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Abstract 

This thesis first presents a systematic design procedure which satisfies the required 

strength and stiffness, and structural mass for conceptual engineering structural designs. 

The procedure employs a multi-objective and multi-disciplinary (MO–MD) 

optimisation method (multifactor optimisation of structure techniques, MOST) which is 

coupled with finite element analysis (FEA) as an analysis tool for seeking the optimum 

design. The effectiveness of the MOST technique is demonstrated in two case studies. 

Next, a reliability-related multi-factor optimisation method is proposed and developed, 

representing a combination of MOST (as a method of multi-factor optimisation) and the 

reliability-loading case index (RLI) (as a method of calculating the reliability index). 

The RLI is developed based on a well-known reliability method: the first-order 

reliability method (FORM). The effectiveness and robustness of the proposed 

methodology are demonstrated in two case studies in which the method is used to 

simultaneously consider multi-objective, multi-disciplinary, and multi-loading-case 

problems. The optimised designs meet the targeted performance criteria under various 

loading conditions. 

The results show that the attributes of the proposed optimisation methods can be used to 

address engineering design problems which require simultaneous consideration of 

multi-disciplinary problems. An important contribution of this study is the development 

of a conceptual MO–MD design optimisation method, in which multi-factor structural 

and reliability design problems can be simultaneously considered. 
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LSC Limit state condition 

MCS Monte Carlo simulation 

MD Metamorphic development 

MO–MD Multi-objective and multi-disciplinary 

MOST Multifactor optimisation of structural techniques 

NESSUS Numerical evaluation of stochastic structures under stress 

NN Neural network 

PROBAN Probability Analysis 

PSO  Particle swarm optimisation  

R–F  Rackwitz and Fiessler 

RLI Reliability loading-case index 

RS Response surface 

SORM Second-order reliability method 

SSO Structural shape optimisation  
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Nomenclature 

Cp  Capacitance of the piezoelectric device (F) 

k Coupling coefficient 

c  Damping coefficient 

   Dielectric constant of the piezoelectric material 

meff  Effective mass (kg)  

lb Length of base (mm) 

lf Length of clamp (mm) 

lm Length of tip mass (mm) 

L Load (N) 

W Magnification factor 

m Mass (kg) or Number of performances 

mbeam  Mass of the beam (kg) 

S1 Maximum principal stress/most positive stress (MPa) 

S3 Minimum principal stress/ most negative stress (MPa) 

MSNS Modified standard normal space 

f Natural frequency (Hz) 

ni  Number of iterations 

n Number of loading cases 

nc  Number of piezoelectric material elements 

d  Piezoelectric strain coefficient 

P Power output (W) 

R Resistance (N) or (Ω) 

H Standard normal space 

b
*
  Strain related to vertical displacement of the beam 

Vs  Structural volume (mm
3
) 

tc  Thickness of the piezoelectric material (mm) 

tsh  Thickness of the shim material (mm) 

mtip Tip mass (kg) 

z  Vertical displacement at the tip end (m) 

V Voltage (V) 

Wp Weighting factor 

Ŷ Ŷ space 

Y Young‘s modulus (GPa) 
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Yc  Young‘s Modulus for the piezoelectric material (GPa) 

 

Greek letters 

     Average element stress (MPa) 

  Damping ratio 

δ Displacement (m) 

ω Radian driving frequency (radian per second) 

ck Individual reliability index 

   
  Mean and standard  

ωn Radian natural frequency (radian per second) 

 Reliability index 

   
 Standard deviation 

i Standard normal distribution 

τxy xy-shear stress (MPa) 

τxz  xz-shear stress (MPa) 

ζy Yield stress/strength (MPa) 

τyz yz-shear stress (MPa) 
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1 Introduction 

1.1 Introduction 

This thesis deals with many inter-related concepts, with a focus on solving a structural 

optimisation problem.  

The primarily goal of design engineers is to seek an optimum structural design 

according to the design requirements. An optimised design must not only achieve 

optimum performance, but also attain optimisation efficiency. The use of optimal 

designs can bring significant economic benefits, especially in the manufacturing of 

highly demanding products (e.g., mobile phone casings, which require an optimal shape 

and high reliability). The demands for lightweight materials (e.g., in aerospace 

applications), the efficient use of materials (e.g., composite material and 

telecommunication systems), and design performance (e.g., automotive components) 

have led to the development of design optimisation. 

In the 1970s, optimisation was basically limited to problems involving the maximisation 

or minimisation of a single measure of performance, or objective. In the late 1970s, a 

multi-objective optimisation technique was developed to overcome this deficiency 

(Stadler, 1979; de Weck, 2004). This technique is capable of solving size variables, 

such as the cross-sectional areas of a truss, the thickness of a plate, and other 

geometrical dimensions. Although it was the most advanced technology at that time, 

multi-objective optimisation is only capable of solving for a single discipline; 

consequently, multi-objective and multi-disciplinary (MO–MD) optimisation method 

was introduced to address this problem (Edgeworth, 1881). MO–MD optimisation has 

increasingly been used as a tool in solving general linear/nonlinear and structural design 

problems in the field of engineering. MO–MD designs may be concerned with statics, 

dynamics, acoustics, heat flux, etc. This method has been applied in the automotive, 

mechanical structure, micro-electronic mechanical systems (MEMS), and aerospace 

industries. Basically, the MO–MD optimisation method provides the simplest context in 

which to consider the trade-offs between each objective and each discipline. In the 

‗efficient, better, reliable‘ stage, the method is used to seek an optimal solution between 

different disciplines and different objectives without compromising the target 

performance. Many studies have reported on the MO–MD optimisation method, 
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although their application has been limited to cases of single loading (Aoues and 

Chateauneuf, 2008; Barakat et al., 2004; Pandey et al., 2007). 

In terms of the MO–MD optimisation method, the optimisation procedure is becoming 

increasingly complicated, especially with the simultaneous consideration of multiple 

loading cases. Figure 1.1 provides a brief description of MO–MD optimisation 

problems for a single loading scenario. The objectives are always in conflict with each 

other in terms of seeking the optimal solution; consequently, a Pareto optimal set is used 

to overcome this problem. The optimum solution is obtained with the help of preference 

functions; i.e. preference methods and non-preference methods. In the case of 

preference methods (e.g., the global criterion technique), a typical preference function is 

required for the objectives and a single optimum solution is produced. For non-

preference methods, in contrast (e.g., the weighting method, constraint method, and goal 

programming), a set of Pareto optimal solutions is generated. 

Several non-preference methods have been reported in previous studies. For example, 

Watkins and Morris (1987) used a weighting method to solve laminated composite 

structures, where the objective function was combined with strain energy. Liu and 

Hollaway (1998) proposed a specific weighting method for solving MO–MD design 

problems under different loading scenarios. Díaz and Bendsøe (1992) used a similar 

technique—the average weighted mean method—to solve a topology optimisation 

problem under multiple loading scenarios. 

 

Figure 1.1 – MO–MD design for single and multiple disciplines (de Weck, 2004)  

Over time, structural models have become increasingly detailed and optimisation 

procedures have become increasingly complex; consequently, more precise data are 
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required for MO–MD analysis. Using an MO–MD optimisation method, the optimum 

design is always pushed to the limit of the design constraints, leaving no room for 

uncertainties. Thus, the assessment of safety and reliability (or probability of failure) is 

an increasingly vital component of the design process. Given the increasing importance 

of reliability, it is appropriate to incorporate reliability performance into the MO–MD 

optimisation method. The concept of ―reliability‖ is used to assess the possibility that a 

structure subjected to unpredictable loads and geometry is able to satisfy specific safety 

requirements. Ultimately, the reliability or probability of failure can be determined from 

the multidimensional integral of the probability of the joint density function. This 

function is used to analyse the failure region and to calculate the reliability level; 

however, this process is extremely complicated in most engineering problems. 

Structural reliability analysis can be classified into two types: (i) analytical methods and 

(ii) simulation methods. These two major groups have been used to predict/calculate the 

probability of failure for a structural system or an individual component. One of the 

most popular simulation methods is Monte Carlo Simulation (MCS), which was 

introduced in the 1940s to predict the behaviour of a system. In the following decades, 

additional simulation techniques were introduced, such as Latin Hypercube Sampling 

(McKay, 1979), Importance Sampling (Schuëller and Stix, 1987), and Direct Simulation 

(Bjerager, 1988). One of the disadvantages of the simulation methods is the need for 

vast computational resources. In contrast, the reliability index approach is popular 

because of its small computational cost. The first-order reliability method (FORM) is 

one of the most widely used methods in analysing structural reliability designs. This 

method was developed by Hasofer and Lind (1974) (herein, H–L) and extended by 

Rackwitz and Fiessler (1978) (R–F). 

Structural optimisation and reliability analysis are the equivalent of two-level 

optimisation, which is computationally expensive compared with deterministic 

optimisation. In the present research, this problem is solved by developing the MO–MD 

optimisation method, which employs a new FORM procedure. The proposed 

methodology is applied to a problem involving multiple loading cases. 

This thesis presents the development of a new MO–MD optimisation method that 

incorporates reliability performance. This research addresses design optimisation 

problems in which the design is required to satisfy multiple performance criteria, such 

as mechanical strength and stiffness, structural mass, reliability, and piezoelectric power 
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output, among others. This work encompasses the optimisation of sizing and shape, 

focusing on a number of engineering structural problems and a smart material problem. 

The first two examples demonstrate the efficiency of the proposed method (i.e., 

optimisation of a sliding caliper and a bimorph cantilever beam using piezoelectric 

materials). This method is subsequently extended to simultaneously considering a multi-

loading case. The next two examples demonstrate the effectiveness of the method (i.e., 

optimisation of a star-like truss structure and a raised-access floor panel structure in 

which reliability performance is also maximised). An MO–MD optimisation method is 

developed to obtain the optimum solution for strength and stiffness, structural volume, 

reliability, etc. 

 

1.2 Research objectives 

Having identified the main research themes for this work, the following objectives were 

established: 

i) Develop a simple reliability method. 

ii) Demonstrate the efficiency and power of the multi-objective and multi-

discipline optimisation method. 

iii) Develop and apply an automatic reliability and multifactor optimisation 

method. 

iv) Apply the proposed methodology in an industrial context.  

 

1.3 Applications of the proposed optimisation methods 

Four applications of the proposed optimisation method are presented in this thesis. The 

details of each case study (i.e., the design problem, optimisation setting, and results) are 

presented in the following chapters. First, a multi-objective problem is attempted under 

a single loading case; i.e., the optimisation of an automotive braking system (sliding 

caliper). The structure must satisfy all the design constraints in terms of strength and 

stiffness, and retain a low mass. The proposed method is then used to simultaneously 

solve a multi-disciplinary problem related to energy harvesting by a piezoelectric 

generator, concerned with optimisation of the shape of a cantilever beam and its effect 
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on the generation of piezoelectric power. The objective of this latter example is to 

maximise the generated power density while satisfying all the design constraints.  The 

next two examples are multi-objective, multi-disciplinary, and multi-loading-case 

optimisation problems that are addressed by incorporating a reliability procedure to 

greatly enhance the proposed technique. The two examples are a star-like truss structure 

and a raised-access floor panel structure. The objectives of the optimisation are to 

simultaneously maximise the strength and stiffness, and minimise the structural mass, 

and to maximise the reliability index under multiple loading cases. 

   

1.4 Overview of the dissertation 

This thesis presents a multi-objective and multi-disciplinary optimisation technique that 

simultaneously considers multiple loading scenarios and the reliability index. The 

technique is applied to identify the optimal solution in problems relevant to industry, 

and the results are presented. The thesis is organised into 8 chapters, as summarised 

below. 

Chapter 2 reviews the state of art of sizing-, shape-, and topology-optimisation methods 

for structural design optimisation. The advantages and disadvantages of each method 

are discussed. A brief summary of optimisation problems is presented. 

Chapter 3 reviews the state of art of various reliability methods, followed by a review of 

well-known software-based reliability methods. 

Chapter 4 presents a detailed discussion on the first-order reliability method, followed 

by a review of reliability-based optimisation, ranging from traditional methods to the 

latest techniques. A brief description is provided of a Multifactor Optimisation of 

Structure Techniques (MOST), which introduces a matrix system with which to 

evaluate all the performances and loading cases. A weighting system is introduced that 

takes into account the importance of each value in the matrix system, and an objective 

function is computed to evaluate the performance of the whole system. A brief 

explanation is provided of the proposed reliability method—the reliability loading-case 

index. Finally, the formulation of optimisation problems is discussed. 
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Chapter 5 presents a method for optimising the size and shape of a sliding caliper, 

employing the MOST method. This chapter presents a brief review of the history of 

braking systems in the automotive industry, followed by an account of the basic 

operation of a sliding caliper. Finally, the results of the analyses are presented and 

discussed. 

In Chapter 6, a relatively complex problem is considered: a multi-objective and multi-

disciplinary problem concerned with energy harvesting using a piezoelectric element. 

Reviews are presented of energy harvesting and piezoelectric material, followed by a 

brief explanation of a piezoelectric generator using the finite element method— 

bimorph cantilever beam. An existing technique (the Roundy method; Roundy, 2003) is 

verified, practical results are presented, and the proposed technique is discussed. The 

first example focuses on maximising the output power by obtaining the optimal 

geometrical shape for an idealised bimorph cantilever beam. The attributes of the design 

solution are discussed. The second example is concerned with maximising the power 

density for a bimorph cantilever beam. The current work focuses on a size and shape 

optimisation method using a pre-determined design solution from the first example. The 

concept is to simultaneously maximise the power density and minimise the structural 

volume. Finally, the results of the optimisation are presented and discussed. 

Chapter 7 presents a combination of the MOST technique (as a method of multifactor 

optimisation) and a reliability loading-case (as a way of calculating the reliability index), 

which is known as the reliability related multifactor optimisation approach. The 

reliability loading-case index is developed from one of the most popular approaches in 

analysing structural reliability performance—FORM. Two examples are presented, 

demonstrating the effectiveness of the proposed methodology. The attributes of the 

designs are discussed. 

Finally, Chapter 8 provides a summary of the results and conclusions, including the key 

findings and recommendations for future work. Figure 1.2 shows the relationships 

among the chapters in this thesis. 
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Figure 1.2 – Breakdown of the thesis and the proposed method, highlighting the reliability-related multifactor 
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2 Sizing-, Shape-, and Topology-Optimisation Methods for a 

Structural Problem 

2.1 Introduction 

Design optimisation methods are enabling technologies which are of use in the process 

of engineering design. Such methods are employed mainly in the aerospace and 

automotive industries to achieve weight reduction without compromising structural 

performance or accuracy. In recent years, much research interest has focused on 

developing and solving massive, complex calculations. Multi-objective, multi-

disciplinary, and multi-loading-case optimisation has been investigated using improved 

engineering computational methods, such as finite element analysis applied to structural 

problems. A brief history of the development of structural analysis and optimisation is 

as follows (Papalambros, 1995; Saitou et al., 2005; Venkataraman and Haftka, 2004): 

i) Before 1980 – Structural analysis became popular and was used to calculate 

the results of physical experiments. Structural optimisation was rarely 

employed due to the high computational cost. 

ii) 1980s – Structural optimisation became a tool for design. Many researchers 

focused on analysis and optimisation to improve the efficiency and accuracy 

of structural design (Bennet and Botkin, 1986). 

iii) 1990s – Three-dimensional (3D) CAD was developed and combined with 

structural analysis to become an important method of design optimisation. 

iv) 2000s until present – Structural optimisation is increasingly becoming an 

important tool in solving new conceptual, large-scale, robust, and reliability-

based optimisation problems, including multi-objective and multi-

disciplinary optimisation problems.  
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2.2 Description of the optimal design 

Optimisation is concerned with achieving the best possible solution while satisfying all 

of the specified requirements (e.g., strength and stiffness requirements). Design 

optimisation is a procedure employed in the case that the user needs to transform the 

required information into a detailed specification of a system, or in the case that the user 

requires an object with a physical form and function (Liu, 1996). In general, the 

definition of optimal design problems involves an objective function, design variables, 

and design constraints. The typical mathematical expression can be defined as follows: 

 Find                   

 To minimise/maximise           

 subject to                    

                     

    
         

              

where X is the design variables, f(X) is an objective function, m is the number of 

inequality constraints, n is the number of equality constraints, k is the number of design 

variables, and   
    and   

    are the minimum and maximum bounds of the design 

variable   , respectively. For example, the lower bounds are normally used to define the 

minimum cross-sectional area of a truss member. 

A design variable is a parameter which can be controlled. Design variables are 

numerical quantities which define a design solution within the stated bounds during the 

optimisation process. They may be ‗continuous‘ (values in a given range, such as the 

geometry of the design) or ‗discrete‘ (i.e., can be integer numbers, such as the number 

of gear teeth). The type of design variable must be considered in the design, and they 

are bounded by maximum and minimum values.  

An objective function is a function which is to be maximised or minimised. For 

example, the weight of an aircraft or aerospace structure is to be minimised, or 

structural stress is to be minimised to maximise the strength. Many optimisation 

problems involve multiple objective functions, and these objectives maybe conflict with 

each other. A simple method to overcome this problem is to form an overall objective 

function as a linear combination of the conflicting multiple functions. 
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A constraint is a condition which must be satisfied. Such constraints are statements of 

the limits of values for a specific condition. Design constraints are the conditional 

restrictions that must be satisfied in order to seek an optimal solution. These constraints 

collectively define a region referred to as the ―feasible region‖. Constraints may be 

equality or inequality. In some design problems, equality constraints are required (e.g., 

the required fundamental frequency of a structure). Inequality constraints state that the 

design variables are greater or smaller than a set of values (e.g., the maximum stress 

must be less than the yield stress of the material). The latter is the most flexible type of 

constraint, and it can be described for most engineering problems. 

Basically, a recurring iterative process is required before a solution is converged in an 

optimisation. The optimisation problem is solved by using an optimisation procedure, 

which involves analyses and redesigns. Most design optimisation methods are employed 

with a numerical solver to assess the performance of a design. The present research 

focuses on the use of finite element analysis for structural optimisation. The 

optimisation process involves five fundamental steps: 

i) Model generation (initial design) 

ii) Numerical analysis 

iii) Sensitivity analysis 

iv) Model redesign (improved design) 

v) Optimum design 

Step (i), which involves the initial design, may have a strong influence on the final 

optimal design and on the number of iterative cycles required for convergence. Liu et al. 

(2000) noted that the selection of the initial design determines whether an optimisation 

is converged and influences the number of iterative cycles. 

Step (ii), numerical analysis, forms an important part of the design because the process 

verifies the designs such that all the constraints and loading conditions are properly 

defined. For structural optimisation, this step is commonly performed using finite 

element software (e.g., ANSYS).  

Step (iii), the sensitivity analysis, involves the overall objective function and constraints 

functions with respect to design variables.  

Step (iv) involves the optimisation process which seeks to find a better design by 

improving the system‘s objective function. In sizing methods, the dimensions of a 
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structure or, for example, the cross-sectional area of truss members are varied. In shape 

methods, the shape of a structure is varied, followed by re-meshing of the optimisation 

model. 

Steps (ii) to (iv) are repeated until the design satisfies the chosen constraints and until 

the design cannot be improved by further iterations.  

Step (v) is the final stage in the optimisation process, at which point the design is 

converged.  

 

2.3 Types of structural optimisation techniques 

Optimisation techniques can be categorised into three types: sizing-, shape-, and 

layout/topology-optimisation methods. Sizing optimisation is normally applied to a 

structure constructed with truss, beam, and/or plate/shell members. Design variables 

may be, for example, the cross-section area of a truss member, details of a beam section, 

or the thickness of a plate/shell. This type of optimisation is relatively straightforward 

and does not require changes to the finite element model when a structure is modified. 

Shape optimisation determines the optimal boundary of a structure for a given topology. 

The design variables are typically spline controlled points, used to determine the shape 

of the structure in 2D or 3D. Unlike sizing optimisation, shape optimisation requires 

changes to the finite element model during the optimisation process and increases the 

degree of difficulty of mesh generation.  

Topology optimisation, which is also employed to determine the optimal solution, can 

be classified into discrete element and continuum approaches. The discrete element 

method is somewhat similar to the sizing and shape method. The design domain is 

represented as a finite set of possible locations of the structural members (Figure 2.1(a)). 

The size (i.e., the width and thickness) of the members is varied between the design 

domain and zero.  If a member size is zero the member is non-existent. In this way, the 

optimised topology can be represented (Figure 2.1(b)). However, this method is only 

suitable for conceptual design, which is generally limited by the number and type of 

possible members defined in the design domain. In the continuum approach, the design 

domain is represented as a ―void‖ region (Figure 2.2(a)), and the optimal structure can 
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be determined by varying the void region within the design domain (Figure 2.2(b)). 

Therefore, structures with various sizes and topologies can be represented. 

 

Figure 2.1 – Topology optimisation (discrete element), showing (a) the initial design, and (b) the 

optimised design (Rong and Liang, 2008) 

 

Figure 2.2 – Topology optimisation (continuum approach), showing (a) the initial design, and (b) the 

optimised design (Ohsaki, 2001) 

Thus, sizing-, shape-, and topology-optimisation methods are required to solve different 

classes of problems.  For a given problem, it is possible to simultaneously solve the 

shape and layout optimisations, or the sizing and shape optimisations. 

 

2.4 Review of existing optimisation methods 

Various methods for optimal structural designs have been developed to solve different 

classes of problems. In general, all optimisation methods are mainly concerned with 

finding the optimal design for which the objective function is minimised or maximised 

subject to the design constraints. This review examines the following optimisation 

methods used in engineering design problems: 

i) Metamorphic development  

ii) Adaptive weighted sum method  

iii) Genetic algorithm  

iv) Multifactor optimisation of structure techniques  
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v) Structural shape optimisation  

vi) Particle swarm optimisation  

The review focuses on sizing and shape methods because they represent the basis 

technique used to address the design problem. 

 

2.4.1 Metamorphic development 

Metamorphic development (MD) is an optimisation method that can be applied to 

continuum structures and truss members to find the optimal structural shape and 

topology by minimisation of structural compliance and mass, subject to stress and 

deflection constraints (Liu et al., 2000). MD can start from a basic description of the 

structure, involving as little as the minimum number of nodes and elements connecting 

the applied loads and support points. The MD process can start from any degree of 

development of the structure, and a dense finite element mesh is not necessary, thereby 

reducing the computation cost. 

The optimum solution obtained by MD is developed via simultaneous growth and 

degeneration approaches with the aim of ensuring satisfactory or improved overall 

performance. The rate of growth is controlled using a dynamic growth factor by adding 

material to decentralise high stress and removing material to eliminate relatively low 

stress. A design domain may be specified, containing sub-domains that can be finite or 

infinite in size. MD can be used to find an optimum shape which minimises the 

structural mass and the compliance stress subject to structural response constraints, and 

vice-versa. 

Good examples of the MD method can be found in Liu et al. (2001) and Ngim et al. 

(2009). These examples sought to achieve minimum mass structures subject to the 

constraints on stress and deflection. Most of the optimum designs were developed 

starting from a simple structure. Figure 2.3 and Figure 2.4 show examples of the use of 

the topology optimisation to solve the same Michell structure design problem (Michell, 

1904) starting from two different initial structures. The optimum solutions for the 

structural design problem are basically the same, as shown in Figure 2.3(g) and Figure 

2.4(g), respectively. 
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(a) 

   
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 2.3 – Optimisation from structure A, showing (a) the initial structure, (b) iteration 10, (c) 

iteration 20, (d) iteration 30, (e) iteration 45, (f) iteration 60, and (g) iteration 69 (Liu et al., 2000) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 Figure 2.4 – Optimisation from structure B, showing (a) the initial structure, (b) iteration 10, (c) 

iteration 20, (d) iteration 30, (e) iteration 40, (f) iteration 50, and (g) iteration 53 (Liu et al., 2000) 
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The fact that the same solution is obtained from different starting points confirms the 

robustness of the MD search methodology. Liu et al. (2000 and 2005) presented several 

examples of layout and topology optimisation using the MD method; i.e., a fixed-end 

beam, a C spanner, a 2D suspended apple, and a turbine disk. MD has also been used to 

optimise the design of micro-fibre holder clips (Liu and Lu, 2001), and has been 

extended to cover the design optimisation of axisymmetric structures, including the 

shape optimisation of cylindrical nozzles in a spherical pressure vessel (Liu. et al., 2001) 

and design optimisation for manufacturing using Additive Manufacturing Technologies 

(AMT) (Ngim et al., 2007). 

MD is mainly used in solving layout/topology problems, and requires further 

development in terms of simultaneously solving multiple objective and multiple loading 

cases, for which the method may currently be inappropriate.  

 

2.4.2 Adaptive weighted sum method 

In the 1970s, the most widely used method for multi-objective optimisation was the 

weighted sum method. Stadler (1979 and 1984) applied the notion of Pareto optimality 

to the field of engineering optimisation. The goal of a design optimisation is to find the 

best design while satisfying all the design constraints. The weighted sum method 

transforms the multiple objectives into a scalar objective function. Each function is 

multiplied by a weighting factor (w) to give the individual objective function (Ji, i = 1, 

2,…,mws), and the functions are summed. Thus, each individual objective determines a 

single optimal solution point of a Pareto front. For the weighted sum, the weights are 

changed systematically to obtain a different optimum solution. Zadeh (1963) was the 

first to employ this method, and Koski (1988) used the method to examine a multi-

objective truss problem. Schy and Giesy (1988) applied the weighted sum method to 

multi-objective optimisation of an aircraft control system. Das and Dennis (1998) 

reported the following disadvantages of the weighted sum method: (i) it is difficult to 

obtain optimal solutions due to equality constraints in non-linear problems, (ii) it is 

necessary to filter out the Pareto and non-Pareto optimal solutions, and (iii) the Pareto 

front regions are not covered by this method in the case of more than two objective 

functions. 

To overcome the above limitations, Kim and de Weck (2005) developed the adapted 

weighted sum (AWS) method, which has proved to be successful in finding the Pareto 
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optimal in non-convex regions and ignoring non-Pareto optimal solutions. The 

procedure employed by AWS is to refine the Pareto front (see Figure 2.5). This method 

is effective in solving multi-objective optimisation problems in which the Pareto front is 

i) a convex region, ii) non-convex regions with non-dominated solutions, and iii) non-

convex regions with dominated solutions (see Figure 2.6). 

 

Figure 2.5 – The concept and procedures of AWS, showing (a) the weighted-sum method, (b) the initial 

step, (c) constraint imposition, and (d) refinement (Kim and de Weck, 2005) 

 

Figure 2.6 – AWS method for the Pareto front, showing (a) the convex region, (b) non-convex regions 

with non-dominated solutions, and (c) non-convex regions with dominated solutions (Top: initial solution; 

Bottom: AWS solution) (Kim and de Weck, 2005) 
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The drawback of AWS is that it is limited to two objective functions (Kim and de Weck, 

2006). This method needs to be further developed to include multiple objective 

functions that can be used to solve more general problems, for which the method may 

currently be inappropriate. 

 

2.4.3 Genetic algorithm 

The Genetic algorithm (GA), introduced by Holland (1975), is a metaheuristic 

optimisation method. This method imitates natural phenomena and is applied to 

complex optimisation problems. Goldberg (1989) extended GA to the field of 

engineering structural optimisation. The GA is a stochastic search method based on the 

mechanisms of natural selection and genetics, with the extra capability of random 

search in regions of the design space with a significant potential gain. Based on 

Darwin‘s theory of evolution, a group of solutions (defined by their individual genes) is 

placed among the populations. Well-adapted solutions are forwarded to the subsequent 

iterations, whereas those which are less fit are discarded, which is similar to the process 

of evolution in nature. This leads to the optimum solution. GA is not limited by the 

discontinuous design space that is commonly used in mathematics programming. The 

main advantages of GA are as follows (Goldberg, 1989): 

i) does not require objective functions to be differentiable  

ii) searches all the possibilities in the design space, yielding a global optimal 

iii) works on a coding of the design variables that consists of continuous, 

discrete, and integers variables 

iv) does not require extensive problem formulation 

GA has been used to solve various classes of problems in the fields of engineering 

structure, science, and finance. Erbatur et al. (2000), Jenkins (1991), and Oshaki (1995) 

used a GA to determine an optimum solution for engineering truss structures. The task 

is to find an optimum shape which minimises the structural weight of an 18-bar truss 

structure under a single loading case, as shown in Figure 2.7 (Rahami et al., 2008). 

Aguilar Madeira et al. (2005) used GA to obtain a multi-objective optimisation of a 

structural layout, and tested the optimal design on a short cantilever subjected to two 

different loading cases. Although the cantilever beam was tested for two loading cases, 

the authors used two objective functions to represent the design problem, yielding two 

different solutions (Figure 2.8), although both structures are identical (compare Figure 
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2.8 (a) and (b)). This result means that if the force applied to the structure in Figure 2.8 

(a) is upward, the structure may not be able to withstand the force. This also applies to 

the structure in Figure 2.8 (b). Nevertheless, the authors used this result and proceeded 

with further optimisation to obtain a single structure which can withstand two different 

loading cases (Figure 2.8 (c)). 

 

Figure 2.7 – (a) Geometrical dimensions, applied load, and force locations for an 18-bar space truss 

structure, and (b) the optimum shape of the structure (Rahami et al., 2008) 

 

Figure 2.8 – Optimization of a cantilever beam, showing (a) loading case 1 and (b) loading case 2 (top: 

design domain; bottom: optimum design), and (c) combinations of the two initial solutions (Aguilar 

Madeira et al., 2005) 

 

GA has been applied mainly to single-objective optimisation problems (Fernandes et al., 

1998). To tackle multi-objective optimisation problems, the objective function in the 

GA method should be combined with a scalar fitness function, which utilises the search 

method in the feasible region to obtain an optimum solution. Schaffer (1985) proposed 

the first vector-evaluated GA (VEGA) as a multi-objective GA. Subsequently, several 

multi-objective algorithms have been developed (Fonseca and Fleming, 1993; Sarker 

and Liang, 2002). Table 2.1 lists the most widely employed GA methods. The 

application of GA to solving multi-objective optimisation has been reported by Tamaki 

et al. (1994) and Kita et al. (1996), among others. 
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Table 2.1 – GA methods 

Algorithm name Author(s) 

Weight-based GA (WBGA) Hajela and Lin (1992) 

Multiobjective GA (MOGA) Fonseca and Fleming (1993) 

Niched Pareto GA (NPGA) Horn et al. (1994) 

Nondominated Sorting GA (NSGA) Srinivas and Deb (1994) 

Random Weighted GA (RWGA) Murata and Ishibuchi (1995) 

Strength Pareto Evolutionary Algorithm (SPEA) Zitzler and Thiele (1999) 

Pareto Archived Evolution Strategy (PAES) Knowles and Corne (2000) 

Pareto Envelope-based Selection Algorithm (PESA) Corne et al. (2000) 

Improved SPEA (SPEA2) Zitzler et al. (2001) 

Region based Selection in Evolutionary Multiobjective 

Optimisation (PESA-II) 

Corne et al. (2001) 

Micro-GA (Micro-GA) Coello and Pulido (2001) 

Multiobjective Evolutionary Algorithm (MEA) Sarker and Liang (2002) 

Fast Non-dominated Sorting GA (NSGA-II) Deb et al. (2002) 

Rank Density Based GA (RDGA) Lu and Yen (2003) 

Dynamic Multiobjective Evolutionary Algorithm (DMOEA) Yen and Lu (2003) 

Polar Coordinates GA (PCGA) Kuang and Zheng (2005) 

 

Many types of multi-objective GAs have been developed and applied (Corne et al., 

2001; Fonseca and Fleming, 1995a and 1995b). For example, Caello (2009) listed more 

than 4000 studies concerned with multi-objective GAs. Table 2.2 lists the most well-

known multi-objective GAs along with their advantages and disadvantages.  
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Table 2.2 – Summary of the most well-known GA methods (from Konak et al., 2006) 

Algorithm Fitness assignment 
Diversity 

mechanism 
Elitism 

External 

population 
Advantages Disadvantages 

VEGA Each subpopulation is 

evaluated with respect 

to a different objective 

No No No First MOGA 

straightforward 

implementation 

Tends to converge to the extreme of 

each objective 

WBGA Weighted average of 

normalized objectives 

Niching 

predefined 

weights 

No No Simple extension of single 

objective GA 

Difficulties in nonconvex objective 

function space 

MOGA Pareto ranking Fitness 

sharing by 

niching 

No No  Simple extension of single 

objective GA 

Usually slow convergence, problem 

related to niche size parameters 

NPGA No fitness assignment, 

tournament selection 

Niche 

count as 

tiebreaker 

in 

tournament 

selection 

No No Very simple selection 

process with tournament 

selection  

Problem related to niche size 

parameters, extra parameter for 

tournament selection 

NSGA Ranking based on non-

domination sorting 

Fitness 

sharing by 

niching 

No No Fast convergence Problem related to niche size 

parameters 

RWGA Weighted average of 

normalized objectives 

Randomly 

assigned 

weights 

Yes Yes Efficient and easy to 

implement 

Difficulties in nonconvex objective 

function space 

SPEA Ranking based on the 

external archive of non-

dominated solutions 

Clustering 

to truncate 

external 

population 

Yes Yes Well tested, no parameter 

for clustering  

Complex clustering algorithm 
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PAES Pareto dominance is 

used to replace a parent 

if offspring dominates 

Cell-based 

density as 

tiebreaker 

between 

offspring 

and parent 

Yes Yes Random mutation hill-

climbing strategy, easy to 

implement, 

computationally efficient 

Not a population-based approach, 

performance depends on cell size 

PESA No fitness assignment Cell-based 

density 

Pure 

elitist 

Yes Easy to implement, 

computationally efficient 

Performance depends on cell size, 

requires prior information on 

objective space 

SPEA2 Strength of dominators Density 

based on 

the k-th 

nearest 

neighbour 

Yes Yes Improved SPEA, ensure 

extreme points are 

preserved 

 

Computationally expensive fitness 

and density calculation 

NSGA-II Ranking based on non-

domination sorting 

Crowding 

distance 

Yes No Single parameter (N), well 

tested, efficient 

Crowding distance works in 

objective space only 

RDGA Problem reduced to bi-

objective problem with 

solution rank and 

density as objectives 

Forbidden 

region cell-

based 

density 

Yes Yes Dynamic cell update, 

robust with respect to the 

number of objectives 

Relatively difficult to implement 

DMOEA Cell-based ranking Adaptive 

cell-based 

density 

Yes 

(implicit

ly) 

No Includes efficient 

techniques to update dell 

densities, adaptive 

approaches to set GA 

parameters 

Relatively difficult to implement 

PCGA Pareto front Grid 

division 

using polar 

coordinates 

No No Modification of MOGA Uniform Pareto optimal front only 
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Despite the successful application of GA, several drawbacks have been identified. GAs 

often require many function evaluations, resulting in a high computational cost. For 

relatively small problems, GA solutions still require a large number of computational 

analyses (Jakiela et al., 2000). Adeli and Kamal (1992) proposed a method for reducing 

the number of computational analyses for large optimisation problems. To minimise the 

overall computational effort for multi-objective, multi-disciplinary, and multi-loading-

case optimisation, an alternative method is required to ensure the efficiency of the GA. 

 

2.4.4 Multifactor optimisation of structure techniques  

A multi-objective and multi-discipline optimisation method, MOST (Multifactor 

Optimisation of Structure Techniques; Liu and Hollaway, 2000; Liu and Lu, 2004), has 

been developed to accommodate and implement the optimisation. MOST is able to 

simultaneously optimise various objectives of structural performance for many loading 

cases. The method utilizes commercially available finite element codes (e.g., ANSYS) 

and combines finite element static/dynamic analysis with a unique optimisation 

technique. The MOST optimisation system can efficiently and systematically solve 

complex engineering design problems which may have multiple objectives and multiple 

loading cases, by creating a parameter profile analysis and seeking an optimum solution. 

This method has introduced an assessment system with scores and merit indices (range, 

0–10) for all performance and loading cases. These features make MOST a powerful, 

cost-effective, and reliable tool with which to optimize complex structural systems. 

The MOST technique has been applied to solve sizing- and shape-optimisation 

problems. For example, Liu and Hollaway (1998) presented an example of design 

structure–electromagnetic optimisation of large reflector antenna systems. The 

optimised solution obtained by MOST yielded improved performance under seven 

loading cases. Liu et al. (1999) sought to find the optimal design for a planar truss 

structure which is able to simultaneously sustain different loading cases (Figure 2.9). 

 

Figure 2.9 – Optimal shape of a planar truss structure, as obtained by MOST. (a) Initial design; (b) 

Optimised design (Liu et al., 1999) 
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Thus, in the present research, MOST forms the basis of the sizing- and shape-

optimisation method. The first two examples considered in this thesis (i.e., the sizing 

and shape optimisation of a sliding caliper and a bimorph cantilever beam; see Chapters 

5 and 6) demonstrated sizing and shape optimisation under multiple objectives and 

multiple disciplines. These examples are only considered as single loading cases. The 

next two examples are cases with multiple objectives, multiple disciplines, and multiple 

loading. 

 

2.4.5 Structural shape optimisation 

The structural shape optimisation (SSO) method was first proposed by Zienkiewicz and 

Campbell (1973). The most commonly used SSO method is the Lagrangian method, in 

which several points are sequentially numbered along the structural boundary to enable 

the shape of the structure to be expressed using a spline/interpolation function. Thus, 

SSO can be implemented by moving the points within the restricted boundary. 

Sequential Linear Programming (SLP) is the optimisation method normally used in the 

SSO algorithm (John and Denis, 2000). The advantage of the SSO method is guaranteed 

convergence to the global optimum for design problems. SLP also involves a series of 

non-linear solutions. Griffith and Stewart (1961) were the first to suggest using SLP as a 

method for solving non-linear problems. However, this method may converge very 

slowly compared with other methods. Wilson (1963) proposed the Sequential Quadratic 

Programming (SQP) method to solve non-linear optimisation problems. The advantage 

of SQP is that it provides a significant, reliable, matrix factorisation which is frequently 

updated to provide a uniform treatment of ill-conditioning. However, it is difficult to 

execute SQP methods in such a way that the exact second derivatives can be used 

efficiently. Previous studies have applied SSO to solve shape-optimisation problems, 

including Atrek et al. (1984), Bugeda et al. (2008), Haftka and Gürdal (1992), Hartman 

and Neummann (1989), and Hinton and Rao (1993 and 1994). Figure 2.10 shows the 

benchmark problem of SSO, which is to optimise a 2D plate with a hole.  
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Figure 2.10 – Two-dimensional plate with a hole, showing (a) the general dimensions, and the locations 

of the applied load and stress constraint, (b) the initial finite element design, and (c) the optimal finite 

element design (Campbell and Kelliher, 2000) 

Several good examples of shape optimisation have been reported previously. Kelliher et 

al. (1999) showed an example using a new hybrid boundary element and finite element 

SSO method. The design variables are to control the shape of the design, which is 

subjected to the design constraints. Afonso and Sienz (1999) further developed the SSO 

method by considering multiple objective functions, and Nadir et al. (2004) investigated 

the method in terms of multi-objective problems related to an abrasive water-jet-cutter 

manufacturing process, considering both structural performance and manufacturing cost. 

Although SSO is able to solve multi-objective and multi-disciplinary problems, this 

method has yet to be applied to simultaneously solving multi-loading cases, for which it 

may be inappropriate. 

 

2.4.6 Particle swarm optimisation 

Particle swarm optimisation (PSO) is a method based on a probabilistic search 

algorithm. This technique was originally developed by Kennedy and Eberhart (1995) to 

solve a continuous optimisation problem, based on the social behaviour of birds and 

fishes that adapt to their physical environment to avoid predators. The main concept is 

to randomly create particles, explore possible solutions, and seek the optimal solution. 

This technique has many similarities to other methods (e.g., GA). The system employs a 

random search technique and searches for the optimum point by updating after every 

iteration. 

PSO has been used in many applications in engineering design problems. Applications 

in the field of structural optimisation are normally focused on engineering design 

problems, which involve sizing and shape optimisation. For example, Venter and 
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Sobieszczanski-Sobieski (2004) demonstrated a multidisciplinary optimisation of a 

transport aircraft wing. The authors investigated the basic PSO approach and applied it 

to minimise the weight of the wing structure and to maximise the flight range of the 

aircraft. Fourie and Groenwold (2002) applied the PSO method to size optimisation 

(e.g., a plane truss and a space truss) and shape optimisation (e.g., a torque arm); a 

similar study was performed by Schutte and Groenwold (2003). Omkar et al. (2008) 

presented a vector-evaluated PSO algorithm for the design optimisation of composite 

structures. The authors sought to minimise the weight of the structures and to minimise 

the cost by varying the number of layers, the composite thickness, and the stacking 

sequence. Perez and Behdinan (2007) reported the development and implementation of 

a PSO approach for the structural optimisation of truss structures (Figure 2.11). The 

main objective was to find the optimal design of a 25-bar space truss structure which is 

able to sustain varying forces under a single loading case. The authors also investigated 

a multi-objective and multi-loading-case problem for a 72-bar space truss structure, 

obtaining a better solution (compared with other methods) while satisfying all the 

design constraints. Although a better optimal solution was achieved, the authors did not 

consider a multi-disciplinary problem. 

 

Figure 2.11 – Layout of (a) a 25-bar space truss structure and (b) a 72-bar space truss structure 

PSO has been widely applied in engineering design problems, including process flow 

(Guo et al., 2009), control design (Krohling et al., 2002), power systems (Abido, 2002; 
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Wang et al., 2010), and structural shape optimisation (Venter and Sobieszczanski-

Sobieski, 2004). In structural problems, this method has mainly been applied to 

investigations of structural configuration and sizing optimisation problems. Compared 

with other methods, PSO has rarely been simultaneously applied to multi-objective, 

multi-disciplinary, and multi-loading-case problems. In general, an optimisation method 

for solving multi-objective, multi-disciplinary, and multi-loading-case design problems 

would require a large number of function evaluations. Despite the simplicity, 

effectiveness, and robustness of PSO, the computational cost is always a concern when 

using a design optimisation method. For example, Venter and Sobieszczanski-Sobieski 

(2004) reported an average of 9660 analyses to attain convergence for three separate 

design variables. In a multi-objective and multi-disciplinary optimisation, the number of 

combinations of sizing-, shape-, and layout-optimisation problems may be several 

orders of magnitude more than in the case of single-objective optimisation. Hence, the 

computational cost is greatly increased with increasing complexity of the design 

problem. Consequently, this method is not considered in the present study. 

 

2.5 Summary 

This chapter presented a historical chronology of structural analysis and optimisation, 

followed by a description of optimal design. In general, the definition of optimal design 

problems requires an objective function, design variables, and design constraints. Three 

basic optimisation methods were evaluated: sizing, shape, and topology optimisation. A 

general description of an optimisation process was presented, followed by a brief review 

of the various optimisation techniques (e.g., Genetic Algorithm, Particle Swarm 

Optimisation, and Multifactor Optimisation of Structures Technique). These methods 

are able to solve multiple objective problems which involve sizing and/or shape 

optimisation. The advantages and disadvantages of each method were evaluated.  

The following chapter presents a brief review of various methods of reliability analysis. 
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3 Methods for Analytical and Computational Reliability 

Analyses  

3.1 Basis of a structural design concept 

Most engineering problems can be stated in terms of two simple terms: load and 

resistance. The basic principle of structural design is that the resistance should exceed 

the load: 

 R > L (3.1) 

where R is the resistance and L is the load. The basis of structural design is to ensure 

that the design can be used throughout the lifetime of the product. The basic idea of 

safety factors is that the resistance always exceeds the load; however, most of the 

quantities on both sides of the equation are uncertain. Consequently, it is necessary to 

calculate the probability of satisfying the criterion. A probabilistic approach is a means 

of evaluating a structural design to ensure the performance is satisfactory, known as 

―reliability analysis‖. 

Traditionally, a design problem is calculated using safety factors based on experience. 

Nevertheless, safety factors cannot always guarantee satisfactory design performance. 

In a multi-objective, multi-disciplinary, and multi-loading-case problem, engineering 

design is usually an optimisation problem with two or more simultaneous, conflicting 

requirements (e.g., maximising safety factors, minimising structural cost, and 

maximising/minimising structural performance). Whereas classical safety-factor design 

does not provide sufficient information on the importance of the parameters in this 

optimisation problem, the probabilistic design method always provides this information 

and executes the design process. 
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3.2 Graphical representation of load and resistance 

In probabilistic design, it is common to represent the resistance and load in terms of 

their distribution. Figure 3.1 shows the probability density functions of resistance and 

load, and the area of overlap. It should be noted that the overlapping area (striped region) 

is not equal to the probability of failure. The striped region is qualitatively proportional 

to the failure probability as long as the mean value of the load is less than the mean 

value of the resistance. The black area represents the probability of failure. 

 

Figure 3.1 – Density distribution of load and resistance (Haldar and Mahadevan, 1995) 

 

3.3 Reliability techniques 

Reliability techniques have been developed to solve a class of problems which involves 

structural design, statistical data, etc. In general, structural designs are mainly concerned 

with maximising the reliability index subject to design constraints. The present review 

covers two main types of reliability techniques: analytical methods and simulation 

methods. 

Analytical methods 

i) First- and second-order reliability methods (FORM and SORM, respectively) 

Simulation methods 

ii) Monte Carlo simulation 

iii) Latin hypercube sampling  
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iv) Importance sampling 

v) Response surface 

vi) Neural network 

 

3.3.1 First- and second-order reliability methods 

The first-order reliability method (FORM) is one of the most popular reliability 

methods in analysing structural reliability designs. Originally, Cornell (1969) used a 

first-order Taylor series approximation and second moment statistics to calculate the 

safety index, and proposed a term called the ―safety index‖ or ―reliability index‖. 

However, this method encounters a serious problem in that it does not use distribution 

information for the variables. More importantly, Cornell‘s safety index is not constant 

under different formulations of the same performance function. Consequently, this 

method was updated by Hasofer and Lind (1974) (herein, H–L), based on a linear 

system, to determine the limit state function in a standard normal space. H–L proposed 

a reliability index defined as the minimum distance from the origin to the limit state (see 

Figure 3.2). This method was later extended by Rackwitz and Fiessler (1978) (herein, 

R–F). 

 

Figure 3.2 – H–L reliability index 

R–F introduced two terms—the equivalent mean and the equivalent standard 

deviation—which were used to calculate the standard normal distribution. This 

approach was taken to ensure that all the random variables occur in the standard normal 

space, and is known as the first-order reliability method (FORM). Ditlevsen (1979a) 

presented a result for a non-linear problem, obtained using FORM, which was 

inconsistent with the actual reliability. Ditlevsen (1979b) calculated the approximation 
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of the non-linear limit state by considering tangent hyperplanes at the minimum 

distance from the origin; this approach is known as the second-order reliability method 

(SORM). SORM was first introduced by Fiessler et al. (1979), who devised the method 

to improve the actual FORM by constructing a curvilinear failure surface at the failure 

point. In recent decades, FORM has been used to evaluate the safety index and the 

location of the design point (Shinozuka, 1983). Chen and Lind (1982) proposed an 

extension of the R–F algorithm by using a three-parameter approximation, although this 

revised approach was only superior to the R–F method in certain cases. 

Previous studies have reported the application of FORM in various case studies. Song 

and Lee (1992) demonstrated the use of FORM to predict the probability of failure 

against a pre-selected target value and information concerning the sensitivity of the 

result, which is related to the input variables. Der Kiureghian and Dakessian (1998) 

reported an improvement in estimating the failure probability using a system reliability 

analysis in a multi-design point problem using a bulge system (see Figure 3.3 and the 

‗multi-design point‘ of Ditlevsen and Madsen (1996)). To improve the FORM approach, 

recent studies have sought to make the method increasingly efficient and robust. For 

example, Santosh et al. (2006) developed an appropriate step-length selection (modified 

H–L and R–F method) which made the algorithm more robust. In addition, Xiang and 

Liu (2011) applied an inverse FORM to evaluate the fatigue life (a prediction problem, 

such as the growth of a fatigue crack) at an arbitrary level of reliability. 

 

Figure 3.3 – The bulges method is used to search for the optimum solution for multiple design points, for 

x1 values between –5 and –1 (left), for between 1 and 5 (middle), and for between –1 and 1 (right). (Der 

Kiureghian and Dakessian, 1998) 

Several authors have demonstrated the potential of FORM as a probabilistic method for 

evaluating the reliability. The unique features of FORM provide it with the advantage of 

being simple and computationally inexpensive. In the present research, the FORM is 

adopted as the basis for calculating structural reliability. 
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3.3.2 Monte Carlo simulation 

Monte Carlo Simulation (MCS) is a traditional technique used in reliability analysis, 

which is also known as a direct method. The principle that underlies this method is to 

develop a computer-based numerical model to predict the behaviour of a system. In 

MCS, random samples are collected for each variable and the model is evaluated using 

these realisations of the random variables and the generation of uniformly distributed 

numbers. The uniform random numbers are transformed to the distributions by the 

inverse transformation method or the acceptance–rejection method. 

The MCS procedure involves four main steps: (a) defining inputs, (b) generating inputs, 

(c) performing a calculation, and (d) combining the results. Following this procedure, 

the probability of failure, as calculated using MCS, can be defined as 

         
 

  
 (3.2) 

where PF(MCS) is the probability of failure using MCS, N is the number of simulations in 

which failure occurs, and NT is the total number of simulations. The accuracy of the 

procedure depends on the number of simulations. By repeating the procedure for N 

simulation cycles, N sets of output results are obtained. Statistical analysis can now be 

used to obtain the mean value, standard deviation, and distribution type for the output 

results. The accuracy of the system is expected to be further improved by increasing the 

number of simulations. Although the implementation of MCS in reliability analysis is 

remarkably straightforward, there exist a number of drawbacks. For highly reliable 

systems, the process may take a large number of simulations to achieve a specified 

target in the case that the probability of failure or the value of the reliability index is 

extremely high or low. In a structural reliability analysis in which the probability of 

failure is very small, the MCS process becomes inefficient. To enhance the efficiency of 

the simulation, the simulated iteration must concentrate on a certain region in the 

analysis; consequently, convergence is slow and the number of simulation cycles is 

increased. 

Many researchers have presented the results of reliability analysis using MCS (Deng, 

2006; Melchers and Ahammed, 2004; Pradlwarter and Schuëller, 2010). Papadrakakis 

and Lagaros (2002) applied the MCS method to calculate the stress/stiffness constraints 

and the reliability of a 3D multi-story frame. In the reliability analysis, the authors also 

considered material properties, member geometry, and loads. Although the probability 
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of failure showed a marked decrease, the computation time and structural weight 

increased markedly. Cardoso et al. (2008) used a combined MCS and a neural network 

to compute the probability of failure for a single-story steel frame. Yang et al. (2009) 

used the MCS method to evaluate the structural reliability in the case of random 

heterogeneous fractures. Su et al. (2010) applied the MCS method in 3D modelling of 

the effect of rough crack surfaces on the structural load capacity and on the reliability. 

Finally, Tekiner et al. (2010) used the MCS method to solve a multi-period, multi-

objective problem, involving minimising the cost and air emissions (e.g., CO2 and NOx) 

over a long-term planning horizon. 

In summary, MCS is a powerful tool for calculating structural reliability; however, it 

requires a large number of simulation cycles to obtain the optimum solution. Therefore, 

this method may not be appropriate for the present research, especially in the case of 

multi-objective and multi-disciplinary problems. 

 

3.3.3 Latin hypercube sampling 

Latin Hypercube Sampling (LHS), first proposed by McKay (1979) and later updated 

by Iman in 1981 (Iman, 1992), is a technique for reducing the number of MCS 

simulations, employing a constraints sampling method instead of random sampling as a 

direct simulation. The general idea of LHS is to force the sample into an area of interest 

by dividing the probability density function (PDF) into NLHS non-overlapping intervals 

for each random variable, where NLHS is the number of simulation cycles. The area 

beneath the PDF curve is the same for each interval; hence, the cumulative density 

function (CDF) can be obtained. Basically, the CDF region is in the range of 0–1. 

Figure 3.4 shows a CDF divided into five equal intervals. 
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Figure 3.4 – Random cumulative density function divided into five intervals 

The random variables are generated by choosing a CDF for each interval. Once the 

samples are generated, one value from each set is selected randomly and substituted into 

the performance function to determine precisely whether the structure survives or fails. 

This process can be described in a Latin domain (Figure 3.5). 

 A 

B
 

X    

 X   

   X 

  X  

Figure 3.5 – 4  4 Latin domain for two random variables 

LHS has been extended for various purposes by several researchers; e.g., Iman and 

Conover (1982), Olsson and Sandberg (2002), Stein (1987), and Ziha (1995). 

Furthermore, Hossain et al. (2006) assessed the performance of LHS for uncertainty 

predictions of satellite rainfall observations in predicting flooding arising from storm 

events with moderate rainfall. 

Although the LHS method enables a reduction in the number of simulations compared 

with MCS, it requires further development in terms of structural analysis, especially in 

dealing with multi-objective and multi-disciplinary problems. 
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3.3.4 Importance sampling 

Importance sampling (IS) is a variance reduction technique that improves the efficiency 

of MCS. This method was developed to reduce the computational cost and to increase 

the accuracy of each simulation. IS depends on the magnitude of the probability of 

failure; i.e., the location of the failure point or design point, as described by Schuëller 

and Stix (1987). In this method, the sample is located in the tail of the distribution to 

ensure a sufficient number of simulations, rather than spreading the sample evenly. 

However, the design point is not known in advance, and the analyst can only guess the 

starting point of the simulation. Generally, the solutions are located with the mean 

values, close to the design point. This process is employed to obtain an unbiased 

sampling using a ‗weighted method‘ estimator for the samples. 

A benchmark structural reliability problem based on IS was reported by Engelund and 

Rackwitz (1993). This method has been applied to solve various problems. For example, 

Grooteman (2008) developed adaptive radial-based IS to determine the radius of a 

sphere, presenting an efficient and robust method that automatically determined the 

optimal radius of the excluded sphere, which is the optimum distance from the origin to 

the limit state surface (Figure 3.6). Ogawa and Tanaka (2009) improved the IS method 

in estimating an extremely small probability of system failure, and Zhang et al. (2010) 

combined IS and stratified sampling to calculate structural reliability under multiple 

failure modes. 

 

Figure 3.6 – Optimal radius of the excluded sphere using adaptive radius-based IS (Grooteman, 2008) 

IS methods are more efficient than MCS, but require information about the limit state, 

especially the design point close to the origin in the standard normal space. The 
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procedure followed in gathering all the information is extremely time-consuming and 

can fail to find the optimum solution; consequently, the use of IS may not be 

appropriate in the present research.  

 

3.3.5 Response surface 

The response surface (RS) method was first introduced by Box and Wilson (1951), 

based on the use of design experiment data to obtain an optimal response. The authors 

suggested using a second-degree polynomial model to perform the analysis. They 

agreed that the model is an approximation technique, but the model is easy to develop 

and apply (Hill and Hunter, 1966). The RS is used to approximate the limit state 

functions. To obtain a solution of the RS, regression analysis is required; e.g., the least 

squares method or weighted regression. The RS method was examined by Schuëller et 

al. (1987) and Wu (1984). For nv design random variables, the number of analyses 

required in Wu‘s method is 2nv – 1, whereas Schuëller‘s method require 4nv + 3. In the 

latter analysis process, the number of steps increases dramatically. For example, if two 

iterations are required for approximation of the RS with 20 initial experiment datasets a 

total of 40 structural analyses must be performed. 

The RS method has been used in analysing the optimum aerobic biodegradable of 

dichloromethane in an aerobic pond (Wu et al., 2009), the effect of various chemicals 

on a material‘s resistance to corrosion (Masmoudi et al., 2006), and the effect of 

nanofiltration-modified membranes on the polymerisation technique (Khayet et al., 

2010). This method has been extended to other fields, especially engineering structural 

design. Nguyen et al. (2009) developed an RS method based on a double-weighted 

regression technique in analysing a three-bay, five-story rigid frame structure. The RS 

method is efficient, especially when used in conjunction with the finite element method. 

Ren and Chen (2010) developed a method of updating civil-engineering structures using 

the RS method and the finite element model. 

The RS is constructed using various types of interpolation methods to calculate the 

reliability index. As mentioned above, the computational cost is higher when dealing 

with complicated problems. In this thesis, multi-objective, multi-disciplinary, and multi-

loading cases are considered simultaneously in seeking an optimum design, resulting in 

an increase in the degree of analysis difficulty; consequently, a large number of 

simulation cycles would be required. 
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3.3.6 Artificial neural network 

An artificial neural network (ANN) is a method designed to model a brain in executing 

a particular task. This method is generally used to simulate the behaviour of neurons in 

the human body (McCulloch and Pitts, 1943). An ANN consists of neurons connected 

according to a certain pattern. The simplest form of ANN structures consists of several 

inputs, a hidden layer, and one output. The most common approach is a multi-layer 

feed-forward network consisting of several layers, each composed of several neurons. 

This arrangement makes the whole process extremely complicated. There are generally 

more than one hidden layers in the ANN process, as shown in Figure 3.7. ANN is an 

approach that can create a relationship between two sets of data during a learning 

process and reproduce these data in a recall procedure.  

 

 

 

 

 

 

 

 

 

 

 

 

In reliability analysis, an approximate implicit function is constructed to obtain 

performance values. The safety issue in an engineering structure can be defined in terms 

of design variables, dimensions, material properties, and load. Basically, the finite 

element method is used to analyse the response of complicated structures. The result of 

a finite element analysis is used to generate a performance function in terms of implicit 

Figure 3.7 – Multilayer feed-forward ANN 
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(design variables) and explicit (stress and displacement) forms. These data are then used 

to create an environment which is capable of learning (Masters, 1993). In reliability 

analysis, it is difficult to collect all the information related to the implicit performance 

functions. Nevertheless, ANN is a good universal method for approximating the implicit 

function. Consequently, ANN is an excellent learning technique for establishing the 

relationship between performance function and design variables. 

Many researchers have combined the ANN approach with other methods to increase its 

efficiency and reliability. For example, Deng et al. (2005) presented a structural 

analysis for an implicit function in ANN. The authors applied the ANN method in 

conjunction with FORM, SORM, and MCS to analyse engineering problems. FORM or 

SORM proved to be useful for reliability problems with implicit and non-linear 

performance functions. Moreover, the ANN-based MCS required less computation time 

than did the traditional MCS and ANN. Similar results were reported by Elhewy et al. 

(2006). Lopes et al. (2010) showed that a large reduction in processing time could be 

achieved when a trained ANN is used to evaluate the failure probability. 

The ANN approach has been applied in the field of engineering, especially in terms of 

structural reliability; however, few studies have applied ANN to multi-objective and 

multi-discipline engineering problems. Cheng and Li (2008) developed a new method 

for reliability analysis of structure by integrating a uniform design method with a 

generic ANN algorithm. The authors applied the method to a problem involving a non-

linear truss structure and obtained an extremely small probability of failure, indicating a 

high level of reliability and consequently a high computational cost.  

The ANN has several drawbacks: it is computationally expensive in the case of a large 

neural network system, as several hidden layers and several inputs must be considered 

simultaneously. In addition, each neural network must be well trained to yield 

consistent outputs from the training data, resulting in increased complexity. As a result, 

the ANN approach may not be appropriate for the present research. 
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3.4 Summary of reliability methods 

The above review has demonstrated the vast difference between analytical methods and 

simulation methods. Although the latter are generally a more powerful tool for 

reliability analysis, their application to engineering design problems is limited by the 

large number of simulation cycles. In the present research, therefore, analytical methods 

have an advantage in terms of providing a robust, simple, and feasible method of 

obtaining a reliability solution. Table 3.1 lists the main features of the reliability 

methods introduced above. 

 

Table 3.1 – Summary of reliability methods 

Method Requirements Accuracy Remarks 

FORM Transform random 

variables to standard 

normal space 

Linear limit state 

functions 

This method is required to 

transform random variables 

to standard normal space 

SORM As for FORM Up to second-order 

functions 

As for FORM. The results 

may be better or worse 

compared with FORM. 

MCS Not required High accuracy Simple and robust. 

Requires many simulation 

cycles 

LHS Assumption regarding 

tail distribution 

Quality of the 

response of 

distribution 

Reduces the number of 

MCS simulation cycles. 

IS Information about limit 

state 

Similar to MCS Improves the efficiency of 

MCS 

RS Approximation method 

used to approximate 

the limit state function 

Must be carried out 

with regression 

analysis 

Number of analyses 

depends on the number of 

iterations and the number 

of datasets 

ANN Required input, hidden 

layer and output. 

Multi-layer feed-

forward neural 

network for more 

than one hidden layer 

and output 

Each neural network needs 

to be well-trained to yield 

the same output 
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3.5 Reliability analysis using commercial software 

Several commercial computer programs have been developed for reliability analyses. 

This section describes the basis and application of these programs. Table 3.2 lists the 

available reliability software. 

Table 3.2 – Reliability software and relevant references 

Software Reference 

ANSYS PDS & DesignXplorer Reh et al. (2006) 

CalREL/FERUM/OpenSees Der Kiureghian et al. (2006) 

COSSAN Schuëller and Pradlwarter (2006) 

NESSUS Thacker et al. (2006) 

PERMAS-RA/STRUREL Gollwitzer et al. (2006) 

PHIMECA Lemaire and Pendola (2006) 

PROBAN Tvedt (2006) 

PROFES Wu et al. (2006) 

UNIPASS Lin and Khalessi (2006) 

 

NESUS, PROBAN, PHIMECA, and CalREL implement the FORM/SORM method. 

FERUM is considered a convenient method because the software is written in a script 

language similar to that of CalREL. FERUM not only considers the FORM/SORM 

method, but it incorporates other reliability methods such as simulation methods and 

reliability-based design optimisation. ANSYS PDS & DesignXplorer only considers the 

RS method. COSSAN, OpenSees, PERMAS-RA/STRUREL, and NESSUS can also be 

used for finite element analysis. Details of related reliability software can be found in 

the references listed in Table 3.2. To understand the capacities of these reliability 

software packages, four were selected for a more detailed investigation (NESSUS, 

PROBAN, CalREL, and FERUM), the results of which are provided below. 
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3.5.1 NESSUS 

Numerical Evaluation of Stochastic Structures under Stress (NESSUS) is a reliability 

computer program developed in 1991 at the Southwest Research Institute (SwRI) in San 

Antonio, Texas, USA. This software has been developed over the past 25 years for the 

purpose of probabilistic analysis, sponsored by the NASA Lewis Research Center 

(Cleveland, USA). The program is actively being developed in order to enable the use 

of various methods; e.g., probabilistic analyses of structural systems and combining 

probabilistic analysis with numerical analysis to calculate the response of probability 

and reliability. Further information on this software can be found at the NESSUS Web 

site (http://www.nessus.swri.org/) and Thacker et al. (2006).  

NESSUS seeks to balance efficiency and accuracy in complex structural problems, 

combining the structural analysis method with an approximate probabilistic algorithm. 

The basic idea is to estimate the structural reliability and identify the important random 

variables using a small amount of computational analysis. Random variables are used as 

inputs, including the dimensions of the problem, material properties, and loading 

conditions. The solution is the output, which includes deflection, stress, and frequency. 

Structural analysis is performed using either the displacement method or the boundary 

element method, which is used in sensitivity analysis. The output information is used to 

predict the probabilistic response and reliability. 

Probabilistic analysis employs an advanced mean value technique. This method covers 

three main areas: (i) the performance function is located in the original space using the 

mean value of the random variables, (ii) the approximation is combined with the R–F 

and Chen and Lind (1982) methods to find the design point in the standard normal space, 

and (iii) a second-order approximation of the structural response can be made by a 

deterministic analysis at the design point, combined with the result of the previous step. 

Rajagopal et al. (1989) applied this method to turbine blades and high-pressure ducts, 

and Thacker et al. (2001) reported that the advanced mean value can handle 

complicated problems and yields satisfactory response functions. 

NESSUS employs a graphical user interface (GUI), thereby enabling the use of 

commercial codes. The program employs 12 probabilistic reliability analysis methods, 

including FORM, SORM, the Advanced Mean Value (AMV), the RS method, and IS, 

among others. Furthermore, NESSUS can be used in conjunction with other interfaces, 
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such as ANSYS, MATLAB, LS-DYNA, and ABAQUS, resulting in great flexibility in 

terms of performing finite element analyses. 

Previous studies have applied NESSUS in analysing system reliability. For example, 

Riha et al. (2004) simulated a vehicle crash using an LS-DYNA finite element model. 

This simulation evaluated the NESSUS problem statement for head-injury criteria, as 

shown in Figure 3.8. Rodriguez et al. (2002) and Thacker et al. (2003) employed 

NESSUS in an analysis of a containment vessel. A scale factor was defined to allow 

perturbations in the radius and thickness of the vessel, in order to withstand the 

maximum equivalent plastic strain occurring at the bottom of the vessel. The analysis 

revealed that the mean and standard deviation of the thickness of the vessel wall are the 

most sensitive parameters in improving the reliability.  

 

Figure 3.8 – (a) Simulation model for a vehicle crash, and (b) the relevant NESSUS problem statement 

(Riha et al., 2004) 

NESSUS is a useful tool in analysing a reliability problem, and is further enhanced by 

incorporating finite element analysis, thereby providing a complete engineering 

structural analysis. However, there is no evidence to suggest that this method is able to 

solve multi-loading cases simultaneously in seeking an optimal design, although the 

method has been recommended in verifying a topology reliability problem (Silva et al., 

2008). In summary, this method may not be appropriate for the present research, which 

involves problems with multi-loading cases. 
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3.5.2 PROBAN 

PROBAN (PROBability ANalysis) is a reliability program developed at Det Norske 

Veritas (Høvik, Norway) of A.S. Veritas Research (Veritas Sesam Systems, 1991; 

Tvedt, 2006), intended to solve various types of probabilistic problems, including 

probability analysis, distribution analysis, first passage probability analysis, and 

crossing rate analysis. Each analysis is related to independent results. For example, the 

probability analysis is a measure of probability and sensitivity measurements, and the 

distribution analysis is a measure of the first four moments of a sample. PROBAN can 

be applied in various fields, including mechanical, structures, civil engineering 

problems, and offshore structures. This method is capable of estimating the probability 

of failure using FORM, SORM, MCS, or directional sampling. 

PROBAN can be run on a graphical user interface and in batch mode, with the two 

methods being inter-linked. The user may also use their own equations/functions, 

combining them with the program in performing the analysis. This option provides 

flexibility for the user in terms of employing the method with little difficulty. 

Consequently, the software can be used to solve any problem according to the design 

requirement. PROBAN is not customisable software, but can be linked to other 

programs to obtain information for further analysis. PROBAN also contains a library of 

basic mathematical functions and standard probability distributions, comprising all the 

information required for a reliability study. 

Once the functions are defined, a suitable distribution must be determined. The 

distributions are organised in the distribution library, and are fitted to the data. The data 

are either a solution from a PROBAN analysis or a user-generated result, depending on 

the user‘s preference. Subsequently, a problem is defined in terms of certain design 

variables. For example, a variable may be the product of two random variables, with 

each variable being an individual function. This approach provides flexibility in 

addressing a probabilistic problem. The next step is to develop the constraints of the 

problem, which are known as ―events‖. The constraints may be equalities and/or 

inequalities, depending on the problem of interest. A suitable method must be chosen to 

perform the analysis. The result of a probability analysis, or a value of the reliability 

index, is calculated, and it is necessary to assess the efficiency of the selected method. 

The choice of method should be based on the nature of the design problem and on the 

computational cost. 
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PROBAN is a flexible tool which provides various methods and functions relevant to 

analyses of structural reliability; however, it is not considered for the present research 

because it is only able to predict the probability of failure or calculate the value of the 

reliability index. To obtain an optimal solution, PROBAN would require an 

optimisation procedure, especially in terms of simultaneously solving multi-objective 

and multi-loading cases. In this regard, PROBAN is unlikely to be appropriate for use in 

the present study. 

 

3.5.3 CalREL 

CalREL (Cal-RELiability) is a general-purpose structural reliability code developed by 

Liu et al. (1989) and written in FORTRAN-77. This method, developed for academic 

use and engineering practice, incorporates four general techniques: FORM, SORM, a 

sampling method, and a sensitivity method. CalREL is used to solve general structural-

reliability problems. Basically, the method follows a number of simple procedures. For 

example, the limit state condition (LSC) is required, which provides a subroutine to 

calculate the function value. This subroutine, which is controlled by the user, must be 

compiled and linked with the reliability code, and is executed during the CalREL 

analysis. The LSC does not have to be an algebraic value, as long as it is differentiable 

with respect to the function. If the problem involves the use of finite element analysis, 

the LSC may be utilized. Thus, to compute the LSC value, the finite element software 

must be a subprogram under the CalREL subroutine. Several studies have examined the 

merging of CalREL with other software (Der Kiureghian and Zhang, 1999; Jang et al., 

1994; Liu and Der Kiureghian, 1991; Sitar et al., 1987).  

CalREL contains a rich library of probability distributions with three types of 

specifications: statistically independent random variables, dependent random variables 

with a Nataf joint distribution (Liu and Der Kiureghian, 1986), and a conditional 

distribution of dependent random variables (for details of this distribution, see Der 

Kiureghian et al., 2006). When using the library distributions, the distributions 

parameter can be any random variable in the system. Next, the reliability in the CalREL 

system must be transformed into a standard normal space. Finally, a reliability analysis 

can be performed using the CalREL system. 

As an example, consider a one-bay frame (after Der Kiureghian et al., 2006) constructed 

with ductile members and subjected to random horizontal and vertical loads (Figure 3.9). 
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CalREL is used to estimate the system reliability, revealing the horizontal and vertical 

loads that can be supported by the system. 

 

Figure 3.9 – Ductile frame and failure mechanisms (after Der Kiureghian, 2006) 

The basic idea of CalREL is that it employs many reliability methods (these methods 

have been discussed in Section 3.3). The steps involved in using the CalREL system are 

summarised as follows: 

i) Select the analysis method (e.g., finite element analysis) 

ii) Choose a suitable probability distribution  

iii) Enter all the necessary data, including reliability and design variables 

iv) Select an appropriate reliability method 

v) Analyse the solution 

Although CalREL is used to solve reliability problems, it requires further development 

to enable optimisation tasks that involve finding the optimum solution for each 

structural problem. Because this method is written in FORTRAN, its development 

requires expertise in computer programming. A more convenient method is discussed in 

the following section. 
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3.5.4 FERUM 

Finite element reliability using MATLAB (FERUM) is an open-source MATLAB 

toolbox for structural reliability analysis which encompasses finite element analysis. 

This software, initially developed by Der Kiureghian and Haukaas in 1999 at the 

University of California, Berkeley, USA (Der Kiureghian et al., 2006), employs a user-

friendly platform: the user is able to simply give a command to execute the procedure. 

Because the software is written in MATLAB, the script language has simple rules while 

maintaining the characteristics of programming. This software is freely available from 

the FERUM Web site (http://www.ce.berkeley.edu/FERUM). 

In FERUM, all of the reliability theory is written in MATLAB language. One of the 

special features of this software is the development of a new method to separate a 

specific LSC for a given random variable. Basically, FERUM is a collection of files that 

contain a command to execute the reliability analysis (e.g., FORM, SORM, and the 

sampling method). These files are available from the FERUM Web site (see above). 

FERUM has the following advantages: (i) the expression and algorithm is easy to 

execute in MATLAB, (ii) it takes advantage of the powerful debugging capabilities of 

MATLAB, and (iii) it benefits from the large number of advanced mathematical 

functions in MATLAB. 

Several researchers have improved the FERUM software in seeking to solve various 

problems. For example, the original version of FERUM was extended by J. Song in 

solving problems regarding system reliability, and A. Hahnel extended the software 

with a detailed SORM analysis (for details, see Der Kiureghian et al., 2006). Overall, 

the objective of FERUM is to provide users with a tool for immediate use and 

researchers with a tool for research purposes; it also represents a platform which 

combines structural reliability and finite element methods in solving structural 

reliability problems. 

The latest version of FERUM (FERUM 4.x; Bourinet et al., 2009) provides users with a 

simulation-based technique, global sensitivity analysis based on Sobol‘s indices, and 

reliability-based design optimisation. Therefore, this software provides a range of 

reliability tools in analysing structural problems. For further information on FERUM 

version 4.1, see the official Web site (http://www.ifma.fr/Recherche/Labos/FERUM).  

To tackle more complicated structural problems, this method should be further 

developed to enable the simultaneous solving of multi-objective, multi-disciplinary, and 

http://www.ce.berkeley.edu/FERUM
http://www.ce.berkeley.edu/FERUM
http://www.ifma.fr/Recherche/Labos/FERUM
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multi-loading-case problems. This method is highly recommended in reliability 

analyses which include structural problems; however, in its current form it is unlikely to 

be appropriate for use in the present research. 

 

3.6 Summary 

This chapter evaluated a basic structural design concept; i.e., employing the basic 

principles of resistance and load. The distribution of load and resistance was also 

discussed. The mean value of resistance is generally larger than the load, meaning that 

the structure is safe for operation. This evaluation was followed by a review of the most 

widely used methods of reliability analysis (e.g., FORM, MCS, RS) and a discussion on 

commercial computer-based reliability programs, of which more than 10 are available. 

Four reliability programs were examined in detail, including their advantages and 

disadvantages. The aim of this review was to provide an overview of how the tools for 

reliability analysis are implemented in the software.  

The following chapter focuses on combining reliability and optimisation methodologies. 
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4 First-order Reliability-related Method, Reliability-based 

Optimisation, and Optimisation Methodology 

4.1 Detailed description of the first-order reliability method 

The first-order reliability method (FORM) is one of the most popular reliability 

methods in analysing the structural reliability of designs. In the following sub-sections, 

FORMs proposed by Cornell (1969), Hasofer and Lind (1974), and Rackwitz and 

Fiessler (1978) are described in detail. 

 

4.1.1 Cornell method 

The development of FORM is related to the second moment method. Cornell (1969) 

used a first-order Taylor series approximation and second moment statistics to calculate 

a safety index. To evaluate the reliability term, it is convenient to start with a simple 

function. The two parameters are R (resistance) and L (load). The main objective of 

structural reliability analysis is to calculate the probability of failure Pf. The relationship 

between these two random variables (R and L) can be expressed as follows: 

             (4.1) 

More often the limit state condition (LSC) is defined as a function of G(Ŷ) = R – L. The 

reliability index is related to the probability of failure, which for a given structure can be 

calculated by evaluating the following integration: 
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where G(Ŷ) < 0 is a failure domain, P[·] is a probability function, and fŶ (Ŷ1,…, Ŷn) is a 

probability density function of all the relevant variables Ŷ. Integrating equation (4.2) is 

complicated because all the random variables have extremely small values and we do 

not possess the vital information for the density function. To evaluate the probability of 

failure, an LSC G(Ŷ) is defined and a function is used to determine the condition or 

stability of the structure. Figure 4.1 shows a Ŷ space region. The LSC is defined in 

terms of (i) G(Ŷ) < 0 (state of failure), (ii) G(Ŷ) > 0 (state of safety), and (iii) G(Ŷ) = 0 

(limit state surface). The LSC defines the safe and unsafe regions.  
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Figure 4.1 – Ŷ space 

Here, an LSC is introduced which employs the mean and variance of the random 

variables. The LSC, expressed in terms of R and L, is defined as: 

       (4.3) 

It is assumed that R, L, and H are standard normal variables. The mean() and standard 

deviation () can be written as follows: 

                                      
    

  (4.4) 

Therefore, the probability of failure can be expressed as follows:  

              
  

  
  (4.5) 

Cornell (1969) defined the probability of failure in terms of a safety index or reliability 

index (). This term can be rewritten as follows:  

   
  

  
 (4.6) 
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4.1.2 Hasofer and Lind method 

The reliability index based on the Cornell method (Cornell, 1969) was updated by 

Hasofer and Lind (1974) (herein, H–L). In the H–L method, Ŷ space variables are 

transformed to a standard normal distribution and the whole process is carried out in 

standard normal space (i), defined as follows:  

    
       

 

  
 

 (4.7) 

where xi is the i-th design variable, and    
 and     are the mean and standard deviation 

of the design variable, respectively. If none of the variables is normally distributed, it 

would be difficult to evaluate the reliability index. Consequently, Rackwitz and Fiessler 

(1978) (herein, R–F) proposed an improved transformation method from Ŷ space to 

standard normal space using equivalent normal variables. 

The general idea regarding transforming the Ŷ space to the standard normal space is to 

solve the non-linear limit state (Hohenbichler and Rackwitz, 1981; Madsen et al., 1986). 

Transformation to the standard normal space has been applied by Augusti et al. (1984) 

and H–L. The failure probability Pf can be expressed as a function of β; i.e., Pf = Φ(–β), 

where β is the shortest distance from the origin to a point on the failure surface in the 

standard normal space μi, as shown in Figure 4.2. 

 

 

 

 

 

 

Figure 4.2 – Definition of  in the standard normal space 
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The procedures involved in employing the H–L method to calculate the reliability index 

are as follows. To calculate the reliability index in the standard normal space, these 

procedures require partial derivates of the LSC with respect to x. The LSC G(Ŷ) is 

rewritten as H(R, μi) and defined as: 
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Because the origin in the standard normal space is the combination of all the Ŷ space 

variables, the minimum distance to the failure dmin can be defined as 
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where H(R, μi) represents the LSC in the standard normal space and μi is the value of the 

i-th variable. The minimum distance between the limit state H(R, μi) = 0 and the origin 

represents the reliability index. The solution of this problem is known as the Design 

Point, DP. To find the DP, the distance from the origin to the limit state surface needs to 

be minimised. Various methods have been proposed to find the DP (Wang and Grandhi, 

1994; Wu et al., 1990; Wu and Wirsching, 1987). In addition, Borri and Speranzini 

(1997) used a finite element analysis to determine the reliability index. For a given 

failure criterion, a reliability index β (in standard normal space) can be calculated as 

follows: 

   
  

     

   
  

 
   

   
     

   
 
 

 
    

    (4.11) 

To evaluate a new DP, it is necessary to evaluate a sensitivity factor, which can provide 

useful information in examining the response of the problem. The sensitivity factor is 

defined as follows: 

    

     

   

   
     

   
 
 

 
    

    (4.12) 
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After calculating the reliability index and the sensitivity factor, the new DP can be 

calculated as follows: 

         
    

    (4.13) 

where xi is a design point (i = 1, 2, … ). Rackwitz (1976) proposed an algorithm to 

calculate the H–L reliability index. The procedure can be summarised as follows 

(Figure 4.3): 

 

i) Develop an LSC 

ii) Initial guess of DP 

iii) Transformation of Ŷ space variables to standard normal space variables 

iv) Compute the partial derivates at the initial guess 

v) Compute the reliability index 

vi) Compute new DP 

vii) Re-evaluate         

viii) Repeat steps iii) to vii) until β has converged 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 – Rackwitz algorithm to solve the H–L reliability index 
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4.1.3 Rackwitz and Fiessler method 

The H–L method was extended by R–F, who suggested that the method could be further 

improved by using the equivalent standard deviation and the equivalent mean value. 

The R–F method used this ―equivalent‖ approach to solve all the variables, which were 

not always normally distributed. The equivalent mean value and equivalent standard 

deviation in standard normal space are as follows: 

   
 

       
 

        
 
       (4. 14) 

   
 

  
 

  
 
    

        
 
       (4.15) 

Where 

  
 

  = equivalent mean value 

  
 

  = equivalent standard deviation 

  = probability density in standard normal space 

    = cumulative distribution in standard normal space 

   
 
 = probability density in Ŷ space 

  
 
     = cumulative distribution in Ŷ space 

   = design variables at DP  

 

The procedure employed by the R–F method is similar to that of the H–L method. In the 

R–F method, the equivalent mean value and equivalent standard deviation are used to 

calculate the standard normal space distribution. The R–F method is also known as the 

―H–L and R–F method‖, since it was originally developed by H–L and later extended 

by R–F. 
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4.2 Reliability loading-case index – A new first-order reliability-

related method 

As discussed earlier, the minimum distance from the origin to the failure surface must 

be calculated. This method requires the linearization of all the random variables in the 

transformation of Ŷ space into standard normal space. This is to ensure that the random 

variables are normally distributed. However, a simpler and more effective method is 

presented here to calculate the reliability index, as discussed below. 

In this research, a reliability loading-case index (RLI) is proposed which is a new 

development of first-order reliability-related method. This method is based on the 

FORM developed by H–L and later extended by R–F. However, in the present approach 

a different method is presented involving the evaluation of the RLI. A unique 

optimisation technique, known as MOST, is used in conjunction with the RLI 

calculation to obtain a reliability-related optimum solution. The RLI is one of the 

objectives to be maximised in a MOST optimisation process. The evaluation of RLI 

does not require the calculation of LSC and therefore the optimisation process can be 

simplified.  The RLI reflects all the possible outcomes such as the performances and 

cost of the design and it can be formulated as: 

 


i ijj ckRLI 2)(max    (4.16) 

 mi ,,2,1     and   nj ,,2,1   

where ckij is an individual reliability index, i indicates the i-th performance, and j 

indicates the j-th loading case. The ckij gives an individual performance rating for each 

system performance under a loading case. Each performance is weighted according to 

importance if desired, and the individual reliability index ckij is calculated as:  

 ijPij MSNSWck
i


 
(4.17) 

 mi ,,2,1     and   nj ,,2,1   

where WPi
 is a weighting factor (range, 0–1) which reflects performance in the Modified 

Standard Normal Space (MSNS). Based on the H–L and R–F methods, a modified 

equation (i.e., MSNS) is applied to the design variables in the standard normal space. 

The modifications to    
       

 

  
 

 (equation (4.7)) include (i) assigning a magnification 
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factor and (ii) taking the reciprocal of the modified standard normal space. First, a 

magnification factor is assigned to reflect the role of the objective functions in a 

particular performance. Second, the main objective is to maximise the RLI in the 

optimisation process. As a result, MSNS is the reciprocal to equation (4.7). In structural 

design, the equation for MSNS is related to structural mass and displacement, defined as 

 




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
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


ij

d

ij
d

WMSNS i


    (4.18) 

mi ,,2,1     and   nj ,,2,1   

where dij is a data point which indicates the performance parameters and loading case 

parameters (which will be discussed in Section 4.4), ζdi
 is the standard deviation of the 

performances, and W is the magnification factor applied to a particular parameter. W is 

used to amplify the MSNS values to ensure they are significant when the design 

variable is changed, thereby enabling the results to be easily assessed. It is assumed that 

W cannot be equal to 0. Preliminary calculations indicate that this factor should have a 

value in the range of 5–7. Its value is fixed to an appropriate value to solve a given type 

of problem. This factor W is not changed throughout the process in the case that 

equation (4.18) is used in an optimisation. This equation is only used to calculate the 

mass and displacement performances. 

In structural design, structural mass and deflection are two of the primary objectives to 

be minimised. The optimisation system is applied to each particular parameter to 

achieve the required target; however, this approach depends on the magnification factor 

of each parameter. In the present research, finite element analysis software is used to 

determine the response of the structure, and the solution is used to calculate MSNS and 

RLI. 

In engineering structural design, stress performance is assessed using equation (4.19) 

rather than equation (4.18). Normally, materials are designated an allowable stress that 

the design can sustain. If the allowable stress is exceeded, the material may undergo 

plastic deformation, which must be avoided. Therefore, the transformation to the 

standard normal space variable is used in terms of MSNS (referring to stress 

performance only), defined as: 

        
      

 
   

                    (4.19) 



56 

 

where     is data points associated with stress performance, the yield stress   , and 

 
   

is the standard deviation. The stress at a particular loading case must be less than the 

yield stress, and the result of the MSNS should be negative. 

MSNS involves the calculation of the individual performance of the design. The 

individual reliability index (ckij) calculations are summed to calculate the RLI. The 

means and standard deviations are the values based on the design parameters of the 

structure. Figure 4.4 shows the linearization of mass, stress, and displacement limit 

states (G(Ŷ) = 0). 

 

 

 

 

 

 

 

Figure 4.4 – Limit state of mass, stress, and displacement in the standard normal space 
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4.3 Reliability-based optimisation (RBO) technique 

4.3.1 Introduction 

The above discussions focussed separately on optimisation methodology and reliability 

analyses. These methods have been successfully applied to solve various types of 

problems. In structural engineering, several uncertainties are likely to be unpredictable 

in solving a given problem. This drawback is addressed using reliability analysis. 

Therefore, to solve a problem while considering the uncertainties of the problem and to 

seek an optimum solution, it is necessary to employ a reliability-based optimisation 

(RBO). 

RBO is complicated because it simultaneously deals with a reliability problem and with 

an optimisation procedure. This method can be applied to a variety of problems, but it is 

most appropriate in the field of structural design. RBO not only solves optimisation 

problems, it also takes account of uncertainty in the modelling. Basically, the 

uncertainty is derived from the probabilities of occurrence and expected values. RBO 

performs well in terms of identifying unforeseen design problems, and is a powerful 

method in solving structural designs to determine the optimal solution while considering 

uncertainty (Enevoldsen and Sørensen, 1994; Papadrakakis et al., 2005; Saitou et al., 

2005; Valdebenito and Schuëller, 2010a). Despite these advantages, the application of 

RBO to engineering design problems poses a great challenge to the engineer, because 

the RBO procedure is complicated and it is time consuming to solve a design problem, 

resulting in a high computational cost. Both reliability and optimisation require a 

repetitive process to evaluate the structural response for each set of design variables and 

uncertain parameters, continuing until the system has converged. 

RBO is an effective method in solving several classes of optimisation and reliability 

problems. Previous studies have sought to efficiently solve the RBO. For example, 

Breitung (1994), Ditlevsen and Madsen (1996), and Rackwitz (2001) introduced 

approximate reliability techniques (as discussed in detail in Section 4.3.4) in solving 

and estimating the probability of failure and the cost. Schuëller et al. (2005) developed 

an advanced simulation method to solve a similar problem. Other researchers have 

focused on developing a method for reducing the simulation time, known as High 

Performance Computing (HPC). HPC employs parallel computing methods which are 

able to solve a problem within a minimum period (Johnson et al., 2003; Leite and 

Topping, 1999; Pellissetti, 2009, Umesha et al., 2005). 
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4.3.2 Description of an RBO problem 

RBO has been in use for more than half of century and can be formulated in various 

ways. Moses and Kinder (1967) presented a weight minimisation while considering the 

safety level. Similar studies have followed. For example, Vanmarcke (1973) considered 

the minimum weight of a structural system based on reliability constraints. Both of 

these studies provided new insights into a matrix formulation of reliability analysis and 

reliability-based design by devising a novel way to present the RBO. A mathematical 

expression for an RBO problem is defined as follows (Freudenthal, 1956; Royset et al., 

2001; Vanmarcke, 1973): 

                               

 s.t.                            (4.20) 

         
                      (4.21) 

In this problem, x is the vector of design variables of the structure,    are uncertainty 

variables,    are constraints on the problem, D is the cost function of a problem, E[·] is 

an expectation, and    is the probability of occurrence at the j-th position. The value of 

   should be equal to or less than a certain limit   
   . Equations (4.20) and (4.21) can 

be solved by using multi-dimensional integrals. The integration of the RBO is not 

shown here because this method is similar to equation (4.2) (see Section 4.1.1), which is 

used to evaluate the probability of failure; however, two performance conditions are to 

be evaluated in the RBO rather than one. This is necessary because the first condition is 

associated with the cost function and the second is needed to evaluate the probability of 

occurrence at a certain position. The performance condition is used to analyse a problem 

related to the whole system. To effectively solve an RBO problem, the performance 

condition is the so-called LSC. As mentioned above, the LSC can be divided into three 

components: state of failure, state of safety, and limit state surface. 

There exists increasing demand for solving RBO in terms of practical applications. 

Figure 4.5 shows a schematic diagram of an RBO problem.  The design variables of the 

optimisation algorithm are considered as the outer loop, which seeks the optimum 

solution. The problem generally starts from an initial state and the optimal solution is 

achieved after a number of iterations. For each iteration, the system performs the 

optimisation processes which employ multi-dimensional integrals to calculate the 

design solution (equations (4.20) and (4.21)). Before the integration is calculated, a 
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simulation is required to obtain each performance (e.g., in structural analysis, a finite 

element model is employed).  

 

Figure 4.5 – Schematic diagram of an RBO problem (after Valdebenito and Schuëller, 2010a) 

To describe RBO in detail, it is useful to recognise three different periods of the 

development of the technique: 

i) Early approaches 

ii) Approximate reliability techniques 

iii) Simulation-based RBO 

Detailed descriptions are provided in the following three sections. 

 

4.3.3 Early approaches 

Several methods of reliability-based optimisation were developed during 1960–1980. 

During this period, the RBO problem was solved using a simplified method with a low 

computational cost, which was necessary because of the limited computational power 

available at the time. Hilton and Feigen (1960) proposed using the probability of failure 

as a constraint to minimise the structural weight. Consequently, the overall probability 

of failure is calculated by considering the individual probability of failure of 

components in the system/problem. Various optimisation methods were developed, such 

as Lagrange multipliers (Hilton and Feigen, 1960); consequently, optimality criteria 

were developed. Silvern (1963) and Switzky (1965) proposed that the probability of 

failure and the optimisation proportion weight should be of equal value. This technique 

was later extended by Murthy and Subramanian (1968), and the probability of failure 

can be approximated by 
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            (4.22) 

where A and A1 are constants, with values which represent the dimension of the design 

variables. An assumption employed in this approach is to introduce a non-linear term 

related to probability. In simultaneously considering multiple failure modes, Moses and 

Kinser (1967) demonstrated that system reliability is affected by the weight of the 

structure, resulting in an overestimated design and an increased structural weight in the 

design solution. This problem was addressed by Moses (1997), who considered the 

correlation among failure modes. Using this simplification technique to estimate the 

probability of failure, the RBO can be solved with minimal computational cost. 

Vanmarcke (1973) proposed a method of solving RBO using correlation coefficients by 

considering interactions between failure modes. This method introduces two subsets of 

failure events (basic and remainder), which allows the user to seek the optimum 

solution within the upper and lower bounds of the design variables. The method was 

successfully applied to an example that involved minimising the construction cost and 

failure cost. Charnes and Cooper (1959) developed chance-constrained programming 

for solving using the linearization of design variables, which was related to the 

reliability problem. Ditlevsen and Madsen (1996) used an explicit procedure to solve 

the linearization problem. The drawback of early approaches was their inefficiency in 

solving a large number of design variables, which involved simultaneously considering 

multi-objective and multi-loading cases. This inefficiency reflects the limited 

computational power available at the time. To develop an effective RBO, it is necessary 

to employ an approximate reliability technique, which is outlined in the following 

section. 
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4.3.4 Approximate reliability technique 

As discussed above, many types of reliability approaches are available (e.g., FORM). 

Cornell (1969), H–L, and R–F have successfully developed FORM for practical 

applications, including the introduction of Design Point, DP (the shortest distance to the 

limit state surface). Thus, FORM is capable of predicting the probability of failure for a 

given problem. A reliability index (β) was also introduced, enabling the reliability of the 

problem to be computed. During this early period, FORM was capable of solving 

engineering design problems using analytical methods. 

RBO has always been employed to minimise the objective function and to consider 

uncertainty. Basically, there exist three different approaches: (i) double loop, (ii) single 

loop, and (iii) decoupling. 

 

4.3.4.1 Double loop approaches 

The most direct approach in the approximate reliability method for solving an RBO 

problem is the double loop approach, which utilises the optimisation method to estimate 

the structural reliability. Two optimisation cycles are required: one for the optimisation 

loop and another for the reliability analysis. FORM is always employed in the reliability 

analysis to seek the DP. Nikolaidis and Burdisso (1988) proposed using FORM to solve 

a problem by minimising a cost function subject to a constraint, which is expressed as: 

          (4.23) 

 s.t.           

where β(.) is the reliability index and βmin is the minimum acceptable reliability index. 

The transformation of FORM is required, as mention by H–L and R–F.  Therefore, the 

LSC is developed from the solution of the multi-dimensional integral, as mentioned 

above. Consequently, the LSC of failure is defined as G(Ŷ) < 0, where an inequality 

constraint in presented. This method is also known as the Reliability Index Approach 

(RIA), as proposed by Tu et al. (2001). Kwak and Lee (1987) presented a method for 

minimising the weight under several probability constraints, employing a sensitivity 

estimation method to solve the optimisation and reliability problems. This method was 

successfully used to calculate the reliability index using a Lagrange multiplier. The 

most important feature of this approach is that the optimum solution must be consistent 

with the DP in the Lagrange multiplier. This method highlights the efficiency of the 
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double loop using FORM. Lee and Kwak (1995) extended this method by using a 

Neumann expansion to solve a structural problem. 

Other studies have developed methods for solving probability problems, employing a 

reliability index. For example, Enevoldsen and Sørensen (1994) presented a formula for 

solving RBO while considering the construction cost and failure cost, and Reddy et al. 

(1994) introduced an approximation concept for estimating the probability and its 

sensitivity. Yang and Nikolaidis (1991) used the double loop approach to solve various 

failure modes in reliability analysis. 

A new methodology was proposed by Der Kiureghian et al. (1994), known as inverse 

FORM (iFORM). Tu et al. (2001) named this method the Performance Measure 

Approach (PMA). This method is relatively similar to RIA; however, the minimum 

acceptable reliability index is equal to the norm, which is the uncertain parameters 

derived from the iFORM (Lee et al., 2002). This method is simpler than the RIA 

approach because it solves an optimisation problem with an equality constraint rather 

than with inequality constraints (Youn et al., 2003).  

The Dimension Reduction Method (DRM) is another classical approximate reliability 

method (Rahman and Xu, 2004; Xu and Rahman, 2004) which employs the double loop 

approach to solve an RBO problem. This method is also employed by iFORM for 

solving reliability problems. 

The drawback of the double loop approach is that it focuses on a single function; i.e., 

minimising a cost function subject to a probability constraint. Although this method is 

not directly employed in the present research, it may be further developed to enable the 

solving of various types of problems. 

 

4.3.4.2 Single loop approaches 

The single loop approach is similar to the double loop approach. Basically, the single 

loop approach seeks to minimise the weight under several probabilistic constraints, 

utilising the mean values of the design variables which represent the uncertainty 

parameters in the problem. Consequently, in an RBO problem the probabilistic 

constraint is replaced with an approximation, meaning that the double loop problem is 

converted to a single loop problem. 
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This method, developed by Chen et al. (1997), has proved to be effective in solving a 

range of problems; however, the accuracy and efficiency of the method are influenced 

by several factors. For example, the initial starting point may affect the efficiency (Yang 

and Gu, 2004), and the method employs FORM to solve the problem, meaning that a 

highly non-linear problem may not be appropriate. This problem can be overcome by 

using a second-order reliability method rather than a first-order method. 

Other methods that avoid the use of a double loop are Karush–Kuhn–Tucker (KKT) 

(Bonnans et al., 2003; Kuschel and Rackwitz, 1997) and Lagrange multipliers. The 

optimisation involves finding the optimum solution, seeking the best DP. KKT is able to 

identify the DP when RBO is incorporated in the approach, meaning that the inner 

optimisation loop can be removed. This approach can simultaneously converge the 

solution and seek the DP and design variables. The KKT method employs a single loop 

approach, which still requires the calculation of the second-order derivatives. Moreover, 

Aoues and Chateauneuf (2010) stated that KKT is inconsistent because of stability 

problems. An approach similar to the KKT was recently developed. Agarwal et al. 

(2007) proposed probabilistic constraints using the iFORM method to solve the RBO 

(Kuschel and Rackwitz, 1997), and the second-order derivative is avoided by 

considering the quasi-Newton method (Bonnans et al., 2003). Another application of 

the KKT method is to use a hybrid formulation for solving an RBO problem, related to 

the product of the objective function and the reliability of the structure (Kharmanda et 

al., 2002). 

The advantage of the single loop approach is that it converts the double loop into a 

single loop, which is achieved using KKT and Lagrange multipliers. However, the 

single loop approach still requires a second-order derivate in finding the optimum 

solution. Although the latter method (i.e., the iFORM method) is much simpler than the 

single loop approach (i.e., the KKT method), it still employs the double loop method in 

solving optimisation problems. The single loop approach is efficient in solving 

component reliability and linear performance functions from the viewpoint of reliability. 

Therefore, this method is appropriate in solving engineering problems related to a 

single/multiple objective function under a single loading condition. Nevertheless, the 

aim of this thesis is to simultaneously solve multi-objective and multi-loading cases, 

meaning that this method may not be appropriate for the present study in its current 

form. 
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4.3.4.3 Decoupling approaches 

The decoupling approach is different from double and single loop methods, as it mainly 

uses an optimisation approach to perform an analysis, incorporating reliability analysis. 

An advantage of the decoupling approach is that it does not require a full reliability 

analysis because the optimum solution is determined by an optimisation procedure.  

This method was firstly developed by Li and Yang (1994), who used it to solve a linear 

programming problem which involved constructing a linear approximation of the 

reliability index using sensitivity information. Subsequently, Tu et al. (2001) improved 

the method by considering a linear approximation of the probability. In addition, 

Chandu and Grandhi (1995) developed a linear and reciprocal approximation of the 

reliability index. Several studies have proposed methods for solving the reliability and 

optimisation method, including the application of recursion for estimating the DP and 

its sensitivity (Cheng et al., 2006), and applying sequential linear programming and 

identifying active constraints (Chan et al., 2006 and 2007). 

Du and Chen (2004) proposed an approach in which all the design variables are 

assumed to have a Gaussian distribution and the mean value is employed, known as 

Sequential Optimisation and Reliability Assessment (SORA). SORA was developed to 

improve the efficiency of probabilistic optimisation. This method employs a single loop 

approach with cycles of optimisation and reliability assessment. For each cycle, 

optimisation and reliability assessment are decoupled. After the optimisation has been 

verified to satisfy the constraint under uncertainty, the reliability assessment is 

evaluated. This method is based on the constraint on the DP and the reliability 

information from the previous cycle. The key feature of this approach is the rapid 

improvement in each cycle and the improved computational efficiency; however, it does 

not guarantee an optimum solution can be attained. Although the method represents a 

significant improvement in uncertainty analyses of optimisation, it remains limited due 

to the nature of the single loop approach. Theoretically, this method is an indirect 

approach related to the double loop, as the reliability assessment is calculated after the 

optimisation has been verified, before the next cycle begins. 

SORA is similar to the methodology employed in this thesis, but it was not employed in 

this case because it was necessary to perform the reliability analysis. 
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4.3.5 Simulation-based RBO 

Another technique of RBO is the simulation method. Simulation-based RBO involves 

the development of an analytical model which is computer-based, with the aim of 

seeking the optimal solution in terms of reliability and optimisation assessment. As 

mention above, the Monte Carlo Simulation is common employed in RBO. 

The simulation method can be used in predicting reliability for a certain degree of 

variability. For example, a structural problem may be analysed using two different 

simulations that yield different results in estimating the reliability; however, this 

problem can be overcome by using a large number of samples. Consequently, the 

system seeks all possibilities and calculates the reliability of the problem, ultimately 

yielding the optimal solution. A large number of calculations is expected to improve the 

accuracy of this procedure. Such techniques can be classified into the following types: 

i) Meta-models 

ii) Decoupling 

iii) Direct integration 

 

4.3.5.1 Meta-models 

The simulation model provides insight into the behaviour of a real system. Such models 

(e.g., finite element analysis and boundary element analysis) are always relevant to 

solving problems in structural engineering. Consequently, computational cost has 

shown a marked increase over time, especially in analyses of a large number of design 

variables or a large-scale structural system. A meta-model can be employed to reduce 

the computational cost by approximating the functions. 

Meta-models employ a training system to ensure the consistent accuracy of the method. 

In this approach, all the data points are analysed to determine which are important. Cox 

and Reid (2000) stated that the data points are selected using an appropriate method 

such as Latin hypercube sampling (explained in Section 3.3.3).  Bichon et al. (2008) 

proposed a method using an efficient global optimisation procedure to select specific 

data points, to ensure the accuracy of the method is highest when approaching the LSC 

or DP. 

A meta-model is a method for approximating the performance function, which is 

evaluated if the uncertain parameters and design variables are available. A typical 
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example of a meta-model is the response surface (RS), as in Section 3.3.5. Foschi et al. 

(2002) proposed that the RS can be used in replacing the performance function of the 

system. Subsequently, FORM or importance sampling is used to evaluate the reliability. 

A similar technique was studied by Agarwal and Renaud (2004). RS can also be used in 

the intermediate responses. 

Meta-models are also used in other reliability methods to reduce the computational cost. 

Papadrakakis et al. (2005) demonstrated the use of an artificial neural network (ANN) 

to approximate the computational cost of a finite element method, and Beyer and 

Schwefel (2002) stated that RBO can be solved using an MCS to evaluate the reliability. 

ANN has also been applied in solving the optimisation of dynamic systems (Zhang and 

Foschi, 2004). Bichon et al. (2009) introduced a meta-model to approximate the 

performance function in an RBO problem. In this method, the performance function is 

replaced by a Gaussian process meta-model, which enables the system to analyse the 

problem more effectively. Subsequently, the meta-model is combined with a different 

level of the RBO problem, such as the double loop, single loop, or decoupling 

approaches. Previous studies have focused on reducing the simulation effort, which is 

related to the cost (Missoum et al., 2007).  

The application of a meta-model is always an attractive approach in solving RBO 

problems because the method is computationally inexpensive; however, the training 

systems can be challenging in the case of complicated problems which involve a high-

dimensional input vector. 

 

4.3.5.2 Decoupling 

As discussed above, the decoupling approach is a simulation technique for estimating 

reliability. It is possible to construct an approximation of the probabilities as an explicit 

function of the design variables. This method is used to maximise the efficiency of the 

optimisation loop (outer) by considering the design variables only, combined with the 

reliability loop (inner). The main idea of the decoupling method is to separate the 

double loop approach; i.e., the reliability problem is nested in the optimisation problem. 

Therefore, the problem is reduced to approximate the probability, which simplifies the 

RBO problem. 
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Murthy and Subramaniam (1968) and Lind (1976) employed the decoupling method to 

approximate a problem by means of an exponential function, and Gasser and Schuëller 

(1997) used this method to develop a global approximation of the failure probability. 

The global approximation considered the explicit function of the design variables. This 

approach involved constructing several interpolation points at the failure region using a 

simulation search. After the data are collected from the interpolation points in the design 

variables space, they are adjusted by an exponential function using a higher-order 

polynomial to predict the behaviour of the system. The global approximation method 

was later extended by Jensen (2005) and Jensen and Catalan (2007) to estimate the 

failure probability using local approximations. The advantage of a local approximation 

is the use of a lower order of polynomial function, which may also be combined into a 

sequential approximation optimisation problem (Jacobs et al., 2004). In the sequential 

approximation method, a new approximation of a failure probability sub-domain is 

developed after a solution of the design variables has been identified. Therefore, the 

optimisation algorithm is repeated with the new approximation (sub-domain) until an 

optimum design is obtained. 

Previous studies have sought to improve the approximation method. For example, Au 

(2005) developed an instrumental variability method in estimating a failure event by 

using Bayes‘ theorem and histograms to represent the probability distribution of the 

design variables. Ching and Hsieh (2007a and 2007b) extended the instrumental method 

by using a probability density function which utilises the maximum entropy principle 

(Jaynes, 1968; Ormoneit and White, 1999). The probability density function is able to 

estimate the failure probability using a global approximation method. Koutsourelakis 

(2008) further developed the instrumental variability method by using probabilistic 

classifiers at different stages of the reliability analysis. In addition, several authors have 

focused on the approximation method based on sensitivity analysis (Valdebenito and 

Schuëller, 2010b). The salient feature of this method is the consideration of design 

variables which correspond to the mean value (Zou and Mahadevan, 2006). The 

sensitivities are also used in estimating the reliability of the sample (Wu, 1994). Finally, 

the failure probability is approximated using an exponential function which is able to 

calculate the sensitivity using a large number of parameters. 

Global and local approximations of the failure probability have a common drawback: 

because both methods utilise the exponential approximation method, the analysis of a 

large number of design variables requires the evaluation of a large number of functions, 
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resulting in a rapid increase in the exponential curve and a high simulation cost; 

consequently, this method may not be appropriate for the present research. 

 

4.3.5.3 Direct integration 

As mention in the previous section, the approximation method, when used to evaluate 

the failure probability, makes use of sensitivity information; however, this method can 

be used directly in a gradient-based optimisation to solve an RBO problem. The 

gradient method is based on calculating the derivatives of the objective and constraint 

functions. Although the number of analysis solutions is significant reduced, the 

sensitivities must be calculated repeatedly. The gradient method was presented by 

Royset and Polak (2004a and 2005b) using a simulation method such as MSC or IS. 

More specifically, this method requires the derivatives obtained using MCS or IS. The 

sensitivity information is later used in an optimisation method to obtain an optimum 

solution for the RBO problem. 

Jensen et al. (2009) introduced an approach for solving RBO problems based on 

sensitivity information, subsequently extended by Valdebenito and Schuëller (2010b). 

In this method, the sensitivity information is combined with the optimisation method 

based on the feasible region. Thus, the line search method is performed to increase the 

efficiency of the procedure by using a polynomial approximation within the feasible 

region. This approximation is constructed using the probability estimation information 

and follows the procedure described by van Keulen and Vervenne (2004).  

Another direct approach is stochastic subset optimisation (Au and Beck, 2001; 

Taflanidis and Beck, 2008a and 2008b), which allows the simultaneous evaluation of 

the structural reliability and identification of the optimum solution of the RBO problem. 

The advantage of this method is identification of the design variables, which improves 

the value of the objective function by simultaneously evaluating the structural reliability 

and identifying the optimal solution. By repeating this procedure many times, it is 

possible to obtain the optimum solution, which is required in the following optimisation 

process. Although this method is capable of solving a large number of variables while 

considering a non-linear performance function, a drawback is the high simulation cost. 
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4.4 Multifactor Optimisation of Structure Techniques (MOST) 

This section deals with the combination of reliability analysis and the MOST technique, 

as adopted in part of this thesis. 

 

4.4.1 Optimisation methodology 

Structural design requirements often indicate that an optimisation procedure involves a 

number of quantity-variant objectives, constraints, loading cases, and design variables. 

Thus, an important part of the optimisation procedure is to establish a suitable method 

for evaluating this process; however, complex cross-relationships make it difficult to 

suitably appraise the design in order to yield an overall quantitative performance index 

which truly represents the character of the system. MOST tackles this problem by 

employing a systematic method for evaluation based on the concept of parameter 

profiles analysis, which is written in the FORTRAN programming language (Liu and 

Thompson, 1996; Thompson and Goeminne, 1993). This method evaluates a structural 

design by considering many individual performance parameters for a variety of loading 

cases, while also considering cost and mass. 

 

4.4.2 Performance data matrix 

The requirements for a complex structural design indicate that the optimisation must 

involve multi-objectives, multi-loading cases, and a large number of design variables. 

An m  n matrix (dij), the so-called performance data matrix (PDM), is defined by a set 

of performance parameters Pi (i = 1, 2,…, m) and loading case parameters Cj (j = 1, 

2,…, n). Thus, the data point dij is the i-th performance Pi of the structure for loading 

case Cj. The data points of the matrix are obtained by a finite element analysis and a 

reliability analysis of the structure. The matrix lists every performance of the structure 

at every individual loading case (see Table 4.1). Figure 4.6 shows an example of a PDM. 

The general procedure for obtaining the performance data is shown in Appendix A. 
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Table 4.1 – Performance data matrix 

 

 

 

 

 

 

 

 

 

 

4.4.3 Parameter profile matrix 

A parameter profile matrix (PPM) is created to review the profile of the performances 

for different loading cases (see Table 4.2). The PPM assesses the character of the 

structure with respect to the actual performances relative to their acceptable limits and 

to the best values of the performances. 

Table 4.2 – Parameter profile matrix 

 

 

 

 C1 C2   Cn 

P1 d11 d12   d1n 

P2 d21 d22   d2n 

         

Pm dm1 dm2   dmn 

 C1 C2   Cn 

P1 D11 D12   D1n 

P2 D21 D22   D2n 

         

Pm Dm1 Dm2   Dmn 

Figure 4.6 – Example that employs a PDM 

 

 

 

 

 

NUMBER OF ROW IS M= 3         NUMBER OF COLUMN IS N= 2 

 

   DATA  STRUCTURAL ANALYSIS 

    LC1  LC2 

   stres 0.556E+03  0.756E+03 

   displ 0.340E+00  0.240E+00 

   mass  0.126E+01  0.126E+01 

 

    stress     displa.    mass  

 0.6557E+03 0.2902E+00 0.1264E+01 

 

Number of loading cases Number of objectives 

Result of particular 

performance at particular 

loading cases 

Summary of average 

performance data 
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The data point     in the PPM is a non-dimensional number in the range of 0–10 which 

is determined by the closeness of the actual performance     to the acceptable limit and 

the best values of the performance. 

In principle, the calculation of the data point     for one acceptable limit (e.g., the lower 

limit) is as follows: 

      
       

       
     (4.24) 

where     is the actual performance value taken from the PDM, and     and     are the 

lower limit and the best value, respectively. Equation (4.24) is valid for            ; 

for                  ; and for               . The data points     for the cases of 

acceptable upper limit and double acceptable limits (Figure 4.7) can be calculated in a 

similar way. 

 

 

Figure 4.7 – Calculation of a data point in the case of two acceptable limits 

 

 

4.4.4 Performance Assessment 

Information obtained from the PPM allows the whole system to be evaluated. The mean 

and standard deviation (SD) are calculated for each parameter and each loading case for 

every column and row of the PPM matrix. The SD is a measure of the degree of 

dispersion of the data around the mean. A well-designed system should have low SDs 

and high means (close to 10). High SDs indicate that the system is likely to have 

significant problematic areas. A high SD obtained for a column indicates that the 

system, when under a specific loading case, will yield significantly problematic 
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performance. Similarly, a high SD for a given row indicates a fluctuation in the system 

performance under various loading cases for various parameters. 

The system can be further analysed using the parameter performance index (PPI) and 

the case performance index (CPI). When i-th parameter is very vulnerable, some data 

points Dij of the PPM will have values close to 0 and hence the PPIi will also close to 0. 

Similarly, when the system is vulnerable at the j-th loading case, CPIj will be close to 0. 

The highest values for PPI and CPI are 10. PPI and CPI values which are close to 10 

indicate good designs, whereas values close to 0 should be avoided. The PPI and CPI 

can be defined as follows: 

                           

                                  (4.25) 

where 

    
 

  
 

   
  

   

                         
 

  
 

   
  

   

 (4.26) 

The system can be reviewed by using the information in the indices, as follows: 

 A comparison of PPIs indicates whether the system performs better with respect 

to some performances than to others. 

 A comparison of CPIs shows whether the system performs better under certain 

loading cases than under others. 

The mean values, CPIs, PPIs, and SDs provide an overall performance assessment for 

the system and loading cases. The mean values are not used directly to rate the 

performance, because high scores may hide low scores. These indices are calculated by 

summing the inverse of the data point as a performance rating. To simplify the 

calculations, the performance indices are categorized into the range 0–10, enabling 

different loading cases and parameters to be compared in order to gain an overall 

perspective of the characteristics of the system. 

According to matrix profile analysis, the PPI is a measure of the vulnerability of each 

performance parameter and the CPI is a measure of the vulnerability of each loading 

case. Hence, the integration of PPI and CPI indicates the vulnerability of a particular 

parameter/loading case combination. To evaluate the design, an overall performance is 



73 

 

presented to formulate the performances and the loading cases, thereby providing a 

scientific quantitative evaluation for the system. An overall performance index (OPI), 

which takes the form of a qualitative score, can be established for the system by 

considering all the performances and all the loading cases. The OPI function lies in the 

range of 0–100. Each performance parameter and loading case is given a weighting 

system according to its importance. The OPI can be expressed as follows (for an un-

weighted case): 

 
 





m

i

n

j

ji CPIPPI
nm

OPI
1 1

100

 (4.27)

 

This optimisation technique has the advantage of forcing the performances to approach 

their best values. The nearer the performances to the acceptable limits, the more strict is 

the ―punishment‖ (penalties). The optimisation problem stated above is further 

complicated by the fact that the objective does not always have continuous first and 

second derivatives. Consequently, the problem needs to be solved using a numerical 

process; however, a numerical calculation using the gradient method and a Hessian 

matrix may be computationally expensive or even impossible. Therefore, the objective 

function is maximised using the effective zero-order method, utilising conjugate search 

directions (Liu and Hollaway, 2000). For details of the MOST optimisation procedures, 

see Appendix B. 
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4.5 Formulation of an optimisation problem 

In this research, a novel MOST has been extended to automatically accommodate and 

execute reliability-related multi-factor structural sizing/shape optimisations. Therefore, 

the design problem is to minimise structural mass, maximum stress, and maximum 

displacement, and to simultaneously maximise the RLI, subject to the design constraints 

for multi-loading cases. The optimisation to be solved is stated as follows: 

 find X = (x1, x2, …, xk) 

min    {m(X), ζmax,j(X), and δmax,j(X)}           

      and/or   

 max   {RLIj(X)}                        

 s.t. {ζmax,j ≤ ζlim ; δmax,j ≤ δlim ; m ≤ mlim ; RLIj ≥ RLIlim}  and  

  

j = 1, 2, …, n  

where k is the number of design variables, m is the structural mass, ζmax is the maximum 

stress of the structure, δmax is the maximum displacement of the structure, RLI is the 

reliability loading-case index, the subscript ―lim‖ indicates a specified performance 

limit for the structure, and n is the number of loading cases. min

ix  and max

ix  are the lower 

and upper bounds of the design variables of xi, respectively. 
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4.6 Summary 

This chapter evaluated a detailed first-order reliability method (FORM). The reliability 

term was first developed by Cornell (1969). This method was further developed by 

Hasofer and Lind (1974) (H–L) and later extended by Rackwitz and Fiessler (1978) (R–

F), and has proved to be successful in solving various types of problems. This account 

was followed by an outline of a reliability methodology: the reliability loading-case 

index (RLI), which represents a modification of the H–L and R–F methods. 

Subsequently, a reliability-based optimisation (RBO) was discussed. Various types of 

RBO were described in detail and their advantages and disadvantages considered. 

In this research, a multifactor optimisation of structure techniques (MOST) has been 

extended to automatically accommodate and execute reliability-related multi-factor 

structural sizing/shape optimisations. This technique is able to consider individual 

performance and loading cases subject to the design constraints. Several examples, 

employing this technique, are presented in Chapters 5–7. 
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5 Multi-objective Optimisation – An Automotive Component 

Optimisation (Sliding Caliper) 

5.1 Introduction 

A braking system has been one of the most important safety components in automobiles. 

The development of the brake system has focused on increasing its efficiency. There are 

broadly three types of brake systems used in the automotive industry: drum brakes, disc 

brakes, and electromagnetic brakes. In recent developments, the brake system has been 

used in conjunction with advanced electronic technology to provide the most safe and 

reliable design. In such cases, the brake system converts brake energy into ‗electrical‘ 

energy which is used to recharge the battery. Therefore, the electrical energy from the 

battery is used to generate the motion of the vehicle. This is known as a hybrid system. 

Many car manufacturers have adopted this new concept to create vehicles with low CO2 

emissions; e.g., the Toyota Prius10 and the new Toyota Auris hybrid (Toyota, see 

http://www.toyota.co.uk). Both of these cars use disc brakes as part of the innovative 

hybrid mechanism. 

The disc brake was introduced by the British engineer Frederick William Lanchester 

(1868–1946) (Clark, 1995; Harper, 1998; Newcomb and Spurr, 1989), who in 1902 

described a brake consisting of a disc which is firmly mounted to one of the vehicle 

wheels (Lanchester, 1902). In the following years, the carmakers Mercedes (Daimler 

Motor Gesellschaft) and Renault introduced drum brake systems (Newcomb and Spurr, 

1989). Elmer Ambrose Sperry (1860–1930), an American inventor and entrepreneur, 

developed an electromagnetic actuated disc (Sperry, 1894, 1895, and 1896) which was 

placed in contact with another disc to act as a brake. Sperry discovered that the braking 

effect was generated in part by friction between the discs and in part by eddy currents. 

The designs of Lancaster and Sperry were significantly improved during the twentieth 

century. Lancaster‘s design is a spot-type brake, whereas Sperry‘s is a clutch-type brake, 

which was used in aircraft during the Second World War. In modern automobiles, spot-

type disc brake systems are widely used on the front wheels of passenger vehicles.  

Kinkaid et al. (2003) presented a detailed review of brake systems and brake squeal 

problem, including drum brakes and disc brakes. This chapter focuses on the sliding 

caliper, which is a component of a disc brake system. 
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5.2 Brake system 

The brake system consists of brake pedal, brake line, hydraulic cylinder, and complete 

brake assembly. In a passenger vehicle, the most common brake types are drum brakes 

and/or disc brakes. Drum brakes are normally located at the rear and disc brakes located 

at the front of the vehicle. Each brake assembly is connected through brake lines, which 

are hydraulically linked to the master cylinder, as shown in Figure 5.1. When the brake 

pedal is pressed, the brake fluid in the master cylinder forces the fluid to each wheel of 

the brake assembly unit. Since the brake fluid cannot be compressed, the fluid pushes 

the piston outward in the brake assembly, resulting in slowing of the vehicle. 

 

 

Figure 5.1 – Brake system 

 

5.2.1 Drum brake 

The drum brake, which is a basic brake system used in the automotive industry, consists 

of a backing plate, the brake drum, brake shoes, and other components which together 

form the complete drum brake. Brake drums are generally made of cast iron, and the 

inside of the drum is machine-smoothed. A pair of brake shoes, made of a frictional 

material, is in contact with the smooth surface. A drum brake also contains many small 

components; e.g., a backing plate, the cylinder wheel (piston), springs, the parking 

brake lever, and screws. 

As mentioned above, the brake system is connected to the master cylinder through a 

series of brake lines. When the brake pedal is depressed, the brake fluid is forced under 

pressure into the wheel cylinder, which pushes the brake shoes outward and into contact 
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with the brake drum. When the brake is released, springs pull the brake shoes back to 

the original position. Over time, the brake shoes and brake drum become worn, meaning 

that the shoes need to move a greater distance to make contact with the drum brake. 

When this distance reaches a certain point, an automatic system adjusts the brake shoes 

to be closer to the brake drum. A simplified drum brake system is shown in Figure 5.2. 

 

Figure 5.2 – Simplified drum brake system 

Drum brakes are used in modern cars because they are cheaper to produce than other 

brake systems and because they are readily incorporated into the parking brake system. 

The parking brake is a long steel cable which connects the rear brakes and the hand 

lever. In drum brakes, the parking brake represents the addition of a simple system; i.e., 

by adding a lever. Consequently, the parking brake is separate from the hydraulic 

system and the mechanism is completely manual. 

When a brake is applied, frictional force and heat are generated. The heat can be 

dissipated by adding a cooling fin to the outside of the drum. Excessive heat gives rise 

to problems such as expansion of the brake drums, the vaporisation of hydraulic fluid, 

and reduced effectiveness of the frictional material in the brake shoes, thereby reducing 

the efficiency of the brake and increasing the risk of malfunction. 
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5.2.2 Disc brake 

A modern disc brake assembly comprises a rotor, caliper, brake pad, and hydraulic 

actuation system. The rotor or disc is firmly mounted on the axle at the site where the 

wheel is fixed to the rotor. Brake pads are placed either side of the rotor (i.e., inner and 

outer pads), and other small components are used to hold the pads. The brake pad is a 

frictional material which is pressed against the disc when the brake is applied. The 

caliper acts to hydraulically activate the pistons; consequently, heat is produced as the 

wheels are slowed. 

Calipers may be fixed or sliding (Figure 5.3). A fixed caliper is firmly mounted on the 

vehicle axle, and uses at least one pair of opposed pistons to clamp onto the disc from 

each side when the brake is applied. For economy, a sliding caliper generally uses one 

piston and pushes the inner brake pad until it makes contact with the disc brake rotor. 

The sliding caliper, supported vertically by a mounting bracket attached to the axle 

housing, is allowed to travel in the opposite direction to the piston movement. More 

specifically, when the brake is applied, the piston is pushed outward, forcing the inner 

brake pad to press against the rotor. This forces the caliper to move in the opposite 

direction to that of the piston. As the result, both brake pads are pressed against the disc 

and the wheel speed is reduced. 

 

Figure 5.3 – Cross-sectional diagrams of (a) a fixed caliper and (b) a sliding caliper 

The brake caliper, which is an important component of the disc brake system, comprises 

an assembly of a brake pad, seal, and pistons. The caliper needs to withstand the 

reaction from the brake effect and the heat generated by friction. Basically, the rotor is 

made of cast iron, which has high wear resistance. To protect the wheel bearings from 

the high temperatures generated during braking, the rotor has a top-hat shape 
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(Newcomb and Spurr, 1969) (Figure 5.4(a)), which increases the surface area and the 

path length that heat must travel to affect the bearings. A ventilated disc is used to 

reduce the heat more effectively, thereby enhancing the cooling effect. The two discs 

are connected by a series of thin ribs, as shown in Figure 5.4(b).  

 

Figure 5.4 – Types of disc: (a) top-hat shaped disc, and (b) ventilated disc  

 

5.3 Validation analysis of optimised sliding caliper 

5.3.1 Design Problem 

The design problem of a sliding caliper is to find an optimum solution while satisfying 

all the design constraints. This is done using a MOST (Multifactor Optimisation of 

Structure Techniques) technique by retaining a low mass and satisfying strength and 

stiffness standards, subject to the design constraints. The design optimisation problem to 

be solved may be formally stated as follows: 

 find X = (x1, x2, …, xk) 

min    {m(X), ζmax(X), and δmax(X)} 

 s.t. {ζmax ≤ ζlim ; δmax ≤ δlim ; m ≤ mlim}, 

 

where k is the number of design variables, m is the component mass, ζ is the von Mises 

stress of the caliper, δ is the displacement of the component, and the subscript ‗max‘ 

and ‗lim‘ indicates a maximum and a specified limit of the design. The sliding caliper is 

optimised to carry a maximum pressure P, have a targeted deflection of δlim = 0.32 mm 
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in any direction, satisfy a strength criterion of ζlim = 450 MPa, and the structural mass 

(half of the model) of mlim = 1.24 kg. min

ix  and max

ix  are the lower and upper bounds of 

the design variables of xi, respectively. The model considers a single loading case. 

 

5.3.2 Design constraints and boundary conditions 

The optimisation method uses conjugate search directions (Liu and Hollaway, 2000) to 

search for the optimum solution, by changing the positions of the key points. The 

sliding caliper is modelled using sizing- and shape-design variables. There are 29 shape 

design variables and 7 sizing design variables. The former are defined using key points 

and are connected by lines and B-Splines. Each key point represents the coordinates of 

the design variables and two directions (i.e., x and y axes). Figure 5.5(a) shows that the 

key points act as design variables (only part of the design is shown). Sizing design 

variables are used to define the position and thickness of the guiding arm, the thickness 

of the outer pad support (Figure 5.5(b)), and other design variables. In this way, the 

initial finite element model is created. 

 

Figure 5.5 – (a) Numbers ‗1‘ to ‗13‘ are the key points as design variables, and (b) ‗d14‘ is one of the 

sizing design variables 

In this study, only half of the sliding caliper is modelled to reduce the computational 

cost. The caliper is divided into a guiding arm, the piston housing, the body, and an 

outer brake pad support (Figure 5.6(a)). The diameter of the sliding caliper is fixed at 

the site of the piston, and the distance between the piston and the end of the outer pad is 

also fixed. The distance between the piston housing and the outer brake pad support is 

set to enable the brake pad assembly and the disc to be located between them. The 
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sliding caliper is supported by the guiding arm and this small area is firmly mounted on 

the vehicle axle, as shown in Figure 5.6(b). For the guiding arm, only the x and y 

directions are fixed. The caliper is free to move parallel to the z-axis. During the 

analysis, the z-axis is fixed at the location of the outer brake pad, as indicated as the red 

line in Figure 5.6(b). A uniform pressure P is applied to the cylinder wall at the location 

of the piston of the sliding calliper, as indicated by the red region in Figure 5.6(c). A 

symmetry plane (the xz-plane) is considered during the analysis. 

 

 

 

5.3.3 Convergence test 

The static structural response of the sliding caliper is modelled using the finite element 

analysis software ANSYS in conjunction with the MOST technique. In this study, the 

sizing and shape optimisation considers a three-dimensional design where variations in 

displacement occur along the x, y, and z axes. To ensure that the mesh density is 

sufficient, a displacement convergence test is performed by decreasing the element size. 

Table 5.1 shows the effect of incremental decreases in element length, starting with a 

Figure 5.6 – (a) Sliding caliper overview, (b) design constraints, and (c) applied load (red area) and 

symmetry plane (green area)  
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basic element length of 12 mm, on the overall displacement vector sum (for the area 

indicated by the red circle in Figure 5.7) and the number of elements. 

 

Figure 5.7 – Initial design (bottom view) 

 

Table 5.1 – Element size (sliding caliper) 

Element length/mm No. of elements Displacement vector sum/mm 

12 2276 0.30792 

6 8962 0.27936 

3 53950 0.27771 

1.5 401975 0.27773 

Table 5.1 shows that no further accuracy is gained by reducing the element length 

beyond 3 mm (corresponding to 53,950 elements). In addition, any further reduction 

would result in a marked increase in the total number of elements and in the number of 

consecutive analyses. Therefore, an element length of 3 mm is selected for the analysis 

of the sliding calliper. 

Figure 5.8 shows the discretisation of the initial sliding caliper. For simplicity, only half 

of the model is considered. The SOLID92 element is used to generate the finite element 

model, which uses 10-node tetrahedral structural elements. This design adapts well to 

the free meshing of irregular shapes. The initial model consists of 53,950 elements with 

a uniform mesh size of 4.5 mm
2
 and a constant element length of 3 mm. 
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Figure 5.8 – Initial finite element design of a sliding caliper  
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5.4 Results and discussions 

5.4.1 MOST optimisation 

Optimisation of the sliding calliper required 109 MOST iterations (ni) to attain 

convergence, as shown in Figure 5.9. Initially, the shape of the design is changed. More 

specifically, areas of low stress are removed, as indicated by comparing ni = 0 with ni = 

29. From ni = 29 onwards, the sizing- and shape-design variables are focused on finding 

the optimum size in each particular region; finally, the optimal solution with perfect 

design is found at ni = 109.  

 

 

(a) ni = 0 (b) ni = 29 

 Initial design 

(c) ni = 109 

Optimised design 

Figure 5.9 – Optimisation history, showing (a) the initial design, (b) ni = 29, and (c) the optimised 

design at ni = 109 
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As mentioned above, the dimensions and positions of the design variables are changed, 

yielding the optimum size and shape of the caliper. Figure 5.10 shows contours of the 

von Mises stress for the initial and optimised design. 

 

 

 

 

5.4.2 Distributions of stress and displacement 

Figure 5.11 shows the distribution of the xz-shear stress (τxz), xy-shear stress (τxy), yz-

shear stress (τyz), and maximum (most positive) (S1) and minimum (most negative) (S3) 

principal stresses for the optimised sliding caliper. The design solution obtained using a 

finite element model and the MOST technique consisted of 69,827 nodes. 

The plots showing the distributions of τxz, τxy, and τyz in Figure 5.11(a–c) reveal shear 

stresses of approximately –208 to 190 MPa, –152 to 129 MPa, and –185 to 107 MPa, 

respectively. The principal stress contours of the most positive (tensile) and negative 

(compressive) stresses are shown in Figure 5.11(d and e), respectively. The most 

positive (tensile) stresses are developed on the fillet, as shown in Figure 5.11(d). This 

result was expected because the fillet in this area undergoes bending due to the loads. 

The maximum principal stresses (S1) were approximately –177 to 438 MPa. In contrast, 

the most negative (compressive) stresses were found at the far end of the caliper, where 

the outer brake pad is located (Figure 5.11(e)). The minimum principal stresses (S3) 

were approximately 41 to –430 MPa. These figures are within the limits of tensile and 

Figure 5.10 – Contours of von Mises stress for (a) the initial design and (b) the optimised design (MPa) 
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compressive stress for the material (MatWeb – cast iron, see http://www.matweb.com). 

Hence, the sliding caliper structure is expected to remain safe under these stresses. 

 

Figure 5.11 – Distribution of stress in a sliding caliper under mechanical load, showing (a) τxz shear stress, 

(b) τxy shear stress, (c) τyz shear stress, (d) most positive (tensile) stress, and (e) most negative 

(compression) stress (MPa) 

 

The distribution of displacement parallel to the x, y, and z axes (Figure 5.12 to Figure 

5.14, respectively) is approximately –0.22 to 0.048 mm, –0.011 to 0.010 mm, and –

0.314 to –0.047 mm, respectively. Negative values indicate displacement in the opposite 
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direction to the x, y, and z directions shown in each figure. Displacement along the x and 

y axes is relatively small at the site of the piston (Figure 5.12 and Figure 5.13). 

Displacement along the z-axis is slightly larger (Figure 5.14) but does not affect the 

movement of the piston when the brake is applied. Figure 5.15 shows the distribution of 

the displacement vector sum for the sliding caliper. The displacement ranges from 

~0.119 to 0.316 mm. The maximum displacement vector sum is found at opposing 

corners of the caliper (as indicated by the red vectors). These results are within the 

displacement constraint (δlim = 0.32 mm). 

 

 

Figure 5.12 – Distribution of displacement along the x-axis (mm) 
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Figure 5.13 – Distribution of displacement along the y-axis (mm) 

 

 

Figure 5.14 – Distribution of displacement along the z-axis (mm) 
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Figure 5.15 – Distribution of the displacement vector sum (mm) 

 

 

5.4.3 Optimisation history and convergence 

Figure 5.16 and Figure 5.17 show variations in the objective functions and the 

optimisation history with increasing number of iterations. Figure 5.16 shows a decrease 

in structural mass up to ni = 10, a sharp decreasing trend until ni = 21, a slight increasing 

trend until ni = 26, a sharp decrease at ni = 28 due to the higher sensitivity of the 

structure arising from a change in shape, a gradual increase until ni = 58, and finally a 

flat trend before converging to an optimal solution at ni = 109. The maximum von Mises 

stress shows a steep decrease in the first two iterations followed by a flat trend until ni = 

11, and increases at ni = 12 and ni = 18, corresponding to the higher sensitivity of 

certain areas. The maximum von Mises stress and structural mass show similar trends at 

ni = 28, as indicated by the green line in Figure 5.16. 
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Figure 5.16 – Convergence of mass and maximum von Mises stress  

With the removal of material, the maximum von Mises stress is reduced from 

approximately 580 MPa to 398 MPa before convergence to an optimal solution at ni = 

109. Consequently, the mass has been reduced from approximately 1.26 kg to 1.04 kg, 

representing a 17% savings in material.  

In Figure 5.17, the displacement vector sum fluctuates up to ni = 28 and thereafter 

shows a gradual decreasing trend until the optimal solution is achieved. The 

displacement vector sum is reduced from 0.340 mm to 0.316 mm. The design attributes 

are given in Table 5.2. 
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Figure 5.17 – Convergence of the maximum displacement vector sum  

 

Table 5.2 – Attributes of the initial and optimised designs 

Design attribute Initial design Optimised design 

Mass (kg) 1.26 1.04 

Maximum von Mises stress (MPa) 556 398 

Maximum displacement vector sum (mm) 0.340 0.316 
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5.5 Summary 

The optimisation of a sliding caliper was presented as an example to demonstrate the 

capabilities of the optimisation methodology. The model was defined using key points 

and connected by line and B-spline curve fitting, used to generate the finite element 

model. In this example, the aim was to optimise the caliper shape by minimising the 

structural mass, the maximum von Mises stress, and the maximum displacement. The 

positions of key points affected the shape of the structure; consequently, the stresses at 

each element changed during the optimisation. The proposed method was successfully 

applied in optimising the sliding caliper design. In the next chapter, the effectiveness of 

MOST is demonstrated for multi-objective and multi-disciplinary problem. 
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6 Multi-objective and Multi-discipline Optimisation – An 

Energy Harvesting Device Optimisation (Bimorph 

Cantilever Beam) 

6.1 Introduction 

In this chapter, a multi-objective and multi-discipline optimisation problem is 

investigated. The optimisation method is applied to an energy harvesting problem. In 

this research, a piezoelectric generator is considered to provide energy to power up 

certain devices for transmitting data.  

Piezoelectric materials are widely used in medical devices, robotic systems, microscope 

cantilevers, and electric transducers (Ha and Kim, 2002), as such materials are excellent 

transducers in converting vibrational energy into electrical energy. The vibrations cause 

the piezoelectric element to generate an AC voltage potential across the element‘s 

electrodes. Energy for a wireless sensor can be found from many sources, including 

pressure, vibrations, ultraviolet (UV) light, and heat. Among these, vibrational energy is 

the most attractive source of electrical energy in the wireless sensor environment. The 

conversion of vibrational energy into electrical energy is desirable in an energy-

harvesting scheme, which focuses on the wireless sensor‘s field. With this advanced 

technology, a wireless sensor can be used to monitor the performance of various devices 

including electrical motors, pumps, compressors, aerospace technology, and military 

equipment. Each structure (e.g., to monitor pump performance) vibrates at its resonance 

frequency and each device is designed to resonate at a particular frequency. 

In the context of energy harvesting, the development of renewable energy is important 

in terms of protecting the environment. In advanced electronic technology, the major 

reduction in size and power consumption of CMOS (complementary metal-oxide 

semiconductor) circuit boards makes it easier to locate wireless sensors in inaccessible 

locations or hazardous environments.  

As mention above, piezoelectric materials are excellent transducers in generating 

electrical energy converted from vibrational energy. Consequently, such materials are 

used in situations where electrical energy is not always available. However, the powered 

device requires a minimum amount of energy to operate, meaning that the power output 
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or the power density of the device is the key factor in designing an efficient and reliable 

product which is able to produce long-lasting energy. 

The great potential of piezoelectric materials has stimulated numerous research efforts 

in this field. For example, Roundy (2003) used a rectangular piezoelectric cantilever 

beam to generate electrical energy from vibrational energy, and Roundy (2005) reported 

that the power density of a beam can be increased by using a smaller volume. The 

author found that strain is distributed more evenly in the case of a trapezoidal cantilever 

beam, which generates more than twice the energy of a rectangular beam for a given 

volume. Several researchers have focused on maximising the power density of a 

piezoelectric generator. Mateu and Moll (2005) performed an analytical comparison 

between rectangular and triangular cantilevers in which they assumed uniform stress 

across the width of the cantilever. This revealed that a triangular cantilever with the 

same beam volume as a rectangular beam has a higher average strain and maximum 

deflection for a given load, thereby producing more power per unit volume. Miller et al. 

(2008) showed an increase in the weighted strain of a cantilever with the addition of a 

slit through the middle of the beam, yielding a weighted strain that is more than twice 

that of a rectangular cantilever. Hence, the authors concluded that a typical solid 

rectangular cantilever beam is non-optimized for the micro-scale energy scavenging 

generator.  

The power output of a piezoelectric generator is generally determined from the results 

of experiments. Roundy (2003) developed a general equation for calculating the power 

output of a rectangular beam, which has subsequently led to another approach to 

predicting the power output: FEM has been used to analyse the behaviour of 

piezoelectric material (Xu and Koko, 2004). However, few researchers have used FEM 

in optimising the best ―topology‖ design to predict the power output/density of a 

piezoelectric cantilever beam. 

The power output of a cantilever beam is directly related to the shape. Is a trapezoidal 

cantilever beam the best design in order to generate the maximum power density? To 

answer this question, the sensitivity of power density to beam shape is analysed in this 

research. In addition, hole openings within the cantilever beam are considered, in order 

to seek an optimum ―topology‖ structure which maximises the power density by using 

the minimum structural volume. In this research, FEM is also incorporated into the 

optimisation to simulate the behaviour of a cantilever beam, with the aim of 
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simultaneously increasing the power output/power density. This background 

demonstrates the need to optimise the geometrical shape of a cantilever beam to yield 

the maximum power density. 

Given the design problem focused in this Chapter, it is necessary to understand the basic 

application of piezoelectric material in the field of energy harvesting. Therefore, a basic 

background is firstly provided for energy harvesting and piezoelectric material. This is 

followed by verification of the proposed methodology. Next, the optimum geometrical 

shape of the piezoelectric generator is investigated with regard to power output. Finally, 

the best topology of the piezoelectric cantilever beam is searched for to maximise the 

power density. 

 

6.2 Background to energy harvesting 

6.2.1 Vibration 

Vibration occurs when an object oscillates about a point. This process is continuous 

until the external energy source is removed. Vibration occurs when a rotating object is 

unbalanced; e.g., a conveyor belt will vibrate when the motor is running (due to 

vibration from the motor). The frequency, measured in Hertz (Hz), is the number of 

times a complete cycle per second. 

 

6.2.2 Source of energy 

Because energy can be transformed from one form to another, it is available if there 

exists an appropriate way to harvest it. There are many potential energy sources, such as 

nuclear energy, solar energy, wind energy, biomass, and vibration, as summarized in 

Table 6.1. 
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Table 6.1 – Comparison of Energy Sources (Roundy, 2003) 

   

Power Density 

(W/cm
3
) 1 Year 

Lifetime 

Power Density 

(W/cm
3
) 10 Year 

Lifetime 

Source of 

Information 

Solar (Outdoor) 
15,000 (direct Sun) 

150 (cloudy day) 

15,000 (direct Sun) 

150 (cloudy day) 

Common 

knowledge 

Solar (Indoor) 6 (office desk) 6 (office desk) Roundy (2003) 

Shoe Inserts 330 330 Starner (1996)  

Vibrations 200 200 
Roundy et al. 

(2003) 

Acoustic 
0.003 (75 dB) 

0.96 (100 dB) 

0.003 (75 dB) 

0.96 (100 dB) 
Theory 

Temperature 

Gradient 
15 (10°C gradient) 15 (10°C gradient) 

Stordeur and Stark 

(1997) 

Battery (non-

rechargeable, 

Lithium) 

45 3.5 
Common 

knowledge 

Battery 

(rechargeable, 

lithium) 

7 0 
Common 

knowledge 

Fuel Cell (methanol) 280 28 
Common 

knowledge 

Nuclear Isotopes 

(Uranium) 
6  10

6
 6  10

5
 

Common 

knowledge 

 

6.2.2.1 Solar power 

Solar power is one of the main sources of renewable energy on earth. To harvest solar 

energy, three main methods are employed: (i) heat from the sun is used to heat water in 

a glass panel on the roof of a building, thereby heating the panel; (ii) photovoltaic cells 

generate electricity from sunlight; and (iii) a solar furnace, comprising a huge array of 

mirrors, gathers the sun‘s energy into a small space and produces very high temperature. 

In the presence of sunlight (especially at midday), the power density of solar radiation 

on the earth‘s surface is approximately 100 mW/cm
3
, which is able to power a 100 W 

light bulb from a solar panel with an area of 1 m
2
 (Andy Darvill, 2009). Silicon solar 

cells are a mature technology in which the efficiency of a single-crystal silicon cell 

ranges from 12% to 25%. Thin-film polycrystalline solar cells are also commercially 

available, costing less than single crystal silicon, but with lower efficiency (Roundy et 

al., 2003). As shown in Table 6.2, outdoor solar energy is much stronger than indoor 
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solar energy. Typical office lighting provides only several μW/cm
3
 for conversion into 

electricity, which is insufficient to run low-power-consumption appliances. Table 6.2 

compares the solar density power from various sources (after Roundy, 2003). 

Table 6.2 – Solar power under different conditions 

 
Outside, 

midday 

4 inches from 

60 W bulb 

15 inches from 

60W bulb 

Office 

lighting 

Power (μW/cm
3
) 14,000 5000 567 6.5 

 

6.2.2.2 Vibration 

Mechanical vibration energy has demonstrated high potential in terms of conversion to 

electrical energy. For example, Shenck and Paradiso (2001) successfully used 

piezoelectric generators to produce 336 μW/cm
3
 of power. For further information on 

vibration, see Glynne-Jones et al., (2001). Figure 6.1 compares the lifetime of 

vibrational energy with solar power and battery power (Roundy, 2003). In this figure, 

the solar and vibration power are not a function of time and the power density of battery 

(both rechargeable and non-rechargeable) energy shows a gradual decline. 

 

Figure 6.1 – Continuous power density for various power sources 

 

6.2.2.3 Human power 

There are two types of human power: (i) active human power, which requires power to 

generate motion, and (ii) passive human power, which is a scavenging power derived 

from daily activities. Passive human power has been scavenged from people walking 

across a floor. For example, Rome et al. (2005) demonstrated a ‗suspended-load‘ 
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backpack which generates up to 7.4 W, representing a 300-fold increase in efficiency 

over previous shoe devices (20 mW) (Kymissis et al., 1998). This technique relies on 

the conversion of mechanical energy from the vertical movement of carried goods (20–

38 kg in weight) to electricity during normal walking. This method was tested at Tokyo 

Station‘s Marunouchi North Exit from 16 October 2006 to 8 December 2006. The aim 

is to generate electricity by using the energy from the vibrations created by people 

walking on the floor. The power generated from the vibrations is used to contribute to 

the energy required by, for example, automatic ticket gates and electro-luminescence 

displays. A power-generating floor was installed at six ticket gates, generating up to 

10,000 watt-seconds per day (enough to illuminate a 100 W light bulb for 100 seconds) 

(Galhardi et al., 2008). Starner (1996) showed that a 68-kg person produces 67 W of 

energy during normal walking (based on a foot-fall of 5 cm, wearing high heels, and 

walking at 2 steps/sec). Gilbert and Balouchi (2008) reported that shoe generators can 

produce 100 mW with a vertical deflection of 14 mm, based on a spring and freewheel 

mechanism. 

 

6.2.2.4 Temperature variations 

In general, energy can be harvested from the environment. By using a thermoelectric, a 

generator produces power from a change in environmental temperature. Stordeur and 

Stark (1997) demonstrated a thermoelectric micro-device that generated 15 μW/cm
3
 of 

power from a temperature difference of 10°C. This is a promising method that may be 

improved to ultimately become more efficient than other approaches, although the level 

of output is presently lower than that from other methods. 

 

6.2.2.5 Summary of power scavenging 

Solar power and vibration-based energy scavenging are promising methods for 

producing power from the environment. Both methods can be used to run devices with 

low power consumption. The most appropriate energy source in terms of wireless 

sensor nodes in a building is vibration energy, although this is not necessarily the best 

energy-scavenging solution overall. 
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6.2.3 Types of vibrations 

Vibration is a type of energy that may occur in any setting. The vibration sources of 

interest in the present research include domestic and office appliances, and office 

equipment. The potential output power (P) is as follows (Roundy et al., 2003): 

   
     

    
  (6.1)  

where m is the mass, A is the acceleration, ω is the angular frequency of the vibration, 

and    is the total damping ratio. The potential output power is therefore proportional to 

A
2
/ω, meaning that to obtain a higher output power, the design should target a low 

fundamental frequency. Table 6.3 lists various vibration sources and their maximum 

acceleration magnitude of vibration and maximum frequency.  

Table 6.3 – Acceleration magnitude and fundamental frequency of various vibration sources (after Leland 

et al., 2007) 

Vibration source Acceleration, A (m/s
2
) Frequency, fpeak (Hz) 

Car engine compartment 12 200 

Mobile phone (vibration mode) 12.3 170 

Breadmaker 1.03 121 

Washing machine 0.5 109 

Blender casing 6.4 121 

Clothes dryer 3.5 121 

Desktop computer casing 0.5 120 

Desktop computer casing (with CD 

drive running 
0.54 120 

Standalone heater 1.5 34 

Door frame immediately after door 

closes 
3 125 

Small microwave oven 2.5 121 

HVAC vents in office building 0.2-1.5 60 

Freezer 0.1 50 

Windows next to busy road 0.7 120 

Second-story floor of busy office 0.2 100 
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The potential vibration is important in designing a vibration converter because the 

design should resonate at the fundamental natural frequency in order to obtain the 

optimum output, and because the magnitude and frequency must be known. Figure 6.2–

Figure 6.5 show spectrum analyses of a desk fan with variable speed and a fan heater. 

  

 

Figure 6.2 – Vibration spectrum of acceleration vs. frequency for a desk fan with variable  
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Figure 6.3 – Vibration spectrum of displacement vs. frequency for a desk fan with variable speed  

 

Figure 6.4 – Vibration spectrum of a fan heater (acceleration vs. frequency) 
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Figure 6.5 – Vibration Spectrum of a fan heater (displacement vs. frequency) 

 

6.2.4 Model of the Conversion of Vibration to Electricity 

 

Figure 6.6 – Schematic diagram of a vibration converter 

Williams and Yates (1996) proposed a simple model for converting vibrations to 

electricity (Figure 6.6). This model is described as follows (Roundy, 2003): 

                          (6.2) 

where m is the mass, k is a spring constant, be is an electrically induced damping 

coefficient, bm is a mechanical damping coefficient, zv is a spring deflection, and y is an 

input displacement. The power that is successfully converted to the electrical system is 
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equal to the power removed from the mechanical system by be. The electrically induced 

force is be   . Because power is the product of force and velocity, the power can be 

stated as follows: 

   
 

 
     

  (6.3) 

Equations (6.2) and (6.3) can be combined to derive the vibration expression for power: 

   
    

  
 

  
    

    
 

  
         

 

  
 
  (6.4) 

where    is the electrical damping ratio, ωn is the resonant angular frequency, ω is the 

angular frequency of the vibration, and    is the total damping ratio. If the resonant 

angular frequency is equivalent to the resonant frequency of the vibration, equation (6.4) 

can be simplified as follows by substituting the acceleration A = Yω
2
: 

     
    

 

    
  (6.5) 

According to Roundy (2003), the power is affected by the electrical damping ratio ζe 

and the mechanical damping ratio ζm. Figure 6.7 shows that the generated power is 

optimised when ζe = ζm. There is a large penalty in the case that ζe is less than ζm, and a 

small penalty in the case that ζe exceeds ζm. Hence, to develop a highly damped system, 

ζm should be equal to or less than ζe, because most of the damping is electrically induced. 

 

Figure 6.7 – Simulation of generated power against mechanical and electrical damping ratios  
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Figure 6.8 shows the output power versus frequency, assuming the electrical and 

mechanical damping ratios are equal. The resonance frequency for this simulation is 

100 Hz and the input vibration frequency is varied from 10 to 1000 Hz. 

 

Figure 6.8 – Power output against frequency  

The generated power is maximised when the vibration frequency is equal to the 

resonant frequency. There is a large penalty in the case of a small difference between 

the natural frequency and the frequency of the input vibration, and the output power 

decreases as the driving frequency moves away from the natural frequency. 

To generate the maximum output, the natural frequency and the environment frequency 

must be very similar, and the electrical damping ratio must be larger than the 

mechanical damping ratio. 

 

6.2.5 Piezoelectric material 

The term ―Piezo‖ is derived from the Greek word piezein, which means ―to press‖. In 

1880, the brothers Pierre and Jacques Curie (both French physicists) discovered an 

unusual piezoelectric effect of crystals (e.g., quartz and Rochelle salt) during an 

experiment, whereby piezoelectric materials can generate electricity when a force or 

pressure is applied. This phenomenon occurs because the crystals have been polarized. 

In 1881, Lippmann discovered the fundamental thermodynamic principles behind this 

phenomenon; i.e., the crystal is exposed to an electric field when subjected to tension or 

compression, with the strength of the field being proportional to the tension or 

compression (Mason, 1950). 
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Piezoelectric materials have been applied in various ways in terms of energy harvesting 

(Roundy, 2003; Shenck and Paradiso, 2001). As describe above, there are two types of 

piezoelectric material: (i) those with a direct effect and (ii) those with a converse effect. 

The direct effect involves the conversion of mechanical strain in electrical charge, while 

the converse effect involves the conversion of electrical strain into mechanical strain 

energy. The most commonly used piezoelectric material is lead zirconate titanate (PZT), 

a piezoelectric ceramic. 

In recent years, many researchers have focused on the performance of a cantilever beam 

with various geometries, in order to find potential design geometries that can increase 

the scavenging performance in terms of output power density (e.g., Goldschmidtboeing 

and Woias, 2008). Sodano et al. (2005a and 2005b) performed experiments to 

investigate piezoelectric devices in terms of their ability to transform vibrations into 

electrical energy using a cantilever generator. Sodano et al. (2004) used a bimorph 

Quick Pack QP40N (Mide Technology Corporation) cantilever beam (total volume: 

1947 mm
3
; piezoelectric volume: 240 mm

3
), without proof mass attached to the free end, 

to generate 1.10–11.90 μW of power at 25–50 Hz. Sodano et al. (2002) investigated a 

single layer of PSI-5H4E PZT (Piezo Systems Inc.) plate (40 × 60 × 0.27 mm) bonded 

onto an aluminium plate (40 × 80 × 1 mm), revealing that the cantilever beam can 

generate 1.7–2.0 mW of power. 

Poulin et al. (2004) compared the ability of piezoelectric and electromagnetic power 

generation from human movement to power up low-consumption electronic devices. Lu 

et al. (2004) designed and tested a micro-scale cantilever beam energy-harvesting 

system (‗31‘ transverse mode type piezoelectric micro-generator) in terms of supplying 

power to run micro-electromechanical technology (MEMS) applications. The cantilever 

beam (5.0 × 1.0 × 0.1 mm) generated about 1.6 mW of power at 7 kHz, which is enough 

to run a MEMS application. Hwang and Park (1993) proposed an alternative method to 

determine the response, yielding the values of parameters that are otherwise extracted 

from an FEM (finite element method) calculation. The FEM is used to calculate the 

static responses of a PZT bimorph beam in a PZT plate element. Other studies have 

used FEM to investigate piezoelectric composite beams and plates (Lam et al., 1997; 

Saravanos et al., 1997; Tzou and Tseng, 1990; Wang, 2004; Yao and Lu, 2003).  
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6.2.6 Piezoelectric converter (vibration to electrical) 

Piezoelectric materials are materials that physically deform in the presence of an electric 

field, or conversely, produce an electrical charge when mechanically deformed. As 

described above, the direct effect and the converse effect are the two different 

behaviours of piezoelectric material. The constitutive equations for a piezoelectric 

material are as follows (Ikeda, 1996): 

    
       (6.6) 

          (6.7) 

where δ is mechanical strain, ζ is mechanical stress, Y is the modulus of elasticity, d is 

the piezoelectric strain coefficient, E is the electric field, D is electric displacement, and 

ε is the dielectric constant of the piezoelectric material. Without the piezoelectric 

coupling term, dE, equation (6.6) is simply Hooke‘s Law (Benham et al., 1996). 

Likewise, without the coupling term, d , equation (6.7) is simply the dielectric 

equation, or a form of Gauss‘s law for electricity (Solymar, 1984). 

 

Figure 6.9 shows the two different modes of a piezoelectric material. The x, y, and z 

axes are labelled 1, 2, and 3, respectively. Typically, a piezoelectric material is used in 

the 33 mode, meaning that both voltage and stress act in three directions. However, the 

material can also be operated in 31 mode, in which the voltage acts in direction three 

and the mechanical stress acts in direction one. The most common type of 31 mode is a 

bimorph, in which two separate sheets are bonded together, sometimes with a central 

shim between them (Roundy, 2003). Detailed information on piezoelectric material can 

be found in the product catalogue produced by Piezo System Inc. (Piezo System, 2009). 

 

 

Figure 6.9 – Schematic diagrams showing the 33 mode and 31 mode of a piezoelectric material 

 

http://www.piezo.com/catalog.html
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6.3 Analytical model of a piezoelectric generator 

6.3.1 Review of the magnitude of voltage for a piezoelectric bender (Roundy, 

2003) 

Piezoelectric elements are both mechanical and electrical, and are modelled as a 

transformer (Flynn and Sanders, 2002). Roundy (2003) proposed that the magnitude of 

voltage transferred to the load for a piezoelectric bender can be given as follows 

(assuming that the driving frequency is not matched with the natural frequency): 

   
   

       

 

 
 

   
  

   
 

   
               

        
    
   

    
 (6.8) 

 

where V is the voltage through the piezoelectric material,   is the driving frequency, Yc 

is Young‘s Modulus for the piezoelectric material, d is the piezoelectric strain 

coefficient, tc is the thickness of the piezoelectric material, b
*
 is strain related to vertical 

displacement of the beam,   is the dielectric constant of the piezoelectric material, R is 

the load resistance, Cp is the capacitance of the piezoelectric device,    is the natural 

frequency of the system,   is the damping ratio, and   is a coupling coefficient. 

Equation (6.8) can be calculated using finite element analysis. 

 

6.3.2 Predicting the output power of piezoelectric generator designs with 

different geometrical shapes using finite element analysis 

 

 

Figure 6.10 – Schematic of a piezoelectric bender 
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The model of interest, shown in Figure 6.10 is modified from the piezoelectric 

cantilever beam reported by Roundy et al. (2003). In the model, the left end is fixed and 

the right end is free. A tip mass is applied to the free end of the beam. The beam 

consists of three layers: the top and bottom layers are piezoelectric material, and the 

middle layer is a brass shim. The electrode, used to produce energy, is placed on the top 

and bottom surfaces. The electrode can be easily etched away, meaning that only the 

portion of the beam covered by the electrode is active as a piezoelectric element. The 

electrode length (le, not shown in the figure) is always equal to or less than the length of 

the beam (lb). When the beam is deformed, a stress is induced on the top and bottom 

surfaces. To calculate the stress applied to the beam, it is always related to the Young‘s 

Modulus (E) and the tensile or compressive stress of the beam, expressed as follows: 

   
      

      
  

 

 
 (6.9) 

   
     

 
 (6.10) 

where M(y) is the bending moment as a function of the distance (y) from its base, y is 

the position along the beam, b is the distance from the centre of the shim to the centre of 

the piezoelectric material, and I is the second moment of the area. The stress and strain 

in a piezoelectric material are the average element stress and strain. Therefore, the 

average element stress in the piezoelectric material covered by the electrode is 

expressed as follows: 

      
 

  
 

     

 

  
 

   (6.11) 

where      is the average element stress. However, if the beam is an irregular shape, the 

second moment of the area is difficult to calculate. Equation (6.10) is only valid for a 

regular shape. In a finite element analysis, the solution of the average element stress can 

be obtained in post-processing, meaning that calculation of the second moment of the 

area is not necessary to calculate the average element stress of the beam, especially if 

the shape is irregular. The average element stress (      can be stated as follows: 

      
 

  
   

  
    (6.12) 

where nc is the number of piezoelectric material elements. This equation assumes that 

all the elements are of equal size. 

This chapter focuses on the modelling and analysis of a piezoelectric bender. Several 

terms from equation (6.8) need to be redefined to accommodate the results of the finite 

element analysis. By utilising the relationship between Hooke‘s Law for elastic material 
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(Benham et al., 1996) and the solution from the finite element analysis, b
*
 in equation 

(6.8) can be defined as follows: 

    
    

    
 (6.13) 

where zt is the vertical displacement at the tip end (see Figure 6.10). The capacitance of 

the beam is the volume of the piezoelectric material. If the shape of the beam is 

irregular, the capacitance is calculated by integrating the width of the beam as a 

function of the distance (y) from its base, as follows: 

     
       

  
  

  

 
 (6.14) 

where nc is the number of piezoelectric layers and      is the width of the piezoelectric 

material in terms of the electrode length (  ). The damping ratio of the system can be 

stated as follows: 

   
 

       
 (6.15) 

where meff is the effective mass and c is a damping coefficient. The effective mass and 

natural frequency can be found from the finite element analysis. The power transferred 

to the load is simply V
2
/R. Equation (6.8) can be further simplified to yield equation 

(6.16) if we assume that the natural frequency      matches the driving frequency ( ). 

The power output (P) of the beam is then formulated as follows: 

   
 

   
 

   
  

       
   

 
 

               
 
                  

   
   (6.16) 

 

The optimum resistance can be derived as: 

      
  

           
 (6.17) 

For details of the derivation of the system, including the mechanical and electrical sides, 

see Appendix C. 
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6.3.3 Theoretical frequency 

The theoretical natural frequency can be calculated if the effective mass of the system is 

known. A schematic cantilever beam structure is shown in Figure 6.11, where a tip mass 

(mtip) is attached to the free end of the beam, which is fixed to a vibrating base. The 

cantilever beam is assumed to be a rigid body. Therefore, the structure is modelled as a 

system with a single degree of freedom (SDOF). The structure consists of an effective 

mass (meff), spring stiffness (k), damper coefficient (c), and a vibrating base (  ). In 

general, the effective mass can be stated as follows: 

                   (6.18) 

 

 

Figure 6.11 – Schematic diagrams of (a) a cantilever structure, and (b) an SDOF model 

 

where meff is the effective mass, mtip is the tip mass (applied load), mbeam is the mass of 

the beam, and Bf is a constant value that depends on the structure (see Table 6.4; Wahab, 

2008). 

 

Table 6.4 – SDOF equivalent mass for structural systems 

Type of support Bf 

Axial bar 0.101 

Simple supported beam 0.4857 

Fixed-free beam 0.2357 

Fixed-fixed beam 0.37 

Fixed-simply supported beam 0.46 

 

In this research, a cantilever beam (fixed–free beam) is considered with a constant Bf 

value of 0.2357 (Ng and Liao, 2005). As a result, the effective mass can be used to 

calculate the theoretical frequency. The frequency is defined as follows: 
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 (6.19) 

where f is the natural frequency, k is the spring stiffness, and m is the mass attached to 

the system. More specifically, the mass m is the effective mass of the system. In the 

cantilever beam, the spring constant can be defined as follows (Gere and Timoshenko, 

1991): 

   
   

  
 (6.20) 

where l is the length of the beam. The spring constant is different for each mode. The 

focus is to determine the theoretical natural frequency. Therefore, the fundamental 

frequency is stated as follows: 

   
 

   
   

      
 (6.21) 

Equation (6.21) is only valid if the effective mass of each mode is equal to the 

individual spring constant. For a higher order of mode, it is difficult to determine the 

spring constant and effective mass theoretically, especially for an irregularly shaped 

cantilever beam. However, this problem can be overcome by using finite element 

analysis to determine the frequency of each mode. 

 

6.3.4 Material properties 

The values of the mechanical and electric properties of the piezoelectric material (PZT-

5A4E) and of the brass shim are given in Table 6.5 (Gallas et al., 2003; see also Piezo 

System, 2009). 

Table 6.5 – Material properties of PZT and brass shim 

 Piezoelectric material 

(PZT-5A4E) 

Shim material 

(brass) 

Elastic Modulus (GPa) 66 117 

Max. allowable stress (MPa) 24
1
 200 

Max. deflection (μm) 300 – 

Poisson‘s ratio 0.31 0.324 

Density (kg/m
3
) 7800 7165 

Relative dielectric constant 1800 – 

d31 (m/V)  –190  10
–12

 – 

                                                 
1
Dynamic peak tensile strength (Bert and Birman, 1998) 

http://www.piezo.com/catalog.html
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6.4 Verification of experimental, theoretical, and ANSYS simulation 

results  

Ooi (2010) performed an experiment to verify the validity of a model using equation 

(6.8) for a rectangular cantilever beam. A vertical vibration generated from a shaker 

(model number LDS-V406/8) was used to excite the cantilever and the vibration was 

also monitored using an accelerometer (MTN1800). The voltage generated by the 

piezoelectric material for a given load resistance was captured by an oscilloscope 

(Agilent MSO-6054A), along with the accelerometer signal. The obtained data from the 

oscilloscope were transmitted to the MATLAB for further investigations of the power 

and frequency response. The cantilever beam (known as a ‗bimorph‘ system) is 

composed of two layers of piezoelectric materials and a layer of shim material. The 

effective piezoelectric cantilever (PZT-5A4E), which has dimensions of 23.5 × 12.7 × 

0.51 mm and a tip mass of 4.1 grams (Figure 6.12 and Table 6.6), was excited by a 

sinusoidal wave with an acceleration magnitude of 4.905 ms
–2

 at frequencies of 50–90 

Hz. The experiments yielded a damping ratio of 0.02858. The output was obtained 

across a range of load resistances, and a multi-frequency response was plotted on a 

horizontal axis, as shown in Figure 6.13. 

 

Figure 6.12 – Schematic diagram of the experiment setup (mm) 
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Table 6.6 – Dimensions of piezoelectric generator 

Parameter  Value 

Thickness of piezoelectric material (tc) 0.19 mm 

Thickness of shim material (tsh) 0.13 mm 

Length of tip mass (lm) 2.00 mm 

Length of base (lb) 21.5 mm 

Effective length of piezoelectric material PZT (le = lm + lb) 23.5 mm 

Width (w) 12.7 mm 

 

Figure 6.13 compares 14 sets of data (k = 1, 2, 3,...,14). All the experimental results 

show a resonant frequency (fre) at around 73 Hz; however, for clarity of presentation, 

they are separated by an offset frequency (foff = 10 Hz) in order to plot them on a single 

graph. Hence, the resistance-offset frequencies (fk) on the horizontal axis for each set of 

data can be expressed as follows: 

               (6.22) 

 

Figure 6.13 – Comparison of theoretical calculations, ANSYS simulation, and experimental results for 

output power  

In this research, the main aim is to maximise the power output which is calculated by 

using equation (6.16). However, this equation must be verified before proceedings with 

the analysis. Therefore, a comparison is made between the existing technique (the 

Roundy method; Roundy, 2003), experimental results, and the proposed technique. 

Under the same setup in each case, but varying the resistance, equation (6.8) is 

calculated and plotted in Figure 6.13 (―theory‖). To calculate the power output using the 



115 

 

proposed method, a finite element analysis is employed. A finite element model of a 

rectangular piezoelectric cantilever beam was developed for use in predicting the 

behaviour of the beam under a concentrated load at the free end, as shown in Figure 

6.12. The average element stress and the vertical deflection are obtained in the analysis. 

The obtained values are substituted into equation (6.16) and the results are plotted in 

Figure 6.13 (―ANSYS simulation‖). 

The maximum power is produced when the resistance is 30–65 kΩ, as shown in Figure 

6.13. The results of the finite element simulation and the theoretical calculation differ 

by approximately 4.50%, whereas the experiment results are markedly different from 

these two sets of results. There are many factors that may affect the experiment result, 

including the surrounding environment, the position of the tip mass, and the sensitivity 

of the apparatus. Hence, the error in the experiment is about 20% compared with the 

finite element analysis. However, the frequency response for each load resistance and 

the effect of the load do show similar trends to both theory and simulation. 

 

6.5 Maximum strain and width responses 

The aim of this section is to predict the behaviour of the piezoelectric material in terms 

of strain distribution and power output. Figure 6.14 compares the different strain 

distributions. 

 

 Figure 6.14 – Strain distributions for a rectangular beam with varying widths  
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The analysis considered a cantilever beam with widths of 12.7, 6.35, 3.18, 1.58, and 

1.28 mm ( Figure 6.14); all the other dimensions remained constant. The maximum von 

Mises strain showed a marked increase with decreasing width. As a result, the 

maximum strain, obtained for a width of 1.28 mm, is approximately nine times higher 

than that for a width of 12.7 mm. 

The beam with a width of 12.7 mm has an even distribution of strain compared with the 

beam with a width of 1.28 mm. The strain data indicate that the design with a width of 

12.7 mm provides the optimal power output, because for a given maximum strain 

constraint, the power output is greatest for the design with a width of 12.7 mm. This 

result reflects the fact that the power output for a cantilever beam is affected by the 

input acceleration, as evident in equation (6.16). Therefore, the analysis now considers 

the design of a cantilever beam using piezoelectric materials, in terms of power output 

and maximum strain. 

 

6.6 Shape optimisation using the multifactor optimisation of structure 

techniques (MOST) 

6.6.1 Design considerations 

The main objective is to find the optimum geometrical shape of a bimorph cantilever 

beam that yields the maximum power and has the minimum structural volume. 

 

6.6.2 Design constraints and load 

Figure 6.15 shows a schematic diagram of the design domains, geometric constraints, 

load, and boundary conditions of the design. In this finite element model, the design is 

modelled as a cantilever beam. Points A and D are fixed at three coordinates (x, y, and z). 

A concentrated pressure is applied at the free end of the cantilever beam (between B and 

C). The initial dimensions of the beam are listed in Table 6.7. 
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Table 6.7 – Dimensions of the initial design 

Parameter Initial value 

Thickness of piezoelectric material (tc) 0.19 mm 

Thickness of shim material (tsh) 0.13 mm 

Effective length of piezoelectric material PZT (le = lm+ lb) 23.5 mm 

Length of tip mass (lm) 2.00 mm 

Length of base (lb) 21.5 mm 

Width (w(y))  1 ≤ w(y) ≤ 12.7 mm 12.7 mm 

 

6.6.3 Finite element model of a bimorph cantilever beam 

The maximum power of a rectangular cantilever beam can be enhanced by reducing the 

structural volume. The beam is modelled using finite element software (ANSYS) in 

conjunction with the Multifactor Optimisation of Structure Techniques (MOST). Shape 

optimisation is performed on three orthogonal planes, where the variation of stress is 

produced by the tip mass. The ANSYS SOLID92 element is used to generate the model 

rather than the SOLID98 element, although both elements are 10-node tetrahedral 

shapes with a large deflection and stress stiffening behaviour. SOLID98 is a tetrahedral 

coupled-field solid and SOLID92 is a 3D structural solid element. SOLID92 was 

selected to generate the model because it adapts well to the free meshing of irregular 

shapes. The solution from the analysis is used to calculate the value of b* in equation 

(6.13), which is later substituted into equation (6.16) to compute the power output. 

Therefore, for generating the model there is little difference between SOLID98 and 

SOLID92 if the mesh density is sufficient. 

To ensure that the mesh density is adequate, a displacement convergence test is 

performed by decreasing the element size. Table 6.8 shows the effect of an incremental 

Figure 6.15 – Load and boundary conditions of the cantilever beam 
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decrease in element length (starting with the basic element length of 3.2 mm) on the 

overall displacement in the z-direction (indicated as point E in Figure 6.15) and on the 

average element stress of the piezoelectric element. 

Table 6.8 – Effect of element length on displacement and average element stress in a convergence test 

Element 

length/mm 
No. of elements 

Displacement in 

z-direction (µm) 

Average element stress 

(MPa) 

3.2 847 8.286 0.2138 

1.6 2714 8.432 0.2355 

0.8 9620 8.485 0.2443 

0.4 39052 8.505 0.2423 

 

Sufficient accuracy is attained if the element length is less than 0.8 mm, although a 

reduction in element length beyond 0.8 mm results in a marked increase in the total 

number of elements and a corresponding increase in the number of consecutive analyses. 

Figure 6.16 shows that the average element stress of the cantilever beam is converged at 

approximately 10k elements, corresponding to an element length of 0.8 mm. In contrast, 

the displacement continues to increase in the case of larger numbers of elements. 

Although the beam is converged at an element length of 0.8 mm, the deflection at point 

E (see Figure 6.15) is smaller than that for an element length of 0.4 mm. However, this 

does not affect the accuracy of the solution. Therefore, an element length of 0.8 mm is 

selected for analysis of the cantilever beam. The initial model consists of 9620 elements 

(both piezoelectric and shim elements) with a constant element size of 0.32 mm
2
, using 

a uniform element length of 0.8 mm (Figure 6.17). 
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Figure 6.16 – Convergence of average element stress and displacement 

 

 

 

 

 

 

 

8.250 

8.300 

8.350 

8.400 

8.450 

8.500 

8.550 

0.210 

0.215 

0.220 

0.225 

0.230 

0.235 

0.240 

0.245 

0.250 

0 10000 20000 30000 40000 50000 

D
is

p
la

ce
m

en
t 

(µ
m

) 

A
v
er

a
g
e 

el
em

en
t 

st
re

ss
 (

M
P

a
) 

No. of elements 

Average element stress 

Displacement 

Figure 6.17 – Finite element discretisation of the initial solid cantilever beam 
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6.6.4 Formulation of the optimisation problem 

In this study, the optimal shape of engineering structures is determined using MOST. 

The design problem is therefore to maximise the power output and the average element 

stress, and simultaneously minimise the structural volume, subject to the design 

constraints. The optimisation to be solved is stated as follows: 

 find X = (x1, x2,…,xk) 

min    {Vs(X)}                   

      and   

 max   { Pj(X) and ζave,j(X)}       

 s.t. {Vs ≤ Vs,ini; Pj ≥ Pini,j; ζave,j ≥ ζini,j; δini,j ≤ δj ≤ δlim,j; ζmax,j ≤  ζy} and 

 

  j = 1, 2,…, n 

where k is the number of design variables, Vs is the structural volume (excluding the 

volume of the tip mass), ζave is the average element stress of the structure, δ is the 

displacement of point E (see Figure 6.15), ζmax is the maximum von Mises stress of the 

structure, and P is the power output. The subscript ‗ini‘ indicates the initial value for the 

structure (here, the initial iteration when ni = 0), and n is the number of loading cases 

(here, n = 1). The subscript ‗lim‘ indicates a specified performance limit for the 

structure. In this research, the cantilever beam is optimised to carry a tip mass of 4.1 

grams with a maximum vertical displacement of δlim = 300 μm at any node, satisfying a 

maximum strength of ζy = 24 MPa (see Table 6.5).
 

min

ix  and max

ix  are the lower and 

upper bounds of the design variables of xi, respectively. There are eight design variables 

in the structural model, which represent the width of the cantilever beam. In this case, 

the lower and upper bounds are set to 1 and 15 mm, respectively. 
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6.7 Results and discussions 

6.7.1 Optimisation results 

The optimisation is started from a rectangular cantilever beam. The optimisation took ni 

= 27 iterations to converge, as shown in Figure 6.18. The von Mises stress of the initial 

and optimised structures is shown in Figure 6.19. 

 

Figure 6.18 – MOST optimisation history of a bimorph cantilever beam showing the (a) initial design, (b) 

ni = 4, (c) ni = 8, (d) ni = 12, (e) ni = 18, and (f) the optimised design at ni = 27 (red lines indicate the 

constraints are fixed along the x, y, and z axes) 
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Figure 6.19 – Distribution of von Mises stress for the initial design (left) and the optimised design (right) 

(Pa) 

The outer boundaries of the cantilever beam are described by a B-spline function, 

represented by the eight design variables. Topology optimisation is not considered in 

this problem. Movement limits are applied to the outer boundaries of the cantilever 

beam to prevent excessive distortion of the finite element mesh. One of the objectives of 

the optimisation is to increase the power output. From equation (6.16), the power output 

is related to the average element stress. During the optimisation, areas of low 

stress/strain are removed, resulting in areas of higher stress within the structure, 

accompanied by an increase in the average element stress due to a decrease in the 

number of elements. The maximum von Mises stress of the initial and optimised 

designs is 0.89 and 1.00 MPa, respectively (Figure 6.19). 

 

6.7.2 Optimisation history 

The shape optimisation of the cantilever beam required ni = 27 iterations to converge, as 

shown in Figure 6.20, which depicts the evolution of the structural volume and the 

maximum power output. A sharp increase in the output power is seen up to ni = 5, 

because the width at the free end of the beam (where the tip mass is located) is reduced 

to a tenth of its original size. This is followed by a sharp decrease in power output up to 

ni = 8, due to the removal of material from the structure and changing values of the 

natural frequency, damping ratio, resistance, and capacitance. Subsequently, power 

output fluctuates before converging to an optimal solution at ni = 27. The opposite trend 

is observed for the structural volume. The average element stress is increased by 

approximately 15% between ni = 5 and ni = 10, due to the removal of material and the 
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consequent higher average stress for each element in the structure (Figure 6.21). The 

displacement (at point E) shows an increasing trend up to ni = 10, followed by a 

fluctuation before converging to the optimum value at ni = 27.  

 

Figure 6.20 – Optimisation convergence history of the structural volume (excluding the volume of the tip 

mass) and power 

 

Figure 6.21 – Optimisation convergence history of the average element stress and displacement 
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Figure 6.20 shows that the power is increased from approximately 0.226 to 0.282 mW, 

which corresponds to an increase of approximately 25% compared with the initial 

design. The total structural volume (piezoelectric and shim material) is reduced 

significantly from 152.21 to 81.83 mm
3
 during the optimisation, corresponding to a 46.2% 

saving in materials. To increase the maximum power output, the vertical deflection of 

the cantilever beam is increased by about 47% from 8.48 to 12.50 μm (see Figure 6.21). 

The design attributes of the initial and optimised designs are listed in Table 6.9. 

Table 6.9 – Design attributes of the initial and optimised designs of a cantilever beam 

 Initial design Optimised design 

Power (mW) 0.226 0.282 

Volume of piezoelectric material (mm
3
) 113.41 60.97 

Volume of shim material (mm
3
) 38.80 20.86 

Maximum von Mises stress (MPa) 0.89 1.00 

Average element stress (MPa) 0.24 0.46 

Displacement at point E (μm) 

Capacitance (nF) 

8.48 

50.07 

12.50 

26.92 

Frequency (Hz) 113 93 

 

6.7.3 von Mises total strain energy 

The von Mises total strain energy is assessed to determine whether the elements are 

subjected to high or low stress. To compare the initial and optimised designs at the same 

scale, each piezoelectric strain (or node) is divided by the maximum strain (or node) at 

each design (see equation (6.23)).  

                            
                                   

                       
 (6.23) 

Figure 6.22 shows the normalised von Mises total strain energy of the initial and 

optimised designs. The optimised design has a higher strain than the initial design, and 

the initial design shows a uniform increase in strain energy. In contrast, the optimised 

design shows a rapid increase in strain energy from the origin. 
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Figure 6.22 – Distribution of strain energy for the initial and optimised designs 

From Figure 6.22, it is difficult to determine which design provides the most even strain 

distribution. To enable a comparison of the initial and optimised designs at the same 

scale, the strain values for the piezoelectric nodes are divided by the maximum strain in 

each design to obtain the strain ratio (see equation (6.24)). The attributes of the strain 

ratio of the initial and optimised designs are shown in Table 6.10 and Figure 6.23. 

 

              
                                 

              
 (6.24) 

 

Table 6.10 – Distribution of the strain ratio for the initial and optimised designs 

 
Percentage of strain 

ratio > 0.5 

Percentage of strain 

ratio > 0.75 

Initial design 37.8 10.5 

Optimised design 76.9 51.3 
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Figure 6.23 – Strain distribution according to the strain ratio  

The optimised design gives the best strain distribution according to the strain ratio, with 

76.9% and 51.3% of the nodes having a strain ratio greater than 0.5 and 0.75, 

respectively (Table 6.10). Figure 6.23 shows the distribution of the strain ratio of the 

initial and optimised designs. The initial design shows a wide spread in the strain ratio, 

whereas the optimised design has a better strain distribution that is concentrated around 

a strain ratio of 0.80. In the optimised design, more than 75% of the nodes have a strain 

ratio greater than 0.50.  

 

6.7.4 Vibration of the cantilever beam 

This section considers the modal frequencies of the cantilever beam. The theoretical 

natural frequency and the natural frequency of the finite element analysis of the initial 

design are 111.35 and 113.01 Hz, respectively. The difference between the theoretical 

and finite element results is approximately 1.5%, which is relatively small. Therefore, 

the finite element results are used in this study to determine the natural frequency of the 

cantilever beam. To gain a deep understanding of the vibration of different mode shapes, 

the first six natural frequencies of the optimised design are shown in Figure 6.24. Table 

6.11 lists the modal frequencies of the beam, as predicted by finite element analysis. 
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Figure 6.24 – Shapes of the first six modes of the beam (undeformed shape: dotted line and deformed 

shape: blue colour)   

 

Table 6.11 – Natural frequency of the first six modes 

 1
st
 mode 2

nd
 mode 3

rd
 mode 4

th
 mode 5

th
 mode 6

th
 mode 

ANSYS (Hz) 93 194 337 1211 2623 2869 
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6.7.5 Mass response of the optimised design 

The maximum power output is determined by factors such as the natural frequency, 

damping ratio, resistance, capacitance, average element stress, and displacement. Figure 

6.25 compares the power output obtained using tip masses of different sizes (2.0, 4.1, 

4.7, 5.5, and 6.5 grams), for resonance frequencies of 60–150 Hz. 

 

 

Figure 6.25 – Mass response of the optimised design 

The highest power outputs of the system are found at the natural frequencies of 66, 76, 

85, 93, and 140 Hz, respectively. The maximum power output shows an increase with 

increasing tip mass. The maximum power output is approximately 0.649 mW at 67 Hz, 

using a tip mass of 6.5 grams. The natural frequency varies with the tip mass. 

 

6.7.6 Optimised design and triangular design 

Table 6.12 lists the power density (per unit volume of piezoelectric material) and the 

dimensions of a rectangular beam, triangular beam, and the optimised shape (Figure 

6.26). Roundy (2005) reported that a triangular shape produces more than twice the 

power density of a rectangular shape. Figure 6.27 compares the power output of three 

shapes for a given volume. The power output of the rectangular shape is approximately 

half that of the other two shapes. 
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Table 6.12 – Comparison of power density among beams with different shapes 

 Rectangular 

shape 

Triangular 

shape 

Optimised 

shape 

Volume of piezoelectric material 

(mm
3
) 

113.41 61.30 60.97 

Power density (μW/mm
3
) 1.99 4.49 4.62 

 

 

Figure 6.26 – Dimensions of (a) rectangular, (b) triangular, and (c) optimised shapes (unit in mm) 

 

 

Figure 6.27 – Power output of rectangular, triangular, and optimised shapes 
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6.8 Investigation of the optimum topology of a bimorph cantilever 

beam  

To increase the strain energy of the bimorph cantilever beam, additional holes within 

the cantilever beam region are considered. Miller et al. (2008) used this approach to 

release the gaseous etch to remove the underlying silicon (which is used to glue layers 

of material), obtaining a strain increase of at least 30%. Their result indicates that the 

strain of the bimorph cantilever beam can be increased.  

The aim of the optimisation performed in this research is to maximise the power density, 

which is directly related to maximising the power output and minimising the structural 

volume. Manufacturing capability is not considered during the optimisation procedure. 

The optimisation is performed by adding/moving holes and changing their sizes/shapes 

utilising the sizing and shape optimisation method to seek the optimum ―topology‖ of a 

bimorph cantilever beam. 

 

6.8.1  Design domain, load, and boundary conditions 

The schematic diagram in Figure 6.28 shows the design domain of the design. The load 

and boundary conditions of the cantilever beam remain unchanged (see Figure 6.15). 

All elements within the non-design domain are kept ‗frozen‘. The removal of material 

occurs within the confines of the design domain. 

 

Figure 6.28 – Design domain and shape constraints of the optimised design 
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6.8.2 Optimum “topology” structure of the cantilever beam 

The optimised design of the bimorph cantilever beam is modelled using ANSYS, as 

shown in Figure 6.18(f). The bimorph cantilever beam with the previously optimised 

design is taken for further possible improvement. Eight different designs were created, 

with different numbers and sizes of holes in the design domain.  

 

6.8.3 Results and discussions 

Figure 6.29 show the sizing and shape optimisations using the MOST technique for the 

various designs. 

 

Figure 6.29 – Optimisation of optimum ―topology‖ designs, showing designs (a) to (h)  

Looking at Figure 6.29, it is difficult to assess, based on the shape alone, which design 

yields the highest power density. The design is determined by the average strain, power 
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density, maximum von Mises stress, and structural volume across the piezoelectric 

element. Figure 6.30 shows the power density and average strain for each design, while 

Figure 6.31 shows the structural volume and von Mises stress. 

 

Figure 6.30 – Average strain and power density of the various optimum ―topology‖ designs  

 

 

Figure 6.31 – von Mises stress and structural volume of the various optimum ―topology‖ designs 
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Figure 6.30 and Figure 6.31 show that designs (a) to (f) yield the lowest average strain, 

power density, and maximum von Mises stress. Conversely, designs (g) and (h) show 

the highest values. Among these designs, design (h) has the smallest structural volume, 

enabling the production of a cantilever beam at a lower cost. Although design (g) 

achieved the highest power density, it yielded a higher maximum von Mises stress than 

design (h). Therefore, design (h) is the best optimum ―topology‖ design and is chosen as 

the design of the cantilever beam. 

 

6.8.4 Sizing and shape optimisation using MOST 

Figure 6.32 shows the von Mises stress distribution for the optimum ―topology‖ 

structure of design (h). The optimised structure (Figure 6.18(f)) and optimum ―topology‖ 

structure show a slightly reduced maximum power output. However, the power density 

per unit volume for the later design is increased by approximately 11% compared with 

the optimised design. The structural volumes of the optimised and optimum ―topology‖ 

designs of the cantilever beam (excluding the tip mass) are 81.83 and 67.84 mm
3
, 

respectively. The attributes of the both optimised designs are listed in Table 6.13. 

 

 

Figure 6.32 – Distribution of von Mises stress in the optimum ―topology‖ design (h) (Pa) 
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Table 6.13 – Design attributes of the optimised and optimum ―topology‖ structures 

 
Optimised 

design 
Optimum ―topology‖ 

design (h) 

Power (mW) 0.282 0.261  

Volume of piezoelectric material (mm
3
) 60.97 50.55  

Volume of shim material (mm
3
) 20.86 17.29  

Average element stress (MPa) 0.46 0.61 

Displacement at point E (μm) 

Capacitance (nF) 

12.50 

26.92 

18.30 

22.31 

Frequency (Hz) 93 78 

Power density (μW/mm
3
) 4.62 5.16  

 

The power density of the optimum ―topology‖ design is 11.7% higher than that of the 

optimised design (Table 6.13), reflecting the fact that the volumes of the piezoelectric 

and shim materials are reduced, yielding a 17.1% saving in material. The reduced 

structural volume is accompanied by a reduction in the capacitance of the structure; 

consequently, the power output is also reduced. Although the average element stress of 

the optimum ―topology‖ design is higher than that of the optimised design, the power 

output is lower because the power equation of the cantilever beam does not rely on the 

average stress only: it is also depends on the frequency, damping ratio, resistance, and 

capacitance. The power output of the optimum ―topology‖ structure is 0.261 mW, 

which is 7.4% lower than that of the optimised design. Conversely, the average element 

stress of the optimum ―topology‖ design is 32% higher than that of the optimised design. 

Similarly, the displacement at point E is increased by 46.4% compared with the 

optimised design. 
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6.9 Summary 

This chapter presented the sizing and shape optimisation of a bimorph cantilever beam, 

as an example of a piezoelectric generator. An existing technique (the Roundy method; 

Roundy, 2003) was verified, practical results were presented, and the proposed 

technique was discussed. A rectangular cantilever beam with a fixed tip mass was 

considered. The cantilever beam design was successfully optimised to yield a high 

power density and a low structural volume. The design was further enhanced by seeking 

an optimum ―topology‖ (introducing holes within the cantilever beams). The power 

density of the optimum ―topology‖ design was significantly improved and the structural 

volume reduced. 

In the following chapter, multi-objective, multi-discipline, and multi-loading cases are 

considered simultaneously, and a reliability factor is included in the optimisation 

process. 
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7 A New Development of Reliability-related Multi-factor 

Optimisation and its Applications 

7.1 Multi-criteria optimisation 

This chapter presents multi-objective, multi-discipline, and multi-loading cases using 

reliability-related sizing/shape optimisation in conjunction with the Multifactor 

Optimisation of Structure Techniques (MOST). To demonstrate the effectiveness of the 

proposed method, two numerical examples are presented, considering a star-like truss 

structure and a raised-access floor panel structure. For the reliability problem, the 

maximum stress, maximum displacement, and structural mass are assumed to be 

independent of each other. The limit state conditions of both examples are given in Ŷ 

space. 

 

7.1.1 Design constraints 

As part of this study, a novel MOST has been extended to automatically accommodate 

and execute reliability-related multi-factor structural sizing/shape optimisations.  One of 

the objectives of the present research is to develop the reliability loading-case index 

(RLI) (see Chapter 4.2), which is used in the optimisation by considering RLI, structural 

strength and stiffness, and structural mass. Therefore, the design problem is to minimise 

the structural mass, maximum stress, and maximum displacement, and to 

simultaneously maximise the RLI, subject to the design constraints for multi-loading 

cases. The optimisation problem to be solved can be stated as follows: 

 find X = (x1, x2,…, xk) 

min    {m(X), ζmax,j(X), and δmax,j(X)}             

      and   

 max   {RLIj(X)}                

 s.t. {ζmax,j ≤ ζlim; δmax,j ≤ δlim; m ≤ mlim; RLIj ≥ RLIlim }  and  

        

j = 1, 2,…, n  

where k is the number of design variables, m is the structural mass, ζmax is the maximum 

stress of the structure, δmax is the maximum displacement of the structure, RLI is the 

reliability loading-case index, the subscript ‗lim‘ indicates a specified performance limit 
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for the structure, and n is the number of loading cases. min

ix  and max

ix  are the lower and 

upper bounds of the design variables of xi, respectively. 

 

7.2 Example 1 – Star-like truss structure 

7.2.1 Introduction 

Truss structures are often used in construction projects to provide rigidity and support. 

A truss is constructed with straight members and joints between members, known as 

pin-jointed nodes. Each member is subjected to either tensile or compressive stress. In 

this study, a star-like truss structure is considered in order to demonstrate the 

effectiveness of the proposed methodology. 

 

7.2.2 Design considerations 

Consider a three-dimensional star-like structure with 17 nodal points and 32 bar 

elements, as shown in Figure 7.1. A finite element model of the structure is developed 

using ANSYS LINK8 elements. The initial structure has an external diameter of 1000 

mm and a height of 100 mm. The material density is 7850 kg/m
3
, the Young‘s modulus 

is 210 GPa, the yield stress is 500 MPa, and the Poisson‘s ratio is 0.3. Table 7.1 lists the 

standard deviation (ζdi
) and weighting factor (WPi

) of the maximum stress, maximum 

displacement, structural mass, and RLI. In this example, the magnification factor (W) is 

set to 6.67 (see Chapter 4.2). 
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Figure 7.1 – Initial layout of the star-like truss structure 

 

Table 7.1 – Ŷ space variables of the star-like truss structure 

Performance 
Standard 

deviation (ζ
di
) 

Weighting 

factor (WPi
) 

Maximum stress (MPa) 50 0.354 

Maximum displacement (mm) 0.5 0.021 

Mass (kg) 

RLI 

2 

- 

0.525 

0.100 
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7.2.3 Design constraints and loads 

The design requirement of the star-like truss structure is to find the optimal solution in 

terms of satisfying the design constraints regarding strength and stiffness, and retaining 

a low mass. The truss members are assigned a stress limit (ζlim) of 100 MPa. A 

maximum displacement limit of 1 mm is imposed on all nodes in all directions (x, y, and 

z). The minimum cross-sectional area ( min

ix ) for each design variable is set to be 20 

mm
2
. The truss structure is considered for two loading cases simultaneously, as shown 

in Figure 7.1; i.e., a load applied in the z-direction at the centre of the truss structure (F 

= 10 kN), and a load applied at an angle of 22.5° to the y-direction (F = 10 kN). Nodal 

point coordinates are given in Table 7.2, and element cross-sectional areas in Table 7.3. 

Figure 7.1 shows the structural model with six design variables, which includes three 

cross-sectional areas (A1, A2, and A3) and three truss dimensions (R2, Z2, and Z3). 

Table 7.2 – Coordinates of nodal points of the initial star-like truss structure 

Node x (mm) y (mm) z (mm) 

1 0.000 500.000 0.000 

2 353.550 353.550 0.000 

3 500.000 0.000 0.000 

9 103.553 250.000 50.000 

10 250.000 103.553 50.000 

17 0.000 0.000 100.000 

 

Table 7.3 – Cross-sectional areas of elements of the initial star-like truss structure 

Element Design variables Area (mm
2
) 

1–16 A1 100 

17–24 A2 100 

25–32 A3 100 

 

7.2.4 Results and discussions 

7.2.4.1 Optimisation results 

The solution of the star-like truss optimisation required ni = 96 iterations to converge. 

The optimised design is shown in Figure 7.2. The magnitudes of stress for the elements 

in the initial and optimised designs are shown in Figure 7.3 and Figure 7.4, respectively. 
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Figure 7.2 – Optimised design, showing a (a) front view and (b) top view 

 

 

 

 

Figure 7.3 – Stress distribution in a truss structure with the initial design, showing loading case 1 

(left) and loading case 2 (right) (MX and MN indicate the maximum and minimum stress, 

respectively) (Pa) 
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7.2.4.2 Optimisation histories 

Two different loading cases are simultaneously considered in this optimisation. The 

convergence histories in Figure 7.5 and Figure 7.6 show the trends in structural mass, 

sizing design variables, and geometrical design variables versus the number of iterations. 

The histories of RLI, maximum stress, and maximum displacement are shown in Figure 

7.7–Figure 7.9, respectively. 

Figure 7.5 shows an initially sharp decrease in structural mass. As a result, the cross-

sectional areas of truss members A1 and A2 are reduced by approximately 48% and 

33%, respectively, up to ni = 54. In contrast, the cross-sectional area of A3 is increased 

by about 18%. At the same time, the maximum stress and maximum displacement show 

marked decreases (Figure 7.8 and Figure 7.9). To attain convergence, the height of the 

truss (Z2 and Z3) shows a marked increase (Figure 7.6). 

 

Figure 7.4 – Stress distribution in a truss structure with the optimised design, showing loading case 

1 (left) and loading case 2 (right) (MX and MN indicate the maximum and minimum stress, 

respectively) (Pa)  
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Figure 7.5 – Optimisation convergence histories of sizing design variables and structural mass 

 

 

Figure 7.6 – Optimisation convergence histories of truss dimensions  
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Figure 7.7 – Optimisation convergence history of the reliability loading-case index 

 

Figure 7.8 – Optimisation convergence history of maximum stress  

 

 

Figure 7.9 – Optimisation convergence history of maximum displacement 
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The initial minimal RLI and structural mass are 2.81 and 6.49 kg, respectively. Based 

on the properties of the material and the application of the star-like truss structure, ζlim 

and δlim are set to be 100 MPa and 1 mm, respectively. The structural mass is required to 

be less than 4.9 kg. From these values (100 MPa, 1 mm, and 4.9 kg) and equation (4.16) 

in Chapter 4, the minimum acceptable value of RLI is 3.17. The design attributes are 

given in Table 7.4. The optimal design achieved a minimal RLI of 3.28 (a 16.5% 

increase compared with the initial value) and a structural mass of 4.82 kg (a 25.7% 

reduction). The optimised design satisfies all the design constraints and criteria. The 

design variables of the optimised design are given in Table 7.5. 

Table 7.4 – Attributes of the initial and optimised designs of the star-like truss structure 

  Loading  

case 1 

Loading  

case 2 

Maximum stress (MPa) 
Initial 68.79 132.85 

Optimised 42.83 85.07 

Maximum displacement (mm) 
Initial 0.797 4.463 

Optimised 0.330 0.956 

Mass (kg) 
Initial 6.485 

Optimised 4.817 

Reliability loading-case index 
Initial 3.23 2.81 

Optimised 3.55 3.28 

 

Table 7.5 – Truss dimensions and size of the initial and optimised star-like truss structure 

Design variable Initial design Optimised design 

A1 (mm
2
) 100 51.28 

A2 (mm
2
) 100 79.19 

A3 (mm
2
) 100 124.80 

R2 (mm) 250 205.38 

Z2 (mm) 50 175.43 

Z3 (mm) 100 239.60 
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7.3 Example 2 – Raised-access floor panel 

7.3.1 Introduction 

Here, the structural design of a raised-access floor panel is considered in order to 

examine the effectiveness of the proposed method. Such panels are used to provide an 

under-floor space for services. The panel is horizontal and is supported by adjustable 

vertical pedestals. The panel is elevated by the pedestals to create a space between the 

concrete floor slab and the raised-access floor (Figure 7.10). The panels are removable 

to allow rapid access to the under-floor area. The space can be used for the installation 

of, for example, electric power cables, data and telecommunication cables, environment 

control and air-conditioning equipment, and fire detection and suppression devices. The 

panels may be installed in general offices, computer rooms, laboratories, studios, 

auditoriums, etc. (The Access Flooring Company, 2008). 

 

Figure 7.10 – Raised-access floor panels (The Access Flooring Company, 2008) 

 

The panels are normally made of a combination of steel sheets and chipboard, thereby 

providing sufficient strength under specific loads. In commercial products, for example, 

the panels are made of a high-density particle board (HDPB) core encapsulated in a 

corrosion-resistant galvanised steel sheet (Figure 7.11). The panel may have various 

finish surfaces (e.g., vinyl, timber, stone, or glass) which are bonded directly onto the 

panel, thereby combining practicality and aesthetics. 
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Figure 7.11 – Example of a steel-encapsulated HDPB floor panel (RG2 BS EN floor panel; see 

http://www.fieldmansaccessfloorsltd.com/) 

No previous studies have investigated the use of bulk moulding compound (BMC) 

material in raised-access floor panels. In terms of mechanical and electrical properties, 

BMC has a high strength/stiffness–weight performance ratio, excellent dielectric 

properties, low thermal conductivity, and low tooling cost. Hence, in this research, 

BMC material is used in the design of a raised-access floor panel, which must satisfy 

the design constraints. 

 

7.3.2 British Standard BS EN 

British Standard BS EN 12825:2001 applies specifically to raised-access floor panels. 

This document states the required standards for raised-access floor systems in terms of 

ultimate load, safety factors, deflection under working load, and dimensional tolerances. 

Here, the raised-access floor panel is tested to its ultimate load, under a point load (25  

25 mm area), until failure. 

Raised-access floor panels have various classes of performance and should not exceed 

the limit requirements on stiffness and strength. The ultimate load is generally between 

4 and 12 kN (Table 7.6), and the factor of safety is at least 2. The maximum deflection 

may be 2.5, 3.0, or 4.0 mm (Table 7.7). The panels are generally available in three sizes: 

500  500 mm, 600  600 mm, and 750  750 mm. 
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Table 7.6 – Panel classification based on ultimate load 

Class Ultimate load (kN) 

1 ≥4 

2 ≥6 

3 ≥8 

4 ≥9 

5 ≥10 

6 ≥12 

 

Table 7.7 – Panel classification based on deflection 

Class Deflection (mm) 

A ≤2.5 

B ≤3 

C ≤4 

 

BS EN flooring systems are classified using a standardised code; for example, a 

classification of 3/A/3/2 is explained as follows: 

 ‗3‘ indicates the ultimate load (in this case, ≥8 kN) 

 ‗A‘ indicates the deflection (in this case, ≤2.5 mm) 

 ‗3‘ indicates the factor of safety  

 ‗2‘ indicates the dimensional tolerances 

Table 7.8 shows an example of the BS EN 12825 standard for various applications. 

Table 7.8 – BS EN 12825 standard 

Application 
BS EN 12825 Classification 

Light Use Standard Use Heavy Use 

General Office 
1/A/3/2 3/A/3/2 5/A/3/2 

1 kN working load 2.5 kN working load 3.3kN working load 

Light Industries 
4/A/3/2 6/A/3/2 6/A/3/2 

3 kN working load 4 kN working load 5 kN working load 
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7.3.3 Design constraints and loads 

The structural design requirement of the raised-access floor panel is to find the optimum 

solution. The structure must satisfy all the design constraints in terms of strength and 

stiffness, and retain a low mass. In this example, ζlim and δlim are set to be 100 MPa and 

2.4 mm, respectively. In terms of boundary conditions, the nodes at the four corners of 

the panel are fixed (i.e., zero displacement). The analysis considers four different 

loading cases simultaneously (Figure 7.12): a central load (F = 3 kN), an edge load (F = 

3 kN), a diagonal load (F = 3 kN), and a uniform distribution load (P = 15 kN/m
2
). 

Figure 7.13 shows a schematic diagram of the initial structure. 

 

Figure 7.12 – Loading cases in the present analysis  

Figure 7.13(a) shows the discretisation of the initial square symmetrical panel with a 

width of L mm and ribs with height H mm (Figure 7.13(b)). Table 7.9 lists the 

dimensions of 22 design variables in the structural model, including 11 cross-sectional 

thicknesses (T1, T2,…, T11), 10 rib heights (Z1, Z2,…, Z10), and the surface sheet 

thickness (TS). The exact positions of the design variables are shown in Figure 7.14. 

The minimum and maximum cross-sectional thicknesses ( min

Tix  and max

Tix , respectively, 

where i = 1, 2,…,11), rib heights ( min

Zix  and max

Zix , respectively, where i = 1, 2,…,10), 

and surface thickness ( min

Sx  and max

Sx , respectively) for each design variable are set to 1 

and 20 mm, 1 and 51 mm, and 1 and 5 mm, respectively. 

Loading cases and boundary conditions 

Loading case 3 

3 kN 

 

Loading case 1 

3 kN 

 

Loading case 2 

3 kN 

 

Loading case 4 

15kN/m
2 
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Figure 7.13 – (a) Discretisation of the initial structure, and (b) enlarged view of the panel 

 

Table 7.9 – Initial dimensions of design parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit: 

mm 
Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 TS 

Initial 20 20 20 20 20 20 20 20 20 10 4 

Unit: 

mm 
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Initial 5 5 5 5 5 5 5 20 20 20 20 
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7.3.4 Finite element modelling of the panel  

The raised-access floor panel is modelled using the finite element software ANSYS in 

conjunction with MOST. The ANSYS SHELL63 element is used to generate the finite 

element model, which consists of 304 quadrilateral elements. MOST uses the ‗input file‘ 

approach in ANSYS to perform an optimisation procedure. The finite element 

modelling is executed using ANSYS commands rather than the graphical user interface. 

The ‗input file‘ contains information on the improved design produced during each 

iteration; these data are required by the finite element code during the optimisation. 

 

Figure 7.14 – Detail of design parameters 
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7.3.5 Optimisation of the raised-access floor panel 

The most critical tasks in designing a raised-access floor panel are to optimise the 

structural performance, maximise RLI, and minimise the weight. It is desirable to 

design a panel with a minimum structural weight and that sustains the maximum load. 

BMC material is used to form the panel by injection-molding. BMC is an isotropic and 

linear elastic material. Table 7.10 lists the properties of the BMC materials used in the 

present analysis. 

Table 7.10 – Material properties of BMC 

Material property Value 

Young‘s Modulus (Y) 17 GPa 

Yield Strength (ζy) 100 MPa 

Density (ρ) 2000 kg/m
3
 

Poisson‘s ratio (υ) 0.30 

 

7.3.6 Results and discussions 

7.3.6.1 Optimisation results 

The sizing and shape optimisation of the raised-access floor panel required ni = 199 

iterations to converge. The initial and optimised finite element designs are shown in 

Figure 7.15. Figure 7.16 and Figure 7.17 show the distributions of von Mises stress and 

displacement for the optimised floor panel, respectively. 

 

Figure 7.15 – Discretisation of the floor panel design, showing (a) the initial design and (b) the optimised 

design 
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Figure 7.16 – Distribution of von Mises stress for the optimised floor panel, showing loading case 1 

(top left), loading case 2 (top right), loading case 3 (bottom left), and loading case 4 (bottom right) 

(unit: Pa) 
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7.3.6.2 Optimisation histories 

In this optimisation, four different loading cases are considered simultaneously (centre 

load, diagonal load, edge load, and uniform distribution load). The convergence 

histories (Figure 7.18–Figure 7.21) show the trends in structural mass, maximum von 

Mises stress, maximum displacement, and reliability loading-case index with increasing 

number of iterations, for each loading case. 

Figure 7.17 – Distribution of displacement for the optimised floor panel, showing loading case 1 (top 

left), loading case 2 (top right), loading case 3 (bottom left), and loading case 4 (bottom right) (unit: 

m) 
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Figure 7.18 – Optimisation convergence history of mass 

 

 

Figure 7.19 – Optimisation convergence history of maximum von Mises stress for four different loading 

cases 
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Figure 7.20 – Optimisation convergence history of maximum displacement for four different loading 

cases 

 

Figure 7.21 – Optimisation convergence history of reliability loading-case index for four different loading 

cases 

Figure 7.18 shows initial fluctuations in the structural mass until attaining a maximum 

at ni = 38, followed by a steep decrease until ni = 40, due to the high sensitivity of the 

size to changes in rib height. This is followed by a gradually increase in structural mass, 

in order to satisfy all the design constraints; e.g., the maximum von Mises stresses, 

maximum displacements, and reliability loading-case index at each loading-case. 

The initial minimal RLI and structural mass are 1.36 and 7.21 kg, respectively. Based 

on the properties of the BMC material and its application in raised-access floor panels, 

the values of ζlim and δlim are 100 MPa and 2.4 mm, respectively. The structural mass is 

required to be less than 7 kg. From these values (100 MPa, 2.4 mm, and 7 kg) and the 

equation (4.16) in Chapter 4, the minimum acceptable value of the index is 3.87. This 
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RLI index shows that the original structure is under-designed for the applied safety 

index constraints. 

The attributes of the initial and optimised designs are given in Table 7.11 and Table 

7.12. The optimal design yielded a minimal RLI of 3.99 and a structural mass of 6.06 kg. 

The maximum von Mises stress and maximum displacement showed marked reductions 

from 126 to 43.4 MPa (loading case 2) and from 13.1 to 2.33 mm (loading case 2), 

respectively, in the optimised structure, thereby satisfying the target values. To reduce 

the high von Mises stress in the panel, the total thickness of the panel is increased to the 

maximum limit (51 mm). The mass is reduced from 7.21 to 6.06 kg, representing a 16% 

saving in BMC material. 

Table 7.11 – Performance of the original design under four different loading cases 

 Loading 

case 1 

Loading 

case 2 

Loading 

case 3 

Loading 

case 4 

Maximum von Mises stress (MPa) 52.8 126.0 68.4 53.0 

Maximum displacement (mm) 10.1 13.1 7.76 10.6 

Structural mass (kg) 7.21 7.21 7.21 7.21 

Reliability loading-case index RLI 1.46 1.36 1.63 1.44 

 

Table 7.12 – Performance of the optimised structure under four different loading cases 

 Loading 

case 1 

Loading 

case 2 

Loading 

case 3 

Loading 

case 4 

Maximum von Mises stress (MPa) 18.6 43.4 40.7 17.1 

Maximum displacement (mm) 2.14 2.33 1.85 2.12 

Structural mass (kg) 6.06 6.06 6.06 6.06 

Reliability loading-case index RLI 4.30 3.99 4.92 4.34 
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7.3.6.3 Stress distribution 

Figure 7.22–Figure 7.24 show the distribution of the maximum (most positive) (S1) and 

minimum (most negative) (S3) principal stresses, and the xy-shear stress (τxy) for the 

optimised floor panel, respectively. The design solution obtained from finite element 

modelling consists of 753 nodes. 

 

 

 

 

Figure 7.22 – Distribution of the most positive (tensile) stress for the optimised floor panel, for loading 

cases 1 (top left), 2 (top right), 3 (bottom left), and 4 (bottom right) (unit: Pa) 
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The maximum principal stress (S1) among the four loading cases varied from –0.95 to 

53.7 MPa (Figure 7.22). The minimum principal stress (S3) varied from 0.03 to –22.3 

MPa (Figure 7.23). The most positive (tensile) and most negative (compressive) stresses 

were found for loading case 2, at the point where the load was applied. This result was 

obtained because the panel is simply supported at the four corners, whereas the 

concentrated load was applied at the mid-span along an edge. The stresses were below 

the allowable stress of the material. The xy-plane is shown in Figure 7.24 because it has 

larger positive and negative values than the xy- and xz-shear planes. The τxy plots reveal 

that the shear stress varied from –9.33 to 19.6 MPa; hence, the structure remains safe 

under the applied loads. 

 

 

Figure 7.23 – Distribution of the most negative (compressive) stress for the optimised floor panel, for 

loading cases 1 (top left), 2 (top right), 3 (bottom left), and 4 (bottom right) (unit: Pa) 
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The results show that the reliability-related sizing/shape optimisation method presented 

in this research can be used to obtain a structurally optimised raised-access floor panel 

design with BMC material. Figure 7.25 and Figure 7.26 provide a more complete 

comparison of the initial and optimised designs of the panel for the four loading cases. 

 

Figure 7.24 – Distribution of τxz shear stress for loading cases 1 (top left), 2 (top right), 3 (bottom left), 

and 4 (bottom right) (unit: Pa) 
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Figure 7.25 – Comparison of maximum von Mises stress for the original and optimised panels 

 

 

Figure 7.26 – Comparison of maximum displacement for the original and optimised panels 
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7.4 Summary 

In this chapter, a method was presented that combines MOST (a method of multi-

objective structural optimisation) with a reliability loading-case index (RLI; for 

calculating the structural reliability) using a parametric finite element model. The 

method can be used for reliability-related multi-factor optimisation of the structural 

performance of three-dimensional structural designs (e.g., mass, RLI, maximum stresses, 

and maximum deflections) under multi-loading cases. 

The effectiveness and efficiency of the method was confirmed by its applications to 

optimising a star-like truss structure and a raised-access floor panel structure. The 

results show an overall improvement in the design of both structures, for which the 

value of RLI is greatly increased. The results also show that the combination of MOST 

and RLI is highly efficient in terms of optimisation. The proposed method was 

successful in identifying the optimum design for both case studies, resulting in 

improved performance for all loading cases. 
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8 Conclusions and Future Work 

8.1 Summary of research 

The key findings of this research (drawn from the earlier chapters) are summarised 

below. 

i) This study demonstrated the capability of the multifactor optimisation of 

structure techniques (MOST) as a unique optimisation technique. The 

optimisation technique was coupled with finite element software to determine 

the system responses as a function of design variables. 

ii) A multi-objective structural design was optimised (i.e., a sliding calliper, which 

is a component of an automotive braking system). The design considered 

requirements regarding mechanical strength, stiffness, and structural mass.  

iii) In this research, the MOST technique was extended to solve a multi-disciplinary 

design which simultaneously considered the amount of electrical power and 

structural performance. An energy harvesting device was optimised (i.e., a 

bimorph piezoelectric cantilever beam). The first optimised design was 

successfully achieved using sizing and shape methods in the optimisation. The 

design was further optimised by adding and changing the locations of holes, and 

changing their sizes/shapes, utilising the sizing and shape optimisation method 

to seek the optimum ―topology‖ of the cantilever beam. The results yielded a 

better power density compared with the first optimised design. 

iv) A new reliability loading-case index (RLI) was developed, representing a 

modification of a well-known structural reliability approach—the first-order 

reliability method (FORM). The new index can be used to calculate the 

structural reliability. Thus, the MOST technique was extended to automatically 

accommodate the RLI. This new approach can be employed for reliability-

related multifactor optimisation problems, enabling the optimisation of multi-

objective, multi-disciplinary, and multi-loading cases, simultaneously. 
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v) In this research, an optimisation method was proposed and developed that 

combines MOST (as a unique method of multi-objective structural optimisation) 

with a reliability loading-case index (as a means of calculating the structural 

reliability). This method was successfully applied in optimising a star-like truss 

structure and a raised-access floor panel structure. The optimised designs 

yielded significant improvements in structural performance and reliability. 

 

8.2 Conclusions 

This research initially sought to assess the effectiveness of MOST as a design 

optimisation method for multi-objective and multi-loading-case design problems, in 

which, the analyses considered mechanical strength–stiffness and structural mass. The 

research presented in this thesis demonstrated the design approach for various 

categories of problems involving requirements regarding mechanical strength, electrical 

power, and reliability, aimed at the design optimisation of engineering structures. The 

effectiveness of MOST was demonstrated in analyses of a sliding caliper and a bimorph 

cantilever beam. MOST was then extended to accommodate and execute reliability-

related multifactor optimisation, and applied to a star-like truss structure and a raised-

access floor panel structure, thereby demonstrating its capability in solving multi-

objective, multi-disciplinary, and multi-loading-case optimisation problems, 

simultaneously. The reliability-related multifactor optimisation method, as presented in 

this thesis, is not limited to mechanical static or dynamic applications: it can also be 

applied to other fields, such as combining computational fluid dynamics, 

electromagnetics, and multi-physics applications within an optimisation process. The 

applications of this approach, as performed in the present research, are summarised 

below. 

a) The proposed method was successfully applied in optimising a sliding caliper (a 

component of a vehicle braking system). MOST formed the basis of the sizing 

and shape optimisation, which aimed to attain a lightweight design. The 

optimised design yielded a 17% saving in materials while satisfying the 

deflection and strength requirements. However, this example did not fully 

demonstrate the effectiveness of MOST as a unique optimisation method, as it 

considered only a single loading case. 
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b) A subsequent multi-objective and multi-disciplinary optimisation demonstrated 

the effectiveness of MOST for a structural- and energy-optimisation problem. A 

wireless sensor component, used in energy harvesting, was studied to provide 

the renewable energy required to transmit data. A piezoelectric element is an 

excellent transducer in converting vibrational energy to electrical energy, and 

vice versa. This study analysed a bimorph cantilever beam as a piezoelectric 

element.  

In this research, an equation (equation 6.16 in Chapter 6) was proposed for 

calculating the power output using a finite element method. The equation needs 

to be verified to enable its application in further analyses. First, the analysis 

sought to verify experimental results (Ooi, 2010), theoretical results (Roundy, 

2003), and the results of a finite element simulation (current study), considering 

a rectangular cantilever beam. The results show good agreement between the 

finite element simulation and the theoretical results, which differ by 

approximately 4.5% in calculating the maximum power output. This result 

demonstrates that a finite element simulation can be used to simulate the 

behaviour of the cantilever beam under various boundary conditions. A 

comparison of the finite element results and the experimental results reveals that 

the maximum power output differs by ~20%. This discrepancy reflects the fact 

that the experimental results were affected by various conditions (e.g., the 

environment effect and energy lost within the connection).  Therefore, the finite 

element simulation yields accurate and reliable results compared with theoretical 

values. 

 Next, a shape optimisation of the cantilever beam was considered using MOST, 

aiming to maximise the power output while satisfying the design constraints. 

The optimised result represented a 46% saving in piezoelectric and shim 

materials, and the maximum output power was increased by 25%. The 

optimisation was performed by assigning a weighting factor to each objective, 

which was considered in the MOST. An initial investigation demonstrated the 

validity of the MOST-optimised structure for the cantilever beam. This result 

paves the way for the application of MOST in terms of shape optimisation, 

which is the first stage of optimisation.  

 The second stage involved the design optimisation and discretisation of the size 

and shape of a structure, while satisfying the requirements regarding strength 
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and power density. Additional holes were applied to the domain region of the 

first-stage optimised design until the maximum output power was attained. Most 

of the design was based on maximising the power output, the average element 

stress, and displacement performance, while minimising the structural volume. 

The trade-off between the structural volume and the output power of a structure 

represents a great challenge in design optimisation. The removal of material 

results in reduced structural volume, which may affect the maximum power 

output. The optimised ―topology‖ structure yielded a further 17.1% saving in 

build material and an 11.7% increase in power density compared with the first-

stage optimised design. The results revealed that the application of MOST in 

sizing and shape optimisation was successful in optimising the bimorph 

cantilever beam. However, this example does not demonstrate all of the 

capabilities of MOST. To fully evaluate the effectiveness of this method, a 

multi-factor structural optimisation under multi-loading cases was considered in 

the next two examples. 

c) A structural reliability-related multi-factor optimisation method was developed 

and successfully applied to optimise a star-like truss structure and a raised-

access floor panel structure. The optimisation technique presented here is 

applicable to multi-objective, multi-disciplinary, and multi-loading-case 

optimisation problems. The method employs MOST (for multi-objective 

structural optimisation) combined with a reliability loading-case index (as a way 

of calculating the structural reliability). Structural reliability is assessed using 

the widely employed first-order reliability method (FORM), chosen because it 

introduces a limit state condition in its simplest configuration. However, the 

limit state condition is not necessary during the optimisation, which greatly 

simplifies the process. Most of the structural design was based on maximising 

structural strength and stiffness, without considering the reliability index. The 

trade-off between the structural configuration and the value of the reliability 

index for the structure, under each loading case, represents a complication in 

terms of design optimisation. The use of MOST does not guarantee that every 

performance and every loading case is optimised, especially in the case of 

conflict with other objectives and when many loading cases are concurrently 

considered in an optimisation. In these examples, MOST optimisation satisfied 

all the design constraints and achieved the optimum solutions. The numerical 
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examples of the designs validate the effectiveness and efficiency of the proposed 

method. 

 

8.3 Recommendations for future work 

This research highlighted two potential areas of future work: the development of 

reliability analysis (as a means of calculating the structural reliability in an optimisation 

process) and improvements to MOST (as a unique method of multi-objective structural 

optimisation). Although design solutions were attained, there exists scope to improve 

the reliability-related multi-factor optimisation, as outlined below. 

a) Structural optimisation should be introduced into conceptual design. For 

example, an innovative design should be sought by optimisation under specified 

design constraints. This approach would produce new design concepts in 

engineering field which would be attractive to design engineers. In addition, 

multi-disciplinary optimisation must be considered whenever possible in 

conceptual designs in the future research. 

b) This research considered the use of smart materials. In a multi-disciplinary 

design optimisation, it is possible to further investigate a material which 

produces the targeted energy in a specific environment. Smart materials have 

unique properties and are of great interest to researchers in terms of their internal 

microscopic structure. Thus, an optimisation method should be used to 

determine the optimum structure of such materials. Future research should 

consider the combined optimisation of macro structures constructed with smart 

materials and the micro structures of the smart materials used simultaneously.  

The application of smart materials in a device used to generate renewable energy 

in a specific environment is also of interest. 

c) Although structural optimisation is able to solve some structural design 

problems, a new research direction is to simultaneously consider new conceptual, 

large-scale, robust and/or reliability-based design problems. The results of the 

optimisation must be accurate and precise, especially for multi-factor 

optimisation problems.  
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In this era of rapidly improving computational power, computer-aided design 

(CAD) and finite element analysis are important tools. For example, CAD 

software can be used to perform a structural analysis. CAD software and 

optimisation procedures are limited by the difficulty of automating the 

optimisation process, especially in terms of large geometrical changes. Thus, 

future advances in engineering design optimisation require the development of a 

method for designing and generating manufacturing data. 

d) The MOST technique can be further enhanced by introducing the topology 

method into this unique optimisation method. One of the objectives of structural 

design optimisation is to reduce the material cost by minimising the mass. 

Future research should seek to control the distribution of high- and low-stress 

elements by the optimisation procedure. 

e) Ideally, it would be useful to link reliability and optimisation methods using the 

FORM and MOST techniques, as used as a reliability-related multifactor 

optimisation method in this research. In addition, a choice of several reliability 

methods should be implement into the MOST technique, thereby enabling the 

solving of a specific design problem using a specified reliability method. This 

would offer an alternative design approach to structural engineers. 

f) Further improvement could be done on the examples presented in this thesis. As 

mentioned previously, the MOST technique should incorporate the topology 

optimisation method. In the piezoelectric cantilever beam example, a two-stage 

optimisation was employed: a sizing and shape optimisation, followed by 

seeking the optimum ―topology‖ structure. The proposed two-stages 

optimisation could be improved if a ―combined‖ approach could be devised; i.e., 

by considering a combined sizing, shape, and topology optimisation method. 

For multi-factor optimisation, it is necessary to improve MOST, enabling it to execute 

fully automatic procedures of structural and reliability optimisation in solving sizing, 

shape, and topology design problems. 
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10 Appendices 

Appendix A – Example of reliability-related multi-factor optimisation  

This document presents the optimised result extracted from the analysis. The reliability 

loading-case index is provided in section b). 

a) Result of static analysis 

The following example is the static analysis extracted from the optimised result for the 

truss structure. 

 

**** CENTER OF MASS, MASS, AND MASS MOMENTS OF INERTIA **** 

 

  CALCULATIONS ASSUME ELEMENT MASS AT ELEMENT CENTROID 

 

  TOTAL MASS =   4.8171     

 

                           MOM. OF INERTIA         MOM. OF INERTIA 

  CENTER OF MASS            ABOUT ORIGIN        ABOUT CENTER OF 

MASS 

 

  XC = -0.28810E-17      IXX =   0.2873          IXX =   0.1837     

  YC = -0.14405E-17      IYY =   0.2873          IYY =   0.1837     

  ZC =  0.14664          IZZ =   0.3376          IZZ =   0.3376     

                         IXY =    0.000          IXY =   0.1999E-34 

                         IYZ =    0.000          IYZ =  -0.1018E-17 

                         IZX =  -0.5204E-17      IZX =  -0.7239E-17 

 

 

***** POST1 ELEMENT TABLE LISTING *****                                       

  

    STAT    CURRENT  

    ELEM    AXSTRESS 

       1 -0.25173E+08 

       2 -0.25173E+08 

       3 -0.25173E+08 

       4 -0.25173E+08 

       5 -0.25173E+08 

       6 -0.25173E+08 

       7 -0.25173E+08 

       8 -0.25173E+08 

       9 -0.25173E+08 

      10 -0.25173E+08 

      11 -0.25173E+08 

      12 -0.25173E+08 

      13 -0.25173E+08 

      14 -0.25173E+08 

      15 -0.25173E+08 

      16 -0.25173E+08 

      17  0.42834E+08 

      18  0.42834E+08 

      19  0.42834E+08 

      20  0.42834E+08 

Structural mass (kg) 

Loading case 1 

Axial stress (MPa) 

Negative = compression stress 

Positive  = tensile stress 
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      21  0.42834E+08 

      22  0.42834E+08 

      23  0.42834E+08 

      24  0.42834E+08 

      25 -0.37559E+08 

      26 -0.37559E+08 

      27 -0.37559E+08 

      28 -0.37559E+08 

      29 -0.37559E+08 

      30 -0.37559E+08 

      31 -0.37559E+08 

      32 -0.37559E+08 

 

 MINIMUM VALUES 

 ELEM         28 

 VALUE  -0.37559E+08 

 

 MAXIMUM VALUES 

 ELEM         19 

 VALUE   0.42834E+08 

 

 

  ***** POST1 NODAL DEGREE OF FREEDOM LISTING *****                             

  

  LOAD STEP=     1  SUBSTEP=     1                                              

   TIME=    1.0000      LOAD CASE=   0                                          

  

  THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL 

COORDINATE SYSTEM   

  

    NODE      UX          UY          UZ          USUM   

       1   0.0000      0.0000      0.0000      0.0000     

       2   0.0000      0.0000      0.0000      0.0000     

       3   0.0000      0.0000      0.0000      0.0000     

       4   0.0000      0.0000      0.0000      0.0000     

       5   0.0000      0.0000      0.0000      0.0000     

       6   0.0000      0.0000      0.0000      0.0000     

       7   0.0000      0.0000      0.0000      0.0000     

       8   0.0000      0.0000      0.0000      0.0000     

       9  0.17351E-04 0.41890E-04-0.23349E-04 0.51001E-04 

      10  0.41890E-04 0.17351E-04-0.23349E-04 0.51001E-04 

      11  0.41890E-04-0.17351E-04-0.23349E-04 0.51001E-04 

      12  0.17351E-04-0.41890E-04-0.23349E-04 0.51001E-04 

      13 -0.17351E-04-0.41890E-04-0.23349E-04 0.51001E-04 

      14 -0.41890E-04-0.17351E-04-0.23349E-04 0.51001E-04 

      15 -0.41890E-04 0.17351E-04-0.23349E-04 0.51001E-04 

      16 -0.17351E-04 0.41890E-04-0.23349E-04 0.51001E-04 

      17 -0.20329E-19-0.20329E-19-0.32963E-03 0.32963E-03 

 

 MAXIMUM ABSOLUTE VALUES 

 NODE         14          12          17          17 

 VALUE  -0.41890E-04-0.41890E-04-0.32963E-03 0.32963E-03 

 

  

 

 

 

 

 

 

Loading case 1 

Displacement (m) 
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  ***** POST1 ELEMENT TABLE LISTING ***** 

  

    STAT    CURRENT  

    ELEM    AXSTRESS 

       1 -0.29570E+08 

       2 -0.99977E+07 

       3 -0.99975E+07 

       4 -0.29569E+08 

       5  0.20316E+08 

       6 -0.31212E+08 

       7  0.50237E+08 

       8 -0.19402E+08 

       9  0.76649E+08 

      10 -0.57019E+08 

      11 -0.57020E+08 

      12  0.76645E+08 

      13 -0.19402E+08 

      14  0.50237E+08 

      15 -0.31210E+08 

      16  0.20316E+08 

      17  0.17012E+08 

      18 -0.12657E+07 

      19 -0.31107E+08 

      20 -0.66299E+08 

      21 -0.66298E+08 

      22 -0.31107E+08 

      23 -0.12661E+07 

      24  0.17011E+08 

      25 -0.14916E+08 

      26 -0.69033E+07 

      27  0.14193E+08 

      28  0.42704E+08 

      29 -0.85072E+08 

      30  0.42705E+08 

      31  0.14193E+08 

      32 -0.69031E+07 

 

 MINIMUM VALUES 

 ELEM         29 

 VALUE  -0.85072E+08 

 

 MAXIMUM VALUES 

 ELEM          9 

 VALUE   0.76649E+08 

  

Loading case 2 

Axial stress (MPa) 

Negative = compression stress 

Positive  = tensile stress 
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  ***** POST1 NODAL DEGREE OF FREEDOM LISTING *****                             

  

  LOAD STEP=     1  SUBSTEP=     1                                              

   TIME=    1.0000      LOAD CASE=   0                                          

  

  THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL 

COORDINATE SYSTEM   

  

    NODE      UX          UY          UZ          USUM   

       1   0.0000      0.0000      0.0000      0.0000     

       2   0.0000      0.0000      0.0000      0.0000     

       3   0.0000      0.0000      0.0000      0.0000     

       4   0.0000      0.0000      0.0000      0.0000     

       5   0.0000      0.0000      0.0000      0.0000     

       6   0.0000      0.0000      0.0000      0.0000     

       7   0.0000      0.0000      0.0000      0.0000     

       8   0.0000      0.0000      0.0000      0.0000     

       9 -0.35212E-04 0.11746E-03 0.11415E-03 0.16753E-03 

      10 -0.29356E-04 0.12476E-03 0.60403E-04 0.14169E-03 

      11  0.27767E-04 0.14996E-03 0.53618E-04 0.16166E-03 

      12 -0.17940E-03 0.43309E-03-0.83354E-03 0.95632E-03 

      13 -0.12568E-03 0.86399E-04 0.53640E-04 0.16167E-03 

      14 -0.67463E-04 0.10898E-03 0.60399E-04 0.14169E-03 

      15 -0.58159E-04 0.10795E-03 0.11416E-03 0.16754E-03 

      16 -0.48994E-04 0.11828E-03 0.14101E-03 0.19046E-03 

      17 -0.44972E-04 0.10857E-03 0.45342E-04 0.12596E-03 

 

 MAXIMUM ABSOLUTE VALUES 

 NODE         12          12          12          12 

 VALUE  -0.17940E-03 0.43309E-03-0.83354E-03 0.95632E-03 

 

 EXIT THE ANSYS POST1 DATABASE PROCESSOR 

  

Loading case 2 

Displacement (m) 
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b) Reliability loading-case index result 

The initial and optimised results are shown below, including each iterative solution 

obtained as part of the optimisation process. Therefore, all the intermediate results can 

be examined. The following document is an example of the initial and optimised results 

for the truss structure. 

i) Initial design 

 

 

NUMBER OF ROW IS M= 4         NUMBER OF COLUMN IS N= 2 

 

 

 DATA BY STRUCTURAL AND RELIABILITY ANALYSIS 

            LC1       LC2    

  AxiStr 0.688E+08 0.133E+09  

  Disp   0.797E-03 0.446E-02  

  Mass   0.648E+01 0.648E+01  

  RLI    0.324E+01 0.281E+01  

 

 

  

 

 

 at the    0      F(X)=-.475357E+02 

  0.1000E+00  0.5000E-01  0.1000E-03  0.1000E-03  0.1000E-03    

0.2500E+00 

 
 
 
 

ii) Optimised design 

DATA BY STRUCTURAL AND RELIABILITY ANALYSIS 

       LC1       LC2 

 AxiStr 0.428E+08 0.851E+08  

 Disp   0.330E-03 0.956E-03  

 Mass   0.482E+01 0.482E+01  

 RLI    0.355E+01 0.328E+01  

 

Objective no change in a complete cycle, stop here 

 

 at the   16      F(X)=-.554177E+02 

  0.2396E+00  0.1754E+00  0.5128E-04  0.7919E-04  0.1248E-03     

0.2054E+00 

 

 

 

Number of objectives Number of loading cases 

Result of particular performance and 

loading cases, for axial stress, 

displacement, mass, and RLI. Second 

and third columns represent loading 

cases 1 and 2, respectively. 

Design variables 

Total number of 

complete iterations 
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Appendix B - Multifactor optimisation of structure technique (MOST): 

optimisation flow procedure 

In Chapter 4.4, the development of multifactor optimisation of structure technique 

(MOST) is discussed. This appendix provides a general summary of MOST procedure 

as a complementary section to Chapter 4.4, and describes the structural analysis and 

optimisation flows in detail. 

Basically, a recurring iterative process is required before an optimum solution can be 

found in a given optimisation. The MOST technique focuses on the use of finite element 

analysis for structural optimisation. The optimisation process involves seven 

fundamental steps, which are listed below and explained in the following paragraphs: 

 i) Model generation (initial design) 

 ii) Initial design analysis results (output file) 

 iii) MOST optimisation setup 

 iv) Optimisation loop 

 a) Performance analysis (structural and other disciplinary analyses) 

  b) Performance improvement by changing the structural variables 

  c) Convergence checking 

 v) Optimum design 

Step (i) involves the initial design. In generating the model, the input files can be 

created from the graphical user interface or in the text mode using ANSYS, with the 

latter method being the most convenient. The input file consists of the material 

properties, constraints, boundaries conditions, element type and size, loading cases, etc. 

For the generation of the model, finite element software (i.e., ANSYS) is used. 

Step (ii) is concerned with the analysis results (i.e., the ANSYS output file). For the 

structural analysis, the mass is written into this file, as are the stresses and 

displacements of each node and/or element. The maximum stress and maximum 

displacement are of interest in designs where these values cannot be exceeded on 

specified requirements. Others performance factors can also be written into the output 

file (e.g., the frequency of the design). 
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Step (iii) is the MOST optimisation setup, which is an important part of the optimisation 

process. First, the constraints of each design variable are considered, with the aim that 

each design variable meets the specific requirements (e.g., the cross-sectional area of a  

truss member cannot be bigger or smaller than specified values). Next, the lowest 

acceptable limit and the best expected values for each objective under each loading case 

must be specified. These objectives are forced to approach the best expected values by 

the MOST technique until convergence is attained. More specifically, these are the 

optimisation objectives to be achieved (e.g., one objective might be that the structural 

maximum stress is smaller than the yield stress by a factor of X). 

Finally, the weighting factor, the performance parameter, and the loading case are 

assigned a weighting factor according to their importance. The sum of the performance 

parameters weighting factors is equal to 1, as is the sum of the loading case parameters 

weighting factors. For example, consider a structural analysis related to a problem that 

requires the minimisation of a structural mass under two loading cases, in which the 

design constraints must satisfy all the specified design requirements. To assign the 

weighting factor, the mass performance parameter is given a high factor and the 

weighting factor of the loading case parameter is evenly divided between the two 

loading cases. 

This document is written in a text file rather than in FORTRAN, in order to avoid the 

errors that arise from compiling FORTRAN, related to changes in the weighting factor. 

For each optimisation, this document is unchanged until a complete optimisation is 

obtained (i.e., until convergence has been attained). This file is later read by the MOST 

optimisation procedure. 

Step (iv), the optimisation loop, comprises three important steps: (a) performance 

analysis, (b) performance improvement, and (c) convergence. These three steps are 

defined in detail below. 

In step (a), the MOST technique is used to analyse the structural performance and other 

disciplinary performance (if any). The result is assessed by using a matrix system—the 

performance data matrix (PDM). An m  n matrix (dij), the so-called PDM, is defined 

by a set of performance parameters Pi (i = 1, 2,…, m) and loading case parameters Cj (j 

= 1, 2,…, n). Thus, the data point dij is the i-th performance Pi of the structure for 

loading case Cj. The data points of the matrix are obtained by a finite element analysis 
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of the structure including any other disciplinary analyses. The matrix lists every 

performance parameter of the system for each individual loading case (see Table B.1). 

Table B.1 – Performance data matrix  

 

The PDM is assessed by using a parameter profile matrix (PPM) to review the profile of 

the performances for different loading cases (see Table B.2). The PPM assesses the 

character of the structure/system with respect to the actual performances relative to their 

acceptable limits and to the best values of the performances. 

Table B.2 – Parameter profile matrix 

 

The data point     in the PPM is a non-dimensional number (range, 0–10) which is 

determined by the closeness of the actual performance     to the acceptable limit and by 

the best values of the performance. In principle, the data point     for a given acceptable 

limit (e.g., the lower limit) is calculated as follows: 

      
       

       
     (B.1) 

where     is the actual performance value taken from the PDM, and     and     are the 

lower limit and the best value, respectively. Equation (B.1) is valid for            ; 

for                  ; and for               . 

 C1 C2   Cn 

P1 d11 d12   d1n 

P2 d21 d22   d2n 

         

Pm dm1 dm2   dmn 

 C1 C2   Cn 

P1 D11 D12   D1n 

P2 D21 D22   D2n 

         

Pm Dm1 Dm2   Dmn 
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Information obtained from the PPM allows the whole system to be evaluated. The 

system can be further analysed using the parameter performance index (PPI) and the 

case performance index (CPI). The system can be reviewed by using the information 

contained in the indices; i.e., a comparison of PPIs indicates whether the system 

performs better with respect to some performances than to others, and a comparison of 

CPIs shows whether the system performs better under certain loading cases than under 

others. The highest values for PPI and CPI are 10. PPI and CPI values close to 10 

indicate good designs, whereas values close to 0 indicate poor designs. PPI and CPI are 

defined as follows: 

                           

                                  (B.2) 

where 

    
 

  
 

   
  

   

                         
 

  
 

   
  

   

 (B.3) 

The mean and standard deviation (SD) are calculated for each parameter and each 

loading case for every column and row of the PPM matrix. The SD is a measure of the 

degree of dispersion of the data around the mean. A well-designed system should have 

low SDs and high means (close to 10). High SDs indicate that the system is likely to 

have significant problematic areas. 

The mean values, CPIs, PPIs, and SDs provide an overall performance assessment for 

the system and loading cases. The mean values are not used directly to rate the 

performance, because high scores may hide low scores. These indices are calculated by 

summing the inverse of the data points as a performance rating. To simplify the 

calculations, the performance indices are recalculated into the range 0–10, enabling 

different loading cases and parameters to be compared, thereby providing an overall 

perspective of the characteristics of the system. 

To evaluate the design, an overall performance index (OPI) is presented to formulate the 

performances and loading cases, which provides a quantitative assessment of the system. 

The OPI function, which lies in the range 0–100, is expressed as follows (for an un-

weighted case): 
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In step (b), the system analyses the performance based on OPI, by comparing a previous 

iteration and the current results. If the current OPI value is better than the previous value, 

the system proceeds to the next step (i.e., it generates an input file for ANSYS). 

Conversely, if the current OPI value is worse than the previous value, the system 

continues to seek a better solution until the new OPI value is better than the previous 

value. 

Step (c) involves the optimisation process to determine if a better design can be sought 

or not by further improving the OPI function. 

Steps (a) to (c) are repeated until the design satisfies all the chosen constraints and until 

it cannot be improved any more by any further iterations. 

Step (v), which is the last stage in the optimisation process, is the attainment of the 

optimum solution. 

To illustrate the MOST optimisation procedure, a flow chart is included to explain in 

detail how an optimum solution is achieved for a design problem (Figure B.1). 
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Figure B.1 – Implementation flow chart of the MOST optimisation technique 
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Appendix C – Piezoelectric generator 

Chapter 6 discussed the development of a simulation method for piezoelectric 

generators, although without providing details of the derivation of the model. This 

appendix is intended to complement Chapter 6, and describes in detail the model of the 

piezoelectric generator. 

a) Mechanical derivation 

 

Figure C.1 – Details of the piezoelectric cantilever beam 

By using an analytical calculation, the effective moment of inertia (I) of the cantilever 

beam is defined as follows: 

    
    

 

  
 

 

 
           

    
    

 

  
 

  

   
   (C.1) 

where w is the beam width, tc is the thickness of the piezoelectric material, tsh is the 

thickness of the centre shim material, Yc is the Young‘s modulus of the piezoelectric 

material, and Ysh is the Young‘s modulus of the centre shim material. This equation is 

valid in calculating the effective moment of inertia, based on the rectangular shape 

shown in Figure C.1. The setup of the piezoelectric generator is shown in Figure C.2. 

 

 

Figure C.2 – Piezoelectric bender 
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A tip mass is applied to the free end of the beam, which comprises three layers: the top 

and bottom layers of piezoelectric material, and a middle layer (a brass shim). The 

electrode, used to produce energy, is connected to the top and bottom surfaces. The 

electrode length (le; not shown in Figure C.2) is always equal to or less than the beam 

length (lb). When the beam is deformed, a stress is induced on the top and bottom 

surfaces. For the piezoelectric generator, stress and strain are the main concerns. The 

stress and strain in a piezoelectric material are the average element stress and strain. 

Therefore, the average element stress in the piezoelectric material covered by the 

electrode is as follows:  

      
 

  
 

     

 

  

 
   (C.2) 

If the piezoelectric cantilever beam has a rectangular shape, the average element stress 

can be calculated using equation (C.1), as can the bending moment of the beam. 

However, if the beam is an irregular shape, it becomes difficult to calculate the second 

moment of the area. Finite element analysis can be used to obtain the solution of the 

average element stress for each analysis, meaning that the second moment of the area is 

not necessary to calculate the average element stress of the beam, especially in the case 

of an irregular shape. Consequently, the average element stress (      can be stated as 

follows: 

      
 

  
   

  
    (C.3) 

where nc is the number of piezoelectric material elements. This approach assumes that 

all the elements are of equal size. Roundy (2003) stated that the tip deflection of the 

cantilever beam is related to the average strain in the piezoelectric material. By utilising 

Hooke‘s Law for elastic material (Benham et al., 1996), the average element stress from 

finite element analysis, and the Roundy method, the relationship among these factors 

(b
*
) can be defined as follows: 

    
    

    
 (C.4) 
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b) Derivation of electrical energy  

 

 

 

Figure C.3 – Circuit representation of a piezoelectric bimorph cantilever beam 

Figure C.3 shows the mechanical side of the piezoelectric cantilever beam and the 

voltage generated from vibrations, where ζin is the input vibration stress, mtip is the 

effect of mass or the inertia term, bm is the resistive element of damping, Y is the 

stiffness element, n* is the effective number of turns for the transformer, Cp is the 

capacitance of the piezoelectric element, and V is the voltage of the system. 

The basic derivation is based on Roundy (2003). The piezoelectric elements can be 

easily applied to the mechanical and electrical sides of the piezoelectric system as 

circuit elements. The system equations can be obtained by applying Kirchoff‘s Voltage 

Law (KVL) and Kirchoff‘s Current Law (KCL). The mechanical side consists of 

stress/strain relationships for circuit elements. 

The stress across the element is the stress developed as a result of flexing of the beam. 

ζin is an equivalent stress which represents an input vibration; m represents the inertia 

term. Thus, the relationships for these two elements are as follows: 

     
    

   
   (C.5) 

    
    

      (C.6) 

where     
           

    
, relating the vertical force to the average element stress. 

  

Cp      V
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The resistive element of damping (bm) relates stress to tip displacement (unit: Ns/m
3
). 

Therefore, the stress/strain relationship for the damping element (ζbm) is as follows:  

     
  

     (C.7) 

where    is the rate of change of displacement. The piezoelectric generator is modelled 

as a transformer (Flynn and Sanders, 2002). The constitutive equations for a 

piezoelectric material are as follows (Ikeda, 1996): 

    
      (C.8) 

         (C.9) 

where δ is mechanical strain, ζ is mechanical stress, Y is the modulus of elasticity, d is 

the piezoelectric strain coefficient, E is the electric field, D is electric displacement, and 

ε is the dielectric constant of the piezoelectric material. The transformer relates stress to 

the electric field at zero strain or relates electrical displacement to strain for a zero 

electric field, as follows: 

          (C.10) 

          (C.11) 

The equivalent turn‘s ratio for the transformer is then –dY; however, the current is 

           and the voltage is V = Etc. Hence, the equations for the transformer (ζt) can 

be written as follows: 

    
    

  
  (C.12) 

                 (C.13) 

Applying KVL to the circuit shown in Figure C.3 yields the following equation: 

               (C.14) 

Substituting equations C.5–C.7, C.12, and Hooke‘s Law (ζy = Ycδ) into equation C.14 

and rearranging the terms, the mechanical dynamics of the system with an electrical 

coupling term yields the following third-order equation: 

     
   

    

    
  

     

    
   

   

  

     

    
       (C.15) 
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The damping coefficient (c) is the product of the resistive element (bm) and b**. The 

effective spring constant, Ksp, is equal to Yb*b** and has units of force and 

displacement, which relates tip force to tip displacement. Ksp = Yb*b** and the 

damping coefficient is substituted into equation C.15, yielding the following: 

     
   

    
  

 

    
   

    

      
       (C.16) 

Equation C.16 is part of the dynamic model. Applying KCL to the electrical side, the 

generator represents a complete dynamic model. From the KCL rules, the current in the 

transformer is equal to the current through the capacitor, as follows: 

         
 (C.17) 

where     is the current through the transformer (equation C.13) and     
 is the current 

through the capacitor Cp. The capacitance of the piezoelectric is defined as: 

     
      

  

  

 
   (C.18) 

By using    
   (density = mass/volume), equation C.18 can be written as follows: 

    
    

   
  (C.19) 

where n is the number of layers of piezoelectric material (here, n = 2), mc is the mass of 

a single layer of piezoelectric material, ρ is the density of the piezoelectric material, and 

ε is the dielectric constant. Substituting equations C.13 and C.18 into equation C.17 and 

rearranging the terms, we have: 

     
     

 
   (C.20) 

By rearranging equations C.16 and C.20, the dynamic model of the system is obtained 

as follows: 

  
  

  

  
  

 
 
 
 

   

 
   

    
 

 

    

    

      

  
     

 
  

 
 
 

 
 
  

 

   
 
  

 
    (C.21) 

Equation C.21 is an open circuit, meaning that no power is transferred. Figure C.4 

shows the circuit with a simple resistor as a load. 
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Figure C.4 – Circuit representation of a piezoelectric bimorph with a resistive load  

Equation C.22 is similar to equation C.17, although with a minor change on the 

electrical side. Applying KCL to the electrical side of the circuit, we have 

         
     (C.22) 

where     is the current through the resistor R. The current through the resistor and the 

capacitor is shown in equation C.23, and the new system model in state space is 

expressed in equation C.24: 

     
     

 
   

 

   
  (C.23) 

       
  

  

  
  

 
 
 
 

   

 
   

    
 

 

    

    

   

  
     

 
 

 

    
 
 
 

 
 
  

 

   
 
  

 
     (C.24) 

By taking the Laplace transform of equations C.16 and C.23, and rearranging the yield 

term, we have: 

      
 

   
 

 

    
     

   

    
   

    

 
  

 

       
   

   

    
   

      
 

 
     (C.25) 
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Equation C.25 can be solved for the output voltage by making suitable substitutions, 

such as:  

    
    

 
 (C.26) 

     
   

 
  (C.27) 

   
 

    
 (C.28) 

Using equations C.26–C.28, the voltage equation is as follows: 

   
   

       

 

 
 

   
  

   
 

   
               

        
    
   

    
    (C.29) 

The power transferred to the load is simply V
2
/R. By using the solution of the average 

element stress and the vertical tip displacement, the power output for the piezoelectric 

cantilever beam (vibrating at its resonance frequency) is as follows: 

   
 

   
 

   
  

       
   

 
 

               
 
                  

   
  (C.30) 

By taking the differential of equation C.30 with respect to R, setting the results equal to 

zero and solving for R. The optimum load resistance is as follows: 

      
 

    

  

       
 (C.31) 

 

 


