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ABSTRACT

In this thesis, the alternating-direction implicit method (ADI) is investigated in conjunction with the finite-
difference time-domain method (FDTD) to allow crossing of the Courant-Friedrich-Levy (CFL) stability
criterion while maintaining stability in the FDTD algorithm. The main reason for this is to be able to use a larger
numerical time step than that governed by the CFL criterion. The desired effect is a significant reduction in
numerical run-times. Although the ADI-FDTD method has been used in the literature, most analysis and

application have been performed on simple three-dimensional cavities.

This work makes original contribution in two aspects. Firstly, a new modified alternating-direction implicit
method for a three-dimensional FDTD algorithm has been successfully developed and implemented in this
research. This new method allows correct modelling of a realistic physical structure such as a microstrip patch

with the ADI scheme without causing instability even when the CFL criterion is not observed. However, due to

the inherent property of this modified ADI-FDTD method, a decreasing reflection coefficient is observed using

this scheme.

The second and more important contribution this research makes in the field of numerical electromagnetics is
the development of a new method of simulating realistic complex structures such as geometries comprising
copper patch antennas on a dielectric substrate. With this new method, for the first time, the ADI-FDTD

algorithm remains stable while still in violation of the CFL criterion, even when complex structures are being

modelled.

However, there is a trade-off between accuracy and computational speed in ADI-FDTD and modified ADI-
FDTD methods. The larger the numerical time step, the shorter is the simulation run-time but an increase in
numerical time step causes a degradation in accuracy of numerical results, Comparison between speed and
accuracy is shown in this thesis and it has to be mentioned here that these values are very much dependent on

the structure being modelled.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

Frequency domain analytical methods have been extensively used [1.1],[2.1] to solve complicated
microstrip circuits. Generally, when using this approach, the thickness of the microstrip substrate is
assumed to be much thinner than the shortest wavelength of interest. As a result, there is no field variation
throughout the thickness of the substrate and this renders it a two-dimensional electromagnetic problem.
In such a case the microstrip patch is modelled by applying a magnetic wall around it. The fringing fields,
however, have to be accounted for by using empirically obtained effective patch dimensions and effective
permittivities. This is also known as the cavity model. Despite these disadvantages, the cavity model is
simple to implement and gives great physical insight to the circuit operation. The scalar Green’s function
is used to analytically solve this two-dimensional electromagnetic problem with perfect wall boundaries.

In general, the scalar Green’s function solves the following scalar Helmholtz equation :
VG + kG = 8(r-r,) (1.1)

where £ is the wavenumber iq the medium and the excitation is in the form of a dirac delta function at

r =r, The Helmholtz equation (1.1) is solved by first expanding the solution in terms of eigenfunctions
of the homogeneous Helmholtz equation for the appropriate coordinate system with the application of
perfect boundary conditions. By applying the method of separable variables, an exact solution to the
differential equation may be found. The solution is generally in the form of a double series Green’s
function for a two-dimensional problem. This method has been widely used to analyse various patch
circuits [2.1]. This double series Green’s function was successfully reduced to a single series summation
[1.1] by applying the reduced operator method as described in [2.2]. However, this type of solution is

restricted to only modelling thin substrates.

To model thick substrates and account for any fringing field effects, a full-wave electromagnetic solution
is required. There are generally two categories of numerical methods for solving electromagnetic
scattering problems, namely, frequency domain methods and time domain methods. Frequency domain
methods include the finite-element method and the method of moments [2.3] while the transmission line
matrix (TLM) [1.2] - [1.3] and the finite-difference time-domain (FDTD) [1.4] are time domain methods.
Full-wave frequency domain methods have been used to model various problems, especially those with
few selected frequency points of interest. This is because, in such methods, the data for the whole
frequency range are calculated one frequency at a time. However, for wideband solutions, time domain
methods are generally preferable as a whole spectrum of frequency response can be obtained from a

single simulation run. By exciting the time domain model with a broad-band Gaussian pulse, for example,
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and then applying the Fourier transform on the time-domain results, one can get the entire frequency

range of interest, all in a single simulation run.

The FDTD method has been extensively used to solve two- and three-dimensional scattering problems
[1.5] - [1.7]). The author has chosen the FDTD method over other time-domain methods because its

implementation is straight forward, directly derived from Maxwell’s equations.

1.2 FDTD Method

The finite-difference time-domain or commonly known as the FDTD method was first proposed by
K.S.Yee in 1966 [1.4]. The FDTD method is formulated by discretizing the differential form of
Maxwell’s two curl equations over a finite volume and approximating the derivatives with centred
difference approximation to obtain a second order accuracy in time and space. Appropriate boundary
conditions are imposed on the source point, conductors and computational boundaries to model the real

structure. Indeed, FDTD is relatively simple, flexible and easy to implement. However, over the years,
FDTD applications have been restricted to solving electrically small structures, To obtain accurate results

for large electrical structures, large amounts of CPU time and memory resources are required. These

expensive computer resources come from two modelling constraints.

1. The spatial step, Ah, must be at least 10 to 20 times smaller than the smallest
wavelength of interest for a negligible dispersion error and

2. The time step used in the algorithm must satisfy the Courant-Friedrich-Levy (CFL)
stability condition stated below (and derived in Chapter 2) :

At S — (1.2)

where Ax, Ay and Az are the spatial steps, At the time step and v the maximum wave velocity in the media

being modelled. The implications of the above two constraints are considerable.

A physical understanding of the CFL stability constraint (1.2) will be explained below with the help of
Fig. 1.1 which shows an elemental three-dimensional building block in the FDTD mesh. Assume that the
elemental block is a cube, that is Ax = Ay = Az = Ah. In numerical FDTD, for example, when modelling a

wave speed, v, the numerical wave takes 3 At to propagate diagonally in the cube; that is, the wave takes

3 time steps to travel a distance of +/3 Ah. The numerical wave speed is governed by the dielectric

constant used in the simulation. Therefore, if a bigger time step is used to model wave propagating at the
same speed, v, the wave will seem to have travelled further than it actually has. This gives rise to errant
simulation results. Since FDTD is a time-domain method with each time-domain results feeding back to
the next time-domain algorithm, this error will accumulate and eventually grow as time progresses

resulting in an unstable system.
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Fig.1.1 : Elemental cube in FDTD mesh

Another modelling constraint is that not only must the spatial incremental step be small relative to the
smallest wavelength of interest, but, in order to model an electrically large structure which contains

discontinuities accurately, the spatial step must also be made fine near the discontinuities. The constraint
of equation (1.2) above means that the time step has to be small near the discontinuities in order to
maintain stability in the FDTD scheme. The smaller the time step, the longer is the simulation run-time
because more numerical iterations are required to represent a finite amount of real physical time. This can

lead to a prohibitively long simulation run-time.

One way to model an electrically large structure with fine discontinuities without incurring intensive use
of memory storage is to sub-divide the computational domain into regions, each with a different mesh
size; a finer mesh size is used for regions with high irregularity and a larger mesh size for the rest of the
domain [1.8] - [1.12]. The finer mesh is obtained by further meshing the larger mesh. This process is
referred to as subgridding. In such a situation, to maintain stability as defined by equation (1.2), either the
time step corresponding to the smallest mesh size is used for the whole computational domain, or the time
steps are set separately for each mesh region. For a large object with a highly irregular structure, the first
method can be computationally expensive in terms of simulation run-time. Using the second method, the
mesh sizes have to be such that the time steps are integer multiples of one another. Furthermore, space
and time interpolations at the interfaces of the mesh may be required for accurate simulation. Also,
numerical dispersion will vary throughout the different mesh sizes. All in all, this makes the
implementation of FDTD to mesh geometries that vary across a volume, a difficult and time consuming

task both in implementation and execution. Despite the saving in computer storage, the overall simulation

run-time will still be long due to the run-time necessary over regions with fine mesh size.

The key to modelling electrically large structures with fine discontinuities without incurring a huge
computational burden in terms of simulation run-time is if the CFL stability criterion can be violated
without causing instability thereby allowing the use of bigger time steps in the simulation. This is realized

when the alternating-direction implicit (ADI) method is applied on the FDTD algorithm.

1.3 Finite-difference approximation to derivatives

Consider a two-dimensional parabolic equation (1.3) below :

— = —— 4 — (1.3)
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1.3.1 Explicit method
One finite-difference approximation to (1.3) is :

1
uly - by Mg -2 ol wlga - 2uf) ¥ (142
At Ax? oy |

where x =iAx, y= jAy and ¢ = nAt . Equation (1.4a) can be written as :

n n n n n n
u‘r 1‘ - 2ui- + uj_l' ul' l - 2u£‘ + u,' _l
=l +A{-:-L—ﬁ—__f- e (1.4
V4

and (1.4b) gives the unknown values u at time step (n+1)At in terms of known values u at time step nAt.
This is known as an explicit method. This explicit method is simple but can be computationally intensive
because the condition for its validity [2.4], shown below, limits the time step, At that can be used in order

to maintain stability in the system.

1
At £ (1.4¢c)
[ 1 !
2 —3 + T3
AX Ay
1.3.2 Implicit method
Another possible finite-difference approximation to (1.3) is :
u;:}l - uzj 5 _1_ uf:i}j - 2u;:}l + u:‘:i}j N u;:,Lj - 2“;:1 + u;.’,l'j
At -2 Ax? Ax?
n+l n+l n+l n n n (1'5)
. _1_ Ui j+l = 2”1,1 + U -l . Upjer = 2Up 5 + Up o

The unknown values u at time step (n+1)At are given in terms of the known values u at time step nAt and
also the unknown values u at time step (n+1)At. The unknown values u at time step (n+1)At are then
calculated by solving (M-1)(N-1) simultaneous equations comprising the known values u at time step nAt
where M is the number of Ax space steps and N the number of Ay space steps. For large values of M and
N, the simultancous equations will be solved iteratively, This method is known as the Crank-Nicolson

implicit method. This implicit method is valid for all values of Ax, Ay and At, that is, there is no
constraint on the time step used. But it takes considerably more computing power than the explicit
method as the simultaneous equations may need to be solved iteratively and they involve finding the

inverse of the matrices containing the equations.
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1.4 Alternating-direction implicit procedure

One crucial point about the FDTD method is that it is a fully explicit method of solving differential
equations. This means that the iterative field values are calculated from previously known values. As
mentioned above this method is attractive as it is simple to implement but it is limited to some extent by
the CFL stability criterion that limits the time step that can be used in the algorithm. Implicit methods, on
the other hand, have superior stability properties [2.4] where the time step is not limited to any size.
Unfortunately, an implicit method in two dimensions requires at each time step, the solution of large sets
of simultaneous equations, which is not always easy to accomplish directly. Morever, when applied in
conjunction with the three-dimensional FDTD algorithm, this method results in three three-dimensional

matrices which have to be solved simultaneously.

The most efficient method to date that incorporates the implicit method is the one first proposed by
Peaceman and Rachford in 1955 [1.13]. This method requires the line-by-line solution of small sets of
simultaneous equations that can be solved by a direct, non-iterative method. This is called an alternating-
direction implicit (ADI) procedure. Peaceman and Rachford tested the ADI procedure by using it to solve
the heat flow equation with boundary conditions in two space dimensions and compared the solutions
with known formal solution. The two solutions showed good agreement. The ADI method was also tested

by Peaceman and Rachford on steady-state problems in two dimensions by solving Laplace’s equation in
a square. The stability of the ADI scheme was also discussed and analysed in their paper. Part of their

work in the ADI method used to find solutions of an unsteady-state heat-flow in a square is described

below.
1 l ! 1
“ff}' - uj "f’ﬁ.f - 2"2} + u,’i*i_j "f.m - 2“2} + "f}—l
- = + —_— (1.63)
At Ax Ay

In [1.13], the second order derivative term from (1.3), azu/ ox? is replaced by a second order difference
term evaluated in terms of the unknown values of w, that is implicit in the x-direction, while the other

derivative, &° u/ 0 y* is replaced by a second order difference term evaluated in terms of known values of

u. This results in sets of simultaneous equations that can be solved easily without iteration. If the
procedure is then repeated for a second time step of equal size to the first time step and the difference
equations are set implicit in the y-direction, as shown in (1.6b), then Peaceman and Rachford showed that

the overall procedure for the two time steps would be stable for any size time step. This means that the

time step used is no longer restricted by the stability requirement of the system.

n+2 n+l +1 ] n+l +2 +2 +2
Ui = Uiy Ui,y = 2Upy + Uy . Uijer = 2050 + up (1.6b)

Since its introduction, the ADI procedure has been broadly used to solve diffusion problems. This method
was first adapted to solve wave problems in FDTD mesh by T.Namiki [1.14]. With the application of the
alternating-direction implicit procedure on the FDTD method, the well-known CFL stability criterion
stated in equation (1.2) can now be violated without causing instability. The physical understanding of

how violation of the CFL criterion will lead to instability of the FDTD system was discussed earlier in
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section 1.2 and illustrated using Fig 1.1. This means that potentially bigger time steps can be used in the

simulation thereby reducing the overall simulation time.

In this thesis, the ADI-FDTD method is investigated and a new modified ADI-FDTD method is proposed
and discussed. The detailed implementation of the ADI-FDTD method with respect to the structure being
modelled is also presented in this thesis. Numerical simulations of a simple line-fed rectangular
microstrip patch are used to verify both the ADI-FDTD and the newly proposed modified ADI-FDTD
methods. A bigger patch with three parasitic patches is also simulated to verify the application of ADI-
FDTD method on an electrically large object. Where possible, the simulated results are compared with

results from published literature.

This thesis is organized as follows.

Chapter 2 : Discusses the theory behind the finite-difference time-domain method, the implementation
procedures, and compares the simulated results obtained in this research work with those in the published
literature [1.5]. A new, more efficient method of extracting the reflection coefficient from the simulated

data is also presented.

Chapter 3 : Presents the theory of the alternating-direction implicit method applied on the FDTD
algorithm and illustrates the physical interpretation of the ADI-FDTD method. With the help of simulated
data, the problems encountered when a line-fed rectangular microstrip patch is simulated, are discussed.

This chapter also explains the implementation of the absorbing boundary condition at the boundary of the

computational domain which is critical for accurate and correct modelling of the structure.

Chapter 4 : Proposes a new modified ADI-FDTD method to surmount the problem of modelling the
microstrip patch in chapter 3 using perfect electric wall boundary on the copper patch. The limitation of

this new method is also discussed.

Chapter 5 : Shows that a different technique of implementing a boundary condition helps eliminate the

problem encountered in chapter 3. Simulated results for more complex structures are also shown.

Chapter 6 : Concludes the research undertaken by the author and suggests some further work in this field

of research.
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CHAPTER 2
FINITE-DIFFERENCE TIME-DOMAIN METHOD

2.1 Introduction

The algorithm of finite-difference time-domain field analysis was first introduced by Kane Yee in 1966

[1.4] and has been widely used to solve electromagnetic scattering problems.

2.2 Maxwell’s equations In three dimensions

In a region of space, the time dependent Maxwell’s equations are given in the differential form by [2.5]

Faraday’s Law :

98 _ .VXE -Jm 2.1)
Ot
Ampere’s Law ;
oD - =
— =VXH -J 2.2
ot J (22)
And the constituent relations are :
V.D =0 (2.3)
VB =0 (2.4)
In linear, isotropic non-dispersive materials,
B=uH (2.5)
and D=cE (2.6)
In order to account for the magnetic loss in the system, the magnetic current density is given by :
Jm=p H 2.7)
and similarly the electric current density is :
Je = o . (2.8)

L

E is the electric field vector in volts per metre, D is the electric flux density vector in coulombs per
square metre, H is the magnetic field vector in amperes per metre, B is the magnetic flux density vector

In webers per square metre, J.1s the electric conduction current density in amperes per square metre,

J mis the equivalent magnetic conduction current density in volts per square metre, p is an equivalent

magnetic resistivity in ohms per metre and ¢ is the electric conductivity in siemens per metre.
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Combining the assumptions of (2.5) to (2.8) and substituting into Maxwell’s curl equations (2.1) and
(2.2), we obtain :

.a_H. = "!'VXE - _E_E (2.9)
ot H H

..a_E. = -I..Vx-]}- - EE (2.10)
ot E £

which govern the propagation of both electric and magnetic fields in any structure.

Writing out the vector components of the curl operator in (2.10) and (2.9) yields the following six coupled

equations equivalent to Maxwell’s curl equations in a three-dimensional Cartesian coordinate system.

OE, _1(oH, ©°oH, . (2.11a)
ot e\ Oy 0z g
.aﬂ.-_-l_af_{i.%.gE) (2.11b)
Ot e\ 0z Ox g
.‘?ﬂgli{{i.gl_ﬁ..gg (2.11c)
Ot e\ Ox oy g
OH = -_l.. ..a_g':'. - EEZ. + pH (2.12a)
Ot ul oy 0z *
oH | (OE, OFE
Y X 2
— i e - — H 2.12b
Ot p( 2 ox L y] ( )
OH 1(CE, OFE,
2 _— T T | St— 2.]2
> ”( s +pH,] (2.12c)

This system of six coupled partial differential equations of (2.11) and (2.12) forms the basis of the finite-

difference time-domain (FDTD) numerical algorithm for electromagnetic wave interactions.

2.3 FDTD algorithm

The FDTD algorithm solves for both electric and magnetic fields in time and space by solving the six

coupled Maxwell’s curl equations (2.11) - (2.12). A physical model of the fields in a Cartesian grid is
shown in Fig. 2.1. For programming considerations, the numbering of the spatial location of E and

H fields in Fig. 2.1 differ from that in the original Yee’s cell.

As illustrated in Fig. 2.1, the algorithm centres its Eand H components in three-dimensional space so
that every E component is surrounded by four H components and vice versa. Every component of

H can now be obtained by the loop integral of E using the four surrounding E nodal values according to

Maxwell’s curl equation of E . A similar condition holds for H .
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Z Ex(i,j+1,k+1)

& D ey it

Ez(i+1,j+1,k)

Hz(i-1,j-1,k)
Hy(i-1

Hx(1,j-1,k-1)

Fig. 2.1 : Yee’s staggered cell

We note that in the FDTD algorithm, the E and H nodes are disjointed by half a space step. In addition,

calculation of E and H fields are also disjointed by half a time step. This means that the E and H
fields are calculated at alternate half time steps. For this reason, this algorithm is called the leapfrog
method. The leapfrog time-stepping process is fully explicit; that is, the current field values are calculated
using previously stored field values. As a consequence it is not necessary to solve sets of simultaneous

equations by involving matrix inversions.

It is worth noting that continuity of the tangential Eand H is automatically maintained across an
interface of dissimilar materials if the interface is parallel to one of the grid coordinate axes. Change in
materials is specified using the material permittivity and permeability. These are defined in the FDTD

equations.

2.4 Finite difference expression of Maxwell's equations in three dimensions

Assuming lossless materials, discretizing (2.11) & (2.12) leads to the approximation of Maxwell’s curl

equations in three-dimensions as follows :

EM i) = E ik + ALJHE 000 - Hy gLk H"™V26j k) - H™*V(ij k1)
T T e by Az

} (2.13a)

E™ (ijk) = E" (ijk) + 2 HI20)0) - HE k1) HPV2 G4k - HEP2 G140
) 4 ) 4 £ Az A

} (2.13b)
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wtl o o A HPYgR - HEVA 60K BTG5k - HTY2 (1)
E, l (ij.k) = E; (ij k) + 'E"{""y—"—'—zx_y“‘““——“— -“—-—————r_ (2.13¢)
"Gi+Lk) - EN(ijk)  EN(ijk+1) - ENijk
H;m/z (ijk) = 32-1/2 (ij.k) - éﬂ{M - _Jﬁ‘}_'_)__y.(i‘:{._).} (2.142)
U Ay Az
nys: ny: ng/ . N s s
B ) = e g . AL ERGIRR) B NGNGB - B 2.1
u Az Ax
ES(i+1,j,k) - E7(ij k n e -E™ i
HIV2 0 = HMVE 0 - e;{__f__z_i__@_z_ W} 2140
H 3 4

where x =JiAx, y= jAy, z=kAz and t=nAt .

This FDTD algorithm has second order accuracy in both space and time because the central difference

method is applied on both the space and time derivatives [A.1].

2.5 Divergence of FDTD algorithm

While the FDTD algorithm solves for both electric and magnetic fields in time and space using the

coupled Maxwell’s curl equations, there is no explicit enforcement of the Gauss’s Law relations for both
the electric and magnetic fields as stated in (2.3) and (2.4) for source free regions. It is important that the

Gauss’s Law is observed in the FDTD algorithm.

The time derivative of the surface integrals of the electric flux density over all the surfaces of a free-space
Yee cell of Fig. 2.1 is given by [2.5] :

0 v £,0 _
-é;(f{aidg = [Ex(i!j:k)'Ex(’“lyj:k)]AyAz

ot
+ sgta £, ¢, 7,0~ E, (i, j-1,k) | AxAz (2.15)
+ £2[E, G, k) B, G ok =1 | sty

Using the finite difference expressions of the electric field (2.13a) — (2.13¢), the electric field time
derivatives in (2.15) can be substituted with the magnetic field spatial finite differences in each of the
RHS term in (2.15) producing :
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1)

¥ L 4
...............
[ ]

5 A Ay AZ
or J | Hy (LK) - Ho (1508 H 14K - H Lkl
Ay Az
[ﬂ;ﬁfﬁ - HAiFFT)  Ho(igh) - H.,(f~15;'?'c)]
......... AxAz
i [Wk} - ARG (iR - H (TR k)]
["H Sidhk) - Hy -1k HATH) - H\rry-l.&)]
Ax Ay
+ _— : Axdy
| Hytigiks)) - Hy(ilj k1) K=1) = H  Th<kks
Ax Ay

(2.16)

for all time steps. The RHS terms of (2.16) cancel each other out. Hence,

%ﬁb.ﬁ - %IIIV-BJV
= 0
=> V.D = 0

Therefore, the time derivative of the net electric flux leaving the surfaces of a cubic Yee cell is zero,
hence upholding Gauss’s Law for the electric field in charge-free space. The same can be shown for time
derivative of the net magnetic flux leaving the surfaces of a cubic Yee cell. This shows that the FDTD

algorithm is divergence-free in source free regions and implicitly enforces Gauss’s Law for both electric

and magnetic fields in those regions.

2.6 Numerical stability of the three-dimensional FDTD algorithm

Numerical instability is an undesirable possibility with explicit numerical differential equation solvers
that can cause the computed results to spuriously increase without limit as time-marching progresses. A
standard method to analyse numerical stability was presented by von Neumann and Courant, Friedrich
and Levy [the CFL condition, 2.4].

Electromagnetic waves propagating in a finite-difference grid naturally results in the generation of
numerical wave modes or Fourier modes. In order to maintain stability in the finite-difference time-
domain system, the spectrum of eigenvalues for these modes due to the numerical space differentiation
process must be contained within the stable spectrum of eigenvalues determined by the numerical time
differentiation process. The magnitude of field growth at every time step, called growth factor, is limited

to a maximum value of unity. If the growth factor is greater than unity, the system will be unstable.

Without loss of generality, consider a normalised region of space with u=1, =1, 0 =0, p=0and
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¢ = 1 where c is the normalized wave velocity in a vacuum. We can re-write Maxwell’s equations in a

more compact form [1.7] as :
iVxV = = (2.17)

where V = -ﬁ+j

and j = J-1

Unlike compact derivations in most literature, the following derivations for time and space eigenvalues
have been expanded and explained in detail by the author where necessary to ease understanding. To

analyse the stability of the numerical representation of (2.17), consider the following pair of eigenvalue

problems :

2 Vo= AV (2.18)
ot numerical
VN mericat XV = A5V (2.19)

where A, represents the eigenvalues due to the numerical time differentiation process and

A, the eigenvalues due to the numerical spatial differentiation process.

First, consider the time eigenvalues, from (2.18),

—n+1/2 —n=|/2
V -V

— N
= AV 2.20
v : (2.20)

Now define a constant growth factor for the numerical solution as a function of space point |

-I-/-n+I/2 -I-/-n
9 = Ln = ————0—= for all n time steps (2.21)
Vi Vi

In order to maintain stability in the FDTD algorithm, |q,‘ <1for all possible spatial modes in the grid

and for all points . Substituting (2.21) into (2.20) yields

‘hV = V /‘?i

or v [qf-A,Atq,-l] =

2
g = —-—A'zA' + (——-—-—A'ZA’] +1 (2.22)



Finite-Difference Time-Domain Method 13

A, At

We see that | q;[ =1if is purely imaginary and has a magnitude of 1 which means

- | S — < +
) ; J
or _2 < [Imag (A, )| < 2 (2.23)
At At

All possible spatial modes must have eigenvalues that are within this stable range to ensure stability of the

algorithm. The spatial eigenvalues can be determined by analysing (2.19) as follows.

2 b 3
numerical Xi; = -2- _?_ S (2'24)
Ox numerical ay numerical Oz numerical
V, Vy V,

At any time step, the instantaneous values of the electric and magnetic fields distributed in FDTD space
across the grid can be Fourier-transformed with respect to the grid coordinates to provide a spectrum of

sinusoidal modes, resulting in plane wave eigenmodes of the grid. Now let the following specify a typical

mode of this spatial frequency spectrum having E,Fy and 75, as the x- , y- and z- components of its

numerical wavevector respectively.

-l-/- _ ‘ﬁ:ej(k,Mx +k,.jAy+k.kM) (21.25)

Then,

V@i+1/2,j,k) - V(i=1/2, j, k)
Ax

&
Ox

numerical
Zl:ej(f, (1+1/2)Ax +k, jAy+k, k Az) _ ej(ié', (i=-1/2)Ax +k, j Ay +k, km) ]

-’;*ej(z?,lm +ijAy+F,kAz)
0

- -l-/-l-jzsin(fx Ax/2)
B Ax

(2.26)

%, stln ! kx Ax/2 ’ (2.273)

Ox Ax

Therefore,

numerical

0

Oy
0

Oz

j2sin (Fy Ay/2 )

numerical Ay

j2sin ( k, Az/2 , (2.270)

Az

(2.27b)

numerical
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in (¥ ) 2sin (&, Ay/2 in (¥ )
Let X = 2sin| k, Ax/2 Y = Slﬂ( y y/ )andZ= 2sin\k, Az/2

Ax ’ Ay Az
Then combining (2.19), (2.24) and (2.27) gives,

ilzilv,-zv,| - sl -zv, 1+ 5w, - ] | = AP 2.28)
or
0 Y|, v,
-Z x|v,|= Alv,
Y -X 0 Ly, v,
A,z Y [v
-Z =N, X |1, = 0 (2.29)
Yy -x -A,llY,

sz Ayz Azz

in? (% in? k,Ap/2)  sin? (,A2/2)
/\32 _ _4{sm k,Ax/2 . sin (y ) 4 )+ sin k,Az/ZJ (2.30)

As -1<sin®p <1, for all possible fc'x, l'c'y and 1?; , we can bound the range of A;:

lImag(A )| <2 1 _._1__ +

1
NIV Iy @3

To satisfy the stability condition (2.23) for the arbitrary lattice spatial mode, all the eigenvalues in (2.31)

must lie within the range specified in (2.23) i.e.

< — (2.32)

and denormalizing (2.32) by the FDTD wave velocity, where v=1// ue

Al § —e———— (2.33)

+ — +

1 1
v e A
AxY At AL

This is generally known as the CFL (Courant-Friedrich-Levy) stability condition. In an inhomogeneous

region of space, it is difficult to determine a spectrum of A, equivalent to (2.31) for all possible lattice
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spatial modes. For absolute algorithm stability, (2.33) will be good enough as it represents the worst case
choice of time step, Atr. If At is selected to be larger than the bound in (2.33), the FDTD numerical
algorithm will definitely be unstable. This is true as long as the FDTD algorithm is completely explicit. It

is the aim of this work to investigate the possibility of using the time-step beyond the constraint of (2.33)

while maintaining stability of the system. Chapters 3 and 4 will discuss two different methods employed

to achieve this aim.

2.7 Numerical dispersion of the three-dimensional FDTD algorithm

Dispersion is defined as the variation of the propagating wave’s wavenumber & =2x/A with angular

frequency w = 2xf . The analytical dispersion of physical wave propagation is an inherent property of the

medium of propagation and is structure dependent. For example, in a microstrip patch circuit, the

effective permittivity changes as a function of frequency. This gives rise to analytical dispersion. The

wavenumber of the continuous physical wave, & , is different from k which is the wavenumber of the

numerical sinusoidal travelling wave of angular frequency w that is present in the finite-difference grid.

[

This difference between k, analytical wavenumber, and k&, numerical wavenumber, gives rise to

numerical phase and group velocities that are different from the exact values obtained for physical waves.
This difference gives rise to numerical dispersion and consequently an errant simulation result. Whilst
analytical dispersion is an inherent characteristic of the microwave structure, numerical dispersion is due

to discretization of time and spatial steps in the finite-difference algorithm. The variation of the numerical

wave velocity with wave propagation angle due to numerical dispersion is shown in [2.5].

Numerical dispersion can be found by analysing (2.17). Substituting the vector-field travelling-wave

expression with time dependence :

el

-l;n(i.j,k) = Zej(k’lu "'"‘rfw*'r-“"“’“m) (2.33)

into (2.17) results in :

~ Pt g —p l -t
. (k.ax) 5 . [kay| 2 [k, Az)| —ne2 VU k) - VG, k)
_Z{Axsm[ > J+Aysm[ ) J+ Azsm[ > )JxV (i, J,k) =

At
(2.34)

-2 [_%_sin[kxﬁx} +_J?_sin{"y A)’J R _fi_sin[szz” P reany _2Sin(@ALI2) B iyan
At

(2.35)

Comparing (2.35) with (2.28) and (2.30) and denormalizing it to a non-unity wave velocity v, gives us the
general form of the numerical dispersion relation for the full vector-field FDTD algorithm in three

dimensions as :
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: 7o) al a2\
-—l—sin @At = —Lsin = + —l—-sin i + —Lsin £ (2.36)
VAt 2 Ax 2 Ay 2 Az 2

In contrast to the numerical dispersion relation (2.36), the analytical dispersion relation for a plane wave

in a continuous lossless medium is simply :

— =k’ + k2 +k,° (2.37)

However, (2.36) will reduce to (2.37) in the limit as At, Ax, Ay and Az all go to zero, that is, if the FDTD

grid is made very fine.

As the FDTD grid size increases with respect to the wavelength of propagating waves, the deviation of
the numerical phase velocity from the exact analytical phase velocity increases until the waves eventually
cease to propagate. This numerical low-pass filtering effect is inherent in the FDTD grid. Consequently,
FDTD modelling of pulses with high bandwidth will result in progressive pulse distortion as the high
spatial frequency components will propagate more slowly than the low spatial frequency components. In
addition, the very high spatial frequency components with wavelengths less than 2 to 3 cells are

completely rejected [2.5].

2.8 Boundary conditions

In a finite-difference scheme, the finite-difference mesh has to be of finite extent due to the limitation of
computer storage capacity. However, in many applications, the media to be modelled are of infinite
extent. Scattering problems, for example, lead to solutions of fields in an unbounded domain. Imposing
boundary conditions on the finite-difference mesh boundary may give rise to reflections that are not
representative of the actual physical situation. Consequently, absorbing boundary conditions are applied
on the mesh boundary, also known as the computational boundary, in order to simulate infinite or very
large geometries. The algorithm on the truncation planes has to simulate propaéation of outgoing waves
as if they were propagating to infinity. This is accomplished by enforcing an impedance match on the

computational boundary so that there is no reflection of outgoing waves back into the domain.

Referring to Fig.2.1, if the finite-difference mesh terminates on the electric field cell, we can see that all

components of the electric field on the boundary are tangential to the boundary while the components of

the magnetic field are normal to it. While the H -field components can be calculated from the respective

o

E -field components using equations (2.14), the E -field components cannot be evaluated in the same

way as this would require H -field components that are outside the mesh, For the structures considered in
this thesis, the pulses on the microstrip lines will be normally incident on the mesh boundaries. Therefore,
a simple approximate continuous absorbing boundary condition, where the tangential fields on the mesh

boundaries obey the one-dimensional wave equation in the direction normal to the mesh wall, will suffice.
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Engquist and Majda derived a theory of one-way wave equations suitable for absorbing boundary
condition in Cartesian FDTD grids [1.15]. It was further discussed by Mur in 1981 [1.16] and

implemented on a finite-difference scheme.

2.8.1 1% order Mur boundary condition
To derive Mur’s first approximate absorbing boundary condition, consider TEM wave propagation on a

lossfree transmission line giving rise to voltage and current as follows :

V., = VicosfBx + j1,Z,sin B x (2.38)
V.
I, = I,cosfx + _|-Z—smﬂx (2.39)

0
where x is an arbitrary point on the transmission line and / is the load end of the transmission line. In

order to have no reflection at the boundary, the line must be matched at the boundary, therefore,

7 = Z, (2.40)
I

where Z, is the characteristic impedance of the line.

Then, (2.38) and (2.39) reduce to
V, = V,eP* (2.41)
I, = I e#* (2.42)

which is a standard equation for one-dimensional propagating wave travelling towards the —x direction.

Assuming sinusoidal time variation, we have,

V, = V’e-i(ﬂx*m') (2.43)

Taking time and space derivatives of (2.43) gives

oV, . oV ,
= - joV, and ?xi = jpV,

and equating the V, terms results in

o = — 2.44
ifB ox jow Ot (249)
or
oV 1 oV
L e =X =0 2.45
ox v Ot (243)

So, for wave propagating in the -x direction, normal to the absorbing boundary wall, the Mur’s first

approximate boundary condition is :

aEtam;;t':ntial _ _l_aEtangcntial = 0 (2. 4 6)
Ox V Ot
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while for wave propagating in the +x direction,

OE tangential ] OE tangential
—_— f —— = () 247
Ox Y Ot (2.47)

where Ey;p.eniar is the £ field tangential to the boundary wall and v is the velocity of the propagating

wave. (2.46) can be discretised so that the field components on the boundary walls are dependent on only

the field components on and just inside the walls.

One way to approximate (2.46) is to use forward differencing for both space and time. This results in :

Ax
E, - E;y = -;E(E,:;' - E_,{,) (2.48)

where the subscript denotes the space step and the superscript, the time step. Rearranging (2.48) gives us :

1 VAt VAL . ¢
E. = Ex:,(l . -&—] + -Z;-E,,, (2.49)

(2.49) gives 1" order accuracy in the implementation of the Mur’s 1* approximate boundary condition.
Another way of applying (2.46), in order to have second-order accuracy in the discretised finite-

difference mesh, is to impose (2.46) at half space and time steps as follows :

aEtangenlial _ _l_ OE tangential (2 5 0)
2 Y Voo |
| 14172 (4172 1 141
Zx"(Exl - Ly ) = E(En;z - Ex:n) (2.51)

Since the values at the half grid points and half time steps are not available, it is possible to use a semi-

implicit approximation :

Ex? o -;-(E,',',*' + E") (2.52)
" 1( n n
and mel/2 ® "5 Epag + Em) (2.53)

This is partially implicit because it uses an unknown value of E at time step (n+1)At.
Substituting (2.52) and (2.53) into (2.51) gives us

1 |1
—-—|:-(Ex:+l + Ex: - E.r:)H - Ex:) ):I = E[E(EJ:H + Exg” - EI: - EI:) ):] (2'54)
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Simplifying (2.54) gives

VAt - Ax
or E.M = E,| + (——-—————J(Ex:“ - Ex‘(',) (2.55)

where E,,represents the tangential electric field components on the mesh wall and E,,, the tangential

electric field components one node inside the mesh wall. Strictly, (2.55) is the absorbing boundary

condition for wave propagating in the —=x direction, i.e. for use on the boundary wall at x=0. In this case,

E ., , electric field on the x=0 wall is to the left of E,, the electric field one node inside the x=0 wall. For

a wave propagating in the +x direction, although (2.47) shows a change in sign in the one-way wave
equation, (2.55) can still be applied as the absorbing boundary condition at the boundary wall x=h simply
because the change in sign in equation (2.47) is equivalent to swapping the electric field positions on the

boundary wall; in this case, E,,is the electric field on the wall which is to the right of E,,, the electric

field one node inside the x=h wall. Similar expressions can be derived for other absorbing boundaries, i.e.

normal to y and z directions.

Even after applying the absorbing boundary condition, there is some reflection because true wave

propagation is not one-dimensional and also the wave velocity is not constant but a function of frequency.
Besides, the normal incidence assumption is not valid for the fringing fields, therefore the side walls

should be far enough away so that the effects are negligible on the walls.

2.9 Conductor boundaries

Conducting ground plane and copper metallization layer can be modelled as perfect electric conductors

where the tangential electric fields are forced to be zero. It is usual to assume that these layers have zero

thickness. In order to model the edge of a conductor, tangential E fields are positioned exactly on the

edge of the conductor.

2.10 Dielectric boundaries

The Eand H fields in a dielectric region are calculated using equations (2.13) and (2.14) with the

dielectric constant, &, set to that of the dielectric instead of unity. The field components which lie on a

dielectric-air interface are the tangential E and the perpendicular H components. To calculate E, and

E , at the dielectric-air interface, the average value of ¢ is used in (2.13) [1.6], i.e.

£ = f_l__%_fz. (2.56)

where ¢, is the permittivity of the dielectric

and €, = 1, permittivity of air.
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Generally, in order to account for fringing field effects at the edge of microstrip patch, the dielectric

constant to be used is dependent on the relative permittivity of the dielectric as compared to that of air and
the relation between the width and height of the dielectric below the microstrip patch being modelled.
Since the fringing field effects are automatically considered in the FDTD simulation, equation (2.56) is

suffice for use only at the dielectric-air interface.

(2.14) is still used to calculate normal H , as the value of u does not change across the dielectric-air

boundary.

2.11 . Excitation

A Gaussian pulse has been chosen as the excitation pulse in all investigations in this thesis. This is mainly
because a Gaussian pulse has a smooth waveform in time and its Fourier transform is also Gaussian in
shape and centred at zero frequency. This means that by adjusting the width of the Gaussian pulse, the
frequency response can be obtained from dc to the frequency of interest. An ideal Gaussian pulse will

have the following expression :

g(t) = e'[ T (2.57)

and the pulse will be at its maximum at ¢=¢,. Fig. 2.2 shows a typical Gaussian pulse.

g(t) 1

I

to —_—

Fig. 2.2 : Gaussian pulse

The choices of T and ¢, are subject to two requirements. Firstly, the FDTD grid size, Ax, Ay and Az are

chosen to be fine enough to model the smallest dimension of the structure. Also, in order to have a good
spatial or mesh resolution, the grid size is set such that it is at least 1/20 of the shortest wavelength of
interest. Atis then calculated from the CFL stability criterion as given by the bound in (2.33). The

Gaussian half-width is given by :
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or t =t, =T (2.58)

that is, T is the symmetric point from the centre ¢, point when g(z)drops to 1/e of its maximum value.

The Gaussian half-width in time is then 2T. We know from Fourier Transform method that the

relationship between the highest frequency of interest, o, and T in the Gaussian pulse is given by :

1

T =
2fmax

(2.59)

Knowing the highest frequency of interest, T is calculated from (2.59). This is to ensure that the Gaussian
pulse is narrow enough to have a wide spectrum in order to maintain a substantial value within the
frequency range of interest. At the same time, the Gaussian pulse has to be wide enough to contain
enough number of time steps for a good time resolution. More importantly, in order to minimize
numerical dispersion error, we have found that, the Gaussian half-width, derived in (2.58), must contain
at least 20 space steps in the direction of propagation. 1f the Gaussian pulse travels at a speed, v, in the

direction of propagation, then the equivalent spatial half-width, ¥, of the pulse is given by :

W = 2Tv (2.60)
2Ty
Therefore, to have 20 space steps, v 2 20
10AA
or T2— (2.61)

where A is the space step in the direction of propagation. If the half width of the pulse, calculated from

(2.59) is not wide enough to contain 20 space steps then, the space step has to be reduced. The time step

At will then have to be re-calculated to ensure that the CFL stability criterion is still satisfied.

Secondly, ¢, must be chosen such that the initial ‘turn on’ of the excitation will be small and smooth to
avoid exciting high order modes. In order to have a smooth ‘turn on’, ¢, in all simulations in this thesis is

set to three times the value of T.

2.12 Simulation of a line-fed rectangular microstrip patch

The finite-difference time-domain equations (2.13) & (2.14) are used with the 1* order Mur absorbing
boundary condition to simulate the propagation of a broad-band Gaussian pulse on a line-fed rectangular
microstrip patch as shown in Fig. 2.3. This microstrip patch circuit was chosen from a paper published by
Abouzahra et al [1.5]. The finite-difference mesh parameters are chosen to be the same as in that paper to

allow direct comparison of results.
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1* order Mur boundary on all z

boundaries except ground plane
y X
12.448m 16.00mm

g =2.2 /
]

Perfect 2 334mm
electric wall

[

0.795mm

-

Fig. 2.3 : Line-fed rectangular microstrip patch

Mesh parameters :

Ax = 0.389 mm
Ay = 0.400 mm
Az = 0.265 mm

Thickness of substrate : 3 Az

Air space above substrate : 13 Az

Rectangular microstrip patch : 32 Ax x 40Ay

Source plane to edge of rectangular patch : 50 Ay

Monitored reference plane to edge of rectangular patch : 10 Ay
Microstrip line width : 6 Ax

Total mesh dimensions : 60 x 100 x 16 in x, y and z directions respectively

Time step At = 0.441ps
Gaussian half-width T = 15ps
Time delay ¢, = 3T

Af = 0.2 GHz

Since the substrate thickness is relatively small compared to the wavelength of interest, up to 20GHz, we
can assume that there is no variation of electric field in the vertical direction. Then, to excite the dominant

mode, a Gaussian pulse in time is launched into the source plane, setting off the vertical electric field,

E,, of the individual cell, Az, throughout the dielectric thickness and across the width of the feed line, 6

Ax.

In [1.6], an electric wall source is used for the remaining nodes on the source plane. An unwanted side
effect of this is that a sharp magnetic field is induced due to the high value of the space derivative of the

electric field. This results in the distortion of the pulse. To overcome this problem, a magnetic wall is

simulated on the source plane as was done in [1.5]. Applying image theory, the tangential H , a node

iy

inside the source plane is set to be the negative value of the tangential /, a node outside the source

plane. Then the remaining E field components on the source plane may be calculated from the finite
difference equations. However, when waves are reflected back to the source from the microstrip patch,
the source plane has to be transparent to the waves. To simulate this, the 1" order Mur absorbing

boundary condition is switched on once the excitation is completed. This means that the source plane has
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to be a reasonable distance away from the edge of the microstrip patch such that the reflected pulse does

not arrive back at the source plane while the source is still turned on.

Initially, all fields in the computational domain are set to zero. As time-marching progresses, the

sequence of the algorithm implemented is as follows :

- vertical electric field is excited with Gaussian pulse below the strip

- H fields are calculated using (2.14)
- magnetic wall is applied on the source plane on nodes other than the source points

- electric field values are stored for later use in absorbing boundary condition calculation

- E fields are calculated using (2.13)

- tangential E fields are set to zero on the metallized copper patch

- tangential E fields on the computational boundaries are calculated using the Mur’s first

approximate absorbing boundary condition (2.55)

The iteration proceeds till the response is close to zero or until there are enough data to meet the

frequency resolution.

2.13 Extraction of voltage and current from the FDTD mesh

In the FDTD simulation, excitation is in the form of the electric field and subsequently, the electric and
magnetic fields are calculated on the finite-difference mesh using equations (2.13) and (2.14). To extract
the voltage at the reference plane (electric field reference plane), firstly the vertical electric field
underneath the microstrip feed-line for each cell is multiplied by the Az to get the voltage for each cell;
this is repeated throughout the thickness of the dielectric and all these voltages added together give the
total voltage at the reference plane at a specific x location. In order to get a more accurate result, an

average total voltage is obtained for the width of the strip.

To extract the current, the magnetic field is integrated with respect to the mesh size along the dotted path
as shown in Fig.2.4. However, the magnetic field reference plane is shifted by half Ay from the electric
field reference plane. So, to get the current at the same reference plane as the voltage reference plane
(electric field reference plane), the magnetic field is integrated twice, first along the path of H-reference
plane and then along the path Ay behind the H-reference plane (see Fig.2.4). Assuming linearity, the

average of the two integrations gives the current at the E-reference plane.
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T A S L S Microstrip feed line
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Fig.2.4 : Extraction of electric and magnetic fields

2.14 Extraction of Sy4

2.14.1 Two runs
The microstrip patch is a one-port device and therefore its scattering matrix has only one element S,

which is the reflection coefficient. The reflection coefficient is given by :

E veftecte
[ = Leflected (2.62)
Ea'ncldunr

In order to obtain the reflection coefficient, the incident and reflected waves must be known. In FDTD
simulation, however, the calculated electric fields are the total electric fields. One way to obtain the fields
separately is to obtain the incident waveform, E,,cizn , by simulating only the microstrip feed-line which
extends right through to the absorbing boundary. This incident waveform can now be subtracted from the
total waveform, E, , obtained when simulating the rectangular microstrip patch to yield the reflected

waveform. The reflection coefficient is then calculated using :

E’fﬂﬂ“ﬂd Emml - E incident
r = el Ztotal = Zincident (2.63)
E incident E incident

This means that two runs of the FDTD routine are required in order to obtain the reflection coefTicient of

the circuit. This is inefficient and time-consuming.

2.14.2 Single run
It is found in this research that by extracting four parameters instead of one from the FDTD simulation of

the circuit, only a single run is necessary to calculate the reflection coefficient of the circuit.
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Consider the voltage and current at any point on a transmission line :

V, = Vicoshyx + I,Z,sinhyx (2.64)
Vi .
I, = I,coshyx + —Z——-smhy X (2.65)
V Z, + Z,tanhyx
h — = Z g SN — ¢ etk St 2.66
en 1, "(za ¥ Z, tanhyx] 209
oV, .
also roalie (V,sinhy x + 1,Z,coshy x)y (2.67)
of : V
—X = { ],sinh + —=cosh 2.68
ax (:lrx Zosrx]r (2.68)
then at x = 0, set as the reference plane at the monitoring point, dividing (2.67) by (2.68) gives
2
an/ax _ I,Z,, _ _Z_E_ (269)
51x /3): Vl /Za Z[
and from (2.64) and (2.65), withx =0,
Zﬁ" - Zl (2.70)
I.I

Note that Z; is not the load impedance in the conventional sense but the load impedance at the monitoring
point as x = 0 has been set as the reference plane at the monitoring point. So, Z; is the input impedance at

the monitoring point and the reflection coefficient at the monitoring point is given by :

' = 21 - 2o (2.71)
Z, + 2,

(7272 _
r = zl /Zo l (2_72)
1/z,’/z,ﬂ,2 + 1

Representing (2.72) in the form of (2.69) and (2.70) gives us

or

(2.73)

It can be seen from (2.73) that the reflection coefficient of the circuit can be calculated from a single run

of the FDTD routine if four parameters, namely, V,,I,, 6V, /0x and &I, /Ox are extracted from the
FDTD simulation.

Unh
Ubrapy”
Hul
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The derivation above is done for wave propagation in the x-direction. It can be applied to any direction of

propagation as long as appropriate parameters are extracted. In all simulations in this thesis the direction

of propagation is in the y-direction while the excited tangential electric field is in the z-direction.

Therefore, the required parameters are ¥, ,1,, 0V, /0y and 0!, /oy .

2.15 Extraction of Zin

The input impedance, Zin, of the microstrip patch antenna at the edge of the patch can be calculated from

the S;;(®) extracted in section 2.14 by transforming the reference plane from the monitoring point to the

edge of the antenna and applying the equation below.

1 + S”e'ﬂﬂ’
Zin = Z{w (2.74)

where B is the phase constant on the microstrip and / is the length from the monitoring point to the edge

of the patch antenna and Z, is the characteristic impedance of the microstrip line.

Fig.2.5 : Plan view of the microstrip patch antenna

Fig. 2.5 shows the plan view of the simulated microstrip patch antenna where the monitoring point is at
Pnont and the input impedance to be calculated is at Py,. By applying equations (2.70) and (2.73), we have

the input impedance, Zi; mont and reflection coefficient, Syy mon; at the monitoring point, Ppon;. In order to
apply (2.74) to find Z, at P;,, we need to calculate f3, the phase constant on the microstrip and Z, the

characteristic impedance of the microstrip line. Re-arranging (2.74), we get

I = S11_mont
Z, = 2 —e 2.75
0 Jn_monl( 1+Sl|_monl ] ( )

which gives us the characteristic impedance of the microstrip line. In order to calculate B, the phase

constant, V,,1,, OV, /ay and oI, /6y are monitored at another point P2 in addition to point Pponi.

Again, applying (2.73) to the data extracted from point Pp,qq2, We obtain the reflection coefficient, Sy mon2-
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Let
E reflected

S) _monl = (2.76)

E incident
then

E reflected € ke

E incident € IF (2 -77)
-j28 L,

Sll_monz =
Sll_manl €
since the reflected wave at Ppon2 is delayed from Ppon by a phase length BL1 and the incident wave at

Pon2 is ahead of Pponi by the same amount where L1 is the length from Pront t0 Pmonz Which is set at SAy.

Let 6, be the phase of S;; at Ppony and 0, the phase of Sy at Pyonz, then (2.77) becomes

I Sll_monZ ejﬁ; = ‘ Sll_manl ejal e-ﬂﬂ “ (2-73)
0 0 2
en J;, 2L, (2.79)

Substituting f# and Z, back into (2.74), we get the input impedance of the patch antenna as

ALE I:a Ly
I'= S11_mont I+ S11_monmt © l
Zn = Zin_mom| o | | — (2.80)
1+Sll_monl j—'—L—LL;
1

l- Sl I_monl €
Since the monitoring points chosen are at Ppony and Pyons, L1 = 5SAy and L, = 10Ay, then (2.80) reduces to

1 - Sll monl] (1 + Sll mon| 312(9| . 92) | (2.81)

Zy = Z ]
=" 1411 mon ZORE

l- Sl |_monl €

Equation (2.81) is used to calculate Z;, in one simulation.
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2.16 Results

o 2 4 6 8 10 12 14 16 18 20

IS111 (dB)
)
-

—  Abouzahra’s simulation
40 === Abouzahra's measurement

=+  Conventional FDTD

Fig. 2.6 : Comparison between simulated and Abouzahra’s published results for | S,, |

M.D.Abouzahra et al [1.5] discussed the application of the three-dimensional FDTD method to the
analysis of planar microstrip circuits, one of which was the line-fed rectangular microstrip patch shown in
Fig.2.3. In order to validate the FDTD program, the patch in Fig.2.3 is simulated using the same mesh
parameters as in the published paper [1.5] to allow exact comparison, Fig. 2.6 above shows a comparison
between the published data and the data generated. The simulated result agrees well with Abouzahra’s
simulated results. However, at high frequencies, both Abouzahra’s simulated results and the simulated
results generated in this work shifted slightly towards the lower frequency. The discrepancy between the
simulated and measured data may be due to an increase in numerical dispersion at high frequencies.
Furthermore, the results have been obtained in the time-domain and then converted into frequency
domain by applying Fourier Transform method on the time-domain data. Consequently, a small error in
the form of truncation error in the time-domain will result in a more significant error in the frequency
domain. Besides, the experimental data here are assumed to be error-free which may not be a sound
assumption. The discrepancy between the simulated data and Abouzahra’s measurement may well be due

to measurement error. The simulated result in Fig. 2.6 was obtained using a single run FDTD method as
described in 2.15.2
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freq (GHz)

1S11| (dB)

05 —e— Single run
| —s—2runs

Fig 2.7 : Comparison between two-run and single run simulated results

In order to validate the single run method of obtaining the reflection coefficient for the microstrip patch
circuit as derived in section 2.14.2, two sets of data are generated, one using the single run method and
the other using the double-run method. Fig. 2.7 shows a comparison between both sets of reflection

coefficients. They show exact agreement. Since the single run method is more efficient, all subsequent

results from this point onwards have been generated using the single run method.

E
f?.-' ~ freq (GH2)
- \P P
N 74 {8 76 77 78 _19=-:-8
L ",;"; -

Z) ‘."‘:ah"ﬁr;.:-"#

=) Abouzahra's real —1— CONV-fdtd real

2 - = = = Abouzahra's imag == e-==- CONV-fdtd imag

ol

Fig. 2.8 : Comparison between simulated and Abouzahra’s published results for Z,,
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Fig.2.8 above shows a comparison of real and imaginary parts of the patch antenna input impedance

between the simulated and Abouzahra’s published results. In Abouzahra’s published paper, the microstrip
is assumed to have a constant characteristic impedance, Z, of 50 Q and an effective permittivity of 1.9 is

used to calculate the wavenumber, f. In this research work, these values have been calculated using the
simulation data as discussed in section 2.15. Due to an inherent dispersive characteristic of the microstrip,
the effective permittivity is no longer static but changes as a function of frequency. Since a Gaussian
pulse which contains all the frequencies of interest is used as an excitation, the dispersive nature of the
microstrip patch due to the inhomogeneous media is automatically incorporated in the full-wave time-
domain solution provided by FDTD. The variation of the characteristic impedance in the frequency range
of interest is also accounted for in the simulated data. It is therefore not surprising to see the discrepancy

between the calculated input impedance and that presented in the published literature [1.5].

2.17 Conclusion

The three-dimensional finite-difference time-domain algorithm for solving numerical electromagnetic
problems has been introduced in this chapter. The salient features and key considerations in the
implementation have been discussed. Following this, the FDTD algorithm in this work has been shown to
produce results that agree with published results using a new more efficient technique of extracting the
reflection coefficient. This method of data extraction has been shown to give identical results to the
conventional approach and removes the necessity of performing two separate simulation runs, therefore
saving simulation run-time. Another important point is that the input impedance has been calculated
directly from simulated data which automatically incorporate the dispersive characteristic of the
microstrip; this removes the need for a-priori knowledge of the line characteristic impedance and
effective permittivity. Unlike in [1.5], there is no need to assume the characteristic impedance of the line

and use an effective permittivity to calculate the wavenumber.
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CHAPTER 3

ALTERNATING-DIRECTION IMPLICIT
FINITE-DIFFERENCE TIME-DOMAIN METHOD

3.1 Introduction

The FDTD method has been widely used in solving a broad range of electromagnetic problems, The
accuracy of the simulation can be greatly improved with the use of finer spatial increments, especially
where there are discontinuities in the structure. This though leads to the requirement of having fine mesh
sizes in localized areas. In the past, to maintain stability, as defined by the Courant-Friedrich-Levy (CFL)
criterion in (2.33), the time step used would have to be small. This would lead to a prohibitively long

simulation run-time if the object was electrically large but had small localized discontinuities.

In this chapter, the author shows that with the application of the alternating-direction implicit (ADI)
method on the FDTD, the CFL stability constraint is eliminated [1.14] and therefore a single time step,
larger than the one allowed by the CFL criterion, can be used for all mesh sizes throughout the model.
The time step is no longer governed by the stability but by the accuracy required for the simulation. This

is particularly useful, for example, when modelling a probe-fed circular patch where the probe is
extremely narrow compared to the diameter of the patch. In order to represent the effective input
impedance of the probe-fed circular patch accurately, a high FDTD mesh density is applied in the vicinity
of the probe and the mesh density decreases gradually away from the probe. Another area where the ADI-

FDTD may be useful is in the modelling of a structure comprising narrow slots or notches. Here, fine

meshes are required around the slots and notches with a consequent increase in computation time.

This chapter will discuss the key features in implementation of ADI-FDTD with particular emphasis on
absorption boundaries. Note that all the finite-difference algorithms from this chapter onwards will be
expressed such that the electric and magnetic terms are staggered by half a space step as depicted in the

original Yee cell to enable the derivation of numerical dispersions for the ADI methods.

3.2 Three-dimensional ADI-FDTD algorithm

The conventional ADI method has been widely used to solve many diffusion problems. As stated in
equations (1.6a) and (1.6b) in chapter one, the conventional ADI finite difference equations are split into
two procedures for a two-dimensional ADI scheme. Correspondingly, a three-dimensional conventional
ADI method will require the finite difference equations to be split into three procedures, each one
replacing a spatial derivative with an implicit difference approximation [2.4]. However, unlike in the
conventional ADI method, in this three-dimensional ADI-FDTD method, the formulation is split into

only two procedures, each one replacing each spatial derivative in the Maxwell’s curl equations with an
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implicit difference approximation. Procedure 1 is applied for advancement from nAt to (n+ Y2 )At while

procedure 2 is used for advancement from (n+ 12)At to (n+1)At.

Equations (3.1) - (3.2) show the numerical formulation for procedure 1 of the ADI-FDTD method. The
electric and magnetic fields are spatially staggered as in the conventional FDTD. Examining equation
(3.1a), one notes that it has a form which is reminiscent of the conventional FDTD as in (2.13a).
However, whilst all the H-field terms in the RHS of (2.13a) in the conventional FDTD are explicit, i.e. all
values are known, the H-fields on the RHS of (3.1a) in the ADI-FDTD have two implicit terms which are

yet to be calculated. The same form runs through all subsequent equations from (3.1a) to (3.2¢), i.e. there

are two implicit terms in each equation.

Procedure 1
HMYV24172 4172,k - HM™V2(141/2,4-1/2,k)

EMV2 (i41/24,k) =E? (i+1/2j.k) + 2L &
2¢ H(i+1/2/,k+1/2) - H)(i+1/2,/,k-1/2)
Az
(3.1a)
HM™V 207 +1/2,k+1/2) - H™V2(1j +1/2,k-1/2)
At
E™V2 (ij+1/2,k) = EX (ij +1/2,k) + — Az
2e HIG+1/2j+1/2,k) « H(i-1/2,]+112,k)
Ax
(3.1b)
Hy)V2(1+1/2,4,k+1/2) - HI'V3(11/2,4,k +172)
At
E'V? (ijk+1/2)=E] (ijk+1/2) + — " ™
2¢ HIGj+1/2,k+1/2) - H(ij-1/2,k+1/2)
Ay
(3.1¢)

EMGij+Lk+1/2) - E™(ijk+1/2)

At A
H™V26Gi41/2,k+1/2)=H" (ij+1/2,k+1/2) - — Y

2u | EJMV2(j+112,k41) - E)V2(1141/2,0)

Az
(3.2a)
EM(i+1/2J,k+1) - E™(i+1/ 2/ l
At Az
H™W2 G41/25,k+1/2) =H" (i+1/2,jk+1/2) « —
g )= Hy J ‘ 2 | E™V3G+15k+112)-E™V2(15k+1/2)
AX /

(3.2b)
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E"(i+1j+1/2,k) - EN(ij+1/2,k)

At Ax
H"™V2 4172 +1/2,k) =HT (i+1/2,j+1/2,k) - —
;12 ) ( / / 2u | EM™YV2G41/2441k) -EMV21+1/24k)

Ay
(3.2¢)

Because of the unknown implicit terms on the RHS, equations (3.1) cannot be solved directly as in the
conventional FDTD. To solve equations (3.1), the LHS electric fields have to be expressed such that the
RHS terms are all known values. In other words, the RHS terms have to be in the form of previously
calculated values. This can be accomplished by substituting equations (3.2) into (3.1) appropriately;

specifically, substituting (3.2¢) into (3.1a) results in (3.3) below. In equation (3.3), the LHS forms a tri-

diagonal matrix of E, when E, is scanned in the y direction. The RHS of (3.3) now consists of only

explicit, known terms. This tri-diagonal matrix is a sparse matrix that can be solved efficiently [2.6].

Jre Ay
{

p
y } ]+E;'”’2 (i+1/2j+1,k)

E™V2 (i41/2j-1k) - EMV2 (141/2,4,k) [2 + (

uedy
{

p)
- } +(%) [E;' (1415 +1/2,8) « EN (ij+1/2,k) - E} (i+1J1/2,k) + E” (iJ-]/Z,k)]

=.E, (i+l/2j,k)(

A 2
.(%3’-] [H 74172 +1/2,8) - HI (1 +1/24-1/2, b)) +(%%E) 117G+ 120,k 4 12) < 1141724172

(3.3)

E, and E, can be solved in a similar manner with the former resulting in a tri-diagonal matrix when

scanned in the direction of Z and the latter in x in procedure 1. Once all the electric fields are computed,

the magnetic fields can be computed directly using (3.2a) - (3.2¢).

Equations (3.4) — (3.5) show the numerical formulation for procedure 2 of the ADI-FDTD method. Those

partial derivatives that were replaced with implicit approximations in procedure 1 are expressed in
explicit approximations in procedure 2 and vice versa. The switching between the implicit and explicit

expressions in the two half time steps gives rise to the name alternating-direction.

Procedure 2

HM™V26G41724 +1/2,k) - H™V3(141/24-1/2,k)
At A
EI (i+1/248) = EIV2 (i41/248) + — . o
2¢ H} ' (i+1/24,k+1/2) - H) (i +1/2,4,k-1/2)
' Az
(3.4a)
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H™26Gi+1/2,k+1/2) - H™V2(ij +1/2,k1/2)

At Az
ET (1j+1/2,k) =E)™V2 (1j+1/2,0) + — w1 . *
Ax
(3.4b)
At Ax
EMGjk+1/2)=ENY? (ijk+1/2) + —
(1jk+1/2)= (hk+172)% o HM™ (i +1/2,k+1/2) - HI™ (1j1/2,k+1/2)
] &
(3.4¢)

EM Gij+Lk+1/2)-EM (ijk+172)

At Ay
H™ Gi+1/2k+1/2)=H"V2(ii+1/2,k+1/2) - —
= )= He 'y EJV3ij+1/12,k+1) - EV2(ij+1/2,k)
) Az

(3.53)

EM (i41/24,k+1) -E" (1+1/24,k)
At Az
2u E;'*"’(:+1J,k+1/2)-E;‘“”(u,kn/z)
AX

HIM (1+1/24,k+1/2) =H}™V2 (i41/24,k+1/2) -

(3.5b)

E;Yi+1j+1/2,k) - E) (ij+1/2,k)

At Ax
H™ 4172 +112,) =HPY? (14172, +1/2,k
(+172) /= ( / /- 2u | EM™V26G41/2+0Lk) - EMY2 0141124k
e

(3.5¢)

Again, substituting equation (3.5b) into (3.4a) and collecting the E, terms on the left give rise to equation

(3.6) below where all the RHS terms are explicit terms, i.e. known values. Repeating the same process
over equations (3.4) leads to tri-diagonal matrices for E,,, E, and E, when the fields are scanned in the Z,

x and y directions respectively. The full formulation of electric fields in both procedures 1 and 2 are in

Appendix B1.
2
Az
EM\i+1/24.k=1)-E'i+1/24.k) [2 + [—‘%} } +EM™G41724k +1)

p
Az +
=-ErV2 (1+1/24,k) (3%—) + [—ix—z-) [E™V2 141k +1/2) - E™V2 1,k +1/2) - E™V3 (1+1/,k-1/2) + E™V3 (i) k-1/2) |

( A,) [V 124k +172) - YV (14 1/20172)) + ( A Ay] 112 41724 41720 - BTV (141/21/2.0)
(3.6)
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3.3 Physical interpretation of three-dimensional ADI-FDTD method

Ex
conv-fdtd
nAt
Ex
adi-fdtd
H,/2
nAt

| (n+1)At
E, |
H,/2
——>  time
procedure 1
(n+1/2)At
Ex ' EX
Hz/;2
adi-fdtd
procedure 2 Hy Vo)
(n+1)At

Fig. 3.1 : Comparison between conventional FDTD and ADI-FDTD

Fig. 3.1 above illustrates a physical representation of the ADI-FDTD formulation in comparison to its

conventional FDTD counterpart. The diagram shows that in the conventional FDTD method, the electric
field at time step (n+1)At is calculated using the previously calculated electric field at time step nAt and
the curl of the known (hence explicit) magnetic fields, H, and H, at time step (n+ Y4)At. In the ADI-
FDTD method, an intermediate electric field is calculated at time step (n+ %:)At. In procedure 1 of the
ADI-FDTD method, the electric field at time step (n+ '4)At is calculated using, again, the previously
calculated electric field at time step nAt and the curl of the magnetic fields. However, this time, half the
curl is performed on the known (explicit) value, i.e. H, at time step nAt, and the other half of the curl is
performed on the unknown (implicit) value, i.e. H, at time step (n+ Y4)At. This is immediately followed on
by procedure 2 of the ADI-FDTD method; now the known (explicit) value of H, at time step (n+ Y2)At

and the unknown (implicit) value of H, at time step (n+1)At are used in the curl formulation. The total
magnetic field over a full time step remains unchanged. Note that although the curl at each half time step

is separated into two different time instances, it is still performed at a same point in space.

A further graphical illustration comparing implicit, explicit and ADI-FDTD methods with reference to the
Runga-Kutta method is shown in Appendix Cl.
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3.4 Divergence of ADI-FDTD algorithm

As in the conventional FDTD algorithm, there is no explicit enforcement of the Gauss’s Law relations for
both the electric and magnetic fields as stated in (2.3) and (2.4) for source free regions in the ADI-FDTD
algorithm. It is important that Gauss’s Law is also observed in the ADI-FDTD algorithm. Although the
curl operation of the magnetic fields is performed over two half time steps, the total magnetic field over a
full time step remains unchanged in the ADI-FDTD scheme. Therefore, the ADI-FDTD algorithm will
still satisfy equation (2.16), i.e. the time derivative of the net electric flux leaving the surfaces of a cubic
Yee cell is zero, hence upholding the Gauss’s Law for the electric field in charge-free space in the ADI-
FDTD scheme.

3.5 Numerical stability

As in chapter two, numerical stability of the ADI-FDTD can be analysed using the standard von
Neumann and Courant, Friedrich and Levy (CFL) method. Assuming the spatial frequency to be

Wiy

kx,Fy andk, as the x- , y- and z- components of its numerical wavevector respectively, the field

components can be written as follows.

ENG+1/2,/,k) = E"exp{-i[f.G+1/2)Ax + K, jay + T kz]] (3.72)
E}(i,j+1/2,k) = Ej exp{-j[?,,mx + k,(j+1/2)Ay + Z,Mz]} (3.7b)
E"(,j,k+1/2) = EJ exp{-j[F,iAx + k,jAy + ?E,(k+1/2)Az]} (3.7¢)
H(@,j+1/2,k+1/2) = H} exp{-j[/?,,mx + k,(j+1/2)Ay + i{,(;,,,l,z)m]} (3.82)
Hy(i+1/2,j,k+1/2) = Hy exp{-j[zx(i+1/2)Ax + EyjAy + /':,(k+1/2)Az]} (3.8b)
HI(i+1/2,j+1/2,k) = H, exp{-j[;x(i+1/2)Ax + l}'y(j+1/2)Ay + r,kAz]} (3.8¢)

where n, i, j, k, Ax, Ay and Az all have their usual meanings as defined earlier in chapter one.

3.5.1 2-dimensional ADI-FDTD
For the sake of simplicity, we consider first the numerical stability of a 2-dimensional TE wave consisting

of the following fields :

Procedure 1

At | H™20i4+1/2, j+1/2) - H™V2(i+1/2, j-
E:+1!2(l-+1/2’j) = E:(f+1/2,j) + _2__{ 2 (i J ) 2 (i+ J=1/2) (3.92)
E Ay
HI'(i+1/2,]+1/2) - H(i-1/2,
E;+l/2(l,1+1/2) — E; (I,j'l'l/z) - %{J_L_J____)-Z;M} (3'9[))
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EN(i+1/2,j+1/2) « EN(i, j+1/2)

At Ax
H™2i41/2,j+1/2) = HI(i+1/2,j+1/2) = —
e J+112) £ ( 7 2pu | EMY2314172, j+1) - EMV2(141/2, )
Ay
(3.9¢)
Substituting (3.7a), (3.7b) and (3.8¢) into (3.9) yields the following :
At Eyﬁy
* — - * i
E.,*GFl=E, - GFI1*H, 2eAy 2_]5"1[ 5 } (3.10a)
At [ kAx
¥ - ] ,
E,*GFl=E, + H, A 2_;sm[ ; ] (3.10b)
At I?,Ax At ;;yAy
% — ol - * :
H,*GFl=H, + E, Zyszjsm[ > ) GF1* E, > 71 by 2jsm( > J (3.10¢)
where GF1 is the growth factor in procedure 1, Substituting (3.10a) and (3.10b) into (3.10¢) gives :
At [k.Ax) At [k Ax
H, e 2}511{ > JZprzjs"{ 5 J
* =
H,*GFl=H, + CFl-1
At k,Ay)  Af k, Ay
GF1* GF1* | '
H, 2ehy 2]sm[ 5 }2pAy 2jsm( ;
+
GFl-1 (3.11)
L Y ar | (Foax)| o
0?2 = —p | —— | Bl Zx . GF1Rp | ]| AL | DY
H,(GFl1-1) H,(pg)[msm( > J] GF1 H‘(pa]li!_'&ysm{ 5 H (3.12)
At [k Ax At [k,ay
Let Mx = AxSII‘l[ 5 J and My = Aysm[ > }
and dividing (3.12) by H,
M2 M.?2
GFI{H 4 J- 2GF1 +[l+ : ) = 0 (3.13)
UE U E
M *? 2
Let a = [1+ 4 J and c = {I+M" ]
Ue HE

then (3.13) becomes
aGF1%-2GFl +¢ =0 (3.14)
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GF1 = l v 1-ac
a
and since 0 < sin’p < 1,then ac 21
GF] = 12)vac-1 uaac-l (3.15)

Procedure 2

n+ll2 n+l/d
EMGa1/2, ) = EFVs1/2,)) 4 At{H (14172, j+1/2) - HMV2 (14172, j- 1/2)}

2¢ Ay
(3.16a)
At | HM™M+1/2,j+1/2) « HIMM (=112, j+1/2)
n+ n+t/2 - —_— e 3.16b
EM\G, j+1/2) = EJV3(3i, j+1/2) 23{ — (3.16b)

EMl(i+1/2,j41/2) - EJ*(i, j+1/2)

At Ax
nH (] j = H™23(141/2,j+1/2) = —
_______---—-——-————--—--—-Ay

(3.16¢)

Again, substituting (3.7a), (3.7b) and (3.8¢) into (3.16) will yield the following :

At k,Ay
E . *GF2=E, - H, 2eAy 2jsm{ } (3.17a)
E,*GF2=E, + GF2*H, e 2jsm( (3.17b)
At k. Ax At k,Ay

. " - \ 3.17¢
H,*GF2=H, + GF2*E, 2pr2'jsm[ 5 } E, 2 1 By 2jsm[ ) ] ( )

where GF2 is the growth factor in procedure 2. Applying the same technique on procedure 2, we get,

M2 M,

GFlz[ ]-2GF1+(I+ 4 J = () (3.18)
HE M E

GF2 = 23V acl 1“1 (3.19)

Therefore, the total growth factor of procedures 1 and 2 combined is given by :

GF =|GF1|*|GF2|

JE JE (3.20)
a V¢
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Since the overall growth factor of the 2-dimensional ADI-FDTD is unity, the system is said to be

unconditionally stable [1.14]. However, if we note carefully, the growth factor (3.20) or the gain of the

ADI-FDTD system, is exactly unity; potentially any slight increase in the growth factor due to any

truncation errors may cause the system to go unstable. This ‘exact’ phenomenon is discussed in more

detail in [1.17].

3.56.2 3-dimensional ADI-FDTD
To analyse the numerical stability of a three dimensional ADI-FDTD, we apply von Neumann method

again on the three dimensional ADI-FDTD formulations (3.1) - (3.4). Denoting all the electric and

magnetic fields as X matrix, procedure 1 can be written in the form :

and procedure 2 as

Xn+l/2 = GFl*XY"

Xﬂ-l-l - GF2¢Xn+“2

The overall growth factor for the proposed scheme is then given by :

where

and

GFl

GF2

GF = |GF1|*|GF2|

1 MMy o Mz My
Ny Nyt Nyt Nyt
0 1 MyMz jMz o  -IMx
Nz Nzpe Nze Nze
MxMz 0 1 -jMy M 0
Nxp € Nx  Nx¢  Nxe
o Mz My 1 o MxMz
Nz Nz Nz Nzp-¢
-j-Mz 0 JMx MxMy 1 0
Nxp Nxp  Nxp-g Nx
My  -jMx 0 0 MyMz 1
Nyp Ny Nyp-e Ny
1 0 Mx-Mz 0 -j-Mz :LM.’.’.
Nz Nz:p ¢ Nzt Nz
MxMy 1 0 :|__l\_/_l_€ 0 -ji'Mx
NX:|t +€ Nx Nz:¢ Nz¢
0 My Mz _1_ M j*Mx 0
Nypue Ny Nye Nye
0 j'Mz :___]_l_\_/ll 1 MxMy 0
Ny.p Nyp Ny Nypee
-jMz 0 j*Mx 0 1 MyMz
Nz Nz-u Nz  Nzu-e
My  «)-Mx 0 0 Mx-Mz2 _L

Nx-p Nx-pu NX-J ¢ Nx

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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where
At . [k, Ah M:
M, =-Eﬁ-sm( ; ] and Ny =1+_;:-E h=x,y,2 (3.26)

It has been shown [1.18] that the eigenvalues of GF all have magnitudes of unity. Again, with the
theoretical gain of unity, the three dimensional ADI-FDTD is said to be unconditionally stable,

3.6 Numerical dispersion

The numerical dispersion for the ADI-FDTD method can be found by substituting the vector-field

travelling-wave expression with time dependence shown below into the ADI-FDTD finite-difference

equations .
. [~ ~ ~ 3.27a
E (i+1/2,j,k) = E, exp{jwnAt-J[kx(Hlm)Ax + k,JAy + k,kAz]} ( )
. N b ~ ~ 27b
E;(i,j+1/2,k) = E, exp{_la)nAt-j[kxiAx + k,(j+1/2)Ay + k,kAz]} (3.270)
nys ' . N o ~ 3.27
H,(i+1/2,j+1/2,k) = H, exp{JaJnAt-J[kx(l+l/2)Ar + k,(J+1/2)Ay + k,kAz]} (3.27¢)
3.6.1 2-dimensional ADI-FDTD
Again, for simplicity, we investigate the numerical dispersion of a 2-dimensional TE wave [1.19].
Substituting (3.27) into (3.9) (procedure 1) gives :
jo Arl2 1 EH - - At . ;C-yAy jo Arl2 }IH
(e ~-1)E, = -] Z Ay sin| == |e : (3.28a)
- At k,Ax
A2 _
()% o E, = J(sAx)sm[ "2 )Hf (3.28b)
. At k. Ax At k, Ay
@At n _ . X ; . y
(e’ -1)H, = J[;:Ax]sm[ 5 ]E; - _][”Ay]sm( 5 }e“”mz E] (3.28¢)
and into (3.16) (procedure 2) gives :
. . At k Ay | .
wA ®At]2 : |ty
(e)?Y - el EN = -J[ Ay]s"{ > ]e’“’”’z H; (3.29a)
jo At jo At/2 n At jo Al gzn
(e’ ~ e YE, = e sin e’"“ H, (3.29b)

W

- - { At k Ax kA
(e - gi?MIZyyn o J(ijsin[ > J Sl j(‘fé‘;)sin( y2 y}e"“‘” E7  (3.29c)
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Combining (3.28a) & (3.29a), (3.28b) & (3.29b) and (3.28¢) & (3.29c¢) gives rise to the following :

. At fyAy A1) ¢
joAt no_ : o 4 3.30a
(e 1)E; 2_1[8 Ay]sm[ > }e H, ( )
. k. Ax
(e)?d - DE) = J(:gx)sm( 5 )(e’“w +1)H;' (3.30b)
. k. Ax k Ay
(Y ~ 1)H! = J[ﬂA;x]snn[ > }elﬂ"“n) E) - 2j[:;y)sm[ 5 ] JwdI2 pr(3.30c)

wAr) ar Y . [kyav)
.sm( 5 )Ex = -(gAy]sm[ > }H, (3.31a)
o At YAMERY: !(wAt) .
no_ |2 31b
sm( ; )Ey (e )sm( > ]co ; H; (3.31b)
, (coAt)H,, _ ( At ] _ E,Ax O{aJAr) £ [ At J _ ;c-yAy £ (3.31¢)
sin| = : =\ sin| —>—=|coy =, y Ay sin =3 . :

or

and
iy
O
O
e
2
e
e
i
=
>
~le
)

[ N ] [ k,Ay _[ At ]sin[ s
u Ay T H Ax 2
(3.32)

Thus the numerical dispersion relation for a 2-dimenstonal TE wave is given by making the determinant

of the matrix zero, i.e.

(a)At) , 2[@At] 1 (Az)’ » ?E', A
sin 5 {sm — ~-;:_- ) S cos --2--
~ (3.33)
+ sin(wm){ - -!—(— sin (k J} = 0
2 1 EN\Ay

or

where ¢ = l/ﬁf,ua.
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Comparing (3.34), the dispersion relation for a 2-dimensional ADI-FDTD with the known numerical

dispersion relation for a 2-dimensional FDTD :

l 2 e 2 kxAx (l) . 2 kyAy ( l ) . 2((0A’)
( Ax) sin ( > ) + Ay sin ( 5 = \Zar sin > (3.35)

o At

it can be seen that there is a difference of a factor of cosz(—E—J in one of the left-hand-side terms, i.e.

the term with numerical wavenumber ;’Fx . The dispersion equation (3.34) was derived from the 2D ADI-

FDTD equations of (3.9) & (3.16). In procedure 1, (3.9), the /7, field was calculated using explicit Ey and
implicit E, while in procedure 2, (3.16) the H, field was calculated from implicit Ey, and explicit £
According to Peaceman and Rachford [1.13], the ADI method remains unconditionally stable so long as
the two procedures are repeated over the same time step, one after another. Indecd, there is nothing to

stop us writing out the 2D ADI-FDTD equations with the implicit and explicit terms interchanged. In

w At

such a case, the factor cosz(—T) will be imposed on the numerical wavenumber k yTather than 7{,.

The additional factor in (3.34) means that the variation in the numerical phase velocity due to numerical

dispersion for the ADI-FDTD scheme changes in a non-uniform manner, depending on the direction of

wave propagation, as the time-step, At, is increased. Consider (3.34), where the cosz(-c-o-zé-'-) factor is

Pl el

imposed on k,. For wave propagating in the direction of x, & y= 0, then the numerical wave velocity is

reduced from that of the standard FDTD scheme due to the factor cosz(-ﬂf—i). On the other hand, for

Pl

wave propagating in the direction of y, k,= 0, then the numerical wave velocity in the ADI-FDTD

scheme is the same as that of the standard FDTD scheme [1.19].

3.7 Implementation of 1* order Mur absorbing boundary condition

The second approximation of the 1* order Mur absorbing boundary condition (2.55) is applied to the
ADI-FDTD algorithm. The implementation of the absorbing boundary condition is shown here in two
ways. The first way is to implement the absorbing boundary condition simultancously within the tri-
diagonal matrix when the rest of the fields are calculated and the second way is to implement the
absorbing boundary condition recursively after the other internal fields are found by solving the tri-
diagonal matrix. Although the first way may seem easier to implement, it is indeed an incomplete way.
Despite this, the author feels it is necessary to describe this incomplete approach and explain why it can

lead to incorrect results.

3.7.1 Boundary condition within the tri-diagonal matrix
The first method is to apply the boundary condition as part of the tri-diagonal matrix so that all fields

within the computational boundary are computed when the matrix is scanned through in each direction.
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To illustrate the implementation of the absorbing boundary condition with the tri-diagonal matrix, the tri-

diagonal matrix of (3.5) and the 1* order Mur absorbing boundary equation (2.55) are repeated below.

VK E By
{

2
y J ]+ EMVE (14172 j41,k)

EM™V2 41/25-Lk) - EMYV2 (i41/24,k) [2 + (

2
£ A A
= -E" (i+1/2j,k)[ ﬂm J’J +(-£—) [E; (i(+1j+1/2,k) - EN (i +1/2,k) - ED (i41J-1/2,k) + E" (1J-1/2,k)]
A2
-(-’-‘54’-) H (4172 +1/2,8) - Hi+1/2j-1/2,k)] +(‘; :Zz] [11;'(1+1/2J,k+1/2)-11;,'(:+1/2J.k-1/2)]
(3.36)
NHE Dy 2
= | 2 +|——
Let b ( Y ]
1* order Mur absorbing boundary equation is given by :
” VAt - Ax
EM = E] + (v o Ax](E{’” - E! (3.37)
VAL - Ax
Now, let Mur_Xx (v A7+ Ax)
and re-arranging (3.37), we get
EM o Murx .E™) = E' « (Murx.EQ) (3.38)

Let all the terms on the right hand side of (3.36) be known as ‘rhs’ and for the purpose of this illustration,
we shall consider only six spatial steps in the y-direction. Now, incorporating (3.38) into the tri-diagonal

matrix (3.36) gives us a tri-diagonal matrix of the form below.

] ~=Murx O 0 0  Of EMY2(14172,0,k) E' - Mur_x.E?)

1 b 1 0 0 Of EM2(i+1/2,1,k) thsat j=1

0 b 1 0 O EMY2(i+1/2,2,k) rhsat j=2

0 0 1 b 1 0l ErV2(i41/2,3,k)| rhsat j=3 (3.39)
0 0 0 1 b L ErV2(14172,4,k) rhsat j=4

0 0 0 0 -Murx 1JE™V2(i41/2,5,k) E! - (Mur_x.E!)

The same can be applied for E, & E; in procedure 1 and then all the electric fields in procedure 2.
However, upon close observation of the matrices, one can identify a problem with this method of
implementation. In procedure 1, only one out of the two normal incident fields at each boundary is
implemented as a one-way wave equation, In procedure 1, E, sees absorbing boundaries at the y-direction
boundaries, E, at the z-direction boundaries and E, at the x-direction boundaries. Then in procedure 2, £,
is ‘absorbed’ at z-direction boundaries, E, at x-direction boundaries and E, at y-direction boundaries.
This is an incomplete implementation as all normal incident fields should sce the appropriate absorbing
boundaries for both procedures 1 and 2 at each half time step. Therefore, although at first sight it may

seem simpler to implement the absorbing boundary condition simultaneously within the tri-diagonal
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matrix, this method can in fact lead to incorrect results. This problem can be resolved if the other half of
the normal incident fields that are not implemented as a one-way wave equation within the tri-diagonal

matrix are recursively calculated separately from the tri-diagonal matrix.

3.7.2 Boundary condition outside the tri-diagonal matrix
The second method is to initially solve the tri-diagonal matrix for all the fields in the computational

domain except for those at the boundaries. The field values at the absorbing boundaries are then
calculated recursively using the field values found from solving the tri-diagonal matrix. These boundary
field terms, however, have to be taken into account within the tri-diagonal matrix. For consistency, six
spatial steps in the y-direction are used. This gives rise to only four internal ficlds excluding the fields at

the absorbing boundaries. First, we write the tri-diagonal matrix for the four internal fields.

b 1 0 0f E™V3(i+1/2,1,k) rhsat j=1
1 b 1 O E™V2(1+1/2,2,k) rhsat j=2
0 1 b 1| E™2(+1/2,3,k)| |rhsatj=3 (340)
0 0 1 bJE™V2(1+1/2,4,k) rhsat j =4

Incidentally, (3.40) is the final tri-diagonal matrix to be solved if the computational boundary is a perfect

electric wall boundary.

To include the fields at the absorbing boundaries, we re-write (3.40) to give :

b 1 0 O] E™V2+1/2,1,k)| |Ghsatj=1) - E™2(141/2,0, k)
1 5 1 O EJF'2(i+1/2,2,k)| rhsat j=2 1 41
0 1 b L[| E™2G+1/2,3,k)| thsat j=3 (341
0 0 1 bJLEMV2(i+1/2,4,k) (rhsat j=4) - E"V2(141/2,5,k)
Now, re-arranging the 1* order Mur absorbing boundary condition,
E{M? = E' - Murx.EJQ) - (Mur x LEM3Y (3.42)

Substituting (3.42) into (3.41) and re-arranging (3.41) to have the n+1/2 terms on the LHS gives us :

b+Murx 1 0 0 EIV2(i+1/2,1,k) (thsatj=1) - E[' +(Mur_x.E})
1 b 1 0 EMV2(141/12,2,k) rhsat j=2
0 1 b 1 EMU2(41/2,3,k) | thsat j=3 (343
0 0 1 b+Murx]EMV2(i+1/2,4,k) (thsat j=4) - E] + (Mur_x.E})

The same can be applied for E, & E; in procedure 1 and then all the electric fields in procedure 2. With
this method of implementation, the fields at the absorbing boundaries have to be calculated separately

from the tri-diagonal matrix. This can be done recursively after the internal fields of the computational
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domain are obtained. In all simulations using the ADI-FDTD method, the 1* order Mur absorbing

boundary condition is implemented using this technique.

3.8 Simulated resulits

Several different models were simulated to show the application of the ADI-FDTD method. Even though
the ADI-FDTD method will see its time-saving benefit most in a model where there is a variety of mesh
sizes, for the purpose of showing the application of the ADI-FDTD method, a regular finite-difference

mesh has been used in all the following models. This means that the worst case has been modelled when
the stability factor is increased beyond the CFL constraint. Since in the ADI-FDTD method the time step

is no longer restricted by the CFL criterion (2.33), the time step Af, can be set to be greater than the

maximum allowed by the CFL criterion modified below by including the stability factor term.

stability factor

N
Ax? Ay Az?

At (3.44)

where a stability factor of 1.0 implies the maximum At as allowed by the CFL constraint.

In all structures simulated below, the conductor is treated as a perfect electric wall boundary. The

dielectric is modelled in the same way as in the conventional FDTD method described in chapter 2 and a

Gaussian source is used for excitation.

Initially all fields are set to zero. As time-marching progresses, the sequence of the implemented

algorithm is as follows :

Procedure 1:
. E fields are calculated by solving the tri-diagonal matrices, one of which is (3.5)
- tangential E fields are set to zero on the metallized patch

- tangential E fields on the computational boundaries are calculated using the Mur’s st

order absorbing boundary condition (2.55)

- the vertical electric field is excited with Gaussian pulse below the strip

- H fields are calculated using (3.2)
. electric and magnetic field values are stored for later use in absorbing boundary

condition calculation and for field calculations in procedure 2

- the time step is incremented by half At

Procedure 2.
- E fields are calculated by solving the tri-diagonal matrices, one of which is (3.6)

- tangential E fields are set to zero on the metallized patch
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- tangential E fields on the computational boundaries are calculated using the Mur's 1st
order absorbing boundary condition (2.55)

- H fields are calculated using (3.4)

- electric and magnetic field values are stored for later use in absorbing boundary

condition calculation and for field calculations in procedure 1

- the time step is incremented by half At

To model a cavity, the calculation of the tangential E fields on the computational boundaries is left out
because by solving the tri-diagonal matrix in the form of (3.40), a perfect electric wall boundary on the

computational domain is automatically assumed.

3.8.1 Three-dimensional cavity

Perfect
electric wall
boundary

Fig.3.2 : Three-dimensional cavity

A simple three-dimensional cavity, filled with air, and bounded by a perfect electric wall boundary,
shown above in Fig.3.2 is used to validate the ADI-FDTD method.

Mesh parameters :
Ax 0.2mm Ay = 02mm Az = 0.2mm

Total mesh dimensions : 60 x 60 x 60 in x, y and Z directions respectively

Critical time step At = 0.3851626 ps
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0.16
0.14

200 250 300 350 400 450 500
time {ps)

Fig. 3.3 : Comparison between conventional FDTD and ADI-FDTD

results with stability factor 1 for a three-dimensional cavity

Fig. 3.3 shows the time-domain results for wave propagation in a three-dimensional cavity with perfect
electric wall boundary. The stability factor used here is 1.0; that is the time step used is the critical time

step. It shows good agreement between the results using the conventional FDTD and the ADI-FDTD
methods. Fig.3.4 shows that the results from the ADI-FDTD are still stable with stability factors 2, § and

10 although the effect of numerical dispersion begins to show when stability 5 and 10 are used. However,
Fig. 3.5 shows that using the conventional FDTD method, increasing the stability factor to 2.0, thus
violating the CFL stability criterion, immediately causes the results to go unstable, In all cases above, the
position of the monitoring point is not important as the main aim of these simulations is to show that
unlike the conventional FDTD method, with ADI-FDTD method, the results remain stable even when

CFL criterion is not observed. More detailed results showing the accuracy of ADI-FDTD results against
the stability factors used will be shown and discussed in chapter 5.

adi-fdtd st 1
-+ = oo gdi-fdtd st 2
. , _ -k - o e gdi-fdtd st &
0.06 ‘:; , ":. . o \ S PO adi-fdtd st 10

O'r—_——r'"—_"'ﬁ-__‘-ﬂ*-—“*w'ﬂ‘_—_ﬂ

200 250 300 350 400 450 500
time (ps)

Fig. 3.4 : ADI-FDTD results with stability factors 1, 2, 5 and 10

for a three-dimensional cavity
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5 1E+306 ~ conv-fdtd &f: 2.0
N
n

[ 100 200 300 400 500

-SE+305
time (ps)

Fig. 3.5 : Conventional FDTD results with stability factor 2.0

for a three-dimensional cavity

3.8.2 Three-dimensional cavity with inhomogeneous media

Perfect
electric wall

boundary

Fig.3.6 : Three-dimensional cavity with inhomogencous media

In order to model inhomogeneous media, the three-dimensional cavity is partitioned into two sections,

one with its permittivity set to 64 and the other set to 1 as shown above in Fig.3.6.
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N 200 250 300 350 400 450 00
-0.02 -

time (ps)

Fig. 3.7 : Comparison between conventional FDTD and ADI-FDTD
results with stability factor 1 for a three-dimensional cavity with

inhomogeneous media

A comparison between the results generated using the ADI-FDTD algorithm and those generated using
the conventional FDTD method is shown in Fig. 3.7. Again, the results show very good agreement.
Fig.3.8 shows that the results are still stable when using stability factors 2, § and 10 with the ADI-FDTD
algorithm. Again, the effects of numerical dispersion begin to appecar when the stability factor is increased

beyond 5

— adi-fdtd sf 1
- o w o gdl-fdtd st 2
- gdi-fdtd st 5

------- adi-fdtd sf 10

time (ps)

Fig. 3.8 : ADI-FDTD results for stability factors 1.0, 2.0,5.0 and 10.0

3.8.3 Simulation of a line-fed rectangular microstrip patch
In order to validate the ADI-FDTD scheme on a more complex structure, a line-fed rectangular microstrip

patch as shown in Fig.2.3 is modelled. As can be seen, the results shown here in Fig. 3.9 eventually
became unstable. This happens even when a stability factor of 1.0 is used in the ADI-FDTD algorithm.

Since the three-dimensional ADI-FDTD has been validated in homogeneous and inhomogeneous media
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with different dielectric constants, it was suspected that the introduction of the copper strip in the model

caused the instability.
2

1.5 1

| j,JTnvL,_._,,.,_,

0
0 r 500 1000 1500 2000

time (ps)

Fig. 3.9 : Line-fed rectangular microstrip patch using ADI-FDTD method
with stability factor 1.0

3.8.4 | Three-dimensional cavity with a transmission line
To further examine the stability problem encountered here, the three-dimensional air-filled rectangular

cavity shown in Fig.3.2 is simulated again. This time, a transmission line that extends between two of the
computational boundaries is introduced in the cavity, as shown in Fig. 3,10, The transmission lin¢ is

implemented as a perfect electric wall boundary where all the tangential electric fields are sct to zero.

Fig.3.10 : Three-dimensional cavity with a transmission line

Fig. 3.11 shows that the ADI-FDTD results are unstable even when a stability factor of 1.0 is used thus
confirming our initial guess. The fact that this model has all the same parameters as that which produced
the results in Fig. 3.2 except for the inclusion of a transmission line in the cavity is an indication that the

transmission line, i.e. a perfect electric wall boundary within the computation domain, has to be treated

with care.
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Fig. 3.11 : Three-dimensional cavity with a transmission line with stability factor 1.0

3.9 Conclusion

The two- and three-dimensional ADI-FDTD algorithms for solving numerical electromagnetic problems
have been introduced in this chapter. The important aspects of this method have also been discussed. The
detailed technique of implementing the 1* order Mur absorbing boundary condition in conjunction with
the ADI-FDTD scheme has been discussed.

Following this, the ADI-FDTD with the time steps 2, 5 and 10 times the maximum allowed by the CFL
stability criterion have been successfully implemented on an air-filled three-dimensional rectangular
cavity and on a three-dimensional rectangular cavity with inhomogeneous media. Both sets of results are
stable and agree reasonably well with that produced using the conventional FDTD method. This shows
that in the ADI-FDTD scheme, the time step used is no longer restricted by the CFL stability criterion but
by the accuracy required in the model. This is a significant advancement in the field of numerical

electromagnetics as simulation run-time can now be reduced without causing instability.

Nevertheless, there are still some teething problems with regard to implementing ADI-FDTD on complex
structures as seen when the ADI-FDTD method is applied on a microstrip patch, where the tangential
electric field on the copper patch is forced to be zero at each time step. Instability occurs even when the
time step is within the CFL constraint. This happens when a cavity with a transmission line is simulated
with stability factor 1.0. This shows that the implementation of the transmission line as a perfect electric

wall boundary causes the instability.

In the next two chapters, chapters 4 and 5, we examine this in greater detail and propose two approaches

of overcoming this problem.
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CHAPTER 4
MODIFIED ALTERNATING-DIRECTION IMPLICIT METHOD

4.1 Introduction

The introduction of the ADI-FDTD method has had a great impact in numerical electromagnetics. For the
first time, simulation run-times can be speeded up by using a bigger time step in the FDTD algorithm.
The time step in the numerical algorithm is no longer governed by the CFL stability criterion. In fact, the
upper most limit of the time step used is restricted only by the Nyquist sampling theory which states that
sampling must be carried out at a frequency of at least twice the maximum frequency of interest in order
to avoid aliasing. Therefore, the upper limit of the time step is an inverse of twice the maximum

frequency of interest.

However, as explained in chapter 3, there is a difficulty when the ADI-FDTD scheme is used to model a
more realistic problem. Initially, as discussed in chapter 3, the ADI-FDTD method was applied to a

rectangular cavity and the simulated result agreed with that obtained by applying conventional FDTD
method even when the CFL condition was violated in the ADI-FDTD algorithm, But when the ADI-

FDTD scheme was used to model a complex geometry such as a microstrip patch antenna, the result went
unstable even when the time step used was within the constraint of the CFL stability criterion. To

overcome this problem, the author proposes a new modified ADI-FDTD method [1.48).

In order to exploit the advantageous feature of the ADI method without suffering from instability in a
three-dimensional model, a factor f, where 0 <f < 1, is introduced [1.20] in the ADI-FDTD routine. A
very important characteristic of this modification is that it is consistent with physical considerations. This
will be illustrated section 4.3 later in this chapter. The modified ADI-FDTD allows us to violate the CFL
stability constraint in a complex three-dimensional model without causing instability. Furthermore, no

graded mesh is necessary to maintain stability of the overall system,

In this chapter, the ADI-FDTD scheme is modified whereby a factor fis introduced as a direct weighting
factor on the implicit-explicit terms of the ADI-FDTD equations, This method is applied to the Yee's
staggered cell to solve Maxwell’s equations. The growth factor of this method is derived for a three-
dimensional modified ADI-FDTD. This modified ADI-FDTD method is then used to model a line-fed

rectangular patch antenna and the results are discussed.

4.2 Three-dimensional modified ADI-FDTD algorithm

Equations (4.1) — (4.4) show the numerical formulation for the modified ADI-FDTD method. The electric

and magnetic fields are spatially staggered as in the conventional FDTD. Without loss of generality, the

formulation is carried out for lossless media. The formulations are split into two procedures, procedure 1

is applied for advancement from nAt to (n+ % )At while procedure 2 is used for advancement from
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(n+ Y%4)At to (n+1)At.

Procedure 1
H™V 2041720 +1/2,k) - HPV3(1 41724 <1/ 2,k)

(2-f)[——‘-—--—-—-—-—-——-——‘——————]

Ay
At
EMYV2 41/2,5,k)=El ((+1/24,k) + =

Z [H; (i+1/2,k+1/2) - H} (i+ 1/2J,k-l/2)]

Az

(4.1a)

(2-f)| ——————

H™V20 7 41/2,k+1/2) « H™V(1j+1/2.k =1/2) ]
Az

At
ENV(Gj+1/2,k)=Ey) (ij+1/2,k) + o

2 | (1) [11"(i+1/2J+1/i,k)-11"(:-1/2J+1/2.k)]

Ax
(4.1b)

(2 )[ 11 +1/2Jk+1/2) - H3'V(1=1/2Jk +1/2) ]
At Ax
E"Y2 Gjk+1/2)=E] (ijk+1/2) + =

2¢ HY(J+1/2,k+1/2) « 117 (ij-1/2,k +1/2)
* (f) Ay
(4.1¢c)
EMif+Lk+1/2) - ENifk+1/2)
MR "
ntl\l2 », e nsr s - S—
H™V2 i +1/2,k+1/2)=H} (ij +1/2,k +1/2) 21 (2o f) E™V2 000 1/2.k+1) < E™V3 07+ 1/2.0)
- - f _!—-_—_L—__Az
(4.2a)
(/) [ EN1+1/2/k+1) - ENi+1/2.0 ]
Af / oz
H;:+ll2 (i+1/2J:k+1/2)= H; (J+1/2J,k+1/2)__271 En-i-l!! (i+]J.k+1/2) . EIHHZ (fJ’C +1/2)
- (2-1 )| Amm————
(4.2b)
(/) [ EXi+1J+1/2,8) - EXiJ +1/2,1 ]
A Ax
HMV2 (41/2ij+1V/2,k)=H] (i+1/2j+1/2,k) - "2"3‘

E™V2 (417274 1Lk) « E™V2 (14 I/ZJJ:)]
L —_— x
(2 f)[“"-—“"-——""‘-—“——Ay

(4.2¢)

Referring to the equations (4.1), for the electric field terms, in procedure 1, the implicit terms have the
weighting factor of (2 —f) while the explicit terms have /. The same applies for the magnetic fields terms
in procedure 1, the implicit terms are weighted by (2 - /) while the explicit terms by /. This is repeated
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for procedure 2 in equations (4.3) and (4.4). As in the ADI-FDTD, the implicit and explicit terms are

switched between procedures 1 and 2,

Procedure 2

(1) [ HI V3 41/2+1/2,k) - H'V3+1/2,)=1/2,k) ]

s At Ay
EM™ i+1/24,k)=E™"? (1+1/2j,k) + — >

£ " ae1/20.k+172) - H™ (141724,k-1/2)

.(z_f)[’—___m_r_____]

(4.3a)

( ) [ HIYVj+1/2,k+1/2) - HY'V3(1,7+1/2,k=1/2) ]

As
Ey'N (i +1/2,k)=EJM 2 (1ij+1/2,k) + 5

28 H™ (141727 +1/2.8) - H™ (1:1/2] +1/2 k)]
. M
-(2-7 )[ v

(4.3b)

—_—

(1) H™ 2041720k +172) - H"V3(1=1124.k +1/2)
/ Ax

At

E™ (ijk+1/2)=E™V2 (ijk+1/2) + — >

n+l n+l
(2-7) [H, (J+1/2,k +1/2) - 17" (1J1/2.k + 1/2)]

Ay

(4.3¢)

] L pntl
(2- f) [E (+1k+1/2) - E (u.k+1/2)]

At Ay

H™ (ij+1/72,k+1/2)=H™ 2 (1j+1/2,k +1/2
a / W ) - 24 (f)[s"““(u+|/2.k+l)-E"*'“(un/z k)]

— e L
Az

(4.43)

(Z—f)I: EI1+1/24k+1) ~ E" +1(1+1/2.k) ]
Az
H™ 141724k +1/2)= H™V2 (14120 +1/2) = =

| (/) [E;*"’ 141k +1/2) - B2 (U.k+l/2)]

Ax
(4.4b)

(2 f)[ E"!:*'(H 1J+1/2,k) - E"!:*'(U+l/2.k) }
Ax
H™Y+1/21j +1/72,k)=HM 2 (14 172+ 1/2,k) - A

_—————L-—_——-—

2u E™I2 141727 + 1) - ™V (14 1/24.4)
- (/) "

(4.4¢)
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Again, as in the ADI-FDTD method equations (4.1) cannot be solved directly due to the implicit terms
involved on the RHS. To solve equations (4.1), the LHS electric fields have to be expressed such that the
RHS terms are all explicit. This is accomplished by substituting equations (4.2) into (4.1) appropriately,
specifically, substituting (4.2¢) into (4.1a) results in (4.5) below, where the LHS forms a tri-diagonal

matrix of E, when E, is scanned in the y direction. The RHS of (4.5) now consists of only explicit terms.

JEAsz( !

Yl H +EJNV2 (141724410

EMV2 (141/24-Lk) - EMV2 (i+1/24.k) {2 + [

. Juety (1 (Ay)f . . . .
=-E,(:+1/2J,k)( il vty (B2 (1417 +1/2,0) - X (1 + 172,09 - E7 (141-1/2,8) + EN (14-1/2,)

A | n g " ”Ayz n "
_ (f_JiJ [_) (74172441720 - HY+1/24-1/2,8) + ( o ] [(2—;F] 1 e v2gk4172) < 11204 1720.0472)

At )\2-f

(4.5)

Similarly, E, and E, can be solved in this manner. Once all the electric fields are computed, the magnetic
fields can be computed directly using (4.2a) — (4.2¢c). The same approach can be applied for procedure 2.
Equation (4.6) shows the tri-diagonal matrix for E, in procedure 2. The full formulation of electric fields

in both procedures 1 and 2 are given in Appendix B2

Jy_mz]’( 1

w72 -/)’]] +EMV (14 1/24.k41)

E:*' (i+1/2jk=1)- E,’,""' (i+1/2j.k) [2 + [

2
=E™V2G41/24.k) {J;;A’] [ ! ] + (—3‘-’-] [-z,lf-) [EV2 414k 41/2) - EMV3a0k+172) - ENV 0141 44172) + E;‘(!J.k-lfz)]

At J\(2-p*) \Ax
(i‘ﬂ] [l-) [H""'” 2141724,k +1/2) « H™ V2014172 ,k-172 )] + [&1 [n"*”’(:+ 172/ +1/2,k) « 1"V 3 4172 4-1/2 &)]
at J\2r )V ' y ‘ Aty J\2-r} )" ° ' f Ve

(4.6)

4.3 Weighting factor in the modified ADI-FDTD algorithm

Ex Ex
Modified H,.2-1)/2
adi-fdtd ——> time
procedure 1
H,. /2

nAt (n+1/2)At
E, H,.//2 /N E,
Modified
adi-fdtd N
procedure 2 Hy- (2 _ f) o)
(n+1/2)At (n+1)At

Fig 4.1 : Physical representation of modified ADI-FDTD algorithm
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Fig. 4.1 above illustrates the physical representation of the modified ADI-FDTD formulation. In the

modified ADI-FDTD method, an intermediate electric field is calculated at time step (n+ Y3)At, As in the
ADI-FDTD method explained in chapter 3, in procedure 1 of the ADI-FDTD method, the electric field at

time step (n+ ¥2)At is calculated using the previously calculated electric field at time step nAt and the curl
of the magnetic fields, part implicit and part explicit. In the ADI-FDTD method, the weighting factors for

the magnetic fields, implicit H, and explicit H, are the same, i.e, 2 for both of them. However, in the
modified ADI-FDTD the implicit term H; at time step (n+ Y3)At is weighted by ( 2 = £)/2 and the explicit
term H, at time step nAt by f/2 where 0 <f< 1, This is immediately followed on by procedure 2; now the
known (explicit) value of H, at time step (n+ '2)At is weighted by f/2 and the unknown (implicit) value of
H, at time step (n+1)At is weighted by ( 2 — f)/2. The total magnetic field over a full time step remains

unchanged.

4.4 Divergence of modified ADI-FDTD algorithm

As in the ADI-FDTD algorithm, there is no explicit enforcement of the Gauss's Law relations for both the
electric and magnetic fields in the modified ADI-FDTD algorithm. Although the curl operation of the
magnetic fields is performed over two half time steps and the magnetic fields are weighted differently at
each half time step, the total magnetic field over a full time step remains unchanged in the modified ADI-
FDTD scheme. Therefore, the modified ADI-FDTD algorithm will still result in zero divergence for both

electric and magnetic flux i.e. the time derivative of the net magnetic/electric flux leaving the surfaces of
a cubic Yee cell is zero, thus upholding the Gauss’s Law for the magnetic/electric field in charge-free
space in the modified ADI-FDTD scheme.

4.5 Numerical stability
The numerical stability of the modified ADI-FDTD can be carried out in the same way as in the ADI-
FDTD. Assume the spatial frequency to be Fx.?c"y and f, as the x- , y- and z- components of its

numerical wavevector respectively as in equations (3.7) & (3.8).

4.5.1 2-dimensional modified ADI-FDTD
For the sake of simplicity, we shall consider first the numerical stability of a 2-dimensional TE wave

consisting of the following fields :

Procedure 1

n+l/2 . Jpntin2 -
EMY2(i+1/2,j) = EJ(i+1/2,)) + %{(2-f)[uﬂ.w______JM]}

(4.72)

At Hy(+1/2,j+1/2) « H}(i-1/2,j+1/2)
n+l/2 . & — EFN(; e 2 ? '
E)' (l,_]+l/2) Ey(‘,j'l'llz) ¢ {U)[ Ax

(4.7b)
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(B2 - L 41/2)
At Ax

H™/2(i41/2,j+1/2) = H](i+1/2,j+1/2) -

Ay
(4.7¢)

Substituting the field components in spectral forms, (3.7a), (3.7b) and (3.8¢) into (4.7) will yield the

following :
At k,Ay
* _ _ LI AY :
E . *GFl=E, — GF1*(2 fI*H, 2ehy 2jsm{ 5 J (4.82)
y =E, +f 2 2eAx jsi 2 (4.

H,*GFl=H, + E,*f*

k k,A
2jsm( ,:x}_ GF1* (2=-/)*E ar 2jsin(-£—{] (4.8¢)

24 Ax

where GF1 is the growth factor in procedure 1. Substituting (4.8a) and (4.8b) into (4.8¢) gives :

At k. Ax)| At k.Ax
2 " X ’ X
JoH 2£Ax2jsm( 2 szsz_ism[ 2 ]

H,*GFl=H, +

GFl-1
At k,Ay At k,Ay
2 o ¥
~ GF1*GFI1*H
(2-1)° GFl Ty Ay2jsm{ > JZ”AyUsm( ;
* GF1-1
(4.9)
t Yar  (Fa)] Y A (o)l
N2 - _ 72 L | i ed X y) __{' . y Y4
H,(GF1-1) f H’(stLAxsm( > ﬂ - 2-/)*GF\*H (ﬂg)l‘dysm(———z ﬂ
(4.10)
At ExAx Al ;‘-yAy
let M, = Axsm[ > J and M, = A sm[—-z-—]
and dividing (4.9) by H,
M z A{ p.
2GF : ,
GFI{ ] Gl+( ﬂf-'f) (4.11)
My2 M2
Let a=|l+ - and ¢c = |[1+—5— 2
UE e

then (4.11) becomes

2# n+l/2 _ a2
- f)[f___.(.{__.}._’_?__!__l?__é___{{_..’._’i!l

]
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aGF1*-2GFl +¢ =0 (4.12)
1£41-
GFl = —~ "%
d
] £ ac-1
and since ac 21 .. GFl = ———-’!—;———- (4.13)

Procedure 2

At HIY2(0+172, 74112) « HIYV3(i41/2,7-1/2
EMYi+1/2,j) = EMYV2(i+1/2,)) + E{U)[_L__L__L__)A.;_L_L___L__l

(4.14a)

HMNi+1/2,j+172) - 1!2*'(!-1/2.j+1/2)}}
Ax

At
HI » # et ” 1!2 y P pr—
Ey+ (l,j+1/2) = Ey+ (’:j+1/2) P {(2 f)[

(4.14b)

(2_f)[E;*'(!+l/2,j+l/2) : E;*'(i.j+l/2)]

At A
H:+I(i+1/2,j+l/2) - H:+1/2(f+1/2,j+1/2)_-2_7; En+|!2(i+1/2 j""l) EH+|’2(!+1/2 j)
X ’ * Ly ’
] ) |
(4.14¢)

Again, substituting (3.7a), (3.7b) and (3.8¢) into (4.14) will yield the following :

At FyAy

* — — % T
E . *GF2=E, - f*H, 26Ay 2_}81!1[ ; ] (4.15a)
E.*GF2=E, + GF2*(2- f)*H Al isi ke 4.15b)
y UEE= 8y *2eAx T 2 (4,

At k Ax A k, Ay

* — * () £)¥*  qf - :

H,*GF2=H, + GF2*(2- f)*E, 2;1Ax2}sm( > J f*E, 2 11 & 2jsm( > ] (4.15¢)

where GF2 is the growth factor in procedure 2. Applying the same technique on procedure 2, we get,

GF2%| 1+ x2 2 )2 20F2 + |1+ {yz : 0 416

HE ( f ] HE f (4 )
L = |1+ xz 2- 2 d d 1+ {yz :
ct b ! HE (2=7) an MHE f

then (4.16) becomes
bGF2%-2GF2 +d =0 (4.17)
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CFI = 1 +4/1-bd
b
' 1 £j+/ bd-
and since bd 21 s GF2 =—-—-—‘!—5--—-l- (4.18)
Now,
W , -
GF| o Ltivac-l and Gy o LIV bd-1
a b
where
Myz M2
= |1+ 2- 1)? and ¢ = S
a [l ,us( f)J [l+ﬂ£f)
b [1 M, )2) d d=|I My” o
Py 2-f n r J

Examining M, and M,, we see that

M2 (m)z( | ) (Fax) (v2) | fFax

= |- [—sin = =5 |sin

HE Ax) \ue 2 v? 2

Therefore, the total growth factor of procedures 1 and 2 combined is given by :
GF =|GF1|*|GF2|
_ ‘/E ... JE
a b
(4.19)

As 0<f<1, then 1<(2-f)<2

Therefore (4.19) or the overall growth factor of the modified ADI-FDTD algorithm will always be less
than unity. Consequently, the newly proposed two-dimensional modified ADI-FDTD method is always
stable for 0 <f< 1.

4.5.2 3-dimensional modified ADI-FDTD
To analyse the numerical stability of a three-dimensional modified ADI-FDTD, we apply the von

Neumann method again on the three-dimensional modified ADI-FDTD formulations (4.1) - (4.4).

Following the same method as in chapter 3 we get GF1 and GF2 as shown below :
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GFl =
R Mx-My:(2- ) f 0 0 --Mz.f JMy(2-f)
Ny Ny-p € Ny-¢ Ny-¢
0 1 My-Mz.(2-£)f jMz(2-1) 0 - Mx f
Nz Nzp-¢ Nz¢ Nz¢
Mx-Mz-(2- ) -f 0 i - My f P Mx-(2~ f) 0
Nx:p € Nx Nxe Nxe
0 jMz(2- ) -jMy f Rl 0 MxMz(2= ) f
Nzp Nzp Nz Nzy ¢
-i-Mz-f 0 iMx(2-f) Mx:-My (2= f)f _l_ 0
Nx-u Nx:-u Nxp ¢ Nx
JMy(2-1) -j-Mxf 0 0 My -Mz:(2= ) -f 1
Ny-p Nyp Ny-p - Ny
(4.20)
GF2 =
_1_ 0 Mx-Mz-(2- f)-f 0 - Mz:(2 = f) M
Nz Nzp € Nze Nzt
Mx-My(2- ) -f 1 0 jMzf 0 JMx(2- )
Nx:- ¢ NX Nx-¢ Nx-¢
0 My -Mz(2- f)f 1 - My (2~ f) jMxf 0
Ny p ¢ Ny Ny ¢ Ny ¢
0 Mz f -} My (2= 1) _!_ Mx-My (2= f).f 0
Ny-u Ny-u Ny Ny-u ¢
-jiMz-(2- ) 0 jMxf 0 1 My Mz(2=f)-f
Nz Nzu Nz Nz ¢
My -f -jMx:(2- 1) 0 Mx-Mz: (2~ f) f 0 1
Nx-u Nx-p Nxpt ¢ Nx
(4.21)
where
2
M, = -i—ilt—sin[k":h) and N, = 1+-I\—/[;l'3£ h=x,y,z (4.22)

In order to solve the overall growth factor for the three-dimensional modified ADI-FDTD, the following

assumption is made.
Overall growth factor, GF = GFI1*GF2 = GF2*GFl (4.23)

The assumption is sound because the procedures are commutative.

Solving (4.20) and (4.21) using (4.23), we get

2
GF = [—-) (4.24)

Therefore, the newly proposed three-dimensional modified ADI-FDTD is always stable for 0 <f < 1,
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4.6 Numerical dispersion
The numerical dispersion for the modified ADI-FDTD method can be found by substituting the vector-
field travelling-wave expression with time dependence (3.27) into the modified ADI-FDTD finite

difference equations .

4.6.1 2-dimensional modified ADI-FDTD
Again, for simplicity, we investigate the numerical dispersion of a 2-dimensional TE wave [1.19].

Substituting (3.27) into (4.4) (procedure 1) gives:

) /2
(e - 1) E}

k,A
J( iy]sm[ ZyJ jo At/ 2 Hn (2 f) (4.253)

RS

. k k. Ay .
(e)?A2 1)H] = j[ af )sin(k ;&x} E, [ - J[ = ]sin( y2 y}mmn E] (2-/) (4.25¢)

(Y2 - 1)E]} }H" (4.25b)

and into (3.14) (procedure 2) gives :

. . At k Ay | .
joAt  jolAt/2 no_ . , 4 joAl2 ¢pnm

(e e )E, J(E Ay]sm[ 5 Je H, f (4.26a)
jw jw n [ _Af - EAJ.’ '

(e} - MY E) = J(gm)sm( x2 }e’“’“H? 2- 1) (4.26b)
_ . ( At [kax) o ar Y [k, oy

(% - M) H] = J[ p Ax]snr{ > ]e’ Y E}Q-) - J[” Ay]sm[ > ]elwn E} f

(4.26¢)
Combining (4.25a) & (4.26a), (4.25b) & (4.26b) and (4.25¢) & (4.26¢) gives rise to the following :

jw Al n | At . EJ’Ay jo At/2

(e’ - 1E; = -21[8 o sinj ——— e’ H] (4.27a)
. . At k,Ax -

Y -1)E) = J[EM]SID[ > }H?(e’ 4 (2= f)+f) (4.27b)
y ar Y (kax) . ( ar ). [k8y

(Y -~ 1)H! = J[”Ax]sm{ > JEy(e‘ N(Z—-f)+f) - 2][”Ay)sm[ y2 Jej‘“’” E;

(4.27) can be simplified to :

(oAt At ) . 'EyAy i
sin 5 E, = - z Ay sin > H, (4.28a)
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. | o At n At |, Zx‘ﬁx nl: {coAt) ijIZ]
sm[ 5 )Ey = f(gm)sm( ; }Hz cos\—— | + (1- f)e (4.28b)
. @ At " Al . ZxAx n[ {@At) jmmlz] ( At ] . Z;,Ay n
sm[ > )Hz = f(ﬂm]sm[-——z )Ey co > + (1-f)e . By sin 5 E,
(4.28¢)
or
[ . (wAtJ M,
sin O e
2 & En
At M, At »
l 0 sin(-%—) -f - [cos(%—-)+ (l-f)ej“”“”} E} | = 0
H?
M M (a)At) + ] (wAt] :
2 - X . joAt/2 . | & ai
ey f p [cos ; + (1-f)e sin =3
(4.29)

Thus the numerical dispersion relation for a 2-dimensional TE wave is given by making the determinant

of the matrix zero, i.e.

2 T 2
2o () L8 w22 oo
+ SIn —-2 - _ﬂ 2\ Ay sin > = {

2 ~ 2 2 T 2
2 __L .« 2 kxAx _w__Af_ . jw AL l2 _l__ + 2 _’Eﬁ - (_!_ ¢ 2 w Al
f (Ax) sm[ 5 J[cos[ ; )+ (1-f)e ] +[Ay] sm( > } cAr) sin (—5-)

(4.31)

where ¢

Jue.

Equation (4.31) reverts to the numerical dispersion relation for 2-dimensional ADI-FDTD (3.34) when
f =1 as expected. Following the same argument as for (3.34), the implication of (4.31) is that numerical

g

wave velocity for wave propagating in the direction of x, i.e. k,= 0, is scaled from that of the standard

2
FDTD scheme by the factor [cos (__a%di) + (1« f )f:j‘]'“:u ’2] , Which is larger (for 0 < f< 1) than the

w At
2

factor cosz( ] in the ADI-FDTD method. On the other hand, for wave propagating in the direction

of y, fc“x= 0, the numerical wave velocity in the modified ADI-FDTD scheme is the same as that of the

standard FDTD scheme.
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4.7 Simulated results

The newly proposed modified ADI-FDTD method is used to simulate the line-fed rectangular microstrip
patch. The physical dimension of the patch simulated is shown in Fig. 2.3 in chapter 2. The space steps
used are Ax = 0.389mm, Ay = 0.400mm and Az = 0.265mm and the total mesh dimension is 60 x 100 x
16 in the x, y and z directions respectively. The patch is excited with a Gaussian pulse, A 1* order Mur
absorbing boundary condition is applied on all the five surrounding walls. A perfect electric wall
boundary is applied on the ground plane and the copper patch; this is done by forcing the tangential
electric fields on the copper patch to be zero at all time steps. The dielectric constant, g, is sct to 2.2.
Fig.4.2 shows the comparison of results from the published literature [1.5] with that from the proposed
modified ADI-FDTD with stability factor of 2.0, i.e. the time step is twice that allowed by the CFL

criterion. For this case fis set to 0.9. Fig 4.3 shows another comparison of results, this time a stability

factor of 3.0 is used and fis set to 0.8.

S11
(dB)

freq (GHz)

- = = =» Abouzahra's measurement

Abouzahra’s simulation

50 ~*=  Modified ADI-FDTD

Fig. 4.2 : Modified ADI-FDTD with At =2 * At critical and f= 0.9

From Fig. 4.2, it can be seen that the magnitude of reflection coefficient, Sy, decreases from that when
the conventional FDTD method is used. As explained in chapter 3, when ADI-FDTD is used to model a
conductor using perfect electric wall boundary, the simulation results grow exponentially as time
progresses until eventually the system becomes unstable. Unlike in the ADI-FDTD method, in modified
ADI-FDTD scheme, the implicit and explicit terms are not weighted equally as shown in (4.1)-(4.4).
Effectively, ADI-FDTD method is in the form of a predictor-corrector method, the explicit term being the
predictor term and implicit term the corrector term. The fact that ADI-FDTD result becomes unstable in
chapter 3 implies that there is a gain in the system. By introducing a weighting factor greater than unity
on the implicit term in modified ADI-FDTD method, the corrector term is weighted more heavily than the
predictor term, This ‘corrects’ the results and maintain stability in the system but the side effect of this is

a reduction in the magnitude of S, as expected due to the corrector term being greater than unity.
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IS11]
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3658 8

Fig. 4.3 : Modified ADI-FDTD with At =3 * At critical and /= 0.8

4.8 Relationship between attenuation and weighting factor f

To understand the relationship between the decreasing of S;; magnitude and the weighting factor, £, used,
the simulation for the line-fed rectangular microstrip patch was run with several different weighting

factors and the S11 plots are as shown below.
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Fig. 4.4 : Comparison between conventional FDTD and modified ADI-FDTD results with
At = 2*At critical and f'set at 0.9, 0.8 & 0.7. At critical is used with conventional FDTD.
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The results in Fig.4.4 show that the attenuation increases as the weighting factor of the explicit term on

the modified ADI-FDTD, £, is reduced.

— conv FDTD
-==-mod ADFDTD sf=1
«+eeese mod ADFFDTD 8f=2
~.s=+mod ADIFDTD sf=1.2

1.2

freq (GHz)

Fig. 4.5 : Modified ADI-FDTD results with f'set at 0.9

Fig. 4.5 above shows the |S11| of the line-fed rectangular micrctrip patch simulated with the modified
ADI-FDTD method with the weighting factor, £, set to 0.9. Fig. 4.6 below shows the results for the same
patch with the weighting factor set to 0.8. Changing the stability factor and therefore the time-step used in

the algorithm does not change the attenuation significantly for a particular weighting factor.
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Fig. 4.6 : Modified ADI-FDTD results with fset at 0.8
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4.9 Conclusion

A new modified ADI-FDTD method with the introduction of a factor fhas been theoretically derived and
numerically simulated. From the study of the numerical stability of the scheme, both two- and three-
dimensional modified ADI-FDTD algorithms are shown to be permanently stable as long as 0 < f< 1.
The results for a three-dimensional model of a patch antenna are stable even though the CFL criterion has
not been observed and they compare reasonably well with the published results in terms of the resonant
frequency points. The copper patch in the modified ADI-FDTD scheme has been modelled as a perfect
electric wall boundary where the tangential electric fields on the patch are set to zero at each time step.
The same structure, when modelled using the ADI-FDTD where the copper patch is modelled also as a
perfect electric wall boundary, showed instability. Although the results from the modified ADI-FDTD

show a decrease in its S;; amplitude, this technique is easy to implement and it is useful as a quick

method to obtain accurate resonant frequencies,

In Chapter 5 we propose a new implementation method of the ADI-FDTD in order to overcome the

problem of instability without compromising the amplitude of the response.



CHAPTER 5
SIMULATING COPPER LAYER IN
ALTERNATING-DIRECTION IMPLICIT METHOD

5.1 Introduction

The introduction of the ADI-FDTD technique has made it possible to speed up simulation run-time of
large electrical objects even when there are small discontinuities in the model without compromising the
stability of the system. In this research work, the ADI-FDTD method has been shown to work
numerically on an air-filled three-dimensional rectangular cavity and on a three-dimensional rectangular
cavity with inhomogeneous media. To model a transmission line as a perfect electric wall boundary, the
modified ADI-FDTD has to be implemented instead of the ADI-FDTD to maintain stability. The
modified ADI-FDTD gives reasonably accurate resonant frequency points although the amplitudes are
attenuated due to the inherent property of the algorithm. Although the newly proposed modified ADI-
FDTD scheme is useful for quick numerical analysis of microstrip circuits, for the ADI-FDTD scheme to
be generically useful, it must be able to model more complex structures including microstrip patches with

reasonable accuracy both in amplitude and frequency points without going unstable. Indeed, a method of

modelling a copper patch in conjunction with the ADI-FDTD technique without causing either instability

or attenuation is desirable.

In this chapter, a copper patch is modelled in the ADI-FDTD algorithm as a layer of material with a finite
electric conductivity. The finite-difference equations which include the electric conductivity term are
presented and results for several simulations are shown and compared with published results and results

obtained from conventional FDTD method.

5.2  Three-dimensional ADI-FDTD algorithm with electric conductivity term

Consider the Maxwell’s curl equation for electric field shown in (2.12a) — (2.12¢) which include the
electric conductivity term, o, to account for electric current loss in materials. Equation (2.12a) 1s repeated

below for convenience.

OH
OE = .1_[% -« 2. O'Ex) (5.1)
ot £

The centred-difference finite-difference approximation of (5.1) is given by :

At Hn+l/2(i,j k) - Hﬂ+l/2(iJ_l k) Hn+l/2(ij,k) - H"+l/2(ij,k'l)
ntl /o — n /- -k 4+ — ) 4 ’ 7 ’ _ y y
Ex” (j0) =E; (1K) + = {-—-———-———-———————-Ay —

(5.2)

-ofij k) EX*4 (1K)
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Note that all the fields within the bracket on the right-hand side are evaluated at time step n+ % At, Since
the electric at n+ % At is not readily available, it is calculated using the semi-implicit approximation
below.

E7 G, j k) + E!'(3i, j,k)

EZ23, ) k) = >

(5.3)

Substituting (5.3) into (5.1) gives the following :

1 o(i,J.k) At
EMY (k) = E! (ij.k) | ——25——

At
. HI'V3Gg k) - HPV2ag-0k)  HYV2G4k) < 1)V 0,441
Ay Az

(5.4)

Applying the same technique on all the electric field calculations in the ADI-FDTD method produces the
following equations. Note that the At is replaced with At/2 in both procedures 1 and 2 in the ADI-FDTD
equations. Also, since magnetic loss is not considered here, the magnetic field equations remain the same
as in the ADI-FDTD method discussed in chapter 3.

Procedure 1
(1 Co(i+1/24.k) At

n+1/2 ,. 1) = P : 4¢
E™V2 41724k = EM(i+1/24.k) 27 &
\ 4¢
Af H™ V2141724 +1/2,k) - HY'V2+1/27=112,k)
+ 2¢ Ay
{4 S0+1/25.8) At Hy ((+1/2,k+1/2) « U (1+1/24,k1/2)
4& Az J
(5.5a)
| L OGj+1/20) A
n+ll12 ,; ~ N 4e
E, " j+ V2 = Ey(j+12H "1':"3' (ij+1/2,k) A
4e
+ 2¢ Az

4 SG/+V2.0 A HY (141724 +1/2,6) « H! (11724 +1/2,k)

4¢e - Ax
(5.5b)
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| . clijk+1/2) At

nttl2 s . - n g s _________4_8___
ET"'“(jk+1/2) = E] (ijk+1/2) - o1 k+172) &t
4¢e
( Af HYYV3041/24,k4172) < 11)'V3(1=112 4,k +172)
+ —-—-—-—-—-——-————-—-2_; ax
|| 4 S(Jk+1/2) A HY () +1/2.k +1/2) < H" (1J1/2.k +1/2)
\ e - Ay
(5.5¢)
EMNij+Lk+1/2)-ENijk+1/2)
H™V2Gj+1/2,k+1/2) =H] (fj+1/2k+1/2)--—A-5- &
* ‘ * | 26 | EPVA+1/2,k41) - E}V2 A4 +1/2,
) Az
(5.6a)
EJ(i+1/2,k+1) - EMNi+1/2.k)
At Az
H"™V2 601720 k+1/2)=H" (i+1/12k+1/2) « —
yo J ) =Hy (+172J 2 | EM2a414k41/2)-EMV30k+112)
AX
(5.6b)
Ep(i+1j+1/2,k) - EJ(ij+1/2,k)
At Ax
HMVE G41/2,j+1/2,k) =H] (i+1/2,j+1/2,k) - — ,.
( v ) =Hz ( J ‘ 2u | EMV2G41124400) - EMV3041/240)
Ay
(5.6¢)

Substituting equations (5.6) into (5.5) appropriately result in tri-diagonal matrices of E, E, and E,. Tri-
diagonal for E, for procedure 1 is shown below, the rest are shown in Appendix B3

2
EMYi+1/24k =1) - EMi +1/24.k) [2 + {\/’Z“"’A’ ] (l + Eﬁﬂ%.’ié‘.)] +EMVi+1/20k +1)

/xeﬁz]z (1 o(i+1/2.k) Ar)

= _nt1/2 4 A
Ex (‘+1/2|jl)( At 46‘

+ (.f;) [E2*2 141k +1/2) - EFV2 (i +1/2) - EXV3 (141jk-1/2) + EX*VA (1 k-1/2) ]

pAz?
AtAy

) (i‘ﬁ] [H;“"‘ 2 (1+1/24,k +1/2) - H3'? (i+1/2J,k-1/2)] + [

A } 1122 e v2g 420 12V3 G 4121720

(5.7)
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Procedure 2

| L O+V24K) A

En+1 (f+l/2j.k) - En+l!2 (I'+1/2J.k) 4¢
’ ) 1 + g
¢
( M HMVY2041/27041/72,0) - V341720 =112.0)
| _— 26 Ay
| 14 20+1/2J0 A HI 41720,k +172) < 12 (141/24,k1/2)
\ 4e T
(5.8a)
[ - o(ifj+1/2,k) At
EM (i +1/2,8) = ETV2(Gj+1/2,) :?Wﬁm
¥
r At H V20 +1/2,k+1/2) < 17V2 (17 +1/2,k=112)
+ 2¢ Az
|4 SOSHV2ROAL 2 (4124 41/2,8) - 1 (11724 +1/2,4)
\ 4¢ Ax
(5.8b)
{1 _o(ijk+1/2) At
E™ (ijk+1/2) = EM!/2 (:'J,k+1/2). :j;mﬁgm
\ 4¢
At Hy" 2041724k +172) < 113*V3(1=1124.k +172)
-5; Ax
| 4 SOLk+12) At NP gV 2k+1/2) - 1 (1124 4102)
4¢ Ay
(5.8¢)

EMV(j+Lk+112)<EM (1j.k+1/2)

At Ay '
H™ (j+1/2,k+1/2) =HI™YV2 (ij+1/2,k+1/2) « —
v (i x 2u | EFV3ij+1/12,k41) < EFV3ij+1/2,8)
) Az
(5.93)

EMY(1+1/24k+1) < EMY (141/24.0)

At A~
H™ (14172 k+1/2) =H"™V2 (i+1/2,jk+1/2) « —
y J )=Hy e J / 2u | EMV3G410k+112)-EPV305k+112)
Ax
(5.9b)

E)' (i1+17+1/2,0) < EX' (1 +1/2,4)

At Ax
H™V G+1/2j+1/2,) =HPY? (i41/2j+1/12,k) - —
( v : 2u | EMV3G411244 00 -E"V20411240)
Ay
(5.9¢)

Again, substituting equations (5.9) into (5.8) appropriately result in tri-diagonal matrices of E, E, and E,.
Tri-diagonal for E, for procedure 2 is shown below, the rest are shown in Appendix B3.
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4
EMGi+1/24k=1)- EM i +1/24.k) |-2 + [ ’jﬁz} (1 + Eﬁﬂ%fiﬂ)] +EM 41724k +1)

2
uelz (1 ag(i+1/24k At]
At 4 ¢

= E"V2 G 41/24.k) [
+ (%) [ErV2 417k +1/2) - EZV2 1k +1/2) - EFV2 (41)61/2) + EY 14k 1/2) |

»2
: (—‘-‘—ﬁ-‘-z-) V2 172k 41/2) - H2 41720172 + [ﬁ%] 12V e V20 417200 - 12V @ 41/241/2.0)

At
(5.10)

5.3 Simulated results

5.3.1 Simulation of a line-fed rectangular microstrip patch

1* order Mur boundary on all z

boundaries except ground plane ‘\T/'
X

o=5.8%x10"S/m 2.334mm

Fig. 5.1 : Line-fed rectangular microstrip patch

In chapters 3 and 4, the microstrip is modelled as a perfect electric wall boundary where the tangential
electric fields on the microstrip are forced to be zero at each half time step. This models the copper on the
microstrip as an ideal conductor with an infinite conductivity. In reality, the copper layer has a finite
conductivity taken as 5.8 x 107 S/m which contributes to its finite electric loss in the form of conduction

current on the copper layer.

In order to validate the ADI-FDTD program with the added electric conductivity term, the finite-
difference time-domain equations (5.5) - (5.6) and (5.8) - (5.9) are used with the 1* order Mur boundary
condition to simulate the propagation of a broad-band Gaussian pulse on a line-fed rectangular microstrip
patch as shown in Fig. 5.1. As in chapter 3, the finite-difference mesh parameters are chosen to be the

same as in the published paper [1.5] to allow direct comparison of results.

Fig. 5.2 shows a comparison of the time-domain response between the ADI-FDTD and the conventional
FDTD method when stability factor of 1 is used in the ADI-FDTD program. With the copper layer
modelled as a layer of material with finite copper conductivity, o, of 5.8 x 10’ S/m, the results are stable

when stability factors of up to 8 are used in the ADI-FDTD program.
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5.3.1.1 Transient response

) r 500 1000 1500 2000

time (ps)

Fig.5.2 : Comparison between conventional FDTD and ADI-FDTD with stability factor 1
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Fig.5.3 : Comparison between conventional FDTD and ADI-FDTD with stability factors 1 to

in steps of 1

Fig. 5.3 shows the comparison between FDTD and ADI-FDTD with stability factors 1 to § in steps of 1.
The results are completely stable. As the stability factor is increased, the effect of numerical dispersion
begins to appear in the results as the Gaussian pulse begins to broaden. This effect is shown more clearly
in Figs. 5.5 and 5.6 where the time responses are magnified for a clearer view of the transient response. It
can be seen from Fig.5.6 that the Gaussian pulse broadens as the time step used is increased. Fig.5.4
shows a good agreement between the conventional FDTD and ADI-FDTD with stability factor 1.
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time (ps)

Fig.5.4 : Zoomed in comparison between conventional FDTD and
ADI-FDTD with stability factor |
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Fig.5.5 : Slight broadening of pulse in ADI-FDTD with stability factor 2
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Fig. 5.6 : Effect of numerical dispersion in ADI-FDTD with stability
factors 3,4 and §
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5.3.1.2 Frequency response
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Fig.5.7 : Comparison of ADI-FDTD with stability 1 with Abouzahra [1.5]
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Fig. 5.8 : Comparison of conventional FDTD with ADI-FDTD with stability factor |
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Fig. 5.9 : Comparison of conventional FDTD with ADI-FDTD with
stability factor 2 |
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Fig. 5.10 : Comparison of conventional FDTD with ADI-FDTD with
stability factor 3
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Fig. 5.11 : Comparison of conventional FDTD with ADI-FDTD with
stability factor 4
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Fig. 5.12 : Comparison of conventional FDTD with ADI-FDTD with
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Fig.5.13 : Comparison of ADI-FDTD with stability factors ! to §

Fig.5.7 shows a good agreement between Abouzahra [1.5] simulated data and the ADI-FDTD result using
stability factor 1. Fig. 5.8 shows very good agreement between the results generated using the
conventional FDTD and the ADI-FDTD method with stability factor 1. Fig.5.9 shows that with stability
factor 2 the frequency response results still agree reasonably well with the conventional FDTD results but
for frequency higher than 14GHz, the response begins to shift slightly towards the lower frequency. This
effect of numerical dispersion increases with the increase of the stability factor and it is greater at the high
frequency range. The broadening of the pulse in time-domain causes a compression of the responsc in the
frequency domain. Figs. 5.10, 5.11 and 5.12 show the comparison between conventional FDTD and
ADI-FDTD with stability factors 3,4 and 5 respectively. Fig. 5.13 shows the comparison of ADI-FDTD

results with stability factors 1 to 5. The effect of numerical dispersion can be seen clearly.
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5.3.1.3 Accuracy vs stability factor

7 aahe | oror | ot 12,001k | ieror | t 18001t | iemor
at 7.4GHz | %error | at 12.0GHz | %error | at 18.0GHz | %error
1 ] 74 1 0 | 12 | O | 178 | 056 |
— 2 | _74_ | o0 [ 12 [ o0 | 178 [ 111
—— 3 |74 | 0 | 118 | 167 | 176 | 222
4 1 735 | o67 | 118 | 16 | 175 | 278
5 1 72 | 27 | 116 | 333 | 173 | 3.89

Table 5.1 : Percentage errors at resonances 7.4GHz, 12.0GHz and 18.0GHz using ADI-FDTD

method with stability factors 1,2,3,4 and 5 as compared to the respective resonances using the

conventional FDTD method.

5.3.1.4 Run-time comparison

|  Computational run-time in minutes

2 | - | 29283 | 4000
3 | - 1 1945 | 2667 _
4 |- 1 14683 | 2000
— 5 | - |__Ter | 1600 _

Table 5.2 : Run-time comparison using computer with Athlon 1.2GHz processor

Table 5.2 above shows that for the microstrip patch circuit, a stability factor greater than 2.0 in ADI-
FDTD scheme is required to have any time-saving as far as computational run-time is concerned.
Referring to table 5.1, by using stability factor of 3.0 in the ADI-FDTD, the errors are 1.67% and 2.22%
at resonant frequencies 12GHz and 18GHz respectively. This allows a time-saving of 24%. Although a
time-saving of 6.3 minutes in this example may not be significant, a 24% time-saving from 2 days, i.c.
saving of about half a day of simulation run-time when more complex structures such as a human body or

a huge aircraft are modelled will prove to be quite beneficial.

In reality, the % errors for stability factors greater than 3 as shown in table 5.1 may not be tolerable when
it comes to designing a microstrip patch. It is, however, important to emphasize here that the accuracy of
the ADI-FDTD method is very much dependent on the structure being modelled. Therefore, when applied
to other structures, a stability factor of greater than 3 may be used whilst maintaining the accuracy within

a tolerable range.

Note that the saving in computational run-time is not directly proportional to the stability factor used as

computation in the ADI-FDTD method is much more complex than the conventional FDTD and involves

matrix inversions.
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3.3.1.5 Input impedance

Zin (ohm)

m Mot 0, - =

ey Abouzahra's real  ——e— adi-fdtd real
0 - = = = Abouzahra's imag ...e....adi-fdtd Imag
)

Fig.5.14 : Comparison between Abouzahra’s result and ADI-FDTD with

stability factor 1 for real and imaginary parts of input impedance of the

patch antenna

Fig.5.14 shows the comparison between Abouzahra’s results and the ADI-FDTD with stability factor |
for real and imaginary parts of the input impedance of the patch antenna. As discussed in chapter 2, the
discrepancy between both sets of data is due to the fact that in the published paper, the microstrip is

assumed to have a constant characteristic impedance, Z, of 50 Q and an effective permittivity of 1.9 is

used to calculate the wavenumber, £, whereas in this research work, these values have been calculated
using data obtained from the simulation. In this way, the dispersive nature of the microstrip is accounted

for in the simulated data.

50

40
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= 20 ST, conv-idtd real
£ = " - = = « cOnvfdtd Imag
-2- 10 /"f’ N
= SN T e adi real sf. 1
N \ -+ =+ adi Imag sf. 1

Y
74 72 7.3 74 5 7.6 17 18 79,8
-10 '\\ '_v"“"'

W e’

freq (GHz)

Fig.5.15 : Comparison between conventional FDTD and ADI-FDTD with stability factor 1

for real and imaginary parts of input impedance of the patch antenna
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Fig.5.15 shows a good agreement between the results generated using the conventional FDTD and the
ADI-FDTD with stability factor 1. Figs. 5.16 shows a comparison between conventional FDTD and ADI-
FDTD results with stability factors 2. Again, when stability factor 2 and above are used, the data shift

towards the lower frequency as can be seen in Figs. 5.17, 5.18 and 5.19.

conwv-Kitd real

- = = « cONv-fdtd imag
adi real sf. 2
-.=«=-adl Imag sf 2

Zin {ohm)

* freq (GHz)

Fig.5.16 : Comparison between conventional FDTD and ADI-FDTD with stability factor 2

for real and imaginary parts of input impedance of the patch antenna
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Fig.5.17 : Comparison between conventional FDTD and ADI-FDTD with stability factor 3

for real and imaginary parts of input impedance of the patch antenna
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60
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Fig.5.18 : Comparison between conventional FDTD and ADI-FDTD with stability factor 4

for real and imaginary parts of input impedance of the patch antenna
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Fig.5.19 : Comparison between conventional FDTD and ADI-FDTD with stability factor §

for real and imaginary parts of input impedance of the patch antenna
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5.3.2 Simulation of a line-fed rectangular microstrip patch with three parasitic patches
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Fig.5.20 : Line-fed rectangular microstrip patch with three parasitic patches

By modelling the copper patch as a material with an electric conductivity of 5.8 x 10" S/m, we have been
able to model the line-fed rectangular microstrip patch using the ADI-FDTD method without introducing
instability or attenuation even when CFL stability criterion is not observed. In order to validate that this

technique works on a relatively bigger electrical object, the line-fed rectangular patch is surrounded by
three parasitic patches. The plan view of the structure is shown in Fig.5.20 above. The mesh parameters

and excitation method are the same as that used in chapter 2. Figs. 5.21 ~ 5.24 show transient responses

for this patch circuit.

5.3.2.1 Transient response
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Fig. 5.21 : Comparison between conventional FDTD and ADI-FDTD with stability factor |
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Fig. 5.22 : Comparison between ADI-FDTD with stability factors 1 to § in steps of |

Fig. 5.22 shows comparison between ADI-FDTD with stability factors of 1 to 5. Again, the results are
completely stable. This shows that the ADI-FDTD can be applied successfully on electrically large
objects and the stability of the system is still maintained when the time step uscd in the algorithm s
greater than the maximum allowable according to the CFL criterion. As the stability factor Is increased

and thus increasing the numerical time-step, the numerical dispersion becomes more significant as

expected.
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Fig.5.23 : Zoomed in comparison between conventional FDTD and ADI-FDTD with stability

factor |

Figs. 5.23 - 5.25 show the magnified view of the transient responses of the rectangular microstrip patch
with three parasitic patches. From Fig. 5.25, it can be seen that the transient response starts to show
significant inaccuracy in the result when the stability factor is increased beyond 3. This inaccuracy may
be due to the fact that the dielectric gap separating the microstrip patches has been modelled with a single

mesh width. The accuracy of the model and hence the result can be improved by increasing mesh

resolution in the dielectric gap.
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Fig. 5.25 : More significant numerical dispersion with stability factors greater than 3 and

inaccuracy begins to show with stability factors beyond 3

5.3.2.2 Frequency response
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Fig. 5.26 : Comparison of conventional FDTD with ADI-FDTD with stability factor 1
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Fig. 5.26 above shows the frequency responses from the conventional FDTD and ADI-FDTD with

stability factor 1 agree almost perfectly with each other.
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Fig. 5.27 : Comparison of conventional FDTD with ADI-FDTD with stability factor 2
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Fig. 5.28 : Comparison of conventional FDTD with ADI-FDTD with stability factor 3
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Fig. 5.29 : Comparison of conventional FDTD with ADI-FDTD with stability factor 4
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As mentioned earlier, the inaccuracy in the results start to creep in when the stability factor is greater than
3. Fig. 5.28 shows that when stability factor 3 is used, the results suffer from only numerical dispersion
due to the bigger time-step used. However, when stability factor of 4 is used, the result shown in Fig,
5.29, suffer from both numerical dispersion due to the increased time-step used and the inaccuracy of the

model due to insufficient mesh resolution within the dielectric gap separating the main microstip patch

and the three parasitic patches.

5.3.2.3 Input impedance
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Fig. 5.30 : Comparison between conventional FDTD and ADI-FDTD with stability factor 1 for
real and imaginary parts of input impedance for the line-fed rectangular microstrip patch with

three parasitic patches
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Fig. 5.31 : Comparison between conventional FDTD and ADI-FDTD with stability factor 2 for

real and imaginary parts of input impedance for the line-fed rectangular microstrip patch with

three parasitic patches

Again, the discrepancy in the amplitude of the input impedance plots shown in Fig. 5.31 is due to the

insufficient mesh resolution in the dielectric gap between the patches.
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5.4 Conclusion

It has been shown in this chapter that modelling the copper layer in ADI-FDTD as a layer of material with
a finite electric conductivity taken as 5.8 x 10’ S/m keeps the system completely stable even when the
CFL stability criterion is violated. This is not true when the copper layer is modelled as a perfect electric

conductor as discussed earlier in chapter 3.

Using this method of implementing the copper layer, the results for a line-fed microstrip rectangular patch
show favourable comparison with published results and the results obtained from the conventional FDTD
method. Tables of accuracy against stability factors used and the run-time comparison between the

conventional FDTD and ADI-FDTD methods have also been presented.

To further validate the use of ADI-FDTD method on an electrically large object, the microstrip patch is
modelled with three parasitic patches adjacent to its three edges. The results show stability when tested
with stability factors of up to 8. As expected, increasing the stability factor increases the numerical

dispersion error.,

It has to be mentioned that the sole purpose of modelling this relatively large circuit is to validate the use
of ADI-FDTD on electrically large objects. As a result, the gaps between the patches have been modelled

using a single mesh width, This has introduced some errors into the results due to inaccurate modelling of

the gaps. Nevertheless, the results are still stable with stability factors of up to 8.0.

In order to model small gaps accurately, a graded mesh should be employed in the computational domain

where the mesh size is reduced gradually towards the gaps and is maintained small within the gaps. This

forms part of the suggested further work.

As in any engineering feat, nothing comes free and in this ADI-FDTD case, there is a trade-off between
accuracy and simulation run-time. ADI-FDTD allows us to violate the fundamental CFL stability
criterion without causing instability in the system. By using the ADI-FDTD method instead of the
conventional FDTD method, potentially the simulation run-time can be significantly reduced. However,

increasing the time-step also reduces the accuracy of the simulation results. This accuracy is dependent on
the structure being modelled. Therefore, for certain structures a significant reduction in simulation run-
time will be possible whilst maintaining the accuracy within the required tolerable range. In addition to
that, structures containing discontinuities can be modelled using fine mesh size without the constraint of

using a correspondingly small time step in the simulation.
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CHAPTER 6
CONCLUSION AND FURTHER WORK

6.1 Overall conclusion

The finite-difference time-domain method has been studied and applied in the Cartesian coordinate
system for a three-dimensional rectangular microstrip structure. In order to remove the Courant-Friedrich-
Levy stability criterion that governs the maximum time-step that can be used in the FDTD algorithm to
maintain the stability of the system, the alternating-direction implicit method is investigated. The main
contribution of this work has been the new method of simulating the copper layer on a microstrip in a
three-dimensional Cartesian coordinate system in the ADI-FDTD scheme. This allows the application of

the ADI-FDTD method to model any three-dimensional structure that consists of copper layers in the

structure.

Although the ADI-FDTD method has been used in the literature, most analysis and application have been
performed on simple three-dimensional cavities, in both homogeneous and inhomogeneous media [1.18]

and [1.32]-[1.37]. Very often two-dimensional models have been used to verify the algorithm [1.28] and
[1.29], when structures other than the free-space cavities were modelled, such as the parallel-plate
waveguide model in [1.14], a two-dimensional model was used and a lossy dielectric with electric
conductivity of 15.0 S/m was included in the model. On another occasion [1.38] a sheet of an infinite

ground plane was modelled using an electric conductivity of 20.0 S/m and in [1.25), a monobole with a

thin dielectric wall with electric conductivity 0of 4.0 S/m was modelled.

In [1.26], microstrip resonators and filters were modelled using the ADI-FDTD method in a graded mesh
and a perfect electric conductor (PEC) boundary condition was applied on the microstrip layer. However,
when a transmission line was modelled by implementing a perfect electric conductor boundary condition
on the strip in the ADI-FDTD method as discussed in chapter 3 in this research work, the result was
unstable. This phenomenon was later confirmed in [1.21] where it was reported that if the tri-diagonal
solver in the literature [2.6] was used to solve the ADI-FDTD method when modelling a microstrip line,
the result was not always stable. Subsequently, an alternative mathematical algorithm for solving the tri-
diagonal matrix in the ADI-FDTD method was reported in [1.21].

For the first time, this research work has shown that by simulating the copper layer on the microstrip as a
material with electric conductivity of 5.8 x 10’ S/m (which is the electric conductivity of copper) in the
three-dimensional ADI-FDTD scheme, the numerical results are always stable even when the tri-diagonal
solver as proposed in [2.6] is used. A different tri-diagonal solver as reported in [1.21] is thus not
required. It has been shown that the AD-FDTD method can be used to model realistic problems in
engineering design without the need to put artificially high lossy material to maintain stability. In order to

exploit the advantageous feature of the ADI-FDTD method, it is important that the ADI-FDTD method
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can be successfully implemented not only on cavity structures but also on real practical three-dimensional

structures that may consist of striplines and microstrips.

Another contribution of this research work is the proposed new modified ADI-FDTD method which
introduces a factor f in the ADI-FDTD algorithm. Using this new method, microstrip lines can be
simulated as perfect electric wall boundary where the tangential electric fields on the microstrip are set to
zero and stability of the system is still maintained. Although the results from the modified ADI-FDTD
method show a reduction in the amplitude, this technique is easy to implement and it is useful as a quick

method to obtain accurate resonant frequency points.

The ADI-FDTD method has contributed enormously in the field of numerical electromagnetics. When in
the past, the computational run-time is restricted indirectly by the CFL stability criterion, now with the
advent of ADI-FDTD scheme, computational run-time can be significantly cut down to make each
simulation a realistic, practical solution. However, nothing comes free. There is a trade-off between
simulation run-time and accuracy of the simulation results. ADI-FDTD gives us the flexibility of using a
bigger time-step than that allowed by the fundamental CFL stability criterion without causing instability
in the system. By using the ADI-FDTD instead of the conventional FDTD method, potentially the
simulation run-time can be reduced. But increasing the time-step also reduces the accuracy of the
simulation results. This accuracy is dependent on the structure being modelled. Therefore, for certain
structures a huge reduction in simulation run-time will be possible whilst maintaining the accuracy within

the required tolerable range. Structures containing discontinuities can be modelled using fine mesh size

without the constraint of using a correspondingly small time step in the simulation,

6.2 Further Work

6.2.1 Cylindrical coordinate system
The ADI-FDTD method can be extended to the cylindrical coordinate system to model three-dimensional

cylindrical structure such as the probe-fed circular patch. As the diameter of the probe will be much
smaller than the circular patch, the application of the ADI-FDTD in this structure means that the time-step
used in the algorithm will not be restricted to the mesh size used to model the probe. Although, the
application of ADI-FDTD on cylindrical coordinate system has recently been reported [1.31], there is yet

to be any implementation of striplines or microstrips in the cylindrical coordinate system.

6.2.2 Microstrips with slots and notches
Now that there is a method of implementing copper layer in the microstrip that is not dependent on the

accuracy of the tri-diagonal solver in the ADI-FDTD scheme, any three-dimensional structures with
microstrips, such as stacked array of microstrip antennas can be modelled with narrow gaps, slots and
notches where these discontinuities can be modelled with high spatial resolution by applying fine mesh

size without the prohibitive cost in computational time.
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6.2.3 Graded Mesh

In order to model small gaps, slots and notches accurately, higher mesh resolution is required around the
vicinity of these discontinuities. To avoid having fine mesh throughout the whole computational domain,
the mesh can be graded such that the mesh size gradually decreases as it approaches the discontinuities.
Since in the ADI-FDTD method, the stability of the system no longer depends on the CFL criterion, the

same time step within tolerable numerical dispersion, can be applied to the whole computational domain.
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APPENDIX A1
2D ORDER ACCURACY OF CENTRAL-DIFFERENCE

APPROXIMATION

Consider a Taylor’s series expansion of u (x;, t ) about the time instance t, to the time instance t, + At/2,

keeping the space point fixed at x;

At
H(tn +-—2—J

Now, the Taylor’s series expansion of u (x;, t ) about the time instance t, to the time instance t, - At/2,

= U, + Al Ou
SRR T o o

Xy

3 3
ﬁ] 10w . (AL
2) o]

(At]z 1 8%u
+ | — -—"—-2—
%01 2 ) 2o ot

keeping the space point fixed at x; is :

+ e (Al1.2)

34 A3
At At Ou AtY 1 0u
— - e = At + e | o e (Al.3)
u(t,,+ ]x u(n 2}% Oty o (2) 35!31”
Re-arranging (3), we get,
(t +At} u[t At)‘ (At)"’ 1 8%u
ult, +— | - =l = o=
au 2 X 2 X 2 3 at xfr‘n
s, A (Al.4)
u(t,, +ét—] - u(t,, --é-t-Jl )
2 X, 2 X, (NJ 1 5311
B "1 ] 6 a3
At 2 /) 6 ot -
Taking only the first RHS term of (4), the second term is the error term. Then,
At At
u(t,,+—i-} - u(t,, —?]
oul : © 4 ofar] (ALS)

ot Al

Xyl n

where O [(At)zl is a shorthand notation for the remainder or error term, which approaches zero as the

square of the time increment. Equation (5) is referred to as a 2™ order accurate, central-difference

approximation to the first order time derivative of u.
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APPENDIX B1
TRI-DIAGONAL MATRIX EQUATIONS FOR
ADI-FDTD METHOD

Procedure 1

.
A
EMV2 (i+1/25-1k) - EMV2 (i+1/2k) {2 + [ ”Ar y] J + EM™V2 G4 1/2,+1,k)

ay). (A
£
= E" (i+1/2 J,k)( ‘“N > J +(-Zi’-] [E; (i+1j+1/2,k) - E} (ij+1/2,) - E} (i+1j-1/2,k) + E” (j1/2,4) |

uly’
AtAz

A
(—‘5-’——’-’-) [H:(i+1/2j+1/2.k)-H:(i+1/2j-1/2.k)]+( J [H;(i+1/2j.k+1/2)-H ;'(i+1/2J.k-l/2)]

At

(B1.1)

HE Az
{

P
y ] J+ E}'VZ(j+1/2,k+1)

2
peAs A ) [on e "
=-E;(ij+l/2,k)( v } +[—5;) [E, (ij+1k+1/2)-E! ﬁj,k+1/2)-E:(ij+1,k-1/z)+E;'(:J.k-1/2)]

pAz?
AtAX

A=
(EET) [H?Gj+1/2,k+1/2) - H(1j +1/2,k -1/ 2)] +[

] G412 4172, - H"(i=1/2j+1/2,k)]

(B1.2)

ueAx
At

2
E:+l,2(i-1‘f.k+l,2)'E:+]’2(iJ:k +]/2) [2 +( ] ]+E:+l,2ﬁ+lJ,k+l,2)

uelAx

p.
=-E" (ijk +1/2) [ ] + (_g-] [E: (G+1/2jk+1)-Eri+1/25k) - EM(i=1/2j,k +1) + E" (i =1/2/.k) ]

uAx?
AtAy

(%) [H;muzJ.k+1/2)-H;(f—1/2J.k+1/2)]+[ ) [z i+ 2k s 12) - 2 g =12k 4112))

(B1.3)
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Procedure 2

ez
4t

2
EM(i+1/2j4.k~-1)- EM™(i+1/24.k) [2 + [ ] ] + EMYi41/2k +1)

p
n+ . ntl/2 ,»:
= E™V2 (i+1/24k) [‘E‘M ] + (i—] [E;"““‘f2 (+1jk +1/2) - E™V3 (ijk +1/2) - ETV3 (i41j.k-1/2) + E (:J.k-l/Z)]

2 ]
) (_;Lﬁ_z_) [H;mz (+1/2jk +1/2) - H;nx: (i + 1/2J,k-1/2)] + (-E%—J [H:+|/2 (i+1/2j+1/2,k) - H:+l/2 (i + 1/2J-1/2.k)]
At 14

(B1.4)

2
E;*"(!-IJH/Z.k) - Ej,'*'(:‘J +1/2,k) [2 + (‘/‘E‘M} ] + E;,"*'(i +1, j+1/2,k)

2
=-E,"V2(ij+1/12,k) [“‘:ﬁx] + [-i‘-"-) [15;';”""’2 (41724 + LK) -EMV2E (1417240 - EFV2 (1172 + 1K) + E;*V2 (=11 240 ]
y

2
-[ﬂ%"_] [H;'”’z(i+1/2.}+l/2,k)-H:"'”’(:'-I/ZJ*'UZ:")]"'[Z?L) [H:wz(3J+l/2,k+lI2)-H:+1/2(1J+112,k-l/2)]

(B1.5)

A 2
EMlij-1k+1/2)-EMijk+172) 2+[@] 4|+E;”"(U+l.k+1/2)

2
+ \J A + + n+ +
=-E1V2(141/248) (Jf;l) +(%] [E;: 2J+112k+1)-ENV2 i+ 112, - E)V3 (1) =112,k +1) + E) '“”(u-uz,k)]

2
.(%2’.) H™V2 (17 4112,k +1/2) - H™? (1J-1/2,k+1/2)]+(i‘f; J 72 41720k +1/2) - HIV2 (i-1/20k +1/2))
X

(B1.6)
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APPENDIX B2

TRI-DIAGONAL MATRIX EQUATIONS FOR
MoDIFIED ADI-FDTD METHOD

Procedure 1

EMV2G41/25 -1k - EFV23G+1/2,4,k) [2 + [\/—Ay } ( 1 )] +EM™G 01725+ 1,k)

4t J\@-7)
_ on | Juedy 2 1
= .E (:+1/2J,k)[ - G 77

[Ay)(z f][E"(l"'lJ"'l/z k) E"(JJ-I-I/Z k) E"(H-IJ 1/2 k)+E”(1J 1/2 k)]

(Héy)[z f][H (+1/24 +1/2,) - HP (i +1/2 =1/2,0)]

HAY n
+(_AIAZJ[_(2 f) }[Hy(z+l/2.}k +1/2)-H, (i+1/2jk - 1/2)]

(B2.1)

2
EMV25 +1/2,k 1) - EXV3j +1/2,0 [z + (Ju_em} [ . ]] + MV 14112,k +1)

4t j\2-s)
= -E, (ij +1/2,k) [J—AZJ ((2 7 }

+[i;][2 f][E"(IJ+1k+1/2) -E]Gjk+1/2)-E] (ij+Lk=1/2)+ E] (i) k - 1/2)]

(pAz

'2_1'_') [H"(t,j+l/2k+l/2) H{'V2 (i +1/ 2,k - 1/2)]

Az? " . "
+ {LMI@-J’)’] [H,_.(1+1/2J+1/2,k)-H, (:-1/2J+1/2,k)]

(B2.2)

2
EMV2G -1k +1/2)-EM™ 20k +1/2) {z+(‘/ﬁm}{ : }-'+E;'+'(i+1J,k+l/2)

At
Ax 2
-E" (z'+1/2,j,k){ ‘: : ][ (2-1f)2)

+(M][2 f) [E"(:+1/2Jk+1) EZ(i+1/2),k)-ES(i-1/2),k+1) + EZ (i - 1/2,1&)]

"

( ] 17 41724k 41/2) - H) (1-1124k +172)]

uay n
+[A1AxJ[(2 f)z] [H (ij+1/2,k+1/2)-H, (ij - l/2k+l/2)] 525
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Procedure 2

p
ENG+1/24k-1) - EIV\ (1 +1/2,4.k) [2 + { ’jﬂ ( 1 ]] + EMVi+1/24k +1)

(2-s)
2
= _phtl/2 4 ~ pelz .
E! (1+1/2,}.k){ - J[(Z-I)ZJ

+[AZ)[2 ffJ[ErHl/Z (l+l.j,k +1/2) En+l/2 (fJ k "|'l/2) En+l/2 (’.HJ k_]/Z) + Eﬂ+|/2 ([J k-l/z) ]

(‘“AZJ[Z fJ[H"+l/2(t+l/2Jk+1/2) Hy2 (’+1/2J"‘1/2)]

2
pHAZ n+1/2 n+1/2
+ | f— H, (i+1/2j+1/2,k)-H, 1+1/2,j-1/2,k

(Amy (2- f)z}[ d (+1251/2)
(B2.4)

2
| Ax
E)Ni=1j+1/2,k) - EJ™ (if +1/2,k) 2+{‘€i J ( ! J +E) i+, j+1/2,k)

2-7)
= Em—l/z (ij +1/2,k) [\/;Ax] [(Z_lf)2 }

+(A")[2 fJ[E"WZ (+1/2j+1,6) - EFV2 (141/24k) - EMV2 (=112 +1,k) + EMV? (i - 1/2Jk)]

[yAxJ 21 ] [HH +1/2 (i+1/24+1/2,k) - H"'“/2 (i-1/2j4+1/2, k)]

2
(‘“A" J{(z } [H;;’“‘“V2 Gj+1/2,k+1/2)- HM"V? (iJ+1/2.k—1/2)]

(B2.5)
R s R
-E;V2 (i +1/2,k) Jeewy) (1
ar J\(@2-7Y
(Ayxsz] ErV2 741/ 2k+1) - ETVA i 4172, - EMV3Gij-1/2,k+1)+ EMV26j-1/2,8) |
(”Ay](z lf) [H*"‘“‘V2 (j+1/2,k+1/2) - HI*V2 (17 =1/ 2 k+1/2)]

Uy ' n+1/2 . n+1/2
(A J[(z f)z} [Hy (:+1_/2,j,k+1/2)-}!y ﬁ—l/2J,k+l/2)] 26
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APPENDIX B3
TRI-DIAGONAL MATRIX EQUATIONS FOR
ADI-FDTD METHOD WITH ELECTRIC CONDUCTIVITY TERM

Procedure 1

2
EMViG41725-1k) - EVV3+1/244) {2 + [\E‘-‘:ﬁyJ (I+f.ﬁ_+lf:_._'k_)_ﬂ]:| + EMV2 41727+ 1,k

,/IIEAyT (1 o (i+1/24k) At)

= . F? (i ’k
E (i+1/2] )( v P

+ (i‘.’-) [E; (i+14+ V/2,8) - E} (i +1/2,8) - EN (i+1j-1/2,8) + EN (1j-1/2,k) ]

2
(ﬂé}.’.) [H:(f+1/2j+1/2,k)-H;'(f+1/2J-1/2,k)]+["Ay } 112G+ 120k +1/2) - 117 141724 01/2)]

At AtAz
(B2.1)
Jueaz)’ L+1/2.0) A
E;*"2(5J+1/2,k-1)-E;+"2(ij+1/2.k) 2+[ ’; : J(]+ﬂ:-z;—2—-i] +EYV200+1/2,k+1)

,ua'AzT (1 ) o(ij+1/2,k) At]

=_E" /i3 /,k
E;,(j+1/2 )[ v P

+ (.A_z-] [E7 (17 +1k+1/2) - EZ 1.k +1/2) - E? (1 +1k=1/2) + E? (ijk =1/2) |

Ay

uAz?
AtAx

-(%) [H: (j+1/2,k+1/2) - H" (iJ+1/2,k—l/2)]+[ ) [11;' (i+1/2,j+1/2.k)-]I:(i-l/2J+l/2.k)]

(B2.2)

JEAxT[Ha(u.k +1/2) At

EfVi-1jk+1/2)- E;" 3Gk +1/2) [2+{ — > ]]+E:*”’(:+1J.k+1/2)

=FE" i1k +1/2
e (1 )( At 4¢

+ (%) E2 14172k +1) - ER +1/240) - E2 (1=1/ 24k +1) + E2 (=112 |

ulAx

2
- (—J [H;(i+1/2J,k+l/2)-Hj,'(i-l/ZJ.k+1/2)]+ [pr

AtAy

At ] 12 G+ 112k 4112) - 117 Gy =112k +172)]

(B2.3)
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Procedure 2

p
E:+'(i+ 1/72jk-1) - E;'*'(H 1/2..k) {2 + [EMJ (l + ﬂtﬁﬂﬁ]} + E:*‘(H 1724k +1)

Jiehz ) 1+1/2/.k
=_E:+|/2(i+1/2.j,k)( ;:z J(l.l%él_é.’.]

+ [%] [15:;'3'“*’2 (i+15k +1/2) < EDV3 (i k +1/72) - EXYV2 (i41,k-1/72) + E"V3 (14,k-1/2) ]

HAZ

[ Al J [Hﬂ+l/2 (1+1/2Jk+1/2) H"'l-l/z (i+1/2Jk'l/2)] ( ] [}IIH-I/I (i+l/2J+l/2 k) IIIH'I/Z (i+l/2,j 1/2 k)]

(B2.4)

2
EpNi-14+1/2K) - E}*(1j +1/2,k) [2 + [Eﬁ"} (Hw___zu&)] +EMVI+1, J41/2,k)

E"+"'2(5J+I/2k) \/—M [l_cr(i,j+l/2k) At]
Al 4¢

+ (%;'J (E2V2 (141124410 - EFVE (1411240 - ETVE (1=1/2) + LK) + EZV2 (1=11248) |

2
)[H'”W (A+1/24+1/2,) - HM™V? (i = II2J+112k)] [”‘f"

(ym

Al }[H'”"" (41 2k +172) < H*V3 (i +1/ 2,k =1/2)]

(B2.5)

ES'(=1k+1/2). E"+'(!Jk+l/2){2+[‘/:fy] (1+5ﬂ1¥3¢-’1§]}+5?'ﬁ‘/+h“”2)
&

M

p
= EM 4417240 {‘/”—‘Ay (1_ o(lif+1/2,k) m]
At 45

Ay [gne
[AZ) [E Vz(U+”2k+l) E"+U2(}J+]/2k) E”"’(U l’2k+l)+En+l/2ﬁJ l,2k)]

A " 2
.[” y) [m Y2OJ+ 112k +1/2) - V2 g l/2k+1/2)] Hay [nr"*'*"*'2 (i+1/2jk+1/2)- 12 (1-1/2J.k+1/2)]
At AtAx ) V7 7

(B2.6)
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APPENDIX C1
GRAPHICAL ILLUSTRATION OF
IMPLICIT/EXPLICIT ADI-FDTD METHOD

Ai
I B e A
S CETPT R e e =
1/2 r//.:i"“"""“ -l E‘“‘ l'
n+ e 4
E ----------- C- - - - ﬂ.'i.‘- - e :l
VA
'y Voo .
-~ [ :
....... ' )
--------- ' . : ‘
A’ - : I
.............. : :
E® f------ v E :
AS : i
R ’ : : '
: ' :
E time
At/ 2 At/ 2
Fig. Cl.1

Using an explicit meth
od or 2™ ord
rder Runga-Kutta method to find electric field at time (n+1)At gives :

E™ = E" . Atd_El
dt n+1/72 (Cl.l)

where —
dt

n+l1/2

In electromagnetic fields,

dE 1
1t = —=VxH
04172 E n+1/2 (C1'2)

Substituting (C1.2) into (C1.1), we get

n+l — n At
E E" 4 —VX Hln+m
(C1.3)

&

(C1.3) is the form of the conventional FDTD explicit method.
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Using an explicit method to find E "12 from E" using forward difference gives :

g2 - go o, A AE (Cl.4)
2 dt|,
where %—?— is the gradient at E” illustrated in Fig. C1.1 by the gradient of BB’.
n
Using an implicit method to find E™' from E "2 using backward difference gives :
En+1/2 — En+l - _é!_ E_E::_ (Cl.5)
2 dt n+l
where i]:' is the gradient at E™* illustrated in Fig. C1.1 by the gradient of CC’,
n+l
Re-arranging (C1.5),
En-l-l — En+l/2 + _é!:_ dE (Cl.6)
2 dt n+l
Combining (C1.4) and (C1.6), we get
En+l — En + _é_t_ _(_i__E_ 4 ,é_!_ E.El (C]-7)
2 dtf 2 dtj,
or expressing the time derivative of electric field in (C1.7) in terms of magnetic field gives us
E™ = pr 4 ﬁvw[ + -éiVxnl (C1.8)
2¢ n o 2¢ n+
explicit implicit
term term
(C1.8) is the form of the Crank-Nicolson FDTD implicit method.
Expanding (C1.8) for E, term we get :
HG+1/2j+1/2,k) - HYi+1/2j-1/2.8) @)
E™ (141724, 0)= E" (i +1/24.k) + 2L © Ay
2| NS HA+V2/k+1/2) - H2(1+1/2,/,k1/2)
n+l Az] (CL9)
H Y412 +1/2,0) - B G+ 1727-1/2.8) (D)
A Ay
2e | (2 B (+1/24k+1/2) - HI (1 +1/2,/,k1/2)
Az

ADI-FDTD method is in a similar form to (C1.9) but splitting it into two separate procedures each for
successive half time-step iteration. Procedure 1 & 2 are taken from RHS terms as shown in (C1.9). This

results in the following terms for procedure 1 and 2 of the ADI-FDTD method, repeated here from (3.1a)

and (3.4a) respectively.
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HMV26G41725+1/2,8) - H™V2(i41/2,j-1/2,k)

, f A
E™V2 (i41/2,j.k) =E; (i+1/2j,k) + A 4
2¢ Hy(i+1/2j,k+1/2) - H)(i+1/2,j,k-1/2)
) Az

(C1.10)

HI" 241725 +1/2,k) - HV2(i+1/24-1/2,k)

EX (i+1/248) = EMV2 (141/240) + — o
28 Hy ' i+1/2,j,k+1/2) - HIV(i+1/2,/,k-1/2)

) Az

(Cl1.11)



