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Abstract 

A range of novel liquid crystals and amorphous organic conjugated 

semiconductors were synthesised by the chemistry branch of the Organophotonics 

group at Hull University. These compounds are studied electrochemically and optically 

to investigate the suitability of these materials as good donor/acceptor with suitable 

pairs energy levels for use in organic photovoltaic devices.  Liquid crystal compounds 

with a fluorene-thiophene structure were identified as potential electron donors in 

combination with perylene based compounds as electron acceptors. 

Time-of-flight was used to study the charge transport of organic semiconductors 

in this thesis. The nature of the functional groups of the molecules was found to have a 

significant influence on the charge carrier mobility.  The incorporation of a reactive end 

group with spacer affected the charge carrier mobility of electron donors negatively, 

suggesting that the mobility depends on the intermolecular separation.  Based on the 

need to correlate the charge transport of the donor/acceptor blends with photovoltaic 

devices, the electron and hole mobility were studied for blends. For all blends the hole 

mobility is lower than that of the pure electron donor.  The electron mobility of the 

blends is much higher than that of the pure electron acceptor. The thermal activation of 

charge transport in the liquid crystals is investigated by applying the Gill model. The 

result shows that charge transport in the liquid crystals is thermally activated and the 

activation energy is field dependent. The Gaussian disorder model and correlated 

disorder model were used to analyze the mobility data of four liquid crystals compounds 

with the same conjugated core and different end groups.  

We show that the thin film nanoscale morphology and the phase separation of 

the donors/acceptors blends depend on the chemical structures of donors and acceptors, 

the casting solvents and the annealing temperature of the film. The functional groups of 

the perylene bisimide are found to influence the roughness.   The surface roughness of 

the blended thin film is minimum and its phase separation finest when the electron 

donors component has short terminal aliphatic groups rather than long polymerisable 

chains.  Chlorobenzene shows the best performance as coasting solvent.  The annealing 

temperature is significant in controlling the nanoscale morphology and the phase 

separation of an intermixed network of the blends.   



 iii 

We successfully demonstrate photovoltaic performance using blends of our 

novel donors and acceptors. The annealing temperature is very important to optimise the 

solar cell performance by optimisation of the phase separation. The perylene based 

liquid crystals have disappointing performance as electron acceptors.  The donor with 

the shortest terminal end group gives the best result.  The device performance fully 

correlates with the blend nanoscale morphology of the blends; the blend with the 

smallest domains gives best power conversion efficiency; the best device has a value of  

1.1%. 
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 111...   INTRODUCTION 

1.1. Motivation  

The worldwide energy consumption will on average continue to increase by 2% 

per year according to both the American Energy Information Administration (EIA) and 

the International Energy Agency(IEA)
1
.  (Figure 1-1) shows the actual values of energy 

consumption from 1980 until 2005 in blue and the prediction of the energy consumption 

until year 2030 in red. 

 

Figure ‎1-1: The world market energy consumption, between 1980-2030.
1
 

Fossil fuels are the main energy source today, which include coal, oil, and 

natural gas. As an example figure 1-2 shows the energy sources used in the USA during 

2008, where fossil fuels supply more than 80% of the energy consumption.  However 

all these resources are limited and are going to disappear. Also, the byproducts of these 

resources have a harmful effect on the environment, especially carbon dioxide, which 



 
2 

contributes heavily to the green house effect which appears to be the cause of global 

warming. Nuclear energy is one of the alternative sources.  However the waste 

produced by this source is hazardous and the disposal of it can cause major 

environmental problems. 

 

Figure ‎1-2: The USA energy supply in 2008 of the Renewable energy
2
. 

The ideal energy source should be clean with no by-product and can be used 

without depleting earth resources.  This type of energy is classed as renewable, and as 

illustrated in figure 1-2, the most popular renewable sources are biomass, hydroelectric, 

geothermal energy, wind energy, and solar energy.  The sun supplies the earth with 

3x10
24

 Joules/year, which is about 10,000 times more than human energy requirements
3
.  

Several ways have been used to employ this huge amount of solar energy, one of them 

is converting the solar light energy to electrical energy via the photovoltaic effect (PV).  

The PV industry is going through a rapid period of growth and is considered to be one 

of the most promising renewable energy sources.  A 30% annual growth in the 

production of solar cells was expected, based on the growth during the period of 1988 to 

2002
4
.  However by 2008 the contribution of the solar photovoltaic to the world demand 

for electricity reached 5.95 GW, as shown in figure1-3 with a growth of 110% over the 

previous year, with much higher growth in some countries, such as Spain where it rose 
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very rapidly to reach 285%
5
.  However, solar energy production is still less than 1% of 

the total world production of energy. There is need for a big effort to improve the power 

conversion efficiency of the solar cells and to bring the cost down, which is very high 

compared to the fossil fuels. 

 

Figure ‎1-3: The world PV market demand in 2008, of total electricity production of 

5.95GW
5
. 

Among the most promising new energy sources are solar cells based on organic 

materials, where inorganic semiconductors have been replaced with conjugated organic 

semiconductors.  The organic materials have significant advantages compared to 

inorganic materials, but big improvements need to be done.  Recently, 5% power 

conversion efficiency has been achieved based on small molecule materials and 

conjugated polymers
6,7

and 6.5% for tandem solar cells
8
.  The growth of the plastic solar 

cells results from the developments in organic synthesis and device fabrication 

technologies. 

1.2. The Photovoltaic Effect 

The photovoltaic effect (PV) is the conversion of light energy (electromagnetic 

waves) in a one step process to electrical energy. The explanation of this effect given by 

the quantum theory of Albert Einstein in 1905 is that the electromagnetic waves of 
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frequency ν incident on a metal surface consist of packets of energy called quanta or 

photons. The energy E of the photon depends only on ν as
9
 

                                                                   𝐄 = 𝐡𝛎                                                                  (‎1-1) 

wher h is Planck’s constant. 

Visible light is enough to excite the bound electrons in solids up to higher 

energy levels, so they can move freely within the material. However, the excited 

electrons relax back to the ground state (recombination between the electrons and holes) 

within a short period called the relaxation time.  The photovoltaic architecture exploits 

the variation in the electrical properties of the semiconductor materials to create a 

potential difference and electric field, giving a driving force to separate the excited 

electrons  and holes and drive them to the external circuit before they recombine as 

illustrated in figure 1-4
10

. 

 

Figure ‎1-4: The photovoltaic effect in a solar cell, which requires special construction to 

pull the excited electrons to the external circuit10
.   

1.3. The Basics of Electronics Semiconductors Materials and 

Devices   

There are two main groups of semiconductors, conventional inorganic 

semiconductors (IS) and organic semiconductors (OS).  Although the latter is our target, 

understanding the origin of the optical and electrical properties and the basic device 

architectures of the IS is a substantial step to understanding the OS, although, the 
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physical properties of the organic and inorganic are different. For example, 

photoexcitation of the electrons in the OS results in the creation of bound electron-hole 

pairs (excitons) with small diffusion lengths (10-20 nm)
8
, instead of the creation of free 

carriers as in the IS.  The OS molecules form a weak non-covalent van der Waals 

intermolecular interaction, which result in low intermolecular orbital overlapping, and 

low dielectric constant compared to the strong covalent bonds of the IS atoms which 

have high orbital overlapping and high dielectric constant.  As a consequence the OS 

have a low charge carrier mobility compared to the IS. 

1.3.1. Inorganic Semiconductors 

Electrons under the influence of the attractive potential around widely separated 

and independent atoms move in atomic orbitals separated by energy gaps. However, 

when the atoms are brought together in a solid, each atomic orbital splits into a very 

large number of levels (equals to the number of atoms), so close together in energy that 

they form what are known as bands of allowed levels.  Each band has a limited 

bandwidth and the energy levels distribution within the band is quasi-continuous.  

Bands are occupied or not based on the occupation of the original molecular orbitals of 

the atoms.  The highest occupied band is called the valence band (VB), which contains 

the atomic valence electrons.  The lowest unoccupied band is called the conduction 

band (CB).  The lowest level of the CB, and the highest energy level of the VB are the 

most important energy levels.  These two levels are known as the conduction energy 

level Ec, and the valence energy level Ev respectively.  Between these energy bands 

there lies a range of energy values that cannot be occupied called the bandgap (Eg) as 

shown in figure1-5
 10,11,12

. 
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Figure ‎1-5: The formation of the energy band of the atomic orbitals, and the energy bands 

of the insulators, semiconductors, and conductors. 

The band gap between VB and CB is responsible for the optical and electrical 

properties of the solids.  As illustrated in figure 1-5 the solid materials can be classified 

based on the size of their energy bands gap.  In conductors ( such as metals) the VB and 

CB overlap in energy, so the electron is free to move because of the availability of 

empty states at similar energies, which allows good heat conduction and electrical 

current flow. In the case of the insulator the VB is fully occupied and separated from the 

CB by a bandgap, typically, of more than 3 eV.  This large energy causes these 

materials to be poor conductors of heat and electricity.  Semiconductors have bandgaps 

lying between conductors and insulators, with energy separations in the range of 0.5 to 

3 eV 
9,10,

 
13

. 

At absolute zero temperature, a pure semiconductor, which is called an intrinsic 

semiconductor, is unable to conduct heat or electricity since all the electrons occupy the 

VB and there are no electrons in the CB to participate in charge conduction.  However, 

as the temperature is raised, some electrons in the VB gain enough energy to be 

promoted to the CB leaving vacancies in the VB known as holes.  This operation is 

termed thermal excitation. The excited electrons in the CB are able to move and 

transport charge and energy through the material. The holes in the VB also participate in 
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the conduction process. In intrinsic semiconductors the concentration of electrons n and 

holes p is equal, 𝑛 = 𝑝 = 𝑛𝑖   

The conductivity of the intrinsic semiconductors can be increased by adding 

certain impurities to control the carrier concentration.  This is doping, and the doped 

semiconductor then becomes an extrinsic semiconductor.  Impurities are split into two 

types which produce extrinsic semiconductors with characteristics as shown in figure 1-

6.  N-type semiconductors are doped to increase the density of electrons relative to the 

holes.  Thus the electrons are majority carriers and the holes are the minority carriers.  

This type of impurity is called a donor atom because it donates an extra electron to the 

semiconductor lattice. These electrons occupy an energy level just below the conduction 

band, known as the donor level, with a small energy separation of around 0.01 eV from 

the CB as shown in figure 1-6.  The donor level electrons are thermally excited into the 

CB and participating in the electrical conductivity of the semiconductors.  For example 

silicon and germanium have a tetravalent lattice; therefore the impurity needs to be any 

element with five valence electrons (group V elements) such as phosphorus.  P-type is 

the second type of extrinsic semiconductor, which has been doped to increase the 

density of the holes relative to the electrons.  The holes are now the majority carriers 

and the electrons are the minority carriers.  This type of impurity atom, called an 

acceptor impurity, has fewer valence electrons than the bonds it need to correctly fit the 

semiconductor lattice, which is equivalent to saying that there is a hole created at the 

site of the impurity atom. For example the tetravalent silicon or germanium needs an 

impurity of elements with three valance electrons (group III elements) such as the boron. 
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Figure ‎1-6: (a) The Fermi level and energy levels in intrinsic semiconductors.  Impurity 

levels and Fermi level in (b) n-type semiconductors, and (c) p-type semiconductors. 

Typically, the energy band diagram has two more important energy levels 

besides the Ec and Ev.  These are the Fermi level EF and the intrinsic Fermi level Ei as 

illustrated in figure 1-6(a).  The intrinsic Fermi level is equal to the Fermi level when 

the concentration of electrons and holes is equal in the material, which is the case with 

intrinsic semiconductors.  Usually Ei is approximately in the middle of the band gap.  

The doping of the intrinsic semiconductors shift the Fermi level up or down away from 

the centre of the bandgap based on the type of the impurity, up towards Ec in n-type 

materials, and down towards Ev in p-type materials
10,14,15

. 

Under illumination extra electrons are excited to the CB in addition to the 

thermally excited and doping electrons.  A driving force is needed for the extraction of 

these excited electrons.  The force can be provided using special composition of the two 

types of materials to offer a spatial variation in the electronic environment. The p-n 

junction is the most important and widely used structure for solar cells to provide the 

required force. The p-n junction is built by doping some parts of a single and continuous 

intrinsic semiconductor crystal with n-type (donor) materials giving a high Fermi level, 

while the other part is doped by p-type (acceptor) material giving a low Fermi level.  An 

interface is produced between the donor and acceptor doped material.  Because of the 
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difference of the Fermi levels (carrier concentration) in both sides, the electrons in the 

material with higher Fermi level (n-type) find unoccupied energy states in the material 

with the lower Fermi level (p-type), and start diffusing to fill these states, which also 

means that the holes diffuse in the opposite direction.  As a result of the carrier diffusion, 

the regions close to the junction interface on both sides ends up without any free 

electrons or holes (depleted). Each diffused carrier crossing the junction leaves behind a 

charged atom (ion), the electrons leaving positive ions in the n region and holes leave 

negative ions in the p region.  Therefore a space charge region is built up on both sides 

of the junction which is called depletion region.  Space charge builds up an electrostatic 

field which increasingly attenuates the diffusion across the junction until it reaches an 

equilibrium, when the diffusion of the majority carrier across the junction is in balance 

with the drifting of the minority carriers back across the junction.  At this point the 

Fermi level is the same on both sides as illustrated in figure 1-7. 

 

Figure ‎1-7: Energy band diagram for p-type and n-type semiconductors, before and after 

forming the p-n junction. 

In the equilibrium state of the p-n junction, the difference between the work 

functions of the n and p type (Φn, Φp) is qVbi , where Vbi is the built-in bias, Therefore
10

 

               𝑽𝒃𝒊 =
𝟏

𝒒
 𝜱𝒏 − 𝜱𝒑 =

𝟏

𝒒
  𝑬𝒊 − 𝑬𝑭 𝒑 𝒔𝒊𝒅𝒆 −  𝑬𝒊 − 𝑬𝑭 𝒏 𝒔𝒊𝒅𝒆                         (‎1-2) 

Illumination of the p-n junction increases the population of the holes in the p 

side and the electrons in the n side changing the charge distribution in the three regions 
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and splitting the Fermi level back into two levels as illustrated in figure 1-8, where in 

the p region the Fermi level shifts toward the VB, forming the hole quasi Fermi level 

EFp.  In the n region it shifts up towards the CB forming the electron quasi Fermi level 

EFn, and within the depletion region; EFp and EFn remain relatively constant.  For solar 

cells it is required to split the Fermi level (EFp≠ EFn) 
10,16

. 

 

Figure ‎1-8: Energy band diagram of the p-n junction under illumination. 

  A combination of drift and diffusion of the carriers results in the carrier 

transport inside the semiconductors.  As shown in figure 1-8, photogeneration of the 

holes and electrons in each region is followed by thermalization of the holes and 

electrons to the top of the VB and the bottom of the CB respectively.  Away from the 

depletion region (junction) the minority carriers (electrons in p-region and holes in n-

region) diffuse to the junction.  Within the junction the minority carriers drift under the 

influence of the junction potential to the other side of the junction where they become 

majority carriers.  The collected charges give rise to a photocurrent (in a short circuit), 

Isc or photovoltage (in open circuit),Voc , where the energy difference between the quasi 

Fermi level’s energy determines the maximum open circuit voltage
8
. 
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1.3.2. Organic Conjugated Semiconductors 

Organic materials have been considered as electrical insulators in many 

applications until the seventies. In 1977 Heeger, Shirakawa and MacDiarmid (Nobel 

Prize for Chemistry 2000) discovered the increase of the conductivity of the conjugated 

polymer polyacetylene by several orders of magnitude via the doping with iodine
17

. 

Organic conjugated materials show the mechanical properties of conventional 

plastics in addition to the semiconducting properties allowing use as active layers in 

optoelectronics.  The electronic properties of organic semiconductors are quite different 

from conventional inorganic semiconductors. The main feature of organic 

semiconductors is the alternation of single and double carbon-carbon bonds as shown in 

figure 1-9, where molecules with this structure are known as “conjugated”.   

 

Figure ‎1-9: Schematic diagram of the simplest conjugated polymer molecule, 

Polyacetylene
18

. 

A basic understanding of carbon bonding is required in order to understand the 

origin of semiconductivity in conjugated materials
19,20,18,21,22

. The ground state 

configuration of carbon atom is 1𝑠2 2𝑠2 2𝑝𝑥
1 2𝑝𝑦

1  , which suggest a carbon would form 

only two bonds with its neighbours using the two unpaired electrons of 2𝑝𝑥
1 2𝑝𝑦

1, since 

the 2s shell is filled.  However it is known that carbon atom forms four bonds, this can 

be clarified via what is known as the hybridization.  The atomic orbitals may be 

considered to be mixed together to form hybrid orbitals of sp
1
, sp

2
, sp

3
configuration 

depending upon the number of orbitals that are combined. One of the 2𝑠 electrons of the 

carbon atom is promoted to a 2𝑝 orbital forming a configuration 1𝑠2 2𝑠1 2𝑝𝑥
1 2𝑝𝑦

1  2𝑝𝑧
1, 
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with four unpaired electrons in separated orbitals. In semiconducting conjugated organic 

materials the potential to transport electronic current and to absorb light is due to the 

sp
2
-hybridization, where the one s orbital pairs with two the p orbitals to form 3 sp

2
 

hybrid orbitals leaving the 𝑝𝑧  orbital unhybridized as illustrated in figure 1-10. 

 

Figure ‎1-10: Formation of the sp
2
 hybridization in the carbon atom 

Two of the sp
2 

hybrid orbitals form σ-bonds with the neighbouring carbon atoms, 

while the third forms a σ-bond with hydrogen or any substituent.  These covalent bonds 

are very strong and stable because they have fully paired electrons in their bonding 

states and empty antibonding states. The unhybridized 𝑝𝑧  orbital, which lies 

perpendicular to the internuclear axis, forms π-bonds with the unhybridized 𝑝𝑧  orbital of 

the adjacent carbon atom in the linear chain of sp
2
-hybridized carbon atoms, therefore; 

this leads to an alternating single and double bond along the chain (dimerization) giving 

the unique structure of conjugated organic materials as illustrated in figure1-11. 
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Figure ‎1-11: Formation of σ-bonds and π-bonds in organic conjugated materials
18

. 

The π-bonds are loose bonds and significantly weaker than σ-bond.  Therefore 

π-electrons are able to move from atomic site to atomic site and are effectively 

delocalized among the atoms in the molecule, and so are responsible for the electrical 

and optical properties of organic conjugated materials. 

For isolated molecules, each carbon atom on average brings one π-electron (half 

filled state) filling discrete energy levels known as molecular π-orbitals.  The π-orbitals 

are split into two types, filled π-orbitals (bonding orbitals), and empty π
*
-orbital 

(antibonding orbital).  These two groups are thus an analogue of the valence (VB) and 

conduction (CB) bands of conventional semiconductors.  However conjugated organic 

materials have extremely narrow bands since the charge delocalization is only over part 

or all of a single molecule.  The frontier states of these groups are the two most 

important molecular orbitals, namely the highest occupied molecular orbital (HOMO) 

of π-orbitals, and the lowest unoccupied molecular orbital (LUMO) of π
*
-orbital as 

illustrated in figure 1-12.  The π-electrons are the origin of the light absorption and 
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emission as well as charge generation and transport properties of all conjugated organic 

semiconductors.  The lowest electronic excitation of conjugated molecules is the π-π
*
-

transition, which is known as the optical band gap (Eg = HOMO - LUMO) with an 

energy gap typically between 1.5-3 eV leading the materials to absorb and emit light in 

the visible spectral range
23

. The HOMO and the LUMO energies can be measured 

experimentally using cyclic voltammetry technique as discussed in chapter 3. 

 

Figure ‎1-12: Energy level splitting of orbitals in a conjugated materials according 

molecular orbital theory. 

Charge excited states are formed by the addition or removal of charges from the 

molecule or promoting charges to higher energy levels as illustrated in figure 1-13.  

Excitons, polarons and bipolarons are different excited states.  The electronic structure 

of an organic semiconductor is strongly coupled with the lattice; any addition, removal 

of charge or its promotion to a higher energy level induces a lattice deformation creating 

a local distortion of the molecular structure.  Excitation of the molecule creates one 

electron and a hole interacting with each other via coulomb attraction forming a bound 

electron-hole pair, called an exciton.   The addition (removal) of one electron to (from) 

the molecule creates a negative (positive) polaron.  A bipolaron is formed when two 

electrons are added or removed to (from) the molecule. 
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Figure ‎1-13: The ground states (aromatic, quinoid)  and the excited states of 

polythiophene
24

. 

The donor/acceptor heterojunction (DA-HJ) is the general structure of an 

organic photovoltaic devices, which was first introduced by Tang in 1986 
25

.  A DA-HJ 

consists of two organic semiconductors of electron donor properties (ED) and electron 

acceptor properties (EA), brought together to form a ED/EA interface, where the 

electron donating materials (ED) has higher HOMO/LUMO energy level relative to the 

acceptor materials (EA) as illustrated in figure 1-14.  The ED/EA interface gives rise to 

dissociation of the excitons, and has an equivalent function to the junction in inorganic 

solar cells. The photocurrent extraction process is explained in detail in section 1.5. 

 

Figure ‎1-14: Energy level diagram of the organic DA-HJ under illumination 
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1.4. Characterization of solar cells 

1.4.1. Ideal Solar Cells Parameters and Equivalent Circuit Diagram 

Most photovoltaic devices act like diodes when there is no illumination.  

Therefore they have a rectifying behaviour; admitting much larger current when 

forward biased (V>0) than under reverse bias (V<0) which is almost zero as shown in 

the JV characteristics in figure 1-15.  This behaviour results from the asymmetric 

junction, which is needed for charge separation.  The current which flows across the 

device under the applied voltage V in the dark is called the dark current Id(V), which 

increases exponentially with the positive voltage.  Therefore, the dark current density 

Jd(V) of the ideal diode varies like
10,21,26,27

 

                                       𝐉𝐝 𝐕 = 𝐉𝐨 𝐞
𝐞𝐕 𝐤𝐁𝐓 − 𝟏                                                           (‎1-3) 

where Jo is a constant called the saturation current density, e is the electron 

charge, kB is Boltzmann’s constant and T is temperature. 

 

Figure ‎1-15: I-V characteristic of an organic solar cell under dark, and under illuminated 

condition. 
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The ideal solar cell behaves like a current generator in parallel with a diode, as 

illustrated in the equivalent circuit in figure 1-16, when a solar cell is illuminated; a 

potential difference develops between its electrodes.  The photocurrent generated as a 

result of the potential difference flows in the opposite direction to the dark current 

through the external load. 

 

Figure ‎1-16: The equivalent circuit ideal solar cell under illumination. 

The net current density of the solar cell J (V) under illumination, which flows 

through the load resistance, can be approximated from its IV characteristic as the sum of 

the dark current and the photocurrent, which can be given as 

                                   𝐉 𝐕 = 𝐉𝐨(𝐞𝐞𝐕 𝐤𝐁𝐓 − 𝟏) − 𝐉𝐩𝐡                                                       (‎1-4) 

In the case of an open circuit, the current density goes to zero (J(V) = 0), and the 

potential difference has a maximum value which is called the open circuit voltage (Voc). 

Substituting these values of current density and potential in eq.1-4 give a quantitative 

value for Voc  

                                              𝐕𝐨𝐜 =
𝐤𝐁𝐓

𝐞
𝐥𝐧  

𝐉𝐩𝐡

𝐉𝐨
+ 𝟏                                                           (‎1-5) 

As shown in eq.1-4 and the IV characteristic figure 1-15, if the applied voltage 

goes to zero (as with zero Ohm load resistance) the net current through the load 

resistance is known as the short circuit current density, Jsc, which is the maximum 

output current of the solar cell. 
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1.4.2. Non-Ideal Solar Cells Parameters and Equivalent Circuit 

Diagram 

Real solar cells divert from the ideal because of the power losses as a result of 

the presence of some kind of resistances.  The cell power is influenced by two types of 

resistance, the load resistance (RL) externally, and the diode (solar cell) resistance 

internally. Therefore it is divided between the two resistances in a ratio; which depends 

on the value of the load resistance and the level of illumination.  Moreover the diode 

resistance, known as the parasitic resistance has two components, the series resistance 

Rs and shunt resistance Rsh.  The series resistance Rs is in series with the cell, and has to 

be minimized. Rs depends on the material’s resistivity, the electrodes’ resistivity, and 

the metal organic interfaces at the electrodes. The shunt resistance Rsh is a parallel 

resistance to the cell, which need to be maximized as it causes loss of the current via the 

leakage and shorts around the sides of the devices, and structure defects such as 

pinholes in the film, or the recombination centres of impurities.  The equivalent circuit 

of the solar cell including series and shunt resistance is shown in figure 1-17. 

 

Figure ‎1-17: Scheme for real equivalent cell under illumination. Rs is the series resistance 

and Rsh is the shunt resistance RL is the load resistance. 
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The current voltage dependence of solar cells is quantified by the ideality factor, 

n, which is equal to one in the ideal diode case where Rs= 0, and Rsh= ∞.  The diode 

dark current is given by the Shockley equation
16

 

                                             𝐉𝐝 = 𝐉𝐨(𝐞𝐞𝐕 𝐧𝐤𝐁𝐓 − 𝟏)                                                          (‎1-6) 

Solving for the equivalent circuit, using Shockley equation and the Kirchhoff’s 

Laws provides the analytical relation for the IV characteristics for a cell of area A as
8,28

 

                         𝐉 𝐕 =
𝟏

𝟏+𝐑𝐬 𝐑𝐬𝐡 
 𝐉𝐨  𝐞

𝐞 𝐕−𝐉𝐀𝐑𝐬 

𝐧𝐤𝐁𝐓 − 𝟏 −  𝐉𝐩𝐡 −
𝐕

𝐀𝐑𝐬𝐡
                               (‎1-7) 

From eq.1-7 and using the condition of the open circuit voltage Voc and short 

circuit current density Jsc, the equation of each can be derived as 

                   𝐕𝐨𝐜 =
𝐧𝐤𝐁𝐓

𝐞
 𝐥𝐧  𝟏 +

𝐉𝐩𝐡

𝐉𝐨
 𝟏 −

𝐕𝐨𝐜

𝐉𝐩𝐡𝐑𝐬𝐡𝐀
  ≈

𝐧𝐤𝐁𝐓

𝐞
 𝐥𝐧  𝟏 +

𝐉𝐩𝐡

𝐉𝐨
                       (‎1-8) 

                     𝐉𝐬𝐜 =
𝟏

𝟏+𝐑𝐬 𝐑𝐬𝐡 
 𝐉𝐩𝐡 −  𝐉𝐨  𝐞

𝐞  𝐉𝐬𝐜 𝐀𝐑𝐬 

𝐧𝐤𝐁𝐓 − 𝟏  ≈ −𝐉𝐩𝐡                                     (‎1-9) 

For truly efficient rectifying devices the series resistance Rs should be as small 

as possible, and the shunt resistance Rsh should be as high as possible (several KΩ). The 

effects of increasing the Rs and decreasing the Rsh on the I-V curve are illustrated in 

figure 1-18.  Increasing the Rs reduces the Jsc and the fill factor FF of the cell, defined in 

eq.1-12. The Voc is not influenced since the current flow through Rs is zero at Voc.  

Decreasing the Rsh reduces the Voc and the fill factor FF of the cell.  The Jsc is not 

influenced by the change in Rsh because Rsh is still much larger than Rs and therefore the 

current through Rsh can be neglected.  The value of Rs can be found from the inverse 

slope of the straight line in the 2
nd quadrant around V = Voc and J = 0.  Rsh can be found 

from the inverse slope of the straight ling in the 4
th

 quadrant around V = 0, J = Jsc.  



 
20 

 

Figure ‎1-18: (a) The effect of the shunt resistance on the shape of the I-V characteristic. 

The fill factor area decreases with the decrease of the shunt resistance. (b) The effect of the 

series resistance on the shape of the I-V characteristic. The fill factor area decreases with 

the increase of the series resistance29
. 

1.4.3. Fill Factor, Power Conversion Efficiency and External Quantum 

Efficiency 

The output power density of the cell is given by 

                                                        𝐏 = 𝐉𝐕                                                                      (‎1-10) 

The cell power output reaches its maximum at an operation point known as the 

maximum power point Pmax.  This point refers to the voltage Vmax located between zero 

and the open circuit voltage (0< Vmax<Voc) and the corresponding current density Jmax 

located between zero and the short circuit current (0> Jmax>Jsc) as shown in figure 1-15, 

so that  

                                                  𝐏𝐦𝐚𝐱 = 𝐉𝐦𝐚𝐱𝐕𝐦𝐚𝐱                                                         (‎1-11) 

Note that the photovoltaic effect occurs only in forward bias (V>0), where the 

cell generates power when the product of the current and the voltage is negative, so the 

power conversion can be obtained between 0 and Voc.  However the other regions of the 

IV characteristic are suitable for other devices, V>Voc is the region where a light 

emitting diode operates, and V<0 is the region where the device acts as a photodetector. 
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The practical parameters that can be used to characterize the solar cell are the fill 

factor FF, the power conversion efficiency PCE, and the external quantum efficiency 

EQE
10,26,30

. The fill factor (FF) is the ratio between the maximum power density 

delivered to the external circuit Pmax and the potential power density of the device as  

                                                      𝐅𝐅 =
𝐉𝐦𝐚𝐱𝐕𝐦𝐚𝐱

𝐉𝐬𝐜𝐕𝐨𝐜
                                                            (‎1-12) 

From figure 1-15; the fill factor can be defined as the ratio between the dark 

small rectangular area and the white large one.  The maximum power conversion 

efficiency (PCE) is defined as the ratio between the maximum power density delivered 

to the external circuit Pmax and the incident light power density Po 

                                            𝐏𝐂𝐄 =
𝐉𝐦𝐚𝐱𝐕𝐦𝐚𝐱

𝐏𝐨
=

𝐉𝐬𝐜𝐕𝐨𝐜𝐅𝐅

𝐏𝐨
                                                 (‎1-13) 

Eq.1-13 shows that Jsc, Voc, FF and PCE are key parameters to monitor the 

performance of solar cells and all of them should be defined at a specific power density 

of the incident light. Also the two resistances have an influence on all of these 

parameters.  

In addition, the spectral response of the solar cell’s materials is another 

important way of characterising solar cells. By illuminating the solar cell using 

monochromatic light source the photocurrent is measured as a function of the 

wavelength.   Hence, the cell efficiency versus wavelength can be calculated. The 

external quantum efficiency (EQE) also can be used to study the spectrum response, 

which is defined as the number of electrons generated (ne) per incident photons (nph): 

                                          𝐄𝐐𝐄 =
𝐧𝐞

𝐧𝐩𝐡
=

𝐉𝐬𝐜

𝐏𝐨

𝐡𝐜

𝛌𝐞
=

𝐉𝐬𝐜

𝐏𝐨

𝟏𝟐𝟒𝟎

𝛌
                                               (‎1-14) 

 where h is Planck’s constant, c is the speed of light, λ is the wavelength of the 

light, e is the electrical charge. The internal quantum efficiency is also used to 
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characterize solar cells, this being the ratio of the photocurrent to the actual photons 

absorbed. 

1.5. Work Principles of Organic Photovoltaic 

For DA-HJ organic solar cells PCE depends on four steps as illustrated in figure 

1-14 and figure 1-19 
31,32,33

 

                                     𝐏𝐂𝐄 = 𝛈𝐀 𝛌 𝛈𝐄𝐃𝛈𝐂𝐃 𝐕 𝛈𝐂𝐂 𝐕                                              (‎1-15) 

Where, 𝜂𝐴 is the light absorption and exciton formation efficiency of the various 

layers of the device,  𝜂𝐸𝐷  is the efficiency of the exciton diffusion, which is the 

percentage of photogenerated excitons that diffuse to a DA interface, 𝜂𝐶𝐷  the fraction of 

the electron-hole pairs that are dissociated into holes in the donor side and electrons in 

the acceptor side, where the electron-hole pair is still coulomb bound and called a 

geminate or polaron pair, and finally 𝜂𝐶𝐶  the fraction of charges that reach the 

electrodes. 

 

Figure ‎1-19: The work principles of organic solar cells. 

 The working principles of the conversion of the light energy to electrical energy 

using the organic semiconductors are discussed in more detail in the following points:   
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1.5.1. Light Absorption 

The DA active layer of the DA-HJ is considered the core of the PV operation, 

where the absorption of the photon with an average energy larger than the optical band 

gap on either side of the DA-HJ results in the transfer of an electron from the HOMO 

energy level to the LUMO energy level leaving a hole as the first step of the OPV 

operation.  It is important to absorb as many photons as possible in the active organic 

layer which is dependent upon the optical absorption coefficient, the optical energy gap 

of the organic material, and the thickness of the active layer.  Most organic materials 

possess high absorption coefficients of ∝> 105𝑐𝑚−1 
31

.  However, most of the organic 

devices absorb small fractions of the incident light for the following reasons: (i)The 

mismatch between the active materials absorption and the solar spectrum; most OS 

materials have bandgaps higher than 2 eV (<600nm), while over 60% of the total solar 

spectrum is at wavelengths longer than 600 nm with almost 50% in the red and near 

infrared spectrum, which limits the absorption of photons by the organic materials as 

illustrated in figures1-20.  Here the photon flux is shown, which is the percentage of the 

photons available for a material with a certain band gap.  A band gap of 1.1eV (1100 

nm) is required to absorb 77% of the solar radiation on earth
21,34

.  (ii) As discussed in 

detail below, the exciton diffusion length (10-20nm) limits the thickness of the organic 

layer, which should be of the order of 100nm.  However, the absorption coefficient of 

organic material is much higher than silicon, so a 100nm thickness is enough to absorb 

between 60 and 90% if a reflective back contact is used
21,35

. Therefore, to overcome 

these limitations the chemists should invent new OPV materials which absorb further 

into the red and infrared spectrum by lowering the energy gap
36,37

, this will be one of 

the aims of chapter two.  The absorption coefficient of the organic dyes is better than 

that of polymers; so the absorption of the light can be increased by mixing the polymers 

with dye; which should transfer the absorbed energy to the polymers
35

.  
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Figure ‎1-20: Spectral photon flux of the AM1.5 solar spectrum in comparison with the 

absorption profile of the MDMO-PPB: PCB M 1:4 film. Dotted line shows the total photon 

flux
38

. 

1.5.2. Excitation Generation 

The promotion of an electron to the LUMO level leaving a hole in the HOMO 

level is followed by thermalization and formation of excitons as shown in step two of 

figure 1-14,  where the electron and hole remain bound to each other by a Coulombic 

force, which will be discussed in more detail in chapter two. The exciton binding energy 

in the OS materials is of the order of a few tenth of eV to as high as 1.5 eV compared 

with few meV in the IS materials.  The former is too large for the exciton to be ionised 

thermally at room temperature, such an energy is twenty times or more the thermal 

energy at room temperature (kBT= 26 meV)
8,39,40

.  An exciton rather than free charges is 

created because: (i) the screening length is large by reason of the small dielectric 

constant of typically (3-4)
41

, which is low compared to inorganic materials. Therefore 

the Coulomb attraction force between the opposite charges is much higher in the OS 

materials. (ii) The weak non-covalent electronic interaction between organic molecules 

gives localised state with negligible band width
41

.
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1.5.3. Exciton Diffusion and Dissociation 

To reach higher efficiency most of the photogenerated excitons should diffuse 

and reach the dissociation region where the excitons are separated into free negative and 

positive polarons (electrons and holes).  Excitons are neutral species, so they diffuse via 

random hops without any influence of the electric field
8
.  The dissociation region is 

usually located at the interface between two materials with different electronic 

properties such as workfunction, electron affinity, or ionization potential. Exciton 

generation can happen in any part of the semiconductor so that the layer thickness 

should equal the diffusion length, the distance over which the exciton moves before 

recombination. Generally the diffusion length of the exciton in organic semiconductors 

is small, around 10-20 nm. The diffusion length depends on the structure of the 

materials and the dielectric constant
28,40

.  There is an intermediate status between 

excitons and the fully separated charges.  This so called charge pair is a Coulombic 

bound pair of a negative and positive charges in different molecules as shown in figure 

1-19. 

1.5.4. Charge Transport 

The separated charges should move toward the respective electrode. The charge 

transport is limited by the low charge mobility of the organic materials.  Typically the 

mobility of the hole transporting materials is 10
-7

 cm
2
V

-1
s

-1
 up to 10

-3
 cm

2
V

-1
s

-1
; and the 

electron transporting materials have usually lower mobility than the holes as will be 

detailed in chapter three. Transport is also affected by the recombination of the electrons 

and holes especially if the same material is used as the transporting medium for both 

electrons and holes. The trapping by impurity and defects also participates in lowering 

the efficiency of the charge transportation.  Materials with ordered phases, e.g. liquid 

crystals, have higher mobilities
42,21

.
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1.5.5. Charge Collection 

Not all the electrons or holes approaching the electrodes will get into the outer 

circuit.  Electrons and holes may have to overcome the potential barrier of a thin oxide 

layer. The metal may also form a block contact at the interface with the semiconductor. 

This is a function of geometry, topology, and interface formation. 
21,30

 

1.6. Organic Photovoltaic Materials 

The simplest molecular structure of organic conjugated materials consists of 

carbon chain with alternating double and single bonds and hydrogen atoms at the 

remaining bond as illustrated in figure 1-9.  The molecular structure and properties of 

the materials can be modified via replacement of some carbon atoms with some atoms 

of sp
2
-hybridized electronic structure such as nitrogen, oxygen, sulphur, or replacement 

of hydrogen with an organic group. The conjugated organic materials are divided into 

small molecules and polymers
18

. 

1.6.1. Small Molecules 

Organic conjugated materials are denoted small molecules if they have a low 

molecular weight (a few 100u).  Small molecules like Buckminsterfullerene (C60) are 

mostly processed by sublimation under vacuum (dry process) and have high glass 

transition temperatures (Tg) to avoid crystallisation of materials during device operation. 

Some are processed via wet solution methods such as PCBM (1-(3-methoxycarbonyl) 

propyl-1-phenyl[6,6]C61) and all the compounds used in this thesis which are 

illustrated in table 2-1.  Figure 1-21 shows the chemical structure of some organic small 

molecules commonly used in organic photovoltaic.  
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Figure ‎1-21: Chemical structure of some commonly used small molecules in the organic 

photovoltaic: ZnPc (zinc-phthalocyanine), Me-Ptcdi (N,N’-dimethylperylene- 3,4,9,10-

dicarboximide), and the buckminster fullerene C60, and a soluble derivative of C60, 

PCBM (1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61).
43

 

1.6.2. Conjugated Polymers 

Polymers are made of large numbers of identical repeated units, which are called 

monomers (small molecules with reactive end groups).  The chemical structures of 

some commonly used monomers are shown in figure 1-22.  Between ten to tens of 

thousands of monomers can be linked together by covalent bonding in a linear way to 

form long chains, branched structure, or in networks.  If the monomers have two 

reactive groups the final result is a linear chain, while if the monomers have more than 

two reactive groups the form is a polymer network. The molecule is known as 

copolymers when more than one type of monomer is linked.  The wet process is used to 

deposit conjugated polymers in thin films because they are soluble in various solvents.  

It is not possible to use the dry process because of their high molecular weight and low 

thermal stability. 
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Figure ‎1-22: Chemical structure of some common conjugated monomers used in organic 

solar cells. the p-type hole-conducting donor polymers: MDMO-PPV (poly[2-methoxy-5-

(3,7-dimethyloctyloxy)]-1,4-phenylenevinylene), P3HT (poly(3-hexylthiophene-2,5-diyl) 

and PFB(poly(9,9’-dioctylfluorene-co-bis-N,N’-(4-butylphenyl)-bis-N,N’-phenyl-1,4-

phenylenediamine). The electron-conducting acceptor polymers: CN-MEH-PPV (poly-[2-

methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)-phenylene) and F8TB (poly(9,9’-

dioctylfluoreneco-benzothiadiazole).
44

 

Oligomers are small of polymers chain with a finite number of monomers linked 

together linearly (2-10 monomers). Long oligomers exhibit all the essential electrical 

and optical properties of the polymers
45

.  The dendrimer is made of monomers linked 

together by covalent bonds in a three dimensional way forming a network
45,46

. The 

molecular structure is arranged in many branches and subbranches starting from the 

centre of the molecule as in figure 1-23. The absorption spectrum of the dendrimer can 

be controlled by selection of the core of the dendrimer.  In addition; the solubility can 

be controlled by the selection of the surface groups.  

 

Figure ‎1-23: Chemical structure of some conjugated dendrimers : 2DSB ,and 3DSB
46

. 
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1.7. Photovoltaic Device Design and Fabrication 

Charge separation and transport are the key elements in the construction of the 

photovoltaic devices.  These require a driving force, which should be built into our 

device. The driving force can be provided by the spatial variation in the electronic 

environment; a junction between electronically different materials creates an internal 

electric field on the order of 10
6
-10

7
 V/m

32,47
.  This electric field provides an 

electrostatic force, which drives the electrons and the holes towards the respective 

electrodes. These requirements are controlled by three main factors: material selection, 

material growth technique, and device architecture.  As the first two factors were 

discussed elsewhere, in this section we are going to discuss some different types of 

architectures used as photovoltaic devices.  

1.7.1. Monolayer Diode 

The monolayer diode is known as the simplest organic semiconductor 

device
21,32,42,48

.  It consists of only one layer of organic semiconductor sandwiched 

between two electrodes of different workfunction, one of them, such as indium tin oxide 

(ITO) has a high workfunction and the other, such as Al, Ca or Mg has a low 

workfunction as shown in figure 1-24. 

 

Figure ‎1-24: Diagram of the energy level of the single layer device under flat band 

condition ,  and under short circuit condition, and forward bias
48

. 
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 The junction results from the equalization of the chemical potential of the 

electron (Fermi level in the organic semiconductors) with the two different contacts. 

Consider the work function Wf, the ionization potential of the metal, and IP the 

equivalent for the organic semiconductor, IP is taken as the HOMO energy. The action 

of charges at the metal semiconductor contacts depends on the difference between Wf 

and IP: (i) if Wf > IP the electron diffuse from the semiconductor to the metal. No 

barrier forms at the interface and the contact is ohmic.  (ii) If Wf < IP the electrons 

diffuse from metal to the semiconductor. The resistance at the interface increases 

rapidly creating the depletion region W and the contact is rectifying (Schottky) as 

shown in figure 1-25
21

. 

                        

 

Figure ‎1-25: Energy levels of a metal-semiconductor contact before and after contact for 

Wf>IP (a),(b) and Wf<IP (c),(d)21.  

 The monolayer organic photovoltaic is often known as a Schottky diode since 

the exciton dissociation occurs at the Schottky junction with one electrode, the other 

electrode should have an ohmic contact with the organic layer.   

Typically monolayer solar cells have external quantum efficiency (EQE) less 

than 1% and power conversion efficiency (PCE) less than 0.1%. Only one material is 

used so that the absorption range of the optical spectrum is limited. The photovoltaic 

active region is very narrow because of the short exciton diffusion length (~10nm). Both 
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positive and negative charges travel through the same material, so that recombination 

losses are high
49

. 

1.7.2. Bilayer Planar Heterojunction 

The bilayer heterojunction is the simplest structure of the donor/acceptor 

heterojunction (DA-HJ) shown in section 1-3-2.  This has a planar interface between 

two organic materials of different electron affinities (EEA) and ionisation potentials (EIP) 

as shown in figure 1-14 and figure 1-26(a), as reported originally by Tang in 1986
25

.  

This provides a high potential drop between the two layers so that exciton dissociation 

is favourable at the interface.  The electron is accepted by the material with the large 

electron affinity; so it is called the electron acceptor (EA).  The hole is accepted by the 

material with the lower ionization potential, which is called the electron donor (ED). 

 

Figure ‎1-26: The DA-HJ interfaces architecture possibilities: (a) bilayer planar HJ, (b) 

bulk HJ illustrating the loss possibility via dead end ways, (c) diffuse bilayer HJ
31

. 

For the exciton in the donor (acceptor) material, the condition for dissociation is 

satisfied if the difference in the energy of the lowest unoccupied ( highest occupied) 

molecular orbital of the two materials, ∆ELUMO (∆EHOMO), exceeds the donor (acceptor) 

exciton binding energy, EB,D (EB,A) as 
31,47

 

                                                         𝐄𝐁,𝐃 <  ∆ 𝐄𝐋𝐔𝐌𝐎                                                                                       (‎1-16) 

                                            𝐄𝐁,𝐀 < ∆ 𝐄𝐇𝐎𝐌𝐎                                                                                     (‎1-17) 
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An alternative criterion for exciton separation is that: 

                                          𝐄𝐇𝐎𝐌𝐎,𝐃 − 𝐄𝐋𝐔𝐌𝐎,𝐀 < ℎ𝛎𝐦𝐢𝐧                                                                            (‎1-18) 

where hνmin is the minimum absorption energy of the exciton in the device. 

The bilayer is sandwiched between two electrodes matching the donor HOMO 

and the acceptor LUMO with their workfunctions Wf, for efficient extraction of the 

corresponding charge carrier
32

. 

The exciton dissociates much more efficiently in the organic bilayer 

heterojunction interfaces than in the organic-metal interfaces of the monolayer devices. 

The probability of recombination between the electron and the hole is small (it may 

happen with high trap densities) because the electrons and holes travel in separate 

materials, acceptor and donor respectively. The limitation of this device is that the 

useful active length of the devices to their separate electrodes is small; which is the 

exciton diffusion length (~10 nm) at both sides of the interface. This is about 10% of the 

thickness which is necessary to absorb a significant proportion of sunlight
21

.  Excitons 

generated outside this useful length recombine before dissociation.  

1.7.3. Bulk Heterojunction 

The revolutionary development in organic photovoltaic devices came in the mid 

1990s by introduction of the bulk heterojunction independently by Yu et al.
50

 and Hall 

et al.
51

 to overcoming the limitation of the bilayer heterojunction. The bulk 

heterojunction is a mix of the donor and acceptor materials in a bulk volume. Therefore, 

each donor-acceptor interface is ideally within a distance less than the exciton diffusion 

length of each absorbing site. Each photogenerated exciton in either site material is 

more likely to diffuse to the interface and dissociate into its components.  If each 

material has a continuous path between the interface and the respective electrode, the 

separated charges can be delivered to the external circuit as shown in figure 1-26 
32,42

.  
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The limitation of the BHJ technique is the dead-ends to the respective electrodes, which 

result on increasing the charges recombination within the bulk. 

Techniques used to prepare a bulk heterojunction include (i) co-deposition of 

donor and acceptor small molecules; (ii) spin coating of the donor-acceptor blends. The 

highest efficiency device today of 5% power conversion efficiency has been achieved 

based on small molecule materials and conjugated polymers
6,52

. 

1.7.4. Diffuse Bilayer Heterojunction 

The diffuse bilayer heterojunction was invented to overcome the limitation of 

the bilayer and bulk heterojunction devices by enlarging the interface between the donor 

and the acceptor; and limiting the interruption of the pathway, i.e. dead-ends to the 

respective electrodes. The diffused bilayer device consists of the acceptor on top of the 

donor material as shown in figure 1-26(c), but with a large interface cross-section up to 

20-30nm. 

There are different ways to make this kind of device: (i) by spin coating the 

second layer using a solvent that partially dissolves the first layer without removing it, 

which modify the roughness of the first layer
32,53

, (ii) Using a mixture of more than one 

solvent when depositing acceptor onto donor.  The mixture dissolves the second layer 

and one of its components dissolves the first layer whereas the other does not.  Hence 

the effect of the mixture on the first layer can be controlled by changing the ratio of the 

two solvents
54

. (iii) By heating the bilayer device up to near the glass transition 

temperature before depositing the top electrode , this method allows the two layers to 

diffuse into each other
32,55

. (iv) Using the gel technique, which involves spin coating the 

first layer of a mixture of a cross linkable donor material and a non cross linkable one, 

followed by photo-induced cross linking to form an insoluble polymer network.  

Washing this layer with a suitable organic solvent dissolves and removes the non-cross 
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linkable material and leaves the cross-linkable one with roughened surface.  After that 

the acceptor material is spin coated on top forming a large interface area
56

.
 

This device technique is expected to obtain high fill factor values and high 

efficiency in the device, because of the good condition of the charge collection and 

transport. So far 2% of power conversion efficiency has been reported for the laminated 

polymer-polymer device under standard solar spectrum simulated AM1.5
32

. 

1.7.5. Tandem Devices 

As we discussed before, the thickness of the layers is limited by the small 

diffusion length of the excitons, which limits the absorption of the solar spectrum. In 

order to overcome this limitation tandem devices have been invented. These are made 

by stacking solar cells, which use materials with different absorption spectra, and of 

small thickness to allow a large fraction of the excitons to diffuse to the dissociation 

region.  Stacked devices are also thick enough to absorb a high proportion of the solar 

spectrum.  Each subcell can be a bilayer or trilayer organic and each two subcells are 

separated by a thin metallic nanocluster layer
30,57,58

.
 

The structure and the mechanism of the tandem device are illustrated in figure 1-

27. The two cells (PV1, PV2) are sandwiched between an indium tin oxide (ITO) as 

anode and silver (Ag) as cathode, and are separated by Ag nanocluster layer.  The 

dissociated hole in the donor layer of the PV1 and the electron in the acceptor layer of 

the PV2 are collected at the electrode. The electron in the acceptor layer of PV1 and the 

hole in the donor layer of the PV2 are diffused to the metal nanocluster layer and 

recombine, which prevents the build-up of the charge within the cells
57

. 
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Figure ‎1-27: Cross section of a tandem bilayer device, schematic (left) and transmission 

electron micrograph (right)57 

The tandem devices enhance the power conversion efficiency by enhancement 

of the open circuit voltage (Voc). The charge recombination is also enhanced, which 

increases the photocurrent of the cell
30,32,57-59

.  5.7% power conversion efficiency under 

1sun AM1.5G solar illumination has been reported by Xue and co-workers
58

, and up to 

6.1% at 200 mW/cm
2
 has been reported by Kim and co-worker

60
.
 

1.8. Liquid Crystals 

1.8.1.  Introduction and Historical Overview 

The first discovery of the liquid crystal was in 1988 by the Austrian botanist 

Friedrich Reinitzer; when he noted that cholestery1 benzoate exhibits two distinct 

melting points.  In 1889 the German physicist Otto Lehmann found that some materials 

would not melt directly to a liquid but first go through a phase where the material flows 

like a liquid and exhibits the optical properties of a solid crystal at the same time.  He 

named the phase “flowing crystal”, then “crystalline fluid”, and finally “liquid crystal”. 

In the 20
th

 century the liquid crystal received little attention from scientists until the late 

1960s when liquid crystals started to be used in display applications due to the 

discovery of their optoelectronic properties. The twisted-nematic mode used for liquid 

crystal displays (LCDs) was discovered independently by M. Schadt, W. Helfrich and E. 

P. Raynes in 1970. In 1973 G. Gray of the University of Hull achieved the first stable, 
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room temperature nematic LCs to be used for display purposes
30,61,62

. In 1969, S. 

Kusabayashi et al discovered the PV effect in smectic LCs. In 1972, H. Kamei et al 

discovered an ionic PV effect of nematic LCs.  In 1990, the photoconduction property 

of a liquid crystal was reported by Warman et al. and Haarer et al
30,63

.
 

Liquid crystals are a phase of matter between the isotropic liquid (I) and the 

solid crystal (Cr) phases known as mesophases.  In the solid crystal the molecules 

exhibit positional and orientational order, meaning that the molecules are fixed in a 

specific position in lattice, unable to rotate or realign their axes, which in most cases 

leads to anisotropy of the physical properties such as mechanical, electrical, magnetic, 

and optical properties.  On the other hand the molecules in the liquid phase (isotropic 

liquid) exhibit no positional and orientational order, so they can move randomly in 

different directions. Between these phases the molecules can still move around, much 

like a conventional liquid but can possess degrees of orientational and often positional 

order, both short and long range, which can lead to physical properties of high 

anisotropy. 

 

Figure ‎1-28: The states of matter, illustrating the LCs phase as a transition phase between 

the crystalline solid and isotropic liquid
64

.
 

The degree of long-range of orientational order is defined by the so-called order 

parameter or anisotropy factor S, see figure 1-29, 

                                      𝐒 =
𝟏

𝟐
 𝟑𝐜𝐨𝐬𝟐𝛉 − 𝟏                                                    (‎1-19) 
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where θ is the angle between the molecular axis and the mean direction of the 

orientation (director) for each domain.  The brackets denote the average for the material.  

Therefore S is zero for a completely isotropic liquid; for a perfectly aligned crystalline 

solid it is equal to one, and for a liquid crystal S is in the range 0.4 < S < 0.6
30,65,66

.
 

 

Figure ‎1-29: The director and orientational order. 

1.8.2. Liquid Crystal Materials 

Liquid crystal materials consist of molecules called mesogens, whose shape 

gives rise to the liquid crystal properties while the chemical structure of their aromatic 

core (chromophore) affects the optical and electrical properties which can be controlled 

and tailored via chemical synthesis. The mesogens must generally be rigid for at least 

some portion of their length and have a specific shape to form a liquid crystal.  In order 

to produce interactions that favour alignment they must be uniaxial, different in one 

direction than in the orthogonal ones, most LCs are rod or disc shaped 
30,66,67

.  Here we 

focus on rod shaped LCs. 

 In general the liquid crystals materials are divided into two categories 

depending on their molecular structure, monomer liquid crystals (MLCs), and polymer 

liquid crystals (PLCs)
61,68

.  The MLC has a low-molar-mass and consists of an aromatic 

core with one or more aliphatic terminal groups.  Figure1-30 (a) shows the terthiophene, 

8-TTP-8, as an example of a MLC and for PLC the 9,9-dioctyl polyfluorene PFO is 

shown in figure 1-30(b). 
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Figure ‎1-30: (a) The terthiophene, 8-TTP-8, as an example of MLC and (b) The 9,9-dioctyl 

polyfluorene PFO as an example for PLC
69

. 

The aromatic core and terminal groups can be modified to control mesophase 

morphology and physical properties of the liquid crystal to meet the need of some 

applications; such as control of the transition temperature and solubility
65,66

.  Reactive 

end groups can be incorporated into terminal chains so that the mesogens can be 

polymerised as shown in figure 1-31. 

 

Figure ‎1-31: Example of the chemical structure of a monomer liquid crystal. 

If the MLC mesogens are connected together via polymerisation of one of the 

end groups they will continue to keep the liquid crystal properties thus forming a 

polymer liquid crystal (PLC). One of the most important characteristics of the PLC is its 

ability to freeze the liquid crystal ordering of the material into a glassy state.  The 

monomers can be attached together to form a polymer in different ways.  If the 

monomers are attached to one another side by side to form one single chain this is 

called main chain polymer, as shown in figure 1-32(a).  If the monomers form extended 

branches away from the polymer backbone a side chain polymer is formed as shown in 
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figure 1-32(b). The polymers can also be formed as a network when the monomers have 

two polymerisable end groups as shown in figure 1-32(c)
61,65,68,70,69

. 
 

 

Figure ‎1-32: The different ways of attaching the MLC to form the PLC, (a) main chain 

polymer, (b) side chain polymer, (c) polymer network. 

1.8.3. Classification of Liquid Crystals  

The classification of the liquid crystal materials depends on the mechanism of 

the mesophase formation, molecular structure, the liquid crystal phases formed and their 

symmetry.  The liquid crystal phases can be classified into two large groups: (i) 

lyotropic liquid crystals, and (ii) thermotropic liquid crystals.  The lyotropic liquid 

crystals are mesogens which exhibit the liquid crystal properties when dissolved in an 

appropriate solvent with a certain concentration. The thermotropic liquid crystal where 

the LC phase is temperature dependent is detailed in the next section, and is the one 

used for electronic devices, at least in this thesis. 

1.8.3.1. Thermotropic Liquid Crystal 

 Most research and development for optical and electrical applications focus on 

this branch of liquid crystal mesophases. If thermal energy is pumped into a crystalline 

material with highly ordered molecules (Cr), vibration of the molecules within the 
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lattice increases in proportion to the increase of the thermal energy injected to the 

system. Above a certain temperature there is a complete breakdown of the 

intermolecular force between the molecules that maintains the crystalline nature of the 

material.  This leads to the loss of the long-range orientational and positional order.  

However some order is maintained in the LC phases.  Thermotropic mesophases exist 

only over well defined temperature ranges. 

Thermotropic materials fall into two main branches based on the molecular 

structure of the mesogen. Rod-like and disk-like molecules, which can be formed by 

both MLC and PLC materials
30,66,67

. 

1.8.3.1.1.  Rod-Like Liquid Crystal: 

Calamitic liquid crystals describe the rod-like liquid crystals, which have long 

and short axes, and orientational order based on their long axis. The typical structures of 

the rod-like liquid crystal materials are shown in figure 1-31.  Calamitic liquid crystal 

form different phases, the most common mesophases formed are the Smectic, Nematic, 

and Cholesteric. 

 

Figure ‎1-33: The liquid crystal arrangement in the pases; (a) Nematic, (b) Smectic A phase, 

and (c) Smectic C phase. 
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Nematic Phase (N) 

The Nematic phase is the simplest liquid crystal phase.  It is much more mobile 

and disordered than the Smectic phase described below.  The molecules diffuse through 

the sample in different directions; however, they retain a preferred orientation.  

Therefore, the nematic phase has an orientational order and no positional order.  This is 

the phase which is used in many liquid crystal devices, because the average orientation 

may be controlled with an electric field, and the plane of light polarization will follow 

the molecular orientation as it changes through a cell. 

Smectic Mesophase (Sm) 

Smectic mesophases are characterized by both the orientational and positional 

order and are the most ordered of calamitic mesophases. Here the molecules are free to 

move around quite randomly, but they tend to point along the director and arrange 

themselves in layers with an average thickness comparable with the length of molecules. 

There are many smectic mesophases with different packing of the layers between the 

director and the layer plane, see figure 1-33.  

Cholesteric Phase 

The cholesteric is considered as a special form of the Nematic phase and called 

chiral nematic phase (N*). This phase shows nematic ordering but the director rotates 

following a helical path throughout the sample. The helix results from doping of the 

nematic with a chiral molecule or incorporating a chiral centre in the LC molecule. The 

axis of this rotation is perpendicular to the director as shown in figure 1-34. The chiral 

nematic phase is characterised by the pitch, which is the distance along the helix over 

which the director rotates 360
o
.  
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Figure ‎1-34: The liquid crystal arrangement in a cholesteric phase
69

. 

1.8.3.1.2. Discotic Liquid Crystal: 

Disk-like or discotic mesogens have disk shaped molecules with long and short 

axes.  There are two discotic sub-phases, the discotic nematic phase and the columnar 

phase. 

Discotic Nematic 

The molecules distribute themselves randomly throughout the material but they 

tend to be oriented in one direction in the discotic nematic mesophases. 

Discotic Columnar  

In the columnar mesophases, the molecules tend to arrange themselves into 

columns.  The columns can be randomly arranged relative to each other or they can 

order themselves in groups forming a two dimensional lattice of columns, such as a 

hexagonal or rectangular lattice. 

 

Figure ‎1-35: The liquid crystal arrangement in the discotic phases
64

. 
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1.8.3.2. LCs Transition Temperature 

The liquid crystal phases appear over a fixed range of temperature.  The most 

common techniques to identify the material phases are optical polarising microscopy 

and differential scanning calorimetry (DSC).  The most accurate one is X-ray diffraction. 

At the various transition temperatures the LC changes phase, as shown in figure 1-36 
65

.   

 

Figure ‎1-36: Possible transition temperature sequences for the liquid crystal materials 

Because of the asymmetry of the molecules shape in the rod-like material there 

are two strong intermolecular forces to hold the molecules together. The lateral 

intermolecular force, which is responsible for the interaction between molecules 

through the long molecular axes and the terminal intermolecular force, which is 

responsible of the interaction between the ends of the molecules. These two 

intermolecular forces can be overcome when the material is heated above a specific 

temperature.  

 As shown in figure 1-36 T1 is the melting point where the crystalline solid 

material (Cr) loses positional and orientational order to give an isotropic liquid phase (I) 
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of highly disordered molecules where both the intermolecular forces are overcome.  

This step of phase transfer does not commonly occur in most LCs, which go through 

some other phases between the crystalline (Cr) and isotropic (I) phase. Some LCs melt 

and only show LC phases on cooling. 

T2 is the transition temperature from crystalline solid to Smectic phase (Cr-Sm): 

at this temperature the lateral intermolecular forces are stronger than the terminal ones.  

So the material tends to arrange itself into layers. 

T3 is the transition temperature from crystalline solid to Nematic phase (Cr-N): 

some materials go directly to the nematic phase where both intermolecular forces in the 

crystalline solid become weak simultaneously so the molecules move randomly but  still 

keep their  orientation to one direction. 

T4 is the transition temperature from Smectic to Nematic phase (Sm-N). At this 

temperature the lateral intermolecular force are overcome so that molecules lose their 

layer orientation and move randomly but still keep their long range orientation. 

T5, T6
 
is the transition temperature of (Sm-I) and (N-I) respectively: these 

temperatures are known as clearing points.  The material loses its orientational and 

positional (for Sm-I) order and the molecules move randomly in different directions.  

These temperatures give some indication of the material’s thermal stability, where the 

higher the clearing point the greater the thermal stability of the material
66

. 

1.8.4. Liquid Crystal Alignment 

LCs can align with respect to the substrate surface either orthogonally to the 

substrate surface, homeotropic alignment, or parallel to the substrate surface, planar 

alignment, as shown in figure 1-37. The alignment of the LCs can be achieved and 

controlled using an alignment layer composed of a material such as 

hexamethyldisilazane (HMDS), or  rubbed polymide
71,72,73,74

. 
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Figure ‎1-37: LCs alignments configurations, (a) Homeotropic, (b) Planar. 

1.8.5. Charge Transport in Liquid Crystals 

The charge carrier mobility of the amorphous material is limited by molecular 

disorder to be in the order of 10
-3

 cm
2
V

-1
S

-1
 or less

69,75
, which has large influence on the 

organic devices performance. The discovery of the conjugated discotic and calamitic 

liquid crystal conductivity in 1993 and 1995 respectively helps to overcome this 

limitation with self-molecular alignment improving the mobility to be larger than 10
-3

 

cm
2
V

-1
s

-1
 up to 0.1 cm

2
V

-1
s

-1  76,77
. 

Liquid crystal mesophases provide large self organized domains with highly 

ordered and close packed structures, which improves the overlap of the intermolecular π 

orbitals, and support the hopping mechanism of the charge carrier between the closely 

spaced molecules (hopping sites)
78

. However the liquid crystals mesophase usually 

occur above room temperature, which means cooling down to room temperature 

fragments the large organized domains to small polycrystalline domains separated by 

grain boundaries, which increase the charge trapping and attenuate the charge carrier 

mobility, the cross linking of the liquid crystals is one of the suggested solutions to 

overcome this limitation. 
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1.8.6. Crosslinking of Liquid Crystals 

To retain liquid crystals mesophase properties at room temperature reactive 

mesogens have been introduced
69,71,75

. These contain aromatic cores with 

semiconducting properties attached to two  photoreactive polymerizable end groups via 

aliphatic spacers as shown is figure 1-31 and figure 1-38. The irradiation of thin films 

materials with a UV lamp or laser at the mesophase temperature cross-links the 

mesogens to form an insoluble crosslinked polymer network, which retains the 

molecular alignment on cooling. Some semiconducting reactive mesogens are nematic 

at room temperature.  Others form nematic glasses on cooling from the nematic phase 

and can be cross-linked at room temperature. 

 

Figure ‎1-38: Some example of reactive end groups: (a) diene, (b) oxetane (c) acrylate, (d) 

methacrylate.  

The additional advantage of the crosslinking is the formation of insoluble 

polymer networks, which can be used in the production of multilayer devices such as 

bilayer organic solar cells and RGB pixellated OLEDs using solution processing 

techniques 
56,74,79

.  

Crosslinking can be induced using different techniques, chemical crosslinking 

with some suitable initiator, thermal crosslinking, or photochemical crosslinking via 

light irradiation (UV light is the most common used).  For photochemical crosslinking a 

UV laser was used at the mesophase temperature, which retains the molecular 

orientational and positional alignment.  
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1.9. Thesis Outline 

This thesis aims to search for novel organic semiconductors to be used as active 

materials (EDs/EAs) in bulkheterojunction photovoltaic devices. 

In chapter two, we describe the design rules for molecular engineering of 

materials for organic solar cells based on the energy levels (HOMO/LUMO) of the 

organic semiconductor.  We describe the cyclic voltammetry technique which has been 

used to estimate the energy levels, and apply this technique to study 31 home 

synthesised compounds of different chemical structures and active groups. Finally we 

discuss the influence of the chemical structure and the different active groups and 

elements on the energy levels ending by recommending EDs and EAs.  

In chapter three we study the charge transport mechanism in organic 

semiconductors.  We describe the time of flight (TOF) technique and use it to measure 

the charge carriers mobility and study the charge transport in six EAs and four EDs.  

Some models of charge transport in organic semiconductors are applied to analyse the 

measurements.  The charge transport in the ED/EA blends is also investigated. 

In chapter four we investigate the nanoscale morphology of the top surface of 

the active layer of the OPV and try to correlate it to the performance of solar cells.  

Atomic force microscope (AFM) is used in the investigation.  The data is analysed 

using the roughness analysis parameters of root mean square (rms), height distribution 

and variation, and power spectral density (PSD).  Four EDs and four EAs are studied for 

the OPV. 

In chapter five, the nominated EDs and EAs active materials are used in BHJ 

solar cells and their performance analysed. 

Finally, chapter 6 gives the conclusion of this work and suggests some ways of 

improvement and possibilities for future work. 
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 2. ELECTRICAL AND OPTICAL 

PROPERTIES OF ORGANIC 

CONJUGATED SMALL 

MOLECULES 

2.1. Energy Levels and Electronic Devices  

Organic polymers and small molecules have been used as the active components 

in electronic and optoelectronic devices including organic photovoltaics (OPVs), 

organic light emitting diodes (OLEDs), and organic field effect transistors (OFETs).  

However, the devices performance is still low, so they need to be further improvement 

of device architectures, and development of new efficient electron donors (ED)/ 

acceptors (EA).  It is essential to know the HOMO and LUMO energy levels of the EDs 

and the EAs and the energy gap between them as illustrated in figure 2-1 for 

understanding materials and designing organic devices.  In this chapter we study the 

energy levels of 34 compounds and investigate their suitability to be used as EDs and 

EAs for the OPV.  Also we study the effect of substituting different chemical groups on 

the optical and electrical properties of the materials. 

2.2. Designing Rules of Energetic Interfaces for an Optimal 

Organic Solar Cell 

Models to estimate the performance of the solar cells have been reported
1,2,3,4

.  

These models were based on controlling the energetic interfaces of the EDs/EAs via 
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designing and synthesizing new and efficient organic materials following some 

energetic rules.  

 
Figure ‎2-1: Schematic diagram of the energy levels of the organic solar cells showing the 

main electronic parameters. 

Firstly, it is important for the organic material to be air stable for easy handling 

and processing.  The acceptor materials are more air stable than the donor materials 

where the origin of the instability of the donor material come from the instability of the 

organic anions, which are easily oxidized in contact with air (oxygen) or water.  

Therefore, the HOMO energy level of these materials needs to be below the air 

oxidation threshold which is  -5.27 eV or 0.57 V vs. SCE
1, 3,5

. 

Secondly, the short circuit current, Isc, is one of the main parameters of the solar 

cells performance; the more photons absorbed by the EDs and EAs, the higher Isc.  

Figure 2-2 shows the solar spectral irradiance and number of photons as a function of 

the wavelength. The energy band gap Eg between the HOMO and the LUMO energy 

levels of the donor and acceptor are key parameters for optimizing the photon 

absorption. Reducing the band gap of the organic materials leads to more photon 
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harvesting and higher Isc.  However, the absorption spectrum ideally needs to be broad 

covering most of the solar spectrum as illustrated in figure 2-2. 

 
Figure ‎2-2: Solar spectral irradiance and number of photons as function of the 

wavelength
6
. 

Low band gap organic materials are defined as those with a band gap below 2 eV, 

which absorb light with wavelength longer the 620 nm
7,6

. Small band gap organic 

materials can be designed using chemical manipulation.  There are two approaches to 

decrease the band gap, extending the conjugation length, or linking covalently electron 

donor and electron acceptor fragments
8,9,10

.  

Thirdly, the open circuit voltage Voc of the solar cell is another important 

parameter of solar cells, where the maximum value of Voc is found to be related to the 

donor HOMO energy and the acceptor LUMO energy level. There is a big debate about 

relating Voc to the energy difference ( ED-HOMO – EA-LUMO)
 2,11,12,13,14

, Scharber et al.
2
 

report that the Voc of conjugated polymer: PCBM BHJ solar cells could be estimated as 

                     𝐕𝐨𝐜 =  𝟏 𝐞    𝐄𝐃,𝐇𝐎𝐌𝐎 −  𝐄𝐏𝐂𝐁𝐌,𝐋𝐔𝐌𝐎  − 𝟎.𝟑𝐕                (‎2-1) 

Rand et al.
12

 reported that the energy difference is equal to the maximum open 

circuit voltage 𝑉𝑜𝑐
𝑚𝑎𝑥 , which is not always observed under typical conditions because it 
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varies with factors such as nanoscale morphology, temperature and light intensity.  

Therefore the Voc can be estimated to be 

                             𝐕𝐨𝐜 ≤  𝟏 𝐞    𝐄𝐃,𝐇𝐎𝐌𝐎 −  𝐄𝐀,𝐋𝐔𝐌𝐎                            (‎2-2) 

Fourthly, the LUMO (HOMO) energy level of the donor must be positioned 

above the LUMO (HOMO) energy level of the acceptor to ensure efficient electron 

transfer from donor to acceptor.  The difference between the LUMO (HOMO) energy 

level of the donor and the LUMO (HOMO) energy level of the acceptor is known as the 

frontier orbital energy offset ΔELUMO (ΔEHOMO) as shown in figure 2-1.  The ΔELUMO 

and ΔEHOMO is desirable to be larger than the exciton binding energy of donor materials 

(EB,D), and acceptor materials (EB,A) respectively
15,16

,  which is the minimum energy to 

overcome the coulomb attraction force and separate the exciton into separated free 

electrons and holes.  Its assignment is controversial with values ranging between 0.1-2 

eV
17

, and for organic semiconductors it typically varies between 0.2 to 1 eV
15

.  The 

estimate of the most efficient offset varies between 0.2-0.4 eV
 1,3,7

.  If the energy offset 

is too small or too large the efficiency of the charge separation becomes less. In addition 

a large offset reduces the open circuit voltage Voc
3,16,17

. Therefore, it is essential to 

analyse the donor/acceptor energy offsets in order to achieve efficient charge separation. 

Fifthly, the alignment of donor/acceptor energy levels with the electrodes’ work 

functions is important for efficient charge extraction.  The requirement is 

                                 𝐄𝐃,𝐇𝐎𝐌𝐎~𝚽𝐚𝐧𝐨𝐝𝐞                                         (‎2-3) 

        𝐄𝐀,𝐋𝐔𝐌𝐎~𝚽𝐜𝐚𝐭𝐡𝐨𝐝𝐞                                          (‎2-4) 

Where Φanode, Φcathode is the work function of the cathode and the anode 

respectively
14,18,19,20

. 

Many of these requirements are contrary so that trades-off have to be made in the 

design of real solar cells. 
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2.3. HOMO/ LUMO vs. Ionization Potential/Electron Affinity 

The ionization potential EIP is defined chemically for molecules as the energy 

required to remove an electron from the highest occupied molecular orbital (HOMO) of 

the neutral molecule to the vacuum level.  The electron affinity EEA is the energy gained 

by an original neutral molecule when an electron is added to the lowest unoccupied 

molecular orbit (LUMO)
21,22

, as shown in figure 2-1 and figure 2-3 where HOMO and 

LUMO levels in molecular semiconductors are equivalent to valence and conduction 

band-edges in inorganic semiconductors . 

   
Figure ‎2-3: Energy band diagram of a semiconductor near its surface

21
 

 Unlike the non-molecular electronic solids, molecules can be considered as small 

N-electron system with mostly localized charge carriers.  The addition or removal of an 

electron has a significant effect on the geometry and electronic energies. Therefore the 

EIP and EEA for a system with N electrons is defined as
21,23

  

    𝐄𝐈𝐏 = 𝐄 𝐍 − 𝟏 − 𝐄(𝐍)    (‎2-5) 

    𝐄𝐄𝐀 = 𝐄 𝐍 − 𝐄 𝐍 + 𝟏     (‎2-6) 
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The energy levels EHOMO and ELUMO for organic materials can be correlated to the 

EIP and EEA based on the Koopman’s theorem (KT), which equates the EIP and EEA to 

the negative value of the orbital energies as
24,25,26

  

    𝐄𝐈𝐏 = −𝐄𝐇𝐎𝐌𝐎      (‎2-7) 

    𝐄𝐄𝐀 = −𝐄𝐋𝐔𝐌𝐎     (‎2-8) 

The EIP and EEA can be measured with different techniques such as ultraviolet 

photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES), 

electrochemical voltage spectroscopy (EVS), and cyclic voltammetry (CV). 

 
Figure ‎2-4: Schematic representation of charge generation processes in a molecular film, 

where  UPS/IPES generates a cation/anion at the outer surface, while charge injection 

from the substrate involves the layer next to the metal.
27

 

As shown in figure 2-4, UPS
25,21,27

 involves the absorption of ultraviolet light at 

the surface of a thin film sample.  An electron is ejected leaving a molecular cation in 

the outer surface. The electron kinetic energy is measured. The sum of the absolute 

value of the maximum electron kinetic energy and the orbital potential energy is equal 

to the photon energy.  

In the IPES
21,27

 technique, the surface is irradiated with low energy electrons, 

which are captured by the surface forming molecular anions and emitting photons.  The 

photon energy is measured to find the LUMO and the EEA as shown in figure 2-4.  
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The UPS and IPES measure the EIP and EEA more accurately than cyclic 

voltammetry (CV).  However the former techniques are more expensive and more 

complicated and the result of these techniques are slightly different.  D’Andrade et al. 

report that the oxidation potential obtained from CV can be correlated to the EHOMO of 

the organic film measured by UPS using an empirical relation
25

. 

2.4. Cyclic Voltammetry 

2.4.1. Introduction 

 Cyclic voltammetry is a versatile electroanalytical measurement technique 

serving a wide range of scientific fields.  The electrochemical study of the electronic 

properties of electroactive materials is an example. Primarily cyclic voltammetry 

provides practical information about the redox (oxidation and reduction) properties of 

the target materials.  It is a very important tool for the organophotonic research because 

it helps to estimate the energy levels of the organic compounds. The ionization potential 

EIP can be considered as the HOMO for the material, and the electron affinity EEA can 

be considered as the LUMO of the material as illustrated in eq. 2-7 and eq. 2-8.  From 

these results we can decide the best materials as EDs and EAs. 

2.4.2. The Instrumentation 

 There are three basic components of the electroanalytical system for cyclic 

voltammetry; the electrochemical cell, the computer, and the electronic hardware for 

generating the voltage, controlling it and measuring the current as shown in figure 2-5 
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Figure ‎2-5: Experimental arrangement for cyclic voltammetry experiment. 

The electrochemical cell is the core of the voltammetry operation
28,29,30,31

, which 

typically consists of a glass container covered with a plastic cover as shown in figure 2-

6.  The cover is made of a durable material such as the PTFE to be resistant to the 

solvents and the materials used in the experiment.  It has four holes, three for the 

electrodes and one for the purging of the solution with an inert gas such as N2 or Ar to 

remove the dissolved Oxygen in the solution. This has a cathodic signal that can 

interfere with the observed current response.  The three electrodes are the reference 

electrode (RE), working electrode (WE) and counter (auxiliary) electrode (CE) and are 

immersed in the sample dissolved in a solvent and an ionic electrolyte.  The most 

commonly used REs are Silver/silver chloride (Ag/AgCl) electrode or saturated calomel 

electrode (SCE).  The WE is consists of various geometries and materials, ranging from 

small Hg drops to flat disks of platinum, gold or glassy carbon. Mostly the CE consists 

of a thin wire of Pt or Au and sometimes graphite can be used.  



 

 

60 

 
Figure ‎2-6: Schematic diagram and photo image of the electrochemical cell and its 

components. 

The potentiostat, linear scan voltage generator (signal source), and current-to-

voltage convertor are the main electronic hardware required to control a three electrode 

cell.  They are interfaced with a computer, which controls the instruments with a special 

software package. As the schematic in figure 2-5 shows the linear scan voltage 

generator produces the excitation electrical signal through the potentiostat to the RE of 

the electrochemical cell.  At the same time it adjusts the voltage between the WE and 

CE to maintain the potential difference between the WE and the RE, and to ensure the 

WE is not influenced by the electrochemical reactions which take place. The current-to-

voltage converter measures the resulting current at the WE.  The data is transferred to 

the computer to be stored and analyzed more effectively
28,29,30,31,32

.  

2.4.3. Reaction Mechanism  

The electrochemical reactions which take place at the WE are the target of cyclic 

voltammetry experiments
28,29,30,31,32,33,34

.  Electrolysis of the solute (oxidation, reduction) 

occurs by placing the solution in contact with the electrode surface, which is sufficiently 

http://en.wikipedia.org/wiki/Voltammetry
http://en.wikipedia.org/wiki/Voltammetry
http://en.wikipedia.org/wiki/Software
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positive or negative in voltage, so that current is measured when either the solute gains 

electrons from the surface or transfers electrons to the surface. These are known as 

cathodic current and anodic current respectively. 

A cyclic linear potential scan is applied to the WE with respect to the RE. The 

resulting current-potential plot is termed a cyclic voltammogram which shown in figure 

2-7(b).  The electrode potential increases linearly with time, from an initial potential 

value (Ei) to the switching potential (Es), where the direction of the scan is reversed 

down linearly to the final potential (Ef). The variation of the potential with the time is 

called the excitation waveform, and has a triangular waveform as shown in figure 2-7(a). 

 
Figure ‎2-7: (a)The cyclic voltammetry excitation waveform, (b) plot of cyclic 

voltammogram
31

. 

We interpret the unique shape of the cyclic voltammogram from compound X 

shown in figure 2-7(b) and link it to the electrochemical reactions at the WE.  The 

forward scan of the potential is in the positive direction (a). When the potential reaches 

a sufficiently positive potential at (b) the anodic current starts due to the oxidation 

    𝐗 → 𝐗+ + 𝐞     (‎2-9) 

The anodic current increases rapidly (b-d) until the concentration of the X
+
 at the 

electrode surface becomes large and the X concentration is depleted near the electrode 
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surface causing the current to peak at (d), and start decaying at (d-g). The direction of 

the scan is switched to negative at (f) for the reverse scan. The anodic current continues 

to reduce even after switching the potential to scan in the negative direction. 

When the potential reaches a sufficiently negative value for reduction at (h), the 

accumulated X
+
 around the electrode can now be reduced back to the original material 

by the electrode process  

       𝐗+ + 𝐞 → 𝐗    (‎2-10) 

The cathodic current increases rapidly in the positive direction during (i to j), until 

the concentration of the X
+
 is decreased around the electrode surface causing the current 

to decay from j to k as the solution around the electrode surface is depleted of X
+
 back 

to X.  The first cycle is completed when the potential returns back to the initial potential 

Ei.  

 
Figure ‎2-8: Concentration-distance profile C-x profile of the solution components from the 

electrode surface, at different points of the potential scan selected in the cyclic 

voltammogram in the previous figure. 

Figure 2-8 illustrates the solution concentration-distance profile (C-x) profile for 

selected points, where x is the distance from the electrode surface.  The C-x profile can 

be used to clearly understand the change of the current with the potential change during 
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the scan. The current is proportional to the slope of the C-x profile  
∂C

∂x
 
𝑥=0

 at the 

electrode surface as described by Fick’s Law of Diffusion
31,30,35,36 

   𝐈 = 𝐧𝐅𝐀𝐃 
𝛛𝐂

𝛛𝐱
 
𝐱=𝟎

= 𝐊 
𝛛𝐂

𝛛𝐱
 
𝐱=𝟎

   (‎2-11) 

Where I is the current in A, n is the number of electrons transferred per ion in 

equivalents/mole, F is the faraday, A is the electrode area in cm
2
, D is diffusion 

coefficient in cm
2
/s, C is the concentration in mol/cm

3
. 

The slope of the profile at (a) is zero so I = 0. As the potential becomes more 

positive,  
∂C

∂x
 
𝑥=0

 starts changing at (b) and increases rapidly at (c-d) with the anodic 

current increasing correspondingly. However, after (d),  
∂C

∂x
 
𝑥=0

decreases as shown in 

the profiles (e) and (g) as a result of the depletion of X close to the electrode surface; the 

current decreases also. When the potential is reversed to the negative direction the 

oxidation of X continues until the potential reaches a sufficiently negative value for 

reduction of X
+
 to X.   

∂C

∂x
 
𝑥=0

 then changes rapidly as shown in the profile (i) and (j) 

causing the current to peak at (j) when the concentration of  X
+
 is depleted around the 

electrode. 

The cycle is called the oxidation reaction because it starts with an oxidation 

reaction of X to X
+
 and gives an anodic current by scanning in the positive direction as 

shown in figure 2-9.  If we scan in the negative direction the reaction is called the 

reduction reaction because it start with reduction reaction of X to X
-
 and gives a 

cathodic current by the electrode process 

    𝐗 + 𝐞 → 𝐗−     (‎2-12) 

    𝐗− → 𝐗 + 𝐞     (‎2-13) 
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Figure ‎2-9: cyclic voltammogram illustrating both the oxidation and the reduction 

reactions for compound 13. 

2.4.4. Data Interpretation 

Cyclic voltammetry is characterized by several important parameters as shown in 

the cyclic voltammograms figure 2-7 and figure 2-9, the cathodic and anodic peak 

potentials (Epc , Epa), the cathodic and anodic peak currents (ipc , ipa) and the oxidation 

and reduction onset of the first peak (𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡 , 𝐸𝑟𝑒𝑑

𝑜𝑛𝑠𝑒𝑡 ).  These can be used to evaluate the 

energy levels, and reversibility and stability of the studied material. 

2.4.4.1. The HOMO/LUMO Study  

The 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡  is used to estimate the EIP, and the 𝐸𝑟𝑒𝑑

𝑜𝑛𝑠𝑒𝑡  is used to estimate the EEA.  

𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡 ( 𝐸𝑟𝑒𝑑

𝑜𝑛𝑠𝑒𝑡 ) can be estimated from the intersection of the two tangents drawn at the 

rising (descending) oxidation (reduction) current and background current in the cyclic 

voltammogram
37

 as shown in figure 2-9. 

The potentials recorded experimentally are relative to the reference electrode used, 

namely the Ag/AgCl, and need to be correlated to the vacuum level in order to obtain 

the EIP and EEA values for the compounds. These potentials values can be correlated to 
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the vacuum level when given with respect to the normal hydrogen electrode NHE, since 

the potential of the NHE (ENHE ) is typically specified to be 4.5 V (±0.1V)
32,38

 with 

respect to the vacuum level. The potential of the Ag/AgCl electrode EAg /AgCl  with 

respect to the NHE electrode is +0.197 V
32,30

, as illustrated in figure 2-10, where the 

vacuum level is assumed to be 𝐸𝑣𝑎𝑐 = 0V.  Then, all the measured potentials can be 

shifted appropriately as 

      𝐄𝐀𝐠/𝐀𝐠𝐂𝐥 = 𝐄𝐍𝐇𝐄 + 𝟎.𝟏𝟗𝟕 = 𝟒.𝟕 𝐕            (‎2-14) 

   
Figure ‎2-10: Diagram relating potentials of SCE,  and Ag/AgCl electrodes with reference 

to the potential on NHE, the potential on the absolute scale versus vacuum, and the Fermi 

energy correspond to each of the indicated potential.
32

 

Therefore the experimentally recorded oxidation and reduction onset 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡  and 

𝐸𝑟𝑒𝑑
𝑜𝑛𝑠𝑒𝑡  relative to the Ag/AgCl electrode can be related to the vacuum level (𝐸𝑜𝑥 ,𝐸𝑟𝑒𝑑 )  

  𝐄𝐨𝐱 = 𝐄𝐨𝐱
𝐨𝐧𝐬𝐞𝐭 + 𝐄𝐀𝐠/𝐀𝐠𝐂𝐥 = 𝐄𝐨𝐱

𝐨𝐧𝐬𝐞𝐭 + 𝟒.𝟕   (‎2-15) 

  𝐄𝐫𝐞𝐝 = 𝐄𝐫𝐞𝐝
𝐨𝐧𝐬𝐞𝐭 + 𝐄𝐀𝐠/𝐀𝐠𝐂𝐥 = 𝐄𝐫𝐞𝐝

𝐨𝐧𝐬𝐞𝐭 + 𝟒.𝟕   (‎2-16) 

The actual oxidation and reduction onset potential need to be calibrated, which is 

typically achieved by measuring a standard reference material with a known potential.  
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The ferrocene/ferrocenium (Fc/Fc
+
) couple is often used for calibrating redox reactions, 

since it is soluble and stable in many solvents, and it has a reversible reaction
32

.   

The study by V. V. Pavilishchuk and A. W. Addison
39

 shows that the collection of 

the Fc/Fc
+
 half-wave potential 𝐸𝐹𝑐

1 2 
 measured versus different reference electrodes 

shows large variations which is a significant annoyance in reporting and discussing 

literature data. We decided to use the average of the 31 Fc/Fc
+
 half-wave potential 

measurements 𝐸𝐹𝑐
1 2 

 that we obtained during this research as our reference point.  This is 

0.425 V vs. Ag/AgCl electrode.  Therefore we add a correction factor to eq. 2-15 and eq. 

2-16 which becomes 

   𝐄𝐨𝐱 = 𝐄𝐨𝐱
𝐨𝐧𝐬𝐞𝐭 + 𝟒.𝟕 + 𝛅    (‎2-17) 

   𝐄𝐫𝐞𝐝 = 𝐄𝐫𝐞𝐝
𝐨𝐧𝐬𝐞𝐭 + 𝟒.𝟕 + 𝛅    (‎2-18) 

where 𝛿 = 0.425 − 𝐸𝐹𝑐
1 2 

 and 𝐸𝐹𝑐
1 2 

 is the half-wave potential of FC/FC
+
 from our 

measurement after each materials measurement. 

Finally, we correlate the EIP and EEA to the oxidation and reduction onset to be  

    𝐄𝐈𝐏 = 𝐞𝐄𝐨𝐱     (‎2-19) 

    𝑬𝐄𝐀 = 𝐞𝐄𝐫𝐞𝐝     (‎2-20) 

 In some cases only one of the redox reactions can be obtained.  Therefore, in this 

case we can relate the EIP and EEA to each other using the optically measured energy gap 

𝐸𝑔 ,𝑜𝑝  as 

   𝐄𝐈𝐏 = 𝐄𝐄𝐀,𝐜𝐯 + 𝐄𝐠,𝐨𝐩      (‎2-21) 

   𝐄𝐄𝐀 = 𝐄𝐈𝐏,𝐜𝐯 − 𝐄𝐠,𝐨𝐩     (‎2-22) 

The optical energy gap 𝐸𝑔 ,𝑜𝑝  can be estimated from the energy of the optical 

absorption onset.  This is obtained from the material absorption spectrum as shown in 
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figure 2-11; the onset is the intersection of the two tangents drawn at the rising 

maximum absorption and background absorption
37,40

. 

 
Figure ‎2-11: Normalized absorption spectrum of compound 1, with an illustration of the 

energy gap measurement. 

The difference between the EIP( 𝐸𝑜𝑥 ) and EEA( 𝐸𝑟𝑒𝑑 ) is known as the 

electrochemical band gap 𝐸𝑔 ,𝑒𝑐
20,12,14 

       𝐄𝐠,𝐞𝐜 = 𝐄𝐈𝐏 − 𝐄𝐄𝐀     (‎2-23) 

The energy difference ∆Eg  between Eg,𝑜𝑝  and Eg,ec  is going to be investigated.  

2.4.4.2. Material Stability and Reversibility Study 

The cyclic voltammetry peak potentials (Epc , Epa) and peak currents (ipc , ipa) can 

be used to estimate the stability of the materials, which is linked to the reversibility of 

the redox reaction (chemical reversibility, electrochemical reversibility).  

The CV redox reactions are a diffusion-controlled reaction, where the rate of 

electrons transfer is controlled by the rate of the supply of materials to the electrode by 

diffusion. The redox reaction is considered to be electrochemically reversible if the 

electron transfer process between both the redox coupled species and the working 

electrode is fast compared with the diffusion. With the slowing of electron exchange the 

reaction becomes electrochemically irreversible. 



 

 

68 

The redox reaction can be considered chemically reversible if the reverse 

electrochemical reaction produces the original material depleted by the forward reaction 

with no new reaction or side chemical products appears. The reaction is chemically 

irreversible if the reverse cycle leads to a different electrode reaction and side 

products.
41

 

  
Figure ‎2-12: Cyclic voltammogram for (A)reversible, (B) quasi-reversible, and (C) 

irreversible redox processes.
35

 

Both chemical and electrochemical reversibility can be identified by measurement 

of the potential difference ∆𝐸𝑝  between the potential of the two peaks in forward and 

reverse direction.  This is related to the number of electrons transferred in the electrode 

reaction n
28,29

 

                                           ∆𝐄𝐩 =  𝐄𝐩𝐚 − 𝐄𝐩𝐜 ≈
𝟎.𝟎𝟓𝟗

𝐧
    (‎2-24) 

 Therefore, for a reversible redox reaction ∆𝐸𝑝  should be about 59 mV for one 

electron transfer.  Actually, the cell resistance slows the electron transfer rate which 

makes it difficult to get this result, leading to an increase in ∆𝐸𝑝 .  Therefore ∆𝐸𝑝  is 

often 60-70 mV for a reversible electron transfer.
28

  

For reversible reaction, the peak current in the forward scan of the first cycle is 

related to the material concentration by Randles-Sevcik equation  
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                                      𝐈𝐩 =  𝟐.𝟔𝟗𝐗𝟏𝟎𝟓 𝐧𝟑 𝟐 𝐀𝐃𝟏 𝟐 𝐂𝐯𝟏 𝟐      ( ‎2-25) 

where Ip is the peak current, n is electron stoichiometry, A is electrode area (cm
2
), 

D is diffusion coefficient (cm
2
/s), C is the concentration (mol/cm

3
) and v is scan rate 

(V/s).  For reversible reaction the values of Ipa and Ipc should be identical so 

             
𝐈𝐩𝐚

𝐈𝐩𝐜
≈ 𝟏              ( ‎2-26) 

A ratio of 1 is a good indication for chemical reversibility since side chemical 

reactions have a significant influence on the ratio of current peaks. 

In this thesis abbreviated symbols are used to provide information about the 

reversibility of the compounds.  R stands for reversible, which mean that both forward 

and reversible processes are fast enough to maintain equilibrium conditions at the 

electrode surface.  IR stands for irreversible, which indicate that only the forward 

reaction is significant. QR stand for quasi-reversible, which mean both the forward and 

reversible reactions are there but not fast enough to maintain the equilibrium condition. 

An example for each one of these process is illustrated in figure 2-12. 

2.4.5. Experimental procedure  

The experimental set-up and instrumentation is fully explained in section 2-4-2.  

The WE was a glassy carbon electrode (area = 0.07cm
2
), Silver/silver chloride electrode 

(Ag/AgCl, sat. 3M NaCl) was used as the RE and a platinum wire was used as the CE. 

A potentiostat (Solartron 1285) functioned as wave generator, potentiostat and current 

to voltage converter. The software Corrware and Corrview were used to control and 

record the experiments respectively. 

  5ml dichloromethane (DCM) (purity > 99%, water content < 0.05%) was used as 

the solvent to dissolve the materials being tested. 0.3M Tetrabutylammonium 

hexafluorophosphate (TBAHFP6) (purity > 98%) was recrystalized two times and used 
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as a supporting electrolyte to improve the electrical conductance. 1mM of the materials 

to be tested were added to the solvent. 1mM Fc was added at the end of the experiments 

as an internal standard. Nitrogen purging was necessary for a few minutes before 

starting the scan.  The purging was then stopped to form a blanket of nitrogen over the 

cell to maintain a stationery state during the experiment. 

The measurement was first run with the solvent and supporting electrolyte only to 

check whether it had the required flat current response. Then, it was run on addition of 

the test material and finally with the addition of Fc. A typical scan rate of 20mV/s was 

used. Two scans were performed to check the repeatability.  

A UV/VIS spectrometer (Lambda 40, Perkin Elmer) was used to measure the 

optical absorption spectra, for the optical energy gap 𝐸𝑔 ,𝑜𝑝  measurement as shown in 

figure 2-11. The absorption spectrum was measured in solid state, where the sample 

material was spin-coated onto a transparent or nearly transparent substrate (quartz) as 

thin film.  

2.5. Results and discussion 

2.5.1. Materials Used in this Thesis 

Table ‎2-1: Materials used in this thesis with illustration of chemical structures, transition 

temperatures, ionization potential EIP, electron affinity EEA, optical energy gap Eg,op , 

electrical energy gap Eg,ec, the different between the two energy gaps ∆Eg. 
O
 indicate an 

oxidation reaction, 
R
 a reduction reaction, R means reversible material, QR quasi 

reversible material, IR means irreversible material to electron transfer. 

Mate. Structure  

1 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.52 , 3.19, 2.33 (R) 

SPK516 
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2 

 

Similar to compound 3 

 

PV316 

3 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.52 , 3.15 , 2.37 (R) 

PV318 

4 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.51, 3.13, 2.38 (QR) 

SPK394 

5 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.53 , 3.1 , 2.43(R) 

SPK523 

6 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.5 , 3.07 , 2.43 (IR) 

PV237 

7 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.55 , 3.08 , 2.47 (IR) 

SPK382 
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8 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.42 , 3.11 , 2.31 (R) 

SPK388 

9 

 

   EIP    EEA    Eg,op   (eV) 

R
  6.31, 4.19, 2.12 (IR) 

MPA340 

10 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.94 , 3.82, 2.12 (R) 

R
  6.33 , 4.21 , 2.12 (R) 

Eg,ec     ΔEg 

1.73 ,  0.39 

SPK290 

11 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.89 , 3.77, 2.12 (R) 

R
  6.37 , 4.25 , 2.12 (R) 

Eg,ec     ΔEg 

1.64 , 0.48 

SPK309 

12 

 

   EIP    EEA    Eg,op   (eV) 

O   
5.98 , 3.86, 2.12 (QR) 

R
 6.33 , 4.21 , 2.12 (QR) 

Eg,ec       ΔEg 

1.77 ,  0.35 

SPK318 
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13 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.85 , 3.73, 2.12 (R) 

R
  6.32 , 4.2 , 2.12 (QR) 

Eg,ec        ΔEg 

1.65 ,  0.47 

SPK326 

14 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.82 , 3.72, 2.1 (R) 

R
  6.32 , 4.22 , 2.1 (QR) 

Eg,ec        ΔEg 

1.6 ,  0.5 

SPK339 

15 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.55 , 3.49, 2.06 (R) 

R
 6.29 , 4.23 , 2.06 (QR) 

Eg,ec        ΔEg 

1.32 ,  0.74 

SPK370 

16 

 

   EIP    EEA    Eg,op   (eV) 

O    
6.19 , 4.09, 2.1 (IR) 

R
  6.32 , 4.22 , 2.1 (QR) 

Eg,ec        ΔEg 

1.97 ,  0.13 

SPK417 

17 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.87 , 3.74, 2.13 (R) 

R
  6.31 , 4.18, 2.13 (QR) 

Eg,ec        ΔEg 

1.69 ,  0.44 

SPK452 
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18 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.56 , 2.83, 2.73 (IR) 

KK045 

19 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.53 , 2.82, 2.71 (R) 

KK041 

20 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.54 , 2.82, 2.72 (IR) 

KK054 

21 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.54 , 2.82, 2.72 (R) 

KK050 

22 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.78 , 2.86, 2.92 (IR) 

MK024 
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23 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.78 , 3.86 , 2.65 (R) 

MD029 

24 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.97 , 3.25, 2.72 (R) 

MD039 

25 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.5 , 2.82 , 2.68 (R) 

MD062 

26 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.48 , 2.85, 2.63 (R) 

MD068 

27 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.59 , 2.93, 2.66 (R) 

MD075 

28 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.54 , 2.62, 2.92 (R) 

MD087 
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29 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.67 , 2.72, 2.95 (R) 

MD093 

30 

 

 

   EIP    EEA    Eg,op   (eV) 

R
  5.96 , 4.14 , 1.82 (R) 

PCBM C61 

31*
1
 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.58 , 2.91, 2.67 (R) 

GJR130 

32* 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.86 , 2.76, 3.1 (IR) 

MPA043 

33*
 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.62 , 2.8, 2.82(QR) 

PV202 

                                                 

 
1
 * Indicates that experimental measurements were made by Dr. W. C. Tsoi.  Analysis was done by me. 
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34*
 

 

   EIP    EEA    Eg,op   (eV) 

O    
5.87 , 2.45, 3.42 (R) 

MPA364 

2.5.2. Molecular Engineering for Optimum Electrical and Optical 

Properties of n-type Organic Semiconductors 

Compounds 9 to 17 are nine perylene bisimides based compounds which have 

been synthesized and studied as new electron acceptors  with good chemical, electrical 

and optical properties.  As table 2-1 shows, compounds 11 and 13 have high 

temperature liquid crystalline phases. 

In this study 9 has been used as our reference because it shows good acceptor 

properties and it has the simplest structure in the group.  As shown in table 2-1 this 

compound has three components, the perylene bisimide in the middle and two 9,9-

dioctyl-9H-fluorene groups on each side as functional group.  Starting from 9, the 

functional group structure has been changed and each time we try to monitor the effect 

of that change on the optical and electrical properties. 
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Figure ‎2-13: (a) Cyclic voltammogram of 9,13,15 and PCBM, (b) magnification of the 

reduction onset, (c) magnification of oxidation onset. 

Figure 2-13 shows that all compounds show both oxidation and reduction 

reactions using CV apart from 9, which only shows the reduction reaction.  This means 

the EIP/EEA (HOMO/LUMO) measurement is attainable in two different ways as 

explained in section 2.4.4.1. The HOMO (oxidation) and the LUMO (reduction) 

indicates that the HOMO and LUMO energies were obtained directly from CV and 

measured from the oxidation onset and the reduction onset respectively.  HOMO 

(reduction) and LUMO (oxidation) are obtained using absorption data and eq. 2-21 and 

eq. 2-22. 
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Figure ‎2-14: The absorption spectrum of the compound 9 to 17, and the PCBM. 

The absorption spectra of all the nine compounds are shown in figure 2-14 and 

can be split into two spectral regions, wavelengths less than 400nm and wavelengths 

more than 400nm. The first region is affected by the change of the chemical structure of 

the side functional group, the second region relates to the perylene bisimide central 

core.  In the latter region the spectrum is virtually independent of changes in the 

chemical structure of the two outer functional groups.  The second region is our 

measurement target where we can get the absorption edge and use it to measure the 

optical energy gap 𝐸𝑔,𝑂𝑝  of these compounds. 

  
Figure ‎2-15: The energy levels of compounds 9,10,12,13,14, and 15 using both oxidation 

and reduction reactions. 
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Figure 2-15 shows the energy levels of the compounds obtained using 

electrochemical and optical methods. The two methods give different results with 

variations in the difference between the two energy gap measurements.  This is because 

oxidation and reduction occur at completely different sites in the molecules.  The 

LUMO (reduction) energy is approximately equal for all compounds because the same 

perylene bisimide group is used. The HOMO (oxidation) depends on the two aromatic 

end groups and vary accordingly.  Hence the compounds apart from 9, can be 

considered as donor-acceptor materials, where the HOMO wavefunction occupy 

different regions (phenyl and fluorene moieties) than the LUMO wavefunction perylene 

component as illustrated in figure 2-16. 

 
Figure ‎2-16: Molecular orbital contour plot of compound 15, HOMO (left) and LUMO 

(right), Chem-draw software was used for energy minimization with (MM2+AM1) method 

and orbital calculation. 

In the next sections we emphasize that the electrochemical and optical properties 

change significantly as a function of the chemical structure of the functional group. 

2.5.2.1. Double Fluorene Groups  

As illustrated in table 2-1 the variation of the chemical structure between 9 and 12, 

and between 10 and 14 is the single fluorene functional group in the former compound 

and double groups in the latter for each set.  Optically doubling the number of fluorene 

groups has a significant effect on the short wavelength region (<400nm), where the 

peak is shifted toward the red for the two groups studied as illustrated in figure 2-14(a). 

For the region of wavelength longer than 400nm the effect is insignificant, therefore the 

optical energy gap 𝐸𝑔,𝑂𝑝  have similar values. 
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Electrochemically, the doubling of the groups has an insignificant effect on the 

reduction reaction but increases the HOMO (oxidation) energy and so lowers the 

electrical energy gap 𝐸𝑔 ,𝐸𝑐  as illustrated in figure 2-13 and figure 2-15.  The energy gap 

difference ∆𝐸𝑔  of the optical and electrical energy gap is increasing also, which for 

comparison is 0.39 eV and 0.5 eV for 10 and 14 respectively.  

The addition of the second fluorene group agrees with the literature which shows 

a reduction in the energy gap with an increase of the chain length
9,42

. 

2.5.2.2. Carbazole Group  

Compound 15 has the carbazole functional group instead of the fluorene group in 

9 as shown in table 2-1.  In the long wavelength region (>400nm) of the absorption 

spectrum there is a small reduction in the optical energy gap 𝐸𝑔 ,𝑂𝑃 , by 0.06 eV as shown 

in figure 2-14(a) and figure 2-15. However on the short wavelength region (<400nm) 

the effect was insignificant. 

 Electrochemically, the substitution of carbazole affects both the oxidation and 

reduction reactions and reduces the electrical energy gap 𝐸𝑔 ,𝐸𝑐  via reducing the 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡  

and increasing 𝐸𝑅𝑒𝑑
𝑜𝑛𝑠𝑒𝑡  as illustrated in figure 2-13 and figure 2-15; the oxidation side 

changes more the reduction one. The energy gap difference ∆𝐸𝑔  is the highest as shown 

in figure 2-15.  Also the carbazole substitution has a strong effect on the reversibility of 

the reactions; it gives an irreversible reaction.  

Changes in the optical and electrical properties can be related to the influence of 

the CN electron withdrawing group of carbazole
6
, where both carbon and nitrogen have 

high electron negativity of 2.6, and 3 respectively
22

. 

2.5.2.3. Alkoxyphenyl Group and Phenyl Group  

The phenyl group is an important aromatic structure in the field of organic 

semiconductors.  As shown in table 2-1 there are three examples to investigate the effect 
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of the alkoxyphenyl group and phenyl group itself on the optical and electrical 

properties.  Compound 10 has alkoxyphenyl groups next to the fluorene groups in 

contrast to 9, and 11 has an extra phenyl group on the other side of the fluorene group. 

Also compound 13 has alkoxyphenyl groups next to the fluorene groups in contrast to 

12. 

Optically the alkoxyphenyl group and phenyl group have a significant affect in the 

short wavelength region (<400nm), with the peak of 10, 11 and 13 shifted toward the 

longer wavelength and its amplitude increasing relative to spectra of 9 and 12, as 

illustrated in figure 2-14(a,b). For the region of wavelength longer than 400nm the 

effect was insignificant, therefore the optical energy gap 𝐸𝑔,𝑂𝑝  have similar values. 

  
Figure ‎2-17: The energy levels of compounds 9, 10, 11, 16, 17 and PCBM using both 

oxidation and reduction reactions, and showing the optical and electrical energy gaps and 

the difference in the energy gap. 

Electrochemically, the addition of alkoxyphenyl group has no affect on the 

reduction reaction, however the insert of the second phenyl ring in compound 11 

reduces the value of the LUMO (reduction) by 0.04 eV compared to that of 10.  The 

HOMO (oxidation) also increases from -5.94 eV to -5.89 eV as illustrated in figure 2-13, 
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figure 2-15 and figure 2-17.  However the alkoxyphenyl group has an even bigger affect: 

HOMO (oxidation) of 9 is too low to be measured (<-6.25 eV) while that of 10 is only -

5.94 eV.  

Similarly as illustrated in figure 2-15 and figure 2-17 the HOMO (oxidation) 

energy levels of 13 is 0.13 eV higher than that of 12.  As a result the electrical energy 

gap 𝐸𝑔 ,𝐸𝑐  decreases and the difference of energy gaps ∆𝐸𝑔 increases as illustrated in 

figure 2-15 and figure 2-17. 

2.5.2.4. Spacing the Functional Group of Perylene Bisimide Core  

The addition of different functional groups may inhibit the good EA properties of 

the perylene bisimide.  Therefore we separate the functional groups from the perylene 

bisimide with C3 alkyls chain.  Compound 16 has a spaced fluorene group in contrast to 

9, and 17 has spaced the fluorene and alkoxyphenyl group as side group in contrast to 

10 as shown in table 2-1.  A similar compound with a similarly spaced benzene ring as 

side group shows high mobility and good stability in the air
43

. 

The 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡  decrease for both compounds increasing the HOMO (oxidation) 

energy.  The 𝐸𝑅𝑒𝑑
𝑜𝑛𝑠𝑒𝑡  only changes by about 0.03 V by spacing the substituent. Therefore 

the 𝐸𝑔 ,𝐸𝑐  is slightly reduced increasing the difference of energy gaps  ∆𝐸𝑔  as shown in 

figure 2-17.  

2.5.3. Molecular Engineering for Optimum Electrical and Optical 

Properties of p-type Organic Semiconductors 

In this section we investigate how changes in the chemical structure of p-type 

semiconducting liquid crystals affect the optical and electrochemical properties of the 

material. All the compounds in this section only show the oxidation reactions.  This 

indicates that only HOMO (oxidation) is obtained directly from CV and measured from 

oxidation onset whereas LUMO (oxidation) is obtained using absorption data. 
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2.5.3.1. End Groups 

Compound 1, 3, and 4 have the same aromatic core. However each has a different 

end group, being a methoxy group, alkyl chain with a terminal photoreactive diene-ester 

group and alkyl chain with photoreactive terminal methyl methacrylate  respectively.  

Compounds 18, 19, 20, and 21 have also the same aromatic core with  different end 

groups as shown in table 2-1. 

 
Figure ‎2-18: Normalized absorption spectrum of compounds a) 1, 3, and4, b) 18, 19.  

The thin film absorption spectra of compounds 1, 3, and 4, and 18 and 19 are 

shown in figure 2-18(a,b). There is no shift in the peak position.  However there is some 

variation in the two sides of the peaks, which provide small differences in the 

absorption wavelength edge and optical energy gap 𝐸𝑔 ,𝑜𝑝 . This may be related to 

differences in intermolecular interactions and molecular backing which depend on the 

film morphology and are influenced by the side chains
6,44

. 

 
Figure ‎2-19: :(a) cyclic voltammogram of the compounds 1, 3, and 4. (b) cyclic 

voltammogram onset of compounds 18,19,20, and 21, where all calibrated with Fc/Fc
+
. 
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Figure 3-19 shows no significant effect of the side groups on the oxidation 

potential onset 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡 , which indicate that the aromatic core is primarily responsible for 

the optical and electrical properties of the compound.  

Hence, the substantial part of the molecule is the aromatic core, while the end 

groups have no significant effect on HOMO/LUMO levels apart from small errors in 

obtaining the LUMO level because of the sensitivity of the optical energy gap to 

intermolecular interactions. 

2.5.3.2. Sulphur Atoms Position 

As illustrated in table 2-1, the aromatic core of compound 34 has three benzene 

rings. Its middle benzene ring is substituted by different aromatic groups with sulphur 

atoms at different positions.  For compounds 23, 25, 26, and 28, the substitutions are 

dibenzothiophene, one thiophene ring, two thiophene rings, and a fused thiophene ring 

respectively.  The substitutions were to investigate the influence of the sulphur atoms in 

different position and number on the optical and electrical property of the organic 

semiconductors as EDs. 

 
Figure ‎2-20:(a) Normalized absorption spectrum of the compounds 23,25,26, 28, and 34. (b) 

cyclic voltammogram onset of the same compounds, which calibrated with Fc/Fc
+
. 

Figure 2-20(a) shows that all the four compounds with sulphur atoms show a shift 

of the absorption spectrum toward longer wavelengths compared with 34 which 

indicates a decrease in the optical energy gap 𝐸𝑔 ,𝑂𝑝 . The shift depends on the number of 
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sulphur atoms and their position in the aromatic core.  The shift increases in the order: 

dibenzothiophene, a single thiophene ring, and double thiophene rings.  However when 

the two thiophene are fused the shift is slightly smaller than for the dibenzothiophene 

and other groups as will be investigated in section (2.5.3.4).  

 
Figure ‎2-21: HOMO/LUMO energy levels for compounds 35, 23, 25, 26, 28 measured from 

oxidation onset and optical energy gap. 

As shown in figure 2-20(b) and figure 2-21 the oxidation potential onset 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡  

and HOMO (oxidation) vary as a function of the number and position of the sulphur 

atoms.  The dibenzothiophene has no effect on the oxidation potential, but reduces 

LUMO (oxidation) significantly because of the reduced optical band gap. The thiophene 

groups have a significant reduction of the HOMO (oxidation), the influence decreases in 

the order double thiophene, single thiophene and finally fused thiophene.  

The LUMO (oxidation) values are reduced in the same order for the thiophene 

groups, but the dibenzothiophene reduce more.  The thiophene rings push both 

HOMO/LUMO levels closer. The importance of the thiophene and fused thiophene 

groups encourage us to further investigate them in the next two sections. 
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2.5.3.3. Thiophene Ring Population 

The thiophene is an important active group in organic semiconductors, for 

example the polythiophene has been used widely for low band gap polymers, and is one 

of the most environmentally and thermally stable materials
6,45,46

. In this section we 

investigate the effect of the number of thiophene groups population on the optical and 

electrical properties of the ED compounds. 

As shown in table 2-1 the aromatic core of compound 32 consists of a fluorene 

with two benzene rings on either side of it.  We compare its optical and electrical 

properties with those of compound 33 where one benzene ring on one side is replaced 

with one thiophene ring.  In compounds 31, 6 and 8 the benzene ring on each side is 

replaced with one two and three thiophene rings respectively. 

  
Figure ‎2-22: (a) Normalized absorption spectrum of the compounds 6, 8, 31, 32 and 33. (b) 

cyclic voltammogram onset of same compounds, calibrated with Fc/Fc
+
 

Figure 2-22(a) shows the influence of the substitution of the benzene ring with the 

thiophene ring on the absorption spectrum and the absorption edge of compounds 32, 33, 

31, 6, and 8. The incorporation of a thiophene ring gives a red shift of the absorption 

peak with some difference in the absorption regions before and after the peak and at the 

absorption edge. The red shift increases and the optical energy gap  𝐸𝑔 ,𝑂𝑝  decreases 

with the increase in the number of the thiophene rings. 
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Figure 2-22(b) shows that the oxidation potential onset 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡 decreases with the 

substitution of the benzene ring with thiophene ring.  As the number of the thiophene 

rings increases the shift toward lower potential values increases. 

 
Figure ‎2-23: HOMO/LUMO energy levels for compounds 6, 8, 31, 32, 33 measured from 

oxidation onset. 

Similarly as figure 3-23 shows, an increase in the number of thiophene rings 

increases the HOMO energy and decreases the LUMO energy, providing lower optical 

energy gap 𝐸𝑔 ,𝑂𝑝 . 

2.5.3.4. Fused Thiophene 

In this section we study the influence of replacing two thiophene rings with a 

fused one on the electrical and optical properties of organic semiconductors. 

Compounds 1 and 5, compounds 6 and 7, compounds 26 and 28, and finally 

compounds 27 and 29 are four pairs to investigate the influence of the fused thiophene 

on the optical and electrical properties of the organic semiconductors.  The chemical 

structure of the former compound in each group includes two thiophene rings next to 
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each other which are substituted by fused thiophene in the latter compounds as 

illustrated in table 2-1. 

  
Figure ‎2-24: (a) Normalized absorption spectrum of the compounds 1, 5, 26, and 28. (b) 

cyclic voltammogram of the same compounds, which calibrated with Fc/Fc
+
 

Figure 2-24(a) shows the influence of the replacement of double thiophene rings 

with fused thiophene on the absorption spectra of compounds 1, 5, and  26, 28.  The 

absorption edge blue shifts and the peak narrows. The optical energy gap  𝐸𝑔 ,𝑂𝑝  

increases with the fused thiophene replacements. Figure 2-24(b) shows that the 

oxidation potential onset 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡 increases slightly with the fused thiophene substitution. 

 
Figure ‎2-25: HOMO/LUMO energy levels for compounds 1, 5, 6, 7, 26, 28, 27, 29 

measured from oxidation onset, and optical energy gap. 
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Similarly figure 3-25 illustrates that the HOMO (oxidation) energy decreases and 

the LUMO (oxidation) energy increases on substitution with the fused group for three of 

the four pairs indicating an increase in the optical energy gap  𝐸𝑔,𝑜𝑝 .  Our result agrees 

with that found by E. Lim, and coworkers
47

. 

2.5.3.5. Fluorination  

Fluorination is suggested as a solution for the poor stability of organic 

semiconductors against oxygen attack, and it also known to affect the electrical and 

optical properties
48

.  The high electronegativity of the fluorine atoms of 4 together with 

electronegativity of 2.6 for the carbon atoms result in an electron withdrawing fluoro-

carbon substituent, which has been investigated to lower the energy of the unoccupied 

orbitals producing n-type semiconductors
48,49

.  In this section we investigate the 

influence of the fluorination on the energy levels of the organic semiconductors. 

Compounds 23 and 24, compounds 26 and 27, and finally compounds 28 and 29, 

are three pairs used to investigate the influence of the fluorine atoms on the optical and 

electrical properties of the organic semiconductors. The chemical structure of the 

aromatic core of the two compounds in each group is identical apart from two fluorine 

atoms in the second compound of each group as shown in table 2-1. 

 
Figure ‎2-26: (a) Normalized absorption spectrum of the compounds 26, and 27. (b) cyclic 

voltammogram of the same compounds, which calibrated with Fc/Fc
+
. 
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Using 26, 27 as an example figure 2-26(a) shows that fluorination blue shifts the 

absorption spectra, which increases the optical energy gap 𝐸𝑔 ,𝑂𝑝 .  Figure 2-26(b) shows 

that the oxidation potential onset 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡 is increased with the addition of the fluorine 

atoms. 

 
Figure ‎2-27: HOMO/LUMO energy levels for compounds 23, 24, 26, 27, 28, and 29 

measured from oxidation onset, and optical energy gap. 

Figure 3-27 shows the energy levels of the three investigated groups, and 

confirming that fluorination decreases both the HOMO and LUMO energies by 

different amount increasing the optical energy gaps  𝐸𝑔 ,𝑜𝑝 . 

2.5.3.6. Effect of Nitrogen Atoms (Carbazole Group) 

The fluorene group in the middle of compound 32 is replaced by the carbazole 

group in compound 22 as shown in table 2-1. 
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Figure ‎2-28: Normalized absorption spectrum of the compounds 22, and 33. (b) cyclic 

voltammogram onset of the same compounds, which calibrated with Fc/Fc
+
. 

As a result of this replacement the absorption spectrum shifts toward a longer 

wavelength which leads to a decrease of the optical energy gap  𝐸𝑔 ,𝑂𝑝   as shown in 

figure 2-28(a).  Figure 2-28(b) shows a reduction in the oxidation potential onset 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡  

for 22. 

 
Figure ‎2-29: HOMO/LUMO energy levels for compounds 32, and 22 measured from 

oxidation onset. 

In summary the nitrogen atoms in carbazole shift the HOMO/LUMO energy 

levels towards the centre of the energy gap lowering the optical energy gap 𝐸𝑔 ,𝑂𝑝  as 

shown in figure 2-29.  
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2.6. Conclusion 

A range of novel semiconducting liquid crystals and perylene based compounds 

were synthesised by the chemistry branch of the Organophotonics group at the 

University of Hull, These have been studied electrochemically and optically to 

investigate the suitability of these materials as EDs and EAs for organic photovoltaic 

devices.  The absorption spectra of these materials were studied to show how the 

incorporation of different aromatic groups modifies the optical energy gap 𝐸𝑔 ,𝑜𝑝 .  The 

oxidation and reduction potentials measured using the CV experiment were used to 

estimate the HOMO/LUMO energy levels of these materials.  The alteration of the 

chemical structure is correlated to the variation of the energy levels. 

Based on the optical and electrical properties we nominate liquid crystals with a 

fluorene-thiophene structure of 1, 2, 3 and 4 as EDs in combination with the nine 

perylene based compounds of 9 to 16 as EAs.  The latter set shows, smaller energy gap 

and good energy interfaces with the EDs. TOF mobility and AFM surface 

measurements discussed in the next two chapters will select the best compounds from 

the list of 4 EDs and 9 EAs to be applied in solar cells. 
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  333...   TRANSPORT OF CHARGE 

CARRIERS IN ORGANIC 

SEMICONDUCTORS 

3.1. Introduction  

Over the last few decades a new academic and industrial research area based on 

organic conjugated materials has emerged. These materials are used as semiconductor 

materials for a wide range of applications such organic light emitting diodes (OLED), 

field effect transistors (OFET), and photovoltaics (OPV).  Charge transport is one of the 

key factors determining the performance of these applications. For organic 

photovoltaics, as discussed in chapter one, the power conversion efficiency of the solar 

cells depends on three steps; the first and second steps are the light absorption to create 

excitons, and the exciton diffusion and dissociation at the ED/EA interface forming 

electrons and holes in the EA and ED moieties respectively. The third step is the 

transport of the charge carriers through the respective material to the right electrode, 

which is our investigation in this chapter. 

3.2. Mobility 

In semiconductors; charge carriers (electron, holes) move randomly in the 

absence of net applied electric field E, which give an average drift velocity of  𝑣 = 0 

over a period of time, and average momentum p of zero so that  
𝑑𝑝

𝑑𝑡
 = 0.  However if 

there is an applied electric field E, the charge carriers accelerate with time either in the 

same or opposite direction to the applied electric field according to their charge and this 
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leads to a linear increase of the momentum. The charge carriers are not always 

accelerated but may decelerate due to the scattering events caused by impurities, defects, 

phonons (lattice vibrations), and some other causes.  The relation of the average 

velocity to the field in the steady state condition can be correlated to an average 

momentum loss per unit time and an average distance travel per unit time  
𝑑 Λ 

𝑑𝑡
  as

1
 

                                     −  
𝐝𝐩

𝐝𝐭
 = 𝛃

𝐝 𝚲 

𝐝𝐭
= 𝐦

 𝐯 

𝛕
                                          (‎3-1) 

where β can be expressed as the ratio of a effective mass m and a relaxation time 

η.  For a charged particle the change of the momentum in an electric field E is 

                                                               
𝐝𝐩

𝐝𝐭
 = 𝐞𝐄                                                                    (‎3-2) 

where e is the elementary charge.  Therefore 

                                                                   𝐯 =
𝐞

𝐦
𝛕𝐄                                                                (‎3-3) 

The magnitude of the average drift velocity per unit electric field is known as the 

carrier mobility µ, 

                                                                  𝝁 =
 𝒗 

𝑬
=

𝒆

𝒎
𝝉                                                           (‎3-4) 

The mobility is the essential electronic charge transport quantity, which can be 

used to characterize the charge transport property of semiconductor materials.  The 

electronic conductivity of the material for each charge carrier is given by
2,3 

                                                   𝛔𝐞 = 𝐧𝐞𝛍𝐞    , 𝛔𝐡 = 𝐩𝐞𝛍𝐡                                                    (‎3-5) 

where n and p are the concentration of the electrons and holes respectively.  The 

total electronic conductivity of the material is  

                                                            𝛔 =  𝐧𝐞𝛍𝐞 + 𝐩𝐞𝛍𝐡                                                     (‎3-6) 
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3.3. Electronic States and Transport Mechanisms 

Several models have been developed to study the charge carrier transport 

mechanisms in semiconductors. For all of these models the charge carrier mobility and 

its variation with temperature, doping, or electric field are the central issues. Generally 

these models are classified according to two main mechanisms: band transport, and 

hopping transport. These two mechanisms can be characterized and distinguished 

according to the magnitude of the mobility and its temperature dependence. 

3.3.1. Extended (Delocalized) States and Band Transport 

The charge carrier transport and electronic structure of crystalline and weakly 

disordered semiconductors is well described by the band theory and band transport 

model.  The charge carriers move as a highly delocalized plane wave in an energy band 

of large width with a relatively large mean free path and very high mobility of µ>>1 

cm
2
/V.s. The hole motion of the carriers in Ge can be considered as an example for this 

type, where the valence bandwidth is approximately 3 eV, the scattering time η ≈10
-3

s 

and the mean free path (at T=300K) is ≈1000 Å, which is very large compared to the 

inter-atomic distance (2.45 Å)
4,5

. 

It has been found that when the atoms are widely separated and independent of 

each other the electrons in the attractive potential of each atom occupy bound states 

separated by forbidden energy gaps. However, when the atoms move sufficiently close 

to each other they interact; each energy level is split into a very large number of energy 

levels (equals to the number of atoms), which are called bands.  Each band has a band 

width and the energy levels distribution within the band is quasi-continuous when the 

number of atoms is large. Between the energy bands there is a range of energy values 

which cannot be occupied called bandgaps as shown in figure 3-1.
6,7
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Figure ‎3-1: Allowed energy levels of an atom, hypothetical molecule and crystal

6
. 

Potential wells are generated by the nuclei of the equally spaced atoms over the 

crystalline sample. The electrons which occupy energy levels close to the nucleus are 

strongly bound.  Those in higher energy levels are less bound to the nucleus so that the 

electrons can overcome the nuclear attraction and move throughout the crystal; those 

energy bands can be considered as extended (delocalized) states. Therefore, electronic 

transport in crystalline and weakly crystalline semiconductors can be described using 

the concept of almost free quasi-particles (Bloch waves), where the wavefunctions of 

the electrons do not undergo significant attenuation in the perfect periodic potential. 

However the atoms in the crystal at temperature above absolute zero have enough 

thermal energy to cause them to vibrate around their lattice points (phonon) leading to a 

disturbance of the perfect periodic potential as shown in figure 3-2 causing scattering 

and attenuation of the movement of  electrons. 
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 Figure ‎3-2: Band transport in a perfect crystal and thermal vibration scattering (left), 

schematic graph showing the decrease of the mobility as a function of increasing  

temperature (right)
8
 

The lattice vibration of the crystalline and quasi-crystalline materials increases 

with temperature, which increases the lattice scattering of the charge carriers.  

Consequently the mobility decreases according to 

                                                                             𝛍 ∝ 𝐓−𝐧                                                          (‎3-7) 

where n > 1 

Inorganic semiconductors crystals have a wide bandwidth and narrow band gap 

because of the very strong covalent bonds between its components, which have an 

energy of about 76 Kcal mol
-1

 for the case of Si.  Organic semiconductors crystals have 

a narrow bandwidth and wide bandgap because of the weak intermolecular interactions 

in organic semiconductors. These are mostly based on van der Waals forces in the very 

large class of neutral molecular crystals, or on a combination of van der Waals and local 

coulombic interaction in the minor class of ionic organic crystals. The intermolecular 

bond interaction energy is smaller than 10 Kcal mol
-1

, which is close to the magnitude 

of vibrational energy of the molecules at or above room temperature. Also the 

crystalline quality is very poor compared to the inorganic semiconductors. 
4,5,1
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3.3.2. Localized States and Hopping Transport 

The periodicity of the crystalline structure is disturbed by the present of the 

defects even in a good crystal, and as the population of these defects increase the 

material start losing its crystalline structure to become domains of crystalline structure 

surrounded by grain boundaries. As these domains become smaller the structure 

changes to polycrystalline eventually reaching highly non crystalline or amorphous 

materials.  

 The rate of scattering increases with the number of defects.  When the mean 

free path between scattering events becomes less than the intersite distance then the 

charge carrier is localized on a few atoms.  Sometimes a charge carriers falls into a trap 

of a strongly localized state where it become immobile for a period of time until it 

escapes and traps again and so on.  This is known as hopping transport between strongly 

localized states, which drops the carrier mobility to very low values µ<< 1 cm
2
/V.s 

4
 as 

shown in figure 3-3 

 
Figure ‎3-3:  The variation of charge carrier mobility with the energy distribution of trap 

and an expectation of the mobility values according to energetic disorder.
9
 

The electronic energy structure of well ordered crystalline semiconductors is 

well defined and consists of energy bands and energy gaps, while the electronic 
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structure of very disordered materials can be treated as quasi continuous because of the 

presence of trap states within the energy gap.  The organic semiconductor has discrete 

energy states because of the weak interactions between the molecules, however it 

retains some of the characteristic features of band structure, since the energy spectrum 

contains regions of high electron density of states and some of  low electron density of 

states corresponding to the allowed and forbidden bands respectively.   Note the density 

of states (DOS) is the concentration of the states per unit energy per unit volume.  The 

relevant regions with high concentration are known as lowest unoccupied molecular 

orbital (LUMO) and highest occupied molecular orbital (HOMO) respectively. 

Similarly to the conventional amorphous semiconductor there are some energy levels 

separating the extended states from localized states which is known as the mobility edge 

as shown in figure 3-3.  For an amorphous organic semiconductor the extended states 

are hardly observed and its density of states can be represented by a Gaussian 

distribution of localized molecular orbitals with a very narrow width. Charge transport 

occurs by hopping between localized molecular states, so a transport energy or escape 

energy level (Et) is introduced, which is the energy of the mobility edge between the 

trap states and the hopping transport states as illustrated in figure 3-3 and figure 3-4(a). 

 
Figure ‎3-4: (a)Density of states distribution of HOMO/LUMO levels in disordered organic 

semiconductors, (b) enhancement of the tail region showing the trap states in the tail and 

the additional trap states and the transport states
10
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The electron transport energy level Et,e is located at the bottom of the LUMO 

level and the hole transport energy level Et,h at the top of the HOMO level.  States 

below the electron transport energy level Et,e which are able to capture the electron are 

known as electron traps, and localized states above the hole transport energy level Et,h 

which capture the holes are known as hole traps.  Therefore energy states between the 

two transport energies levels are trapped states. The density of states decreases when the 

energy moves away from the transport energy towards the centre on the gap.  Most traps 

lie in the vicinity of the transport energy, the so-called tail region. The gap between the 

two transport energy levels can have additional deep trap states as shown in figure 3-

4(b).
3,7,10,11

 

The nature of the defects is different in organic semiconductors than in inorganic 

semiconductors because of the structural differences between them.  For inorganic 

semiconductors the defects can be identified and controlled while it is more difficult to 

control them in organic semiconductors especially polymers. The defects in organic 

semiconductors can be classified as intrinsic or extrinsic. The extrinsic or chemical 

defect is a residual impurity from the synthesis or the thin film processing.  If the 

HOMO or LUMO energy levels of the impurity molecule is positioned in the gap of the 

host molecules it forms a trap state. The intrinsic defect is a structural defect and 

includes any distortion of the structure such as a grain boundary, crystallography defect, 

chain end, conformation disorder, and bonding (oxidative) defect. The HOMO/LUMO 

energy levels are not only determined by chemical structure but are also influenced by 

the electronic polarization of the surrounding environment
10,12,13,14

.  Hence the structural 

defect can  locally affect the environment and form a trap. 

The dominance of localized states in disordered semiconductors and the 

requirement of an activation energy Eact to jump from one localized trap state to another 
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explains the correlation between the charge transport in amorphous organic 

semiconductors and the temperature.  Therefore charge carrier mobility increases with 

temperature as illustrated schematically in figure 3-5 and with more detail in section 3.4 

and in the discussion of results in section 3-6.  Indeed some trap states at room 

temperature may become transport states at higher temperature. 

 
Figure ‎3-5: Hopping  transport in disordered materials with localized carriers.  Thermal 

vibration helps to overcome the activation barrier of energy Eb (left), schematic graph 

showing the increase of the mobility as a function of increasing temperature (right)
8
 

3.4. Models of Hopping Transport 

To date, many models have been developed to explain charge carrier transport in 

amorphous organic semiconductors based on energetic and positional disorder.  These 

models were based and developed according to some experimental observations like the 

mobility dependence on the electric field, temperature, and many other factors.  No 

single model can cover all of the factors affecting the charge transport mobility. 

3.4.1. Poole-Frenkel Model 

 The Poole-Frenkel effect
15,16,17,18,19,20

, which is also known as field-assisted 

thermal ionization, is a well known model to explain charge transport in semiconductors 

and its field and temperature dependence.  This model was originally used for 

conventional semiconductors to explain the escape of the charge carriers from trapping 
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centres into the conduction band under the influence of the applied field.  This occurs 

via lowering of the barrier associated with their coulomb potential in the electric field 

direction by 𝛽𝑃𝐹𝐸1 2 as shown in figure 3-6.  This predicts the field dependence of the 

mobility   

                                                           𝛍 = 𝛍𝐨𝐞𝐱𝐩  
𝛃𝐏𝐅𝐄𝟏 𝟐 

𝐤𝐁𝐓
                                                      (‎3-8) 

where 𝛽𝑃𝐹 =  𝑒3 𝜋𝜀𝜀𝑜  1 2  is the Poole-Frenkel coefficient, kB is the 

Boltzmann constant, ε is the high-frequency dielectric constant of the insulator, εo is the 

permittivity of free space. 

 
Figure ‎3-6: The lowering of the potential barrier of the localized charge carrier under the 

influence of the external electric field according to Poole-Frenkel model (left), the 

temperature dependence of the mobility for various electric field‎according‎to‎Gill’s‎model‎

(right)
21

 

3.4.2. Gill Model 

Similar results to the Poole-Frenkel model for the temperature and field 

dependence of the mobility were found by Gill in the case of molecular doped polymer 

TNF: PVK.  The Gill’s model gives an empirical relation 
 
for µ

22,23
 

                                                     𝛍 = 𝛍𝐨𝐞𝐱𝐩 −
𝐄𝐨−𝛃𝐏𝐅𝐄𝟏 𝟐 

𝐤𝐁𝐓𝐞𝐟𝐟
                                                   (‎3-9) 
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where  
1

𝑇𝑒𝑓𝑓
=

1

𝑇
−

1

𝑇𝑜
 , Eo is the zero field activation energy, T is the sample 

temperature, and To is the temperature at which the extrapolated data intersect as shown 

in figure 3-6. This model has been used widely but it has some limitations, e.g. failure 

to relate the temperature and field dependence of the mobility to the disordered structure.  

3.4.3. Gaussian Disorder Model (GDM) 

The most important and comprehensive model for charge transport in organics  

semiconductors is the disorder formalism model developed by Bässler and coworkers
20,

 

24,25,26,23
.  This formalism known as the Gaussian disorder model (GDM) is based on the 

absence of long-range order.  All states are assumed to be localized and the DOS has a 

Gaussian energy distribution 𝜌 𝜀  given by 

                                                 𝛒 𝛆 =  𝟐𝛑𝛔𝟐 −𝟏 𝟐 𝐞𝐱𝐩 −
𝛆𝟐

𝟐𝛔𝟐                                        ( ‎3-10) 

where ζ is the width of the Gaussian distribution of the energy hopping sites, 

The energy ε is measured relative to the centre of the DOS.  Charge carriers injected 

into a site within the DOS tend to relax towards the tail states at quasi-equilibrium level; 

the energetic centre of the occupied (ODOS) is found at energy of − 𝜍2 𝐾𝐵𝑇  from the 

centre of DOS as illustrated in figure 3-7. 
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Figure ‎3-7: Schematic diagram of Gaussian distribution of the energetic hopping sites, 

illustrating the hopping transport of an injected charge carriers at a higher state and its 

relaxation to the equilibrium state of the occupied density of states ODOS.
27

 

The Gaussian distribution formalism is the first key assumption of this model.  

The second one determine the jumping rate υi j between adjacent sites i and j of energy εi 

and εj respectively, and spatial separation Ri j using the Miller-Abrahams formalism
28

. 

This is the product of a frequency prefactor υo, the electronic wavefunction overlap 

factor and a Boltzmann factor for hopping upward in energy. 

                                 𝛖𝐢𝐣 = 𝒗𝒐𝐞𝐱𝐩 −𝟐𝛄𝐚
𝚫𝐑𝐢𝐣

𝐚
 𝐞𝐱𝐩 −

𝛆𝐣−𝛆𝐢

𝐤𝐁𝐓
 ;      𝛆𝐣 > 𝛆𝐢                        (‎3-11) 

where a is the average lattice distance or the localization length. γ is the charge 

carrier localization constant also known as the inverse wavefunction decay constant, 

with greater values corresponding to greater charge localization and a sharper decay of 

electron density with distance.  The overlap parameter Γ=2γa quantifies the degree of 

electronic coupling between transport sites due to wavefunction overlap. ∆𝑅𝑖𝑗 =

 𝑅𝑖 − 𝑅𝑗  . 

The last exponential is for the upward hopping which requires an activation 

energy to overcome the energy barrier between the sites.  However the downward 

hopping or hopping to the same energy have no need for activation energy even though 
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some energy needs to be released as phonons to reach the other site.  The relation 

becomes  

                                             𝛖𝐢𝐣 = 𝒗𝒐𝐞𝐱𝐩 −𝚪
𝚫𝐑𝐢𝐣

𝐚
  ;          𝛆𝐣 ≤ 𝛆𝐢                                     (‎3-12) 

 
Figure ‎3-8: hopping transition between two localized state i and j. 

3
 

For Monte Carlo simulations, the energetic and positional disorder is specified 

using the previous assumption, with the degree of the energetic disorder given by the 

parameter 𝜍 𝐾𝐵𝑇 . The positional disorder is given by considering the wavefunction 

overlap parameter Γ to be the sum of the contribution from each site, Γij= Γi+ Γj.  Each 

one can vary randomly in a Gaussian probability density of standard deviation 𝛿Γ.  The 

variation of Γ was based on the variation of a and γ.  The variance of Γij is considered as 

positional parameter 𝛴 =  2𝛿Γ 1 2  
24,20

. 

From the Monte Carlo simulation with zero applied field, it was found that the 

mobility dependence on the temperature is proportional to  (𝜍 𝐾𝐵𝑇) 2
 as shown in 

figure 3-9 and formulated as
24,20

 

                                             𝛍 𝐄 = 𝟎, 𝐓 = 𝛍𝐨 𝐞𝐱𝐩  −  
𝟐𝛔

𝟑𝐊𝐁𝐓
 

𝟐

                                       (‎3-13) 

where 𝜇𝑜 , the prefactor mobility, is the value of the zero field mobility projected 

to infinite temperature. 
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Figure ‎3-9: Simulation result for the dependence of the mobility on the energetic disorder 

parameter 𝝈 𝑲𝑩𝑻   where 𝐥𝐨𝐠⁡(𝝁)  is plotted versus 𝝈 𝑲𝑩𝑻   and (𝝈 𝑲𝑩𝑻 )𝟐 respectively 
20

 

The Monte Carlo simulation also shows that the electric field reduces the 

average barrier height for hopping to a higher energy site in the direction of the field. 

The effect of the field was examined using simulation by varying the degree of 

energetic disorder 𝜍 𝐾𝐵𝑇  and the positional disorder parameter Σ and monitoring the 

variation of the mobility with the field as shown in figure 3-10 and figure 3-11. 

 
Figure ‎3-10: : Simulation result for the dependence of the mobility on the electric field for 

different values of 𝝈 𝑲𝑩𝑻  and‎absence‎of‎‎Σ‎
20

 

Figure 3-10 shows the simulation result illustrating the dependence of the 

mobility on the field, the system is only subject to the variation of the energetic disorder 
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𝜍 𝐾𝐵𝑇  as the positional disorder is eliminated by assuming Σ = 0. Generally we can see 

three different effects on the graph, at low field the mobility is saturated, at high field it 

increases following Poole-Frenkel behaviour (𝑙𝑛 𝜇 𝛼 𝐸1 2 ), and the third one is the 

effect of decreasing the energetic disorder parameter to zero (𝜍 𝐾𝐵𝑇 → 0): the gradient 

of the mobility decreases to a point where it become negative. 

 
Figure ‎3-11: simulation result for the dependence of the mobility on the electric field for : 

(a) different values‎of‎Σ‎and‎absence‎of‎𝝈 𝑲𝑩𝑻 ,(b) both energetic and positional disorder 

with‎different‎values‎of‎Σ‎and‎fixed‎value‎for‎𝝈 𝑲𝑩𝑻 = 𝟑 20
 

The effect of removing energetic disorder by letting 𝜍 𝐾𝐵𝑇 = 0 and varying the 

positional disorder parameter Σ is shown in figure 3-11(a).  Over the entire range of the 

field the mobility decreases with an increase of field. 

Figure 3-11(b) shows a superimposed disorder variable, where the energetic 

disorder is 𝜍 𝐾𝐵𝑇 = 3, and the positional disorder parameter Σ increases from zero. In 

this case there are two notable regions in the graph, low and high field regions, each 

with different variations in slope.  Increasing the disorder parameter Σ decreases the 

slope in both regions until it becomes negative, in the high field region it becomes 

negative when 𝛴 > 𝜍 𝐾𝐵𝑇  while in the low field region it become negative for lower 
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values of Σ.  Following the Poole-Frenkel behaviour of ( 𝑙𝑛 𝜇 𝛼 𝛽𝐸1 2 ), the slope 

𝛽 = 𝜕 𝑙𝑛 𝜇 𝜕𝐸1 2   decreases with the increase of Σ. 

 The negative electric field dependence is explained by Bässler
24

: the increase of 

the positional disorder increases the fluctuations in the electronic coupling between the 

charge transport sites.  This fluctuation sometimes blocks some direct routes because of 

unfavourable coupling between the sites.  However, it also create  more options for 

faster routes with favourable coupling as shown in figure 3-12 where it is assumed that 

the electric field is in the A-D direction.  The carrier following the favourable loop at 

some time needs to hop against the field giving higher barriers with an increase of the 

field, and consequently lower mobility values.  

 
Figure ‎3-12: Schematic illustration of different route of charge carrier to follow under an 

influence of A-D direction electric field 
20

 

To obtain a formula relating the mobility to the temperature and the field µ(E,T) 

it is essential to know the dependence of the slope β  with 𝜍 𝐾𝐵𝑇  and Σ.  Therefore the 

simulation result of β versus (𝜍 𝐾𝐵𝑇) 2
 with variation of Σ is shown in figure 3-13.  The 

result is a set of near parallel straight lines of slope C. 
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Figure ‎3-13:‎The‎variation‎of‎the‎slope‎β‎versus‎(𝝈 𝑲𝑩𝑻) 𝟐

 for different values of the 

positional‎disorder‎Σ.
20

 

Incorporating the result in figure 3-13 and that in eq. 3-13 the mobility is 

expressed in terms of both the energetic and positional disorder parameters as 

            𝛍 𝐄, 𝐓 = 𝛍𝐨 𝐞𝐱𝐩  −  
𝟐𝛔𝐠

𝟑𝐊𝐁𝐓
 

𝟐

 𝐞𝐱𝐩  𝐂   
𝛔𝐠

𝐊𝐁𝐓
 

𝟐

− 𝚺𝟐  𝐄  ;      𝚺 ≥ 𝟏. 𝟓    (‎3-14) 

and 

          𝛍 𝐄, 𝐓 = 𝛍𝐨 𝐞𝐱𝐩  −  
𝟐𝛔𝐠

𝟑𝐊𝐁𝐓
 

𝟐

 𝐞𝐱𝐩  𝐂   
𝛔𝐠

𝐊𝐁𝐓
 

𝟐

− 𝟐. 𝟐𝟓  𝐄  ;      𝚺 < 1.5   (‎3-15) 

Where 𝜍𝑔  were used instead of 𝜍 to distinguished of 𝜍𝑑  in the next section.  C is 

an empirical constant, which is expected to be dependent on the intersite hopping 

distance.  Based on eq. 3-14 and eq. 3-15 the mobility and temperature dependence data 

can be used to determine the disorder parameters of ζg , µo, Σ, and C.  We discuss how 

this is done for one of our compounds in section 3.6.3.4. 

3.4.4. Correlated Disorder Model (CDM) 

As mentioned before the GDM model is the most important and comprehensive 

model to explain the charge transport in organic materials.  However, it is not entirely 
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accurate in accounting for all experimental data.  For example it predicts a Poole-

Frenkel dependence of the charge carrier mobility at only high electric field, higher than 

3x10
5
 V/cm, while the experimental data show this behaviour down to electric field 

lower than 10
5
V/cm

25,29,23,30
.  Gartstein and Conwell argued in 1994 that the limitation 

of the GDM model came from the assumption that the energy sites are distributed 

independently with no correlations occurring over any length scales.  They introduced a 

correlation between the energies of positionally close sites.  For example this correlation 

can originate from a permanent charge dipole interaction with the spatially close sites.  

Based on the correlated media assumption, Novikov et al.
30,31

 proposed the following 

empirical relation for the mobility dependence on the electric field and temperature.  

               𝛍 𝐄, 𝐓 = 𝛍𝐨 𝐞𝐱𝐩  −  
𝟑𝛔𝐝

𝟓𝐊𝐁𝐓
 

𝟐

 𝐞𝐱𝐩  𝐂   
𝛔𝐝

𝐊𝐁𝐓
 

𝟑 𝟐 

− 𝚪  
𝐞𝐑𝐄

𝛔𝐝
                     (‎3-16) 

where 𝜇𝑜  is the same as in GDM model and extracted in the same way. 𝜍𝑑  is the 

DOS width caused by the randomly positioned permanents dipoles. C was found to be 

0.78 according to the Monte Carlo simulation by Novikov et al. assuming Γ to be 2.  Γ 

characterizes the geometry disorder and depends on the transport site concentrations.  A 

new term is introduced in CDM which is the intersite distance R.  The extraction of the 

parameters is similar to the GDM model. 

3.5. Mobility Measurement Technique (Time of Flight) 

A number of experimental techniques has been developed to measure the charge 

carriers mobility, which can be divided in two groups
1,32,33

, the electric transport 

methods such as time of flight (TOF), the space-charge-limited-current (SCLC), the 

field effect transistor (FET), the surface acoustic-electric travelling wave (SAW). The 

second group is the magnetic interaction methods such as Hall effect, magneto-

resistance, and cyclotron resonance. Some of these techniques provide mobility data 
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directly while others indirectly. These different techniques also provide different 

mobility results for the same material as a result of operating in different conditions 

such as the different carrier density, and the measurement direction.  Therefore not all of 

these methods reflect the true intrinsic mobility. 
 

3.5.1. Introduction 

The time of flight (TOF) is a standard method for measuring the carrier mobility 

in materials with long dielectric relaxation times such as organic materials. It can be 

considered as the most conventional and successful experimental method for 

determining the mobility and studying charge transport phenomena. This technique has 

been developed and successfully applied to a wide range of crystalline and amorphous 

solids during the 1950s and 1960s. Kepler and LeBlanc were the first to apply this 

technique to organic materials in 1960.
34,35,20

 

3.5.2. The Experiment Structure Terms and Conditions  

The typical arrangement of the photocurrent TOF experiment is illustrated 

schematically in figure 3-14. Briefly, the principle of time of flight is based on applying 

a bias voltage to a sample sandwiched between two plate electrodes to get a uniform 

electric field, injecting charge carriers by photoexcitation which drift across the sample 

in a period of time known as transient time ttr which can be measured from the extracted 

current in the external circuit.
3,35,20 
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Figure ‎3-14: A typical experiment setup for TOF technique. 
 

A sample of thickness d is placed between two electrodes; at least one of them 

needs to be semi-transparent for photoinjection. This is called the injection electrode, 

and the other one is the collecting or counter electrode. If a constant potential difference 

V is applied between the two electrodes they act as a parallel plate capacitor, where the 

charge Q builds up on the electrodes giving a capacitance of  

                                                                      𝐂 =
𝐐

𝐕
=

𝛆𝛆𝐨𝐀

𝐝
                                                       (‎3-17) 

At this point and before the photoinjection using the pulse laser; the charge on 

each electrode is equal and opposite sign 𝑄𝑖 = −𝑄𝑐  creating a uniform electric field E 

between them of  

                                                                              𝐄 =
𝐕

𝐝
                                                            (‎3-18) 

A sheet of charge carriers pairs is generated near the surface of the transparent 

electrode using a strongly absorbed pulse laser with short pulse duration tpuls, which 
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should be much shorter than the carrier transit time (tpuls << ttr) to ensure that all the 

transit occurs after the duration of the pulse.  Also the laser wavelength is selected to 

ensure that light is absorbed in a thickness δ, which known as the penetration depth, 

much less than the sample thickness d (δ << d).  This guarantees that most of the charge 

carriers are generated close to the surface of the injection electrode and migrate across 

the sample freely. 

 The total photoinjected minority charge carriers, q, need to be much smaller 

than the capacitance charge of the sample, so q << Q.  This condition is to keep a 

uniform electric field strength across the film, free from the effect of the injected charge.  

Violating this condition makes the electric field non-uniform and influenced by the 

space-charge.  Also the transit of the drift current tail can become longer because of the 

attenuation of the travelling charge by the repulsion of the same charge causing an error 

in the transient time Δt as 
36,37,4

 

                                                                      
∆𝐭

𝐭𝐭𝐫
=

𝐪

𝐂𝐕
                                                                 (‎3-19) 

Under the influence of the applied electric field the generated electron-hole pairs 

split from each other, and according to the polarity of the electrodes, either electrons or 

holes are extracted immediately by reaching the exposed electrode.  The opposite 

charge carrier drifts through the sample to the opposite electrode.  As the carriers cross 

the sample to the counter electrode they generate a displacement current in the external 

circuit which can be recorded via a small resistance R in the external circuit. The time 

constant RC associated with the resistance R and the capacitance C is required to be 

much less than the transit time (RC<< ttr), which ensures the voltage source keeps the 

field across the sample constant and the drifting carrier sheet induces a constant current 

I(t) in the external circuit.  This mode is known as current (differential) mode
37,20

.  In 
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the case of RC > ttr the mode is known as voltage (integration) mode which will not be 

discussed as it is not part of our work. 

3.5.3. Transient Current and Transient Time  

In the ideal case where the charge carriers are assumed to move within the 

material with no distortion, the sheet of photoexited charge carrier pairs (+𝑞 − 𝑞) is 

generated within an infinitesimal time close to the injecting electrode.  Each pair of 

charge carriers splits into its components under the influence of the applied electric field 

E.  The photocarriers with an opposite charge to the injection electrode are extracted 

immediately changing the injection electrode charge from Qi to 𝑄𝑖 − 𝑞.  The charge 

carriers of same sign as the injection electrode drift as a sheet moving together towards 

the counter electrode under the influence of the uniform electric field E with a constant 

drift velocity 𝑣𝑑  until it reach the counter electrode at the time ttr so  

                                                                        𝐯𝐝 =
𝐝

𝐭𝐭𝐫
                                                               (‎3-20) 

The charge of the electrodes changes with time.  At the injection time (𝑡 = 0) 

the charge at the injection electrode is  𝑄𝑖 − 𝑞  and at the counter electrode is 𝑄𝑐 .  

Within the period between 𝑡 = 0  to 𝑡 = 𝑡𝑡𝑟  the two electrodes try to reach the 

equilibrium so the charges move gradually in the external circuit between them creating 

a constant current I which has a flat plateau shape on the current time graph ( 
𝑑𝐼

𝑑𝑡
= 0) 

and in the same time, the charge within the sample also moves to the counter electrode. 

At 𝑡 = 𝑡𝑡𝑟  the charges have completely moved; the charges on the injection electrode 

and counter electrode change to 𝑄𝑖  and 𝑄𝑐 + 𝑞  respectively.  When the charge sheet 

within the sample reaches the counter electrode, the oppositely charged carriers meet 

and recombine, so the current drops immediately to zero as shown in figure 3-15(a).  
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Therefore the transit time ttr is considered as the time matching to the offset of the 

current. 

 
Figure ‎3-15  The transient current shape measured with TOF, where (a) is the ideal 

transient showing its transient time ttr ; (b-e)  transients deviated from  the ideal shape as a 

result of the dispersivity of the material. 

Using eq.(3-4), eq.(3-18) and eq.(3-20) we can relate the mobility µ to the transit 

time as 

                                                                             𝛍 =
𝐝𝟐

𝐕.𝐭𝐭𝐫
                                                        (‎3-21) 

The ideal case and the cases where we still observe the constant current 

characteristic plateau with a sharp drop in current representing the transit time ttr are 

considered as non-dispersive transients as shown in figure 3-15(a,b) in this case the 

carrier moves with more or less constant drift velocity 𝑣𝑑  across the sample
25

. 

As the disorder of the material increases by the presence of defect sources as 

explained in section (3-3-2), the constant current plateau begins to disappear and the 

photocurrent tail broadens gradually as a function of the disorder resembling the 

exponential decay in the case of strong dispersion of the sample. There is no clear offset 

marking the transit time. Therefore, ttr can only be determined by plotting the time 
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variation of the photocurrent in a double logarithmic representation, the inflection point 

of the graph is an indication of the first arrival time of the carrier packet at the counter 

electrode.  The transit time is measured by the intersection of the asymptotes of the 

straight lines before and after the inflection point as shown in figure 3-16. 

 
Figure ‎3-16: (a) The linear plot , (b) Double logarithmic plot showing the ttr measurement 

of the dispersive photocurrent of compound 2. 

3.5.4. Sample Preparation  

Two types of samples were used for TOF: L.C. cells and spin coated thin films.    

The result of the two methods is different because of the different processing of the 

materials as it going to be shown in section 3.6.1. 

3.5.4.1. Cells Method  

3.5.4.1.1. Cell Preparation 

Each cell consists of two (12x12mm) glass-ITO substrates.  The ITO was etched 

using an acid etching technique to have an electrode of specific shape and small area as 

shown in figure 3-17.  The electrodes have circular shape which is easily overlapped 

and to reduce the area of the electrodes in order to lower the RC time constant by 

reducing the capacitance (C) of the cell. The substrate surface is treated with plasma and 

cleaned before and after using detergent, water, acetone and Isopropanol. 
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Two substrates were glued together face to face with the two circular electrodes 

overlapping. The UV curable glue is mixed with spherical spacers of specific diameters 

(2, 3, 7µm). About one percent by volume of spacer to the glue was used in the mixture. 

If larger amounts of the spacers are used, the cell thickness between the two electrodes 

becomes uneven due to the possibility of double spacers. A very small amount of well 

mixed glue was applied to three sides of one glass-ITO substrate using a thin cleaned 

metal wire with a fine tip.  The other substrate was gently rested on the glue as shown in 

figure 3-17. 

 
Figure ‎3-17:  The cell Preparation process 

The two substrates were held together at each side using metal clips, and then 

exposed to UV lamp for 15 minutes on each side of the cell. Glue was then used to seal 

the three sides of the cell perfectly, leaving one side open for the tilling. 

3.5.4.1.2. Measuring the gap thickness of the cell 

A normal cell consists of glass-ITO-air-ITO-glass.  However for calculation of 

the cell’s gap we simplify this to be glass-air-glass as experiments have shown the 

difference in values obtained are within the measuring error confidence band.  We used 

a simple white light interferometric method to obtain the cell gap (ITO to ITO). The 

light from a halogen lamp is coupled into one branch of a bifurcated, mixed optical fibre 
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bundle, the composite end of which is positioned on top of and perpendicular to the cell.  

Light reflected from the cell is detected by an Ocean Optics spectrometer connected to 

the other branch of the fibre. Interference occurs between the two rays reflected from 

the upper glass-air interface and the lower air-glass interface of the cell gap illustrated in 

figure 3-18. Over the range of cells measured, the optical path difference is less than the 

coherence length of the white light source so a distinct interference pattern is observed. 

Rays C and D make no contribution as they are spatially incoherent due to relatively 

thick glass used in the cell (~1mm). 

 
Figure ‎3-18   Ray diagram of incident and reflected light from a cell. 

The cell gap can be obtained by calculation based on the periodicity of the 

wavelengths corresponding to maxima in reflected intensity. For a given peak A 

                                                                     𝐧𝛌𝐧 = 𝟐𝐧𝐨𝐝                                                        (‎3-22) 

where n is a positive integer, no is the refractive index of the air or any material 

filled in the gap, d is the thickness of the cell gap, λ is the wavelength of the light in 

vacuum.  The m
th

 adjacent peak from peak A has wavelength λm+n (λm+n<λn) which 

given as  

                                                          𝐦 + 𝐧 𝛌𝐦+𝐧 = 𝟐𝐧𝐨𝐝                                                 (‎3-23) 

Therefore 
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𝐦

𝟐𝐧𝐨𝐝
=

𝟏

𝛌𝐦+𝐧
−

𝟏

𝛌𝐧
                                                   (‎3-24) 

 
Figure ‎3-19   Typical interference patterns observed from the Ocean Optics. 

Since the peak A at λn, can be chosen arbitrarily in an interference pattern, a 

programme is written to take the average value of d calculation using different peaks as 

starting points until all peaks are being considered. The program is written in Labtalk 

programming language under Origin 6.0. This method assumes that the variations of the 

Ocean Optics detector response with wavelength is insignificant compared with the 

variation of intensity of the fringes. A correction for these effects was made which 

confirmed that they are insignificant. Gordon Sowersby is thanked for writing the 

program. 

3.5.4.1.3. The Cell Filling  

The cell is placed on top of a controllable hot stage inside a vacuum chamber 

and the desired filling material is placed next to the opening of the cell. The chamber is 

evacuated and then flushed with nitrogen gas several times to ensure the nitrogen 

environment inside the chamber.  It is finally evacuated to a pressure less than 0.1 torr. 

The temperature is elevated above the clearing point of the material which then 
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becomes an isotropic liquid. The material spreads throughout the opening gap of the cell 

and flows into the cell under the influence of the capillary effect. After the material has 

filled at least one fifth of the cell, the vacuum chamber is flushed with nitrogen gas 

which provides pressure to completely fill the cell. The heater is turned off allowing it 

to cool down to room temperature at a material dependent rate. Any remaining 

compound is removed from the opening mechanically, and then carefully with an 

organic solvent to ensure the ITO is clean for contact. At this stage the sample is ready 

for the measurement using a special chamber with controllable hot stage and suitable 

contacts.   

3.5.4.2. Spin coating method 

3.5.4.2.1. Substrate preparation  

Generally ITO coated glass (12x12mm, 13/) was used as the substrate. The 

substrates were cleaned following the general cleaning procedures mentioned elsewhere 

before acid etching, after acid etching, and after plasma treatment. Acid etching was 

done to remove about 2mm width from the ITO on the one side of the substrate in order 

to prevent short circuiting the device between the top aluminium electrode and the 

bottom ITO electrode.  It also reduces the sample capacitance C via reducing the 

overlapping area of the electrodes as shown in figure 4-20.  
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Figure ‎3-20: Photograph of a sample used for TOF measurement and drawing of the 

substrate showing the ITO on the glass. 

3.5.4.2.2. Challenge and Development of Making Thick Film  

A spin coating technique was developed to prepare samples because of the 

limitation of the cell technique, e.g. the components of blended samples do not fill the 

cell uniformly. Mobility measurements using TOF technique require samples of 

thickness larger than 1µm to fulfil the conditions of section 3.5.2 and to insure that the 

photocurrent is not created in the bulk of the sample. Therefore, the aim of this work 

was to obtain a thick film of ED and EA materials with a uniform smooth surface using 

the spin coating technique.  Some challenges needed to be overcome.  The film 

thickness was controlled with parameters such as the solution concentration, spin speed, 

and the evaporation speed which need to be balanced to get the optimum condition. 

Firstly, a drop cast technique was used.  The material was dissolved to a specific 

concentration in toluene and dropped on the substrate, leaving the solvent to evaporate. 

This is a good way to obtain a thick film.  However the roughness of the film is very 

high, and was found to depend on the solvent evaporation rate of the sample controlled 

by fixing the temperature of the substrate. A wide range of substrate temperatures were 

used [110
 o
C, 100

o
C, 90

 o
C, 70

 o
C, 50

 o
C, 30 

o
C, RT] to control the evaporation rate. The 

roughness and uniformity of the film improved as the evaporation rate decreased 

(temperature go down). However, the film was still rough with room temperature 
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solvent evaporation. Figure 3-21 shows an example of the surface profile for (50mg/ml) 

concentration of compound 2 in toluene and 70 
o
C evaporation temperatures obtained 

using the white light interferometer.  The thickness of the film is 6.7 µm ±1.5 µm, and 

the surface is very rough with roughness RMS (Rq) of about 295nm. 

 
Figure ‎3-21: A white light interferometer surface profiling for thick film of compound 2 

solvent evaporation was at 70
o
C. 

The concentration and the quantity of the drop cast solution was used to control 

the thickness of the film. The film become thicker as the concentration and quantity of 

the solution increases which is expected, however the surface remained rough. 

Spin coating technique is the best way to produce smooth and uniform film, but 

the limitation of this technique is the film thickness is limited.  The thickness increases 

with the decrease of the spin speed as shown in figure 3-22, up to a limit where the film 

roughness deteriorates as the spin speed goes down  
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Figure ‎3-22: The film thickness of 17.5 mg/ml of compound 3 in toluene as function of the 

spin speed  

Thicker films can be obtained using a higher solution concentration with the 

appropriate spin speed as shown in figure 3-23.  Both films were spin coated from a 

toluene solution at a spin speed of 1000 rpm for 30s.  The film thickness increased by a 

factor of ~2.3 to be 0.8 µm with doubling the concentration to 100mg/ml. 

 
Figure ‎3-23: The effect of the solution concentration on the film thickness of compound 6 

dissolved in toluene. 

Increasing the concentration of the film is limited by the consumption of the 

material and the blocking of the filter.  To overcome these constraints we increased the 

concentration of the solution by having a time period, the evaporation time, between the 

pouring of the solution onto the substrate and the spinning of it.  There are two main 
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advantages of having an evaporation time.  The first one is that the concentration of the 

solution is increased which leads to an increase of the thickness up to 4 µm as shown in 

table 3-1 and figure 3-24.  Secondly the film morphology is improved by giving the 

molecules longer time to arrange freely on the substrate 

Table ‎3-1:  The effect of the evaporation time on the solution concentration and 

consequently the film thickness of compound 2 in toluene. 

sample 

Material 

quantity 

(mg) 

Solvent 

quantity 

(ml) 

Solution 

initial 

concentration 

(mg/ml) 

Evaporation 

time 

(min) 

Spin 

speed 

(rpm) 

Film 

thickness 

(µm) 

1 15 0.1 100 0 1000 0.8 

2 15 0.1 150 4 1000 1.7 

3 20 0.1 200 3 1000 2 

4 20 0.1 200 8 1000 4 

 

However with these improvements of the film thickness some problems still 

need to be solved. First of all too much material (20mg) is still used.  The filter gets 

blocked because of the high concentration. The evaporation speed is fast so that 

materials accumulate around the substrate. Finally the dust falls on the material from the 

surrounding environment during the evaporation period which can be seen in figure 3-

24 as black spots.  

 
Figure ‎3-24: Surface profiling of thin film of 2 with a scratch marks to find its thickness of 

1.05µm over 4mm, showing the uniformity of the film surface with some dust effects. 



 129 

The sample was covered after pouring the solution on the substrate using a 

suitable sized beaker as shown in figure 3-25 to protect the sample and to make the 

environment solvent rich which slowed down the solvent evaporation, and so extended 

the evaporation time up to 45minutes.  During this period the whole stage with the 

sample was tilted gently from time to time in each direction as illustrated to keep 

moving the solution on the substrate which prevented the accumulation of the material 

on the sides of the substrate  

 
Figure ‎3-25:  Drawing of spin coating stage showing the sample with the glass beaker 

cover. 

In conclusion the conditions of making thick film vary slightly according to the 

physical property of the material, the substrate size, and the condition around the sample 

during the evaporation time.  For optimum conditions, the solution concentration was 

about 10-20mg of the material - dependent on the material properties - dissolved in 

0.2ml organic solvent, mostly toluene. The solution was dissolved very well and poured 

through a 0.2 µm filter onto the substrate on the spin coater stage, then covered by 

250ml glass beaker for around 30 minutes, the spin speed was at 900rpm for 30s and 

acceleration of 590 r/m
2
. The sample was kept under high vacuum over night to get rid 

of the trapped solvent. Because of the softness of the organic material, it is not 

recommended to dry a thick sample via annealing as the top surface becomes rough. 
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3.5.4.2.3. Deposition of to electrode 

  The spin-coated sample was then mounted above a shadow mask of two 

electrodes as shown in figure 3-20, inside the vacuum chamber (<10
-5

mbar) for vapour 

deposition of the top electrodes. About 180nm thick Al was thermally evaporated onto 

the sample.  All the sample fabrication was done in a nitrogen glovebox. 

3.5.4.2.4. Measuring the film thickness 

For the surface study and film thickness measurements the white light 

interferometer (Wyko NT1100) was used.  A measurement sample is illustrated in 

figure 3-26. The instrument is a non-contact optical profiler, which uses two 

technologies to measure a wide range of surface heights.  The phase-shift interferometry 

(PSI) mode is used to measure a smooth surface and small steps.  The vertical scanning 

interferometry (VSI) mode measures rough surfaces and high steps up to several 

millimetres. 

 
Figure ‎3-26:  (a) A 3D white light interferometric profile of a thin film of compound 2 with 

a scratch mark to find its thickness of 3.2µm, (b) The positions of the various scratches 

around the electrodes, and (c) 2d profile of the scratch. 

The sample was scratched several times around each electrode using a very fine 

needle as shown in figure 3-26(b). The measurements were averaged to find the mean 

and the standard error, which give an indication about the smoothness of the film 

around each electrode. 
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3.5.5. Experiment Setup 

The instrumentation of TOF experiment is shown in figure 3-27 and consists of 

different instruments for different jobs. 

 
Figure ‎3-27: (i) photograph of the chamber showing the sample position on the hot stage. 

(ii) schematic diagram of the TOF experiment instrumentations showing the chamber (a), 

the computer with controlling program (b), the temperature controller (c), the function 

generator(d1), the amplifier (d2), the Nitrogen UV pulsed laser (e1), the laser beam 

alignment system of lens, neutral density filters and mirror (e2,e3,e4), the oscilloscope (f1), 

the avalanche photodiode (f2), the load resistance (f3). 

A gas tight chamber (a) contains a heating stage with sample mount and 

positionable electrode contacts as shown in the image figure 3-27(i).  A sample can be 

placed in the chamber either in an N2 environment such as a glove-box or in a normal 

atmosphere then flushed out and filled with an inert gas via the two inlet/outlet pipes.  A 

computer (b) with a Labview program controls the instrument and logs the data.  The 

Linkam TP4 temperature controller (c) is used to set the temperature of the sample stage.  

A bias voltage controller consists of a waveform generator-Agilent 33120A (d1) and an 

amplifier (d2).  A Laser Science Inc. VSL-337ND Nitrogen laser (e1) delivers a short 

pulse of 337nm wavelength and 6ns pulse duration. Lenses (e2) focus and steer the laser 

beam, whose intensity is controlled by (e3) neutral density filters.  A mirror (e4) directs 

the laser beam onto the sample through a 0.049 cm
2
 hole in the heating stage.  The 

Tektronix TDS2012oscilloscope (f1) is connected to the sample via a switched load 
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resistance and is triggered by an avalanche photodiode (APD) (f2) which is positioned 

to intercept some of the reflected laser beam. This trigger arrangement overcomes the 

uncertainty of the time lapse between the laser receiving a firing pulse and actually 

lasing. 

Running the Labview program causes the following sequence of events to occur.  

The sample is first raised to the starting temperature after which the waveform 

generator-amplifier combination produces a number of positive bias voltage pulses 

which are applied to the sample.  A firing pulse is also sent to the laser after a delay for 

the voltage across the sample to stabilize. The laser then fires and triggers the 

oscilloscope which collects and averages the current waveforms generated by the 

sample. This data is then stored on the computer and the pulse sequence is repeated with 

negative going pulse.  For variable temperature scans the whole sequence is repeated 

with fixed temperature increments or decrements until the final temperature is achieved. 

Variable voltage fixed temperature scans are made in the same manner with the voltage 

changing between scan cycles.  Provision is made for automatic or fixed setting of the 

oscilloscope vertical gain and also for the degree of signal averaging. Gordon Sowersby 

is thanked for setting up the control software. 

3.6. Results and Discussion 

3.6.1. Comparison of ToF Sample Preparation Methods 

Two types of samples were used for TOF; L.C. cells and spin coated thin films 

as mentioned in section 3.5.4.  The former one is recommended for the study of the 

single materials over the transition temperature range to show the variation of the 

mobility with temperature at the different phases.  The second one is suggested for 

studying the materials in the same processing conditions of the devices which is not 

achievable with the other method such as the study of blend materials. 
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Figure ‎3-28: Hole mobility of compound 3 as function of electric field at room temperature 

using different sample preparation methods. 

Figure 3-28 shows the room temperature mobility of samples of compound 3, 

which were prepared using the two different preparation methods. The hole mobility 

using the cell configuration is significantly higher relative to the spin casting method, 

for example, at applied electric field of 1.1x10
5
 V/cm the mobility is 2.3x10

-3
 cm

2
 V

-1
s 

for cell method while for the spin casting it is 3.1x10
-4

 cm
2
 V

-1
s, which is about 7.5 

times lower.  This variation can be related to molecular order of the two samples; in the 

cell the sample is slowly cooled from the isotropic phase so it is more ordered than the 

spin cast sample which was not annealed to avoid thickness fluctuations
38

. 

The remaining samples discussed in this chapter use spin-cast method because 

of the need to have similar preparation methods for the mobility measurement and 

devices, and the difficulties of making well aligned cells. 



 134 

3.6.2.  Perylene Bisimide Derivatives as Electron Acceptor Materials 

3.6.2.1. Introduction and Experimental Condition
39,40,41,42,43,44,,45,46,47,48,49,50

 

One of the aims in the development of organic photonics and electronics is to 

meet the need for efficient n-type organic semiconductors i.e. electron acceptors 

characterized with high electron mobility and at the same time high electron affinity. 

These will lead to high efficiency devices such as OFETs, OLEDs and OPVs. 

Perylene bisimide is one of the best known n-type organic semiconductors to 

date
39-43

.  It exhibits excellent optical and electrochemical properties as shown in 

chapter two, together with outstanding chemical and photochemical stability. In 

addition some of Perylene bisimide derivatives show high electron mobility more than 

0.1 cm
2
 V

-1 
s

-1 44-51
.  In the search for a new n-type organic semiconductors with good 

electronic properties and solution processability the chemistry branch of 

Organophotonics group in Hull university synthesized some novel Perylene bisimide 

derivatives with different functional groups linked at the two side imide group as 

illustrated in the previous chapter, it was hoped some of these compounds 9, 10, 11, 12, 

13, 14, 15, 16 would be liquid crystalline aiming to improve the electron mobility.
 
 

In this section we study the charge transport mobility of these compounds 

aiming to correlate this result with the optical and electrochemical studies of chapter 

two to determine the usefulness of those derivatives as n-type semiconductor for use as 

electron acceptors for the organic solar cells which that will be discussed in the next 

chapters. 

The TOF samples of these materials were prepared using the solution processing 

technique because of the difficulty in filling the cells due to the material characteristics.  

Depending on the chemical properties of the material we used different solvents, solvent 

quantities, material weight, and evaporation time as shown in table 3-2.  
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Table ‎3-2: The solution processing parameters and the film thickness of compounds 9, 11, 

13, 15 and 16. 

compound solvent 

Solvent 

quantity 

(ml) 

Material 

quantity 

(mg) 

Evaporation 

time 

(min) 

Film 

thickness 

(µm) 

9 toluene 0.15 11 25 0.9 

11 toluene/chloroform 0.2/0.1 17 10 1.3 

13 toluene 0.2 18 26 1.27 

15 toluene 0.2 18 20 1.55 

16 toluene/chloroform 0.1/0.1 17.6 10 1.87 

 

For example we use toluene for compounds 9, 13 and 15 while for compounds 

11 and 16 mixtures of toluene and chloroform were used with different ratios. Each 

solvent in the mixture is important to do a specific job.  Toluene does not dissolve the 

compound very well but the chloroform does.  However chloroform evaporates at a fast 

rate because of its low boiling point, so that toluene extends the evaporation time which 

is required for this technique. The amount of material used for each sample determines 

the sample thickness, as illustrated in the table 3-2.  The quantity of compound 9 is 

small compared to the others because 18 mg of the material was originally used to make 

a film of reasonable thickness (~2.5µm) but resulted in the film having a number of 

cracks as shown in figure 3-29.  Decreasing the quantity of the material helped create a 

thinner film with no cracks.  

      
Figure ‎3-29: The cracks of compound 9 film as a result of the thickness of the film. 



 136 

3.6.2.2. Applied Electric Field Mobility Dependence at Room Temperature  

The perylene bisimide derivatives possess bipolar charge transport properties, 

which show transient photocurrents for electrons and holes as illustrated in figure 3-30 

for compound 9 and appendix B for 11, 13, 15 and 16.  Compound 12 was very 

dispersive and there was no sign of the inflection to indicate the transit time. 

  

 
Figure ‎3-30: TOF photocurrent transients for a solution processed sample of compound 9 

at room temperature with various applied electric field and fixed laser intensity, showing 

the variation of the transit time with applied electric field, where (a) is the electron 

photocurrent transient photocurrent, (b) the hole photocurrent transient photocurrent, (c) 

gives the hole photocurrent transient at applied electric field of 6.9 x10
5
 V/cm showing the 

transit time measurements. 

Figure 3-30(a,b) shows the electron and hole photocurrents of compound 9 at 

room temperature showing the variation of the photocurrent amplitude and  transit time 
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of both holes and electrons with applied electric field.  Figure 3-30(c) shows an example 

of the double logarithmic transit time measurements of compound 9 at an applied field 

of 6.9 x10
5
 V/cm. 

 
Figure ‎3-31: The variation of the electron and hole mobility as a function of the applied 

electric field at room temperature. 

Figure 3-31 shows plots of the mobility versus the applied electric field for both 

electron and hole charge carriers for 9,11,13,15, and 16 at room temperature.  The 

variation of the electron and hole mobility with the applied electric field is different 

from one compound to another. The electron mobility of all compounds but one 

decreases with increased applied electric field.  The hole mobility increases for 

compounds 9 and 11.  However for compound 15 the situation for both carriers is 

reversed, while for compounds 13 and 16 both electron and hole mobility decreases.  

The negative electric field dependence is explained in section 3.4.3 and occurs when the 

carrier following the favourable looped route at some time needs to hop against the field 

giving higher activation barriers with an increase of the field.  

In the organic solar cell the EA material needs to be hole blocking and electron 

transporting, so we might expect that the electron mobility should be much higher than 
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the hole mobility. The electron mobility is higher than the hole mobility for compound 9, 

15 and 16.  Compound 13 is ambipolar with almost equal electron and hole mobility, 

with hole transport probably occurring from the phenyl bifluorene groups on either side 

of the perylene.  Compound 11 has two phenyl groups with a fluorene at both ends on 

the perylene and has a much higher hole mobility than the electron mobility. 

 
Figure ‎3-32: The relation between the electron/hole mobility ratio and the applied electric 

field. 

Figure 3-32 shows the ratio of the electron mobility to the hole mobility (µe/µh) 

as a function of the applied electric field, which shows a very low variation for 

compounds 11 and 13.  The ratio increases with the increase of field for compounds 15 

and 16, while for compound 9 it showed an increase with a decrease of the field, which 

is an indication that this material is more efficient as n-type at low applied electric field 

– the range of the built in electric field of a photovoltaic (10
4
-10

5
V/cm)

52
.  16 also has a 

high ratio in the measurement range and so may also be a good candidate for the EA in 

a PV device. 



 139 

3.6.2.3. Temperature Mobility Dependence with Fixed Applied Electric Field 

  
Figure ‎3-33: TOF transient photocurrent of compound 9 measured in 0.91µm thickness 

sample at different temperature and fixed applied electric field of 5.5x10
5
 V/cm,(a) 

electron photocurrent, (b) hole photocurrent. 

Figure 3-33 shows the TOF photocurrent transients for a 0.9 µm thickness 

sample of compound 9 at a fixed applied electric field of 5.5x10
5
 V/cm and variable 

temperature for both electrons and holes.  The photocurrent curves show clear 

temperature dependence with some variation between the electron and hole transients.  

The dispersion of the curve increases as the temperature goes down and it becomes 

more noisy, which indicates an increase in trapping because of the reduction in thermal 

energy.  Also the temperature has a strong effect on the transit time, the electron and 

hole transit times increase from 4.34x10
-5

s to 1.57x10
-4

s and from 1.42x10
-4

s to 

5.76x10
-4

s as the temperature reduce from 298 K to 243K respectively. 
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Figure ‎3-34: Temperature dependence of electron and hole mobility at fixed electric field 

of 5.5x10
5
 V/cm. 

Figure 3-34 shows the plot of the logarithm of the mobility versus the inverse 

temperature at fixed applied electric fields, where the lines indicate the best linear fit of 

the data. Following the Poole Frenkel model in section 3.4.1 the activation energy of the 

electrons and holes at the used applied electric field are 150 meV and 153 meV 

respectively. There is insufficient data for the more complete analysis discussed in 

section  3.6.3.3. 

3.6.3. Liquid Crystals as Hole Transporting Materials 

3.6.3.1. Introduction and Experimental Condition 

The charge carrier mobility of the amorphous material is limited by molecular 

disorder to be in the order of 10
-3

 cm
2
V

-1
S

-1
 or less

53,54
, which has a large influence on 

the organic devices performance. The discovery of the conjugated discotic and calamitic 

liquid crystal conductivity in 1993 and 1995 respectively helps to overcome this 

limitation with self-molecular alignment improving the mobility to be larger than 10
-3

 

cm
2
V

-1
s

-1
 up to 0.1 cm

2
V

-1
s

-1 55
. 
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Liquid crystal mesophases provide large self organized domains with highly 

ordered and close packed structures, which improve the intermolecular π orbitals 

overlapping, and support the hopping mechanism of the charge carrier between the 

closely spaced molecules (hopping sites). However the liquid crystals mesophases 

usually occur above room temperature.  On cooling down to room temperature the large 

organized domains fragment to small polycrystalline domains separated by grain 

boundaries, which increase the charge trapping and attenuate the charge carrier mobility. 

To retain the liquid crystals mesophase properties at room temperature reactive 

mesogens have been introduced
53,54,56

. These contain aromatic cores with 

semiconducting properties attached to two photoreactive polymerizable end groups via 

aliphatic spacers. The irradiation of thin films materials with UV light at the mesophase 

temperature cross-links the mesogens to form an insoluble crosslinked polymer network, 

which retains the molecular alignment on cooling. Some semiconducting reactive 

mesogens are nematic at room temperature.  Other form nematic glasses on cooling 

from the nematic phase and can be cross-linked at room temperature.  Smectic reactive 

mesogens have also been studied
53, 55

. 

The aim of this work is to study the effect of the reactive end groups with spacer 

on the charge carrier mobility, which show the dependence of the charge transport on 

the intermolecular separation. Compounds 1, 2, 3 and 4 are nematic glasses at room 

temperature with the same aromatic core but with different end groups as shown in table 

2-1.  Compound 1 has a methoxy end group, compound 2  has an alkoxy end group (-

OC8H17), compound 3  and 4 have C10 alkoxy chain separating the aromatic core from 

the reactive end group, which is respectively a photoreactive diene-ester, and a 

photoreactive methyl methacrylate.  Both of these can be photochemically polymerized 

to form a LC polymer network.  These compounds show promising physical properties 
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as donor materials for solar cells according to the cyclic voltammetry results in chapter 

two, as well as good chemical properties such as a good solubility in different organic 

solvents.  

Table ‎3-3: The solution processing parameters and the film thickness of compounds 1,2,3,4. 

compounds solvent 

Solvent 

quantity 

(ml) 

Material 

quantity 

(mg) 

Film 

thickness 

(µm) 

1 toluene 0.15 15.3 3.67 

2 toluene 0.2 16.3 1.5 

3 toluene 0.15 20.3 3.75 

4 toluene 0.15 12.5 1.69 

 

The TOF samples of these materials were prepared using solution processing, 

where the processing conditions for each sample is illustrated in table 3-3. The common 

conditions for all these samples were the spin speed, acceleration, and time equal to 

900rpm, 590 r/min
2
 and 35s respectively.  The evaporation time, the time between the 

pouring of the material on top of the substrate until starting the spin, is a key parameter 

because it is possible that the molecules arrange themselves in an efficient order 

because of the free movement in solution process for reasonable long time. The 

evaporation time varies from several minutes up to 40 minutes based on the surrounding 

environment such as the temperature. 

3.6.3.2. Applied Electric Field Dependence at Room Temperature 

Only hole transport was investigated for all these four compounds, because the 

electron photocurrent is suppressed, and seems to quench immediately after the 

photoexcitation, probably because of trapping
54

.  
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Figure ‎3-35: TOF hole transient photocurrent of compound 1 measured for 3.67µm 

thickness sample at different applied electric field and fixed temperature 328 K,(a) linear 

photocurrent plot, (b) double logarithmic photocurrent plot, (c) double logarithmic 

photocurrent plot at 1.63x10
5
 Vcm

-1
 showing the transient time measurement.  

Figure 3-35(a,b) shows the linear and double logarithm plots of the hole 

photocurrents from a sample of thickness 3.67µm of compound 1 at temperature of 328 

K with different applied electric field. The variation of the hole amplitude of the 

photocurrent and transit time is shown.  Figure 3-35(c) illustrates an example of the 

transit time measurement from the inflection of the double logarithmic photocurrent 

curve, where the transit time decreases with the increase of the applied electric field.   
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Figure ‎3-36: (a) The hole mobility for compounds 1, 2, 3, and 4 as a function of the applied 

electric field at room temperature. (b) The hole mobility of the compounds at room 

temperature and 1.6x10
5
 cmV

-1
 applied electric field. 

Figure 3-36(a) shows plots of the hole mobility versus the square root of applied 

electric field at room temperature for compounds 1, 2, 3, and 4. The mobility of all 

these compounds increases with the applied electric field which agreed with Poole-

Frenkel prediction (lnµαβpfE
1/2

). 

Figure 3-36(b) shows the effect of the end group on the mobility. 1 has the 

simplest and shortest end group and shows the highest mobility, followed by 4 then 2 

and the lowest one is 3.  In general, it has been shown that bulky end groups increases 

the intermolecular separation
57

, which reduces the intermolecular π orbital overlapping 

as illustrated in figure 3-37.  The end groups have different reductions of the mobility.  

The diene end group has the biggest effect because it has more bulky group which is 

expected to push the molecules apart because of the nematic order.  This agrees with 

earlier work on smaller oligomers by Woon K.L. et al
58

, and Baldwin R. J. et al
54

. 
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Figure ‎3-37: Illustration of conformation of compounds 1, 2, 3, and 4 obtained using MM2 

optimization. 

Figure 3-37 shows the depicted structures of compounds 1, 2, 3 and 4, which are 

calculated by energy minimization using MM2 method on Chem-draw software. The 

calculations were carried out in the gas phase, where the intermolecular interaction was 

ignored.  The global energy minimum is not guaranteed; therefore it may not represent 

the real structure of the molecules.  However it gives an idea about the bulkiness of the 

diene end group of 3 relative to the methyl methacrylate group of 4, also the alkyl chain 

in 2 extend more than the methyl methacrylate group of 4.  The structures show some 

agreement with the mobility measurements result. 
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3.6.3.3. Temperature Dependence of Mobility at Fixed Applied Electric Field 

  

 
Figure ‎3-38: (a) TOF hole transient photocurrent of compound 1 measured with 3.67µm 

thick sample at different temperatures and a fixed applied field of 1.36x10
5
 V.cm

-1
, (b) 

Arrhenius plots of mobility of compound 1 for various applied electric fields. (c) The 

mobility variation with temperature at a fixed applied field of 1.36x10
5
 V.cm

-1
. 

Figure 3-38(a) shows the hole transient photocurrent for a 3.67 µm thick sample 

of compound 1 at an applied electric field of 1.36x10
5
 V/cm and variable temperature.  

The strong temperature effect on the photocurrent is very obvious with a shift toward 

higher current amplitudes and shorter transit times with the increase of the temperature.  

The hole transit time decreases from 1.76x10
-5

s to 9.46x10
-7

s as the temperature 
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increases from 238 K to 328K and the photocurrent increases from 1.9 mA to 56 mA.  

Figure 3-38(c) show the variation of the mobility with temperature.  The three figures 

indicate that hole transport in compound 1 is an activated process with an activation 

energy showing a hopping mechanism.  

With the aim of measuring the activation energy of this material applying the 

Gill model given in section 3.4.2, we repeated the previous measurement at several 

applied electric fields.  Arrhenius plots of the mobility at different applied electric field 

are shown in figure 3-38(b).  The linear fits of the Arrhenius plots intercept at a 

common point which gives To≈ 366 K and µo≈ 6.75x10
-3

 cm
2
V

-1
s

-1
.  

The slope of each Arrhenius plot at specific electric field gives the activation 

energy 𝐸𝑎𝑐𝑡 (1000𝐾𝐵)−1at that field
59

.  

 
Figure ‎3-39: Gill model measurements of activation energy against the squared rout of 

applied electric field. 

Figure 4-39 shows the plot of the activation energies against the square root of 

the applied field, where 𝐸𝑎𝑐𝑡 = 𝐸𝑜 − 𝛽𝑃𝐹𝐸
1

2.  The zero field activation energy Eo where 

obtain from the intercept at zero field point and the Poole-Frenkel constant βPF from the 
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slope of the line. The Gill model parameters of all three compounds are extracted 

following the same method and tabulated in table 3-4. 

Table ‎3-4: Gill model parameters of  compounds 1, 2, and 4 

compounds 1 2 4 

Eo (eV) 0.297 0.283 0.444 

βPF (eV(V cm
-1

)
-1/2

) 2.13 x10
-4

 2.47x10
-4

 4.86 x10
-4

 

To (K) 366 367 321 

µo (cm
2
 V

-1
 S

-1
) 6.75 x10

-3
 2.45 x10

-3
 2.4x10

-3
 

 

As explained before in section 3.4.1 the applied field influences charge carrier 

transport by lowering the barrier associated with their coulomb potential by 𝛽𝑃𝐹𝐸1 2  in 

the electric field direction as shown in figure 3-6.  This makes it easier for the charge 

carrier to be released from the localization centres supporting the hopping transport 

process.  The activation energy of compound 4 is higher at zero field Eo than for the 

others but it shows a greater reduction with the applied electric field.  Compound 1 is 

least affected by the electric field as shown by the lowest value of 𝛽𝑃𝐹 . The zero field 

activation energy of compound 1 is close to the P3HT of 0.29 eV measured by Mozir et 

al
59

. 

3.6.3.4. Disorder Model Analysis for Hole Transporting Reactive Mesogens  

We use the Gaussian disorder model (GDM) and the correlated disorder model 

(CDM) in section 3.4.3 and section 3.4.4 to analyze the mobility measurements data of 

the four liquid crystals compounds.  We aim to study the microscopic charge transport 

parameters of these materials and to investigate the effect of the end groups. The 

mobility measurement in section 3.6.3.1 was repeated at different temperatures and 

different applied electric fields for the four compounds. 



 149 

 
Figure ‎3-40: Electric field dependence of the mobility at different temperatures for 

compound 1 (a), compound 2 (b), compound 3 (c), and compound 4 (d). 

Figure 3-40 shown the plot of the mobility versus the square root of the electric 

field follows the Poole–Frenkel-like behaviour with 𝜇 𝛼 𝛽𝑃𝐹𝐸1 2  with a positive slope  

𝛽𝑃𝐹  at low temperature.  As the temperature increases the slope decreases tending to 

become negative, as explained in section 3.4.3 by the Bässler model
24

. 

The zero field mobility at each temperature  𝜇 𝐸 = 0  𝑇  is obtained by 

extrapolating the linear fit of the field dependence of the mobility at each temperature as 

illustrated in figure 3-40 
25,26, 60

.  At zero electric field eq. 3-14 and eq. 3-16 of the GDM 

and CDM models respectively become 

                                                    𝝁 𝟎, 𝑻 = 𝝁𝒐 𝒆𝒙𝒑  −  
𝟐𝝈𝒈

𝟑𝑲𝑩𝑻
 

𝟐

                                        (‎3-25) 

                                              𝛍 𝟎, 𝐓 = 𝛍𝐨 𝐞𝐱𝐩  −  
𝟑𝛔𝐝

𝟓𝐊𝐁𝐓
 

𝟐

                                    (‎3-26) 

Taking the logarithm of both sides gives 
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                                                𝒍𝒏 𝝁 𝟎, 𝑻 =  −  
𝟐𝝈𝒈

𝟑𝑲𝑩
 

𝟐

 
𝟏

𝑻𝟐 +𝒍𝒏 𝝁𝒐                                    (‎3-27) 

                                               𝒍𝒏 𝝁 𝟎, 𝑻 =  −  
𝟑𝝈𝐝

𝟓𝑲𝑩
 

𝟐

 
𝟏

𝑻𝟐 +𝒍𝒏 𝝁𝒐                                     (‎3-28) 

Plotting ln 𝜇 0, 𝑇  versus T−2  as shown in figure 3-41 gave the mobility 

prefactor µo from the intercept at T−2 = 0, and the energetic disorder parameters 𝜍𝑔 , 𝜍𝑑  

of the slope of the fit based on eq. 3-27 and eq. 3-28. 

 
Figure ‎3-41: The temperature dependence of the zero field mobility gives the parameters 

µo, , σg and σd. 

Figure 3-41 shows a linear relationship obtained for 𝑙𝑛𝜇 𝐸 = 0  versus 𝑇−2 for 

the four compounds as predicted in the GDM and CDM models.  The mobility obtained 

for all the four compounds shows a good fit over a small temperature range of 248K to 

328K.  Published work on other materials shows deviation from linearity at low 

temperatures 
59,61,25,62

. The low temperature deviation can be related to the transition of 

the charge transport from non-dispersive to dispersive at the deviation temperature 
61,59

.  

Our lower temperature limit does not reach the deviation temperature.   

Taking the logarithm of both sides of eq. 3-14 and eq. 3-16 gives 
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                 𝒍𝒏 𝝁 𝑬, 𝑻 = 𝒍𝒏 𝝁𝒐 −  
𝟐𝝈𝒈

𝟑𝑲𝑩𝑻
 

𝟐

+𝑪   
𝝈𝒈

𝑲𝑩𝑻
 

𝟐

− 𝜮𝟐  𝑬                               (‎3-29) 

                    𝒍𝒏 𝝁 𝑬, 𝑻 = 𝒍𝒏 𝝁𝒐 −  
𝟑𝝈𝒅

𝟓𝑲𝑩𝑻
 

𝟐

+𝑪   
𝝈𝒅

𝑲𝑩𝑻
 

𝟑
𝟐 

− 𝚪  
𝒆𝑹𝑬

𝝈𝒅
                           (‎3-30) 

Taking the partial derivative of ln 𝜇 E, 𝑇  with respect to  𝐸 gives  

                                                         
𝒅 𝒍𝒏 𝝁

𝒅 𝑬
 
𝑻

= 𝑪  
𝝈𝒈

𝑲𝑩𝑻
 

𝟐

− 𝑪𝜮𝟐                                              (‎3-31) 

                                                  
𝒅 𝒍𝒏 𝝁

𝒅 𝑬
 
𝑻

= 𝑪  
𝝈𝒅

𝑲𝑩𝑻
 

𝟑
𝟐 

 
𝒆𝑹

𝝈𝒅
− 𝑪𝚪 

𝒆𝑹

𝝈𝒅
                                  (‎3-32) 

Eq. 3-31 and eq. 3-32 are used to estimate the positional and energetic 

parameters of GDM and CDM models as illustrated in figure 3-42. 

 
Figure ‎3-42: The field dependence gradients of the mobility versus, (a) the GDM model 

energetic disorder parameter  𝝈𝒈 𝑲𝑩𝑻  
𝟐
, (b) the CDM model energetic disorder 

parameter  𝝈𝒈 𝑲𝑩𝑻  
𝟑/𝟐

 

The positional disorder parameters Σ and C of the GDM model are extracted 

from the plot of the field dependence gradients of the mobility 
𝑑 ln 𝜇

𝑑 𝐸
  versus the 

energetic disorder parameter  𝜍𝑔 𝐾𝐵𝑇  
2
obtained from previous measurement as shown 

in figure 3-42(a). Similarly for the CDM model, the plot of the field dependence 

gradients of the mobility versus the energetic disorder parameter of  𝜍𝑑 𝐾𝐵𝑇  3/2  is 

shown in figure 3-42(b). The positional disorder parameters Γ  and R are extracted using 

0.78 as the empirical constant C as mentioned in section 3.4.4. 
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The positional and energetic parameters relating to the two models are 

summarized in the table 3-5 for compounds 1- 4. 

Table ‎3-5: The GDM and CDM analysis parameters of compounds 1, 2, 3, and 4.  

Compounds Models 1 2 3 4 

σg [meV] 

G
D

M
 

92.3 87 85 106.5 

C [(cm V
2
)

1/2
] 4.19 x10

-4
 3.82x10

-4
 2.36 x10

-4
 4.76x10

-4
 

Σ 3.07 2.64 1.79 3.7 

µo [cm
2
 V

-1
 s

-1
] GDM/CDM 0.23 0.057 0.03 1.1 

σd [meV] 

C
D

M
 

102.6 97 95 118.3 

R [nm] 1.57 1.06 0.38 2.57 

Γ 6.44 5.22 3.4 8.34 

 

The order of the mobility of the four compounds from highest is 1, 4, 2 and 3.  

All of the models’ parameters decrease in the same sequence of compounds 4 > 1 > 2 > 

3 showing a change in the order between 1 and 4.  However the parameters for 

compound 4 are all substantially higher than for the others. 

    
Figure ‎3-43: The variation of the energetic and positional parameters of GDM and CDM 

models‎(a)‎σg,‎σd ,‎(b)‎Σ,‎Γ.‎‎The room temperature mobility is also shown. 
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Figure 3-43(a) shows the energetic parameters of the four compounds. The 

width of the Gaussian distribution of the energy sites correlates with the mobility.  This 

is an unexpected result since a large distribution in energy site implies greater disorder.  

The positional disorder parameters correlate similarly with mobility.  This is a more 

logical correlation since high positional disorder increases the chance of finding more 

loops for the charge to move through the material giving higher mobility.  The zero 

field mobility µo follows the same sequence.  We cannot explain why the parameters for 

compound 4 are anomalously high.  This is related to the large value of µo obtained 

from figure 3-41for 4.  The disorder parameters must also be high since the mobility 

value of 4 is not correspondingly high over the temperature range measured.  However, 

care must be taken when interpreting all these results because of the small field and 

temperature range used and the small variation of the mobility values. 

3.6.4. Donor/Acceptor Blend Mobility Study 

The active layer of the bulkheterojunction organic solar cells is a blend of donor-

acceptor organic semiconductors as shown in chapter one. The charge transport within 

this layer is an important key factor for the optimization of the performance of organic 

solar cells  

We choose compound 9 as our standard electron acceptor material.  Compounds 

1, 2, 3, and 4 show good donor properties as discussed in chapter two and section 3.6.2 

and section 3.6.3. 

The TOF samples of these blends were prepared using the solution processing, 

where the common conditions for all samples are the solvent toluene and the spin speed, 

acceleration, and time which are 900rpm, 590 r/min
2
 and 35s respectively.  The 

processing conditions of each sample are illustrated in table 3-6.  
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Table ‎3-6: The solution processing parameters and the film thickness of the donor 

acceptors blends. 

Blend 

compound

s 

Solvent 

quantity 

(ml) 

Material 

quantity 

(mg/mg) 

Evaporati

on time 

(min) 

Film 

thickness 

(µm) 

Laser intensity 

mJ/pulse 

[(µJ/cm2)/pulse] 

2:9 (1:1) 0.3 8.1/8.1 45 1.5 4.94x10
-4

 [10] 

2:9 (2:1) 0.2 10/5 30 2.1 4.94x10
-4

 [10] 

3:9 (1:1) 0.2 7/7 30 0.98 5.93x10
-4

 [12] 

4:9 (1:1) 0.2 8.7/8.7 30 3.49 5.93x10
-4

 [12] 

4:9 (1:2) 0.2 5.2/10.4 27 2.14 5.93x10
-4

 [12] 

4:9 (2:1) 0.2 12/6 31 2.55 4.61x10
-4

 [9.4] 

 

The long evaporation time is important to support the phase separation of the 

two materials.  The precipitation of the materials onto the ITO substrate is expected to 

be different based on the physical and chemical properties and the molecular weight of 

the materials.  The laser intensity is controlled using neutral density filters before it hits 

the sample through a hole of area 0.049 cm
2
 in the heating stage, which is considered to 

be the beam area.  The striking thing about the laser intensity that it need to be reduced 

to very low values up to 9.4 (µJ.cm
-2

)/pulse to optimise the transient photocurrents. The 

average intensity used for TOF in blends is thirty, sixteen, fourteen and ten times less 

than the intensity used with the pristine compounds 9,3, 2 and 4 respectively.  This 

suggests that charge separation is significantly more efficient in blends. 
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Figure ‎3-44: TOF hole photocurrent transients for blend of (1:1) ratio of compound 4 and 

9 at room temperature and different applied electric field. 

Figure 3-44 shows the hole and electron photocurrent transients of the blend of  

compound 4 as donor and compound 9 as acceptor in the ratio 1:1 at room temperature, 

it illustrates the strong applied electric field effect on photocurrent which increases in 

amplitude  and decreases in transit time with an increase of field. 

 
Figure ‎3-45: The electric field dependence of the mobility at room temperature for 

compound 4, and 9 and there blend with different ratio.  

Figure 3-45 show the effect of the applied electric field on the mobility of the 

4:9 blends with different ratios.  In general, the electron mobility is higher than the hole 

mobility for all the ratios. 
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In relation to the pure donor/ acceptor materials, the hole mobility in blends is 

smaller than that of the pure donor and substantially larger than that of the pure acceptor.  

For example at 2x10
5
 Vcm

-1
 applied field, the 1:1 blend hole mobility is about 4.84x10

-4
 

cm
2
V

-1
s

-1
, only 2.5 times smaller than the pure donor and about 1600 times bigger than 

that of the pure acceptor. The electron mobility in the blend is much greater than that of 

the acceptor, by about 200 times. 

The ratio of the donor 4 to acceptor 9 has a strong effect on both the electron and 

hole mobility.  The 1:1 ratio has the highest electron and hole mobility followed by 2:1 

and then 1:2. The different blends show different variations of the hole and electron 

mobility with the field. The hole mobility of the pure compound 4 increases with the 

field, whilst for compound 9 there is a decrease of the electron mobility and an increase 

of the hole mobility with the field. For the 1:1 blend both electron and hole mobility 

increase with the field.  Finally, for 1:2 and 2:1 ratios, the hole mobility decreases while 

the electron mobility increases with field. 

 
Figure ‎3-46: The electric field dependence of the mobility at room temperature for 

compound 2, 3, 4 and their 1:1 ratio blends with compound 9. 
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Figure 3-46 shows us the electric field dependence of mobility at room 

temperature for the blend of compound 2, 3, and 4 with 9 each with a 1:1 ratio.  The 

field dependence of the hole mobility of the donor is also shown.  The electron mobility 

of all blends is substantially higher than that of the pure acceptor and higher than the 

hole mobility of the same blend and the pure donor.  As discussed earlier the hole 

mobility of all the blends is somewhat smaller than that of the pure donor. 

The 4:9 blend has the highest electron and hole mobility followed by the 2:9 and 

finally the 3:9 blend. This follows the same arrangement of the pristine donors.  The 

electron and hole mobility of the 4:9 and 2:9 blends show a positive field dependence 

whilst that of the 3:9 mixture has a small negative dependence. 

3.7. Conclusion  

TOF was the technique used to study the charge transport of organic 

semiconductors in this thesis.  The samples were prepared in two different ways using 

the cell and spin casting.  In the spin casting technique we did some optimisation to 

ensure a thick film with a flat and uniform surface. 

We aimed to find good EDs and EAs to be used in the solar cells. Six of the 

perylene derivatives compounds were studied as EA materials, which are 9, 11, 12, 13, 

15 and 16.  Compound 9 though not showing the highest electron mobility shows a 

good (µe/µh) ratio for low electric fields corresponding to the internal electric field of 

solar cell devices. Compound 16 also emerges as a promising EA.  The other EAs 

contain donor-acceptor units and show ambipolar transport with hole mobility 

depending on the number of phenyl and fluorene groups attached to the perylene. 

The effect of the reactive end group with spacer on the charge carrier mobility of 

EDs has been investigated.  Results suggest that the mobility depends on the 
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intermolecular separation. Four liquid crystal compounds 1, 2, 3 and 4 have been used.  

They form nematic glasses at room temperature with the same aromatic core but with 

different end groups. These compounds show promising hole transporting materials for 

solar cells.  Compound 1 shows the highest mobility followed by 4, 2 then 3.  

Compounds 1 and 4 shows hole mobility >10
-3

cm
2
V

-1
s

-1
.  

We applied the Gill model, to show that the mobility is an activated process, and 

the activation energy is field dependent, decreasing with increasing field.  This supports 

the Poole-Frenkel model which describes the lowering of the potential barrier in the 

direction of the applied field making the hopping of the charge carriers easier. 

We use the Gaussian disorder model (GDM) and the correlated disorder model 

(CDM) to analyze the mobility measurements data of the four liquid crystals 

compounds.  The GDM and CDM model are applied to temperature and field dependent 

measurements.  The aim was to study the microscopic charge transport parameters of 

these materials and to investigate the effect of the end groups on the charge mobility.  

Compounds 1, 2 and 3 show correlation between the mobility measurements and the 

disorder parameters while compound 4 have anomalously high µo and disorder 

parameters. 

Based on the need to correlate the charge transport of the ED/EA blend with PV 

devices, the electron and hole mobility were studied for blends of compound 9 as EA, 

and compounds 2, 3, and 4 as EDs with different ED: EA ratios.  For all blends the hole 

mobility is lower than that of the pure ED.  The electron mobility of the blends is 200 

times higher than that of the pure EA. Possibly the acceptor morphology improves in 

the blend so that trapping is reduced.  An alternative explanation is that the traps are 

saturated since the electron density is much higher in the blend than the pure acceptor.  
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The 4:9 blend gives the best mobility and the relatively small difference between 

electron and hole mobility is a promising feature for solar cells. 

This result supports the cyclic voltammetry data in chapter which suggest 1, 2, 3, 

and 4 as EDs and 9 as EA. 
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 444...   NANOSCALE MORPHOLOGY         

FOR ORGANIC SOLAR CELLS 

4.1. Introduction  

The morphology of an organic semiconductors active layer has a significant 

effect on its functionality in a wide range of organo-electronic applications such as light 

emitting diodes (OLEDs)
1,2

, organic photovoltaics (OPVs)
3
, and field effect transistors 

(OFETs). 

As discussed in chapter one the power conversion efficiency of the solar cells 

depends on the following steps: (1) light absorption, (2) exciton diffusion and 

dissociation, (3) charge transport and collection. The thickness of the active layer 

(donor/acceptor) is required to be in the order of 100nm for efficient light absorption.   

However it is limited by the diffusion length of the exciton to be in the order of 10-

20nm from the donor/acceptor interface
4
.  After charge separation at the interface holes 

and electrons need to find suitable conductive path to their respective electrodes for 

collection.  

 Bilayer devices mainly satisfy the first and third step.  However only a small 

fraction of the excitons produced, those in the vicinity of the interface are dissociated in 

to electrons and holes.  Many designs for organic solar cells have targeted the nanoscale 

morphology to enlarge the donor/acceptor interface, where the donor/acceptor materials 

form a nanoscale interpenetrating network within the whole photoactive layer to ensure 

an efficient dissociation of excitons.  The bulkheterojunction BHJ design shows one of 

the best power conversion efficiencies to date
5
, with a good charge separation because 
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of the large interface area.  As the interface is dispersed throughout the bulk, most of the 

excitons are created within the exciton diffusion length.  However the BHJ has 

demanding morphology requirements to ensure that the interpenetrated donor/acceptors 

network is bicontinuous to allow the two different charges to reach their respective 

electrode. 

The blend film formed by solution processing is influenced by the spin coating 

process, which represents the quenched state of the solution and so produces a well 

mixed film even when this is not favorable thermodynamically
6,7

.  The mixing of two 

different organic materials favors phase separation thermodynamically, with even near 

identical chemical structures.  Demixing of the components has a large influence on the 

morphology of the film.  A phase separated region with an interface between the 

electron donor/acceptor (ED/EA) blends components can develop, which is essential to 

improve charge separation of the OPV and charge recombination for some OLED 

devices, where these processes are predicted to occur at the interfaces between small 

domains of sub-micrometer size
8
.  In the meanwhile, it is important to retain the 

connected pathways of each material to the right electrode, which requires to have one 

of the blend components (EA) appearing on the top surface of the active layer to be in 

contact with the top electrode. As more of the ED appears on the surface having a 

contact with the wrong electrode, the charge losses by recombination at the top 

electrode increase, and as a consequence the OPV performance is reduced. 

The morphology of the photoactive blend layer can be controlled by several 

production parameters
1,4,9,10

 before, during, and after the film formation: (i) substrate 

treatment has an influence on the sticking and dewetting of the components on the 

substrate surface. Its temperature during the film formation affects the drying time of 

the film, (ii) The spin coating solvent is chosen based on its ability to dissolve the 
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components, and also on its volatility which influences the drying time during the film 

formation, (iii) The chemical structure of the blend material determines the solubility in 

the common organic solvents, the miscibility between the two components, their 

viscosity and the  molecular weight, (iv) The relative proportions between the two 

components, (v) the solution concentration, (vi) the annealing temperature, and the 

annealing time. Demixing occurs at significantly higher temperatures than the glass 

transition temperature Tg of the compounds. 

4.2. Atomic Force Microscope (AFM) 

The surface topography and morphology of thin films can be imaged using 

different techniques such as scanning electron microscopy (SEM)
4,9,11

, and transmission 

electron microscopy (TEM)
12,13

. However the invention of scanning probe microscopy 

(SPM) in early1980s
14

 and the rapid development of this technique led it to become one 

of the most powerful tools for research especially in the field of materials, and more 

recently nanoscience and nanotechnology. Atomic force microscopy (AFM) or scanning 

force microscopy (SFM), scanning tunneling microscopy (STM), and scanning near 

field optical microscopy (SNOM) are members of the scanning probe microscopy (SPM) 

family. The operating principle of SPM techniques  is to measure the interaction 

(attraction and repulsion forces) between a probe, which has an ultra-sharp tip, and the 

sample surface to obtain topographic or other physical information of the surface with 

very high resolution up to fractions of a nanometer, more than 1000 times better than 

the diffraction limited performance of an optical microscope
15,16

. 

The AFM has the following advantages. i) It offers very high resolution surface 

imaging, and provides information about the atomic and molecular arrangement with 

near atomic resolution in real space. ii) It can provide a three dimensional image of the 

sample surface. iii) Unlike the STM, it can image conducting and insulating samples 
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where the tip to sample interactions are based on mechanical forces. iv) Unlike the SEM, 

it can image samples in various environments such as in air, liquids, at different 

temperature, and with different external conditions, which enables the monitoring of 

morphological changes with variation of time and condition. v) Samples can be 

measured directly without any complex preparation. vi) It provides information about 

physical properties such as elasticity, adhesion, hardness, friction, etc. 

4.2.1. AFM Basic Operation Principles, and Measurements Modes 

The basic operating principles of the AFM are the measurement of the inter-

atomic force between the sample surface and a sharp probing tip.  The tip is mounted on 

a soft leaf spring known as a cantilever as illustrated in figure 4-1(a). The changes in the 

height, Z direction, of the cantilever to keep the tip force constant provide the 

topographic measurement. The cantilever is usually mounted on a three axis piezo 

arrangement which controls the X, Y and Z axis movements. 

 
Figure ‎4-1: (a) Scaled drawing of AFM cantilever (left) and its tip viewed in the SEM 

(magnification 600 times)
6
(right), (b) schematic diagram of a tip scanning a surface in 

atomic scale
17

, (c) the variation of the inter-atomic force as function of the inter-atomic 

distance.
18
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As illustrated in figure 4-1(c), ignoring capillary effects, the inter-atomic forces 

contributing to the deflection of the cantilever usually depend on the short-range 

repulsive force and the long-range  attractive van der Waals force whose affects are  

dependent on the inter-atomic distance between the tip and the sample surface. There 

are three basic measurement modes for the AFM based on the tip to surface distance: 

contact mode (C-AFM), non-contact mode (NC-AFM), and tapping mode (TM-

AFM)
17,19,20

. 

 In the C-AFM mode the tip makes physical contact with the sample, and the 

cantilever is bent according to the changes in topology as the tip is moved across the 

surface.  Variations in the surface structure are obtained from the tip Z axis movement 

as the tip deflection is restored to a preset value by a servo mechanism. The inter-atomic 

force in this case lies in the repulsive region of the force distance curve as illustrated in 

figure 4-1(c), which is more efficient for atomic resolution imaging. The limitation of 

this mode is the substantial damage to the sample surface and the probe tip caused by 

the dragging motion of the tip and the adhesive forces between the tip and the surface.  

 In the NC-AFM mode the tip is quite close to the sample but has no contact 

with the sample, it is held on the order of 5-10 nm from the sample surface within the 

attractive region of the force distance surface.  Stiffer cantilevers are used and can be 

made to oscillate in the frequency range 50-500 KHz, usually being driven by a piezo 

crystal to which the cantilever is fixed. The use of the stiff cantilever avoids the 

possibility of the cantilever sticking on contact with the surface. The force in this mode 

is quite low, on the order of pN (10-12 pN) which is several orders of magnitudes less 

than the contact mode.  This mode has been developed to overcome the limitation of 

using the C-AFM with soft materials like organic thin films.  The tip is kept at a preset 

distance from the surface by a feedback system, with an error signal derived from 
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changes in the vibration amplitude or resonant frequency of the oscillating cantilever 

which causes the Z piezo to move in a direction to restore the cantilever amplitude to its 

preset value Figure 4-1(c).  Again the topographic profile is obtained from this 

movement of the tip relative to the surface. 

 For TM-AFM mode a stiff cantilever is made to oscillate close to the sample, 

where the probe tip makes intermittent contact with the sample surface. Part of the 

oscillation extends into the repulsive regime. In this mode the cantilever is driven at a 

fixed frequency near resonance with large vibration amplitude with surface height 

measurements obtained from changes in the tip Z position as in NC-AFM mode 

whereby changes in amplitude of the oscillating cantilever provide error signals which 

are fed into the Z stage feedback system to preserve the tip to sample spacing.  Fairly 

stiff cantilevers are typically used, as the tip can stick on the surface of soft materials.  

This mode is widely used to study soft materials because it is a compromise between C-

AFM, giving high resolution with surface damage, and NC-AFM, with lower resolution 

and no surface damage, as it contacts the surface for a very short period to obtain high 

resolution images with reduced damage to the soft surface. 
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4.2.2. Instrumentation Structure 

 
Figure ‎4-2: Schematic diagram showing the main components of AFM

6
. 

Figure 4-2 shows the basic arrangement of a typical AFM.  The main 

components of the AFM are: (i) the force probe, a sharp tip mounted on a cantilever, 

which is deflected by changes in the surface topography as the tip is scanned across the 

surface. (ii) A sensor for the cantilever deflection, which is a laser beam reflected from 

the cantilever onto a split photodiode detector.  (iii) A piezoelectric scanner to control 

the three dimensional movements of the tip as illustrated in figure 4-2(b), where it 

moves the tip on the x-y plane scanning close to or actually on the surface to and fro in 

parallel lines.  It also controls the z-position of the tip on, or above, the sample surface 

to keep the deflection of the cantilever constant. (iv) A feedback system to control the 

cantilever deflection by applying a correction signal to the z-piezo of the scanner. (v) A 

computer to be used for data recording, analysis, and visualization, where the z-position 

of the tip is recorded as a function of x-y position.  By analyzing this data we can obtain 

a topographical map of the sample surface. For NC-AFM and TM-AFM modes the 



 170 

cantilever is made to oscillate using one of several different methods such as a quartz 

piezo to excite the cantilever into oscillation, as shown in figure 4-2, or having the 

cantilever coated with magnetic material, which can be excited to oscillate by an 

alternating magnetic force produced by a coil underneath the sample or else mounted 

above the cantilever. 

4.2.3. Phase Image and Nanoscale Demixing 

As discussed in the introduction, it is important to have the EA components on 

the top surface, therefore investigating the surface compositions is an essential need to 

optimize the performance of electronics devices including OPV.  

Atomic force microscopy allows an examination of the nanophase morphology 

of the blends. The topographic image shows little detail but the phase image shows clear 

evidence of nanoscale separation of the components of the blend
21,22

. The tip deforms 

stiffer sample surfaces to a lesser extent than more compliant surfaces, as the cantilever 

is oscillating at a specific frequency under a driving force, this frequency lags as the 

scanning cantilever goes over a more compliant surface compared to the stiffer surface.  

This is  the phase lag, which can be related to the attractive and repulsive, or adhesive, 

forces at the interface and the sample’s viscoelastic properties
21

.  Therefore materials 

with different viscoeleastic properties have different phase lags. Lighter areas 

correspond to lower values of  (less phase lag) and darker areas correspond to larger 

values (more phase lag).  More viscous regions will appear darker in comparison to less 

viscous regions. So the light and dark regions indicate domains with different 

compositions. The degree of intermixing of the components in the mesoscale domains is 

unknown and could be obtained using scanning transmission X-ray microscopy 

(STXM)
8
, photoconductive atomic force microscopy (pcAFM)

23
, or atomic force 

photovoltaic microscopy (AFPM)
24

.  
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4.3. Roughness parameters 

Surface roughness measurement techniques, which are known as profiling 

methods provide a way to measure the surface data as a series of 2D traces which sense 

the height of the surface providing a quantitative surface profile Zi in either X or Y 

direction as illustrated in figure 4-3, where L is the length of the surface profile along 

the x-direction.  To provide an area profile many parallel traces are needed which can be 

combined to provide a 3D topographical measurement. 

 
Figure ‎4-3: A surface roughness profile in x-direction Z(x)

25
. 

The best way to study and compare the surfaces roughness is to regard the 

waveform as being made up of amplitude (height) features and wavelengths, peak and 

troughs, spacing features, both independent of each other
17,26

.  Several parameters are 

used as amplitude parameters such as the roughness average (Ra), the root mean square 

roughness (Rq), and the maximum profile peak height (Rp).  
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4.3.1. The Roughness Average (Ra) 

The basic parameter for specification of roughness is the roughness average (Ra), 

which is the numerical average of the absolute values of the surface departures from the 

mean plane.  It is given as
27,26 

                                                                                                                                                 (‎4-1) 

where M and N are the number of data points in the X and Y direction  

respectively, and Z is the surface height relative to the reference mean plane. 

The roughness average gives no information on the spacing between the features or the 

shape of the surface irregularities. 

4.3.2. The Root Mean Square (RMS) 

The root mean square (RMS) roughness is the most widely used parameter for 

the specification of surfaces roughness and is much more valid statistically than Ra.  It is 

obtained by squaring each height value in the dataset, then taking the square root of the 

mean as
25

 

                                                                                                                                                      (‎4-2) 

RMS is limited in the detection of differences in spacing; however the RMS is 

more sensitive to peaks and valleys than average roughness because height values are 

squared in calculation. 

4.3.3. Fourier Analysis and Power Spectral Density (PSD) 

To obtain spatial frequency information from the surface topography data it is 

converted to the frequency domain using a 2D Fourier transform. This process 

decomposes the data into an array of frequency components which are easier to 
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manipulate for this purpose than the original data format. The Fourier transform is  

based on the Fourier series principle which assumes that any periodic function f(x) on 

the interval λ can be decomposed into a sum of simple sine and cosine functions of the 

form sin(nx) and cos(nx) as shown in figure 4-4. The periodic function f(x) can be 

represented as
28

 

                                                                                                                                                      (‎4-3) 

where ao, an, bn are called Fourier coefficients of the function f(x) and the 

process to determine these coefficients is known as Fourier analysis. The coefficients 

are 
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Figure ‎4-4: periodic function f(x) on the interval λ and its decomposition sine and cosine 

functions
28

. 

The function to be transformed can be either continuous or discrete, and also 

periodic or aperiodic.  Hence the Fourier transform can be classified to four categories
29

: 

Fourier series (periodic-continuous),  Fourier transform (aperiodic-continuous), Discrete 

time Fourier transform (DTFT) (aperiodic-discrete), Discrete Fourier transform(DFT) 

(periodic-discrete). 
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Figure ‎4-5: Illustration of the four Fourier transforms

29
.  

The DTFT represents the surface topography, when it consists of a set of finite 

number of discrete data points synthesizing a signal that is aperiodic. It is impossible for 

the DTFT to be calculated using the computer algorithm unlike the DFT which operates 

on discrete signals that repeat themselves in a periodic fashion from negative to positive 

infinity.  The DFT finds the frequency content of such a limited collection of data.  

Therefore the periodicity can be invoked using the digital signal processing DSP, in 

order to be able to use the DFT
29

. 

For computational ease a modified form of the DFT is usually utilised. This is 

the fast Fourier transform (FFT), which significantly reduces the number of arithmetic 

operations involved in the calculations when using large data sets. 
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The discrete Fourier transform can be given as
26

  

                                                                                                                                                       (‎4-7) 

The power spectral density (PSD) decomposes the measured surface profile into 

its component spatial frequencies (f) using Fourier analysis. The PSD is the square of 

the transform as a function of the spatial frequency. The PSD function calculates the 

power spectral densities for each horizontal (X) or vertical (Y) line in the data, and then 

averages over all the X or Y profile. L is the scan length, assumed to be equal in x and y 

direction,  fx and fy is the spatial frequency for x and y  directions respectively, N is the 

number of the measured data points, assumed to be equidistantly spaced in x, y direction 

at distances ∆𝑥, ∆𝑦 = 𝐿 𝑁 . The 1-D PSD is given as
30

 

                                                                                                                                                      (‎4-8) 

The 2-D PSD is given as 

                                                                                (‎4-9) 

where 𝑥𝑚 = 𝑚.
𝐿

𝑁
 , 𝑦𝑛 = 𝑛.

𝐿

𝑁
 , the spatial frequency fx, fy  takes a discrete range 

of values 𝑓𝑥 , 𝑓𝑦 =
1

𝐿
,

2

𝐿
, … . .

𝑁

2𝐿
 ,  and 𝑖 =  −1 . 

The PSD as a function of spatial frequency evaluates the in-plane spatial periods 

of the surface texture which gives some indication of the film morphology.  PSD gives 

complementary information about the surface to the RMS which gives the out of plane 

characterization, and the amplitude distribution of the roughness which gives more 

statistical roughness.  

For further analysis of the PSD as function of the spatial frequency, the 

frequency scale is divided into three regions as shown in figure (4-6). (i) The lowest 
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frequency region (< 0.01 nm
-1

), corresponds to domains larger than 100nm. (ii) The 

middle spatial frequency region (> 0.01 nm
-1

, < 0.05 nm
-1

), corresponds to domains 

between 20nm and 100nm respectively. (iii) The highest spatial frequency region (>0.05 

nm
-1

), describes the domains smaller than 20nm. 

 
Figure ‎4-6: Power spectral density versus radial spatial frequency of 3:9 and 3:11 blends 

defining the analysis regions.  

4.4. Results and Discussion 

In this chapter we study the morphology of thin films of nematic EDs blended 

with a range of EAs, which are liquid crystalline or amorphous. Most of the blends form 

LC glasses at room temperature and we show that they phase separate on a nanometre 

scale level. The study was to investigate the effect of the chemical structure of EDs and 

EAs, the casting solvents and the annealing temperature on the nanoscale morphology. 

The results of this chapter will be correlated to the PV device performance in the next 

chapter to evaluate the suitability of the various acceptors, donors, solvents, and 

annealing temperatures for photovoltaic blends.  
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4.4.1. The Effect of Functional Groups for Perylene Bisimide 

Derivatives 

Perylene bisimide is one of the best known n-type organic semiconductors, and 

it exhibits good electrical and optical properties to be an efficient EA.  In this section 

9,11,13,16 are some perylene derivatives with different functional groups which have 

been investigated as EA with compound 3 as ED. 

Samples of the different blends were produced using identical processing 

conditions, which are also identical to the photovoltaic devices processing, for 

correlation with the solar cells’ performance in the next chapter. The devices were 

fabricated on Indium Tin Oxide (ITO) coated glass (13/) substrates. The substrates 

were first plasma etched and coated with a polystyrene sulphonate/polyethylene 

dioxythiophene (PSS/PEDOT, Baytron P VP. AI 4083). The PSS/PEDOT layer was 

spin-coated onto the ITO surface at 4000 rpm spin speed and 2000 rpm
2
 acceleration 

with a spin duration of 30 seconds, to form a uniform layer.  The substrate was then 

placed on a temperature controlled hot stage and cured at 120 
o
C for 30 min to 

evaporate the water, followed by 220 
o
C for 5 min to thermally polymerize the PEDOT.  

Finally the temperature was ramped to room temperature at a cooling rate of 10
o
C/min. 

The devices were prepared by spin casting at 2000 rpm for 30s a solution of different 

ED and EA pairs in the ratio of 1:1 by weight in toluene (15 mg ml
-1

) on the substrates. 

The films were then annealed at 120 C for 60 mins. 
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Figure ‎4-7:  AFM images (topographic on left; phase on right) of a thin film of the 1:1 

blend of 3:16.  The investigated area is 5m5m, and 1m1m in the box at the right 

side corner.**
1
 

Figure 4-7 shows the topography and phases image of a 3:16 blended thin film 

of 5m5m and 1m1m areas. The cross sections taken through both images are 

shown and the rms, height distribution and PSD were measured. The topographic image 

shows some pinholes with little other detail.  However the phase image shows clear 

evidence of nanoscale separation of the components of the blend as mentioned before in 

section  4.2.3.  

                                                 

1
 ** Indicates that experimental measurements were made by Dr. C. Lei.  Analysis was done by me. 
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Figure ‎4-8: AFM images (topographic on left; phase on right) of a thin toluene casted film 

of the 1:1 different blends of 3 as ED. The EA was (a,b) 9, (c,d) 13, (e,f) 11. The 

investigated area is 5m5m, and 1m1m in the box at the right top corner.** 

Figure 4-7 and figure 4-8 show the topography and phase images of 5m5m 

and 1m1m areas of the four blends of 3 with 16, 9, 13, 11 in order.  The 3:9 blend 
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shows phase separation with low contrast, possibly because the domains are better 

intermixed. The 3:16 blend has fine structure with low contrast and many pinholes. The 

3:11 blend shows elongated domains with low contrast. The 3:13 blend shows fine 

structure with a clear contrast between two different domains, which is illustrated 

clearly in the phase image.  

 

 
Figure ‎4-9: Surface roughness analysis for the four blends,(a) rms roughness, (b) height 

distribution, (c) PSD as a function of spatial frequency.  

Figure 4-9(a, b, c) shows the rms roughness, height distribution, and PSD 

respectively, which illustrates the variation of the nanoscale morphology as a function 

of the acceptor compounds, confirming what is shown visually in figure 4-7 and figure 

4-8. The rms values are 0.77nm, 1nm, 1.69 nm for blends 3:13, 3:16 and 3:9 

respectively, however the blend 3:11 shows a dramatic increase in the roughness to 7.37 
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nm.  The height distribution also follows the same sequence of change, where the peaks 

of height distribution are at 1.9nm, 2.3nm, 4.1nm, and 22.7nm. and the height variation 

is of the order of 4nm, 5.3nm, 8.7nm, and 36.4nm  respectively. 

The PSD as a function of spatial frequency for the 3:11 blend shows the highest  

amplitude in the spatial frequency range regions (i) and (ii), corresponding to large 

domain size of (>20 nm).  However for the fine structure (< 20nm) of region (iii) blend 

3:9 provides a larger PSD amplitude. Blends 3:13 and 3:16 show lower PSD amplitudes 

over the full frequency range. 

Blend of 3:11 is crystalline at room temperature and forms a nematic liquid 

crystal phase over 270 
o
C, 3:9, 3:13 and 3:16 are nematic glasses at room temperature.  

This may explain the rough morphology of 3:11 relative to the others. 

This result indicates the poor nanoscale morphology of 3:13 and 3:16 and the 

rough nanoscale morphology of 3:11 in contrast with 3:9, which shows relatively high 

spatial frequencies, which will be related to PV devices performance in the next chapter. 

4.4.2. The Effect of Casting Solvent on the Nanoscale Morphology 

A critically important factor determining the nanoscale morphology of the blend 

thin film is the variation in solubility of the components of the blend in the casting 

solvent. Walheim and coworkers
7
 show that solution processing of compounds with 

different solubility results in the formation of surface features such as pinholes or 

bumps, where the size of these features is based on the solubility of each compound and 

the variation between the solubility of the two compounds.  During and after spin 

coating the more soluble compound contains more solvent than the less soluble one.  

Therefore, at the moment when the less soluble compound evaporates all its contained 

solvent, the more soluble one is still swollen with the solvent, and the film is relatively 



 183 

flat.  Going further in the evaporation leads to collapse of the more soluble region after 

losing its solvent content.  If it is dominant on the surface bumps, of the less soluble 

compounds appear, and if the less soluble one is dominant on the surface, pinholes 

containing the more soluble compound characterize the surface as illustrated on figure 

4-10. 

  
Figure ‎4-10: Schematic illustration of the formation of the topographic structure during 

and after spin coating process, (a) before spin coating the blend compounds mixed very 

well, (b) shortly after spin coating, (c,d) the pinhole and bump creation after complete 

drying
7
. 

In this study we aim to find the best common solvent to work with our EDs and 

EAs, which dissolve both compounds efficiently with low solubility variation between 

the blend compounds.  Therefore samples of the same blend were produced using 

identical processing conditions to the previous section while, varying the casting 

solvents. Solution of 3 as ED and 11 as EA in the ratio of 1:1 by weight were spin-

coated in different solvents (15 mg ml
-1

).  The solvents used were toluene, chloroform 

and chlorobenzene with boiling points 111
o
C, 61

o
C and 132

o
C respectively.  
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Figure ‎4-11: AFM images (topographic on left; phase on right) of a thin film of the 1:1 

different blends of 3 as ED and the 11 as EA using different solvents of (a,b) chloroform, 

(c,d) chlorobenzene.  The investigated area is 5m5m, and 1m1m in the box at the 

right side corner.** 

Figure 4-8(e,f) and figure 4-11 show the topography and phase images of 

5m5m and 1m1m areas of the three blends of 3 with 11 using toluene, 

chloroform, and chlorobenzene as solvents. 

The surface structure with toluene as casting solvent contains elongated domains 

with low contrast and horizontal dimensions of the order of 500nm.  From the phase 

image the low contrast of the image indicates that the top materials have similar 

mechanical stiffness and adhesion properties, which can be explained by assuming the 

two materials have similar mechanical properties, or that one of the two materials is 
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embedded and enveloped within the elongated features.  In contrast the surface of 

chloroform and chlorobenzene cast samples contain smaller height elongated domains, 

with fine structure and low contrast, the horizontal dimensions of the cross section of 

these domains is in order of 200nm. 

 
Figure ‎4-12: Surface roughness analysis for 3:11 blends using different solvents,(a) rms 

roughness, (b) height distribution, (c) PSD as a function of spatial frequency. 

Figure 4-12(a, b, c) shows the rms roughness, height distribution, and PSD 

respectively which illustrates the variation of the nanoscale morphology as a function of 

the acceptor compounds, also it confirms what is shown visually in figure 4-8(e,f) and 

figure 4-11.  The rms values were 2.85nm, 3.95nm, 7.37nm for blends cast with 

chloroform, chlorobenzene, and toluene respectively.  Height distribution also follows 

the same variation order, where the peaks of height distribution were at 7nm, 10.3nm, 
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and 22.7nm.  The height variation was of the order of 14.9nm and 20.1nm, and 36.4nm 

respectively. 

The PSD as a function of spatial frequency for the toluene cast blend shows 

highest amplitude over the first two highest frequency regions (i) and (ii), whilst it start 

to drop rapidly in the region (ii), whereas the chloroform cast sample shows the lowest. 

In the high spatial frequency range (iii) indicating fine structure, the toluene cast PSD 

amplitude was lower compared to the chloroform casting film. Chlorobenzene casting 

shows amplitude located in between the two other solvent PSD curves. 

The coarser structure of the toluene cast samples is due to it low solubility for 

compound 11 in contrast to compound 3.  However chloroform and chlorobenzene 

dissolve both compounds efficiently. Chloroform evaporates quickly compared to 

chlorobenzene and toluene which results in quenching and fixing the molecules in non-

equilibrium positions before they align themselves and phase separate.  This is 

noticeable by comparing the 1µm x 1µm images in Figure 4-8(e,f) and figure 4-11, 

where the elongated domain regions are smaller with large variation in direction in 

neighbouring domains.  Chlorobenzene and toluene tend to align in similar directions in 

neighbouring domains. 

4.4.3. The Effect of the Spacers and End Groups on the Nanoscale 

Morphology  

1, 3 and 4 are nematic liquid crystals with the same aromatic core. 1 has 

methoxy terminal groups, whilst 3 and 4 are  reactive mesogens, which can be 

photochemically polymerized to form a LC polymer network, with the help of alkyl 

chain spacers linked to diene end groups for 3 and methacrylate end groups for 4 as 

illustrated in table 2-1. The optical and electrical properties of these compounds were 

studied in the previous two chapters, and show good ED properties. Therefore, in this 
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section the nanoscale morphology of the blends of these three compounds as ED, with 9 

as EA have been investigated. Chlorobenzene was used as casting solvent based on 

results from the previous section, which agrees with the literature
31

. 

Blends of the three ED and 9 as EA were produced with a ratio of 1:2 by weight 

using identical processing conditions to the previous sections. The devices were 

prepared by spin casting a solution of the blends in chlorobenzene (15 mg ml
-1

) to 

evaluate the suitability of the various donors for photovoltaic blends. 
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Figure ‎4-13: AFM topographic images (2D on left with cross section; 3D on right) of a thin 

film of the 1:2 different blends of 1, 3, and 4 as EDs with 9 as EA using chlorobenzene as 

coasting solvent ,(a,b) 1:9, (c,d) 3:9,(e,f) 4:9 the investigated area is 5m5m. 

Figure 4-13 show 2D and 3D topographic images of 5m5m areas for the 

blends of 3, 4, and 1 with 9 respectively, where the size, height, and shape features 
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reflect the variation in the nanoscale morphology of the surface of the blended thin film 

based on the chemical structure of the donors.  As the scale of the images is identical, 

visually the surface morphology of the blends 1:9, 3:9 and 4:9 goes from the fine 

structure to rough respectively.  

 
Figure ‎4-14: Surface roughness analysis for the three blends,(a) rms roughness, (b) height 

distribution, (c) PSD as a function of spatial frequency.  

The visual observations of the nanoscale morphology as a function of the donor 

compounds are confirmed in Figure 4-14 which shows the rms roughness, height 

distribution, and PSD respectively.  The rms values are 0.73nm, 1.27nm and 1.4nm for 

blends 1:9, 3:9, and 4:9 respectively.  The height distribution also follows the same 

trend, with the peaks in the height distribution at 2nm, 2.9nm, and 3.8nm, and the height 

variation at about 4nm, 6.2nm and 8nm respectively. 
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The PSD as a function of spatial frequency for the 3:9 and 4:9 blends relative to 

1:9 blend show higher values in the first and second spatial frequency regions (i, ii), 

whereas at higher spatial frequency region (iii) it becomes relatively lower. The PSD 

amplitude of 4:9 is somewhat higher relative to 3:9 in the first two regions (i, ii). This 

result indicates rough nanoscale morphology for 3:9 and 4:9 in contrast to 1:9, which 

will be related to PV devices performance in the next chapter.  

4.4.4. The Effect of Annealing Temperature on the Nanoscale 

Morphology 

The Annealing temperature is a second key factor to control the nanoscale 

morphology of the blend thin film which helps to increase the intermixing of the two 

components.  The annealing duration is another important parameter
7,32

.  

Therefore, samples of identical blends were produced using identical processing 

conditions to the previous sections whilst varying the annealing temperature (RT, 50
o
C, 

100
o
C, 120

o
C, 150

o
C, 200

o
C) for fixed duration of 60 mins and cooling rate of 10

 

o
C/min. The devices were prepared by spin casting a solution of 1 as ED and 9 as EA in 

the ratio of 1:2 by weight in chlorobenzene (15 mg ml
-1

).  The critical temperatures in 

the annealing temperature range for the phase separation of this blend are the glass 

transition temperature of 1 at 80
o
C, the melting point of 9 at 274

o
C, as well as the 

boiling point of the casting solvent at 132
o
C. 
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Figure ‎4-15: AFM topographic images (2D on left with cross section; 3D on right) of a thin 

film of the 1:2 different blends of 1 as ED with 9 as EA using chlorobenzene as coasting 

solvent, at different annealing temperature (a,b) RT, (c,d) 50
o
C, (e,f) 100

o
C, the 

investigated area is 5m5m. 
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Figure ‎4-16: AFM topographic images (2D on left with cross section; 3D on right) of a thin 

film of the 1:2 different blends of 1 as ED with 9 as EA using chlorobenzene as coasting 

solvent, at different annealing temperature (a,b) 120
o
C, (c,d) 150

o
C, (e,f) 200

o
C, the 

investigated area is 5m5m. 
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Typical development of the films with annealing temperature is shown in  

Figure 4-15 and figure 4-16, which represent 2D and 3D topographic images of 

5m5m areas for 1:9 blends following  different annealing temperatures.  

Immediately after spin coating, generally the films appeared smooth, after annealing at 

different temperatures the surface started to roughen as the annealing temperature 

increases.  

Figure 4-15(a,b)  shows the RT sample, dried after spin coating using a vacuum 

for one hour.  There are some lumps coming out of the surface possibly because one of 

the compounds is more soluble in the solvent than the other.  After spin coating it is still 

swollen with the solvent which evaporated later, that lower the height of its regions 

relative to the other material, giving the lumps.  Annealing at 50
o
C below the three 

critical annealing temperatures has a smaller affect on the surface morphology and 

phase separation.  A smooth film with low contrast is shown.  At 100
o
C the temperature 

is past the glass transition temperature of compound 1 so it shows some freedom to 

move and diffuse which shows the appearance of some low height features.  As the 

temperature increases to become higher or closer to the critical points the features size 

and height increase and the surface becomes rougher, because of the greater freedom of 

the molecules to move and diffuse. 
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Figure ‎4-17:  Surface roughness analysis for the six blends,(a) rms roughness, (b) height 

distribution, (c) PSD as a function of spatial frequency. 

Figure 4-17 shows the corresponding rms roughness, height distribution, and 

PSD respectively which illustrate the variation of the nanoscale morphology as a 

function of annealing temperature.  It confirms what is shown visually in Figure 4-15 

and figure 4-16.  The rms values are 0.62nm, 0.55nm, 0.65nm, 0.72nm, 1.66nm, 2.21nm 

for RT (vacuum), 50
o
C, 100

o
C, 120

o
C, 150

o
C, and 200

o
C annealing temperatures 

respectively, which shows the rms roughness increase following the temperature 

increase except for RT (vacuum) which shows a higher rms values compared to 50
o
C.   

The height distribution peaks are 1.4nm, 1.6nm, 1.7nm, 2.1nm, 4.1nm, and 6nm 

and so increase in order with temperature.  Similarly the height variations follows the 
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same increase with temperature and are 2.8nm, 2.8nm, 3.5nm, 4nm, 8.2nm, and 11.8nm 

respectively. 

Annealing at 200
o
C gives the roughest structure.  This has the highest PSD 

amplitude over the first region (i), followed by the sample annealed at 150
o
C with 10 

fold less.  The 120 
o
C annealed sample has the lowest PSD amplitude in this region.  In 

the region (ii) the PSD of the 200
o
C sample starts dropping to become less than that of 

the 150
o
C sample while the PSD of the 120

o
C sample become slightly higher than that 

from the other temperatures (RT,50
o
C,100

o
C).  In the region (iii), corresponding to a 

fine structure, the sample annealed at 150
o
C has the highest PSD up to the first quarter 

of this region where the samples annealed at 120
o
C and 50

o
C took over, and  they do 

not decay as quickly as those at 100
 o
C, 150

 o
C, 200

 o
C and RT. 

4.5. Conclusion  

Nematic liquid crystals with a fluorene-thiophene structure in combination with 

a range of perylene-based compounds were shown in the previous chapter as promising 

materials for good electron-donating and electron-accepting pairs for PV blend devices.  

We show here that the thin film nanoscale morphology and phase separation of the 

ED/EA blends are affected by the chemical structures of EDs and EAs, the casting 

solvents and the annealing temperature of the film. 

Four different perylene-based compounds were investigated as EAs in 

combination with 3 as ED in blends of 1:1 ratio to correlate the blend nanoscale 

morphology to the acceptor chemical structure and to nominate the most promising one 

to be used in the further investigation. The blends with 9, 11, 13 and 16 as EAs show 

large variations in surface nanoscale morphology. However the 3:9 blend has the 

smallest domain sizes, suggesting that 9 as EA might give better charge separation.  

Unfortunately, the blends with LC EAs 11 and 13 have quite different morphology. 
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Three solvents were investigated to find their suitability to assist nanoscale 

morphology with good phase separation. The solvents were toluene, chloroform and 

chlorobenzene.  Toluene did not dissolve all our compounds as efficiently as the other 

two which limits its ability to mix the blend components.  Chloroform and 

chlorobenzene were good solvents.  However chloroform evaporates faster which 

results in fixing the components before phase separation happened. Therefore the 

chlorobenzene shows the best performance. 

Three different nematic liquid crystals with the same fluorene-thiophene 

aromatic structure were investigated as EDs in combination with 9 as EA in blends of 

1:2 ratio to correlate the blend nanoscale morphology to the donors chemical structure, 

as they have different terminals end groups. The EDs were 1, 3 and 4 and the 

corresponding blends show some variation in surface nanoscale morphology. However 

the 1:9 blend has the finest in-plane structure, which can be related to the small phase 

separated domains, suggesting that it might give better charge separation. 

The annealing temperature was investigated to find the suitable temperature to 

form an intermixed network of EDs and EAs with nanoscale morphology and phase 

separation. Blends of 1:9 in the mixing ratio of 1:2 were used, which were annealed at 

temperatures of RT, 50
 o

C, 100
 o

C, 120
 o

C, 150
 o

C and 200
o
C.  The blend annealed at 

120 
o
C showed a relatively large number of small domains from the PSD analysis. 

There were wide variations in the amplitude surface roughness among samples 

studied so it will be interesting to check for any correlation with PV performance in the 

next chapter. 
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 555...   DEVICE FABRICATION AND 

CHARACRARIZATION 

5.1. Device Fabrication  

The general configuration of solar cell devices, fabricated in this thesis, is 

illustrated in figure 5-1; showing cells consisting of several layers. The preparation 

processing and fabrication of each layer will be detailed in the following sections. 

 
Figure ‎5-1: The device configuration of an organic PV solar cell with an undefined organic 

active layer where light is absorbed and charge is separated. 

5.1.1. Preparation of the Substrate and Bottom Electrode 

The device properties such as device reliability and stability are not only 

dependent on the properties of components of the active organic layers, but also affected 

by each layer of the device and also the interfaces between these layers. The bottom 
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electrode is one of the key factors to consider for the optimization of the solar cell 

performance. 

The PV cells were fabricated on a 150 nm thick layer of indium tin oxide (ITO) 

commercially pre-coated onto a glass substrate having sheet resistance of 13 Ω/ and 

supplied cut into 25mm squares.  The substrate was first cleaned by immersion in an 

ultrasonic bath using the following liquids, times and temperatures: (i) detergent (SVC 

150) for 30min at 60
o
C, (ii) de-ionized water for 15min at 60

o
C, repeated twice to 

remove the detergent from the substrate. (iii) acetone 15min at RT, (iv) isopropyl 

alcohol 15min at RT, followed by blowing dry with nitrogen gas.  Photolithography 

with an acid etch was used to remove a 5mm strip of ITO from two sides of the 

substrates in order to prevent any contact between the top and bottom electrodes. The 

substrates were sonicated twice in acetone followed by a repeat of the initial cleaning 

processes to remove the remaining photo resist material, used in the etching process.   

Because of the morphology of the interface between the ITO and the active 

material, together with contaminants on the ITO surface, a barrier is formed which 

inhibits hole transport from the active layer to the external circuit. This barrier height 

affects the I–V characteristics of the device
1
. It is proven that the work function of the 

ITO is affected by the modification and treatment of its surface
2,3,4,5,6

. In addition, ITO-

induced degradation mechanisms, which cause release of oxygen from the electrode, 

can lead to the creation of trapping centres.  Many techniques have been attempted to 

modify the ITO surface in order to optimize the interface morphology and remove the 

contaminants from the ITO surface which reduce the hole-transport barrier.  The most 

effective method appears to be O2 plasma treatment
7
. 

The plasma treatment subjects the surface of the ITO to bombardment with large 

ions.  This smoothes the surface by abrading the peak features and also causes the 
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release of trapped contaminants, a lot of which adhere to the ITO making further 

cleaning a necessity. Cleaning was accomplished by sonicating the substrate in water, 

then acetone and finally isopropyl alcohol, 10min for each process at RT.  Water is 

good for removing the hydrophilic contaminants while acetone removes the organic and 

the hydrophobic materials (sometimes a stronger organic solvent is used). The final use 

of the isopropyl alcohol is to get rid of the residual water and acetone.  The substrates 

are then blown dry using nitrogen gas before being moved to the glove box admittance 

chamber, where they are placed under vacuum for a while to dry out any remaining 

solvent, after which they are introduced into the glove box nitrogen environment where 

cell fabrication takes place. 

5.1.2. Preparation of PEDOT: PSS Layer 

The poly(3,4-ethylenedioxythiophene) PEDOT is an organic polymer material 

with good electronic conductivity, optical clarity and environmental stability, properties 

required for successful opto-electronic devices
8,9

.  However it is infusible and insoluble, 

and so is difficult to process in a thin film form by either wet or dry processing 

techniques. A new type of PEDOT, doped with poly(styrenesulfonate) (PSS), is water 

soluble. PEDOT:PSS is used to increase the work function of the ITO electrode and also 

acts as a physical barrier to many defect sites known to be present in ITO
8,10,11

. 

Commercially prepared PEDOT: PSS (Baytron P VP. AI 4083) in water based 

solution was sonicated at RT for 5min in order to dissolve any clumps within the 

solution.  Immediately after plasma treatment and cleaning of the ITO the PEDOT:PSS 

was spin-coated onto the ITO surface at 4000 rpm spin speed and 2000 rpm
2
 

acceleration with a spin duration of 30 seconds, to form a uniform layer.  The substrate 

was then placed on a temperature controlled hot stage and cured at 120 
o
C for 30 min to 
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evaporate the water, followed by 220 
o
C for 5 min to thermally polymerize the PEDOT.  

Finally the temperature was ramped to room temperature at a cooling rate of 10
o
C/min. 

5.1.3. Preparation of the Bulkheterojunction Active Layer 

The active layer of a PV device can be configured as double layers, bulk 

heterojunction (BHJ) etc. as discussed in section 1.8.  

For BHJ configuration, measured amounts of electron-acceptor and donor 

materials were mixed in a sample tube to give the desired weight percent of the mixture.  

This was then dissolved in an organic solvent (e.g. toluene). The solution was spin cast 

at 2000 rpm spin speed and 560rpm
2
 acceleration for 30s on top of the PEDOT: PSS 

layer, applied using a syringe fitted with a 0.02 µm filter to remove un-dissolved large 

particles in the solution. The substrate was then placed on a hot stage and annealed 

typically at 120
o
C for 1hr which caused the solvent to evaporate and improved the 

morphology of the interface between layers. After annealing, the sample was cooled to 

room temperature at a fixed rate of 10
o
C/min. 

5.1.4. Preparation of Top Electrode by Vapor Deposition  

Electrode fabrication was carried out inside a vacuum vapour deposition unit 

equipped with a quartz crystal film thickness monitor that was used to determine the 

thickness of the films and the deposition rate.  The sample was placed inside the 

vacuum chamber and mounted upside down above a shadow mask with cut-outs for the 

four electrodes, as shown in figure 5-2. The chamber was then evacuated to ~3x10
-7

 

Torr.  A layer of LiF about 0.6nm thick was vapor deposited onto the sample, followed 

by deposition of around 80nm of Al to form the top electrode.   The LiF was used to 

enhance transport of electrons to the external circuit by reducing the height of the 

electron barrier between the top layer and the Al electrode. 
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Figure ‎5-2: The top electrode shadow mask 

5.1.5. Preparation of the Device for Characterization 

All the previous fabrication steps were carried out in a nitrogen environment 

inside a glove box as the organic compound suffers degradation and trapping sites can 

be created in the presence of oxygen and moisture, especially during the heating and 

cross-linking processes.  To allow measurements outside the glovebox, the devices were 

mounted in a sealed test chamber equipped with a quartz window, and a glass to metal 

seal, with feed-throughs for the electrical connections.  A mounting frame with spring 

loaded clips held the devices in place against contacts, for the ITO electrode, and four 

contacts touching the Al electrodes, 

5.2. Devices Characterisation:  

5.2.1. J-V Curve  

As we mentioned in section 1-5 solar cells have a rectifying behaviour like 

diodes.  The solar cell admits current in the forward bias direction (V>0) and blocks the 

current when reverse biased (V<0) in the dark as shown in figure 1-14. Under 

illumination the curve is shifted due to an increase in the current, caused by the addition 

of the induced photocurrent, in the 3
rd 

and 4
th

 quadrant. The J-V curve was plotted on a 
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log scale, which is a useful method to characterize solar cells, as it can be used to 

measure most of the solar cell’s parameters such as: (i) the open circuit voltage Voc, (ii) 

the short circuit current density Jsc (A/cm
2
) as shown in figure 5-3. 

 
Figure ‎5-3: The J- V curve in log scale, which can be used to measure Isc and Voc as shown. 

The electric power density in the output circuit can be calculated as P = JV 

(mW/cm
2
), where the maximum power point Pmax is the maximum value of JV within 

the voltage range between zero and Voc.  The solar cell fill factor FF, the power 

conversion efficiency PCE (%), and the external quantum efficiency EQE, mentioned in 

section 1.5.3 can be measured using eq. 1-12, eq. 1-13, and eq. 1-14 respectively. 

The series resistance Rs and the shunt resistance Rsh is measured using the (J-V) 

curve plotted using a linear scale as illustrated in section 1.4.2.   

5.2.2. Photocurrent versus Wavelength 

 The photocurrent varies with the wavelength of the incident light depending on 

the energy gap between HOMO and LUMO of the active materials as explained in 

section 1.5.1.  Most of the organic materials absorb in the UV and short wavelength end 

of the visible spectrum, while the aim is to cover the full solar spectrum and to shift the 
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absorption towards, and into, the infrared.  A plot of the photocurrent versus wavelength 

is important in understanding the effective wavelength range of the device for operation 

as a solar cell.  

From the photocurrent curve we can measure the external quantum efficiency 

(EQE) as a function of wavelength (λ) using eq.1-14. The optical power density of the 

incident light, Po (λ) is obtained by measuring the light power of one wavelength of the 

spectrum and then using the calibration curve of the light source to compute power at 

other wavelengths. 

5.2.3. Intensity Dependence of Solar Cells Parameters 

We change the light intensity, Po, by means of an array of interchangeable 

optical neutral density filters, with different transmission.  The photovoltaic parameters 

are obtained for different light intensities in order to study the affect of the variation of 

light intensity on the electrical properties of a solar cell. 

5.3. Experimental Setup 

The experimental setup used in this work for the current-voltage (I-V) 

characterization and photocurrent spectral measurements is illustrated in figure 5-4. 

 
Figure ‎5-4: schematic diagram of the measurements set up 
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A voltage waveform generator (incorporated in the computer) supplies voltage 

to the device, the current through it being measured by a picoammeter, also attached to 

the computer. The data is displayed and saved using home written software.  

A Xenon lamp (Bausch & Lomb) with its power supply was used as an 

illumination source, as it provides high light intensity and also emits a continuous 

spectrum, ranging from ultraviolet through visible to infrared. A motorized 

monochromator (Bausch & Lomb) was used to vary the wavelength of the light for 

photocurrent spectrum measurement.  The monochromator is connected to a computer 

based controller with software to control wavelength selection. 

A set of lenses collimates the light and focuses it, perpendicular to the chamber, 

to cover almost all the active area of the selected device (the overlapping area between 

the top and bottom electrodes), which is about 25mm
2
.  A power meter (Coherent 

Fieldmaster) is used to measure the power of the illumination, with selected neutral 

density filters inserted in the collimated light path to control the light intensity. The test 

chamber, enclosing the device, was mounted on top of an adjustable 3D stage, which 

was used for focusing the light on the selected active area.  

5.4. Results and Discussion 

As discussed in chapter one the power conversion efficiency of the solar cells 

depends on; (i) light absorption and exciton production, (ii) exciton diffusion and 

dissociation, and (iii) charge transport and collection.   

The synthetic chemistry branch of the Organophotonics group at Hull University 

synthesized a set of organic conjugated materials to be used as electron donors (EDs) 

and electron acceptors (EAs) for organic photovoltaic devices (OPV) in the search for 

good materials to fulfill the above criteria. The compounds they produced have been 
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studied extensively in the last three chapters based on energy levels and optical 

properties, charge transporting properties, and morphological properties respectively.  

The most promising materials are discussed in this chapter as the active materials in 

BHJ solar cells. The processing conditions are varied to find the optimal condition.  The 

performance of the solar cells is then related to the nanoscale morphology of the active 

layer. 

Table 2-1 shows the chemical structure of the materials used in this thesis. 

Compounds 1, 3 and 4, which are nematic liquid crystals with the same aromatic core 

have been chosen to be EDs. 1 has methoxy terminal groups, whilst 3 and 4 are reactive 

mesogens, which can be photochemically polymerized to form a LC polymer network, 

with the help of alkyl chain spacers linked with diene end groups for 3 and methacrylate 

end groups for 4. Compounds 9, 11, 13 and 16 are perylene bisimide derivatives with 

different functional groups.  These have been chosen to be used as EAs.  Table 2-1 

shows the transition temperatures of these compounds. Compounds 1, 3 and 4 are 

nematic LCs with no detectable melting point. They form long-lived nematic glasses at 

room temperature on rapid cooling of a thin film from the isotropic liquid. Compound 

13 exhibits a monotropic smectic C liquid crystal and forms a metastable supercooled 

LC phase in a thin film for room temperature processing.  Compound 11 forms a 

nematic phase at high temperature, above a very high melting point, whereas 

compounds 9 and 16 do not exhibit observable liquid crystalline phases and just melt at 

274 C and 182 C, respectively. 



 
208 

  
Figure ‎5-5: The energy levels of compounds 1, 3, 4, PCBM, 9,11,13,16 incorporated with 

the work function of the ITO, PEDOT: PSS, and LiF/Al. 

Figure 5-5 shows the HOMO and LUMO energies of the nominated materials as 

EDs, and EAs in comparison with PCBM. The energies depend on the chemical 

structure of the aromatic core of the molecules, so compounds 1, 3 and 4 have the same 

HOMO, the low value of which 5.52 eV confirms their stability (below the air oxidation 

level), and suitability as the electron-donating species in the OPV blend.  The LUMO 

values measured using the reduction onset of compounds 9, 11, 13 and 16 are similar, 

between 4.19 eV and 4.25 eV, which confirms their suitability as EA for the OPV 

devices, whilst the LUMO values measured using the oxidation onset are 3.73, 3.77 and 

4.09 eV for 13, 11, and 16 respectively, 9 however could not be measured because it has 

a high oxidation energy which is out of the range of the experimental setup used for 

measurements.   

 The frontier orbital energy offset between the EDs and the EAs is an important 

electrical characteristic of the OPV.  The LUMO offset is in the range 1eV - 1.12eV, 
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with the HOMO offset in the range 0.79 eV – 0.8 eV.  The difference between the 

HOMO of 1, 3 and 4 and the LUMO of 9, 11, 13 and 16 is in the range 1.27 eV - 1.32 

eV, which determine the maximum limit of the open circuit voltage Voc as shown in eq. 

2-2. This energy difference is smaller than the energy of the absorption band-edge of the 

materials, around 2.38 eV for 1, 3, 4 and 2.12 eV for 9, 11, 13 and 16 making charge 

separation at the donor-acceptor interface thermodynamically favorable, resulting in the 

electron being located in the LUMO level of acceptor material and the hole in the 

HOMO of the donor. 

Following the dissociation of the charges, good transport properties are required 

for the electrons in the EAs and holes in the EDs to be collected at their respective 

electrodes. The electron mobility of compounds 1, 3 and 4 could not be measured as 

shown in chapter 3, however the hole mobility of 1 is the highest of the three EDs and is 

1.45x10
-3 

cm
2
V

-1
.s

-1
 at room temperature and 1.6x10

5
cm.V

-1
 applied electric field, 

followed by 4, and 3 respectively.  These compounds have the same core, with 

structural difference in the terminal end groups as mentioned before, so the mobility 

variations can be related to the effect of the terminal end groups on the molecular 

packing and morphology.  

For compounds 9, 11, 13 and 16, both the hole and electron mobility were 

found.    In chapter three we introduced the ratio of electron mobility to hole mobility 

(µe/µh) as a function of the applied electric field as illustrated in figure 3-34. 

Compounds 11 and 13 show a very small variation with field compared to 16 where the 

ratio increases with an increase of the applied electric field.  9 shows an increase with a 

decrease of the applied electric field, which indicates this material to be more efficient 

as n-type at lower applied electric field – in the range of the built in electric field of 10
4
-

10
5
 V/cm. 
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The mobility of the blends 9:3 and 9:4 have been investigated using different 

weight ratio as illustrated in figure 3-44 and 3-45.  The blends show very large increase 

of the electron and hole mobility compared to 9 and a smaller decrease in the hole 

mobility compared to 3 and 4 as pristine compounds.  The TOF charge photoinjection 

of the blends shows a large improvement, as it require a very low power laser pulse 

compare to the pristine  compounds, up to thirty times less as discussed in section 3.6.4, 

which suggest that the charge separation is  significantly more efficient in blends. 

Finally the morphology of the active layer is expected to have an influence on 

the optical and electrical properties as well as the OPV devices power conversion 

process.  As discussed in chapter one, distributed interfaces are needed to maximize 

charge separation.  These can be formed in phase-separated blends of electron-donor 

compounds (EDs) and electron acceptor compounds (EAs) with continuous paths to the 

respective electrode.  It is critically important to optimise the grain size of the blend to 

maximize carrier collection and avoid recombination. Too intimate mixing results in 

electron-hole recombination before collection at the electrode, whereas the exciton 

recombines before separation, if the grain size is too coarse.  Optimised grain sizes have 

been obtained in polymers by appropriate choice of solvent and casting conditions
12

 and 

in low-molar-mass materials by annealing of a co-evaporated blend
13

.  

In this chapter single layer blends are prepared for PV devices and their 

performance is correlated with nanoscale morphology, based on the nanoscale 

morphology investigation in the previous chapter. 

5.4.1. The Evaluation of Perylene Bisimide Derivatives as Electron 

Acceptors for OPV Devices  

Photovoltaic devices of different blends were produced using identical 

processing conditions as illustrated in section 5.1.  Compound 3 was used as ED for all 
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blends, the EAs 9, 11, 13 and 16 were studied to evaluate their suitability for 

photovoltaic blends, based on their functional group. The devices’ active layers were 

prepared by spin casting a solution of different ED and EA pairs in the ratio of 1:1 by 

weight in toluene (15 mg ml
-1

) on the substrates. The films were then annealed at 120 

C for 60 mins. 

 
Figure ‎5-6: The current density versus voltage of the photovoltaic device incorporating a 

thin film of a 1:1 blend of 3 and 9. The labels give the irradiance in mW cm
-2

 of the input 

light source of wavelength 470 nm**. 

Figure 5-6 shows current-voltage characteristics of a PV device made from a 

blend of 3 and 9 in the dark and on irradiation at 470 nm, the peak of the photocurrent 

action spectrum. The photocurrent and the open circuit voltage, Voc, change with input 

irradiance as will be detailed in section 5.4.1.4. The maximum Voc value of 1.15 V 

approaches the limit of 1.32eV, equal to the energy difference between the HOMO and 

LUMO energies of the electron-donor and acceptor. The power conversion efficiency 

(PCE) was 0.43 % when the input irradiance is 24 mW.cm
-2

. 
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Figure ‎5-7: (a) The current density versus voltage for the different photovoltaic devices 

consisting of 1:1 blends of the materials specified in the inset labels, where the irradiance 

of the input light source of wavelength 470 nm is 24mW cm
-2

, b) Photocurrent action 

spectra for the devices, c) Absorption spectra of thin films of blends prepared using 

identical conditions to those in devices. The arrow marks the excitation wavelength, which 

gives maximum photocurrent**. 

 Figure 5-7(a) shows the current-voltage characteristics of a PV device made 

from the four blends in the dark and on irradiation at 470 nm with an input irradiance of 

24mW cm
-2

.  Figure 5-7(b) shows the photocurrent action spectrum for the four devices 

illustrating the peak of the photocurrent action to be around 470nm wavelength.   Figure 

5-7(c) shows the absorption spectra of the thin film blends prepared similarly to those 

used in the PV devices, as well as the absorption spectra of 3 and 9, where 9 shows 

similar absorption features to the other EAs.  The photocurrent peaks at 470nm 

wavelength for all devices and the photocurrent action spectra match fairly closely the 
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absorption spectra of the blends. The peaks of the absorption spectra occur at the 

overlapping region of the blend components.  The blends 3:9 and 3:11 absorb more in 

the red region and show the highest solar cell performance respectively. 

  
Figure ‎5-8: The external quantum efficiency for the different photovoltaic devices 

consisting of 1:1 blends of the materials specified in the inset labels.  The power spectrum 

of the input light source is also shown. 

Figure 5-8 shows the external quantum efficiency EQE of the four blends as a 

function of the incident light wavelength incorporated with the power spectra of the 

xenon lamb light source.  The EQE shows higher values in the shorter wavelengths with 

low light power, then decreases gradually just before the maximum light power peak. 

From 450nm the EQE mirrors the absorption spectrum of the ED suggesting that donor 

absorption generates more current than acceptor absorption.  
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Table ‎5-1: Performance parameters for the PV blend devices on excitation with 24 

mW.cm
-2

 at  470 nm 

 

Blend 

compounds 

Voc 

(V) 

Jsc 

mA cm
-2

 

Pmax      

mW cm
-2

 
FF 

EQE 

(%) 

PCE 

(%) 

3:9 1.15 0.428 0.104 0.211 4.5 0.43 

3:11 1.1 0.138 0.041 0.27 1.53 0.17 

3:13 1 0.106 0.024 0.227 1.18 0.1 

3:16 1 0.028 0.0047 0.168 0.31 0.02 

 

Table 5-1 summarises the performance of the PV devices with different EAs.  

The best solar cell performance is obtained with 9 as EA, and the performance of the 

devices using the other EAs decreases in the order 11 > 13 > 16. 

Charge separation depends on the HOMO and LUMO energy alignment. As 

shown in figure 5-5, the LUMO energies of the EAs are similar, so the thermodynamics 

of charge separation cannot explain the difference in device performance. 11 and 13 

show ambipolar transport. 

Both charge separation and transport depend on molecular packing and the 

spatial scale and geometry of the phase separation of ED and EA blends, investigated in 

section 4-4-1.  The poor performance of the 3:16 device may be explained by the large 

numbers of pinholes in the thin film which may act as carrier traps. The superior 

performance of the 3:9 blend device in comparison to the 3:13 and 3:11 devices may be 

explained by the morphology. The distribution of domain sizes of the 3:9 device shown 

by the PSD is more homogeneous with higher values for the domain sizes less than 

20nm compared to the others. The 3:11 blends both have much coarser features. The 

phase contrast between the domains of 3:13 is greater than that of the 3:11 blend which 
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indicates the appearance of the two compounds on the top surface. This implies that 

phase separation is more complete in the former, which may explain its poorer PV 

performance compared to the 3:11 blend. 

Another possible explanation for the relatively poor performance of devices with 

11 and 13 relate to the donor-acceptor nature of these compounds.  The difference 

between the HOMO (oxidation) of ED and EA is relatively low and hole transport in the 

EA is efficient.  Hence there is a relatively high probability of hole transfer to the EA 

and subsequent recombination of holes and electrons in the EA. Note that the electron 

mobility of 16 is very good which does not correlate with device performance. 

5.4.2. The Effect of Casting Solvent on the BHJ Solar Cell 

Performance 

Photovoltaic devices of different blends were produced using identical 

processing conditions as in the previous section but with a variety of solvents, 3 was the 

ED for all blends and 11 was the EA. The active layer were prepared by spin casting a 

solution of ED and EA in the ratio of 1:1 by weight of different solvents on the 

substrates to evaluate the suitability of the various solvents for photovoltaic blend.  

Toluene, chloroform, and chlorobenzene (15 mg ml
-1

) the solvents used. The films were 

then annealed at 120 C for 60 mins. 
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Figure ‎5-9: The current density versus voltage of the photovoltaic device incorporating a 

thin film of a 1:1 blend of 3 and 11 using different solvents**.  

Figure 5-9 shows the current-voltage characteristics of the 3:11 blend devices 

using different solvents and irradiated at 470 nm.  The power conversion efficiency 

(PCE) is 0.25, 0.17 and 0.09 % for chlorobenzene, toluene, and chloroform devices 

respectively when the input irradiance is 24 mW.cm
-2

.  The other PV parameters of Jsc, 

Pmax, FF, and EQE vary in the same way as shown in table 5-2 apart from the Voc which 

was higher with the toluene compare to other solvents. 

   
Figure ‎5-10: a)The Photocurrent action spectra for the different photovoltaic devices 

incorporating a thin film of a 1:1 blend of 3 and 11 using different solvents specified in the 

inset labels, b) The external quantum efficiency for the devices**. 

Figure 5-10(a) shows the photocurrent action spectrum of PV devices made 

using the three different solvents with an input irradiance of 24mW cm
-2

.  The peaks of 
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the photocurrent action spectra are around 470nm.  Figure 5-10(b) shows the external 

quantum efficiency EQE of the three blends as a function of the incident light 

wavelength incorporated with the power spectrum of the xenon lamb. The EQE of the 

blends shows a similar spectral trend as before.  

Table ‎5-2: Performance parameters for the 3:9 PV blend devices using different solvent on 

excitation with 24 mW.cm
-2

 at 470 nm. 

Solvents 
Voc 

(V) 

Jsc 

mA cm
-2

 

Pmax      

mW cm
-2

 
FF 

EQE 

(%) 

PCE 

(%) 

Chlorobenzene 1 0.219 0.061 0.278 2.41 0.25 

Toluene 1.1 0.138 0.041 0.27 1.53 0.17 

Chloroform 1 0.1 0.0226 0.226 1.1 0.09 

 

Table 5-2 tabulates the performance parameters of the devices fabricated with 

different solvents.  The chlorobenzene cast device shows the best solar cell 

performance, followed by toluene then chloroform devices. 

As we are using the same blend compounds, the variation of the solar cells’ 

performance can be related to the variation of the nanoscale morphology of the thin 

films produced with different casting solvents. The molecular packing and phase 

separation of ED and EA blends is affected by the solubility of the compounds in the 

solvent and the speed of solvent evaporation from the thin film, as discussed in section 

4.4.2. 

The sample cast from toluene shows elongated domains with high surface 

roughness and large domain sizes.  In contrast the chlorobenzene cast film has low 

roughness and a higher concentration of fine domains less than 20 nm. This can be 

related to the lower performance of the toluene devices compared to the chlorobenzene 

one. However chloroform also shows fine structure, but as illustrated in the previous 
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chapter the chloroform evaporates quickly compared to chlorobenzene and toluene, 

which results in quenching and fixing the molecules in non-equilibrium positions before 

they can self-assemble and phase separate. 

The poor performance of the toluene device compared to the chlorobenzene one 

can be related to the too coarse grain size, which causes the excitons to recombine 

before charge separation is achieved. Possibly the non ideal intermixing of EDs and 

EAs using chloroform results in more recombination centers for electrons and holes 

before collection at the electrode. 

5.4.3. The Effect of Spacers and End Groups on the BHJ Solar Cell 

Performance 

Photovoltaic devices of different blends were produced using identical 

processing conditions as in the previous sections. 1, 3, and 4 were compared as EDs for 

different blends with 9 as EA, since it is the best of the different acceptors. The active 

layers of the devices were prepared by spin casting a mixture of different ED and EA 

pairs in the ratio of 1: 2 by weight in the best solvent, Chlorobenzene (15 mg ml
-1

), onto 

the substrates. The films were then annealed at 120 C for 60 mins. 
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Figure ‎5-11: The current density versus voltage of the photovoltaic device incorporating a 

thin film of a 1:2 blend of 1,3 and 4 as ED and 9 as EA in chlorobenzene. The inset shows 

the same plots on a semi-log scale. 

Figure 5-11 shows current-voltage characteristics of the three PV blend devices 

at 470 nm.  The power conversion efficiency (PCE) is 1.14, 0.96 and 0.55 % for the 

devices with EDs 1, 3, and 4 respectively when the input irradiance is 22 mW.cm
-2

, 3:9 

has the highest Jsc and Voc, whereas 1:9 has the best rectifying properties with a higher 

Pmax and FF. The performance of device 4:9 was inferior to that of the other devices as 

shown in table 5-3. 

  
Figure ‎5-12: a) The Photocurrent action spectra for the different photovoltaic devices 

incorporating a thin film of a 1:2 blend of the materials specified in the labels, b) The 

external quantum efficiency of the devices. 
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Figure 5-12(a) shows the photocurrent action spectrum of PV devices made 

from the three blends, with an input irradiance of 22 mW.cm
-2

, illustrating the peaks of 

the photocurrent action to be around the wavelength of 466nm.  Figure 5-12(b) shows 

the external quantum efficiency EQE of the three blends as a function to the incident 

light wavelength incorporated with the power spectrum of the xenon lamb. The EQE of 

all the blends peaks at a wavelength of 430nm.  The performance parameters of the 

devices are tabulated in table 5-3.  

Table ‎5-3: Performance parameters for the PV devices on excitation with 22 mW.cm
-2

 at 

466 nm. 

Blend 

compounds 

Voc 

(V) 

Jsc 

mA cm
-2

 

Pmax      

mW cm
-2

 
FF 

EQE 

(%) 

PCE 

(%) 

Rs 

KΩ 

Rsh 

KΩ 

1:9 1 0.708 0.252 0.356 8.31 1.14 2.5 11.2 

3:9 1.2 0.724 0.214 0.246 8.8 0.96 3.9 10.5 

4:9 0.95 0.528 0.124 0.247 6.3 0.55 11.4 7.6 

 

The 1:9 blend show the best performance, and the performance of the EDs 

decreases in the order 1 > 3 > 4.  Interestingly, although the EQE of 3:9 is better than 

1:9, its PCE is poorer because of its poor fill factor. 

Compound 1 shows the lowest Rs followed by 3 then with a large difference 4. 

Compound 1 also shows the highest Rsh followed by 3 and then 4. This order of the 

series and shunt resistances explain the drop of the FF in 3 and 4 in relative to 1.  The 

drop of the Jsc of 4 can be correlated to the high Rsh relative to 1 and 3. 

The variation of the solar cells performance of the blends follows the same 

trends as the nanoscale morphology parameters investigated in section 4.4.3 in the 

previous chapter.  As the devices performance decrease in the order 1:9 > 3:9 > 4:9, the 

surface roughness increases for the blends, with the rms equal to 0.73nm , 1.3nm, 1.4nm 
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respectively, the height distribution peaking at 2nm, 2.9nm, 3.8nm, and the height 

variation of the order of 4nm, 6.2nm, 8.1nm.  Also the domain size study shows that in 

the region where the domain size is larger than 20 nm, 4:9 has the highest PSD followed 

by 3:9 with similar values, while 1:9 has the lowest PSD.  However in the region with 

domains smaller than 20 nm, the PSD of 3:9 and 4:9 has decayed more to become less 

than that of 1:9. The mobility of the 1:9 blend was not studied, while both the electron 

and hole mobility of the 4:9 blend was significantly higher than the 3:9 blend, both 

measured with a 1:1 ratio. There is no correlation with PV devices performance. 

Therefore, the performance of the solar cells can be related to the nanoscale morphology 

as the three compounds have the same aromatic core and the only difference is the 

spacers and the end groups as previously explained. The terminal aliphatic chains of 3 

and 4 are more bulky than that of 1. This influences the morphology of the blends and 

surface roughness. The roughest sample gives the worst performance. 

5.4.4. The Effect of Annealing Temperature on the BHJ Solar Cell 

Performance 

Photovoltaic devices were fabricated with different blends using identical 

processing conditions as in the previous section.  Compound 1 was used as ED and 9 as 

EA for all the blends in order to evaluate the affect of various annealing temperature on 

the photovoltaic blends. 
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Figure ‎5-13: The current density versus voltage of the photovoltaic devices incorporating a 

thin film of a 1:2 blend with 1as ED and 9 as EA in chlorobenzene.  The devices were 

annealed at different temperature for 60mins. The input light source irradiance was 22 

mW cm
-2

 at a wavelength of 466 nm. 

Figure 5-13 shows current-voltage characteristics of the PV blend devices with   

an input irradiance of 22 mW.cm
-2 

at 466 nm wavelength, the peak of the photocurrent 

action spectrum. It is obvious from the I-V curves that the solar cell performance 

parameters are affected by the annealing temperature.  The Jsc, FF, and Pmax were 

influenced more than the Voc which only varied between 0.85 and 1V.  These have a 

large influence on the power conversion efficiencies (PCE) which are 0.4, 0.32, 0.65, 

1.14, 0.65 and 0.19 % when annealing at RT, 50, 100, 120, 150, 200
o
C respectively, as 

shown in table 5-4.  
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Figure ‎5-14: a)The Photocurrent action spectra for the different photovoltaic devices 

incorporating a thin film of 1:2 blends of 1as ED and 9 as EA in chlorobenzene.  The 

devices were annealed at different temperature for 60mins, b) The external quantum 

efficiency for the different annealed devices. 

Figure 5-14(a) and figure 5-14(b) show the photocurrent action spectra and the 

EQE spectra of PV devices fabricated with different annealing temperatures.  The action 

spectra peaks at 466nm.  Interestingly at wavelengths longer than 500nm where the EA 

contributes more to absorption, the photocurrent curves of the devices show some 

change in the order, for example the EQE of the 100
o
C annealed device become higher 

than that of the 120
o
C device.  

Table ‎5-4: Performance parameters for the 1:9 blend PV devices with different annealing 

temperatures, on excitation with 22 mW.cm
-2

 at  466 nm. 

Annealing 

Temperature 

Voc 

(V) 

Jsc 

mA cm
-2

 

Pmax      

mW cm
-2

 
FF 

EQE 

(%) 

PCE 

(%) 

RT 0.95 0.436 0.0875 0.21 5.21 0.4 

50 0.85 0.381 0.0713 0.22 4.61 0.32 

100 0.95 0.592 0.144 0.256 7.1 0.65 

120 1 0.708 0.252 0.356 8.31 1.14 

150 0.95 0.54 0.143 0.278 6.55 0.65 

200 0.85 0.21 0.043 0.24 2.6 0.19 
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Table 5-5 tabulates the performance of PV devices with different annealing 

temperature. Annealing the device at 120
o
C provided the best performance as also 

illustrated in figure 5-15.  The different parameters change similarly with annealing 

temperature apart from the FF at 50 
o
C, which increases relative to that at RT while all 

the other parameters decrease. 

    

 
Figure ‎5-15: Comparison of the solar cells” performance parameters as function of 

annealing temperature. 

The variation of the solar cell performance parameters as a function of the 

annealing temperature can be related to the nanoscale morphology of the 

interpenetrating network of the ED and EA compounds.  Mixing the blend materials 

efficiently before spin casting produces an intimate mixing of the cast film without 

substantial phase separation resulting in many electron-hole recombination sites before 

collection in the electrodes. 
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The following analysis assumes tiny isolated grains of each component after 

spin casting.  The annealing of the active layer at temperatures less than the glass 

transition temperature of the blend components, results in a limited movement of the 

molecules, giving a limited phase separation of the compounds as illustrated in figure 5-

16(a) for 50
o
C.  The glass transition temperature is 80

o
C for 1, while 9 has only a 

melting point at 274
o
C.  As the annealing temperature passes the glass transition 

temperature of one of the compounds, the molecules become more mobile, which 

stimulates the phase separation of the compounds to increase gradually with the increase 

of the annealing temperature building up the grain sizes as illustrated in figure 5-16 

(b,c).  Note above Tg compound 1 is a nematic LC.  As the temperature becomes closer 

to the melting point of one of the compounds (218 
o
C for 1) the phase separation 

process becomes much faster, and the grain sizes become larger tending to be isolated 

from the other compound or being in contact with the wrong electrode as illustrated in 

figure 5-16 (d).  Therefore, as the grain size becomes too coarse, the excitons recombine 

before separation, deteriorating the solar cells’ performance. 

 
Figure ‎5-16: (top)AFM 3D images of the surface topography of different annealing 

temperature, (bottom) the simulated effects of the annealing temperature of the phase 

separation of the blend compounds
13

.  
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5.4.5. The Effect of Light Intensity on the BHJ Solar Cell Performance 

The 1-9 blend PV devices were characterized at different light intensities to 

evaluate the effect of light intensity on performance. The light intensity was controlled 

using an array of interchangeable optical neutral density filters, with different 

transmission as illustrated in section 5.2.3.1. 

 
Figure ‎5-17: The current density versus voltage of the photovoltaic device incorporating a 

thin film of a 1:2 blend of 1as ED and 9 as EA in chlorobenzene, the device was annealed 

at 120 
o
C for 60mins. The inset labels the irradiance in mW cm

-2
 of the input light source 

of wavelength 466 nm. 

Figure 5-17 shows current-voltage characteristics of the 120
o
C annealed PV 

blend device in the dark and on irradiation with 22, 14.7, 9.28, 2.55mW.cm
-2

 intensities 

at 466 nm. The photocurrent varies significantly with the input irradiance.  However the 

open circuit voltage has fixed values at all intensities apart from the lowest one. 
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Figure ‎5-18: a)The Photocurrent action spectra for a photovoltaic device incorporating a 

thin film of a 1:2 blend of 1as ED and 9 as EA in chlorobenzene, the device was annealed 

at 120
o
C for 60mins, The light intensity was varied as specified in the inset labels, b) The 

external quantum efficiency of the device with different light intensities. 

Figure 5-18(a) shows the variation in the photocurrent action spectrum of the PV 

device annealed at 120
o
C at different irradiance, illustrating the peaks of the 

photocurrent to be around the wavelength of 466nm.  Figure 5-18(b) shows the external 

quantum efficiency EQE of the PV device as a function of the incident light 

wavelength. The EQE shows a small variation with intensity.  At higher intensity the 

probability of electron-hole recombination increases so that the EQE decreases.  

Table ‎5-5: Performance parameters for the  1:9 blend PV device annealed at 120
o
C, on 

varying the irradiance at  466 nm 

Light 

intensity 

(mW cm
-2

) 

Voc 

(V) 

Jsc 

mA cm
-2

 

Pmax      

mW cm
-2

 
FF 

EQE 

(%) 

PCE 

(%) 

22 1 0.708 0.252 0.356 8.58 1.14 

14.7 1 0.496 0.183 0.369 8.88 1.24 

9.28 1 0.324 0.126 0.389 9.27 1.35 

2.55 0.8 0.098 0.025 0.32 10.25 0.99 

 

Table 5-5 tabulates the PV device performance of the 120
o
C annealed device 

with the different irradiances at wavelength 466nm. Voc is 1 V with no variation for all 
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irradiances apart from 2.55mW.cm
-2

, where it drops to 0.8V, which as a consequence 

changes the variation order of FF and PCE with reference to the EQE. 

 
Figure ‎5-19: The power conversion efficiency as function of the light intensity and the 

annealing temperature.  

Figure 5-19 shows the variation of the performance parameters as a function of 

the light intensity for 1:9 blend PV devices with different annealing temperatures. There 

is some correlation between the PV performance and the morphology (see section 4.4.4) 

with annealing temperature.  Annealing at 120
o
C gives the best PV performance and 

produces a smooth sample with relatively small domains. The sample annealed at 200
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o
C is very rough with large domains and shows the worst PV performance.  

Interestingly the sample annealed at 150
o
C shows relatively good PV performance but 

has high roughness.  This may be related to its large proportion of domains <100nm.  

Interestingly the sample annealed at RT is slightly better than that annealed at 50
o
C. 

The current is negatively influenced by the recombination. Therefore the plot of 

the short circuit density current Jsc as a function of light intensity Po in double 

logarithmic scale can be used to predict the recombination properties, where Jsc follows 

the power law dependence 𝐽𝑠𝑐 = 𝑃𝑜
𝑏  

14
.  The charge carriers losses in the absorber bulk 

are dominated by monomolecular recombination in the case of  nearly linear 

dependence with b≈1, while pure bimolecular recombination follows the square root 

dependence with b=0.5.  The different annealing temperatures change the nanoscale 

morphology of the ED/EA, so changing the network paths of the charge carriers to the 

respective electrode, which influences the recombination of the charge carriers via 

adding or removing some trapping centres. 

 
Figure ‎5-20: The variation the power law slope with the annealing temperature. 
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Figure 5-20 shows the variation of the power law slope with annealing 

temperature indicating a change in the dominant recombination type.  The samples 

annealed at 120
o
C shows a high level of phase separation and the slope is 0.92 

indicating that monomolecular recombination is dominant with a small contribution 

from bimolecular. As the roughness and domain sizes increase for the 150
o
C and 200

o
C 

annealed samples the bimolecular recombination contribution increases. 

5.5. Conclusion 

Different EAs were tested in PV devices blended with the ED 3. 9 was found to 

be the best EA and shows good charge transport and the finest scale intermixing in 

blends. Compounds 11 and 13 have donor-acceptor components showing good hole as 

well electron transport.  This and/or the relatively coarse morphology of the 3:11 and 

3:13 blends may explain their relatively poor performance. 

Chlorobenzene is found to be the best solvent for PV devices. The three donors 

1, 3 and 4 with the same aromatic core and different terminal aliphatic polymerisable 

groups were compared in PV devices. Devices incorporating 1 showed the best 

performance which correlates with blend morphology rather than charge transport. 

Finally we show the importance of choosing the optimum annealing temperature 

to optimise blend morphology and the PV device performance. 
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 666...   CONCLUSION 

6.1. Review of Results 

This thesis aims to study and evaluate some novel LCs and amorphous organic 

conjugated materials to be used as EDs and EAs for PVs.  More than 30 homemade 

organic semiconductor compounds were investigated. These compounds help the 

understanding of the influence of some well known active groups and elements on the 

optical and charge transport properties and the performance of PV devices. 

The CV experiment and the UV/VIS spectrometer were used to estimate the 

HOMO/LUMO energy levels and the optical and electrical energy gaps (Eg,op ,Eg,elc) of 

the materials.  Perylene materials, some with donor-acceptor properties, were 

characterised as EAs.  All have similar LUMO energy coming from the accepting 

moiety of the molecule (perylene).  There is significant variations in the HOMO 

properties coming from the donating moiety (phenyl and fluorene aromatic substituent), 

which causes a discrepancy between the optical and electrochemical measurement of Eg.  

Carbazole compounds are disappointing as functional groups with the perylene.  

Although they modify the HOMO energy, the oxidation is irreversible. 

 Liquid crystal compounds with a fluorene-thiophene structure were identified as 

potential EDs to form good D/A pairs in combination with the nine perylene based 

compounds as EAs, with suitable ΔE (HOMOD-LUMOA) to be used for PV’s. 

TOF was used to study the charge transport of organic semiconductors in this 

thesis.  Six of the perylene derivatives compounds, 9, 11, 12, 13, 15 and 16, were 

studied as EA materials.  Compound 9 though not showing the highest electron mobility 
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shows a good (µe/µh) ratio for low electric fields corresponding to the internal electric 

field of solar cell devices.  The other EAs contain donor-acceptor units and show 

ambipolar transport with hole mobility depending on the number of phenyl and fluorene 

groups attached to the perylene. 

We studied how the reactive end group with spacer affected the charge carrier 

mobility of EDs using four fluorene-thiophene structures, compounds 1, 2, 3 and 4, with 

the same aromatic core but with different end groups.  They form nematic glasses at 

room temperature. Results suggest that the mobility depends on the intermolecular 

separation.  These compounds show promising hole transporting properties for solar 

cells.  Both compounds 1 and 4 shows hole mobility >10
-3

cm
2
V

-1
s

-1
.  

The electron and hole mobility were studied for blends of compound 9 as EA, 

and compounds 2, 3, and 4 as EDs with different ED: EA ratios.  For all blends the hole 

mobility is lower than that of the pure ED.  The electron mobility of the blends is 200 

times higher than that of the pure EA.  The 4:9 blend gives the best mobility followed 

by 2:9 then 3:9.  The ED: EA ratios are shown to influence the mobility measurements. 

The thermal activation of charge transport in the liquid crystals is illustrated by 

applying the Gill model to compound 1, 2 and 4. The result showed that the activation 

energy is field dependent.  It decreases with increasing field, which follows the Poole-

Frenkel model expectation of lowering the potential barrier in the direction of the 

applied field and so making the hopping of the charge carriers easier.  The Gaussian 

disorder model (GDM) and correlated disorder model (CDM) were used to analyze the 

mobility data of the four liquid crystals ED compounds.  Compounds 1, 2 and 3 show 

good correlation between the mobility and the disorder parameters, while compound 4 

has anomalously high µo and disorder parameters. 
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We show that the thin film nanoscale morphology and the phase separation of 

the ED/EA blends depend on the chemical structures of EDs and EAs, the casting 

solvents and the annealing temperature of the film.  Both amorphous and liquid crystal 

EAs were studied. There is a big variation in domain size and roughness depending on 

the EA.  Blends incorporating compound 9 have the smallest domain sizes with no odd 

features, although the domain size of 16 is smaller, it show large number of pin holes.  

Morphology is quite different for blends with LC compounds 11 and 13.  This suggests 

that devices with 9 as EA might give better charge separation. 

Three liquid crystal of the same aromatic core and different terminals end groups 

were investigated as EDs in blends.  The surface roughness of the blended thin film is 

minimum and its phase separation finest when the ED component has short terminal 

aliphatic groups rather than long polymerisable chains.  The solvents were found to be 

an important player in controlling the nanoscale morphology and the phase separation 

of the ED/EA blends.  Toluene, chloroform and chlorobenzene were investigated with 

chlorobenzene showing the best performance.  The annealing temperature was found to 

be significant in controlling the nanoscale morphology and the phase separation of an 

intermixed network of the ED/EA blends.  Any change of the blend materials and ratio 

requires different annealing conditions for the optimum phase separation. 

We successfully demonstrated PV performance using blends of our novel EDs 

and EAs. The amorphous material 9 was the best EA, possibly because it has poor 

donor properties or because it produces the finest domain features.  The annealing 

temperature was very important to optimise the solar cells performance by optimisation 

of the phase separation. The LC EAs have disappointing performance, maybe because 

of their donor-acceptor nature.  The ED with the shortest terminal end groups gives best 

result.  
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The device performance fully correlates with the blend nanoscale morphology; 

the blend with the smallest domains gives best PCE.  The best device is the 1:9 blend 

which has a monochromatic PCE of 1.14% as illustrated in table 6-1. This is relatively 

poor compared to the state of the art of 5.1% (broad band) using a P3HT:PCBM blend 

published by A. J. Heeger and coworkers
1
. 

Table ‎6-1: Comparison of our best device with P3HT: PCBM blend published by A. J. 

Heeger and coworkers. 

Blend 

compounds 

Voc 

(V) 

Jsc 

mA cm-2 
FF 

PCE 

(%) 

Measurement 

condition 

1:9 1 0.708 0.36 1.14 

Monochromatic 

light [466nm] 

22 mW cm-2 

P3HT:PCBM 0.63 9.5 0.68 5.1 
AM 1.5G     

100 mW cm-2 

 

The Voc of our devices is very good, which can be correlated to the large ΔE 

(ED,HOMO-EA,LUMO).  The FF and Jsc are poor which can be correlated to the low photon 

harvesting because of the high ED energy gap of 2.33eV, and maybe traps from 

impurities as well as recombination at the layers interfaces and low mobility of the ED 

and EA, which reflected in the high Rs of 625 Ω cm
2
 compared to 7.9 Ω cm

2 
in 

reference paper
1
. 

6.2. Future work 

This work has led to improved understanding of the correlation between 

aromatic substituent and semiconducting and optical properties.  We can apply these 

results to design new organic semiconductors to be used as EDs and EAs for OPV. 

The nanoscale morphology of the ED/EA blend phase separation needs to be 

improved using new methods.  Dichlorobenzene is a promising solvent to be 

investigated.  The morphology can be controlled with cross linking the blend since there 

is a photo-induced phase separation between photopolymerisable and non-
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photopolymerisable blend components during cross linking
2
.  This is an important point 

of research which can be investigated in the future. 

The interface between the electrodes and the organic materials is very important 

to control the Rs.  Annealing the device after the evaporation of the top electrode 

improved the interface
1
.  The annealing promotes Al diffusion increasing the interface 

or chemical reaction formation [C-Al or C-O-Al] which could lead to strong contacts 

and increased contact area
1
. 

The mobility measurement was carried out at RT without annealing after spin 

coating resulting in morphology which maybe different than the devices. Similar 

preparation and measurement conditions should be used for the TOF and PV samples 

for improved correlation of the blends’ mobility and the solar cells’ performance. 
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Appendix A 

Cyclic Voltammograms  

  

  

  



 
238 

 

  

  

   



 
239 

  

  

  

  



 
240 

  

  

 



 
241 

 



 242 

Appendix B 

Transient Photocurrent  

I. Acceptors Compounds 
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II. Donor Compounds 
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III. Donor/Acceptors blends  
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