with 3’, 

3-diaminobenzidine. Each batch of slides included a negative control (primary antibody 
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omitted). Slides were scored blindly and independently by at least two observers and 

discussed with a consultant histopathologist to give a consensus result, using the scoring 

methods described in section 4.7.11. The Kappa test was also performed to assess inter-

observer variability, using the method described (section 4.7.13). Statistical analysis was 

performed using SPSS (version 14).  

10.3 Results 

10.3.1 Discovery-phase data 

Lists of DEPs were generated within the discovery phase of the biomarker discovery 

pipeline by antibody microarray analysis (chapter 8) (Table 22) and 2D-PAGE MALDI-

TOF/TOF MS analysis (chapter 9) (Table 29). Five experiments were performed using 

antibody microarray analysis and three experiments were performed using 2D-PAGE 

MALDI-TOF/TOF MS analysis. Only two DEPs were identified by both proteomic 

platforms; tropomyosin alpha-1 (TPM1) and 14-3-3 theta/tau (YWHAQ). The annexin 

protein family was also common across both proteomic platforms where antibody 

microarray analysis identified annexin a5 (ANXA5) and 2D-PAGE MALDI-TOF/TOF MS 

analysis identified annexin a3 (ANXA3). Only one pair of samples (#15
CS

 versus #19
CR

) 

was analysed by both proteomic platforms, and only one DEP was commonly identified; 

14-3-3 theta/tau (YWHAQ). Analysis performed by 2D-PAGE MALDI-TOF/TOF MS 

identified tropomyosin alpha-1 (TPM1) as a DEP in this sample pair, yet the differential 

expression value of this protein by antibody microarray analysis was not regarded as 

significant. Analysis using IPA software for both sets of data, from the two proteomic 

platforms, will reveal canonical pathways within each dataset, as well as pathways which 

may be common to both datasets.  
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10.3.2 IPA 

Both sets of data, from antibody microarray analysis and 2D-PAGE/MS analysis were 

individually analysed using IPA software. The two datasets were also combined for further 

analysis using IPA software.  

10.3.2.1 Antibody microarray data 

In total, 37/38 of the molecules within the data set were mapped into the Ingenuity 

Knowledge Base. The top network identified from the data was ‘cellular assembly and 

organisation, cell-to-cell signalling and interaction, cell death’, with a score of 77, which 

contained all 37 of the focus molecules. The top canonical pathway identified was ‘ERK5 

signalling’, which included 6 of the DEPs from the data set (Figure 44). Other top 

canonical pathways include ‘IL-8 signalling’ and ‘myc-mediated apoptosis’, which 

included 8 DEPs and 5 DEPs respectively. Other canonical pathways included 14-3-3 

mediated signalling (6 DEPs), apoptosis signalling (4 DEPs), death receptor signalling (4 

DEPs), ERK MAPK signalling (6 DEPs), molecular mechanisms of cancer (8 DEPs), 

mTOR signalling (4 DEPs), NF-kB signalling (6 DEPs), p70S6K signalling (5 DEPs), 

PI3K/AKT signalling (6 DEPs) and PTEN signalling (5 DEPs). These are all listed in Table 

35, along with the DEPs associated with each pathway. 

10.3.2.2 2D-PAGE/MS data 

In total, 55/57 of the DEPs uploaded into IPA were mapped into the Ingenuity Knowledge 

Base. The top networks identified included ‘drug metabolism, glutathione depletion in 

liver, lipid metabolism’, with a score of 81 and 44 focus molecules, and ‘nucleic acid 

metabolism, small molecule biochemistry and protein synthesis’, with a score of 13 and 12 

focus molecules. The top canonical pathway identified by IPA was ‘cell cycle: G2/M DNA 
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damage checkpoint regulation, which contained 5 of the DEPs (Figure 45) Other top 

canonical pathways included myc-mediated apoptosis signalling (5 DEPs), ERK5 

signalling (5 DEPs), 14-3-3 mediated signalling (6 DEPs) and IGF-1 signalling (5 DEPs). 

Other canonical pathways included ERK MAPK signalling (4 DEPs), p70S6K signalling (5 

DEPs), PI3K/AKT signalling (5 DEPs), Protein Kinase A signalling (6 DEPs) and the 

protein ubiquitination pathway (5 DEPs). These are listed in Table 36, along with the DEPs 

associated with each pathway  

 
Figure 44: Top canonical pathway identified by IPA from the antibody microarray 

data set: ERK5 signalling 

Six of the DEPs identified by microarray analysis are included in the ERK5 signalling 

pathway; AKT1, EGF, MYC, RPS6KA1, RPS6KB1 and YWHAQ (14-3-3 theta/tau) (also 

see Table 35) 
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Table 35: Canonical pathways identified by IPA performed on DEPs generated from antibody microarray analysis. 

The table shows the most relevant canonical pathways identified by IPA (n=13), that contain at least 4 molecules from the data. The 

molecules (gene identifiers) associated with each of the canonical pathways are listed, along with the number of canonical pathways 
(-)

 each 

of them appeared in. For each canonical pathway, the number of matched molecules from the data is shown along with the ratio.  

 

Gene identifier 

Canonical pathways identified by IPA 

E
R
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5

 

sig
n

allin
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n
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M
y

c-

m
ed

iated
 

ap
o

p
to

sis 

1
4

-3
-3

 

m
ed

iated
 

sig
n

allin
g

 

A
p

o
p

to
sis 

sig
n

allin
g

 

D
eath
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sig
n

allin
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M
o

lecu
lar 

m
ech

an
ism

s 

o
f can

cer 

YWHAQ (14-

3- theta/tau)
(6)

 
√  √ √   √   √ √   

MYC 
(4)

 √  √    √      √ 

RPS6KB1 
(6)

 √ √      √  √ √ √  

AKT1 
(10)

 √ √ √ √    √ √ √ √ √ √ 

EGF 
(3)

 √ √       √     

RPS6KA1 
(5)

 √   √ √  √ √      

PTK2 
(3)

  √          √ √ 

BCL2L1 
(5)

  √   √      √ √ √ 

CHUK 
(6)

  √   √ √   √  √ √  

MAPK12 
(4)

  √ √ √         √ 

PRKCB 
(7)

  √  √   √ √ √ √   √ 

BID 
(4)

   √  √ √       √ 

MAPT 
(2)

    √      √    

RIPK1 
(2)

      √   √     

TNFSF10 
(1)

      √        

PTK2 
(1)

       √       

H3F3A/H3F3B 
(1)

 
      √       

MYD88 
(1)

         √     

LIMS1 
(1)

           √   

RALA 
(1) 

            √ 

# molecules 6 8 5 6 4 4 6 4 6 5 6 5 8 

ratio 9.68E-02 4.49E-02 8.33E-02 5.22E-02 4.35E-02 6.45E-02 3.03E-02 2.74E-02 3.53E-02 4.1E-02 4.65E-02 4.17E-02 2.23E-02 
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Figure 45: Top canonical pathway identified by IPA from the 2D-PAGE/MS data set: Cell cycle. G2/M DNA damage checkpoint 

regulation 

Five of the DEPs identified by 2D-PAGE/MS analysis are included in cell cycle: G2/M DNA damage checkpoint regulation; YWHAQ (14-

3-3 theta/tau (/)), YWHAG (14-3-3 gamma ()), YWHAB (14-3-3 beta/alpha (/)), YWHAE (14-3-3 epsilon ()) and YWHAZ (14-3-3 

zeta/delta (/)). Also see Table 36. 
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Table 36: Canonical pathways identified by Ingenuity Pathway Analysis performed on DEPs generated from 2D-PAGE MALDI-

TOF/TOF MS analysis. 

The table shows the most relevant canonical pathways identified by IPA (n=10), that contain at least 4 molecules from the data. The 

molecules (gene identifiers) within the data that are associated with each of the canonical pathways are listed, along with the number of 

canonical pathways 
(-)

 each of them appeared in. For each canonical pathway, the number of matched molecules from the data is shown 

along with the ratio.  

Gene identifier 

Canonical pathways identified by IPA 

Cell cycle: 

G2/M DNA 

damage 

checkpoint 

regulation 

Myc-

mediated 

apoptosis 

ERK5 

signalling 

14-3-3 

mediated 

signalling 

IGF-1 

signalling 

PI3K/AKT 

signalling 

P70S6K 

signalling 

Protein 

Kinase A 

signalling 

Protein 

ubiquitination 

pathway 

ERK/MAPK 

signalling 

YWHAQ (14-3-3 

theta/tau) 
(9) √ √ √ √ √ √ √ √  √ 

YWHAG (14-3-3 

gamma) 
(9) √ √ √ √ √ √ √ √  √ 

YWHAE (14-3-3 

epsilon) 
(8) √ √ √ √ √ √ √ √   

YWHAB (14-3-3 

beta/alpha) 
(9) √ √ √ √ √ √ √ √  √ 

YWHAZ (14-3-3 

zeta/delta) 
(9) √ √ √ √ √ √ √ √  √ 

VIM 
(1) 

   √       

MYL12B 
(1) 

       √   

PSMB3 
(1) 

        √  

PSME1 
(1) 

        √  

PSME2
 (1) 

        √  

PSMA1 
(1) 

        √  

HSPB6 
(1) 

        √  

# molecules 5 5 5 6 5 5 5 6 5 4 

ratio 1.04E-01 8.33E-02 8.06E-02 5.22E-02 4.90E-02 3.88E-02 4.1E-02 1.96E-02 1.86E-02 2.02E-02 
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10.3.2.3 Combined antibody microarray and 2D/MS data 

Data was combined from both antibody microarray and 2D/MS analysis, which generated a 

total of 93 molecules (38 from antibody microarray plus 57 from 2D/MS (95), minus two 

duplicate entries (TPM1 and YWHAQ (14-3-3 theta/tau)). In total, 90/93 molecules were 

mapped into the Ingenuity Knowledge Base. The top networks identified included ‘cellular 

assembly and organisation’, with a score of 117 containing 65 focus molecules, and 

‘cellular development, cellular growth and proliferation’, with a score of 25 containing 22 

focus molecules. The top canonical pathway was ‘ERK 5 signalling’, which contained 10 

DEPs. Other top canonical pathways included ‘myc-mediated signalling’ (9 DEPs), ’14-3-

3-mediated signalling’ (11 DEPs) (Figure 46) and ‘PI3K/AKT signalling’ (10 DEPs).  

10.3.3 Confirmation: western blotting 

Protein candidates selected for confirmation using western blotting include 14-3-3 

theta/tau, 14-3-3 epsilon, Bcl-xL and tBID. Western blotting for 14-3-3 tau and tBID were 

unsuccessful, as a result of poor quality non-specific secondary and primary antibodies. 

However an antibody which recognised four 14-3-3 isoforms (14-3-3 eta, 14-3-3 

beta/alpha, 14-3-3 theta/tau and 14-3-3 sigma), and an antibody specific to full-length BID 

were successful. Western blotting demonstrated significant (≥ 2-fold) up-regulation of 14-

3-3 isoforms (including 14-3-3 epsilon), Bcl-xL and full-length BID expression in 

chemotherapy-resistant samples (Figure 47). 
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Figure 46: One of the top canonical pathway identified by IPA from combined 

antibody microarray 2D-PAGE/MS data set: 14-3-3 mediated signalling 

Eleven of the DEPs identified by combined antibody microarray and 2D-PAGE/MS 

analysis are involved in 14-3-3 mediated signalling. The molecules listed in red originate 

from antibody microarray data and the molecules listed in blue originate from the 2D-

PAGE/MS data. Molecules which were present in both antibody microarray and 2D-

PAGE/MS data are listed in purple. These molecules include YWHAQ (14-3-3 theta/tau), 

YWHAG (14-3-3 gamma), AKT1, YWHAE (14-3-3 epsilon), YWHAB (14-3-3 

beta/alpha), YWHAZ (14-3-3 zeta/delta), VIM, MAPT, RPS6KA1, MAPK12 and PRKCB. 
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Figure 47: Confirmation of DEPs using western blotting 

The up-regulation of 14-3-3 isoforms, (including 14-3-3 epsilon), Bcl-xL and BID was 

significantly (≥ 2-fold change in expression) associated with chemotherapy-resistance. 

Beta-actin was used as loading control. All antibodies were used at optimised 

concentrations (section 6.3.3.3) as outlined in Table 5.  

10.3.4 Clinical validation: immunohistochemistry 

Immunohistochemistry was used to assess the DEPs in a clinical context, as a small pilot 

study. Archival pre-treatment biopsy samples from a series of breast cancer patients who 

later received neoadjuvant chemotherapy were analysed for expression of 14-3-3 theta/tau, 

Bcl-xL and tBID. Following assessment of slides, positive staining of 14-3-3 theta/tau was 

recorded when strong nuclear membrane positivity was seen in at least 20% of invasive 

carcinoma cells (Figure 48 (A)). Positive staining was seen in 8/9 (88%) chemotherapy-
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resistant (CR) samples, compared with 9/22 (40%) of chemotherapy-sensitive (CS) samples 

(p=0.020, Fisher’s exact test). Positive staining of the apoptotic protein tBID was recorded 

when moderate to strong cytoplasmic staining was observed in at least 50% invasive 

carcinoma cells (Figure 48 (C)). Positive staining of tBID was seen in 13/19 (68%) of CS 

samples, compared with 2/9 (22%) of CR samples (p=0.041, Fisher’s exact test). Positive 

staining of the anti-apoptotic protein Bcl-xL was recorded when moderate to strong 

cytoplasmic staining was observed in at least 50% invasive carcinoma cells. There was no 

significant difference in expression of Bcl-xL between CS and CR samples. Histological 

scoring for both 14-3-3 theta/tau and tBID by two independent observers showed 100% 

agreement. This represented ‘perfect agreement’ by Kappa statistic criteria, which is used 

to asses inter-observer variability, with a value of 1.00 (section 4.7.13, Table 12). In order 

to fully assess the roles of 14-3-3 theta/tau and tBID as putative biomarkers of resistance to 

neoadjuvant chemotherapy in breast cancer, more extensive clinical validation in a larger 

sample cohort would be required.  
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A  B  

C  D  

Figure 48: Immunohistochemical analysis of 14-3-3 theta/tau and tBID expression in invasive breast carcinoma cells 

A: Positive staining of 14-3-3 theta/tau was recorded when cytoplasmic staining with and strong nuclear membrane positivity was seen in at 

least 20% of invasive carcinoma cells. B: Weak staining of 14-3-3 theta/tau, which was recorded as negative. C: Positive staining of tBID 

was recorded when moderately strong cytoplasmic staining was observed in at least 50% invasive carcinoma cells. D: Weak staining of 

tBID, which was recorded as negative. Magnification: A and B, x 400; C and D, x 200.  
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10.4 Discussion 

During the discovery-phase of the biomarker discovery pipeline, antibody microarray 

analysis (chapter 8) and 2D-PAGE MALDI-TOF/TOF analysis (chapter 9) was used to 

identify DEPs associated with chemotherapy resistance in breast cancer. When comparing 

the lists of DEPs generated from each proteomic platform, only two proteins had been 

commonly identified by both methods; 14-3-3 theta/tau (YWHAQ) and tropomyosin alpha-1 

(TPM1). One protein family had been identified across both proteomic platforms; annexins, 

where annexin a5 (ANXA5) was identified by antibody microarray analysis and annexin a3 

(ANXA3) was identified by 2D-PAGE MALDI-TOF/TOF analysis. IPA was then used to 

analyse each of the two datasets, to highlight any canonical pathways present within 

individual datasets and to also highlight any canonical pathways common to both datasets.  

A total of 37 out of 38 DEPs identified by antibody microarray analysis were mapped into 

the Ingenuity Knowledge Base and included in the analysis. A total of 55 out of 57 DEPs 

identified by 2D-PAGE/MS analysis were mapped into the Ingenuity Knowledge Base and 

analysed using IPA. Analysis using this software revealed canonical pathways, which were 

found to be associated with the DEPs within each of the data sets. These are listed in Table 

35 and Table 36. The top canonical pathways included ‘ERK5 signalling’ (from the 

antibody microarray data set) and ‘cell cycle: G2/M DNA damage checkpoint regulation’ 

(from the 2D-PAGE/MS data set), which contained 6 DEPs and 5 DEPs respectively. These 

tables (Table 35 and Table 36) also highlight the DEPs which appeared in several canonical 

pathways, and therefore warrant further research, due to their roles in multiple 

significantly-identified canonical pathways. When the datasets were combined for IPA, the 

top canonical pathway was ERK5 signalling, which contained 10 DEPs. This canonical 

pathway had already been identified as a ‘top canonical pathway’ by individual analysis of 
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both datasets by IPA. Other top canonical pathways identified from the combined dataset 

included myc-mediated signalling, 14-3-3-mediated signalling and PI3K/AKT signalling, 

which had all been identified previously during both sets of individual analysis. Therefore, 

combining the datasets did not identify any new canonical pathways; it only increased the 

number of molecules associated with each of the top canonical pathways. From the 

antibody microarray data set (Table 33), the top 5 molecules involved in multiple pathways 

include YWHAQ (14-3-3 theta/tau) 
(n=6)

, RPS6KB1 
(n=6)

, AKT1 
(n=10)

, CHUK 
(n=6)

 and 

PRKCB 
(n=7)

. From the 2D-PAGE/MS data set (Table 34), the top 5 molecules involved in 

multiple pathways include YWHAQ (14-3-3 theta/tau) 
(n=9)

, YWHAG (14-3-3 gamma) 
(n=9)

, 

YWHAE (14-3-3 epsilon) 
(n=8)

, YWHAB (14-3-3 beta/alpha) 
(n=9)

 and YWHAZ (14-3-3 

zeta/delta) 
(n=9)

. It is important to note that the 725 antibodies spotted onto the antibody 

microarray slide are pre-selected from canonical cell signalling pathways, so some 

clustering of DEPs can be expected, and therefore possible bias towards selected canonical 

pathways.  

10.4.1 Apoptosis-related proteins 

Aberrant apoptotic signalling has a well established putative role in tumour response to 

chemotherapy (Pommier, Sordet et al. 2004; Yip and Reed 2008; Indran, Tufo et al. 2011). 

It is this critical pathway that delivers the desired effect of the chemotherapeutic agent; 

death of the cancerous cell by apoptosis, thus acting as an indirect drug mechanism of 

action. Therefore it is understandable that alterations in the mediators of this pathway, may 

present possible mechanisms of drug resistance. Therefore candidates initially selected for 

confirmation phases included the apoptosis-related proteins, Bcl-xL and tBID. Western 

blotting revealed significant up-regulation of Bcl-xL in chemotherapy-resistant tumours. 

The expression of tBID could not be assessed using western blotting, however an antibody 
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against full-length BID demonstrated the significant up-regulation of this protein in 

chemotherapy-resistant tumour samples. To assess the clinical relevance of these proteins 

as putative markers of chemotherapy resistance, a pilot immunohistochemical study was 

performed using archival samples from a well-characterised patient cohort (Garimella 

2007). The expression of tBID and Bcl-xL was assessed at this stage. Positive cytoplasmic 

staining of the cleavage product of BID (tBID) was significantly associated with 

chemotherapy-resistant tumours (p=0.04). The expression of Bcl-xL was not shown to be 

associated with chemotherapy-resistance in the clinical setting at this stage. The differential 

expression of the Bcl-2-like apoptosis-related proteins BID (pro-apoptotic) and Bcl-xL 

(anti-apoptotic) highlights the potential involvement of the apoptotic pathway in 

chemotherapy-resistance. Western blot data showed increased expression of BID (full-

length) in chemotherapy-resistant samples, and immunohistochemical analysis revealed 

decreased expression of BID in its active cleaved form (tBID). This data suggests that the 

reduced levels of apoptosis seen in chemotherapy-resistant tumours may be associated with 

reduced cleavage of BID into its active form, hence why full-length BID remains. Studies 

have shown that BID may also be involved in cell proliferation, and possess a pro-

proliferative function, which have been well reviewed (Yin 2006). This may also support 

the increased survival of cells, and resistance to chemotherapy, where BID expression is 

shown to be increased. Bcl-xL was shown to be over-expressed in chemotherapy-resistant 

tumours. Here, this increased Bcl-xL is able to bind to and sequester tBID (Lovell, Billen et 

al. 2008) and prevent apoptosis of tumour cells, hence they are surviving chemotherapy and 

displaying resistance. 
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10.4.2 14-3-3 proteins 

One of the proteins which was identified by both of the discovery-phase platforms; 

antibody microarray and 2D-PAGE MALDI-TOF/TOF MS analysis, was 14-3-3 theta/tau 

(YWHAQ). This was the only member of the 14-3-3 family of proteins present on the 

antibody microarray, yet 2D-PAGE/MS analysis identified 4 other isoforms in at least 2/3 

experiments; 14-3-3 epsilon (YWHAE), 14-3-3 zeta/delta (YWHAZ), 14-3-3 gamma 

(YWHAG) and 14-3-3 beta/alpha (YWHAB). Of the 55 DEPs in the 2D-PAGE/MS data set, 

the five 14-3-3 isoforms are present in 8 of the 10 canonical pathways listed in Table 36. 

The potential role of 14-3-3 theta/tau in chemotherapy-resistance has previously been 

reported (section 9.4). This protein was therefore also included in those initially selected for 

the confirmation phase of the biomarker discovery pipeline, as well as other 14-3-3 

isoforms. 

The expression of 14-3-3 theta/tau could not be assessed using western blotting, however 

an antibody against four isoforms of 14-3-3 (beta, eta, tau and sigma) demonstrated the 

significant up-regulation of these proteins in chemotherapy-resistant tumour samples. The 

up-regulation of 14-3-3 epsilon was also shown to be significantly associated with 

chemotherapy-resistance. To assess the clinical relevance of expression of 14-3-3 theta/tau, 

a pilot immunohistochemical study was performed using archival samples from a well-

characterised patient cohort (Garimella 2007). Immunohistochemical analysis revealed a 

significant association between high expression of 14-3-3 theta/tau within the nuclear 

membrane and chemotherapy-resistant tumours (p=0.02). In order to fully assess the 

strength of this putative biomarker, further screening should be performed in a larger 

patient cohort. The other isoforms of 14-3-3 should also be carried forward to confirmation 

and clinical validation phases.  
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The association between doxorubicin and paclitaxel chemotherapy resistance in breast 

cancer and expression of 14-3-3 proteins has also previously been made (Liu, Liu et al. 

2006; Chuthapisith 2007). They have also been found to be associated with cisplatin 

resistance in cervix squamous cell carcinoma cell lines (Castagna, Antonioli et al. 2004), 

vinca alkaloid resistance in acute lymphoblastic leukaemia (Verrills, Walsh et al. 2003), as 

well as mitoxantrone chemotherapy-resistance in pancreatic cancer (Sinha, Hütter et al. 

1999). There are seven mammalian isoforms of 14-3-3; beta/alpha, gamma, epsilon, eta, 

sigma, theta/tau and zeta/delta, which are reported to associate with proteins involved in 

critical processes including cell cycle regulation, intracellular signalling and apoptosis 

(Tzivion, Gupta et al. 2006). Due to the nature of their protein targets, 14-3-3 proteins have 

been widely associated with cancer, including response to therapeutic agents. Overall, it is 

thought that 14-3-3 proteins promote cell survival by inhibition of apoptosis (Masters, 

Subramanian et al. 2002).  It has been reported that 14-3-3 theta/tau inhibits tamoxifen-

induced apoptosis in MCF7 breast cancer cells via interaction with p21, which is required 

for tamoxifen to generate a response (Wang, Liu et al. 2010). The overexpression of 14-3-3 

tau has therefore been associated with tamoxifen resistance in MCF7 breast cancer cell 

lines. Another study also found 14-3-3 theta/tau to be associated with response to 

chemotherapeutic agents, where single nucleotide polymorphisms in the gene encoding 14-

3-3 theta/tau (YWHAQ) were shown to have a significant effect upon cellular response to 

chemotherapeutic agents (Vazquez 2010). As discussed in chapter 9 (section 9.4), 14-3-3 

proteins have been shown to have over 300 protein targets (Sluchanko and Gusev 2010), 

which are associated with apoptosis, cell cycle control, proliferation, cytoskeleton 

regulation and transcription. These are all critical pathways, which are involved either 

directly or indirectly with the deliverance of the desired effect of chemotherapeutic agents, 
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or mechanism of action, ultimately leading to death of the cancerous cell and its removal 

from the system. Aberrations within the 14-3-3 proteins may therefore present an array of 

mechanisms by which resistance to chemotherapeutic agents may arise, which warrants 

further research into their role as putative biomarkers of chemotherapy resistance in breast 

cancer.  

So far, two proteins have passed through all the phases of the discovery pipeline, where 

their differential expression was first recognised during discovery-phase experiments, was 

confirmed by western blotting and validated in clinical samples in small pilot series. They 

have also shown to be involved in important cellular processes which have established 

putative roles in response to chemotherapy. These proteins include 14-3-3 theta/tau and 

tBID. Further clinical validation, in a larger sample cohort, would be required to fully 

assess the role of these proteins as putative biomarkers of chemotherapy resistance in breast 

cancer. There are also many other proteins within each of the discovery-phase data sets 

which have been highlighted during the data mining phase, using IPA, and warrant further 

research. DEPs identified by antibody microarray analysis which have not yet been carried 

forward, but were associated with several of the canonical pathways identified by IPA, 

including PI3K/AKT, mTOR, and P70S6K signalling, which have been widely studied for 

their association with breast cancer tumourigenesis, prognosis and therapy resistance, as 

well as potential therapeutic targets (LoPiccolo, Blumenthal et al. 2008; Bartlett 2010; 

Ghayad and Cohen 2010; Wallin, Guan et al. 2010; Kim, Kim et al. 2011; Wang, Yi et al. 

2011; Xiang, Jia et al. 2011). These molecules include Protein Kinase Ba (AKT1), IKKa 

(CHUK), Protein kinase Cb1/2 (PRKCB) and Rsk1 (RPS6KB1), which are members of the 

serine/threonine kinase family, and their involvement in the above-mentioned canonical 
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pathways warrants further research into their role as putative biomarkers of chemotherapy 

resistance in breast cancer.  
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Chapter 11.  Conclusions 

One of the main aims of this project was to identify biomarkers associated with 

resistance to neoadjuvant chemotherapy in locally advanced breast cancer, using 

comparative proteomic techniques. The other main aim of this project was to perform 

the transition from proteomics research based upon cell line samples to clinical tissue 

samples.   

Currently, response to neoadjuvant chemotherapy cannot be predicted; some tumours 

respond well, and show a decrease in size, whilst others show no response or more 

detrimentally, progressive disease during the treatment course. In this instance, patients 

receive cytotoxic drugs, with unpleasant side-effects, for no therapeutic gain. Resistance 

to neoadjuvant chemotherapy is therefore a major obstacle in achieving effective 

tumour treatment. The ability to predict tumour response at the time of diagnosis would 

benefit both the patient and clinician, allowing the individualisation of treatment and the 

administration of chemotherapy to only those who are mostly likely to benefit, thus 

maximising treatment efficacy. 

In order to achieve this, clinical samples had to be collected alongside corresponding 

relevant clinical information. These clinical samples were from tumour resections, 

which had been treated with standard neoadjuvant chemotherapy. Comparative 

proteomic analysis performed on these clinical samples would allow the identification 

of putative biomarkers associated with both the ‘intrinsic’, (where cancer cells are 

innately resistant to chemotherapy), and ‘acquired’ (where cancer cells develop 

resistance during treatment) mechanisms of chemotherapy resistance.  

Proteomic techniques, which were established for cell line samples, then had to be 

optimised for use with clinical tissue samples. These included antibody microarrays, 

2D-PAGE MALDI-TOF/TOF MS and western blotting. Once optimised, these 
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techniques could then be applied as comparative proteomics methods, using the 

biomarker discovery pipeline, for the identification of putative biomarkers of 

chemotherapy resistance.  

11.1 Antibody microarray analysis 

Antibody microarray analysis encompassing five experiments, comparing the 

expression of a chemotherapy-sensitive tumour with a chemotherapy-resistant tumour, 

generated a list of 38 differentially expressed proteins (DEPs). Data mining was 

subsequently performed, using IPA, which highlighted important canonical pathways 

within the data set. The top, most significant, canonical pathway identified was the 

ERK5 signalling pathway. The ERK5 protein has been described as a pro-survival 

factor which has a role in the regulation of cell proliferation, mainly during G1/S 

transition of the cell cycle (Girio, Montero et al. 2007). It has also been shown to be 

activated during mitosis, where it contributes to cell survival by sequestering the pro-

apoptotic protein Bim and preventing induction of caspase activation and cell death by 

apoptosis (Girio, Montero et al. 2007). The ERK5 signalling pathway has also been 

associated with the invasive phenotype of prostate cancer, where the expression of 

ERK5 was shown to be up-regulated in metastatic prostate cancer (Ramsay, McCracken 

et al. 2011), which also highlights its role as pro-survival factor.  

Protein candidates selected for the confirmation phase included the apoptosis-related 

proteins tBID and Bcl-xL, and 14-3-3 theta/tau which was identified in 5/5 antibody 

microarray experiments and was also present in the ERK5 signalling pathway. The 

differential expression of 14-3-3 proteins, full length BID and Bcl-xL was confirmed by 

western blotting. The differential expression of 14-3-3 theta/tau and tBID was also 

clinically validated using immunohistochemistry in a small pilot study. The increased 

expression of 14-3-3 theta/tau, which is an anti-apopotic protein, was found to be 

associated with chemotherapy-resistance. Decreased expression of tBID was observed, 
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showing reduced cleavage of BID into its active form (tBID), thus reduced levels of 

apoptosis. Both of these factors support increased survival of the cancer cell, by evasion 

of apoptosis, which is essential for the chemotherapy-resistant phenotype.  

Antibody microarray analysis was also performed on 13 data sets from 5 different 

sample groups, which produced a list of repeatedly-identified DEPs (RIDEPs) from the 

antibody microarray platform. The phenomenon of RIDEPs had been reported for 2D-

PAGE/MS experiments (Petrak, Ivanek et al. 2008; Mariman 2009; Wang, Bouwman et 

al. 2009), but not for data generated by antibody microarray analysis. The list of 

RIDEPs associated with the antibody microarray platform has therefore been produced 

and published for the first time, as well as recommendations for quality-control 

thresholds. If proteins present on the RIDEP list are identified as DEPs, confirmation of 

their differential expression and clinical validation should be performed rigorously.  

11.2 2D-PAGE MALDI-TOF/TOF MS analysis 

2D-PAGE MALDI-TOF/TOF analysis for the identification of biomarkers of 

chemotherapy resistance was performed, and included 3 experiments comparing protein 

expression in chemotherapy-sensitive tumours versus chemotherapy-resistant tumours. 

In total, 132 DEPs were identified across the three experiments, and 57 of these were 

identified in at least two experiments. Data mining, using IPA software, revealed the top 

canonical pathway associated with the data set to be ‘cell cycle: G2/M DNA damage 

checkpoint control’, which involved 5 isoforms of the 14-3-3 family of proteins (14-3-3 

theta/tau, 14-3-3 epsilon, 14-3-3 gamma, 14-3-3 zeta/delta and 14-3-3 beta/alpha). 

These proteins were also present in several other canonical pathways indentified, which 

indicates the extent and range of their involvement in critical biological processes. Their 

role in chemotherapy resistance to anthracyclines and taxanes in breast cancer has also 

previously been suggested (Liu, Liu et al. 2006; Chuthapisith 2007), and overall pro-

survival function via inhibition of apoptosis. The observed overexpression of 14-3-3 
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proteins therefore supports increased the cell survival and evasion of apoptosis 

associated with the chemotherapy-resistant phenotype.  

The differential expression of 14-3-3 theta/tau and 14-3-3 epsilon isoforms was 

confirmed using western blotting, and 14-3-3 theta/tau was carried forward for clinical 

validation, where its differential expression was successfully confirmed in a clinical 

context using immunohistochemistry, in a small pilot study. Further confirmatory 

testing and clinical validation is required for the other 14-3-3 isoforms, and this should 

be considered for future work.  

Overall there has been little overlap between the DEPs identified by antibody 

microarray analysis and 2D-PAGE MALDI-TOF/TOF MS. This was also noticed by 

Smith et al, where different lists of DEPs were produced from antibody microarray and 

MS-based methods (Smith, Qutob et al. 2009). The two proteomic platforms therefore 

provide a complementary approach to the discovery of DEPs, and when used in 

combination, increase the range of DEPs which can be identified. 

 

11.3 Future work 

11.3.1 Discovery phase 

There are many different options for future work. One of these may include increasing 

the lists of DEPs, by performing additional discovery-phase experiments, using 

antibody microarray analysis and 2D-PAGE MALDI-TOF/TOF analysis on additional 

samples. This may also include performing 2D-PAGE MALDI-TOF/TOF in different 

pH ranges or on larger gels, to allow additional DEPs to be identified. Depletion 

strategies may also be employed, to remove the highly-abundant proteins present in the 

samples, such as albumin, which may improve access to low abundant proteins and 

increase the chance of biomarker identification. So far, discovery-phase experiments 
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have been performed using luminal (ER+) invasive ductal carcinoma samples, as this is 

the most common subtype of breast tumours and the type which displays poorest rates 

of response to neoadjuvant chemotherapy It may also be interesting to perform the 

search for biomarkers using tumour samples of different molecular subtype, such as 

HER2, however these are less common and have higher rates of pathological complete 

response to neoadjuvant chemotherapy regardless.  

11.3.2 Confirmation and clinical validation 

There are many other DEPs within the discovery-phase data, which were highlighted by 

IPA, which warrant further research, as so far only a few have been carried forward to 

the confirmation phase. These include the 14-3-3 family of proteins, which are involved 

in several critical biological processes and overall promote cell survival by inhibition of 

apoptosis. The relationship between aberrant apoptosis and chemotherapy response is 

already well-established (Pommier, Sordet et al. 2004), and the expression of these 

proteins has already been associated with chemotherapy resistance in breast cancer. 

Therefore these proteins may have roles as potential predictive biomarkers of 

chemotherapy resistance, however extensive clinical validation, in a large cohort of pre-

treatment samples, possibly within a prospective study, is required. 

11.3.3 Core biopsy samples 

If predictive biomarkers of chemotherapy resistance were transferred to the clinic, 

screening would be performed at the time of diagnosis, to allow subsequent treatment to 

be tailored accordingly. This may involve the routine screening of formalin-fixed 

paraffin-embedded (FFPE) core biopsy samples, with an established panel of predictive 

biomarkers. This is a clinically accepted approach, currently used for routine ER PR and 

HER2 screening, therefore if a panel of predictive biomarkers was identified, it would 
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be relatively simple to incorporate this into an existing routine protocol, without 

requiring extra patient samples. 

The most clinically relevant sample type to analyse using proteomics techniques for the 

identification of predictive biomarkers of chemotherapy-resistance is the pre-treatment 

core biopsy sample, which is taken at the diagnostic stage. This type of sample provides 

cells from the core of the tumour, and therefore allows direct analysis and 

characterisation. Biomarkers accessible within alternative samples, such as serum, allow 

less invasive diagnostic testing, however proteomic changes responsible for the 

potential innate resistance to chemotherapeutic agents may not be reflected in the 

serum. Identification of predictive biomarkers of innate resistance to neoadjuvant 

chemotherapy would require proteomic analysis to be performed, in the discovery phase 

of the biomarker discovery pipeline, using fresh core biopsy tissue samples. The quality 

of the sample may also be higher at this stage, with a larger proportion of tumour cells, 

in comparison to the resection samples where tumour cells may be more diffuse as a 

result of chemotherapy treatment. However, the procedure of obtaining core biopsy 

samples is invasive and unpleasant for the patient. Therefore, ethical approval would 

only allow, if at all, a minimum number of extra fresh core biopsy samples to be taken 

for research purposes. Currently, proteomic methods are not established for such small 

samples. A single preliminary test was performed, which showed that 6 core biopsy 

samples would be required for proteomic analysis using current methods. Further 

optimisation of methods would therefore be required before proteomic analysis could be 

performed on an ethically-suitable number of cores biopsy samples, and before an ethics 

application could be considered. 

11.3.4 Establishment of chemotherapy-resistant cell lines 

Another consideration for future work, may involve the development of chemotherapy 

resistant cell line models (Watson, Lind et al. 2007). This would present a 
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complementary approach to the discovery of biomarkers already performed using 

clinical samples. DEPs generated using this method would also require confirmation 

and validation, so despite controversies regarding their clinical relevance, data 

generated from cell-line samples would ultimately be tested within the clinical context. 

In order to represent the standard anthracycline plus taxane neoadjuvant chemotherapy 

treatment regimen, cell lines could be generated displaying resistance to anthracycline 

and taxane chemotherapeutic drugs, such as epirubicin and docetaxel. These are 

currently available to purchase from Sigma Aldrich (Epirubicin (#E9406, Sigma 

Aldrich) and Docetaxel (#01885, Sigma Aldrich).  

Another consideration for future work could be the use of drug inhibitors or small 

molecule inhibitors, which target the putative biomarkers which have already been 

identified, whose expression has shown to be up-regulated in the chemotherapy-

resistant phenotype (14-3-3 proteins and Bcl-xL). If chemotherapy-resistant cell line 

models were established, the inhibition of these proteins could be tested in combination 

with neoadjuvant chemotherapy, for drug sensitisation. One such example may involve 

the inhibition of Bcl-xL with Navitoclax, which is a Bcl-2 family inhibitor. This 

inhibitor has been shown to accelerate apoptosis during drug-induced mitotic arrest, by 

taxanes, thus increasing the therapeutic efficacy of taxanes in an epithelial cell line 

model (Shi, Zhou et al. 2011) and a non-small cell lung cancer cell line model (Tan, 

Malek et al. 2011). The inhibition of 14-3-3 proteins, as a potential therapeutic target 

has also been discussed. An example of a 14-3-3 inhibitor is difopein; a 14-3-3-binding 

dipeptide which has been shown to increase rates of apoptosis in tumour cells being 

treated with anti-neoplastic agents, thus acting as a sensitising agent (Hermeking 2003). 

The use of such agents, in established chemotherapy resistant models may therefore 

provide further information regarding the role of these putative biomarkers of 

chemotherapy resistance and also as potential therapeutic targets.  
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11.4 Concluding Remarks 

The use of proteomic methods for the identification of predictive biomarkers of 

chemotherapy resistance in breast cancer, following the stages outlined in the biomarker 

discovery pipeline, and most importantly using fresh tumour tissue, has shown great 

potential.  

Within this study, methods have been established for the use of clinical tissue with two 

proteomic platforms, including antibody microarray analysis and 2D-PAGE MALDI-

TOF/TOF MS, for the discovery of putative biomarkers of chemotherapy resistance. 

Guidelines associated with the use of the antibody microarray platform, including 

quality-control thresholds, fold-change cut-off values and RIDEPs, have also been 

reported and published for the first time. These guidelines will be useful for any 

researcher using this proteomic platform. Preliminary work for the use of fresh pre-

treatment core biopsy samples has also been performed, providing information 

regarding the feasibility of the use of these samples for discovery-phase proteomic 

analysis.  

Proteomic analysis within the discovery phase of the biomarker discovery pipeline 

produced large lists of DEPs which present themselves as putative biomarkers of 

neoadjuvant chemotherapy resistance in breast cancer. To the best of my knowledge, 

these are the first reported putative biomarkers of neoadjuvant chemotherapy resistance 

in breast cancer which have been discovered using proteomic analysis of fresh clinical 

tumour tissue samples. Two of the DEPs identified have been followed through all the 

stages of the biomarker discovery pipeline, and show clinical potential as putative 

predictive biomarkers of neoadjuvant chemotherapy resistance in breast cancer.  
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APPENDIX 1: 725 Antibodies (Panorama Antibody Microarray XPRESS Profiler)  
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APPENDIX 2: Buffers and reagents 

 

Tissue culture media 

1 bottle of RPMI 1640 culture media (#31870, Invitrogen) 

50 ml Fetal Bovine Serum (#10106, Invitrogen) 

5 ml L-glutamine (#25030, Invitrogen) 

5 ml Fungizone – Amphotericin B (#15290, Invitrogen) 

5 ml Penicillin / Streptomyosin (PenStrep) (#15140, Invitrogen) 

 

Western blot (WB) extraction buffer  

4 ml dH2O 

1 ml 0.5 M Tris:HCl pH 6.8 

0.8 ml glycerol 

1.6 ml 10 % SDS 

200 µl 0.05 % Bromophenol Blue 

 

TBSTween-20 

 

TBS Stock (concentrated) 

121 g Trizma Base (#93304, Fluka) 

170 g Sodium chloride (#S3014, Sigma 

Aldrich) 

Made to 1 litre with dH2O 

Adjusted to pH 7.6 with concentrated HCl  

250 ml of TBS Stock (concentrated) 

4750 ml dH2O 

2.5 ml Tween20 (#P5927, Sigma Aldrich) 

 

 

2D extraction buffer  

1.26 g Urea  

0.456 g Thiourea  

0.12 g CHAPS  

0.0231 g Dithiothreitol (DDT)  

30 µl Bio-Lyte 3/10 Ampholyte (#163-1113, Bio-Rad)  

6 µl 1% Bromophenol Blue 

1.65 ml dH2O 

30 µl Protease Inhibitor (#80-6501-23, Amersham Biosciences) 

30 µl Phosphatase Inhibitor Cocktail 1 (#P2850, Sigma Aldrich) 

30 µl Phosphatase Inhibitor Cocktail 2 (#P5726, Sigma Aldrich) 

 

Equilibration buffer 

 

Stock 

6.7 ml 1.5 M Tris-HCl pH 8.8 

72.07 g Urea  

69 ml 87% Glycerol  

4.0 g SDS 

Trace Bromophenol Blue Salt  

Made up to 200 ml with dH2O 

Equilibration Buffer 1 

0.1 g DTT to every 10 ml of stock 

Equilibration Buffer II 

 0.25 g IAA to every 10 ml of stock 

 

 

1% Overlay Agarose 

1 g Agarose 

100 ml 1 x Tris-glycine running buffer (#161-0772, Bio-Rad) 

Trace Bromophenol Blue  
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APPENDIX 3: REC Approval for the study 
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APPENDIX 4: Patient Information Sheet 
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APPENDIX 5: All raw clinical data for clinical samples collected 
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APPENDIX 6: Annotated Sprectrum (Protein Scape) 

 

Annotated fragment ion mass spectrum 

This is an example of an annotated fragment ion mass spectrum, generated by the ProteinScape interface, showing the calculated amino acid residues 

(top). This is the single peptide matched to spot number 35212.  
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APPENDIX 7: Peptide View (MASCOT) 

 

An example of a peptide view result page from Mascot 

This is an example of a peptide view, of the single peptide matched to spot 35212. It 

includes an annotated mass spectrum and a table containing the matched fragment ions, 

where italic bold red indicates those that have been used for scoring. The most 

important ions for the experiments in this project include the ‘b’ and ‘y’ ions 

(highlighted), which show a good selection of italic bold red ions, used to elucidate the 

peptide sequence. 
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APPENDIX 8: ProPhossi MS/MS Report 

 

An example of an annotated mass spectrum using Prophossi 

This is an example of an annotated fragment ion mass spectrum, from the single peptide 

matched to protein spot 35212. The list of fragment ion masses and their intensities 

were submitted to Prophossi, along with the peptide sequence, and the output includes 

the annotated spectrum, an annotated peptide sequence, and details of ions observed 

(not shown).   
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APPENDIX 9: DEPs from 2D-PAGE/MS analysis (identified in 1/3 experiments) 

 

Differentially expressed proteins associated with chemotherapy resistance, identified 

using 2D-PAGE MALDI-TOF/TOF MS 

Three comparative 2D-PAGE MALDI-TOF/TOF MS experiments were performed to 

identify differentially expressed proteins (DEPs) associated with chemotherapy 

resistance. The table lists (alphabetically by gene symbol, from the IPI database) those 

DEPs identified in 1/3 experiments, showing ≥ 2-fold change in expression, along with 

the direction of change (↓↑). Protein identifications with 1 peptide match are indicated 

(
1
). Where a protein is not identified as a DEP, --- is shown, to represent status 

unknown. Proteins listed within the TOP15 (human) RIDEP list are shown* (n=1). 

 

Protein Gene Symbol #15 vs #19 #15 vs #1 #18 vs #1 

Alpha-1B-glycoprotein A1BG ↓ --- --- 

Isoform 1 of Low molecular weight phosphotyrosine 

protein phosphatase 
ACP1 --- --- ↑ 

Putative uncharacterized protein ACTB ACTB --- --- ↑ 

highly similar to Actin, cytoplasmic 1 
ACTG1 cDNA 

FLJ52842 
--- --- ↑ 

Protein AMBP AMBP --- --- ↓ 

Annexin IV ANXA4 --- --- ↑1 

Isoform 2 of Actin-related protein 2/3 complex subunit 5 ARPC5 --- ↑ --- 

ATPase ASNA1 ASNA1 --- ↑ --- 

Isoform 1 of ATP synthase subunit d, mitochondrial ATP5H --- ↑ --- 

Complement component 1 Q subcomponent-binding 

protein, mitochondrial 
C1QBP --- ↑ --- 

protein C6orf115 
C6orf115 

UPF0727  
--- --- ↑1 

Calmodulin 

CALM1; 

CALM2; 

CALM3 

--- ↑ --- 

F-actin-capping protein subunit alpha-1 CAPZA1 --- ↑ --- 

F-actin-capping protein subunit alpha-2 CAPZA2 --- --- ↑ 

Chromobox protein homolog 1 CBX1 --- ↑1 --- 

Charged multivesicular body protein 4b CHMP4B --- --- ↑1 

Chloride intracellular channel protein 4 CLIC4 --- --- ↑ 

Isoform Soluble of Catechol O-methyltransferase COMT ↑ --- --- 

Highly similar to CATHEPSIN B (clone TESOP2000400) 
CTSB cDNA 

FLJ40065 fis 
--- --- ↑1 

N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 DDAH1 --- --- ↑ 

Dermatopontin DPT ↓ --- --- 

TUT1 Elongation factor 1-gamma EEF1G --- ↑ --- 

Eukaryotic translation initiation factor 1A, Y-

chromosomal 
EIF1AY --- --- ↑1 

Eukaryotic translation initiation factor 6 EIF6 --- --- ↑ 

FK506-binding protein 4 FKBP4 ↑ --- --- 

Ferritin heavy chain FTH1 --- --- ↓ 

Vitamin D-binding protein GC ↑1/↓1 --- --- 

Rab GDP dissociation inhibitor beta GDI2 --- ↑ --- 

PDZ domain-containing protein GIPC1 GIPC1 --- --- ↑ 

Lactoylglutathione lyase GLO1 --- --- ↑ 
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Heterogeneous nuclear ribonucleoprotein H HNRNPH1 --- ↑ --- 

Heat shock protein beta-1* HSPB1 ↑ --- --- 

60 kDa heat shock protein, mitochondrial HSPD1 ↑ --- --- 

Isoform 1 of Isocitrate dehydrogenase [NAD] subunit 

alpha, mitochondrial 
IDH3A --- ↑ --- 

Ig kappa chain C region IGKC ↓1 --- --- 

Ig lambda-2 chain c regions IGLC2 --- --- ↓1 

Inosine triphosphate pyrophosphatase ITPA --- ↑ --- 

Keratin, type I cytoskeletal 17 KRT17 ↓ --- --- 

keratin 7 KRT7 --- ↑ --- 

Isoform 2 of LIM and SH3 domain protein 1 LASP1 --- --- ↑1 

Isoform A of Lamin-A/C LMNA --- ↑1 --- 

similar to complement component 3 LOC653879 --- --- ↓ 

Myotrophin MTPN --- ↑1 --- 

Myosin regulatory light chain 12A MYL12A --- --- ↑ 

Isoform Non-muscle of Myosin light polypeptide 6 MYL6B --- --- ↑1 

Putative uncharacterized protein NAP1L4 NAP1L4 --- ↑1 --- 

Alpha-soluble NSF attachment protein NAPA --- ↓ --- 

Nicotinamide N-methyltransferase NNMT --- ↑1 --- 

ADP-sugar pyrophosphatase NUDT5 --- ↑ --- 

Nuclear transport factor 2 NUTF2 --- ↑1 --- 

Proliferation-associated protein 2G4 PA2G4 --- ↑ --- 

Protein DJ-1 PARK7 --- --- ↑ 

Proliferating cell nuclear antigen PCNA --- --- ↑1 

highly similar to Glucosidase 2 subunit beta 

PRKCSH 

cDNA 

FLJ59211 

↑1 --- --- 

Isoform 2 of Proteasome subunit alpha type-3 PSMA3 --- ↑1 --- 

Proteasome subunit alpha type-5 PSMA5 --- ↑ --- 

Proteasome subunit beta type-4 PSMB4 --- ↑ --- 

UV excision repair protein RAD23 homolog B RAD23B --- ↑ --- 

Isoform 1 of RuvB-like 1 RUVBL1 --- ↓1 --- 

Protein S100-A11 S100A11 --- ↑ --- 

Protein S100-A13 S100A13 ↑1 --- --- 

Protein S100-A16 S100A16 ↑1 --- --- 

Serum amyloid A protein SAA2 --- --- ↓ 

Isoform 1 of Septin-2 SEPT2 --- --- ↑ 

Isoform 1 of 14-3-3 protein sigma SFN ↑1 --- --- 

Isoform 1 of Calcium-binding mitochondrial carrier 

protein SCaMC-1 
SLC25A24 ↑ --- --- 

Small nuclear ribonucleoprotein F SNRPF --- --- ↑ 

TDP43 TARDBP --- ↑1 --- 

Tubulin-folding cofactor B TBCB --- ↑ --- 

Transcription elongation factor B polypeptide 1 TCEB1 --- ↑ --- 

Transcription elongation factor B polypeptide 2 TCEB2 --- --- ↑1 

tumor protein D52 isoform 2 TPD52 --- --- ↑1 

Tropomyosin 2 TPM2 ↓1 --- --- 

GDP-L-fucose synthetase TSTA3 ↑1 --- --- 

Thioredoxin TXN --- ↑1 --- 
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APPENDIX 10: 2D-PAGE MALDI TOF/TOF MS Raw Data 

 

All protein identification data obtained from 2D-PAGE/MALDI-TOF/TOF analysis 

Protein identification data obtained from three 2D-PAGE MALDI-TOF/TOF experiments, where spectra were submitted to MASCOT and searched 

against the IPI human database. Accession numbers are also shown for the UniprotKB/Swiss-Prot database. Spot numbers with the prefix ‘1’ were 

identified from experiment 1; prefix ‘2’, experiment 2 and prefix ‘3’, experiment 3. 
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APPENDIX 11: Peptide views for protein identifications with a only single pepide 

matches in 2/3 and 3/3 2D-PAGE/MS experiments (n=3) 

Peptide View: Adenine phosphoribosyl transferase (APRT)  

Experiment 1 (spot 15102) 

 
Experiment 3 (spot 35102) 

 
Peptide View: Acyl-protein thioesterase 1, isoform 1 (LYPLA1) 
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Experiment 1 (spot 18213) 

 
Experiment 2 (spot 29101) 

 
 

Peptide View: Tubulin-specific chaperone A (TBCA) 
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Experiment 1 (spot 14101) 

 
Experiment 2 (spot 24004) 

 
 

Experiment 3 (spot 34001) 
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