THE UNIVERSITY OF HULL

# Modelling the Impact of Oil Price Volatility on Investment Decision-Making

Being a Thesis Submitted for the Degree of

Doctor of Philosophy at University of Hull

by

# Rayan Salem Hammad

MBA, University of Arkansas at Little Rock

BBA (Finance), University of Arkansas at Little Rock

December, 2011

### **Acknowledgement**

First and foremost, I offer my sincerest gratitude to my supervisor, Dr Raymond Swaray, who has supported me throughout my thesis with his knowledge whilst allowing me to work in my own way. Without his help and support, this thesis would not have been completed and written in this shape or form.

I am grateful to Dr Liang Han, my second supervisor, and to Prof Mike Tayles, the former Director of the Centre for International accounting and Finance, for their helpful comments and suggestions. I extend my sincere thanks to the staff in Hull business school as well as in the graduate school.

Finally, and most importantly, I offer my all my love and my deepest thanks to my family for their unconditional love and support. They are the number one reason for me to keep going. I will always have the greatest and most sincere love for them.

### <u>Abstract</u>

The energy industry is transforming from the old, vertically integrated model into a more competitive model in which most companies are exposed to different types of risk. One of the major challenges facing energy companies is making investment decisionmaking associated with the prices of crude oils. Since 1973, crude oil price behaviour has become more volatile, which suggested that different forces were driving crude oil prices. One of the main factors in generating the behaviour of crude oil prices is the role performed by OPEC and non-OPEC crude oil producers. Several theoretical and empirical analyses suggested that the economics behind OPEC's supply of crude oil is different than those of non-OPEC supply. This study investigates whether prices of OPEC crude oils and prices of non-OPEC crude oils share a common data-generating process. The study empirically tests oil price volatility of OPEC and non-OPEC crude oil prices using GARCH models. It also applies the Johansen Cointegration Model and the Engle-Granger Error Correlation Model (ECM) model to test the long – and short-term relationship between crude prices (OPEC and non-OPEC) and stock prices of different oil companies. Finally, a panel data approach using fixed and random effects is used to estimate the reaction of OPEC and non-OPEC crude oil prices to events and news items that could possibly affect oil supply and prices. The results obtained suggest that the behaviour of crude oil prices is not affected by OPEC or non-OPEC affiliation. This finding suggests that the international oil market is globally integrated market that is able to factor in any possible changes to supply behaviour of OPEC or non-OPEC producers.

### Table of contents

### Chapter 1: Introduction

| 1.1 Motivation and background 1             |
|---------------------------------------------|
| 1.2 Research Objectives7                    |
| 1.3 The importance of the study12           |
| 1.4 The Global Energy System17              |
| 1.4.1 Natural Gas Market18                  |
| 1.4.2 Power Market                          |
| 1.5 Study data and descriptive statistics23 |
| 1.6 Thesis structure                        |

Chapter 2: Price volatility of OPEC and non-OPEC crude oils

| 2.1 Introduction | 34 |
|------------------|----|
|                  |    |
|                  |    |
|                  |    |
| 2.2 Demand       |    |

| 2.3 Supply42                                         |
|------------------------------------------------------|
| 2.4 Need for new investment                          |
| 2.5 Why does volatility matter?                      |
| 2.6 Crude oil price behaviour and ARCH-type models51 |
| 2.7 Empirical model and data set65                   |
| 2.8 Descriptive statistics                           |
| 2.9 Unit root testing70                              |
| 2.10 Testing for ARCH effects77                      |
| 2.11 Results and discussion78                        |
| 2.12 Concluding remarks                              |

Chapter 3: Modelling long-term relationship between stock prices of oil companies and crude oil prices: an application of co-integration and Error Correction Models

3.2 Contracts and cash cycle in the petroleum industry ......90

3.3 Asymmetry of information and project decision-making......92

3.4 The role OPEC and non-OPEC oil producers as sources of information94

| 3.5 Literature and Methodology96              |
|-----------------------------------------------|
| 3.6 Data and model specification              |
| 3.6.1 Johansen's co-integration technique105  |
| 3.6.2 Engle-Granger error correction model107 |
| 3.7 Empirical results109                      |
| 3.8 Conclusion                                |

Chapter 4: Determinants of OPEC and non-OPEC crude oil prices: a panel data analysis of endogenous and exogenous factors

| 4.1 Introduction                       | 133 |
|----------------------------------------|-----|
| 4.2 Crude oil supply disrupting events | 137 |
| 4.3 Impacts of Oil disruptions         | 139 |
| 4.4 Crude oil price discovery          | 141 |
| 4.5 Data and Methodology               | 144 |

| 4.6 Model specification              | 154 |
|--------------------------------------|-----|
| 4.7 Empirical results and discussion | 159 |
| 4.8 Conclusion                       | 166 |

## Chapter 5: Conclusions

| 5.1 Summary of findings168                           |
|------------------------------------------------------|
| 5.2 Implications for the decision-making process 174 |
| 5.3 Limitations of the thesis176                     |
| 5.4 Recommendations for future research177           |
|                                                      |

# Appendices

| Appendix 1   | 194 |
|--------------|-----|
| Appendix 2   | 195 |
| Appendix 3   | 196 |
| Appendix 4   | 197 |
| Appendix 5   | 207 |
| Appendix 6   | 216 |
| Appendix 7   | 220 |
| Appendix 8   | 224 |
| Appendix 9   | 228 |
| Appendix 10  | 232 |
| Appendix 11a |     |
| Appendix 11b | 295 |
| Appendix 12  |     |

# List of Tables

| Table 2.1  | 67  |
|------------|-----|
| Table 2.2  | 69  |
| Table 2.3  |     |
| Table 2.4  | 75  |
| Table 2.5  | 76  |
| Table 2.6  |     |
| Table 2.7  |     |
| Table 3.1  | 101 |
| Table 3.2  |     |
| Table 3.3a |     |
| Table 3.3b |     |
| Table 3.4a |     |
| Table 3.4b |     |
| Table 3.5a | 117 |
| Table 3.5b |     |
| Table 3.5c |     |

| Table 3.6a122 |
|---------------|
| Table 3.6b122 |
| Table 3.6c124 |
| Table 3.6d124 |
| Table 3.7a126 |
| Table 3.7b126 |
| Table 3.8a129 |
| Table 3.8b129 |
| Table 3.8c130 |
| Table 3.8d130 |
| Table 4.1147  |
| Table 4.2153  |
| Table 4.3154  |
| Table 4.4161  |
| Table 4.5     |

# List of Figures

| Figure 1 |    |
|----------|----|
| Figure 2 | 61 |
| Figure 3 |    |
| Figure 4 | 63 |
| Figure 5 | 67 |
| Figure 6 | 91 |
| Figure 7 |    |

# Chapter 1: Introduction

#### 1.1 Motivation and background

Major changes are occurring in the energy industry. The old model of verticallyintegrated organizations and monopolistic energy businesses is breaking up and being replaced by competition and privatization (Keppler, 2007). Participants in competitive markets are expected to make better investment decisions because they bear the risk of their decisions (Serletis and Bianchi, 2007). However, Keppler (2007) acknowledged that not all segments of an organization are suitable for privatization or for market competition. Furthermore, Keppler stated that high oil prices combined with environmental constraints are renewing interest in modelling the relationships between technological influence, energy efficacy, energy prices and energy intensity<sup>1</sup>. Nevertheless, modelling energy demand and economic development has been one of the most analyzed relationships in energy-related empirical applications.

Energy companies operate in a very competitive business environment, which means that accurate and timely decisions must be made based on the evaluation of available information. As a result of this competitive nature of the business, decentralization of decision-making became essential for many energy operations

<sup>&</sup>lt;sup>1</sup>Energy intensity: the ratio of energy inputs to social products at the macroeconomic level (Buenstorf, 2004). It can be used to compare the degree of energy dependency between different countries.

(Chevalier, 2007). Chevalier stated that decentralization of decision-making would benefit from advancements in econometrics. He further suggested that the evolution of the global energy system and the growing complexity of today's energy market would create additional need for more sophisticated econometric applications.

Girod (2007) suggested that the development of econometric modelling, which occurred from the 1970s to the 1990s, has been incorporated rapidly into energy market applications. Decision-makers rely on econometric modelling to solve energy-related problems (Girod, 2007). Econometrics provides the tools needed to meet energy and environmental challenges that businesses face in the 21<sup>st</sup> century (Keppler, 2007). Keppler (2007) stated that the new energy-related economic issues deal with combining macroeconomics, investment decisions, economy policy, industrial organization and economics of regulation. He suggested that the role of econometrics has become more important for the energy markets due to the increasing emphasis on the decentralization of decision-making. Non-stationary time series, unit root tests and co-integration relationships are examples of econometric techniques that have become "interlocked" with energy economics (Chevalier, 2007).

Econometric applications have become an integrated part of the processes of identifying, assessing and managing risk exposure created by the complex behaviour of the energy market. Huisman (2009) stated that energy finance researchers and practitioners have developed many models that are capable of dealing with the characteristics of energy price behaviour. For example, dynamic hedging benefited from advancements in econometrics, given its need for constant mentoring adjustment to different risk exposure. Amic and Lautard (2005) explained that traders use empirical and mathematical models to form their base estimation of the price of a financial

2

instrument and, then, they add the bid-offer spread.

As different parties became involved in the decision-making process, different risk exposures are expected to face the organization and could have the potential to threaten its financial stability. Risk created by movements in interest rates, foreign exchange rates and commodity prices directly impact the market valuation of some firms (Smithson and Smith, 2001). For example, an unexpected increase in a commodity's price should increase the market value of that commodity's producer and depress the market value of that commodity's buyer (Boyer and Filion, 2005). However, the importance of statistical science in an area such as risk management is now only beginning to be recognized by energy risk mangers (Lewis, 2005). Lewis further stated that the importance of statistical principles covers both empirical and theoretical modelling. Each principle has become an essential tool in identifying relationships between sets of data and as an end in themselves, since they help in explaining the major economic and social issues that face humanity.

Developing corporate plans and strategies requires accurate estimation of expected price volatility. Price volatility influences the risks associated with decisions (Bourbonnais and Méritet, 2007). Forecasting oil price volatility became vital for decisions regarding formulation of hedging strategies, option pricing and the risk assessment of commodities (Aloui, 2008). In the case of energy companies, most of these risks can be placed into five main categories. The first category is market risk, which is the potential to incur losses due to unexpected changes in market prices. Both input and output prices must be forecast and managed. The second category is credit risk (or default), which can be the result of a second party's inability to make an agreedupon payment. Third is operational risk, which is caused by inadequate business practises or faulty operational processes due to human error or technological glitches. Fourth is liquidity risk, which can result when a counterparty refuses to trade. Fifth is political (or regulatory) risk, which means that companies are subject to guidelines or actions taken by sovereign nations that could cause expropriation or even nationalization of operations.

In the case of market risk, oil prices, in particular, are important given their role in physical, futures and over-the-counter (OTC) markets. Financial transactions related to crude oils are four times the value of the physical transactions in this area (Chevalier, 2007). In fact, in 2007, the daily averages of futures contracts and OTC swaps were around \$300 billion and \$800 billion, respectively (James, 2008). James further stated that, between 2000 and 2006, over \$100 billion of additional, speculative funds were added to the energy financial market, which could further increase the volatility of oil prices, at least in the short run. Speculators and hedge fund managers use benchmark crudes to track price changes for physical crude sales and deliveries. Garis (2009) estimated that trading of benchmark crude oil in the futures market was approximately 20 times greater than the amount of available physical quantities. However, Serletis and Shahmoradi (2006) suggested that large capital requirements and significant lead times between energy production and delivery increase the sensitivity of energy financial markets to the imbalance of demand and supply, which results in increasing the volatility of oil prices.

Desbrosses and Girod (2007) explained that, in the case of derived energy, units of the primary energy, such as oil or gas, or secondary energy, such as diesel or jet fuel, are used in accounting methods. This accounting practice suggests that the expected price behaviour of these oil-based energy sources has a fundamental effect on the profitability of future (or ongoing) energy-based operations. Thus, energy prices are a key entry in most energy-related econometric models (Chevalier, 2007).

Uncertainty about future energy prices is referred to as energy price risk. Producers and distributors are exposed to an unstable stream of revenue and, on the other hand, consumers are exposed to unpredictable prices (Lewis, 2005). Amic and Lautard (2005) stated that oil price risk is "in the heart" of the oil industry and became the force behind the decisions of many oil companies to use vertical integration. In the case of crude oil producers, they might be concerned about the uncertainty of crude oil prices within the next three to six months, because a general decline in crude oil prices will seriously affect the producers' revenues.

Refiners, on the other hand, have the concern that future price increases will be translated into higher oil input costs. If these high oil input costs cannot be passed on to customers, the refiners will receive less revenue. In this case, crude oil prices could negatively affect the refiners' crack spread, which is the risk/reward coefficient for each product that can be aggregated to form a composite refinery margin. As a result, some oil companies have offered specially-structured products to meet the needs of its clients. Refiners, airlines and shipping companies that face this multi-dimensional problem can use swaps agreements, for example, to manage the difference between the weighted sum of products (or services) and the value of reference crude oils, such as Brent or West Texas Intermediate (WTI) (Amic andLautard, 2005). Also, Amic and Lautard suggested that refineries could benefit from different market conditions by selling options on the gas/oil crack spread, which would help to provide adequate cash flow. However, analysis of the correlation between the product margin and crude price is crucial in an effective implementation.

By looking into the cost breakdown of gasoline, a refinery product, we can see that its retail price can be broken down into: costs of crude oil, taxes and seller mark-up. In the case of the U.S., these components are approximately 50, 30 and 20 percent of the total retail price, respectively (Lewis, 2005). Given that the largest proportion of cost is associated with the cost of crude oil and that taxes are relatively stable, seller mark-up observed any unexpected changes in crude prices. Alternatively, the refinery could fix its margin and pass on the higher cost of oil to the final consumer. For example, in May 2004, as a result of political and social events in the Middle East, the price of premium gasoline in Germany reached an all-time, post-war high of  $\pounds$ .6 when spot crude oil prices exceeded \$39 per barrel (Lewis, 2005). This example shows that energy risks are often interrelated, in that a risk event that occurs can unleash a series of effects on other risks.

An effective energy risk strategy requires the accurate assessment and control of different risks, especially price risk. Lewis (2005) suggested three steps of an effective energy price risk strategy:

- 1. Analysis of energy risk through energy price risk modelling
- 2. Development of projected budgets and potential exposure
- 3. Identification of risk mitigation options

In all these steps, decisions are made on the basis of the most-likely-to-occur scenarios, that is, on the probability that certain events will take place. Lewis suggested that energy price risk can be quantified by analysing the potential outcomes of an event and its associated likelihood observed in empirical findings. Probabilities and random

variables provide us with the tools required to understand the nature of uncertainty associated with energy price risk. In general, energy price risk is caused by movements in the prices of energy-based products. A common factor for most of these products is their relationship to movement in oil prices, which suggests that analysing oil price behaviour provides the cornerstone for further analysis of energy-based products.

### **1.2 Research Objectives**

The main objective of the thesis is to examine whether investment and risk management decision makers should view OPEC and non-OPEC crude oil differently (or similarly) in modelling oil price volatility, evaluating share prices of different oil companies, and estimating the reaction of oil prices to events that could possibly affect the oil supply. For example, in the case of a value-at-risk (VaR) calculation<sup>2</sup>, should decision-makers be concerned about whether the crude oil involved in the analysis is an OPEC or a non-OPEC crude oil? Is the stability of expected cash flow streams affected by OPEC or non-OPEC affiliation? Should different discount rates, used in Net Present Value (NPV), Internal Rate of Return (IRR) and other evaluation techniques, be set to reflect OPEC and non-OPEC association? In other words, given that OPEC countries are expected to be subject to a different set of risks than those expected in the case of non-OPEC countries, should this difference be reflected in the discount rate used? These are examples of investment-related questions for which we are seeking to develop

<sup>&</sup>lt;sup>2</sup>Giot and Laurent (2003) provide examples of (VaR) estimations on spot prices for crude oil, aluminium, copper and nickel.

inputs that can help in developing reasonable, useful answers.

Most oil-related studies use the prices of well-known crude oils, such as Brent or West Texas Intermediate (WTI) crude oils, in modelling oil prices (Agren, 2006; Ballinger and Dwyer, 2004). This thesis contributes to the growing body of literature that seeks to analyze and understand the dynamics behind the price volatility of crude oils. However, the thesis does not focus only on well-benchmarked crudes; instead, it expands the analysis to cover crude oils with different physical and chemical features produced by OPEC and non-OPEC countries. In other words, in order to make more informative and accurate investment and risk management decisions, researchers may need to re-think whether well-known crude oils are the best indicators of global oil prices. The recent decision by Saudi Arabia to stop referencing its crude to Brent and WTI crudes raised the level of concern that well-known crudes may not possibly be the best indicator of other crudes. Garis (2009) suggested that Oman (OMN) crude better reflect Middle Eastern crude oil, given that most crude oils produced in this region are categorised as heavy and sour.

Understanding the volatility patterns of the prices of different types of crude oil and identifying their relationships with different economic and financial factors play an important role in setting and implementing corporate and risk management strategies and in assessing performance toward achieving long-term goals. In fact, the ability to manage, price and hedge term-structure risk in relationship to volatility represents the true value of using derivatives (Amic and Lautard, 2005). They suggested that an effective risk management programme should help in meeting financial liabilities on time, maximizing profits and completing new projects successfully. Amic and Lautard (2005) suggested that, in the short-term, crude oil prices determine the trends in other energy prices. In addition, most traders look at the price of crude oil as the index for other energy products, given its relatively high liquidity compared to other commodities. Given the importance of crude oil prices in the energy market, most studies use prices of well-known crude oils, such as Brent and West Texas Intermediate (WTI)<sup>3</sup>, and build on the assumption that other crudes prices are behaving similarly. Garis (2009) explained this assumption by suggesting that the selling price of crude oil better reflects the value-in-use to the final consumer than its actual marginal cost of production. Garis explained that crude oil produced by Middle Eastern countries, which has a low production margin of around \$2 per barrel (\$2/bbl), is priced similarly (or closely) to other crudes produced in higher production margin regions (\$11/bbl and \$14/bbl for Canada and the U.S., respectively).

However, a closer look into crude oil supply suggests that economic incentives and market perception related to the Organization of Petroleum Exporting Countries (OPEC)'s supplies of crude oils are different from those related to non-OPEC supplies. For example, OPEC's decisions provide signals to the global oil market. Market volatility often responds to OPEC conferences prior to the release of information from the conferences (Horan, Peterson and Mahar, 2004). Also, Amic and Lautard (2005) suggested that the crude oil market is responsive to "OPEC rhetoric." Lewis (2005) also suggested that a key determinant of supply is the actions taken by members of OPEC. In case the decision is to increase prices (i.e., by decreasing supply), the market reacts by

<sup>&</sup>lt;sup>3</sup>Brent is both time and physically blended crude that marks most crude oils in the world. WTI crude represents 18 percent of global crude oil trade; however, it is currently under pressure of decreasing production.

increasing price volatility. On the other hand, if the decision did not specifically recommend price changes, no significant changes in market volatility occur (Wang, Wu and Yang, 2007). This leads to the question of whether the effects of OPEC decisions are limited to OPEC oil prices or do these effects spill over to non-OPEC oil prices.

The relationship between price and production of crude oils can be described as a negative, backward-bending, supply curve. In this relationship, OPEC sets production levels based on non-competitive behaviour (Dees *et al*, 2005). The difficulty of modelling supply of crude oil is in the structure of the supply side, which consists of a set of independent producers and an organization, OPEC. Dees *et al.*, (2005) distinguished between OPEC and non-OPEC production behaviour by indicating that OPEC uses two different behaviours. First, OPEC uses a cartel model in which it acts as a price maker. Second, it uses a competitive model in which OPEC is a price taker. This was also suggested by Gately (1995), who recognized that OPEC's ability to affect oil prices is the result of its double-role as a cartel and as a price taker.

OPEC production levels are usually set to match the difference between global demand for oil and the supply of oil provided by non-OPEC countries. In other words, OPEC acts as a swing producer that has to provide any additional quantity demanded and, in other cases, would have to adjust its production to eliminate any oversupply. Smith (2005) also supported this view of OPEC behaviour when he concluded that OPEC oil production follows various behaviours. However, Smith (2005) also suggested that competitive behaviour exists between non-OPEC producers, given that each producer is subject to its own, unique set of constraints, such as resource depletion, technical changes and political considerations.

An analysis of the relationship indicates that OPEC members, based on their individual and collective productions, "Granger cause" oil prices (Kaufmann *et al.*, 2004). Kaufmann *et al.*, (2004) also suggested that more recent research shows that OPEC countries increase production in response to higher oil prices. In pricing OPEC's crude oils, the market would take into account any possible 'cheating' in oil production by an OPEC member. Given the track record of some OPEC countries, oil traders can price different crude oils and estimate premiums or discounts more accurately. They also could take exogenous events into account, such as military conflicts or political unrest associated with OPEC countries.

On the other hand, non-OPEC oil producers do not provide such signals to the market about their intentions. For example, a non-OPEC country could make a decision to increase or decrease its production without giving notice to the market. Oil traders would have no lag-time to adjust to new levels of availability of certain types of non-OPEC crudes. As a result, the availability of non-OPEC types would be subject to an individual country's decision, unlike the case of OPEC crudes in which the decisions are made collectively by the member states. Yousefi and Wirjanto (2004) specified other variables, such as the price/exchange rate, prices charged by others and the demand elasticises faced by each producer, as stochastic disturbances that should have an impact on the price differentials of different types of crude oils (Yousefi and Wirjanto, 2004). This might be the result of the time lag the market requires to analyse and account for new information observed from the two sources, i.e., OPEC, on the one hand, and non-OPEC producers on the other.

OPEC's crudes are represented by a basket of crude oils produced by member

states. In this basket, a percentage is fixed for every OPEC member, which means that the amount of each OPEC crude oil available on the international market can be estimated. On the other hand, it is possible that the market views non-OPEC members as another group that, by default, produces another basket of crude oils that are governed, not by a collective decision making process, but by the maximum production capacity of each non-OPEC producer<sup>4</sup>. However, the OPEC production level has declined steadily in the real value of crude oil, due to 1) the lack of incentives on the part of OPEC members to stay within their quotas and 2) the use of more efficient oilburning technologies (Lewis, 2005).

Nourdden (2005) stated that OPEC output reached its all-time high of 34 mbpd in 2004. On the other hand, non-OPEC crude production has been increasing steadily at about 2.2 mbpd, reaching 50 mbpd in 2004. Nevertheless, OPEC's role in the global energy market is still worthy of further investigation, given its members' significant reserves of crude oil and its substantial production capacity. Many participants view OPEC as the dynamic counterweight of the oil market (Amicand Lautard, 2005).

### 1.3 The importance of the study

The global energy market is going through a major transformation (Bessec and Méritet, 2007). This transformation can be tracked back to the 1970s, when the

<sup>&</sup>lt;sup>4</sup> Some of the early analyses of the relationship between OPEC and non-OPEC oil producers were done by Adams, Marquez and Jaime (1984), Griffin (1985), Verleger (1987a, b) and Jones (1990).

deregulation of the world's energy markets started a global trend that led to the complete commoditization of energy-based products (Lewis, 2005). The challenge of generating more energy to meet growing global demand is the main driver for the transformation that is taking place in the industry (Chevalier, 2007)<sup>5</sup>. For example, the North American energy industry has undergone major structural changes that significantly affected how energy producers, utilities and industrial customers operate and make decisions (Serletis and Andreadis, 2004). However, these structural changes within the energy industry require the investment of billions of dollars at each stage of the energy supply chain to ensure that no shortage or disruption of supply occurs, especially during the high-demand summer and winter seasons.

To determine the level of investment needed to fulfil future demand, accurate forecasting of long-term energy consumption is required (Girod, 2007). The majority of capital equipment is designed specifically to consume a certain kind and amount of energy. In most cases, input decisions are based on the expected prices of the inputs (Renou-Maissant, 2007). Prices of energy products, such as jet fuel and heating oil, are dependent on the prices of crude oil (Lewis, 2005). For instance, in the case of power generating companies, understanding the relationship of electricity prices and the prices of the underlying primary fuel commodities (oil, gas and coal) is very important in making sound economic decisions (Hinich and Serletis, 2006).

The price of oil is an important input in planning, implementing and evaluating

<sup>&</sup>lt;sup>5</sup> The International Energy Agency estimates that global energy demand between 2008 and 2030 is expected to grow by 45 percent (IEA, 2008).

most energy-related investments. Among the prices of various sources of energy, the price of oil is probably the most important (Chardon, 2007). Crude oil satisfies the largest share of global energy demand, and it is expected to continue to be the dominant source of energy for at least the next 20 years, surpassing coal, natural gas, renewable energy sources and nuclear energy (Energy Information Administration (EIA), 2006). EIA also expects that the industrial and transportation sectors will continue to consume more oil than other sectors. Currently, oil satisfies 40 percent of all energy demand and nearly 90 percent of transportation fuel needs (IEA report, 2004).

Commoditization of the energy market has increased the importance of real-time information, reduced the product cycle, narrowed margins and contributed to increasing price volatility (Lewis, 2005). For example, crude oil price volatility plays a very important role in decisions regarding inter-fuel substitution. Bourbonnais and Geoffron (2007) suggested that, during periods of increasing global demand, there is a greater economic rationale for the use of crude oils of different qualities, and that could affect the substitution of inter-fuels as well. Given the highly technical specifications of energy-related equipment, inter-fuel substitution becomes a critical issue for various businesses, such as refineries and power generating plants. Inter-fuel substitution can be achieved either by technical flexibility to switch from one fuel to another or by having a diversified portfolio of generating capacities (Chevalier, 2007). In both cases, oil price volatility is a determining factor in deciding which energy investments to pursue and what fuel mix will be used. By analysing the possibility that OPEC and non-OPEC crude oil prices may behave differently, we think a more accurate decision could be made in both cases of portfolio diversification or at the early stages of designing and implementing technical flexibility.

At the national economic level, oil price volatility is used as a guide for U.S. monetary policy (Serletis and Kemp, 1998). Crude oil prices are correlated with both consumer prices and industrial production cycles (Serletis and Shahmoradi, 2005). Serletis and Shahmoradi (2005) showed that the price cycles of crude oil and heating oil coincide with industrial production. On the other hand, prices of unleaded gasoline and natural gas lag the industrial production cycles. Serletis and Shahmoradi (2005) also found that there was a strong, contemporaneous correlation between crude oil, unleaded gasoline prices and U.S. consumer prices. The price cycles of crude oil, heating oil and unleaded gasoline lead the cycle of U.S. consumer prices. These sets of relationships can help economists and policymakers deal with important issues, such as inflation and unemployment. In addition, crude oil prices are critical input for the price-escalation formula that is used to set and implement international, bilateral contracts (Amic and Lautard, 2005).

However, Serletis and Shahmoradi (2005) emphasized that these cyclical relationships are subject to each country's type of energy structure, which includes the degree of energy intensity and oil dependence. For example, following the oil shortages of the 1970s, France adopted a policy of energy diversification in which nuclear power provides 50 percent of the country's total energy consumption (Bourbonnais and Méritet, 2007). In this case, France is less oil-dependent than the U.S., which suggests that oil prices may not be a good indicator of French monetary and economic policies.

Finally, the possibility that OPEC and non-OPEC crude oil prices may behave differently contributes to the ongoing discussion of whether the oil market is a truly integrated global market or not. Adelman (1984) originally stated that the world oil market is one great pool, very similar to the world's oceans. Adelman's idea of the great pool was challenged by Weiner (1991), who used different correlation and regression techniques to test whether long-term contracts would indicate an integrated oil market. His results suggest that the global oil market is far from a "unified" market. He explained that sellers can possibly engage in price discrimination. Bourbonnais and Geoffron (2007) said that Weiner's results are consistent with the long-term strategies of securing energy supply adopted by many oil-importing countries. In other words, the global oil market is far from being a unified market, because many importing countries use long-term contracts to secure energy supply.

However, several studies have pointed to shortcomings in Weiner's findings. Gülen (1997) suggested that the existence of long-term contracts does not preclude the unification of the oil market. He stated that prices do not deviate much for crude oils of the same quality produced in different regions. In a later study, Gülen compared two sub-periods of oil prices to test the idea of a unified oil market. He concluded that local prices tend to deviate more during times of rising global prices, which can be explained by the rational decision to substitute crude oils of varying qualities and features (Gülen, 1999).

Sauer (1994) and Ripple and Wilamoski (1998) also looked into the methodology used by Weiner (1991). Sauer (1994) used a vector error-correction model (VECM) as well as impulse response and variance decomposition to test whether Weiner's price adjustments were for too short a period to determine whether the oil market is integrated or not. He concluded that, indeed, Weiner's findings, which were based on an adjustment period of one month, were not long enough to account for

possible market integration. He suggested that adjustments in prices could take up to five months. In addition, Sauer argued that bivariate correlation analysis between two regions might be influenced by effects coming from other regions that were not accounted for, further weakening Weiner's approach because it fails to account for possible feedback effects.

Ripple and Wilamoski (1998) used co-integration analysis as well as a VECM to estimate the speed of adjustment coefficients and variance decomposition. They concluded that the integration of the world's crude oil market is increased as a result of the development of futures and spot oil markets. They suggested that Weiner's findings could be the result of failing to account for a greater degree of price transparency following the development of the crude oil futures market.

### **1.4 The Global Energy System**

Energy markets consist of markets for oil, natural gas, coal and electricity. The oil market, by far, is one of the most developed and sophisticated markets, with financial transactions totalling more than four times the amount of any other physical commodity transactions. In 2007, the daily trading value of oil futures contracts and over-the-counter (OTC) swaps was estimated to be \$1.1 trillion<sup>6</sup>. The correlation between natural gas prices and crude oil prices is strong, which suggests the existence of a common trend that drives these prices (Serletis, 1994). In the following two

<sup>&</sup>lt;sup>6</sup> See Energy Markets- Price Risk Management and Trading, (T. James, 2008).

sections, we will look into the energy markets for natural gas and electricity to identify any interrelationships between prices in these markets and prices in the oil market. Given that energy consumption is dominated by crude oil, electricity and natural gas (Lewis, 2005), we believe that briefly discussing the electricity and natural gas markets should help provide a better understanding of the global energy system.

### **1.4.1 Natural Gas Market**

Natural gas supplies almost 25 percent of global energy demand. The largest consumers are the U.S., Europe and the former Soviet Union, which account for 30, 20 and 15 percent, respectively (Lewis, 2005). On the other hand, major suppliers of natural gas are Russia, Algeria, Iran and Qatar (The World Fact book, 2007).

Keppler (2007) stated that natural gas markets are "very similar in nature" to oil markets, but they are subject to more regional and local influences. In addition, natural gas prices can possibly be a good indicator of crude oil prices (Serletis, 1997). Market participants can use natural gas prices as a form of an early signalling system for crude oil prices. However, a recent study by Serletis and Shahmoradi (2006) explained that a major difference exists between the natural gas market and the crude oil market. Mainly, the natural gas market is more segmented than the crude oil market. The North American natural gas market is less integrated than the North American crude oil market (Serletis and Rangel-Ruiz, 2004).

Most natural gas resources and production facilities are located long distances

from the final consumers, which means that there are additional costs for transporting, liquefying and processing the gas. Thus, the prices of natural gas are strongly influenced by its transportation costs and the degree of pipeline accessibility<sup>7</sup>. For example, Western Europe, Eastern North America, Western North America and Southeast Asia are all self-contained markets with different degrees of integration among the markets. Each market has developed its own system of transportation that creates an integrated pricing system.

Serletis and Andreadis (2004) tested random fractal structures in energy markets throughout North America. They used the methods of dynamic systems theory to analyze the price fluctuations in the North American crude oil and natural gas markets. Their results suggested that the prices of West Texas Intermediate (WTI) crude exhibit a random, multi-fractal, turbulent structure<sup>8</sup>. On the other hand, the prices of Henry Hub natural gas<sup>9</sup> do not show such a structure.

Some regions of the world, such as North America and Western Europe, are more integrated within themselves than with each other. Evidence suggests that integration still has not taken place in the trans-Atlantic gas market (Siliverstovs et. al., 2005). These regional markets developed into three main regions, i.e., North America, Europe and Japan/South Korea. Each region has its own developed network of pipelines and liquefied natural gas (LNG) capacity. Siliverstovs et al. (2005) further stated that regional markets in North America and Europe are highly integrated, whereas the

<sup>&</sup>lt;sup>7</sup> Transportation of natural gas by pipelines is less costly than shipping liquefied natural gas by sea.

<sup>&</sup>lt;sup>8</sup> See Ghashghaite et al. (1996) for hypothesis of turbulent behaviour in financial markets.

<sup>&</sup>lt;sup>9</sup> Henry Hub natural gas price in Louisiana.

Japanese and European markets are integrated to a lesser degree.

Bourbonnais and Geoffron (2007) used the Johansen (1988) and Johansen and Juselius (1990) co-integration model to determine and examine the integration of gas markets in Europe. The results presented further evidence that prices in five European countries follow the random-walk model, which means it is not possible to predict future prices in one market given the past prices in other markets. Co-integration of prices between different geographic markets (or product markets) is evidence of market integration in which a common stochastic trend for prices exists. They concluded that natural gas markets do not form any kind of "pool" due to the lack of market mechanisms from both economic and technical perspectives. However, as Bourbonnaisand Geoffron stated, their results must be used with some reservations due to the limited number of observations they obtained. Quoting Bourbonnais and Geoffron (2007):

"Our conclusions are somewhat reserved, because of the amount of data for each period is rather limited (about fifteen observations for each sub-period)."

Chemically, crude oil is made of many different types of molecules. On the other hand, natural gas is made of few molecules. In order to keep natural gas in the gaseous state, pressure must be applied at ambient temperature, which increases the costs for storage and transportation.

#### **1.4.2 Power Market**

The recent re-structuring of the power generating sector has attracted the attention of empirical researchers to analyze the relationship between energy prices and the prices of the various underlying fuel commodities (Bunn, 2004) and (Serletis and Dormaar, 2006). For example, 60 percent of the electricity generated in the PJM<sup>10</sup> is based on fossil fuels. On the other hand, almost all electricity of Nord Pool<sup>11</sup> is produced by hydroelectric generators (Bourbonnais and Méritet, 2007). This strong relationship with the underlying commodities creates a direct link between power prices and our main energy source in this study, i.e., crude oil prices. In addition, indirect links are also created between crude oil and other commodities that might compete with crude oil as substitutes for providing the energy needed to generate electricity.

A unique feature of electricity is the fact that it cannot be physically stored at large commercial scale. In large quantities, it must be produced for immediate use by the consumer. However, some economists view storing the commodities used to generate electricity as electricity storage. Pozzi (2007) suggested that power generators can store electricity through their means of production, such as water, oil and uranium. In addition, Pozzi (2007) further suggested that having excess capacity to process more raw materials in response to any additional demand is a form of storing electricity indirectly. Specifying the type of the underlying commodity to be used to generate

<sup>&</sup>lt;sup>10</sup> PJM stands for the power exchange market of Pennsylvania, New Jersey and Maryland.

<sup>&</sup>lt;sup>11</sup> The world's first power exchange market. Consist of Norway, Sweden, Finland and Denmark.

electricity is one of the most important decisions (Keppler, 2007). Hinich and Serletis (2006) suggested that electricity is produced as a commodity, but it is consumed as a service, which means that additional capacity is always needed to provide any additional demand.

Complex econometric tools are required to model and forecast electricity prices in light of such demand conditions. Bourbounais and Meritet (2007) explained that electricity prices are different from other types of prices due to the inelastic response of electricity demand, seasonality of response to cyclical demand fluctuation, and high volatility of prices. Prices in one market are mainly determined by factors and conditions of two other markets. First is the local market in which the product, in this case electrical power, is produced and sold. The second market consists of the markets that are integrated with the local market (Serletis and Bianchi, 2007).

Serletis and Bianchi (2007) tested for a long-term equilibrium relationship between power prices in Western North American markets using the Engle-Granger (1987) co-integration test, an error-correction model and the Granger causality test. Their findings suggested that deregulation in the 1980s led to market integration in this region. These results suggest that these markets share the same process of price formation. In other words, when the price in one market changes, prices in other integrated markets track one another, which means that these prices contain the same information and are likely to be driven by the same underlying, data-generating process.

This is not the case between the two electricity markets that were previously mentioned, i.e., PJM and Nord Pool. Given that Nord Pool is almost totally dependent on hydroelectric power, which suggests that its prices are exposed to a special set of long-term factors, with the main one being average annual rainfall. On the other hand, PJM has a 60-percent dependency on fossil fuels, which means that its electricity prices are exposed to a different set of factors, such as a political crisis among some of the major oil producing countries. Prior to deregulation, electricity price differentials were very minimal due to the monopolistic nature of these businesses resulting from governmental control. However, the new structure of the power generating business has changed the behaviour of all participants (Bourbonnais and Meritet, 2007). As a result, market participants must have "careful and detailed modelling" of prices for both power and other commodities to effectively estimate cashflows and manage risk exposure. Deregulation created demand for more realistic price modelling for planning future investment, optimizing portfolios and pricing derivatives (Robinson and Baniak, 2002). However, given the relatively short period since deregulation occurred, electricity prices have not been thoroughly modelled and analyzed.

#### 1.5 Study data and descriptive statistics

Understanding the data to be used in modelling is a starting point in selecting the applied model (Huisman, 2009). In this thesis, each chapter has its methodological approach. However, data used are crude oil prices in Chapter 2, crude oil and oil companies' stock prices in Chapter 3 and, finally, crude oil prices and oil-related news items in Chapter 4. The remaining part of this section shows an overview of the range, type and sources of data used, as well as descriptive statistics and normality tests:

**1. Range:** Prices and related data prior to the 1973 Arab oil embargo<sup>12</sup> are not expected to significantly influence my research. Prior to 1973, oil prices were considered stable. Prices were posted by refiners and were almost constant for years. For instance, from 1959 to 1964, the nominal price of a barrel of oil was \$2.97 (Ballinger and Dwyer, 2004). However, since 1973, oil prices have become more volatile, which makes it a very fruitful period for research. In addition, Amic and Lautard (2005) explained that, during this period, the industry had witnessed major shifts in ownership of producing assets from oil companies to national oil companies in producing countries.

However, we were confronted with the challenge of finding the longest time series available for the widest possible range of different crude oils. We were able to find very few prices of crude oil types that go back to the 1970s or 1980s. For the purpose of our study and in order to have the largest possible number of crude oil types, we selected a range of weekly data that spans from 03/01/1997 to 29/01/2010. It consists of two different types, i.e., spot crude oil prices of 30 different crude oils (16 crude oils produced by OPEC and 14 crude oils produced by non-OPEC). Appendix 1 provides additional information about our sample of crude oils. In addition, our sample includes stock prices of 32 different, non-integrated oil companies that would be used in Chapter 3. Appendix 2 provides additional information of each company.

<sup>&</sup>lt;sup>12</sup>Huntington (2009) suggested that significant oil price changes go back to the 1957 Suez crisis.

**2. Type:** Using futures oil prices is a more suitable choice than using historical spot prices for this type of study, because it eliminates unwanted noise. However, futures oil prices are only available for few well-known crude oils. As a result, we have no choice but to use spot prices.

Thus, for the chapters dealing with crude oil prices, I have used the natural log returns for spot prices, and I have tested for unit root problem. In the case of any gaps, further rearrangement can be done. In the case of stock prices, I have used market capitalisation as the main criterion for selecting eight stocks from each of the following oil-related sectors:

- 1. Drilling and Exploration (DE) -Upstream
- 2. Equipment and services (ES) -Upstream
- 3. Pipelines (PIP) -Downstream
- 4. Refinery and Marketing (RM) -Downstream

Business organizations in the oil industry can be classified into two broad sectors: upstream and downstream<sup>13</sup>. Typically, integrated oil companies operate in both sectors under one corporate umbrella. For example, companies such as Exxon Mobil and BP explore, transport, refine and market oil and oil-based products in many parts of the world. However, highly technical tasks, such as seismic scanning and offshore

<sup>&</sup>lt;sup>13</sup> This classification is based on MSCI and S&P Global Industry Classification Standard (GICS) structure. See Appendix 3 for the full-classification.
drilling, require specialized companies with skilled labour and specialized equipment. Therefore, integrated oil companies often outsource or subcontract technical operations to smaller, non-integrated companies that specialize in those types of operations.

Non-integrated oil companies in upstream and downstream sectors of the oil industry are classified by the types of operations they specialize in and their position in the supply chain. For example, companies in drilling and exploration (DE) and equipment and services (ES) are categorized in the upstream sector. Companies in the downstream sector include those that own and operate pipelines (PIP) and those involved in refining and marketing (RM) oil products.

**3. Sources:** Historical and current information for this research was obtained from the electronic databases of the U.S. Department of Energy's Energy Information Administration (EIA) and Yahoo Finance. The exact sources of data are specified as follows:

Crude oil prices: http://www.eia.gov/dnav/pet/pet\_pri\_wco\_k\_w.htm

Stock prices: http://finance.yahoo.com/

**4. Descriptive statistics:** I used descriptive statistics to describe key properties of our data sets. These properties should help in selecting the model specifications that best fit the nature of the data at hand. Appendices 4 through 9 provide charts for the time series used in the thesis. Appendices 4 and 5 cover crude oil prices and returns of OPEC and non-OPEC producers, respectively. Appendices 6 and 7

show charts for stock prices of the DE and ES upstream oil sectors. Finally, Appendices 8 and 9 show prices for the stocks of PIP and RM downstream sectors. In addition, summary statistics for each series (mean, standard deviation, skewness and kurtosis) are listed. Standard deviation is a measure of volatility (Huisman, 2009). It can be explained as the amount of variation in price changes. It also can be used in estimating an interval with the likely price change between two consecutive dates, i.e., t and t-1.

We provided descriptive statistics for both level price and returns for both crude oil and stock prices. In addition, we provided visual representations for both prices and returns. Charts of returns provide additional information by showing the amount of randomness in the weekly price changes Huisman (2009). Returns charts are identified by including the letters "LN" to the name of the crude. For example, the chart titled ADM is for the level prices and the chart titled ADM LN is for returns. Also, histograms are provided to represent the frequency with which several price changes have occurred. Thinner histograms are associated with lower standard deviations that indicate smaller ranges of uncertainty. On the other hand, wider histograms are associated with larger standard deviations (i.e., wider ranges of uncertainty). For our sample of crude oil prices, the histograms indicate a wide range of uncertainty, which led us to think that crude oil prices are subject to a high degree of variation. This feature is modelled and empirically tested by the GARCH model in the following chapter. In the case of oil companies' stock prices, similar results were obtained. The histograms are investigated further in the following section to determine whether our sample was normally distributed or not.

The degree of skewness provides information about the likelihood of positive (or negative) extreme events occurring in the sample. In case skewness is equal to 0, we can identify a symmetric distribution of values in which large values are about as likely as small values. Negative skewness indicates that large negative values are more likely, (i.e., skew <0). On the other hand, positive skewness indicates that large positive values are more likely than large negative values, (i.e., skew > 0). Kurtosis, on the other hand, measures the size of the tails of a probability distribution, providing one additional measure that provides information regarding the shape or the fatness of the tails. All kurtosis values obtained for crude oil prices indicated that oil prices do suffer from the "fat-tails problem," indicating that extreme observations are present in the sample. This is in line with prices of oil-related commodities. Garis (2009) found that critical events that cause major price changes happened more often in crude oil price time-series than predicted. Assessing both skewness and kurtosis should help in testing the normality assumption, as explained in the following section.

**5. Normality assumption:** We also tested the series for normality using the Jarque-Bera (JB) test and results are listed as well. The JB test indicates whether observations in the selected sample came from a normally distributed population. The JB test compares skewness and kurtosis estimates to values for a normal distribution. In a normal distribution, skewness and kurtosis estimates are zero and 3, respectively. Thus, any deviation from these values would be an indication of non-normality. Low (high) JB values would be a sign of normality (non-normality).

Results of the JB normality test indicate that crude oil and stock price series, at both price levels and returns, do not resemble a normally distributed function. Thus, these series fail the normality assumption. The p-values are very low (i.e., lower than 0.05), so we can safely reject the null hypothesis of normality. However, this came as no surprise given that the distribution of energy price level and returns are known to be fat-tailed (Huisman, 2009). It is well known that asset returns are commonly found to be leptokurtic (Aloui, 2008). Huisman further stated that the JB test can be used statistically to addresses whether observations are normally distributed or not. However, it offers no information on what distribution should be used. However, several authors have suggested relaxing this assumption and using a Student's-t distribution assumption to deal with the issue of fat-tails exhibited by most financial time series (Lewis, 2005).

In a statement by Alan Greenspan, the former chairman of the U.S. Federal Reserve, "The normality assumptions allow us to drop off a huge amount of complexity in our equations. Because once you start putting in non-normality assumptions, which is unfortunately what characterises the real world, then these issues become extremely difficult." In terms of empirical research, several studies, such as Giot and Laurent (2003) and Marzo and Zagalia (2007), do account for fat tails, heteroskedasticity and normality using different methods, such as applying the Student's-t distribution.

The Student's-t distribution contains an additional parameter to account for tail fatness (i.e., degree of freedom - df) and is not much different from a normal distribution (Huisman, 2009). For example, Wu and Shieh (2007) used normal, Student's-t and skewed Student's-t to test long-term memory behaviour in daily volatility of T-Bond interest rate futures. The idea of using the Student's-t distribution assumption is applied to other times of financial time series as well. For example, Bollerslev (1987), Baillie and Bollerslev (1989) and others stated that the Student's-t distribution fits the fatter-tail series shown in daily exchange rate logarithmic returns. Mandelbrot (2004) suggested that there could be several distribution functions operating simultaneously. This view is also supported by Garis (2009), which suggests that the analysis of crude oil prices is a rather complex task because there is more than a single regime driving crude oil price behaviour. This point will be addressed further in chapter 4 of this thesis.

Lewis (2005) explained that, when the normality assumption fails, three different solutions can be considered. First, stick with the normal distribution, but modify its percentile function. This could be done by adopting the Cornish-Fisher approximation in which the percentiles of the normal probability distribution is adjusted to account for skewness or kurtosis. The second solution involves selecting an alternative probability distribution. The third solution deals with the possibility that a mixture of normal distributions exist. In case of crude oil prices, and as suggested by Lewis (2005), we would list and identify estimations obtained using the Student's-t distribution assumption. The Student's-t distribution is popular for modelling fat-tail prices and returns. In the case of crude oil prices, Appendices 4 and 5, crude oil prices do have similar price behaviour, which was confirmed by summary statistics and the normality test.

#### **1.6 Thesis structure**

In this thesis, each chapter deals with a separate research problem and has its own structure of introduction, literature review, data, model specifications, results and conclusions. Yet, the overall research question is how crude oil prices of OPEC and non-OPEC producers should be considered in the decision-making process. Our research focuses on analyzing the relationship of OPEC and non-OPEC crude oil prices in terms of price volatility, stock prices of oil companies and price reaction to possible supply disruption caused by endogenous or exogenesis events. In Chapter 2, I used a univariate Generalised Autoregressive Conditional Heteroskedasticity (GARCH) model to estimate whether OPEC's crude oil prices show a similar (or different) level of volatility compared to the prices for non-OPEC crude oil.

In Chapter 3, I used the Johansen co-integration methodology to examine whether OPEC and non-OPEC crude prices share the same type of relationship with stock prices of companies in different oil sectors. I used stock price level because cointegration analysis requires that time series used need to be non-stationary, which is the case for stock price level as determined by unit root tests. Therefore, there is no need to differentiate these prices.

In Chapter 4, I applied a panel data framework using fixed and random effects models to investigate whether OPEC and non-OPEC crude prices react similarly (or differently) to news and events that could cause supply disruption. Finally, Chapter 5 provides summary of major findings, implications for decision makers, limitation of the study and possible future research recommendations.

Figure 1 represents the structure of the thesis and states the questions and hypotheses to be tested for each chapter. The null hypotheses, as well as alternative hypotheses, are stated to clearly identify our goal in each chapter. In chapter 5, we provide a summary of the principle findings as well as offer implications for decision making, limitations of the thesis and recommendations of future research.

# Figure 1: Structure of the thesis:

Chapter 1: Introduction

Set motivation and background.

Disscuss the behaviour of OPEC and non-OPEC crude oil prices.

Describe data, sample and persents summary statistics of data.

Presents thesis structure

| Chapter 2:                                                                                                                                                                    | Chapter 3:                                                                                                                                                                                                                    | Chapter 4:                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question: Is the volatility<br>of OPEC crude prices<br>similar to non-OPEC<br>crude prices?<br>Ho: OPEC(vol) - non-<br>OPEC(vol) = 0<br>H1: OPEC(vol) - non-<br>OPEC(vol) ≠ 0 | Question: Do prices of<br>OPEC and non-OPEC<br>crude oils co-integrate with<br>stock prices of upstream<br>and downstream oil<br>companies?<br>Ho: OPEC(rel) - non-<br>OPEC(rel) = 0<br>H1: OPEC(rel) - non-<br>OPEC(rel) ≠ 0 | Question: Do OPEC and<br>non-OPEC crude prices<br>react similarly to possible<br>supply disruption?<br>Ho: OPEC(rect) - non-<br>OPEC (rect) = 0<br>H1: OPEC(rect) - non-<br>OPEC (rect) ≠ 0 |
|                                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                             |

Chapter 5: Conclusion

Summary of findings

Implications for decision making

Limitations of thesis

- Future research recommendations

# Chapter 2: Price volatility of OPEC and non-OPEC crude oils

### 2.1 Introduction

Energy-intensive companies, such as oil refineries and power generators, face a high degree of exposure to price risk for both inputs and outputs. In order to minimize the negative effects of these exposures, financial instruments, such as swaps and options, are being used by risk management teams. However, the effective use of these instruments requires a better understanding of the dynamics that drive crude oil prices. Through managing price risk exposure, companies can establish guidelines for financial commitments that are needed to develop and implement long-term investment plans. One of the major issues facing decision-makers in these companies is how to identify and manage energy price risk exposure.

Among energy prices, the price of oil is probably the most important (Chardon, 2007). Prices are formed by the actions and split-second decisions of market participants under real-time and competitive circumstances. In order to understand the dynamics behind oil price volatility, it is necessary to consider the demand and supply sides of the oil market. Market and price expectations have significant impacts on the behaviour of both suppliers and customers. Given the multi-player nature of the global oil market, the long-term price of crude oil is driven by interaction between supply and demand. In the long run, the interaction between supply and demand creates a mechanism that determines long-term oil price behaviour and the quantity exchanged.

Through this mechanism, individual supply and demand of utility maximizing customers reach an equilibrium state, at which price meets the expectations of both buyers and sellers.

Garis (2009) suggested that individuals, in the short-term, ordinarily act rationally and do not normally repeat errors systematically, whereas groups made up of these individuals often commit systematic errors in judgment. He suggests that future expectation of crude oil prices influence spot market prices even if it is the result of expected events. The role of expectation opens the door to consider sub-emotional constraints in analysing market phenomena, such as self-fulfilling and herding behaviours. Shenk (2007) provided different types of these phenomena and provided examples and discussion of each one. Garis (2009) further stated that these phenomena accelerate crude oil price response to different stimulus events that result in price volatility. He suggested that additional factors that could cause increasing oil price volatility and market instability are falling transition costs, 'Hot Money' following trends and the use of a few advance trading programs by a large number of traders.

Montier (2003) suggested that the behaviour of traders can be described as a quasi-individual, rational behaviour with group restrictions. He further divides traders' behaviour into different groups. First, is the herding behaviour in which individuals retained their individuality but follow decisions taken by well-respected leaders. Failure to trust one's own trading strategy is the main cause of such behaviour. This was clearly seen during the dot-com stock bubble in which most traders did not understand the businesses they were investing in or the full risk and potential of the technologies behind those "New Economy" businesses.

Second is anchoring, which can be described as keeping initial thinking dominant even if the price regime has changed due to changes in market or economic conditions. Enron and the hedge fund Long-Term Capital Management (LTCM) are examples of companies that collapsed financially due to such trading behaviour. The third grouping of trader behaviour occurs when uncertain traders look for good reputations to follow. Shenk (2007) provided an example of how market participants value information provided by well-respected investment firms. In 2006, Goldman Sachs issued a report predicting that oil prices would increase to \$105/bbl. The report did not specify any new information, but the market's immediate reaction was a price increase of \$2.45/bbl. The fourth and last group of traders occurs when conventional bias leads uncertain traders to make "safe bets" by doing what they have always done, e.g., taking positions based on the released inventory numbers of oil, gas and other oil-related products.

Deviation from the expected equilibrium causes an increase in the level of uncertainty. It is possible for any price deviation to be a random and temporary event, but it could also indicate a long-term shift in supply and demand. Price fluctuations are important because they provide price signals about the "tightness" of the market (Lewis, 2005). Amic and Lautard (2005) suggested that signals expressed by oil prices can be used in trading as well as in managing stocks and process units. In case of trading crude oil, if the market believes that there is sufficient surplus supply capacity to meet possible supply disrupting shortages, then the fundamentals of supply and demand dominate. However, if the market believes the opposite, then fear and greed become dominant (Garis, 2009).

Based on such price fluctuations, market participants must decide whether they should keep (or adjust) their current and future positions according to the same (or a new) supply and demand equilibrium. Furthermore, we discuss the need of new investment in different sectors of the oil supply chain to meet future demand in the global oil market. Oil producers interpret these price signals in two possible ways, i.e., an opportunity to increase production to meet demand or to decrease production due to the overabundance of supply. Crude oil prices are sensitive to expectation levels of inventories (Lewis, 2005). Lewis further stated that issues of overproduction or underproduction, which are driven by global booms, recessions and weather conditions, could be the reasons for price swings.

In this chapter, we investigate whether the pattern of price volatilities of crude oils produced by OPEC are similar (or different) from the price volatilities of crude oils produced by non-OPEC countries. The study sample consists of 30 different types of crude oil, 16 from OPEC countries and 14 from non-OPEC countries. The data consist of weekly free-on-board (FOB) spot prices and span from 03/01/1997 to 29/01/2010. Appendix 1 shows these crudes and provides additional information, including country of origin, American Petroleum Institution (API) number and sulphur content.

We used the univariate GARCH model developed by Bollerslev (1987) to model price volatility of each crude oil. The crudes are grouped into: 1) The OPEC group that consist of 16 different crude oil prices, starting from United Arab Emirates' Murban crude oil (ADM) to Venezuela's Tia Juana Light crude oil (VEN).2) The non-OPEC group, which consists of 14 different crude oil prices starts from Australia's Gippsland crude oil (AUS) to the UK's Brent Blend crude oil (BRT). We are interested in knowing whether price volatilities are significantly different between these two groups or not. In other words, do prices of crude oil produced by OPEC and non-OPEC producers show similar (or different) levels of volatility. We state the following null hypothesis:

*Hypothesis 1: The volatility of the prices of OPEC-produced crude oil is similar* to volatility of the prices of non-OPEC-produced crude oil.

Volatility estimation is one of the most important issues in the world of finance; it has significant implications for both policy and risk management (Serletis and Shahmoradi, 2006). In the case of the oil industry, Amic and Lautard (2005) explained that the structure of the oil industry can move violently between backwardation and contango, which would affect risk exposure of both producers and consumers. Given the limited application of advanced models for crude oil prices (Krichene, 2006), we believe this chapter provides useful information on the dynamics of crude oil pricing for decision makers in governments and corporations.

This chapter is organized into five sections. Sections 2.2 and 2.3 provide an analysis of the supply and demand of crude oil, respectively. Section 2.4 addresses the issue of additional investment needed to meet future demand. A section 2.5 discusses the issue of price volatility in the international crude oil markets. 2.6 provide a review of ARCH-type model applications in the area of crude oil price behaviour. Section 2.7 outlines the GARCH model that was used. Section 2.8 provides descriptive statistics of the data set. Section 2.9 and 2.10 present the results of unit root testing and testing and ARCH effects, respectively. In section 2.11, we present and discuss empirical results.

Finally, section 2.12 provides concluding remarks.

#### 2.2 Demand

The demand for oil is closely related to the expected growth in the global gross domestic product (GDP)<sup>14</sup>. This relationship can be modelled using a simple demand curve that links quantities to prices (Dees et al., 2006). However, demand for oil should be examined in the context of total demand for energy, given that different energy sources can, to different degrees, substitute for each other. Girod (2007) suggested that the theoretical work of Nadiri and Rosen (1969), Treadway (1969) and Keenan (1979) contributes to richer energy econometrics formalization because of the inclusion of a dynamic adjustment process. Girod (2007) explained that energy demand is actually a derived demand because the need for energy sources is the result of actual operations that take place in a plant or factory. Girod suggested that dynamic properties on the demand side arise from the fact that energy demand is "double dated," which means the interval of time from when the equipment was bought until the time the demand was fulfilled. This interval of time is an important factor in distinguishing between "captive demand" and "substitutable demand," as well as between long-term and short-term demand.

<sup>&</sup>lt;sup>14</sup>The first model of possible energy/economy relationship was developed by Hudson and Jorgenson (1974) and others.

The expectation of future economic growth leads to major changes in the prices of oil and energy. In 2004, for example, the prices of oil-based products increased significantly due to the high growth rate of the global economy and due to the fear that a shortage of petroleum products could be a real possibility in the near future (Chardon, 2007). However, there has been a long debate over the issue of whether significant changes in energy prices lead or lag the cycle of economic growth. Hamilton (1983) analyzed pre-1972 energy prices and concluded that energy prices are counter-cyclical.

However, Mork (1988) pointed out that Hamilton's pre-1972 data contain mostly upward price movements, which introduced possible asymmetry in the sense that this correlation between energy prices and economic growth and the conclusion that energy prices are counter-cyclical may not be valid during periods of price declines. Mork (1988) suggested the existence of an asymmetric impact in the correlation between oil prices and gross national product (GNP). He stated that the correlation between decreases in oil prices and the growth of the GNP is significantly different from the correlation between increases in oil prices and the growth of the GNP.

Serletis and Kemp (1998) examined the cyclical behaviour of energy prices. They suggested that Hodrick-Prescott (HP)<sup>15</sup> filtering can produce a reasonable approximation of an ideal business filter. Their results suggested that the prices of crude oil and heating oil are pro-cyclical, which suggests that these two prices are driven by

<sup>&</sup>lt;sup>15</sup>Hodrick-Prescott filtering (HP): a mathematical tool used in macroeconomics, especially in real business cycle theory. It is used to obtain a smoothed, non-linear representation of a time series that is more sensitive to long-term fluctuations than to short-term fluctuations. The filter was first applied by economists Robert J. Hodrick and Edward C. Prescott, a recent Nobel Prize winner.

one common trend. On the other hand, the prices of unleaded gasoline and natural gas lag the pro-cyclical indicator, which also suggests the existence of one common trend behind these two prices. Serletis and Shahmoradi (2005) confirmed that the prices of natural gas are pro-cyclical and lag the cycle of industrial production. In addition, Serletis and Kemp (1998) also found that energy prices are positively and contemporaneously correlated with consumer prices, which suggests that energy prices could play a major role in conducting monetary policy. Serletis and Kemp emphasized that data from countries with different industrial structures and different levels of oil dependency may show different results, which were supported by evidences provided by Lee (2005). Lee listed the results of 14 different papers that examined causality between energy and GDP for a set of developing countries at different stages of economic development. The causality test results suggested that there is no single causality direction between GDP and energy.

Countries with developed, industrialized economies are consuming more energy per unit of GDP than other countries (Toman and Jemelkova, 2003). The energy used-GDP ratio, which is the energy required to generate one unit of output (or the elasticity of GDP), provides a measure of energy intensity in an economy (Detais, Fouquau and Hurlin, 2007). For example, the United States and Canada are the most energyintensive, industrialized countries in the world, due to low prices of fuel, high transportation needs because of their vast geographical locations and high electric consumption in both the business and private sectors (Darmstadter et al., 1977). The elasticity of commercial energy consumption is "consistently higher" for developing countries compared to developed countries (Ang, 1987). It could be the case that commercial energy consumption in developing countries is more allocated toward

41

business and commercial activities because of the focus on exporting goods to developed countries. On the other hand, commercial energy consumption in developed countries can be allocated more toward the services that are needed and consumed by local markets.

The link between energy prices and energy intensity has not been analyzed thoroughly and is not yet strongly established compared to other energy-based relationships (Bessec and Meritet, 2007). Also, they pointed out that technology progress should be included in the examination of energy prices and energy intensity. They used fuel rates (prices) in roads as a proxy for technological advances. They also used co-integration analysis and the Granger causality test to analyze the causal relationship between energy prices, energy intensity and technology progress in 15 different (OECD) countries. They concluded that 12 out of the 15 countries showed evidence of co-integration. The results for the Granger causality test suggested a causal relationship between prices and technology progress in all of the countries. The test also showed a causal relationship between prices, technology progress and oil consumption in most of the 15 (OECD) countries.

## 2.3 Supply

The supply of energy is going through major transformations to satisfy sustainability concerns (Bessec and Meritet, 2007). However, unlike modelling demand, modelling supply in the oil/energy markets has proven to be a difficult task. This difficulty arises mainly from the complex interactions between many different factors. In general, these factors can be categorized as endogenous (i.e., industry-specific, such as competition and capacity utilization) and exogenous (i.e., non-industry-specific, such as political crises or natural events).

One of the most important endogenous factors is the dynamic relationship between OPEC and non-OPEC producers. OPEC producers have formed a cartel that determines the level of production by setting a quota for each member. This strategy by OPEC, along with some other market conditions, affects oil prices (Kaufmaan et al., 2004). On the other hand, non-OPEC producers are considered price takers that compete with each other (Dees et al., 2008). Dees further stated that this relationship between OPEC and non-OPEC producers and the negative relationship between production and prices create a backward-sloping supply curve. This idea was introduced by Cramer and Salehi-Isfahani in the 1980s but was not published until 1989 (Krugman, 2000). It forms the basis for Cramer and Salehi-Isfahani's competitive theory that attempts to explain the behaviour of the oil market. Krugman (2000, 2002) reviewed the theory and expressed his surprise that it did not get more attention. Recently, Bernabe et al., (2004) used this competitive view of the oil market to develop a stochastic, multi-model approach to describe the dynamics of the oil market.

#### 2.4 Need for new investment

Most oil producers are operating at maximum capacity utilization, which raises the issue of the need of sufficient new investments. Additional capacity can be added through additional capital investment by exploring for new reserves or developing new technologies. An estimated \$2.18 trillion will be required through the year 2030 just for exploring and developing new sources of oil (IEA, 2003). Given the implications of the recent credit crunch, financing became more difficult than before, which put more stress on oil companies, including national oil companies, to have better evaluations of current and future projects.

Historically, Saudi Arabia has maintained a reserve capacity of 2 - 3 million barrels per day (mbpd) to meet any unexpected shortage or disruption of oil supply. However, the Saudi national oil producer, Saudi Aramco, produced oil at almost full capacity from 2005 to 2007 and during much of 2008 and 2009. The Company is working to increase its capacity to 12 mbpd by the end of 2010. However, according to the simulation analysis of the National Energy Modelling Systems (NEMS), that will not be enough. As a result, the U.S. Department of Energy has concluded that OPEC will need to double its production by 2025 to keep the supply and demand in balance (Dees et al., 2006). Dees further stated that much of OPEC's projected increase in production would come from Saudi Arabia. However, the Saudis have stated many times that they will not increase production to those levels and that they are working to increase capacity to 12 mbpd by the end of 2010.

From an investment point of view, an oil producer cannot invest billions of dollars in additional capacity without running the risk of facing decreasing demand once additional capacity is ready for operation. These new investments are capital expenditures and are usually defined as long-term investment in assets, such as machinery and equipment. These assets are expected to generate cashflows after an estimated lag time. Oil producers may have a difficult time estimating the lag time between making the decision to increase capacity and having the additional capacity built and ready for commercial operation. These long-term assets are consumed, on the books, at a pre-determined rate. However, other factors may come into play that may cause inconsistency between book and market values of these assets.

Colacito and Corce (2006) explained that, as the predictable components of consumption become more correlated, stochastic discount factors move in the same way. They further stated that, as variable X is a predictable and persistent component of the consumption growth of a particular asset, X will influence the stream of dividends (or cashflows) generated by the consumption of this asset. Thus, X will be a key factor in estimating the expected value and volatility of this stream of returns.

This relationship can also be recognized by looking into the sensitivity of a stock to a specific factor. Bentz (2003) explained that the sensitivity of a stock, or any other asset, is usually defined by its expected return corresponding to a unit of change in the factor, as represented by the following equation:

$$Y(t) = \alpha + \beta X(t) + \varepsilon(t), \qquad (1)$$

Y(t) denotes the returns of the stock at time t, X(t) denotes the simultaneous change in the factor and  $\beta$  is the sensitivity factor. In this case,  $\alpha$  is a constant that represents an extra factor of stock performance and  $\varepsilon(t)$  is a random variable with a zero mean. Both Y(t) and X(t) are observed from the market,  $\varepsilon(t)$  and  $\alpha$  are usually estimated using regression techniques. Bentz further explained that once  $\beta$  is estimated, investment can be immunized against unexpected moves in the factor by selling  $\beta$  amounts of the tradable proxy for each unit of the investment undertaken.

This model can be generalized to simultaneously estimate joint sensitivity for a set of several factors (Bentz, 2003). The generalization of the model can be set as follows:

$$Y(t) = \alpha + \sum_{i=1}^{N} \beta_i X_i(t) + \varepsilon(t),$$
  
=  $X(t)\beta + \varepsilon(t)$  (2)

where  $X_i(t)$  denotes the return of the *i* factor. Bentz explained that the joint sensitivity coefficients  $\beta_i$  measure the "clean" sensitivities by accounting for the intended variable  $X_i(t)$  and controlling the effects of other variables. In this case,  $\beta_i$  is estimated as the partial derivative  $\partial \overline{Y}(X_i)/\partial(X_i)$  of the expected value of  $\overline{Y}$  with respect to the variable  $X_i$ . Bentz further explained that the degree of complexity of estimating factor sensitivity depends mostly on the underlying assumption behind the relationship of the returns of the stock, or asset and the factor.

Colacito and Corce (2006) explained that the standard error of an idiosyncratic shock to the predictable component is small compared to the standard error of the idiosyncratic shock to consumption growth rate. This relatively small error term allows the predictable components of the consumption growth rate to be the main determinants of the volatility of consumption growth; see Tallarini (2000) and Colacito and Corce (2006). Generalization of a model that contains more than one predictable component of the consumption growth law of motion could possibly match key moments of returns. It also provides a relatively lower inter-temporal elasticity of substitution when the coefficient is still higher than that of the reciprocal risk aversion (Colacito and Corce, 2006).

Oil producers need balanced oil supply and demand to ensure that oil remains the most affordable source of energy. This would create equilibrium at some point in the future. However, an imbalance between supply and demand would exist for some time due to the "time-to-build" factor, which is the time lag between the decision to add capacity to (or enter) the market and the time that production begins (Postali and Picchetti, 2006). However, several studies have suggested that the decision of major oil producers not to expand exploration and development of new oil fields contributes to the high oil prices that the global economy endured during the 2005 - 2008 period.

Since 1998, there has been a noticeable decrease in the level of global exploration and development of new wells (Asche et al., 2005). One of the major causes of such a decrease in investment, as suggested by Asche, is the increasing emphasis that oil stock analysts place on short-term profit indicators, such as Return on Average Capital Employed (RoACE). This emphasis causes many oil companies to focus on improving their return on existing operations, rather than on undertaking risky new exploration and development. For example, in 1990, there were more than 650 well explorations in the U.S. This number had decreased to less than 200 by 1999 and was approximately 200 in 2003 (Asche et al., 2005).

#### 2.5 Why does volatility matter?

Capital-intensive projects, such as developing new oil fields or increasing the production capacity of existing fields, depend on the estimations of future cashflows expected from these projects. In the case of oil-field operations, such cashflows are greatly dependent on the market's pricing of the types of crude oil. Given the volatile nature of oil prices, many researchers argue that oil-related cashflows should be discounted at a rate that reflects the expected level of volatility (Regnier, 2007). In other words, if oil prices are expected to become more volatile, a higher discount rate would be used to evaluate potential projects or investments. This means that if the price of crude oil type "X" produced in Project A is more volatile than the price of crude oil type "Y" produced in Project B, then, in the process of evaluating both projects, a higher discount rate should be applied to future cashflows generated by Project A.

This raises the importance of accurate estimation of crude oil price volatility. In fact, the Global Association of Risk Professionals (GARP) states that the price volatility of a commodity is a "key input" in risk management applications, such as option pricing and Value-at-Risk (Var). Amic and Lautard (2005) found that rational decision making can be used in VaR, which takes account of the correlation of the volatilities of the individual components of refinery margins or any of the inputs. Analysis of the relative contribution of the different product margin spread to the composite margin spread is very important in using a VaR application. Many experts would consider oil as a homogeneous commodity; however, there are more than 160 different types of tradable crude oils in international markets. Each has its own characteristics and qualities, which address the preferences of different buyers in the oil market (Lanza et al., 2003). Classification of these different types of crude oils depends on their density and sulfur content. Each level of density and sulfur requires a different distillation process. Light crude oils can be processed by simple and less-costly distillation processes, which produce high-value products, such as gasoline. Nevertheless, this low processing cost comes at the expense of paying premiums to buy these types of crude oils. On the other hand, heavy crude oils are not rich in high-value products, so more complex and costly distillation processes are required to produce the optimal mix of products from these oils. Because of this costly processing disadvantage, heavy crude oils are sold at a discount compared to light crude oils.

Amic and Lautard (2005) explained that the proportions of the different products produced depend heavily on the type of crude oil being refined. Light crude oils, which produce small amounts of fuel oil, are produced mainly in the U.S., the North Sea and North America. On the other hand, heavy crude oils, which produce relatively more fuel and less gasoline, are mainly produced in the Middle East and South America. In terms of international trade, Europe exports gasoline and gasoil to the U.S. and the Far East, respectively. However, it imports naphtha and fuel oil. The U.S., on the other hand, exports distillates to South America and to the Far East. The Middle East is a net exporter of naphta and fuel oil to Europe and the Far East.

Prior to the Arab oil embargo in 1973, oil was considered to be a stable commodity. Prices were posted by refiners and were almost constant for years. For instance, from 1959 to 1964, the nominal price of a barrel of oil was \$2.97 (Ballinger et al., 2004). In addition, from the 1930s to the 1960s, the Texas Railroad Commission (TRC) was the main oil producer in the world, which stabilized the oil market for a long time.<sup>16</sup> However, in the early 1970s, as OPEC countries became the dominant oil producers, prices became more volatile due to the different strategies and agenda pursued by OPEC (Dees et al., 2006).

Regnier (2007) presented evidence that the prices of crude oil, refined petroleum and natural gas are more volatile than the prices of 95% of the products sold domestically in the United States. However, other studies mentioned by Regnier showed that this level of volatility is not a given. For example, during the period of 1975 - 1984, the prices of agricultural commodities were found to be the most volatile (Clem, 1985). During the periods of 1975 - 1984, 1979 - 1984 and 1982 - 1984, prices of crude oil and coal were found to be less volatile than most other non-food commodities (Pindyck, 1999). Crude oil prices only showed more volatility than nine other commodities during the period of 1984 - 1994 (Plourde and Watkins, 1998). Roe and Antonovitz (1985) used the lagged values of the squared innovations as a measure of risk. In financial markets, it is observed that price decreases are often followed by higher volatility than when prices increase by the same magnitude.

In terms of GDP, several studies have suggested that an estimated 10 percent increase in crude oil price volatility would cause a 0.2 - 0.5 percent decrease in GDP

<sup>&</sup>lt;sup>16</sup> Standard Oil was the major oil producer during the 1880s. It was able to control both price and quality which resulted in introducing North American anti-trust laws. As a result, the company was broken up and more suppliers entered the oil market.

after six quarters (Huntington, 2009). Kilian (2007) analysed real oil price fluncuations from January 2007 to September 2005. He suggested that higher oil prices may be driven by global macroeconomic aggregates. Also, he found that oil price shocks have been driven by combination of both aggregate and precautionary demand shocks, not by supply shocks. This is in line with an early study by Sadorsky (2001), which suggested that both oil price and oil price volatility affect economic activities. However, he suggested that changes in economic activities only have small effects on oil prices.

#### 2.6 Crude oil price behaviour and ARCH-type models

Unlike standard time-series models, the unique strength of ARCH-class models is their ability to allow the conditional variance of underlying processes to vary over time. In addition, the information that is used in forming conditional expectations is similar to that used to predict the conditional mean (i.e., variables observed in previous periods). Hence, the GARCH model maintains the desirable forecasting properties of a traditional, time-series model, but it extends them to the conditional variance (Holt and Aradhyula, 1990).

Differences in the volatility of the price of crude oil compared to the volatility of the prices of other commodities suggest that each commodity is subject to a different set of factors or sources. This set of factors is affected by changes in the macro-conditions of the market, the economy, or micro-economic factors, such as industry competition and capital expenditure. In general, the volatility of commodity prices can be caused by various factors, such as market structure, output elasticity and available substitutes (Regnier, 2007). Specifically for the volatility of oil prices, these factors are integrated to some degree with each other. However, factors that affect the volatility of the prices of commodities (e.g., oil) can be organized into the four following categories (Sadorsky, 2004). First is Global demand, The United States is by far the largest oil consumer in the world. About 25 percent of the world's demand for oil comes from the U.S. However, China's and India's demand for oil has grown substantially in the past few years. For example, China's economic growth has increased its oil demand by one million barrels per day, which accounts for the average annual increase in global demand during the 1990s (RBS, 2004). However, questions about China's economic growth and ability to sustain such growth are major contributing factors to the volatility of oil prices. Recent recalls of millions of Chinese-made products are just one example of what could slow down an economy. More globally, the recent financial crisis caused by the global credit crash caused a significant slowdown in major economies around the world, suggesting that China and other exporting countries may consume less oil than previously expected because of the decrease in the global demand for exports.

Second, Geopolitics, more than two-thirds of the world's oil reserves are located in political hotspots. The Middle East, Nigeria and Venezuela are rich in oil reserves, and they are also major producers of natural gas. These areas are in political turmoil due to different ethnic, ideological and political issues. Two major events are believed to have had the most significant contributions to the increase in the volatility of oil prices, i.e., the Arab oil embargo in 1973 and deregulation in 1981. The standard deviation of the log of oil price differences after the embargo and after deregulation increased from about zero to 0.04 and 0.05, respectively. Since then, the standard deviation has fluctuated between 0.065 and 0.125 (Guo and Kliesen, 2006). Given that increases in the volatility of oil prices could be caused by different factors, the real challenge is to find out if the cause of each increase is economic or noneconomic. Guo and Kliesen (2006) specified two methods for such a task. First, they proposed a narrative approach in which they related Wall Street Journal accounts of the 10 largest daily 12-month future oil price movements over the period from 1983 - 2004. They found that the majority of these movements occurred in relation to OPEC or the Middle East. The second approach relies on statistical tests. They tried to answer the question of whether standard macro-variables can forecast the realized variance in oil futures one quarter ahead.

Third are Institutional arrangements. OPEC producers act as a cartel that determines production levels and sets quotas for each member country. Studies suggest that OPEC plays more than one role, depending on market conditions. The first role is a cornering behaviour in which OPEC is a price maker. The second role is to promote competitive behaviours in which OPEC's members compete among themselves and collectively against non-OPEC producers. However, a recent study showed that OPEC actually operates somewhere between these two behaviours (Kauffmann et al., in review). On the other hand, non-OPEC producers are considered price takers that compete with each other and with OPEC (Dees et al., 2006). These different roles of the various oil producers create additional volatility for oil prices.

Finally is speculation in the oil markets. The price volatility of crude oil increased dramatically after the introduction of the futures market for crude oil in March 1983. What caused this increase remains an open area for research. Some studies have considered inventory changes and speculation as possible sources of this increase in

spot oil prices (Pindyck, 2002; Smith, 2000).

The International Monetary Fund (IMF) stated that the decline in commercial stocks and the build-up of large, long, speculative positions contributed to the increasing volatility of spot oil prices (IMF outlook, 2004). Ballinger and Gillette (2004) studied the impact of the oil futures market on the (spot) cash prices of crude oil. They presented supporting evidence that information is not aggregated in cash prices as it is in the futures market and that this difference is responsible for some of the increased volatility. However, Huntington (2009) suggested that the oil futures market offers solutions to market participants in diversifying their price risk during times of increasing price volatility or price oscillations.

As a result of low trading costs, excessive speculation causes higher market volatility (Serletis and Shahmoradi, 2006). Increasing oil price volatility has created momentum for speculators to enter the oil market (Schwartz, 2004). This suggests that a bubble could be in the making for oil prices. Furthermore, Schwartz suggested that good news is merely observed by the market, but bad news drives oil prices higher, which implies that the oil market could be subject to further price volatility as oil prices rise. Another study by Lanza, Manera and Giovannini concluded that the behaviour of crude oil prices is close to that of a financial asset. They reached this conclusion after finding that, on average, the coefficient of variation for crude oil prices is double that of product prices (Lanza, et al., 2003b). Basher and Sadorsky (2006) found additional risk premium in the beta values for oil prices in the emerging market returns. Emerging markets suffer to a greater degree from asymmetric information and that could be the cause of the additional risk premium found in the beta values of oil prices.

Several studies have attempted to analyze crude oil volatility empirically (Sadorsky, 2004; Pindyck, 1999; Hamilton, 2003; and Hamilton and Lin, 1996). However, most oil-related studies focus on well-known crude oils, such as Brent or West Texas Intermediate (WTI) (Lanza et al., 2003; Agren, 2006; Ballinger and Dwyer, 2004). These crude oils, known as markers or benchmarks, are often used by oil traders as benchmarks in pricing other less-known crude oils or as bases needed for the much larger paper market of crude oil. The above studies suggest that oil prices exhibit statistical phenomena, such as volatility clustering and fat-tails, which suggests that an ARCH/GARCH-type model is suitable for application to the prices of crude oils. The general GARCH (p,q) model specification can be stated as follow:

$$Y_t = a + \beta X_t + u_t \qquad u_t | \Omega_t \sim iid \ N(0, h_t)$$
(3)

$$h_{t} = \gamma_{0} + \sum_{i=1}^{p} \delta_{i} h_{t-i} + \sum_{j=1}^{q} \gamma_{j} u^{2}_{t-j}$$
(4)

In equation (1),  $\beta$  is a  $k \times 1$  vector of coefficients and X is a  $k \times 1$  vector of explanatory variables. The term  $u_t$  is assumed to be independently distributed with a zero mean and non-constant variance that depends on past lagged squared residual terms and the lagged  $h_t$ .

The simplest form of the GARCH (p,q) model is the GARCH (1,1). It says that the value of the variance  $h_t$ , at time t, depends on values from both past shocks and past variance estimated from previous period which is t-1. The GARCH (1,1) model has the following form:

$$h_{t} = \gamma_{0} + \delta_{1} h_{t-1} + \gamma_{1} u_{t-1}^{2}$$
(5)

The use of the GARCH model to estimate and forecast the volatility of oil prices has been the focus of several studies. Estimating the length of the model's autoregressive part, i.e., the p part and estimating the length of the moving average part, which is the q part, are critical steps in empirical applications of the model. However, Sadorsky (2006) used several uni-variate and multi-variate models to forecast the daily volatility of oil prices, and he concluded that a single GARCH (1,1) model outperformed more complex models, such as state space, vector auto-regression and bivariate GARCH models (Sadorsky, 2006). Hall (2007) states that this model speciation perform "very well" and is easy to estimates given that only three parameters ( $\gamma_0$ ,  $\delta_1$  and  $\gamma_1$ ) needs to be estimated.

The GARCH model can capture the following features associated with financial time series:

(i) Volatility Clustering: This statistical phenomenon can be described as large changes in volatility followed by larger changes. Likewise, small changes are followed by smaller changes. Successive volatility can be serially dependent and uncorrelated at the same time.

(ii) Fat Tails: Most of the time, asset returns exhibit a fatter tail curve of observation than the one usually observed in a normally distributed curve. This is

known as excess kurtosis and is measured as follows:

$$\kappa = \frac{E(X - EX)^4}{(VX)^2} \tag{6}$$

(iii) Leverage Effect: Decreasing asset returns have a negative impact on the value of equity ownership. Given that long-term debts are usually secured and have first priority over equity ownership, any increase in risk associated with higher volatility is usually bearable by equity shareholders.

Volatility clustering can be explained as follows: shocks, represented by the error term that can be expressed as  $e_t = y_t - c$ , can either be negative shock associated with bad news or positive shock associated with good news. In case  $e_t < 0$ , we can see that  $y_t < c$ , which suggests that returns fall below the mean. The conditional variance  $E_{t-1} < (\sigma_t^2)$  would increase after a negative shock, i.e., after the release of bad news to the market that suggests that the risk level is increasing.

The GARCH model allows for a mean-reversion for volatility, which suggests that the volatility mean reverts back to its long-term average, the unconditional volatility of the process (Bourgoin, 2003). Bourgoin's results suggested that the GARCH model reverts back to long-term average volatility quicker than the GJR-GACH model. However, his results for both models reached the same conclusion, forecasting that volatility would increase in the next five months.

Good generalization of the model application requires that unnecessarily

complex models not be given preference over simpler ones. On the other hand, more complex models fit the data better (Kingdon, 1997). However, Haykin (1999) and Kingdon (1997) suggested that the solution to these two contradictory objectives is to select a model with the least possible degree of complexity that can still describe the data.

The ARCH model, which is the bedrock of the GARCH model, is capable of estimating the time-varying nature of return volatility, can capture the behaviour of financial time series (Billio and Sartore, 2003). The model can be specified as follows:

$$y_t = \mu_t + \sigma_t \varepsilon_t, \ \varepsilon_t \sim IID(0,1), \ t = 1, 2, ..., T$$
, (7)

where  $y_t$  denotes the return on an asset, and  $\sigma_t$  is a deterministic function of the squares of the lags of the residuals. Billio and Sartore (2003) explained that the ARCH model is a common way of modelling  $\sigma_t^{17}$ . On the other hand, they suggested that volatility may be expressed as well by stochastic volatility models, in which the unobserved component follows a latent stochastic process, (i.e., an auto-regression)<sup>18</sup>. Stochastic volatility models have two advantages over ARCH models (Billio and Sartore, 2003). First, they have a solid theoretical foundation that allows interpretation of their results as a discretised version of a stochastic volatility, continuous-time model that is suggested by modern finance theory<sup>19</sup>. Second, in terms of estimation and interpretation, the stochastic volatility model can be generalized from either uni-variate

<sup>&</sup>lt;sup>17</sup> See Bollerslev et al. (1992) and Bera and Higgins (1993).
<sup>18</sup> See Taylor (1994); Ghysels et al., (1996); Shephard (1996).
<sup>19</sup> See Hull and White (1987).

or multi-variate series. However, Billio and Sartore (2003) stated clearly that the complexity of deriving the exact likelihood function in estimating the stochastic volatility model represents a major challenge in empirical application of the model. However, they suggested that several econometric methods have been developed to solve this problem<sup>20</sup>.

Modelling prices of well-known crude oils (e.g., Brent, WTI and Tapis) has been the focal point of most analyses in this area. In fact, out of 16 different papers that we have reviewed, only three covered crude oils other than the benchmark types. Bacon and Tordo (2005) modelled price differentials of 56 different crude oils using a pooled cross-section time series. They examined the relationship between crude oil prices and quality features, such as API, sulfur and total acidity number (TAN). They concluded that each quality feature impacts price differentials of different crude oils. For example, a one-unit increase in API raises the price of a crude oil by \$0.007/ barrel when compared to the Brent crude (Bacon and Tordo, 2005). Yousefi and Wirjanto (2004) examined the empirical role of the exchange rate on crude oil price formation by OPEC members and covered crude oils produced by all members except Iraq, Kuwait and Venezuela. They concluded that there is a degree of rivalry among OPEC members in order to obtain more market power. Their results confirmed the idea that OPEC has no unified price and suggested a partial market-sharing model (Yousefi and Wirjanto, 2004).

Early researchers assumed that volatility was constant. Nevertheless, by the

<sup>&</sup>lt;sup>20</sup> See Shephard (1996).

development of the ARCH model, it is now believed widely that volatility changes over time. Volatility clustering, which is a well-known statistical phenomenon, is strong evidence that volatility is not constant. In the application of the ARCH/GARCH models, most studies have suggested that crude oil prices exhibit statistical phenomena, such as volatility clustering and fat-tails, which suggests that ARCH/GARCH models are suitable for modelling the volatility of crude oil prices.

Figure 2 compares two periods of weekly price return fluctuations of a sample of two crude oils, i.e., ECU and RUS, starting from 10/1/1997 until 10/1/2010. In period A, from 10/1/1998 through 10/1/2001, weekly return fluctuations exceeded +20 and -20 per cent several times. On the other hand, in period B, from 10-1-2005 through 10-1-2009, weekly price return fluctuations did not exceed the +10 and -10 per cent.

Figure 2: Volatility clustering of ECU, SAM, RUS and BRT crude oils




# Figure 3: Weekly prices of the SAM crude and its corresponding levels

## of volatility



Figure 3 presents a comparison between the weekly prices of the SAM crude and its associated level of weekly returns SAM\_LN. Visual inspection reveals that there is a degree of association between price movement and the level of volatility of weekly returns. This relationship is notably visible between 25/09/2008 and 25/01/2009, when

the price experienced a major drop and, at the same time, volatility of returns increased significantly.

Figure 4: Visual comparison of volatility behaviour of ECU and RUS crude oils





Figure 4 shows that volatility clustering exists in crude oil prices returns. Garis (2009) suggested that periods of calm in crude oil price behaviour are associated, in most cases, with low relative prices and the availability of a large surplus of crude oil. We created visual representations of all crude prices in our sample, but we only included, in Figure 4, two examples to save space. Appendixes 4 and 5 show the complete set. A formal investigation for the existence of an ARCH effect in these series is described in the following section.

Other papers looked at specific relationships between certain crude oil prices and other economic variables. Agren (2006) applied the asymmetric BEKK model of Engle and Kroner (1995) on Brent prices to test the transition of the volatility of crude oil prices to the volatility of the stock market. He concluded that four out of five stock markets, in his sample, showed significant levels of volatility spill over. Andrangi, Chatrath, Rafiee and Ripple (2001) examined the relationship between the price dynamics of Alaska North Slope crude oil and the price of diesel fuel on the U.S. west coast, using both VAR and bivariate-GARCH models. They showed a casual relationship between the two series. Other studies by Asche, Gjolberg and Völker (2005) and Gjolberg and Johnsen (1999) examined the relationship between crude oil prices and refined products in terms of deviations and equilibrium. They found that a long-term price relationship exists between the prices of crude oil and refined products.

#### 2.7 Empirical model and data set

The number of academic research efforts devoted to modelling oil and energy price volatility is legion (Altinay and Karagol, 2004; Regnier, 2007). However, Sadorsky (2006) used different types of uni-variate and multi-variate models to forecast the daily volatility of oil prices. His results showed that a single GARCH model outperformed more complex models, such as state space, vector autoregression and bivariate GARCH models in modelling and forecasting crude oil prices. Therefore, in this chapter we use a uni-variate ARCH-type model, i.e., the GARCH (1,1), to examine the pattern of price volatility for 30 different types of crude oils. The implementation of an ARCH/GARCH model to estimate and forecast the volatility of oil prices has been the focus of several studies.

Since Bollerslev (1986) proposed an extension to Engle's (1982) ARCH model, various hybrids of the GARCH model have emerged over the last decade (Gourieroux, 1997; Engle and Kroner, 1995). Volatility depends on the error term in the preceding periods. The ARCH/GARCH model framework became popular because of its ability to account for and capture any changes of volatility in future forecasts. Conditional heteroscedasticity is explained by the time dependence of information arrival to the market (Lamoureuk and Lastrapes, 1990).

Suppose we wish to outline an ARCH process that is the price of an OPEC or non-OPEC crude in terms of the distribution of the errors of the dynamic, linearregression model. Then, assuming that the dependent variable,  $P_t$ , is generated by the auto-regressive process:

$$\Delta \log P_t = \varphi_0 + \sum_{i=1}^k \varphi_i \Delta \log P_{t-i} + \varepsilon_t, \quad \varepsilon_t \mid \Omega_{t-1} \sim N(0, h_t),$$
(8)

where  $h_t^2$  denotes the conditional variance of the information set  $\Omega_{t-1}$  that is available at time t-1. Much work has been done on identifying the information set used to form expectations by agents in the financial market. This has given rise to a variety of models to explore the phenomenon. Bollerslev (1986) developed a framework to generalize the ARCH process in (1) above to give:

$$h_{t} = \delta + \sum_{i=1}^{p} \alpha_{i} \varepsilon_{t-i}^{2} + \sum_{i=1}^{q} \beta_{i} h_{t-i}.$$
(9)

where  $h_i$  is the conditional variance,  $\varepsilon_{t-1}^2$  is the volatility information during the last period, and  $h_{t-i}$  is the fitted variance during the previous period representing persistence in volatility. In effect, including the lagged conditional variances might capture the "adaptive learning" phenomenon that characterizes the process. This adaptive learning phenomenon is in line with Feutor-O'Crevy et al. (2005), who suggested that market behaviour has memory and that it can remember what events occurred and the reactions to those events. This in line with results obtained by Alvarez-Ramirez et al. (2002), Tabak and Cajueiro (2005a,b; 2007) and Serletis and Andreadis (2004) that concluded that long-term memory does exist in the price volatility of crude oil and other energy markets. For example, Alvarez-Ramirez et al. (2002) used the Hurst analysis for selected samples of different crude oils, including Brent, WTI and Dubai, that span from November 1981 through April 2002. They concluded that crude oil dynamics are driven by a persistent stochastic process, which suggests the existence of long-term memory. Also, Tabak and Cajueiro (2007) estimated the Rescaled Range Hurst (RS) coefficient to identify time-varying degrees of long-term memory. They detected a fractal structure in crude oil prices and other energy markets.

There are significant spreads of premium or discount between the marker price and each of the superior or inferior crude oils. For example, during a period of ten years, starting from January 3, 1997, the price differential between the high quality Canadian Par crude and the low quality Canadian Lloyd crude was a little more than \$7.00 per barrel. By August 17, 2007, this spread had increased to more than \$21.00 per barrel. Table 2.1 shows price differential comparisons between the Brent marker crude and the two top-quality crude oils (Tapis and Par). The Table also shows price differential comparisons between the Brent marker crude and the two lowest-quality crudes (Lloyd and Maya).

| Crude | API   | Sulfur | Price <sub>1997</sub> | Price <sub>2007</sub> | (%)Differential |
|-------|-------|--------|-----------------------|-----------------------|-----------------|
|       |       |        |                       |                       |                 |
| Brent | 38.3  | 0.4    | 24.05                 | 69.78                 | 190.14          |
| Tapis | 44    | 0.03   | 25.7                  | 75.09                 | 192.18          |
| Par   | 40.02 | 0.3    | 25.69                 | 73.63                 | 186.67          |
| Lloyd | 22    | 3.15   | 18.6                  | 53.94                 | 190             |
| Maya  | 22.1  | 3.31   | 19.33                 | 59.89                 | 209.82          |

Table 2.1: Price differential for four types of crude oils

In recent years, newly developed oil fields in the African state of Chad and in the Atlantic basin have produced crude oils that contain high levels of TAN<sup>21</sup>(Bacon and Tordo, 2005). Currently, most refineries around the world do not have the technology to process high-TAN crude oils. Therefore, these crude oils are sold at a discount and are often blended with other superior types of crude oil to decrease the TAN concentration before refining. However, the issue of high levels of TAN should not have a major impact on our analysis, given that our crude oil samples had TAN levels that ranged from low to moderate.

#### 2.8 Descriptive statistics

Characteristics of the data can be summarised by looking at the mean, standard deviation, variance, skewness and kurtosis. I applied these measures to the level prices of the selected crudes and obtained the following results. By looking at the mean of OPEC crudes, we notice that it has a value of \$40.35 per barrel (/bbl) compared to \$41.15/bbl for non-OPEC crudes. This indicates that throughout our sample, non-OPEC crudes were on average sold for an extra of \$0.80/bbl.

To test whether these extra costs are due to the quality factors, we calculated the averages for API numbers and the sulphur content for OPEC and non-OPEC crudes. These averages are presented in Appendix 1, and they show that the average sulphur content for the OPEC crudes is 1.25 percent, which is 62 percent higher than the

<sup>&</sup>lt;sup>21</sup> High TAN refers to a concentration of 1.0 mg KOH/g crude oil or more.

average for the non-OPEC crudes which is 0.77 percent. However, more advanced testing and analysis are presented in following two chapters to test price behaviour of OPEC and non-OPEC crudes. The standard deviations of crude oil prices are presented in the third column of Tables 2.2 and 2.3.

| Table 2.2:    | Summary        | statistics | for | OPEC | crude |
|---------------|----------------|------------|-----|------|-------|
| oil prices (U | J <b>S</b> \$) |            |     |      |       |

| Crude   | MEAN   | ST. DEV | KURTOSIS | SKEWNESS |
|---------|--------|---------|----------|----------|
| ADM     | 42.356 | 27.302  | 4.160    | 1.208    |
| ASB     | 42.741 | 27.262  | 4.030    | 1.175    |
| ANC     | 40.696 | 25.982  | 4.140    | 1.204    |
| DUB     | 39.891 | 25.877  | 4.270    | 1.251    |
| ECU     | 36.507 | 23.414  | 4.660    | 1.359    |
| IRH     | 39.114 | 25.504  | 4.130    | 1.238    |
| IRL     | 40.161 | 26.092  | 4.100    | 1.220    |
| KUT     | 38.904 | 25.280  | 4.250    | 1.250    |
| LIB     | 41.669 | 26.417  | 4.070    | 1.195    |
| NGB     | 43.126 | 27.883  | 4.060    | 1.179    |
| NGE     | 43.000 | 27.897  | 4.080    | 1.181    |
| DUK     | 41.754 | 27.179  | 4.190    | 1.221    |
| SAH     | 37.153 | 24.742  | 4.410    | 1.332    |
| SAL     | 39.720 | 25.920  | 4.340    | 1.288    |
| SAM     | 38.363 | 25.236  | 4.360    | 1.306    |
| VEN     | 40.467 | 25.874  | 4.410    | 1.272    |
| Average | 40.351 |         | 4.229    | 1.242    |

| Crude   | MEAN   | ST. DEV | KURTOSIS | SKEWNESS |
|---------|--------|---------|----------|----------|
| AUS     | 43.835 | 27.890  | 4.070    | 1.177    |
| CAM     | 40.808 | 26.160  | 4.200    | 1.219    |
| CAP     | 42.777 | 26.624  | 4.360    | 1.240    |
| CHI     | 41.571 | 26.326  | 4.320    | 1.237    |
| COL     | 41.097 | 27.046  | 4.250    | 1.232    |
| EGS     | 38.175 | 25.552  | 4.240    | 1.252    |
| INO     | 42.739 | 27.694  | 4.170    | 1.210    |
| TAP     | 44.980 | 28.648  | 4.090    | 1.180    |
| MXI     | 40.265 | 25.915  | 4.410    | 1.270    |
| MXM     | 34.548 | 23.743  | 4.490    | 1.316    |
| NOE     | 42.501 | 27.306  | 4.140    | 1.197    |
| OMN     | 40.304 | 26.086  | 4.210    | 1.229    |
| RUS     | 40.215 | 26.009  | 4.180    | 1.227    |
| BRT     | 42.314 | 27.013  | 4.100    | 1.192    |
| Average | 41.152 |         | 4.231    | 1.227    |

Table 2.3: Summary statistics for non-OPEC crude oil prices (US \$)

#### 2.9 Unit root testing

Testing for a unit root is a critical first step in a sound empirical application of a time series. Most studies have concluded that oil price levels are not stationary (i.e., do have a unit root). For example, Nelson and Plosser (1982) explained that the majority of macroeconomic and financial series have a unit root. They further stated that the first difference of such time series tends to be unit root-free. Furthermore, spot prices of commodity-based futures and options are also found to follow a random walk, that is to say, these series of prices are not stationary (Pindyck, 1999). More recent studies by Serletis and Rangel-Ruiz (2004) and others argued that spot prices of oil are not

stationary. In order to obtain meaningful results and to avoid spurious regression, which can lead to the acceptance of a false relationship (Type I error) or the rejection of a true relationship (Type II error), these series must be differenced once in most cases.

A non-stationary series causes spurious regression, which means that the obtained results indicate a statistically significant relationship. However, this relationship can be explained as a contemporaneous correlation, not as a meaningful relationship (Granger and Newbold, 1974). The outcome of spurious regression can be stated as unreliable forecast and conventional hypothesis test or unreliable confidence intervals (Stock and Watson, 2007).

Asteriou and Hall (2006) states that, testing for non-stationarity is equivalent to testing for the existence of a unite-root. In a simple AR(1) process  $P_t = \varphi P_{t-1} + u_t$ , the unit root test is simply to test the hypothesis that  $H_0: \varphi = 1$ , which suggests the existence of a unit root against the null hypothesis that  $H_1: \varphi < 1$ , which suggests that a unit root does not exist. The above equation can be re-written as follow:  $\Delta P_{t-1} = \gamma P_{t-1} + u_t$ , in which  $\gamma = (\varphi - 1)$ . In case  $\varphi = 1$ ,  $\gamma = 0$ , which suggest the existence of a unit root. In the case of  $\varphi < 1$ , which would cause  $\gamma < 0$  and we reach the conclusion that the series is stationary (i. e. has no unit root).

Both a constant term and a time trend can be included. In case of only a constant term, the equation takes the form  $\Delta P_{t-1} = \sigma_0 + \gamma P_{t-1} + u_t$ , where  $\sigma_0$  represents a constant term. In the case of both a constant and a non-stochastic time trend in the model, the equation takes the form  $\Delta P_{t-1} = \sigma_0 + \alpha_2 t + \gamma P_{t-1} + u_t$  in which the time trend is represented by  $\alpha_2 t$ . Then, the DF test is simply to test for stationarity using the normal t-

71

test of the coefficients of the lagged dependent variable  $P_{t-1}$ . MacKinnon (1991) provides special critical values for this test. The statistical value of the DF test is compared to the critical value. In case the DF test value is smaller than the critical value, the null hypothesis of a unit root is rejected and we reach the conclusion that  $P_t$  is a stationary process.

Dickey and Fuller (1981) extended the DF testing procedure to eliminate autocorrelation generated by the assumption that the error term is uncorrelated. They developed the augmented DF test (ADF test) by including an extra lagged term of the dependent variable. The number of lags is determined empirically by using procedures such as AIC and SBC.

Although most studies show that oil prices have unit root problem and point toward differencing these prices, we applied the ADF unit root test to check whether our samples of 30 different crude oil prices series are stationary or not. In testing for unit root, three different cases are possible. First case is a model with no constant term and no linear trend. Second is a model with a constant term but without a liner trend. Finally is a model with both constant term and a deterministic trend. Unless the actual datagenerating process is known, the econometricians always face the challenge of identifying the most appropriate case. However, given that the first case of no constant term is extremely restrictive (Davidson and McKinnon, 1993), we focus our modelling in the second and third models, (i. e. a model with a constant term but without a liner trend and a model with both constant term and a deterministic trend).

We use the ADF test for the two cases of only a constant term and for both a constant term and a time trend. These two models can be specified, respectively, as

follow:

$$\Delta P_{t} = \sigma_{0} + \gamma P_{t-1} + \sum_{i=1}^{k} \beta_{i} \Delta P_{t-i} + u_{t}$$

$$\tag{10}$$

$$\Delta P_{t} = \sigma_{0} + \gamma P_{t-1} + \alpha_{2} t \sum_{i=1}^{k} \beta_{i} \Delta P_{t-i} + u_{t}$$

$$\tag{11}$$

where  $\gamma = (\varphi - 1)_{, \sigma_0}$  is a constant term and  $a_2 t$  is a time trend term. We are interested in whether  $\varphi$  is equal to unity which would suggest the existence of a unit root (i. e. non-stationary time series). The null hypothesis is  $H_0: \varphi = 1$  against the alternative hypothesis  $H_1: \varphi < 1$ . In case  $P_t$  is increasing as a result of the positive trend  $\beta > 0$  and  $\varphi < 1$  as a result of detrending, then results of the regression are expected to be sound and not expected to suffer from spurious regression. However, in case  $\sigma > 0, \beta = 0$  and  $\varphi = 1$ , then  $P_t$  is growing as a result of a random walk with a positive drift, which suggests that detrending would not do away with the problem of nonstationarity, and only working with  $\Delta P_t$  will result in a sound regression.

The results in Tables 2.4 and 2.5 show that crude oil prices are not stationary at levels and are stationary in the first difference. These results are in line with other studies, such as Bessec and Meritet (2007), which report that a unit root is not generally rejected for variables in level prices, but are rejected in first differences. Table 2.4 contains the results obtained for OPEC crudes, including the lag lengths that were determined by the Akaike information criterion (AIC) plus  $2^{22}$ . Furthermore, the data

<sup>&</sup>lt;sup>22</sup>Pantula et al. (1994) suggests that 2 more lags should be added to the number of lags obtained by AIC to

were tested twice, once by including only an intercept (hence M2) and a second time by including both an intercept and a trend (hence M3). The case of no intercept and no trend (hence M1) has proven to be very restricted and may not be a useful in unit root testing. Davidson and McKinnon (1993) said that testing with a zero intercept is very restrictive and that it is "hard to imagine" using a zero intercept in an economic time series.

Table 2.4 shows that in the case of M2, all OPEC crudes prices are nonstationary at critical values of 5 percent. However, none are statistically significant at 5 percent. In the case of M3, most crude oil prices are non-stationary at critical value of 5 percent. Crude oils ADM, DUB and KUT are non-stationary at critical value of 1 percent. These same crude oil prices are the only ones showing 5 percent level of statistical significant. In the case of M2 for non-OPEC crude oils, Table 2.5 shows all crude oil prices are non-stationary at 5 percent. However, none of these results are significant at 5 percent. On the other hand, most of oil prices in M3 are non-stationary at 5 percent with the exception of MXM and OMN, which are non-stationary at 1 percent. However, the MXM crude is the only one with significant level of 5 percent.

account for settlement dates. In our case, the addition of 2 more lags would equal the addition of two weeks to account for physical delivery of crude oil.

|        | M2: With an intercept |               | M3: With an intercept + trend |           |              |         |  |
|--------|-----------------------|---------------|-------------------------------|-----------|--------------|---------|--|
|        | Number of             |               |                               | Number of |              |         |  |
| Series | Lags                  | t-statistics  | p-value                       | Lags      | t-statistics | p-value |  |
|        | Level of the Series   |               |                               |           |              |         |  |
| ADM    | 5                     | -1.716        | 0.422                         | 5         | -3.573*      | 0.032   |  |
| ASB    | 1                     | -1.102        | 0.716                         | 1         | -2.652       | 0.257   |  |
| ANC    | 1                     | -1.121        | 0.708                         | 1         | -2.769       | 0.209   |  |
| DUB    | 5                     | -1.681        | 0.44                          | 5         | -3.568*      | 0.033   |  |
| ECU    | 1                     | -1.13         | 0.705                         | 1         | -2.888       | 0.166   |  |
| IRH    | 1                     | -1.067        | 0.73                          | 1         | -2.684       | 0.243   |  |
| IRL    | 1                     | -1.055        | 0.734                         | 1         | -2.654       | 0.256   |  |
| KUT    | 3                     | -1.403        | 0.581                         | 5         | -3.611*      | 0.029   |  |
| LIB    | 1                     | -1.038        | 0.741                         | 1         | -2.611       | 0.275   |  |
| NGB    | 3                     | -1.432        | 0.567                         | 3         | -2.979       | 0.138   |  |
| NGE    | 1                     | -1.09         | 0.721                         | 1         | -2.644       | 0.260   |  |
| DUK    | 3                     | -1.431        | 0.567                         | 3         | -3.022       | 0.126   |  |
| SAH    | 3                     | -1.454        | 0.556                         | 3         | -3.067       | 0.115   |  |
| SAL    | 3                     | -1.416        | 0.575                         | 3         | -2.986       | 0.136   |  |
| SAM    | 3                     | -1.443        | 0.561                         | 3         | -3.028       | 0.125   |  |
| VEN    | 1                     | -1.060        | 0.732                         | 1         | -2.709       | 0.232   |  |
|        | Differences           | of the Series |                               |           |              | -       |  |
| ADM    | 4                     | -7.619*       | 0.000                         | 4         | -7.618*      | 0.00    |  |
| ASB    | 0                     | -19.520*      | 0.000                         | 0         | -19.513*     | 0.00    |  |
| ANC    | 0                     | -19.547*      | 0.000                         | 0         | -19.543*     | 0.00    |  |
| DUB    | 4                     | -7.8292*      | 0.000                         | 4         | -7.829*      | 0.00    |  |
| ECU    | 0                     | -20.436*      | 0.000                         | 0         | -20.440*     | 0.00    |  |
| IRH    | 0                     | -19.507*      | 0.000                         | 0         | -19.503*     | 0.00    |  |
| IRL    | 0                     | -19.511*      | 0.000                         | 0         | -19.506*     | 0.00    |  |
| KUT    | 2                     | -10.848*      | 0.000                         | 2         | -10.845*     | 0.00    |  |
| LIB    | 0                     | -20.436*      | 0.000                         | 0         | -20.430*     | 0.00    |  |
| NGB    | 2                     | -11.425*      | 0.000                         | 2         | -11.419*     | 0.00    |  |
| NGE    | 0                     | -19.337*      | 0.000                         | 0         | -19.331*     | 0.00    |  |
| DUK    | 2                     | -10.368*      | 0.000                         | 2         | -10.364*     | 0.00    |  |
| SAH    | 2                     | -11.134*      | 0.000                         | 2         | -11.133*     | 0.00    |  |
| SAL    | 2                     | -11.050*      | 0.000                         | 2         | -11.048*     | 0.00    |  |
| SAM    | 2                     | -11.092*      | 0.000                         | 2         | -11.090*     | 0.00    |  |
| VEN    | 0                     | -20.831*      | 0.000                         | 0         | -20.828*     | 0.00    |  |

Table 2.4: Results for the ADF unit root test (OPEC crude prices):

Note: Tested for the Ho that the stock price at levels (intercept and intercept + trend) have a unit root. Statistically significant levels at: \* when  $P \le 0.05$ . In the case of M2, the critical values for 1 percent is -3.43, 5 percent is -2.86 and 10 percent is -2.57. In the case of M3, the critical values for 1 percent is -3.97, 5 percent is -3.41 and 10 percent is -3.13. Critical values are based on MacKinnon (1996).

|        | M2: With an intercept |               | M3: With an intercept + trend |           |              |         |
|--------|-----------------------|---------------|-------------------------------|-----------|--------------|---------|
|        | Number of             | •             |                               | Number of |              |         |
| Series | Lags                  | t-statistics  | p-value                       | Lags      | t-statistics | p-value |
|        | Level of the          | Series        |                               | -         |              |         |
| AUS    | 3                     | -1.46         | 0.553                         | 3         | -3.072       | 0.113   |
| CAM    | 1                     | -1.214        | 0.670                         | 1         | -2.851       | 0.179   |
| CAP    | 3                     | -1.584        | 0.489                         | 3         | -3.001       | 0.132   |
| CHI    | 3                     | -1.452        | 0.557                         | 3         | -3.062       | 0.116   |
| COL    | 1                     | -0.931        | 0.778                         | 1         | -2.645       | 0.260   |
| EGS    | 1                     | -1.074        | 0.727                         | 1         | -2.66        | 0.253   |
| INO    | 3                     | -1.425        | 0.57                          | 3         | -3.169       | 0.091   |
| TAP    | 3                     | -1.412        | 0.577                         | 3         | -3.098       | 0.107   |
| MXI    | 1                     | -1.09         | 0.721                         | 1         | -2.72        | 0.228   |
| MXM    | 3                     | -1.446        | 0.56                          | 5         | -3.843*      | 0.015   |
| NOE    | 1                     | -1.101        | 0.716                         | 1         | -2.679       | 0.245   |
| OMN    | 5                     | -1.698        | 0.431                         | 5         | -3.597*      | 0.301   |
| RUS    | 1                     | -1.052        | 0.735                         | 1         | -2.649       | 0.258   |
| BRT    | 1                     | -1.074        | 0.727                         | 1         | -2.626       | 0.268   |
|        | Differences           | of the Series |                               |           |              |         |
| AUS    | 2                     | -10.743*      | 0.000                         | 2         | -10.739*     | 0.000   |
| CAM    | 0                     | -19.982*      | 0.000                         | 0         | -19.975*     | 0.000   |
| CAP    | 2                     | -11.303*      | 0.000                         | 2         | -11.296*     | 0.000   |
| CHI    | 2                     | -11.181*      | 0.000                         | 2         | -11.178*     | 0.000   |
| COL    | 0                     | -20.362*      | 0.000                         | 0         | -20.362*     | 0.000   |
| EGS    | 0                     | -20.551*      | 0.000                         | 0         | -20.546*     | 0.000   |
| INO    | 2                     | -11.088*      | 0.000                         | 2         | -11.087*     | 0.000   |
| TAP    | 2                     | -10.579*      | 0.000                         | 2         | -10.578*     | 0.000   |
| MXI    | 0                     | -20.467*      | 0.000                         | 0         | -20.462*     | 0.000   |
| MXM    | 2                     | -11.316*      | 0.000                         | 0         | -19.897*     | 0.000   |
| NOE    | 0                     | -19.493*      | 0.000                         | 0         | -19.487*     | 0.000   |
| OMN    | 4                     | -7.6939*      | 0.000                         | 4         | -7.6939*     | 0.000   |
| RUS    | 0                     | -21.387*      | 0.000                         | 0         | -21.380*     | 0.000   |
| BRT    | 0                     | -20.590*      | 0.000                         | 0         | -20.583*     | 0.000   |

Table 2.5: Results for the ADF unit root test (non-OPEC crude prices):

Note: Tested for the Ho that the stock price at levels (intercept and intercept + trend) have a unit root. Statistically significant levels at: \* when  $P \le 0.05$ . In the case of M2, the critical values for 1 percent is -3.43, 5 percent is -2.86 and 10 percent is -2.57. In the case of M3, the critical values for 1 percent is -3.97, 5 percent is -3.41 and 10 percent is -3.13. . Critical values are based on MacKinnon (1996).

#### 2.10 Testing for ARCH effects

In applying ARCH testing, we set the null hypothesis to test whether all the q lags of the squared residuals have coefficients that are not significantly different from zero (Brooks, 2008). As explained by Serletis and Shahmoradi (2006), the squared residuals from the autoregression equation (8) on page 62,  $\Delta \log P_t = \varphi_0 + \sum_{i=1}^k \varphi_i \Delta \log P_{t-i} + \varepsilon_t$ ,  $\varepsilon_t | \Omega_{t-1} \sim N(0, h_t)$  are regressed. If there are no ARCH effects, both a\_1 through a\_p will be close to zero, which means little explanatory power for this regression and very low coefficients to determine R^2.

Table 2.6 presents critical values, F-statistics and the test statistic of  $(T*R^2)$ , which is obtained by running the Engle (1982) ARCH effects test. We test against ARCH (1) up to ARCH (5), and the values of the test statistics are greater than the critical values from the (5) chi-squared distribution, which indicates that these crude oil prices are subject to ARCH effects. Thus, an ARCH-type model is a feasible application for modelling the volatility of these crude oil prices.

| OPEC | F-statistics | T*R^2  | non-OPEC | F-statistics | T*R^2  |
|------|--------------|--------|----------|--------------|--------|
| ADM  | 9.284        | 43.789 | AUS      | 47.082       | 10.035 |
| ASB  | 6.216        | 29.963 | CAM      | 46.93        | 10     |
| ANC  | 7.295        | 34.895 | CAP      | 89.906       | 20.573 |
| DUB  | 8.847        | 41.854 | CHI      | 74.031       | 16.49  |
| ECU  | 12.737       | 58.651 | COL      | 21.212       | 4.341  |
| IRH  | 5.896        | 28.484 | EGS      | 188.865      | 52.04  |
| IRL  | 5.947        | 28.72  | INO      | 68.828       | 15.199 |
| KUT  | 9.86         | 46.319 | TAP      | 12.296       | 2.482  |
| LIB  | 6.372        | 30.681 | MXI      | 191.389      | 53.012 |
| NGB  | 10.699       | 49.965 | MXM      | 238.102      | 73.035 |
| NGE  | 44.788       | 169.16 | NOE      | 27.99        | 5.789  |
| DUK  | 11.156       | 51.935 | OMN      | 46.77        | 9.964  |
| SAH  | 10.98        | 51.176 | RUS      | 46.631       | 9.932  |
| SAL  | 9.025        | 42.644 | BRT      | 29.403       | 6.094  |
| SAM  | 10.945       | 51.025 |          |              | -      |
| VEN  | 4.032        | 19.744 |          |              |        |

Table 2.6: Results of the ARCH (5) test

### 2.11 Results and discussion

Estimated coefficients of both the ARCH term,  $\alpha_i$ , and the GARCH term,  $\beta_i$ , are positive and significant for all crude oil prices. No significant difference can be found between the averages calculated for the two groups, OPEC and non-OPEC crude oils. Tables 2.7 provides the ARCH and GARCH terms for OPEC and non-OPEC crudes, respectively. The mean values for both groups are essentially the same. Bidding behaviour of market participants seems not to distinguish between whether a crude oil is provided by an OPEC or a non-OPEC producer.

| Crude          | $\alpha_{i}$  | $\beta_i$     | $\alpha_i + \beta_i$ |  |  |
|----------------|---------------|---------------|----------------------|--|--|
|                | OI            | PEC           |                      |  |  |
| ADM            | 0.099 (3.19)  | 0.865 (24.6)  | 0.965                |  |  |
| ASB            | 0.07 (2.66)   | 0.888 (21.9)  | 0.959                |  |  |
| ANC            | 0.073 (2.39)  | 0.874 (17.9)  | 0.946                |  |  |
| DUB            | 0.093 (2.85)  | 0.861 (21.8)  | 0.954                |  |  |
| ECU            | 0.152 (1.32)  | 0.724 (4.05)  | 0.876                |  |  |
| IRH            | 0.042 (0.739) | 0.873 (4.45)  | 0.915                |  |  |
| IRL            | 0.074 (2.42)  | 0.862 (16.06) | 0.937                |  |  |
| KUT            | 0.092 (2.66)  | 0.859 (21)    | 0.951                |  |  |
| LIB            | 0.059 (2.30)  | 0.903 (23.7)  | 0.963                |  |  |
| NGB            | 0.107 (2.03)  | 0.826 (12.8)  | 0.933                |  |  |
| NGE            | 0.062 (2.44)  | 0.903 (24)    | 0.966                |  |  |
| DUK            | 0.088 (2.75)  | 0.868 (20.4)  | 0.956                |  |  |
| SAH            | 0.092 (2.63)  | 0.837 (15.2)  | 0.929                |  |  |
| SAL            | 0.092 (2.76)  | 0.838 (14.5)  | 0.931                |  |  |
| SAM            | 0.092 (2.47)  | 0.839 (15.1)  | 0.931                |  |  |
| VEN            | 0.054 (1.75)  | 0.879 (11.9)  | 0.933                |  |  |
| Average 0.9403 |               |               |                      |  |  |
| non-OPEC       |               |               |                      |  |  |
| AUS            | 0.083 (2.38)  | 0.861 (17.1)  | 0.944                |  |  |
| CAM            | 0.094 (2.42)  | 0.834 (14.6)  | 0.928                |  |  |
| CAP            | 0.08 (2.51)   | 0.87 (23.7)   | 0.950                |  |  |
| CHI            | 0.121 (2.25)  | 0.79 (10)     | 0.911                |  |  |
| COL            | 0.075 (2.37)  | 0.887 (19.6)  | 0.963                |  |  |
| EGS            | 0.072 (2.66)  | 0.898 (24.70  | 0.970                |  |  |
| INO            | 0.121 (2.13)  | 0.776 (9.39)  | 0.898                |  |  |
| TAP            | 0.031 (1.53)  | 0.953 (26.5)  | 0.984                |  |  |
| MXI            | 0.063 (1.79)  | 0.872 (13.6)  | 0.935                |  |  |
| MXM            | 0.089 (2.83)  | 0.868 (20.8)  | 0.958                |  |  |
| NOE            | 0.068 (2.39)  | 0.888 (21.3)  | 0.956                |  |  |
| OMN            | 0.087 (2.61)  | 0.864 (18.5)  | 0.951                |  |  |
| RUS            | 0.054 ( 1.21) | 0.862 (7.65)  | 0.916                |  |  |
|                |               |               |                      |  |  |
| BRT            | 0.026 (0.776) | 0.879 (4.68)  | 0.906                |  |  |

Table 2.7: Results of the GARCH model for OPEC and non-OPEC crude prices

In fact, in terms of volatility persistence, coefficients of crude oil prices show high levels in both groups. For example, the highest  $\alpha_i + \beta_i$  coefficient obtained in the OPEC crude was 0.966 for the NGE crude and the lowest is 0.876 for the ECO crude. Likewise, in the non-OPEC group, the highest  $\alpha_i + \beta_i$  coefficient was 0.984 for the TAP crude, and the lowest was 0.898 for the INO crude. However, the two groups had an average  $\alpha_i + \beta_i$  of 0.94, which means that variations of volatility between different crude prices are due to factors other than OPEC or non-OPEC affiliation.

Analysis of the residuals obtained suggests that the GARCH (1, 1) model is very good fit for the data at hand. Charts of standardized residuals, included in Appendix 10, indicate that no additional information can be extracted from the data. This was also confirmed by the correlogram and partial correlogram performed on the residuals of the GARCH application on each crude oil price series in which ACF and PCF were not significantly different from zero for up to 90 lags. The selection of 90 lags is based on the time-lag estimation of two years between the decision to develop an oil field and actual production<sup>23</sup>.

<sup>&</sup>lt;sup>23</sup> For further discussion and details about time-lag in the oil industry, see Smit (1997)

#### 2.12 Concluding remarks

In this chapter, we presented the results of applying a GARCH-type model to examine whether there is a significant difference between the price volatility of crude oil produced by OPEC and non-OPEC countries. The prices of the 30 different crude oil types span from 03/01/1997 through 29/01/2010. These series were tested for the unit root problem and were found to be stationary at the first differences.

Estimated coefficients of both the ARCH term,  $\alpha_i$ , and the GARCH term,  $\beta_i$ , were positive and significant for all crude oil prices. However, no significant difference can be found between the averages of coefficients calculated for the two groups, OPEC and non-OPEC. Our main finding is that variations in volatility of individual crude oil prices are due to factors other than OPEC or non-OPEC affiliation. In other words, OPEC and non-OPEC affiliation has no bearing on the volatility of crude oil prices. Other factors that may cause a different degree of volatility may include causes of possible disruption of supply of a particular type of crude oil.

Market players might think that the availability of some crude oils in the global oil market could be limited due to different exogenous or endogenous factors. In chapter 4, we analyse the impact of different sets of news items and events on the price performance of crude oils. I looked into whether there is a significant difference in the price behaviour of different crude oils toward factors related to supply disruption as a result of industrial action, political unrest, or environmental events.

Chapter 3: Modelling long-term relationship between stock prices of oil companies and crude oil prices: an application of co-integration and Error Correction Models

#### **3.1 Introduction**

The estimation of cashflow is a critical starting point in evaluating potential projects. Prior to signing contracts, companies develop scenarios of the expected cashflow (in and out) of a proposed project as an aid for decision making. Based on the current and future conditions of the global economy and the related business environment, the financial manager in charge of developing these scenarios must take into account the possible risks associated with undertaking the project. In the case of an oil company, committing to contractual agreements requires an in-depth analysis to identify, mitigate and manage possible sources of risk that could affect streams of cashflow in and out of the project.

Amic and Lautard (2005) suggested that risk management in the oil industry essentially comes down to managing the relationship between time and price. They specifically stated that risk management can help strategically in transferring near-term cashflow risk generated by short-term moves in crude oil prices. They concluded that the use of risk-management tools is no longer limited to defensive strategies; they are also being used as a proactive means for reducing weighted cost of capital and for changing the allocation of cashflow cycles. In addition, they suggested that analysing risks associated with location and fundamentals, such as price, storage rate and crack spread, products and quality, provide the bases of a sound strategic risk management programme.

However, in light of the complexity of the global energy system, such an analysis is not easily conducted. In fact, a report provided by the U.S. Department of Energy stated that risk management is probably the most difficult task facing management (DOE, 2005). In addition, few oil producers consider completely hedging the risk associated with their exploration programmes (Amic and Lautard, 2005). They found that small U.S. oil companies are more active than large producers. On the consumer side, the explicit purpose of derivative use is to keep plants in constant operation. For example, European utilities do more hedging on both low- and high-sulphur crude oils. Also, they see more hedging from chemical companies on naphtha, but it is still very limited. In addition, Amic and Lautard (2005) saw more hedging taking place in the North American, Asian-Pacific and, less so, in the North Sea areas. This limitation suggests that there is a wide area for research and application of risk management in the oil industry.

Future cashflow estimations can be used as a proxy for the expected profitability of investments and projects<sup>24</sup>. However, these future cashflow estimates can vary greatly due to the degree of variability in the underlying assumptions, such as levels of interest rates and foreign exchange and commodity prices. Cashflows expected from a proposed project should be estimated by applying a discount rate that reflects the expected risk associated with the project. As finance theory suggests, the ultimate goal

 $<sup>^{24}</sup>$  A more sophisticated version of the cashflow proxy can be used with time series estimations, in which the variable intended to control investment opportunities is influenced by error measurement; see Ericson and Whited (2000).

of a firm is to maximize shareholders' wealth by undertaking projects and engaging in operations that are expected to generate positive future cashflows enough to cover initial investment and operational costs, as well as meet a pre-specified internal rate of return. Products offered by the derivative markets (i.e., swaps and options) introduced an additional dimension to the task of estimating future cashflows of a proposed project. In case of high uncertainty of future cashflows, a swap agreement can be made with a counterparty to offer funding (or backing) for the development of the project. These agreements can be used as collateral to secure bank loans (Ripple, 2009).

However, using derivatives could be a double-edged sword that may act against the intended goals. For, example, in the early 1990s, the German Refining and Marketing Group (MGRM)<sup>25</sup> agreed to sell 160 million barrels of oil at a fixed price and on a fixed delivery schedule over the coming 10 years. The deal was profitable for the company as long as spot price of crude oil is below its fixed prices. However, in case spot oil prices increase above the fixed price, the company would incur losses. Thus, the Company was facing the risk of increasing crude oil prices above the specified fixed price. As a result, it decided to buy futures contracts to hedge against rising crude prices. Theoretically the problem was solved. However, implementation in real market causes another problem. Given the huge size of MGRM's original position of commuting to sell 160 million barrels, the equivalent of Kuwaiti production for a period of 83 days, 55,000 futures contracts was well-above the daily volume of 15,000 – 30,000 future oil contracts traded in NYMEX. Once other players realized MGRM

<sup>&</sup>lt;sup>25</sup> See Risk Management in Energy Markets, 2008 by T. James

problem, prices began to move against the company. The end result was a loss of \$1.5 billion, because the Company created a situation in which other players bid the price up and it had no choice but to follow their lead.

The MGRM case showed how movement in crude oil prices could have a major implication in a company's profit and, subsequently, in the market's valuation of its stock prices. It emphasised the importance of accurately predicting future oil prices before committing to contractual agreement. It also shows that one decision to deal with a particular risk could initiate a chain reaction that could end-up with raising another type of risk. Thus, market dynamic and its effects in prices need to be understood before making long-term investment decisions.

From the perspective of an oil exploration company, a substantial proportion of its resources are committed to a limited number of carefully selected projects. Concentration of assets raises certain types of risk that must be addressed by involved parties within the organization. Decisions on allocating limited resources must be made by "the firm as a whole" (Medlock, 2009). Given this high concentration of resource allocation and the high level of uncertainty surrounding expected cashflows (i.e., oil prices), constant assessment and evaluation of future value of cashflows are needed to ensure the financial soundness of current and future projects. Medlock states that expected future prices play a major role in assessment of project profitability. Furthermore, the analysis of cashflows plays a major role in stock valuation techniques performed by external parties. Discounted cashflows are used by potential investors to assess the value of a stock investment. Fund managers, stock analysts and private investors develop their own cashflow scenarios with the hope of discovering undervalued and overvalued stocks. The basic idea is that current stock prices should reflect the stream of future cashflows discounted at market interest rate. Any price deviation from the estimated value of the stock creates the opportunity to buy or short the stock. The challenge in these techniques of discounted future cashflows is to accurately predict future discount rates and accordingly adjust expected future cashflows.

This role of cashflow analysis by both the company's executives to evaluate proposed projects and by potential stock investors to value stock investments suggests a possible integrated relationship between stock prices of companies and crude oil prices. In other words, it suggests that both oil prices and stock prices of oil companies could be driven by a common trend. In theory, stock prices are expected to reflect future cashflows generated by the company's operations, resulting from current and future projects. These cashflows are expected to be influenced significantly by crude oil prices, thus suggesting a possible link between trends in crude oil prices and oil stock prices. Figure 5 shows the steps performed in calculating free cashflows to equity (FCFE)<sup>26</sup> and free cashflows to the firm (FCFF), which are used in stock valuation techniques.

The starting point in these calculations is net income, which is the result of subtracting expenses from revenues. However, estimations of future revenue and costs require accurate prediction of future oil prices, production optimization, capacity utilization, royalties and capitalized cost. In estimating cashflows, internal parties have an edge in estimating all these internally generated accounting items. Outside parties, such as stock investors, may not have similar (or timely) access to the information, with

<sup>&</sup>lt;sup>26</sup> For further discussion and detail, see A. Damodran, Damodran on Valuation (1994) and F. Reilly and K. Brown, Investment Analysis and Portfolio Management (2003).

the possible exception of oil prices, needed to estimate other contributing items in calculating net income and related cashflows.



#### **Figure 5: Calculations of FCFE and FCFF**

Information contained in crude oil prices feeds both parties in developing future cashflow estimates; however, the asymmetry of information used to predict other accounting items may cause stock prices to be driven (or generated) by trends other than the trend that drives oil prices (i.e., generated by another data generating process). Asymmetry of information suggests that estimation of future cashflows may not be examined or conducted similarly by both parties. Assessing related information and estimating its impact on a proposed project by internal parties, such as the company's CEO or CFO, could differ significantly from assessments performed by external parties.

This gap of information goes against the idea that both stock prices and crude oil prices are driven by a common data generating process. Although, both parties use oil prices in determining future net income and future cashflows, not all parties have equal access to the other related information required for making more accurate estimations. The case could be made that the set of information available in determining future cashflows for the purpose of stock price valuation of oil companies is different from the set of information used by managers to accept or reject an energy-related project. In fact, the asymmetry of information in pricing has long being investigated as one of the main cause of market failures (Weyman-Jones, 2009).

The methods incorporated the co-integration and error correction model developed by Engle and Granger (1987) and extended by Johansen (1988) and Johansen and Juselius (1992) can be used to investigate the long-term relationship between two (or more) sets of data. The co-integration method enables researchers to test for integration between geographic (or product) markets (Bourbonnais and Geoffron, 2007). In other words, it allows examining whether there is a common stochastic trend between prices. They suggested that co-integration analysis can be applied by regulators and antitrust authorities to fine tune government policies related to supply securities and analysis of investments between markets. In this chapter, we investigate whether the stock prices of 32 oil companies and the prices of 30 different types of crude oils are co-integrated (i.e., driven by a common trend). We used the co-integration test of Johansen (1988) and Johansen and Juselius (1992) to examine the long-term relationship between share prices of non-integrated upstream and downstream oil companies and the prices of 30 different types of crude oils are co-integrated types of crude oil produced by OPEC and non-OPEC countries. The combination of two non-stationary time series sometimes can lead to stationarity. The

two series S1 and S2 are co-integrated if they share a common stochastic trend of the same order of integration or if there is a linear combination of these two series of lower integration order with stationary, long-term residuals. The following hypothesis states the argument:

Hypothesis 2: The prices of OPEC and non-OPEC crude oils have similar longterm relationships with the stock prices of upstream and downstream oil companies.

We used weekly dataset spans from 03/01/1997 through 01/29/2010 for both stocks and crude oil prices with a total of 681 observations for each series. Prices for crude oils are spot prices and are free on board (FOB). The prices were obtained from an online database provided by the U.S. Energy Information Administration at <u>www.eia.doe.gov</u>. Stock prices for the oil companies were obtained from <u>www.Yahoo.Finance.com</u>.

We examined the long-term relationships between the stock prices of each company and the prices of each one of the 30 different crude oils. Once a co-integrated relationship was recognized, I used the bivariate Engle-Grainger co-integration framework to model the error correction model (ECM) for co-integrated series. Modelling ECM and estimating related short-term dynamics should help in developing and forecasting more accurate cashflow scenarios. In other words, the long-run relationship was captured by co-integration, while short-run deviations were described by the ECM estimate. ECM reveals an error-correction term that describes the speed of adjustment of each series back to long-term equilibrium.

Companies covered in this chapter and key information about each company are provided in Appendix 2. Also, Appendix 1 provides the types of crude oils included in the study, their country of origin and some key information. Tables 3.1 and 3.2 in pages 96 and 97, respectively, provide descriptive statistics for upstream and downstream companies' stocks prices, respectively. The next sections are organized as follows. Section 3.2 provides a review of the types of contracts used in the energy industry and the financial risks associated with these contracts. Section 3.3 reviews the possible impact of asymmetry of information that may exist between company's management and outside investors. Section 3.4 explains the role of OPEC and non-OPEC oil producers as a source of information. Section 3.5 provides literature reviews and sets the framework for the cointegration applications in the field of energy economics. Section 3.6 provides an overview of the dataset and model specifications for the Johansen cointegration test and ECM. Section 3.7 presents and discusses the empirical results. Finally, section 3.8 offers concluding remarks.

#### 3.2 Contracts and cash cycle in the petroleum industry

Most upstream oil companies are engaged in what is known as a production sharing contract (PSC). PSCs represent a major portion of the overall oil exploration and development agreements. An estimated 75 percent of global oil reserve replacements are in the form of PSCs between a host government and a contractor (BP Statistical Review, 2004). In these types of arrangements, contractors are expected to bear all risks and costs of exploration and development (Kretzschmar and Kirchner, 2007). Therefore, the early stages of exploration and development incur high levels of cash outflow due to the capital-intensive nature of the associated engineering and technical tasks. Once commercial production starts, contractors expect to recover their costs plus specified returns. Treynor and Cook (2004) provided examples of PSC production for major oil companies, which show that PSCs are increasing significantly on an annual basis.

Rezk (2006) explained how the mechanism of total revenue, production and cost recovery work under the PSC. He showed how oil prices are the determining factor in terms of cost recovery. The company incur the cost of exploration and drilling at its own risk. However, once a commercial discovery is developed, cost recovery (also known as cost oil) begins. Most contracts pre-specify the percentage of production available for cost recovery. However, in most cases, this percentage is within the range of 30 to 60 percent of gross value. Figure 6 shows the link between oil prices and the mechanism by which PSC recovery cost works. Future oil prices are one of the main factors in determining the period of time needed for cost recovery. The amount of oil remaining after deducting cost oil is split between the company and the host government. Taxes only apply to income received by the company after the split.



#### Figure 6: PSC recovery cost over a two-year period

This cash flow cycle, in which a relatively long period of time exists between outflows and inflows, suggests that oil companies would be more likely to face high levels of different types of risk exposure. More specifically, price risk and credit risk would be of "particular concern" for both integrated and non-integrated energy companies (GARP, 2009). In the case of price risk (or market risk), prices would be directly linked to profitability, which suggests that inadequate management of energy prices would have a major negative impact on the company's financial status. In case of an oil exploration company, crude oil prices, as a main input in mathematical and statistical risk management applications, provide a good indicator of the type and amount of expected risk exposure.

#### 3.3 Asymmetry of information and project decision-making

Early studies by Leland and Pyle (1977) and Miller and Rock (1985) suggested that managers have more information about future earnings than does the market, which suggests that managers can take actions that help or hurt current and future owners. The issue of asymmetry of information is well documented in empirical studies and can be explained through many real-world business activities. The second-hand car example presented by Akerlof (1970) showed how limited access to quality of a product can alter the market mechanism and introduce imperfections in the market. In the case of a lessthan-average-quality car, the seller has incentive to withhold information about the "true" condition of the car. On the other hand, the seller of an above-average-quality car would be faced with the possibility of selling at a discount, because the buyer cannot be sure of the car's condition. In this case, the good-quality car would stay out of the market and only the less-than-average-quality car would be in the market. Some sellers with inside information about the quality of certain assets would be less willing than the average seller to accept offers from buyers with less than average information. In extreme cases, this problem could result in total market failure. However, what happens in most cases is that assets are sold for lower prices than would be paid if all buyers and sellers had access to the same information.

Greenwald, Stiglitz and Weiss (1984) showed how information about the value of the firm's existing assets, combined with stochastic risk about the results of new investment, plays a determining role in making financial decisions. Myers and Majluf (1984) expanded the analysis by including the value of liquid reserves and the capacity to issue risk-free debt. They explained how information reaches managers faster than it reaches potential investors. Once managers became aware of a potential positive outcome of an investment, they would have to choose between acting in the interest of current shareholders or against their interests.

If the manager decided to act in the interest of current shareholders, potential investors would infer from their knowledge of the probability distribution of the returns of current assets-in-place that, for example, a new issue of equity signals a poor outcome. Potential investors may think that the management views the outcome of the new investment as unsatisfactory or not attractive enough to be financed internally or through borrowing. This signal could have a negative impact on the share prices of current investors in the company. New investment and issuing new equity will only take place when management thinks that returns of the new investment will offset the dilution of the outstanding shares held by existing investors.

Myers and Majluf (1984) suggested that two sources of asymmetry of information possibly exist in the above example. The first source is that managers could release the new information to competitors, which would affect the value of current, inplace assets negatively and decrease the potential profit of future investment. The second source is that managers are in a position to acquire full knowledge of the probability distribution of current in-place assets and future investment.

Managers would always have the incentive to hold information and to act either in the interest of current investors or in their own interests. Some motivated project managers, especially in the case of mega-projects, tend to hide inherited risk associated with the project (Flyvbjerg et al., 2002). Hiding (or ignoring) possible risk could cause investors to make decisions based on misguided cashflow estimates.

# 3.4 The role OPEC and non-OPEC oil producers as sources of information

The anticipation of OPEC's decisions provides signals to the global oil market. For example, market volatility should respond to OPEC conferences prior to information releases (Horan, Peterson and Mahar, 2004). In case the decision is to increase prices (i.e., by decreasing supply), the market reacts by increasing price volatility. On the other hand, if the decision did not specifically recommend price changes, no significant changes in market volatility are noticed (Wang, Wu and Yang, 2007). The relationship between price and production of crude oils can be described as a negative, backward-bending, supply curve. In this relationship, OPEC sets production levels based on non-competitive behaviour (Dees *et al*, 2005). An analysis of the relationship indicates that production of OPEC individually and collectively "Granger cause" oil prices (Kaufmann *et al.*, 2004).

In pricing OPEC's crude oils, the market factors in any possible 'cheating' in oil production by an OPEC member. Given the track record of some OPEC countries, oil traders can price different crude oils and estimate premiums or discounts more accurately. They also could factor in exogenous events, such as a military conflict or political unrest, associated with OPEC countries.

Non-OPEC oil producers, on the other hand, do not provide such signals to the market about their intentions. For example, a non-OPEC country could make a decision to increase or decrease its production without giving notice to the market. Oil traders would have no lag time to adjust to new levels of availability of certain types of non-OPEC crudes. As a result, the availability of non-OPEC crude types would be subject to an individual country's decision, unlike in the case of OPEC crudes, where the decisions are made collectively by the member states. Yousefi and Wirjanto (2004) specified other variables, such as the price/exchange rate, prices charged by others and the demand elasticises faced by each producer, as stochastic disturbances that should have an impact on the price differentials of different types of crude oils (Yousefi and Wirjanto, 2004).

OPEC's crudes are represented by a basket of crude oils produced by member states. In this basket, a percentage is fixed for every OPEC member, which means that the amount of each OPEC crude oil available on the international market can be estimated. On the other hand, it is possible that the market views non-OPEC members as another group that, by default, produces another basket of crude oils that are governed by the maximum production capacity of each non-OPEC producer rather than a collective decision making process<sup>27</sup>.

#### 3.5 Literature and Methodology

The global energy system consists of several markets, which provide valuable sets of time series for analysis and examination. The evolution of oil prices is one of the most popular time series being analyzed in the energy market (Keppler et. al., 2007). Given that crude oil is the most dominant source of energy, modelling long-term relationship between oil prices and different economic and financial variables has become the focus of a wide range of applications. The co-integration methodology developed originally by Engle and Granger (1987) and enhanced by Johansen (1988) and Johansen and Juselius (1990) provides a framework to identify long-term relationships, including equilibrium and re-adjustment of short-term deviations in energy prices.

Co-integration testing could be viewed as an end by itself with the objective of discovering the presence of an equilibrium relationship between different sets of series (Burgess, 2003). Burgess further stated that a second step could be the use of error-correction models (ECM) to understand the dynamics of any short-term deviation from equilibrium. However, Burgess explained that one of the main weaknesses of the co-

<sup>&</sup>lt;sup>27</sup> Adams and Marquez (1984), Griffin (1985), Verleger (1987a, b), and Jones (1990) did some of the early analyses of the relationship between OPEC and non-OPEC oil producers.

integration approach is that there are different ways of estimating the co-integration relationship and it is not clear which performs the best in practice. However, many academic researchers prefer using the methodology of Johansen (1988) rather than the the Engle Granger methodology (1987). See Patra and Poshakwale (2008).

Hammodeh et al., (2004) used Johansen's co-integration test to show that price fluctuations of West Texas Intermediate (WTI) crude's 1-month and 4-month futures explain the stock prices of firms that are involved in exploration, refining and marketing businesses. More specifically, they noticed that the degree of co-integration varied between crude oil prices and the type of firm. Giovannini et al., (2004) used multivariate, co-integration techniques and the vector-error-correction model (VECM) to analyze the long-term financial determinants of stock prices of six of the major integrated oil companies. They analyzed weekly oil prices in relation to stock market index values, exchange rates and spot and future oil prices. The results of their study showed that there is a significant level of association between the performances of major financial variables and the long-term returns of major oil companies.

Lanza, Manera and Giovannini (2003) used multi-variate, co-integration techniques and vector-error-correction models to analyze the long-term financial determents of the stock prices of six major integrated oil companies. Their study analyzed the weekly oil prices in relation to stock market index values, exchange rates and spot and future oil prices. The results of their study showed a significant level of association between the performances of major financial variables and the long-term returns of major oil companies.
Ripple and Wilamoski (1998) used the co-integration test to examine the degree of co-integration between crude oil markets and the development of futures and spot markets. Their results confirmed that there was a high degree of integration and they emphasized the leading role of the U.S. market in influencing prices in other regions of the world. Serletis and Banack (1990) used the co-integration technique developed by Engle and Granger (1987) to test the efficiency of energy prices in the futures and spot petroleum markets. Their findings were consistent with market efficiency. They found evidence that futures prices are an unbiased predictor of future spot prices, which indicates a high degree of integration. Serletis (1991) used the Engle and Granger (1987) model to examine rational expectation, efficiency and risk on spot-month and second-month futures prices of heating oil, unleaded gasoline and crude oil. His results suggested that, for heating oil, futures prices have "reliable power" in forecasting spot prices. Serletis (1994) used the Johansen (1988) co-integration test to estimate the equilibrium relationship between futures prices of crude oil, heating oil and unleaded gasoline. He concluded that all three futures prices are driven by only one common trend. He further suggested that energy futures prices should be modelled as one cointegration system.

Bourbonnais and Geoffron (2007) stated that co-integration can be used in analyzing investments between markets or in forecasting returns within markets. They used the co-integration techniques developed by Engle and Granger (1997) and Johansen (1988) to examine the long-term equilibrium relationship within European gas markets. Their results suggested that a weak degree of co-integration exists within these markets. Serletis and Herbert (1999) used the co-integration test developed by Engle and Granger (1987) to analyze the dynamics behind the prices of natural gas, fuel oil and power prices in the mid-Atlantic region of the U.S. Their results suggested that the random-walk hypothesis cannot be rejected for either natural gas or fuel oil prices. However, power prices were found to be stationary. They further stated that these results indicate that shocks are permanent in the case of integrated series and temporary in the case of stationary series.

Prices in one market are mainly determined by factors and conditions of the local market in which the product, in this case, the power, is produced and sold. Markets that are integrated with the local market also determine prices (Serletis and Bianchi, 2007). Serletis and Bianchi (2007) tested for a long-term equilibrium relationship between power prices in western North American markets using the Engle-Granger (1987) co-integration test, the error-correction model and the Granger causality test. Their findings suggested that the deregulations of the 1980s have led to the integration of markets in this region.

The progress of model estimation can be summarized in four major steps: 1) selection of lag number in the model using AIC or SC criterion on the VAR; 2) estimation of the matrix rank  $\Pi$ , which allows us to identify the number of co-integration relationships; 3) identification of the long-term relationships between the two variables; and 4) estimation of the vector error-correction model using the maximum likelihood method.

### 3.6 Data and model specification

Burgess (2003) stated that artificial random-walk series and most asset prices are

known as difference stationary. These series are non-stationary, but price differences and returns are stationary. However, we still tested for unit root in crude and stock prices using the Dickey-Fuller (1979) test (ADF)<sup>28</sup> to determine the level of integration without running the risk of biased rejection of the null hypothesis of a unit root. We also used the Philips and Perron unit root test to allow for one structural break on the data. This break can be visually recognised on Figure 7.



Figure 7: Visual identification of price break

The price of the Brent crude oil crashed in less than six months from its highs of \$142.45/bbl on 04/07/2008 to \$36.30/bbl on 26/12/2008. Garis (2009) also recognized

 $<sup>^{28}</sup>$  Zivot unit root test is not required in this case because the assumption for Johansen's multi-variate approach is that the series is not an I(2) process; see Serletis (1994).

this structural break in which the prices of WTI and OMN reference crudes dropped from \$ 147.20/bbl and \$143.20/bbl on 10/7/2008 to \$44.12/bbl and \$45.39/bbl, respectively, by the end of February 2009.

We also use a time series data on weekly stock closing prices of thirty-two nonintegrated oil companies. We selected the largest and most dominant non-integrated firms in the industry based on its market capitalization. Appendix 2 contains additional information on these firms. Tables 3.1 and 3.2 provide summary statistics for each firm of the upstream and downstream sectors, respectively.

| STOCK   | MEAN   | ST. DEV   | KURTOSIS | SKEWNESS |
|---------|--------|-----------|----------|----------|
|         |        | DE Sector |          |          |
| DO      | 53.820 | 31.050    | 2.760    | 0.870    |
| NE      | 41.890 | 18.910    | 3.410    | 0.910    |
| ESV     | 35.810 | 14.290    | 2.850    | 0.540    |
| RIG     | 56.050 | 31.880    | 3.910    | 1.168    |
| ATW     | 47.230 | 22.710    | 3.670    | 1.090    |
| PKD     | 5.960  | 3.040     | 3.270    | 0.850    |
| PTEN    | 23.710 | 9.970     | 3.480    | 0.170    |
| PDE     | 22.350 | 8.480     | 2.530    | 0.370    |
| Average | 35.853 |           | 3.235    | 0.746    |
|         |        | ES Sector |          |          |
| BHI     | 43.990 | 18.850    | 2.960    | 1.040    |
| BJS     | 37.150 | 16.810    | 3.110    | 0.780    |
| HAL     | 37.300 | 15.490    | 3.270    | 0.750    |
| SII     | 49.680 | 16.720    | 1.960    | 0.220    |
| WFT     | 42.450 | 14.400    | 3.090    | -0.100   |
| TESO    | 12.870 | 7.020     | 3.930    | 1.260    |
| SLB     | 68.170 | 19.980    | 3.430    | 0.860    |
| RES     | 13.890 | 5.570     | 4.390    | 1.200    |
| Average | 38.188 |           | 3.268    | 0.751    |

Table 3.1:Summary statistics for upstreamstock prices

| STOCK   | MEAN   | ST. DEV    | KURTOSIS | SKEWNESS |
|---------|--------|------------|----------|----------|
|         |        | PIP Sector |          |          |
| EEP     | 45.330 | 5.930      | 3.860    | -0.650   |
| EP      | 26.080 | 19.070     | 2.100    | 0.730    |
| ETP     | 36.250 | 11.670     | 2.360    | 0.390    |
| KMP     | 45.670 | 9.210      | 3.240    | 0.680    |
| WMB     | 25.930 | 12.570     | 2.060    | -0.058   |
| TCLP    | 29.470 | 7.040      | 2.120    | -0.480   |
| PAA     | 35.270 | 12.590     | 2.010    | 0.150    |
| OKS     | 41.670 | 12.490     | 2.250    | 0.420    |
| Average | 35.709 |            | 2.500    | 0.148    |
|         |        | RM Sector  | ſ        |          |
| HES     | 68.870 | 23.770     | 5.110    | 1.620    |
| IMO     | 41.180 | 20.930     | 5.170    | 1.470    |
| MRO     | 39.650 | 20.260     | 5.790    | 1.790    |
| MUR     | 60.530 | 15.740     | 2.470    | 0.660    |
| SUN     | 47.130 | 21.060     | 3.660    | 1.140    |
| TSO     | 25.160 | 22.630     | 5.530    | 1.700    |
| HOC     | 30.410 | 16.350     | 3.470    | 1.120    |
| SSL     | 20.580 | 14.730     | 2.550    | 0.830    |
| Average | 41.689 |            | 4.219    | 1.291    |

Table 3.2: Summary statistics for downstreamstock prices

Awokuse (2002) explained that, in case unit root is detected, co-integration represents the next step to test whether there is a long-run equilibrium relationship or not. Most studies have concluded that oil prices are not stationary in the level (i.e., do have unit root). For example, Nelson and Plosser (1982) explained that the majority of macroeconomic and financial series have a unit root. They further stated that the first difference of a time series is unit root-free. Furthermore, spot prices of commodity-based futures and options were also found to follow a random walk, that is to say, these

series of prices are not stationary (Pindyck, 1999). More recent studies by Serletis and Rangel-Ruiz (2004) and others argued that spot prices of oil are not stationary and showed that, in order to obtain meaningful results (i.e., to avoid spurious regression), these series must be differenced once in most cases.

Non-stationary series cause spurious regression, which means that the results obtained indicate a statistically significant relationship. However, this relationship can be explained as a contemporaneous correlation, not as a meaningful relationship (Granger and Newbold, 1974). The outcome of spurious regression can be stated as unreliable forecast, conventional hypothesis test or unreliable confidence intervals (Stock and Watson, 2007).

Although most studies show that oil prices have unit root problem and point toward differencing these prices, and in addition to using the augmented Dickey-Fuller (ADF) unit root test, we use the non-parametric unit root test of Phillips and Perron (1988) to test my sample of 30 different crude oil price series and 32 different stock prices of oil companies. Results and discussion presented in this chapter are for stock prices of oil companies using the ADF and Phillips Peron unit root tests. Results and related discussions for crude oil prices using the ADF and Phillips Peron unit root test are presented in Chapter 2.

Phillips and Peron (1988) introduced an alternative unit root test to the (ADF) test by adjusting t-statistics of the original Dickey-Fuller test to account for any possible auto-correlation patterns in the error terms (Verbeek, 2000). In using the ADF test we had to ensure that the error terms are uncorrelated and have a constant variance (i.e. the error terms are statically independent and have a constant variance). Phillips and Peron

103

(1988) (PP test) allows for "fairly mild assumptions" regarding the distribution of errors (Asteriou and Hall, 2006). By looking into stock prices denoted  $P_t$  in following equation:

 $\Delta P_t = \sigma + \gamma P_{t-1} + \varepsilon_t$ ,  $\varepsilon_t | \Omega_{t-1} \sim N(0, h_t)$ , the null hypothesis is  $H_0: \varphi = 1$ against the alternative hypothesis  $H_1: \varphi < 1$ . In case  $P_t$  is increasing as a result of the positive trend  $\beta > 0$  and  $\varphi < 1$  as a result of detrending, then, results of the regression are expected to be sound and not expected to suffer from spurious regression. However, in case  $\alpha > 0, \beta = 0$  and  $\varphi = 1$ , then,  $P_t$  is increasing as a result of a random walk with a positive drift, which suggests that detrending would not negate the problem of nonstationarity, and working with  $\Delta P_t$  is the only way to achieve a sound regression.

The ADF and PP tests deal with higher order serial correlation in two different ways. In case of ADF test, higher order serial correlation are corrected by adding lagged differenced terms, again, the number of lags are determined by AIC or SIC. However, in the case of PP test, corrections to the *t*-statistic for the coefficient  $\gamma$  are made to account for serial correlation in the error term.

Results obtained in Tables 2.4–2.5 in Chapter 2 show results of the ADF unit root test for crude oil prices that are not stationary at levels. These results are in line with those of other studies, such as Bessec and Meritet (2007), who reported that a unit root is not generally rejected for variables in level prices but is rejected in first differences. Tables 3.3a-3.4b contained the results of the ADF and PP unit root tests obtained, including the lag length, that were determined by the Akaike information criterion (AIC) plus 2. Furthermore, I tested each series twice, once by including only an intercept and then by including both an intercept and a trend. The case of no intercept and no trend was proven to be very restricted and may not be useful in unit root testing. Davidson and McKinnon (1993) say that testing with a zero intercept is very restrictive and that it is "hard to imagine" using a zero intercept in an economic time series.

# 3.6.1 Johansen's co-integration technique:

We examined the long-term relationship using the VAR analysis of Johansen (1988) and Johansen and Juselius (1990). This VAR model can be specified as follows:

$$P_{t} = \mu + \phi_{1}P_{t-1} + \dots + \phi_{k}P_{t-k} + e_{t}, \qquad (1)$$

After subtracting  $P_{t-1}$  from both sides of equation (1), the Johansen test in the vector-error-correction model (VECM) format can be specified as follows:

$$\Delta P_t = \mu + \Pi P_{t-1} + \Gamma_1 \Delta P_{t-1} + \dots + \Gamma_1 \Delta P_{t-k+1} + e_t \tag{2}$$

where 
$$P_{t} = \begin{pmatrix} P_{1t} \\ P_{2t} \\ \vdots \\ P_{mt} \end{pmatrix}, \quad \mu_{t} = \begin{pmatrix} \alpha_{10} \\ \alpha_{20} \\ \vdots \\ \alpha_{m0} \end{pmatrix}, \quad \Pi_{k} = \begin{pmatrix} \alpha_{11k} & \alpha_{12k} \cdots & \alpha_{1mk} \\ \alpha_{21k} & \alpha_{22k} \cdots & \alpha_{2mk} \\ \vdots & \vdots & \vdots \\ \alpha_{m1k} & \alpha_{m2k} \cdots & \alpha_{mmk} \end{pmatrix} \quad \text{and} \quad e_{t} = \begin{pmatrix} e_{1t} \\ e_{2t} \\ \vdots \\ e_{mk} \end{pmatrix}$$

where  $\Pi = \sum_{j=1}^{k} \phi_i - I$  is interpreted as a long-term coefficient matrix and  $\Gamma_i = \sum_{j=1+1}^{k} \phi_j$  is interpreted as the short-term deviation from equilibrium. Testing for deviation from the random-walk process provides a tool to identify the presence of a potentially predictable component in the dynamics that drives the time series (Burgess, 2003).

In the Johansen test, we started by estimating the  $\Pi$  matrix. The cointegration relationship depends on the property of the  $\Pi$  matrix. Next, we examined its rank or the number of columns in  $\beta$ . In examining the rank of the  $\Pi$  matrix, three different scenarios are possible (Wang, 2003):

1. 
$$\Pi = \alpha \beta'$$
 has a reduced rank  $0 < r < k$ .

2.  $\Pi = \alpha \beta'$  has a rank of zero. Indicates that there is no cointegration relation among the variables in levels.

3.  $\Pi = \alpha \beta'$  has a full rank. In this case the variables are stationary.

The ML estimates for  $\beta$  equal to the matrix that contains r eigenvectors, which correspond to the r largest eigenvalues of a  $k \times k$  matrix estimated using OLS (Hamilton, 1994). Eigenvalues can be organised in decreasing order, i.e.,  $\hat{\lambda}_1 \ge \hat{\lambda}_2 \ge \cdots \ge \hat{\lambda}_k$  and, in case we have r co-integrating relationship(s) and  $\Pi$  has a rank of r, then it must be that  $\log(1-\lambda_j)=0$  for the smallest value of k-reigenvalues. These estimated eigenvalues can be used in testing the hypothesis of  $\Pi$ 's rank. The two tests used for estimating the smallest eigenvalue  $\lambda_{trace}$  and the largest eigenvalue  $\lambda_{max}$  are specified as follows:

$$\lambda_{trace}(r_0) = -T \sum_{j=r_0+1}^k \log(1 - \hat{\lambda}_j)$$
(4)

$$\lambda_{\max}(r_0) = -T \log(1 - \lambda_{r_0 + 1})$$
(5)

Brooks (2009) explains that the trace test is a joint test in which the null hypothesis states that the number of cointegrated vectors is less than or equal to r co-integrated relationship(s); the alternative hypothesis is that there is more than r cointegrated relationship. On the other hand, the maximum eigenvalue test is performed in separate tests for each eigenvalue. The null hypothesis is that the number of cointegrating vectors is r against the alternative hypothesis of r+1.

The long-term relationship indicates the existence of equilibrium between two (or more) variables. Short-term deviations from this long-term relationship occur, which requires a re-adjusting mechanism back to the long-term equilibrium. In the cointegration framework, this mechanism is represented as an error-correction model (Engle and Granger, 1987), which would be discussed in the following section.

# 3.6.2 Engle-Granger error correction model

Bourbonnais and Geoffron (2007) suggested that co-integration can be used to distinguish between long-run and short-run relationships between variables. Once a long-run equilibrium relationship (i.e., co-integrated relationship) is identified, a possible extension of the co-integration framework is to apply the Error Correction Model (ECM). The objective behind using ECM is to uncover time paths of these cointegrated variables during periods of deviation from long-run equilibrium. The extent and direction of deviation could be of critical importance in the planning and execution of future strategic and operational risk management programs. The error-correction model (Engle and Granger, 1987) can be specified as follow:

$$\Delta Y_t = \delta + \sum_{i=1}^m A \Delta Y_{t-i} + \sum_{j=1}^n B \Delta X_{t-i} + \Psi w_{t-1} + \mathcal{E}_t, \qquad (6)$$

where  $\delta$  is a constant, the terms  $A = -[I - \sum_{j=1}^{i} \prod_{j=1}^{j}]$  and  $B = \sum_{i=1}^{k} \prod_{i=1}^{j}$  are used to

measure short-term and long-term effects, respectively. The error-correction term is represented by  $w_{t-1} = (y_{t-1} - \gamma x_{t-1})$ . The term  $\gamma$  is the co-integration coefficient, which defines the long-term relationship between the two variables. The term A measures the short-term relationship, and B measures the proportion of the last-period error that must be adjusted in order to move back to long-term equilibrium. If we have mvariables in vector  $Y_t$ , then matrix  $\Pi$  will be of order  $m \times m$ , which is the maximum rank of m that is a full-rank matrix. The number of independent co-integration vectors depends on the rank of matrix  $\Pi$ . When we have the rank of matrix  $\Pi$  equal to zero, we can conclude that no long-term relationship or equilibrium exists. In case the rank of matrix  $\Pi$  is equal to zero, we can conclude that no ECM exists as well (Patra and Poshakwale, 2008).

Engle and Granger's theorem of representation states that short-run dynamics can be described by an error-correction model by relating current and lagged first differences of the co-integrated variables and at least one lagged value of the error term. As stated by Serletis and Herbert (1999), the movements of at least some of the cointegrated variables must be influenced by the magnitude of the deviation from the long-run relationship. They further stated that the gap of short-term deviation must be closed by adjustment in one of the variables or in both. They presented the Engle-Granger (1987) bivariate vector auto-regression (VAR) as follows:

$$\Delta Y_{t} = \delta_{1} + \delta_{y} \varepsilon_{t-1} + \sum_{j=1}^{r} \delta_{11}(j) \Delta Y_{t-j} + \sum_{j=1}^{n} \delta_{12}(j) \Delta X_{t-j} + \varepsilon_{yt}$$

$$\Delta X_{t} = \delta_{2} + \delta_{x} \varepsilon_{t-1} + \sum_{j=1}^{r} \delta_{21}(j) \Delta Y_{t-j} + \sum_{j=1}^{n} \delta_{22}(j) \Delta X_{t-j} + \varepsilon_{xt}$$
(7)

Both  $Y_t$  and  $X_t$  are subject to change according to stochastic shocks (i.e.,  $\varepsilon_{yt}$ and  $\varepsilon_{xt}$ ) and to previous deviations represented by  $\varepsilon_{t-1}$ . In case of a positive error term in the previous period,  $\varepsilon_{t-1}$  is positive, and given that  $Y_{t-1} - \delta - \beta X_{t-1} > 0$ , we would expect  $X_t$  increase and adjust toward long-term equilibrium. In the other hand,  $Y_t$ would be decreasing to adjust to long-term equilibrium. The speeds of adjustment in (7) are represented by  $\delta_y$  and  $\delta_x$ . Large and significant values for  $\delta_y$  and  $\delta_x$  imply greater response of  $Y_t$  and  $X_t$  to deviations of previous periods than otherwise. In the other hand, small values of  $\delta_y$  and  $\delta_x$  suggest that  $Y_t$  and  $X_t$  are unresponsive to error from last periods. In other words, the coefficients in (7), as suggested by Serletis and Herbert (1999) are equal to zero.

### 3.7 Empirical results

The results of augmented Dickey-Fuller (ADF) and Philips-Perron (PP) tests confirmed the existence of a unit root, which suggests that the series are suitable for cointegration testing. The results of the unit root tests for the prices of crude oils using the ADF test are included in Chapter 2. Results of the ADF and PP test for the stock prices are provided in Tables 3.3a-3.4b.

Tables 3.3a-3.4b list stocks in the first column, followed by the values of the optimal number of lags, t-statistics and p-values, respectively. The optimal lag length is selected by the Akaike information criterion (AIC). In the case of intercept only (M2), Table 3.3a shows that most DE stocks are non-stationary at 5 percent, except the ATW price, which is non-stationary at 1 percent. However, only ATW is statistically significant at 5 percent and PTEN at 10 percent. These results lead us to conclude that these stock prices do, in fact, suffer from a unit root problem. In the case of the ES sector, most stocks are non-stationary at 5 percent. However, HAL, WFT and RES are non-stationary at 1 percent and the only stocks statistically significant at 5 percent. Table 3.3a further presents the results of the ADF unit root test for the same stocks under M3. For stocks in both sectors, all coefficients are non-stationary at 1 percent and is also the only one statically significant at 5 percent.

|        | M2: with an | intercept    | M3: with an intercept + trend |           |              |         |
|--------|-------------|--------------|-------------------------------|-----------|--------------|---------|
|        | Number of   |              |                               | Number of |              |         |
| Series | Lags        | t-statistics | p-value                       | Lags      | t-statistics | p-value |
|        | -           |              | DE Sector                     | -         |              |         |
| DO     | 0           | -1.461       | 0.552                         | 0         | -2.534       | 0.311   |
| NE     | 1           | -2.019       | 0.278                         | 1         | -2.119       | 0.533   |
| ESV    | 1           | -2.321       | 0.165                         | 1         | -3.040       | 0.122   |
| RIG    | 0           | -1.623       | 0.470                         | 0         | -2.392       | 0.383   |
| ATW    | 0           | -2.886*      | 0.047                         | 0         | -2.901       | 0.162   |
| PKD    | 1           | -2.212       | 0.202                         | 1         | -2.178       | 0.500   |
| PTEN   | 1           | -2.825       | 0.055                         | 1         | -2.827       | 0.187   |
| PDE    | 0           | -2.222       | 0.198                         | 0         | -2.823       | 0.189   |
|        |             |              | ES Sector                     |           |              |         |
| BHI    | 0           | -1.757       | 0.401                         | 0         | -2.068       | 0.562   |
| BJS    | 0           | -2.570       | 0.099                         | 0         | -2.917       | 0.157   |
| HAL    | 0           | -3.059*      | 0.030                         | 0         | -3.043       | 0.121   |
| SII    | 0           | -2.774       | 0.062                         | 0         | -2.891       | 0.165   |
| WFT    | 0           | -3.168*      | 0.022                         | 0         | -3.189       | 0.087   |
| TESO   | 1           | -2.115       | 0.238                         | 1         | -2.388       | 0.385   |
| SLB    | 1           | -1.788       | 0.388                         | 1         | -2.536       | 0.290   |
| RES    | 0           | -3.430*      | 0.010                         | 0         | -3.471*      | 0.043   |

# Table 3.3a: Results for the ADF unit root test for the stock prices of DE and ES upstream sectors

Note: Tested for the Ho that the stock price at levels (intercept and intercept + trend) have a unit root. Statistically significant levels at: \* when  $P \le 0.05$ . In the case of M2, the critical values for 1 percent is -3.43, 5 percent is -2.86 and 10 percent is -2.57. In the case of M3, the critical values for 1 percent is -3.97, 5 percent is -3.41 and 10 percent is -3.13. Critical values are based on MacKinnon (1996).

|        | M2:with an | intercept    | M3: with an intercept + trend |           |              |         |  |
|--------|------------|--------------|-------------------------------|-----------|--------------|---------|--|
|        | Number of  |              |                               | Number of |              |         |  |
| Series | Lags       | t-statistics | p-value                       | Lags      | t-statistics | p-value |  |
|        |            |              | PIP Sector                    |           |              |         |  |
| EEP    | 0          | -3.223*      | 0.019                         | 0         | -3.272       | 0.071   |  |
| EP     | 0          | -1.467       | 0.549                         | 0         | -1.924       | 0.640   |  |
| ETP    | 0          | -1.238       | 0.659                         | 0         | -2.593       | 0.284   |  |
| KMP    | 0          | -3.329*      | 0.014                         | 0         | -3.750*      | 0.019   |  |
| WMB    | 0          | -1.978       | 0.296                         | 0         | -2.079       | 0.556   |  |
| TCLP   | 0          | -1.784       | 0.388                         | 0         | -2.533       | 0.295   |  |
| PAA    | 0          | -1.233       | 0.659                         | 0         | -2.536       | 0.282   |  |
| OKS    | 0          | -1.453       | 0.556                         | 0         | -3.176       | 0.090   |  |
|        | *          |              | RM Sector                     |           |              | ,       |  |
| HES    | 0          | -2.843*      | 0.052                         | 0         | -2.896       | 0.164   |  |
| IMO    | 0          | -2.360       | 0.153                         | 0         | -2.503       | 0.326   |  |
| MRO    | 0          | -2.210       | 0.202                         | 0         | -2.255       | 0.457   |  |
| MUR    | 0          | -3.076*      | 0.028                         | 0         | -3.065       | 0.115   |  |
| SUN    | 0          | -2.144       | 0.227                         | 0         | -1.962       | 0.620   |  |
| TSO    | 0          | -1.655       | 0.453                         | 0         | -1.570       | 0.803   |  |
| HOC    | 0          | -2.135       | 0.230                         | 0         | -2.361       | 0.399   |  |
| SSL    | 1          | -1.055       | 0.734                         | 1         | -2.557       | 0.300   |  |

Table 3.3b: Results for the ADF unit root test for stock prices of the PIP and RM downstream sectors

Note: Tested for the Ho that the stock price at levels (intercept and intercept + trend) have a unit root. Statistically significant levels at: \* when  $P \le 0.05$ . In the case of M2, the critical values for 1 percent is -3.43, 5 percent is -2.86 and 10 percent is -2.57. In the case of M3, the critical values for 1 percent is -3.97, 5 percent is -3.41 and 10 percent is -3.13. Critical values are based on MacKinnon (1996).

In the case of downstream stock prices, the ADF results presented in Table 3.3b indicate that most coefficients in M2 are non-stationary at 5 percent. On the other hand, EEP, KMP and MUR are non-stationary at 1 percent, these stocks are the only ones significant at 5 percent. In the case of M3, almost all stock prices are non-stationary at 5 percent, with the exception of KMP, which is non-stationary at 1 percent. In terms of statistical significance, only KMP is significant at 5 percent. The results presented in Tables 3.3a and 3.3b suggest that stock prices do possibly suffer from unit root, which allows for testing them in a co-integration application.

The presence of structural breaks in the data could influence the results obtained by the ADF test. Perron demonstrated that some of the well-known unit root tests fail to account for possible breaks, which could lead to the spurious estimation of the degree of persistence. According to Perron (1989, 1990), the degree of persistence of a time series will be exaggerated when a structural break exists, in either the mean or the trend; however, this was not accounted for. As a result, I applied Perron's methodology in order to test for unit root in both stocks and crude oils with the possibility of a break in the time series.

Results for the upstream (DE and ES) and downstream (PIP and RM) stocks are presented in Tables 3.4a and 3.4b, respectively. In the case of M2, Table 3.4a shows that some stocks are non-stationary at 5 percent; meanwhile others—namely ATW, PTEN, HAL, SII, WFT and RES—are non-stationary at 1 percent. This same group includes those that are statistically significant at 5 percent. The only exception is SLB, which stationary at 5 percent and statistical significance at 1 percent. In the case of M3, all but one stock are non-stationary at 5 percent. The SLB stock is non-stationary at 1 percent and is the only one statically significant at 5 percent.

113

|        | M2: with an | intercept   |           | M3: with an intercept + trend |             |         |  |  |
|--------|-------------|-------------|-----------|-------------------------------|-------------|---------|--|--|
|        |             | Adjusted t- |           |                               | Adjusted t- |         |  |  |
| Series | Bandwidth   | statistics  | p-value   | Bandwidth                     | statistics  | p-value |  |  |
|        | ·           |             | DE Sector |                               |             |         |  |  |
| DO     | 4           | -1.312      | 0.625     | 4                             | -2.405      | 0.376   |  |  |
| NE     | 5           | -2.202      | 0.205     | 6                             | -2.401      | 0.378   |  |  |
| ESV    | 12          | -2.622      | 0.088     | 12                            | -3.354      | 0.058   |  |  |
| RIG    | 6           | -1.517      | 0.524     | 7                             | -2.307      | 0.428   |  |  |
| ATW    | 5           | -3.039*     | 0.032     | 5                             | -3.055      | 0.118   |  |  |
| PKD    | 11          | -2.553      | 0.103     | 11                            | -2.519      | 0.318   |  |  |
| PTEN   | 7           | -3.130*     | 0.024     | 7                             | -3.134      | 0.099   |  |  |
| PDE    | 11          | -2.508      | 0.113     | 11                            | -3.161      | 0.093   |  |  |
|        | -           |             | ES Sector |                               |             |         |  |  |
| BHI    | 11          | -1.921      | 0.322     | 11                            | -2.305      | 0.43    |  |  |
| BJS    | 4           | -2.51       | 0.113     | 4                             | -2.864      | 0.175   |  |  |
| HAL    | 5           | -2.927*     | 0.042     | 5                             | -2.905      | 0.161   |  |  |
| SII    | 10          | -3.097*     | 0.027     | 10                            | -3.213      | 0.082   |  |  |
| WFT    | 3           | -3.099*     | 0.027     | 3                             | -3.12       | 0.102   |  |  |
| TESO   | 10          | -2.300      | 0.172     | 10                            | -2.597      | 0.281   |  |  |
| SLB    | 2           | -3.535*     | 0.007     | 2                             | -3.522*     | 0.037   |  |  |
| RES    | 9           | -3.195*     | 0.02      | 9                             | -3.24       | 0.077   |  |  |

Table 3.4a: Results for the PP unit root test for the DE and ES upstream sectors

Note: Tested for the Ho that the stock price at levels (intercept and intercept + trend) have a unit root. Statistically significant levels at: \* when  $P \le 0.05$ . In the case of M2, the critical values for 1 percent is -3.43, 5 percent is -2.86 and 10 percent is -2.57. In the case of M3, the critical values for 1 percent is -3.97, 5 percent is -3.41 and 10 percent is -3.13. Critical values are based on MacKinnon (1996).

|        | M2: with an | intercept    |            | M3: with an intercept + trend |              |         |  |
|--------|-------------|--------------|------------|-------------------------------|--------------|---------|--|
|        | Number of   | •            |            | Number of                     |              |         |  |
| Series | Lags        | t-statistics | p-value    | Lags                          | t-statistics | p-value |  |
|        |             |              | PIP Sector |                               |              |         |  |
| EEP    | 8           | -3.063*      | 0.029      | 8                             | -3.114       | 0.103   |  |
| EP     | 1           | -1.464       | 0.551      | 1                             | -1.923       | 0.641   |  |
| ETP    | 17          | -1.066       | 0.73       | 13                            | -2.336       | 0.413   |  |
| KMP    | 6           | -3.366*      | 0.012      | 7                             | -3.837*      | 0.015   |  |
| WMB    | 6           | -1.946       | 0.31       | 6                             | -2.048       | 0.573   |  |
| TCLP   | 7           | -1.631       | 0.466      | 5                             | -2.317       | 0.423   |  |
| PAA    | 17          | -1.067       | 0.731      | 13                            | -2.336       | 0.411   |  |
| OKS    | 14          | -1.145       | 0.699      | 8                             | -2.819       | 0.19    |  |
|        |             |              | RM Sector  |                               |              |         |  |
| HES    | 6           | -2.887*      | 0.047      | 5                             | -2.967       | 0.142   |  |
| IMO    | 2           | -2.302       | 0.171      | 2                             | -2.443       | 0.356   |  |
| MRO    | 8           | -2.008       | 0.283      | 8                             | -2.013       | 0.592   |  |
| MUR    | 9           | -2.998*      | 0.035      | 9                             | -2.988       | 0.136   |  |
| SUN    | 15          | -1.745       | 0.408      | 15                            | -1.433       | 0.851   |  |
| TSO    | 2           | -1.694       | 0.433      | 1                             | -1.607       | 0.789   |  |
| HOC    | 14          | -1.945       | 0.311      | 13                            | -2.18        | 0.499   |  |
| SSL    | 6           | -1.128       | 0.706      | 7                             | -2.69        | 0.24    |  |

Table 3.4b: Results for the PP unit root test for the PIP and RM downstream sectors

Note: Tested for the Ho that the stock price at levels (intercept and intercept + trend) have a unit root. Statistically significant levels at: \* when  $P \le 0.05$ . In the case of M2, the critical values for 1 percent is -3.43, 5 percent is -2.86 and 10 percent is -2.57. In the case of M3, the critical values for 1 percent is -3.97, 5 percent is -3.41 and 10 percent is -3.13. Critical values are based on MacKinnon (1996).

Table 3.4b presents the results for the downstream (PIP and RM) stocks. For M2, most coefficients indicate that stock prices are non-stationary at 5 percent. However, in the case of EEP, KMP, HES and MUR, non-stationarity is proven at 1 percent. These same four stocks are the only ones statistically significant at 5 percent. In the case of M3, almost all coefficients of stock prices are non-stationary at 5 percent. However, only the prices of KMP are non-stationary at 1 percent. KMP also is the only one significant at 5 percent.

The results shown in Appendix 11b are summaries of 960 different cointegration tests using the trace and maximum eigenvalue test statistics to determine the number of co-integrating equations. In using the trace test, we use a null hypothesis that there at most r co-integrating equations, in which r = 0 or 1. In both tests, the cointegrating vectors, listed as r, were selected beforehand as the null. In the case of the maximum eigenvalue test, the null hypothesis is r = 0, and it is tested against the alternative, r = 1. Critical values are significant at 95% and are listed as Table A2 in Johansen and Juselius (1990) and MacKinnon (1991).

Given the large number of cointegration tests conducted and the limited space available, actual results obtained for the trace and maximum eigenvalue tests are included in Appendix 11a. However, Tables 3.5a and 3.5b include samples of the actual results of the trace and maximum eigenvalue tests for the two pairs of BRT crude price/DO stock price and BRT crude price/ATW stock price, respectively. In addition, Table 3.5c list all cointegrated relationships identified by comparing the computed values of the test statistics of both the trace and maximum-eigenvalue with the critical values of Johansen and Juselius (1990). In Table 3.5a, coefficients obtained for the two tests are smaller than the critical values of the trace and maximum eigenvalue tests, thus, the value of 0 is listed to indicate no co-integration relationship between the crude price and the stock price. However, in case the coefficients obtained for the two tests are greater than the related critical values, as shown in Table 3.5b, the value of 1 is written to show that the relationship between crude oil price and stock price is co-integration. In other words, the values of (1)s and (0)s listed in Table 3.5c are based on evaluating results obtained using the trace and maximum eigenvalue test, listed in Appendix 11a and 11b, and comparing each result with its critical values, similar to the evaluation process conducted for the results shown in Tables 3.5a and 3.5b. Again, we only considered and listed results for M1, M2 and M3, which are, respectively, a model with no intercept and no drift, a model with an intercept but no drift and finally a model with both an intercept and a drift.

Table 3.5a: Example of no cointegrationrelationship

| BRT_DO |        |        | Critical values |        |  |  |
|--------|--------|--------|-----------------|--------|--|--|
|        | k = 4  |        | Trace           | Eg-Max |  |  |
| Но     | Trace  | Eg-Max | 95%             | 95%    |  |  |
| r=1    | 21.282 | 14.948 | 25.872          | 19.387 |  |  |
| r≤l    | 6.335  | 6.335  | 12.518          | 12.518 |  |  |

Trace test indicates no cointegration at the 0.05 level. Max-egenvalue test indicates no relationship at the 0.05 level. Listed as 0 on Tables 3.6a - 3.9b

| BRT_<br>ATW |        |        | Critical valu | es     |
|-------------|--------|--------|---------------|--------|
|             | k = 4  |        | Trace         | Eg-Max |
| Ho          | Trace  | Eg-Max | 95%           | 95%    |
| r=1         | 37.108 | 26.813 | 25.872        | 19.387 |
| r≤l         | 10.294 | 10.294 | 12.518        | 12.518 |

Table3.5b:Exampleofcointegratedrelationship

Trace test indicates cointegration at the 0.05 level. Max-egenvalue test indicates no relationship at the 0.05 level. Listed a 1 on Tables 3.6a -3.9b

The main idea behind cointegration analysis is to investigate the possibility of long-term relationship for a set of variables that suffer from unite root problem, i. e. I(1). In our case, we are testing the possible existence of long-term relationship between oil companies' stock prices and crude oil prices. In other words, are these two timeseries cointegrated in the long-run? Which suggest the possibility that there is a linear combination of the two series that is I(0).

We first present the cointegrated relationship obtained using similar comparison method to the two examples above. Table 3.5c list the stocks horizontally and the crude oils vertically. It shows cointegrated relationship is obtained in the M2 or M3. As a second step in our analysis, we use the error-correction model (ECM) to estimate speed of adjustment of possible short-term deviation from the long-run equilibrium. Table oil prices along with the non-integrated ones.

| STOCK |   | RI         | G |     |   | AT | W |            |   | WI | T |            |   | KN  | ſΡ |    |   | TC | LP |     |
|-------|---|------------|---|-----|---|----|---|------------|---|----|---|------------|---|-----|----|----|---|----|----|-----|
| STOCK | Ν | <i>4</i> 2 | N | /13 | N | 12 | N | <i>A</i> 3 | N | 42 | N | <i>A</i> 3 | N | /12 | N  | M3 | N | 12 | N  | /13 |
| Oil   | Т | ME         | Т | ME  | Т | ME | Т | ME         | Т | ME | Т | ME         | Т | ME  | Т  | ME | Т | ME | Т  | ME  |
| ADM   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| ASB   | 0 | 0          | 0 | 1   | 1 | 0  | 1 | 1          | 1 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| ANC   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| DUB   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| ECU   | 0 | 0          | 1 | 1   | 2 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 1  | 0  | 0 | 0  | 1  | 1   |
| IRH   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 1 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| IRL   | 0 | 0          | 1 | 1   | 1 | 1  | 1 | 1          | 1 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| KUT   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| LIB   | 0 | 0          | 1 | 1   | 1 | 1  | 1 | 1          | 1 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| NGB   | 0 | 0          | 1 | 1   | 1 | 1  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| NGE   | 0 | 0          | 0 | 1   | 1 | 1  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| DUK   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| SAH   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| SAL   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| SAM   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| VEN   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| AUS   | 0 | 0          | 0 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| CAM   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| CAP   | 0 | 0          | 0 | 0   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| CHI   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| COL   | 0 | 0          | 1 | 1   | 1 | 1  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| EGS   | 0 | 0          | 1 | 1   | 1 | 1  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| INO   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| TAP   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| MXI   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| MXM   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 1  | 0  | 0 | 0  | 1  | 1   |
| NOE   | 0 | 0          | 0 | 1   | 1 | 1  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| OMN   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| RUS   | 0 | 0          | 1 | 1   | 1 | 0  | 1 | 1          | 1 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |
| BRT   | 0 | 0          | 0 | 0   | 1 | 0  | 1 | 1          | 2 | 0  | 1 | 1          | 1 | 1   | 0  | 0  | 0 | 0  | 1  | 1   |

Tables 3.5c: Stocks that show some type of cointegrated relationship with crude oil prices:

Note 1. T and ME stand for Trace and Maximum eigenvalue.

2. 1s and 0s indicates the existence (or not) of a cointegrating relationship.

3. Actual Trace and Maximum eigenvalue are listed in Appendix 11.

Results of the cointegration analysis for the for stock prices of the four oil sectors and crude oil prices of OPEC and non-OPEC producers are listed in appendix 11b. For the upstream drilling and exploration (DE), companies are listed horizontally as DO, NE...PDE, and crude oil prices of OPEC producers are listed vertically as ADM, ASB...VEN. Only two companies, RIG and ATW, show some type of consistent co-integration relationship with different crude oil prices. This occurred only in M3, which is the model that includes the intercept in the co-integrating equation and in VAR and also includes a linear trend in the co-integrating equation but not in the trend. With the exception of the RIG\_ASB, RIG\_KUT and RIG\_NGE pairs, both results of the trace and maximum eigenvalue tests for the RIG stock price with other are crude prices are listed as 1, which is an indication of a co-integration relationship.

In case of the ATW stock price, prices of all crudes are shown to have a cointegrated relationship. However, given that only two out of eight DE stock prices show some type of co-integrated relationship, we would conclude tentatively that stock prices of most DE companies do not share a common trend with OPEC oil prices (i.e., not cointegrated). In other words, DE stock prices and OPEC crude oil prices are driven by two different data generating processes. As a result, we can apply only the ECM to these co-integrated relationships identified in Table 3.5c. Results of the ECM are presented and discussed in the following section. DO and PDE stock prices show few and inconsistent co-integration relationships with a limited number of OPEC crude oil prices, and, as a result, we dropped it from any further analysis.

Tables 3.6a and 3.6b show the results of the error-correction model (ECM) used to model the re-adjustment of the short-term deviation from the equilibrium relationship. These cointegrated relationships were established by Johansen's cointegration test between the RIG stock prices and OPEC and non-OPEC crude oil prices. The results of the ECM suggest that most stock prices of upstream DE companies move in the opposite direction of crude oil prices. Such an inverse short-term relationship implies that, when a short-term run deviation exists between the stock prices and crude oil prices, stock prices adjust by the ECM coefficients presented in Tables 3.6a and 3.6b. However, t-statistics for the RIG coefficients were not significant, and, thus, we conclude that these coefficients are statistically indistinguishable from zero. As a result, we listed all of the ECM coefficients obtained, but we limited our discussion to the statistically significant coefficients of crude oil prices.

In the case of ECM coefficients of OPEC crude oil prices, the speed of adjustment to long-run equilibrium ranges from 0.012, in the case of SAH and SAM crudes, to 0.007 in the case of the ADM, KUT and DUK crudes. This would suggest that, in each week, 0.7 to 1.2 percent of any divergence from long-term relationship will be eliminated. The Jarque-Bera test is required to determine whether the residuals follow a normal distribution.

Table 3.6b show the results of the ECM for RIG stock prices with crude oils of non-OPEC producers. We still obtained insignificant coefficients for the RIG stock prices in all cases, which led us to consider only the ECM results obtained for the crude oil prices. The speed of adjustment to long-run equilibrium ranges from 0.006 (in the case of CHI crude) to 0.014 (in the case of the RUS crude). In other words, 0.06 to 1.4 percent of any divergence from long-term relationship will be eliminated in a weekly base. The Jarque-Bera test is required to determine whether residuals follow normal distribution.

|      | G (C)       | a.        |             |
|------|-------------|-----------|-------------|
| DIG. | Coefficient | St. error | t-Statistic |
| RIG  | -0.002      | 0.004     | -0.405      |
| ADM  | 0.007       | 0.002     | 3.024       |
| RIG  | -           | -         | -           |
| ASB  | -           | -         | -           |
| RIG  | -0.003      | 0.005     | -0.642      |
| ANC  | 0.011       | 0.003     | 3.53        |
| RIG  | -0.001      | 0.005     | -0.227      |
| DUB  | 0.009       | 0.003     | 3.302       |
| RIG  | 0           | 0.003     | -0.007      |
| ECU  | 0.011       | 0.003     | 3.627       |
| RIG  | -0.002      | 0.004     | -0.383      |
| IRH  | 0.01        | 0.003     | 3.421       |
| RIG  | -0.002      | 0.005     | -0.502      |
| IRL  | 0.009       | 0.003     | 3.326       |
| RIG  | -0.001      | 0.004     | -0.124      |
| KUT  | 0.007       | 0.002     | 3.274       |
| RIG  | -0.003      | 0.005     | -0.727      |
| LIB  | 0.011       | 0.003     | 3.446       |
| RIG  | -0.003      | 0.005     | -0.71       |
| NGB  | 0.011       | 0.003     | 3.357       |
| RIG  | -0.003      | 0.005     | -0.71       |
| NGE  | 0.011       | 0.003     | 3.357       |
| RIG  | -0.003      | 0.005     | -0.609      |
| DUK  | 0.007       | 0.002     | 3           |
| RIG  | -0.001      | 0.005     | -0.294      |
| SAH  | 0.012       | 0.003     | 3.689       |
| RIG  | -0.003      | 0.005     | -0.661      |
| SAL  | 0.01        | 0.003     | 3.344       |
| RIG  | -0.003      | 0.005     | -0.552      |
| SAM  | 0.012       | 0.003     | 3.495       |
| RIG  | 0           | 0.003     | -0.071      |
| VEN  | 0.008       | 0.002     | 3.559       |

Table 3.6a: ECM results for prices of RIG stock and crude oils of OPEC Table 3.6b: ECM results for prices of RIG stocks and crude oils of non-OPEC

|     | Coefficient | St. error | t-Statistic |
|-----|-------------|-----------|-------------|
| RIG | -           | -         | -           |
| AUS | -           | -         | -           |
| RIG | -0.002      | 0.004     | -0.531      |
| CAM | 0.011       | 0.003     | 3.647       |
| RIG | -           | -         | -           |
| CAP | -           | -         | -           |
| RIG | -0.001      | 0.003     | -0.268      |
| CHI | 0.006       | 0.002     | 3.189       |
| RIG | -0.002      | 0.004     | -0.473      |
| COL | 0.01        | 0.003     | 3.293       |
| RIG | -0.002      | 0.004     | -0.433      |
| EGS | 0.012       | 0.003     | 3.658       |
| RIG | -0.001      | 0.003     | -0.269      |
| INO | 0.007       | 0.002     | 3.396       |
| RIG | -0.009      | 0.006     | -1.561      |
| TAP | 0.01        | 0.003     | 2.776       |
| RIG | -0.001      | 0.003     | -0.351      |
| MXI | 0.008       | 0.002     | 3.307       |
| RIG | 0.000       | 0.003     | 0.083       |
| MXM | 0.008       | 0.002     | 3.66        |
| RIG | -           | -         | -           |
| NOE | -           | -         | -           |
| RIG | -0.002      | 0.005     | -0.493      |
| OMN | 0.008       | 0.002     | 3.144       |
| RIG | -0.003      | 0.004     | -0.601      |
| RUS | 0.014       | 0.003     | 3.714       |
| RIG | -           | -         | -           |
| BRT | -           | -         | -           |

Tables 3.6c and 3.6d show the results of the error-correction model (ECM) obtained to estimate speed of re-adjustment in short-term deviation from the equilibrium relationship, identified by Johansen's co-integration test between the ATW stock prices

and OPEC and non-OPEC crude prices, respectively. The levels of significance for the ECM coefficients for the ATW stock prices too low to be considered significant. Therefore, we concluded that, similar to the RIG stock case, these coefficients are statistically indistinguishable from zero. As a result, we limited our discussion to crude oil prices.

In the case of ECM coefficients of OPEC crude oil prices, the speed of adjustment to long-run equilibrium ranges from 0.012, in the case of SAH and SAM crudes, to 0.007 in the case of the ADM, KUT and DUK crudes. This suggests that, in each week, 0.07 to 1.2 percent of any divergence from long-term relationship will be eliminated.

Table 3.6c: ECM results for prices of ATW stock and crude oils of OPEC

|     | Coefficient | St. error | t-Statistic |
|-----|-------------|-----------|-------------|
| ATW | -0.001      | 0.011     | -0.115      |
| ADM | 0.025       | 0.004     | 5.441       |
| ATW | -0.004      | 0.011     | -0.386      |
| ASB | 0.031       | 0.005     | 5.629       |
| ATW | -0.001      | 0.01      | -0.059      |
| ANC | 0.030       | 0.005     | 5.522       |
| ATW | 0.002       | 0.01      | 0.236       |
| DUB | 0.025       | 0.004     | 5.445       |
| ATW | 0.002       | 0.027     | 0.306       |
| ECU | 0.027       | 0.005     | 4.969       |
| ATW | 0.001       | 0.01      | 0.087       |
| IRH | 0.027       | 0.005     | 5.401       |
| ATW | 0.001       | 0.01      | 0.048       |
| IRL | 0.027       | 0.005     | 5.478       |
| ATW | 0           | 0.01      | 0.011       |
| KUT | 0.024       | 0.004     | 5.186       |
| ATW | -0.001      | 0.011     | -0.129      |
| LIB | 0.030       | 0.005     | 5.58        |
| ATW | -0.003      | 0.011     | -0.283      |
| NGB | 0.032       | 0.006     | 5.634       |
| ATW | -0.003      | 0.011     | -0.265      |
| NGE | 0.031       | 0.005     | 5.659       |
| ATW | -0.002      | 0.011     | -0.187      |
| DUK | 0.026       | 0.005     | 5.543       |
| ATW | 0.002       | 0.009     | 0.248       |
| SAH | 0.026       | 0.005     | 5.273       |
| ATW | 0           | 0.01      | -0.021      |
| SAL | 0.027       | 0.005     | 5.469       |
| ATW | 0.001       | 0.01      | 0.062       |
| SAM | 0.027       | 0.005     | 5.342       |
| ATW | -0.002      | 0.01      | -0.177      |
| VEN | 0.028       | 0.005     | 5.321       |

Table 3.6d: ECM results for prices of ATW stock and crude oils of non-OPEC

|     | Coefficient | St. error | t-Statistic |
|-----|-------------|-----------|-------------|
| ATW | -0.004      | 0.011     | -0.358      |
| AUS | 0.024       | 0.004     | 5.317       |
| ATW | 0.000       | 0.01      | 0.039       |
| CAM | 0.032       | 0.005     | 5.642       |
| ATW | -0.007      | 0.011     | -0.684      |
| CAP | 0.032       | 0.006     | 5.092       |
| ATW | 0           | 0.01      | -0.059      |
| CHI | 0.025       | 0.005     | 5.443       |
| ATW | -0.001      | 0.01      | -0.091      |
| COL | 0.027       | 0.005     | 5.082       |
| ATW | -0.001      | 0.01      | -0.137      |
| EGS | 0.032       | 0.006     | 5.486       |
| ATW | 0.001       | 0.01      | 0.163       |
| INO | 0.026       | 0.005     | 5.552       |
| ATW | -0.023      | 0.012     | -1.892      |
| TAP | 0.001       | 0         | 5.629       |
| ATW | 0           | 0.01      | -0.06       |
| MXI | 0.027       | 0.005     | 5.092       |
| ATW | 0.004       | 0.008     | 0.499       |
| MXM | 0.023       | 0.005     | 4.844       |
| ATW | -0.003      | 0.011     | -0.258      |
| NOE | 0.032       | 0.005     | 5.628       |
| ATW | 0           | 0.011     | -0.029      |
| OMN | 0.026       | 0.005     | 5.51        |
| ATW | 0.001       | 0.01      | 0.126       |
| RUS | 0.034       | 0.006     | 5.549       |
| ATW | -0.001      | 0.011     | -0.118      |
| BRT | 0.033       | 0.006     | 5.492       |

In the case of upstream equipment and services (ES) companies, only two companies, WFT and SLB show some type of consistent cointegration relationship with different crude oil prices in only M3, which is the model that includes intercept in cointegrating equation and in VAR and also includes a linear trend in the cointegrating equation but not in the trend. Both results of the trace and maximum eigenvalue tests for the WFT stock price with other are crude prices are listed as 1, which is an indication of a cointegration relationship.

In case of the SLB stock price, prices of all crudes are shown to have a cointegrated relationship just in the case of the trace value, but not in the maximum eigenvalue. For this reson we did not include SLB in the ECM analysis and its not listed in Table 3.5c. As a result, and given that only 1 out of 8 ES stock prices show some type of cointegrated relationship, we conclude tentatively that stock prices of most ES companies do not share a common trend with OPEC oil prices. (i. e. Not cointegrated). In other words, ES stock prices and OPEC crude oil prices are driven by two different data generating process. As a result, we only can apply the ECM to WFT. Table 3.7c presents the results of the ECM, which suggest that all coefficients are small and in most cases have similar sign.

Table 3.7a: ECM results for prices of WFT stock and crude oils of OPEC

|     | Coefficient | St. error | t-Statistic |
|-----|-------------|-----------|-------------|
| WFT | 0.001       | 0.01      | 0.128       |
| ADM | 0.022       | 0.004     | 5.148       |
| WFT | -0.001      | 0.01      | -0.115      |
| ASB | 0.028       | 0.005     | 5.447       |
| WFT | 0.001       | 0.009     | 0.101       |
| ANC | 0.027       | 0.005     | 5.269       |
| WFT | 0.003       | 0.009     | 0.004       |
| DUB | 0.021       | 0.004     | 5.013       |
| WFT | 0.009       | 0.005     | 1.558       |
| ECU | 0.556       | 0.144     | 3.853       |
| WFT | 0.001       | 0.009     | 0.196       |
| IRH | 0.023       | 0.004     | 5.065       |
| WFT | 0.002       | 0.009     | 0.2         |
| IRL | 0.024       | 0.004     | 5.263       |
| WFT | 0.001       | 0.009     | 0.085       |
| KUT | 0.022       | 0.004     | 4.941       |
| WFT | 0.001       | 0.009     | 0.065       |
| LIB | 0.027       | 0.005     | 5.366       |
| WFT | 0           | 0.01      | -0.037      |
| NGB | 0.029       | 0.005     | 5.423       |
| WFT | 0           | 0.01      | -0.045      |
| NGE | 0.028       | 0.005     | 5.469       |
| WFT | 0           | 0.01      | 0.022       |
| DUK | 0.023       | 0.004     | 5.233       |
| WFT | 0.002       | 0.008     | 0.295       |
| SAH | 0.022       | 0.004     | 4.885       |
| WFT | 0.001       | 0.009     | 0.18        |
| SAL | 0.023       | 0.004     | 5.081       |
| WFT | 0.001       | 0.009     | 0.185       |
| SAM | 0.022       | 0.004     | 4.931       |
| WFT | 0           | 0.009     | 0.048       |
| VEN | 0.026       | 0.005     | 5.176       |

Table 3.7b: ECM results for prices of WFT stock and crude oils of non-OPEC

|     | Coefficient | St. error | t-Statistic |
|-----|-------------|-----------|-------------|
| WFT | -0.002      | 0.01      | -0.252      |
| AUS | 0.023       | 0.004     | 5.218       |
| WFT | 0.001       | 0.009     | 0.077       |
| CAM | 0.03        | 0.005     | 5.462       |
| WFT | 0           | 0.011     | -0.006      |
| CAP | 0.035       | 0.006     | 5.41        |
| WFT | -0.002      | 0.01      | -0.261      |
| CHI | 0.026       | 0.004     | 5.423       |
| WFT | 0.001       | 0.009     | 0.107       |
| COL | 0.024       | 0.005     | 4.849       |
| WFT | 0           | 0.009     | 0.011       |
| EGS | 0.029       | 0.005     | 5.317       |
| WFT | -0.001      | 0.01      | -0.141      |
| INO | 0.025       | 0.004     | 5.441       |
| WFT | -0.005      | 0.01      | -0.527      |
| TAP | 0.028       | 0.005     | 5.529       |
| WFT | 0.001       | 0.009     | 0.176       |
| MXI | 0.026       | 0.005     | 5.103       |
| WFT | 0.003       | 0.008     | 0.455       |
| MXM | 0.022       | 0.004     | 4.774       |
| WFT | -0.001      | 0.01      | -0.081      |
| NOE | 0.029       | 0.005     | 5.481       |
| WFT | 0.001       | 0.009     | 0.091       |
| OMN | 0.022       | 0.004     | 5.116       |
| WFT | 0.003       | 0.009     | 0.379       |
| RUS | 0.029       | 0.005     | 5.17        |
| WFT | 0.003       | 0.01      | 0.282       |
| BRT | 0.031       | 0.005     | 5.317       |

Tables 3.7a and 3.7b show the results of the error-correction model (ECM) used to model the re-adjustment of the short-term deviation from equilibrium relationship is established by Johansen's co-integration test between the WFT stock prices and each of OPEC and non-OPEC crude prices. Results suggest that most stock prices of upstream ES companies move in the opposite direction of crude oil prices. Such an inverse shortterm relationship implies that, when a short-term run deviation exists between the stock prices and crude oil prices, stock prices adjust by the ECM coefficients presented in Table 3.7c and 3.7d. Only coefficients of crude oils are statistically significant.

In case of ECM coefficients of OPEC crude oil prices, the speed of adjustment to long-run equilibrium ranges from 0.021, in the case of DUB crude up to 0.556 in the case of the ECU crudes. This would suggest that in each week, in the case of the DUB crude, 0.021 percent of any divergence from long-term relationship will be eliminated. Likewise, in the case of ECU crude, 0.556 of divergence would be eliminated weekly.

Table 3.7b show results of the ECM of the WFT stock prices with crude oils of non-OPEC producers. We still obtained insignificant coefficients for the WFT stock prices in all cases, which let us consider only ECM coefficients obtained for the crude oil prices. The speed of adjustment to long-run equilibrium ranges from 0.022, in the case of MXM and OMN crudes up to 0.035 in the case of the CAP crude. In other words, 2.2 to 3.5 percent of any divergence from long-term relationship will be eliminated in a weekly base.

Co-integration tests for stock prices of downstream companies and OPEC and non-OPEC crude oil prices did not reveal long-term relationships in most cases. Possible explanation of the lack of long-term relationships could be the ability of downstream companies to manage their exposure in more efficient ways over longer periods of time than upstream companies. Further empirical analysis could be conducted in the future to explain these results in more details.

For downstream pipelines (PIP) companies, results of the trace and maximum eigenvalue tests for the KMP and TCLP stock prices with other crude prices are listed as 1 in Table 3.5c, which is an indication of a cointegration relationship. Given that only 2 out of 8 ES stock prices show some type of cointegrated relationship, we would conclude that stock prices of most PIP companies do not share a common trend with OPEC oil prices. (i. e. Not cointegrated). We can apply the ECM to these cointegrated relationship identified.

Tables 3.8c and 3.8d show the results of the error-correction model (ECM) used to model the re-adjustment of the short-term deviation from equilibrium relationship is established by Johansen's co-integration test between the KMP stock prices and each of OPEC and non-OPEC crude prices, respectively. Results suggest that KMP stock prices move in the opposite direction of crude oil prices. Such an inverse short-term relationship implies that, when a short-term run deviation exists between the stock price of KMP and crude oil prices, stock prices adjust by the ECM coefficients presented in Table 3.8c and 3.8d. In case of ECM coefficients of OPEC crude oil prices, the speed of adjustment to long-run equilibrium ranges from 0.008, in the case of VEN crude up to 0.016 in the case of the SAH crude. This would suggest that in each week, in the case of the SAH crude, 1.6 percent of any divergence from long-term relationship will be eliminated. Likewise, in the case of VEN crude, 0.08 of divergence would be eliminated weekly. Table 3.8a: ECM results for prices of KMP stock and crude oils of OPEC

|     | Coefficient | St. error | t-Statistic |
|-----|-------------|-----------|-------------|
| KMP | -0.046      | 0.012     | -3.799      |
| ADM | 0.009       | 0.01      | 0.948       |
| KMP | -0.047      | 0.012     | -3.837      |
| ASB | 0.01        | 0.011     | 0.908       |
| KMP | -0.046      | 0.012     | -3.84       |
| ANC | 0.01        | 0.012     | 0.858       |
| KMP | -0.046      | 0.012     | -3.788      |
| DUB | 0.01        | 0.01      | 0.997       |
| KMP | -0.047      | 0.012     | -3.886      |
| ECU | 0.013       | 0.014     | 0.914       |
| KMP | -0.046      | 0.012     | -3.776      |
| IRH | 0.013       | 0.011     | 1.157       |
| KMP | -0.046      | 0.012     | -3.81       |
| IRL | 0.011       | 0.011     | 1.001       |
| KMP | -0.046      | 0.012     | -3.787      |
| KUT | 0.011       | 0.01      | 1.033       |
| KMP | -0.047      | 0.012     | -3.842      |
| LIB | 0.011       | 0.012     | 0.947       |
| KMP | -0.046      | 0.012     | -3.823      |
| NGB | 0.011       | 0.012     | 0.895       |
| KMP | -0.046      | 0.012     | -3.805      |
| NGE | 0.01        | 0.011     | 0.932       |
| KMP | -0.046      | 0.012     | -3.798      |
| DUK | 0.009       | 0.009     | 0.961       |
| KMP | -0.046      | 0.012     | -3.795      |
| SAH | 0.016       | 0.012     | 1.337       |
| KMP | -0.047      | 0.012     | -3.836      |
| SAL | 0.012       | 0.011     | 1.119       |
| KMP | -0.047      | 0.012     | -3.809      |
| SAM | 0.014       | 0.011     | 1.268       |
| KMP | -0.048      | 0.012     | -3.87       |
| VEN | 0.008       | 0.012     | 0.655       |

Table 3.8b: ECM results for prices of KMP stock and crude oils of non-OPEC

|     | Coefficient | St. error | t-Statistic |
|-----|-------------|-----------|-------------|
| КМР | -0.047      | 0.012     | -3.908      |
| AUS | 0.005       | 0.009     | 0.538       |
| КМР | -0.046      | 0.012     | -3.811      |
| CAM | 0.012       | 0.012     | 0.964       |
| KMP | -0.047      | 0.012     | -3.846      |
| CAP | 0.008       | 0.013     | 0.636       |
| KMP | -0.047      | 0.012     | -3.932      |
| CHI | 0.005       | 0.01      | 0.525       |
| KMP | -0.047      | 0.012     | -3.874      |
| COL | 0.008       | 0.012     | 0.637       |
| KMP | -0.045      | 0.012     | -3.778      |
| EGS | 0.014       | 0.013     | 1.085       |
| KMP | -0.048      | 0.012     | -3.941      |
| INO | 0.005       | 0.01      | 0.474       |
| KMP | -0.048      | 0.012     | -3.935      |
| TAP | 0.005       | 0.011     | 0.495       |
| КМР | -0.046      | 0.012     | -3.819      |
| MXI | 0.009       | 0.012     | 0.761       |
| КМР | -0.043      | 0.012     | -3.653      |
| MXM | 0.014       | 0.012     | 1.092       |
| KMP | -0.046      | 0.012     | -3.825      |
| NOE | 0.01        | 0.012     | 0.863       |
| KMP | -0.046      | 0.012     | -3.807      |
| OMN | 0.009       | 0.01      | 0.954       |
| KMP | -0.046      | 0.012     | -3.744      |
| RUS | 0.013       | 0.014     | 0.978       |
| KMP | -0.046      | 0.012     | -3.772      |
| BRT | 0.011       | 0.012     | 0.87        |

|      | Coefficient | St. error | t-Statistic |
|------|-------------|-----------|-------------|
| TCLP | -0.011      | 0.003     | -2.918      |
| ADM  | -0.005      | 0.004     | -1.207      |
| TCLP | -0.002      | 0.001     | -2.267      |
| ASB  | -0.002      | 0.001     | -2.454      |
| TCLP | -0.003      | 0.001     | -2.389      |
| ANC  | -0.004      | 0.002     | -2.442      |
| TCLP | -0.011      | 0.004     | -2.937      |
| DUB  | -0.006      | 0.004     | -1.426      |
| TCLP | -0.009      | 0.003     | -2.796      |
| ECU  | -0.011      | 0.005     | -2.045      |
| TCLP | -0.008      | 0.003     | -2.925      |
| IRH  | -0.006      | 0.003     | -1.852      |
| TCLP | -0.007      | 0.002     | -2.848      |
| IRL  | -0.005      | 0.003     | -1.834      |
| TCLP | -0.009      | 0.003     | -2.902      |
| KUT  | -0.006      | 0.003     | -1.651      |
| TCLP | -0.004      | 0.001     | -2.548      |
| LIB  | -0.005      | 0.002     | -2.209      |
| TCLP | -0.002      | 0.001     | -2.399      |
| NGB  | -0.003      | 0.001     | -2.295      |
| TCLP | -0.002      | 0.001     | -2.424      |
| NGE  | -0.003      | 0.001     | -2.324      |
| TCLP | -0.013      | 0.004     | -2.984      |
| DUK  | -0.004      | 0.004     | -0.927      |
| TCLP | -0.009      | 0.003     | -2.974      |
| SAH  | -0.008      | 0.004     | -1.907      |
| TCLP | 0.001       | 0.006     | 0.163       |
| SAL  | 0.019       | 0.007     | 2.672       |
| TCLP | -0.009      | 0.003     | -2.948      |
| SAM  | 0.007       | 0.004     | -1.754      |
| TCLP | -0.004      | 0.002     | -2.536      |
| VEN  | -0.005      | 0.002     | -2.114      |

Table 3.8c : ECM results for prices of TCLP stock and crude oils of OPEC

Table 3.8d : ECM results for prices of TCLP stock and crude oils of non-OPEC

|      | Coefficient | St. error | t-Statistic |
|------|-------------|-----------|-------------|
| TCLP | -0.008      | 0.003     | -2.696      |
| AUS  | -0.004      | 0.003     | -1.44       |
| TCLP | -0.002      | 0.001     | -2.353      |
| CAM  | -0.003      | 0.001     | -2.585      |
| TCLP | 0.002       | 0.001     | 2.108       |
| CAP  | 0.003       | 0.001     | 2.423       |
| TCLP | -0.007      | 0.002     | -2.624      |
| CHI  | -0.005      | 0.003     | -1.609      |
| TCLP | -0.01       | 0.003     | -2.811      |
| COL  | -0.008      | 0.005     | -1.657      |
| TCLP | -0.003      | 0.001     | -2.54       |
| EGS  | -0.005      | 0.002     | -2.472      |
| TCLP | -0.009      | 0.003     | -2.805      |
| INO  | -0.006      | 0.004     | -1.556      |
| TCLP | -0.012      | 0.004     | -2.842      |
| TAP  | -0.004      | 0.004     | -0.991      |
| TCLP | -0.004      | 0.002     | -2.531      |
| MXI  | -0.005      | 0.002     | -2.123      |
| TCLP | -0.008      | 0.003     | -2.89       |
| MXM  | -0.008      | 0.004     | -2.176      |
| TCLP | -0.002      | 0.001     | -2.357      |
| NOE  | -0.002      | 0.001     | -2.492      |
| TCLP | -0.012      | 0.004     | -2.945      |
| OMN  | -0.005      | 0.004     | -1.23       |
| TCLP | -0.004      | 0.001     | -2.546      |
| RUS  | -0.006      | 0.002     | -2.426      |
| TCLP | -0.002      | 0.001     | -2.408      |
| BRT  | -0.002      | 0.001     | -2.391      |

Table 3.8d show results of the ECM of the KMP stock prices with crude oils of non-OPEC producers. We obtained significant coefficients for both coefficients of KMP stock prices and crude oils' prices, which let us consider ECM coefficients obtained for the both. For KMP stock prices, the speed of adjustment to long-run equilibrium ranges from -0.045, in the case of EGS, and -0.048 in the case of OMN crudes. In other words, 2.2 to 3.5 percent of any divergence from long-term relationship will be eliminated in a weekly base.

### 3.8 Conclusion:

The chapter uses the Johansen co-integration methodology to determine whether oil prices and oil stock prices are following a common trend. In other words, "Are these prices generated by a common data generating process or not?" We have used two sets of data that span from 03/01/1997 to 29/01/2010 (a total of 681 observations): 1) stock prices of 32 different oil companies that cover four different oil sectors and 2) crude oil prices of 30 different crude oils produced by OPEC and non-OPEC countries. Prices of both time series sets were tested for unit root and were found to be stationary after the first difference.

The results suggest that crude oil prices and oil stock prices are not co-integrated in the majority of cases. With the exception of stock prices of five companies, most oils stock prices are being driven by a different data generating process than the one behind crude oil prices. Further investigations of the error-correction model (ECM) were conducted on a small number of oil stock price series that show a co-integrated relationship with crude oil prices. The error-correction model provides an indication of the short-term dynamics of possible deviation from long-term equilibrium.

Overall, we concluded that stock prices of oil companies do not share similar data generating process (DGP) with oil prices, which suggests that there is a set of different factors that influence oil stock prices in different ways and to different degrees than crude oil prices. Future research should look into whether the inclusion of dividends and splits in stock prices (i.e., using adjusted stock prices) would result in a co-integrated relationship with crude oil prices. Furthermore, inflation and interest rates could also be included in testing for co-integration of stock and crude prices.

# Chapter 4: Determinants of OPEC and non-OPEC crude oil prices: a panel data analysis of endogenous and exogenous factors

# 4.1 Introduction

News and events help market participants in forming future expectations. Given the diverse background and experience of parties involved in the decision making process, different interpretations of news add a subjective dimension to the complex dynamics of crude oil prices. Interaction between supply and demand is the main force that drives crude oil price dynamics; however, several studies have suggested that, in some circumstances, traders tend to reject the supply-demand analysis in favour of a fear-and-greed attitude. If the market believes that the level of surplus supply capacity is sufficient to meet additional demand created by unexpected eventualities, then the fundamentals of supply and demand become the dominant analytical framework for pricing crude oil. However, if excess production capacity is below some perceived benchmark, then fear of possible supply disruption and greed to make profit become the driving forces behind crude oil prices (Garis, 2009). Early research by Bhagwati and Srinivasin (1976) and Mayer (1977) suggested that, should unanticipated disruption of crude oil supply occur, producing firms must raise prices due to the adjustment cost of lost goods. So, today's traders have, in the back of their minds, the idea that, in case of a significant disruption in supply, prices would surely increase, which would cause a selffulfilling prophecy.
This psychological factor increases the complexity of the price discovery process performed by different market participants. In addition, Garis (2009) suggested that the correlated positions in the crude oil market caused by thousands of traders using relatively few computer trading programmes increase the sensitivity of crude oil prices to news, which could very easily cause price shocks to the system and increase market instability. He argued that the situation is worsening for the broad energy market due to the presence of "novice" hedge fund managers who are experienced in the bond and equity markets but are not well prepared for trading in the commodity market.

Till (2007) provided an example of such an ill-prepared venture by Amaranth Advisors, a hedge fund, in which a single trader bid \$6 billion on natural gas futures, causing the collapse of the hedge fund and sending waves of concern throughout the energy market. In addition, most of these positions are based on borrowed money, which suggests that losing positions would be closed quickly, further increasing market instability (Garis, 2009). Oil prices provide signals to the people who are in charge of making trading, managerial and operational decisions (Amic and Lautard, 2005). In case of increasing market instability, decision makers would get mixed price signals, meaning that making well-informed investment decisions would be very difficult and could cause unexpected outcomes.

Amic and Lautard (2005) emphasised that strategies and techniques developed by hedge funds, banks and investment houses cannot simply be applied in the commodity market, given its high price volatility, low liquidity and liberal use of leverage. They further stated that the difficulty of modelling and predicting commodity prices is associated with the difficulty of understanding the value that the commodity generates for the user and the importance of timing its position. As a result, they suggested that it is possible for oil and gas trading companies to have an edge over their financial competitors. In other words, industry-specific knowledge could provide oil and gas trading companies with the means of better assessing news and information than the financial companies that are their competitors. This could increase the chances of achieving more accurate estimates, which could be translated into taking profitable positions and eliminating losing positions.

Modelling crude oil prices requires an understanding the influences that different types of related news and events have on oil prices. However, a common concern by most related parties is the impact that any news item (i.e., new information) might have on the expected level of supply in the near future and whether the news item is an indicator of potential supply disruption. Leiby and Bowman (2003) suggested that different assumptions and approaches that were used for estimating the risk of oil disruptions during the 1990s did, in fact, contribute to vicarious estimates, which suggests that a serious investigation is needed before assumptions are acted upon and approaches are implemented.

This chapter contributes to the goal of the thesis by presenting the analysis of the impact of different news and events items on the price performance of 30 different types of crude oils produced by OPEC and non-OPEC countries. We investigated whether crudes produced by OPEC and non-OPEC producers have the same relationship to the specified set of news and events. For example, we can determine whether geopolitical events affect the prices of crude oils produced by OPEC countries, such as Kuwait and Saudi Arabia, in the same way they affect the prices of crude oils produced by non-OPEC countries, such as Mexico and Norway.

We seek to draw a picture of relationships between crude oils produced by OPEC and non-OPEC nations in the hope of identifying possible advantages for parties involved in the global oil markets. In other words, we want to be able to determine whether the prices of crude oils produced by OPEC and non-OPEC countries react similarly (or differently) to new information conveyed by the social and political changes and events taking place all over the world. We test the following hypothesis:

Hypothesis 3: The prices of OPEC and non-OPEC crudes have a similar reaction to different news items and global events.

Guo and Kliesen (2006) proposed a narrative approach in which they considered *Wall Street Journal* accounts of the 10 largest daily 12-month futures oil price movements during the period from 1983 - 2004. They found that most of these movements were related to decisions that OPEC made or to events in the Middle East. We used a similar approach to review 682 oil-related news items during the period from 1997 - 2007 and stated possible relationships with the dummy variables listed in Table 4.1.

Appendix 12 presents these news items as listed by the U.S. Department of Energy and shows our assessment of possible impacts on the prices of different crudes and other variables. We started by identifying the possible impacts of the following events, i.e., military conflicts, social and labour disputes, political unrest, weather and environmental concerns and business and economic factors. We used dummy variables to identify the impact of each news item on selected categories. If we believed that a particular item had an impact on the two categories of social and labour unrest and business and economic factors, a value of "1" was assigned to the dummy variables representing these two categories, and a value of "zero" was assigned for all other dummy variables for political unrest.

#### 4.2 Crude oil supply disrupting events

Huntington (2009) suggested that oil price shocks caused by supply disruption are different from demand-oriented oil price increases that could be described as more gradual. He further stated that empirical evidence suggests that oil price shocks should be considered separately from other oil prices changes. For example, he suggested that the reaction of oil prices to the events of the 1970s (i.e., the Arab oil embargo in 1973 and the Iranian revolution in 1979) was quite different from recent price volatility. In addition, Huntington suggested that oil suppliers and consumers alike do not fully understand the actual risk of another oil disruption. Indeed, Aldy (2007) showed that private entities in OECD countries are far behind in stockpiling oil compared to public stockpiling of oil, which suggests that these private entities are taking inadequate measures to deal with any possible future oil disruption.

Huntington (2009) also stated that the fundamental economic problem facing the global economy is the creation of a reasonable balance between benefits obtained by the use of free and open market policies and oil security issues that may limit dependency on Middle Eastern oil. He summarised the security supply policies in the three following questions: 1) How much should government spend to manage energy security?; 2) Should decision makers use a particular policy, such as stockpiling

reserves or tariffs, to offset the impact of price shocks?; and 3) How should the oil environmental premium and the oil security premium be dealt with? Are they complementary or not? Bohi and Toman (1993, 1996) and Toman (1993) researched policies and principles adopted by governments to deal with the issue of supply security, and they provide excellent reviews.

Beccue and Huntington (2005) presented the results of a study conducted by the Energy Modelling Forum (EMF) of Stanford University in which a panel of geopolitical, military and energy economics experts were asked, in a series of three consecutive workshops, to "reflect their individual judgments" in evaluating the likelihood of at least one foreign oil disruption over the next 10 years. The study was performed twice, once in 1996 and again in 2004. In 1996, the study was limited to possible oil disruption in two major oil supply regions, i.e., Saudi Arabia and the other Gulf countries (including Iraq, Iran, Qatar, Kuwait and Oman). In 2004, the study was broadened to cover four major supply regions, i.e., Saudi Arabia, other Gulf countries, countries west of the Suez Canal and Russia and its former Caspian states.

The panel's task was to estimate net disruptions in each region taking into account excess capacity in undisrupted regions. Excess capacity exists mainly in Saudi Arabia and to a lesser extent in other Gulf countries. Russia's excess capacity was not considered in the study, given the U.S.'s limited policy of intervention in Russia. In addition, Russia and most non-OPEC countries were producing at maximum capacity during that time, which suggests that these countries have no additional capacity to meet any unexpected demand caused by disruption. Once the information was collected on different scenarios and events, such as the likelihood and sizes of disruptions, it was assessed using the DPL software package developed by Syncopation Software (2003). The results of over 20 million scenarios suggested that the probability of any oil disruption taking place within the next 10 years and lasting more than one month is 49 percent for Saudi Arabia, 83 percent for other Gulf States, 72 percent for countries west of Suez and 17 percent for Russia and the Caspian states. These results confirmed the notion that geopolitical events in the Middle East and their linkages to more than one major oil supply area are important factors in oil risk assessment (Huntington, 2009).

## 4.3 Impacts of Oil disruptions

A major oil supply disruption would cause a shortage in the quantity supplied to meet demand. Once the news of oil-disrupting events came out, the most likely scenario is that the market would react by increasing prices. Garis (2009) stated that the buying behaviour of market participants during times of possible shortage of oil is very likely to cause price increases. However, he also suggested that, in case available production is capable of meeting an expected shortage caused by geopolitical events, prices tend to revert back to their conventional supply and demand relationship.

However, if the market believes that available supply would not be able to address supply disruption, price increases would have major effects on the final users of oil and oil-related products. Petrochemical companies, refineries, plastics companies and others dependent on oil would face two main challenges. The first challenge would be increasing oil prices that lead to increases in the cost of production (or operation) and negatively affect profit. Various risk management techniques can be used to control this challenge, such as futures and options contracts. The second challenge is that increasing oil prices may result in a slowdown of their clients' business activities, leading to a deferral of further investments. As a result, predicting or estimating future cashflows for these companies would be more challenging for current or future investors.

These changes exist throughout different companies and industries, which means that oil price increases would have an effect on overall economic growth that would not be limited to the oil-related companies. Stevens (2000) suggested that oil price increases would have an impact at both national and local levels. At the national level, oil (and energy) importers would face problems in term of balance of payments and resource transfer. At the local level, energy and capital-intensive projects could be "intrusive" on local communities as well as on the environment. In other words, the costs that would be incurred would be passed on to local communities and to the environment. In the case of the U.S., a 10 percent increase in crude oil prices would cause an estimated 0.2 to 0.5 percent decrease in GDP over a six-month period. (See Brown and Yucel, 2002; Brown et al., 2004; and Jones et al., 2004. For international estimates, see Jimenez-Rodrigues and Sanchez, 2005.)

The possibility of an oil supply disruption event increases uncertainty about future oil prices and is likely to put downstream companies under increasing pressure from their suppliers. If we look at the contract arrangement between the two parties, we can see that a continuous flow of feedstock is essential for the functioning of the oilsupply chain. Any disruption of the flows of input materials, especially for gaseous inputs, would be very costly, given that the storage and transportation of such raw materials are very expensive. Long-term contracts provide mutual benefits to sellers and buyers, which usually span over one to three years with options for automatic renewal or termination. Most of these contracts provide flexibility to both parties through periodic price readjustments (Fan, 2000). The parties who would seek price readjustment are the ones who view current prices as unfavourable to their business operations. In case of increasing oil prices, a supplier of input to a petrochemical company would be in a stronger position to demand higher prices. As a result, the petrochemical company would have no choice but to pay higher prices, because it cannot risk the disruption of its input materials.

In periods of decreasing oil prices, petrochemical companies would be in a stronger position to demand lower prices, because of the existence of a buyers' market, which means that suppliers would be competing strongly to gain more market share. The increasing uncertainty about future oil prices puts downstream companies under increasing pressure to secure a supply of inputs. Long-term contracts, which usually span over 1 to 3 years with options for automatic renewal or termination, provide downstream companies with much-needed time to adjust to the new prices.

## 4.4 Crude oil price discovery

As a starting point, in the global energy market, crude oil is not exactly a homogeneous commodity. In fact, Energy Intelligence (2007) stated that there are 187 different types of crude oils. Each type has its unique hydrocarbon mixture and different quantities of oxygen, nitrogen, sulphur and salt (Speight and Özüm, 2001). These

components make crudes that are high in API<sup>29</sup> number and hydrogen and low in carbon and sulphur<sup>30</sup> more valuable because they contain high percentages of paraffins and usually produce more gasoline. As a result, these crudes command higher prices (premium) on the world markets. On the other hand, crudes with low API numbers and high sulphur content are sold at lower prices (discount). This discount is due to the costs associated with the pollution and corrosion that result from the use of high-sulphur crudes. In addition, more advanced processing techniques (including blending with high quality crude) are required to obtain valuable products from low quality crudes. Premiums and discounts are estimated with reference benchmark crudes, such as Brent crude and West Texas Intermediate (WTI) crude.

Most forecasts are performed using well-known benchmark crudes (i.e., Brent and WTI). Indeed, Brent crude is used as a pricing benchmark for about 67 percent of the crude oil sold globally (Chevillon and Rifflart, 2009). Brent also is a better reflector of free market conditions because it is free of any governmental intervention (Lewis, 2005). Fattouh (2007) presented evidence that the dynamics between the prices of most crude oils are co-integrated, which suggests that following one crude oil would give an idea about the performance of other crudes. According to Dunis and Huang (2003), the profitability of a trading system depends primarily on indicating the direction of market changes and then taking the position that is most compatible with the expected changes. In other words, if the price of a benchmark crude is expected to move in one direction, then estimating how long (or how far) it would take the other less-known crudes to react should be profitable as well. However, it is possible that certain types of factors could

<sup>&</sup>lt;sup>29</sup> API: unit used to measure gravity of crude oil.

<sup>&</sup>lt;sup>30</sup> Sulphur: undesirable component of crude oil that causes corrosion to equipment and pipelines.

be associated with shorter (or longer) lag times between the movement of a benchmark price and the movement of the price of the less-known crude oil. As a first step in this chapter, we seek to understand the relationship between crude oil prices and the factors that influence those prices. Risk management teams in energy-intensive companies, such as refineries, airlines and power generators base critical decisions on a clear understanding of the factors behind the dynamics of crude oil prices.

Factors that affect the pricing of crude oils can be categorized as endogenous (i.e., industry-specific, such as physical and chemical features of the crude oil) or exogenous (i.e., non-industry-specific, such as geographic location or political unrest). However, most price forecasting models use quality features of a crude oil (i.e., API gravity number and sulphur content) to adjust the prices of various crude oils (Bacon and Tordo, 2005). Once these relationships between different crude oils are understood, traders can adjust their trading positions to benefit from expected movement in crude prices.

Bacon and Tordo (2005) explained that different approaches have been used to value crude oil. One approach is the assay-based valuation, which is based on linking the properties of a crude oil to the specifications of the final output. In other words, the value of the crude is estimated by determining the value of its optimal product output. It is estimated that gasoline and jet fuel produce high profit margins compared to other products, which suggests that crudes from which the largest possible quantity of these two products can be produced should have the highest prices. In the case of a refinery operation, economic decision analysis is performed to deal with various tasks, including crude oil evaluation, production planning and multi-refinery supply and distribution. These analyses take into consideration crude oil specifications and the features of outputs required, and they try to achieve an optimal match in the most efficient and effective way. Amic and Lautard (2005) suggested that the growth of the global market for refined products is based on the need to balance the composition of demand, mix of refinery capacity and the type of crude oil being used in each geographic region.

A second approach is to use physical and chemical valuation, especially API gravity number and sulphur content, as indicators of the value and quality of the crude. Price differentials of crude oils are estimated in relation to quality differentials based on both API number and sulphur content. Bacon and Tordo (2005) explained that two different approaches can be used to make this estimation, i.e., 1) use pair-wise comparison in which two crudes with similar API numbers or sulphur contents can be compared; for example, if two crudes have the same API number and different sulfur contents, then any differential between the two prices could be linked to the difference in sulphur content and; 2) use a multi-regression analysis by obtaining simultaneous differences in qualities from a large number of crude oils. Then, these simultaneous differences can be incorporated into a single model. The idea is to estimate the impact of quality differentials on price differentials.

#### 4.5 Data and Methodology

The dataset consists of the weekly spot prices of 30 different crude oils, their API numbers and their sulphur contents. The dataset also contains 12 dummy variables that reflect a wide range of information, such as OPEC membership, geographical location and impacts of geopolitical events. The total number of observations was 20460 and these were made up of 10912 observations for OPEC crude oils and 9548 observations for non-OPEC crudes. Each of the 30 different crudes has a total of 682 observations. The observations span from January 1, 1997, to January 29, 2010.

We tested the prices for the existence of unit root using ADF and PP unit root tests, and we found that the prices were stationary at the log returns. Other variables, such as country of origin or sulfur contents, are not time series, and, thus, we do not expect them to suffer from unit root problems. Appendix 12 shows a list of oil related news and events during this time period and their expected impacts on one (or more) of our set of dummy variables. In other words, related news and events were categorized according to their relationship with each of the dummy variables. For example, an explosion in a Nigerian pipeline would be assigned a value of "1" for each of the dummy variables of Sub Saharan, OPEC, Labor and Social, and Economic and Business. All other dummy variables would be assigned the value of zero.

Given the type of our data set and the way it was constructed, neither time series analyses nor cross-sectional analyses are capable of obtaining meaningful results. In the case of time series analysis, models can only track one variable during a sequential time interval. As a result, the same time series model cannot be used to track the group of variables specified. On the other hand, the cross-sectional model lacks the capability to incorporate a sequential time interval. It simply provides a snapshot at a particular time for the variables of interest, which means that we cannot track these variables over sequential time intervals. However, panel data analysis and its fixed and random effects techniques offer an effective set of tools that would fit the type of data we are dealing with.

Table 4.1 lists 15 different variables that can be organized into three different groups. First, Group A consists of the API and SUL variables, which are time invariant because the information they capture is not expected to change over time. Second, Group B lists eight different dummy variables, OPEC, MD, N\_AFR, S\_AFR, ASA, N AM, S AM and EUR. These dummy variables are designed to identify geographic locations of the regions producing crude oils. For example, if a news item contains information regarding a crude oil produced in Venezuela, then values entered in these dummy variables are as follows: 1, 0, 0, 0, 0, 0, 1 and 0. The first time the number "1" is entered, it indicated that this news item impacted a crude oil produced by an OPEC member; for non-OPEC crudes, the value of "0" would be entered. The second time the value of "1" was entered, it indicated that the news item was related to a crude oil producer located in South America, since the value of "1" was entered into the S AM dummy variables and the other dummy variables received a value of "0." Finally, Group C consists of five different dummy variables, i.e., M\_CONF, LAB\_SOC, POLT, ENV\_WETH and ECO\_BUS. These dummy variables are included to capture the type of information contained in the news item. In Group C, it is possible for one news item to score "1" in more than one dummy variable, unlike Group B in which locations are mutually exclusive (i.e., once one location has been chosen, another location cannot be selected). For example, on December 5, 2003, groups of unarmed Nigerian villagers from the Kula community located in the River State of South Niger Delta took control of three oil-flow stations producing 100,000 barrels per day (bbl/day) and operated by Shell and ChevronTexaco. The villagers claimed that they were protesting these companies' limited job offerings to the local workforce. Such a news item scored a value of "1" for the dummy variables of LAB\_SOC and ECO\_BUS, due to the substantial amount of crude oil that was involved.

| Group                                                                      | Variable  | Definition                                                         |  |  |  |  |
|----------------------------------------------------------------------------|-----------|--------------------------------------------------------------------|--|--|--|--|
| A*                                                                         |           |                                                                    |  |  |  |  |
|                                                                            | API       | To capture the degree of API                                       |  |  |  |  |
|                                                                            | SUL       | To capture sulphur contents                                        |  |  |  |  |
| B**                                                                        |           |                                                                    |  |  |  |  |
|                                                                            | OPEC_NEWS | To identify news of OPEC                                           |  |  |  |  |
|                                                                            | MD        | To identify Middle eastern crude oils                              |  |  |  |  |
|                                                                            | N_AFR     | To identify North African crude oils                               |  |  |  |  |
|                                                                            | S_AFR     | To identify Sub-Saharan crude oils                                 |  |  |  |  |
|                                                                            | N_AM      | To identify North American crude oils                              |  |  |  |  |
|                                                                            | S_AM      | To identify South American crude oils                              |  |  |  |  |
|                                                                            | ASA       | To identify Asian crude oils                                       |  |  |  |  |
|                                                                            | EUR       | To identify European crude oils                                    |  |  |  |  |
|                                                                            |           |                                                                    |  |  |  |  |
| C**                                                                        |           |                                                                    |  |  |  |  |
|                                                                            | M_CONF    | To identify military conflict events such as wars, gorilla         |  |  |  |  |
|                                                                            |           | attacks                                                            |  |  |  |  |
|                                                                            | LAB_SOC   | To identify labour and other social events, such as labour strikes |  |  |  |  |
|                                                                            | POLIT     | To identify political events and news, such as UN decisions        |  |  |  |  |
|                                                                            |           | and governments press releases                                     |  |  |  |  |
|                                                                            |           | To identify environmental and weather factors and events,          |  |  |  |  |
|                                                                            |           | decisions on global worming and impacts of nurricane               |  |  |  |  |
|                                                                            | ENVO WETH | To identify economic, business or industrial news such as          |  |  |  |  |
|                                                                            |           | merger and acquisition and new oil and gas discoveries.            |  |  |  |  |
|                                                                            |           |                                                                    |  |  |  |  |
|                                                                            |           |                                                                    |  |  |  |  |
|                                                                            | ECO_BUSI  |                                                                    |  |  |  |  |
| * indicates values of physical and chemical features that have been tested |           |                                                                    |  |  |  |  |
| **indicates dummy variables that takes values of "1" or "0"                |           |                                                                    |  |  |  |  |

Table 4.1: Groups and definitions of variables:

Oil-related news and events evaluated in this study occurred during the period from January 1, 1997, through January 29, 2010. The total number of news items evaluated was 682, consisting mainly of events that took place in or near the major oil producing regions of the world or in major oil consuming markets. The economic analysis of energy markets considers the effects of policy measures, such as price control and regulation. In most cases, it examines the verity of social, political, legal, environmental and technological issues at regional, national and global levels (Lewis, 2005). Thus, I have organized these news items into five main categories:

- 1. Military conflict
- 2. Labour and social
- 3. Political
- 4. Environmental and Weather
- 5. Economic and Business

In the category of "military conflict," news items covered major events taking place around the world. Perhaps, the events of September 11, 2001, and the subsequent pre-emptive war waged by the United States against Iraq present major events in this category, given that Iraq is a major oil producer and adjoins other major oil producing regions, such as Saudi Arabia, the Gulf states and Iran. Nevertheless, other major military conflicts were evaluated in this study. For example, on April 4, 2002, the Angolan army signed a ceasefire accord with the Unita rebels. This news item was expected to have an impact on oil prices, given Angola's substantial oil production and exportation. Particular attention was paid to military conflicts were (and still are)

dominating news broadcasts, which suggests that it has already being factored in oil price behaviour. Of course, we still account for new events taking place in the Middle East.

In the labour and social categories, we look to identify news items related to the human and social aspects of the oil industry. In other words, we look into news being made by the workforce of the oil industry or the communities surrounding (or located in) major oil producers and consumers. For example, on August 15, 2005, local protestors of Ecuador's northeast oil producing states shut down 210,000 bbl/day of the country's oil production by blocking roads and occupying oil production facilities. Other news items include worker's industrial actions in major oil producing or consuming countries. For example, on May 20, 2005, a workers' strike in France shut down five major refineries operated by Total over a dispute regarding the number of vacation days. The strike affected an estimated 930,000 bbl/day of crude oil refining capacity.

Political unrest in major oil producing and consuming regions can be divided into Middle East-related and non-Middle East-related. In case of the Middle East and pre-9/11 events, the news of the Arab/Israeli conflict dominated Middle Eastern news. However, given that this part of the world does not contribute significantly to the global energy supply, we did not include political news or events taking place in this part of the world. However, the only exception is the news regarding the Suez Canal, given its close proximity to the area of the Israeli/Palestinian conflict and its relative importance to global trading routes. However, post-9/11, the types of political news items and events have shifted toward the issues of terrorism, Iraq and Afghanistan. Iraq is a major oil producing country and is viewed by many energy experts as the most promising land in the Middle East for further significant oil discoveries. However, years of war and the lack of the presence of major international oil companies have made Iraq's share of the oil export market less significant than its actual potential. However, the United Nations' (UN's) oil-for-food programme and other types of UNbased programmes did provide some news items that were of marginal interest for the analysis of global oil and energy markets. For example, on February 20, 1998, the UN Security Council voted unanimously to allow Iraq to more than double its crude oil exports under the oil-for-food programme. This increase allowed Iraq to export more than \$5.26 billion worth of crude oil over a period of six months; however, the Iraqi authority stated that it only had the capacity to produce up to \$4 billion worth of crude. As a result, on June 19 of that same year, the UN Security Council unanimously agreed to allow Iraq to spend \$300 million on buying spare parts for its oil facilities. These news items, and others, provide signals that could influence the pricing behaviour of different market participants.

Political news and events taking place in other major oil exporting or importing regions have been considered and analysed in this study. Russia and its former states have been major sources of political news. Given its vast natural resources and its political, social and economic unrest, Russia is viewed by many energy experts as an unstable energy partner. For example, in early January 2009, the state-owned Russian company, Gazprom, cut off the gas supply to Ukraine. The effects of this shut down expanded to parts of Europe, given that Ukraine is a pivotal transit state for Russian oil and gas for major parts of continental Europe. This was not the first time this had happened, since Russia did the same thing in January 2006, and many observers called

on the European Union to reduce reliance on the Russian energy supply. I should mention that some of the stories related to political news have escalated into military conflict, and, once that happens, we score it under the M\_CONF dummy variable.

Most environmental and weather news items covered in this study took place in the Gulf of Mexico. Perhaps the most important news event in this category was the oil supply disruption caused by Hurricane Katrina. On August 28, 2005, based on the estimation of the U.S. Interior Minerals Management Service (MMS), an estimated 95 percent of oil and 88 percent of natural gas produced in the Gulf of Mexico were shut down as a result of Hurricane Katrina striking the U.S. near New Orleans. Several other hurricanes also struck the Gulf region, some of which caused major oil and gas supply disruptions. Two examples are Hurricane Lili (October 3, 2002), which caused a shut down of an estimated 1.5 million bbl/d of oil production, and Hurricane Claudette (July 1, 2003), which passed 80 miles southeast of Texas, causing a supply disruption of 330,000 bbl/d.

In term of crude oil price returns, we used several test to better understand the nature of the data we are using. We start by testing for heteroskedasticity, unequal variances, using the Breusch-Pagan (BP) test. The null hypothesis for homoskedasticity, which is equal variances, being tested in the BP test is as follow:

$$H_0: \alpha_1 = \alpha_2 = \ldots = \alpha_p = 0$$

In which the  $\alpha$  (s) stand for the coefficients of the set of variables that we think determine the variance of the error term. The alternative is that at least one of the  $\alpha$  (s) does not equal zero (Asteriou and Hall, 2007). The residuals obtained by running a

regression of the prices series and the different news items. Then, we run auxiliary regression of the variables that we think cause the variance of the error term. The results are then compared the LM-statistics obtained with Chi-distribution.

Table 4.2 suggest that most crude oils do exhibit some form of heteroskedasticity. This is also supported by the ARCH-effect test we used in Chapter 2, which clearly indicates the existence of heteroskedasticity. However, since we are dealing with polled data, we apply the BP tested as well to the three groups (i. e. OPEC, non-OPEC and All sample). The results are then compared to the LM-statistics obtained with chi-distribution and with degrees of freedom equal to the number of slope coefficients in the regression (Asteriou and Hall, 2009).

As suggested by Baltagi (2008), before pooling the data, and in case there is a concern of the stability of the regression equation across prices of crude oil returns. By looking into Figure 7 on page 100, we can see a major drop of crude prices during the period of late 2008 and early 2009. We used the Chow breakpoint test to see if this drop can be identified as a breakpoint in the data set. The hypothesis to be tested is that no structural break in the sample.

| OPEC         | LM_CRIT |                  | non-OPEC | LM_CRIT |           |
|--------------|---------|------------------|----------|---------|-----------|
| ADM          | 6.11    | Reject Ho        | AUS      | 13.89   | -         |
| ASB          | 15.96   | -                | CAM      | 7.461   | Reject Ho |
| ANC          | 14.18   | -                | CAP      | 11.38   | -         |
| DUB          | 5.087   | Reject Ho        | CHI      | 10.09   | Reject Ho |
| ECO          | 8.11    | Reject Ho        | COL      | 15.39   | -         |
| IRH          | 6.72    | Reject Ho        | EGS      | 10.82   | Reject Ho |
| IRL          | 6.49    | Reject Ho        | INO      | 8.32    | Reject Ho |
| KUT          | 3.12    | Reject Ho        | TAP      | 14.697  | -         |
| LIB          | 13.64   | -                | MXI      | 13.38   | -         |
| NGB          | 8.3     | Reject Ho        | MXM      | 5.22    | Reject Ho |
| NGE          | 16.29   | -                | NOE      | 11.45   | -         |
| DUK          | 6.61    | Reject Ho        | OMN      | 5.115   | -         |
| SAH          | 6.41    | Reject Ho        | RUS      | 3.49    | -         |
| SAL          | 15.617  | -                | BRT      | 6.31    | Reject Ho |
| SAM          | 9.138   | Reject Ho        |          |         |           |
| VEN          | 11.18   | -                |          |         |           |
| All OPEC     | 9.56    | <b>Reject Ho</b> |          |         |           |
| All non-OPEC | 9.786   | <b>Reject Ho</b> |          |         |           |
| All sample   | 9.673   | <b>Reject Ho</b> |          |         |           |

4.2 Results of the Breusch-Pagan test:

Note: 11.07 is the Maximum likelihood-statistic value used in hypothesis testing. Ho: The case for homoskedasticity; Ha: the case of heteroskedasticity.

We also used The Chow breakpoint test to examine whether structural break on data has affected parameters stability. By looking into Figure 3 on page 59, we can see a major drop of crude prices during the period of late 2008 and early 2009. We used the Chow breakpoint test to see if this drop can be identified as a breakpoint in the data set. The hypothesis to be tested is that no structural break in the sample.

| OPEC |         |         |          | non-OPEC |         |         |          |  |
|------|---------|---------|----------|----------|---------|---------|----------|--|
|      | F-stat  | Log L R | Wald     |          | F-stat  | Log L R | Wald     |  |
| ADM  | 463.800 | 587.340 | 927.509  | AUS      | 442.515 | 569.061 | 885.030  |  |
| ASB  | 464.100 | 587.610 | 928.141  | CAM      | 456.179 | 580.874 | 912.357  |  |
| ANC  | 470.000 | 592.610 | 939.975  | CAP      | 390.218 | 521.856 | 780.436  |  |
| ECO  | 457.300 | 581.820 | 914.568  | CHI      | 444.816 | 571.064 | 889.631  |  |
| IRH  | 507.600 | 623.610 | 1015.257 | COL      | 487.421 | 607.140 | 974.842  |  |
| IRL  | 492.700 | 611.470 | 985.374  | EGS      | 480.370 | 601.300 | 960.739  |  |
| KUT  | 445.400 | 571.590 | 890.832  | INO      | 699.950 | 763.139 | 1399.899 |  |
| LIB  | 475.800 | 597.450 | 951.520  | TAP      | 449.167 | 574.838 | 898.335  |  |
| NGB  | 466.800 | 589.900 | 933.556  | MXI      | 639.412 | 722.216 | 1278.823 |  |
| NGE  | 397.000 | 528.150 | 793.975  | MXM      | 501.029 | 618.273 | 1002.059 |  |
| DUK  | 463.200 | 586.840 | 926.333  | NOE      | 456.117 | 580.821 | 912.234  |  |
| SAH  | 533.800 | 644.370 | 1067.626 | RUS      | 467.947 | 590.888 | 935.895  |  |
| SAL  | 492.400 | 611.270 | 984.881  | BRT      | 439.626 | 566.537 | 879.252  |  |
| SAM  | 509.900 | 625.400 | 1019.729 |          |         |         |          |  |
| VEN  | 458.300 | 582.730 | 916.698  | <u> </u> |         |         |          |  |

Table 4.3: Results of the Chow Breakpoint Test:

Results are reported in Table 4.3. In all cases, we are able to reject the null hypothesis. This would suggests that any results obtained should be analysed taking these results in consideration. However, given that this breakpoint in data did take place recently, not enough observations are available at this point to further deal with this break.

## 4.6 Model specification

We tested the prices for the existence of unit root using the augmented Dickey-Fuller (ADF) approach proposed by Dickey and Fuller (1981). Tables 2.4 and 2.5 of Chapter 2 list unit root tests conducted on crude oil prices of OPEC and non-OPEC, respectively. The results indicate that prices are non-stationary at price level and are stationary after taking the first differences. In case one of the series under examination fails the ADF unit root, the following Im, Pesaran and Shin (1997) (IPS) panel unit root test would be applied. The IPS unit root test is more powerful because it can deal with several features (Luintel, 2000). First, it allows for heterogeneity of dynamics and error variances across the different groups under analysis. Second, in case errors in different regressions contain common time-specific components, IPS tests based on crosssectional regressions are valid. Third, it allows for a fraction of the individual groups to have a unit root, which makes the test more general than other alternative panel data unit root tests, such as the Levin and Lin test (1992). Finally, the test has better small sample properties.

Appendix 12 summarizes the oil-related news and events we covered during this period and their expected impacts on one (or more) of our set of dummy variables. In other words, related news and events were categorized according their relationship with each of the dummy variables. For example, an explosion in a Nigerian pipeline would be assigned a value of "1" for each of the dummy variables of Sub-Saharan, OPEC, Labour and Social and Economic and Business. All other dummy variables would be assigned the value of "0." Given the type of our dataset and the way it was constructed, neither time series analyses nor cross-sectional analyses are capable of obtaining meaningful results. In the case of time series analysis, models can only track one variable during a sequential time interval. As a result, the same time series model cannot be used to track the group of variables specified. On the other hand, the cross-sectional model lacks the capability to incorporate a sequential time interval. It simply provides a snapshot at a particular time for the variables of interest, which means that we cannot track these variables over sequential time intervals. However, panel data analysis and its fixed and random effects techniques offer an effective set of tools that

would fit the type of data we are dealing with. Thus, we use the Fixed Effects (FE) and the Random Effects (RE) models to examine the reaction of stock prices returns of OPEC and non-OPEC producers to different news and events. However, we also use the Hausman test to the appropriateness of the RE model compared to the FE model.

The RE model specifies the individual effects as a random draw from the underlying population of individuals. In other words, the RE model identifies the population parameter that can describes the individual-level heterogeneity (Baum, 2006). On the other hand, the FE model can not estimates a parameter that can describes the individual-level heterogeneity. As a result, inference from the FE model in limited on the fixed effects in the selected sample.

In the fixed effects model (FE), the intercept can have a different value across sectors, but, for each sector, the intercept is time invariant (does not vary over time). In other words, the model allows for different intercepts for each group or sector. The FE can be specified as follows:

$$P_{it} = \beta_{1i} + \beta_2 V_{2it} + \beta_3 V_{3it} \dots + u_{it}, \qquad (2)$$

where P is the log return of crude oil prices,  $V_1$  is the API number and  $V_2$  is the sulphur content. The number of items (*i*) starts from 1 and goes to 30 because we have 30 different crude oils. The number of time periods (*t*) starts from 1 and goes to 681, which is the number of weekly price observations for each crude oil.

Given that a high API number and low sulphur content are preferable in crude oils, we assume a priori that P is expected to have a positive relationship with API number and a negative relationship with sulphur content. The FX model is also known as the least-squares dummy variables (LSDV) estimator because including dummy variable for each group allows for using different intercept for each group. The addition of dummy variables causes the (FE) equation to take the following form:

$$P_{it} = \alpha_1 + \alpha_2 D_{2i} + \alpha_3 D_{3i} + \alpha_4 D_{4i} \dots + \alpha_{13} D_{13i} + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}, \qquad (3)$$

where  $D_{2i}$  represents the identification of OPEC members by assigning "1" for crude oils produced by OPEC producers and "0" for crude oils produced by non-OPEC producers. The next six dummy variables, i.e.,  $D_{3i}$  to  $D_{8i}$ , are used to locate the crude producers. For example, if a South American country produced the crude oil,  $D_{7i}$  would be assigned a value of "1," and all the other dummy variables (i.e.,  $D_{3i}$ ,  $D_{4i}$ ,  $D_{5i}$ ,  $D_{6i}$ and  $D_{8i}$ ) would be assigned a value of "0." The next set of dummy variables consists of five variables, i.e.,  $D_{9i}$  to  $D_{13i}$ , which are included to capture the expected impact of news and events on the prices of related crude oil. For instance, if a major disruption to U.S. oil and gas production is expected due to a major storm, e.g., Hurricane Katrina, then, this would mean that the corresponding dummy variables,  $D_{12i}$  for environmental and weather factors and  $D_{13i}$  for economic and business factors, would be assigned a value of "1," and the other dummy variables would be assigned a value of "0." Table 4.1 provides a complete list of dummy variables and their assigned areas of interest. As summarized by Asteriou and Hall (2006), the FE model has the following properties:

1. It can capture all time-invariant effects that are specific to an individual parameter.

2. It would take full account of things like geographic location and natural

resources. These things do vary between individual entities but not over time.

3. It allows for the use of large number of dummy constraints.

4. It can be extended by including time dummies as well, which is known as two-way fixed effects model. Two-way FE model capture any effects that vary over time but are common across sections.

Panel data analysis offers the error-components model (ECM), also known as the random-effects model (RE). This technique deals more effectively with the issue of including dummy variables. As stated by Gujarati (2003), dummy variables show "a lack of knowledge about the (true) model," and expressing this limitation is better done through the disturbance term. The difference between FE and RE models is the ability of the RE model to deal with the intercepts for each sector as a random parameter. This suggests that we need to make specific assumptions about the distribution of the random component. In other words, the FE model assumes hat each individual differs in the intercept, on the other hand, the RE model assumes that each individual differs in its error term (Asteriou and Hall, 2006). The RE specifications are stated as follows:

$$P_{it} = \beta_{1i} + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$
(4)

In this case,  $\beta_{1i}$  is treated as a random variable with a mean value of  $\beta_1$ . The individual intercept for each crude would be in the form of  $\beta_{1i} = \beta_1 + \varepsilon_i$ . The term  $\varepsilon_i$  is the random error with a zero mean value and a variance of  $\sigma_{\varepsilon}^2$ . The basic idea is that we have the prices of 30 different crude oils, which are a sample of a larger population of crude oil prices. These 30 crudes have common mean values for their intercepts and

individual differences in the intercepts are captured by the error term,  $\varepsilon_i$ . Then, both  $u_{it}$  and  $\varepsilon_i$  would be embedded into a composite error term,  $\omega_{it}$ . The term  $u_{it}$  is the combined cross-sectional and time series error term, and  $\varepsilon_i$  is the individual specific error term. Gujarati stated that individual error components are assumed not to be correlated together and are not auto-correlated across any cross-sectional or time series unites.

#### 4.7 Empirical results and discussion

We started by running descriptive statistics for crude oils and news items organized as the OPEC group (10,912 observations), non-OPEC (10,230 observations) and the complete sample (20,460 observations). Results suggest that only six dummy variables should be included in the analysis given that other dummy variables did not yield a "with in standard deviation" greater than zero. As suggested by Baum (2006), any variable showing a within standard deviation of zero will not be included in the FE model. Only variables opec, m\_conf, lab\_soc, polotic, envo\_weth and eco\_bus are the ones included.

Results for the fixed-effects model and the random-effects model are presented in Table 4.4, panels A and B, respectively. The results are organized as follows: column 1 contains variables included in the estimations. Fixed and random results of the whole sample (20460 observations), including both OPEC and non-OPEC crude prices, are presented in columns 4 and 7. Columns 2 and 5 contain the results of the OPEC sample of crude prices (10912 observations) for both cases of fixed and random effects, respectively. Results of the non-OPEC crudes prices (10230 observations) are presented in columns 3 and 6, for fixed effects and random effects, respectively. The results were similar for both fixed effects and random effects, which indicate a similar relationship with each type of the news items specified in Table 4.1. However, within each model, estimates of different variables are behaving in way that is, in most cases, consistent with economic reasoning and theory. In the case of the fixed effects model, the results of OPEC and non-OPEC crude prices show estimation differences worthy of more discussion. In the case of the OPEC\_news variable, estimation suggests that OPECrelated news has a positive impact on the price of crude oils produced by OPEC countries. On the other hand, OPEC news had a negative impact on the price of non-OPEC crudes; however, neither estimate was significant at the 5 percent level.

|                                                                    | Panel A: F | Fixed Effects |            | Panel B: Random Effects |          |            |  |
|--------------------------------------------------------------------|------------|---------------|------------|-------------------------|----------|------------|--|
| Variables                                                          | OPEC       | Non-OPEC      | All crudes | OPEC                    | Non-OPEC | All crudes |  |
| OPEC_news                                                          | 0.907      | -0.917        | -0.014     | 0.382                   | -0.246   | -0.001     |  |
|                                                                    | (0.00)     | (0.00)        | (0.00)     | (0.00)                  | (0.00)   | (0.931)    |  |
| M_Conf                                                             | 0.238      | 0.441         | 0.322      | 0.242                   | 0.454    | 0.322      |  |
|                                                                    | (0.00)     | (0.00)        | (0.00)     | (0.00)                  | (0.00)   | (0.00)     |  |
| Lab_Soc                                                            | 0.844      | 0.781         | 0.847      | 0.859                   | 0.8      | 0.848      |  |
|                                                                    | (0.00)     | (0.00)        | (0.00)     | (0.00)                  | (0.00)   | (0.00)     |  |
| Polit                                                              | -0.031     | 0.088         | 0.02       | -0.034                  | 0.091    | 0.019      |  |
|                                                                    | (0.150)    | (0.00)        | (0.243)    | (0.120)                 | (0.00)   | (0.261)    |  |
| Envo_Weth                                                          | 0.005      | 0.011         | 0.01       | 0.004                   | 0.011    | 0.01       |  |
|                                                                    | (0.850)    | (0.598)       | (0.598)    | (0.856)                 | (0.683)  | (0.598)    |  |
| Eco_Bus                                                            | -0.086     | -0.076        | -0.072     | 10.081                  | -0.071   | -0.072     |  |
|                                                                    | (0.00)     | (0.00)        | (0.00)     | (0.00)                  | (0.00)   | (0.00)     |  |
| API*                                                               | -          | -             | -          | 0.002                   | -0.032   | 0.004      |  |
|                                                                    | -          | -             | -          | (0.409)                 | (0.00)   | (0.05)     |  |
| Sul*                                                               | -          | -             | -          | -0.063                  | -0.26    | -0.196     |  |
|                                                                    | -          | -             | -          | (-0.002)                | (0.00)   | (0.169)    |  |
| MD*                                                                | -          | -             | -          | -0.117                  | -0.118   | -0.264     |  |
|                                                                    | -          | -             | -          | (0.00)                  | (0.00)   | (0.34)     |  |
| N_AFR*                                                             | -          | -             | -          | -0.168                  | 0.075    | -0.034     |  |
|                                                                    | -          | -             | -          | (0.00)                  | (0.02)   | (0.223)    |  |
| S_AFR*                                                             | -          | -             | -          | -0.166                  | -0.278   | 0.006      |  |
|                                                                    | -          | -             | -          | (0.00)                  | (0.00)   | (0.82)     |  |
| ASA*                                                               | -          | -             | -          | omit                    | 0.078    | 0.026      |  |
|                                                                    | -          | -             | -          | omit                    | (0.00)   | (0.321)    |  |
| N_Am*                                                              | -          | -             | -          | omit                    | 0.037    | 0.024      |  |
|                                                                    | -          | -             | -          | omit                    | (0.00)   | (0.509)    |  |
| S_Am*                                                              | -          | -             | -          | omit                    | 0.071    | -0.006     |  |
|                                                                    | -          | -             | -          | omit                    | (0.00)   | (0.817)    |  |
| EUR*                                                               | -          | -             | -          | omit                    | omit     | omit       |  |
|                                                                    | -          | -             | -          | omit                    | omit     | omit       |  |
| Notes: *Variables were dropped from the Fixed Effects model due to |            |               |            |                         |          |            |  |

Table 4.4: Estimations of the Fixed and Random effects:

\*Variables were dropped from the Fixed Effects model due to zero-standard within standard deviation. P-values are in (). omit = variable due to collinearity. In the case of the random-effect model, this relationship still exists and is significant at 5 percent. Several studies have suggested that non-OPEC producing countries produce at maximum capacity and that it is up to OPEC producers to adjust their production in order to maintain equilibrium in the market. OPEC producers are in a cartel that determines the level of production by setting a quota for each member. This strategy, along with some other market conditions, affects oil prices (Kaufman et al., 2004). On the other hand, non-OPEC producers are considered price takers that compete with each other (Dees et al., 2006).

The basic idea for the Hausman test is to determine the difference between the two estimates—namely, the fixed effects and the random effects. The null hypothesis,  $H_o$ , states: There are no fixed effects in which both FE and RE are consistent, but only RE is efficient. In other words, according to the null hypothesis of no correlation, no differences should exist between the two estimates. On the other hand, the alternative hypothesis,  $H_a$ , is that fixed effects do exist. Thus, in the case of no correlation between regressors and effects, both FE and RE are consistent, but FE is inefficient. However, if correlation does exist, then FE is consistent and RE is inconsistent. In the Hausman test, we used a  $\chi^2$  with k-1 degrees of freedom, where *k* is the number of regressors.

Table 4.5 provides the results of the Hausman test, demonstrating that the different point estimates generated by the FE and RE in the three cases of OPEC, non-OPEC, and all crudes soundly reject the null hypothesis that the RE estimator is consistent. If no significant difference is found between the FE and RE estimates, we could apply the RE model. However, as the results in Table 4.5 suggest, a significant

difference exists between the two models, leading to the conclusion that we should limit our analysis to the FE model only. As a result, we continue the interpretation and discussion of the results of the FE model.

|           | OPEC   |        |        |        | non-OPEC |        |        | All    |        |  |
|-----------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--|
| News Item | FE (b) | RE(B)  | b-B    | FE (b) | RE(B)    | b-B    | FE (b) | RE(B)  | b-B    |  |
| OPEC_NEWS | 0.907  | 0.382  | 0.525  | -0.092 | -0.246   | -0.671 | -0.014 | -0.001 | -0.013 |  |
| M_CONF    | 0.238  | 0.242  | -0.003 | 0.441  | -0.455   | -0.013 | 0.322  | 0.322  | 0.000  |  |
| LAB_SOC   | 0.844  | 0.859  | -0.015 | 0.781  | 0.801    | -0.019 | 0.840  | 0.840  | 0.000  |  |
| POLIT     | -0.032 | -0.035 | 0.003  | 0.088  | 0.091    | -0.003 | 0.020  | 0.195  | 0.001  |  |
| ENVO_WETH | 0.005  | 0.004  | 0.000  | 0.011  | 0.011    | -0.001 | 0.010  | 0.010  | 0.000  |  |
| ECO_BUSI  | -0.086 | -0.081 | -0.004 | -0.076 | -0.071   | -0.005 | -0.072 | -0.072 | 0.000  |  |
| S.E.      |        |        | 0.048  |        |          | 0.050  |        |        | 0.038  |  |
| chi^2     |        |        | 115.84 |        |          | 179    |        |        | 68.33  |  |

Table 4.5: Results of the Hausman test:

Notes: b = consistent under both Ho and Ha

B = inconsistant under Ha, efficient under Ho, respectivly.

However, it is worth mentioning that Baltagi (2005) suggested that the nature of the data could provide a good indication for making the decision to use the FE or RE models. He explained that, if the data were randomly selected from the population, using the RE model is preferable. On the other hand, if the data generally represent the population, then it is preferable to use FE. However, by looking into the type of data we are using (i.e., oil price returns), we can see that it is not randomly selected, which confirms our earlier conclusion that estimates of the FE are consistent and of the RE are inconsistent.

The results in Table 4.4 indicate that different news items do have different impacts on price returns of OPEC and non-OPEC crude oils. However, estimates of different news item variables behave in a way that is—in most cases—consistent with economic reasoning and theory. In the case of the fixed effects model, the results of the

OPEC\_news variable suggest that OPEC-related news has a positive impact on the price returns of crude oils produced by OPEC countries. On the other hand, OPEC news had a negative impact on the price returns of non-OPEC crudes. These estimates are 0.907 and -0.917, respectively; both estimates are statistically significant at the 5 percent level.

Inverse estimates can be explained by looking into the nature of these news items related to OPEC, which primarily deal with positive information about the OPEC organization. For example, regular OPEC meetings provide the markets of new information through carefully written press releases that would positively reflect on the image of the organization in the international arena as a major and trust-worthy suppler of crude oil. Non-OPEC producing countries produce at maximum capacity, which makes market participants eager to hear from OPEC regarding the adjustment of its production in order to maintain equilibrium in the market. OPEC producers are in a cartel that determines the level of production by setting a quota for each member. This strategy, along with several other market conditions, affects oil prices (Kaufman et al., 2004).

In the case of military conflict news, results for the fixed-effect model for both OPEC and non-OPEC crude price returns are significant, with non-OPEC crude prices being more sensitive than OPEC crude prices. It is possible that the market has already factored in a possible military conflict in OPEC countries (i.e., Middle Eastern countries). For example, the military conflict in Iraq is a longstanding issue, so any news development or escalation of events may not be surprising for the market. However, news of a military conflict taking place in a non-OPEC oil-producing region, such as Russia or its neighbouring oil-producing regions, might surprise the market and have a greater impact on oil prices.

Our preliminary expectation was that the prices of OPEC crudes would be more sensitive to military conflicts, given that most OPEC crude oils come from the Middle East, which is known to be a geo-political hotspot. However, neither the results of the fixed-effects model nor the results of the random-effects model showed significant differences between the coefficients obtained for OPEC and non-OPEC groups. For example, in the case of the military conflicts, under the fixed-effects model, the coefficient for the overall sample was estimated to be 0.322, which means that crude prices—both OPEC and non-OPEC—are positively affected by military conflicts. The same can be said about political unrest, which has an estimated coefficient value of 0.02. However, for military conflict events, coefficients for the OPEC and non-OPEC crude prices are more sensitive, their coefficients would be larger than both the whole sample and the non-OPEC crude prices; however, this was not the case.

Major portions of non-OPEC crudes are produced in areas with stringent environmental standards and regulations, such as the US, Canada, Norway, and the UK. On the other hand, most OPEC producers operate under less stringent environmental regulations. Furthermore, most operation sites in these countries are subject to harsh weather systems (e.g., the Gulf of Mexico, the North Atlantic, and the North Sea). On the other hand, most oil-producing sites in the Middle East do not face such weather systems that cause disruptions in supplies.

These two situations suggest that non-OPEC crude prices might be more

sensitive to environmental and weather-related news and events than crude oil prices of OPEC. However, the results of the whole sample show a coefficient estimation of 0.010. On the other hand, the coefficients for both OPEC and non-OPEC crude prices were smaller—0.005 and 0.011, respectively—which suggests that non-OPEC crude prices are more sensitive to environmental and weather news given that the coefficient is much larger than the coefficient of the OPEC crude oils.

Finally, price returns of OPEC and non-OPEC crude oils show similar reactions toward economic and business-related news items. The results indicate that the coefficients of the two groups (OPEC and non-OPEC) are similar in terms of direction and magnitude. For OPEC and non-OPEC crude, the FX results are -0.086 and -0.076, respectively. This similar reaction can be explained by the possibility that economic and business news tends to focus on the future expectations of global economic growth. Most of these news items are dominated by alarming numbers of slowing growth and the possibilities of recession. For example, prices of different oil-based products could easily be affected by the release of the manufacturing numbers in the US or China. This could be attributed to the high level of global integration in terms of both business and communication.

#### 4.8 Conclusion

In this investigation, I used a panel data approach to identify whether OPEC and non-OPEC prices react differently to news and events that have the potential to cause oil supply disruptions of considerable size. Our weekly data covers a wide range of 30 different types of crude oils, 16 crude oils produced by OPEC countries and 14 produced by non-OPEC countries. It spans from 03/01/1997through 29/01/2010, a total

of 681 observations for each crude oil. Each time series was tested for unit root and was found to be non-stationary. We also tested the natural logarithm of the price returns and found it to be stationary. Thus, we have used the LN (prices) in fixed- and randomeffects models to estimate the impact of different news items and to determine whether OPEC or non-OPEC affiliation makes any significant difference.

The findings suggest that estimations obtained by the fixed- and random-effects models are similar, but, within each model, the variables show different degrees of reaction toward different news items. For example, both models suggested that news of military conflict and political events have different degrees of influence on OPEC and non-OPEC crude prices.

However, given the subjective nature of evaluating the impact of news items on the price behaviour of crude oils, we should consider these finding with some scepticism. A possible future improvement to this current chapter would be to follow the suggestion made by Huntington (2005), i.e., to ask a panel of experts to create and evaluate dummy variables. This panel of experts should provide comprehensive recommendations concerning how each news item should be translated to related dummy variables.

# **Chapter 5: Conclusions**

## 5.1 Summary of findings

Empirical results suggest that the price behaviour of different types of crude oils is not affected by affiliation with OPEC or non-OPEC producers. It can be said that market participants do not put much weight on whether a crude oil is produced by an OPEC country or a non-OPEC country. This conclusion agrees with the findings of Garis (2009) that suggested that the selling price of crude oil actually reflects the valuein-use to the final consumer more than its actual marginal cost of production. Bacon and Tordo (2005) explained that the value of crude oil is estimated by the value that is placed on its optimal product output. For example, gasoline and jet fuel produce high profit margins compared to other products, which suggests that crudes from which the largest possible quantity of these two products can be produced should have the highest prices.

Our findings also support the theory of "the great pool" presented by Adelman (1984), which suggested that the world oil market is one great pool. It also presented supporting evidence that the global crude oil market is increasingly integrated, which, according to Ripple and Wilamoski (1998), is the result of the developments occurring in the both spot and futures crude oil markets. Lanza et al. (2003) explained that each crude oil has its own characteristics and qualities that meet the preferences of different buyers in the oil market. Nevertheless, our findings suggest that the prices of these crude oils are subject to similar market conditions, which makes them behave similarly

as well.

We arrived at this conclusion by empirically testing three main features of crude oil price behaviour, i.e., price volatility (Chapter 2), the relationship to stock prices of oil companies (Chapter 3), and reaction to possible supply disruption news (Chapter 4). First, in terms of price volatility, we examined whether price volatilities of crude oil produced by OPEC members exhibit different patterns from those of crude oil produced by non-OPEC producers. The results indicated that the prices of both OPEC and non-OPEC producers show similar volatility patterns. This suggests that investment and risk management decision makers should not be concerned about whether their crude oil is produced by OPEC or non-OPEC producers. In other words, market-pricing mechanisms take into account any potential differences that may exist between OPEC or non-OPEC crudes. No significant differences of volatility persistence were deduced between OPEC and non-OPEC crude oil prices, which suggests that shocks to crude oil prices behave similarly regardless of OPEC or non-OPEC affiliation.

Second, we tested whether there is a long-term relationship between the crude prices of OPEC (and non-OPEC) crudes and the stock prices of oil companies from different oil sectors. We reviewed how crude oil prices influence estimates of expected cash in-flows used by both managers and potential stock investors. We proceeded by making the case that crude oil prices and oil companies' stock prices possibly are linked via the double-use of expected cashflows as an evaluation technique. However, our findings suggested that there is little evidence of the possible co-integration relationship between oil prices and stock prices of oil companies. In fact, only five out of 32 oil stock prices showed a long-term relationship with crude oil prices. These five stock prices were examined further using an error-correction model (ECM) to estimate the
signs and sizes of short-term deviations from long-term equilibrium suggested by the co-integration analysis. Estimations of the ECM did not reveal significant differences in the dynamics of short-term deviations between stock prices of the five companies and OPEC and non-OPEC crude oil prices.

Third, in examining the reaction of crude oil prices to news of a possible disruption of crude oil supply, we tested whether the crude oil prices of OPEC suppliers have different reactions to news items from non-OPEC suppliers. Our findings suggested that there are no significant differences between the reaction of OPEC crude oil prices and the reaction of non-OPEC crude prices. Initial thoughts were that crude oils produced in the Gulf of Mexico (a non-OPEC, oil-producing region) would be more sensitive to environmental or weather-related news items, given its geographical location where seasonal hurricanes are expected. On the other hand, we initially thought that crude oil produced in the Middle East (an OPEC region) would be more sensitive to political or military news items, given its location in a rather dangerous neighbourhood. However, the results showed that there were no significant differences between OPEC and non-OPEC crude oil prices in reacting to various news items and events. This suggested that news that could result in a possible supply disruption would have similar impacts on the prices of OPEC and non-OPEC crudes.

In this study, we used different econometric models to examine whether crude oil price behaviour is affected by OPEC or non-OPEC membership. In other words, we sought to determine whether there is a significant difference in the price behaviour of crude oil produced by an OPEC member compared to the price behaviour of crude oil produced by a non-OPEC member. The argument that the prices of OPEC crude oils could behave differently from the prices of non-OPEC crude oils is driven by the different supply role performed by OPEC and non-OPEC producers. Each group plays a different role in the global crude oil supply chain that could convey different signals to the markets. In terms of supply role, OPEC sets production levels based on non-competitive behaviour (Dees *et al.*, 2005). This type of supply-side structure increases the difficulty of modelling supply. Dees *et al.* (2005) distinguished between OPEC and non-OPEC production behaviour; OPEC uses two behaviours, i.e., first, it follows a cartel model in which OPEC is a price maker and, second, it follows a competitive model in which OPEC is a price taker. This was also suggested by Gately (1995) who recognized that OPEC's ability to affect oil prices is the result of its double-role as a cartel and as a price taker.

In the case of market signals, Horan, Peterson, and Mahar (2004) suggested that market volatility should respond to OPEC conferences prior to information releases. This was also supported by Amic and Lewis (2005), who suggested that the crude oil market is responsive to "OPEC rhetoric." Lewis (2005) also suggested that a key determinant of supply is the actions taken by members of OPEC. On the other hand, non-OPEC countries can make decisions to increase or decrease production without providing prior notice. Market participants would have no lag-time to adjust to new levels of availability of certain types of non-OPEC crudes. As a result, the availability of non-OPEC crude types would be subject to an individual country's decision making, unlike the case of OPEC crudes in which the decisions are made collectively by the member states.

We tested the behaviour of OPEC and non-OPEC crude oil prices in terms of volatility, co-integration, fixed effects, and random effects. The OPEC sample consisted of 16 different crude oils, and the non-OPEC sample consisted of 14 different crudes.

The crude oils in the two samples were of varying quality and were produced in different regions of the world. Chapter 1 addresses the motivation for studying this research topic and the related background information. In addition, it states the objectives of the research and provides the structure of the thesis. It also offers some discussion of the importance of the study, today's global energy markets, and the sources of the data and information that were used.

In chapter 2, we used a univariate GARCH model developed by Bollerslev (1987) to estimate the volatility that is present in each of the crude oil prices. We started by testing for unit root using the Augmented Dickey Fuller (ADF) unit root test . The results of the ADF unit root test showed that crude oil prices do suffer from unit root problem, which suggested that further treatments (e.g., taking the log and/or first difference) are needed in order to have the series ready for the GARCH application. Then, we proceeded to test for the possible existence of ARCH effects, which was confirmed. The estimated coefficients of both the ARCH term,  $\alpha_i$ , and the GARCH term,  $\beta_i$ , are positive and significant for all crude oil prices. No significant difference was found between the averages calculated for OPEC and non-OPEC crude oil prices are due to factors that are not related to OPEC or non-OPEC affiliation. In other words, OPEC and non-OPEC affiliations have no bearing on the volatility of crude oil prices.

Given the impact of crude oil prices on the financial performance of oil-related companies, in chapter 3, we tested whether the prices of crude oils produced by OPEC and non-OPEC and the stock prices of oil companies are driven by a common, datagenerating process. A critical first step is to examine whether each series of crude oil and stock prices is non-stationary, i.e., not I(0). In chapter 2, it was found that crude oil prices are not stationary. Thus, we only tested the oil stock prices for unit root using the ADF unit root test. The results of the ADF test suggested that all oil stock price series are not stationary at level prices, which indicated that it is reasonable to proceed with our estimation of co-integration. We used the Johansen co-integration test to determine whether two series of prices (i.e., oil prices and oil companies' stock prices) are driven by a common data-generating process (DGP) and whether there is a unit-free, linear combination of the two series.

Trace and maximum eigenvalue test statistics were used to determine the number of co-integrating equations. In the trace test, we used the null hypothesis that there are, at most, r co-integrating equations, in which r is either 0 or 1. In both tests, the co-integrating vectors, listed as r, were selected beforehand as the null. In the case of the maximum eigenvalue test, the null hypothesis is r = 0, and it is tested against the alternative, r = 1. The results of the co-integration analysis suggested that prices of crude oil and prices of oil stock companies are not integrated. In fact, less than 20 percent of stocks under investigation showed a co-integrated relationship (i.e., stationary linear combination of the two series) with crude prices. OPEC and non-OPEC membership had no bearing on the co-integration relationship. In other words, stocks co-integrated with all crude oils regardless of whether the crudes were produced by OPEC or non-OPEC countries. For these co-integrated stocks with crude oil prices, we applied the Error-Correction Model (ECM) to identify the signs and sizes of short-term, dynamic adjustments. Analysing short-term deviation away from long-term equilibrium can help in developing and executing corporate plans and strategies, as well as national and international policies.

In chapter 4, we used a panel-data framework to estimate the impacts of different news items on the prices of OPEC and non-OPEC crude oils. The news items were categorised in five categories: 1) military conflict, 2) labour and social, 3) environmental and weather, and 4) economic and business. However, all news items included in these categories embody the possibility of causing disruption to global crude oil supply. We tested whether prices of OPEC crudes react differently to each of these news categories than prices of non-OPEC crudes. The results suggested that all crude prices react similarly to various news items.

## 5.2 Implications for the decision-making process

Recent development and restructuring of the energy market have increased the need for a more accurate decision-making process. Advanced econometric techniques were used to understand the different relationships between various economic and financial variables and market conditions. Understanding such relationships can improve estimations of key inputs in the decision-making process. In our case, understanding the relationship between the prices of OPEC and non-OPEC crude oils should provide decision makers and policy makers with an important part of the framework needed to improve their outcomes. The results based on our empirical analysis suggested that effects of OPEC production behaviour, as a possible source (or factor) of price volatility in the crude oil market, as identified by Sadorsky (2004), is not limited to its own crude price behaviour. Effects are transmitted to other non-OPEC crude oil prices. In other words, decision-makers should look into OPEC production behaviour have an impact on the volatility of all crude oil types regardless of its source. The results obtained provide decision makers with better understanding of the relationships between the prices of OPEC and non-OPEC crude oils. In evaluating different oil-based projects using discounted future cashflows, decision makers should not be concerned, in terms of price behaviour, about whether the source of their crude oil is an OPEC country or a non-OPEC country. Instead, they should focus on improving their own operations to optimize their use of the crude oil. As suggested by Garis (2009), the selling price of crude oil actually reflects the value-in-use to the final consumer rather than its actual marginal cost of production. In other words, the value of crude oil depends on what products it can be used to produce. For example, the same barrel of oil is worth more to a user with advanced technology that can extract a higher percentage of high-quality products (e.g., gasoline) at a lower cost than it is to a user with outdated technology that produces less valuable products at higher production cost.

The price of crude oil is one of the key inputs in the evaluation of an energy project. Most energy companies either produce or consume oil-based products, which suggest that understanding oil price behaviour is a critical first step in developing plans for future expansion or replacement of current operations or for laying the foundation for completely new projects. In the case of a power generator, understanding the relationship of electricity prices and the prices of the underlying primary fuel commodities, such as oil or gas, is very important in making decisions (Hinich and Serletis, 2006).

### 5.3 Limitations of the thesis

Given that we used spot prices for OPEC and non-OPEC crude oils, the results obtained should be used with caution. It could be the case that the prices of crude oil futures tell a different story. Given that the futures market of crude oils represents approximately 20 times the amount of available physical quantities (Garis, 2009), differences between the price behaviour of OPEC and non-OPEC crude oils could be overwhelmed by the dynamics of prices taking place in the futures market. However, accessing the futures prices of a large number of OPEC and non-OPEC crude oils is not an easy task. I am not sure if futures prices for our sample of 16 OPEC crudes and 14 non-OPEC crudes exist, because most traders in the oil market use reference crude oils, such as Brent or WTI, to price other, less-known crudes. For example, Brent crude is used as a pricing reference for about 67% of the crude oil that is sold globally (Chevillon and Rifflart, 2009).

Another limitation of the thesis is that chemical and physical characteristics (e.g., API and sulphur content) were not considered in the grouping of crude oils. We considered sub-grouping OPEC and non-OPEC crude oils according to the degree of API (i.e., heavy, medium, and light) and sulphur content (sweet and sour). Then, we further examined the behaviour of each sub-group and compared it to its counterpart in the other group. Yet, this approach further complicated the analysis, especially for chapter x on co-integration, which lists results of more than 2800 regressions. However, it will be possible to consider this sub-grouping application in the future, as is discussed in more detail in the following section.

#### 5.4 Recommendations for future research

There are limitless opportunities for future research in energy economics and finance. However, a few possible future research areas that relate to our findings and to the broad subject of energy economics are presented. First, in relationship to our findings, the results of chapter 2 suggested that OPEC and non-OPEC prices experience similar levels of volatility. However, we could further sub-group OPEC and non-OPEC crude oils according to the degree of API (i.e., heavy, medium, and light) and sulphur content (sweet and sour). Then, we would be able to examine the behaviour of each subgroup further and compare it to its counterpart in the other groups. Bacon and Tordo (2005) stated that the price differentials of crude oils are estimated based on the quality differences as indicated by the API gravity number and the sulphur content. This relationship between quality features and price differential can be modelled by using the sub-grouping techniques discussed above and the price differential of each crude oil and one of the benchmark crudes. For example, for the OPEC Light Sour group, we could estimate the price differential of each crude price in the group and each of the four benchmark crudes (Brent, WTI, Dubai, and Oman). This calculation could be repeated for other sub-groups. Then, we could estimate the volatility of each group and make comparisons to determine whether the combination of OPEC, Light and Sour crudes, for example, exhibit a significantly different pattern of volatility than other sub-groups.

The results obtained in chapter 3 suggest that there is very little evidence of a long-term, co-integration relationship between oil prices and the stock prices of oil companies. However, only a few companies (five out of the 32 studied) exhibited a co-

integration relationship. Stocks that showed a long-term relationship with crude oil prices can be further investigated by looking into their annual and semi-annual reports to identify common corporate strategies, risk management techniques, or financial leverage decisions that might lead to a co-integrated relationship with crude oil prices. The analysis can be further expanded by looking into other stock prices of different energy-intensive industries, such as shipping and industrial companies, to determine whether adopting certain corporate strategies and risk management techniques would result in a co-integration relationship with crude oil prices.

## References

Aloui, C., (2008), "Value-at-risk analysis for energy commodities: long-range dependencies and fat-tails in return innovations", The Journal of Energy Markets, Risk Journals, 1(1), page 31-64.

Adams, F., G. Marquez, and R. Jaime, (1984), "Oil markets in turmoil", Journal of Policy Modeling, *Elsevier*, 6(3), pages 421-425, August

Adelman, M. A., (198?), "Mineral Depletion, with Special Reference to Petroleum", *The Review of Economics and Statistics*, 72, 1.

Adrangi, B., A. Chatrath, K. Raffiee and R. D .Ripple, (2001), "Alaska North Slope crude oil prices and the behaviour of diesel prices in California", *Energy Economics*, 23, 29-42.

Agren, M., (2006), "Does Oil prices Uncertainty Transmit into Stock Markets?", *Working Paper 2006:23, Uppsala University.* 

Akerlof, G. A., (1970) "The Market for "Lemons": Quality Uncertainty and the Market Mechanism", *Quarterly Journal of Economics*, 84, 3 (August), 488-500.

Aldy, J. E. (2007), "The economic impacts of publicly-held emergency oil stocks", *presentation at the Intenational Energy Workshop*, *Stanford University*, Stanford, CA, June 25.

Altinay, G. and E. Karagol, (2004), "Structural break, unit root, and the causality between energy consumption and GDP in Turkey", *Energy Economics*, 26, 985-994.

Amic, E. and P. Lautard (2005), "The Oil Market", Managing Energy Price Risk: the New Challenges and Solutions", 3ed, *Risk Books*, Haymarket House, London.

Ang, B.W., (1987), "A Cross-Sectional Analysis of Energy-Output Correlation", *Energy Economics*, October, 274-85.

Asche, F., O. Gjolberg and T. Völker, (2005), "Price relationships in the petroleum market: An analysis of crude oil and refined product prices", *Energy Economics*, 25, 389-301. Asteriou, D. and S. G. Hall (2007), "Applied Econometrics: a modern approach", *Palgrave MacMillan*, London.

Bacon, R. and S. Tordo, (2005), "Crude Oil Price Differentials and Differences in Oil Qualities: A Statistical Analysis.", *World Bank Energy Sector Management Assistance Program*, ESMAP Technical Paper 081.

Baillie, R. T. and T. Bollerslev, (1989), "Common Stochastic Trends in a System of Exchange Rates", *The Journal of Finance*, 44, 1, 167-181.

Ballinger, A. and G. P. Dwyer Jr. (2004), "Trading institutions and price discovery: The cash and Future Markets for Crude Oil", *Federal Reserve Bank of Atlanta Working paper*, 28, 1-30

Baltagi, B. H., (2008), "Econometrics", Springer, Verlag Berlin Heidelberg

Basher, S. A. and P. Sadorsky, (2006), "Oil price risk and emerging stock markets", *Global Finance Journal*, 17, 2, 224-251.

Beccue, P. and H. G. Huntington (2005). "Oil Disruption Risk assessment, Energy Modeling Forum Special Report 8, *Stanford University*, Stanford, CA, August.

Bentz, Y., (2003), "Quantitative Equity Investment Management with Time-Varying Factor Sensitivities", *Applied quantitative methods for trading and investment*, 7, 213-237.

Bera, A. K. And C. M. Jarque, (1980), "Efficient Tests for Normality, Hetroscedasticity, and Serial Independence of Regressions.", *Economics Letters*, 6, 255-259.

Bera, A. K. and M. L. Higgins, (1993), "ARCH MODELS: PROPERTIES, ESTIMATION AND TESTING", *Journal of Economic Surveys*, 7, 4, 305 – 366.

Bernabe, A., E. Martina, J. Alvarez-Ramires, and C. Ibarra-Valdez, (2004), "A multi-model approach for describing crude oil price dynamics", *PHYSICA A*, 338, 567-584.

Bessec, M. and S. Meritet, (2007) "The Causality Link between Energy Prices, Technology and Energy Intensity", *The econometrics of Energy Systems*, 6, 121-145 Billio, M. and D. Sartore, (2003), "Stochastic Volatility Models: A Survey with Applications to Option Pricing and Value at Risk", *Applied quantitative methods for trading and investment*, 8, 239-284.

Bollerslev, T (1986), "Generalized autoregressive conditional heteroscedasticity", *Journal of Econometrics*, 31, 307–327.

Bollerslev, T., R. Chou and K. Kroner, (1992), "The ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence." *Journal of Econometrics*, 52, 5-59.

Bourbonnais, R. and P. Geoffron (2007), "Delineation of Energy Markets with Cointegration Techniques", *The Econometrics of Energy Systems*, 8, 168-185

Bourbonnais, R. and S. Mérilet, (2007), "Electricity Spot Price Modelling: Univariate Time Series Approach", *The Econometrics of Energy Systems*, 3, 51-74

Bourgoin, F., (2003), "Applied Volatility and Correlation Modelling Using Excel", *Applied quantitative methods for trading and investment*, 10, 313-332.

Boyer, M.M. and D. Filion, (2005), "Common and Fundamental Factors in Stock Returns of Canadian Oil and Gas Companies", *Energy Economics*, 29, 428-453

BP Statistical Review of World Energy, (2004), www.bp.com

Breusch, T. S. and A. R. Pagan, (1979), "Simple test for heteroscedasticity and random coefficient variation", *Econometrica* 47, 1287-94.

Brooks, C., (2008) "Introductory Econometrics for Finance", 2ed, *Cambridge University Press*. Cambridge.

Brown, S. P. A., M. K. Yücel and J. Thompson (2004), "Business cycles: The role of energy prices" in Culter J. Cleveland(ed), *Encyclopidea of energy*, Amsterdam: Acadamic Press, Elsevier.

Buenstorf, G. (2004), "The Economics of Energy and the Production Process", *Edward Elgar*, Cheltenham, UK.

Bunn, D. W., (2004), "Structural and Behaviorual Foundations of

Competitive Electricity Prices." In Derek W. Bunn (ed), *Modelling Prices in Competitive Electricity Markets*, Wiley Series in Financial Economics, 1-17.

Burgess, A. N., (2003), "Using Cointegration to Hedge and Trade International Equities", *Applied quantitative methods for trading and investment*, 2, 41-68.

Chardon, S., (2007), "The Price of Oil over the Very Long Term", *The Econometrics of Energy systems*, 10, 207-224.

Chevalier, J. M., (2007), "Introduction: Energy Economics and Energy Econometrics", *The Economics of Energy Systems*, xiii-xxv.

Chevillon, G and C. Rifflart, (2009), "Physical market determinants of the price of crude oil and market premium", *Energy Economics*, 31, 537-549

Clem, A. (1985), "Commodity price volatility: Trends during 1975–1984", *Monthly Labor Review*, 108, 17–21.

Colacito, R. and M. M. Croce, (2006), "Risks for the long run and the real exchange rate, *Working Paper, Department of Finance, University of North Carolina*, Chapel Hill NC.

Cremer, J. S. and S. Isfahami, (1980), "A Competitive Theory of the Oil Market: What Does OPEC Really Do?", *University of Pennsylvania, Working Paper No 80-4*.

Damodaran, A. (1994), "Damodaran on Valuation", *New York: John Wiley and Sons*.

Darmstadter, J., J. Dunkerley and J. Alterman, (1977), "How industrial Societies Use Energy, *Johns Hopkins University Press*.

Davidson, R. and J.G. MacKinnon, (1993), "Estimation and Inference in Econometrics", *Oxford University Press*.

Dees, S., P. Karadeloglou, R. K. Kaufmann, and M. Sanchez, (2008), "Modeling the world oil market: Assessment of a quarterly econometric model" *Energy Policy*, Article in press.

Desbrosses, N. and J. Griod, (2007), "Energy Quantity and Price Data: Collection, Processing and Methods of Analysis", *The Econometrics* 

of Energy Systems, 1, 1-26.

Detais G., J. Fouquau and C. Hurlin, (2007), "Economic Development and Energy Intensity: Apanel Data Analysis", *The Econometrics of Energy Systems*, 5, 98-120.

Devereux, M. P. and F. Schiantarelli, (1990), "Investment, Financial Factors and Cash Flow: Evidence from U.K. Panel Data", Mimeograph, *Institute for Fiscal Studies*, London.

Dickey, D. and Fuller, W. (1981), "Likelihood ratio statistics for autoregressive time series with a unit root", *Econometrica*, 49, 1057–1072.

Dickey, D.A. and W. A. Fuller (1979), "Distribution of estimators for autoregressive time series with a unit root", *Journal of the American Statistical Association*, 74, 386, 427-431.

Dunis, C. L. and X. Huang, (2003), "Forecasting and Trading Currency Volatility: An Application of Recurrent Neural Regression and Model Combination", *Applied quantitative methods for trading and investment*, 4, 129-160.

Engle, R. and C. W. J. Granger, (1987), "Co-integration and error correction: representation, estimation and testing", *Econometrica*, 55, 521-65.

Engle, R. and K. Kroner (1995), "Multivariate simultaneous generalized ARCH", *Econometrics Theory*, 11, 122-150.

Engle, R. F. and B. S. Yoo, (1987), "Forecasting and Testing in Cointegrated Systems.", *Journal of Econometrics*, 35, 143-159.

Engle, R.F. (1982), Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation, *Econometrica*, 50, 987–1008.

Ericson, T. and T. M. Whited (2000), "Measurement error and the relationship between investment and q", *Journal of Political Economy*, 108, 1027-1057

Fan, J. (2000), "Price uncertainty and vertical integration: an examination of petro-chemical firms", *Journal of Corporate Finance*, 6, 345-376.

Fattouh, B., (2007), "The dynamics of crude oil price differentials", *Oxford Institute for Energy Studies*, WPM 36.

Flyvbjerg, B., M.S. Holm and S.Buhl (2002), "Understanding Costs in Public Works Projects: Error or Lie?", *Journal of the American Planning Association*, 68(3), pp. 279-295.

Garis, D., (2009), "The behaviour of petroleum markets: fundamentals and psychological in price discovery and formation", *International Handbook on the Economics of energy*, J. Evans and L. C. Hunt (eds), Edward Elgar, Cheltenham, UK

Ghysels, E., A. Harvey and E. Renault, (1996), "Stochastic volatility", Statistical Methods in Finance", C. Rao and G. Maddala (eds), *North-Holland*, Amsterdam.

Giovannini, M. Grasso, A. Lanza and M. Manera (2004), "Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants", *International Energy Markets*, Empirica (available on-line).

Girod, J., (2007), "Dynamic Demand Analysis and the Process of Adjustment", *The Econometrics of Energy Systems*, 2, 27-50.

Gjolberg, O., and T. Johnsen (1999), "Risk management in the oil industry: can information on long run equilibrium prices be utilized?", *Energy Economics*, 21, 517-527.

Global Association of Risk Professionals (GDRP) (2009), "Foundations of Energy Risk Management", John Wiley and Sons, Hoboken, New Jersey.

Gourieroux, C., "ARCH models and financial applications", *Springer*, New York.

Granger, C.W.J. and P. Newbold (1974), "Economic Forecasting: The Atheist's Viewpoint", in G.A. Renton (ed.), *Modeling the Economy*, London: Heinemann.

Greene, W. H. (2008), "Econometric Analysis", *Pearson Hall*, 6th Edition.

Greenwald, B., J. E. Stiglitz and A. Weiss, (1984), "Information Imperfections in the Capital Market and Macroeconomic fluctuations", American Economic Review, 74, 194-199.

Griffin, J. M., (1985), "OPEC behaviour: a test of alternative hypotheses", *American Economic Review*, 75, 954-963.

Gujarati, D. N., (2003), "Basic Econometrics", *McGraw-Hill Higher Education*, 4th edition.

Guo, H. and K. L. Kliesen, (2006), "Oil Prices Volatility and U. S. Macroeconomic Activity", *Federal Reserve Bank of St. Louis Review*, November/December 2005, 669- 683

Hamilton, J. D. (1994), "Time Series Analysis", *Princeton University Press*, Princeton.

Hamilton, J. D. (2003), "What is an Oil Shock?." *Journal of Econometrics*, 113, 363-398.

Hamilton, J. D. and G. Lin, (1996), "Stock Market Volatility and the Business Cycle". *Journal of Applied Econometrics*, 11, 573-593.

Hamilton, J. D., (1983) "Oil and the macroeconomy since World War II". *Journal of Political Economy*, 91, 228–248.

Hammodeh, S., S. Dibooglu and E. Aleisa, (2004), "Relationships among U.S. oil prices and oil industry equity indices", *International Review of Economics & Finance*, 13, 427-453

Hausman, L. A. (1978), "Specification Tests in Econometrics", *Econometrica*, 46, 1251-71.

Hayashi, F., (2000), "Econometrics", Princeton University Press.

Haykin, S, (1999), "Neural Networks: A Comprehensive Foundation", 2nd edition, *Prentice Hall*, Englewood Cliffs, NJ.

Hinich, M. J. and A. Serletis, (2006), "Randomly Modulated Periodic Signals in Alberta's Electricity Markets", Studies *in Nonlinear Dynamics and Econometrics*, 10(3), Article 5.

Holt and Aradhyula, (1990), "Endogenous risk in rationalexpectations commodity models: A multivariate generalized ARCH-M approach", *Journal of Empirical Finance*, 5, 2, 99-129.

Horan, S., J. Peterson and J. Mahar (2004). "Implied volatility of oil

futures options surrounding OPEC meetings". *Energy Journal*, 25, 103-125.

Hudson, E. A. and D. W. Jorgenson (1974), "US Energy Policy and Economic Growth", *Bell Journal of Economics*, The RAND corporation, 5(2), 461-514.

Huisman, R., (2009), "An Introduction to Models for the Energy Markets – the thinking behind Econometric Techniques and Their Application", *Risk Books*, Hymarket House, 28-29 Haymarket, London, SW1Y 4RX

Hull, J. and A. White, (1987), "The pricing of options on assets with stochastic volatilities", *Journal of Finance*, 42, 281-300.

Huntington, H. G., (2005), "Macroeconomic Consequences of Higher Oil Prices", *Energy Modeling Forum Special Report 9*, Stanford University, Stanford, CA, August.

Huntington, H. G., (2009), "The oil security problem", Internaltional Handbook on the Economics of Energy, *Edward Elgar Publishing*, Glos, UK.

Im, K. S., M. H. Pesaran and Y. Shin, (1997), "Testing for Unit Roots in Heterogeneous Panels", *Mimeo*, University of Cambridge.

International Monitory Fund (IMF), (2004), *World Economic Outlook* (*WEO*).

James, T., (2008), "Energy Markets: price Risk Management and Trading", *John Wiley & Sons (Asia) Pte Ltd*, 2 Clementi Loop, #02-01, Singapore 129809.

Jimenez-Rodriguez, R. and M. Sanchez (2005), "Oil price shocks and real GDP growth: empirical evidence for some OECD countries", *Applied Economics*, 37 (2), 201-28.

Johansen, S. (1988) "Statistical analysis of cointegration vectors", *Journal Economic Dynamics and Control*, 12, 231-54.

Johansen, S. and K. Juselius, (1990), "Maximum Likehood Estimation and Inference on Cointegration with Application to the Demand for Money", *Oxford Bulletin of Economics and Statistics*, 52, 169-209.

Jones, C. T. (1990), "OPEC behaviour under falling prices: implication for cartel stability", *The Energy Journal*, 11, 3, 117-129.

Jones, D. W., P.N. Leiby and I. K. Paik (2004), "Oil price shocks and the macroeconomy: what has been learned since 1996" *The Energy Journal*, 25 (2), 1-32

Kaufmann, R. K., S. Dees, P. Karadeloglon, and M. Sanchez, (2004), "Does OPEC matter, An econometric analysis of oil prices", *The Energy Journal*, 25,4, 67-90.

Keenan, J., (1979), "The Estimation of Partial Adjustment Models with Rational Expectations", *Econometrica*, 47,6, 1441-55.

Kennedy, P., (2008), "A Guide to Econometrics", *Blackwell Publishing*, 6th edition.

Keppler, J. H., (2007), "Causality and Cointegration between Energy Consumption and Economic Growth in Developing Countries", The Econometrics of Energy Systems, 4, 75-97.

Keppler, J. H., R. Bouurbonnais and J. Girod, (2007), Editors, "*The Econometrics of Energy Systems*, Palgrave MacMillan.

Kingdon, J., (1997), "Intelligent Systems and Financial Forecasting", *Springer*, London.

Kretzschmar, G. L. and A. Kirchner (2007), "Commodity Price Shocks and Economic State Variables: Empirical Insights into Asset Valuation and Risk in the Oil and Gas Sector", *Journal of Banking and Finance Conference – Commodities and Finance Centre*, University of London.

Krichene, N. (2006), "Recent Dynamics of Crude Oil Prices", *IMF Working Paper, WP/06/299*.

Krugman, P. (2000), "The Energy crisis revisited", *The New York Times*.

Krugman, P. (2002), "The third oil crisis", The New York Times.

Lamoureuk, C. G. and W. D. Lastrapes, (1990), "Forecasting Stock-Return Variances: Toward an Understanding of Stochastic Implied Volatilities", *Review of Financial Studies*, 6, 293-326. Lanza, A, M. Manera, and M. Giovannini (2004), "Oil and Product Price Dynamics in International Petroleum Markets", *International Energy Markets*, ----.

Lanza, A, M. Manera, M. Grasso and M. Giovannini (2003b), "Long run models of oil stock prices", *International Energy Markets*, ----.

Lee, C., (2005), "Energy Consumption and GDP in Developing Countries: A Cointegrated Panel Analysis", *Energy Economics*, 27, 415-27.

Leiby, P. and D. Bowman (2003), "Oil Market Disruption Risk Assessment: Alternatives and Suggested Approach", *Oak Ridge National Laboratory internal report*, Oak Ridge, TN.

Leland, H. E. and D. H. Pyle (1977), "Information Asymmetries, Financial Structure, and Financial Intermediation", Journal of Finance, (May) 1977, 371-87.

Lewis, N. D. C., (2005), "Energy Risk Modeling – Applied Modeling Methods for Risk Managers", *Palgrave Macmillan*, Houndmills, Basingstoke RG21 6XS

MacKinnon, J. G., (1991), "Critical Values for Cointegration Tests", Chapter 13 in R. F. Engle and C. W. J. Granger (eds), *Long-Run Economic Relationships: Readings in Cointegration*, Oxford University press.

Medlock, K.B. (2009), "The economics of energy supply", in Joanne Evans and Lester C. Hunt (ed). Chapter 3, *International Handbook on the Economics of Energy*, Edward Elgar, Cheltenham, UK.

Miller, M. H., and K. Rock (1985), "Dividend policy under asymmetric information", *Journal of Finance*, 40, 1031-1051.

Montier, J., (2003), "Behavioeal Finance: Insights into Irrational Minds and Markets", *John Wiley & Sons, Ltd*, New York.

Mork, K.A., (1988), "Oil and the Macroeconomy When Prices Go Up and Down: An Extension of Hamilton's Results.", *Journal of Political Economy*, 97, 740-744.

Myers, Stewart C and N. S. Majluf, (1984), "Corporate financing and investment decisions when firms have information that investors do not have", *Journal of Financial Economics*, 13, June, 187-221.

Nadiri, M. I. and S. R. Rosen, (1969), "Interrelated Factor Demand Functions", *American Economic Review*, 59, 3, 457-71.

Nelson, C. R. and C. I. Plosser, (1982), "Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications.", *Journal of Monetary Economics*, 10, 139-162.

Ocic, O. (2005), "Oil Refineries in the 21st Centuray", *Wiley-VCH*, 1st edition

Pantula, S. G., G. Gonzalez-Farias and W. A. Fuller (1994), "A comparison of Unit root Test Criteria", *Journal of Business and Economic Statistics*, 12, 449-59.

Patra, T. and S. Poshakwale (2008), "Long run and short run relationship between the main stock indexes: evidence from the Athens stock exchange", *Applied Financial Economics*, 18, 1401-1410.

Perron, P. (1989), "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis", *Econometrica*, 57, 1361-1401.

Perron, P. (1990). "Tests of Joint Hypothesis in Time Series Regression With a Unit Root." In G.F. Rhodes and T. B. Fomby, *Advances in Econometrics: Co-Integration, Spurious Regression and Unit Roots*, Vol. 8, JAI Press.

Phillips, P.C.B. and P. Perron (1988)"Testing for a unit Root in Time Series Regression", *Biometrica*, 75, pp.335-46.

Pindyck, R. S. and D. L. Rubinfeld, (1998), "Econometric Models and Economic Forecasts", edition, *Irwin/McGraw-Hill*.

Pindyck, R.S. (1999), "The long run evaluation of energy prices." *Energy Journal*, 20, 1-27.

Pindyck, R.S., (2002), "Optimal Timing Problems in Environmental Economics", *Journal of Economic Dynamics and Contro,l* 26, 1677-1697

Plourde, A and G. Watkins, (1998), "Crude oil prices between 1985 and 1994: How volatile in relation to other commodities?", *Resource and Energy Economics*, 20, 245–262.

Postali, A. S. and P. Picchetti, (2006)," Geometric Brownian Motion and structural breaks in oil prices: A quantitive analysis", *Energy*  Economics, 28, 506-522.

Pozzi, C., (2007), "The Relationship between Spot and Forward Prices in Electricity Markets", *The Econometrics of Energy Systems*, 9, 186-206.

Regnier, E., (2007), "Oil and energy price volatility", *Energy Economics*, 29, 405-427.

Reilly, F. K. and Brown, K. C., (2003), "Investment Analysis and Portfolio Management", *Thomson South-Western*, Mason, Ohio.

Renou-Maissant, P., (2007), "Energy Substitution Modelling", *The Econometrics of Energy Systems*, 7, 146-167

Rezk, A., (2006), "Economic modeling for upstream petroleum projects", *Trafford Publishing*, Victoria, BC, Canada,

Ripple, R. D. and P. Wilamoski, (1998), "Is the World Oil Market "One Great Pool": Revisited, Again", *Portland School of Finance and Business Economics Working paper Series*, 98, 19.

Ripple, R.D. (2009), "International energy derivatives markets", Chapter 30 in Joanne Evans and Lester C. Hunt (ed). *International Handbook on the Economics of Energy*, Edward Elgar, Cheltenham, UK.

Robinson, T. and A. Baniak, (2002), "The Volatility of Prices in English and Welsh Electricity Pool", *Applied Economics*, 34, 12.

Sadorsky, P. (2001), "Risk factors in stock returns of Canadian oil and gas companies", *Energy Economics*, 23, 16-28.

Sadorsky, P. (2004), "Stock market and energy prices", *Encyclopaedia of Energy*, 5, 707-717.

Sadorsky, P. (2006), "Modeling and forecasting petroleum future volatility", *Energy Economics*, 28, 467-488.

Sayrs, L. W. (1989), "Pooled Time Series Analysis", Sage Publications, London

Schwartz, N., (2004), "Oil's crude awakening", Fortune, 150, 531-532.

Serletis, A and M. Bianchi, (2007), "Informational efficiency and interchange transactions in Alberta's electricity market", *The Energy Journal*, 28,121–143.

Serletis, A. and A. Shahmoradi, (2005), "Business Cycles and Natural Gas Prices." *OPEC Review*, 75-84.

Serletis, A. and A. Shahmoradi, (2006), "Futures Trading and the Storage of North American Natural Gas." *OPEC Review*, 19-26.

Serletis, A. and D. Banack, (1990), "Market Efficiency and Cointegration: an Application to Petroleum Markets." *The Review of Futures Markets*, 9, 372-80.

Serletis, A. and I. Andreadis, (2004), "Nonlinear Time Series Analysis of Alberta's Deregulated Electricity Market." In Derek W. Bunn (ed.), Modelling Prices in Competitive Electricity Markets, *Wiley Series in Financial Economics*, 147-159.

Serletis, A. and J. Herbert, (1999), "The Message in North American Energy Prices." *Energy Economics*, 21, 471-483.

Serletis, A. and R. Rangel-Ruiz, (2004), "Testing for Common Features in North American Energy Markets." *Energy Economics*, 26, 401-414.

Benetis, and Fantono Kizmol 9859954, Produce ychillingunssvior Pay Mon Information: Undergy Prices. Unsertainer: 20, 26, 265 Application", Southern Economic Journal, 382-391.

Serletis, A., (1991), "Rational Expectations, Risk and Efficiency in Energy Futures Markets." *Energy Economics*, 13, 111-15.

Serletis, A., (1994), "A Cointegration Analysis of Petroleum Futures Prices." *Energy Economics*, 16, 93-97

Serletis, and P. Dormaar, (2006), "Imports, Exports, and Prices in Alberta's Deregulated Power Market." In David Walls (ed.) *Quantitative Analysis of the Alberta Power Market*, Van Horne Institute.

Shenk, M., (2007), "\$100 Oil Price May Be Months Away, Say CIBC, *Goldman I (Update 1)*', Bloomberg.com updated 23 July.

Shephard, N., (1996), "Statistical aspects of ARCH and stochastic volatility", *Time Series Models with Econometric, Finance and Other Applications*, D R. Cox, D. V. Hinkley and O. E. Barndorff-Nielsen (eds), Chapman and Hall, London, 1-677.

Siliverstovs, B., G. L'Hégaret, A. Neumann and C. Von Hirschhausen, (2005), "International Market Integration for Natural Gas?", *Energy Economics*, 2, 603-15.

Smit, H. T. J., (1997), "Investment Analysis of Offshore Concessions in the Netherlands", Financial Management, 26, 2, 5-17.

Smith, M., (2000), "Modeling and short-term forecasting of New South Wales electricity system load", *Journal of Business & Economics Statistics*, 18, 465-478.

Smithson, C. and C. W. Smith, (1990), "Strategic Risk Management", *The New Corporate Finance: Where Theory meets Practice*, 3rd ed, 28, 393-410.

Speight, J. G. and B. Özüm, (2001), "Petroleum refining processes", *CRC Press*, 1st edition.

Stevens, P. J., (2000), "Energy Economics", vol. 1, *Edward Elgar*, Cheltenham.

Stock, J and M. Watson, (2003), "Understanding changes in international business cycle dynamics", *NBER Working Paper 9859*.

Stock, J. H. Ans M. W. Watson, (2007), "Introduction to Econometrics", edition, *Addison-Wesly Longman*, Amsterdam.

Tallarini, T., (2000), "Risk-sensitive real business cycles", *Journal of Monetary Economics*, 45, 507-532.

Taylor, S. J., (1994), "Modelling stochastic volatility: a review and comparative study", *Mathematical Finance*, 4, 183-204.

The Royal Bank of Scotland Group (RBS), (2004), "The Economic Impact of High Oil Prices", Group Economics.

Till, H., (2007), "The Amaranth Collapse: What Happened and What Have We Learned Thus Far?, Ecole De Hautes Etudes Commerciales du Nord Business School, *Risk and Asset Management Research Centre*, Paris, Nice, Lille, August.

Toman, M. A. and B. Jemelkova, (2003), "Energy and Economic Development: An Assessment of the State of Knowledge", *Energy Journal*, 24, 4.

Treadway, A.B., (1969), "On Entrepreneurial Behaviour and the Demand for Investment", *Review of Economic Studies*, 36,226-39.

Treynor, J. J. and C. Cock, editors (2004), "Oil and Gas Abacus", Deutsche Bank A G.

Verbeek, M. (2000), "A Guide to Modern Econometrics", *Wiley*, Chichester, U.K.

Verleger, K. P., (1987a), "The evalution of oil as a commodity" In: Gordan, R.L., Jacoby, *Energy: Markets and Regulations*, MIT Press, Cambridge, MA, 161-186.

Verleger, P. K., (1987b), "Adjusting to volatile energy prices", *Institute for International Economics*, 11 Dupont Circle, NW, Washington, DC 20036-1207

Wang, T, J. Wu, and J. Yang. (2007) "Realized volatility and Correlation in Energy Future Markets", *Journal of Futures Markets*,--,---

Weyman-Jones T. (2009), "Current issues in the design of energy policy", Chapter 33 in Joanne Evans and Lester C. Hunt (ed). *International Handbook on the Economics of Energy*, Edward Elgar, Cheltenham, UK.

Wooldridge, J. M., (2002), "Econometric Analysis of Cross Section and Panel Data", *The MIT Press*, Cambridge, Massachusetts, London, England.

Yousefi, A. and T.S. Wirjanto (2004) "The empirical role of the exchange rate on the crude-oil price formation", *Energy Economics*, 26, 783-799.

Zivot, E. and D. W. K. Andrews, (1992), "Further evidence on the

great crash, the oil price shock, and the unit-root hypothesis", Journal of

Business and Economic Statistics, 3, 251-70.

## Appendix 1: Types of crude oil covered in this study

|                                                                                                                             | Туре                                                                                                                            | Simple                                                                           | Origin                                                                                                               | API*                                                                              | Sulphur**                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1                                                                                                                           | Murban                                                                                                                          | ADM                                                                              | UAE                                                                                                                  | 39                                                                                | 0.78                                                                                         |
| 2                                                                                                                           | Saharan Blend                                                                                                                   | ASB                                                                              | Algeria                                                                                                              | 44                                                                                | 0.09                                                                                         |
| 3                                                                                                                           | Cabinda                                                                                                                         | ANC                                                                              | Angola                                                                                                               | 32.5                                                                              | 0.11                                                                                         |
| 4                                                                                                                           | Fateh                                                                                                                           | DUB                                                                              | UAE                                                                                                                  | 32                                                                                | 2                                                                                            |
| 5                                                                                                                           | Oriente                                                                                                                         | ECO                                                                              | Ecuador                                                                                                              | 30                                                                                | 0.88                                                                                         |
| 6                                                                                                                           | Iranian Heavy                                                                                                                   | IRH                                                                              | Iran                                                                                                                 | 34                                                                                | 1.78                                                                                         |
| 7                                                                                                                           | Iranian Light                                                                                                                   | IRL                                                                              | Iran                                                                                                                 | 30.9                                                                              | 1.68                                                                                         |
| 8                                                                                                                           | Kuwait Blend                                                                                                                    | KUT                                                                              | Kuwait                                                                                                               | 31.4                                                                              | 2.52                                                                                         |
| 9                                                                                                                           | Es Sider                                                                                                                        | LIB                                                                              | Libya                                                                                                                | 37                                                                                | 0.45                                                                                         |
| 10                                                                                                                          | Bonny Light                                                                                                                     | NGB                                                                              | Nigeria                                                                                                              | 37                                                                                | 0.14                                                                                         |
| 11                                                                                                                          | Forcados                                                                                                                        | NGE                                                                              | Nigeria                                                                                                              | 31                                                                                | 0.14                                                                                         |
| 12                                                                                                                          | Dukhan                                                                                                                          | DUK                                                                              | Qatar                                                                                                                | 40.9                                                                              | 1.27                                                                                         |
| 13                                                                                                                          | Arab Heavy                                                                                                                      | SAH                                                                              | Saudi Arabia                                                                                                         | 27.4                                                                              | 2.80                                                                                         |
| 14                                                                                                                          | Arab Light                                                                                                                      | SAL                                                                              | Saudi Arabia                                                                                                         | 33.4                                                                              | 1.77                                                                                         |
| 15                                                                                                                          | Arab Medium                                                                                                                     | SAM                                                                              | Saudi Arabia                                                                                                         | 31                                                                                | 2.49                                                                                         |
| 16                                                                                                                          | Tia Juana Light                                                                                                                 | VEN                                                                              | Venezuela                                                                                                            | 31.8                                                                              | 1.16                                                                                         |
|                                                                                                                             | Average                                                                                                                         |                                                                                  |                                                                                                                      | 33.95                                                                             | 1.25                                                                                         |
|                                                                                                                             |                                                                                                                                 |                                                                                  |                                                                                                                      |                                                                                   |                                                                                              |
| 17                                                                                                                          | Gippsland                                                                                                                       | AUS                                                                              | Australia                                                                                                            | 42                                                                                | 0.10                                                                                         |
| 18                                                                                                                          | Kole                                                                                                                            | CAM                                                                              | Cameroon                                                                                                             | 31.7                                                                              | 0.37                                                                                         |
| 10                                                                                                                          |                                                                                                                                 | -                                                                                |                                                                                                                      |                                                                                   |                                                                                              |
| 19                                                                                                                          | Par                                                                                                                             | САР                                                                              | Canada                                                                                                               | 40.02                                                                             | 0.30                                                                                         |
| 20                                                                                                                          | Par<br>Daqing                                                                                                                   | CAP<br>CHI                                                                       | Canada<br>China                                                                                                      | 40.02<br>32.7                                                                     | 0.30<br>0.10                                                                                 |
| 20<br>21                                                                                                                    | Par<br>Daqing<br>Cano Limon                                                                                                     | CAP<br>CHI<br>COL                                                                | Canada<br>China<br>Colombia                                                                                          | 40.02<br>32.7<br>30                                                               | 0.30<br>0.10<br>0.88                                                                         |
| 20<br>21<br>22                                                                                                              | Par<br>Daqing<br>Cano Limon<br>Suez Blend                                                                                       | CAP<br>CHI<br>COL<br>EGS                                                         | Canada<br>China<br>Colombia<br>Egypt                                                                                 | 40.02<br>32.7<br>30<br>33                                                         | 0.30<br>0.10<br>0.88<br>1.85                                                                 |
| 19<br>20<br>21<br>22<br>23                                                                                                  | Par<br>Daqing<br>Cano Limon<br>Suez Blend<br>Minas                                                                              | CAP<br>CHI<br>COL<br>EGS<br>INO                                                  | Canada<br>China<br>Colombia<br>Egypt<br>Indonesia                                                                    | 40.02<br>32.7<br>30<br>33<br>34                                                   | 0.30<br>0.10<br>0.88<br>1.85<br>0.11                                                         |
| 20<br>21<br>22<br>23<br>24                                                                                                  | Par<br>Daqing<br>Cano Limon<br>Suez Blend<br>Minas<br>Tapis                                                                     | CAP<br>CHI<br>COL<br>EGS<br>INO<br>TAP                                           | Canada<br>China<br>Colombia<br>Egypt<br>Indonesia<br>Malaysia                                                        | 40.02<br>32.7<br>30<br>33<br>34<br>44                                             | 0.30<br>0.10<br>0.88<br>1.85<br>0.11<br>0.03                                                 |
| <ol> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> </ol>                              | Par<br>Daqing<br>Cano Limon<br>Suez Blend<br>Minas<br>Tapis<br>Isthmus                                                          | CAP<br>CHI<br>COL<br>EGS<br>INO<br>TAP<br>MXI                                    | Canada<br>China<br>Colombia<br>Egypt<br>Indonesia<br>Malaysia<br>Mexico                                              | 40.02<br>32.7<br>30<br>33<br>34<br>44<br>32                                       | 0.30<br>0.10<br>0.88<br>1.85<br>0.11<br>0.03<br>1.22                                         |
| <ol> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> <li>26</li> </ol>                  | Par<br>Daqing<br>Cano Limon<br>Suez Blend<br>Minas<br>Tapis<br>Isthmus<br>Maya                                                  | CAP<br>CHI<br>COL<br>EGS<br>INO<br>TAP<br>MXI<br>MXM                             | Canada<br>China<br>Colombia<br>Egypt<br>Indonesia<br>Malaysia<br>Mexico<br>Mexico                                    | 40.02<br>32.7<br>30<br>33<br>34<br>44<br>32<br>22.1                               | 0.30<br>0.10<br>0.88<br>1.85<br>0.11<br>0.03<br>1.22<br>3.31                                 |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                                                                                | Par<br>Daqing<br>Cano Limon<br>Suez Blend<br>Minas<br>Tapis<br>Isthmus<br>Maya<br>Ekofisk                                       | CAP<br>CHI<br>COL<br>EGS<br>INO<br>TAP<br>MXI<br>MXM<br>NOE                      | Canada<br>China<br>Colombia<br>Egypt<br>Indonesia<br>Malaysia<br>Mexico<br>Mexico<br>Norway                          | 40.02<br>32.7<br>30<br>33<br>34<br>44<br>32<br>22.1<br>42.1                       | 0.30<br>0.10<br>0.88<br>1.85<br>0.11<br>0.03<br>1.22<br>3.31<br>0.17                         |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28                                                                          | Par<br>Daqing<br>Cano Limon<br>Suez Blend<br>Minas<br>Tapis<br>Isthmus<br>Maya<br>Ekofisk<br>Oman Blend                         | CAP<br>CHI<br>COL<br>EGS<br>INO<br>TAP<br>MXI<br>MXM<br>NOE<br>OMN               | Canada<br>China<br>Colombia<br>Egypt<br>Indonesia<br>Malaysia<br>Mexico<br>Mexico<br>Norway<br>Oman                  | 40.02<br>32.7<br>30<br>33<br>34<br>44<br>32<br>22.1<br>42.1<br>34                 | 0.30<br>0.10<br>0.88<br>1.85<br>0.11<br>0.03<br>1.22<br>3.31<br>0.17<br>0.76                 |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29                                                                    | Par<br>Daqing<br>Cano Limon<br>Suez Blend<br>Minas<br>Tapis<br>Isthmus<br>Maya<br>Ekofisk<br>Oman Blend<br>Urals                | CAP<br>CHI<br>COL<br>EGS<br>INO<br>TAP<br>MXI<br>MXM<br>NOE<br>OMN<br>RUS        | Canada<br>China<br>Colombia<br>Egypt<br>Indonesia<br>Malaysia<br>Mexico<br>Mexico<br>Norway<br>Oman<br>Russia        | 40.02<br>32.7<br>30<br>33<br>34<br>44<br>32<br>22.1<br>42.1<br>34<br>32.5         | 0.30<br>0.10<br>0.88<br>1.85<br>0.11<br>0.03<br>1.22<br>3.31<br>0.17<br>0.76<br>1.25         |
| 19         20         21         22         23         24         25         26         27         28         29         30 | Par<br>Daqing<br>Cano Limon<br>Suez Blend<br>Minas<br>Tapis<br>Isthmus<br>Maya<br>Ekofisk<br>Oman Blend<br>Urals<br>Brent Blend | CAP<br>CHI<br>COL<br>EGS<br>INO<br>TAP<br>MXI<br>MXM<br>NOE<br>OMN<br>RUS<br>BRT | Canada<br>China<br>Colombia<br>Egypt<br>Indonesia<br>Malaysia<br>Mexico<br>Mexico<br>Norway<br>Oman<br>Russia<br>U.K | 40.02<br>32.7<br>30<br>33<br>34<br>44<br>32<br>22.1<br>42.1<br>34<br>32.5<br>38.3 | 0.30<br>0.10<br>0.88<br>1.85<br>0.11<br>0.03<br>1.22<br>3.31<br>0.17<br>0.76<br>1.25<br>0.40 |

\*API (American Petroleum Institute): a measure of gravity that quantifies the weight of the particular crude oil (Foundation of energy Risk Management).

\*\* Crude oil with sulfur content below 0.5 percent is considered sweet and is sold at premium. In addition, crude oil with sulfur content greater than 1.0 percent is sold at discount and is considered sour.

## Appendix 2: Summary of financial information for the companies as of 31/12/2009 in US \$): \*note: As listed in NYSE

|          |        |                                | МКТ       | -         | - (I)              |
|----------|--------|--------------------------------|-----------|-----------|--------------------|
| Sector   | Stock* | Company                        | (Billion) | (Billion) | Profit<br>Margin % |
| Upstrean | n      |                                |           |           |                    |
| DE       | DO     | Dimon Offshore Drilling Inc    | 9.96      | 3.63      | 2.31               |
|          | NE     | Noble Corp.                    | 9.19      | 3.64      | 2.53               |
|          | ESV    | Ensco plc.                     | 6.80      | 1.94      | 1.22               |
|          | RIG    | Transoceanic Inc               | 21.39     | 11.55     | 6.41               |
|          | ATW    | Atood Oceanics, Inc            | 2.08      | 0.58      | 0.36               |
|          | PKD    | Parker Drilling                | 0.561     | 0.75      | 0.08               |
|          | PTEN   | Patterson-UTI Energy, Inc.     | 2.99      | 0.78      | 0.30               |
|          | PDE    | Pride International, Inc.      | 5.61      | 1.59      | 0.73               |
| ES       | BHI    | Baker Hughes, Inc.             | 19.67     | 9.66      | 2.26               |
|          | BJS    | BJ Services                    | -         | -         | -                  |
|          | HAL    | Halliburton Co.                | 32.51     | 14.67     | 2.19               |
|          | SII    | Smith International, Inc.      | -         | -         | -                  |
|          | WFT    | Weatherford International      | 13.78     | -         | -                  |
|          | TESO   | Tesco Corporation              | 0.49      | 0.35      | 0.03               |
|          | SLB    | Schlumberger Limt.             | 76.90     | 22.70     | 5.30               |
|          | RES    | RPC, Inc.                      | 2.35      | 0.58      | 0.19               |
| Downstre | eam    |                                |           |           |                    |
| PIP      | EEP    | Enbridge Energy Partners L.P.  | 7.09      | 5.73      | 1.42               |
|          | EP     | El Paso Corp.                  | 9.26      | 4.63      | 3.16               |
|          | ETP    | Energy Transfer Partners, L.P. | 8.93      | 5.41      | 1.61               |
|          | КМР    | Kunder Morgan Energy           | 21.86     | 7.00      | 2.79               |
|          | WMB    | Williams Companies Inc         | 12.42     | 8.25      | 2.17               |
|          | TCLP   | TC Pipelines, L.P.             | 2.22      | 0.62      | 0.53               |
|          | PAA    | Plains All American Pipeline   | 8.66      | 18.52     | 1.22               |
|          | OKS    | Oneok Partners, L.P.           | 7.99      | 6.47      | 1.12               |
| RM       | HES    | Hess Corporation               | 20.96     | 29.79     | 7.03               |
|          | IMO    | Imperial Oil Ltd               | 33.18     | 21.39     | 5.36               |
|          | MRO    | Marathon Oil Corp.             | 25.37     | 54.13     | 13.57              |
|          | MUR    | Murphy Oil Corporation         | 12.58     | 19.01     | 4.46               |
|          | SUN    | Sunco, Inc.                    | 53.61     | 31.30     | 3.94               |
|          | TSO    | Tesoro Corporation             | 2.01      | 16.87     | 0.66               |
|          | НОС    | Holly Corporation              | 1.76      | 4.83      | 0.59               |
|          | SSL    | Sasol Ltd.                     | 27.7      | 12.84     | 5.61               |

Note: (-) indicates missing information due to merger and acquisition.

# Appendix 3: Energy Sectors as listed by MSCI and S&P Global Industry Classification Standard (GICS) structure:

| 10 Energy (Sector)              | Industry                                 | Sub-Industry                                      |
|---------------------------------|------------------------------------------|---------------------------------------------------|
| 1010 Energy<br>(Industry Group) | 101010 Energy<br>Equipment &<br>Services | 10101010 Oil & Gas<br>Drilling                    |
|                                 |                                          | 10101020 Oil & Gas<br>Equipment & Services        |
|                                 |                                          | 10102010 Integrated<br>Oil & Gas                  |
|                                 | 101020 Oil, Gas & Consumable Fuels       | 10102020 Oil & Gas<br>Exploration &<br>Production |
|                                 |                                          | 10102030 Oil & Gas<br>Refining & Marketing        |
|                                 |                                          | 10102040 Oil &Gas<br>Storage &<br>Transportation  |
|                                 |                                          | 10102050 Coal & Consumable Fuels                  |

|    | Crude Type      | Price level | Price returns |
|----|-----------------|-------------|---------------|
| 1  | Murban          | ADM         | ADMLN         |
| 2  | Saharan Blend   | ASB         | ASBLN         |
| 3  | Cabinda         | ANC         | ANCLN         |
| 4  | Fateh           | DUB         | DUBLN         |
| 5  | Oriente         | ECO         | ECOLN         |
| 6  | Iranian Heavy   | IRH         | IRHLN         |
| 7  | Iranian Light   | IRL         | IRLLN         |
| 8  | Kuwait Blend    | КUТ         | KUTLN         |
| 9  | Es Sider        | LIB         | LIBLN         |
| 10 | Bonny Light     | NGB         | NGBLN         |
| 11 | Forcados        | NGE         | NGELN         |
| 12 | Dukhan          | DUK         | DUKLN         |
| 13 | Arab Heavy      | SAH         | SAHLN         |
| 14 | Arab Light      | SAL         | SALLN         |
| 15 | Arab Medium     | SAM         | SAMLN         |
| 16 | Tia Juana Light | VEN         | VENLN         |

Appendix 4: Charts and descriptive statistics for OPEC crude oils

Note: Price levels are the actual closing prices as listed in Energy Information Administration. Price returns are computed according to the following formula:




































































SALLN













| Sample 1/10/1997 1/29/2010 |           |  |  |  |  |
|----------------------------|-----------|--|--|--|--|
| Observations 680           |           |  |  |  |  |
| Mean                       | 0.001700  |  |  |  |  |
| Median                     | 0.005326  |  |  |  |  |
| Maximum 0.210880           |           |  |  |  |  |
| Minimum -0.173310          |           |  |  |  |  |
| Std. Dev. 0.046876         |           |  |  |  |  |
| Skewness                   | -0.297756 |  |  |  |  |
| Kurtosis                   | 4.514038  |  |  |  |  |
| Jarque-Bera                | 74.99681  |  |  |  |  |
| Probability                | 0.000000  |  |  |  |  |









|    | Туре        | Price level | Price returns |
|----|-------------|-------------|---------------|
| 17 | Gippsland   | AUS         | AUSLN         |
| 18 | Kole        | CAM         | CAMLN         |
| 19 | Par         | САР         | Canada        |
| 20 | Daqing      | СНІ         | CHILN         |
| 21 | Cano Limon  | COL         | COLLN         |
| 22 | Suez Blend  | EGS         | EGSLN         |
| 23 | Minas       | INO         | INOLN         |
| 24 | Tapis       | ТАР         | TAPLN         |
| 25 | Isthmus     | MXI         | MXILN         |
| 26 | Maya        | MXM         | MXMLN         |
| 27 | Ekofisk     | NOE         | NOELN         |
| 28 | Oman Blend  | OMN         | OMNLN         |
| 29 | Urals       | RUS         | RUSLN         |
| 30 | Brent Blend | BRT         | BRTLN         |

Appendix 5: Charts and descriptive statistics for non-OPEC crude oils























.3

.2

.1

.0

-.1

-.2

-.3

1998

2000





2002

2004

2006











COLLN

















INOLN



























NOELN

















RUSLN













Appendix 6: Charts and descriptive statistics for Drilling and Exploration (DE) upstream stocks

| Sector   | Stock* | Company                     |
|----------|--------|-----------------------------|
| Upstream |        |                             |
| DE       | DO     | Dimon Offshore Drilling Inc |
|          | NE     | Noble Corp.                 |
|          | ESV    | Ensco plc.                  |
|          | RIG    | Transoceanic Inc            |
|          | ATW    | Atood Oceanics, Inc         |
|          | PKD    | Parker Drilling             |
|          | PTEN   | Patterson-UTI Energy, Inc.  |
|          | PDE    | Pride International, Inc.   |

















# Appendix 7: Charts and descriptive statistics for Equipment and Services (ES) upstream stocks

| Sector   | Stock | Company                   |
|----------|-------|---------------------------|
| Upstream |       |                           |
| ES       | BHI   | Baker Hughes, Inc.        |
|          | BJS   | BJ Services               |
|          | HAL   | Halliburton Co.           |
|          | SII   | Smith International, Inc. |
|          | WFT   | Weatherford International |
|          | TESO  | Tesco Corporation         |
|          | SLB   | Schlumberger Limt.        |
|          | RES   | RPC, Inc.                 |









|       | Series: SLB                      |                     |
|-------|----------------------------------|---------------------|
| 100 - | Sample 1/03/19<br>Observations 6 | 997 1/23/2010<br>81 |
| 80 -  | Mean                             | 68.17               |
|       | Median                           | 64.31               |
|       | Maximum                          | 141.50              |
| 60 -  | Minimum                          | 36.67               |
|       | Std. Dev.                        | 19.98               |
| 40    | Skewness                         | 0.86                |
| -10 - | Kurtosis                         | 3.43                |
| 20 -  | Jarque-Bera                      | 90.34               |
|       | Probability                      | 0.00                |









# Appendix 8: Charts and descriptive statistics for Pipeline (PIP) downstream stocks

| Sector     | Stock | Company                        |
|------------|-------|--------------------------------|
| Downstream |       |                                |
| PIP        | EEP   | Enbridge Energy Partners L.P.  |
|            | EP    | El Paso Corp.                  |
|            | ETP   | Energy Transfer Partners, L.P. |
|            | КМР   | Kunder Morgan Energy           |
|            | WMB   | Williams Companies Inc         |
|            | TCLP  | TC Pipelines, L.P.             |
|            | PAA   | Plains All American Pipeline   |
|            | OKS   | Oneok Partners, L.P.           |

















| Sector    | Stock* | Company                |
|-----------|--------|------------------------|
| Downstrea | m      |                        |
| RM        | HES    | Hess Corporation       |
|           | IMO    | Imperial Oil Ltd       |
|           | MRO    | Marathon Oil Corp.     |
|           | MUR    | Murphy Oil Corporation |
|           | SUN    | Sunco, Inc.            |
|           | TSO    | Tesoro Corporation     |
|           | НОС    | Holly Corporation      |
|           | SSL    | Sasol Ltd.             |

Appendix 9: Charts and descriptive statistics for Refinery and Marketing (RM) downstream stocks





















# Appendix 10: Residual analysis for the GARCH application to crude oil prices

#### ADM: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                           | Partial<br>Correlation                                                     |                                           | AC                                                                               | PAC                                                                              | Q-Stat                                                                                 | Prob                                                                         |
|-----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| · ·  <br>· ·  <br>· *  <br>· ·  <br>· ·  <br>· ·  <br>· · | ·  ·  <br>·  ·  <br>·  *  <br>·  ·  <br>·  ·  <br>·  ·  <br>·  ·  <br>·  · | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.019<br>-0.049<br>0.094<br>-0.029<br>0.059<br>-0.036<br>0.006<br>0.008<br>0.038 | 0.019<br>-0.05<br>0.096<br>-0.036<br>0.071<br>-0.053<br>0.022<br>-0.012<br>0.055 | 0.2375<br>1.8911<br>7.8925<br>8.4705<br>10.851<br>11.736<br>11.757<br>11.802<br>12.825 | 0.626<br>0.388<br>0.048<br>0.076<br>0.054<br>0.068<br>0.109<br>0.16<br>0.171 |
| - -  <br>- -  <br>- -  <br>- -  <br>- -  <br>- -          | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>. .                           | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.02<br>0.04<br>-0.029<br>-0.016<br>-0.016<br>0.024<br>-0.062                    | 0.013<br>0.046<br>-0.029<br>-0.007<br>-0.025<br>0.028<br>-0.073                  | 17.461<br>18.584<br>19.195<br>19.38<br>19.556<br>19.971<br>22.729                      | 0.683<br>0.671<br>0.69<br>0.731<br>0.77<br>0.793<br>0.699                    |
| . .  <br>. .  <br>. .                                     | . .  <br>. .  <br>. .                                                      | 88<br>89<br>90                            | -0.033<br>-0.055<br>0.017                                                        | -0.045<br>-0.059<br>0.004                                                        | 99.75<br>102.08<br>102.32                                                              | 0.184<br>0.162<br>0.177                                                      |
| 4 -<br>2 -<br>0                                           | 2000 2002                                                                  | 2004<br>dized Re                          | 2006<br>siduals                                                                  | 2008                                                                             |                                                                                        |                                                                              |

# ASB: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation | Partial<br>Correlation |    | AC     | PAC    | Q-Stat | Prob  |
|-----------------|------------------------|----|--------|--------|--------|-------|
| 1 1             | 1 1                    | 1  | 0 028  | 0 028  | 0 5486 | 0 459 |
|                 |                        | 2  | -0.048 | -0.049 | 2 1283 | 0.345 |
|                 |                        | 3  | 0.053  | 0.056  | 4 029  | 0.258 |
| * .             | * .                    | 4  | -0.075 | -0.081 | 7.8781 | 0.096 |
| .l.             |                        | 5  | -0.016 | -0.005 | 8.0447 | 0.154 |
|                 |                        | 6  | -0.05  | -0.061 | 9.7746 | 0.134 |
|                 |                        | 7  | -0.059 | -0.048 | 12.188 | 0.095 |
|                 |                        | 8  | 0.014  | 0.006  | 12.318 | 0.138 |
|                 |                        | 9  | 0.036  | 0.034  | 13.191 | 0.154 |
|                 |                        |    |        |        |        |       |
| . .             | . .                    | 21 | 0.046  | 0.043  | 17.719 | 0.667 |
| . .             | . .                    | 22 | 0.068  | 0.067  | 20.977 | 0.522 |
| . .             | . .                    | 23 | -0.035 | -0.036 | 21.845 | 0.53  |
| . .             | . .                    | 24 | -0.028 | -0.026 | 22.386 | 0.556 |
| . .             | . .                    | 25 | -0.004 | -0.008 | 22.395 | 0.613 |
| . .             | . .                    | 26 | 0.011  | 0.018  | 22.484 | 0.662 |
| . .             | . .                    | 27 | -0.045 | -0.049 | 23.908 | 0.635 |
|                 |                        |    |        |        |        |       |
| . .             | . .                    | 88 | -0.014 | -0.035 | 93.943 | 0.313 |
| . .             | . .                    | 89 | -0.017 | -0.005 | 94.166 | 0.334 |
| .i. i           | . .                    | 90 | -0.011 | -0.011 | 94.268 | 0.358 |
| 6               |                        |    |        |        |        |       |
|                 |                        |    |        |        |        |       |



#### ANC: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                           | Partial<br>Correlation                           |                                           | AC                                                                              | PAC                                                                              | Q-Stat                                                                               | Prob                                                                          |
|-----------------------------------------------------------|--------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| . .  <br>. .  <br>* .  <br>. .  <br>. .  <br>. .  <br>. . | . .  <br>. .  <br>* .  <br>. .  <br>* .  <br>. . | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.03<br>-0.058<br>0.048<br>-0.07<br>-0.009<br>-0.054<br>-0.064<br>0.036<br>0.03 | 0.03<br>-0.059<br>0.051<br>-0.078<br>0.003<br>-0.067<br>-0.053<br>0.028<br>0.026 | 0.6094<br>2.9197<br>4.4672<br>7.8695<br>7.92<br>9.9419<br>12.725<br>13.632<br>14.259 | 0.435<br>0.232<br>0.215<br>0.096<br>0.161<br>0.127<br>0.079<br>0.092<br>0.113 |
| . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>. .          | - -  <br>- -  <br>- -  <br>- -  <br>- -  <br>- - | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.043<br>0.072<br>-0.054<br>-0.011<br>-0.004<br>-0.005<br>-0.055                | 0.037<br>0.071<br>-0.053<br>-0.005<br>-0.013<br>0.002<br>-0.063                  | 19.996<br>23.668<br>25.736<br>25.827<br>25.836<br>25.854<br>27.986                   | 0.521<br>0.365<br>0.313<br>0.362<br>0.416<br>0.471<br>0.412                   |
| . .  <br>. .  <br>. .  <br>6                              | . .  <br>. .  <br>. .                            | 88<br>89<br>90                            | -0.012<br>-0.003<br>-0.021                                                      | -0.035<br>0.01<br>-0.021                                                         | 96.1<br>96.107<br>96.454                                                             | 0.26<br>0.285<br>0.302                                                        |
| 4 -<br>2 -<br>0                                           | 2000 2002                                        | 2004<br>ized Re                           | 2006                                                                            | 2008                                                                             |                                                                                      |                                                                               |

#### DUB: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                                             | Partial<br>Correlation                                    |                                           | AC                                                                               | PAC                                                                              | Q-Stat                                                                                | Prob                                                                          |
|-----------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| . .     . .     . .     . .     . .     . .     . .     . .     . .     . . | · ·  <br>· ·  <br>· *  <br>· ·  <br>· ·  <br>· ·  <br>· · | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.02<br>-0.056<br>0.083<br>-0.038<br>0.053<br>-0.048<br>-0.002<br>0.014<br>0.054 | 0.02<br>-0.056<br>0.086<br>-0.045<br>0.065<br>-0.065<br>0.017<br>-0.006<br>0.071 | 0.261<br>2.3748<br>7.1408<br>8.1043<br>10.004<br>11.596<br>11.599<br>11.738<br>13.729 | 0.609<br>0.305<br>0.068<br>0.088<br>0.075<br>0.072<br>0.115<br>0.163<br>0.132 |
| - -  <br>- -  <br>- -  <br>- -  <br>- -  <br>- -                            | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>* .          | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.037<br>0.031<br>-0.025<br>-0.018<br>-0.025<br>0.026<br>-0.061                  | 0.021<br>0.042<br>-0.024<br>-0.008<br>-0.033<br>0.025<br>-0.071                  | 21.045<br>21.725<br>22.156<br>22.389<br>22.831<br>23.295<br>25.957                    | 0.456<br>0.476<br>0.511<br>0.556<br>0.587<br>0.616<br>0.521                   |
| . .  <br>. .  <br>. .  <br>6                                                | * .  <br>. .  <br>. .                                     | 88<br>89<br>90                            | -0.051<br>-0.041<br>0.014                                                        | -0.069<br>-0.038<br>-0.006                                                       | 100.97<br>102.27<br>102.42                                                            | 0.163<br>0.159<br>0.175                                                       |
|                                                                             |                                                           | 2004                                      | 2006                                                                             |                                                                                  |                                                                                       |                                                                               |
| 1998                                                                        | 2000 2002                                                 | 2004                                      | 2006                                                                             | 2008                                                                             |                                                                                       |                                                                               |

----- Standardized Residuals

# ECU: 1/17/1997 1/15/2010 Included observations: 679

-6

----- Standardized Residuals

| Autocorrelation                                           | Partial<br>Correlation                                    |                                           | AC                                                                               | PAC                                                                         | Q-Stat                                                                                | Prob                                                                         |
|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| . .  <br>* .  <br>. *  <br>. .  <br>. .  <br>. .  <br>. . | · ·  <br>* .  <br>· *  <br>· ·  <br>· ·  <br>* .  <br>· · | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.015<br>-0.074<br>0.076<br>0.008<br>0.039<br>-0.037<br>-0.101<br>0.067<br>0.058 | 0.015<br>-0.074<br>0.078<br>0<br>0.051<br>-0.045<br>-0.095<br>0.06<br>0.048 | 0.158<br>3.8606<br>7.7603<br>7.8064<br>8.8321<br>9.7952<br>16.872<br>19.988<br>22.328 | 0.691<br>0.145<br>0.051<br>0.099<br>0.116<br>0.134<br>0.018<br>0.01<br>0.008 |
| · ·  <br>· *  <br>· ·  <br>· ·  <br>· ·  <br>· ·  <br>* . | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>* .          | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.018<br>0.092<br>-0.033<br>0.002<br>-0.027<br>0.044<br>-0.071                   | 0.03<br>0.072<br>-0.048<br>0.028<br>-0.035<br>0.051<br>-0.101               | 34.071<br>40.012<br>40.784<br>40.787<br>41.29<br>42.682<br>46.258                     | 0.036<br>0.011<br>0.013<br>0.018<br>0.021<br>0.021<br>0.012                  |
| . .  <br>. .  <br>. .                                     | . .  <br>. .  <br>. .                                     | 88<br>89<br>90                            | 0.016<br>-0.008<br>-0.001                                                        | -0.005<br>-0.024<br>-0.004                                                  | 111.15<br>111.2<br>111.2                                                              | 0.048<br>0.056<br>0.064                                                      |
|                                                           |                                                           |                                           |                                                                                  |                                                                             |                                                                                       |                                                                              |

### IRH: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                                    | Partial<br>Correlation                                    |                                           | AC                                                                               | PAC                                                                              | Q-Stat                                                                                 | Prob                                                                        |
|--------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| · ·  <br>· ·  <br>· *  <br>· ·  <br>· ·  <br>· ·  <br>· ·  <br>· · | . .  <br>. .  <br>. *  <br>* .  <br>. .  <br>. .  <br>. . | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.023<br>-0.046<br>0.092<br>-0.06<br>0.028<br>-0.039<br>-0.012<br>0.028<br>0.021 | 0.023<br>-0.047<br>0.094<br>-0.068<br>0.041<br>-0.058<br>0.008<br>0.012<br>0.033 | 0.3474<br>1.7999<br>7.5297<br>10.035<br>10.568<br>11.622<br>11.713<br>12.245<br>12.536 | 0.556<br>0.407<br>0.057<br>0.04<br>0.061<br>0.071<br>0.11<br>0.141<br>0.185 |
| . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>. .                   | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>. .          | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.063<br>0.018<br>-0.006<br>0.001<br>-0.045<br>0.007<br>-0.072                   | 0.045<br>0.034<br>-0.015<br>0.003<br>-0.049<br>0.013<br>-0.077                   | 20.444<br>20.674<br>20.699<br>20.7<br>22.151<br>22.184<br>25.828                       | 0.493<br>0.541<br>0.599<br>0.656<br>0.627<br>0.679<br>0.528                 |
| . .  <br>. .  <br>. .  <br>6                                       | * .  <br>. .  <br>. .                                     | 88<br>89<br>90                            | -0.047<br>-0.033<br>0.013                                                        | -0.069<br>-0.005<br>-0.025                                                       | 95.795<br>96.636<br>96.774                                                             | 0.267<br>0.272<br>0.294                                                     |
| 4 -<br>2 -<br>0                                                    | 2000 2002                                                 | 2004                                      | 2006                                                                             | 2008                                                                             |                                                                                        |                                                                             |
|                                                                    | Standard                                                  | lized Re                                  | siduals                                                                          |                                                                                  |                                                                                        |                                                                             |

# IRL: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                                    | Partial<br>Correlation                                    |                                           | AC                                                                               | PAC                                                                             | Q-Stat                                                                                | Prob                                                                        |
|--------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| · ·  <br>· ·  <br>· *  <br>* .  <br>· ·  <br>· ·  <br>· ·  <br>· · | . .  <br>. .  <br>. *  <br>* .  <br>. .  <br>. .  <br>. . | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.02<br>-0.043<br>0.097<br>-0.069<br>0.032<br>-0.044<br>-0.021<br>0.035<br>0.029 | 0.02<br>-0.043<br>0.099<br>-0.076<br>0.045<br>-0.064<br>0.001<br>0.017<br>0.044 | 0.2743<br>1.5267<br>7.9067<br>11.127<br>11.81<br>13.145<br>13.448<br>14.298<br>14.893 | 0.6<br>0.466<br>0.048<br>0.025<br>0.037<br>0.041<br>0.062<br>0.074<br>0.094 |
| . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>. .                   | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>. .          | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.063<br>0.03<br>-0.006<br>0.004<br>-0.044<br>0.007<br>-0.073                    | 0.05<br>0.04<br>-0.011<br>0<br>-0.044<br>0.012<br>-0.078                        | 21.871<br>22.498<br>22.525<br>22.533<br>23.884<br>23.918<br>27.687                    | 0.407<br>0.431<br>0.489<br>0.547<br>0.526<br>0.581<br>0.427                 |
| . .  <br>. .  <br>. .  <br>6                                       | . .  <br>. .  <br>. .                                     | 88<br>89<br>90                            | -0.038<br>-0.029<br>0.005                                                        | -0.065<br>-0.007<br>-0.022                                                      | 97.697<br>98.358<br>98.378                                                            | 0.225<br>0.233<br>0.256                                                     |



### KUT: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                                            | Partial<br>Correlation                                    |                                           | AC                                                                                | PAC                                                                              | Q-Stat                                                                                | Prob                                                                          |
|----------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| ·  ·  <br>·  ·  <br>·  *  <br>·  ·  <br>·  ·  <br>·  ·  <br>·  ·  <br>·  · | · ·  <br>· ·  <br>· *  <br>· ·  <br>· ·  <br>· ·  <br>· · | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.019<br>-0.055<br>0.095<br>-0.034<br>0.061<br>-0.041<br>-0.005<br>0.018<br>0.051 | 0.019<br>-0.056<br>0.097<br>-0.042<br>0.075<br>-0.06<br>0.015<br>-0.004<br>0.068 | 0.2446<br>2.3306<br>8.4582<br>9.263<br>11.814<br>12.989<br>13.007<br>13.233<br>15.015 | 0.621<br>0.312<br>0.037<br>0.055<br>0.037<br>0.043<br>0.072<br>0.104<br>0.091 |
|                                                                            | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>* .          | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.039<br>0.018<br>-0.013<br>-0.032<br>-0.021<br>0.015<br>-0.064                   | 0.026<br>0.028<br>-0.013<br>-0.028<br>-0.021<br>0.01<br>-0.066                   | 21.299<br>21.52<br>21.639<br>22.349<br>22.649<br>22.804<br>25.713                     | 0.441<br>0.489<br>0.542<br>0.558<br>0.598<br>0.644<br>0.535                   |
| . .  <br>. .  <br>. .                                                      | . .  <br>. .  <br>. .                                     | 88<br>89<br>90                            | -0.033<br>-0.043<br>0.012                                                         | -0.04<br>-0.064<br>-0.002                                                        | 101.65<br>103.09<br>103.2                                                             | 0.152<br>0.146<br>0.161                                                       |
| 4 -<br>2 -<br>0                                                            | 2000 2002                                                 | 2004                                      | 2006                                                                              | 2008                                                                             |                                                                                       |                                                                               |

# LIB: 1/17/1997 1/15/2010 Included observations: 679

-6

- Standardized Residuals

| Autocorrelation                        | Partial Correlation                                                                            |                                       | AC         | PAC    | Q-Stat | Prob  |
|----------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------|------------|--------|--------|-------|
| . .                                    | . .                                                                                            | 1                                     | 0.028      | 0.028  | 0.5419 | 0.462 |
| . .                                    | . .                                                                                            | 2                                     | -0.048     | -0.048 | 2.0892 | 0.352 |
| . .                                    | . .                                                                                            | 3                                     | 0.044      | 0.047  | 3.4133 | 0.332 |
| * .                                    | * .                                                                                            | 4                                     | -0.075     | -0.08  | 7.2254 | 0.124 |
| . .                                    | . .                                                                                            | 5                                     | 0.003      | 0.013  | 7.2338 | 0.204 |
| . .                                    | . .                                                                                            | 6                                     | -0.034     | -0.045 | 8.0156 | 0.237 |
| * .                                    | * .                                                                                            | 7                                     | -0.078     | -0.068 | 12.171 | 0.095 |
| . .                                    | . .                                                                                            | 8                                     | 0.032      | 0.026  | 12.869 | 0.116 |
| . .                                    | . .                                                                                            | 9                                     | 0.041      | 0.037  | 14.042 | 0.121 |
|                                        |                                                                                                |                                       |            |        |        |       |
| . .                                    | . .                                                                                            | 21                                    | 0.028      | 0.024  | 18.271 | 0.632 |
|                                        |                                                                                                | 22                                    | 0.062      | 0.062  | 20.944 | 0.524 |
| j. j                                   |                                                                                                | 23                                    | -0.03      | -0.034 | 21.57  | 0.546 |
| .j. j                                  |                                                                                                | 24                                    | 0.004      | 0.009  | 21.581 | 0.604 |
| . .                                    | . .                                                                                            | 25                                    | -0.019     | -0.023 | 21.83  | 0.646 |
| . .                                    | . .                                                                                            | 26                                    | -0.019     | -0.014 | 22.074 | 0.685 |
| . .                                    | . .                                                                                            | 27                                    | -0.04      | -0.052 | 23.214 | 0.673 |
|                                        |                                                                                                |                                       |            |        |        |       |
| 1 1                                    |                                                                                                | 88                                    | -0.016     | -0 041 | 95 051 | 0 285 |
|                                        |                                                                                                | 89                                    | 0.012      | 0.028  | 95.167 | 0.308 |
| .i. i                                  |                                                                                                | 90                                    | -0.012     | -0.015 | 95.277 | 0.332 |
| 6                                      |                                                                                                |                                       |            |        |        |       |
|                                        |                                                                                                |                                       |            |        |        |       |
| 4 -                                    | I                                                                                              |                                       |            |        |        |       |
|                                        |                                                                                                |                                       |            |        |        |       |
| 2 -                                    | 1 A. A. A. L. A. L. M. A. L. M. A. L. M. A. L. M. M. A. M. | ներ հներներ                           | . بايرا ال |        |        |       |
| 0 - <b>11 - 11 - 11 - 11 - 11 - 11</b> |                                                                                                | A A A A A A A A A A A A A A A A A A A |            |        |        |       |
| -2 - 1 - 1 - 1 - 1                     | l hills alabit. A atotechilder.                                                                | il kikul i                            |            |        |        |       |
|                                        |                                                                                                |                                       |            |        |        |       |
| -4 -                                   |                                                                                                |                                       |            |        |        |       |
# NGB: 1/17/1997 1/15/2010

Included observations: 679

| Autocorrelation | Partial Correlation |    | AC     | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|----|--------|--------|--------|-------|
| . .             | . .                 | 1  | 0.019  | 0.019  | 0.2407 | 0.624 |
| .i. i           |                     | 2  | -0.056 | -0.057 | 2.4192 | 0.298 |
|                 | . .                 | 3  | 0.047  | 0.05   | 3.9492 | 0.267 |
|                 | . .                 | 4  | -0.057 | -0.062 | 6.1383 | 0.189 |
|                 | . .                 | 5  | 0.003  | 0.012  | 6.1447 | 0.292 |
| * .             | * .                 | 6  | -0.083 | -0.093 | 10.844 | 0.093 |
| . .             | . .                 | 7  | -0.055 | -0.044 | 12.934 | 0.074 |
| . .             | . .                 | 8  | 0.016  | 0.003  | 13.119 | 0.108 |
| . .             | . .                 | 9  | 0.039  | 0.043  | 14.165 | 0.117 |
|                 |                     |    |        |        |        |       |
| . .             | . .                 | 21 | 0.047  | 0.037  | 22.439 | 0.375 |
| . *             | . *                 | 22 | 0.077  | 0.08   | 26.654 | 0.225 |
| . .             | . .                 | 23 | -0.055 | -0.053 | 28.82  | 0.186 |
| . .             | . .                 | 24 | -0.004 | 0.005  | 28.829 | 0.227 |
| . .             | . .                 | 25 | 0.001  | -0.011 | 28.83  | 0.271 |
| . .             | . .                 | 26 | 0.003  | 0.009  | 28.839 | 0.318 |
| . .             | . .                 | 27 | -0.051 | -0.063 | 30.666 | 0.285 |
|                 |                     |    |        |        |        |       |
| . .             | . .                 | 88 | -0.007 | -0.025 | 92.3   | 0.356 |
|                 | <br>. .             | 89 | 0.009  | 0.023  | 92.361 | 0.383 |
|                 | .i. i               | 90 | 0.004  | 0.013  | 92.377 | 0.411 |
|                 |                     |    |        |        |        |       |



#### NGE: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                                  | Partial Correlation                                                |                                           | AC                                                                                | PAC                                                                     | Q-Stat                                                                                 | Prob                                                                       |
|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| ·  ·  <br>·  ·  <br>·  ·  <br>·  ·  <br>*  ·  <br>*  ·  <br>·  · | · ·  <br>· · | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.034<br>-0.057<br>0.054<br>-0.051<br>-0.003<br>-0.072<br>-0.067<br>0.03<br>0.028 | 0.034<br>-0.058<br>0.059<br>0.008<br>-0.083<br>-0.054<br>0.022<br>0.028 | 0.7722<br>2.9553<br>4.9454<br>6.7415<br>6.7497<br>10.316<br>13.359<br>13.963<br>14.515 | 0.38<br>0.228<br>0.176<br>0.15<br>0.24<br>0.112<br>0.064<br>0.083<br>0.105 |
| . .  <br>. *  <br>. .  <br>. .  <br>. .  <br>. .                 | · ·  <br>· *  <br>· ·  <br>· ·  <br>· ·  <br>· ·                   | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.05<br>0.075<br>-0.064<br>0.004<br>-0.002<br>0.006<br>-0.054                     | 0.044<br>0.076<br>-0.061<br>0.014<br>-0.017<br>0.013<br>-0.065          | 20.944<br>24.938<br>27.784<br>27.794<br>27.796<br>27.825<br>29.904                     | 0.462<br>0.3<br>0.224<br>0.269<br>0.317<br>0.367<br>0.318                  |
| . .  <br>. .  <br>. .  <br>6                                     | . .  <br>. .  <br>. .                                              | 88<br>89<br>90                            | -0.015<br>-0.001<br>-0.015                                                        | -0.037<br>0.024<br>-0.018                                               | 96.688<br>96.689<br>96.865                                                             | 0.247<br>0.271<br>0.292                                                    |
| 4 -<br>2 -<br>0 -<br>-2 -<br>-4 -<br>-6                          | 2000 2002 2004                                                     | 2006<br>uals                              | 2008                                                                              |                                                                         |                                                                                        |                                                                            |

#### DUK: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation | Partial Correlation |    | AC     | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|----|--------|--------|--------|-------|
| .l. I           | . .                 | 1  | 0.021  | 0.021  | 0.3109 | 0.577 |
| .i. i           |                     | 2  | -0.051 | -0.051 | 2.0769 | 0.354 |
| . *             | . *                 | 3  | 0.103  | 0.106  | 9.3323 | 0.025 |
| . .             | . .                 | 4  | -0.032 | -0.041 | 10.048 | 0.04  |
| .i. i           |                     | 5  | 0.043  | 0.057  | 11.326 | 0.045 |
| .i. i           |                     | 6  | -0.019 | -0.038 | 11.564 | 0.072 |
| .i. i           |                     | 7  | -0.01  | 0.006  | 11.631 | 0.113 |
|                 | . .                 | 8  | 0.017  | 0.002  | 11.829 | 0.159 |
| . .             | .i. i               | 9  | 0.048  | 0.058  | 13.445 | 0.143 |
|                 |                     |    |        |        |        |       |
|                 |                     |    | 0.004  | 0.04   | 40.054 | 0.000 |
| · ·             | . .                 | 21 | 0.021  | 0.01   | 18.251 | 0.633 |
| · ·             | . .                 | 22 | 0.038  | 0.042  | 19.254 | 0.63  |
| . .             | . .                 | 23 | -0.026 | -0.023 | 19.748 | 0.657 |
| . .             | . .                 | 24 | -0.021 | -0.015 | 20.054 | 0.694 |
| . .             | . .                 | 25 | -0.025 | -0.033 | 20.492 | 0.721 |
| . .             | . .                 | 26 | 0.027  | 0.033  | 21.014 | 0.741 |
| . .             | . .                 | 27 | -0.044 | -0.053 | 22.396 | 0.717 |
|                 |                     |    |        |        |        |       |
| . .             | . .                 | 88 | -0.045 | -0.043 | 94.104 | 0.309 |
| . .             |                     | 89 | -0.034 | -0.057 | 95.023 | 0.312 |
|                 | .i. i               | 90 | 0.016  | 0.013  | 95.219 | 0.333 |
|                 |                     |    |        |        |        |       |



#### SAH: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation | Partial Correlation | AC     | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|--------|--------|--------|-------|
| 1 1             |                     | 0.016  | 0.016  | 0 1701 | 0 677 |
| . .             |                     | 0.016  | 0.016  | 0.1731 | 0.677 |
| · ·  <br> *     | . .                 | -0.029 | -0.03  | 0.7003 | 0.002 |
| •1 1            |                     | 0.095  | 0.090  | 0.0007 | 0.070 |
| ·l·             | . .   4             | -0.034 | -0.059 | 0.0720 | 0.004 |
| ·l·             | . .                 | 0.030  | 0.045  | 9.7430 | 0.003 |
| ·l·             | . .   0             | -0.047 | -0.002 | 11.234 | 0.001 |
| ·l·             | . .   /             | -0.031 | -0.015 | 10.007 | 0.104 |
| · ·             | . .   0             | 0.022  | 0.000  | 12.227 | 0.141 |
| · ·             | . .   9             | 0.009  | 0.022  | 12.277 | 0.198 |
|                 |                     |        |        |        |       |
|                 |                     |        |        |        |       |
| . .             | . .   21            | 0.053  | 0.043  | 20.505 | 0.489 |
| . .             | . .   22            | 0.022  | 0.024  | 20.838 | 0.531 |
| . .             | . .   23            | -0.005 | -0.009 | 20.855 | 0.59  |
| . .             | . .   24            | -0.023 | -0.029 | 21.234 | 0.625 |
| . .             | . .   25            | -0.027 | -0.018 | 21.746 | 0.65  |
| . .             | . .   26            | 0.029  | 0.025  | 22.323 | 0.671 |
| . .             | . .   27            | -0.051 | -0.05  | 24.175 | 0.621 |
|                 |                     |        |        |        |       |
|                 |                     |        |        |        |       |
| . .             | . .   88            | -0.029 | -0.064 | 97.873 | 0.221 |
| .i. i           | . .   89            | -0.027 | -0.03  | 98.458 | 0.231 |
| . .             | . .   90            | 0.008  | -0.022 | 98.514 | 0.253 |
|                 |                     |        |        |        |       |
| 6 -             |                     |        |        |        |       |



#### SAL: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                                            | Partial Correlation                                                              | AC                                                                                | PAC                                                                             | Q-Stat                                                                                 | Prob                                                                          |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| ·  ·  <br>·  ·  <br>·  *  <br>·  ·  <br>·  ·  <br>·  ·  <br>·  ·  <br>·  · | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                            | 0.015<br>-0.038<br>0.095<br>-0.058<br>0.033<br>-0.037<br>-0.012<br>0.025<br>0.007 | 0.015<br>-0.038<br>0.097<br>-0.063<br>0.044<br>-0.054<br>0.006<br>0.009<br>0.02 | 0.1437<br>1.1173<br>7.3292<br>9.6034<br>10.364<br>11.326<br>11.418<br>11.835<br>11.865 | 0.705<br>0.572<br>0.062<br>0.048<br>0.066<br>0.079<br>0.121<br>0.159<br>0.221 |
| - -  <br>- -  <br>- -  <br>- -  <br>- -  <br>- -                           | . .   21<br>. .   22<br>. .   23<br>. .   24<br>. .   25<br>. .   26<br>* .   27 | 0.044<br>0.041<br>-0.024<br>-0.017<br>-0.021<br>0.035<br>-0.06                    | 0.035<br>0.044<br>-0.028<br>-0.018<br>-0.02<br>0.039<br>-0.067                  | 19.314<br>20.496<br>20.902<br>21.113<br>21.425<br>22.272<br>24.858                     | 0.565<br>0.552<br>0.587<br>0.632<br>0.669<br>0.674<br>0.582                   |
| . .  <br>. .  <br>. .                                                      | * .   88<br>. .   89<br>. .   90                                                 | -0.031<br>-0.034<br>0.016                                                         | -0.07<br>-0.031<br>-0.003                                                       | 96.844<br>97.74<br>97.946                                                              | 0.243<br>0.247<br>0.266                                                       |



# SAM: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation | Partial Correlat | ion      | AC     | PAC    | Q-Stat           | Prob  |
|-----------------|------------------|----------|--------|--------|------------------|-------|
| . .             | . .              | 1        | 0.016  | 0.016  | 0.1759           | 0.675 |
| j. j            | .i. i            | 2        | -0.033 | -0.034 | 0.9398           | 0.625 |
| . *             | . *              | 3        | 0.096  | 0.098  | 7.3019           | 0.063 |
|                 | . .              | 4        | -0.057 | -0.063 | 9.5612           | 0.049 |
|                 | . .              | 5        | 0.036  | 0.046  | 10.44            | 0.064 |
|                 | . .              | 6        | -0.043 | -0.06  | 11.724           | 0.068 |
| . .             | . .              | 7        | -0.024 | -0.005 | 12.104           | 0.097 |
| . .             | . .              | 8        | 0.025  | 0.01   | 12.524           | 0.129 |
| .i. i           | .i. i            | 9        | 0.009  | 0.023  | 12.584           | 0.182 |
|                 |                  |          |        |        |                  |       |
|                 | 1 1              | 21       | 0 048  | 0.036  | 20 658           | 0.48  |
| · ·  <br>       | · ·  <br>        | 22       | 0.040  | 0.000  | 20.000           | 0.40  |
|                 | ·I· I            | 23       | -0.009 | -0.014 | 21.22            | 0.564 |
|                 |                  | 24       | -0.025 | -0.028 | 21 728           | 0.596 |
| 1 1             |                  | 25       | -0.026 | -0.02  | 22 208           | 0.624 |
|                 |                  | 26       | 0.029  | 0.028  | 22.8             | 0.644 |
| . .             | . .              | 27       | -0.055 | -0.055 | 24.939           | 0.578 |
|                 |                  |          |        |        |                  |       |
|                 | *                | 88       | -0.031 | -0.067 | 96 574           | 0 240 |
| · ·  <br>       | I· I             | 80       | -0.031 | -0.007 | 07 328           | 0.243 |
| · ·  <br>       | · ·  <br>        | 90<br>90 | 0.001  | -0.032 | 97.520<br>97.459 | 0.230 |
| ·I· I           | ·I· I            | 30       | 0.013  | -0.012 | 37.433           | 0.211 |
| 6               |                  |          |        |        |                  |       |
|                 |                  |          |        |        |                  |       |
| • 1 I           |                  |          |        | 1      |                  |       |



#### VEN: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                                            | Partial<br>Correlation                                    |                                           | AC                                                                              | PAC                                                                               | Q-Stat                                                                                 | Prob                                                                                  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| ·  ·  <br>·  ·  <br>·  *  <br>·  ·  <br>·  ·  <br>·  ·  <br>·  ·  <br>·  · | · ·  <br>· ·  <br>· *  <br>· ·  <br>· ·  <br>· ·  <br>· · | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.003<br>-0.027<br>0.094<br>-0.061<br>0.006<br>-0.03<br>-0.08<br>0.079<br>0.038 | 0.003<br>-0.027<br>0.094<br>-0.063<br>0.013<br>-0.043<br>-0.068<br>0.074<br>0.041 | 0.0073<br>0.5048<br>6.5385<br>9.0538<br>9.0805<br>9.7069<br>14.156<br>18.467<br>19.464 | 0.932<br>0.777<br>0.088<br>0.06<br>0.106<br>0.138<br>0.048<br>0.048<br>0.018<br>0.022 |  |
| . .  <br>. *  <br>. .  <br>. .  <br>. .  <br>* .                           | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>. .          | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.021<br>0.078<br>-0.012<br>-0.024<br>-0.044<br>0.037<br>-0.076                 | 0.034<br>0.073<br>-0.013<br>-0.025<br>-0.059<br>0.038<br>-0.078                   | 26.434<br>30.703<br>30.804<br>31.219<br>32.575<br>33.539<br>37.688                     | 0.19<br>0.102<br>0.128<br>0.148<br>0.142<br>0.142<br>0.147<br>0.083                   |  |
| . .  <br>. .  <br>. .                                                      | . .  <br>. .  <br>. .                                     | 88<br>89<br>90                            | -0.014<br>-0.009<br>-0.036                                                      | -0.02<br>-0.031<br>-0.043                                                         | 94.403<br>94.462<br>95.464                                                             | 0.301<br>0.326<br>0.327                                                               |  |
| i, $i$ , $i$ , $j$               |                                                           |                                           |                                                                                 |                                                                                   |                                                                                        |                                                                                       |  |

# ASU: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                                              | Partial Correla       | ation          | AC                       | PAC                        | Q-Stat                     | Prob                    |
|------------------------------------------------------------------------------|-----------------------|----------------|--------------------------|----------------------------|----------------------------|-------------------------|
|                                                                              | 1 1                   | 1              | 0.010                    | 0.010                      | 0 2377                     | 0 626                   |
| ·I· I                                                                        | · ·  <br>             | 2              | -0.045                   | -0.045                     | 1 6204                     | 0.020                   |
| . *                                                                          | · ·  <br>_ *          | 3              | 0.121                    | 0.123                      | 11.593                     | 0.009                   |
|                                                                              | * .                   | 4              | -0.062                   | -0.071                     | 14.242                     | 0.007                   |
| . .                                                                          | . .                   | 5              | -0.029                   | -0.014                     | 14.816                     | 0.011                   |
| .i. i                                                                        |                       | 6              | 0.006                    | -0.014                     | 14.844                     | 0.022                   |
| .i. i                                                                        |                       | 7              | -0.016                   | -0.001                     | 15.015                     | 0.036                   |
| . .                                                                          | . .                   | 8              | 0.016                    | 0.017                      | 15.191                     | 0.056                   |
| . .                                                                          | . .                   | 9              | 0.011                    | 0.007                      | 15.269                     | 0.084                   |
|                                                                              |                       |                |                          |                            |                            |                         |
| . .                                                                          | . .                   | 21             | -0.033                   | -0.029                     | 21.674                     | 0.419                   |
| .i. i                                                                        |                       | 22             | 0.071                    | 0.067                      | 25.211                     | 0.287                   |
| . .                                                                          | . .                   | 23             | -0.008                   | -0.012                     | 25.258                     | 0.337                   |
| . .                                                                          | . .                   | 24             | 0.01                     | 0.021                      | 25.33                      | 0.388                   |
| . .                                                                          | . .                   | 25             | 0.03                     | 0.004                      | 25.958                     | 0.41                    |
| .l. l                                                                        | . .                   | 26             | 0.019                    | 0.031                      | 26.203                     | 0.452                   |
| . .                                                                          | . .                   | 27             | -0.028                   | -0.026                     | 26.762                     | 0.477                   |
| * .  <br>. .  <br>. .                                                        | * .  <br>. .  <br>. . | 88<br>89<br>90 | -0.074<br>-0.01<br>0.003 | -0.093<br>-0.018<br>-0.003 | 99.225<br>99.298<br>99.304 | 0.194<br>0.214<br>0.236 |
| $ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$ |                       |                |                          |                            |                            |                         |
|                                                                              | Standardized          | Residual       | s                        |                            |                            |                         |

# CAM: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation | Partial Correlation |    | AC     | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|----|--------|--------|--------|-------|
| .1. 1           | .l. 1               | 1  | 0.019  | 0.019  | 0.242  | 0.623 |
|                 |                     | 2  | -0.05  | -0.051 | 1.9777 | 0.372 |
|                 |                     | 3  | 0.062  | 0.064  | 4.5676 | 0.206 |
| * .             | * .                 | 4  | -0.072 | -0.078 | 8.1396 | 0.087 |
| .i. i           |                     | 5  | -0.021 | -0.011 | 8.4469 | 0.133 |
| * .             | * .                 | 6  | -0.089 | -0.102 | 13.922 | 0.031 |
| .j. j           | . .                 | 7  | -0.03  | -0.017 | 14.524 | 0.043 |
|                 | . .                 | 8  | 0.004  | -0.01  | 14.534 | 0.069 |
| .i. i           | .i. i               | 9  | 0.024  | 0.032  | 14.93  | 0.093 |
|                 |                     |    |        |        |        |       |
| . .             | . .                 | 21 | 0.043  | 0.036  | 21.632 | 0.421 |
| . .             | . .                 | 22 | 0.067  | 0.07   | 24.755 | 0.309 |
| . .             | . .                 | 23 | -0.04  | -0.034 | 25.905 | 0.305 |
| . .             | . .                 | 24 | -0.03  | -0.027 | 26.525 | 0.327 |
| . .             | . .                 | 25 | -0.004 | -0.012 | 26.538 | 0.379 |
| . .             | . .                 | 26 | 0.005  | 0.011  | 26.555 | 0.433 |
| . .             | . .                 | 27 | -0.049 | -0.049 | 28.246 | 0.398 |
|                 |                     |    |        |        |        |       |
| . .             | . .                 | 88 | -0.02  | -0.033 | 98.249 | 0.214 |
| . .             | . .                 | 89 | -0.003 | 0.017  | 98.258 | 0.236 |
| . .             | . .                 | 90 | -0.019 | -0.007 | 98.533 | 0.253 |
|                 |                     |    |        |        |        |       |



# CAP: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                         | Partial Correlation |          | AC     | PAC    | Q-Stat | Prob  |
|-----------------------------------------|---------------------|----------|--------|--------|--------|-------|
| . .                                     | . .                 | 1        | -0.009 | -0.009 | 0.05   | 0.823 |
| · ·                                     | · ·                 | 2        | -0.023 | -0.023 | 0.4081 | 0.815 |
| · "                                     | · ·                 | 3<br>∡   | 0.074  | 0.074  | 4.1662 | 0.244 |
| - -                                     | . .                 | 4        | -0.041 | -0.041 | 5.33ZZ | 0.255 |
| · ·                                     | · ·                 | с<br>С   | 0.05   | 0.053  | 7.041  | 0.210 |
| · ·                                     | · ·                 | 0        | 0.017  | 0.01   | 0.477  | 0.299 |
| · ·  <br>                               | · ·  <br>           | י<br>פ   | -0.037 | -0.049 | 9.477  | 0.22  |
| · ·  <br> *                             | · ·  <br> *         | a<br>a   | 0.022  | 0.013  | 1/ 210 | 0.279 |
| -1 1                                    | .                   | 5        | 0.00   | 0.001  | 14.213 | 0.115 |
| .l.                                     | . .                 | 21       | 0.024  | 0.025  | 20.446 | 0.493 |
| . .                                     | . .                 | 22       | 0.041  | 0.039  | 21.62  | 0.483 |
| . .                                     | . .                 | 23       | 0.008  | 0.022  | 21.071 | 0.54  |
| · ·                                     | · ·  <br>           | 24<br>25 | -0.000 | -0.01  | 21.710 | 0.590 |
| ·I· I                                   | · ·  <br>           | 20       | 0.056  | -0.055 | 22.704 | 0.53  |
| ·I· I<br>*                              | · ·  <br>*          | 27       | -0 123 | -0 126 | 35 684 | 0.010 |
| 1. 1                                    | 1. 1                |          | 020    | 020    |        |       |
| . .                                     | . .                 | 88       | -0.038 | -0.042 | 134.65 | 0.001 |
| . .                                     | . .                 | 89       | 0.033  | 0.013  | 135.48 | 0.001 |
| . .                                     | . .                 | 90       | -0.015 | -0.001 | 135.66 | 0.001 |
| 4<br>2<br>0<br>-2<br>-4<br>-6<br>-8<br> | 2000 2002 2004      | 2006     | 2008   |        |        |       |
| 1550                                    | 2000 2002 2004      | 2000     | 2000   |        |        |       |

#### CHI: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation  | Partial Correlation                                                                                            |         | AC      | PAC    | Q-Stat | Prob  |
|------------------|----------------------------------------------------------------------------------------------------------------|---------|---------|--------|--------|-------|
| . .              | . .                                                                                                            | 1       | 0.034   | 0.034  | 0.7702 | 0.38  |
|                  |                                                                                                                | 2       | -0.054  | -0.055 | 2.7578 | 0.252 |
| . .              | . .                                                                                                            | 3       | 0.064   | 0.068  | 5.5346 | 0.137 |
| . .              | . .                                                                                                            | 4       | -0.026  | -0.034 | 5.9929 | 0.2   |
| . .              | . .                                                                                                            | 5       | -0.01   | 0      | 6.0552 | 0.301 |
| . .              | . .                                                                                                            | 6       | -0.021  | -0.029 | 6.3639 | 0.384 |
| . .              | . .                                                                                                            | 7       | 0.003   | 0.008  | 6.3695 | 0.497 |
| . .              | . .                                                                                                            | 8       | 0.052   | 0.049  | 8.2495 | 0.409 |
| . .              | . .                                                                                                            | 9       | -0.016  | -0.017 | 8.4351 | 0.491 |
|                  |                                                                                                                |         |         |        |        |       |
| . .              | . .                                                                                                            | 21      | -0.029  | -0.037 | 16.577 | 0.736 |
| . .              | . .                                                                                                            | 22      | 0.038   | 0.038  | 17.592 | 0.73  |
| . .              | . .                                                                                                            | 23      | -0.026  | -0.04  | 18.053 | 0.755 |
| . .              | . .                                                                                                            | 24      | -0.001  | 0.009  | 18.054 | 0.8   |
| . .              | . .                                                                                                            | 25      | -0.031  | -0.046 | 18.715 | 0.811 |
| . .              | . .                                                                                                            | 26      | -0.015  | -0.001 | 18.879 | 0.841 |
| . .              | . .                                                                                                            | 27      | 0.017   | 0.015  | 19.075 | 0.867 |
|                  |                                                                                                                |         |         |        |        |       |
| . .              | . .                                                                                                            | 88      | -0.052  | -0.062 | 85.508 | 0.555 |
| . .              | . .                                                                                                            | 89      | -0.039  | -0.035 | 86.727 | 0.548 |
| . .              | . .                                                                                                            | 90      | -0.002  | -0.029 | 86.731 | 0.578 |
| 4                |                                                                                                                |         |         | 1      |        |       |
|                  | 1                                                                                                              |         | I       |        |        |       |
| 2 -              | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                       |         | or.U.M. |        |        |       |
|                  | All Ministry and a state of the second s |         |         |        |        |       |
| ALLAN AND ALLAND | ahi dahahi kadi dila kadi di kadi da k                                                                         | PHU PHU |         |        |        |       |
| -2 -             |                                                                                                                | ויי     |         |        |        |       |
|                  |                                                                                                                | ,       | '       |        |        |       |
| -4 -             |                                                                                                                |         |         |        |        |       |
| -6               | 2000 2002 2004                                                                                                 | 2006    | 2008    | ļ      |        |       |
| 1990             | 2002 2002 2004                                                                                                 | 2000    | 2000    |        |        |       |

#### COL: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                                    | Partial Correlatio                                                 | n                                         | AC                                                                               | PAC                                                                              | Q-Stat                                                                               |
|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| · .  <br>* .  <br>. .  <br>. .  <br>. .  <br>* .  <br>. *  <br>. . | . .  <br>* .  <br>. .  <br>. .  <br>. .  <br>* .  <br>. *  <br>. . | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.014<br>-0.081<br>0.07<br>-0.019<br>0.043<br>-0.044<br>-0.103<br>0.094<br>0.065 | 0.014<br>-0.082<br>0.072<br>-0.028<br>0.057<br>-0.056<br>-0.09<br>0.085<br>0.056 | 0.125<br>4.6409<br>7.9553<br>8.1999<br>9.4794<br>10.79<br>18.059<br>24.172<br>27.114 |
| · .  <br>· *  <br>· .  <br>· .  <br>· .  <br>· .                   | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>* .                   | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.056<br>0.086<br>-0.041<br>-0.007<br>-0.044<br>0.05<br>-0.066                   | 0.047<br>0.07<br>-0.04<br>0.019<br>-0.048<br>0.04<br>-0.099                      | 41.603<br>46.821<br>48.009<br>48.041<br>49.39<br>51.172<br>54.252                    |
| . .  <br>. .  <br>. .  <br>4                                       | . .  <br>. .  <br>. .                                              | 88<br>89<br>90                            | -0.017<br>-0.014<br>-0.012                                                       | -0.048<br>-0.025<br>-0.014                                                       | 116.46<br>116.62<br>116.73                                                           |
| 2 -<br>0 -<br>-2 -<br>-6                                           | 2000 2002 2004                                                     | 4 200                                     | 6 2008                                                                           |                                                                                  |                                                                                      |

#### EGS: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation | Partial Correlation | 1  | AC     | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|----|--------|--------|--------|-------|
| . .             | . .                 | 1  | 0.034  | 0.034  | 0.7923 | 0.373 |
| .i. i           | * .                 | 2  | -0.066 | -0.067 | 3.7264 | 0.155 |
| .i. i           |                     | 3  | 0.038  | 0.043  | 4.7142 | 0.194 |
| .i. i           |                     | 4  | -0.051 | -0.059 | 6.5207 | 0.163 |
| .j. j           |                     | 5  | -0.002 | 0.008  | 6.5245 | 0.258 |
|                 | . .                 | 6  | -0.049 | -0.059 | 8.1797 | 0.225 |
| * .             | * .                 | 7  | -0.084 | -0.076 | 13.046 | 0.071 |
| . .             | . .                 | 8  | 0.023  | 0.019  | 13.409 | 0.099 |
| . .             | . .                 | 9  | 0.033  | 0.025  | 14.168 | 0.116 |
|                 |                     |    |        |        |        |       |
|                 |                     |    |        |        |        |       |
| · ·             | . .                 | 21 | 0.054  | 0.043  | 21.908 | 0.405 |
| · ·             | . .                 | 22 | 0.073  | 0.068  | 25.66  | 0.267 |
| · ·             | . .                 | 23 | -0.06  | -0.065 | 28.206 | 0.208 |
| · ·             | . .                 | 24 | -0.007 | 0.002  | 28.245 | 0.25  |
| · ·             | . .                 | 25 | -0.01  | -0.019 | 28.318 | 0.293 |
| .l.             | . .                 | 26 | 0.01   | 0.013  | 28.388 | 0.34  |
| . .             | . .                 | 27 | -0.047 | -0.057 | 29.986 | 0.315 |
|                 |                     |    |        |        |        |       |
|                 | .l. 1               | 88 | -0.04  | -0.064 | 97.8   | 0.223 |
| .i. i           | .i. i               | 89 | -0.006 | 0.017  | 97.828 | 0.245 |
|                 | .i. i               | 90 | -0.02  | -0.031 | 98.133 | 0.262 |
| 6               |                     |    |        |        |        |       |
|                 |                     |    |        |        |        |       |
| 4 -             |                     |    |        |        |        |       |
| 2               | ul                  |    |        |        |        |       |



# INO: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation | Partial Corre                                                                                                   | lation                 | AC               | PAC    | Q-Stat | Prob  |
|-----------------|-----------------------------------------------------------------------------------------------------------------|------------------------|------------------|--------|--------|-------|
| . .             | . .                                                                                                             | 1                      | 0.022            | 0.022  | 0.3387 | 0.561 |
| . .             | .i. i                                                                                                           | 2                      | -0.033           | -0.033 | 1.0777 | 0.583 |
| . *             | . *                                                                                                             | 3                      | 0.092            | 0.094  | 6.8819 | 0.076 |
| . .             | . .                                                                                                             | 4                      | -0.048           | -0.054 | 8.4285 | 0.077 |
| . .             | . .                                                                                                             | 5                      | -0.018           | -0.009 | 8.6612 | 0.123 |
| . .             | -l- l                                                                                                           | 6                      | -0.031           | -0.043 | 9.3108 | 0.157 |
| . .             | · ·                                                                                                             | 1                      | -0.002           | 0.009  | 9.3142 | 0.231 |
| . .             | - -                                                                                                             | 8                      | 0.056            | 0.054  | 11.463 | 0.177 |
| · ·             | ·l·                                                                                                             | 9                      | -0.029           | -0.027 | 12.054 | 0.21  |
|                 | 1 1                                                                                                             | 21                     | -0.007           | -0.015 | 18 332 | 0.628 |
| ·I· I           |                                                                                                                 | 22                     | 0.019            | 0.013  | 18.593 | 0.67  |
| . .             |                                                                                                                 | 23                     | -0.017           | -0.032 | 18.794 | 0.713 |
|                 | i. i                                                                                                            | 24                     | -0.015           | -0.009 | 18.95  | 0.755 |
| . .             | .i. i                                                                                                           | 25                     | -0.037           | -0.045 | 19.91  | 0.752 |
| . .             | . .                                                                                                             | 26                     | -0.026           | -0.014 | 20.403 | 0.772 |
| . .             | . .                                                                                                             | 27                     | 0.006            | 0.009  | 20.431 | 0.812 |
|                 |                                                                                                                 |                        |                  |        |        |       |
| . .             | * .                                                                                                             | 88                     | -0.049           | -0.078 | 83.523 | 0.615 |
| * .             | -l- l                                                                                                           | 89                     | -0.066           | -0.051 | 86.918 | 0.543 |
| . .             | . .                                                                                                             | 90                     | 0.017            | -0.022 | 87.15  | 0.565 |
| 4               |                                                                                                                 |                        |                  |        |        |       |
|                 | վ. և փ.մ.                                                                                                       | ل المالية ال           | . or di          | 161.   |        |       |
| o <b></b>       |                                                                                                                 | h MM                   |                  |        |        |       |
| ALLANDAR (L.    | , de l'ante de la compañsion de la compañsi | I ALLIN <b>I</b> ALLIN | i na an an an an |        |        |       |
| -2 -            | . a hi alla da                                                                                                  |                        | 1                |        |        |       |
| _4              |                                                                                                                 |                        | -                |        |        |       |
|                 |                                                                                                                 |                        |                  |        |        |       |
| -6 -L<br>1998   | 2000 2002                                                                                                       | 2004                   | 2006 2008        |        |        |       |

# TAP: 1/17/1997 1/15/2010

Included observations: 679

| Autocorrelation                                                                       | Partial Correlation                                                                                                                        | AC                                                                                                        | AC PAC                                                                            |                                                                                              | Prob                                                                                          |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Autocorrelation<br>- .  <br>* .  <br>. *  <br>- .  <br>- .  <br>* .  <br>* .  <br>. * | Partial Correlation    . .     * .     . *     . .     . .     . .     . .     . .     . .     . .     . .     . .     . .     . .     . . | AC<br>1 0.016<br>2 -0.077<br>3 0.078<br>4 -0.041<br>5 0.022<br>6 -0.043<br>7 -0.085<br>8 0.078<br>9 0.031 | 0.016<br>-0.078<br>0.081<br>-0.051<br>0.037<br>-0.059<br>-0.071<br>0.069<br>0.026 | Q-Stat<br>0.1705<br>4.2546<br>8.3839<br>9.5549<br>9.8742<br>11.142<br>16.098<br>20.323<br>21 | Prob<br>0.68<br>0.119<br>0.039<br>0.049<br>0.079<br>0.084<br>0.024<br>0.024<br>0.009<br>0.013 |
| . .                                                                                   | . .                                                                                                                                        | 9 0.031                                                                                                   | 0.026                                                                             | 21                                                                                           | 0.013                                                                                         |
|                                                                                       |                                                                                                                                            |                                                                                                           |                                                                                   |                                                                                              |                                                                                               |
| . .                                                                                   | . .   2                                                                                                                                    | 1 0.022                                                                                                   | 0.023                                                                             | 28.376                                                                                       | 0.13                                                                                          |
| . *                                                                                   | . .   2                                                                                                                                    | 2 0.082                                                                                                   | 0.07                                                                              | 33.07                                                                                        | 0.061                                                                                         |
| . .                                                                                   | . .   2                                                                                                                                    | 3 -0.046                                                                                                  | -0.05                                                                             | 34.577                                                                                       | 0.057                                                                                         |
| . .                                                                                   | . .   24                                                                                                                                   | 4 -0.01                                                                                                   | 0.005                                                                             | 34.651                                                                                       | 0.074                                                                                         |
| . .                                                                                   | . .   2                                                                                                                                    | 5 -0.039                                                                                                  | -0.054                                                                            | 35.733                                                                                       | 0.076                                                                                         |
| . .                                                                                   | . .   2                                                                                                                                    | 6 0.042                                                                                                   | 0.05                                                                              | 37.01                                                                                        | 0.075                                                                                         |
| * .                                                                                   | * .   2                                                                                                                                    | 7 -0.085                                                                                                  | -0.111                                                                            | 42.14                                                                                        | 0.032                                                                                         |
|                                                                                       |                                                                                                                                            |                                                                                                           |                                                                                   |                                                                                              |                                                                                               |
| . .                                                                                   | . .   8                                                                                                                                    | -0.012                                                                                                    | -0.049                                                                            | 99.581                                                                                       | 0.188                                                                                         |
| . .                                                                                   | . .   8                                                                                                                                    | 9 0.005                                                                                                   | -0.001                                                                            | 99.598                                                                                       | 0.208                                                                                         |
| . .                                                                                   | . .   9                                                                                                                                    | 0 -0.014                                                                                                  | -0.021                                                                            | 99.761                                                                                       | 0.226                                                                                         |
|                                                                                       |                                                                                                                                            |                                                                                                           |                                                                                   |                                                                                              |                                                                                               |



#### MXI: 1/17/1997 1/15/2010 Included observations: 679

| Autocorrelation                                                    | Partial<br>Correlation                                    |                                           | AC                                                                                | PAC                                                                               | Q-Stat                                                                             | Prob                                                                         |
|--------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| · ·  <br>* .  <br>· *  <br>· ·  <br>· ·  <br>* .  <br>· *  <br>· · | . .  <br>* .  <br>. *  <br>. .  <br>. .  <br>* .  <br>. . | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.016<br>-0.077<br>0.078<br>-0.041<br>0.022<br>-0.043<br>-0.085<br>0.078<br>0.031 | 0.016<br>-0.078<br>0.081<br>-0.051<br>0.037<br>-0.059<br>-0.071<br>0.069<br>0.026 | 0.1705<br>4.2546<br>8.3839<br>9.5549<br>9.8742<br>11.142<br>16.098<br>20.323<br>21 | 0.68<br>0.119<br>0.039<br>0.049<br>0.079<br>0.084<br>0.024<br>0.009<br>0.013 |
| . .  <br>. *  <br>. .  <br>. .  <br>. .  <br>. .                   | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>* .          | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.022<br>0.082<br>-0.046<br>-0.01<br>-0.039<br>0.042<br>-0.085                    | 0.023<br>0.07<br>-0.05<br>0.005<br>-0.054<br>0.05<br>-0.111                       | 28.376<br>33.07<br>34.577<br>34.651<br>35.733<br>37.01<br>42.14                    | 0.13<br>0.061<br>0.057<br>0.074<br>0.076<br>0.075<br>0.032                   |
| . .  <br>. .  <br>. .  <br>4                                       | . .  <br>. .  <br>. .                                     | 88<br>89<br>90                            | -0.012<br>0.005<br>-0.014                                                         | -0.049<br>-0.001<br>-0.021                                                        | 99.581<br>99.598<br>99.761                                                         | 0.188<br>0.208<br>0.226                                                      |
|                                                                    | 2000 2002                                                 | 2004                                      | 2006 20                                                                           |                                                                                   |                                                                                    |                                                                              |
|                                                                    | Standardi                                                 | zed Resid                                 | duals                                                                             |                                                                                   |                                                                                    |                                                                              |

#### MXM: 1/17/1997 1/15/2010 Included observations: 679

| Partial<br>Correlation                                             |                                           | AC                                                                                | PAC                                                                                                                                           | Q-Stat                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|--------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| · ·  <br>· *  <br>· *  <br>· ·  <br>· ·  <br>· ·  <br>· ·  <br>· · | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.028<br>-0.061<br>0.089<br>-0.043<br>0.023<br>-0.047<br>-0.046<br>0.03<br>-0.024 | 0.028<br>-0.062<br>0.093<br>-0.054<br>0.039<br>-0.065<br>-0.028<br>0.017<br>-0.018                                                            | 0.5427<br>3.0946<br>8.5388<br>9.808<br>10.171<br>11.661<br>13.099<br>13.71<br>14.111                                                                                                                                                                                                                                                                                                                                                          | 0.461<br>0.213<br>0.036<br>0.044<br>0.071<br>0.07<br>0.07<br>0.07<br>0.09<br>0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>* .                   | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.005<br>0.067<br>-0.032<br>0.007<br>-0.025<br>0.01<br>-0.063                     | 0.016<br>0.05<br>-0.014<br>0.002<br>-0.03<br>0.006<br>-0.078                                                                                  | 24.721<br>27.913<br>28.644<br>28.676<br>29.124<br>29.189<br>32                                                                                                                                                                                                                                                                                                                                                                                | 0.259<br>0.179<br>0.192<br>0.233<br>0.259<br>0.303<br>0.232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| * .  <br>. .  <br>. .                                              | 88<br>89<br>90                            | -0.043<br>-0.015<br>-0.014                                                        | -0.088<br>-0.008<br>-0.041                                                                                                                    | 98.928<br>99.114<br>99.263                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2<br>0.217<br>0.237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|                                                                    |                                           |                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| 2000 2002                                                          | 2004                                      | 2006                                                                              | 2008                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                                    | Partial<br>Correlation                    | Partial<br>Correlation                                                            | Partial<br>Correlation AC    1 0.028    2 -0.061    2 -0.061    4 -0.043    5 0.023    6 -0.047    6 -0.047    7 -0.046    8 0.03    9 -0.024 | Partial<br>Correlation AC PAC    .   1 0.028 0.028    .   2 -0.061 -0.062    *   3 0.089 0.093    .   4 -0.043 -0.054    .   6 -0.047 -0.065    .   6 -0.047 -0.065    .   8 0.03 0.017    .   9 -0.024 -0.018    .   21 0.005 0.016    .   22 0.067 0.05    .   23 -0.032 -0.014    .   24 0.007 0.002    .   25 -0.025 -0.03    .   26 0.01 0.006   * .   89 -0.014 -0.041   IIII   90 -0.014 -0.041   IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | Partial<br>Correlation AC PAC Q-Stat<br>  1 0.028 0.028 0.5427<br>  2 -0.061 -0.062 3.0946<br>  3 0.089 0.093 8.5388<br>  4 -0.043 -0.054 9.808<br>  5 0.023 0.039 10.171<br>  6 -0.047 -0.065 11.661<br>  7 -0.046 -0.028 13.099<br>  8 0.03 0.017 13.71<br>  9 -0.024 -0.018 14.111<br>  9 -0.024 -0.018 14.111<br>  22 0.067 0.05 27.913<br>  23 -0.032 -0.014 28.644<br>  24 0.007 0.002 28.676<br>  25 -0.025 -0.03 29.124<br>  26 0.01 0.006 29.189<br>*].   27 -0.063 -0.078 32<br>*].   88 -0.043 -0.088 98.928<br>  89 -0.015 -0.008 99.114<br>  90 -0.014 -0.041 99.263<br>  89 -0.015 -0.008 99.114<br>  90 -0.014 -0.041 99.263 |  |  |  |  |  |  |

# NOE: 1/17/1997 1/15/2010 Included observations: 679

-6

1998

2000

I —

2002

2004

- Standardized Residuals

2006

| Autocorrelation                                     | Partial Correlation                           | 1           | AC                  | PAC    | Q-Stat | Prob  |
|-----------------------------------------------------|-----------------------------------------------|-------------|---------------------|--------|--------|-------|
| . .                                                 | . .                                           | 1           | 0.028               | 0.028  | 0.5445 | 0.461 |
|                                                     | .i. i                                         | 2           | -0.064              | -0.065 | 3.3159 | 0.191 |
| . .                                                 | .i. i                                         | 3           | 0.051               | 0.055  | 5.1052 | 0.164 |
| . .                                                 | * .                                           | 4           | -0.062              | -0.07  | 7.7305 | 0.102 |
| . .                                                 | . .                                           | 5           | -0.012              | -0.001 | 7.8344 | 0.166 |
| * .                                                 | * .                                           | 6           | -0.068              | -0.08  | 10.995 | 0.089 |
| . .                                                 | . .                                           | 7           | -0.059              | -0.048 | 13.353 | 0.064 |
| . .                                                 | . .                                           | 8           | 0.019               | 0.009  | 13.599 | 0.093 |
| . .                                                 | . .                                           | 9           | 0.025               | 0.025  | 14.045 | 0.121 |
|                                                     |                                               |             |                     |        |        |       |
| . .                                                 | . .                                           | 21          | 0.051               | 0.046  | 20.891 | 0.466 |
| . *                                                 | . *                                           | 22          | 0.075               | 0.077  | 24.902 | 0.302 |
|                                                     | .i. i                                         | 23          | -0.064              | -0.062 | 27.832 | 0.222 |
|                                                     |                                               | 24          | -0.012              | -0.003 | 27.934 | 0.263 |
|                                                     | . .                                           | 25          | -0.001              | -0.014 | 27.934 | 0.311 |
| . .                                                 | . .                                           | 26          | -0.002              | 0.005  | 27.937 | 0.362 |
| . .                                                 | . .                                           | 27          | -0.052              | -0.061 | 29.881 | 0.32  |
|                                                     |                                               |             |                     |        |        |       |
| . .                                                 | . .                                           | 88          | -0.011              | -0.035 | 93.949 | 0.313 |
|                                                     | .i. i                                         | 89          | -0.018              | 0.008  | 94.196 | 0.333 |
| .i. i                                               | . .                                           | 90          | -0.012              | -0.01  | 94.311 | 0.357 |
| 6                                                   |                                               |             |                     |        |        |       |
| 4 -                                                 | 1                                             |             |                     |        |        |       |
|                                                     |                                               |             |                     |        |        |       |
| 2                                                   |                                               |             |                     |        |        |       |
|                                                     | kall, shak ta haki ba du dhakhashki hilikatak | u lat da    |                     |        |        |       |
| 0 - <b>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</b> |                                               | WWW         |                     |        |        |       |
| a ta            | AT AN DIAME. N. WINNAL AND                    | LIII , M.L. | al di tingi in in i |        |        |       |
| -2 -1   1   1                                       |                                               | 11          | 1,44                |        |        |       |
|                                                     |                                               |             |                     |        |        |       |
| -4 -                                                |                                               |             |                     |        |        |       |

#### OMN: 1/17/1997 1/15/2010 Included observations: 679

-4

-6

1998

2000

2002

2004

- Standardized Residuals

2006

| Autocorrelation  | Partial Correla | ation | AC       | PAC    | Q-Stat | Prob  |  |
|------------------|-----------------|-------|----------|--------|--------|-------|--|
| .l. 1            |                 | 1     | 0.019    | 0.019  | 0.2465 | 0.62  |  |
|                  | .i. i           | 2     | -0.055   | -0.056 | 2.3383 | 0.311 |  |
| . *              | . *             | 3     | 0.092    | 0.095  | 8.1445 | 0.043 |  |
| . .              | . .             | 4     | -0.041   | -0.049 | 9.2747 | 0.055 |  |
| . .              | . .             | 5     | 0.053    | 0.067  | 11.185 | 0.048 |  |
| . .              | . .             | 6     | -0.026   | -0.045 | 11.649 | 0.07  |  |
| . .              | . .             | 7     | -0.018   | 0      | 11.873 | 0.105 |  |
| . .              | . .             | 8     | 0.022    | 0.005  | 12.209 | 0.142 |  |
| . .              | . .             | 9     | 0.055    | 0.066  | 14.285 | 0.113 |  |
|                  |                 |       |          |        |        |       |  |
|                  | .l. l           | 21    | 0.024    | 0.008  | 18.998 | 0.585 |  |
|                  |                 | 22    | 0.032    | 0.043  | 19.727 | 0.6   |  |
| .i. i            | .i. i           | 23    | -0.02    | -0.022 | 19.996 | 0.642 |  |
|                  | .i. i           | 24    | -0.024   | -0.015 | 20.402 | 0.674 |  |
| . .              | . .             | 25    | -0.02    | -0.027 | 20.678 | 0.71  |  |
| . .              | . .             | 26    | 0.031    | 0.035  | 21.341 | 0.724 |  |
| . .              | . .             | 27    | -0.055   | -0.065 | 23.466 | 0.66  |  |
|                  |                 |       |          |        |        |       |  |
|                  | .1. 1           | 88    | -0.043   | -0.052 | 92.818 | 0.342 |  |
|                  |                 | 89    | -0.033   | -0.053 | 93.684 | 0.346 |  |
| .i. i            | .i. i           | 90    | 0.011    | 0.007  | 93.787 | 0.371 |  |
| 6<br>4<br>2<br>0 |                 |       |          |        |        |       |  |
| -2 -             |                 | 1411  | h th h l |        |        |       |  |

# RUS: 1/17/1997 1/15/2010 Included observations: 679

- Standardized Residuals

| Autocorrelation                                           | Partial<br>Correlation                                    |                                           | AC                                                                       | PAC                                                                      | Q-Stat                                                                                 | Prob                                                                          |
|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| - .  <br>- .  <br>- .  <br>* .  <br>- .  <br>- .  <br>- . | · ·  <br>· ·  <br>· ·  <br>* .  <br>· ·  <br>· ·  <br>· · | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.008<br>-0.003<br>-0.106<br>0.003<br>-0.033<br>-0.061<br>0.035<br>0.026 | 0.008<br>-0.003<br>-0.106<br>0.005<br>-0.034<br>-0.062<br>0.025<br>0.026 | 0.0444<br>0.0515<br>0.0585<br>7.7213<br>7.7286<br>8.4651<br>11.014<br>11.867<br>12.344 | 0.833<br>0.975<br>0.996<br>0.102<br>0.172<br>0.206<br>0.138<br>0.157<br>0.195 |
| · ·  <br>· ·  <br>· ·  <br>· ·  <br>· ·  <br>· ·  <br>* . | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>* .          | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.046<br>0.04<br>-0.038<br>0.023<br>-0.043<br>0.009<br>-0.075            | 0.056<br>0.045<br>-0.038<br>0.019<br>-0.03<br>0.006<br>-0.094            | 21.205<br>22.333<br>23.365<br>23.737<br>25.041<br>25.103<br>29.093                     | 0.446<br>0.44<br>0.477<br>0.46<br>0.513<br>0.356                              |
| . .  <br>. .  <br>. .  <br>6<br>4-                        | . .  <br>. .  <br>. .                                     | 88<br>89<br>90                            | -0.014<br>-0.004<br>-0.025                                               | -0.009<br>-0.006<br>-0.033                                               | 89.14<br>89.15<br>89.629                                                               | 0.446<br>0.476<br>0.491                                                       |
| 2 -<br>0                                                  |                                                           |                                           |                                                                          |                                                                          |                                                                                        |                                                                               |

# BRT: 1/17/1997 1/15/2010

Included observations: 679

| Autocorrelation                                           | Partial<br>Correlation                           |                                           | AC                                                                                | PAC                                                                               | Q-Stat                                                                                 | Prob                                                                         |
|-----------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| · ·  <br>· ·  <br>· ·  <br>· ·  <br>· ·  <br>· ·  <br>· · | . .  <br>. .  <br>* .  <br>. .  <br>. .  <br>. . | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.007<br>0.031<br>0.032<br>-0.074<br>-0.018<br>-0.041<br>-0.064<br>0.017<br>0.037 | 0.007<br>0.031<br>0.032<br>-0.076<br>-0.019<br>-0.038<br>-0.058<br>0.016<br>0.041 | 0.0345<br>0.6727<br>1.3859<br>5.1413<br>5.3557<br>6.5354<br>9.3326<br>9.5374<br>10.487 | 0.853<br>0.714<br>0.709<br>0.273<br>0.374<br>0.366<br>0.23<br>0.299<br>0.313 |
| · ·  <br>· ·  <br>· ·  <br>· ·  <br>· ·  <br>· ·          | . .  <br>. .  <br>. .  <br>. .  <br>. .  <br>. . | 21<br>22<br>23<br>24<br>25<br>26<br>27    | 0.059<br>0.023<br>-0.022<br>-0.001<br>-0.031<br>0.017<br>-0.089                   | 0.065<br>0.024<br>-0.023<br>-0.011<br>-0.021<br>0.017<br>-0.092                   | 17.688<br>18.069<br>18.418<br>18.419<br>19.085<br>19.297<br>24.954                     | 0.669<br>0.702<br>0.734<br>0.782<br>0.793<br>0.824<br>0.577                  |
| . .  <br>. .  <br>. .                                     | . .  <br>. .  <br>. .                            | 88<br>89<br>90                            | -0.011<br>-0.003<br>-0.023                                                        | -0.002<br>-0.014<br>-0.028                                                        | 86.26<br>86.266<br>86.698                                                              | 0.533<br>0.562<br>0.579                                                      |
| 6<br>4<br>-2<br>-2<br>-4<br>-6<br>-1998                   | 2000 2002                                        | 2004                                      | 2006<br>siduals                                                                   | 2008                                                                              |                                                                                        |                                                                              |

# Appendix 11a: Trace and Maximum eigenvalue for each stock of different oil sectors and OPEC and non-OPEC crude oils

Notes:

- 1. Stocks and crude oils are listed horizontally and vertically, respectively.
- 2. M1: no constant and no drift; M2: a constant only; M3: both a constant and a drift.

3. Critical values are as follow:

|    |           | Trace  | Max_Eig |  |  |
|----|-----------|--------|---------|--|--|
| M1 | None      | 20.262 | 15.892  |  |  |
|    | At most 1 | 9.165  | 9.165   |  |  |
| M2 | None      | 15.495 | 14.265  |  |  |
|    | At most 1 | 3.841  | 3.841   |  |  |
| M3 | None      | 25.872 | 19.387  |  |  |
|    | At most 1 | 12.518 | 12.518  |  |  |

MacKinnon-Haug-Michelis (1999) p-values

Stock: DO

Sector: DE

|     |        | N     | 11     |       |        | N          | 12     |       | M3     |       |        |       |
|-----|--------|-------|--------|-------|--------|------------|--------|-------|--------|-------|--------|-------|
|     | TRA    | ACE   | MAX    | EIG   | TRA    | <b>NCE</b> | MAX    | _EIG  | TRA    | ACE   | MAX    | _EIG  |
| Oil | r=0    | r≤1   | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 11.680 | 1.900 | 9.782  | 1.903 | 11.427 | 1.759      | 9.668  | 1.759 | 24.834 | 6.699 | 18.134 | 6.699 |
| ASB | 10.773 | 1.658 | 9.115  | 1.658 | 10.480 | 1.467      | 9.012  | 1.467 | 21.647 | 6.469 | 15.179 | 6.469 |
| ANC | 11.134 | 1.682 | 9.452  | 1.682 | 10.821 | 1.504      | 9.317  | 1.504 | 23.460 | 6.460 | 17.041 | 6.460 |
| DUB | 12.192 | 1.853 | 10.339 | 1.853 | 11.890 | 1.707      | 10.183 | 1.707 | 26.447 | 6.815 | 19.632 | 6.814 |
| ECU | 13.216 | 1.612 | 11.604 | 1.612 | 12.962 | 1.492      | 11.470 | 1.492 | 26.938 | 6.319 | 20.619 | 6.319 |
| IRH | 11.585 | 1.681 | 9.904  | 1.681 | 11.232 | 1.502      | 9.730  | 1.502 | 24.367 | 6.746 | 17.620 | 6.747 |
| IRL | 11.100 | 1.689 | 9.411  | 1.689 | 10.760 | 1.505      | 9.255  | 1.505 | 23.087 | 6.711 | 16.375 | 6.711 |
| KUT | 12.111 | 1.839 | 10.272 | 1.839 | 11.816 | 1.693      | 10.123 | 1.693 | 26.478 | 6.588 | 19.387 | 6.589 |
| LIB | 11.136 | 1.612 | 9.524  | 1.612 | 10.816 | 1.420      | 9.395  | 1.420 | 22.985 | 6.526 | 16.459 | 6.526 |
| NGB | 10.964 | 1.665 | 9.299  | 1.665 | 10.677 | 1.486      | 9.191  | 1.486 | 22.828 | 6.526 | 16.302 | 6.526 |
| NGE | 10.667 | 1.666 | 9.001  | 1.666 | 10.383 | 1.489      | 8.894  | 1.489 | 22.228 | 6.542 | 15.686 | 6.542 |
| DUK | 11.953 | 1.914 | 10.039 | 1.914 | 11.698 | 1.775      | 9.924  | 1.775 | 25.210 | 6.679 | 18.530 | 6.679 |
| SAH | 12.707 | 1.698 | 11.009 | 1.698 | 12.409 | 1.548      | 10.861 | 1.548 | 25.608 | 6.657 | 18.952 | 6.657 |
| SAL | 11.825 | 1.707 | 10.118 | 1.706 | 11.541 | 1.548      | 9.993  | 1.548 | 23.487 | 6.671 | 16.816 | 6.671 |
| SAM | 12.358 | 1.703 | 10.655 | 1.703 | 12.068 | 1.548      | 10.520 | 1.548 | 24.593 | 6.677 | 17.917 | 6.677 |
| VEN | 11.655 | 1.638 | 10.017 | 1.638 | 11.36  | 1.482      | 9.885  | 1.482 | 23.86  | 6.448 | 17.421 | 6.448 |
| AUS | 11.273 | 1.853 | 9.420  | 1.853 | 10.991 | 1.683      | 9.308  | 1.683 | 22.494 | 6.596 | 15.898 | 6.596 |
| CAM | 11.804 | 1.636 | 10.168 | 1.636 | 11.528 | 1.469      | 10.059 | 1.469 | 24.531 | 6.385 | 18.146 | 6.385 |
| САР | 10.992 | 1.673 | 9.319  | 1.673 | 10.727 | 1.503      | 9.225  | 1.503 | 20.394 | 6.438 | 13.956 | 6.438 |
| CHI | 11.310 | 1.819 | 9.492  | 1.819 | 11.092 | 1.683      | 9.408  | 1.683 | 23.176 | 6.372 | 16.804 | 6.372 |
| COL | 10.985 | 1.544 | 9.440  | 1.545 | 10.653 | 1.362      | 9.291  | 1.362 | 24.191 | 6.490 | 17.701 | 6.490 |
| EGS | 11.685 | 1.598 | 10.087 | 1.598 | 11.375 | 1.421      | 9.954  | 1.421 | 24.327 | 6.539 | 17.788 | 6.539 |
| INO | 11.140 | 1.800 | 9.339  | 1.800 | 10.897 | 1.662      | 9.235  | 1.662 | 24.531 | 6.466 | 18.065 | 6.466 |
| ТАР | 11.242 | 1.769 | 9.473  | 1.769 | 11.010 | 1.612      | 9.398  | 1.612 | 22.896 | 6.486 | 16.510 | 6.486 |
| MXI | 11.241 | 1.614 | 9.627  | 1.614 | 10.962 | 1.457      | 9.506  | 1.457 | 23.717 | 6.306 | 17.411 | 6.306 |
| MXM | 12.902 | 1.701 | 11.200 | 1.701 | 12.624 | 1.571      | 11.053 | 1.571 | 28.969 | 6.403 | 22.566 | 6.403 |
| NOE | 10.799 | 1.640 | 9.159  | 1.640 | 10.504 | 1.454      | 9.049  | 1.454 | 22.106 | 6.474 | 15.632 | 6.474 |
| OMN | 12.038 | 1.897 | 10.141 | 1.897 | 11.753 | 1.750      | 10.014 | 1.750 | 26.047 | 6.724 | 19.323 | 6.724 |
| RUS | 11.097 | 1.357 | 9.740  | 1.357 | 10.852 | 1.216      | 9.636  | 1.216 | 23.230 | 6.256 | 16.974 | 6.256 |
| BRT | 10.424 | 1.664 | 8.760  | 1.664 | 10.151 | 1.491      | 8.660  | 1.492 | 21.282 | 6.335 | 14.948 | 6.335 |

Stock: NE

|     |        | M1        |        |       |        | N          | 12    |       | M3     |       |        |       |
|-----|--------|-----------|--------|-------|--------|------------|-------|-------|--------|-------|--------|-------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>\CE</b> | MAX   | EIG   | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1        | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 11.740 | 4.099     | 7.641  | 4.099 | 11.456 | 3.845      | 7.611 | 3.845 | 18.840 | 7.557 | 11.283 | 7.557 |
| ASB | 11.440 | 3.699     | 7.751  | 3.699 | 11.134 | 3.419      | 7.715 | 3.419 | 17.758 | 7.667 | 10.090 | 7.667 |
| ANC | 11.197 | 3.765     | 7.432  | 3.765 | 10.860 | 3.459      | 7.400 | 3.459 | 18.115 | 7.400 | 10.715 | 7.400 |
| DUB | 11.538 | 4.077     | 7.460  | 4.077 | 11.207 | 3.781      | 7.421 | 3.781 | 18.797 | 7.426 | 11.371 | 7.426 |
| ECU | 11.551 | 4.865     | 6.686  | 4.865 | 11.283 | 4.618      | 6.666 | 4.618 | 19.241 | 6.665 | 12.576 | 6.665 |
| IRH | 11.465 | 3.777     | 7.687  | 3.777 | 11.083 | 3.437      | 7.646 | 3.437 | 18.139 | 7.553 | 10.586 | 7.553 |
| IRL | 11.578 | 3.745     | 11.210 | 3.423 | 11.210 | 3.423      | 7.787 | 3.423 | 18.053 | 7.750 | 10.303 | 7.750 |
| KUT | 11.174 | 4.095     | 7.078  | 4.096 | 10.850 | 3.799      | 7.054 | 3.799 | 18.843 | 7.054 | 11.788 | 7.054 |
| LIB | 11.419 | 3.718     | 7.701  | 3.718 | 11.075 | 3.414      | 7.661 | 3.414 | 17.912 | 7.656 | 10.256 | 7.656 |
| NGB | 11.612 | 3.804     | 7.808  | 3.804 | 11.304 | 3.530      | 7.774 | 3.530 | 18.243 | 7.744 | 10.499 | 7.744 |
| NGE | 11.543 | 3.719     | 7.824  | 3.719 | 11.237 | 3.446      | 7.791 | 3.446 | 17.976 | 7.766 | 10.210 | 7.766 |
| DUK | 11.370 | 4.107     | 7.263  | 4.107 | 11.088 | 3.848      | 7.239 | 3.848 | 18.551 | 7.209 | 11.342 | 7.209 |
| SAH | 11.196 | 4.138     | 7.059  | 4.138 | 10.869 | 3.836      | 7.032 | 3.836 | 17.842 | 7.002 | 10.840 | 7.002 |
| SAL | 11.360 | 3.981     | 7.385  | 3.981 | 11.053 | 3.699      | 7.354 | 3.699 | 17.581 | 7.351 | 10.230 | 7.351 |
| SAM | 11.334 | 4.082     | 7.252  | 4.082 | 11.015 | 3.793      | 7.221 | 3.790 | 17.718 | 7.213 | 10.505 | 7.213 |
| VEN | 11.113 | 4.182     | 6.931  | 4.182 | 10.803 | 3.891      | 6.912 | 3.890 | 18.182 | 6.890 | 11.292 | 6.890 |
| AUS | 11.260 | 3.859     | 7.401  | 3.859 | 10.945 | 3.574      | 7.371 | 3.574 | 17.910 | 7.328 | 10.582 | 7.328 |
| CAM | 11.500 | 4.134     | 7.366  | 4.134 | 11.204 | 3.864      | 7.340 | 3.864 | 18.785 | 7.339 | 11.445 | 7.339 |
| САР | 12.308 | 4.353     | 7.955  | 4.353 | 12.017 | 4.113      | 7.904 | 4.113 | 18.422 | 7.656 | 10.765 | 7.656 |
| CHI | 11.674 | 4.376     | 7.297  | 4.376 | 11.435 | 4.152      | 7.283 | 4.152 | 19.035 | 7.283 | 11.752 | 7.283 |
| COL | 11.159 | 3.661     | 7.498  | 3.661 | 10.801 | 3.347      | 7.454 | 3.347 | 17.851 | 7.442 | 10.409 | 7.442 |
| EGS | 11.359 | 3.845     | 7.514  | 3.845 | 11.024 | 3.544      | 7.480 | 3.544 | 18.026 | 7.477 | 10.549 | 7.477 |
| INO | 11.693 | 4.214     | 7.479  | 4.214 | 11.427 | 3.967      | 7.460 | 3.967 | 19.339 | 7.435 | 11.903 | 7.435 |
| ТАР | 11.844 | 4.015     | 7.829  | 4.015 | 11.588 | 3.791      | 7.797 | 3.791 | 18.655 | 7.548 | 11.108 | 7.548 |
| MXI | 11.024 | 4.078     | 6.946  | 4.078 | 10.723 | 3.801      | 6.922 | 3.801 | 18.161 | 6.917 | 11.245 | 6.917 |
| MXM | 11.346 | 4.579     | 6.767  | 4.578 | 11.042 | 4.287      | 6.755 | 4.287 | 20.072 | 6.697 | 13.375 | 6.697 |
| NOE | 11.374 | 3.730     | 7.644  | 3.730 | 11.056 | 3.447      | 7.610 | 3.447 | 17.823 | 7.590 | 10.233 | 7.590 |
| OMN | 11.421 | 4.040     | 7.381  | 4.040 | 11.108 | 3.753      | 7.356 | 3.753 | 18.824 | 7.355 | 11.469 | 7.355 |
| RUS | 10.951 | 3.521     | 7.430  | 3.521 | 11.242 | 3.802      | 7.440 | 3.802 | 17.568 | 7.390 | 10.178 | 7.390 |
| BRT | 11.242 | 3.802     | 7.440  | 3.802 | 10.951 | 3.537      | 7.414 | 3.537 | 17.814 | 7.405 | 10.409 | 7.405 |

Stock: ESV

|     |        | N         | 11     |       |        | N         | 12     |       |        | N         | 13     |       |
|-----|--------|-----------|--------|-------|--------|-----------|--------|-------|--------|-----------|--------|-------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>CE</b> | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1       | r=0    | r=1   |
| ADM | 13.425 | 3.121     | 10.303 | 3.121 | 12.583 | 2.804     | 9.779  | 2.804 | 21.991 | 8.925     | 13.065 | 8.925 |
| ASB | 13.109 | 2.703     | 10.406 | 2.703 | 12.284 | 2.373     | 9.910  | 2.374 | 20.880 | 8.230     | 12.658 | 8.230 |
| ANC | 12.853 | 2.776     | 10.077 | 2.777 | 11.978 | 2.426     | 9.551  | 2.426 | 21.340 | 8.432     | 12.907 | 8.433 |
| DUB | 13.175 | 3.048     | 10.127 | 3.048 | 12.236 | 2.699     | 9.537  | 2.699 | 21.727 | 8.957     | 12.770 | 8.957 |
| ECU | 12.985 | 3.267     | 9.718  | 3.267 | 12.288 | 3.111     | 9.177  | 3.111 | 22.496 | 8.110     | 14.386 | 8.110 |
| IRH | 12.781 | 2.625     | 10.156 | 2.625 | 11.826 | 2.260     | 9.566  | 2.260 | 20.540 | 8.547     | 11.992 | 8.547 |
| IRL | 12.810 | 2.612     | 10.197 | 2.612 | 11.883 | 2.247     | 9.636  | 2.246 | 20.295 | 8.477     | 11.818 | 8.477 |
| KUT | 13.052 | 3.180     | 9.872  | 3.180 | 12.160 | 2.840     | 9.320  | 2.840 | 22.251 | 8.747     | 13.504 | 8.747 |
| LIB | 12.924 | 2.621     | 10.303 | 2.621 | 12.065 | 2.299     | 9.767  | 2.299 | 20.971 | 8.384     | 12.587 | 8.384 |
| NGB | 13.156 | 2.731     | 10.424 | 2.731 | 12.361 | 2.432     | 9.929  | 2.432 | 21.457 | 8.389     | 13.068 | 8.389 |
| NGE | 13.055 | 2.683     | 10.372 | 2.683 | 12.253 | 2.379     | 9.874  | 2.379 | 20.995 | 8.426     | 12.568 | 8.426 |
| DUK | 13.551 | 3.263     | 10.287 | 3.263 | 12.708 | 2.955     | 9.753  | 2.955 | 22.268 | 8.965     | 13.304 | 8.965 |
| SAH | 12.909 | 2.945     | 9.963  | 2.945 | 12.062 | 2.666     | 9.396  | 2.666 | 20.771 | 8.523     | 12.248 | 8.523 |
| SAL | 8.523  | 2.861     | 10.236 | 2.861 | 12.270 | 2.572     | 9.698  | 2.572 | 20.487 | 8.525     | 11.961 | 8.525 |
| SAM | 13.097 | 2.909     | 10.188 | 2.909 | 12.265 | 2.629     | 9.636  | 2.629 | 20.747 | 8.530     | 12.217 | 8.530 |
| VEN | 12.878 | 3.017     | 9.860  | 3.017 | 12.027 | 2.740     | 9.287  | 2.740 | 21.084 | 8.251     | 12.833 | 8.251 |
| AUS | 13.024 | 2.959     | 10.065 | 2.959 | 12.800 | 2.781     | 10.020 | 2.781 | 21.868 | 8.709     | 13.160 | 8.709 |
| CAM | 13.170 | 2.901     | 10.270 | 2.901 | 12.402 | 2.643     | 9.759  | 2.643 | 22.379 | 8.296     | 14.083 | 8.296 |
| САР | 13.886 | 2.972     | 10.914 | 2.972 | 13.201 | 2.763     | 10.439 | 2.763 | 21.556 | 8.240     | 13.316 | 8.240 |
| CHI | 13.591 | 3.358     | 10.233 | 3.358 | 12.872 | 3.131     | 9.741  | 3.131 | 22.690 | 8.908     | 13.781 | 8.908 |
| COL | 12.252 | 2.493     | 9.758  | 2.493 | 11.355 | 2.161     | 9.194  | 2.161 | 20.462 | 8.409     | 12.053 | 8.409 |
| EGS | 12.768 | 2.652     | 10.116 | 2.652 | 11.946 | 2.359     | 9.586  | 2.359 | 20.973 | 8.363     | 12.610 | 8.363 |
| INO | 13.287 | 3.126     | 10.161 | 3.126 | 12.529 | 2.886     | 9.643  | 2.886 | 22.834 | 8.997     | 13.837 | 8.997 |
| ТАР | 13.534 | 2.989     | 10.546 | 2.989 | 12.801 | 2.727     | 10.074 | 2.727 | 22.285 | 8.697     | 13.589 | 8.697 |
| MXI | 12.698 | 2.915     | 9.782  | 2.915 | 11.930 | 2.670     | 9.259  | 2.670 | 21.476 | 8.294     | 13.182 | 8.294 |
| MXM | 12.646 | 3.207     | 9.439  | 3.207 | 11.831 | 2.993     | 8.838  | 8.838 | 23.012 | 8.369     | 14.642 | 8.369 |
| NOE | 13.004 | 2.704     | 10.301 | 2.704 | 12.190 | 2.387     | 9.802  | 2.387 | 20.947 | 8.286     | 12.661 | 8.286 |
| OMN | 13.298 | 3.138     | 10.160 | 3.138 | 12.397 | 2.786     | 9.611  | 2.786 | 22.119 | 8.970     | 13.149 | 8.970 |
| RUS | 12.199 | 2.370     | 9.830  | 2.370 | 11.362 | 2.120     | 9.242  | 2.120 | 20.199 | 7.820     | 12.380 | 7.820 |
| BRT | 12.859 | 2.797     | 10.062 | 2.797 | 12.058 | 2.492     | 9.566  | 2.492 | 20.653 | 8.248     | 12.405 | 8.248 |

Stock: RIG

|     |        | N         | 11    |       |        | N          | 12    |       |        | Ν          | 13     |       |
|-----|--------|-----------|-------|-------|--------|------------|-------|-------|--------|------------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | _EIG  | TRA    | <b>\CE</b> | MAX   | _EIG  | TRA    | <b>\CE</b> | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1        | r=0   | r=1   | r=0    | r≤1        | r=0    | r=1   |
| ADM | 10.767 | 2.606     | 8.161 | 2.606 | 10.413 | 2.464      | 7.949 | 2.464 | 27.221 | 5.615      | 21.606 | 5.615 |
| ASB | 10.479 | 2.226     | 8.252 | 2.226 | 10.107 | 2.030      | 8.078 | 2.030 | 24.854 | 5.274      | 19.580 | 5.274 |
| ANC | 10.599 | 2.271     | 8.328 | 2.271 | 10.200 | 2.084      | 8.116 | 2.084 | 26.649 | 5.256      | 21.393 | 5.256 |
| DUB | 11.055 | 2.560     | 8.495 | 2.560 | 10.638 | 2.414      | 8.223 | 2.414 | 29.020 | 5.666      | 23.354 | 5.666 |
| ECU | 12.136 | 2.378     | 9.758 | 2.378 | 11.828 | 2.293      | 9.535 | 2.293 | 29.230 | 5.013      | 24.217 | 5.013 |
| IRH | 10.810 | 2.235     | 8.575 | 2.235 | 10.349 | 2.043      | 8.307 | 2.043 | 27.542 | 5.461      | 22.081 | 5.461 |
| IRL | 10.530 | 2.227     | 8.303 | 2.227 | 10.086 | 2.029      | 8.057 | 2.029 | 26.069 | 5.459      | 20.610 | 5.459 |
| KUT | 10.931 | 2.583     | 8.348 | 2.583 | 10.530 | 2.438      | 8.092 | 2.438 | 29.005 | 5.431      | 23.574 | 5.431 |
| LIB | 10.562 | 2.199     | 8.363 | 2.199 | 10.153 | 2.009      | 8.144 | 2.009 | 26.165 | 5.350      | 20.814 | 5.350 |
| NGB | 10.695 | 2.246     | 8.448 | 2.246 | 10.335 | 2.067      | 8.268 | 2.067 | 26.329 | 5.358      | 20.971 | 5.358 |
| NGE | 10.481 | 2.233     | 8.248 | 2.233 | 10.122 | 2.054      | 8.068 | 2.054 | 25.488 | 5.393      | 20.095 | 5.393 |
| DUK | 11.046 | 2.668     | 8.379 | 2.668 | 10.700 | 2.536      | 8.164 | 2.536 | 27.845 | 5.604      | 22.241 | 5.604 |
| SAH | 11.794 | 2.337     | 9.457 | 2.337 | 11.407 | 2.192      | 9.216 | 2.192 | 28.999 | 5.330      | 23.670 | 5.329 |
| SAL | 11.315 | 2.327     | 8.988 | 2.327 | 10.946 | 2.171      | 8.775 | 2.171 | 26.696 | 5.416      | 21.281 | 5.416 |
| SAM | 11.636 | 2.329     | 9.306 | 2.329 | 11.259 | 2.177      | 9.081 | 2.177 | 27.953 | 5.370      | 22.584 | 5.370 |
| VEN | 11.103 | 2.314     | 8.789 | 2.314 | 10.742 | 2.175      | 8.566 | 2.175 | 26.574 | 5.192      | 21.383 | 5.192 |
| AUS | 10.818 | 2.604     | 8.214 | 2.604 | 10.449 | 2.436      | 8.013 | 2.436 | 25.220 | 5.608      | 19.612 | 5.608 |
| CAM | 11.247 | 2.261     | 8.986 | 2.261 | 10.904 | 2.097      | 8.807 | 2.097 | 27.845 | 5.123      | 22.722 | 5.123 |
| САР | 10.649 | 2.401     | 8.248 | 2.401 | 10.315 | 2.255      | 8.060 | 2.255 | 21.648 | 5.330      | 16.318 | 5.330 |
| CHI | 11.196 | 2.674     | 8.522 | 2.674 | 10.919 | 2.559      | 8.360 | 2.559 | 26.548 | 5.424      | 21.124 | 5.424 |
| COL | 10.472 | 2.125     | 8.346 | 2.125 | 10.049 | 1.955      | 8.095 | 1.955 | 27.833 | 5.386      | 22.447 | 5.386 |
| EGS | 10.959 | 2.214     | 8.745 | 2.214 | 10.569 | 2.046      | 8.523 | 2.046 | 27.313 | 5.342      | 21.971 | 5.342 |
| INO | 11.152 | 2.622     | 8.530 | 2.622 | 10.841 | 2.501      | 8.340 | 2.501 | 29.217 | 5.586      | 23.631 | 5.586 |
| ТАР | 11.027 | 2.549     | 8.478 | 2.549 | 10.735 | 2.412      | 8.323 | 2.412 | 26.729 | 5.614      | 21.115 | 5.614 |
| MXI | 10.710 | 2.259     | 8.450 | 2.259 | 10.360 | 2.121      | 8.240 | 2.121 | 26.375 | 5.123      | 21.252 | 5.123 |
| MXM | 11.652 | 2.552     | 9.100 | 2.552 | 11.301 | 2.458      | 8.843 | 2.458 | 31.543 | 5.292      | 26.251 | 5.292 |
| NOE | 10.571 | 2.213     | 8.358 | 2.213 | 10.202 | 2.027      | 8.174 | 2.028 | 25.408 | 5.304      | 20.104 | 5.304 |
| OMN | 10.999 | 2.626     | 8.372 | 2.626 | 10.607 | 2.478      | 8.129 | 2.478 | 28.689 | 5.638      | 23.051 | 5.638 |
| RUS | 10.722 | 1.966     | 8.756 | 1.966 | 10.407 | 1.837      | 8.570 | 1.837 | 27.300 | 5.113      | 22.187 | 5.113 |
| BRT | 10.397 | 2.323     | 8.073 | 2.323 | 10.056 | 2.159      | 7.897 | 2.159 | 24.620 | 5.277      | 19.343 | 5.277 |

Stock: ATW

|     |        | N          | 11     |       |        | N          | 12     |       |        | N      | 13     |        |
|-----|--------|------------|--------|-------|--------|------------|--------|-------|--------|--------|--------|--------|
|     | TRA    | <b>NCE</b> | MAX    | EIG   | TRA    | <b>NCE</b> | MAX    | _EIG  | TRA    | ACE    | MAX    | _EIG   |
| Oil | r=0    | r≤1        | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1   | r=0    | r≤1    | r=0    | r=1    |
| ADM | 17.808 | 3.436      | 14.372 | 3.436 | 17.295 | 3.265      | 14.030 | 3.265 | 37.574 | 10.616 | 26.958 | 10.616 |
| ASB | 17.546 | 3.043      | 14.504 | 3.043 | 16.985 | 2.850      | 14.135 | 2.850 | 36.448 | 10.047 | 26.401 | 10.047 |
| ANC | 17.546 | 3.043      | 14.504 | 3.043 | 16.985 | 2.850      | 14.135 | 2.850 | 36.448 | 10.047 | 26.401 | 10.047 |
| DUB | 17.314 | 3.106      | 14.208 | 3.106 | 16.703 | 2.880      | 13.823 | 2.880 | 35.783 | 10.706 | 25.077 | 10.706 |
| ECU | 17.349 | 4.160      | 13.189 | 4.160 | 16.882 | 4.007      | 12.875 | 4.007 | 34.714 | 11.027 | 23.687 | 11.027 |
| IRH | 17.713 | 3.039      | 14.674 | 3.039 | 17.062 | 2.804      | 14.257 | 2.804 | 34.936 | 10.636 | 24.300 | 10.636 |
| IRL | 17.815 | 3.001      | 14.814 | 3.001 | 17.184 | 2.781      | 14.403 | 2.781 | 35.445 | 10.433 | 25.012 | 10.433 |
| KUT | 17.093 | 3.443      | 13.650 | 3.443 | 16.530 | 3.228      | 13.302 | 3.228 | 35.551 | 10.871 | 24.680 | 10.871 |
| LIB | 17.747 | 3.065      | 14.681 | 3.065 | 17.159 | 2.864      | 14.295 | 2.864 | 36.412 | 10.298 | 26.114 | 10.298 |
| NGB | 17.799 | 3.126      | 14.673 | 3.126 | 17.235 | 2.932      | 14.303 | 2.932 | 36.829 | 10.543 | 26.286 | 10.543 |
| NGE | 17.910 | 3.076      | 14.833 | 3.076 | 17.345 | 2.888      | 14.457 | 2.888 | 36.688 | 10.532 | 26.156 | 10.532 |
| DUK | 17.529 | 3.509      | 14.020 | 3.509 | 17.008 | 3.326      | 13.682 | 3.326 | 36.904 | 10.697 | 26.206 | 10.697 |
| SAH | 17.159 | 3.386      | 13.773 | 3.386 | 16.583 | 3.175      | 13.408 | 3.175 | 32.812 | 10.683 | 22.129 | 10.683 |
| SAL | 17.659 | 3.286      | 14.373 | 3.286 | 17.105 | 3.100      | 14.004 | 3.100 | 34.546 | 10.369 | 24.177 | 10.369 |
| SAM | 17.487 | 3.353      | 14.134 | 3.353 | 16.923 | 3.158      | 13.765 | 3.158 | 33.852 | 10.516 | 23.336 | 10.516 |
| VEN | 16.905 | 3.477      | 13.428 | 3.477 | 16.357 | 3.287      | 13.070 | 3.287 | 34.534 | 10.235 | 24.299 | 10.235 |
| AUS | 17.653 | 3.323      | 14.330 | 3.323 | 17.085 | 3.116      | 13.968 | 3.116 | 36.825 | 10.481 | 26.344 | 10.481 |
| CAM | 17.089 | 3.377      | 13.712 | 3.377 | 16.557 | 3.181      | 13.376 | 3.181 | 35.965 | 10.535 | 25.430 | 10.535 |
| САР | 17.614 | 3.467      | 14.147 | 3.467 | 17.134 | 3.316      | 13.817 | 3.316 | 35.984 | 9.369  | 26.615 | 9.368  |
| CHI | 17.812 | 3.727      | 14.084 | 3.727 | 17.351 | 3.579      | 13.772 | 3.579 | 37.623 | 10.959 | 26.664 | 10.959 |
| COL | 17.780 | 3.053      | 14.727 | 3.053 | 17.182 | 2.855      | 14.327 | 2.856 | 35.722 | 10.768 | 24.953 | 10.768 |
| EGS | 17.988 | 3.246      | 14.742 | 3.246 | 17.433 | 3.062      | 14.371 | 3.062 | 36.608 | 10.538 | 26.070 | 10.538 |
| INO | 17.908 | 3.525      | 14.382 | 3.525 | 17.406 | 3.363      | 14.043 | 3.363 | 37.401 | 11.335 | 26.066 | 11.335 |
| ТАР | 17.736 | 3.397      | 14.339 | 3.397 | 17.286 | 3.256      | 14.030 | 3.256 | 38.901 | 10.094 | 28.808 | 10.094 |
| MXI | 17.291 | 3.509      | 13.782 | 3.509 | 16.774 | 3.332      | 13.442 | 3.331 | 35.633 | 10.709 | 24.924 | 10.709 |
| MXM | 16.611 | 3.771      | 12.839 | 3.771 | 16.093 | 3.569      | 12.524 | 3.569 | 34.232 | 11.046 | 23.187 | 11.046 |
| NOE | 17.762 | 3.116      | 14.646 | 3.116 | 17.199 | 2.924      | 14.274 | 2.924 | 36.803 | 10.371 | 26.431 | 10.371 |
| OMN | 17.404 | 3.352      | 14.053 | 3.352 | 16.833 | 3.140      | 13.693 | 3.140 | 36.139 | 10.866 | 25.273 | 10.866 |
| RUS | 17.505 | 2.973      | 14.531 | 2.973 | 17.024 | 2.846      | 14.179 | 2.846 | 36.430 | 10.084 | 26.346 | 10.084 |
| BRT | 17.643 | 3.237      | 14.406 | 3.237 | 17.116 | 3.066      | 14.050 | 3.066 | 37.108 | 10.294 | 26.813 | 10.294 |

Stock: PKD

|     |       | N     | 11    |       |       | N     | 12    |       |        | N     | 13     |       |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------|
|     | TRA   | ACE   | MAX   | EIG   | TRA   | ACE   | MAX   | _EIG  | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0   | r≤1   | r=0   | r=1   | r=0   | r≤1   | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 9.514 | 3.171 | 6.343 | 3.171 | 8.696 | 2.369 | 6.327 | 2.369 | 17.214 | 6.060 | 11.154 | 6.060 |
| ASB | 8.990 | 2.908 | 6.082 | 2.908 | 8.180 | 2.135 | 6.045 | 2.135 | 16.017 | 5.995 | 10.022 | 5.994 |
| ANC | 9.059 | 2.920 | 6.138 | 2.920 | 8.205 | 2.096 | 6.110 | 2.096 | 16.604 | 5.956 | 10.648 | 5.956 |
| DUB | 9.378 | 3.092 | 6.286 | 3.092 | 8.467 | 2.201 | 6.267 | 2.201 | 16.882 | 5.923 | 10.958 | 5.923 |
| ECU | 9.476 | 3.440 | 6.035 | 3.440 | 8.747 | 2.723 | 6.024 | 2.723 | 17.744 | 5.561 | 12.182 | 5.561 |
| IRH | 8.992 | 2.810 | 6.182 | 2.810 | 8.047 | 1.908 | 6.139 | 1.908 | 15.679 | 5.923 | 9.756  | 5.923 |
| IRL | 8.982 | 2.804 | 6.177 | 2.804 | 8.060 | 1.926 | 6.134 | 1.926 | 15.490 | 5.957 | 9.533  | 5.957 |
| KUT | 9.420 | 3.190 | 6.230 | 3.190 | 8.550 | 2.331 | 6.219 | 2.331 | 17.509 | 5.856 | 11.653 | 5.856 |
| LIB | 8.888 | 2.832 | 6.057 | 2.832 | 8.020 | 2.010 | 6.015 | 2.010 | 15.840 | 5.916 | 9.924  | 5.916 |
| NGB | 9.020 | 2.958 | 6.067 | 2.958 | 8.230 | 2.198 | 6.032 | 2.198 | 16.359 | 5.974 | 10.385 | 5.974 |
| NGE | 8.964 | 2.893 | 6.072 | 2.893 | 8.163 | 2.128 | 6.034 | 2.128 | 15.955 | 5.964 | 9.991  | 5.964 |
| DUK | 9.617 | 3.306 | 6.311 | 3.306 | 8.813 | 2.517 | 6.296 | 2.517 | 17.670 | 6.050 | 11.620 | 6.050 |
| SAH | 9.105 | 3.031 | 6.073 | 3.031 | 8.250 | 2.215 | 6.035 | 2.215 | 15.975 | 5.739 | 10.235 | 5.739 |
| SAL | 9.127 | 2.997 | 6.131 | 2.997 | 8.302 | 2.211 | 6.091 | 2.211 | 15.722 | 5.910 | 9.812  | 5.910 |
| SAM | 9.129 | 3.028 | 6.101 | 3.028 | 8.290 | 2.229 | 6.061 | 2.229 | 15.871 | 5.843 | 10.027 | 5.843 |
| VEN | 9.422 | 3.361 | 6.061 | 3.361 | 8.615 | 2.572 | 6.043 | 2.572 | 16.841 | 5.823 | 11.018 | 5.823 |
| AUS | 9.606 | 3.205 | 6.401 | 3.205 | 8.765 | 2.385 | 6.380 | 2.386 | 16.966 | 6.178 | 10.788 | 6.177 |
| CAM | 9.103 | 3.133 | 5.970 | 3.133 | 8.332 | 2.393 | 5.939 | 2.393 | 17.160 | 5.830 | 11.330 | 5.830 |
| САР | 9.523 | 3.365 | 6.158 | 3.365 | 8.818 | 2.688 | 6.131 | 2.688 | 16.351 | 6.076 | 10.275 | 6.076 |
| СНІ | 9.667 | 3.385 | 6.282 | 3.385 | 8.974 | 2.707 | 6.267 | 2.707 | 17.646 | 5.969 | 11.677 | 5.969 |
| COL | 8.723 | 2.753 | 5.970 | 2.753 | 7.857 | 1.922 | 5.934 | 1.922 | 15.841 | 5.810 | 10.031 | 5.810 |
| EGS | 8.843 | 2.837 | 6.006 | 2.837 | 8.011 | 2.052 | 5.959 | 2.052 | 15.984 | 5.839 | 10.145 | 5.839 |
| INO | 9.413 | 3.190 | 6.224 | 3.190 | 8.667 | 2.466 | 6.200 | 2.466 | 17.448 | 5.919 | 11.530 | 5.919 |
| ТАР | 9.246 | 3.103 | 6.143 | 3.103 | 8.542 | 2.437 | 6.104 | 2.437 | 17.392 | 6.041 | 11.352 | 6.041 |
| MXI | 9.197 | 3.179 | 6.018 | 3.179 | 8.426 | 2.427 | 5.970 | 2.427 | 16.839 | 5.747 | 11.092 | 5.747 |
| MXM | 9.623 | 3.264 | 6.359 | 3.264 | 8.813 | 2.465 | 6.348 | 2.465 | 18.377 | 5.600 | 12.777 | 5.600 |
| NOE | 8.968 | 2.916 | 6.052 | 2.916 | 8.173 | 2.160 | 6.014 | 2.160 | 16.107 | 5.958 | 10.149 | 5.958 |
| OMN | 9.518 | 3.147 | 6.371 | 3.147 | 8.657 | 2.301 | 6.355 | 2.301 | 17.449 | 6.046 | 11.403 | 6.046 |
| RUS | 8.237 | 2.625 | 5.613 | 2.625 | 7.453 | 1.933 | 5.520 | 1.933 | 15.522 | 5.483 | 10.039 | 5.483 |
| BRT | 9.033 | 3.003 | 6.031 | 3.003 | 8.242 | 2.238 | 6.004 | 2.238 | 16.097 | 5.863 | 10.234 | 5.863 |

Stock: PTEN

|     |        | N         | 11     |       |        | N         | 12     |       |        | N          | 13     |       |
|-----|--------|-----------|--------|-------|--------|-----------|--------|-------|--------|------------|--------|-------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>CE</b> | MAX    | _EIG  | TRA    | <b>NCE</b> | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1   |
| ADM | 12.343 | 2.446     | 9.897  | 2.446 | 11.791 | 1.935     | 9.856  | 1.935 | 18.561 | 7.576      | 10.985 | 7.576 |
| ASB | 11.862 | 2.293     | 9.570  | 2.292 | 11.322 | 1.804     | 9.518  | 1.804 | 17.640 | 7.767      | 9.874  | 7.766 |
| ANC | 11.901 | 2.301     | 9.601  | 2.301 | 11.325 | 1.763     | 9.562  | 1.763 | 18.226 | 7.921      | 10.305 | 7.921 |
| DUB | 12.293 | 2.406     | 9.888  | 2.406 | 11.684 | 1.837     | 9.846  | 1.837 | 18.596 | 7.476      | 11.121 | 7.476 |
| ECU | 12.510 | 2.859     | 9.651  | 2.859 | 12.033 | 2.407     | 9.627  | 2.407 | 19.888 | 8.123      | 11.766 | 8.123 |
| IRH | 11.962 | 2.229     | 9.733  | 2.229 | 11.331 | 1.647     | 9.684  | 1.647 | 17.793 | 7.450      | 10.340 | 7.450 |
| IRL | 11.919 | 2.226     | 9.693  | 2.226 | 11.311 | 1.669     | 9.641  | 1.669 | 17.610 | 7.451      | 10.159 | 7.451 |
| KUT | 12.385 | 2.482     | 9.903  | 2.482 | 11.801 | 1.932     | 9.869  | 1.932 | 19.274 | 7.790      | 11.485 | 7.790 |
| LIB | 11.856 | 2.261     | 9.595  | 2.261 | 11.280 | 1.740     | 9.540  | 1.740 | 17.749 | 7.753      | 9.995  | 7.753 |
| NGB | 11.937 | 2.332     | 9.605  | 2.332 | 11.405 | 1.851     | 9.554  | 1.851 | 17.917 | 7.887      | 10.030 | 7.887 |
| NGE | 11.882 | 2.289     | 9.593  | 2.289 | 11.353 | 1.813     | 9.540  | 1.813 | 17.702 | 7.754      | 9.948  | 7.754 |
| DUK | 12.561 | 2.552     | 10.010 | 2.552 | 12.023 | 2.053     | 9.970  | 2.053 | 18.983 | 7.668      | 11.314 | 7.668 |
| SAH | 12.177 | 2.453     | 9.724  | 2.453 | 11.617 | 1.928     | 9.689  | 1.927 | 18.223 | 7.411      | 10.812 | 7.411 |
| SAL | 12.115 | 2.394     | 9.721  | 2.394 | 11.572 | 1.895     | 9.677  | 1.895 | 17.769 | 7.364      | 10.406 | 7.364 |
| SAM | 12.147 | 2.431     | 9.715  | 2.431 | 11.595 | 1.921     | 9.674  | 1.921 | 17.958 | 7.407      | 10.551 | 7.407 |
| VEN | 12.306 | 2.659     | 9.647  | 2.659 | 11.767 | 2.159     | 9.607  | 2.159 | 18.801 | 8.148      | 10.653 | 8.148 |
| AUS | 12.462 | 2.473     | 9.989  | 2.473 | 11.888 | 1.944     | 9.945  | 1.944 | 18.456 | 7.724      | 10.731 | 7.724 |
| CAM | 12.055 | 2.508     | 9.547  | 2.508 | 11.544 | 2.038     | 9.506  | 2.038 | 18.767 | 8.352      | 10.415 | 8.352 |
| САР | 12.236 | 2.626     | 9.610  | 2.626 | 11.734 | 2.170     | 9.564  | 2.170 | 18.016 | 8.166      | 9.834  | 8.166 |
| CHI | 12.611 | 2.621     | 9.989  | 2.621 | 12.131 | 2.175     | 9.956  | 2.175 | 19.283 | 7.950      | 11.333 | 7.950 |
| COL | 11.734 | 2.180     | 9.555  | 2.180 | 11.139 | 1.633     | 9.507  | 1.633 | 17.906 | 7.637      | 10.269 | 7.637 |
| EGS | 11.844 | 2.314     | 9.530  | 2.314 | 11.294 | 1.817     | 9.477  | 1.817 | 17.979 | 7.938      | 10.040 | 7.938 |
| INO | 12.456 | 2.473     | 9.983  | 2.473 | 11.942 | 2.000     | 9.942  | 2.000 | 19.166 | 7.791      | 11.375 | 7.791 |
| ТАР | 12.455 | 2.434     | 10.022 | 2.434 | 11.966 | 2.002     | 9.964  | 2.002 | 18.770 | 7.970      | 10.800 | 7.970 |
| MXI | 12.125 | 2.562     | 9.563  | 2.562 | 11.616 | 2.093     | 9.523  | 2.093 | 18.962 | 8.260      | 10.702 | 8.260 |
| MXM | 12.651 | 2.710     | 9.941  | 2.710 | 12.121 | 2.211     | 9.910  | 2.211 | 20.573 | 8.068      | 12.505 | 8.068 |
| NOE | 11.883 | 2.318     | 9.566  | 2.318 | 11.345 | 1.831     | 9.514  | 1.831 | 17.815 | 7.898      | 9.917  | 7.898 |
| OMN | 12.477 | 2.436     | 10.041 | 2.436 | 11.889 | 1.888     | 10.001 | 1.888 | 18.972 | 7.616      | 11.356 | 7.616 |
| RUS | 11.861 | 2.071     | 9.791  | 2.071 | 11.350 | 1.632     | 9.718  | 1.632 | 17.977 | 7.991      | 9.986  | 7.991 |
| BRT | 11.883 | 2.358     | 9.524  | 2.358 | 11.362 | 1.880     | 9.482  | 1.880 | 17.890 | 7.813      | 10.076 | 7.813 |

Stock: PDE

|     |        | N         | 11     |       |        | N          | 12     |       |        | N      | 13     |        |
|-----|--------|-----------|--------|-------|--------|------------|--------|-------|--------|--------|--------|--------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>NCE</b> | MAX    | EIG   | TRA    | ACE    | MAX    | EIG    |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1   | r=0    | r≤1    | r=0    | r=1    |
| ADM | 15.681 | 3.153     | 12.528 | 3.153 | 15.350 | 2.858      | 12.493 | 2.858 | 24.960 | 10.938 | 14.022 | 10.938 |
| ASB | 15.902 | 2.846     | 13.057 | 2.846 | 15.567 | 2.549      | 13.018 | 2.549 | 25.040 | 9.556  | 15.484 | 9.556  |
| ANC | 15.586 | 2.917     | 12.670 | 2.917 | 15.221 | 2.596      | 12.625 | 2.596 | 25.449 | 9.975  | 15.475 | 9.975  |
| DUB | 15.571 | 3.120     | 12.451 | 3.120 | 15.180 | 2.782      | 12.397 | 2.782 | 25.008 | 11.060 | 13.948 | 11.060 |
| ECU | 15.862 | 3.765     | 12.097 | 3.765 | 15.583 | 3.540      | 12.042 | 3.540 | 26.585 | 10.123 | 16.462 | 10.123 |
| IRH | 15.887 | 2.848     | 13.039 | 2.848 | 15.468 | 2.500      | 12.968 | 2.500 | 25.058 | 10.151 | 14.908 | 10.151 |
| IRL | 15.847 | 2.802     | 13.045 | 2.802 | 15.446 | 2.464      | 12.982 | 2.464 | 24.721 | 9.984  | 14.737 | 9.984  |
| KUT | 15.273 | 3.239     | 12.034 | 3.239 | 14.903 | 2.912      | 11.991 | 2.912 | 25.335 | 10.969 | 14.366 | 10.969 |
| LIB | 16.132 | 2.830     | 13.302 | 2.830 | 15.762 | 2.517      | 13.245 | 2.517 | 25.775 | 9.749  | 16.025 | 9.749  |
| NGB | 16.029 | 2.921     | 13.108 | 2.921 | 15.704 | 2.634      | 13.070 | 2.634 | 25.603 | 9.834  | 15.769 | 9.834  |
| NGE | 15.775 | 2.842     | 12.933 | 2.842 | 15.449 | 2.554      | 12.895 | 2.554 | 24.874 | 9.711  | 15.163 | 9.711  |
| DUK | 15.814 | 3.306     | 12.508 | 3.306 | 15.491 | 3.019      | 12.472 | 3.019 | 25.351 | 11.123 | 14.228 | 11.123 |
| SAH | 15.423 | 3.180     | 12.243 | 3.180 | 15.068 | 2.880      | 12.189 | 2.880 | 24.292 | 10.233 | 14.059 | 10.233 |
| SAL | 15.750 | 3.051     | 12.699 | 3.051 | 15.415 | 2.762      | 12.652 | 2.762 | 24.226 | 9.934  | 14.291 | 9.935  |
| SAM | 15.677 | 3.124     | 12.552 | 3.124 | 15.332 | 2.831      | 12.502 | 2.831 | 24.364 | 10.066 | 14.298 | 10.066 |
| VEN | 15.062 | 3.219     | 11.844 | 3.219 | 14.731 | 2.932      | 11.799 | 2.932 | 24.384 | 9.772  | 14.612 | 9.772  |
| AUS | 15.957 | 3.148     | 12.808 | 3.148 | 15.610 | 2.841      | 12.769 | 2.841 | 25.093 | 10.581 | 14.513 | 10.581 |
| CAM | 16.074 | 3.221     | 12.853 | 3.221 | 15.769 | 2.954      | 12.814 | 2.954 | 26.653 | 10.008 | 16.645 | 10.008 |
| CAP | 16.119 | 3.276     | 12.844 | 3.276 | 15.819 | 3.011      | 12.808 | 3.011 | 24.400 | 9.591  | 14.809 | 9.591  |
| CHI | 15.834 | 3.514     | 12.320 | 3.514 | 15.578 | 3.284      | 12.295 | 3.284 | 25.552 | 11.112 | 14.441 | 11.112 |
| COL | 15.373 | 2.722     | 12.651 | 2.722 | 14.986 | 2.399      | 12.587 | 2.399 | 24.988 | 9.916  | 15.072 | 9.916  |
| EGS | 16.081 | 2.937     | 13.144 | 2.937 | 15.727 | 2.640      | 13.087 | 2.640 | 25.740 | 9.906  | 15.834 | 9.906  |
| INO | 15.951 | 3.347     | 12.605 | 3.347 | 15.669 | 3.100      | 12.569 | 3.100 | 26.299 | 11.306 | 14.993 | 11.306 |
| ТАР | 16.033 | 3.091     | 12.941 | 3.091 | 15.759 | 2.849      | 12.910 | 2.849 | 25.802 | 10.131 | 15.671 | 10.131 |
| MXI | 15.216 | 3.182     | 12.033 | 3.182 | 14.901 | 2.911      | 11.990 | 2.911 | 25.124 | 9.889  | 15.235 | 9.889  |
| MXM | 15.092 | 3.646     | 11.446 | 3.646 | 14.767 | 3.375      | 11.392 | 3.375 | 26.244 | 10.749 | 15.495 | 10.749 |
| NOE | 16.034 | 2.887     | 13.147 | 2.887 | 15.700 | 2.596      | 13.105 | 2.596 | 25.497 | 9.674  | 15.824 | 9.674  |
| OMN | 15.809 | 3.186     | 12.623 | 3.186 | 15.444 | 2.865      | 12.579 | 2.865 | 25.526 | 11.231 | 14.295 | 11.231 |
| RUS | 14.916 | 2.525     | 12.391 | 2.525 | 14.586 | 2.310      | 12.276 | 2.310 | 24.642 | 8.627  | 16.015 | 8.627  |
| BRT | 15.235 | 2.925     | 12.310 | 2.925 | 14.920 | 2.643      | 12.277 | 2.643 | 24.300 | 9.560  | 14.739 | 9.561  |

Stock: BHI

|     |        | N         | 11    |       |        | N          | 12    |       |        | N     | 13     |       |
|-----|--------|-----------|-------|-------|--------|------------|-------|-------|--------|-------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | _EIG  | TRA    | <b>\CE</b> | MAX   | _EIG  | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1        | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 10.066 | 3.406     | 6.659 | 3.406 | 9.627  | 3.158      | 6.469 | 3.157 | 19.482 | 6.299 | 13.183 | 6.299 |
| ASB | 10.190 | 3.007     | 7.183 | 3.007 | 9.746  | 2.768      | 6.977 | 2.768 | 19.167 | 6.184 | 12.983 | 6.184 |
| ANC | 9.464  | 3.027     | 6.438 | 3.027 | 8.994  | 2.748      | 6.247 | 2.748 | 18.474 | 5.870 | 12.604 | 5.870 |
| DUB | 9.770  | 3.392     | 6.378 | 3.392 | 9.263  | 3.097      | 6.167 | 3.097 | 18.958 | 6.112 | 12.846 | 6.112 |
| ECU | 9.584  | 3.930     | 5.654 | 3.930 | 9.215  | 3.802      | 5.413 | 3.802 | 18.711 | 5.114 | 13.596 | 5.114 |
| IRH | 10.005 | 3.133     | 6.872 | 3.133 | 9.476  | 2.852      | 6.624 | 2.852 | 18.492 | 6.346 | 12.146 | 6.346 |
| IRL | 10.185 | 3.086     | 7.099 | 3.086 | 9.674  | 2.821      | 6.852 | 2.821 | 18.642 | 6.451 | 12.191 | 6.451 |
| KUT | 9.448  | 3.440     | 6.001 | 3.440 | 8.971  | 3.139      | 5.832 | 3.139 | 19.007 | 5.793 | 13.215 | 5.793 |
| LIB | 10.146 | 3.078     | 7.068 | 3.078 | 9.663  | 2.828      | 6.835 | 2.828 | 19.028 | 6.283 | 12.745 | 6.283 |
| NGB | 10.386 | 3.085     | 7.301 | 3.085 | 9.959  | 2.863      | 7.096 | 2.863 | 19.726 | 6.239 | 13.487 | 6.239 |
| NGE | 10.395 | 3.056     | 7.340 | 3.056 | 9.967  | 2.833      | 7.134 | 2.833 | 19.519 | 6.325 | 13.195 | 6.325 |
| DUK | 10.246 | 3.551     | 6.695 | 3.551 | 9.818  | 3.320      | 6.497 | 3.320 | 20.005 | 6.271 | 13.734 | 6.271 |
| SAH | 10.018 | 3.515     | 6.503 | 3.515 | 10.288 | 3.331      | 6.957 | 3.331 | 9.855  | 3.118 | 6.737  | 3.118 |
| SAL | 10.288 | 3.331     | 6.957 | 3.331 | 9.855  | 3.118      | 6.737 | 3.118 | 18.436 | 6.274 | 12.161 | 6.274 |
| SAM | 10.209 | 3.422     | 6.788 | 3.422 | 9.771  | 3.211      | 6.561 | 3.211 | 18.450 | 6.158 | 12.293 | 6.158 |
| VEN | 9.750  | 3.494     | 6.256 | 3.494 | 9.320  | 3.296      | 6.025 | 3.296 | 18.556 | 5.711 | 12.846 | 5.711 |
| AUS | 10.158 | 3.310     | 6.848 | 3.310 | 9.701  | 3.035      | 6.667 | 3.035 | 19.554 | 6.374 | 13.180 | 6.374 |
| CAM | 10.303 | 3.295     | 7.008 | 3.295 | 9.909  | 3.114      | 6.795 | 3.114 | 20.112 | 5.823 | 14.289 | 5.823 |
| САР | 10.957 | 3.472     | 7.485 | 3.472 | 10.582 | 3.302      | 7.280 | 3.302 | 19.401 | 6.222 | 13.178 | 6.222 |
| CHI | 10.362 | 3.600     | 6.762 | 3.600 | 10.027 | 3.431      | 6.596 | 3.431 | 20.223 | 6.007 | 14.215 | 6.007 |
| COL | 9.646  | 3.004     | 6.641 | 3.004 | 9.160  | 2.747      | 6.412 | 2.747 | 18.249 | 6.083 | 12.167 | 6.083 |
| EGS | 10.170 | 3.224     | 6.946 | 3.224 | 9.710  | 3.004      | 6.706 | 3.004 | 19.006 | 6.167 | 12.839 | 6.167 |
| INO | 10.377 | 3.529     | 6.848 | 3.529 | 10.005 | 3.344      | 6.661 | 3.344 | 20.503 | 6.221 | 14.282 | 6.221 |
| ТАР | 10.982 | 3.438     | 7.545 | 3.438 | 10.624 | 3.268      | 7.355 | 3.268 | 21.151 | 6.547 | 14.605 | 6.547 |
| MXI | 9.853  | 3.455     | 6.397 | 3.455 | 9.443  | 3.271      | 6.172 | 3.271 | 18.972 | 5.747 | 13.225 | 5.747 |
| MXM | 9.762  | 4.084     | 5.677 | 4.084 | 9.322  | 3.856      | 5.466 | 3.856 | 20.136 | 5.455 | 14.681 | 5.455 |
| NOE | 10.314 | 3.074     | 7.241 | 3.074 | 9.880  | 2.851      | 7.029 | 2.851 | 19.326 | 6.197 | 13.129 | 6.197 |
| OMN | 9.827  | 3.399     | 6.428 | 3.399 | 9.616  | 2.770      | 6.846 | 2.770 | 19.317 | 6.180 | 13.137 | 6.180 |
| RUS | 9.232  | 2.647     | 6.584 | 2.647 | 10.120 | 3.133      | 6.987 | 3.133 | 18.273 | 5.661 | 12.612 | 5.661 |
| BRT | 9.712  | 2.932     | 6.780 | 2.932 | 10.493 | 2.093      | 8.401 | 2.093 | 19.223 | 5.965 | 13.258 | 5.965 |

Stock: BJS

|     |        | N         | 11    |       |        | N         | 12    |       |        | N     | 13     |       |
|-----|--------|-----------|-------|-------|--------|-----------|-------|-------|--------|-------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | _EIG  | TRA    | <b>CE</b> | MAX   | _EIG  | TRA    | ACE   | MAX    | _EIG  |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 10.650 | 2.119     | 8.531 | 2.119 | 10.157 | 1.630     | 8.527 | 1.630 | 17.796 | 8.168 | 9.628  | 8.168 |
| ASB | 10.274 | 1.961     | 8.313 | 1.961 | 9.736  | 1.435     | 8.301 | 1.435 | 16.936 | 8.284 | 8.652  | 8.284 |
| ANC | 10.305 | 1.946     | 8.359 | 1.946 | 9.743  | 1.388     | 8.354 | 1.388 | 17.459 | 8.191 | 9.268  | 8.191 |
| DUB | 10.741 | 2.065     | 8.676 | 2.065 | 10.188 | 1.514     | 8.674 | 1.514 | 17.782 | 8.086 | 9.696  | 8.086 |
| ECU | 11.081 | 2.313     | 8.767 | 2.313 | 10.635 | 1.868     | 8.767 | 1.868 | 19.258 | 8.088 | 11.169 | 8.088 |
| IRH | 10.396 | 1.938     | 8.457 | 1.938 | 9.796  | 1.344     | 8.452 | 1.344 | 16.992 | 8.212 | 8.779  | 8.212 |
| IRL | 10.307 | 1.957     | 8.350 | 1.957 | 9.730  | 1.388     | 8.342 | 1.388 | 16.865 | 8.292 | 8.573  | 8.292 |
| KUT | 10.943 | 2.087     | 8.856 | 2.087 | 10.406 | 1.551     | 8.855 | 1.551 | 18.488 | 8.106 | 10.381 | 8.106 |
| LIB | 10.360 | 1.953     | 8.407 | 1.953 | 9.794  | 1.401     | 8.394 | 1.401 | 17.164 | 8.360 | 8.804  | 8.360 |
| NGB | 10.441 | 2.006     | 8.435 | 2.006 | 9.919  | 1.498     | 8.421 | 1.498 | 17.320 | 8.360 | 8.960  | 8.360 |
| NGE | 10.321 | 1.971     | 8.350 | 1.971 | 9.799  | 1.464     | 8.335 | 1.464 | 17.015 | 8.301 | 8.713  | 8.301 |
| DUK | 10.919 | 2.173     | 8.746 | 2.173 | 10.430 | 1.688     | 8.742 | 1.688 | 18.152 | 8.170 | 9.983  | 8.170 |
| SAH | 10.796 | 2.077     | 8.719 | 2.077 | 10.268 | 1.551     | 8.717 | 1.551 | 17.503 | 8.062 | 9.441  | 8.062 |
| SAL | 10.540 | 2.074     | 8.465 | 2.074 | 10.033 | 1.575     | 8.458 | 1.575 | 17.104 | 8.256 | 8.848  | 8.256 |
| SAM | 10.668 | 2.084     | 8.585 | 2.084 | 10.152 | 1.572     | 8.580 | 1.572 | 17.280 | 8.174 | 9.106  | 8.174 |
| VEN | 10.696 | 2.239     | 8.457 | 2.239 | 10.185 | 1.730     | 8.455 | 1.730 | 18.068 | 8.178 | 9.890  | 8.178 |
| AUS | 10.493 | 2.093     | 8.401 | 2.093 | 9.944  | 1.548     | 8.396 | 1.548 | 17.371 | 8.198 | 9.173  | 8.198 |
| CAM | 10.593 | 2.074     | 8.519 | 2.074 | 10.084 | 1.570     | 8.514 | 1.570 | 18.031 | 8.225 | 9.806  | 8.225 |
| САР | 10.531 | 2.284     | 8.247 | 2.284 | 10.064 | 1.829     | 8.235 | 1.829 | 17.707 | 8.229 | 9.478  | 8.229 |
| CHI | 10.941 | 2.158     | 8.783 | 2.158 | 10.480 | 1.702     | 8.779 | 1.702 | 18.391 | 8.216 | 10.175 | 8.216 |
| COL | 10.172 | 1.910     | 8.262 | 1.910 | 9.620  | 1.364     | 8.256 | 1.364 | 17.327 | 8.199 | 9.128  | 8.199 |
| EGS | 10.574 | 1.951     | 8.623 | 1.951 | 10.028 | 1.415     | 8.613 | 1.415 | 17.406 | 8.297 | 9.109  | 8.297 |
| INO | 10.993 | 2.066     | 8.928 | 2.066 | 10.492 | 1.572     | 8.920 | 1.572 | 18.327 | 8.229 | 10.098 | 8.229 |
| ТАР | 10.348 | 2.135     | 8.214 | 2.135 | 9.900  | 1.699     | 8.201 | 1.699 | 17.844 | 8.171 | 9.673  | 8.171 |
| MXI | 10.614 | 2.140     | 8.474 | 2.140 | 10.129 | 1.658     | 8.471 | 1.658 | 18.358 | 8.203 | 10.154 | 8.203 |
| MXM | 11.193 | 2.232     | 8.961 | 2.232 | 10.707 | 1.747     | 8.960 | 1.747 | 19.631 | 8.049 | 11.582 | 8.049 |
| NOE | 10.347 | 1.962     | 8.385 | 1.962 | 9.810  | 1.436     | 8.374 | 1.436 | 17.111 | 8.297 | 8.814  | 8.297 |
| OMN | 10.821 | 2.077     | 8.743 | 2.077 | 10.284 | 1.544     | 8.741 | 1.544 | 18.043 | 8.133 | 9.910  | 8.133 |
| RUS | 9.964  | 1.822     | 8.142 | 1.822 | 9.457  | 1.351     | 8.106 | 1.351 | 17.086 | 8.104 | 8.982  | 8.104 |
| BRT | 10.402 | 2.018     | 8.383 | 2.018 | 9.904  | 1.530     | 8.373 | 1.530 | 17.419 | 8.281 | 9.138  | 8.281 |

Stock: HAL

|     |        | N         | 11    |       |        | N          | 12    |       |        | N     | 13     |       |
|-----|--------|-----------|-------|-------|--------|------------|-------|-------|--------|-------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | _EIG  | TRA    | <b>\CE</b> | MAX   | EIG   | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1        | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 12.354 | 2.879     | 9.475 | 2.879 | 11.462 | 2.365      | 9.097 | 2.365 | 21.554 | 9.070 | 12.485 | 9.070 |
| ASB | 11.671 | 2.551     | 9.119 | 2.552 | 10.798 | 2.064      | 8.734 | 2.064 | 20.466 | 8.392 | 12.074 | 8.392 |
| ANC | 11.691 | 2.617     | 9.074 | 2.617 | 10.764 | 2.048      | 8.716 | 2.048 | 20.775 | 8.599 | 12.177 | 8.599 |
| DUB | 12.324 | 2.815     | 9.509 | 2.815 | 11.371 | 2.255      | 9.115 | 2.255 | 21.375 | 9.110 | 12.266 | 9.110 |
| ECU | 12.365 | 3.238     | 9.128 | 3.238 | 11.523 | 2.718      | 8.804 | 2.718 | 21.807 | 8.712 | 13.096 | 8.712 |
| IRH | 11.868 | 2.509     | 9.359 | 2.509 | 10.882 | 1.929      | 8.953 | 1.929 | 20.145 | 8.835 | 11.310 | 8.835 |
| IRL | 11.837 | 2.495     | 9.342 | 2.495 | 10.861 | 1.926      | 8.935 | 1.926 | 20.059 | 8.734 | 11.325 | 8.734 |
| KUT | 12.223 | 2.925     | 9.299 | 2.925 | 11.307 | 2.355      | 8.951 | 2.355 | 21.655 | 8.950 | 12.705 | 8.950 |
| LIB | 11.591 | 2.512     | 9.079 | 2.512 | 10.674 | 1.984      | 8.690 | 1.984 | 20.290 | 8.430 | 11.860 | 8.430 |
| NGB | 11.760 | 2.597     | 9.163 | 2.597 | 10.892 | 2.112      | 8.780 | 2.112 | 20.862 | 8.519 | 12.343 | 8.519 |
| NGE | 11.733 | 2.548     | 9.185 | 2.548 | 10.864 | 2.065      | 8.798 | 2.065 | 20.563 | 8.518 | 12.045 | 8.518 |
| DUK | 12.462 | 3.003     | 9.459 | 3.003 | 11.579 | 2.490      | 9.089 | 2.490 | 21.951 | 9.071 | 12.880 | 9.071 |
| SAH | 11.947 | 2.806     | 9.140 | 2.806 | 11.062 | 2.282      | 8.780 | 2.282 | 20.028 | 8.766 | 11.261 | 8.766 |
| SAL | 11.953 | 2.713     | 9.240 | 2.713 | 11.079 | 2.226      | 8.853 | 2.226 | 20.224 | 8.678 | 11.546 | 8.678 |
| SAM | 11.972 | 2.766     | 9.206 | 2.766 | 11.096 | 2.269      | 8.827 | 2.269 | 20.216 | 8.732 | 11.484 | 8.732 |
| VEN | 12.010 | 3.019     | 8.991 | 3.019 | 11.129 | 2.491      | 8.637 | 2.491 | 20.968 | 8.582 | 12.386 | 8.582 |
| AUS | 12.349 | 2.854     | 9.495 | 2.854 | 11.419 | 2.315      | 9.104 | 2.315 | 21.337 | 8.985 | 12.352 | 8.985 |
| CAM | 11.714 | 2.805     | 8.909 | 2.805 | 10.885 | 2.325      | 8.560 | 2.325 | 21.428 | 8.438 | 12.990 | 8.438 |
| САР | 12.063 | 2.936     | 9.127 | 2.936 | 11.244 | 2.497      | 8.747 | 2.497 | 20.742 | 8.383 | 12.358 | 8.383 |
| CHI | 12.466 | 3.119     | 9.347 | 3.119 | 11.690 | 2.671      | 9.019 | 2.671 | 22.016 | 9.014 | 13.002 | 9.014 |
| COL | 11.595 | 2.442     | 9.153 | 2.442 | 10.683 | 1.929      | 8.754 | 1.929 | 20.824 | 8.601 | 12.223 | 8.601 |
| EGS | 11.555 | 2.557     | 8.997 | 2.557 | 10.671 | 2.047      | 8.624 | 2.047 | 20.220 | 8.470 | 11.750 | 8.470 |
| INO | 12.362 | 2.909     | 9.452 | 2.909 | 11.556 | 2.463      | 9.093 | 2.463 | 22.283 | 9.083 | 13.200 | 9.083 |
| ТАР | 12.106 | 2.778     | 9.329 | 2.778 | 11.330 | 2.381      | 8.950 | 2.381 | 22.241 | 8.769 | 13.472 | 8.769 |
| MXI | 11.777 | 2.895     | 8.881 | 2.895 | 10.951 | 2.400      | 8.551 | 2.400 | 21.140 | 8.504 | 12.636 | 8.504 |
| MXM | 12.297 | 3.123     | 9.174 | 3.123 | 11.438 | 2.578      | 8.860 | 2.578 | 22.233 | 8.741 | 13.492 | 8.741 |
| NOE | 11.610 | 2.579     | 9.031 | 2.579 | 10.746 | 2.087      | 8.659 | 2.087 | 20.471 | 8.352 | 12.119 | 8.352 |
| OMN | 12.365 | 2.862     | 9.503 | 2.862 | 11.426 | 2.302      | 9.124 | 2.302 | 21.718 | 9.119 | 12.599 | 9.119 |
| RUS | 11.041 | 2.295     | 8.746 | 2.295 | 10.228 | 1.904      | 8.323 | 1.904 | 20.045 | 8.024 | 12.021 | 8.024 |
| BRT | 11.667 | 2.672     | 8.995 | 2.672 | 10.829 | 2.202      | 8.628 | 2.202 | 20.692 | 8.398 | 12.295 | 8.398 |

Stock: SII

|     |        | Ν         | 11     |       |        | Ν         | 12     |       |        | N          | 13     |        |
|-----|--------|-----------|--------|-------|--------|-----------|--------|-------|--------|------------|--------|--------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>NCE</b> | MAX    | _EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1    |
| ADM | 12.309 | 2.000     | 10.310 | 2.000 | 11.835 | 1.532     | 10.303 | 1.532 | 23.163 | 9.225      | 13.938 | 9.225  |
| ASB | 11.728 | 1.958     | 9.770  | 1.958 | 11.254 | 1.493     | 9.761  | 1.493 | 23.015 | 7.949      | 15.066 | 7.949  |
| ANC | 11.751 | 1.899     | 9.853  | 1.899 | 11.240 | 1.392     | 9.848  | 1.392 | 23.218 | 8.519      | 14.699 | 8.519  |
| DUB | 12.313 | 1.924     | 10.389 | 1.924 | 11.768 | 1.385     | 10.383 | 1.385 | 22.802 | 9.404      | 13.398 | 9.404  |
| ECU | 12.052 | 2.290     | 9.762  | 2.290 | 11.636 | 1.875     | 9.761  | 1.875 | 24.267 | 9.397      | 14.870 | 9.396  |
| IRH | 11.916 | 1.881     | 10.035 | 1.881 | 11.350 | 1.324     | 10.026 | 1.324 | 22.553 | 8.336      | 14.218 | 8.336  |
| IRL | 11.945 | 1.906     | 10.039 | 1.906 | 11.400 | 1.373     | 10.026 | 1.373 | 22.574 | 8.153      | 14.421 | 8.153  |
| KUT | 12.415 | 1.945     | 10.470 | 1.945 | 11.891 | 1.424     | 10.467 | 1.424 | 23.544 | 9.844      | 13.699 | 9.844  |
| LIB | 11.811 | 1.937     | 9.875  | 1.937 | 11.299 | 1.437     | 9.862  | 1.437 | 23.091 | 8.079      | 15.012 | 8.079  |
| NGB | 11.971 | 2.021     | 9.950  | 2.021 | 11.508 | 1.570     | 9.938  | 1.570 | 23.370 | 8.223      | 15.147 | 8.223  |
| NGE | 11.903 | 1.987     | 9.916  | 1.987 | 11.441 | 1.539     | 9.901  | 1.539 | 23.085 | 8.061      | 15.024 | 8.061  |
| DUK | 12.597 | 2.067     | 10.530 | 2.067 | 12.130 | 1.606     | 10.524 | 1.606 | 23.549 | 9.621      | 13.928 | 9.621  |
| SAH | 12.122 | 2.059     | 10.063 | 2.059 | 11.633 | 1.576     | 10.057 | 1.576 | 22.894 | 8.857      | 14.037 | 8.857  |
| SAL | 12.134 | 2.052     | 10.082 | 2.052 | 11.664 | 1.593     | 10.070 | 1.593 | 22.756 | 8.443      | 14.313 | 8.443  |
| SAM | 12.128 | 2.065     | 10.064 | 2.065 | 11.650 | 1.595     | 10.055 | 1.595 | 22.801 | 8.627      | 14.174 | 8.627  |
| VEN | 11.952 | 2.223     | 9.729  | 2.223 | 11.483 | 1.759     | 9.724  | 1.759 | 23.464 | 8.766      | 14.698 | 8.766  |
| AUS | 12.320 | 2.002     | 10.318 | 2.002 | 11.814 | 1.501     | 10.313 | 1.501 | 23.362 | 8.988      | 14.373 | 8.988  |
| CAM | 11.815 | 2.127     | 9.688  | 2.127 | 11.372 | 1.690     | 9.683  | 1.690 | 23.938 | 8.554      | 15.384 | 8.554  |
| САР | 12.110 | 2.214     | 9.896  | 2.214 | 11.668 | 1.780     | 9.888  | 1.780 | 23.471 | 8.266      | 15.204 | 8.266  |
| CHI | 12.569 | 2.120     | 10.448 | 2.120 | 12.162 | 1.718     | 10.445 | 1.718 | 24.604 | 9.628      | 14.976 | 9.628  |
| COL | 11.690 | 1.878     | 9.812  | 1.878 | 11.170 | 1.372     | 9.799  | 1.372 | 22.797 | 8.242      | 14.555 | 8.242  |
| EGS | 11.818 | 1.972     | 9.846  | 1.972 | 11.325 | 1.490     | 9.835  | 1.490 | 22.878 | 8.284      | 14.595 | 8.284  |
| INO | 12.588 | 2.022     | 10.566 | 2.022 | 12.139 | 1.582     | 10.557 | 1.582 | 24.240 | 9.654      | 14.586 | 9.654  |
| ТАР | 20.262 | 9.165     | 15.892 | 9.165 | 11.890 | 1.699     | 10.191 | 1.699 | 24.116 | 8.794      | 15.323 | 8.794  |
| MXI | 11.915 | 2.186     | 9.729  | 2.186 | 11.476 | 1.754     | 9.722  | 1.754 | 24.122 | 8.722      | 15.401 | 8.722  |
| MXM | 12.565 | 2.215     | 10.350 | 2.215 | 12.102 | 1.755     | 10.347 | 1.755 | 24.740 | 10.098     | 14.642 | 10.098 |
| NOE | 11.767 | 1.979     | 9.788  | 1.979 | 11.292 | 1.514     | 9.778  | 1.514 | 23.171 | 8.055      | 15.116 | 8.055  |
| OMN | 12.526 | 1.937     | 10.589 | 1.937 | 12.004 | 1.421     | 10.584 | 1.421 | 23.264 | 9.681      | 13.582 | 9.681  |
| RUS | 11.080 | 1.735     | 9.345  | 1.735 | 10.629 | 1.305     | 9.325  | 1.305 | 22.336 | 7.744      | 14.592 | 7.744  |
| BRT | 11.638 | 1.946     | 9.691  | 1.946 | 11.172 | 1.489     | 9.684  | 1.489 | 23.018 | 8.232      | 14.786 | 8.232  |

Stock: WFT

|     |        | N         | 11     |       |        | N          | 12     |       |        | N      | 13     |        |
|-----|--------|-----------|--------|-------|--------|------------|--------|-------|--------|--------|--------|--------|
|     | TRA    | <b>CE</b> | MAX    | _EIG  | TRA    | <b>NCE</b> | MAX    | _EIG  | TRA    | ACE    | MAX    | _EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1   | r=0    | r≤1    | r=0    | r=1    |
| ADM | 17.713 | 4.251     | 13.462 | 4.251 | 16.967 | 4.167      | 12.800 | 4.167 | 33.973 | 11.416 | 22.557 | 11.416 |
| ASB | 17.378 | 3.873     | 13.505 | 3.873 | 16.600 | 3.799      | 12.801 | 3.799 | 33.844 | 10.522 | 23.322 | 10.522 |
| ANC | 16.828 | 3.836     | 12.992 | 3.835 | 16.007 | 3.716      | 12.291 | 3.716 | 32.493 | 10.971 | 21.522 | 10.971 |
| DUB | 17.608 | 4.191     | 13.417 | 4.191 | 16.815 | 4.080      | 12.735 | 4.080 | 32.953 | 11.652 | 21.300 | 11.652 |
| ECU | 17.035 | 4.903     | 12.132 | 4.903 | 16.323 | 4.764      | 11.559 | 4.764 | 32.251 | 11.403 | 20.848 | 11.403 |
| IRH | 17.478 | 3.838     | 13.641 | 3.838 | 16.629 | 3.726      | 12.903 | 3.726 | 32.357 | 11.172 | 21.185 | 11.172 |
| IRL | 17.899 | 3.879     | 14.119 | 3.879 | 17.158 | 3.787      | 13.371 | 3.787 | 33.458 | 11.267 | 22.191 | 11.267 |
| KUT | 16.658 | 4.146     | 12.512 | 4.146 | 15.879 | 4.010      | 11.869 | 4.010 | 31.998 | 11.199 | 20.799 | 11.199 |
| LIB | 17.609 | 3.895     | 13.714 | 3.895 | 16.793 | 3.807      | 12.986 | 3.807 | 33.582 | 10.993 | 22.589 | 10.993 |
| NGB | 17.823 | 4.003     | 13.820 | 4.003 | 17.052 | 3.932      | 13.120 | 3.932 | 34.628 | 11.007 | 23.620 | 11.007 |
| NGE | 17.964 | 3.958     | 14.005 | 3.959 | 17.194 | 3.894      | 13.300 | 3.894 | 34.603 | 10.997 | 23.606 | 10.997 |
| DUK | 17.602 | 4.358     | 13.245 | 4.358 | 16.853 | 4.263      | 12.591 | 4.263 | 33.814 | 11.478 | 22.336 | 11.478 |
| SAH | 16.896 | 4.191     | 12.705 | 4.191 | 16.119 | 4.076      | 12.042 | 4.076 | 30.670 | 11.059 | 19.611 | 11.059 |
| SAL | 17.771 | 4.221     | 13.550 | 4.221 | 17.010 | 4.146      | 12.864 | 4.146 | 32.675 | 11.068 | 21.607 | 11.068 |
| SAM | 17.285 | 4.208     | 13.077 | 4.208 | 16.517 | 4.116      | 12.401 | 4.116 | 31.592 | 10.995 | 20.597 | 10.995 |
| VEN | 17.890 | 4.584     | 13.307 | 4.584 | 17.110 | 4.488      | 12.622 | 4.488 | 33.955 | 11.576 | 22.379 | 11.576 |
| AUS | 17.839 | 4.135     | 13.705 | 4.135 | 17.017 | 4.026      | 12.991 | 4.026 | 34.278 | 11.434 | 22.845 | 11.434 |
| CAM | 16.623 | 4.184     | 12.439 | 4.184 | 15.888 | 4.099      | 11.789 | 4.099 | 33.311 | 10.474 | 22.837 | 10.474 |
| САР | 18.846 | 4.592     | 14.254 | 4.592 | 18.064 | 4.524      | 13.540 | 4.524 | 36.468 | 11.516 | 24.952 | 11.516 |
| CHI | 17.333 | 4.528     | 12.805 | 4.528 | 16.636 | 4.448      | 12.188 | 4.448 | 34.482 | 11.133 | 23.349 | 11.133 |
| COL | 18.323 | 3.989     | 14.334 | 3.989 | 17.512 | 3.899      | 13.612 | 3.899 | 33.792 | 12.061 | 21.731 | 12.061 |
| EGS | 17.135 | 3.977     | 13.158 | 3.977 | 16.357 | 3.889      | 12.468 | 3.889 | 32.560 | 10.792 | 21.768 | 10.792 |
| INO | 17.633 | 4.358     | 13.275 | 4.358 | 16.913 | 4.281      | 12.631 | 4.281 | 34.364 | 11.486 | 22.879 | 11.486 |
| ТАР | 17.940 | 4.312     | 13.628 | 4.312 | 17.234 | 4.260      | 12.974 | 4.260 | 35.735 | 11.118 | 24.617 | 11.118 |
| MXI | 17.201 | 4.370     | 12.830 | 4.370 | 16.456 | 4.278      | 12.178 | 4.278 | 33.577 | 11.187 | 22.390 | 11.187 |
| MXM | 17.018 | 4.674     | 12.344 | 4.674 | 16.288 | 4.540      | 11.748 | 4.540 | 32.902 | 11.554 | 21.348 | 11.554 |
| NOE | 17.653 | 3.991     | 13.662 | 3.991 | 16.884 | 3.922      | 12.962 | 3.922 | 34.455 | 10.754 | 23.701 | 10.754 |
| OMN | 17.468 | 4.157     | 13.311 | 4.157 | 16.675 | 4.035      | 12.640 | 4.035 | 33.008 | 11.712 | 21.296 | 11.712 |
| RUS | 16.325 | 3.610     | 12.716 | 3.610 | 15.551 | 3.569      | 11.982 | 3.569 | 31.858 | 10.019 | 21.841 | 10.019 |
| BRT | 16.993 | 3.989     | 13.003 | 3.989 | 16.232 | 3.918      | 12.314 | 3.918 | 33.690 | 10.448 | 23.241 | 10.448 |

Stock: TESO

|     |        | N         | 11     |       |        | N         | 12     |       |        | N      | 13     |        |
|-----|--------|-----------|--------|-------|--------|-----------|--------|-------|--------|--------|--------|--------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | ACE    | MAX    | _EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1    | r=0    | r=1    |
| ADM | 12.396 | 2.774     | 9.622  | 2.774 | 11.908 | 2.358     | 9.550  | 2.358 | 21.739 | 9.185  | 12.554 | 9.185  |
| ASB | 12.466 | 2.538     | 9.928  | 2.538 | 11.987 | 2.138     | 9.849  | 2.138 | 21.814 | 8.335  | 13.479 | 8.335  |
| ANC | 12.256 | 2.611     | 9.645  | 2.611 | 11.748 | 2.180     | 9.568  | 2.180 | 21.936 | 8.818  | 13.118 | 8.818  |
| DUB | 17.608 | 4.191     | 13.417 | 4.191 | 16.815 | 4.080     | 12.735 | 4.080 | 32.953 | 11.652 | 21.300 | 11.652 |
| ECU | 11.691 | 3.302     | 8.390  | 3.302 | 11.278 | 2.959     | 8.319  | 2.959 | 21.404 | 8.178  | 13.226 | 8.178  |
| IRH | 12.222 | 2.504     | 9.718  | 2.504 | 11.652 | 2.042     | 9.610  | 2.042 | 20.998 | 8.722  | 12.276 | 8.722  |
| IRL | 12.239 | 2.471     | 9.768  | 2.471 | 11.683 | 2.020     | 9.662  | 2.020 | 20.811 | 8.643  | 12.168 | 8.643  |
| KUT | 12.060 | 2.841     | 9.219  | 2.841 | 11.534 | 2.388     | 9.146  | 2.388 | 21.882 | 9.041  | 12.841 | 9.041  |
| LIB | 12.184 | 2.488     | 9.696  | 2.488 | 11.652 | 2.053     | 9.599  | 2.053 | 21.227 | 8.553  | 12.674 | 8.553  |
| NGB | 12.614 | 2.612     | 10.002 | 2.612 | 12.151 | 2.227     | 9.924  | 2.227 | 22.315 | 8.535  | 13.780 | 8.535  |
| NGE | 12.631 | 2.563     | 10.068 | 2.563 | 12.175 | 2.188     | 9.988  | 2.188 | 22.100 | 8.466  | 13.634 | 8.466  |
| DUK | 12.490 | 2.901     | 9.589  | 2.901 | 12.005 | 2.480     | 9.525  | 2.480 | 22.108 | 9.245  | 12.863 | 9.245  |
| SAH | 12.184 | 2.824     | 9.360  | 2.824 | 11.704 | 2.443     | 9.262  | 2.443 | 21.023 | 8.508  | 12.515 | 8.508  |
| SAL | 12.329 | 2.708     | 9.621  | 2.708 | 11.860 | 2.334     | 9.526  | 2.334 | 20.762 | 8.510  | 12.253 | 8.510  |
| SAM | 12.293 | 2.774     | 9.519  | 2.774 | 11.819 | 2.396     | 9.423  | 2.396 | 20.945 | 8.491  | 12.454 | 8.491  |
| VEN | 12.030 | 2.946     | 9.084  | 2.946 | 11.563 | 2.563     | 9.000  | 2.563 | 21.202 | 8.577  | 12.625 | 8.577  |
| AUS | 12.603 | 2.791     | 9.812  | 2.791 | 12.092 | 2.338     | 9.754  | 2.338 | 21.948 | 9.095  | 12.853 | 9.095  |
| CAM | 12.907 | 2.898     | 10.009 | 2.898 | 12.494 | 2.573     | 9.922  | 2.573 | 23.851 | 8.450  | 15.401 | 8.450  |
| САР | 13.030 | 3.042     | 9.987  | 3.042 | 12.619 | 2.705     | 9.914  | 2.705 | 21.587 | 8.563  | 13.023 | 8.563  |
| CHI | 12.742 | 3.112     | 9.631  | 3.112 | 12.354 | 2.788     | 9.565  | 2.788 | 23.023 | 9.109  | 13.914 | 9.109  |
| COL | 11.269 | 2.318     | 8.951  | 2.318 | 10.693 | 1.832     | 8.861  | 1.832 | 19.737 | 8.496  | 11.241 | 8.496  |
| EGS | 12.265 | 2.583     | 9.681  | 2.584 | 11.764 | 2.184     | 9.580  | 2.184 | 21.574 | 8.588  | 12.986 | 8.588  |
| INO | 12.756 | 2.961     | 9.795  | 2.961 | 12.344 | 2.636     | 9.708  | 2.636 | 23.272 | 9.208  | 14.064 | 9.208  |
| ТАР | 12.938 | 2.797     | 10.140 | 2.797 | 12.539 | 2.464     | 10.074 | 2.464 | 23.325 | 8.849  | 14.476 | 8.849  |
| MXI | 11.877 | 2.859     | 9.018  | 2.859 | 11.428 | 2.494     | 8.934  | 2.494 | 21.356 | 8.503  | 12.853 | 8.503  |
| MXM | 11.732 | 3.125     | 8.607  | 3.125 | 11.233 | 2.720     | 8.512  | 2.720 | 22.285 | 8.505  | 13.780 | 8.505  |
| NOE | 12.653 | 2.594     | 10.059 | 2.594 | 12.197 | 2.226     | 9.971  | 2.226 | 22.284 | 8.299  | 13.985 | 8.298  |
| OMN | 12.385 | 2.777     | 9.608  | 2.777 | 11.852 | 2.314     | 9.537  | 2.314 | 21.878 | 9.408  | 12.469 | 9.408  |
| RUS | 11.682 | 2.274     | 9.408  | 2.273 | 11.261 | 1.944     | 9.317  | 1.944 | 20.822 | 8.306  | 12.516 | 8.306  |
| BRT | 12.403 | 2.699     | 9.704  | 2.699 | 11.957 | 2.331     | 9.626  | 2.331 | 21.847 | 8.563  | 13.284 | 8.563  |
Stock: SLB

|     |        | N         | 11     |       |        | N         | 12     |       |        | N          | 13     |       |
|-----|--------|-----------|--------|-------|--------|-----------|--------|-------|--------|------------|--------|-------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>NCE</b> | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1   |
| ADM | 14.932 | 2.906     | 12.026 | 2.906 | 14.146 | 2.532     | 11.613 | 2.532 | 28.147 | 9.550      | 18.596 | 9.550 |
| ASB | 14.374 | 2.546     | 11.828 | 2.546 | 13.599 | 2.171     | 11.428 | 2.171 | 27.274 | 8.481      | 18.793 | 8.481 |
| ANC | 14.251 | 2.606     | 11.644 | 2.606 | 13.424 | 2.183     | 11.241 | 2.183 | 27.424 | 8.862      | 18.562 | 8.862 |
| DUB | 14.870 | 2.839     | 12.031 | 2.839 | 14.017 | 2.425     | 11.591 | 2.425 | 27.659 | 9.704      | 17.955 | 9.704 |
| ECU | 14.830 | 3.321     | 11.510 | 3.321 | 14.168 | 3.048     | 11.120 | 3.048 | 28.494 | 9.624      | 18.870 | 9.624 |
| IRH | 14.375 | 2.480     | 11.895 | 2.480 | 13.484 | 2.039     | 11.445 | 2.039 | 26.570 | 8.889      | 17.681 | 8.889 |
| IRL | 14.414 | 2.463     | 11.951 | 2.463 | 13.533 | 2.030     | 11.503 | 2.030 | 26.620 | 8.776      | 17.843 | 8.776 |
| KUT | 14.745 | 2.958     | 11.787 | 2.958 | 13.918 | 2.540     | 11.378 | 2.540 | 27.979 | 9.810      | 18.169 | 9.810 |
| LIB | 14.330 | 2.509     | 11.821 | 2.509 | 13.511 | 2.105     | 11.406 | 2.105 | 27.171 | 8.637      | 18.534 | 8.637 |
| NGB | 14.406 | 2.582     | 11.824 | 2.582 | 13.648 | 2.225     | 11.423 | 2.225 | 27.753 | 8.650      | 19.103 | 8.650 |
| NGE | 14.365 | 2.530     | 11.836 | 2.530 | 13.605 | 2.175     | 11.430 | 2.175 | 27.288 | 8.621      | 18.667 | 8.621 |
| DUK | 15.140 | 3.043     | 12.097 | 3.043 | 14.364 | 2.679     | 11.684 | 2.679 | 28.842 | 9.711      | 19.131 | 9.711 |
| SAH | 14.602 | 2.804     | 11.799 | 2.804 | 14.602 | 2.804     | 11.799 | 2.804 | 26.549 | 9.175      | 17.374 | 9.175 |
| SAL | 14.702 | 2.702     | 12.027 | 2.702 | 13.925 | 2.354     | 11.571 | 2.354 | 26.937 | 8.876      | 18.061 | 8.876 |
| SAM | 14.691 | 2.758     | 11.933 | 2.758 | 13.912 | 2.408     | 11.504 | 2.408 | 26.863 | 8.993      | 17.870 | 8.993 |
| VEN | 14.662 | 2.951     | 11.711 | 2.951 | 13.889 | 2.602     | 11.287 | 2.602 | 28.043 | 8.981      | 19.063 | 8.981 |
| AUS | 15.050 | 2.895     | 12.155 | 2.895 | 14.232 | 2.495     | 11.737 | 2.495 | 28.272 | 9.201      | 19.071 | 9.203 |
| CAM | 14.345 | 2.771     | 11.574 | 2.771 | 13.617 | 2.431     | 11.186 | 2.431 | 28.490 | 8.756      | 19.734 | 8.756 |
| САР | 15.025 | 2.890     | 12.135 | 2.890 | 14.362 | 2.609     | 11.752 | 2.609 | 28.115 | 8.378      | 19.737 | 8.377 |
| CHI | 15.051 | 3.159     | 11.892 | 3.159 | 14.375 | 2.859     | 11.516 | 2.858 | 28.616 | 9.631      | 18.984 | 9.631 |
| COL | 14.165 | 2.421     | 11.744 | 2.421 | 13.346 | 2.029     | 11.317 | 2.029 | 27.222 | 9.029      | 18.192 | 9.029 |
| EGS | 14.302 | 2.566     | 11.736 | 2.565 | 13.510 | 2.182     | 11.328 | 2.182 | 26.841 | 8.852      | 17.988 | 8.852 |
| INO | 14.931 | 2.925     | 12.005 | 2.925 | 14.214 | 2.613     | 11.600 | 2.613 | 28.886 | 9.806      | 19.080 | 9.806 |
| ТАР | 15.063 | 2.807     | 12.256 | 2.807 | 14.359 | 2.513     | 11.846 | 2.513 | 29.810 | 9.376      | 20.435 | 9.376 |
| MXI | 14.431 | 2.860     | 11.572 | 2.860 | 13.718 | 2.535     | 11.183 | 2.535 | 28.193 | 9.085      | 19.108 | 9.085 |
| MXM | 14.548 | 3.173     | 11.375 | 3.173 | 13.786 | 2.811     | 10.976 | 2.811 | 28.382 | 9.963      | 18.419 | 9.963 |
| NOE | 14.355 | 2.546     | 11.809 | 2.546 | 13.590 | 2.183     | 11.406 | 2.183 | 27.468 | 8.557      | 18.911 | 8.557 |
| OMN | 14.945 | 2.904     | 12.042 | 2.904 | 14.116 | 2.496     | 11.620 | 2.496 | 28.245 | 9.771      | 18.474 | 9.771 |
| RUS | 13.217 | 2.271     | 10.945 | 2.271 | 12.385 | 1.957     | 10.428 | 1.957 | 25.481 | 8.000      | 17.481 | 8.000 |
| BRT | 14.250 | 2.645     | 11.605 | 2.645 | 13.500 | 2.287     | 11.214 | 2.287 | 27.043 | 8.596      | 18.448 | 8.596 |

Stock: RES

|     |        | Ν         | 1     |       |        | Μ      | 2     |       |        | N     | 13     |       |
|-----|--------|-----------|-------|-------|--------|--------|-------|-------|--------|-------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | EIG   | TRA    | ACE    | MAX   | _EIG  | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1    | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 11.936 | 2.746     | 9.190 | 2.746 | 11.603 | 2.437  | 9.166 | 2.437 | 19.051 | 9.019 | 10.032 | 9.019 |
| ASB | 11.680 | 2.430     | 9.250 | 2.430 | 11.316 | 2.083  | 9.233 | 2.083 | 18.102 | 8.552 | 9.550  | 8.552 |
| ANC | 11.630 | 2.467     | 9.162 | 2.467 | 11.243 | 2.096  | 9.147 | 2.096 | 18.594 | 9.087 | 9.507  | 9.087 |
| DUB | 11.802 | 2.675     | 9.126 | 2.675 | 11.417 | 2.314  | 9.103 | 2.314 | 18.919 | 9.093 | 9.826  | 9.093 |
| ECU | 12.188 | 3.251     | 8.937 | 3.251 | 11.893 | 2.967  | 8.925 | 2.967 | 20.165 | 8.902 | 11.262 | 8.902 |
| IRH | 11.530 | 2.375     | 9.155 | 2.375 | 11.099 | 1.963  | 9.136 | 1.963 | 17.969 | 8.739 | 9.231  | 8.739 |
| IRL | 11.561 | 2.360     | 9.201 | 2.360 | 11.145 | 1.962  | 9.183 | 1.962 | 17.858 | 8.675 | 9.183  | 8.675 |
| KUT | 11.927 | 2.798     | 9.128 | 2.799 | 11.564 | 2.454  | 9.110 | 2.454 | 19.614 | 9.095 | 10.518 | 9.095 |
| LIB | 11.600 | 2.403     | 9.199 | 2.403 | 11.208 | 2.024  | 9.185 | 2.024 | 18.121 | 8.797 | 9.324  | 8.797 |
| NGB | 11.742 | 2.481     | 9.261 | 2.481 | 11.388 | 2.146  | 9.242 | 2.146 | 18.402 | 8.663 | 9.739  | 8.663 |
| NGE | 11.669 | 2.428     | 9.241 | 2.428 | 11.317 | 2.095  | 9.222 | 2.095 | 18.162 | 8.516 | 9.646  | 8.516 |
| DUK | 12.131 | 2.888     | 9.242 | 2.888 | 11.807 | 2.590  | 9.217 | 2.590 | 19.483 | 9.040 | 10.443 | 9.040 |
| SAH | 11.744 | 2.709     | 9.035 | 2.709 | 11.384 | 2.365  | 9.019 | 2.365 | 18.443 | 8.860 | 9.583  | 8.860 |
| SAL | 11.777 | 2.615     | 9.162 | 2.615 | 11.431 | 2.286  | 9.145 | 2.286 | 18.098 | 8.833 | 9.265  | 8.833 |
| SAM | 18.098 | 8.833     | 9.265 | 8.833 | 11.417 | 2.333  | 9.084 | 2.333 | 18.225 | 9.077 | 9.149  | 9.077 |
| VEN | 12.164 | 2.934     | 9.230 | 2.934 | 11.811 | 2.586  | 9.224 | 2.586 | 19.352 | 9.220 | 10.132 | 9.220 |
| AUS | 12.106 | 2.718     | 9.388 | 2.718 | 11.745 | 2.384  | 9.361 | 2.384 | 18.936 | 8.854 | 10.082 | 8.853 |
| CAM | 11.947 | 2.716     | 9.231 | 2.716 | 11.611 | 2.398  | 9.213 | 2.398 | 19.253 | 9.125 | 10.128 | 9.124 |
| САР | 12.378 | 2.859     | 9.519 | 2.859 | 12.056 | 2.550  | 9.506 | 2.550 | 18.866 | 8.631 | 10.235 | 8.631 |
| CHI | 12.330 | 3.021     | 9.308 | 3.021 | 12.062 | 2.778  | 9.284 | 2.778 | 19.857 | 9.016 | 10.841 | 9.016 |
| COL | 11.338 | 2.326     | 9.012 | 2.326 | 10.936 | 1.938  | 8.998 | 1.938 | 18.125 | 8.975 | 9.150  | 8.975 |
| EGS | 11.565 | 2.463     | 9.101 | 2.464 | 11.190 | 2.104  | 9.086 | 2.104 | 18.250 | 8.938 | 9.312  | 8.938 |
| INO | 12.052 | 2.802     | 9.250 | 2.802 | 11.750 | 2.528  | 9.222 | 2.528 | 19.585 | 9.095 | 10.490 | 9.095 |
| ТАР | 12.198 | 2.723     | 9.475 | 2.723 | 11.903 | 2.455  | 9.448 | 2.455 | 19.410 | 9.052 | 10.358 | 9.052 |
| MXI | 11.928 | 2.792     | 9.136 | 2.792 | 11.594 | 2.466  | 9.128 | 2.466 | 19.392 | 9.125 | 10.267 | 9.125 |
| MXM | 12.032 | 3.038     | 8.994 | 3.038 | 11.688 | 2.703  | 8.988 | 2.700 | 20.706 | 8.739 | 11.967 | 8.739 |
| NOE | 11.718 | 2.461     | 9.256 | 2.461 | 11.358 | 2.1153 | 9.242 | 2.115 | 18.288 | 8.639 | 9.648  | 8.639 |
| OMN | 11.916 | 2.728     | 9.187 | 2.728 | 11.550 | 2.384  | 9.165 | 2.384 | 19.249 | 9.164 | 10.085 | 9.164 |
| RUS | 11.205 | 2.216     | 8.989 | 2.216 | 10.872 | 1.916  | 8.956 | 1.916 | 17.894 | 8.921 | 8.973  | 8.921 |
| BRT | 11.831 | 2.560     | 9.271 | 2.560 | 11.489 | 2.236  | 9.253 | 2.236 | 18.562 | 9.078 | 9.484  | 9.078 |

Stock: EEP

|     |        | N         | 11     |       |        | N     | 12     |       |        | N         | 13     |       |
|-----|--------|-----------|--------|-------|--------|-------|--------|-------|--------|-----------|--------|-------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | ACE   | MAX    | EIG   | TRA    | <b>CE</b> | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1   | r=0    | r=1   | r=0    | r≤1       | r=0    | r=1   |
| ADM | 15.384 | 2.676     | 12.709 | 2.676 | 15.104 | 2.464 | 12.640 | 2.464 | 23.572 | 7.423     | 16.149 | 7.423 |
| ASB | 14.544 | 2.729     | 11.815 | 2.729 | 14.211 | 2.450 | 11.761 | 2.450 | 21.872 | 8.051     | 13.821 | 8.051 |
| ANC | 14.074 | 2.719     | 11.355 | 2.719 | 13.722 | 2.427 | 11.296 | 2.427 | 21.905 | 8.223     | 13.682 | 8.223 |
| DUB | 15.044 | 2.602     | 12.442 | 2.602 | 14.729 | 2.349 | 12.380 | 2.349 | 23.306 | 7.360     | 15.945 | 7.360 |
| ECU | 14.115 | 3.221     | 10.894 | 3.221 | 13.820 | 3.029 | 10.791 | 3.029 | 22.843 | 7.926     | 14.917 | 7.926 |
| IRH | 15.192 | 2.683     | 12.509 | 2.683 | 14.820 | 2.348 | 12.472 | 2.348 | 22.919 | 8.019     | 14.901 | 8.019 |
| IRL | 15.467 | 2.708     | 12.760 | 2.708 | 15.106 | 2.382 | 12.725 | 2.382 | 23.117 | 8.051     | 15.066 | 8.051 |
| KUT | 14.396 | 2.604     | 11.793 | 2.604 | 14.083 | 2.366 | 11.717 | 2.366 | 22.946 | 7.419     | 15.526 | 7.420 |
| LIB | 14.888 | 2.741     | 12.147 | 2.741 | 14.534 | 2.431 | 12.103 | 2.431 | 22.519 | 8.183     | 14.337 | 8.183 |
| NGB | 14.749 | 2.809     | 11.940 | 2.809 | 14.420 | 2.536 | 11.884 | 2.536 | 22.496 | 8.170     | 14.327 | 8.170 |
| NGE | 14.913 | 2.793     | 12.120 | 2.793 | 14.585 | 2.519 | 12.067 | 2.519 | 22.553 | 8.114     | 14.439 | 8.114 |
| DUK | 15.317 | 2.746     | 12.571 | 2.746 | 15.041 | 2.545 | 12.497 | 2.545 | 23.655 | 7.438     | 16.217 | 7.438 |
| SAH | 14.539 | 2.894     | 11.645 | 2.894 | 14.207 | 2.627 | 11.580 | 2.627 | 22.256 | 7.854     | 14.402 | 7.854 |
| SAL | 15.181 | 2.894     | 12.287 | 2.894 | 14.863 | 2.633 | 12.231 | 2.633 | 22.670 | 7.887     | 14.783 | 7.887 |
| SAM | 14.851 | 2.902     | 11.949 | 2.902 | 14.527 | 2.638 | 11.889 | 2.638 | 22.405 | 7.857     | 14.548 | 7.857 |
| VEN | 14.214 | 3.054     | 11.160 | 3.054 | 13.876 | 2.790 | 11.086 | 2.790 | 22.306 | 7.951     | 14.355 | 7.951 |
| AUS | 15.404 | 2.845     | 12.559 | 2.845 | 15.096 | 2.594 | 12.501 | 2.594 | 23.391 | 7.977     | 15.414 | 7.977 |
| CAM | 14.111 | 2.986     | 11.124 | 2.986 | 13.784 | 2.732 | 11.052 | 2.732 | 22.288 | 8.466     | 13.822 | 8.466 |
| САР | 16.093 | 3.362     | 12.730 | 3.362 | 15.790 | 3.116 | 12.674 | 3.116 | 23.879 | 8.828     | 15.051 | 8.828 |
| CHI | 16.093 | 3.362     | 12.730 | 3.362 | 15.790 | 3.116 | 12.674 | 3.116 | 23.879 | 8.828     | 15.051 | 8.828 |
| COL | 14.973 | 3.086     | 11.887 | 3.086 | 14.713 | 2.914 | 11.799 | 2.914 | 23.470 | 8.144     | 15.327 | 8.144 |
| EGS | 12.204 | 2.608     | 12.204 | 2.608 | 14.455 | 2.295 | 12.160 | 2.295 | 22.876 | 7.897     | 14.979 | 7.897 |
| INO | 14.938 | 2.823     | 12.115 | 2.823 | 14.590 | 2.524 | 12.067 | 2.524 | 22.800 | 8.285     | 14.516 | 8.285 |
| ТАР | 14.632 | 2.820     | 11.812 | 2.820 | 14.353 | 2.621 | 11.733 | 2.621 | 23.278 | 7.798     | 15.480 | 7.798 |
| MXI | 15.643 | 3.122     | 12.521 | 3.122 | 15.364 | 2.902 | 12.461 | 2.902 | 24.065 | 8.880     | 15.185 | 8.880 |
| MXM | 14.479 | 3.060     | 11.419 | 3.060 | 14.152 | 2.802 | 11.350 | 2.802 | 22.949 | 8.389     | 14.561 | 8.389 |
| NOE | 15.142 | 3.057     | 12.085 | 3.057 | 14.835 | 2.826 | 12.009 | 2.826 | 25.173 | 8.018     | 17.155 | 8.018 |
| OMN | 14.574 | 2.802     | 11.772 | 2.802 | 14.235 | 2.515 | 11.719 | 2.515 | 22.119 | 8.239     | 13.880 | 8.239 |
| RUS | 15.192 | 2.630     | 12.562 | 2.630 | 14.891 | 2.394 | 12.497 | 2.394 | 23.626 | 7.454     | 16.171 | 7.454 |
| BRT | 14.179 | 2.541     | 11.638 | 2.541 | 13.924 | 2.309 | 11.614 | 2.309 | 21.812 | 8.289     | 13.523 | 8.289 |

Stock: EP

#### Sector: PIP

|     |       | N     | 11    |       |       | N     | 2     |       |        | N         | 13     |       |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|--------|-----------|--------|-------|
|     | TR/   | ACE   | MAX   | _EIG  | TRA   | ACE   | MAX   | _EIG  | TRA    | <b>CE</b> | MAX    | EIG   |
| Oil | r=0   | r≤1   | r=0   | r=1   | r=0   | r≤1   | r=0   | r=1   | r=0    | r≤1       | r=0    | r=1   |
| ADM | 7.097 | 1.298 | 5.799 | 1.298 | 7.850 | 2.466 | 5.384 | 2.466 | 14.248 | 3.504     | 10.744 | 3.504 |
| ASB | 7.850 | 2.466 | 5.384 | 2.466 | 6.583 | 1.290 | 5.293 | 1.290 | 13.186 | 3.534     | 9.652  | 3.534 |
| ANC | 8.037 | 2.468 | 5.569 | 2.468 | 6.743 | 1.290 | 5.453 | 1.290 | 14.089 | 3.537     | 10.552 | 3.537 |
| DUB | 8.184 | 2.492 | 5.691 | 2.492 | 6.855 | 1.257 | 5.598 | 1.257 | 14.327 | 3.472     | 10.855 | 3.472 |
| ECU | 8.865 | 2.486 | 6.378 | 2.486 | 7.651 | 1.391 | 6.260 | 1.391 | 16.137 | 3.446     | 12.691 | 3.446 |
| IRH | 7.681 | 2.482 | 5.199 | 2.482 | 6.330 | 1.237 | 5.093 | 1.237 | 13.425 | 3.499     | 9.926  | 3.499 |
| IRL | 7.699 | 2.476 | 5.223 | 2.476 | 6.360 | 1.235 | 5.125 | 1.235 | 13.107 | 3.507     | 9.600  | 3.507 |
| KUT | 8.364 | 2.483 | 5.881 | 2.483 | 7.060 | 1.273 | 5.787 | 1.273 | 15.054 | 3.457     | 11.597 | 3.457 |
| LIB | 7.716 | 2.468 | 5.248 | 2.468 | 6.407 | 1.248 | 5.158 | 1.248 | 13.358 | 3.500     | 9.858  | 3.500 |
| NGB | 7.826 | 2.467 | 5.359 | 2.466 | 6.581 | 1.303 | 5.278 | 1.303 | 13.404 | 3.499     | 9.905  | 3.500 |
| NGE | 7.848 | 2.455 | 5.393 | 2.455 | 6.591 | 1.273 | 5.318 | 1.273 | 13.151 | 3.510     | 9.641  | 3.510 |
| DUK | 8.545 | 2.489 | 6.055 | 2.489 | 7.277 | 1.312 | 5.965 | 1.312 | 14.511 | 3.480     | 11.030 | 3.480 |
| SAH | 7.889 | 2.492 | 5.398 | 2.492 | 6.616 | 1.316 | 5.300 | 1.316 | 14.181 | 3.458     | 10.722 | 3.458 |
| SAL | 7.899 | 2.482 | 5.417 | 2.482 | 6.636 | 1.313 | 5.323 | 1.313 | 13.443 | 3.505     | 9.938  | 3.505 |
| SAM | 7.908 | 2.490 | 5.418 | 2.490 | 6.635 | 1.316 | 5.320 | 1.316 | 13.780 | 3.488     | 10.293 | 3.488 |
| VEN | 8.574 | 2.505 | 6.069 | 2.505 | 7.304 | 1.369 | 5.935 | 1.369 | 14.458 | 3.498     | 10.960 | 3.498 |
| AUS | 8.501 | 2.498 | 6.003 | 2.498 | 7.160 | 1.287 | 5.873 | 1.287 | 13.705 | 3.527     | 10.178 | 3.527 |
| CAM | 8.211 | 2.474 | 5.737 | 2.474 | 6.992 | 1.351 | 5.641 | 1.351 | 14.515 | 3.494     | 11.021 | 3.494 |
| САР | 8.258 | 2.495 | 5.762 | 2.495 | 7.058 | 1.393 | 5.665 | 1.393 | 13.167 | 3.494     | 9.673  | 3.494 |
| СНІ | 8.876 | 2.469 | 6.407 | 2.469 | 7.663 | 1.354 | 6.310 | 1.354 | 14.808 | 3.500     | 11.308 | 3.500 |
| COL | 7.957 | 2.454 | 5.503 | 2.454 | 6.606 | 1.216 | 5.389 | 1.216 | 13.800 | 3.539     | 10.260 | 3.539 |
| EGS | 7.708 | 2.453 | 5.255 | 2.453 | 6.433 | 1.249 | 5.184 | 1.249 | 13.470 | 3.438     | 10.032 | 3.438 |
| INO | 8.574 | 2.466 | 6.108 | 2.466 | 7.312 | 1.296 | 6.015 | 1.296 | 14.679 | 3.495     | 11.184 | 3.495 |
| ТАР | 8.422 | 2.456 | 5.966 | 2.456 | 7.163 | 1.285 | 5.879 | 1.285 | 13.978 | 3.511     | 10.468 | 3.511 |
| MXI | 8.472 | 2.476 | 5.997 | 2.476 | 7.231 | 1.343 | 5.888 | 1.343 | 14.669 | 3.478     | 11.191 | 3.478 |
| MXM | 8.713 | 2.480 | 6.232 | 2.480 | 7.483 | 1.342 | 6.141 | 1.342 | 16.130 | 3.387     | 12.743 | 3.387 |
| NOE | 7.846 | 2.465 | 5.381 | 2.465 | 6.586 | 1.287 | 5.299 | 1.287 | 13.270 | 3.501     | 9.769  | 3.501 |
| OMN | 8.361 | 2.485 | 8.361 | 2.485 | 7.047 | 1.268 | 5.779 | 1.268 | 14.516 | 3.483     | 11.033 | 3.483 |
| RUS | 7.101 | 2.449 | 4.653 | 2.449 | 5.882 | 1.283 | 4.599 | 1.283 | 13.380 | 3.162     | 10.217 | 3.162 |
| BRT | 8.056 | 2.471 | 5.585 | 2.471 | 6.831 | 1.337 | 5.495 | 1.337 | 13.643 | 3.519     | 10.124 | 3.519 |

Stock: ETP

|     |        | N         | 11      |       |        | N         | 12     |       |        | N          | 13     |       |
|-----|--------|-----------|---------|-------|--------|-----------|--------|-------|--------|------------|--------|-------|
|     | TRA    | <b>CE</b> | MAX     | EIG   | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>NCE</b> | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0     | r=1   | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1   |
| ADM | 13.963 | 3.803     | 10.160  | 3.803 | 13.357 | 3.261     | 10.095 | 3.261 | 20.054 | 9.443      | 10.611 | 9.443 |
| ASB | 13.409 | 3.643     | 9.766   | 3.643 | 12.734 | 3.039     | 9.695  | 3.039 | 18.435 | 7.989      | 10.446 | 7.989 |
| ANC | 12.989 | 3.722     | 9.267   | 3.722 | 12.304 | 3.119     | 9.186  | 3.119 | 18.720 | 8.508      | 10.212 | 8.508 |
| DUB | 13.494 | 3.770     | 9.724   | 3.770 | 12.859 | 3.206     | 9.652  | 3.206 | 19.954 | 9.326      | 10.628 | 9.326 |
| ECU | 12.875 | 4.020     | 8.855   | 4.020 | 12.282 | 3.499     | 8.784  | 3.499 | 19.478 | 8.767      | 10.711 | 8.767 |
| IRH | 12.872 | 3.658     | 9.215   | 3.658 | 12.156 | 3.032     | 9.124  | 3.032 | 18.785 | 8.208      | 10.577 | 8.208 |
| IRL | 13.022 | 3.640     | 9.382   | 3.640 | 12.311 | 3.018     | 9.294  | 3.018 | 18.710 | 8.104      | 10.606 | 8.104 |
| KUT | 13.387 | 3.743     | 9.644   | 3.743 | 12.724 | 3.154     | 9.570  | 3.154 | 19.748 | 9.519      | 10.228 | 9.519 |
| LIB | 13.177 | 3.561     | 9.616   | 3.561 | 12.439 | 2.903     | 9.536  | 2.903 | 18.178 | 7.961      | 10.216 | 7.961 |
| NGB | 13.500 | 3.658     | 9.84256 | 3.658 | 12.831 | 3.062     | 9.770  | 3.062 | 18.835 | 8.365      | 10.470 | 8.365 |
| NGE | 13.419 | 3.639     | 9.780   | 3.639 | 12.742 | 3.035     | 9.706  | 3.035 | 18.633 | 8.113      | 10.520 | 8.113 |
| DUK | 14.057 | 3.764     | 10.293  | 3.764 | 13.454 | 3.218     | 10.236 | 3.218 | 19.971 | 9.599      | 10.372 | 9.599 |
| SAH | 12.879 | 3.684     | 9.195   | 3.684 | 12.212 | 3.086     | 9.126  | 3.086 | 18.646 | 8.629      | 10.017 | 8.629 |
| SAL | 13.183 | 3.634     | 9.550   | 3.634 | 12.510 | 3.029     | 9.481  | 3.029 | 18.527 | 8.285      | 10.242 | 8.285 |
| SAM | 12.970 | 3.658     | 9.312   | 3.658 | 12.302 | 3.057     | 9.245  | 3.057 | 18.485 | 8.421      | 10.064 | 8.421 |
| VEN | 13.042 | 3.708     | 9.334   | 3.708 | 12.386 | 3.113     | 9.273  | 3.113 | 18.719 | 9.030      | 9.689  | 9.030 |
| AUS | 14.182 | 3.828     | 10.355  | 3.828 | 13.561 | 3.285     | 10.275 | 3.285 | 19.794 | 9.014      | 10.779 | 9.014 |
| CAM | 13.407 | 3.850     | 9.556   | 3.850 | 12.775 | 3.297     | 9.478  | 3.297 | 19.325 | 9.102      | 10.223 | 9.102 |
| САР | 15.079 | 3.994     | 11.085  | 3.994 | 14.472 | 3.485     | 10.987 | 3.485 | 20.710 | 9.078      | 11.632 | 9.078 |
| CHI | 14.551 | 3.839     | 10.712  | 3.839 | 13.941 | 3.303     | 10.638 | 3.303 | 20.113 | 9.386      | 10.727 | 9.386 |
| COL | 12.776 | 3.633     | 9.143   | 3.633 | 12.053 | 2.993     | 9.060  | 2.993 | 18.874 | 8.323      | 10.550 | 8.323 |
| EGS | 13.111 | 3.600     | 9.511   | 3.600 | 12.394 | 2.964     | 9.429  | 2.964 | 18.482 | 8.311      | 10.171 | 8.311 |
| INO | 14.075 | 3.812     | 10.264  | 3.812 | 13.453 | 3.266     | 10.187 | 3.266 | 20.283 | 9.704      | 10.578 | 9.704 |
| ТАР | 14.015 | 3.767     | 10.248  | 3.767 | 13.403 | 3.224     | 10.179 | 3.224 | 19.499 | 8.959      | 10.540 | 8.959 |
| MXI | 13.054 | 3.706     | 9.348   | 3.706 | 12.393 | 3.111     | 9.282  | 3.111 | 18.704 | 9.000      | 9.704  | 9.000 |
| MXM | 13.333 | 3.857     | 9.476   | 3.857 | 12.724 | 3.316     | 9.408  | 3.316 | 20.597 | 9.324      | 11.274 | 9.324 |
| NOE | 13.440 | 3.637     | 9.803   | 3.637 | 12.752 | 3.025     | 9.727  | 3.025 | 18.532 | 8.134      | 10.398 | 8.134 |
| OMN | 13.633 | 3.774     | 9.859   | 3.774 | 13.003 | 3.211     | 9.792  | 3.211 | 19.993 | 9.529      | 10.463 | 9.529 |
| RUS | 13.328 | 3.642     | 9.685   | 3.642 | 12.678 | 3.056     | 9.622  | 3.056 | 19.042 | 8.431      | 10.611 | 8.431 |
| BRT | 13.845 | 3.743     | 10.102  | 3.743 | 13.205 | 3.177     | 10.028 | 3.177 | 19.165 | 8.560      | 10.605 | 8.560 |

Stock: KMP

|     |        | N         | 11     |       |        | N          | 12     |       |        | N      | 13     |        |
|-----|--------|-----------|--------|-------|--------|------------|--------|-------|--------|--------|--------|--------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>ACE</b> | MAX    | EIG   | TRA    | ACE    | MAX    | EIG    |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1   | r=0    | r≤1    | r=0    | r=1    |
| ADM | 17.478 | 2.771     | 14.707 | 2.771 | 17.109 | 2.483      | 14.626 | 2.483 | 24.403 | 9.598  | 14.804 | 9.598  |
| ASB | 17.175 | 2.447     | 14.727 | 2.447 | 16.773 | 2.133      | 14.640 | 2.133 | 23.314 | 8.545  | 14.769 | 8.545  |
| ANC | 17.305 | 2.498     | 14.807 | 2.498 | 16.887 | 2.162      | 14.725 | 2.162 | 24.133 | 9.207  | 14.927 | 9.207  |
| DUB | 17.466 | 2.703     | 14.763 | 2.703 | 17.055 | 2.365      | 14.690 | 2.365 | 24.522 | 9.618  | 14.904 | 9.618  |
| ECU | 18.489 | 3.191     | 15.298 | 3.191 | 18.133 | 2.892      | 15.242 | 2.892 | 26.369 | 10.491 | 15.879 | 10.491 |
| IRH | 17.343 | 2.378     | 14.965 | 2.378 | 16.879 | 1.975      | 14.904 | 1.975 | 23.713 | 8.558  | 15.155 | 8.558  |
| IRL | 17.235 | 2.364     | 14.871 | 2.364 | 16.785 | 1.983      | 14.802 | 1.983 | 23.412 | 8.421  | 14.991 | 8.421  |
| KUT | 17.723 | 2.800     | 14.923 | 2.800 | 17.317 | 2.468      | 14.849 | 2.468 | 25.329 | 10.072 | 15.257 | 10.072 |
| LIB | 17.338 | 2.400     | 14.938 | 2.400 | 16.904 | 2.044      | 14.860 | 2.044 | 23.667 | 8.560  | 15.106 | 8.560  |
| NGB | 17.166 | 2.495     | 14.671 | 2.495 | 16.770 | 2.184      | 14.587 | 2.184 | 23.542 | 8.818  | 14.724 | 8.818  |
| NGE | 17.026 | 2.449     | 14.577 | 2.449 | 16.634 | 2.142      | 14.492 | 2.142 | 23.237 | 8.644  | 14.593 | 8.644  |
| DUK | 17.640 | 2.912     | 14.727 | 2.912 | 17.280 | 2.629      | 14.652 | 2.629 | 24.782 | 9.949  | 14.832 | 9.949  |
| SAH | 17.880 | 2.680     | 15.200 | 2.680 | 17.465 | 2.327      | 15.139 | 2.327 | 24.487 | 8.986  | 15.501 | 8.986  |
| SAL | 17.614 | 2.603     | 15.011 | 2.603 | 17.215 | 2.274      | 14.941 | 2.274 | 23.769 | 8.613  | 15.155 | 8.613  |
| SAM | 17.757 | 2.647     | 15.110 | 2.647 | 17.350 | 2.305      | 15.046 | 2.305 | 24.093 | 8.765  | 15.327 | 8.765  |
| VEN | 17.615 | 2.878     | 14.737 | 2.878 | 17.216 | 2.549      | 14.667 | 2.549 | 24.522 | 9.634  | 14.888 | 9.634  |
| AUS | 17.405 | 2.714     | 14.690 | 2.714 | 17.011 | 2.401      | 14.611 | 2.401 | 23.949 | 9.238  | 14.711 | 9.238  |
| CAM | 17.462 | 2.698     | 14.764 | 2.698 | 17.075 | 2.394      | 14.680 | 2.394 | 24.529 | 9.589  | 14.940 | 9.589  |
| САР | 17.602 | 2.799     | 14.803 | 2.799 | 17.227 | 2.477      | 14.750 | 2.477 | 23.626 | 8.795  | 14.830 | 8.795  |
| CHI | 17.784 | 3.019     | 14.766 | 3.019 | 17.464 | 2.782      | 14.682 | 2.782 | 25.066 | 10.233 | 14.833 | 10.233 |
| COL | 17.137 | 2.350     | 14.787 | 2.350 | 16.701 | 1.981      | 14.720 | 1.981 | 23.871 | 8.933  | 14.938 | 8.933  |
| EGS | 17.197 | 2.457     | 14.740 | 2.457 | 16.771 | 2.104      | 14.668 | 2.104 | 23.708 | 8.847  | 14.861 | 8.847  |
| INO | 17.575 | 2.796     | 14.779 | 2.796 | 17.227 | 2.531      | 14.696 | 2.531 | 24.938 | 10.048 | 14.890 | 10.048 |
| ТАР | 17.897 | 2.633     | 15.264 | 2.633 | 17.536 | 2.330      | 15.206 | 2.330 | 24.709 | 9.057  | 15.651 | 9.057  |
| MXI | 17.503 | 2.771     | 14.732 | 2.771 | 17.117 | 2.457      | 14.661 | 2.457 | 24.750 | 9.814  | 14.936 | 9.814  |
| MXM | 17.658 | 3.023     | 14.636 | 3.023 | 17.271 | 2.686      | 14.584 | 2.686 | 26.167 | 11.064 | 26.167 | 11.064 |
| NOE | 17.140 | 2.472     | 14.668 | 2.472 | 16.738 | 2.155      | 14.583 | 2.155 | 23.422 | 8.713  | 14.710 | 8.713  |
| OMN | 17.580 | 2.768     | 14.813 | 2.768 | 17.188 | 2.448      | 14.741 | 2.448 | 24.825 | 9.867  | 14.959 | 9.867  |
| RUS | 16.969 | 2.232     | 14.737 | 2.232 | 16.616 | 1.952      | 14.664 | 1.952 | 23.544 | 8.696  | 14.849 | 8.696  |
| BRT | 17.276 | 2.598     | 14.678 | 2.598 | 16.904 | 2.311      | 14.593 | 2.311 | 23.763 | 9.052  | 14.711 | 9.052  |

Stock: WMB

Sector: PIP

|     |       | N     | 11    |       |       | N     | 12    |       |        | N     | 13     |       |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------|
|     | TRA   | ACE   | MAX   | _EIG  | TRA   | ACE   | MAX   | _EIG  | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0   | r≤1   | r=0   | r=1   | r=0   | r≤1   | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 7.501 | 2.343 | 5.157 | 2.343 | 6.816 | 1.663 | 5.154 | 1.663 | 17.965 | 4.754 | 13.211 | 4.754 |
| ASB | 7.075 | 2.231 | 4.844 | 2.231 | 6.378 | 1.541 | 4.838 | 1.541 | 16.687 | 4.659 | 12.028 | 4.659 |
| ANC | 7.178 | 2.234 | 4.944 | 2.234 | 6.444 | 1.504 | 4.941 | 1.504 | 17.630 | 4.685 | 12.946 | 4.685 |
| DUB | 7.457 | 2.335 | 5.123 | 2.335 | 6.703 | 1.586 | 5.117 | 1.586 | 18.407 | 4.762 | 13.644 | 4.762 |
| ECU | 7.674 | 2.579 | 5.095 | 2.579 | 7.078 | 1.983 | 5.095 | 1.983 | 20.474 | 4.575 | 15.899 | 4.575 |
| IRH | 7.093 | 2.213 | 4.879 | 2.213 | 6.298 | 1.434 | 4.864 | 1.434 | 17.578 | 4.713 | 12.865 | 4.713 |
| IRL | 7.065 | 2.201 | 4.864 | 2.201 | 6.291 | 1.442 | 4.849 | 1.442 | 17.062 | 4.705 | 12.356 | 4.705 |
| KUT | 7.551 | 2.368 | 5.182 | 2.368 | 6.830 | 1.649 | 5.181 | 1.649 | 19.175 | 4.739 | 14.435 | 4.739 |
| LIB | 7.084 | 2.201 | 4.883 | 2.201 | 6.336 | 1.464 | 4.871 | 1.464 | 17.206 | 4.692 | 12.514 | 4.692 |
| NGB | 7.147 | 2.251 | 4.896 | 2.251 | 6.465 | 1.577 | 4.887 | 1.577 | 17.198 | 4.685 | 12.513 | 4.685 |
| NGE | 7.104 | 2.213 | 4.891 | 2.213 | 6.418 | 1.536 | 4.882 | 1.536 | 16.706 | 4.681 | 12.025 | 4.681 |
| DUK | 7.605 | 2.420 | 5.185 | 2.420 | 6.934 | 1.749 | 5.185 | 1.749 | 18.351 | 4.732 | 13.619 | 4.732 |
| SAH | 7.268 | 2.376 | 4.892 | 2.376 | 6.570 | 1.687 | 4.883 | 1.687 | 18.804 | 4.669 | 14.135 | 4.669 |
| SAL | 7.209 | 2.316 | 4.893 | 2.316 | 6.518 | 1.635 | 4.883 | 1.635 | 17.452 | 4.688 | 12.764 | 4.688 |
| SAM | 7.238 | 2.355 | 4.883 | 2.355 | 6.544 | 1.671 | 4.873 | 1.671 | 18.128 | 4.675 | 13.453 | 4.675 |
| VEN | 7.462 | 2.488 | 4.975 | 2.488 | 6.787 | 1.813 | 4.974 | 1.813 | 17.674 | 4.597 | 13.077 | 4.597 |
| AUS | 7.463 | 2.368 | 5.095 | 2.368 | 6.741 | 1.647 | 5.094 | 1.647 | 16.935 | 4.740 | 12.195 | 4.740 |
| CAM | 7.277 | 2.375 | 4.902 | 2.375 | 6.631 | 1.730 | 4.901 | 1.730 | 18.280 | 4.602 | 13.678 | 4.602 |
| САР | 7.445 | 2.472 | 4.972 | 2.472 | 6.833 | 1.864 | 4.970 | 1.864 | 16.223 | 4.696 | 11.527 | 4.696 |
| СНІ | 7.747 | 2.394 | 5.352 | 2.394 | 7.139 | 1.787 | 5.352 | 1.787 | 17.915 | 4.726 | 13.190 | 4.726 |
| COL | 6.974 | 2.158 | 4.816 | 2.158 | 6.234 | 1.430 | 4.803 | 1.430 | 17.703 | 4.637 | 13.066 | 4.637 |
| EGS | 7.145 | 2.204 | 4.942 | 2.204 | 6.414 | 1.484 | 4.929 | 1.484 | 17.396 | 4.697 | 12.699 | 4.697 |
| INO | 7.590 | 2.308 | 5.282 | 2.308 | 6.928 | 1.648 | 5.280 | 1.648 | 18.218 | 4.754 | 13.463 | 4.754 |
| ТАР | 7.334 | 2.335 | 5.000 | 2.335 | 6.747 | 1.754 | 4.992 | 1.754 | 17.786 | 4.700 | 13.085 | 4.700 |
| MXI | 7.375 | 2.381 | 4.994 | 2.381 | 6.730 | 1.738 | 6.730 | 1.738 | 18.097 | 4.610 | 13.487 | 4.610 |
| MXM | 7.766 | 2.472 | 5.293 | 2.472 | 7.111 | 1.818 | 5.293 | 1.818 | 20.402 | 4.683 | 15.719 | 4.683 |
| NOE | 7.113 | 2.237 | 4.876 | 2.237 | 6.419 | 1.551 | 4.868 | 1.551 | 16.823 | 4.667 | 12.156 | 4.667 |
| OMN | 7.542 | 2.347 | 5.195 | 2.347 | 6.815 | 1.623 | 5.192 | 1.623 | 18.496 | 4.783 | 13.713 | 4.783 |
| RUS | 6.600 | 2.094 | 4.505 | 2.094 | 5.920 | 1.467 | 4.453 | 1.467 | 17.747 | 4.336 | 13.412 | 4.336 |
| BRT | 7.234 | 2.272 | 4.962 | 2.272 | 6.577 | 1.622 | 4.955 | 1.622 | 17.119 | 4.689 | 12.430 | 4.689 |

Stock: TCLP

|     |        | N         | 11    |       |        | N     | 12    |       |        | Ν     | 13     |       |
|-----|--------|-----------|-------|-------|--------|-------|-------|-------|--------|-------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | _EIG  | TRA    | ACE   | MAX   | _EIG  | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1   | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 12.516 | 4.641     | 7.876 | 4.641 | 11.909 | 4.589 | 7.319 | 4.589 | 28.955 | 5.784 | 23.171 | 5.784 |
| ASB | 12.776 | 4.802     | 7.974 | 4.802 | 12.106 | 4.707 | 7.398 | 4.707 | 27.430 | 6.407 | 21.022 | 6.407 |
| ANC | 12.660 | 4.708     | 7.952 | 4.708 | 11.983 | 4.642 | 7.341 | 4.642 | 27.512 | 6.062 | 21.450 | 6.062 |
| DUB | 12.238 | 4.641     | 7.597 | 4.641 | 11.613 | 4.607 | 7.006 | 4.607 | 28.550 | 5.536 | 23.014 | 5.536 |
| ECU | 13.341 | 4.264     | 9.077 | 4.264 | 12.712 | 4.210 | 8.502 | 4.210 | 28.088 | 5.400 | 22.688 | 5.400 |
| IRH | 13.177 | 5.247     | 7.930 | 5.247 | 12.494 | 5.220 | 7.275 | 5.220 | 30.051 | 6.240 | 23.811 | 6.240 |
| IRL | 13.370 | 5.338     | 8.031 | 5.338 | 12.694 | 5.302 | 7.392 | 5.302 | 30.471 | 6.450 | 24.021 | 6.450 |
| KUT | 12.168 | 4.386     | 7.782 | 4.386 | 11.513 | 4.334 | 7.179 | 4.334 | 27.490 | 5.441 | 22.048 | 5.441 |
| LIB | 12.980 | 4.903     | 8.077 | 4.903 | 12.287 | 4.815 | 7.472 | 4.815 | 28.123 | 6.490 | 21.633 | 6.490 |
| NGB | 12.886 | 4.790     | 8.095 | 4.790 | 12.215 | 4.687 | 7.529 | 4.687 | 28.147 | 6.458 | 21.688 | 6.458 |
| NGE | 12.922 | 4.862     | 8.060 | 4.862 | 12.250 | 4.762 | 7.489 | 4.762 | 28.522 | 6.512 | 22.010 | 6.512 |
| DUK | 12.742 | 4.642     | 8.100 | 4.642 | 12.141 | 4.585 | 7.556 | 4.585 | 29.143 | 5.819 | 23.324 | 5.819 |
| SAH | 12.544 | 4.642     | 7.902 | 4.642 | 11.897 | 4.610 | 7.287 | 4.610 | 27.903 | 5.571 | 22.332 | 5.571 |
| SAL | 13.066 | 4.949     | 8.117 | 4.949 | 12.418 | 4.901 | 7.517 | 4.901 | 28.951 | 6.144 | 22.807 | 6.144 |
| SAM | 12.775 | 4.779     | 7.996 | 4.779 | 12.129 | 4.741 | 7.388 | 4.741 | 28.327 | 5.829 | 22.499 | 5.829 |
| VEN | 13.227 | 4.615     | 8.612 | 4.615 | 12.584 | 4.548 | 8.036 | 4.548 | 28.976 | 6.022 | 22.954 | 6.022 |
| AUS | 12.644 | 4.673     | 7.971 | 4.673 | 12.021 | 4.609 | 7.412 | 4.609 | 27.508 | 5.985 | 21.523 | 5.985 |
| CAM | 12.882 | 4.419     | 8.464 | 4.419 | 12.193 | 4.299 | 7.894 | 4.299 | 26.680 | 6.204 | 20.476 | 6.204 |
| САР | 14.729 | 5.077     | 9.652 | 5.077 | 14.099 | 4.992 | 9.107 | 4.992 | 29.503 | 7.232 | 22.270 | 7.232 |
| CHI | 13.270 | 4.481     | 8.789 | 4.481 | 12.644 | 4.383 | 8.261 | 4.383 | 27.744 | 6.152 | 21.592 | 6.152 |
| COL | 12.817 | 5.034     | 7.783 | 5.034 | 12.135 | 4.988 | 7.147 | 4.988 | 29.982 | 6.157 | 23.825 | 6.157 |
| EGS | 13.107 | 4.881     | 8.226 | 4.881 | 12.407 | 4.790 | 7.618 | 4.790 | 28.318 | 6.466 | 21.852 | 6.466 |
| INO | 12.609 | 4.500     | 8.110 | 4.500 | 11.970 | 4.411 | 7.560 | 4.411 | 28.180 | 5.871 | 22.309 | 5.871 |
| ТАР | 12.771 | 4.602     | 8.169 | 4.602 | 12.136 | 4.515 | 7.621 | 4.515 | 27.932 | 6.145 | 21.787 | 6.145 |
| MXI | 13.174 | 4.602     | 8.572 | 4.602 | 12.526 | 4.529 | 7.997 | 4.529 | 28.635 | 6.051 | 22.584 | 6.051 |
| MXM | 13.592 | 4.635     | 8.957 | 4.635 | 12.995 | 4.601 | 8.394 | 4.601 | 32.345 | 5.607 | 26.738 | 5.607 |
| NOE | 12.702 | 4.669     | 8.033 | 4.669 | 12.011 | 4.553 | 7.458 | 4.553 | 26.936 | 6.414 | 20.522 | 6.414 |
| OMN | 12.502 | 4.684     | 7.818 | 4.684 | 11.889 | 4.645 | 7.244 | 4.645 | 29.117 | 5.673 | 23.444 | 5.673 |
| RUS | 12.268 | 4.561     | 7.707 | 4.561 | 11.685 | 4.454 | 7.230 | 4.454 | 26.349 | 6.308 | 20.041 | 6.308 |
| BRT | 12.975 | 4.612     | 8.362 | 4.612 | 12.310 | 4.499 | 7.811 | 4.499 | 27.050 | 6.473 | 20.577 | 6.473 |

Stock: PAA

|     |        | N         | 11     |       |        | N         | 12     |       |        | N         | 13     |       |
|-----|--------|-----------|--------|-------|--------|-----------|--------|-------|--------|-----------|--------|-------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>CE</b> | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1       | r=0    | r=1   |
| ADM | 16.459 | 2.628     | 13.831 | 2.628 | 14.357 | 1.480     | 12.877 | 1.480 | 24.624 | 7.249     | 17.375 | 7.249 |
| ASB | 16.968 | 2.606     | 14.362 | 2.606 | 14.643 | 1.425     | 13.218 | 1.425 | 23.635 | 7.948     | 15.687 | 7.948 |
| ANC | 16.574 | 2.634     | 13.940 | 2.634 | 14.286 | 1.489     | 12.797 | 1.489 | 23.535 | 7.372     | 16.163 | 7.372 |
| DUB | 16.336 | 2.706     | 13.629 | 2.706 | 14.230 | 1.596     | 12.634 | 1.596 | 24.686 | 7.154     | 17.533 | 7.154 |
| ECU | 17.477 | 2.712     | 14.765 | 2.712 | 15.122 | 1.463     | 13.659 | 1.463 | 23.801 | 6.306     | 17.495 | 6.306 |
| IRH | 17.344 | 2.784     | 14.560 | 2.784 | 15.093 | 1.764     | 13.330 | 1.764 | 25.746 | 8.274     | 17.471 | 8.274 |
| IRL | 17.285 | 2.745     | 14.540 | 2.745 | 15.028 | 1.709     | 13.320 | 1.709 | 25.620 | 8.415     | 17.204 | 8.415 |
| KUT | 17.285 | 2.745     | 14.540 | 2.745 | 15.028 | 1.709     | 13.320 | 1.709 | 25.620 | 8.415     | 17.204 | 8.415 |
| LIB | 17.236 | 2.650     | 14.586 | 2.650 | 14.867 | 1.494     | 13.373 | 1.494 | 24.083 | 8.028     | 16.055 | 8.028 |
| NGB | 17.034 | 2.611     | 14.423 | 2.611 | 14.712 | 1.410     | 13.302 | 1.410 | 23.989 | 7.793     | 16.196 | 7.793 |
| NGE | 16.882 | 2.598     | 14.284 | 2.598 | 14.553 | 1.416     | 13.137 | 1.416 | 24.025 | 7.938     | 16.087 | 7.938 |
| DUK | 16.907 | 2.661     | 14.246 | 2.661 | 14.766 | 1.450     | 13.316 | 1.450 | 24.633 | 7.098     | 17.535 | 7.098 |
| SAH | 17.402 | 2.778     | 14.624 | 2.778 | 15.133 | 1.678     | 13.455 | 1.678 | 24.924 | 7.610     | 17.314 | 7.610 |
| SAL | 17.332 | 2.731     | 14.601 | 2.731 | 15.066 | 1.625     | 13.441 | 1.625 | 24.910 | 8.038     | 16.873 | 8.038 |
| SAM | 17.396 | 2.753     | 14.643 | 2.753 | 15.131 | 1.652     | 13.480 | 1.652 | 24.911 | 7.844     | 17.067 | 7.844 |
| VEN | 17.067 | 2.647     | 14.898 | 2.647 | 15.117 | 1.410     | 13.707 | 1.410 | 24.382 | 7.137     | 17.246 | 7.137 |
| AUS | 16.937 | 2.616     | 14.321 | 2.616 | 14.780 | 1.476     | 13.304 | 1.476 | 24.259 | 7.628     | 16.631 | 7.628 |
| CAM | 17.937 | 2.634     | 15.303 | 2.634 | 15.589 | 1.430     | 14.159 | 1.430 | 24.534 | 7.421     | 17.112 | 7.421 |
| САР | 19.393 | 2.659     | 16.734 | 2.659 | 17.097 | 1.561     | 15.536 | 1.561 | 26.482 | 8.685     | 17.797 | 8.685 |
| CHI | 17.593 | 2.635     | 14.958 | 2.635 | 15.404 | 1.417     | 13.987 | 1.417 | 24.429 | 7.272     | 17.157 | 7.272 |
| COL | 15.834 | 2.664     | 13.170 | 2.664 | 13.487 | 1.526     | 13.487 | 1.526 | 23.641 | 7.329     | 16.313 | 7.329 |
| EGS | 17.619 | 2.703     | 14.917 | 2.703 | 15.267 | 1.579     | 13.687 | 1.579 | 24.931 | 8.027     | 16.905 | 8.027 |
| INO | 16.935 | 2.664     | 14.270 | 2.664 | 14.732 | 1.478     | 13.254 | 1.478 | 24.689 | 7.225     | 17.464 | 7.225 |
| ТАР | 17.395 | 2.578     | 14.816 | 2.578 | 15.186 | 1.377     | 13.809 | 1.377 | 24.549 | 7.676     | 16.873 | 7.676 |
| MXI | 17.638 | 2.652     | 14.985 | 2.652 | 15.224 | 1.434     | 13.789 | 1.434 | 24.627 | 7.220     | 17.406 | 7.220 |
| MXM | 18.027 | 2.774     | 15.253 | 2.774 | 15.814 | 1.695     | 14.120 | 1.695 | 27.807 | 6.742     | 21.065 | 6.742 |
| NOE | 17.054 | 2.607     | 14.447 | 2.607 | 14.720 | 1.437     | 13.284 | 1.437 | 23.899 | 7.920     | 15.980 | 7.920 |
| OMN | 16.405 | 2.688     | 13.717 | 2.688 | 14.298 | 1.545     | 12.753 | 1.545 | 24.657 | 7.044     | 17.612 | 7.044 |
| RUS | 16.671 | 2.363     | 14.309 | 2.363 | 14.707 | 1.384     | 13.323 | 1.384 | 23.766 | 7.833     | 15.933 | 7.833 |
| BRT | 17.198 | 2.584     | 14.614 | 2.584 | 14.911 | 1.385     | 13.526 | 1.385 | 23.829 | 7.707     | 16.122 | 7.707 |

Stocks: OKS

|     |        | N         | 11     |       |        | N          | 12     |       |        | N     | 13     |       |
|-----|--------|-----------|--------|-------|--------|------------|--------|-------|--------|-------|--------|-------|
|     | TRA    | <b>CE</b> | MAX    | EIG   | TRA    | <b>NCE</b> | MAX    | EIG   | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 13.439 | 2.863     | 10.576 | 2.863 | 11.689 | 1.126      | 10.563 | 1.126 | 18.327 | 7.344 | 10.983 | 7.344 |
| ASB | 12.817 | 2.825     | 9.992  | 2.825 | 11.010 | 1.033      | 9.977  | 1.033 | 17.112 | 7.048 | 10.064 | 7.048 |
| ANC | 12.764 | 2.824     | 9.940  | 2.824 | 10.951 | 1.023      | 9.928  | 1.023 | 17.407 | 7.143 | 10.264 | 7.143 |
| DUB | 13.126 | 2.858     | 10.268 | 2.858 | 11.348 | 1.089      | 10.260 | 1.089 | 18.072 | 7.295 | 10.777 | 7.295 |
| ECU | 13.804 | 2.897     | 10.907 | 2.897 | 12.009 | 1.104      | 10.904 | 1.104 | 18.833 | 7.048 | 11.785 | 7.048 |
| IRH | 12.669 | 2.863     | 9.806  | 2.863 | 10.853 | 1.047      | 9.806  | 1.047 | 17.357 | 7.359 | 9.998  | 7.359 |
| IRL | 10.732 | 1.067     | 9.665  | 1.067 | 10.732 | 1.067      | 9.665  | 1.067 | 17.232 | 7.410 | 9.822  | 7.410 |
| KUT | 13.577 | 2.840     | 10.738 | 2.840 | 11.744 | 1.017      | 10.727 | 1.017 | 18.410 | 7.054 | 11.356 | 7.054 |
| LIB | 12.899 | 2.836     | 10.063 | 2.836 | 11.061 | 1.004      | 10.058 | 1.004 | 17.294 | 7.107 | 10.186 | 7.107 |
| NGB | 12.973 | 2.854     | 10.119 | 2.854 | 11.161 | 1.050      | 10.111 | 1.050 | 17.466 | 7.181 | 10.285 | 7.181 |
| NGE | 12.699 | 2.858     | 9.841  | 2.858 | 10.892 | 1.060      | 9.832  | 1.060 | 17.221 | 7.225 | 9.995  | 7.225 |
| DUK | 13.815 | 2.866     | 10.948 | 2.866 | 12.048 | 1.111      | 10.937 | 1.111 | 18.616 | 7.246 | 11.370 | 7.246 |
| SAH | 13.252 | 2.879     | 10.373 | 2.879 | 11.483 | 1.112      | 10.372 | 1.112 | 17.989 | 7.356 | 10.633 | 7.356 |
| SAL | 12.853 | 2.881     | 9.972  | 2.881 | 11.093 | 1.123      | 9.970  | 1.123 | 17.519 | 7.395 | 10.124 | 7.395 |
| SAM | 13.047 | 2.880     | 10.167 | 2.880 | 11.284 | 1.119      | 10.165 | 1.119 | 17.720 | 7.367 | 10.353 | 7.367 |
| VEN | 12.722 | 2.860     | 9.862  | 2.860 | 10.917 | 1.056      | 9.861  | 1.056 | 17.631 | 7.142 | 10.490 | 7.142 |
| AUS | 13.228 | 2.857     | 10.371 | 2.857 | 11.499 | 1.135      | 10.364 | 1.135 | 18.025 | 7.403 | 10.623 | 7.403 |
| CAM | 13.619 | 2.849     | 10.770 | 2.849 | 11.780 | 1.018      | 10.762 | 1.018 | 18.112 | 7.020 | 11.092 | 7.020 |
| САР | 14.044 | 2.893     | 11.150 | 2.893 | 12.285 | 1.135      | 11.150 | 1.135 | 18.633 | 7.431 | 11.202 | 7.431 |
| CHI | 14.051 | 2.866     | 11.185 | 2.866 | 12.321 | 1.147      | 11.174 | 1.147 | 18.929 | 7.322 | 11.607 | 7.322 |
| COL | 12.260 | 2.838     | 9.422  | 2.838 | 10.443 | 1.024      | 9.419  | 1.024 | 17.207 | 7.333 | 9.873  | 7.333 |
| EGS | 13.090 | 2.857     | 10.232 | 2.857 | 11.249 | 1.018      | 10.231 | 1.018 | 17.579 | 7.163 | 10.416 | 7.163 |
| INO | 13.198 | 2.838     | 10.359 | 2.838 | 11.467 | 1.122      | 10.345 | 1.122 | 18.357 | 7.332 | 11.024 | 7.332 |
| ТАР | 13.716 | 2.825     | 10.891 | 2.825 | 11.946 | 1.072      | 10.874 | 1.072 | 18.251 | 7.149 | 11.101 | 7.149 |
| MXI | 13.076 | 2.880     | 10.196 | 2.880 | 11.239 | 1.046      | 10.193 | 1.046 | 17.886 | 7.091 | 10.795 | 7.091 |
| MXM | 13.685 | 2.967     | 10.718 | 2.967 | 11.954 | 1.238      | 10.716 | 1.238 | 19.815 | 7.422 | 12.393 | 7.422 |
| NOE | 12.892 | 2.846     | 10.045 | 2.846 | 11.065 | 1.028      | 10.037 | 1.028 | 17.260 | 7.091 | 10.169 | 7.091 |
| OMN | 13.385 | 2.856     | 10.528 | 2.856 | 11.635 | 1.115      | 10.519 | 1.115 | 18.448 | 7.372 | 11.076 | 7.372 |
| RUS | 12.804 | 2.709     | 10.095 | 2.709 | 11.069 | 0.985      | 10.084 | 0.985 | 17.354 | 7.089 | 10.265 | 7.089 |
| BRT | 13.108 | 2.839     | 10.269 | 2.839 | 11.298 | 1.045      | 10.252 | 1.045 | 17.489 | 7.059 | 10.430 | 7.059 |

Stock: HES

|     |        | N         | 1     |       |        | N         | 12    |       |        | N          | 13     |       |
|-----|--------|-----------|-------|-------|--------|-----------|-------|-------|--------|------------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | _EIG  | TRA    | <b>CE</b> | MAX   | _EIG  | TRA    | <b>NCE</b> | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1        | r=0    | r=1   |
| ADM | 12.082 | 2.797     | 9.285 | 2.797 | 11.719 | 2.483     | 9.236 | 2.483 | 19.511 | 8.952      | 10.560 | 8.952 |
| ASB | 12.034 | 2.615     | 9.419 | 2.615 | 11.654 | 2.298     | 9.356 | 2.298 | 18.893 | 9.347      | 9.547  | 9.347 |
| ANC | 12.123 | 2.606     | 9.517 | 2.606 | 11.703 | 2.250     | 9.453 | 2.250 | 19.570 | 9.135      | 10.435 | 9.135 |
| DUB | 12.128 | 2.755     | 9.373 | 2.755 | 11.711 | 2.393     | 9.319 | 2.393 | 19.642 | 8.748      | 10.894 | 8.748 |
| ECU | 12.033 | 3.394     | 8.638 | 3.394 | 11.713 | 3.111     | 8.602 | 3.111 | 20.323 | 8.294      | 12.029 | 8.294 |
| IRH | 12.080 | 2.538     | 9.542 | 2.538 | 11.618 | 2.147     | 9.471 | 2.147 | 18.965 | 8.821      | 10.144 | 8.821 |
| IRL | 12.175 | 2.538     | 9.637 | 2.538 | 11.731 | 2.167     | 9.563 | 2.167 | 18.962 | 9.090      | 9.872  | 9.090 |
| KUT | 11.941 | 2.769     | 9.172 | 2.769 | 11.537 | 2.406     | 9.131 | 2.406 | 19.970 | 8.486      | 11.484 | 8.486 |
| LIB | 12.058 | 2.634     | 9.424 | 2.634 | 11.659 | 2.299     | 9.360 | 2.299 | 19.136 | 9.327      | 9.809  | 9.327 |
| NGB | 12.202 | 2.643     | 9.559 | 2.643 | 11.821 | 2.325     | 9.496 | 2.325 | 19.323 | 9.411      | 9.911  | 9.411 |
| NGE | 12.307 | 2.616     | 9.691 | 2.616 | 11.929 | 2.306     | 9.623 | 2.306 | 19.285 | 9.507      | 9.778  | 9.507 |
| DUK | 12.118 | 2.856     | 9.262 | 2.856 | 11.757 | 2.537     | 9.220 | 2.537 | 19.724 | 8.793      | 10.931 | 8.793 |
| SAH | 11.661 | 2.729     | 8.931 | 2.729 | 11.266 | 2.375     | 8.891 | 2.375 | 18.650 | 8.091      | 10.559 | 8.091 |
| SAL | 11.979 | 2.727     | 9.252 | 2.727 | 11.604 | 2.404     | 9.201 | 2.404 | 18.677 | 8.760      | 9.917  | 8.760 |
| SAM | 11.844 | 2.745     | 9.100 | 2.745 | 11.460 | 2.407     | 9.052 | 2.407 | 18.641 | 8.439      | 10.203 | 8.439 |
| VEN | 11.798 | 3.016     | 8.783 | 3.016 | 11.426 | 2.694     | 8.732 | 2.694 | 19.325 | 8.688      | 10.638 | 8.688 |
| AUS | 12.554 | 2.781     | 9.773 | 2.781 | 12.148 | 2.439     | 9.710 | 2.439 | 19.747 | 9.250      | 10.497 | 9.250 |
| CAM | 12.183 | 2.928     | 9.255 | 2.928 | 11.826 | 2.629     | 9.198 | 2.629 | 19.975 | 9.154      | 10.821 | 9.154 |
| САР | 11.946 | 3.019     | 8.926 | 3.019 | 11.615 | 2.740     | 8.875 | 2.740 | 18.812 | 8.343      | 10.469 | 8.343 |
| CHI | 12.071 | 2.951     | 9.120 | 2.951 | 11.763 | 2.680     | 9.083 | 2.680 | 19.800 | 8.762      | 11.038 | 8.762 |
| COL | 11.716 | 2.538     | 9.178 | 2.538 | 11.296 | 2.188     | 9.108 | 2.188 | 18.982 | 9.082      | 9.900  | 9.082 |
| EGS | 12.037 | 2.720     | 9.317 | 2.720 | 11.650 | 2.395     | 9.255 | 2.395 | 19.241 | 9.239      | 10.002 | 9.239 |
| INO | 12.107 | 2.806     | 9.301 | 2.806 | 11.765 | 2.512     | 9.253 | 2.512 | 19.955 | 8.831      | 11.124 | 8.831 |
| ТАР | 12.568 | 2.857     | 9.712 | 2.857 | 12.247 | 2.596     | 9.651 | 2.596 | 20.106 | 9.596      | 10.510 | 9.596 |
| MXI | 11.767 | 2.958     | 8.809 | 2.958 | 11.416 | 2.657     | 8.759 | 2.657 | 19.645 | 8.752      | 10.893 | 8.752 |
| MXM | 11.902 | 3.123     | 8.779 | 3.123 | 11.540 | 2.794     | 8.746 | 2.794 | 20.889 | 8.202      | 12.688 | 8.202 |
| NOE | 12.214 | 2.698     | 9.516 | 2.698 | 11.835 | 2.388     | 9.447 | 2.388 | 19.320 | 9.388      | 9.932  | 9.388 |
| OMN | 12.238 | 2.764     | 9.473 | 2.764 | 11.836 | 2.414     | 9.423 | 2.414 | 19.959 | 8.825      | 11.134 | 8.825 |
| RUS | 11.633 | 2.434     | 9.199 | 2.434 | 11.297 | 2.177     | 9.120 | 2.177 | 18.773 | 9.120      | 9.653  | 9.120 |
| BRT | 12.165 | 2.734     | 9.431 | 2.734 | 11.804 | 2.437     | 9.367 | 2.437 | 19.372 | 9.361      | 9.361  | 9.361 |

Stock: IMO

|     |        | N         | 1     |       |        | N          | 12    |       |        | N     | 13     |       |
|-----|--------|-----------|-------|-------|--------|------------|-------|-------|--------|-------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | EIG   | TRA    | <b>\CE</b> | MAX   | EIG   | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1        | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 10.319 | 3.230     | 7.089 | 3.230 | 9.963  | 3.082      | 6.881 | 3.082 | 18.385 | 6.851 | 11.534 | 6.851 |
| ASB | 10.335 | 2.967     | 7.368 | 2.967 | 9.943  | 2.803      | 7.140 | 2.803 | 17.745 | 7.124 | 10.621 | 7.124 |
| ANC | 10.442 | 3.123     | 7.319 | 3.123 | 10.015 | 2.931      | 7.084 | 2.931 | 18.642 | 7.074 | 11.568 | 7.074 |
| DUB | 10.349 | 3.237     | 7.112 | 3.237 | 9.941  | 3.055      | 3.055 | 3.055 | 18.648 | 6.886 | 11.762 | 6.886 |
| ECU | 10.571 | 3.984     | 6.587 | 3.984 | 10.244 | 3.839      | 6.405 | 3.839 | 19.685 | 6.399 | 13.286 | 6.399 |
| IRH | 10.143 | 2.933     | 7.210 | 2.933 | 9.669  | 2.708      | 6.961 | 2.708 | 17.701 | 6.927 | 10.775 | 6.927 |
| IRL | 10.216 | 2.898     | 7.318 | 2.898 | 9.760  | 2.692      | 7.068 | 2.692 | 17.602 | 7.062 | 10.540 | 7.062 |
| KUT | 10.107 | 3.315     | 6.792 | 3.315 | 9.709  | 3.120      | 6.589 | 3.120 | 18.807 | 6.581 | 12.226 | 6.581 |
| LIB | 10.202 | 2.912     | 7.290 | 2.912 | 9.791  | 2.729      | 7.062 | 2.729 | 17.755 | 7.045 | 10.711 | 7.045 |
| NGB | 10.420 | 3.043     | 7.377 | 3.043 | 10.030 | 2.879      | 7.151 | 2.879 | 18.155 | 7.147 | 11.008 | 7.147 |
| NGE | 10.436 | 3.000     | 7.436 | 3.000 | 10.049 | 2.839      | 7.210 | 2.839 | 18.021 | 7.207 | 10.814 | 7.207 |
| DUK | 10.428 | 3.376     | 7.051 | 3.376 | 10.076 | 3.230      | 6.846 | 3.230 | 18.699 | 6.824 | 11.875 | 6.824 |
| SAH | 9.931  | 3.258     | 6.672 | 3.258 | 9.517  | 3.035      | 6.481 | 3.035 | 17.658 | 6.307 | 11.351 | 6.307 |
| SAL | 10.179 | 3.167     | 7.012 | 3.167 | 9.787  | 2.985      | 6.802 | 2.985 | 17.470 | 6.770 | 10.700 | 6.770 |
| SAM | 10.096 | 3.232     | 6.864 | 3.232 | 9.693  | 3.033      | 6.660 | 3.033 | 17.562 | 6.574 | 10.988 | 6.574 |
| VEN | 10.223 | 3.370     | 6.853 | 3.370 | 9.842  | 3.204      | 6.638 | 3.204 | 18.213 | 6.622 | 11.591 | 6.622 |
| AUS | 10.407 | 3.205     | 7.202 | 3.205 | 9.996  | 3.029      | 6.967 | 3.029 | 18.120 | 6.966 | 11.154 | 6.966 |
| CAM | 10.653 | 3.363     | 7.289 | 3.363 | 10.283 | 3.221      | 7.062 | 3.221 | 19.150 | 7.041 | 12.109 | 7.041 |
| CAP | 10.482 | 3.163     | 7.319 | 3.163 | 10.145 | 3.035      | 7.110 | 3.035 | 17.536 | 6.784 | 10.752 | 6.784 |
| CHI | 10.308 | 3.473     | 6.834 | 3.473 | 10.005 | 3.348      | 6.657 | 3.348 | 18.539 | 6.637 | 11.902 | 6.637 |
| COL | 9.969  | 2.859     | 7.110 | 2.859 | 9.541  | 2.661      | 6.881 | 2.661 | 17.912 | 6.881 | 11.032 | 6.881 |
| EGS | 10.096 | 2.990     | 7.105 | 2.990 | 9.696  | 2.808      | 6.888 | 2.808 | 17.790 | 6.883 | 10.907 | 6.883 |
| INO | 10.164 | 3.270     | 6.894 | 3.270 | 9.826  | 3.120      | 6.706 | 3.120 | 18.590 | 6.705 | 11.885 | 6.705 |
| TAP | 10.406 | 3.206     | 7.200 | 3.206 | 10.077 | 3.076      | 7.001 | 3.076 | 18.412 | 6.968 | 11.444 | 6.968 |
| MXI | 10.158 | 3.309     | 6.849 | 3.309 | 9.796  | 3.151      | 6.645 | 3.151 | 18.542 | 6.634 | 11.909 | 6.634 |
| MXM | 10.098 | 3.611     | 6.487 | 3.611 | 9.733  | 3.429      | 6.305 | 3.429 | 19.772 | 6.299 | 13.473 | 6.299 |
| NOE | 10.371 | 3.002     | 7.369 | 3.002 | 9.977  | 2.839      | 7.137 | 2.839 | 17.958 | 7.117 | 10.840 | 7.117 |
| OMN | 10.438 | 3.304     | 7.134 | 3.304 | 10.044 | 3.130      | 6.914 | 3.130 | 18.935 | 6.914 | 12.021 | 6.914 |
| RUS | 9.754  | 2.744     | 7.010 | 2.744 | 9.408  | 2.607      | 6.801 | 2.607 | 17.419 | 6.801 | 10.619 | 6.801 |
| BRT | 10.588 | 3.188     | 7.400 | 3.188 | 10.223 | 3.046      | 7.177 | 3.046 | 18.452 | 7.162 | 11.290 | 7.162 |

Stock: MRO

|     |       | N     | 1     |       |       | N     | 2     |       |        | N          | 13     |       |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|--------|------------|--------|-------|
|     | TR/   | ACE   | MAX   | _EIG  | TRA   | ACE   | MAX   | _EIG  | TRA    | <b>\CE</b> | MAX    | EIG   |
| Oil | r=0   | r≤1   | r=0   | r=1   | r=0   | r≤1   | r=0   | r=1   | r=0    | r≤1        | r=0    | r=1   |
| ADM | 8.695 | 3.476 | 5.219 | 3.476 | 8.391 | 3.351 | 5.040 | 3.351 | 15.629 | 4.550      | 11.078 | 4.550 |
| ASB | 9.006 | 3.264 | 5.743 | 3.264 | 8.674 | 3.137 | 5.536 | 3.137 | 15.273 | 4.685      | 10.588 | 4.685 |
| ANC | 8.558 | 3.310 | 5.248 | 3.310 | 8.201 | 3.149 | 5.053 | 3.149 | 15.259 | 4.592      | 10.667 | 4.592 |
| DUB | 8.511 | 3.510 | 5.002 | 3.510 | 8.156 | 3.338 | 4.818 | 3.338 | 15.464 | 4.575      | 10.888 | 4.575 |
| ECU | 9.348 | 3.904 | 5.443 | 3.904 | 9.079 | 3.863 | 5.215 | 3.863 | 16.828 | 4.442      | 12.385 | 4.442 |
| IRH | 8.860 | 3.427 | 5.434 | 3.427 | 8.459 | 3.245 | 5.215 | 3.245 | 15.187 | 4.900      | 10.287 | 4.900 |
| IRL | 8.822 | 3.310 | 5.512 | 3.310 | 8.437 | 3.140 | 5.297 | 3.140 | 14.969 | 4.837      | 10.132 | 4.837 |
| KUT | 9.002 | 3.628 | 5.374 | 3.628 | 8.670 | 3.518 | 5.151 | 3.518 | 16.477 | 4.599      | 11.878 | 4.599 |
| LIB | 9.099 | 3.321 | 5.778 | 3.321 | 8.740 | 3.184 | 5.556 | 3.184 | 15.482 | 4.799      | 10.683 | 4.799 |
| NGB | 8.916 | 3.273 | 5.644 | 3.273 | 8.590 | 3.145 | 5.444 | 3.145 | 15.389 | 4.649      | 10.740 | 4.649 |
| NGE | 8.888 | 3.234 | 5.653 | 3.234 | 8.564 | 3.105 | 5.459 | 3.105 | 15.200 | 4.669      | 10.531 | 4.669 |
| DUK | 8.788 | 3.552 | 5.235 | 3.552 | 8.490 | 3.444 | 5.047 | 3.444 | 15.904 | 4.498      | 11.406 | 4.498 |
| SAH | 9.063 | 3.824 | 5.239 | 3.824 | 8.721 | 3.699 | 5.022 | 3.699 | 15.520 | 4.771      | 10.749 | 4.771 |
| SAL | 8.997 | 3.551 | 5.446 | 3.551 | 8.671 | 3.432 | 5.239 | 3.432 | 15.019 | 4.746      | 10.273 | 4.746 |
| SAM | 9.052 | 3.683 | 5.369 | 3.683 | 8.719 | 3.566 | 5.153 | 3.566 | 15.254 | 4.762      | 10.492 | 4.762 |
| VEN | 8.676 | 3.471 | 8.676 | 3.471 | 8.352 | 3.366 | 4.986 | 3.366 | 15.251 | 4.362      | 10.889 | 4.362 |
| AUS | 8.655 | 3.474 | 5.180 | 3.474 | 8.316 | 3.325 | 4.991 | 3.325 | 15.275 | 4.613      | 10.663 | 4.613 |
| CAM | 8.956 | 3.529 | 5.426 | 3.529 | 8.641 | 3.423 | 5.218 | 3.423 | 15.934 | 4.592      | 11.343 | 4.592 |
| САР | 9.414 | 3.204 | 6.210 | 3.204 | 9.120 | 3.110 | 6.010 | 3.110 | 15.161 | 4.339      | 10.822 | 4.339 |
| CHI | 9.299 | 3.599 | 5.700 | 3.599 | 9.053 | 3.534 | 5.519 | 3.534 | 16.383 | 4.520      | 11.863 | 4.520 |
| COL | 8.514 | 3.077 | 5.437 | 3.077 | 8.152 | 2.910 | 5.242 | 2.910 | 15.015 | 4.528      | 10.487 | 4.528 |
| EGS | 9.122 | 3.410 | 5.713 | 3.410 | 8.775 | 3.284 | 5.490 | 3.284 | 15.606 | 4.765      | 10.842 | 4.765 |
| INO | 9.028 | 3.521 | 5.507 | 3.521 | 8.750 | 3.427 | 5.323 | 3.427 | 16.213 | 4.614      | 11.599 | 4.614 |
| ТАР | 9.083 | 3.470 | 5.612 | 3.470 | 8.815 | 3.378 | 5.437 | 3.378 | 15.975 | 4.652      | 11.323 | 4.652 |
| MXI | 8.705 | 3.461 | 5.243 | 3.461 | 8.398 | 3.356 | 5.042 | 3.356 | 15.595 | 4.413      | 11.183 | 4.413 |
| MXM | 8.882 | 3.961 | 4.921 | 3.961 | 8.568 | 3.878 | 4.690 | 3.878 | 17.126 | 4.448      | 12.678 | 4.448 |
| NOE | 8.926 | 3.260 | 5.666 | 3.260 | 8.592 | 3.134 | 5.458 | 3.134 | 15.220 | 4.631      | 10.589 | 4.631 |
| OMN | 8.488 | 3.488 | 5.000 | 3.488 | 8.152 | 3.330 | 4.822 | 3.330 | 15.602 | 4.516      | 11.086 | 4.516 |
| RUS | 8.872 | 3.162 | 5.710 | 3.162 | 8.591 | 3.063 | 5.528 | 3.063 | 15.319 | 4.685      | 10.634 | 4.685 |
| BRT | 8.855 | 3.302 | 5.553 | 3.302 | 8.550 | 3.188 | 5.363 | 3.188 | 15.296 | 4.545      | 10.751 | 4.545 |

Stock: MUR

|     |        | N         | 1     |       |        | N         | 12    |       |        | N          | 13     |       |
|-----|--------|-----------|-------|-------|--------|-----------|-------|-------|--------|------------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | EIG   | TRA    | <b>CE</b> | MAX   | EIG   | TRA    | <b>NCE</b> | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1        | r=0    | r=1   |
| ADM | 12.131 | 2.542     | 9.589 | 2.542 | 11.813 | 2.230     | 9.583 | 2.230 | 19.250 | 7.537      | 11.713 | 7.537 |
| ASB | 11.452 | 2.316     | 9.135 | 2.316 | 11.107 | 1.979     | 9.128 | 1.979 | 17.646 | 7.513      | 10.133 | 7.513 |
| ANC | 11.459 | 2.315     | 9.144 | 2.315 | 11.083 | 1.947     | 9.136 | 1.947 | 18.264 | 7.597      | 10.667 | 7.597 |
| DUB | 12.045 | 2.496     | 9.549 | 2.496 | 11.677 | 2.134     | 9.543 | 2.134 | 19.307 | 7.533      | 11.774 | 7.533 |
| ECU | 11.889 | 3.121     | 8.768 | 3.121 | 11.609 | 2.842     | 8.767 | 2.842 | 19.785 | 8.004      | 11.781 | 8.004 |
| IRH | 11.614 | 2.317     | 9.297 | 2.317 | 11.198 | 1.912     | 9.286 | 1.912 | 18.039 | 7.612      | 10.427 | 7.612 |
| IRL | 11.780 | 2.346     | 9.434 | 2.346 | 11.379 | 1.960     | 9.419 | 1.960 | 18.031 | 7.651      | 10.380 | 7.651 |
| KUT | 12.080 | 2.588     | 9.492 | 2.588 | 11.731 | 2.242     | 9.488 | 2.242 | 19.915 | 7.773      | 12.142 | 7.773 |
| LIB | 11.491 | 2.362     | 9.129 | 2.362 | 11.118 | 1.999     | 9.119 | 1.999 | 17.818 | 7.755      | 10.063 | 7.755 |
| NGB | 11.603 | 2.390     | 9.213 | 2.390 | 11.265 | 2.060     | 9.206 | 2.060 | 18.040 | 7.620      | 10.419 | 7.620 |
| NGE | 11.612 | 2.344     | 9.268 | 2.344 | 11.275 | 2.016     | 9.259 | 2.016 | 17.873 | 7.514      | 10.359 | 7.514 |
| DUK | 12.027 | 2.593     | 9.434 | 2.593 | 11.714 | 2.283     | 9.431 | 2.283 | 19.303 | 7.484      | 11.819 | 7.484 |
| SAH | 11.369 | 2.451     | 8.918 | 2.451 | 11.019 | 2.103     | 8.917 | 2.103 | 18.103 | 7.413      | 10.690 | 7.413 |
| SAL | 11.605 | 2.447     | 9.158 | 2.447 | 11.271 | 2.118     | 9.153 | 2.118 | 17.886 | 7.407      | 10.478 | 7.407 |
| SAM | 11.488 | 2.459     | 9.029 | 2.459 | 11.147 | 2.121     | 9.026 | 2.121 | 17.952 | 7.395      | 10.558 | 7.395 |
| VEN | 11.385 | 2.727     | 8.658 | 2.727 | 11.045 | 2.393     | 8.652 | 2.393 | 18.236 | 7.707      | 10.529 | 7.707 |
| AUS | 12.046 | 2.432     | 9.614 | 2.432 | 11.698 | 2.088     | 9.610 | 2.088 | 18.831 | 7.391      | 11.440 | 7.391 |
| CAM | 11.579 | 2.567     | 9.012 | 2.567 | 11.258 | 2.251     | 9.008 | 2.251 | 18.672 | 7.821      | 10.851 | 7.821 |
| САР | 11.704 | 2.789     | 8.915 | 2.789 | 11.400 | 2.491     | 8.909 | 2.491 | 17.711 | 8.135      | 9.576  | 8.135 |
| CHI | 12.051 | 2.545     | 9.506 | 2.545 | 11.781 | 2.277     | 9.504 | 2.277 | 19.387 | 7.443      | 11.944 | 7.443 |
| COL | 11.484 | 2.384     | 9.100 | 2.384 | 11.102 | 2.016     | 9.087 | 2.016 | 18.170 | 7.950      | 10.220 | 7.950 |
| EGS | 11.506 | 2.423     | 9.084 | 2.423 | 11.146 | 2.071     | 9.075 | 2.071 | 18.065 | 7.791      | 10.274 | 7.791 |
| INO | 12.222 | 2.415     | 9.807 | 2.415 | 11.916 | 2.115     | 9.801 | 2.115 | 19.742 | 7.362      | 12.379 | 7.362 |
| ТАР | 12.578 | 2.634     | 9.944 | 2.634 | 12.305 | 2.370     | 9.935 | 2.370 | 19.610 | 8.020      | 11.590 | 8.020 |
| MXI | 11.384 | 2.686     | 8.699 | 2.686 | 11.063 | 2.369     | 8.694 | 2.369 | 18.517 | 8.024      | 10.493 | 8.024 |
| MXM | 11.748 | 2.916     | 8.832 | 2.916 | 11.422 | 2.593     | 8.829 | 2.593 | 8.829  | 7.947      | 12.261 | 7.947 |
| NOE | 11.585 | 2.401     | 9.184 | 2.401 | 11.241 | 2.066     | 9.175 | 2.066 | 17.925 | 7.783      | 10.142 | 7.783 |
| OMN | 12.123 | 2.508     | 9.615 | 2.508 | 11.775 | 2.164     | 9.610 | 2.164 | 19.580 | 7.549      | 12.031 | 7.549 |
| RUS | 10.982 | 2.227     | 8.755 | 2.227 | 10.681 | 1.949     | 8.733 | 1.949 | 17.438 | 7.987      | 9.451  | 7.987 |
| BRT | 11.485 | 2.421     | 9.064 | 2.421 | 11.167 | 2.108     | 9.058 | 2.108 | 17.952 | 7.739      | 10.213 | 7.739 |

Stock: SUN

|     |        | Μ         | 1     |       |        | N     | 12    |       |        | N     | 13     |       |
|-----|--------|-----------|-------|-------|--------|-------|-------|-------|--------|-------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | _EIG  | TRA    | ACE   | MAX   | _EIG  | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0    | r≤1   | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 11.448 | 4.249     | 7.199 | 4.249 | 11.160 | 4.249 | 6.911 | 4.249 | 17.871 | 4.589 | 13.282 | 4.589 |
| ASB | 10.876 | 4.096     | 6.780 | 4.096 | 10.551 | 4.090 | 6.461 | 4.090 | 16.484 | 4.512 | 11.973 | 4.512 |
| ANC | 10.966 | 4.434     | 6.532 | 4.434 | 10.620 | 4.433 | 6.188 | 4.433 | 17.259 | 4.764 | 12.496 | 4.764 |
| DUB | 11.271 | 4.523     | 6.748 | 4.523 | 10.936 | 4.523 | 6.412 | 4.523 | 17.889 | 4.818 | 13.071 | 4.818 |
| ECU | 11.652 | 4.444     | 7.208 | 4.444 | 11.383 | 4.435 | 6.948 | 4.435 | 18.826 | 4.517 | 14.308 | 4.517 |
| IRH | 11.413 | 4.649     | 6.764 | 4.649 | 11.024 | 4.646 | 6.378 | 4.646 | 17.415 | 5.112 | 12.303 | 5.112 |
| IRL | 11.415 | 4.495     | 6.919 | 4.495 | 11.040 | 4.490 | 6.550 | 4.490 | 17.211 | 5.018 | 12.193 | 5.018 |
| KUT | 11.183 | 4.522     | 6.662 | 4.522 | 10.859 | 4.521 | 6.338 | 4.521 | 18.298 | 4.723 | 13.575 | 4.723 |
| LIB | 10.685 | 4.176     | 6.509 | 4.176 | 10.330 | 4.168 | 6.162 | 4.168 | 16.398 | 4.599 | 11.799 | 4.599 |
| NGB | 11.343 | 4.197     | 7.146 | 4.197 | 11.025 | 4.193 | 6.832 | 4.193 | 17.285 | 4.643 | 12.642 | 4.643 |
| NGE | 11.350 | 4.165     | 7.185 | 4.165 | 11.036 | 4.160 | 6.876 | 4.160 | 17.122 | 4.642 | 12.481 | 4.642 |
| DUK | 11.505 | 4.182     | 7.323 | 4.182 | 11.222 | 4.182 | 7.040 | 4.182 | 18.066 | 4.466 | 13.599 | 4.466 |
| SAH | 11.446 | 4.660     | 6.786 | 4.660 | 11.119 | 4.659 | 6.460 | 4.659 | 17.547 | 4.911 | 12.636 | 4.911 |
| SAL | 11.555 | 4.435     | 7.120 | 4.435 | 11.243 | 4.434 | 6.809 | 4.434 | 17.181 | 4.830 | 12.351 | 4.830 |
| SAM | 11.630 | 4.576     | 7.053 | 4.576 | 11.311 | 4.576 | 6.734 | 4.576 | 17.462 | 4.916 | 12.546 | 4.916 |
| VEN | 10.698 | 4.104     | 6.594 | 4.104 | 10.380 | 4.103 | 6.276 | 4.103 | 16.900 | 4.298 | 12.601 | 4.298 |
| AUS | 10.952 | 4.093     | 6.859 | 4.093 | 10.630 | 4.092 | 6.538 | 4.092 | 16.985 | 4.386 | 12.599 | 4.386 |
| CAM | 10.950 | 4.437     | 6.513 | 4.437 | 10.645 | 4.437 | 6.208 | 4.437 | 17.460 | 4.637 | 12.823 | 4.637 |
| CAP | 11.844 | 3.881     | 7.963 | 3.881 | 11.551 | 3.878 | 7.673 | 3.878 | 17.246 | 4.181 | 13.065 | 4.181 |
| СНІ | 11.185 | 4.040     | 7.145 | 4.040 | 10.945 | 4.040 | 6.905 | 4.040 | 17.657 | 4.259 | 13.397 | 4.259 |
| COL | 10.742 | 4.127     | 6.616 | 4.127 | 10.380 | 4.114 | 6.266 | 4.114 | 16.760 | 4.634 | 12.127 | 4.634 |
| EGS | 11.015 | 4.359     | 6.656 | 4.359 | 10.673 | 4.356 | 6.317 | 4.356 | 16.966 | 4.745 | 12.221 | 4.745 |
| INO | 11.358 | 4.152     | 7.206 | 4.152 | 11.088 | 4.151 | 6.937 | 4.151 | 18.007 | 4.497 | 13.510 | 4.497 |
| ТАР | 11.208 | 3.985     | 7.223 | 3.985 | 10.951 | 3.983 | 6.968 | 3.983 | 17.376 | 4.298 | 13.079 | 4.298 |
| MXI | 10.893 | 4.183     | 6.710 | 4.183 | 10.592 | 4.183 | 6.409 | 4.183 | 17.396 | 4.411 | 12.985 | 4.411 |
| MXM | 10.270 | 4.334     | 5.936 | 4.334 | 9.962  | 4.311 | 5.651 | 4.311 | 18.066 | 4.322 | 13.743 | 4.322 |
| NOE | 10.944 | 4.194     | 6.749 | 4.194 | 10.618 | 4.189 | 6.429 | 4.189 | 16.718 | 4.603 | 12.116 | 4.603 |
| OMN | 11.183 | 4.415     | 6.768 | 4.415 | 10.863 | 4.415 | 6.449 | 4.415 | 17.887 | 4.690 | 13.197 | 4.690 |
| RUS | 10.430 | 4.466     | 5.964 | 4.466 | 10.148 | 4.453 | 5.695 | 4.453 | 16.398 | 4.846 | 11.552 | 4.846 |
| BRT | 10.866 | 4.210     | 6.656 | 4.210 | 10.568 | 4.208 | 6.359 | 4.208 | 16.765 | 4.530 | 12.235 | 4.530 |

Stock: TSO

|     |        | N         | 1     |       |       | N     | 12    |       |        | N     | 13     |       |
|-----|--------|-----------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------|
|     | TRA    | <b>CE</b> | MAX   | _EIG  | TRA   | ACE   | MAX   | _EIG  | TRA    | ACE   | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0   | r=1   | r=0   | r≤1   | r=0   | r=1   | r=0    | r≤1   | r=0    | r=1   |
| ADM | 9.724  | 3.419     | 6.305 | 3.419 | 9.416 | 3.369 | 6.047 | 3.369 | 16.872 | 4.732 | 12.140 | 4.732 |
| ASB | 9.714  | 3.404     | 6.310 | 3.404 | 9.372 | 3.334 | 6.038 | 3.334 | 16.297 | 5.007 | 11.290 | 5.007 |
| ANC | 9.620  | 3.540     | 6.080 | 3.540 | 9.258 | 3.464 | 5.794 | 3.464 | 16.776 | 5.016 | 11.760 | 5.016 |
| DUB | 9.521  | 3.538     | 5.983 | 3.538 | 9.161 | 3.470 | 5.691 | 3.470 | 16.794 | 4.851 | 11.943 | 4.851 |
| ECU | 9.923  | 3.808     | 6.115 | 3.808 | 9.644 | 3.791 | 5.853 | 3.791 | 17.666 | 4.581 | 13.085 | 4.581 |
| IRH | 10.115 | 3.724     | 6.390 | 3.724 | 9.704 | 3.641 | 6.063 | 3.641 | 17.089 | 5.463 | 11.626 | 5.463 |
| IRL | 10.015 | 3.596     | 6.419 | 3.596 | 9.619 | 3.515 | 6.104 | 3.515 | 16.739 | 5.384 | 11.355 | 5.384 |
| KUT | 9.335  | 3.629     | 5.706 | 3.629 | 8.985 | 3.565 | 5.420 | 3.565 | 17.046 | 4.739 | 12.307 | 4.739 |
| LIB | 9.702  | 3.358     | 6.344 | 3.358 | 9.331 | 3.278 | 6.054 | 3.278 | 16.378 | 5.015 | 11.363 | 5.015 |
| NGB | 9.738  | 3.361     | 6.378 | 3.361 | 9.405 | 3.295 | 6.110 | 3.295 | 16.506 | 4.923 | 11.583 | 4.923 |
| NGE | 9.704  | 3.322     | 6.382 | 3.322 | 9.375 | 3.254 | 6.120 | 3.254 | 16.303 | 4.937 | 11.366 | 4.937 |
| DUK | 9.651  | 3.476     | 6.176 | 3.476 | 9.347 | 3.431 | 5.916 | 3.431 | 16.935 | 4.645 | 12.290 | 4.645 |
| SAH | 9.821  | 3.812     | 6.009 | 3.812 | 9.471 | 3.761 | 5.711 | 3.761 | 16.704 | 5.034 | 11.670 | 5.034 |
| SAL | 9.752  | 3.558     | 6.194 | 3.558 | 9.419 | 3.501 | 5.917 | 3.501 | 16.124 | 4.984 | 11.140 | 4.984 |
| SAM | 9.866  | 3.697     | 6.168 | 3.697 | 9.524 | 3.646 | 5.879 | 3.646 | 16.466 | 5.037 | 11.428 | 5.037 |
| VEN | 9.529  | 3.514     | 6.014 | 3.514 | 9.197 | 3.469 | 5.728 | 3.469 | 16.519 | 4.692 | 11.827 | 4.692 |
| AUS | 9.518  | 3.573     | 5.945 | 3.573 | 9.171 | 3.511 | 5.661 | 3.511 | 16.442 | 4.874 | 11.568 | 4.874 |
| CAM | 10.105 | 3.735     | 6.370 | 3.735 | 9.789 | 3.692 | 6.097 | 3.692 | 17.627 | 5.039 | 12.589 | 5.039 |
| САР | 9.980  | 3.293     | 6.687 | 3.293 | 9.676 | 3.248 | 6.428 | 3.248 | 15.916 | 4.558 | 11.358 | 4.558 |
| CHI | 9.674  | 3.777     | 5.897 | 3.777 | 9.413 | 3.748 | 5.665 | 3.748 | 17.029 | 4.764 | 12.265 | 4.764 |
| COL | 9.287  | 3.151     | 6.137 | 3.151 | 8.914 | 3.058 | 5.856 | 3.058 | 16.061 | 4.803 | 11.258 | 4.803 |
| EGS | 9.910  | 3.536     | 6.374 | 3.536 | 9.553 | 3.469 | 6.085 | 3.469 | 16.813 | 5.114 | 11.699 | 5.114 |
| INO | 9.476  | 3.712     | 5.764 | 3.712 | 9.183 | 3.663 | 5.520 | 3.663 | 17.006 | 4.875 | 12.130 | 4.875 |
| ТАР | 9.651  | 3.549     | 6.101 | 3.549 | 9.375 | 3.502 | 5.874 | 3.502 | 16.780 | 4.853 | 11.927 | 4.853 |
| MXI | 9.549  | 3.515     | 6.034 | 3.515 | 9.237 | 3.464 | 5.773 | 3.464 | 16.827 | 4.730 | 12.097 | 4.730 |
| MXM | 9.617  | 3.917     | 5.700 | 3.917 | 9.292 | 3.889 | 5.404 | 3.889 | 18.285 | 4.700 | 13.585 | 4.700 |
| NOE | 9.780  | 3.339     | 6.441 | 3.339 | 9.441 | 3.270 | 6.171 | 3.270 | 16.411 | 4.940 | 11.471 | 4.940 |
| OMN | 9.445  | 3.527     | 5.918 | 3.527 | 9.103 | 3.463 | 5.640 | 3.463 | 16.860 | 4.784 | 12.075 | 4.784 |
| RUS | 9.619  | 3.431     | 6.188 | 3.431 | 9.327 | 3.354 | 5.973 | 3.354 | 16.478 | 5.170 | 11.307 | 5.170 |
| BRT | 9.610  | 3.400     | 6.209 | 3.400 | 9.293 | 3.344 | 5.949 | 3.344 | 16.271 | 4.799 | 11.472 | 4.799 |

Stock: HOC

|     |        | N         | 11     |       |        | Μ          | 2      |        |        | N          | 13     |       |
|-----|--------|-----------|--------|-------|--------|------------|--------|--------|--------|------------|--------|-------|
|     | TRA    | <b>CE</b> | MAX    | _EIG  | TRA    | <b>ACE</b> | MAX    | _EIG   | TRA    | <b>NCE</b> | MAX    | EIG   |
| Oil | r=0    | r≤1       | r=0    | r=1   | r=0    | r≤1        | r=0    | r=1    | r=0    | r≤1        | r=0    | r=1   |
| ADM | 12.657 | 3.598     | 9.059  | 3.598 | 12.354 | 3.567      | 8.787  | 3.567  | 21.591 | 6.852      | 14.739 | 6.852 |
| ASB | 13.067 | 3.596     | 9.470  | 3.596 | 12.729 | 3.561      | 9.168  | 3.561  | 21.563 | 7.355      | 14.208 | 7.355 |
| ANC | 12.747 | 3.901     | 8.846  | 3.901 | 12.380 | 3.862      | 8.518  | 3.862  | 21.978 | 7.473      | 14.505 | 7.473 |
| DUB | 12.599 | 3.738     | 8.861  | 3.738 | 12.248 | 3.702      | 8.546  | 3.702  | 21.804 | 7.089      | 14.716 | 7.089 |
| ECU | 12.436 | 4.254     | 8.182  | 4.254 | 12.150 | 4.245      | 7.905  | 4.245  | 22.011 | 6.490      | 15.520 | 6.490 |
| IRH | 13.306 | 3.983     | 9.323  | 3.983 | 12.900 | 3.939      | 8.961  | 3.939  | 22.408 | 8.033      | 14.375 | 8.033 |
| IRL | 13.290 | 3.837     | 9.453  | 3.837 | 12.900 | 3.794      | 9.106  | 3.794  | 22.121 | 7.965      | 14.156 | 7.965 |
| KUT | 12.055 | 3.835     | 8.220  | 3.835 | 11.707 | 3.799      | 7.908  | 3.799  | 21.646 | 6.798      | 14.848 | 6.798 |
| LIB | 12.714 | 3.550     | 9.164  | 3.550 | 12.348 | 3.506      | 8.842  | 3.506  | 21.270 | 7.304      | 13.966 | 7.304 |
| NGB | 12.829 | 3.644     | 9.185  | 3.644 | 12.492 | 3.608      | 8.885  | 3.608  | 21.563 | 7.340      | 14.223 | 7.340 |
| NGE | 12.943 | 3.637     | 9.306  | 3.637 | 12.611 | 3.601      | 9.011  | 3.601  | 21.561 | 7.454      | 14.107 | 7.454 |
| DUK | 12.924 | 3.723     | 9.201  | 3.723 | 12.627 | 3.698      | 8.929  | 3.698  | 22.148 | 6.875      | 15.273 | 6.875 |
| SAH | 13.080 | 4.346     | 8.734  | 4.346 | 12.730 | 4.320      | 8.411  | 4.320  | 22.172 | 7.619      | 14.553 | 7.619 |
| SAL | 13.292 | 4.007     | 9.285  | 4.007 | 12.965 | 3.980      | 8.985  | 3.980  | 21.814 | 7.663      | 14.151 | 7.663 |
| SAM | 13.241 | 4.182     | 9.059  | 4.182 | 12.903 | 4.157      | 8.746  | 4.157  | 22.000 | 7.679      | 14.321 | 7.679 |
| VEN | 12.734 | 3.850     | 8.884  | 3.850 | 12.404 | 3.828      | 8.576  | 3.828  | 21.794 | 6.992      | 14.802 | 6.992 |
| AUS | 9.295  | 0.767     | 8.528  | 0.767 | 12.788 | 3.794      | 8.994  | 3.794  | 12.444 | 3.760      | 8.684  | 3.760 |
| CAM | 13.386 | 4.171     | 9.216  | 4.171 | 13.063 | 4.150      | 8.913  | 4.150  | 23.099 | 7.524      | 15.575 | 7.524 |
| САР | 13.976 | 3.552     | 10.424 | 3.552 | 13.677 | 3.530      | 10.147 | 3.530  | 21.996 | 6.880      | 15.117 | 6.880 |
| CHI | 12.951 | 3.870     | 9.082  | 3.870 | 12.702 | 3.853      | 8.849  | 3.853  | 22.207 | 6.825      | 15.383 | 6.825 |
| COL | 12.172 | 3.399     | 8.773  | 3.399 | 11.796 | 3.3473     | 8.449  | 3.3473 | 20.957 | 7.123      | 13.834 | 7.123 |
| EGS | 12.968 | 3.826     | 9.143  | 3.826 | 12.613 | 3.789      | 8.824  | 3.789  | 21.885 | 7.514      | 14.371 | 7.514 |
| INO | 12.895 | 3.842     | 9.053  | 3.842 | 12.615 | 3.820      | 8.795  | 3.820  | 22.554 | 7.150      | 15.404 | 7.150 |
| ТАР | 12.836 | 3.622     | 9.214  | 3.622 | 12.566 | 3.596      | 8.970  | 3.596  | 21.754 | 6.908      | 14.846 | 6.908 |
| MXI | 12.889 | 3.926     | 8.963  | 3.926 | 12.578 | 3.904      | 8.674  | 3.904  | 22.384 | 7.114      | 15.271 | 7.114 |
| MXM | 12.489 | 4.333     | 8.156  | 4.333 | 12.171 | 4.316      | 7.856  | 4.316  | 23.468 | 6.839      | 16.629 | 6.839 |
| NOE | 13.348 | 3.740     | 9.608  | 3.740 | 13.007 | 3.707      | 9.300  | 3.707  | 22.155 | 7.585      | 14.569 | 7.585 |
| OMN | 12.638 | 3.801     | 8.837  | 3.801 | 12.303 | 3.767      | 8.536  | 3.767  | 22.052 | 7.095      | 14.957 | 7.095 |
| RUS | 12.467 | 3.745     | 8.723  | 3.745 | 12.180 | 3.716      | 8.464  | 3.716  | 21.413 | 7.530      | 13.883 | 7.530 |
| BRT | 13.046 | 3.797     | 9.249  | 3.797 | 12.729 | 3.769      | 8.960  | 3.769  | 21.822 | 7.362      | 14.460 | 7.362 |

Stock: SSL

|     |        | N          | 11     |       |        | N     | 12     |       |        | N      | 13     |        |
|-----|--------|------------|--------|-------|--------|-------|--------|-------|--------|--------|--------|--------|
|     | TRA    | <b>NCE</b> | MAX    | _EIG  | TRA    | ACE   | MAX    | _EIG  | TRA    | ACE    | MAX    | _EIG   |
| Oil | r=0    | r≤1        | r=0    | r=1   | r=0    | r≤1   | r=0    | r=1   | r=0    | r≤1    | r=0    | r=1    |
| ADM | 27.545 | 2.504      | 25.041 | 2.504 | 27.214 | 2.260 | 24.954 | 2.260 | 36.498 | 11.228 | 25.270 | 11.228 |
| ASB | 27.431 | 2.256      | 25.174 | 2.256 | 27.049 | 1.965 | 25.084 | 1.965 | 35.242 | 10.111 | 25.130 | 10.111 |
| ANC | 26.316 | 2.313      | 24.004 | 2.313 | 25.932 | 2.044 | 23.889 | 2.044 | 34.231 | 10.066 | 24.165 | 10.066 |
| DUB | 27.815 | 2.605      | 25.211 | 2.605 | 27.469 | 2.390 | 25.079 | 2.390 | 37.040 | 11.468 | 25.572 | 11.468 |
| ECU | 24.651 | 2.183      | 22.467 | 2.183 | 24.248 | 1.922 | 22.326 | 1.922 | 31.965 | 9.065  | 22.900 | 9.065  |
| IRH | 25.982 | 2.338      | 23.645 | 2.338 | 25.578 | 2.080 | 23.497 | 2.080 | 33.969 | 10.337 | 23.632 | 10.337 |
| IRL | 26.261 | 2.345      | 23.916 | 2.345 | 25.867 | 2.082 | 23.784 | 2.082 | 34.378 | 10.504 | 23.874 | 10.504 |
| KUT | 26.506 | 2.541      | 23.965 | 2.541 | 26.167 | 2.321 | 23.845 | 2.321 | 35.504 | 10.857 | 24.647 | 10.857 |
| LIB | 27.454 | 2.353      | 25.100 | 2.353 | 27.063 | 2.084 | 24.979 | 2.084 | 35.590 | 10.485 | 25.104 | 10.485 |
| NGB | 28.340 | 2.241      | 26.099 | 2.241 | 27.959 | 1.947 | 26.012 | 1.947 | 36.279 | 10.132 | 26.147 | 10.132 |
| NGE | 28.074 | 2.301      | 25.773 | 2.301 | 27.699 | 2.013 | 25.687 | 2.013 | 36.222 | 10.438 | 25.784 | 10.438 |
| DUK | 28.561 | 2.443      | 26.118 | 2.443 | 28.229 | 2.194 | 26.035 | 2.194 | 37.332 | 11.009 | 26.323 | 11.009 |
| SAH | 23.678 | 2.306      | 21.371 | 2.306 | 23.299 | 2.055 | 21.244 | 2.055 | 31.324 | 9.958  | 21.366 | 9.958  |
| SAL | 25.353 | 2.314      | 23.038 | 2.314 | 24.982 | 2.046 | 22.935 | 2.046 | 33.182 | 10.241 | 22.941 | 10.241 |
| SAM | 24.718 | 2.300      | 22.417 | 2.300 | 24.343 | 2.039 | 22.304 | 2.039 | 32.419 | 10.087 | 22.331 | 10.087 |
| VEN | 26.315 | 2.057      | 24.258 | 2.057 | 25.897 | 1.758 | 24.139 | 1.758 | 33.836 | 9.396  | 24.440 | 9.396  |
| AUS | 26.303 | 2.353      | 23.950 | 2.353 | 25.953 | 2.091 | 23.863 | 2.091 | 34.649 | 10.636 | 24.014 | 10.636 |
| CAM | 29.786 | 2.203      | 27.583 | 2.203 | 29.396 | 1.912 | 27.484 | 1.912 | 37.360 | 9.660  | 27.700 | 9.660  |
| САР | 25.737 | 2.183      | 23.554 | 2.183 | 25.360 | 1.881 | 23.479 | 1.881 | 33.287 | 9.803  | 23.485 | 9.803  |
| CHI | 24.507 | 2.356      | 22.150 | 2.356 | 24.175 | 2.085 | 22.091 | 2.085 | 32.878 | 22.482 | 10.396 | 22.482 |
| COL | 27.334 | 2.354      | 24.979 | 2.354 | 26.909 | 2.091 | 24.818 | 2.091 | 35.738 | 10.437 | 25.301 | 10.437 |
| EGS | 27.832 | 2.343      | 25.488 | 2.343 | 27.436 | 2.074 | 25.361 | 2.074 | 35.782 | 10.291 | 25.491 | 10.291 |
| INO | 27.589 | 2.431      | 25.158 | 2.431 | 27.255 | 2.172 | 25.082 | 2.172 | 36.559 | 10.761 | 25.798 | 10.761 |
| TAP | 29.124 | 2.337      | 26.787 | 2.337 | 28.780 | 2.052 | 26.728 | 2.052 | 37.332 | 10.500 | 26.833 | 10.500 |
| MXI | 25.997 | 2.135      | 23.862 | 2.135 | 25.582 | 1.842 | 23.740 | 1.842 | 33.761 | 9.539  | 24.222 | 9.539  |
| MXM | 27.324 | 2.353      | 24.970 | 2.353 | 26.922 | 2.124 | 24.798 | 2.124 | 36.396 | 9.932  | 26.465 | 9.932  |
| NOE | 28.249 | 2.215      | 26.034 | 2.215 | 27.858 | 1.918 | 25.940 | 1.918 | 35.925 | 9.909  | 26.016 | 9.909  |
| OMN | 28.433 | 2.614      | 25.819 | 2.614 | 28.102 | 2.394 | 25.708 | 2.394 | 37.660 | 11.453 | 26.206 | 11.453 |
| RUS | 28.675 | 2.290      | 26.384 | 2.290 | 28.370 | 2.071 | 26.299 | 2.071 | 36.592 | 10.167 | 26.426 | 10.167 |
| BRT | 27.594 | 2.360      | 25.234 | 2.360 | 27.236 | 2.088 | 25.148 | 2.088 | 25.270 | 10.466 | 25.270 | 10.466 |

# Appendix 11b: Identification of cointegrated relationship for each stock of different oil sectors and OPEC and non-OPEC crude oils

Notes: 1. Stocks and crude oils are listed horizontally and vertically, respectively. 2. M1: no constant and no drift; M2: a constant only; M3: both a constant and a drift. 3. 1s and 0s are used to indicate the existence of a cointegration relationship or not, respectively. 4. Actual values of the Trace and Maximum Eigenvalue tests are provided in Appendix 11a.

|       | STOCK | DO    |         | NE    |         | ESV   |         | RIG   |         |
|-------|-------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |       | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| ADM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| ASB   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 1       |
| ANC   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| DUB   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 1     | 1       |
| ECU   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 1     | 1       |
| IRH   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| IRL   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| KUT   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 1     | 1       |
| LIB   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| NGB   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| NGE   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 1       |
| DUK   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| SAH   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| SAL   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| SAM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | М3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| VEN   | M1    | 0     | 0       |       | 0       | 0     | 0       |       |         |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| 1     |       | · · · |         |       |         | 0     | 0       |       |         |

# Trace and Max-Eig values for DE stock prices and OPEC crude prices

|         | STOCK | ATW   |         | PKD   |         | PTEN  |         | PDE   |         |
|---------|-------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE   |       | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| ADM     | M1    | C     | 0 0     | 0     | (       | ) 0   | 0       | 0     | 0       |
|         | M2    | 1     | 0       | 0     | (       | ) 0   | 0       | 0     | 0       |
|         | M3    | 1     | 1       | 0     | (       | ) 0   | 0       | 0     | 0       |
| ASB     | M1    | C     | 0 0     | 0     | (       | ) 0   | 0       | 0     | 0       |
|         | M2    | 1     | 0       | 0     | (       | ) 0   | 0       | 1     | 0       |
|         | M3    | 1     | 1       | 0     | (       | ) 0   | 0       | 0     | 0       |
| ANC     | M1    | 0     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M2    | 1     | 0       | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
| DUB     | M1    | 0     | 0 0     | 0     | (       | ) 0   | 0       | 0     | 0       |
|         | M2    | 1     | 0       | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
| ECU     | M1    | 0     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M2    | 2     | 2 0     | 0     | (       | 0 0   | 0       | 1     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 1     | 0       |
| IRH     | M1    | 0     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M2    | 1     | 0       | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
| IRL     | M1    | C     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M2    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
| KUT     | M1    | 0     | 0 0     | 0     | (       | ) 0   | 0       | 0     | 0       |
|         | M2    | 1     | 0       | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
| LIB     | M1    | 0     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M2    | 1     | 1       | 0     | (       | 0 0   | 0       | 1     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
| NGB     | M1    | 0     | 00      | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M2    | 1     | 1       | 0     | (       | 0 0   | 0       | 1     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
| NGE     | M1    | 0     | 00      | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M2    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
| DUK     | M1    | 0     | 0       | 0     | (       | 0 0   | U       | 0     | 0       |
|         | M2    | 0     | 1       | 0     | (       | 0 0   | U       | 0     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | U       | 0     | 0       |
| SAH     | Ml    | 0     | 0       | 0     | (       | ) ()  | U       | 0     | 0       |
|         | M2    | 1     | 0       | 0     | (       | ) ()  | U       | 0     | 0       |
| C 4 T   | M3    | 1     | 1       | 0     | (       | ) ()  | U       | 0     | 0       |
| SAL     | MI    | (     | 0 0     | 0     | (       | ) ()  | U       | 0     | 0       |
|         | M2    | 1     | 0       | 0     | (       | ) ()  | U       | 0     | 0       |
| <u></u> | M3    | 1     | 1       | 0     | (       | ) ()  | U       | 0     | 0       |
| SAM     | MI    | 0     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M2    | 1     | 0       | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |
| VEN     | M1    | 0     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M2    | 1     | 0       | 0     | (       | 0 0   | 0       | 0     | 0       |
|         | M3    | 1     | 1       | 0     | (       | 0 0   | 0       | 0     | 0       |

|       | STOCK | DO    |         | NE    |         | ESV   |         | RIG   |         |
|-------|-------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |       | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| AUS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 1       |
| CAM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| I     | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| CAP   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| I     | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| I     | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| CHI   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| l     | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| I     | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| COL   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| EGS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| INO   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| TAP   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| MXI   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| MXM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 1     | 1       |
| NOE   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 1       |
| OMN   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 1     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| RUS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| BRT   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| 1     | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |

# Trace and Max-Eig values for DE stock prices and non-OPEC crude prices

|       | STOCK | ATW   |         | PKD   |         | PTEN  |         | PDE   |         |
|-------|-------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |       | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| AUS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 1     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
| CAM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 1     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 1     | 0       |
| CAP   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 1     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
| CHI   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 1     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
| COL   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
| EGS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 1       | 0     | 0       | 0     | 0       | 1     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
| INO   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 1     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 1     | 0       |
| TAP   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 1     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
| MXI   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
| MXM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 1     | 0       |
| NOE   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 1       | 0     | 0       | 0     | 0       | 1     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
| OMN   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
| RUS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |
| BRT   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| l     | M3    | 1     | 1       | 0     | 0       | 0     | 0       | 0     | 0       |

|       | STOCK    | BHI   |         | BJS   |         | HAL   |         | SII   |         |
|-------|----------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |          | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| ADM   | M1       | 0     | 0       | 0     | C       | 0 0   | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | 0       | 0 0   | 0       | 0     | 0       |
| ASB   | M1       | 0     | 0       | 0     | 0       | 0 0   | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| ANC   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0 0   | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | 0       | 0 0   | 0       | 0     | 0       |
| DUB   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| ECU   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| IRH   | M1       | 0     | 0       | 0     | C       | 0 0   | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0 0   | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | 0       | 0 0   | 0       | 0     | 0       |
| IRL   | M1       | 0     | 0       | 0     | C       | 0 0   | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| KUT   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| LIB   | MI       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0 0   | 0       | 0     | 0       |
| NCD   | M3       | 0     | 0       | 0     | 0       | 0 0   | 0       | 0     | 0       |
| NGB   | M1       | 0     | 0       | 0     | 0       | 0 0   | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| NCE   | M5       | 0     | 0       | 0     | 0       |       | 0       | 0     | 0       |
| NGE   | M1<br>M2 | 0     | 0       | 0     |         |       | 0       | 0     | 0       |
|       | M2<br>M3 | 0     | 0       | 0     |         |       | 0       | 0     | 0       |
| DUK   | M1       | 0     | 0       | 0     | 0       |       | 0       | 0     | 0       |
| DOK   | M2       | 0     | 0       | 0     | 0       |       | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | 0       |       | 0       | 0     | 0       |
| SAH   | M1       | 0     | 0       | 0     | 0       |       | 0       | 0     | 0       |
| ~~~~~ | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| SAL   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| SAM   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | М3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| VEN   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |

# Trace and Max-Eig values for ES stock prices and OPEC crude prices

|       | STOCK | WFT   |         | TESO  |         | SLB   |         | RES   |       |
|-------|-------|-------|---------|-------|---------|-------|---------|-------|-------|
| CRUDE |       | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-E |
| ADM   | M1    | (     | ) 0     | 0     | (       | ) (   | 0       | 0     | 0     |
|       | M2    |       | 2 0     | 0     | (       | ) (   | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | ) 1   | 0       | 0     | 0     |
| ASB   | M1    | (     | ) 0     | 0     | (       | ) (   | 0       | 0     | 0     |
|       | M2    |       | 0       | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | ) 1   | 0       | 0     | 0     |
| ANC   | M1    | (     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M2    |       | 0       | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | 1     | 0       | 0     | 0     |
| DUB   | M1    | (     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M2    | 1     | 2 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | ) 1   | 0       | 0     | 0     |
| ECU   | M1    | (     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M2    | 2     | 2 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | ) 1   | 0       | 0     | 0     |
| IRH   | M1    | (     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M2    |       | 0       | 0     | (       |       | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | ) 1   | 0       | 0     | 0     |
| IRL   | M1    | (     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M2    |       | 0       | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | 1     | 0       | 0     | 0     |
| KUT   | M1    | (     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M2    | 2     | 2 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | ) 1   | 0       | 0     | 0     |
| LIB   | M1    | (     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M2    |       | 0       | 0     | (       | 00    | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | ) 1   | 0       | 0     | 0     |
| NGB   | M1    | (     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M2    | 2     | 2 0     | 0     | (       | ) (   | U       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | ) 1   | 0       | 0     | 0     |
| NGE   | Ml    | (     | 0 0     | 0     | (       | ) ()  | U       | 0     | 0     |
|       | M2    | 2     | 0       | 0     | (       |       | U       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | ) 1   | U       | 0     | 0     |
| DUK   | Ml    | (     | 0 0     | 0     | (       | 0 0   | U       | 0     | 0     |
|       | M2    | 2     | 2 0     | 0     | (       | ) ()  | 0       | 0     | 0     |
| CAT   | M3    |       | 1       | 0     | (       | ) 1   | U       | 0     | 0     |
| SAH   | MI    |       | ) (     | 0     | (       | ) (   | 0       | U     | 0     |
|       | M2    | 4     | 2 0     | U     |         |       | 0       | U     | 0     |
| CAT   | M3    |       | 1       | U     |         | ) 1   | 0       | U     | 0     |
| SAL   | M1    |       | ) (     | U     | (       |       | 0       | U     | 0     |
|       | M2    |       | 2 0     | 0     | (       |       | 0       | 0     | 0     |
| CAM   | M3    |       | 1       | 0     | (       | 1     | 0       | 0     | 0     |
| SAM   | M1    | (     | 0       | 0     | (       | ) (   | 0       | 0     | 0     |
|       | M2    | 4     | 2 0     | 0     | (       | ) (   | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | 1     | 0       | 0     | 0     |
| VEN   | M1    | (     | 0 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M2    | 4     | 2 0     | 0     | (       | 0 0   | 0       | 0     | 0     |
|       | M3    |       | 1       | 0     | (       | 1     | 0       | 0     | 0     |

|       | STOCK | BHI   |         | BJS   |         | HAL   |         | SII   |         |
|-------|-------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |       | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| AUS   | M1    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| CAM   | M1    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0 0   | 0       | 0     | 0       |
| l     | M3    | 0     | 0       | 0     | C       | 00    | 0       | 0     | 0       |
| CAP   | M1    | 0     | 0       | 0     | C       | 00    | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| CHI   | M1    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| COL   | M1    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| EGS   | M1    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| INO   | M1    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| TAP   | M1    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| ТАР   | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| MXI   | M1    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| MXI   | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| MXM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| NOE   | M1    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| OMN   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| RUS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| BRT   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| 1     | M3    | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |

# Trace and Max-Eig values for ES stock prices and non-OPEC crude prices

|       | STOCK | WFT   |         | TESO  |         | SLB RES |         |       |         |
|-------|-------|-------|---------|-------|---------|---------|---------|-------|---------|
| CRUDE |       | Trace | Max-Eig | Trace | Max-Eig | Trace   | Max-Eig | Trace | Max-Eig |
| AUS   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 0       | 0     | 0       |
| CAM   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
| L     | M3    | 1     | 1       | 0     | 0       | 1       | 1       | 0     | 0       |
| CAP   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 1       | 0     | 0       |
| CHI   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 0       | 0     | 0       |
| COL   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 0       | 0     | 0       |
| EGS   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 0       | 0     | 0       |
| INO   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 0       | 0     | 0       |
| TAP   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
| ТАР   | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 1       | 0     | 0       |
| MXI   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
| MXI   | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 0       | 0     | 0       |
| MXM   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 0       | 0     | 0       |
| NOE   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 0       | 0     | 0       |
| OMN   | M1    | 0     | 0       | 0     | 0       | 0       | U       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 1       | 0       | 0     | 0       |
| RUS   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M3    | 1     | 1       | 0     | 0       | 0       | 0       | 0     | 0       |
| BRT   | M1    | 0     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
|       | M2    | 2     | 0       | 0     | 0       | 0       | 0       | 0     | 0       |
| 1     | M3    | 1     | 1       | 0     | 0       | 1       | 0       | 0     | 0       |

|       | STOCK    | EEP   |         | EP    |         | ETP   |         | KMP   |         |
|-------|----------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |          | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| ADM   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| ASB   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| ANC   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| DUB   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| ECU   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 0       |
| IRH   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| IRL   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| KUT   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| LIB   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| NGB   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| NGE   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| DUK   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| CALL  | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| SAH   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| CAT   | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| SAL   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| SAM   | M15      | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| SAM   | M1<br>M2 | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| SAM   | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| VEN   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| 1     | M3       | 0     | I 0     | I 0   | 0       | 0     | I 0     | I 0   | 0       |

# Trace and Max-Eig values for PIP stock prices and OPEC crude prices

|       | STOCK    | WMB   |         | TCLP  |         | PAA   |         | OKS   |         |
|-------|----------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |          | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| ADM   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| ASB   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| ANC   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| DUB   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| ECU   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
| IDII  | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| IKH   | MI<br>M2 | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| IDI   | M1       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| IKL   | M1<br>M2 | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 1       | 0     | 0       | 0     | 0       |
| KUT   | M1       | 0     | 0       | 0     |         | 0     | 0       | 0     | 0       |
| KUT   | M2       | 0     | 0       | 0     |         | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| LIB   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| NGB   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| NGE   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| DUK   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| SAH   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| SAL   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| SAM   | M1       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| VEN   | M1       | 0     | 0       | 0     | C       | 0     | 0       | 0     | 0       |
|       | M2       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3       | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |

|       | STOCK | EEP   |         | EP    |         | ETP   |         | KMP   |         |
|-------|-------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |       | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| AUS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| CAM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| CAP   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 1     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| CHI   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| COL   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| EGS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| INO   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| TAP   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| MXI   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| MXI   | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| MXM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 0       |
| NOE   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| OMN   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| RUS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| BRT   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| 1     | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 0     | C       |

# Trace and Max-Eig values for PIP stock prices and non-OPEC crude prices

|       | STOCK WMB |       | TCLP    |       | PAA     | OKS   |         |       |         |
|-------|-----------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |           | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| AUS   | M1        | 0     | 0       | 0     | 0       | 1     | 1       | 0     | 0       |
| CAM   | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| CAM   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 1     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| CAP   | M1        | 0     | 0       | 0     | 0       | 0     | 1       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 1     | 1       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 1     | 0       | 0     | 0       |
| CHI   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| COL   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| EGS   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| INO   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| TAP   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| MXI   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| MXM   | M1        | 0     | 0       | 0     | 0       | 1     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 1     | 1       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| NOE   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| OMN   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| RUS   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |
| BRT   | M1        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| l     | M3        | 0     | 0       | 1     | 1       | 0     | 0       | 0     | 0       |

|       | STOCK      | HES   |         | IMO   |         | MRO   |         | MUR   |         |
|-------|------------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |            | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| AUS   | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| CAM   | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| CAP   | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| CHI   | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| COL   | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| EGS   | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| INO   | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| ТАР   | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| TAP   | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| MXI   | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M3         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| МХМ   | MI         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | U     | 0       | 0     | U       | U     | U       | U     | U       |
| NOF   | M3         | 0     | 0       | 0     | 0       | 0     | 0       | U     | 0       |
| NUE   | M1<br>M2   | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | IVIZ<br>M2 | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| OMN   | N13        | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| OWIN  | N11<br>M2  | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| DIIC  | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| KUS   | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| BDT   | M1         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
| DKI   | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | M2         | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |
|       | 1113       | 0     | 0       | 0     | 0       | 0     | 0       | 0     | 0       |

# Trace and Max-Eig values for RM stock prices and non-OPEC crude prices

|       | STOCK | SUN   |         | TSO   |         | HOC   |         | SSL   |         |
|-------|-------|-------|---------|-------|---------|-------|---------|-------|---------|
| CRUDE |       | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig | Trace | Max-Eig |
| AUS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| CAM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| CAP   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| CHI   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| COL   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| EGS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| INO   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| TAP   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| MXI   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| MXM   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| NOE   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| OMN   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| RUS   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| BRT   | M1    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
|       | M2    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |
| 1     | M3    | 0     | 0       | 0     | 0       | 0     | 0       | 1     | 1       |

#### Appendix 12: Summary of news items covered.

Notes: the actual list of the news items covered can be downloaded from the Energy Information Administration's website at: www.eia.doe.gov.

Numbers represents the major oil producing regions:
(2) Middle East. (3) North Africa. (4) Sub-Saharan Africa. (5) North America. (6) South America. (7) Asia. (8) Europe.

\* Litters indicate news categories as follow:

Military conflicts. (B) Labour and social. (C) Political. (D) Environmental and Weather. (E) Economic and Business.

‡ Sources of news are represented as follow:

Associated Press (AP). Bloomberg. Deutsche Welle (DW). Down Jones (DJ). Dep. of interior Mineral Management Service (MMS). Financial Times (FT). Global Insight (GI). International Oil Daily (IOD). Lloyd's List. Los Angeles Times (LAT). The New York Times (NYT). The Wall Street Journal (WSJ). The Washington Post (WP). World Markets Research Centre (WMRC).

| Date    | Торіс                                          | Key words                                    | <b>Region</b> ◀ | Category* | Source‡ |
|---------|------------------------------------------------|----------------------------------------------|-----------------|-----------|---------|
|         |                                                |                                              |                 |           |         |
| 1997    |                                                |                                              |                 |           |         |
| Feb. 5  | Japan Oil Import                               | Japan - Oil -Tariffs                         | 2, 7            | E         | DJ      |
| Feb. 24 | Qatar Natural Gas                              | Qatar-LNG<br>Nigeria- Bony crude -           | 2               | E         | DJ      |
| Apr. 1  | Shell Oil Company                              | protest<br>Russia - British Gas -            | 4, 8            | E         | DJ      |
| May. 16 | Caspian Pipeline                               | Black Sea                                    | 8               | E         | DJ      |
| May. 20 | US energy investment<br>UN's oil for food      | Burma- oil -gas- power                       | 7, 5            | E         | DJ      |
| Jun. 4  | program                                        | Iraq-UN -Food- Oil<br>Russia - Black Sea-    | 2, 5            | С, Е      | WP      |
| Jul. 22 | Kazakstan's oil export<br>Turkey's purchase of | Export                                       | 7, 8            | E         | DJ      |
| Jul. 23 | Iran's Gas<br>Colombia National Oil            | Iran-Turkey- Sanction<br>force majeure- oil- | 2, 8            | С, Е      | DJ      |
| Aug. 4  | Company<br>UN's oil for food                   | attacks                                      | 6               | Α, Ε      | DJ      |
| Aug. 8  | program                                        | Price-Iraq-Gulf                              | 2               | С, Е      | DJ      |
| Sep. 12 | UN Security council                            | Iraq-US- UN                                  | 2               | С, Е      | DJ      |
| Oct. 29 | Iraqi Government                               | US - UN - Iraq                               | 2               | С, Е      | DJ      |
| Nov. 20 | Iraqi Government<br>OPEC production            | US - UN - Iraq<br>OPEC-quota- Saudi -        | 2               | С, Е      | DJ      |
| Nov. 29 | increase                                       | Iran                                         | 2, 3, 6         | E         | NYT     |
| Dec. 4  | Iraq-UN relationship<br>Kyoto Climate          | Oil-food-Kofi Annan                          | 2               | С, Е      | WP, NYT |
| Dec. 11 | Conference                                     | greenhouse- US-Japan                         | 1               | D         | DJ      |
| 1998    |                                                | S. Korea- refiner - oil                      |                 |           |         |
| Jan. 7  | Asian Economic crisis                          | supply<br>fresh water- oil -                 | 7               | E         | DJ      |
| Jan. 15 | Antarctic protection                           | exploration                                  | 5, 8            | D, E      | WP      |

|         |                                              | native American -                              |         |      |                       |
|---------|----------------------------------------------|------------------------------------------------|---------|------|-----------------------|
| Feb. 5  | US oil exploration                           | judge - oil                                    | 5       | D, E | DJ                    |
| Feb. 20 | UN oil-for-food program                      | Iraq- oil- export<br>production cut- Saudi -   | 2       | С, Е | DJ<br>DJ, WSJ,        |
| Mar. 31 | OPEC meeting<br>Atlantic Bichfield           | İran<br>acquire- Kazakhstan-                   | 1       | E    | NYT                   |
| May. 4  | Company                                      | oil-gas<br>Pakistan- India-                    | 2, 5, 8 | E    | NYT, WSJ              |
| May. 11 | India Nuclear Tests                          | underground<br>Iraq- oil production-           | 2, 7    | С    | WP, DJ                |
| Jun. 19 | UN oil-for-food program                      | spare parts<br>oil production- Russia-         | 2       | С, Е | NYT, DJ               |
| Jun. 24 | OPEC meeting                                 | Oman<br>largest oil merger-take                | 1       | E    | WSJ, NYT<br>NYT, WSJ, |
| Aug. 11 | BP acquires Amoco<br>S. Korea's oil refining | over<br>deregulation- foreign                  | all     | E    | WP                    |
| Oct. 1  | sector<br>EU and car makers                  | investment<br>emission- carbon                 | 7       | E    | DJ                    |
| Oct. 7  | relationship                                 | dioxide                                        | 8       | D, E | WP                    |
| Oct. 28 | Nippon Oil Company                           | Japan - Oil -merger                            | 7       | E    | WSJ                   |
| Dec. 2  | Exxon buys Mobil<br>Colombian gasoline       | Oil- Largest- profit<br>float-gasoline-diesel- | all     | E    | DJ                    |
| Dec. 23 | pricing                                      | price fixing                                   | 6       | E    | DJ                    |
| 1999    |                                              | US- Largest- gasoline                          |         |      |                       |
| Jan. 1  | BP-Amoco merger<br>Eni and Gazprom build     | stations<br>Russia-Turkey-Italy-               | all     | E    | DJ                    |
| Feb. 4  | pipeline                                     | Black Sea<br>US- Saudi - gas- oil -            | 2, 8    | E    | Asian WSJ             |
| Feb. 10 | US energy                                    | investment<br>OPEC- non OPEC - oil             | 2, 5    | С, Е | DJ, WSJ               |
| Mar. 23 | Oil prices                                   | out put<br>merger- energy                      | 1       | E    | NYT                   |
| Mar. 31 | BP Amoco buys Arco                           | company - US<br>Libya- UN - oil                | all     | E    | DJ, WSJ               |
| Apr. 5  | Pan Am Flight 103                            | production<br>strategic reserve - Gulf         | 2, 5, 8 | С, Е | DJ                    |
| Apr. 15 | US Energy                                    | - Mexico<br>Azerbaijan - Georgia -             | 5       | E    | DJ                    |
| Apr. 17 | Oil Pipeline                                 | Caspian Sea<br>Mobil- crude swap -             | 2, 8    | E    | DJ                    |
| Apr. 28 | US-Iran relationship                         | Treasury Office<br>emission- US- SUV –         | 2, 5    | С, Е | DJ, WP                |
| May. 1  | US emission cuts                             | EPA<br>Argentina - Spanish -                   | 5, 8    | D    | DJ                    |
| May. 10 | YPF Oil Company                              | oil - Repsol<br>Novorossisk - Russian -        | 6, 8    | E    | WSJ                   |
| May. 12 | Caspian Pipeline                             | capacity                                       | 2, 8    | E    | DJ                    |
| May. 17 | Environmental issues                         | EPA- emission- sulfur<br>shareholder-European- | 5, 8    | D    | DJ                    |
| May. 27 | Exxon-Mobil merger                           | Chairman<br>Kordofan-pipeline-Red              | all     | E    | DJ                    |
| Jun. 1  | Sudan oil exports                            | Sea                                            | 2, 3, 4 | E    | DJ                    |

|         |                                                  | Saudi- ani-dumping -                               |      |      | DJ, WP,         |
|---------|--------------------------------------------------|----------------------------------------------------|------|------|-----------------|
| Aug. 9  | US Dep. Of Commerce<br>Total Fina and Elf        | investigation                                      | 2, 5 | E    | NYT             |
| Sep. 14 | Aquitaine merger                                 | merger- oil - takeover<br>crude oil - Lukman –     | all  | E    | WP, WSJ         |
| Sep. 22 | OPEC meeting                                     | Saudi<br>oilfield - crude oil –                    | 1    | С, Е | DJ              |
| Sep. 28 | Iranian oil industry                             | barrel<br>uranium - processing                     | 2    | С, Е | DJ              |
| Sep. 30 | Japan nuclear accidents<br>UN-Iraqi oil-for-food | plant<br>UN - calling-                             | 7    | D    | DJ, WSJ         |
| Oct. 4  | program                                          | adjustment<br>Turkey - Azerbajan –                 | 2    | С, Е | DJ              |
| Nov. 18 | Caspian Pipeline                                 | Georgia<br>approval - FTC –                        | 2, 8 | E    | WP, NYT         |
| Nov. 30 | Exxon Mobil merger                               | refinery<br>California - sulfur –                  | all  | E    | DJ              |
| Dec. 10 | Environmental issues                             | gasoline                                           | 9, 8 | D    | WSJ             |
| Dec. 21 | Export-Import Bank                               | Russia- oil - bankruptcy<br>petroleum - American - | 8    | E    | DJ              |
| Dec. 31 | Panama Canal Zone<br>The Sable Offshore          | sovereignty<br>ExxonMobil - gas -                  | 6    | С, Е | DJ              |
| Dec. 31 | Project                                          | Nova Scotia<br>Yeltsin - resign - Putin -          | 5    | E    | DJ              |
| Dec. 31 | Russian Politics                                 | State Duma                                         | 8    | С, Е | DJ              |
| 2000    |                                                  |                                                    |      |      |                 |
|         |                                                  | Energy - control system                            |      |      |                 |
| Jan. 7  | Y2K Bug                                          | - problem<br>Iraq- IAEA - weapon                   | all  | E    | DJ, WP          |
| Jan. 26 | UN appointment of Blix                           | inspection<br>restrict competition -               | 2    | С    | DJ              |
| Feb. 2  | BP Amoco merger<br>Interstate natural gas        | west cost<br>FERC - policy changes -               | all  | E    | WSJ, WP         |
| Feb. 9  | pipeline                                         | deregulation<br>US - Supreme Court -               | 5    | E    | DJ              |
| Mar. 6  | Regulations                                      | oil tankers<br>WTI - NYMEX - highest               | 5    | E    | WP, NYT         |
| Mar. 7  | Oil futures market<br>Phillips Petroleum         | - barrel<br>Atlantic Richfield -                   | all  | E    | WSJ<br>DJ, NYT, |
| Mar. 15 | purchase                                         | Alaska - BP Amoco<br>Clinton - MTBE -              | all  | E    | WSJ             |
| Mar. 20 | US Energy policy                                 | gasoline -additive<br>Putin - Yeltsin -            | 5    | D    | DJ              |
| Mar. 26 | Russian Politics                                 | resignation<br>Saudi - UN - Mexico -               | 8    | С    | DJ              |
| Mar. 28 | OPEC meeting<br>Saudi and major oil              | Norway<br>tax rate - package -                     | 1    | E    | DJ              |
| Apr. 12 | firms meeting                                    | ownership<br>FTC - Atlantic Richfield              | all  | E    | WP              |
| Apr. 14 | BP Amoco<br>Major oil find in                    | - approval<br>Kashagan - offshore -                | all  | E    | WP, WSJ         |
| May. 16 | Kazakhstan                                       | Baku-Ceyhan                                        | 5, 8 | E    | WP, DJ          |
| May. 17 | Environmental issues                             | EPA - sulfur - diesel                              | 5, 8 | D    | DJ              |
|         |                                           | fuel                                              |         |      |                |
|---------|-------------------------------------------|---------------------------------------------------|---------|------|----------------|
|         |                                           | National Wildlife                                 |         |      |                |
| May. 17 | Arctic oil reserves<br>Chad-Cameroon      | Refuge - recoverable<br>World Bank - oil -        | 5, 8    | D, E | WSJ            |
| Jun. 6  | pipeline loan                             | project                                           | 4       | В, Е | DJ             |
| Jun. 8  | Brazilian oil exploration                 | auction - books                                   | 6       | E    | NYT            |
| Jun. 9  | cooperation                               | deepwater - doughnut<br>nuclear - utilities -     | 5, 6    | E    | DJ             |
| Jun. 15 | German Energy plans                       | fossil fuel<br>EIA - Midwest - price              | 8       | E    | DJ             |
| Jun. 19 | Prices of gasoline                        | rise<br>Vienna - production                       | all     | E    | DJ             |
| Jun. 21 | OPEC meeting                              | quotas - NYMEX<br>offshore - mineral              | 1       | E    | DJ             |
| Jul. 12 | Saudi-Kuwaiti treaty                      | rights - Khafji - Dorra<br>South Pars gas field - | 2       | С, Е | DJ             |
| Jul. 27 | ENI and Iranian deal                      | operational<br>Chavez - reelection -              | 2       | С, Е | IJ             |
| Jul. 30 | Venezuelan politics<br>Iragi -Venezuelan  | vote<br>Chavez - Saddam -                         | 6       | С    | IJ             |
| Aug. 10 | relationship<br>EIA reporting on oil      | Baghdad - OPEC<br>US - crude oil - lowest -       | 1       | С, Е | NYT, WP        |
| Aug. 23 | stock levels                              | NYMEX<br>contracts - heating oil -                | all     | E    | DJ             |
| Aug. 30 | US Dep. of Energy                         | Woodbridge<br>blockade - oil refineries           | 5       | E    | DJ             |
| Sep. 8  | Britain truck drivers                     | - France<br>OPEC - Vienna -                       | 8       | В, Е | DJ             |
| Sep. 10 | OPEC meeting                              | production - quota<br>NYMEX - Irag - Kuwait -     | 1       | E    | DJ             |
| Sep. 20 | Oil price raise<br>US strategic Petroleum | tensions<br>Clinton - swap -                      | all     | E    | DJ             |
| Sep. 22 | Reserve                                   | heating oil - delivery<br>OPEC - production -     | 5       | E    | DJ             |
| Sep. 26 | OPEC meeting                              | quota<br>UN - invasion - claim -                  | 1       | E    | IJ             |
| Sep. 28 | Iraq-Kuwait relationship                  | oil sale<br>US - warship - Yemeni -               | 2       | С, Е | DJ             |
| Oct. 12 | Oil prices<br>Chevron purchase of         | NYMEX<br>deal - merger - oil - gas                | all     | E    | WSJ            |
| Oct. 15 | Texaco<br>OPEC production                 | - antitrust                                       | all     | E    | WSJ<br>DJ. WP. |
| Oct. 30 | increase                                  | spare production<br>Furo - oil - invasion -       | 1       | E    | WSJ            |
| Oct. 31 | program                                   | Kuwait<br>Russia - Getty                          | 2       | С, Е | DJ             |
| Nov. 3  | Lukoil company                            | Petroleum - takeover                              | 8       | E    | DJ             |
| Nov. 12 | OPEC meeting                              | Basket of crudes<br>oil - marketing -             | 1       | E    | NYT, WSJ       |
| Nov. 16 | Irag oil production                       | cargoes - UN                                      | 2       | B, E | DJ             |
| Nov. 26 | Kyoto Protocol                            | -<br>carbon - the Hague -                         | 5, 7, 8 | D    | WP, WSJ,       |
|         |                                           | -                                                 |         |      |                |

|         |                                                     | emissions trading                               |      |      | NYT                   |
|---------|-----------------------------------------------------|-------------------------------------------------|------|------|-----------------------|
|         |                                                     | Fox- Petroleum -                                |      |      |                       |
| Dec. 1  | Mexico politics<br>Energy shortages in              | Ernesto Martens<br>utilities - hydroelectric    | 6    | С    | DJ                    |
| Dec. 4  | California                                          | - nuclear<br>six month extension -              | 5    | В, Е | DJ                    |
| Dec. 5  | UN oil-for-food program                             | Security Council                                | 2    | С    | DJ                    |
| Dec. 16 | power plant                                         | accident - damaged<br>diesel - FPA - new        | 8    | D    | DJ                    |
| Dec. 21 | Sulfur content in fuel<br>Natural gas prices in the | regulation - Oil<br>cold weather- stock         | 5, 8 | D    | DJ                    |
| Dec. 27 | US                                                  | draws - US<br>Chavez - Calderon -               | 5    | D, E | DJ                    |
| Dec. 27 | Venezuelan politics                                 | Minister - Petroleum<br>Naimi - Vienna -        | 6    | С    | DJ                    |
| Dec. 31 | OPEC production cuts                                | inflation - basket                              | 1    | E    | DJ                    |
| 2001    |                                                     | Clinton - White House -                         |      |      |                       |
| Jan. 10 | Arctic oil reserves                                 | ANWR - drilling<br>Vienna - production          | 8, 5 | D, E | DJ                    |
| Jan. 17 | OPEC meeting                                        | quotas - capacity<br>Bush - sworn -             | 1    | E    | NYT, WP               |
| Jan. 20 | US Politics                                         | President - Energy<br>Supreme court - major     | 5    | С    | WP                    |
| Feb. 20 | Environmental issues                                | oil companies<br>EPA - Clinton - sulfur -       | 5    | D    | DJ, WSJ               |
| Feb. 28 | Environmental issues                                | diesel fuel<br>Caspian Sea - tests -            | 5    | D    | DJ                    |
| Mar. 4  | Kashagan oil field                                  | Tengiz field<br>US - heating oil -              | 2, 8 | E    | WSJ<br>US Dep. of     |
| Mar. 6  | US Energy                                           | Abraham - reserve<br>oil rig - offshore -       | 5    | E    | Energy                |
| Mar. 15 | Brazilian oil exploration                           | explosion - platform<br>cut - price collapse -  | 6    | D, E | WSJ                   |
| Mar. 17 | OPEC meeting                                        | weakening demand<br>Prime Minister -            | 1    | E    | WSJ                   |
| Mar. 26 | Kazakstan's oil export                              | pipeline - Tengiz field<br>seabed - Gulf of     | 2, 8 | E    | NYT                   |
| Apr. 17 | US oil exploration                                  | Mexico - auction<br>fossil fuels - nuclear      | 5    | E    | USAT                  |
| Apr. 30 | US Energy policy                                    | power - coal -oil<br>Bush - oil -gas -          | 5    | E    | WSJ, USAT<br>LAT, WP, |
| May. 17 | US Energy policy<br>Saudi and maior oil             | electricity grid<br>gas initiative -            | 5    | E    | WSJ                   |
| May. 18 | firms meeting                                       | ExxonMobil - BP<br>India - power                | all  | E    | WMO                   |
| May. 21 | Enron Corporation<br>Natural gas futures            | generating - venture<br>plunge - growth -       | 5, 7 | E    | WSJ                   |
| May. 29 | market                                              | British thermal unit<br>crude oil export - UN - | all  | E    | LAT                   |
| Jun. 3  | Iraqi Government                                    | OPEC                                            | 1    | E    | NYT                   |
| Jun. 5  | OPEC meeting                                        | OPEC - oil - quota -                            | 1    | E    | LAT                   |

|          |                          | suspension                 |      |         |            |
|----------|--------------------------|----------------------------|------|---------|------------|
|          |                          | Trinidad - platform -      |      |         |            |
| Jun. 7   | BP oil exploration       | offshore                   | 6    | E       | DJ         |
|          |                          | ownership - Red Sea -      |      |         |            |
| Jun. 11  | Saudi oil industry       | asset - pipeline           | 2    | E       | DJ         |
|          | ExxonMobil and Oatar     | sign - letter of intent -  |      |         |            |
| lun 15   | Petroleum                | plant                      | all  | F       | OD         |
| Jun: 15  |                          | Iran - Darquain -          | un   | L       | 00         |
| lun 30   | Eni oil exploration      | foreign                    | 2    | F       | IAT        |
| Jun. 30  |                          | Socurity Council           | 2    | L       |            |
| 1.1.2    | LIN and Irag             | Bussian export             | 2    | C       | \A/C1      |
| Jul. 2   | on and haq               |                            | 2    | C       | VV 3J      |
| 1.1.2    | ODEC mosting             | OPEC - YUOLA - CUL -       | 1    | r.      |            |
| Jul. 3   | OPEC meeting             | production                 | 1    | E       | VVP        |
|          | Australia and East Timer | Oli - gas -royallies -     | 7    | F       |            |
| Jul. 5   | Australia and East Timor | Indonesia                  | /    | E       | VV SJ      |
|          | Amerada Hess acquire     | West Africa - Latin        |      | -       | <b>D</b> 1 |
| Jul. 10  | Triton Energy            | America - exploration      | all  | E       | DJ         |
| Jul. 11  | Iraq oil production      | food - oil – halt          | 2    | С, Е    | NYT        |
|          |                          | warship - Caspian -        |      |         |            |
| Jul. 24  | Iranian threaten BP      | vessels - Baku             | 2    | А       | NYT        |
|          |                          | price - basket -           |      |         |            |
| Jul. 25  | OPEC meeting             | declining - futures        | 1    | E       | DJ         |
|          |                          | Wahid - successor -        |      |         |            |
| Jul. 26  | Indonesian politics      | Sukarnoputri               | 7    | С       | AP         |
|          | US Sanctions on Libya    | investment - Act - Bush    |      |         |            |
| Aug. 3   | and Iran                 | - petroleum                | 2, 5 | С, Е    | NYT        |
| U        |                          | capacity - oil - Annan -   |      |         |            |
| Aug. 10  | UN - Iragi relationship  | investment                 | 2    | C. E    | WMO        |
|          | Chevron purchase of      | approves - Equilon -       |      | -, -    |            |
| Sep. 7   | Техасо                   | Motiva                     | all  | F       | DI         |
|          |                          | World Trade Center -       |      | _       |            |
| Sep 11   | 9-11 terrorist attack    | Pentagon - aviation        | all  | ACE     | NYT        |
| oop: 11  |                          | gasoline - Brent -         |      | ,,,,,,, |            |
| Sen 13   | Crude Oil Market         | energy - Houston           | all  | F       | WMO        |
| Sep. 15  |                          | NVMEX - trading -          | un   | L       | WINO       |
| Sen 17   | Crude Oil Market         | reopen                     | الد  | F       | NVT        |
| Jep. 17  | cidde on Market          | crude oil - demand -       | an   | L       |            |
| Sont 21  | Oil futures market       | NVMEX - delivery           | الد  | F       | וח דעו     |
| 3ept. 24 | On futures market        |                            | an   | L       | NTI, DJ    |
| Son 27   | ODEC monting             | production quoto           | 1    | E.      | NIVT       |
| Sep. 27  | OPEC meeting             | production - quota         | T    | E       | INTI       |
|          |                          | trans-Alaska - pipeline -  | -11  | F       |            |
| Uct. 7   | Crude OII Market         | mischier<br>tankan laadina | an   | E       | DJ         |
| 0.4.45   |                          | tanker - loading -         | 2    | -       | Deuteur    |
| Uct. 15  | Kazakstan's oli export   | pipeline - Caspian         | 2    | E       | Reuters    |
|          |                          | Coast Guard - ban -        | _    | _       | <b>_</b>   |
| Oct. 16  | US Energy politics       | LNG - tanker               | 5    | E       | Reuters    |
|          |                          | delivery - NYMEX -         |      |         |            |
| Oct. 18  | Oil Market               | London - Light - sweet     | all  | E       | OD         |
|          | Russian oil fields       | ExxonMobil - offshore -    |      |         |            |
| Oct. 29  | development              | oil -gas                   | 5, 8 | E       | WSJ, NYT   |
|          |                          | NYMEX - OPEC-              |      |         |            |
| Nov. 6   | Crude Oil Market         | exporters - spiral         | 1    | E       | NYT        |
|          |                          | electricity -natural gas   |      |         |            |
| Nov. 9   | Enron Corporation        | – Dynegy                   | 5    | E       | WMO        |

|         |                         | Morocco - agreement -      |         |         |             |
|---------|-------------------------|----------------------------|---------|---------|-------------|
| Nov. 10 | Kyoto implementation    | climate change             | 5, 7, 8 | D       | OD          |
|         | US strategic Petroleum  | Bush - capacity -          |         |         |             |
| Nov. 13 | Reserve                 | shortages - disruption     | 5       | E       | Reuters     |
|         |                         | OPEC - Vienna -            |         |         |             |
| Nov. 14 | OPEC meeting            | production - quota         | 1       | E       | DJ          |
|         |                         | US - gasoline - reserves   |         |         |             |
| Nov. 18 | Phillips-Conoco merger  | – refiner                  | all     | E       | NYT         |
|         |                         | dual use - Iraq - oil-for- |         |         |             |
| Nov. 29 | UN Security council     | food                       | 2       |         | WP, DJ      |
|         |                         | Chapter 11 - Dynegy -      |         |         |             |
| Dec. 2  | Enron bankruptcy        | merger - lawsuit           | 5       |         | DJ          |
|         |                         | NYMEX - weekend -          |         |         |             |
| Dec. 26 | Crude Oil Market        | OPEC -price                | all     | С, Е    | NYT         |
|         |                         | Cairo -output -Oman –      |         |         |             |
| Dec. 28 | OPEC meeting            | Norway                     | 1       | E       | DJ, Reuters |
| 2002    |                         |                            |         |         |             |
|         |                         | OPEC - production -        |         |         |             |
| Jan. 1  | OPEC meeting            | quota                      | 1       | E       | Reuters     |
|         | 5                       | Abraham - vehicles -       |         |         |             |
| Jan. 9  | US Energy policy        | new generation             | 5       | D       | WP, NYT     |
|         | 571 <i>7</i>            | bidding - royalty-in-      |         |         | ,           |
| Jan. 22 | US Energy dep.          | kind - Bush                | 5       | E       | Reuters     |
|         |                         | Bush - union - Iran -      |         |         |             |
| Jan. 29 | US Politics             | Irag                       | 5       | С       | NYT         |
|         |                         | inspection - weapons -     |         |         |             |
| Feb. 13 | UN - Iragi relationship | action                     | 2.5     | С       | Reuters     |
|         |                         | Mexico - Norway -          | , -     |         |             |
| Mar. 6  | non-OPEC meeting        | Oman - Gulf                | 1       | E       | Reuters     |
|         |                         | NYMEX - Light - sweet -    |         |         |             |
| Mar. 7  | Crude Oil Market        | OPEC - Sep. 11             | all     | E       | OD          |
|         |                         | shareholder- oil -         |         |         |             |
| Mar. 12 | Phillips-Conoco merger  | refiner - equivalent       | all     | E       | AP          |
|         |                         | Vienna - quota -           |         |         |             |
| Mar. 15 | OPEC meeting            | restriction                | 1       | E       | NYT         |
|         | 5                       | oil - cut - non-OPEC -     |         |         |             |
| Mar. 20 | Russia oil production   | cooperative                | 8       | E       | NYT         |
|         |                         | natural gas - kerosene -   |         |         |             |
| Apr. 1  | India energy sector     | downstream                 | 7       | E       | Reuters     |
|         |                         | Enterprise Oil -cash -     |         |         |             |
| Apr. 2  | Royal Dutch/Shell       | North Sea                  | 8       | E       | NYT         |
|         | Venezuela Oil           | shipment - synthetic       |         |         |             |
| Apr. 3  | Production              | crude - refinery           | 6       | E       | Reuters     |
|         |                         | National Union - Army      |         |         |             |
| Apr. 4  | Angola stability        | - demobilization           | 4       | А       | NYT         |
|         | Venezuela Oil           | workers - terminals -      |         |         |             |
| Apr. 5  | Production              | Chavez -refining           | 6       | С, Е    | AP          |
|         | Iraqi oil-for-food      | OPEC - exports -           |         |         |             |
| Apr. 8  | program                 | Palestinians' struggle     | 1, 2    | С, Е    | WSJ         |
|         |                         | military - factories -     |         |         | WP, WSJ,    |
| Apr. 9  | Venezuela Politics      | Chavez - strike            | 6       | A, C, E | Reuters, AP |
|         |                         | summit - leaders -five     |         |         |             |
| Apr. 24 | Caspian Pipeline        | states                     | 2, 8    | E       | Reuters     |
| May. 8  | Iraq oil production     | crude oil - export         | 2       | С, Е    | Reuters     |
|         |                         |                            |         |         |             |

|         |                                                  | terminals - proposals                           |      |      |             |
|---------|--------------------------------------------------|-------------------------------------------------|------|------|-------------|
|         | Iragi oil-for-food                               | Council - UN - suppliers                        |      |      |             |
| May. 14 | program                                          | - revenues<br>OPEC - export cut -               | 2    | С, Е | Reuters     |
| May. 17 | Russian Politics                                 | quarter<br>Bush - Putin - energy -              | 1, 8 | С, Е | WMRC        |
| May. 24 | US-Russian relationship                          | partnership                                     | 5, 8 | С, Е | NYT         |
| May. 28 | US Energy Policy                                 | buy back lease - oil -gas                       | 5    | E    | OD          |
| Jun. 20 | Norway oil production                            | restriction - oil - OPEC                        | 1, 8 | E    | Reuters     |
| Jun. 25 | Russian oil production                           | OPEC - oil - capacity                           | 1, 8 | E    | Reuters     |
| Jun. 26 | OPEC meeting<br>OPEC and Mexico                  | Vienna - Iraq - quota<br>agreement - exports -  | 1    | E    | NYT, DJ     |
| Jun. 27 | cooperation<br>non-OPEC oil                      | national<br>Oman - oil -gas -                   | 2, 6 | E    | Reuters     |
| Jun. 29 | production                                       | production<br>California - dioxide -            | 1, 2 | E    | Reuters     |
| Jul. 1  | Environmental issues                             | automobile<br>Yukos - Houston -                 | 5    | D    | LAT<br>NYT, |
| Jul. 3  | Oil tanker Astro Lupus<br>US strategic Petroleum | Russia - crude<br>royalty-in-kind - leases      | 8    | E    | WMRC, OD    |
| Jul. 26 | Reserve<br>ChevronTexaco oil                     | - Energy<br>Nigeria - force majeure             | 5    | С, Е | OD          |
| Jul. 31 | production                                       | - protests<br>diesel engines - new              | 4    | E    | DJ          |
| Aug. 2  | US environmental issues                          | rules - trucks - buses                          | 5    | D    | NYT         |
| Aug. 7  | Mexico Energy Policy                             | non-OPEC - limit -cartel                        | 6    | E    | Reuters     |
| Aug. 20 | Crude Oil Market<br>US -UN -Iraq                 | NYMEX - conflict -OPEC<br>Cheney - weapons –    | all  | E    | Reuters     |
| Aug. 29 | relationships                                    | chemical<br>IEA - monthly - low —               | 2    | С, Е | WP          |
| Sep. 11 | Global oil stock level                           | higher<br>Plan - Energy -                       | all  | E    | DJ          |
| Sep. 11 | EU crude oil reserves<br>US -UN -Iraq            | Commission<br>Council - UN - Bush –             | 8    | E    | Reuters     |
| Sep. 12 | relationships                                    | demands<br>pipeline -Chad -                     | 2    | С, Е | Reuters     |
| Sep. 13 | World Bank                                       | Cameroon<br>BP - Caspian Sea –                  | 4    | В, Е | Reuters     |
| Sep. 18 | Baku-Ceyhan Pipeline<br>US -UN -Iraq             | Turkey<br>oil-for-food -                        | 2, 8 | В, Е | Reuters     |
| Sep. 18 | relationships                                    | surcharges - illegal<br>Osaka - Basket -Nigeria | 2    | С, Е | DJ          |
| Sep. 19 | OPEC meeting                                     | –quotas<br>Hurricane Lili - Gulf –              | 4    | В    | DJ          |
| Oct. 3  | Environmental issues                             | offshore<br>French - tanker -                   | 5    | D    | Reuters     |
| Oct. 6  | Terrorist attack                                 | Malaysian - boat<br>EIA - information –         | 2, 8 | A    | Reuters, DJ |
| Oct. 9  | US energy                                        | Inventory<br>Bush - senate - Saddam             | 5    | E    | Reuters     |
| Oct. 11 | US Politics                                      | - biological<br>Russia - Greece -               | 5, 2 | С, Е | Reuters     |
| Nov. 1  | Trans-Balkan Pipeline                            | Bulgaria                                        | 8    | Β, Ε | Reuters     |

|          |                         | Council - weapons -                 |      |      |            |
|----------|-------------------------|-------------------------------------|------|------|------------|
| Nov. 8   | UN - Iraqi relationship | resolution 1441                     | 2    | С, Е | Reuters    |
|          |                         | UN - Kofi - Council -               |      |      |            |
| Nov. 13  | UN - Iraqi relationship | weapons<br>Tongiz Chovroil          | 2    | С, Е | AP         |
| Nov. 14  | production              | Kazakhstan - project                | 2.8  | F    | WMRC       |
|          | US strategic Petroleum  | stockpile - energy -                | _) 0 | -    |            |
| Nov. 15  | Reserve                 | crude oil                           | 5    | E    | Reuters    |
|          |                         | tanker -splits - Russian            |      |      |            |
| Nov. 18  | Environmental issues    | fuel oil                            | 8    | D    | WSJ, WP    |
| Nov 26   | Murphy Oil              | Kiken field - Asia -                | 7    | c    | WMPC       |
| NOV. 20  |                         | Lukoil - Yukos -                    | /    | L    | WWINC      |
| Nov. 27  | Russia oil production   | agreement                           | 8    | E    | WSJ        |
|          | Venezuela oil           |                                     |      |      |            |
| Dec. 2   | production              | strike - PdVSA - Chavez             | 6    | В, Е | Reuters    |
|          | UN-Iraqi oil-for-food   | renewed - six months -              | -    |      | <b>_</b> . |
| Dec. 4   | program                 | Oil                                 | 2    | С, Е | Reuters    |
| Dec 12   | Iragi oil production    | Russian                             | 2    | C F  | NYT        |
| DCC. 12  |                         | OPEC - Vienna -                     | 2    | 0, 2 |            |
| Dec. 12  | OPEC meeting            | production - quota                  | 1    | E    | LAT        |
|          |                         | NYMEX - Venezuela –                 |      |      |            |
| Dec. 16  | Crude Oil Market        | strike                              | all  | В, Е | WSJ, AP    |
| Dec. 17  | US Dep. of Energy       | Energy - reserve - oil              | 5    | E    | Reuters    |
| 5 40     |                         | Powell - material                   |      |      | <b>.</b> . |
| Dec. 19  | UN-US-Iraq relationship | breach - mass                       | 2, 5 | С, Е | Reuters    |
| Dec 28   | Production              | Brazil - gasoline - strike          | 6    | R F  | W/SI       |
| 000.20   |                         | Brazin gasonne strike               | 0    | 0)2  | 1105       |
| 2003     |                         |                                     |      |      |            |
|          | Venezuela Oil           | split - energy - power –            |      |      |            |
| Jan. 6   | Production              | strike                              | 6    | В, Е | NYT        |
| Jan. 12  | OPEC meeting            | Vienna -quota - raise               | 1    | E    | NYT        |
| lan 16   | Chicago Climate         | US -emission -                      | F    | D    |            |
| Jan. 10  | Excilalige              | NYMEX - Venezuela -                 | 5    | D    | VVP        |
| Jan. 21  | Oil futures market      | stock                               | all  | B, E | USAT       |
|          |                         | delivery - shipments –              |      |      |            |
| Jan. 28  | US Dep. of Energy       | energy                              | 5    | E    | Reuters    |
|          | Venezuela Oil           | PdVSA - striking -                  | c    |      | NYT,       |
| Jan. 29  | Production              | surpassed                           | 6    | В, Е | Reuters    |
| lan 29   | US Energy politics      | powered - union                     | 5    | DF   | Reuters    |
| 50111 25 |                         | boost - reserves -                  | 5    | 5) 2 | neuters    |
| Feb. 3   | Indian Energy           | crude -strategic                    | 7    | E    | Reuters    |
|          | Iranian Natural Gas     | Pars natural gas field -            |      |      |            |
| Feb. 6   | Production              | cubic - on-line                     | 2    | E    | DJ         |
| Feb. 11  | BP oil exploration      | Russia - TNK - Sidanco              | 8    | E    | Reuters    |
| Tab 12   |                         | oil stocks - inventory -            | F    | -    | Daut       |
| rep. 12  | US Energy data          | Shortages<br>Kizomba B - offsbore - | 5    | E    | Reuters    |
| Feb. 18  | Angolan project         | stakeholders                        | 4    | E    | Reuters    |
| Feb. 28  | Oil futures market      | NYMEX - heating oil -               | all  | E    | Reuters    |
|          |                         |                                     |      | -    |            |

|          |                           | price - fuel            |         |         |             |
|----------|---------------------------|-------------------------|---------|---------|-------------|
|          | Venezuela oil             | PdVSA - striking -      |         |         |             |
| Mar. 5   | production                | bottlenecks             | 6       | В, Е    | Reuters     |
|          | Venezuela oil             | Chavez - exports –      |         |         |             |
| Mar. 6   | production                | strike                  | 6       | В, Е    | Reuters     |
|          |                           | NYMEX - light - sweet - |         |         |             |
| Mar. 7   | Oil futures market        | MMBtu                   | all     | E       | Reuters     |
|          |                           | EPA - regulation –      |         |         |             |
| Mar. 7   | Environmental issues      | water                   | 5, 7, 8 | D       | NYT         |
|          |                           | Vienna - crude oil -    |         |         | NYT,        |
| Mar. 11  | OPEC meeting              | Saudi - capacity        | 1       | E       | Reuters     |
|          |                           | NYMEX - barrels -       |         |         |             |
| Mar. 12  | Oil futures market        | shortages               | all     | E       | WSJ         |
|          |                           | Kuwait - Saddam -       |         |         |             |
| Mar. 19  | Iraqi military action     | regime - US             | 2       | С, Е    | Reuters     |
|          |                           | soldiers - Shell -      |         |         | NYT,        |
| Mar. 23  | Violence in Niger Delta   | militants               | 4       | A, C, E | Reuters     |
|          |                           | coalition - wellhead -  |         |         |             |
| Mar. 24  | US-Iraqi war              | Kuwaiti                 | 2, 5    | A, C, E | Reuters, DJ |
|          |                           | coalition - Baghdad -   |         |         |             |
| Apr. 4   | US-Iraqi war              | airport -facilities     | 2, 5    | A, C, E | Reuters     |
|          |                           | crude oil - shut down - |         |         |             |
| Apr. 8   | Syrian oil production     | Lebanon                 | 2       | С       | WMRC        |
|          |                           | Turkish - Kirkuk -      |         |         |             |
| Apr. 14  | Iraqi oil production      | oilfield                | 2       | E       | Reuters     |
|          |                           | inspection - shuts      |         |         | Japan       |
| Apr. 14  | Japan Energy Market       | down - reactor          | 7       | D, E    | Times       |
|          |                           | Rumsfeld - Syria -      |         |         |             |
| Apr. 15  | US-Iraqi war              | pipeline                | 2       | А       | Reuters     |
| Apr. 22  | Yukos Oil company         | merge - gas - major     | 8       | E       | NYT, WSJ    |
|          |                           | American - restarting - |         |         |             |
| Apr. 23  | Iraq oil production       | crude oil               | 2       | E       | WSJ         |
| Apr. 24  | OPEC meeting              | reduce - excess - quota | 1       | E       | LAT         |
| •        | 0                         | Petrobras - discovery - |         |         |             |
| Apr. 29  | Brazilian oil exploration | gas                     | 6       | E       | Reuters     |
|          |                           | sanctions - invasion -  |         |         |             |
| May. 22  | US-Iraq relationship      | Treasury                | 2       | В, С    | WP          |
|          | Russia and China          | Yukos - CNPC - China -  |         |         |             |
| May. 28  | relationship              | Siberia                 | 7, 8    | С, Е    | Reuters     |
|          | Russia's natural gas      | Japanese - TEPCO -      |         |         |             |
| Jun. 2   | production                | Sakhalin                | 7, 8    | E       | NYT         |
|          |                           | Greenspan - natural     |         |         |             |
| Jun. 10  | US energy industry        | gas - Prices            | 5       | E       | Reuters     |
|          |                           | Qatar - energy -        |         |         |             |
| Jun. 11  | OPEC meeting              | industry                | 1       | E       | Reuters, DJ |
|          |                           | explosions - Kirkuk-    |         |         |             |
| Jun. 12  | Iraqi oil production      | Ceyhan oil pipeline     | 2       | A, C, E | Reuters, AP |
|          | ConocoPhillips natural    | Bayu-Undan fields -     |         |         |             |
| Jun. 14  | gas production            | Timor Sea - LNG         | 7       | E       | WSJ, NYT    |
|          |                           | Qazzaz - pipeline -     |         |         |             |
| Jun . 17 | Iraqi oil production      | pumping station         | 2       | E       | WSJ         |
|          |                           | Saddam - oil - Ceyhan - |         |         |             |
| Jun. 22  | Iraqi oil production      | refiners                | 2       | E       | WP          |
| Jul. 2   | Environmental issues      | Kyoto -dioxide -        | 5, 7, 8 | D       | Reuters     |

|          |                                 | ceramics - emissions                    |            |         |               |
|----------|---------------------------------|-----------------------------------------|------------|---------|---------------|
|          | Chad-Cameroon                   | crude - project -                       |            |         |               |
| Jul. 9   | pipeline loan                   | pipeline                                | 4          | В, Е    | Reuters       |
|          | Russia and Japan                | Sakhalin - Investment -                 |            | ·       |               |
| Jul. 12  | ,<br>relationship               | drilling - gas                          | 7,8        | C, E    | DJ            |
|          | ·                               | Russian - tanker - Red                  | ,          | ,       |               |
| Jul. 15  | Eilat-Ashkelon pipeline         | Sea                                     | 2.8        | C. E    | Reuters       |
|          |                                 | Texas - Mexico -                        | , -        | -,      |               |
| Jul. 15  | Hurricane Claudette             | Minerals                                | 6          | D. F    | Reuters       |
|          |                                 | Black Sea -pipeline -                   | 0          | -,-     |               |
| lul 16   | Eni oil exploration             | Karachaganak                            | 28         | F       | וח            |
| 541. 10  |                                 | Empty Quarter -                         | 2,0        | L       | 23            |
|          | Saudi Natural Gas               | western - core                          |            |         |               |
| lul 16   | production                      | ventures                                | 2578       | F       | Reuters       |
| 541. 10  | production                      | ING - Dominion -                        | 2, 3, 7, 8 | L       | neuters       |
| lul 25   | Natural gas                     | facility - owner                        | الد        | F       | \//D          |
| Jul. 25  | Natural gas                     | koon quota rogimo                       | an         | L       |               |
| Jul 21   | OPEC monting                    | keep - quota - regime -                 | 1          |         | \A/S1         |
| Jul. 51  | OPEC meeting                    | пач                                     | T          | А, С, Е | VV 3J         |
| Aug. 7   | Iraqi oil production            | sector -war - exports                   | 2          | A, C, E | LAT           |
|          | Lockerbi airplane               |                                         |            |         |               |
| Aug. 14  | bombing                         | Libya - US - sanctions                  | 2, 5, 8    | С       | WMRC          |
|          |                                 | northeastern - New                      |            |         | NYT, WSJ,     |
| Aug. 14  | US power blackout               | York - Abraham                          | 5          | E       | AP            |
|          | Yukos and Sibneft               | supermajor - Russia -                   |            |         |               |
| Aug. 14  | merger                          | oil                                     | 8          | E       | WMRC          |
|          |                                 | Kirkuk - Ceyhan -                       |            |         |               |
| Aug. 15  | Iraqi oil production            | pipeline                                | 2          | A, C, E | WMRC          |
|          |                                 | exile - post-war -                      |            |         |               |
| Sep. 1   | Iraqi oil production            | Council                                 | 2          | A, C, E | Reuters       |
|          |                                 | Bank - Peru - Camisea                   |            |         | DJ, WP,       |
| Sep. 10  | Natural Gas Project             | fields                                  | 6          | В, Е    | WMRC, EIA     |
|          | Cameron natural gas             | Energy - commission -                   |            |         | -             |
| Sep. 11  | production                      | Louisiana                               | 4          | B,E     | NYT           |
| •        | •                               | 11-year - oil - sizeable -              |            | ·       |               |
| Sep. 12  | UN sanction in Libva            | resources                               | 2          | C. E    | AP            |
| [-       |                                 | Japanese - Iran - deal -                |            | -,      |               |
| Sep. 19  | Iran oil production             | Azadegan                                | 2          | F       | Platts        |
| 5cp. 15  |                                 | cut - members -world -                  | -          | -       | i latto       |
| Sen 24   | OPEC meeting                    | oil                                     | 1          | F       | Reuters       |
| 5cp. 2 . |                                 | Chicago - Exchange -                    | -          | -       | neuters       |
| Sen 30   | Emission trading                | allowances                              | 578        | D       | WMRC          |
| 5cp. 50  | Chad-Cameroon                   | onstream - World Bank                   | 5,7,0      | D       | www.c         |
| Oct 3    | nineline                        | - Sub-Sabaran                           | Л          | R F     | NVT           |
| 000.0    | Yukos and Sibneft               | producer - creating -                   | -          | D, L    |               |
| Oct 4    | merger                          | deal                                    | الد        | F       | \ <b>\</b> /D |
| 001.4    | merger                          | natural gas ovport                      | an         | L       |               |
| Oct 14   | Rolivians protosts              | cubic foot                              | 6          | F       | NVT           |
| 000.14   | Bolivians protests              | londing private                         | 0          | L       |               |
| Nov 4    | Dinalina                        | Turkich                                 | <b>२</b> ० | РЕ      | WARC          |
| NOV. 4   | Pipelille<br>Chauran Tayana ail | deenwater liquefied                     | 2, 0       | D, L    | WIVINC        |
| Nov 19   | production OII                  | Gulf torminal                           | 5 6        | E       |               |
| 1100. 18 |                                 | Guil - Lermindi<br>modicine finance LIC | J, U       | Ľ       |               |
| Nov 21   | on-iraqi oli-tor-tood           | medicine - inidice - US                 | 2          | СГ      | USAT,         |
| NOV. 21  | hioRigili                       | - projects                              | 2          | υ, ε    | WIVIKC        |
| Nov. 24  | US Energy                       | Senate - legislative -                  | 5          | С       | NYT, WP,      |

|         |                                                   | bill                                             |      |         | WSJ                   |
|---------|---------------------------------------------------|--------------------------------------------------|------|---------|-----------------------|
|         |                                                   | suspending - oil -                               |      |         |                       |
| Nov. 28 | Yukos - Sibneft merger                            | technical                                        | all  | E       | WP, WSJ               |
| Dec. 2  | US nuclear waste                                  | Bush - Yucca - Nevada<br>Vienna - quota -        | 5    | С, Е    | AP                    |
| Dec. 4  | OPEC meeting                                      | unchanged<br>fall - price - Saddam -             | 1    | E       | DJ<br>CBS             |
| Dec. 15 | Crude Oil Market                                  | Tikrit                                           | all  | A, C, E | WMRC                  |
| Dec. 18 | BP natural gas deal                               | Mexico - Baja                                    | 6    | E       | DJ<br>WMBC            |
| Dec. 22 | US -Libya relationship                            | destruction                                      | 3    | С, Е    | NYT                   |
| 2004    |                                                   | Aramco Haradh oil                                |      |         | Poutors               |
| Jan. 18 | Saudi oil industry                                | –gas<br>US - Petroleum -                         | 1, 2 | E       | LAT, Platts           |
| Jan. 22 | Alaska's oil reserve                              | production<br>Algiers - output -                 | 5    | D, E    | WP                    |
| Feb. 11 | OPEC meeting<br>SEC investigate Royal             | ceiling<br>formal - overstated -                 | 1, 3 | E       | NYT, WSJ              |
| Feb. 19 | Dutch/Sheel                                       | reserves                                         | all  | E       | NYT                   |
| Feb. 25 | Total and Petronas deal<br>US ban on traveling to | Iranian - LNG - Russia                           | 2, 8 | С, Е    | WMRC                  |
| Feb. 26 | Libya                                             | sanctions - Rome - oil<br>cut - members -world – | 3, 5 | С       | WSJ                   |
| Feb. 31 | OPEC meeting                                      | oil<br>Rivadh - explodes -                       | 1    | E       | Reuters<br>Reuters    |
| Apr. 21 | Saudi oil industry                                | producer<br>Amsterdam - Saudi -                  | 1, 2 | A, C, E | Platts, EIA           |
| May. 22 | OPEC meeting                                      | raise<br>attack - Khobar -                       | 1    | E       | Reuters               |
| May. 30 | Saudi oil industry                                | security<br>NYMEX - crude -                      | 1, 2 | A, C, E | Reuters               |
| Jun. 1  | Oil futures market                                | settlement - price<br>Beirut - production -      | all  | E       | WSJ                   |
| Jun. 3  | OPEC meeting                                      | quotas<br>Lash - secretary -                     | 1    | E       | AP                    |
| Jun. 4  | Libya oil shipment                                | resumption<br>Electricite de France -            | 3, 5 | С, Е    | AP                    |
| Jun. 15 | French energy industry                            | LNG - protest<br>crude oil - raise - target      | 8    | В, Е    | Reuters               |
| Jul. 15 | OPEC meeting                                      | - high<br>Bussia - bankrupt -                    | 1    | E       | WSJ                   |
| Jul. 22 | Yukos Oil company                                 | exports - oil<br>Yukos - illegal -               | 8    | E       | WP                    |
| Aug. 9  | Russian Energy sector                             | Yuganskneftegaz<br>Shell - Mexico - tankers      | 8    | E       | WP, WSJ<br>Bloomberg. |
| Sep. 14 | Hurricane Ivan                                    | - deliveries                                     | 6    | D, E    | DJ, Reuters           |
| Sep. 20 | US Sanctions on Libya                             | oil - reserves - lifts<br>energy -sector -       | 3, 5 | С       | NYT                   |
| Sep. 24 | Hurricane Ivan                                    | NYMEX<br>NYMEX - oil - crude -                   | 5, 6 | D, E    | NYT, MMS              |
| Oct. 22 | Oil futures market                                | energy - heating oil                             | all  | E       | NYT, CNN              |

|         |                         | cabinet - lower -                                        |         |         | WP, USA                     |
|---------|-------------------------|----------------------------------------------------------|---------|---------|-----------------------------|
| Oct. 28 | Russian Politics        | protocol                                                 | 8       | С       | Today                       |
| Nov. 2  | Iraq oil production     | - attack                                                 | 2       | A, C, E | Reuters                     |
| Nov. 16 | US Politics             | figure<br>run-off - Kiev - Europe -                      | 5       | С, Е    | WP                          |
| Nov. 22 | Ukraine politics        | Russia<br>Shell - community -                            | 8       | С, Е    | NYT, AP                     |
| Dec. 5  | Nigerian oil industry   | spokesman                                                | 4       | E       | WMRC<br>NYT, AP,            |
| Dec. 10 | OPEC meeting            | official - cut - quarterly<br>Yukos -<br>Yuganskneftegaz | 1       | E       | WP                          |
| Dec. 18 | Russian oil industry    | subsidiary<br>Exelon - PSEG - stock -                    | 8       | E       | WSJ, NYT                    |
| Dec. 20 | US nuclear power        | utility<br>ocean - tourists - Sri                        | 5       | E       | Reuters<br>NYT. WP.         |
| Dec. 26 | Tsunami                 | Lanke<br>approval - pipeline -                           | 7       | B, D    | AP, Reuters                 |
| Dec. 31 | Russian oil industry    | major - port                                             | 8       | E       | Reuters                     |
| 2005    |                         |                                                          |         |         |                             |
| Jan. 5  | Nigerian oil industry   | Bonny - Shell - deal                                     | 4       | B, C, E | WMRC,<br>Reuters            |
| Jan. 30 | OPEC meeting            | Iran                                                     | 1       | E       | NYT, AP                     |
| Jan. 30 | Iraqi oil production    | election<br>Azerbaijan - pipeline -                      | 2       | A, C, E | WP, NYT<br>Beuters          |
| Feb. 14 | BP oil production       | Turkey                                                   | 2, 8    | E       | WMRC<br>Reuters,<br>NYT,    |
| Feb. 16 | Kyoto Protocol          | climate - Bush - Russia<br>crude- pipeline -             | 5, 7, 8 | D       | LATimes<br>WMRC,            |
| Mar. 1  | Iraqi oil production    | Ceyhan                                                   | 2, 8    | E       | Reuters<br>OPEC,<br>Reuters |
| Mar. 16 | OPEC meeting            | Isfahan - Saudi - Naimi                                  | 2       | E       | EIA                         |
| Mar. 24 | BP explosion            | blast - WTI - NYMEX                                      | all     | D, E    | NYT, DJ                     |
| May. 20 | French energy industry  | strike - shuts - Total<br>Vienna - quota -               | 8       | В, Е    | DJ                          |
| Jun. 15 | OPEC meeting            | production<br>Cnooc - Unocal -                           | 1       | E       | FT                          |
| Jun. 24 | Chinese energy industry | acquisition<br>Ahmadinejad - mayor -                     | 7       | E       | DJ, WSJ                     |
| Jun. 25 | Iran politics           | NIOC<br>NYMEX - WTI -                                    | 2       | С, Е    | WP                          |
| Jun. 27 | Oil futures market      | settlement                                               | all     | E       | Reuters<br>Bloomberg,       |
| Jul. 5  | Tropical storm Cindy    | US - Mexico - WTI<br>strike - offshore -                 | 5       | D       | MMS S,                      |
| Jul. 8  | Angola oil production   | negotiate                                                | 4       | A, C    | Reuters                     |
| Jul. 11 | Hurricane Dennis        | damage - Thunder                                         | 5       | D, E    | DJ                          |

|                 |                                    | House - platform                                 |      |         |                            |
|-----------------|------------------------------------|--------------------------------------------------|------|---------|----------------------------|
|                 |                                    | Kizomba B - offshore -                           |      |         |                            |
| Jul. 18         | Angola oil production              | oil<br>offshore - Mexico -                       | 4    | E       | Reuters                    |
| Jul. 19         | Hurricane Emily                    | terminals                                        | 5    | D, E    | Reuters, DJ                |
| Jul. 27         | Indian Energy                      | field<br>Crown Prince - king-                    | 7    | E       | Reuters                    |
| Aug. 1          | Saudi oil industry                 | policy<br>shuts - sector -                       | 1, 2 | С, Е    | DJ, AP                     |
| Aug. 5          | BP oil production                  | facilities - fire                                | all  | E       | Reuters<br>WSJ,            |
|                 |                                    | Protests - shut - occupy                         |      |         | Reuters,                   |
| Aug. 15         | Ecuador oil production             | - EnCana                                         | 6    | В, Е    | AP, DJ<br>Reuters,         |
| Aug. 28         | Hurricane Katrina                  | Orleans - MMS - strikes                          | 5    | D, E    | AP, DJ                     |
| Sep. 2          | US Energy dep.                     | Bush - Mexico - energy                           | 5    | С       | DOE, IEA<br>DJ,<br>Beuters |
| Sep. 24         | Hurricane Rita                     | landfall - Gulf - Katrina<br>strike - refinery - | 5    | D       | AP, DOE                    |
| Sep. 27         | French energy industry             | complex                                          | 8    | В       | Reuters                    |
| Oct. 21         | Nigerian oil industry              | strike - Brass - shuts<br>shutdowns - labor -    | 4    | В, Е    | Reuters                    |
| Oct. 31         | Royal Dutch/Shell                  | dispute<br>agreement - stoppage -                | all  | В, Е    | Reuters                    |
| Nov. 3          | Royal Dutch/Shell                  | refinery<br>Bonga - offshore -                   | all  | В, Е    | Reuters<br>EIA,            |
| Nov. 28         | Royal Dutch/Shell<br>Venezuela Oil | natural gas<br>explosion - pipeline -            | 4    | В, Е    | Reuters                    |
| Dec. 4          | Production                         | Paraguana<br>Kuwait - cut -                      | 6    | С, Е    | AP<br>Reuters,             |
| Dec. 9          | OPEC meeting                       | organization                                     | 1    | E       | EIA<br>Reuters,            |
| Dec. 14         | Bosporus Straits                   | Russia - Asia - world<br>Niger Delta - bomb -    | 8    | E       | EIA                        |
| Dec. 20<br>2006 | Nigerian oil industry              | Shell                                            | 6    | Α, Ε    | DJ, EIA                    |
|                 |                                    |                                                  |      |         | DJ,                        |
|                 |                                    |                                                  |      |         | Reuters,                   |
| Jan. 1          | Russian Gas supply                 | Ukraine - cuts - Europe<br>Katrina - reserve -   | 8    | С, Е    | Eurostat                   |
| Jan. 4          | US Energy dep.                     | drawdown<br>refining - bottlenecks -             | 5    | D, E    | DJ<br>Reuters,             |
| Jun. 31         | OPEC meeting                       | quota-EIA<br>Haradh - Aramco –                   | 1    | E       | OPEC, EIA<br>Reuters,      |
| Feb. 8          | Saudi oil industry                 | capacity<br>force majeure- oil-                  | 1, 2 | E       | EIA<br>Reuters,            |
| Feb. 21         | Royal Dutch/Shell                  | attacks<br>attack - Abqaiq –                     | 4    | A, C, E | EIA                        |
| Feb. 24         | Saudi oil industry                 | NYMEX<br>pipeline - Trans-                       | 1, 2 | A, C, E | CNN, AP                    |
| Mar. 2          | Alaska's oil reserve               | Alaskan - GC-2                                   | 5    | D, E    | DJ, AP                     |

|          |                          | Petroleum -               |      |         | EIA,            |
|----------|--------------------------|---------------------------|------|---------|-----------------|
| Mar. 8   | OPEC meeting             | bottlenecks - Vienna      | 1    | E       | Reuters         |
|          |                          | WTI - NYMEX - highest     |      |         | Reuters,        |
| Apr. 21  | Oil futures market       | – barrel                  | all  | E       | DJ, AP          |
| l        | ODEC meeting             | Petroleum - capacity –    | 1    | F       | Reuters,        |
| Jun. 1   | OPEC meeting             | Iran<br>Louisiana Shin    | 1    | E       | EIA             |
| lun 10   | Environmental issues     | shutoff                   | 5    | DE      | DI Reuters      |
| Jun. 15  | Baku-Thilisi-Cevhan      | Turkish - Caspian Sea –   | 5    | υ, ι    | DJ, Reuters     |
| Jul. 13  | Pipeline                 | Georgia                   | 2.8  | E       | AP. Reuters     |
|          | ·                        | Nigeria -attacks –        | ,    |         | EIA,            |
| Jul. 24  | Royal Dutch/Shell        | pipeline                  | 4    | A, C, E | Reuters, GI     |
|          |                          | mid-sized - pipeline -    |      |         | DJ,             |
| Jul. 29  | Leak in Russian pipeline | Europe                    | 8    | D, E    | Reuters, El     |
| Aug. 7   | BP oil production        | shuts - Alaska – TAPS     | 5    | D, E    | AP, GI          |
|          | ExxonMobil oil           | Russia - Japan –          |      |         | EIA,            |
| Aug. 29  | production               | DeKastri                  | 7, 8 | E       | Reuters         |
| C 5      | Chevron deepwater        | tests Culf ultra data     | F (  |         |                 |
| Sep. 5   | operation                | tests - Gulf - ultra-deep | 5, 6 | D, E    | EI, OGJ         |
| Sen 11   | OPEC meeting             | maintain – ceiling        | 1    | F       | EIA,<br>Reuters |
| 5cp. 11  | or Le meeting            | cut - Oatar - reduce -    | 1    | L       | Reaters         |
| Oct. 19  | OPEC meeting             | output                    | 1    | E       | Reuters         |
| Dec. 14  | OPEC meeting             | Abuia - cut –allow        | 1    | E       | GI. MEES        |
| Dec 26   | Nigerian oil industry    | blast - Lagos – nineline  | 4    | BCF     | Reuters         |
| 000.20   | ingenan on maasa y       | EIA - attacks –           |      | D) C) L | neuters         |
| Dec. 31  | Nigerian oil industry    | infrastructure            | 4    | B, C, E | EIA             |
|          |                          |                           |      |         |                 |
| 2007     |                          |                           |      |         |                 |
|          |                          | halts - Druzhba –         | -    | _       | EIA,            |
| Jan. 3   | Russian's oil exports    | pipeline                  | 8    | E       | Reuters         |
| lan 7    | LIK oil production       | Buzzaru - weather -       | Q    | F       | EIA, GI, INS    |
| Jan. 7   | or on production         | Bush - SPR - Congress –   | 0    | L       | DOF.            |
| Jan. 23  | US Energy                | reserve                   | 5    | В, Е    | Reuters         |
| Feb. 1   | OPEC meeting             | cuts - Vienna – crude     | 1    | E       | EIA. GI         |
|          | 0. 20                    | Hibernia - shut down -    | -    | -       |                 |
| Feb. 6   | Canadian oil production  | maintenance               | 5    | E       | Reuters         |
|          |                          | natural gas -force        |      |         | Occidentl       |
| Feb. 6   | Occidental Petroleum     | majeure - California      | 5    | В, Е    | Petro, DJ       |
|          |                          | explosion - McKee –       | _    |         |                 |
| Feb. 16  | US Energy                | refinery                  | 5    | D, E    | Reuters, Gl     |
| Fab 17   | PD oil production        | unexpectedly - shuts -    | 0    | c       | Poutors Cl      |
| Feb. 17  | BP OIL PLOUDCLION        | NUTITISTAL                | 0    | E       | FIA GI          |
| Mar. 4   | Shell Oil Company        | shuts -spill- Nigeria     | 4    | B. F    | Reuters         |
|          |                          | cyclones - shut -         |      | -) -    | EIA, GI,        |
| Mar. 8   | Australia oil production | disrupt                   | 7    | D, E    | Reuters         |
|          |                          | Marseille - output -      |      |         |                 |
| Mar. 14  | France energy sector     | natural gas               | 8    |         | GI, Reuters     |
| • • • -  | 0050                     | Vienna - Angola - quota   |      | _       |                 |
| Mar. 15  | OPEC meeting             | - unchange                | 1    | E       | EIA, GI         |
| Mar 22   | Iranian voccolc          | British - Gulf price      | 2    | ٨       | EIA,<br>Routors |
| 11101.23 | 11 aman vessels          | British - Guil -plice     | 2    | ~       | neuters         |

|           |                          | Iraq -Iran - crude -      |     |            |              |
|-----------|--------------------------|---------------------------|-----|------------|--------------|
| Apr. 4    | Iranian vessels          | British                   | 2   | А          | EIA, GI      |
|           |                          |                           |     |            | EIA,         |
|           |                          | leak - Enbridge -         |     |            | Reuters.     |
| Apr. 15   | Canadian oil production  | pipeline                  | 8   | D. F       | Enbridge     |
| 7.pr. 10  |                          | Var'Adua - winner - oil - | U   | 0,2        | FIΔ          |
| Apr 22    | Nigorian oil industry    | nrico                     | 4   | C F        | Bouwers      |
| Apr. 25   | Nigerian on moustry      | price                     | 4   | С, Е       | Reuyers      |
|           |                          | shut - WII -              | -   | _          | EIA,         |
| Apr. 26   | Norway oil production    | Kvitebjoern               | 8   | E          | Rigzone      |
|           |                          |                           |     |            | EIA, DJ,GI,  |
|           |                          | Chevron - shuts -         |     |            | Platts,      |
| May. 1    | Nigerian oil industry    | offshore                  | 4   | A, C, E    | Reuters      |
|           |                          |                           |     |            | EIA, DJ,GI,  |
|           |                          | Saipem - force maieure    |     |            | Platts.      |
| May 4     | Nigerian oil industry    | - oil                     | 4   | ACE        | Reuters      |
| inay: i   | ingenan on maastry       |                           | •   | ,,, ,, ,   |              |
|           |                          | Protosts Chouron          |     |            | Diatte       |
|           | Nizeview eil is duetwo   | Protests - Chevron -      | 4   |            | Pidtts,      |
| way. 7    | Nigerian oli Industry    | shut                      | 4   | А, С, Е    | Reuters      |
|           |                          |                           |     |            | EIA, DJ,GI,  |
|           |                          |                           |     |            | Platts,      |
| May. 8    | Nigerian oil industry    | Agip - shut - BrassRiver  | 4   | A, C, E    | Reuters      |
|           |                          |                           |     |            | EIA, DJ,GI,  |
|           |                          | Protests - Bomu -         |     |            | Platts,      |
| May. 10   | Nigerian oil industry    | pipeline                  | 4   | A, C, E    | Reuters      |
|           |                          |                           |     |            | EIA. DJ.GI.  |
|           |                          | Protests - Bomu -         |     |            | Platts       |
| May 28    | Nigerian oil industry    | nineline                  | А   | ACE        | Reuters      |
| Way. 20   | Nigenan on muustry       | pipelille                 | 4   | Α, Ο, Ε    |              |
|           |                          |                           |     |            | EIA, DJ,GI,  |
|           | No                       |                           |     |            | Platts,      |
| May. 28   | Nigerian oil industry    | Shell - Nigeria - Creek   | 4   | А, С, Е    | Reuters      |
|           |                          | force majeure- oil-       |     |            | EIA,         |
| May. 10   | Total oil production     | attacks                   | 4   | A, C, E    | Reuters      |
| May. 22   | Alaska's oil reserve     | leak - TAPS - pipeline    | 8   | D, E       | Reuters      |
|           | Dubai Mercantile         | DME - Oman - Middle       |     |            |              |
| Jun. 1    | Exchange                 | Fast                      | 2   | F          | Reuters      |
|           |                          |                           | _   | _          |              |
| lup 5     | Tropical storm Gonu      | Oman - Sur - Mina         | 2   | DE         | Modia        |
| Juli. J   | hopical storm dond       |                           | 2   | υ, ι       |              |
| h         |                          | Gunnen - nostage -        | 4   |            | EIA,         |
| Jun. 14   | Nigerian oil industry    | force majeure             | 4   | А, С, Е    | Reuters      |
|           | Iranian gasoline         | riots - EIA - importer -  |     |            | EIA,         |
| Jun. 26   | rationing                | domestic                  | 2   | E          | Reuters      |
|           |                          | Gulf of Mexico -          |     |            | Chevron,     |
| Jun. 28   | Chevron oil production   | deepwater - platform      | 5,6 | E          | Houston Ch.  |
|           |                          |                           |     |            | BP, EIA, EI, |
| Jul. 1    | North Sea oil production | CATS pipeline - UK - oil  | 8   | E          | Reuters      |
|           | Russian Ntural Gas       | Gazprom - Total -         |     |            | FL OGL       |
| lul 13    | Production               | Shtokman                  | 8   | F          | Reuters      |
| 501. 15   | rioudellon               | Shtokhan                  | 0   | L          |              |
| 1. L. 1.C | Japan Energy Sector      | reactor chute plant       | 7   |            | LIA, TACIS,  |
| Jul. 10   | Japan Energy Sector      | reactor - shuts - plant   | /   | D, E       | Reuters      |
|           |                          | STRUCK - IVIEXICO -       | _   | <b>D F</b> |              |
| Aug. 21   | Hurricane Dean           | shutting - oil            | 7   | D, E       | ЫA           |
|           |                          | Vienna - raise - Angola   |     |            | OPEC Press   |
| Sep. 11   | OPEC meeting             | - Iraq                    | 1   | E          | Release      |
| Nov. 18   | OPEC meeting             | Riyadh - declining -      | 1   | E          | Reuters      |
| -         | 0                        | , 0                       |     |            |              |

|                                      | heads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Abu Dhabi - unchanged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OPEC Press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OPEC meeting                         | - allocations<br>Bush - act -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Release<br>White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| US energy industry                   | independence - RFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С, Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | House                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ecuador rejoined OPEC                | 1992 - Angola - barrels<br>Vienna - allocations -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| OPEC meeting<br>Venezuela Oil        | unchanged<br>PdVSA - cut -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OPEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Production                           | ExxonMobil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B, C, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Oil futures market                   | NYMEX - WTI - surplus<br>Vienna - unchanged -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EIA<br>EIA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OPEC meeting                         | output<br>WTI - NYMEX - highest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters<br>EIA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Oil futures market                   | - barrel<br>pipeline - Basra -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Iraq oil production                  | exports<br>southern - shipping -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Iraq oil production                  | Basra<br>walked off - closure -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Scotland's refinery                  | shut-in<br>militant - attacks -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В, Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nigerian oil industry                | West African                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α, Ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Oil futures market<br>ExxonMobil oil | NYMEX - WTI - barrel<br>force majeure - oil-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| production                           | crude - export<br>halts - gasoline -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В, Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| US Energy policy                     | Congress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С, Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Oil futures market                   | NYMEX - WTI - gallon<br>fell sharply - output -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters<br>EIA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mexican oil production               | field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Arctic oil reserves                  | US - Norway - Russia<br>lack - investment - net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Indonesia quits OPEC                 | importer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters<br>EIA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Gasoline prices                      | gallon - retail - average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters<br>EIA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Saudi oil industry                   | boost - highest - rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gasoline prices                      | China - retail - fuel<br>shut-in - Bonga -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В, Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Shell Oil Company                    | Nigeria<br>force majeure - oil-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В, Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bloomberg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chevron oil production               | crude - export<br>Jeddah - investment -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В, Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Oil executives meeting               | top oil company<br>NYMEX - WTI - oil -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Oil futures market                   | price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Oil prices                           | EIA - peak - demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Hurricane Dolly                      | Gulf - natural gas - oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gasoline prices                      | retail - week - fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reuters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                      | OPEC meeting<br>US energy industry<br>Ecuador rejoined OPEC<br>OPEC meeting<br>Venezuela<br>OII futures market<br>OPEC meeting<br>OII futures market<br>Iraq oil production<br>Iraq oil production<br>Scotland's refinery<br>Iscotland's refinery<br>OII futures market<br>Scotland's refinery<br>OII futures market<br>Scotland's refinery<br>OII futures market<br>Scotland's refinery<br>Indonesia quits OPEC<br>Indonesia quits OPEC<br>Gasoline prices<br>Saudi oil industry<br>Gasoline prices<br>Shell OII Company<br>Chevron oil production<br>OII executives meeting<br>OII futures market<br>OII prices | heads<br>Abu Dhabi - unchanged<br>- allocations<br>Bush - act -<br>independence - RFS<br>Ecuador rejoined OPEC<br>Ecuador rejoined OPEC<br>DPEC meeting<br>Venezuela<br>OPEC meeting<br>Venezuela<br>OPEC meeting<br>Venezuela<br>OPEC meeting<br>OPEC meeting<br>OVET<br>OII futures market<br>- barrel<br>pipeline - Basra -<br>exports<br>southern - shipping -<br>Basra<br>walked off - closure -<br>shut-in<br>militant - attacks -<br>Nigerian oil industry<br>OII futures market<br>NYMEX - WTI - barrel<br>ExxonMobil<br>OII futures market<br>NYMEX - WTI - gallon<br>fell sharply - output -<br>Mexican oil production<br>field<br>Arctic oil reserves<br>US - Norway - Russia<br>lack - investment - net<br>Indonesia quits OPEC<br>Gasoline prices<br>Saudi oil industry<br>boost - highest - rise<br>Gasoline prices<br>Saudi oil company<br>NYMEX - WTI - oil -<br>OII crude - export<br>Jeddah - investment -<br>OII crude - export<br>Jeddah - investment -<br>OII futures market<br>OII company<br>NYMEX - WTI - oil -<br>OII futures market<br>DI company<br>NYMEX - WTI - oil -<br>OII futures market<br>OII company<br>NYMEX - WTI - oil -<br>OII futures market<br>Price<br>OII prices<br>EIA - peak - demand<br>Hurricane Dolly<br>Gasoline prices<br>Setail - week - fuel | headsAbu Dhabi - unchangedOPEC meeting- allocationsUS energy industryindependence - RFSEcuador rejoined OPEC1992 - Angola - barrels<br>Vienna - allocations -<br>unchanged1OPEC meetingunchanged1VenezuelaOilPdVSA - cut -<br>Vienna - unchanged1ProductionExxonMobil6OII futures marketNYMEX - WTI - surplus<br>Vienna - unchanged -<br>Uotput1OPEC meetingoutput1OPEC meetingoutput1OPEC meetingoutput1If aq oil productionBasra2southern - shipping -<br>southern - shipping -<br>southern - shipping -<br>southern - shipping -2Iraq oil productionBasra2Scotland's refineryShut-in<br>shut-in8Militant - attacks -<br>Nigerian oil industryNYMEX - WTI - barrel<br>gasoline -all<br>force majeure - oil-<br>crude - exportUS Energy policyCongress5Oil futures marketNYMEX - WTI - gallon<br>fell sharply - output -<br>fack - investment - net<br>lack - investment - net<br>lack - investment - netIndonesia quits OPECUS - Norway - Russia<br>force majeure - oil-<br>crude - export3, 8Saudi oil industryboost - highest - rise<br>shut-in - Bonga -1, 2Gasoline pricesChina - retail - average<br>shut-in - Bonga -4Shell Oil Company<br>NYMEX - WTI - oil -7Shell Oil Company<br>NYMEX - WTI - oil -2Oil executives meeting<br>Uoil company<br>cond company | headsAbu Dhabi - unchangedOPEC meeting-allocations1EBush - actUS energy industryindependence - RFS5C, EEcuador rejoined OPEC1992 - Angola - barrels<br>Vienna - allocations -4EOPEC meeting<br>Vienzuelaunchanged1EOVenzuelaOilPdVSA - cutProductionExxonMobil6B, C, EOil futures marketNYMEX - WTI - surplus<br>Vienna - unchanged -1EOPEC meeting<br>outputoutput<br>vienna - unchanged -1EOPEC meeting<br>outputoutput<br>pipeline - Basra -1EIraq oil production<br>productionexports<br>suthern - shipping -2EIraq oil production<br>productionBasra<br>suthern - shiping -2EScotland's refinery<br>productionNYMEX - WTI - barrel<br>force majeure - oil<br>crude - export<br>halts - gasoline -allEOil futures market<br>productionNYMEX - WTI - gallon<br>fell sharply - output -allEMictan oil production<br>feld<br>fell sharply - output -4B, EMexican oil production<br>fieldGEESaudi oil industry<br>boost - highest - rise<br>suthin - Bonga -1, 2EGasoline prices<br>force majeure - oil-<br>crude - export<br>halts - investment - net<br>lack - investment - |

|           |                         | repair - pipeline -                |      |                 |             |
|-----------|-------------------------|------------------------------------|------|-----------------|-------------|
| Jul. 15   | Chevron oil production  | Nigeria                            | 4    | В, Е            | Reuters     |
|           |                         | force majeure - oil-               |      | _               | <b>.</b> .  |
| Jul. 15   | Shell Oil Company       | Crude - export                     | 4    | E               | Reuters     |
| Jul. 17   | Nigerian oil industry   | Bavelsa                            | 4    | B. E            | AFT         |
|           | The Niger Delta oil     | pipeline - Kula -                  |      | ,               |             |
| Jul. 29   | production              | Rumuekpe                           | 4    | В, Е            | Reuters     |
|           |                         | Star Deep - Agbami -               |      |                 |             |
| Jul. 29   | Chevron oil production  | field                              | 4    | В, Е            | Chevron     |
| Aug. 4-7  | US Minerals             | offshore - oil - gas               | 5    | E               | Manag.      |
|           | Baku-Tbilisi-Ceyhan     | Turkey - Azerbajan -               | -    |                 | EIA,        |
| Aug. 7    | Pipeline                | Georgia                            | 2, 8 | В, Е            | Reuters     |
|           |                         | Baku-Supsa - pipeline -            |      |                 | EIA,        |
| Aug. 14   | BP oil production       | Russia<br>balt diocol              | 2, 8 | В, Е            | Reuters     |
| Διισ 20   | China oil production    | PetroChina                         | 7    | F               | Reuters     |
| /106.20   |                         | Turkish - energy -                 | ,    | L               | Reaters     |
| Aug. 25   | BTC pipeline            | Baku-Supsa                         | 2, 8 | В, Е            | Reuters     |
|           | Oil and natural gas     | offshore - Mexico -                |      |                 |             |
| Aug. 29 - | production              | Gulf                               | 5,6  | E               | Reuters     |
| Sen 7     |                         |                                    |      |                 | Manag       |
| Sen 8     | Hurricano Gustav        | Gulf - Ike - natural gas           | 5    | DE              | Routors     |
| Sent 10   | OPEC meeting            | abide - Iraq - Indonesia           | 1    | D, L<br>F       | Reuters     |
| Sept. 10  | or Le meeting           | export - Turkey -                  | T    | L               | EIA.        |
| 15        | Iraqi oil production    | Exports - storm                    | 2    | D, E            | Reuters     |
| Sep. 15   | Oil futures market      | Ike - Lehman - settled             | 5    | D, E            | Reuters     |
| Sep. 22   | Oil Market              | WTI - highest - barrel             | all  | E               | Reuters     |
| Sep. 24   | US gasoline inventories | 1967 - Gustav - fuel               | 5    | D, E            | Reuters     |
| Oct. 24   | OPEC meeting            | Vienna - cuts - barrels            | 1    | E               | Reuters     |
|           | _                       | EIA - slowdown -                   |      |                 |             |
| Oct. 30   | US oil demand           | lagged effect                      | 5    | E               | Dow Jones   |
| Nov 19    | Comoli nirotos          | Saudi - Sirius -                   | 2    |                 | Doutors     |
| Nov. 21   |                         | superiorized foll                  | 2    | А, С, Е<br>Г    | DL Doutors  |
| NOV. 21   | Gasoline prices         | regular - national - tell          | all  | E<br>F          | DJ, Reuters |
| NOV. 29   | OPEC meeting            | Cairo - supply - cut               | 1    | E               | Reuters     |
| 2009      |                         |                                    |      |                 |             |
|           |                         | cut off - Ukraine -                |      |                 |             |
| Jan. 1    | Russian Gas supply      | dispute - Russia                   | 8    | A, D, E         | Reuters     |
| lan 2     |                         | Katrina - Rita - refiners          | -    |                 | Dautana     |
| Jan. 2    | US Energy Dep.          | - Gustav                           | 5    | D, E            | Reuters     |
| Feb. 6    | Iragi oil production    | disrupting                         | 2    | A. C. E         | Reuters     |
|           | - 1 - 1                 | largest - despite -                |      | / -/            |             |
| Feb. 23   | Global oil storage      | Frontline                          | all  | E               | Reuters     |
| Max 0     | Devel Dut-h (Ch. U      | Nigeria - attack - force           | 4    |                 |             |
| iviar. 9  | koyal Dutch/Shell       | majeure<br>anti-subsidy - duties - | 4    | А, <b>С</b> , Е | וח          |
| Mar. 12   | EU anti-dumping         | trading                            | 8    | B, E            | Reuters     |
|           |                         |                                    |      | ,               |             |

|           |                        | Vienna - OPEC - supply                           |     |      |           |
|-----------|------------------------|--------------------------------------------------|-----|------|-----------|
| Mar. 16   | OPEC meeting           | - targets                                        | 1   | E    | Reuters   |
| Mar. 24   | US oil production      | rig - drilling - Hughes<br>forecast - capacity - | 5   | E    | Reuters   |
| Apr. 2    | Mexican oil production | lost - barrels                                   | 6   | E    | Reuters   |
|           | US oil and gas         | declining - Institute -                          |     |      | Houston   |
| Apr. 15   | production             | quarter                                          | 5   | E    | Chronicle |
|           |                        | oil - gas - rigs -                               |     |      |           |
| May. 22   | US oil production      | exploring                                        | 5   | E    | Bloomberg |
|           |                        | quotas - unchanged -                             |     |      |           |
| May. 28   | OPEC meeting           | New York                                         | 1   | E    | Bloomberg |
|           |                        | agricultural - jump -                            |     |      |           |
| Jun. 12   | China oil production   | fuel - industrial                                | 7   | В, Е | Bloomberg |
|           |                        | reserves - exports -                             |     |      |           |
| Jul. 31   | Iraqi oil production   | highest                                          | 2   | E    | Bloomberg |
| Sep. 2    | BP oil production      | giant - Tiber - discovery<br>Vienna - maintain - | 7   | В, Е | Bloomberg |
| Sep. 9    | OPEC meeting           | quotas - urge                                    | 1   | E    | Bloomberg |
|           |                        | petroleum - ministry -                           |     |      | Nete      |
| Oct. 2    | Russian Energy sector  | start-up                                         | 8   | E    | Compass   |
|           |                        | offshore - shut-in -                             |     |      | Minerals  |
| Nov 9-12  | Tropical storm Ida     | Minerals                                         | 56  | DE   | Manag     |
| NOV. 9-12 |                        | Baker Hughes rigs                                | 5,0 | D, L | widitag.  |
| Nov 13    | US oil production      | consecutive                                      | 5   | F    | Bloomherg |
| 1000. 15  |                        | consecutive                                      | 5   | L    | EIA,      |
| Dec. 2    | Russia oil production  | Saudi - Rosneft - Arctic                         | 8   | D, E | Reuters   |
|           |                        | Angola - unchanged -                             |     |      |           |
| Dec. 22   | OPEC meeting           | Luanda                                           | 1   | В, Е | Bloomberg |
|           |                        | SPR - Energy - buffer -                          |     |      |           |
| Dec. 27   | US oil reserve         | IEA                                              | 5   | E    | DJ        |