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Abstract 

There are many applications for gas and vapour measuring systems in environmental 

and industrial analysis. Different analytical techniques and detectors employed include; 

chromatography, catalytic filaments and pellistors, metal oxide and semiconductors, 

electrochemical sensors, piezoelectric and surface acoustic wave detectors, and 

spectrometry. The technique employed in this work is infrared spectrometry and it is 

part of a joint project between the Analytical Science and Optoelectronic Groups at the 

University of Hull. The aim of the project is to develop a robust multi-component 

infrared gas analyser using a fixed array of quantum well intersubband photodetectors 

QWIPs in which the photodetectors are tailored to measure at specific wavelengths. 

In order to provide a low cost portable detector, only a limited number of detectors can 

be incorporated into the array, therefore a method of selecting suitable wavelengths to 

measure is needed. To achieve this, FTIR spectra were collected for mixtures of CH4, 

CO, CO2 and N20. A variable selection algorithm based on multivariate linear 

regression (VS-MLR) was applied to the spectra to reduce the number of measurements 

required down to five. It was found that it was possible to build prediction models 

using low resolution and that baseline variations could be compensated for by using an 
internal standard. Based on the wavenumber selection models, the concentrations of 
CH4, CO, CO2 and N20 in new validation data could be predicted using wavenumbers 

2129,2284,3071,3148 and 3488 cm 1, with prediction errors averaging less than 14 %. 

This gave comparable results to PLS models built from the entire spectra. 
An exponential dilution system was constructed to enable different concentrations of a 

gas standard to be prepared and a GC was included into the system to act as a reference 

method for IR measurements. Good correlation was achieved between IR and GC 

responses for CH4, C02 and N20 with RZ values greater than 0.988. 

A prototype system was built (which incorporated the dilution system), utilising 

narrowband filters (at wavelengths 2.9,3.25,4.3 5,4.73 and 10.62 µm) combined with 

general IR detectors, based on the results of the wavelength selection. This was shown 

to give promising results and future work will be to replace the IR detectors with 

QWIPs. 

Also explored in this work was the feasibility of developing a system to measure 
volatile organic compounds (VOCs). This was investigated by collecting FTIR spectra 
for a variety of VOCs and employing PCA and cluster analysis to see if it was possible 



to distinguish between different types of compounds. Partial least squares (PLS) and 

VS-MLR was performed on a simple four component vapour mixture to demonstrate 

that the same methods employed on the CH4, CO, CO2 and N20 mix could also be 

applied to other mixtures. 
In conclusion, the project demonstrated the role chemometrics can play in the 

development of a solid state gas analyser, from experimental design to data treatment 

and analysis. It was proved the VS-MLR could be successfully utilised to determine 

suitable wavelengths to measure in the array for gas and vapour applications and a 

prototype system was constructed using narrow band filters to demonstrate the 

operation of such a system. 



Abbreviations 

cl convergence level 

DTGS Deuterated Trigylcine Sulphate 

FTIR Fourier Transform Infra-red 

GC Gas Chromatography 

IR Infra-red 

LED Light Emitting Diode 
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PCA Principal Component Analysis 
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QWIP Quantum Well Infrared Photodetector 

RSD Relative Standard Deviation 

SEP Standard Error in Prediction 
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1 Introduction 

1.1 Gas and Vapour Analysis: Analytical techniques 
1.1.1 Introduction 

Gas and vapour analysis has importance in a number of different situations, including 

atmospheric sensing, monitoring of stacks, vehicle emissions, landfill sites and process 

control. Systems need to be capable of measuring the levels and concentrations of the 

components of interest, or in some cases identify unknown contaminants. Where samples 

are analysed in a laboratory, the size and mobility of the instrumentation is unimportant and 

equipment such as Mass Spectrometers, FTIR Instruments, and Gas Chromatographs can be 

utilised. l, 2 

Rather than collecting samples and returning them to a lab for analysis, which can result in 

significant sampling errors, it is more convenient to be able to take in-field or on-line 

measurements. For these situations, smaller, robust, low cost, more portable monitoring 
devices are required. The restraints on portable devices i. e. size limitations and physical 

robustness, result in higher limits of detection compared to laboratory based instruments; 
however, their advantage lies in the ability to make on the spot measurements thus reducing 
sampling error as well as allowing an increased number of samples to be measured. 
The next section is a brief summary of the main techniques of analysis, focusing on portable 
devices, with examples of some the current research in these areas. 

1.1.2 Gas Chromatography 

Chromatography is one of the most common methods of analysis. Advantages include the 

ability to separate gas mixtures thus allowing components to be identified by their retention 
times. Columns can be tailored using different lengths and packing materials to obtain 
improved separation for gases and vapours of interest. The equipment tends to be bulky; a 
main limitation to portability is the requirement of a supply of carrier gas. 
The development of portable gas chromatographs has been slow due to the problems with 
column efficiency, quality, cost and convenience. Compared to laboratory-based equipment, 
the resolution of portable Gas Chromatographs (GCs) can be poor due to the limitations in 
the size of columns. Commercial portable GCs are available, the size of which is decreasing 

with advancing technology. One of the smallest gas chromatographs being developed is the 
size of a telephone developed by the Lawrence Livermore Laboratory' and uses a 



microcapillary on a silicon wafer with the target aim of a resolution of 1 ppb and an 

identification time within two minutes. 

A drawback with decreasing column size is the sample volume also has to be decreased, 

which leads to higher detection limits. Vapour and contaminant levels in air are quite dilute, 

often with levels less than a few ppb, so sampling and pre-concentration are important 

considerations. 
Another limitation of chromatography is that it is not continuous; the interval between 

sampling is dependent on the time taken to run samples, which in turn, is dependent on 

retention times. A practical example of on site equipment is an automated field instrument 

for the determination of acidic gases (HCI, HONO"3, HNO3 and SO2, ) in air, giving detection 

limits of µg/m3, but with the analysis time taking 20 minutes 4 For the measurement of 

volatile organic vapours, portable GC's can be combined with solid phase microextraction 

(SPME) techniques to increase concentration levels. 5 Separation can be achieved in less than 

five minutes, however this is far slower than other analytical methods such as Infrared and 

Raman Spectroscopy, where analysis can be performed within less than a second. 

1.1.3 Gas Arrays Detectors 

Many of the current gas sensors are based on arrays of various catalytic, semi-conducting, 

electrochemical, piezoelectric and optical type detectors. 6 These types of detectors tend to 

respond to numerous different gases, so a single detector on its own gives very limited 

information. By creating an array of detectors, where each detector has a different response 
to different analytes, unique response patterns can be obtained for various analytes. Pattern 

recognition techniques such as neural networks and principal component analysis, and other 

multivariate techniques can be applied to derive useful information from array responses; 
these are discussed later in section 1.3. 

1.1.3.1 Catalytic Filaments and Pellistors 

For personal monitoring devices, a common type of detector is the catalytic filament. The 

advantage of these detectors is that they are small and easily incorporated into portable 
devices that can be worn in pockets or on belts. 

Catalytic filaments are particularly useful for monitoring flammable vapours; an example is 

the platinum resistance thermometer. 7 Combustion of flammable vapours is catalysed by a 
heated filament, causing the filament temperature and hence its resistance to change. The 
increase in resistance is proportional to vapour concentration, so measuring the cell 
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resistance can be used as a means to determine vapour concentrations. Problems can arise 

due to catalyst inhibitors and poisoning, for example from silicone (found in grease and 

polishes), which forms silicon oxides on the catalyst surface, or inhibition due to absorption 

of halogens from compounds containing halides. One method to overcome the effects of 

poisoning is the use of coatings and capsules. Zeolite structures can be utilised as ion 

exchange materials and the small pore sizes can prevent larger poison molecules such as 

silicates from reaching the catalyst surface. Pellistors are well known catalytic detectors 

and consist of a platinum wire coil contained within an alumina bead treated with catalyst. 

A major drawback with these devices is the lack of selectivity, responses arise from a 

number of flammable gases and distinguishing between them can be difficult, if not 

impossible. The signal response can vary widely depending on the molecular weight, 

functional groups and lower explosive limits of the vapours present, and this variation is 

used to build arrays. For CO monitoring, the Hopcalite catalyst, which gives very little 

response to other vapours at low temperatures, can be employed. 
Catalytic devices require oxygen for combustion to occur thus can fail in oxygen deficient 

situations, also as detection is based on the combustion of gases, gases in the immediate 

vicinity of the detectors are depleted hence good air circulation is required. 
1.1.3.2 Metal Oxide and Semiconductors 

Metal oxide detectors consist of a ceramic tube or plate coated with a layer of metal oxide. 
The response arises due to oxygen in the air reacting with vacancies in the metal oxide 
lattice. Changes in the composition and materials used in the detectors cause different 

sensitivities to different compounds. As with filament detectors, these sensors also suffer 
from problems with poisoning, and poor selectivity. Dampness can also lead to problems 

and increasing amounts of water vapour can lead to instability and decrease signal detection. 

To overcome cross-sensitivity to water, higher operating temperatures are required. 
Metal oxide detectors use porous alumina beads to improve stability and resistance to 

poisoning. 
Some of the recent work includes combinations of palladium and platinum metal oxide 

semiconductor field effect transistors (MOSFET) sensors and palladium and platinum 

catalysts. 8A well-known type of detector is the Taguchi sensor, which is based on a ceramic 
Sn02 bead. Simultaneous determinations of ethanol, toluene, and o-xylene can be made, 

employing commercially available Taguchi sensors, with detections in the 20 to 100 ppm 

concentration range. 9 An array of six Taguchi sensors combined with a neural network 

system was applied for the quantification of organic vapours (butanol, toluene and xylene). 10 

3 



A large amount of research has been investigating the effects of composition and surfaces of 

such sensors, the addition of metals such as Bi and Pd to act as dopants or blending different 

oxides or including metal porphyrins can all decrease the operating temperatures required. 

Devices can also be coated with catalytic layers to improve selectivity. 10 Work by Park et al. 

employed SnO2 doped with Pt and Nb205 to tailor detectors that were sensitive to alcohol 

gas but with negligible responses to ethyl alcohol and cigarette smoke. " 

Other detectors employ conducting polymers such as polyacetate, polpyrrole, 

phthalocyanines and polysiloxanes. A film of conducting polymer is used to coat detectors, 

and different responses arise due to the adsorption of gases and vapour, which cause the 

conductivity to change. Such detectors can have good sensitivity to particular analytes; 

however, they tend to have high temperature dependence and a limited lifetime. Work with 

semi-conducting polymers includes the development of sensor systems for alcohol and 

chlorinated hydrocarbon vapours utilising poly-2,5-furylene-vinylene (PFV) derivatives. 12 

Fabrication techniques such as sputtering and chemical vapour deposition make it possible to 

design microsystems consisting of multiple sensor elements. An example of this is work by 

Althainz et al., where a system consisting of 39 metal oxide detectors, 2 temperature 

detectors and 2 heaters in area of 8x9 mm2 was produced. Different responses for various 

vapours were achieved by applying a temperature gradient across the array. 13 

1.1.3.3 Electrochemical Sensors 

Electrochemical sensors are common, especially for monitoring oxygen and the use of 

microelectrodes allow small compact sensors to be built. Different developments in this area 

include: chemically modified electrode sensors, microelectrodes, voltametric and 

potentiometric methods (such as stripping voltametry). Electrodes are tailored for specific 

analytes by the use of membranes or polymer coatings allowing even anions that are not 

electrochemically oxidizable or reducible to be analysed. Using a Nafion(R) cation 

exchange membrane amperometric gas sensors can be designed to detect gases such as 

sulphur dioxide, ethylene, ethanol, acetylaldehyde and acetylene in the ppb range. '4 

Microelectrode arrays can be fabricated using photolithology employing various materials 

and modification techniques to make individual elements more selective, making it possible 

to construct hand held electronic systems. ' Zirconia based sensors for potentiometric and 

amperometric measurements can be utilised for measuring hydrocarbons, nitrogen oxides 

and oxygen. ' 5 
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A drawback of electrochemical methods can be the lack of selectivity that often requires a 

large amount of data processing and modelling, and that they can be adversely affected by 

humidity. 

1.1.3.4 Piezoelectric and Surface Acoustic Wave detectors 

Piezoelectric detectors consist of oscillating crystals. The absorption of compounds on the 

crystal surface causes a change in vibration frequencies, allowing the detectors to act as 

chemical mass balances. Like the previously mentioned detectors they are non-selective, but 

can be made more selective by coating with selective absorbates such as plasma polymer 

films. These can be employed as moisture detectors with sensitivities of 0.1 ppm. Another 

example of their application is for CO monitoring with detection limits down to 10 ppm. 16 

An example is the multi-component gas analysis of a mixture of chloroform, octane, and 

toluene using a piezoelectric quartz crystal sensor array, where an array of four crystals was 

designed to calibrate vapour mixtures between 100 and 2000 ppm, predictions errors varied 
from +28 % to -8 %. 17 Other applications have included classification of organic 

compounds into groups, odour analysis and the identification of anaesthetics. 
Surface acoustic wave sensors (SAW) detect changes in mass of surface coated films. 

Changing the polymer used can result in different responses to different vapours thus 

allowing characteristic response patterns than can be used to identify different compounds. 
Flexural plate waves (FPW) sensors are similar to SAW sensors; both methods are based on 
the employment of acoustic waves generated from within a piezoelectric substrate. In FPW 

the waves travel in a membrane that has a thickness smaller than the length of the acoustic 

wave and as a result the membrane undergoes mechanical flexure. 18 

An example of this is work by Groves et al. 19 who developed an instrument based on an 

array of SAW sensors to analyse organic vapours present in exhaled breath and in ambient 

air. 
1.1.3.5 Electronic Noses 

Electronic noses are an attempt to imitate the olfactory function of the human nose. Rather 

than identify each individual compound and its concentration, the overall effect is looked at. 
A definition given by Gardner and Bartlett is: "An electronic nose is an instrument, which 
comprises an array of electronic chemical sensors with partial specificity and appropriate 

pattern-recognition system, capable of recognising simple or complex odours". ° 

Applications of this include odour analysis, where a particular smell is not due to one 
particular compound but can arise from a complex mixture of many different chemicals for 

example perfumes, cheese, coffee, etc. Other situations where they are useful are 
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environmental odour problems such as livestock waters, pig slurries, tainted water supplies 

and sewage treatment works. 21 Electronic noses can also be applied to gas and vapour 

detection. 

Electronic noses based on the aforementioned detectors and also on optical detectors 

(discussed later in section 1.1.4) have been developed for numerous applications, so any 

advantages or disadvantages are those associated with the type of detectors employed. 

Work by Natale et al. 22 looked at the application of an electronic nose based on an array of 

shear mode quartz resonators to analyse peaches. The resonators were coated with thin layers 

of metal complexes of porphyrins, this included cobalt, manganese, rhodium, tin, vanadium, 

ruthenium and copper, allowing different sensitivities to aromatics, alcohols and aldehydes. 

Another example includes work by Maekawa et al. utilising an array of Sn02 sensors for the 

identification of odours from citreous fruit and different types of coffee beans23. 

Electronic noses developed to identify different organic compounds include an array based 

on SAW detectors for odour identification of ethanol, ether, acetone and ethylacetate 

developed by Yang et al. 24, and an array of conducting polymer sensors based on polypyrrole 

polymers to identify and quantify benzene, toluene, ethyl benzene and xylene in work by 

Barisci et al. 25 

1.1.4 Spectrometry 

1.1.4.1 Photoacoustic Spectroscopy 

Photoacoustic spectroscopy is based on optically exciting samples with radiation and 
detecting the energy decay as an acoustic wave. 

The sensitivity and detection is dependent on the power of the radiation source. 

High sensitivity can be achieved to detect absorption coefficients down to 10'8 cm 1 by 

modulating the radiation source at an acoustic resonance frequency of the absorption cell. 

CO2 lasers can be used that have a wavelength range of 9 to 11 µm, which is advantageous 

as many characteristic absorption bands of gases occur in this region. 

Acoustic devices can be made from optically transparent flat materials laid in parallel with 

each other to form an array of Fabry-Perot optical interferromatic cavities. As one tyne 

vibrates the light transmittance oscillates, and this oscillation can be employed to determine 

the strength of the resonance. The tynes represent certain frequency components and this can 
be related to different absorbing species. Problems can arise due to varying water vapour 

and CO2 levels which can affect the amplitude of the detected acoustic signal. 
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Work in this area includes the development of a mobile CO2 laser photoacoustic 

spectrometer and its potential for analysis of fruit storage chambers and ambient air 

measurements in field studies26 By applying least square fitting algorithms such as a 
Levenberg-Marquardt fitting algorithm to the resulting signal it is possible to analyse 
different gas mixtures in the ppb to ppm range. Lasers are usually employed due to the 

output signal being proportional to the energy of the source. External cavity diode lasers 

(ECDL) can also be used as excitation sources, the lack of sensitivity can be compensated for 

by tuning the lasers to the peak absorptions, as demonstrated by a system using ECDLs 

capable of detecting NH3 down to 8 ng/127 
Gas lasers have the disadvantage of being relatively large due to the requirements of gas 
flow, water or liquid nitrogen cooling, sophisticated electronics and power stabilisation, thus 

making them less suitable for field instruments. Diode lasers, which are more compact, can 

also be utilised as radiation sources, although they have less power and therefore are less 

sensitive they can be used to detect gases in the low ppm range. 28 

1.1.4.2 Absorption Spectrometry 

Absorption spectrometry is based on measuring the amount of light of a specific wavelength 
that is absorbed by the analyte(s) to be measured. Infrared spectrometry concerns the range 

of electromagnetic radiation with wavelengths from 0.8 µm in the near IR region to 1000 µm 
in the far IR region. Mainly measurements are made in the mid IR region, which has a 

wavelength range from 2.5 to 25 µm. Absorption of IR light is due to the interaction of light 

with various stretches, bends and vibration movements of molecular bonds. When the 

vibration causes a change in the dipole moment of the molecule, the molecule can be excited 
by IR radiation. When the wavelength of light (and hence its energy) matches the vibration 
energy it is absorbed. Non-polar molecules or bonds such as N2 and 02 do not have a change 
in dipole moment so are not IR active, whereas asymmetric and ionic molecules (or group 
contained within a molecule) like H2O and CO2 exhibit strong IR absorptions. Particular 

molecular bonds have characteristic absorptions (or bands) at specific frequencies making it 

possible to identify some compounds by the characteristic spectra produced. 9 

Absorption energies can be explained using Hooke's law, which is based on a simple 
harmonic oscillator. A common analogy is the comparison of the molecular bond to a 
spring. The potential energy is at its lowest when the bond is in equilibrium, and energy 
increases when the bond expands or contracts in the same way that pulling or pushing a 
spring increases its recoil energy. 
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Raman spectrometry also employs infrared radiation; however, it is based on measuring light 

from inelastic scattering. 
Advantages with spectrometry are that continuous measurements can be made, it is a non- 

destructive technique, and that it can be employed for remote sensing. 

1.1.4.2.1 General IR and Raman Applications 

Both IR and Raman spectroscopy have been successfully employed to analyse various gas 

species simultaneously, as shown by studies measuring air quality and pollution levels 30 

Examples include the simultaneous analysis of CH4, CO2, N20 and CO in air by FTIR using 

a classical least squares algorithm for calibration. 31 Although high resolution is normally 

used for gas analysis, it is also possible to analyse gas mixtures with low resolution as 

demonstrated in the analysis of stack gas pollutants 32 

The major problem in the application of Raman spectroscopy is the signal-to-noise ratio, 

which is related to the extremely low scattering cross section. It is possible to utilise surface 

enhanced Raman scattering (SERS) for the analysis of vapours using metals with organic 

coatings. Trace organic compounds can identified by the location of the bands. SERS can 
be limited by chemical reactivity and contamination by adsorption; if contaminants and the 

analyte of interest are adsorbed by the same host molecules, then competition for adsorption 

places can affect the results giving lower values then actually present. 33 

Spectrometers basically consist of a radiation source, some means of wavelength selection 

and a detector. Developments in absorption spectrometry can be broadly split into three 

areas based on which component is focused on. 

a) Laser spectrometry and the use of light emitting diodes focus on refining the 

radiation source. Wavelength selection is achieved due to the emission of very narrow 

wavebands of radiation. Since the wavelength of light measured is determined by the source, 

simple non-selective light detectors can be employed. Lasers and LEDs are further discussed 

in section 1.1.4.2.2. 

b) Fourier transform (FT) IR, and wavelength modulation techniques employ general 

sources and detectors, and rely on various methods to select wavelengths. In FTIR, 

interferometers are used to produce interferrograms, which can be resolved mathematically 

using Fourier transform. Alternatively, diffractive grating and filters can be utilised to 

separate wavelengths or restrict the light passing through the sample or reaching the 
detectors. Work in this area is described in section 1.1.4.2.3. 
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c) The third alternative is to employ detectors that only measure specific 

wavelengths. Work in this area includes quantum well photodetectors (QWIPs), which are 
discussed in section 1.1.4.2.4. 

1.1.4.2.2 Laser Spectroscopy and Light Emitting Diodes 

The main advantage of laser absorption spectroscopy (LAS) is its selectivity (lead salt lasers 

have a linewidth of 10 MHz (3x104 cm") that makes it an ideal technique for looking at 

small specific regions of spectra where absorption lines are close together. Speed of analysis 
depends on the range; several wavelengths can be scanned within milliseconds, whereas 

scanning an entire spectrum greatly increases analysis time. 4 The use of a high-power 

coherent source and the lack of dispersive gratings mean that greater sensitivity and higher 

signal-to-noise ratio can be achieved compared to spectrometric techniques that employ 

conventional sources. This allows the detection of low concentrations (ppb) and weak 

spectral features can be analysed. The wavelength at which light is emitted relies on the 
band transmissions of the bulk material. 
Lead salt lasers are good for mid-IR applications but the drawback is that they normally 

require cryogenic cooling. Alternatives include antimonide lasers and quantum cascade 
lasers 35 An example of a portable gas analyser using a tuneable lead salt diode laser is the 
development of TRISTAR (a tracer in-situ TDLAS (tuneable diode laser atomic 

spectroscopy) for atmospheric research), an airborne platform consisting of three lasers, two 
detectors, a cryostat and a multi-path cell for the analysis of N20, CO and CH4. 

Reproducibility of calibrations was within 2% and accuracy within 2.8 % with detection 

levels down to ppb (noise levels at <10 ppbv, <20 ppbv, and 30 ppbv for N20, CO, and CH4 

respectively) 36 Along similar lines, is work by G. Toci et al., designing an airborne diode 

laser spectrometer for measuring H2O and HN03.37 

Room temperature lasers using bulk LiNb03 with Nd: YAG can be employed giving 
detections in ppb range for gases CH4, C2H6, H2CO, NO2, N20, HCI, CO and OCS, with on- 
line measurements between 200ppb and 1% for methane. 8 

Semiconductor lasers are normally monochromatic, but it is possible to design lasers that 
emit several simultaneous wavelengths by employing separated multiple resonators or multi- 
section injection devices. In effect this produces a cross between a superlattice with 
continuous energy minibands and multiple quantum wells, resulting in a multi-wavelength 
semiconductor laser. 39 
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The use of light emitting diodes (LEDs) for gas analysis has been ongoing for several years 

and has been growing in popularity. LEDs can increase the portability of sensors due to the 

small size and lack of moving parts. 
LEDs can be realised from a number of different materials, electroluminescent organic 

polymers such as binaphthyl-based polymers are used for LEDs in the visible light region. 
For infrared LEDs, various materials and structures have been based on InGaAs, 

InAsSbP/InAs and other InAs alloys. These materials are utilised to grow quantum well 

structures with the energy difference between excited and ground states corresponding to 

characteristic infrared absorption bands of gases. Quantum wells can be grown by a number 

of different techniques, among them are; LPE (liquid phase epitaxy), MBE (molecular beam 

epitaxy), and MOVPE (metalorganic vapour phase epitaxy). These techniques allow for a 
high degree of control over the thickness of layers even down to monolayers. Work by Krier 

et al. employed rapid slider LPE for the growth of InAs material systems. The thickness of 
layers was controlled using a graphite boat with an adjustable slit. Using LPE, layers as thin 

as 20 A can be grown, and produces material with high crystalline perfection with few point 
defects and impurities. Work comparing different types of LEDs found InAsSbP/InAs 
double heterojunctions to be the most efficient structures with emissions between 3.3 and 3.7 

pm 40'4' LEDs can increase the portability of sensors due to the small size and lack of 

moving parts. A drawback with LEDs is the limited optical output power due to effects from 
Auger recombination. 
An EPSRC Link Photonics project known as ASPIRE (atmospheric sensing of pollutants by 
infrared emitters) was set up to examine LED performance shows that there are clear 
advantages for using lasers and LEDs, but that problems with power output, temperature 

stability and emitter lifetime still need to be overcome 42 

1.1.4.2.3 FTIR, Wavelength Modulation (derivative, or frequency modulation (FM)) and 
filters 

FTIR instruments are the most commonly used type of instrumentation for infrared analysis. 
They employ interferometers so that an interferrogram signal is produced, which can be 

processed using Fourier transformation. The instrumentation tends to be bulky and requires 
complex signal processing, but smaller portable instruments do exist. Portable FTIR gas 
analysers that are built for field measurements are commercially available from companies 
such as GASMETTM that can simultaneously analyse up to 30 different components with an 
analysis time in less than 180 seconds 43 
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Wavelength selection can also be achieved using diffraction gratings and filters. Since only 

common sources and detectors are required these methods have the advantages of requiring 

little maintenance and low power supply. The use of optical filters can be an advantage for 

regions where no low cost laser sources are available as they allow LEDs or thermal sources 

to be used. Filters can either be placed to filter the radiation source, or to filter the light 

reaching the detectors. 

Methods include, using a tuneable Fabry-Perot interferometer and vibrating mirror inserted 

into a grating monochromator. Although the wavelength selectivity for this method is not as 

high as the employment of laser diodes due to effects such as line shape distortions, it does 

have the advantage of being able to cover a wide range of wavelengths from UV to far 

infrared. 

Immersion gratings from silicon and germanium can be utilised, the high refraction of these 

materials allows the design of compact spectrometers with no moving parts. 

It is possible to design hand held sensors using a thin vibrating diffraction grating fabricated 

on a silicon chip as demonstrated by Chen in the development of a CO2 and hydrocarbon 

detector capable of detecting levels down to ppm 44 A drawback is that sensitivity is affected 

by temperature changes of the radiation sources which influence the signal detected. 

Filters can be integrated to produce a filter array, which can be coupled to the detectors as 
demonstrated in work by Lopez et al. A filter array was coupled to PbSe detectors to 

produce a spectral retina, forming signal channels allowing the identification and 

quantification of SO2 and CO 45,46,47 

The detection is limited by the detector performance, and coupling filters with more sensitive 
detectors can increase the sensitivity. Another example is the employment of 

micromachined optical tuneable filters in work by Alause et al. 48 

The approach used by Myrick et al. is to employ interference filters referred to as 

multivariate optical elements (MOEs). Optical interference coatings are produced whose 

transmission spectra incorporate features corresponding to the target analytes 49,50,51 

A practical example of portable infrared analysers based on filters is for measurements of 
hydrocarbon emission levels. The analyser used photoacoustic detectors combined with an 

optical carousel containing filters at 6 discrete wavelengths, and was found to be reliable for 

field analysis to monitor hydrocarbon emissions. 52 

1.1.4.2.4. Photodetectors 
Photodetectors include PbSe and HgCdTe, the main disadvantage with these materials is that 

they require cryogenic cooling in order to reduce noise and increase sensitivity. Research 
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has been carried out to produce photodiodes that can operate at room temperature, thus 

reducing the power requirements needed for thermoelectric cooling. 

Photodiodes are in effect the reverse of LEDs; detection is based on the excitation of 

electrons to conduction bands by light, compared to LEDs where electrons fall to lower 

energy levels so light energy is emitted. 

Quantum well intersubband photodetectors (QWIPs) can be grown as described for 

photodiodes. 53 The devices have similar problems with quantum efficiency due to Auger 

recombination and the effects of dark current (current not due to light detection). At the 

moment wavelength detection is limited to shorter wavelengths with a cut off around 2.5 pm, 

but improvements on the design and materials used have reduced the amount of dark current 

and the response time. Compared to HgCdTe (sometimes referred to as MCT) detectors, the 

growth and processing technologies give high uniformity and reproducibility which leads to 

large area low cost arrays. The most basic wells consist of layers of alternating materials 

such as GaAs and AlGaAs, or Si and SiGe. 54,55 By varying the thickness of layers, the 

materials used and the amount of doping, the size and shape of the wells can be tailored, thus 

changing the energy of transitions and hence the wavelength that can be detected. 

Asymmetric wells are achieved by the addition of an extra barrier layer that can allow 

transitions normally forbidden in symmetric wells. Figure 1.1.1 shows an example of a 

simplified diagram for an asymmetric well. 

a, InGaAs layer qb 

E2 a2 GaAs layer, 
I. -Cº -C b AlAs layer, 

c InGaAs layer, 
El ground state, 
E2 excited state 

LEE 

1 

rigure 1.1. I Diagram for an asymmetric quantum well. N. B. Electrons are excited from 
E, (the ground state) to E2 when the wavelength of light matches the energy difference 
between the two levels. 

The additional barrier also reduces the amount of dark current, leading to increased 

sensitivity. Work in this area includes uncooled InAsSbP/InGaAs photodiodes (grown by 
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liquid phase epitaxy) which can operate in the 1.8- 3.4 µm range, they compare favourably 

with HgCdTe detectors, and can be employed for methane and HF gas detection. 56 

The detectors being developed at Hull University by the optoelectronic group are asymmetric 

strained QWIPs based on GaAs and InP. 57'58 Figure 1.1.2 shows an absorption plot for one 

of the unprocessed samples (NB. The sample is not yet processed into a detector; hence no 

voltage is applied across the sample and light is absorbed by the sample). 

Graph of sample 1793 waveguide geometry room temperature 
intersubband absorption measurement against wavelength 

0.7 
0.6 

v 0.5 

4 0 . Ö 0.3 
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0 
3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 

Wavelength (micron) 

Figure 1.1.2 Absorption plot for unprocessed sample designed by Electronic group at Hull 

1.1.5 Fibre Optics 

Another area of gas analysis is the employment of fibre optics; they have the advantages of 

small size, versatility and can be employed for remote sensing. Detection methods include; 

absorption, emission (e. g. luminescence), Raman, light scattering, optothermal and 

photoemission. 5 An application of this is the development of a reversible fluorescence-based 

fibre optic sensor for detecting and quantizing of trace levels of xylene and dichloromethane 

in the vapour phase. 

Solvatochromic (SV) dyes, which undergo a reversible colour change with changes in 

polarity, are immobilized in a polymer film. The polymer film can then be coated on to the 

sides or end of an optical fibre allowing concentrations of analytes to be measured by 

measuring the colour change. ' Detection using fluorescent compounds is widespread and 
high sensitivity can be achieved. It is possible to detect polyaromatic hydrocarbons (PAHs) 

. 
down to ng m- 59 
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Albert et al. demonstrated that fibre optic beads arrays can be employed for the 

discrimination of odours such as toluene, acetone and dinitrotoluene, as well as more 

complex odours such as coffee beans 60 

Oxygen sensors based on luminescence quenching can be applied for monitoring oxygen in 

gas flows, as well as in situ within biological systems. The probes use inorganic films based 

on metal complexes and porphyrin systems, when compared to amperometric sensors they 

are faster, do not consume the analyte and lack electrical connections. 

This technique allows real-time tracking of rapidly changing concentrations, but is limited by 

the lack of selectivity. 61 

For absorption based fibre optics problems can arise due to errors caused by the bending of 

the fibres, which can result in attenuation of light within the fibre and there are the usual 

problems of light source drift. 62 Another disadvantage that can arise is the photo bleaching 

of dyes, which results in a negative drift in response. 
The use of substrates that undergo colour changes can be useful for simple warning devices. 

Reagents are fixed on (or in) an inert support such as silica gel, alumina or paper, and the 

colour change used as an indication for the levels of analyte present. Examples include lead 

acetate, which stains brown in the presence of H2S, or carbon monoxide monitors that 

change colour when exposure limits are reached. ' 
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1.2 Sample Preparation Techniques for Gas and Vapour Standards 

It is very important to be able to prepare reliable gas and vapour standards to validate and 

calibrate gas detection systems. A number of different strategies can be employed to generate 

gas and vapour samples; these techniques can be split into two areas, static and dynamic. 

Factors to consider include, time, expense, equipment available and the required accuracy. 
Table 1.2.1, taken from literature63, gives a comparison between the most common methods 

of sample preparation. 
Method Usual range of Volume of test Average best Operating Degree of wall 

concentration mixture (L) accuracy (%) pressure loss 

Static systems 
Single vessel lOppm to 5% 10% of vessel 3-5,1 51 Medium 
Multiple vessel 10ppm to 5% Vessel volume 5-10,3 51 Medium 
Non-rigid lüppm to 5% 1-1000 3,1 1 High 
vessel 
Gravimetric Low ppm to 50% 1-5000 0.1-0.002 1-150 Medium 
Partial pressure 100ppm to 50% 0.5-5000 5-10,1 1-150 Medium 
Volumetric Low ppm to 50% 0.5-5000 3-5,2 1-150 Medium 
Partial pressure Low ppm to 50% 0.1-2 1-5,1 0.001-1 Low-medium 
Dynamic system s: gas stream mixin g 
Single dilution 100ppm to 50% >5000 1-3,1 Z1 Low 
Double dilution Low ppb to 1% >5000 5-10,2 Z1 Low 
Dynamic systems: injection 
Syringe drive lppm to 0.1% 5-1000 2-5.1 Z1 Low 
Liquid pump lppm to 5% Very large 5,1 1 Low 
Gravity feed 100ppm to 5% Large 5,3 Z1 Low 
Pulse diluter 0. lppb to 0.1% Very large 3-5,1 zt1 Low-medium 
Diffusion 0.1 to 500 ppm Very large 2-6,1 1 Low 
Permeation 0.05 to 200ppm Large 1-3,0.5 1 Low 
Evaporation 50 ppm to 10% Large 3-15,2 Z1 Low 
Electrolysis Low ppm to 10% Ltd. by soln. vol. 2-5,1 1 Low 
Chemical Low ppm to 1% Ltd. by soln. vol. 3-10,1 1 Low-medium 
reaction 

Table 1.2.1 Comparison of common methods of sample preparation 

1.2.1 Static Methods of Sample Preparation 

Static methods involve the addition of a known quantity of solvent or gas into a container of 
known volume. These methods are quite simple with accuracy depending on the volume of 
the system, the purity and volume of analyte. The method of addition can be via syringe. 
Table 1.2.2 gives a comparison of the accuracy of different injection methods. 60 

For gas mixtures, concentrations are calculated from volumes as shown by equation 1.1. 
C 

pPm = 
Vc 

x 106 ppm Equation 1.1 
(c Vd) 

Where; 

Vc = target gas volume 
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Vd = dilutant volume 

For liquids added to a closed system the concentration in ppm can be calculated from 

equation 1.2. 

22.4x106(273°T 
Ký76 P 

m)W 

C= Equation 1.2 
VM 

Where; 

C= concentration (ppm), 

T= temperature (°K), 

P= system pressure (mmHg), 

W= weight (g), 

V= volume (1) of the system 

M is the molecular weight (g/mol) 

At normal temp (25°C and 760 mmHg) this reduces to 

24.5x106W Equation 1.3 
VM 

Where; 

V= volume of liquid, 

W= weight (g), 

Va = volume of dilutant, 

M= the molecular weight of the liquid 

Injector Phase injected Plunger material Capacity Accuracy at ca aci ,o 
Microlitre syringe Liquid Wire 1-5 L 2 
Microlitre syringe Liquid Wire 5-500 L 1 
Gas-ti ht syringe Li uid, as Teflon tip 0.05-2.5 mL I 
Gas-tight syringe Liquid, gas Teflon tip 5-50 mL 1 
Micro pipette Liquid Air 2-4 L 1.8 

_ Micro pipette Liquid Air 5-25 L 0.5 
_ Micropipette Liquid Air 35-150 L 0.3 
Microm burette Liquid Teflon 0.2-2 mL 0.5 
Microm burette Liquid Glass 0.25-2.5 mL 0.04 
Volumetric pipette Liquid Air 0.5-200 mL I 

Table 1.2.2 Accuracy of different injection methods°' 

The most accurate technique of preparation is by gravimetric means. An example of this is 

the collection of Infrared Spectra for the NIST (National Institute of Standards and 
Technology) database, where VOC standards were prepared using evacuated, preweighed 
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cylinders fitted with septums. A known weight of analyte is injected into the cylinder, which 

is then filled with nitrogen at a calculated pressure and then finally weighed. 64 

In work by Groves and Zellers, breath samples were collected in Tedlar® bags with known 

volumes of liquid solvents injected into the bag and samples were mixed by massaging the 

bag. 18 

Another method of preparation is by employing pressure techniques; figure 1.2.1 is an 

example of a schematic for such a system. The vessel/cell to be filled with sample is 

evacuated using a vacuum pump. For preparing vapours the liquid sample is cooled 

(normally with liquid N2) and the air above the liquid sample is pumped off, then the liquid 

sample is heated allowing vapour saturation. The valve for vessel/cell is then opened 

allowing gas/vapour to flow in. 63 

A system based on this method was engaged for generating quantitative vapour-phase 
infrared reference spectra in work by Richardson and Griffiths65 and was found to give 

accuracy within 2% when compared with certified standards. 
The main disadvantage associated with static systems is adsorption on the container walls. 
This varies for different compounds, and can be a particularly significant at low levels 

especially with strong oxidising and reducing agents such as ozone, nitrogen dioxide, 

hydrogen fluoride, and nitrated compounds. Adsorption can be reduced by using unreactive 

17 

Figure 1.2.1 High Pressure manifold for the preparation of gas mixtures in cylinders63 



coatings and by increasing the volume size of the chamber (to decrease surface to volume 

ratio). 

1.2.2 Dynamic Methods of Sample Preparation 

Dynamic methods involve moving gases. Gases are either pumped or metered using 

controlled flow rates. 
Exponential dilution systems were first described by Lovelock in 196066, they basically start 

with a fixed amount of calibrant, which is mixed with a carrier gas (flowing at a fixed rate) 

so that the concentration is gradually diluted over time, resulting in a decay curve. The 

advantage with this method is that a fixed amount of calibrant can be gradually diluted to the 

required concentrations. The rate of dilution is controlled by the rate of flow of the dilutent 

gas; by using slow flow rates this method can be an accurate calibration technique. Any 

unwanted gases can be swept away and adsorption becomes negligible once an equilibrium 
is established. 
Mixing can be achieved by simple flow through, passive mixing (dependant on diffusion) or 
turbulent eddy devices (paddle or vanes), for small systems (of about 1 L) magnetic stirrers 

can be used. Assuming perfect mixing the concentration can be calculated by equation 1.4 

-rt 
Ct = Coe V Equation 1.4 

Where; 

Ct = concentration at time t, 
Co = the original concentration, 
V= the volume of the system, 

r= the flow rate. 
For an ideal system, a plot of log instrument response versus time should give a straight line 

with a gradient dependent on the flow rate. Another method of sample preparation is by gas 
stream mixing, an example of a set-up for 3 component mixing is shown in figure 1.2.2, 
different concentrations can be prepared by using different flow rates for the different gases. 

18 



Permeation tubes are commonly employed for preparing vapour mixtures. Permeation tubes 

consist of a tube made of Teflon or some other unreactive polymeric material filled with the 

compound of interest. The tubes are sealed at both ends and diffusion of the gas occurs 
through the polymer walls and into the surrounding atmosphere. The permeation rate is 

dependent on a number of factors including the compound used, the size and thickness of the 

tubing, and temperature. 

Concentrations can be calculated from equation 1.5 

Px(2446/mxj 
Cppmv= Equation 1.5 

F, 
c 

Where; 

C= concentration, 
P= the permeation rate (ng/min), 

mw = molecular weight, 
24.46 = (molar volume at reference conditions), 
Fe = the flow rate of mixture (ml/min). 

An example of the employment of permeation tubes is in investigations of atmospheric 
levels of NO and NO2 67 
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1.3 Chemometric Techniques Employed in Vapour and Gas Analysis 

Chemometrics refers to mathematical, statistical and logical approaches applied to chemistry. 

Many techniques can be employed for gas and vapour analysis ranging from methods of 

improving data such as smoothing, background corrections and deconvolution to building 

multivariate calibration models. Other methods looking at trends and patterns in data include 

flow control charts, principal component analysis, dendrograms and neural networks. This 

section looks at some of the different techniques and their applications, in particular ones 

relating to the work carried out in this project. 

1.3.1 Experimental Design 

Experimental design is a statistical approach to planning experimental work. This takes into 

consideration the different variables, referred to as factors, and their corresponding levels. 

Examples of different factors can include components present in a mixture, temperature, 

time, etc. The corresponding levels can be qualitative i. e. present or not present, on or off, 

etc, or can be quantitative i. e. have various magnitudes e. g. concentration. 

Other considerations are replication which allows errors to be determined, and randomisation 

which prevent biased results and minimises the effect of uncontrolled factors on results. 
Most experimental designs are based on factorial design whereby all the possible 

combinations of factors and different levels are determined. Table 1.3.1 shows the design 

matrix for a two level (represented by `-' and ̀ +'), three factor (A, B and C) experiment. For 

F number of factors with N number of levels the total number of experiments would be N. F 

Run A B C 
1 - - - 
2 + - - 
3 - + - 
4 + + 
5 - - + 
6, + - + 
7 -s .+ + 
8 + + + 

Table 1.3.1 Design Matrix for a two level experiment with three factors 

The advantage with this method is that it allows all the interactive effects to be estimated. A 

main disadvantage is that the number experiments required increases dramatically as the 
number of factors and/or levels increases. 
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To reduce the number of experimental runs, various partial factorial designs such as partial 

and central composite can be employed. In full factorial design, many of the runs can be 

regarded as redundant as the number of higher order interactions increases (e. g. for an 

experiment containing six factors with two levels each, there are 64 possible runs: one 

average run, six main effects, 15 two-factor interactions, 20 three-factor interactions, 15 

four-factor interactions, six five-factor interactions and one six-factor interaction) and the 

main effects can still be calculated with fewer runs. 8 

1.3.2 Approaches to Instrumental Variations and Background Drifts 

Common problems in analytical measurements are noise and instrumental drifts. One way to 

compensate for this is with simultaneous reference measurements, for example in thermal 

conductivity detection in gas chromatography two columns are used, one containing the 

carrier gas into which sample is injected, and the other just the carrier gas. The detector 

measures the conductivity for each and the final measurement is a differential signal of the 

two, thus removing electrical noise. In many cases background and instrument variations are 
compensated for by repeating the analysis under the same conditions without the analyte of 
interest, for example the collection of a background scan in FTIR that is ratioed against 
sample scans to obtain absorption spectra. In detector arrays having duplicates of the same 
detectors can also compensate for abnormalities and drift. 

Methods of increasing the signal to noise ratio includes signal averaging (improvement of 
signal to noise by using repetitive samples, based on the principal that noise is random so 
eventually will cancel itself out), signal smoothing and filtering 69 Different types of 
smoothing include averaging; a frequently applied technique is Savistky-Golay smoothing, 
which is based on a least squares procedure. 70 Moving average smoothing and filtering in 

the Fourier domain are both methods used for treating Raman Spectroscopic data as 
described in work by Estienne et aL7' 
Calibration transfer methods look at ways of dealing with variations that arise between 
different instruments. Methods include signal processing, where the application of digital 
filters can be used to isolate target signals from the remaining data and pattern recognition 
techniques to characterise analyte signals. Koehlar et al. describes a calibration transfer 
algorithm based on piecewise linear discriminant analysis (PLDA) and back-propagation 

neural networks (BNN) used for passive Fourier Transform Spectroscopy. 72 In passive 
FTIR, naturally occurring IR radiation is used as the light source thus allowing open-air 
measurements, but the technique is hindered by lack of stable, reproducible reference spectra 
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for background correction. The sample data was left as interferrograms and spectral features 

were either kept or rejected dependant on their widths. Digital filters were then used to 

enhance signals before using either linear discriminant analysis or the automated detection 

algorithm, a back-propagation neural network. 73 

To correct for background drift Vogt et al. used an artificial pseudo principal component. 74 

1.3.3 Data Pre-treatment 
Prior to further analysis, various pre-treatment methods may be applied to the data. This can 
include the previously mentioned smoothing and filtering. 

Other data treatments that can be adopted include centring and scaling. 75 

In mean centring, the average value is subtracted from the data so that the origin of the data 

becomes the centre of the data (equation 1.6). 

xik = Xik -Xk Equation 1.6 

Where; 

i is the row index 

k is the column index 

xk the column mean 

Auto scaling employs both the mean and standard deviations as a means of scaling the data 
i. e. the mean is subtracted and the data divided by the standard deviation (equation 1.7). 

z= xk _xk 

Sk. 

Where; 

IN E(xik 
-xk) 

Sk 
N-1 

Equation 1.7 

Normalisation of the data vector to length 1 can also be applied (equation 1.8). 

X: = I1Xlkll Equation 1.8 
k 

Where; 

IXkII 
Xk22 +X2k +"""XNk 

1.3.4 Pattern Recognition, Trends and Identification 
Various work has been carried out in identification of compounds using FTIR. Different 
approaches include; pattern recognition, factor analysis, clustering and expert systems. These 
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methods are employed to identify structural properties and classify data accordingly. 
Decisions are based on information on peak position, uniqueness and intensity. 

As the size and number of IR spectra libraries increases most spectra for single compounds 

can be identified using routine library searches to identify the closest match. Knowledge 

based systems use spectroscopic and chemical expertise to assist interpretation of spectra. 
Mostly this involves comparing spectra with existing libraries of IR spectra. This can be 

achieved using least square fit procedures as demonstrated by Hong-kui X. et al. 76 In this 

case, samples containing 5 to 11 compounds at approximately 2 ppm were analysed using 
least squared fit methods. A library of 47 compounds, split into 3 categories: aliphatic 
hydrocarbons, aromatic compounds and oxygenated compounds were used for identification. 

IR windows where selected for each compound that were either narrow specifically chosen 
for that compound or wider more general windows. 
One method was to use these windows to eliminate compounds not present in the sample, the 

other method to build a set of possible compounds by fitting reference spectra one at a time 

to the sample spectrum. 
Optimal least squares fits have also been applied to the- quantitative analysis of airborne 

vapours, using mixtures in ambient air (from 50 ppm to 100 ppb). At 50 ppm the average 

error was 8.2 %, at 10. ppm 14 % and at 1 ppm the average error was 40 %. 77 

1.3.4.1 Principal Component Analysis (PCA) 

Principal Component Analysis is one of the most commonly employed techniques for 

examining patterns and trends within data. PCA is a form of factor analysis in which the 
data is split into further sets of data, known as principal components. The principal 
components are used to describe variations within the data. 

Each principal component consists of a loading (also referred to as an eigenvector) and a 
score (or eigenvalue), which relates the loading to each sample. This is shown in matrix 
form in figure 1.3.1. 
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Figure 1.3.1 Breakdown of data into principal components represented by matrices 

An equation for this is: 

X=TP T+ E Equation 1.9 

Where; 

X= data matrix (N x K) 

T= matrix of scores (N x A) 

PT = matrix of loadings (A x K) 

E= matrix of residuals (N x K) 

(With A the number of PCs used to form the model, N the number of samples, and K the 

number of variables). 
Figure 1.3.2 is graphical representation of the determination of PCs for an example of two- 

dimensional data and subsequent projection of data onto those PCs. The first principal 

component is calculated according to a least squares principal (to minimize the residual 

variation) effectively calculating a ̀ vector of best fit' passing through the center of the data. 

The variation accounted for by this vector is subtracted from the data, and the next principal 

component is calculated so that it describes the maximum residual variation and is 

orthoganol to the first. This process is repeated till all the variation in the data is accounted 
for, with each principal component orthogonal to the others. 
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Figure 1.3.2 Graphical representation of the determination of PCs for an example of two- 
dimensional data 
Figure A. Two dimensional data 
Figure B. Principal Components (vectors) determined to describe the maximum variation 
in the data, with PC 2 orthogonal to PC 1 
Figure C. Projection of Data points onto PCs 
Figure D. Data points projected on PCs 
(N. B. 0 represents the centroid of the data) 

By decomposing the data in this manner it is possible to then recombine the data in a way 

that separates information from noise. 

Trends and variations between samples can be investigated by plotting the sample scores for 
different principal components against each other. An example of the application of PCA is 

the identification of trends in polynuclear aromatic hydrocarbons (PAHs) in air samples. 
PAHs are formed by incomplete combustion of organic materials and various sources 

include traffic, diesel markers, gasoline engine samples, lubricant oil, oven emissions, wood 
smoke emissions, forest fire smoke and charcoal smoke, with the type and levels of different 
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PAHs varying depending on the source. 78 Another example is the application of PCA to 

identify the sources of biogases based on the variation of ethane, methane, propane, butane 

and C02.79 

PCA was the basis behind an expert system for the identification of molecular structures 
from vapour-phase IR spectra, and after data scaling and weighting techniques the presence 

of alcohol functionality was correctly identified 96% of the time. 80 

1.3.4.2 Cluster Analysis and Dendrograms 

Clustering is based on calculating distances between samples and then grouping according to 

the distance between them. A common way of representing this information is in the form of 

a dendrogram, which show linkages based on the distances obtained. 81 Generally distancing 

is based on Euclidean distances. A general equation for distancing is: 

1 
NV N 

du 
(iic 

-xkN 
ý 

Equation 1.10 
k=1 

Another distancing method is Mahalanobis, 82 this takes into account correlation within the 
data and is based on the variance-covariance matrix C. An equation for this is: 

Cx =i (Xc )T (Xc) Equation 1.11 
(n-1) 

where; 
X= the data matrix containing n objects in the rows measured for p variables 

X,, is the column-centered data matrix (X - 
7). 

The MD (Mahalanobis distance) for each object xi is then: 

MD, _ (x, -x)C., '(xi -x)r Equation 1.12 

Different clustering methods can be used; this can be based on the distance to the nearest 
neighbour or can be the distance to the nearest group (based on the centre of gravity for 
points in a cluster). An example of the application of cluster analysis is work by Walmsley 
et al. for the determination of suitable sensors to incorporate into a gas sensor. 83 
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1.3.4.3 ANOVA (Analysis of Variance) 

ANOVA and discriminant function analysis are other methods that can be applied to 

classification. Work on optical multibead arrays for odour discrimination used these 

techniques to classify the response obtained for six types of sensor. 

Groves and Zeller compared the distance between mean centred responses against vectors 
derived from the calibration of known samples in their work analysing solvent vapours and 

also employed neural networks for the identification of individual vapours . 
19 

1.3.5 Calibration Models 

The main aim of calibration models is to find a relationship between predictor and response 

variables. Examples of different methods utilised include; Multivariate Linear Regression, 

Principal Component Regression, and Partial Least Squares. 4 

1.3.5.1 Multivariate Linear Regression (MLR) 

The most basic models are Multivariate-linear Regression models. These are based on the 

premise that there is a linear relationship between variables. Assuming variable y is an 

observed response that corresponds to variable x (the predictor variable), a linear, first order 

model relating y to x can be written as: 

y= ßo+ ß, x +E Equation 1.13 

Where; 

ßl =the regression coefficient, 

ßo = the intercept 

E= the increment by which any individual y differs from the regression line 

When multiple variables are used, coefficients relating each response to each predictor 

variable needs to be modelled, resulting in a series of simultaneous equations. 
For a set of i number of y responses from n number of x predictor variables; 

yl = PIIXI +ß12x2 +... + ß1jXn +E Equation 1.14 

Yi = PI1X1 +3i2x2 +ß; jxn +,.. +E Equation 1.15 

In matrix form this can be written as: 

Y= ßX +E Equation 1.16 

Using a least squares estimate, the E term assumed to be random error is minimised, hence 
this can be expressed by the normal equations: 
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X'Xb = X'Y Equation 1.17 

Giving the solution: 

b= (X'X-'X'y Equation 1.18 

In spectroscopy, models relating absorbance to concentration can be based on Beer's law, 

Axi =c cl Equation 1.19 

Where; 

A= the absorption at a specific wavelength, 

c= the concentration of the absorbing constituent, 

1= the path length of light, 

c= the absorptivity coefficient that relates absorption to concentration 

When there is more than one constituent present, the total absorbance is a sum of the 

absorbance due to each constituent 

at wavelength Xi, 

Aa,; =sI Xi CI +s 2M CI - .. + C n, j Cn Equation 1.20 

Where; 

c� = the concentration of component n, 

s�X; = the molar absorptivity for component n at wavelength Xi. 

The absorptivity coefficients for each constituent vary for different wavenumbers (or 

wavelengths), hence a spectra consisting of n measurements can be regarded as a series of n 

simultaneous equations. This allows a MLR model to be employed, where X is a matrix of 

concentrations of components in the sample and Y the corresponding absorption 

measurements (various names for this approach include, K-matrix, inverse prediction, 

reverse calibration or classic least squares). The resulting matrix of coefficients can then be 

used to predict the concentrations for new spectra. In theory, the coefficients b calculated 

from the model are inversely related to c. 

Alternatively, inverse models can be built where X is the matrix of absorption measurements 

and Y the concentration matrix. This method is sometimes referred to as the P-matrix, 

inverse least squares, forward calibration or ordinary least squares. 
The main advantages of using MLR are that it is simple to compute and models can be built 

from small calibration sets. However, the coefficients are calculated using the inverse of 
(X'X), which often results in problems with singularity and co-linearity. The effect of 
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singularity results in unstable prediction models with small variations in the spectra 

producing large variations in the predicted concentrations. Co-linearity in spectral data 

arises due to the symmetrical nature of absorption peaks. With variable selection, the 

disadvantages of co-linearity can be removed. Due to the Gaussian nature of peaks only one 

measurement per peak need be used, by employing an algorithm to identify variables that 

contain important information, redundant data as well as regions with large amounts of noise 

can be ignored. An example of the employment of MLR is in work by Jaakola et al in on- 
line analysis of stack gas compositions, where a modified MLR algorithm was used to fit 

unknown spectra by using a set of single component calibration spectra. 85,86 

1.3.5.2 Principal Component Regression (PCR) 

One way to reduce the problem of co-linearity in data is to break down the X data (i. e. 

spectra) into principal components. Each principal component is orthogonal to the others; 
hence the problem of co-linearity is eliminated. As described for PCA (section 1.3.4) these 

components consist of scores and loadings. Regression coefficient are calculated that relate 
the principal components to the predicted data (i. e. ) concentrations. 
Combining equations 1.9,1.15 and 1.17, gives equation 1.21 for calculating the regression 
coefficients. 

b= (T'T)'TY Equation 1.21 

Where; 

T= matrix of scores 
Giving the PCR model equation as: 

Y= bX (PT +E Equation 1.22 

A drawback with PCR is that the principal components (that determined from the 
decomposition of X) may not necessarily relate to the components of interest (Y data). 
1.3.5.3 Partial Least Squares (PLS) 

Partial Least Squares models (also referred to as Projection to Latent Structures) are the 
methods most commonly applied to spectra calibration models. The advantages with PLS 

models are that they can employed on noisy, strongly collinear data and large data sets. 87 

As in PCR and PCA, the X data is broken down into scores and loadings, but an additional 
set of vectors (weights) are calculated. When there is more then one predicted variable (Y), 
scores and loadings are also calculated for the Y data. 
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This allows the model to calculate the covariance between X and Y data (the latent variables) 

and from this determine regression coefficients. Figure 1.3.3 displays a graphical 

representation of PLS. 

variables loadings loadings 

P1 P2 

X8 Ti +8 Tz + ... NN U) 

weights 

components loadings loadings 

Qi Q2 
CL U, + 

U) N0 

Figure 1.3.3 Breakdown of data by PLS 

Equations for PLS can be written as; 
X= TP' +E Equation 1.23 

Y= UQ' +F Equation 1.24 

A set of weights, W*, are determined that relate the X and Y scores, (T and U), so that; 
T= XW * Equation 1.24 

and; 
Y= TQ' +G Equation 1.26 

So that the model can be expressed as; 
Y= XW * C' +F= XB +F Equation 1.27 
Where the regression coefficients can be written as; 
B=W* C' Equation 1.28 
(N. B. E, F and G are residuals). 82 
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Different methods of computation can be employed for this, including; NIPALS (non- 

iterative Partial Least Squares) and SIMPLS. 

An example of PLS applied to FT-IR spectra is work by Johansen et al., where it was 

employed in the calibration of a FT-IR spectrometer for ambient air monitoring. 88 

Griffiths et al. investigated the feasibility of using unattended open path FTIR with PLS 

models. The conclusion reached was that better accuracy for VOC models could be obtained 

at 8 cm 1 resolution as opposed to higher resolution due to the increased effect of pressure 

broadening. With the PLS modelling, background spectra of shorter pathlengths could be 

utilised 89 

1.3.5 Variable Selection 

Variable selection refers to the process of choosing variables from a larger set of variables, in 

spectrometry where the variables are measurements made at different wavelengths this is 

commonly referred to as wavelength selection. Manually selecting variables is difficult, 

particularly with large amounts of data; one approach for spectrometric data would be to 

choose wavelengths corresponding to regions of maximum absorption thus giving the 

advantage of high signal to noise; however, these may not necessarily give the best 

prediction results, particularly in mixtures where overlap of absorption bands may occur. 
Building models for every single combination of variables would be extremely time 

consuming and unfeasible for large amounts of data. A better approach is to apply a variable 
selection algorithm. 
Different approaches to algorithms can be applied to variation selection, these are combined 
with a calibration model technique, such as MLR, PLS or neural networks, and the model 
results can be compared to determine which variables give the optimum results. Approaches 
include, forward selection, where variables are added one at a time to a model and are either 
kept in or removed depending on whether the model is improved, the reverse of this is 
backward elimination where models start with all the variables or they are then removed one 
at a time. Stepwise models are a combination of the two and include both addition and 
removal stages. Genetic algorithms are a more complicated approach, based on the idea of 
natural selection where strings of variables are crossed and mutated, with strings that give 
good results given dominance till eventually an optimal set is chosen. 
Work by Xu and Zhang compared these approaches, plus a leap and bound method based on 
comparing results of subsets and another method based on orthogonal descriptors. In their 
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work, the first three approaches did not give quite as good models as the other methods, and 

results tended to favour the genetic and leap and bound strategies 90 

The type of modelling employed also has a bearing on the ability of the variable selection 

process, work by Spiegelman et al. employed a method based on PLS calibration. Variables 

were ranked in order according to a tuneable signal to noise with variables added in order 

one at a time and variables giving the lowest cross-validated mean-squared error (CVMSE) 

for the specified number of latent variables were selected. 91 

In work by Estienne et al investigating at Raman spectra, different models were applied 

including Classical Least Squares, Inverse Least Squares, Stepwise Variable Selection with 
Multivariate Linear Regression, Genetic Algorithm with Multivariate Linear Regression, 

PCR with variable selection and PLS. In this case (for synthetic Raman spectra ranging from 

single to 5 constituent mixtures) stepwise MLR methods were found to give the best 

models. 7' 

Research by Jouan-Rimbaud et al. indicated that genetic algorithms could still result in the 

selection of irrelevant variables and found selection results were improved by applying a 
forward selection to the chosen subsets. 92 MLR was favoured over PLS and PCR due to its 

ease of computation, variables were related directly to the original data allowing direct 
interpretation, and previous work had shown MLR to give slightly better results than PLS. 
Work by Broadhurst et al. applying VS-MLR and VS-PLS to pyrolysis mass spectrometry 
found that both the MLR and PLS models performed to the same standard 93 

The variable selection procedure employed in this research utilised MLR and employed an 
addition and a removal mode whereby variables were added or removed from the selected set 
depending on whether the PRESS (predicted residual error of the sum of the squares (see 

equation 1.29)) improved 94 

ff 
PRESS =Z Y- )2 1.29 Y, Yi Equation 

Models built from the variables selected were then assessed by comparing the standard errors 
in prediction (SEP (see equation 1.30)). 

SEP = 
Y(y y) 

Equation 1.30 

The The VS-MLR procedure and its application in this work are discussed in more detail in 

section 3.2 and 4.2. 
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1.4 Aims of this Research 

The aim of this work was to develop a portable gas analyser system with the aid of 

chemometrics. 
The system would be based on a novel infrared detector array with each detector in the array 

measuring a different wavelength. 

Research by the Optoelectronic group at Hull University into the development of QWIP 

detectors indicated it would be possible to design detectors to measure at specific 

wavelengths in the mid IR range. As discussed earlier, IR analysis has the advantage of 

being a fast, non-destructive and selective means of analysis; combining this with the 

advantages of detector arrays (i. e. small, portable devices) can lead to the development of 

useful, portable analysers that can be tailored for a number of different situations. Examples 

of work developing IR detector arrays include the previously mentioned work by Lopez et 

al 45,46,47 A major difference between the research carried out here and previous work 
developing IR detectors is the approach taken to determining which wavelengths to measure. 

Usually the wavelengths are decided based on the main absorption bands of the gases of 
interest (discussed in section 1.3.4), however in this case models were built from spectra 

obtained from real mixtures and a variable selection algorithm based on MLR was utilised to 

determine suitable wavelength sets. 
The objectives in this research were: 

" To collect IR spectra for multivariate models 

" Apply variable selection to the IR spectra to identify suitable wavelengths to measure 
in the array 

" Develop a Dilution System 

" Imitate the effect of detectors using narrowband filters by FTIR 

" Measure mixtures of C114, C0j, C02 and N20 

" Investigate different optical layouts and signal processing 

" The development of a prototype system 

" Investigate feasibility of developing a system to measure volatile organic compounds 

Collection IR Spectra for Multivariate Models 

The first stage, the collection of IR spectra for multivariate models (described in section 2.2), 

was the preparation of different gas samples of CH4, CO, CO2 and N20, and collecting the 
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corresponding FTIR spectra from them. The goal of this work was to collect suitable spectra 
for building wavenumber selection models. 
The gas samples were prepared using a simple static system whereby different amounts of 

gases were injected into a gas cell. This method of preparation was employed as it was a 

simple, cost effective means of producing samples with mixtures of different concentrations 

and required no complex apparatus. According to reference 61, an accuracy of 3-5% is 

achievable with this technique, which was comparable to many of the other methods of 

preparation. 
Part of this work included investigating different data treatment methods, as alternatives to 

the traditional method of ratioing against a background spectrum, to remove the effect of 
background variations. 
Variable Selection and Other Models (described in section 2.1) 

This stage of the work employed a variable selection algorithm based on Multivariate Linear 
Regression in order to determine sets of wavenumbers that would be suitable to incorporate 
in a detection array. The aim of the variable (wavenumber) selection was to reduce the 

number of measurements required without increasing the prediction error. Models built from 
just a few selected wavenumbers were compared to PLS models built from the entire spectra 
to prove that comparable prediction errors were obtained. 
Development of a Dilution System (described in section 2.3) 

A dilution system was developed as a means to create different concentrations of samples 
from a single standard gas mixture. This allowed responses over a wide concentration range 
to be investigated. A gas chromatograph sampling loop was also included in the system 
allowing samples to be also measured by GC, thus GC and IR responses could be correlated. 
Characterisation of Narrowband Filters by FTIR (described in section 2.4) 
Narrowband filters restrict light except at the wavelength of interest. These combined with a 
general detector (in this case the one in the FTIR) were employed as a means to imitate the 
effect of detectors that measure only a specific wavelength. The point of this work was to 
show that it would be feasible to use an array measuring at the selected wavelengths to 
measure mixtures of CH4, CO, CO2, and N20. 

Investigations into Different Optical Layouts and Signal Processing (section 2. S) 
This stage of the work focused on the design and subsequent building of an optical set-up 
employing the narrowband filters. This looked at the problems of signal processing, 
alignment of optical components and the effect of different detectors. 
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Development of Purgeable Box (section 2.6) 

The aim of this work was to build a purgeable box, hence a prototype measuring system, 

using the optimum optical layout determined by the previous work. 

Volatile Organic Compound Analysis (section 2.7) 

This work looked at the feasibility of developing an IR analyser for identifying/ measuring 
different volatile organic compounds. This included cluster analysis of IR vapour spectra for 

different organic compounds and variable selection models on simple four component 

mixtures. 
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2 Experimental 

2.1 Data treatment and chemometric analyses 
This section contains details about the data treatment and chemometric analyses used 

throughout this work The preparation of samples, collection of data and different 

experimental set-ups are described in sections 2.2 - 2.8. 

2.1.1 File formats 

Three different instruments were utilised to collect data. 

The majority of FTIR spectra were collected on a FTS3000MX Excaliber FTIR 

Spectrometer, with Win-IR Pro version 2.6 software (from Bio-Rad laboratories, 

Hertfordshire, UK). FTIR spectra for different organic vapour samples (details about 

this work can be found in section 2.7) were collected on a Perkin Elmer Paragon 1000 

FTIR Instrument. The remaining data i. e. non-FTIR data (see section 2.4,2.6 and 2.7) 

was collected with a PC-516/DAQ card Tm employing LabVIEW Tm version 5.0. 

Spectral data collected with FTS3000MX Excaliber FTIR Spectrometer 

The Win-IR software utilised with the Bio-Rad spectrometer saved data as Bio-Rad 

spectra format files with a bsp extension, these opened up in the software as a 
spreadsheet showing the spectra saved within that file, and contained information from 

the original interferrograms. As well as this, spectra after any additional processing, the 

scan rate, number of co-adds, time, the spectrum history (including the collection 
properties) were stored. To open the data in Excel, the spectra of interest were saved as 
a csv file which included listing the file type i. e. single beam, display direction, peak 
direction, wavenumber measurements and the corresponding responses at the 

wavenumbers for each spectrum. Later on, Excel was installed onto the computer 
controlling the spectrometer (Win-IR software), so that the data could be cut and pasted 
directly into an Excel spreadsheet. 
For use in MATLAB®, the excess information was deleted to leave the data in the form 

of a matrix and the file saved as an asc file. 

Spectral data collected with Perkin Elmer Instrument 

Spectra collected on the Perkin Elmer instrument, were saved as asc files which could 
be opened directly in Excel; these contained the spectra name, the time and the 
wavenumbers and corresponding responses for a single spectra. For use in MATLAB® 
the excess information was deleted and the file resaved as an asc file. 
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Data collected with LabVIEW TM version 5.0 with a PC-516/DAQ card TM (see sections 

2.4,2.6 and 2.7) 

Data collected with LabVIEWTm were saved into a text file (. txt), which could be 

opened directly in Excel. 

2.1.2 Software employed for analysis 

Microsoft Excel 

Plots of data and calibration plots were generated in Microsoft Excel versions 1997 and 

2000. Averages, standard deviations, correlations between data and frequency tables 

were calculated using the statistical functions within Excel. 

MATLAB® 

Mean centring, Autoscaling, Normalisation, Savitsky Golay Smoothing, PCA, PLS, 

MLR and VS-MLR were all performed in MATLAB® version 4.2. 

Before performing using any of the above programs the IR data had to be transposed so 

that the columns of data corresponded to different variables (wavenumbers) and the 

rows to different sample (for Excel, the matrix had to transposed otherwise the 

spreadsheet width would be exceeded). 

2.1.3 Data pre-treatments 
Various pre-treatments applied to the data included mean centring, autoscaling, 

normalisation, Savitsky Golay smoothing and reconstruction using PCA. 

Mean centring, autoscaling and normalisation 
These treatments were normally applied by employing programs in MATLAB® from 

PLS Toolbox, Eigenvector Technologies. 

Savisky-Golay Smoothing 

Savtisky-Golay smoothing was only performed on the spectra for single gases (see 

section 2.2). This was investigated as a possible technique for removing background 

variation between different spectra. A program written by Sijmen de Jong, Unilever 

Research Laboratorium Vlaardingen in 1993 and modified by Barry M. Wise, 1996, 

was used to perform Savitsky-Golay smoothing and differentiation. 

The command used in MATLAB® was; 

> y_hat = savgol(y, width, order, deriv); 
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Where; "y_hat" is the name of the output matrix of smoothed and differentiated row 

vectors, "savgol" the name of the program, "y" the name of the matrix of data to be 

smoothed, "width" the number of points to employ in the filter, "order" the order of the 

polynomial to use and "deriv" and the number of derivative. For first order, first 

derivative smoothing the last two inputs were both 1. 

Reconstruction of the data employing PCA 

Reconstruction of data by employing PCA was also only performed on the spectra for 

single gases. This was investigated to see if it was possible to reconstruct the data in 

such a manner that only information relating to the analytes of interest was retained. 
The PCA program used was from PLS Toolbox, Eigenvector Technologies. 

The command used in MATLAB® was; 

>[scores, loads, ssq, res, q, tsq] = pca(data); 

where; "scores", "loads", "ssq", "res", "q", "tsq" and "tsgs" are output matrices 

corresponding to scores, loadings, variance information, residuals, q limit, and t2 limits. 

"pca" is the program name, and "data" is the matrix of data that PCA is to be performed 

on. 
The main outputs of interest were the "scores" matrix, which consists of the sample 

scores (rows) obtained for different principal components (PC) (columns) and the 
"loads" matrix, which consists of the loadings of different principal components (rows) 

for different variables (columns). 

Plots of the loadings for each principal component were compared with reference 
absorption spectra (taken from NIST databaseM shown in the appendix (section 6)) to 

select loadings containing similar information. 

Reconstruction of the data was performed by selecting the column of interest from the 

score matrix and multiplying it by the corresponding row from the load matrix. To 

reconstruct data from just PC2, column two from the score matrix was multiplied by 

row two of the loadings matrix. 

2.1.4 Methods and programs employed to analyse data. 

PCA 

The MATLAB® program employed to perform PCA is described in section 2.1.3. 
PCA was mainly used to generate score plots to check for outliers in samples collected 
to build calibration models (as in section 2.2) and to compare similarities between 

samples (as in section 2.7). 
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Sample score plots could be generated by plotting different columns of the score matrix 

against each other, i. e. plotting the values in column one against those of column two 

would give a plot of sample scores for PC1 against scores for PC2. 

Clustering 

Clustering was mainly employed in the work investigating organic vapour spectra to see 

whether it was possible to cluster the spectra according to the type of compound. 

The program used for clustering and generating dendrograms was from Eigenvector 

Technologies. 

The command used in MATLAB® was; 

> cluster(dat, labels) 

where; "cluster" is the program name, "dat" the matrix of data to be clustered and 

"labels" a matrix of identifying labels to be attached to each sample. 

The output of the function is a dendrogram showing the distances between the samples. 

The program gives the option of choosing between KNN and K-means distancing, the 

type of data scaling (autoscale or mean centring), and an option to do PCA on the data 

and base the distance measure on the raw scores or on Mahalanobis distances. 

PLS 

The PLS program used was from PLS Toolbox, Eigenvector Technologies. 

The command employed in MATLAB® was; 

>[p, q, w, t, u, b, ssgdifJ = pls(x, y, lv); 

Where, "p", "q", "w", "t", "u", "b" and "ssqdif' are output matrices corresponding to x 
loadings, y loadings, x weights, x scores, y scores, inner relation coefficient and the 

fraction of variance used in the x and y matrices. "pls" is the program name, "x" is the 

matrix of predictor variables (in this case spectra), "y" the matrix of predicted variables 

(concentrations) and "lv" is the number of latent variables to be calculated. The output 

matrices were used to predict concentrations (y) from spectra (x) to determine the 

standard error in prediction for the calibration data (SEPC), as well as predicting 

concentrations for new spectra not previously employed in PLS to determine the 

standard error in prediction for validation data (SEPV). 

MLR 

MLR was performed in MATLAB® using the command 

>coeff = x\y 
Where; "coeff" is the output matrix of MLR coefficients, "x" is the matrix of predictor 
variables (spectra) and "y" the matrix of predicted variables (concentrations). 
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The command calculates coefficients by determining the inverse matrix of x. 

VS-MLR 

For a more detailed account of the selection algorithm refer to reference 94. 

The data analysed consists of four matrices: the training spectra, the training 

concentrations, the validation spectra, and validation concentrations. The program 

randomly sorts the variables, and then performs MLR each variable using the training 

data to build the model and the validation data to evaluate it. The result giving the 

lowest predicted error sum of squares (PRESS) is stored. The algorithm works in two 

stages, the first an "addition mode" where variables are added to the model and kept if 

the PRESS is improved. When completed, the second stage, "a removal mode", 

removes variables one at a time from the selected set, removing variables that increase 

the PRESS value; this results in a set of `best" variables. 

Figure 2.1.1 gives a basic schematic of the stages of the algorithm. 

For each run; the maximum number of variables, convergence level I (cl 1), 

convergence level 2 (cl 2), and the number of iterations could be set to different values. 

In order to obtain the best selection results these four values need to be optimised. 

The maximum number of variables (`maxvars') limits the number of variables used in 

the selection process, thus reducing the computation time, this is advantageous for data 

with a large number of variables many of which may be redundant, however if too few 

variables are tested in the selection process this can result in the loss of important 

variables. 
The most important factors of the selection process are the convergence levels, as these 

determine whether variables were retained or removed from the selected sets. The 

convergence level is the factor that the previous PRESS value is multiplied by, before 

comparing it to the new PRESS value cl 1 relates to the addition stage and cl 2 to the 

reduction stage. 
In the addition stage, 

if new PRESS > 1astPRESS x cl 1, the variable is not added 

In the removal stage, 

If newPRESS > lastPRESS x cl 2, the variable is not removed 
The default values for the cl's are 1. 
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The order variables are added into models has a major influence on the final set of 

chosen variables, hence the variables are randomly sorted prior to the addition stage, 

this requires the process to be reiterated a number of times to allow different random 

orders of variables to be added to the model. 

Data consists of four matrices: - 
Training spectra - used to 
Training concentration build model 

Validation spectra used to 
Validation concentration 

-i 
test model 

b 

Ic ý 
Process is repeated a number of 
times (as the order variables are 
added effects the result) to obtain 

the best set of variables 

Variables (wave numbers) are 
randomly sorted 

Addition stage: - 
A variable is added to the model and 
MLR is performed, if the model is 
improved the variable is kept in the 
model, otherwise it is removed 
This is repeated till all the variables 
have been used 

Removal stage: - 
Variables are removed one at a time 
from the selected set, if the 
prediction is worse the variable is 
kept, otherwise it is removed 

b 
Final set of variables with the 

lowest prediction error out of all 
the selection runs 

Figure 2.1.1 General Scheme of Variable Selection Algorithm 
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The command used in MATLAB® was; 

[ypred, press, selected, coeffs] = vsmlr(t_spectra, t cone, v spectra, v cone, iterations, 

cl-1, cl 2, maxvars) 
Where; "ypred", "press", "selected", "coeffs" are the output matrices corresponding to 

the predicted values for y, the best PRESS value obtained, the selected variables that 

gave the best PRESS value and the corresponding coefficients. "vsmlr" is the name of 

the program, "t spectra" the matrix of training spectra, "t cone" the corresponding 

matrix of training concentrations, "v spectra" the validation spectra and "v cone" the 

corresponding validation concentrations. "Iterations", "cl 
_1", 

"cl 2", and "maxvars" 

are the number of iterations, "cl 1" and "cl 2" the values for convergence levels one and 

two and "maxvars" the maximum number of variables to use. 
Analysis of results from VS-MLR 

The results collected from the selection process were the set of variables giving the 
lowest PRESS value. For each selection model the entire process was repeated a 

number of times with different parameters. Histograms were generated to show which 

variables/regions were the most frequently selected; these were compared against 
absorption spectra to identify what the selected variables related to (whether they related 
to specific absorption peaks or were selected to compensate for baseline variations). The 

standard errors in predictions (SEP) for each of the different gases, as well as the 

average for all the gases, were used to compare results from different runs and with 
different models. 
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2.2 Collection of IR spectra for multivariate models 

2.2.1 Single component samples 

The spectrometer and scan conditions: 

The IR spectra were collected on the Excaliber FTIR Spectrometer (described in section 

2.1.1). Scans were collected as single energy beam scans (1.2 filter, sensitivity 1, gain 

range radius 40, speed 5 kHz, co-addition of 8 scans) from 0 to 9000 cm 1 with a 

resolution of 4 cm' (taking into account the cut off points of the source and KBr 

windows, the range was effectively 400 cm -1 to 4000 cm i), using a DTGS detector. 

The gases used were CHa, CO, CO2, N20 and SF6 from Intergas, Stafordshire, UK 

supplied by Engineering and Welding Supplies Ltd., Hull, UK, with purities of 99.995, 

99.95,99.995,99.95, and 99.9 % respectively. 

Samples were prepared in a mini long path gas cell model 1.6 from Infrared Analysis 

Inc. Anaheim, CA. (7.2 meter path length), with volume of 530 cm3. 

Sample preparation 
The gas cell was purged with helium to remove any residual air or previous samples. 
Samples were then prepared using a 10 ml gas tight syringe to inject different quantities 
into the cell (performed at normal room temperature and pressure). After injecting 

mixtures, the cell was given a few minutes to allow the mixture to equilibrate. 
Between samples the cell was purged with helium till any residual peaks were removed. 
Residual peaks were checked for by scanning the purged gas cell and ratioing against 

scans collected prior to sample injections. The scans were then saved as csv files for 

import to Excel and MATLAB®. 

Initial calibration spectra were prepared by injecting between 15 and 150 ml of the 

analyte of interest into the gas cell (corresponding to concentrations between 2.8 and 27 

%). The concentrations of samples prepared for each gas is shown in table 2.2.1. 

Gas Concentrations of samples prepared 
CO 15.1%, 26.4%, 15.1%, 7.5%, 26.4%, 15.1%, 7.5%, and 3.8% 
N20 8.5%, 4.7%, 2.8%, 8.4%, 8.5%, 15.1%, and 8.5% 
CO2 9.4%, 15.1%, 5.7%, 1.9%, 9.4%, 9.4%, and 8.0% 

Table 2.2.1 Concentrations of samples prepared for single component samples 
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Additional Calibration Spectra 

Additional calibration spectra were prepared using lower concentrations (range of 0.18 

to 4.8%, corresponding to between lml and 20 ml injections). After injections the cell 

was allowed to equilibrate for at least 10 minutes before scanning. 

Gas Concentrations of samples 
N20 1888,18878,18878,9434,9434,28302,28302,37736 m 
CO2 47170,28302,9434,28302,9434,47170,18878 m 
CH4 28302,5660,28302,15094,9434,28302,18878,9434,9434 m 
CO 9434,18878,28302,5660,18878 m 

Table 2.2.2 Concentrations of samples prepared for single component samples 

MLR and VS-MLR models were built from the spectra obtained, and the effects of 
different data pre-treatment including mean centring, autoscaling, Savisky-Golay 

smoothing and reconstruction of the data employing PCA was investigated. 

2.2.2 Collection of samples with reference peaks 

CH4 as an internal standard 

Samples of CO were prepared in the long path gas cell using a fixed amount (8 ml) of 
CHa injected into to each sample (equivalent to 1.5 %). 

The concentrations of CO used were, 3.77,3.20,4.72,1.32,2.26,0.3 0.94, and 
0.19 %. 

The spectra were divided by the response at measurement number 1565 (corresponding 

to 3018.6 cm-') and models then built using both this data and with the untreated data. 

Samples with an external reference and N20 

Scans using an external reference were obtained by inserting a piece of polystyrene film 

(provided by BioRad for FTIR instrument calibration purposes). Samples of different 

concentrations of CH4 with a fixed amount of N20 (0.94 %) were prepared. After 

collecting the spectra for the gas cell (plus polymer film) the spectra were divided by 

the response obtained at the wavenumber of the chosen reference peaks at measurement 

number 756 (corresponding to 1456.3 cm 1) and measurement 1028 (1980.9 cm 1). The 

results were compared with results from raw data and from spectra divided by N20 

peaks at measurement number 677 (1303.9 cm t) and measurement number 1338 
(2578.8 cm'). 
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CO2 and N20 samples using a fixed amount of SF6 

Samples of CO2 were prepared in the long path gas cell with concentrations 

corresponding to 1.88,1.32,0.94,2.45,0.94,0.38,2.26, and 0.38 % made up in helium 

with a fixed amount of SF6 (0.38 %) added. 

Samples of N20 were prepared in a similar manner using concentrations of 0.3 8,0.75, 

1.70,0.19,1.13,2.83,0.19,1.13,2.83,0.38,1.51 %, again with 0.38 % SF6. 

Models were built from spectra with and without division of the reference SF6 peak at 

941 cm1. 

2.2.3 Mixtures of the four gases plus SF6 as internal standard 

Mixtures of the four gases were prepared for different combinations of low, medium 

and high amounts for each of the analytes. The % concentration of gases added to each 

sample is shown in table 2.2.3. 

Concentration % of gases in each sa m le 
Sample CH4 CO CO2 N20 

1 0.19 0.19 0.19 0.19 
2 1.89 0.94 0.38 0.19 
3 0.38 0.38 1.89 1.89 
4 0.38 1.89 1.89 2.08 
5 1.89 1.70 0.19 0.38 
6 2.26 1.70 0.38 1.70 
7 0.19 0.19 0.19 1.70 
8 1.13 0.38 0.94 1.89 
9 1.89 0.19 1.70 0.19 
10 1.89 0.38 1.70 0.94 
11 0.19 1.70 0.19 0.38 
12 1.32 2.26 0.57 1.32 
13 1.70 0.38 0.38 0.38 
14 2.26 2.08 2.26 0.38 
15 0.19 0.19 1.89 0.19 
16 0.19 0.94 2.26 0.38 
17 1.70 0.19 0.19 1.89 
18 2.26 0.38 2.26 2.08 
19 0.94 0.94 0.94 0.94 
20 1.89 1.89 1.89 1.89 
21 0.19 1.89 0.94 1.89 
22 0.38 2.08 0.57 2.08 
23 0.57 2.08 2.08 0.57 
24 0.94 1.13 1.70 0.19 

Table 2.2.3 Concentrations of gases (%) added to each sample 
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These consisted of 16 different combinations of high and low values, and 8 

combinations that included medium values, where; `high' amounts ranged from 1.51 to 

2.26 %, `low' values from 0.19 to 0.57 %, and ̀ medium' values between 0.94 and 1.32 

% (corresponding to injection volumes between 1 and 12 ml). 

A fixed amount of SF6 (0.38 %) was added to each sample to act as an internal standard. 

Different data treatments were applied to the data including; dividing the data by the 

SF6 reference peak (at wavenumber 941 cm 1), and dividing the data by the SF6 

reference peak followed by normalising the data by sample. The data was also 

converted into absorption spectra by ratioing the spectra against scans made of the 

purged cell that were taken between samples. 
More samples were prepared a couple weeks later (in the same manner) as an extra 

validation set for the modelling, this included repeats of samples I and 20. The 

concentrations are shown in table 2.2.4. 

Concentration % of gases in each sam le 
Sample CH4 CO CO2 N20 

1 0.75 0.94 1.89 0.57 
2 1.89 1.32 2.08 1.13 
3 0.19 0.19 0.19 0.19 
4 1.89 1.89 1.89 1.89 
5 0.94 0.38 0.38 0.94 
6 1.32 0.94 0.38 1.13 

Table 2.2.4 Concentrations of gases (%) added to each additional sample 

Effect of Resolution 

To compare the effect of reducing resolution, spectra were collected at low resolution 

using both 16 cm 1 and 32 cm 1 resolutions. At 16 cm t, measurements were effectively 

the average response for a window of 15.4 cm 1, with the centre of each window every 
7.7 cm 1. This resulted in 1024 measurements between 0 and 8000 cm 1. At 32 cm' 

resolution, the windows are 30.9 cm', with the centre every 15.4 cm' giving a total of 
512 measurements. The spectra were divided by the SF6 reference peak that occurred at 
941 cm 1; for the 32 cml resolution spectra this corresponded to measurement number 
62, for 16 cm' resolution data the same peak corresponded to measurement number 
130. 
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Reproducibility of spectra 

Samples consisting of 1.88 % (10 ml injections) each of CH4, CO, C02, and N20 and 
0.38 % of SF6 and of 0.19 % (1 ml injections) each of CH4, CO, CO2, and N20 plus 
0.38 % of SF6 were prepared and scanned. Repeat samples, for both concentrations, 

were made two weeks after the first, and a further three repeat samples made four days 

later. The three repeat samples made on the same day were prepared and scanned within 

a two-hour interval. 

The relative standard deviations between samples made on different weeks, and 
between samples made on the same day were compared for both raw data and scans 
divided by the SF6 reference peak. 
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2.3 Multivariate Modelling with four component IR spectra 

2.3.1 Optimisation of the VS-MLR modelling parameters 
The VS-MLR algorithm is described in section 2.1.4. The effect of the different 

parameters (i. e. the convergence levels, number of iterations and maximum number of 

variables) was investigated using the four component mixtures at resolution 32 cm 1 

using data that was divided by the reference peak and data that was divided by the 

reference peak and normalised. PCA was performed on the entire data set utilising the 

score plots to choose which samples to employ as the training data and to check for any 

outliers or abnormal spectra. 
Peripheral samples plus a few central samples were selected from the score plots to use 

as training data (this ensured the calibration data was fully representative of all the 

samples) with the remaining samples employed as validation spectra. 
From these and the other score plots samples 1,2,4,5,7-12,14,17,19-22 and 24 were 

chosen as the training data and the remaining samples used as validation, VS-MLR was 
then applied to the data. 

The effect of changing the cl's was investigated using different values of 0.1 increments 
for cl 1, this ranged from 0.5 to 2, for cl 2 this ranged from 0.6 to 3. 
Originally each run was performed using 10 iterations; this was repeated with the 

number of iterations increased to 20,50 and 100 to see if increasing the number of 
iterations had any significant effect. The maximum number of variables was also 
changed to determine how many variables were required in the process. 

2.3.2 PLS Modelling 

PLS modelling on entire spectra 
The samples were again split into calibration and validation data sets for the VS-MLR 

modelling as described for the PLS modelling. 
PLS models were built from the calibration set (using the entire spectra) employing 
different numbers of latent variables, the models were then used to predict 
concentrations for the calibration set, the validation set and the new validation sets. The 
SEPs obtained for the three different data sets with different numbers of latent variables 
were compared to determine the optimal number of latent variables required. 
PLS models were also built after applying different data pre-treatments. This included: 
using the raw data, absorption data, data divided by a reference point corresponding to a 

48 



wavenumber with no absorption peaks (as opposed to an internal standard reference 

peak, in this case variable 130 corresponding to wavenumber 1990 cm' was employed), 

and data divided by a reference point followed by normalisation (by sample). In the 

case of the absorption data, using the entire spectrum gave high prediction errors due to 

the wide variation in response at cut off regions, therefore, these regions were removed 

to give better results. 

PLS modelling on selected wavenumbers 

Models using the selected variables at 139,149,200,205 and 227 corresponding to 

2129,2284,3071,3148 and 3488 cm 1 respectively, were built for the raw data and for 

data with different pre-treatments applied (same pre-treatments employed as in the 

previous PLS modelling). 

2.3.3 Conversion of wavenumbers to wavelength measurements 
The selected variables relating to measurements at 2129,2284,3071,3148, and 3488 

cm-1 correspond to 4.6970,4.3783,3.2563,3.1766, and 2.8670 gm (to 4 d. p. ). To find 

out the effect on response when the equivalent wavelengths were rounded to 2 d. p. as 

well as to the nearest ± 0.05 gm, the units on the spectra were converted to wavelengths 

using the winlR software available on the FTIR and the corresponding response to the 

rounded wavelengths were determined. 

The responses were determined for 10.60,10.62,4.7,4.4,4.35,3.25,3.15,2.85,2.9, 

3.17,7.15,4.73,2.7,3.29,3.3 and 3.9 1tm. 
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2.4 Development of Dilution System 

2.4.1 General Schematic 

This was based on a simple exponential dilution system, as described in section 1.2.2, 

with samples being measured by GC and FTIR. The GC system was used to provide 

reference measurements. 

The initial set-up is shown in figure 2.4.1. 

II. 

abviewsetup 
on computer 

r------- ......... 

mass-, flow cordroher 

FTIR 

1 

--43 
0C 

vent 
sampan 
valve D-I 

ges cell 
stirrer 

U 

He gas cylinder td rd gas mlxhxe 
(also carrier gaa for OC) (f 000PPm of CH4, CO, 

C02, N20) 

Figure 2.4.1 Initial dilution set-up 

Equipment and reagents 

" Gas Chromatography instrument (model 4300) from Carlo Erba Strumentazione, 
Italy, using TCD (thermal coupling detector) detection 

" FTIR instrument from Bio-Rad (as described in section 2.1) 

" Same gas cell as described in section 2.2 

" Helium (used as diluent gas and for GC carrier gas) was supplied by 
Engineering and Welding Supplies Ltd. 
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"A standard gas mixture of 1000 ppm of each CHa, CO, CO2 and N20 in nitrogen 

(certified as 1030,1015,989, and 1015 ppm respectively with ±2% certainty) 

supplied by Engineering and Welding Supplies Ltd. (from Linde Gas UK Ltd, 

Stoke-on-Trent, UK) 

" Two more standard gas mixtures were later employed, also from Linde Gas UK 

Ltd., these were: 

  1000 ppm of each CHa, CO, CO2 and N20 in helium (certified as 

1005,1003,993 and 999 ppm respectively, with ±2% certainty 

for CH4, CO, and CO2 and ±5% for N20) 

  10,000 ppm each CH4, CO, CO2 and N20 in helium (certified 

values 0.98 % CO, 0.95 % CO2,0.96 % N20, and 0.99 % CHa 

with ±2% certification accuracy for CO, CO2 and N20 and 

±5% certified accuracy for CH4) 

9 LabVIEW Tm version 5.0 with a PC-516/DAQ card Tm 

" Mass flow controllers: from Brooks Instrument B. V. model no. 5850 TR/DD1 

B3DF) (calibrated against a bubble meter) 

"A second flow meter incorporated in some of the later set-up was from MKS 

Instruments Inc. (1259B-001005V) (calibrated against a bubble meter) 

" The gas cylinders were connected to a single mass flow controller via copper 

tubing and the remainder of tubing was plastic or teflon 

"21 RB flask coated with Sigma Cote® supplied by Sigma Aldrich (to prevent 

the adsorption of gases onto the surface of the vessel), this included a magnetic 

stirrer to aid mixing 

2.4.2 LabVIEWTM Programming 

The original LabVIEW TM (version 5.0 with a PC-516/DAQ card TM) program was 

written by Emery at University of Hull 95 Figure 2.4.2 is the graphic diagram for the 

program, further details about the LabVIEWTM programming and wiring for the DAQ 

card can be found in the appendix (section 6). 

On the DAQ card, channels 0 and 1 were wired to the mass flow controllers (referred to 

as controllers 1 and 2), channel 2 was for controlling the stirrer plate and channels 3 and 
4 were connected to the GC. The program was designed to run through a sequence of 
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five steps. Step 0, shown in figure 2.3.2 in the box labelled `0[0... 41', checks the state 

of the controllers and stirrer, i. e. on or off. 

The program could only be used to switch the mass flow controllers on and off, the 

actual flow rates had to be adjusted manually on the controllers. 

Step 1 acquires an immediate untimed single measurement from analog input channel 0, 

in this case the signal from the mass flow controller 1. In order to make the electrical 

signals relate to the actual flow rates the signal is multiplied by 200, rounded to the 

nearest whole number and divided by two. Step 2 is the same process but acquires input 

from channel 1, which is wired to flow controller 2. Figure 2.4.3 shows LabV IEW IM 

diagram for this programming. 

Steps 3 and 4, record output signals from the GC. The data is acquired as a waveform 
in which a specified number of samples are acquired at a specific sampling rate. The 

sampling rate was originally set at 1000 readings taken every second; from this 100 
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samples are selected. The samples that are collected as output are multiplied by 1000 to 

convert them to mV, the average of the samples is calculated and the data saved into a 

spreadsheet along with a time measurement. This programming is shown in figure 

2.4.4. 

Controller 1 co 

zoo 

Figure 2.4.3 Programming for recording flow rate from mass flow controllers 
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Figure 2.4.4 Programming for recording GC output 

Subsequently the LabVIEWTM program was adapted such that the programming for 

recording the flow rate was removed and filtering and peak integration functions were 
added. 
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2.4.3 Optimising the Gas Chromatograph conditions 

Detection and column 

A1mx2.3 mm diameter stainless steel column packed with Porapak Q96 was used, 

with helium as the carrier gas. Data for the retention times for CO, N2, CO2, N20 and 
CH4 on a1mx2.3 mm Porapak Q column using a 30 °C operating temperature, 25 

ml/min flow rate and TC detection were given as; 0.24,0.24,0.65,0.76,0.34 minutes 

respectively (based on information from Porapak). According to this data it should be 

possible to separate a standard gas mixture of CO, C02, CH4 and N20 using similar 

operating conditions. The effect of flow rates (column pressure), oven temperature, 

detector temperature and different gain settings (on both the GC and chart recorder), on 

the separation and response to the different gases was investigated using the 1,000 ppm 

and 10,000 ppm gas standards made up in helium. 

Data Acquisition in LabVIEWTM 

The LabVIEWTM programming for acquiring data from the GC is described in section 
2.4.2. Originally data was acquired as a waveform at a sampling rate of 1000 samples 

per second with 100 samples collected per iteration, this had been based on the response 
obtained for ambient air samples consisting mainly of nitrogen. For high levels of 
nitrogen, the TCD detector gave a good response (due to the low conductivity of 
nitrogen compared to the helium carrier gas), thus the noise to signal ratio was low. 
The problem with the standard made up in nitrogen was that the responses to CO, C029 
CH4 and N20 were not discernable from the response to nitrogen therefore a standard 
mixture made up in helium was employed instead. When using the 1000 ppm gas 
standard in helium, the signal response was found to be very low in comparison, with 
changes in the order of <1 mV, this required that the data acquisition conditions in 
LabVIEWTm had to be modified as signals due to the analytes were being lost in 
'noise'. 

Limit settings for the DAQ card were engaged to set the maximum and minimum 
expected values. The limit settings form a cluster, which assigns limits to the channels 
in the channel string array; the default value is normally +/- 10 V, which in this case 
meant limited sensitivity. The gain (amplification or attenuation) is determined by the 
programming based on the limit settings. 
The rate of sampling and the number of samples acquired by the LabVIEWTM program 
were both altered in order to find the optimum conditions. Due to the low response to 
the gas sample mixture, a small amount of ambient air was let into the system so that 
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the nitrogen peak could be used as an indication of whether the signal to noise ratio was 

improved. A median filtering function was also included into the LabVIEW 

program. 

Peak Integration 

To calculate the peak areas, peak detection and integration functions (from the 

LabVIEWTM software) were incorporated into the LabVIEW'rm program. 

The peak detection function identifies peaks above a particular threshold with a 

specified peak width (or below the threshold if looking at negative peaks). The outputs 

are the number of peaks detected, the peak indices and the amplitude. 

Reproducibilty of response 

Reproducibility of response was tested using an undiluted 0.1 % standard mixture in 

helium; the peak areas were calculated in Excel. This was performed for different 

column pressures (thus changing the He flow rates) of 140,160,200 and 260 kPa. The 

standard deviation between peak height and peak areas were then calculated and 

compared. 

2.4.4 FTIR 

IR spectra were collected as single beam spectra, using the range 400-4200 cm', with a 

resolution of 4 cm' resolution with 8 scans co-added. The data was saved as csv files 

allowing them to be analysed in Excel and MATLAB®. 

2.4.5 Different dilution set-ups 
Trial Run Dilution System (using standard made up in nitrogen) 
The original set-up (figure 2.4.1) was tested using the 1000 ppm mixture in nitrogen, the 

sampling chamber was filled with the standard mix at a flow rate of 30 cm3min 1 for 10 

minutes, this was diluted with helium using a flow rate of 10 cm3min 1 for 90 minutes, 
this was later increased to a flow rate of 20 cm3min 1 for 120 minutes. Samples were 

analysed by GC using the gas-sampling valve (with a5 em3 sample loop), with 

responses recorded both in LabVIEW and with a chart recorder, and FTIR spectra 

were collected at timed intervals (using single beam energy scan range 0-8000 cm 1 with 
a resolution of 2 cm 1). 

Dilution with I% standard mixture in helium 

Set-up 2 shown in figure 2.4.5 was employed. This 2L mixing chamber was removed 
(thus reducing time required to purge system) and instead the gas cell was utilised as the 
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mixing chamber. The gas cell was filled with the 1% standard gas mixture and then 

diluted with helium using a 10 cm3min 1 flow rate with samples taken approximately 

every 6 minutes (5 cm3 sample loop). This was repeated three times and the GC data 

was analysed (employing a GC column pressure 200 kpa). The response was recorded 

in LabVIEWTm using a sampling rate of 600 s'1 with 60 samples taken as average and 

median filtering with a window size of 40 was also applied 

The effect of stopping dilution while collecting IR data 

As previously, set-up 2 was employed and the gas cell was filled with 1% standard gas 

mixture. In this case the helium was added to the cell for a specific amount of time then 

the helium flow stopped while GC and IR data was collected. 

The dilution times between each sample were at: 1,1.5,2.5,5,5,10,15, and 20 

minutes. 

Figure 2.4.5 Set-up 2, dilution of samples made up in gas cell 

The effect of bleeding SF6 into the system 

This work investigated the effect of adding SF6 to this system. The SF6 was bled in at a 
fixed rate using a second flow controller. The set-up is shown in figure 2.4.6. IR 

spectra were collected at different intervals to see if a constant concentration of SF6 

could be maintained. 

flow contoller 

gas cell 

He 
sample to GC 

SFs 

Figure 2.4.6 Set-up for bleeding SF6 into the system 
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2.4.6 Correlation between GC and IR measurements 

Set-up 2 was employed for this work (figure 2.4.5), samples were prepared in the long 

path gas cell and spectra were collected by FTIR. The concentrations of gases prepared 

in each sample are shown in table 2.4.1. 

After scanning by FTIR each sample was then diluted with helium using a 10 cm2min 1 

flow rate, this was repeated twice for each sample. From sample L onwards, spectra 

were also collected using the 4.35 µm and 3.25 µm filters. In an effort to reduce the 

amount of air getting into the gas cell during sample preparation, the gas cell outlets 

were plugged with rubber bungs and injections of each gas was made through them. 

Plots relating the GC response (peak heights) to IR response (this was the transmission 

at wavenumber relating to the gases of interest, or peak area in the case of spectra 

collected using the filters) were generated and the correlation coefficients determined. 

Concentration m of gases in each sam le 
Sample N20 CO CH4 CO2 

A 1886.79 1886.79 1886.79 1886.79 
B 188.68 188.68 188.68 188.68 
C 1132.08 188.68 188.68 754.72 
D 188.68 943.40 188.68 943.40 
E 1886.79 188.68 1886.79 188.68 
F 188.68 1886.79 1886.79 1886.79 
G 943.40 943.40 188.68 943.40 
H 943.40 943.40 905.66 188.68 
I 1886.79 188.68 1886.79 1886.79 
J 566.04 1320.75 377.36 1509.43 
K 377.36 377.36 1320.75 377.36 
L 1886.79 1509.43 377.36 566.04 
M 1509.43 1886.79 188.68 1509.43 
N 377.36 1509.43 1509.43 377.36 
0 188.68 566.04 1509.43 1509.43 
P 377.36 566.04 377.36 1320.75 

566.04 1698.11 1698.11 566.04 
R 1698.11 1698.11 1698.11 188.68 
S 943.40 1886.79 1886.79 943.40 
T 1698.11 377.36 377.36 1886.79 
U 1886.79 188.68 188.68 188.68 
V 188.68 1509.43 377.36 377.36 
W 1886.79 377.36 943.40 1509.43 
X 1698.11 1698.11 943.40 377.36 
Y 188.68 943.40 1509.43 1509.43 

Table 2.4.1 Concentrations of gases (ppm) added to each sample (for correlating GC 
and IR responses) 
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2.5 Characterisation of narrowband filters by FTIR 

2.5.1 Characterisation of 3.25 µm and 4.35 µm filters 

Originally just two narrowband filters from Northern Optical Coatings (NOC), 

Northumberland, UK, were tested. One with band centre at 3.25 µm (3077 cm-) and 

one centred at 4.35 pm (3000 cm-) with a bandwidth of 1 %. 

The filters were placed into lens holders and placed one at a time next to the gas cell in 

the sample chamber of the FTIR. 

Calibrations with samples prepared statically 

Gas samples were prepared by injecting different amounts (between 1 and 30 ml) of the 

1% standard mixture to give sample concentrations between 18 and 566 ppm. FTIR 

single beam scans (using the same conditions as previously in section 2.3) were taken. 

The total response of light transmitted when the filters were in place was calculated by 

WinIR software using peak templates (this function calculated the area between two 

specified wavenumbers using a baseline determined from two other wavenumbers). 
Initially each sample prepared was measured with both filters (first one and then 

switching to the other) but the continuously swapping round of the filters meant 

variations arose due to changes in alignment, subsequently separate samples were 

prepared to test each filter. 

Calibrations using the dilutions 

The gas cell was filled with 1% standard mix and diluted with helium using a 10 

cm3min 1 flow rate and again repeated with a 20 cm3min'1 flow rates. This was done for 
both filters. 

Scans were taken at timed intervals using the same conditions as described in section 
2.3. 

2.5.2 Using filters at 2.9 µm, 3.25 gm, 4.35 µm, 4.73 µm and 10.62 µm 
Three more filters at 2.9 µm, 3.73 µm and 10.62 µm were employed (also from NOC). 
The response obtained with different filters was measured using samples prepared by 
injecting different amounts of the 1% standard (the amounts injected were 20,50,60, 
80,100,120,150 and 200 ml, corresponding to final concentrations of 377,943,1132, 
1509,1887,2264,2830 and 3774 ppm) 
The total response, i. e. amount of light detected with filter in place, was calculated in 
the Bio-Rad WinIR software using peak templates. 
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Different data treatment was applied to the responses; this included taking logs and 

subtracting the response obtaipvd for the 10.62 µm filter (reference peak). 

Variation in response due to f Ilter alignment 

The variation in response di4e to realigning filters was investigated using the 2.9 µm 

filter by measuring the same gas sample. Initially the sample was scanned, then 

measured again after al -minpte qnd a 10-minute interval (without moving the filter). 

The filter was moved and realigned and the sample measured again, this was then was 

repeated a second time. The fitter was subsequently placed in a different filter holder 

and the sample measured, this was also repeated switching the sample back to the 

original holder. 

Automated Filter Wheel 

The filters were placed in a6 position automated filter wheel (figure 2.5.1), the 4.35 . im 
filter was placed in position 1,4.73 µm in position 2,10.62 in position 3, position 4 was 
left blank (allowing normal scans to be taken when the wheel was in this position), 

2.9µm in position 5 and 3.25 pm in position 6. The wheel was placed in the sample 

chamber of the FTIR next to the gas cell as shown in figure 2.5.2. The wheel could be 

controlled manually (with a push button) or via computer. 
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Figure 2.5.1 Inside view of filter wheel with narrow band filters in place 



location of internal DTGS detector 
locatetion of mid IR source 

FTIR Spectrometer 

eo 

filter wheel 

path of IR beam 
long path gas cell 

Figure 2.5.2 Diagram showing placement of Filter wheel in FTIR 

Sample mixtures of the four gases (CO, C02, CH4 and N20) were prepared in the same 

manner as described in section 2.1. Table 2.5.1 lists the concentrations of each gas in 

the different samples. 

Concentrations in m of gases in each samples 
sample CH4 CO CO2 N20 

1 3774 3774 3774 3774 
2 18868 18868 18868 18868 
3 9434 3774 13208 5660 
4 3774 1887 18868 16981 
5 1887 15094 1887 1887 
6 18868 18868 3774 18868 
7 3774 3774 1887 15094 
8 16981 3774 3774 3774 
9 15094 1887 15094 1887 
10 - 9434 9434 9434 

Table 2.5.1 Concentrations of each gas for samples prepared to test responses with 
different filters 

GC responses were also collected for each sample (using GC conditions of column 
pressures at 200 kPa, oven temperature at 25°C, detector temperature at NOT and 
filament temperature at 250°C); these were sampled by connecting (with plastic tubing) 

the outlet of the gas cell to the sampling valve on the GC and flowing helium through 

the cell (using a flow rate of 10 cm3min' ) to ensure the sampling valve was filled with 
sample before injecting into the GC. 
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A sample of 50 ml each of the four gases (corresponding to a concentration of 9.4 %) 

was diluted using a 10 cm3min" flow rate with scans taken with each filter at various 

time intervals (the time taken to collect spectra (using 10 co-adds) took approximately 
30 seconds per filter). 

The effect of data treatment was investigated for the static samples as well as the 

dilution samples. This included; background subtraction (using scans taken when cell 

was purged as background spectra), log of the raw response, log of the background- 

subtracted response, subtraction of the reference response (i. e. the response obtained 

with the 10.62 tun filter), division by the reference response, and log of the division by 

reference response. 
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2.6 Investigations into different optical layouts and signal processing 

The aim of this section was to investigate different optical layouts using the available 

equipment to determine an optimal set-up. 

Equipment 

" Mid-IR ceramic air-cooled source (PERMAGLOWTm) from Bio-Rad 

" InSb detector from Hamamatsu Photonics K. K., Japan 

" MCT (mercury cadmium telluride) detector from Bio-Rad (range 10,000 -700 

cm') 

" Peltier-cooled DTGS (deuterated trigylcine sulfate) detector from Bio-Rad 

" Pre-amplifier from Hamamatsu Photonics K. K. 

" Lock-in-amplifier from Thors, Model LIA100, programmable AC input 

amplifier, a monolithic phase-sensitive detector (PDS), and two-stage 

programmable output low-pass filter (with adjustable settings) 

" Chopper from Bentham Instruments Ltd., Berkshire, UK 

" Farrell adjustable Power Supply, 10 V, 0.6 amp) 

" CaF (bi-concave lens) lens 

Wiring and connection box for detectors 

The MCT and DTGS detectors had 9 pin connectors for use with the BioRad FTIR. To 

enable the detector responses to be sent to the lock-in amplifier, the cable connecting 
the detectors to the FTIR was adapted so that the signal was also sent to a coaxial 
fitting. 

The InSb detector was wired to a coaxial cable so that it could be connected directly to 

the lock-in amplifier. To enable the InSb signal to be processed by the FTIR a 

connection box was built to connect the coaxial cable to the 9-pin cable. More details 

about the wiring can be found in the appendix (section 6). 

Optimisation of lock-in amplifier settings 
The effect of different settings on the lock-in amplifier was investigated to determine 

which settings gave the best results. This included; investigating different chopper 
speeds (no chopper, and speeds of 5 Hz, 124 Hz and 380 Hz), changing the frequency 

range (5-10 Hz, 150-300 Hz, 300-600 Hz), the sensitivity (the lock-in had a 6-position 

rotary switch to set the gain of the input, (0,20,40,60,80,100 dB) as well as a xlO 
gain) and time output constant. The main criteria for a good result being; stable signals 
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(i. e. not much drift or fluctuation) and different responses with different filters (NB. the 

emission was from a black body source, therefore there was a higher amount of 

emission around 4 µm of light while much lower response for 10 µm (in the case of the 

InSb detector, 10 µm is beyond the cut-off point so no response would be expected with 

the 10.62 µm filter). 

Different Optical Set-ups 

Set-up (1) Employing the InSb detector with a multimeter to measure detector response 

A schematic for set-up I is shown in figure 2.6.1. 

Original set-up using InSb detector 

filter InSb detector 
wheel 

FIR Lock in multimeter 

chopper pre-amp 

chopper Iphase controller 
ref ref in ref out 

Figure 2.6.1 Set-up (1) employing InSb detector with multimeter to measure response 

The components were aligned by centring the He laser beam (from the FTIR provided 
for alignment purposes) on the detector window. The infrared beam passes from the 

external right window of the FTIR through the selected filter (held by the filter wheel) 
to the detector. The signal is increased with a pre-amplifier (which had three different 

settings of low, medium and high) before reaching the lock-in amplifier. A chopper 
(placed between the filter wheel and the detector) is used to act as a signal reference. 
The output (V) from the lock-in amplifier is shown on the digital display on the 

multimeter. The different settings on the pre-amplifier (low, medium and high), 

changing the chopper speed, and altering settings on the lock-in amplifier (i. e. 
frequency range, sensitivity and output time constant) were applied to try and optimise 
the response. 
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Set-up (2) using MCT detector 

The cable for connecting external detectors the FTIR instrument was rewired so that the 

signal from the detector was also sent to the lock-in amplifier, this meant the MCT 

detector (which gave a higher signal response) could replace the InSb detector and 

simultaneous measurements could be made with the FTIR. The corresponding values 

from the FTIR were from the total response of the interferrogram in the set-up mode of 

the software. When obtaining spectra with the FTIR the chopper had to be switched off 

as it interfered with the interferrogram signal. The set-up is shown in figure 2.6.2; in 

this case components were aligned to obtain the maximum response in the FTIR. 

filter MCT detector 

wheel 

F nR Lock in I multimeter 

chopper 

chopper phase controller 
ref ref in ref out 

Figure 2.6.2 Set-up (2) using MCT detector with multimeter to record the output 

Set-up (3) using MCT detector and Lab VIEWTM 

Set-up (3) is shown in figure 2.6.3. The output from the lock-in amplifier was wired to 

a DAQ card (same card that was used for recording GC measurements as in section 2.3) 

and a simple LabVIEWTM program was written to record the output as an analogue 

signal. 
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Set-up for gas measurement using MCT detector, with data recorded In Iabview 

MCT 
fillet actor data recorded in 1"belew 
wheel o 

pas cal 
OAQ card ° 

fTIR Lock in 

" 

chopper 

chopper phase controller 
ref ref in ref out 

Figure 2.6.3 Set-up (3) Lock-in response recorded in Lab VIEWTM 

The diagram for the LabVIEWTM program is shown in figure 2.6.4, this displayed 

measurements as they were collected and a response versus time plot at the end of the 

run. The data collected was saved to a spreadsheet, allowing the average response for 

each filter to be calculated in Excel. Drift was investigated by making measurements 

over different time intervals. 

N/OFF switch 

TF- ýý* lot of recorded data 

hange in voltage with time 
cý . 

ONE IT 

M 

Figure 2.6.4 LabVIEWTM program for recording response from lock-in amplifier 

A small 100 ml gas cell (with 10 cm path length) was placed in the set-up and different 

amounts of gases where injected into the cell to check if the detector response obtained 
with different filters varied in relation to the gases injected. The small (100 ml) gas cell 
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was employed in the set-up as this was easier to align (with the long path gas cell light 

is reflected back and forth between mirrors resulting in a significant loss of light in the 

amount of light reaching the detector and as a result small deviations in the positioning 

of the cell are more significant). A disadvantage with this is that there is only a 

relatively small volume of gas (100 ml) with only a short path length (10 cm) therefore 

is not suitable for low concentrations of gases. 

Set-up(4) using DTGS detector 

The gas cell, filter wheel and chopper were placed inside the sample chamber of the 

FTIR in a layout similar to figure 2.6.2, but with the chopper placed next to the gas cell. 

The signal from the DTGS detector was sent to the lock-in amplifier (NB. the lock-in 

set-up was the same as set-up(3)). 

Set-up(s) using a light source external to FTIR 

In this case the IR source was removed from FTIR and used externally, otherwise the 

set-up was similar to set-up (3). Since the IR beam from the source no longer passed 

through an interferometer the detector response was no longer recorded by FTIR. A 

lens was placed between the filter wheel and chopper to focus the light on to the 

detector; this set-up is shown in figure 2.6.5. 

MCT 
Rom filter detector data recorded in labview 

wheel Ions I 

gas cell 
0AQ card 

Lock in 
Lý6 

--1 

119 

a- 

chopper SEA W- K\ 

chopper phase controller 
ref retin ref out 

Figure 2.6.5 Set-up (5) using external light source and including a lens 

Sample Dilutions with set-up (5) 

Set-up (5) gave the best results therefore further work was carried out to investigate 

responses with this set-up. The 100 ml gas cell was replaced with the long path gas cell 
employed in previous work. A sample consisting of 9.4 % each of CH4, CO, CO2 and 
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N20 was prepared and diluted with helium using a 85 cm3min 1 flow rate for 1 V2 hours 

with measurements made every 2-5 minutes. 

This was repeated using an initial sample mixture of 9.4 % CH4,9.4 % CO, and 7.5 % 

CO2, this time diluted at a 60 cm3min 1 He flow rate.. This was also performed twice 

using initial sample concentrations of 7.5 % each of CH4, CO and CO2 with a flow rate 

of 10 em3min 1. 

The data collected was analysed to look at the sensitivity of the measurements and 

reproducibility. Data treatment applied included subtraction of purge responses, 

subtraction of the reference response (10.62 pm, for samples with no N20 present the 

2.9 um filter was also tried as a reference response), division of reference response and 
logs. 
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2.7 The purgable box 

2.7.1 Design and development of a purgable box 

To remove the effects of ambient air, in particular CO2, it was decided to build a black 

sealed box that could be purged. 

The main considerations were: 

" The optical alignment of the components 

9 Inlet and outlets to allow the box to be purged 

" Inlet and outlets for the gas cell to allow sample preparation and purging of gas 

cell without requiring the box to be opened 

" Cables and connections for the source, filter wheel, chopper and detector (all 

requiring connections to power sources) 

Based on the results of the previous section (2.6), set-up (5) gave the optimal results, 

hence this alignment was used as the basis for the design of the box. Figure 2.7.1 shows 

the basic schematic for the box. 

A rectangular box (although this resulted in a lot of empty space (increasing the amount 

of air that required purging) it was the simplest design to construct) was constructed ol'a 
black vinyl material; this had the advantage of minimising the amount of stray light 

entering the system. 

The optical components were aligned and mounted on a removable metal plate. A gas 

cell holder (as used in the FTIR instrument) held the gas cell in place, with rubber 

tubing connecting the cell outlets to the external outlets on the box. 

Basic Schematic for Enclosed Optical Set-Up 

filter wheel Ions detector 

light source gas cell chopper 

inlet/outlet 

Figure 2.7.1 Schematic for the design of the box 
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filter lens chopper 
wheel 

light source detector 

purge 
gas cell outlets 

Figure 2 7.2 Photo of the inside of the box 

2.7.2 Effect of purging 
The box was initially tested with the MCT detector comparing the responses between no 

purging and with purging the box at a high flow rate (>100 cm3min') and a low flow 

rate (10-20 cm3miri-'). Due to problems with the MCT detector, the DTGS detector was 

utilised instead (originally the DTGS detector was not used as this was the internal 

detector inside the FTIR and required an additional cable to control the peltier cooling). 

2.7.3 Testing the box 

Static samples 

To test the box, samples of the four gases (the concentrations in each sample are shown 
in table 2.7.1) were prepared by injecting gases into the gas cell (via the external inlets 

to the gas cell) and allowed to equilibrate. 

Concentration m of gases i n each sample 

sample CH4 CO CO2 N20 
1 18868 18868 18868 18868 
2 3774 3774 3774 18868 
3 15094 7547 15094 7547 
4 37736 18868 18868 18868 
5 49057 18868 56604 56604 
6 9434 28302 28302 9434 
7 9434 22642 9434 9434 
8 37736 28302 15094 33962 

Table 2.7.1 Concentration of gases in ppm added to each sample to test purgable box 
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After recording the response of each filter in turn, helium was flowed into the cell (at a 

flow rate of 20 cm3min 1) for 5 minutes to allow sufficient time for the GC gas sampling 

valve to fill before sampling by GC (The GC conditions were; oven temperature of 

25°C, detector temperature of 200°C, filament temperature of 250°C, and flow carrier 

pressure of 200 kPa). 

Dilution samples 
To test the responses at different concentrations, samples were prepared and then 

diluted with helium at a flow rate of 20 cm3miri 1, the external outlet of the gas cell was 

connected to the gas-sampling valve on the GC thus allowing samples to be also 

measured by GC (using the same conditions as previously). 

Sample Concentration 
_ 1 9.4%C114,7.5%CO, 6.6%C02,8.5%N20 

2 4.7 % CH4,5.7 % N20 
3 3.8 % C02 
4 3.8%CO 
5 . 7%N20 
6 4.7 % C02 

Table 2.7.2 Concentration of samples used for dilutions 

2.7.4 Reproducibility 

To test for reproducibility, repeat samples consisting of 1887 ppm each of the four gases 

and of 18880 ppm each of the four gases were prepared. These were measured a 

number of times at different time intervals investigate signal drift. 

2.7.5 Five Level Experimental Design Calibrations 

Preparation of samples and collection of data 

To build a calibration model, 17 samples were preparared based on a five level 

experimental design. The level combinations for each sample (shown in table 2.7.3) 

were determined by D-optimal design, Design Expert 6.0.1 StatEase, USA. The 

concentrations (ppm) for each sample are shown in table 2.7.4. These were prepared in 

the same way as the previous samples. After 20 minutes, to allow the sample to 

equilibrate, the responses were measured twice with the different filters before sampling 
with GC (employing a5 minute dilution with helium was used to fill the sampling 
value). Repeat samples were prepared and measured a week later. 
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Level of component for given sa m le 
Sample Cl C2 C3 C4 

1 3 2 2 1 
2 1 5 1 1 
3 4 3 2 4 
4 3 4 1 4 
5 1 4 5 5 
6 2 5 5 2 
7 1 1 4 4 
8 2 3 1 3 
9 5 3 4 5 
10 3 5 4 3 
11 4 2 1 2 
12 2 1 3 5 
13 5 2 3 4 
14 5 1 5 1 
15 2 4 4 1 
16 5 4 2 2 
17 3 3 3 2 

Table 2.7.3 Five level experimental design for four components (CI-C4) 

Concentration m of as es in each sample 
Sample CH4 CO CO2 N20 

1 11321 7547 7547 3774 
2 3774 18868 3774 3774 
3 15094 11321 7547 15094 
4 11321 15094 3774 15094 
5 3774 15094 18868 18868 
6 7547 18868 18868 7547 
7 3774 3774 15094 15094 
8 7547 11321 3774 11321 
9 18868 11321 15094 18868 
10 11321 18868 15094 11321 
11 15094 7547 3774 7547 
12 7547 3774 11321 18868 
13 18868 7547 11321 15094 
14 18868 3774 18868 3774 
15 7547 15094 15094 3774 
16 18868 15094 7547 7547 
17 11321 11321 11321 7547 

Table 2.7.4 Concentration of gases in ppm, based on a five level experimental design, 
added to each sample 
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2.7.6 Investigating the reproducibility of CH4 responses 

The reproducibility of CH4 response was investigated by preparing repeat samples of 

CH4 at concentrations of 3774 and 18868 ppm. After measuring the responses with just 

CH4, varying amounts of the other 3 gases were added (to check for interferences), then 

GC measurements where made. Table 2.7.5 lists the concentrations of gases in each 

sample. 

Concentration m of gases in eac h sample 
Sample CH4 CO CO2 N20 

1 18868 3774 18868 3774 
2 3774 3774 3774 18868 
3 18868 18868 3774 3774 
4 3774 18868 18868 18868 
5 18868 - - - 
6 3774 18868 15094 56604 

Table 2.7.5 Concentrations of CH4 and other gases used in samples to investigate 
reproducibility of CH4 response 

2.7.7 Repeat of Five Level Calibrations with higher CH4 concentrations 
The five level calibration samples were prepared as previously; however, the 

concentration of C14 was doubled. The same data collection and modelling was 
applied. 

2.7.8 Sample preparation using a sample loop 

To improve the reproducibility of samples it was decided to use a sample loop, similar 
to the gas-sampling valve on the GC. 

The valve used was a 6-way valve, this allowed a sample loop to be filled with gas from 
the gas lecture bottle and then by switching the valve the loop was emptied into the cell 
using a controlled flow of helium (figure 2.7.3). 

More gas mixtures were prepared employing the same levels from the five level 

experimental design in previous work. 
Three different lengths of sample loop were employed; a small size at 20 cm, a medium 
size at 40 cm and a longer size measuring 58 cm. 
The different loops could then be placed into the valve as required and sealed with 
PTFE seal tape. 
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sample gas sample loop sample gas sample bop 

vent carver gas carrier gas 
(helium) (helium) 

sample loop gas cell sample loop gas cell 

Figure 2.7.3 Connections on the sampling valve, left: valve positioned to fill sample 
loop, right: valve positioned to inject sample 

Level one was achieved with the small loop, level two the medium, level three the long, 

level four using the medium loop twice and level five the long loop twice. 
These equated to the concentrations shown in table 2.7.6. 

level m 
1 1185 
2 2371 
3 3438 
4 4742 
5 6876 

Table 2.7.6 Concentrations ppm prepared for different levels in the experimental 
design by employing sample loops 
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2.8 Volatile Organic Compound Analysis 

2.8.1 Samples collected by vapour sampling 

Collection of spectra 
For this work spectra were collected for a-pinene, limonene (S), benzene, toluene, p- 

xylene, o-xylene, m-xylene, methanol, ethanol, butan-l-ol, cumene, dodecane, heptane, 

cyclohexane, cyclopentane, t-butanol, and 4-isopropyltoluene. 

The infrared spectra were collected on a Perkin Elmer Paragon 1000 FTIR Instrument 

using the range 4000- 500 cm 1 with a resolution of 1 cm t. 

Samples were obtained by using a 10 ml gas syringe to sample vapour directly from the 

bottles containing the compound of interest, this was then injected into a 100 ml gas 

cell. The cell was scanned and ratioed against a background spectra obtained from 

scanning the gas cell when filled with nitrogen. For less volatile compounds, the 

sampling was repeated till significant absorption peaks were obtained. Between 

samples the cell was flushed with nitrogen until the IR scans of the cell showed no sign 

of any residual sample peaks. 
For some of the more volatile compounds, more than one spectrum was collected as 

samples were diluted to give similar sized absorption peaks to some of the compounds 

with weaker absorption spectra. 
The spectra collected were compared to reference spectra from Aldrich97 and NISTM to 

check for impurities. 

The scans showed large amounts of water vapour present in the spectra, therefore the 

solvents were dried using molecular sieves. The scans still exhibited a number of peaks 
due to water vapour and carbon dioxide present in the atmosphere which were 

unavoidably collected in the sampling process. 
PCA was performed on the data to investigate whether the water vapour peaks could be 

modelled out of the spectra; however, as most of the principal components included 

various water peaks this was unsuccessful. 
Table 2.8.1 gives a list of spectra analysed, including duplicates at different 

concentrations. `Noise' refers to samples of ambient air (for comparison purposes). 
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3pectra Compound Spectra Compound 
1 toluene 19 c clo entane 
2 a- inene 20 dodecane 
3 a-pinene 21 dodecane 

4 limonene 
5 noise 
6 benzene 
7 benzene 
8 benzene 
9 noise 
10 p-xylene 
11 -x Lene 
12 -x Lene 
13 toluene 
14 a-inne 
15 a-pinene 
16 cyclohexane 
17 c clohexane 
1R cvclonentane 

22 he tape 
23 heptane 
24 methanol 
25 m-xylene 
26 o-xylene 
27 o-xylene 
28 noise 
29 butan-l-ol 
30 butan-l-ol 
31 ethanol 
32 ethanol 
33 toluene 
34 4-iso ro ltoluene 
35 t-butanol 
36 t-butanol 

Table 2.8.1 List of spectra and corresponding compounds 

Analysis of Spectra 

Principal Component Analysis (PCA) 

PCA was employed to examine patterns and trends within the data. This was first 

performed on the entire spectra, and subsequently on different regions of the spectra. 

Region 1 covered the wavenumber range 4000-3400 cm-'; region 2 the range 3200- 

2600 cm 1; region 3: 2100-500 cm 1 and region 4: 1300-500 cm'. These regions were 
based on where spectral peaks occurred. Sample scores were plotted for different 

principal components to investigate whether clustering of similar compounds had 

occurred. 
Different data pre-treatments were applied to the spectra including mean centring and 

standard normal variate (SNV). 

Cluster Analysis 

As well as score plots, dendrograms were also employed to investigate grouping 
between different compounds. These were built for both untreated and SNV treated 

data. The different types built included k distancing by neighbours and by groups, and 
by using 10 principal components with and without Mahalanobis distancing. For more 
details refer to section 2.1. 
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2.8.2 Improvement of Spectra by removal of water vapour 
In order to decrease the amount of the CO2 and water entering the cell, a sampling rig as 

shown in figure 2.8.1 was set up. This was used to evacuate the cell, then the tap 

leading to the cell was closed. The liquid sample of the compound to be analysed was 

cooled in liquid nitrogen and the surrounding air pumped out. The sample was warmed 

so that vapour could saturate the rig, then the tap to the cell was opened allowing vapour 

to fill into the evacuated gas cell. 

The sample spectra were ratioed against spectra obtained for the cell without any 

sample present. The concentration of sample was dependent its volatility. For the more 

volatile compounds (such as benzene, toluene and methanol) the noise to sample ratio 

was low. For the less volatile compounds (e. g. limonene and pinene) the low 

concentrations of sample meant there was a high noise to sample ratio. 

-. vacuum pump 

sample gas cell 

liquid nitrogen trap 

Figure 2.8.1 Schematic diagram of gas sampling rig 

Improved spectra were collected for all of the following; a-pinene, butan-1-ol, cumene, 
cyclohexane, octane, p-isopropyltoluene, propanoic acid, butan-2-ol, limonene, 
benzene, p-xylene, cyclopentane, heptane, methanol, m-xylene, o-xylene, ethanol, 
toluene, t-butanol, t-butanol (high concentration) and noise. 
PCA and dendrogram analysis was performed on the improved spectra in the same 
manner as with the previous spectra. 

2.8.3 Vapour samples prepared by evaporation 
Sample preparation 
The aims of the previous sections (2.8.1 and 2.8.2) were to obtain qualitative spectra of 
different compounds to compare different spectra and look at clustering and grouping of 
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similar compounds. In order to build calibration models and prepare mixtures of 

different compounds samples of known concentrations were required. 

To do this, µl litre amounts of liquid compound being investigated at were injected 

directly into the gas cell and allowed to evaporate. 

Between samples the gas cell was purged with nitrogen and scans were ratioed against 

the corresponding spectra of the purged gas cell. The gas cell was scanned with a 

Perkin Elmer Paragon 100 spectrometer for the range 4000-400 cm 1, using 4 cm 1 

resolution, with measurements every 2 cm"1 . 
The concentrations of samples prepared are shown in table 2.8.2. 

Compound Concentration (pp m) 
he tane 3.34 5.02 6.69 10.03 1.67 

methanol 18.15 18.15 30.26 54.46 66.57 96.83 24.21 
hexane 1.88 5.63 7.51 11.26 1.88 5.63 7.51 11.26 1.88 5.63 

hexane cont. 11.26 15.02 1.88 5.63 11.26 1.88 
limonene 3.03 4.54 7.56 13.61 
butan-lol 5.35 6.05 10.59 10.59 10.59 5.35 6.05 6.05 10.59 
ethanol 8.39 12.59 20.99 37.78 41.97 8.39 20.99 41.97 8.39 20.99 

acetone 6.66 10.00 23.32 6.66 13.32 23.32 
hexene 1.96 3.92 7.84 15.68 1.96 7.84 13.72 

toluene 2.31 6.92 11.53 2.31 11.53 23.05 2.31 11.53 23.05 
cyclohexane 2.27 11.33 2.27 4.53 2.27 4.53 6.80 2.27 11.33 

o-xylene 2.02 10.12 12.14 2.02 10.12 
m-xylene 2.00 10.00 16.00 2.00 6.00 16.00 
p-xylene 2.00 10.00 10.00 14.00 4.00 

propanoic acid 3.28 6.57 16.42 9.85 9.85 3.28 
tert-butyl alcohol 2.68 5.35 10.71 5.35 2.68 8.03 13.38 

Table 2.8.2 Concentrations of samples prepared for different compounds (assuming 
entire volume injected into cell is vapourised) 

For each compound a minimum of at least 3 sample spectra of different concentrations 
were collected. This allowed individual calibration plots for each compound to be 

produced as well as allowing molar absorptivities to be calculated. 
Spectra Analysis 

PCA was utilised to compare spectra for different compounds. MLR (with leave one out 
cross validation) was also performed using all the entire spectra, as well as plots at 
specific wavelengths corresponding to main absorption peaks. 
Dendrograms with different clustering techniques were also employed. 
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PCA was performed on all the data as well as selected groups. The groups looked at 

were alcohols, xylenes and alkanes. Also investigated was acetone, propanoic acid and 

tertbutyl alcohol; cyclohexane, limonene, xylenes, toluene and hexane; ethanol, o- 

xylene, heptane and cyclohexane. 

2.8.4 Preparation of mixtures of heptane, cyclohexane, ethanol and o-xylene 

Mixtures were prepared using mixtures of low, medium and high values based on 

experimental design. The concentrations prepared (assuming complete vaporisation) 

are shown in table 2.8.3. 

Sam le Cyclo-hexane Ethanol Heptane Xylene 
1 2.27 4.20 1.67 2.00 
2 6.80 12.59 5.02 6.00 
3 11.33 20.99 8.36 9.99 
4 11.33 4.20 1.67 2.00 
5 2.27 20.99 1.67 2.00 
6 6.80 12.59 1.67 9.99 
7 6.80 4.20 5.02 2.00 
8 2.27 4.20 8.36 2.00 
9 11.33 20.99 8.36 2.00 
10 11.33 12.59 5.02 2.00 
11 2.27 12.59 8.36 9.99 
12 11.33 4.20 1.67 6.00 
13 11.33 20.99 1.67 9.99 
14 2.27 12.59 1.67 6.00 
15 2.27 20.99 8.36 2.00 
16 6.80 12.59 1.67 6.00 
17 2.27 12.59 5.02 9.99 
18 11.33 20.99 1.67 2.00 
19 2.27 4.20 1.67 9.99 
20 11.33 4.20 1.67 9.99 
21 11.33 4.20 8.36 9.99 
22 11.33 4.20 8.36 2.00 
23 6.80 20.99 1.67 2.00 
24 6.80 12.59 8.36 9.99 
25 2.27 20.99 8.36 9.99 
26 2.27 4.20 8.36 9.99 
27 6.80 20.99 8.36 6.00 
28 2.27 20.99 1.67 9.99 
29 2.27 12.59 1.67 2.00 
30 11.33 4.20 5.02 6.00 
31 11.33 20.99 8.36 9.99 

Table 2.8.3 Concentrations of components in each sample assuming complete 
vaporisation of liquid injected into the gas cell 

Samples were prepared by injecting µl amounts (using a 25 µl syringe) of 
corresponding liquid directly into the gas cell then allowing it to evaporate. High-level 
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amounts corresponded to 5 µl, medium levels to 3 µl and low levels to 1 µl. Initially 22 

samples were prepared, a further 9 samples were prepared the next day. 

PCA was performed on the spectra and score plots used to check for any outliers. 
MLR and VS-MLR were performed on the first 22 samples using different splits for 

training and validation sets and the additional 9 spectra were used for further validation. 

2.8.5 Investigations into different sample preparation techniques 

Mixtures prepared as liquid before injecting into cell 

As the previous method involved injecting t1 amounts a high percentage of error would 
be expected therefore other methods examined. 
Mixtures were prepared using a1 ml syringe, by injecting 0.3 ml for high volumes, 0.2 

for medium volumes and 0.1 ml for low volumes, plus 0.1 ml of acetone as an internal 

standard; µl amounts of the sample mixtures (the amount injected was based on the % 

acetone in the mixture so that the sample concentration of acetone (corresponding to 
3.33 ppm) was present in each sample) were then injected into the gas cell and allowed 
to evaporate. The final concentrations of components in each sample are shown in table 
2.8.4. 

Sample Cyclo-hexane Ethanol He tane X lene 
1 2.27 4.20 1.67 2.00 
2 4.53 8.39 3.34 4.00 
3 6.80 12.59 5.02 6.00 
4 6.80 4.20 1.67 2.00 
5 2.27 12.59 1.67 2.00 
6 4.53 8.39 1.67 6.00 
7 4.53 4.20 3.34 2.00 
8 2.27 4.20 5.02 2.00 
9 6.80 12.59 5.02 2.00 
10 6.80 8.39 3.34 2.00 
11 2.27 8.39 5.02 6.00 
12 6.80 4.20 1.67 4.00 
13 6.80 12.59 1.67 6.00 
14 2.27 8.39 1.67 4.00 
15 2.27 12.59 5.02 2.00 
16 4.53 8.39 1.67 4.00 
17 2.27 8.39 3.34 6.00 
18 6.80 12.59 1.67 2.00 
19 2.27 4.20 1.67 6.00 
20 6.80 4.20 1.67 6.00 
21 6.80 4.20 5.02 6.00 
22 4.53 4.20 5.02 2.00 

Table Z8.4 Concentrations of components in each sample assuming complete 
vaporisation of liquid injected into the gas cell 
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Models were then built comparing the absorption spectra with no further treatment, 

absorption data was divided by the acetone peak at 1742 cm 1 and absorption data 

divided by acetone peak at 532 cm 1. The effect of applying other data treatments such 

as normalisation, SNV and baseline subtraction methods was also investigated. 

Mixtures using heptane as internal standard 

Mixtures of ethanol, o-xylene and acetone were prepared using heptane as an internal 

standard, with injections made using a Neelson pippette with high values of 200 µl 

volumes, medium values of 125 µl and low volumes of 60 µl. Models were then built 

as previously (section 2.8.4). 

Sample Ethanol X lene Acetone 
1 839.50 399.68 666.41 
2 251.85 119.90 199.92 
3 251.85 119.90 416.51 
4 524.69 119.90 416.51 
5 251.85 119.90 199.92 
6 251.85 119.90 416.51 
7 839.50 399.68 666.41 
8 251.85 119.90 666.41 
9 839.50 399.68 199.92 
10 524.69 119.90 199.92 
11 839.50 119.90 199.92 
12 251.85 249.80 199.92 
13 251.85 399.68 666.41 
14 524.69 399.68 199.92 
15 251.85 399.68 199.92 
16 251.85 399.68 666.41 
17 839.50 119.90 666.41 
18 524.69 119.90 666.41 
19 839.50 249.80 199.92 
20 524.69 399.68 666.41 
21 524.69 399.68 666.41 
22 524.69 249.80 199.92 

Table 2.8.5 Concentrations (ppm) of components in each sample assuming complete 
vaporisation of liquid injected into the gas cell 

2.8.6 PLS Investigations 

In order to investigate the data and look for possible outliers and sources of error, PLS 
was employed. This included building models with different numbers of latent 

variables and comparing the effects on prediction error both for the calibration and 
validation data sets. Also investigated was the removal of samples that contained high 
amounts of error or had high leverage effects. 
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3 Results and Discussion 
3.1 Gas Sample Spectra and the effect of different pre-treatments on 
data 

The aim of this stage of the work was to collect IR spectra suitable for multivariate 

models. Initially just single gas samples were prepared allowing simple models to be 

built to compare the effect of different data pre-treatments. Later mixtures of four gases 

(CH4, CO, C02 and N20) were prepared for further in depth analysis. 

3.1.1 Comparison of different data treatments on spectra for single gas samples 
3.1.1.1 Spectra collected 
Normally with FTIR analysis, spectra are ratioed against background scans to obtain 

absorption spectra. Ratioing against a background scan has the advantage of removing 

artefact peaks and variations from source emission and detector drifts, however in some 

applications obtaining a background scan is not always feasible or possible. 
In order to see if it was possible to proceed without the need to run separate blank 

samples, the data was left as single beam transmission scans and various data treatment 

techniques applied. 
Figure 3.1.1 displays the raw single beam spectra obtained for single component 

spectra. The change in background emissions between samples can be clearly seen thus 
demonstrating the importance of finding an appropriate method of background 

correction. The results obtained with different data treatments were compared to results 
obtained with the raw data. 

It is clear from figure 3.1.1 that all the spectra contain peaks due to CO2 absorption. 
This is caused by ambient C02 present in the sample chamber and the interior of the 
instrument. Even with constant purging, it was difficult to fully remove all traces of 
C02 due to the design of the FTIR; hence for this stage of the work no attempts were 
made to remove the ambient C02 and it was generally assumed that ambient levels of 
C02 were more or less constant. Also visible in the spectra were water vapour peaks in 
the 1400-2000 cm' and 3550-4000 cm 1 regions. 
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Figure 3.1.2 is a close up of the region 2000-3500 cm"' highlighting the regions of 

absorption for the gases of interest. 
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Figure 3.1.1 Single beam transmission spectra obtained for single component gas 
samples 

Figure 3.1.2 Close-up of region 2000-3500 cm-' (high lighting the main absorption 
peaks) from single beam transmission spectra obtained for single component gas 
samples 



3.1.1.2 Savitsky-Golay Smoothing 

Smoothing is a process of averaging responses over specific windows (a set number of 

data measurements), hence it can be an effective means of removing random noise; 

however, if the windows employed are too large this can result in signals being 

averaged out. Generally, as was the case here, a window size equivalent to the square 

root of the total number of measurements is applied. Derivatisation was also applied. 

which has the effect of emphasising changes in gradients and hence peaks. 

The effect of first derivative, first order smoothing on the spectra is shown in figures 

3.1.3 to 3.1.6. Overall, the effect of smoothing is that baseline variation is no longer 

clearly visible and peaks due to absorption (particularly CO2 and water vapour) are 

emphasised. 

MLR models using the entire spectra 

MLR models were built as described in section 2.1, using "leave one out" validation 

(where all but one spectrum were used to calculate the MLR coefficients, these 

coefficients were used to predict the concentration of the remaining spectra; this process 

was then repeated for each spectrum and the % error in prediction determined for each 

sample). Table 3.1.1 compares the average % error in prediction obtained for models 

built from raw and from smoothed data. 

Average % error in prediction 
Gas Raw data Smoothed data 
CO 11.55% 10.15% 
CO2 14.80% 11.63% 
CH4 31.44% 56.46% 

N-, O 85.56% 42.88% 

Table 3.1.1 Comparison of the average error in prediction between raw and smoothed 
data for single component calibration spectra 

For the CO spectra, the main features of interest occur in the region 2000-2200 cm-1 
(figure 3.1.3). The error in prediction from MLR models ranged from 2.67-19.6 % for 

the raw data and 3.1-21.96 % for the smoothed data. 

The main features for CO2 spectra (figure 3.1.4) are the absorption peaks at 2200-2400 

cm-', 3600-3800 cm-1 and 600-800 cm-1. The prediction errors for raw data varied from 
6.34-20.5 % and for smoothed data from 3.28-20.93 %. 
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Figure 3.1.3 CO data after first derivative, first order smoothing has been applied 
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Figure 3.1.4 CO2 data after first derivative, first order smoothing has been applied 
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Figure 3.1.5 CH4 data after first derivative, first order smoothing has been applied 
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Figure 3.1.6 N20 data after first derivative, first order smoothing has been applied 

For CH4 the main absorption peaks occur at 2800-3200 cm-1 and 1200-1400 cm -1 (figure 

3.1.5). The % error in prediction ranged from 0-98.6 % for the raw data and 0.69-204 % 

for the smoothed, with extremely poor predictions for sample 2 and sample 5. 

The main features of N20 spectra occur in the regions 1200-1300 cm-' and 2200-2300 

cm ' (figure 3.1.6). Errors in prediction ranged from 33.61-2475 % for raw data and 

6.63-295 % for smoothed data. 

From these results it is unclear whether smoothing is advantageous or not. The 

prediction model for smoothed N20 data was significantly improved over the model 

built from raw data, similarly predictions for CO and CO2 were slightly improved; 

however, the smoothed spectra model for CH4 generally gave worse predictions. 

To further investigate the effect of smoothing on prediction models, the VS-MLR 

algorithm was applied to the data. 

Variable selection on raw and smoothed calibration spectra 

As discussed earlier, in section 1.3.3, MLR models are greatly affected by co-linearity 

within data hence VS-MLR was applied to the data to improve prediction errors. The 

aim of the variable selection is to reduce the number of measurements thus eliminating 

effects of co-linearity. 

Results from variable selection are shown in table 3.1.2. This table shows the 

wavenumbers selected, the SEPs obtained for the validation spectra using the selected 

wavenumbers and the % error in prediction for each of the validation samples. The 

SEPs obtained were generally lower for the smoothed data than for the raw; however, 

comparing the selected wavenumbers to where they occur on the spectra it is clear that 

none of these related to the main regions of absorption. Many of the selected variables 
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were at wavenumbers <500cm' or >4000 cm-', both regions of little or no energy 

transmission thus indicating problems with the selection models. This was most likely 

due to the effect of background variation. 
Another problem was the large number of variables selected. One of the aims of the 

selection was to limit the number of wavenumbers required; ideally this would be only 

one or two wavenumbers per gas; however, in many cases this was exceeded including 

several runs where over 500 variables were selected. 

N20 data Wavenumbers selected from variable selection models SEP % error in prediction 

raw data 274 7753 3503 2380 3483 2171 7883 cm-1 2.06 41.9 

458 wavenumbers selected 1.52 18.61 

157 62 351 359 1281 cm-1 2.35 92.9 

201 48 46 164 220 cm-1 1.97 49.55 
Smoothed 5709 1348 3825 1308 3530 1836 2255 cm-1 1.48 13.76 

2519 2517 2133 2534 2513 cm-1 1.9 10.07 

7870 2149 6502 2475 3462 6408 7146 cm-1 1.53 14.09 

2627 2477 3537 cm-1 1.69 15.04 

CH4 data Wavenumbers selected from variable selection models SEP % error in prediction 

raw data 262 174 13 cm-1 3.79 29.71 
243 368 370 257 137 cm-1 2.32 20.06 
368 262 60 156 cm-1 1.54 8.87 
147 137 71 cm-1 2.18 18.44 

Smoothed 75 variables selected 2.76 21.04 
65 variables selected 1.77 17.3 
7794 1381 3055 cm-1 0.76 6.38 
26 variables selected 1.71 12.69 
220 222 218 cm-1 1.64 22.15 

CO2 data Wavenumbers selected from variable selection models SEP % error in rediction 
raw data 12 7760 7854 cm-1 1.68 7.41 

177 197 339 cm-1 1.57 10.1 
123 270 129 cm-1 0.69 5.59 

Smoothed 301 3634 cm-1 0.46 1.82 
over 620 variables selected 0.32 3.27 
3180 variables selected 0.52 3.32 
1668 2438 3732 1086 cm-1 0.93 5.43 
526 variables selected 0.32 3.27 

CO data Wavenumbers selected from variable selection models SEP % error in prediction 
raw data 104 243 cm-1 0.14 0.82 

214 187 cm-1 1.38 5.13 
Smoothed 797 cm-1 0.3 105.24 

324 301 95 2750 cm-1 0.01 0.04 

Table 3.1.2 Errors in prediction obtained for different sets of wavenumbers selected from models built using smoothed and raw data from single component samples 
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Correlation at different wavenumbers for raw and smoothed data. 

Correlation coefficients were calculated at each wavenumber between the response and 

the amount of gas injected. This was performed on the raw and the smoothed data to 

see if this had any bearing on why the selected variables were not in the regions of 

interest. Correlations for the raw data, shown in figure 3.1.7, generally resemble 

absorption spectra; however, the correlations for the cut-off and low energy 

transmission regions (i. e. <500 and >5000 cm') were high (both positive and negative) 

and this possibly explains why most of the selected variables were chosen from these 

regions. 

Correlation for raw data 
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Figure 3.1.7 Correlation coefficients between response and concentration at different 
wavenumbers for single component gas samples 
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Figure 3.1.8 Correlation coefficients between response and concentration at different 
wavenumbers for smoothed data 
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The results for the smoothed response, shown in figure 3.1.8, gave high correlations 

(both positive and negative due to derivatisation) for variables relating to regions of gas 

absorption; however, unlike the analysis performed on the raw data, the correlation did 

not increase at the end portions of the spectra. 

Conclusion on Savitsky Golay Smoothing 

MLR models using the entire spectra gave no clear indication that smoothing improved 

prediction ability. Applying the VS-MLR algorithm to the data generally gave lower 

SEPs than for the raw untreated data; however, the selected wavenumber sets were 

unsatisfactory as they either contained too many wavenumbers or wavenumbers that did 

not relate to absorption regions for the gases of interest. Based on these results it can be 

concluded that there was no significant advantage in applying Savitsky Golay 

smoothing to the data, thus further data treatment methods were investigated. 

3.1.1.3 PCA Reconstruction of data 

Another approach to removing background variation was to utilize PCA. In PCA, the 

data is decomposed into scores and loadings, hence this was applied as a means to 

reconstruct the data by utilising only the principal components relating specifically to 
the variation attributed to the gases of interest. PCA was performed on the raw data 

without any pre-treatment such as scaling or mean centring so as a result the loading of 
the first principal component is effectively an average spectrum. 
For PCA performed on the spectra collected for CH4,99.98 % of variation was 
described by PC 1 (principal component one) and a further 0.02 % described by PC2. As 

expected the loading for PCI resembles a typical unratioed scan. 
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The loading for PC2 resembles a typical absorption spectrum for CH4. These loadings, 

the scores for PC2 and the reconstructed data are shown in figure 3.1.9. Reference 

spectra for CH4, CO, CO2 and N20 (taken from the NIST database64) can be found in 

the appendix (section 6). 
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Figure 3.1.9 PCA reconstruction of CH4 spectra with plots showing; the loading for 
principal component one, the loading for principal component two, the scores for 
principal component two, and the reconstructed data obtained by multiplying the 
scores and loadings for principal component two 
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Similar results were obtained for PCA on the CO spectra with PC 1 describing 99.98 % 

of variation and component two accounting for 0.02 %. Examining plots of the results 

(figure 3.1.10) it can be seen that the loading for PC2 gave a similar pattern in response 

to reference spectra for CO. 
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Figure 3.1.10 PCA reconstruction of CO spectra with plots showing; the loading for 
principal component one, the loading for principal component two, the scores for 
principal component two, and the reconstructed data obtained by multiplying the 
scores and loadings for principal component two 
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PCA on the CO2 spectra gave 99.95 % of the variation described by PC 1, with a further 

0.05 % described by PC2. Again the reference spectra resembled most closely the 

loading for PC2 (figure 3.1.11). 
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Figure 3.1.11 PCA reconstruction of CO2 spectra with plots showing; the loading for 
principal component one, the loading for principal component two, the scores for 
principal component two, and the reconstructed data obtained by multiplying the 
scores and loadings for principal component two 
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PCA on N20 resulted in 99.7 % of variation that was described by PC I, and 0.3 % 

described by PC2. As with the analysis on the other gases, the loading for PC2 

resembled the reference spectra (figure 3.1.12). 
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Figure 3.1.12 PCA reconstruction of N20 spectra with plots showing; the loading for 
principal component one, the loading for principal component two, the scores for 
principal component two, and the reconstructed data obtained by multiplying the 
scores and loadings for principal component two 
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Figure 3.1.13 displays plots of the amount of gas injected against the sample scores for 

PC2 for each of the gases. The plots give correlations between the scores and 

concentrations ranging from 0.9 to 0.98, thus demonstrating that the variation described 

by PC2 does indeed relate to the gases of interest. 
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Figure 3.1.13 Sample scores for principal component two versus the corresponding 
sample concentration (%) 

Table 3.1.9 gives comparisons for some of the results obtained from variable selection 

on raw data and variable selection on the data reconstructed from PC2. Included are 

results from models employing all the variables and from models using the top 10 

variables that gave the best correlations for the gas of interest. 

Direct comparisons are difficult to make as the results obtained depend on which 
wavenumbers were selected, therefore the average SEP was used as a general indication 

of performance. In almost all cases, the SEP for the reconstructed PC2 data was worse 

than with raw data; however, the wavenumbers selected from the PC2 data were closer 
to absorption regions. 
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CO Wavenumbers used SEP 

raw All 34.61 

raw 163.9 302.8 38.6 cm-' 0.57 

raw 167.8 177.5 cm-' 0.17 

raw top 10 4.60 
PC2 All 107.74 
PC2 2931.8 2208.5 1219 cm-' 1.14 
PC2 4820.1 4629.1 883.4 cm-' 3.44 

PC2 top 10 17.23 
CO2 Wavenumbers used SEP 
raw All 19.06 

raw 2360.9 3.9 cm-' 1.51 
raw 165.9 21.2 cm-' 2.29 

raw 7618.8 416.6 7046 1186.2 cm-' 2.62 
PC2 top 10 40.33 
PC2 5346.7 4530.8 4050.5 cm"' 5.43 
PC2 1107.1 4087.1 4121.9 3990.7 cm"' 7.16 
PC2 243 5317.7 5321.6 5308.1 cm-1 6.34 
N20 Wavenumbers used SEP 

raw 218 216 254 333.7 cm-1 1.16 

raw 347.2 61.7 108 cm-1 2.53 
PC2 6162.6 6077.7 5690 2900.9 1969.3 7541.7 cm-1 0.20 
PC2 3954.1 2962.7 3487.3 3410.1 cm-1 10.63 
PC2 All 5.75 
PC2 top 10 7.45 
CH4 Wavenumbers used SEP 
raw All 3.33 
raw 360.7 246.9 7848.3 cm-1 3.51 
raw top 10 3.11 
PC2 All 30.24 
PC2 806.2 4611.8 1543 4862.5 4091 cm-1 2.92 
PC2 top 10 30.25 

Table 3.1.9 Comparison of results using raw data and data reconstructed from PC2. 
`All' refers to models built using the entire spectra, `Top 10' refers to models built 
using measurements from the top ten wavenumbers of highest absorption, otherwise 
the wavenumbers used were from variable selection models 
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3.1.1.4 Work using reference peaks 

CH4 employed as an internal reference for CO samples 

To compare the deviation of response without the influence of background variation, the 

spectra were converted to absorption spectra by ratioing against scans obtained when 

the cell was purged between samples. The plot of the % RSD (figure 3.1.14) over 

different wavenumbers shows the RSD for CH4 absorption to be less than 2 %. As 

expected, the highest deviations are obtained at wavelengths relating to the CO 

absorption with the magnitude directly related to the molar absorptivity for the given 

wavenumber. 

RSD between absorbance for samples of different CO 
concentrations (CH4 as an internal standard) 
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Figure 3.1.14 Standard deviation for absorption spectra for samples employing CH4 
as an internal reference 
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3.1.15 Comparison of different data treatments on the responses obtained for 
different CO concentrations 

A comparison between different data treatments (figure 3.1.15) for the response at 

wavenumber 2200 cm-' shows that similar correlations were obtained between response 

and concentration when the data was divided by the reference peak, and for that 

between concentration and untreated data. The best correlations were obtained when 

logs were taken of the responses. 

Variable selection was then performed on the data to further assess the effect of dividing 

by a reference peak. 
Results from the selection models gave variable results; some of the results are shown 
in table 3.1.10. In many of the cases, wavenumbers <500 and >5000 cm-I were being 

selected. The lowest SEP obtained was 0.28, this occurred when the data was divided by 

the CH4 reference peak and then normalised, this model included three wavenumbers 
directly related to CO absorption i. e. in the range 2000-2300 cm-'. This was regarded as 

a promising result so further investigations were carried out employing reference peaks. 
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Divided by CH4 peak 
SEP Wavenumbers 
1.84 7697.9, 364.5, 358.8, 229.5, 7784.7,7809.8,3.9,366.5,381.9,1.9 
0.97 356.8, 7736.5, 366.5, 358.8, 6654.4,6669.8,229.5,1.9,6473.1,7271.6,7734.5,3.9 
0.4 312.5, 326.0, 192.9, 229.5, 300.9,358.8 
3.43 354.9, 358.8, 163.9 

Divided by CH4 peak and normalised 
SEP wavenumbers 
0.67 358.8, 356.8, 229.5, 312.5, 326.0 
3.06 3012.8, 358.8, 7611. 1,1.9, 7719.1,368.4,7829.0,7645.8,3.9,7699.8,229.5,7790.5 
0.28 273.9, 299.0, 241.1, 277.7, 358.8,2081.2,2085.0,2139.1,345.3,2210.4,229.5 
1.08 356.8, 212.2, 358.4, 3.9,229.5,7676.7 

Table 3.1.10 SEP obtained for models built from CO calibration spectra divided by a 
CH4 reference peak, with and without normalisation pre-treatment 

Comparison between internal and external references 
The employment of an external reference was compared to that of an internal reference 
by measuring the same gas samples. The advantage of an external reference was that it 

did not require the addition of a fixed amount of reference gas to each sample. In this 

case the reference peak was provided by a piece of polymer film placed next to the gas 
cell. The response due to the reference should always be constant, hence it can be used 

as a ̀ reference' to compensate for changes in response arising from such factors as 

changes in source emission. The disadvantage with an external reference is that it can 
not compensate for variations due to the sample itself (for example errors in the 

amounts of gas injected) and changes within the gas cell e. g. a slight change in mirror 
alignment. The advantages of an internal reference is that it can be used to compensate 
for changes within the cell itself, as well as for external changes in room temperature 

and pressure. The gas samples were prepared by injecting fixed volumes of gases into 

the gas cell at room temperature and pressure, and to simplify the calculations it was 
generally assumed that the temperature and pressure were effectively constant when 
converting these amounts into the corresponding concentrations. Variations in room 
pressure and temperature would also affect the concentration of the internal standard 
added, thus allowing these effects to be compensated for; however, the amount of 
internal standard injected is still subject to the same experimental errors as the other 
gases. 
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Table 3.1.11 lists results obtained for variable selection runs using raw data and for data 

divided by the N20 reference. 

Spectra without Polymer Film 
Data Wavenumbers SEP 

Raw All 0.51 
Raw 150 selected 0.21 
Raw 44 selected 0.16 
Divided by N20 peak at 1304 cm All 0.69 
Divided by N2O peak at 1304 cm 2735,3011,2399,3019 cm 0.36 
Divided by N20 peak at 2579 cm All 0.39 
Divided by NZO peak at 2579 cm 3028,3015,2351,3007,2401 cm 0.13 
Divided by NZO peak at 2579 cm 1196,1263,417,1076,472 cm 0.09 

Spectra with Polymer Film (same training and validation spectra): 
Data Wavenumbers SEP 
Divided by peak at 758 cm All 0.59 
Divided by peak at 758 cm 3221,2825,2574,3017,2097 cm 0.22 
Divided by peak at 758 cm 2814,2097,2353,2824,2575 cni 0.19 
Divided by peak at 1030 cm All 0.59 
Divided by peak at 1030 cm 1653,2515,2758,2262,2031 cm 0.21 
Divided by peak at 1030 cm 3628,2758,2031,2951,2509 cm 0.22 

Table 3.1.11 SEP obtained for models built from CH4 calibration spectra (plus N20 as 
an internal standard) with and without polymer film 

Variable selection on the raw spectra resulted in a large number of wavenumbers 
selected. Dividing the spectra by the N20 transmission response at 1304 cm 1 gave 
worse predictions than the raw data; however, dividing the data by the N20 
transmission response at 2579 cm-1 improved the errors in prediction and smaller 
numbers of variables were selected. 
Results with an external reference gave better predictions than the models built from 

spectra divided by the N20 response at 1304 cm'', but not as low as those for data 
divided by the response at 2579 cm 1. 
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CO2 and N20 samples with SF6 as an internal standard 

Results from the models built from CO2 spectra are shown in table 3.1.12, and the 

results for N20 spectra are shown in table 3.1.13. 

CO calibration using SF as an internal standard 
Data used Wavenumbers SEP 

Raw 102 selected 0.79 

Raw 5512.5,4258.8,4476.8,4586.7,4820.1,4773.8 cm 0.66 

Raw 565 selected 0.99 

Raw 4104.5,4750.7,4771.9,4287.7,4675.4,4604.1,4476.8 cm 0.53 

Raw 3730.3,3639.7,3255.8,3809.4,3736.1,3512.4 cm 0.54 

Divided by SF6 peak 4384.2,5146.1,4594.4,4820.1,4634.9,4474.8 cm 0.49 
Divided by SF6 peak 144 selected 0.70 

Divided by SF6 peak 406 selected 0.93 

Divided by SF6 peak 3938.6,4038.9,3608.8,3639.7,3689.8,3512.4 cm 0.59 

Divided by SF6 peak 4135.4,6226.2,6679.5,6696.8,6532.9,6585.0 cm 0.55 

using training spectra 1,3,4,5,7 and validation spectra 2,6,8,9 
" using training spectra 2,4,7,8,9 and validation spectra 1,3,5,6 

Table 3.1.12 SEP obtained for models built from CO2 calibration spectra plus SF6 as 
an internal standard 

N20 calibration using SF6 as an internal standard 
Data used Wavenumbers SEP 
Raw 212 selected 3.21 

Raw 2125.6,3487.3,3358.1,3844.1,1967.4,3388.9 cm' 3.3 
Raw 1423.5,3728.4,3728.4,3475.7,3410.1,3385.1,3851.8 cm 2.69 
Divided by SF6 peak 4181.7,1975.1,4521.1,4810.5,4374.5,3441.0 cm 4 1.67 
Divided by SF6 peak 4403.5,4887.6,4515.3,3660.9,4806.6,3441.0 cm l 3.07 
Divided by SF6 peak 2522.9,2607.8,4351.4,4777.7,5367.9,4820.1,4353.3 cm 2.84 
Divided by SF6 peak 6218.5,4521.1,4499.9,2623.2,7360.7,4806.6,3441.0 cm ' 3.38 
Table 3.1.13 SEP obtained for models built from N20 calibration spectra plus SF6 as 
an internal standard 

In this case, the results obtained for the CO2 and N20 models gave similar errors in 

prediction, thus at this stage it was inconclusive as to whether the addition of an internal 

standard was advantageous. Previous work employing N20 and CH4 suggested results 

could be improved, and this had led to the investigations using SF6. 

SF6 was chosen as an internal standard as none of its absorption peaks overlapped with 
CO, C02, CH4 or N20. SF6 had no adverse effect on the spectra; hence it continued to 
be added to gas samples while further investigations were carried out on background 

variation compensation. 
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3.1.1.5 Conclusion 

The aim of this stage of the work was to determine the most effective data pre-treatment 

to apply to the spectra prior to building prediction models. 

From the analysis of the raw data it was clear some means of correcting for 

background/baseline variation was required. The approaches investigated were 

Savitsky-Golay smoothing, reconstruction of the data using PCA and the addition of 

internal and external standards. To judge the effectiveness of the treatments, 

comparisons were made between the prediction errors (SEP) of MLR and VS-MLR 

models built from the data with different pre-treatments applied. As a general rule, 

applying MLR to the entire spectra will result in poor prediction errors due to co- 

linearity and singularity problems (as discussed in section 1) therefore lower prediction 

errors may not necessarily be a true indication of better data, hence VS-MLR results 

were also compared. The drawback with comparing VS-MLR results was that the SEPs 

obtained from the prediction models were determined by the final wavenumbers 

selected, which in turn depended on the performance of the VS algorithm. 

The performance of the VS algorithm depended on the settings, particularly what values 

were assigned to the convergence levels, (which links back to the amount of error and 

type of data employed). Thus further investigations were carried out in the next stage of 

the work focusing on the effect of changing the different settings on the VS-MLR 

program. 
To determine whether the data treatment was effective, not just the SEPs were 

compared, but also the number of wavenumbers selected, and whether they were 

reasonable i. e. if they corresponded to regions of absorption for the analyte of interest. 

Comparing the actual wavenumbers selected showed that the Savitsky-Golay and PCA 

reconstruction gave no significant improvement over the raw data, hence these 

treatments were no longer applied. 

The employment of an internal reference gave improved results in some cases, and little 

difference in others, so more investigation was required, hence an internal standard was 

added to further gas mixtures. 

The transmission data was not compared against absorption spectra (i. e. spectra 

obtained by ratioing the scans against background scans), therefore absorption spectra 

were collected in subsequent work to allow further comparisons of different data 

treatments. 
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Another approach not previously investigated was the application of' I'LS models as 

opposed to MLR and VS-MLR models, subsequently this was also included in the next 

stage of the work. 

3.1.2 Mixtures of the four gases plus SFB6 as an internal standard 

3.1.2.1 Appearance of spectra and effect of division bti, reference peak 

The raw single beam spectra obtained for the different sample mixtures is shown in 

figure 3.1.16 and the corresponding absorption spectra in figure 3.1.17. As with the 

previous calibration spectra. variations in the energy transmission can be clearly seen in 

the raw single beam spectra, hence division by the reference SF , peak was applied. 
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Figure 3.1.18 compares the effect of dividing the spectra by a reference point and 

normalising. Dividing by the reference point increased the responses by a factor of 10, 

but still left a high degree of variation in the baseline. With normalisation the point of 

highest transmission is set to I and regions with no transmission set to 0, thus 

effectively shifting the baselines to the same magnitude. Focusing on the region where 

the main absorption peaks occur, i. e. 1500-4000 cm t, (figure 3.1.18) clearly 

demonstrates the effectiveness of this treatment in removing baseline variations. 

Comparing the treated spectra with the original raw data, it can been seen that changes 

in the overall transmission no longer have a significant effect on the spectra and 

variations due to absorptions by the different gases are accentuated. This is 

advantageous as any models built from the data no longer have to compensate for 

baseline variation. 
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Figure 3.1.18 The effect of data pre-treatment on spectra obtained for mixtures of 
CO, C02, CH4 and N20 
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3.1.2.2 Score plots 

PCA was performed on the spectra and score plots for different PCs were examined to 

check for any abnormalities within the data. Further discussions about the utilisation of 

scores plots can be found in section 3.7. 
Score plot for PC1 vs. PC3 (w+6 of namabsation) Score plot for PC1 vs. PC2 (without normalisation) 

10 15 

+10 +11 012 +2 +21 +5 

5 +21 
10 

+21! +8 +6 
+17 +22 +8+1 6 +6 +19+18 

+1449 
+1 

+7+5 
5 

+16 +7 
0 +17 0 +3 +10 

+14 +23 +12 

-5 
U 3 +4 5 

+15 
+15 +24 193 

+19 
10 +1 

+18 +11 +2+23 -10 +9 
+20 15 +24 

-151 1 
170 180 190 200 210 220 

2060 
170 180 190 200 210 220 

PC1 score PC1 score 

Score plot for PC1 w. PC2 (with normalisation) Score plot for PC1 vs. PC3 (with normabaatlon) 
0.8 0.6 

0.6 +a+5+22 
4 0 

+10 +11 
+12 +3 

. +2 
0.4 +17 

+19 +1 +18 
+21 +22 

+8 +16 4 0.2 
0.2 

+16+7 +1+5 +7 
0 0 +17 

+3 +10 
u-0-2. +12 cý1 -0.2 +14 +23 

-0.4 
+15 +20 +13 

+4 +13 
+24 

+1 0.4 +15 +19 
-0.6 3 

* 
+18 

-0.8 
+11 

+24 -0.6 
+9 

+20 

9.9 
10 101 10.2 10.3 10.4 10.5 10.6 -0.8 

PC1 score 10 10.2 10.4 10.8 
PC1 score 

Figure 3.1.19 Examples of score plots for data with no pre-treatment and for 
normalised data 

Score plots of the data (figure 3.1.19) exhibit a random dispersal of samples with no 

obvious outliers so it can be assumed there were no problems with any of the collected 

spectra. These plots were used to split the data into training and validation sets for the 

variable selection (discussed in more detail later). 

3.1.2.3 Analysis of independent validation data 

Independent data was collected to act as an additional validation set to test the model's 

abilities to predict new data. PCA was performed on all the data including the new 

validation data (collected two weeks later). 

The initial data had been collected over a period of three days. The new data was 

collected a couple of weeks later so PCA was performed on all the data to see if there 

was any significant difference between the data, ie. instrumental drift, artifact peaks, the 

amount of water vapour, changes in the gas cell mirror alignment, etc. 
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Score plots for the raw and normalised data are shown in figure 3.1.20. Samples I to 6 

are the new samples, as these are randomly dispersed in the score plot there is no 

significant difference between the old and new data. Any major differences would have 

resulted in clustering of the new samples from the rest. 
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Figure 3.1.20 Score plots with the independent validation samples (samples 1-6) 

3.1.2.4 Effect of resolution 

An important consideration in infrared spectroscopy is the resolution, this refers to the 

range of wavenumbers over which each measurement is made. At high resolution, i. e. 
less than 2 cm-1, each measurement is made over a very narrow range of wavenumbers; 

at low resolution each measurement covers a larger range of wavenumbers. With gases, 

absorption bandwidths are narrow (less than I cm-1), hence higher signal to noise ratios 

are obtained using higher resolutions. For the individual component spectra, the highest 

resolution possible with the FTIR instrument was employed; this corresponded to a 

resolution of 2 cm-1. However, for the detectors within the planned array the bandwidth 

measured will be much broader with bandwidths closer to 30 cm-1. To allow for this, 
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the resolution of the spectra collected for the quaternary gas mixtures was reduced. To 

compare the effect of reducing resolution, spectra were collected at low resolution using 

both 16 cm-1 and 32 cm' resolution. Figure 3.1.21 compares the average spectra 

obtained for 16 cm-1 and 32 cm -1 resolution. 

Comparison of average spectrum for 16 and 32 cm's resolution 
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3.1.21 Spectra obtained for four component spectra at both 16 cm -' and 32 cm'' 
(after division by reference peak and normalisation) (N. B. The spectra are staggered 
to facilitate comparisons, transmission response for the 16 cm-'resolution spectrum 
are shown on the left y-axis, and response for the 32 cm-'resolution spectrum on the 
right) 

At 16 cm', measurements were effectively the average response for a window of 15.4 

cm'', with the centre of each window every 7.7 cm"'. This resulted in 1024 

measurements between 0 and 8000 cm-1. At 32 cm -1 resolution, the windows are 30.9 

cm-1, with the centre every 15.4 cm' giving a total of 512 measurements. (NB. The 

reference peak used occurred at 941 cm'; for the 32 cm'' resolution spectra this 

corresponded to measurement number 62, for 16 cm' resolution data, the same peak 

corresponded to measurement number 130. ) Figure 3.1.22 displays the average SEP 

obtained for the four gases from 10 different selection runs for both resolutions, 

employing the same modelling conditions i. e. the same training and validation split and 

selection coefficients (the effect of these coefficients is discussed in section 3.2). 

Fluctuations in the SEP obtained for different runs arose due to different final 

wavenumbers selected; however, the main conclusion drawn was that prediction models 
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made with the 16 cm-1 and 32 cm-' spectra gave similar standard errors in prediction. It 

was decided to focus on the lower resolution spectra as the resolution would be closer to 

the bandwidth of the filters to be used in the detector array and further investigations 

were carried out on the 32 cm-' resolution, the results of which are discussed in section 

3.2. 

SEPs obtained for variable selection runs using 16 cm"' 
and 32 cm"' resolution spectra 
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Figure 3.1.22 SEP obtained for variable selection runs on 16 cm -1 and 32 cm' 
resolution 

3.1.2.5 Reproducibility of spectra 

The RSDs between samples made on different weeks and between samples made on the 

same day were compared for both raw data and scans divided by the SF6 reference peak 

(fig. 3.1.23). `Same day' refers to the three samples made on the same day, `different 

weeks' refers to the comparison of spectra collected on different weeks (with one 

spectra from each week), `all' includes all the replicate samples i. e. the three samples 

made on the same day plus the two samples made on different weeks. 

The regions with high RSD values (>100 %) occur at wavenumbers where the amount 

of energy transmitted was close to zero. Wavenumbers less than 500 cm-' corresponded 

to the cut off region and high RSDs between wavenumbers 2100-2200 cm I was due to 

large CO2 absorption peaks arising from atmospheric levels of CO2 in the air 

surrounding the gas cell in the sample chamber. 

Ignoring the aforementioned regions, the RSD between raw spectra for samples made 

on the same day (both the 0.19 % (1 ml) each and the 1.88 % (10 ml) each samples) 

averaged 1.2 % but was higher in absorption regions of interest. This increased to over 
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10% RSD (11 % for the 1.88% each samples and 14% for the 0.19% each samples) 

when comparing spectra from different weeks (see figure 3.1.23). 
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Figure 3.1.23 % RSD between replicate samples of 10 ml each (1.88% concentrations 
each for CH4, CO, CO2 and N20) and 1 ml each (0.19%), using raw single beam 

spectra 

After dividing the data by the reference response, the RSDs between samples made on 

the same day were at similar magnitudes to those obtained for raw data. 

The effectiveness of division by the reference peak can be seen when looking at the 

RSD between samples made on different weeks, where there is no longer any 

significant difference between same day and different week spectra (refer to figure 

3.1.24). 
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This demonstrates that baseline variation accounts for a high percentage of the overall 

variation between spectra compared to deviations arising from sample preparation 
(injection) errors. The RSD that can be attributed to variations in analyte concentration 

can be assumed to be less than 3 %, based on the assumption that variation in 

transmission at wavenumbers relating to regions where the gases absorb are directly 

proportional to concentration. 

3.1.2.6 Conclusion 
This work proved that dividing the data by a reference response, followed by 

normalisation, was effective in removing a large amount of the variation caused by 

changes in the baseline (as illustrated in figure 3.1.18). This was also demonstrated by 

comparing the % RSD between replicate samples collected over different weeks (figure 

3.1.24). 

These results lend weight to the idea of employing an internal standard as a means of 

compensating for background variation, therefore this method was continued. 
Also investigated was the effect of resolution, in particular 16 cm' and 32 cml. Ideally 
high resolution of 1 cm-1 or less should be employed for measuring gases, however as 
mentioned earlier, the resolution of the gas monitoring system being developed in this 

work is limited by the bandwidth of the QWIP detectors that will be used in the final 

array. Work by Kumer et al. employed lower resolutions of 8 cm 1 to monitor stack 
emissions thus demonstrating the feasibility of successfully utilising lower resolutions 
in gas monitoring. 2 The results of models built for 16 and 32 cm 1 resolution data gave 
similar SEPs, hence further work focused on the lower (32 cm 1) resolution. 
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3.2 Multivariate modelling with IR spectra 
This section focuses on multivariate models built using the IR spectral data from 

mixtures of CH4, CO, CO2 and N20 with SF6 as an internal standard. The aim was to 

determine sets of wavenumbers, suitable for incorporating into a detector array, that 

give comparable results to models based on the entire spectra 

3.2.1 VS-MLR 
The results from section 3.1 suggested reasonable prediction models could be built from 

32 cm' resolution data, hence this resolution was employed for further investigations 

into the VS-MLR algorithm and for PLS models. 
3.2.1.1 Optimisation of the variable selection process 

As described in section 3.2, the variable selection process has four different parameters 
that can be altered; ̀ maxvars', `convergence level 1', `convergence level 2' and the 

number of iterations. The effect of altering these different parameters was investigated 

to determine the optimum values, i. e. which values gave selected wavenumber sets with 
the lowest prediction errors. 
Effect of convergence levels on the average SEP value 
The convergence levels determine the extent the prediction error has to improve before 

wavenumbers are retained in the selection model, as a result they have a major impact 

on the selection process. 
The following tables show the effect of changing the convergence levels (cl) on the 

average SEP obtained for the final chosen set of wavenumbers. The number of final 

wavenumbers selected for the given convergence levels is also displayed. (N. B. Cl 2 has 

to be equal or greater than cl 1 otherwise large numbers of wavenumbers are selected 
since cl 2 ceases to have any effect in reducing the number of wavenumbers, two 

examples are included in the table to demonstrate this. ) 

Normalised data 

The SEP values and the number of selected variables obtained for different convergence 
level values are displayed in tables 3.2.1 and 3.2.2. 
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Convergence level 2 

0.9 1 1.2 1.3 1.4 1.5 1.7 23 

0.9 0.7572 0.7434 0.6890 0.7103 0.7103 0.7470 0.7095 0.7421 0.7421 

1 0.7574 0.7672 2.5414 2.9791 4.5984 3.7673 4.5749 4.5902 4.5888 

1.1 3.3303 3.0421 3.3606 4.0067 4.3517 4.3717 4.4208 4.2884 4.5810 
a, 

1.2 0.7294 0.6468 0.6158 0.6098 0.5984 0.6293 0.7330 0.6500 
v 

1.3 0.7852 0.6909 0.6702 0.7426 0.7533 0.6315 
E, 

1.4 0.5568 0.7057 0.6257 0.6422 0.9345 

1.5 0.8594 0.6829 0.6933 0.6016 0.9759 

1.7 0.5686 0.7722 0.7228 

2 0.8150 0.9434 
Table 3.2.1 Effect of convergence levels on the average SEP value (for Normalised 
data) 

Convergence level 2 
0.9 1 1.2 1.3 1.4 1.5 1.7 23 

0.9 14 12 6 6 6 6 5 5 5 
1 12 11 9 7 1 4 1 1 1 

> 1.1 15 11 10 7 2 3 2 2 1 
d 
m 1.2 243 17 16 17 16 16 16 6 
U d 1.3 15 14 12 11 5 8 
o) 

1.4 15 15 12 9 6 
ö 1.5 12 6 9 9 
V 1.7 10 9 9 

2 9 10 
Table 3.2.2 Number of wavenumbers selected for given convergence levels 

The cl values entered were between 0.9 and 2 for cl 1 and 0.9 and 3 for cl 2. Cl 1 values 

of less than 0.9 resulted in no wavenumbers selected, whereas cl 1 values greater than 
1.5 significantly increased the length of time the selection process took without any 

significant improvement on results. Cl 1 values of 1 and 1.1 resulted in average SEP 

values significantly higher than runs using different values, as well as only selecting a 
few wavenumbers (this is likely side effect of the normalisation treatment but this was 
never fully investigated). The minimum SEP value was 0.56 (with cl values 1.4 and 
1.4), however this required 15 wavenumbers and ideally a group of only 5 or 6 was 
preferred, this generally occurred when cl 1 was 0.9. 

111 



Non-normalised data 

Results for non-normalised data are shown in tables 3.2.3 and 3.2.4. 

Convergence level 2 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 

0.9 
> 0.95 0.6560 0.6560 0.5527 0.5825 0.5474 0.5305 0.5968 0.5974 0.6692 
d 

1 0.6999 0.7054 0.6100 0.7254 0.7394 0.7041 0.6248 0.8207 0.7968 

1.1 0.6354 0.6437 0.7950 0.8696 0.6711 0.9606 0.5399 0.9606 

> 1.2 0.7501 0.6242 0.7876 0.8018 0.7946 0.8259 0.8267 
c v 1.3 0.6780 0.8458 0.8421 0.7989 0.8632 0.8347 

1.4 0.6953 0.8284 0.7478 0.9409 1.0842 

1.5 0.7085 0.7650 0.9330 0.7532 

1.6 0.8120 0.8110 0.7989 

1.7 0.8371 0.7989 
* No variables selected 

Table 3.2.3 Effect of convergence levels on the average SEP value (for non- 
normalised data 

Convergence level 2 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 
O w w w w " w " " r 

0.9 13 13 7 6 7 6 7 7 7 

1 17 17 13 16 17 9 6 11 14 

1.1 17 13 11 17 12 14 8 7 

1.2 13 18 15 11 9 7 8 
1. 16 15 10 8 15 7 

1.4 12 16 7 10 13 
0 1. 10 12 15 13 
v 

1. 16 12 11 

1. 10 7 
Table 3.2.4 Number of wavenumbers selected at given convergence levels (for non- 
normalised data) 

The average SEP value ranged between 0.53 and 1.08, with the lowest SEP obtained 

when cl values of 0.95 and 1.5 were set. No wavenumbers were selected when cl 1 was 
less than 0.95 and unlike the normalised data there was no significant increase in 

prediction error when using a value of 1.1 for cl 1. 

112 



Effect of maxvars 

`Maxvars' is the maximum number of variables employed in the selection process, i. e. 

by setting `maxvar' to 200 the process stops adding any more variables after a total of 

200 variables have been used. This has the advantage of lowering the amount of time 

taken for the selection process to be performed, particularly when large data sets are 

analysed; however, if this value is set too low, important variables can be missed out of 

the process. 

With the IR data analysed (consisting of 512 wavenumber measurements) the lowest 

SEP values were obtained when the maximum number of wavenumber measurements 

used in the variable selection process was greater than 400. Below this, the errors in 

prediction increased exponentially with decreasing numbers of wavenumbers (figure 

3.2.1). For most of the variable selection runs, a minimum of 480 wavenumbers were 

utilised 

Effect of maxvars on average SEP (normalised 
data) 

3.5 
3 

2.5 
IL 2 
w 
ch 1.5 

1 
0.5 

0 

maxvars 

Figure 3.2.1 Effect of the maximum number of wavenumbers used in the variable 
selection process 

Effect of number of iterations 

The results showed that the average SEP varied with each run irrespective of the 

number of iterations per run (figure 3.2.2) and was more dependent on the actual 

wavenumbers selected. There was no significant change when the number of iterations 

was increased from 10 to 100, subsequently only 10 iterations were employed as this 

was faster and allowed more time to be spent investigating the different convergence 
levels. 
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Effect of repeating runs using the same 
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Figure 3.2.2 Effect of number of iterations on the final SEP 

3.2.1.2 Errors in predictions for different wavenumber sets 

Table 3.2.5 lists the SEP values for some of the different wavenumber sets. This 

compares the results obtained when all the wavenumbers (the entire spectra) were 

employed with selected wavenumber sets. The different wavenumber sets included; 

measurements from peak maximums i. e. wavenumbers corresponding to main 

absorption bands due to analytes and various sets chosen by the variable selection 

process. Comparing the average SEP for the different wavenumber sets indicated that 

better results could be obtained with variable selection than by using wavenumbers 

relating to those of highest absorption. As expected, variable selection results gave 
better results than with the entire spectra. 

Wavenumbers used in model CH4 CO CO2 N20 Average 
All wavenumbers (normalised) 2.09 1.11 0.45 1.08 1.18 
All wavenumbers (no normalisation) 1.97 0.69 0.63 1.33 1.15 
Peak maximums at [3009,2577,2469,2345,2222 and 2114cm-'] 1.34 0.71 4.27 0.42 1.69 
Peak maximums at [3009,2577,2469,2345,2222,2114,3487,3626 
and 3734cm" ] 0.83 1.20 0.45 0.46 0.73 
From VS-MLR[2037,2886,3009,2391,2639,2099,3487 and 
3657cm"] 0.43 0.92 0.80 0.80 0.74 
From VS-MLR[1404,2114,6110,3704,401,3040,256]cm-'] 0.78 0.79 0.50 0.56 0.66 
From VS-MLR[7407,602,3734,4274,3719,3487,2037,1790cm-1] 0.61 0.71 0.40 0.69 0.60 
From VS-MLR[2808,1204,2716,2886,3657,2037cm-'] 0.38 0.57 0.46 0.52 0.48 

Table 3.2.5 Comparison of SEP values obtained from models built with different 
wavenumber sets 
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Frequency Plots 

Frequency plots show which wavenumbers/regions were most commonly selected, 
ignoring wavenumbers selected 2 or less times most of the selections occurred in the 

region 2000-4600 cm 1, especially between wavenumbers 2000-2200 cm-1 (for both 

normalised and non-normalised data) and 2400 to 2600 cm-1 (non-normalised data) 

(results shown in table 3.2.6 and figure 3.2.3). 

Data without normalisation Normalise d data 
Variable Frequency CM 7, (2d. p. ) Variable Frequency cm 7l 2d. . 157 16 2407.16 4.15 133 18 2036.83 4.91 
133 15 2036.83 4.91 188 10 2885.5 3.47 
158 12 2422.59 4.13 196 10 3008.95 3.32 
159 10 2438.02 4.1 156 7 2391.73 4.18 
282 10 4335.97 2.31 172 7 2638.61 3.79 
161 9 2468.88 4.05 82 6 1249.87 8 
170 9 2607.75 3.83 137 6 2098.55 4.77 
223 8 3425.57 2.92 227 6 3487.29 2.87 
231 8 3549.01 2.82 278 6 4274.25 2.34 
190 7 2916.36 3.43 132 5 2021.39 4.95 
229 7 3518.15 2.84 138 5 2113.98 4.73 
279 7 4289.68 2.33 224 5 3440.1 2.91 
49 6 740.66 13.5 238 5 3657.03 2.73 
61 6 925.83 10.8 39 4 586.36 17.05 

62 6 941.26 10.62 79 4 1203.58 8.31 
287 6 4413.12 2.27 136 4 2083.12 4.8 
366 6 5632.13 1.78 168 4 2576.89 3.88 
10 5 138.87 72 01 171 4 2623.18 3.81 

134 5 2052 26 
. 

4 87 199 4 3055.24 3.27 
189 5 

. 
2900 93 

. 
3 45 232 4 3564.44 2.81 

233 5 . 3579 87 
. 

2 79 242 4 3718.75 2.69 
. . 244 4 3749.61 2.67 

267 4 4104.51 2.44 
425 4 6542.53 1.53 

uvw j., 6. u r requency luawes vitae rap seeecrea variao[es (plus the wavenumber and 
wavelength they correspond to) for variable selection runs (with SEP <0.7) 

Wavenumbers 2000-2200 cm" correspond to CO absorption peaks so prediction models 
would require at least one wavenumber selected from this region in order to predict CO 

concentrations. Comparing the other frequently selected wavenumbers to reference 
spectra, it is clear that most of these relate to absorption regions (N. B. Reference spectra 
can be found in the appendix (section 6). 
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Frequency plot for 32 cm' normalised data using runs with 
average SEP less than 0.7 
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Figure 3.2.3 Frequency plot of wavenumbers selected from variable selection runs 
performed on 32 cm I resolution data (with data divided by reference and normalised 
treatment) 

For wavenumbers selected with normalised data, models were built using the top 13 

most selected wavenumbers (i. e. those selected 5 or more times), the top 8 and the top 

4. Variable selection was performed on the top 13 selected wavenumbers and this 

resulted in the 2nd, 7th, 11th, 12th and 13th wavenumbers being chosen i. e. 

wavenumbers 2886,2099,2114,3441 and 3657 cm-'. 

The SEP values obtained are shown in table 3.2.7. 

Model CH4 CO CO2 N20 Average 
Top 13 0.54 0.85 0.92 0.61 0.73 
Top 8 0.49 0.80 1.52 0.53 0.84 
To 4 1.10 1.11 1.25 5.54 2.25 
Selected set 0.54 0.76 0.65 0.30 0.56 

Table 3.2.7 SEPs obtained from models built from top selected wavenumbers 

The best results were obtained using the selected set. Figure 3.2.4 relates the selected 

wavenumbers to the spectra, wavenumbers 2099 and 2114 cm-1 mainly relate to CO 

absorption, 2886 cm I to CH4, and 3441 cm -1 to N20. None of these wavenumbers seem 

to relate specifically to CO2 absorption. This was most likely a result of over fitting the 
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data, hence the effectiveness of different models for predicting new validation spectra 

was assessed. 

Close up of where selected wavenumbers occur in relation to spectra 
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Figure 3.2.4 Plot showing where the selected wavenumbers 2886,2099,2114,3441 

and 3657 cm-1 occur in relation to spectra 

3.2.1.3 Prediction of new validation data 

Models built from selection sets that gave low prediction errors were employed to 

predict concentrations for new spectra (using the same selected wavenumbers). Figure 

3.2.5 displays the SEPs obtained for each gas for both the original validation data (used 

in the selection process) and for the new validation data. The results do indicate over 
fitting in some of the models, for example in the previously mentioned set consisting of 

wavenumbers 2886,2099,2114,3441 and 3657 cm-' (set a in figure 3.2.5), none of the 

wavenumbers specifically relate to CO2 absorption peaks and this clearly caused an 

inability to predict CO2 concentrations for new validation data. 

Out of the wavenumber sets tested, only sets c (consisting of wavenumbers 1404,2114, 

6110,3703,401,3040 and 2561 cm-1), j (wavenumbers 2129,2284,3071,3148 and 
3487 cm"') and k (2145,2284,3086,3163 and 3487 cm"') gave similar SEPs for the 

two validation sets, thus indicating these models were more robust, and less sensitive to 
background variations. 
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Change in SEP values when using different validation data 

6 13 CH4 
  CO 
Q C02 

5 13 N20 
  CH4 (new data)!, 
O CO(r ew data) 

4IIII 10 0 new data) 
N20((new data) 

CL W3 
N 

z111 I_ rill _  

1 

0 
abcdefghijk 

et elected wavenumbers cm" contained within set 

a 2099 2114 3441 2886 3657 
b 2037 3487 3441 2114 2886 3657 

c 1404 2114 6110 3703 401 3040 2561 
d 7407 602 3734 4274 3719 3487 2037 1790 

e 2808 1204 2716 2886 3657 2037 

f 2037 2407 2608 2423 2438 2469 3426 4290 
g 2037 2407 2469 3009 4336 2438 2886 3487 4290 
h 2423 2037 3426 2407 2438 2608 4413 

1003 926 4413 2639 3564 4290 2423 
j 2129 2284 3071 3148 3487 
k 2145 2284 3086 3163 3487 

Figure 3.2.5 SEP obtained for original and independent validation data for different 

wavenumber sets 

For easy comparisons the average SEP was calculated to compare the selection results. 

In this case the concentration values were related to the amounts of each gas injected 

into the gas cell, more commonly percentage error is used to evaluate prediction ability 

so a closer inspection of the percentage error performed. 

Table 3.2.8 gives the average % prediction error obtained with wavenumber sets c, j and 
k for the original and the new validation data. Wavenumber set k give the most similar 
% error between the original and new validation data. Table 3.2.9 shows the predicted 

and actual concentrations, together with the % error of each sample for the model built 
from set c. 
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Wavenumber set CH4 CO CO2 N20 Average 

1404,2114,6110,3703,3040,2561 cm-' original validation 10.98 15.11 10.7 11.1 11.97% 

1404,2114,6110,3703,3040,2561 cm' independent validation 23.87 10.9 20 9.5 16.07% 

2145,2284,3086,3163,3487 cm" original validation 10.2 14.01 12.5 12.5 12.30% 

2145,2284,3086,3163,3487 cm-' independent validation 18.51 19.94 16.1 12.3 16.71% 
2129,2284,3071,3148,3487 cm" original validation 5.77 25.71 12.6 12.4 14.13% 

2129,2284,3071,3148,3487 cm' independent validation 14.96 12.28 17.5 9.85 1 13.64% 

Table 3.2.8 Average % error in prediction for selected sets c, j, and k 

% error in prediction for original validation data 

CH CO CO2 N20 

predicted actual % error predicted actual % error predicted actual % error predicted actual %a error 

907 566 60.24 1796 2075 13.47 2056 2075 0.94 6467 5660 14.25 

1898 1887 0.59 1701 1887 9.83 1924 1887 1.99 17966 18868 4.78 

2175 2264 3.92 426 377 12.98 2085 2264 7.93 19542 20755 5.84 

1656 1698 2.48 390 377 3.41 492 377 30.38 4591 3774 21.67 

198 189 5.10 1786 1698 5.17 195 189 3.28 4165 3774 10.37 

1836 1887 2.68 366 377 2.91 1752 1698 3.19 10913 9434 15.68 

185 189 1.89 79 189 58.03 138 189 26.93 17870 16981 5.24 

average error 10.99 avers e error 15.11 averse error 

L 
10.66 average error 11.12 

% error in prediction for independent validation data 

CH, I CO CO2 N20 

predicted actual % error predicted actual % error predicted actual % error predicted actual % error 

1333 1321 0.96 981 943 3.95 584 377 54.84 11959 11321 5.64 
1056 943 11.94 427 377 13.14 566 377 49.97 9959 9434 5.56 

1955 1887 3.61 1639 1887 13.15 1852 1887 1.83 17962 18868 4.80 

-10 189 105.21 213 189 12.83 197 189 4.23 1267 1887 32.87 
1686 1887 10.64 1150 1321 12.96 1926 2075 7.22 12033 11321 6.29 
836 755 10.83 855 943 9.36 1854 1887 1.72 5554 5660 1.87 

averse error 23.87 average error 10.90 average error 19.97 average error 9.51 

Table 3.2.9 Percentage error in prediction for validation samples using wavenumber 
set c (1404,2114,6110,3707,401,3040, and 2561cm-') (with predicted and actual 
concentrations (ppm)) 

This shows that the percentage error is generally less than 10 % but is greatly increased 

at the lower concentrations. It may be that the calibration range was too wide and that 

the lower concentrations were having a leverage type effect on the data. In order to see 
if this was true, samples with 189 ppm concentrations were removed from the data set 

and the percentage errors recalculated; however, this was found to give no significant 
improvement in prediction errors. 

Focusing on wavenumber set k, which gave similar average prediction error for both the 

original and independent validation data (a breakdown of the % error for each analyte in 

each sample is given in table 3.2.10), as well as consisting of only five wavenumbers, it 

119 



can be seen (figure 3.2.6) that each selected wavenumber relates to the absorption of a 

specific gas i. e. 2129 cm-1 corresponds to CO, 2284 cm-I to CO2,3071 and 3148 cm-1 

both relate to CH4, and 3487 cm -1 relates to N20. 

Close up of where selected wavenumbers occur in relation to spectra 
1 .2 

c o. a 

0.4 

0 .2 

0 

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 

wavenumber (cm'') 

Figure 3.2.6 Plot showing where the selected wavenumbers 2129,2284,3071,3148 

and 3487 cm-1 occur in relation to spectra 

error in prediction for original validation data 

CH4 CO 
______CO2 

C N 20 
sample % error sample % error sample % error sample % error 

1 26.80 1 13.26 1 4.64 1 9.11 
2 4.81 2 4.79 2 4.33 2 4.70 
3 1.76 3 53.52 3 10.42 3 6.45 
4 1.31 4 24.65 4 26.62 4 17.00 
5 3.09 5 2.97 5 8.05 5 23.88 
6 0.91 6 32.09 6 1.96 6 19.40 
7 1.71 7 48.72 7 32.21 7 6.55 

average 5.77 average 25.71 average 12.60 average 12.44 
% error in prediction for newl validation data 

CH4 CO 
______CO2 

C N 20 
sample % error sample % error sample % error sample % error 

1 7.97 1 1.46 1 9.02 1 13.33 
2 3.79 2 12.27 2 7.24 2 14.11 
3 1.65 3 7.79 3 11.06 3 3.73 
4 67.13 4 50.58 4 58.99 4 0.95 
5 0.41 5 0.05 5 11.31 5 16.39 
6 8.82 6 1.55 6 7.29 6 10.61 

average I 14.96 
I 

average 12.24 average 17.48 average 

ý 

9.85 

Table 3.2.10 Percentage error in prediction for validation samples using wavenumber 
set k 
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Figure 3.2.7 displays the plot of predicted versus actual concentrations and figure 3.2.8 

is a plot of the residuals. 

Predicted versus actual concentrations 
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Figure 3.2.7 Plot of predicted versus actual concentrations for model built from 
wavenumbers 2129,2284,3071,3148 and 3488 cm-' 

Residual values versus sample 
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Figure 3.2.8 Plot of residuals for model built from wavenumbers 2129,2284,3071, 
3148 and 3488 cm 
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3.2.1.4 Conclusion 

Part of this work focused on the different settings on the VS-MLR algorithm. As 

expected, changing the values of the convergence levels had the most significant effect 

on the results obtained. Generally it was found that the lowest SEPs were obtained 

when the value for cl 1 was between 0.9 and 1, and the value for cl 2 greater than 0.9. 

Changing the values of the convergence levels had slightly different effects on the 

normalised data compared to the non-normalised data, as shown by the unusually high 

SEPs obtained from the normalised data when cl 1 was set to 1.1. This means that the 

different settings on the VS-MLR program have to be adjusted each time it is applied to 

different data to determine which values give the optimum results. 
Another problem encountered with the modelling was that some of the selected 

wavenumbers sets that gave low SEPs with the original data did not give similar SEPs 

when applied to new data. To combat this problem, the SEPs obtained for the original 

model were compared against SEPs obtained for new data for selected wavenumber 

sets. Based on these results, the wavenumber set consisting of 2129,2284,3071,3148 

and 3488 cm 1 was deemed to be a suitable selection to measure in the planned infrared 

detector array. 
One consideration not investigated was the effect of varying water vapour/humidity 
levels. A comparison between the aforementioned wavenumbers and peaks in the 

spectra due to water vapour indicated that at low levels the presence of water vapour 
will not be a problem. 

3.2.2 PLS models 
3.2.2.1 PLS models employing entire spectrum 
With the previous data, only the results of variable selection using MLR were 

compared, however as prediction errors obtained were dependant on the final set of 
selected wavenumbers, which in turn was influenced by the data and the conditions of 
the selection algorithm used, no direct comparisons were possible. Applying MLR to 
the entire spectrum results in poor predictions due to the effect of co-linearity within the 
data, therefore PLS models were built instead. 

Unlike MLR, PLS is more equipped to cope with co-linearity within data. In PLS, the 
data is broken down into scores and loadings, in effect co-linearity is accounted for by 
the loadings and can actually aid in a model's prediction ability. As a result, PLS 

122 



performs better with more wavenumbers and is the preferred technique for building 

multi-variate calibration models from spectra. In this work, PLS was applied to the 

different pre-treated spectra to determine how much effect the different data treatments 

had on the prediction ability. 

Figure 3.2.9 contains results obtained for different PLS models based on the different 

data treatments, these show the average SEP obtained for the four gases from models 

using different numbers of latent variables. 

The data divided by 1975 cm 1 followed by normalisation gave the same results as 

normalised data that had been divided by the SF6 reference peak, so these results are not 

shown. Generally, the SEP dropped dramatically for the first five latent variables 

reaching a minimum around seven latent variables. A minimum of four latent variables 

would be expected to account for the four gases, thus allowing for variations in water 

vapour levels and background variations, five latent variables is a reasonable number to 

employ. 
The absorption data initially gave poor results due to the wide variation of responses 

around the cut off points (see figure 3.1.17); however, the removal of variables relating 
to measurements made at wavenumbers less than 500 cm 1, i. e. the first 20 

measurements, improved the model. Comparing the SEP for five latent variable models 
built for different data treatments (figure 3.2.10), it can be seen that applying some kind 

of data treatment improved the prediction error. The best results were obtained for the 

absorption spectra after the first 20 measurements were removed. Increasing the 

number of latent variables to seven (figure 3.2.11) almost halved the SEP for data 

divided by a reference wavenumber and there was no longer any noticeable difference 

in prediction error between this treatment and absorption spectra. 
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Figure 3.2.9 SEP obtained for PLS models with different data treatments, (NB. 
Absorption data is spectra minus wavenumbers less than 500 cm"') 
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5 Latent Variable PLS model using entire spectra 
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Figure 3.2.10 Comparison of SEP for different data treatments for five latent 

variables 
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Figure 3.2.11 Comparison of SEP for different data treatments for seven latent 
variables 

3.2.2.2 PLS models for selected wavenumbers 

When only a few wavenumbers are used, PLS loses its advantage over MLR models. 
PLS models were built using the five selected wavenumhers, 2129,2284,3071,3148 

and 3488 cm-'. The best prediction results were obtained when five latent variables were 
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incorporated, the results of which are shown in figure 3.2.12 and as there were only five 

wavenumbers to start with this gave the same results as MLR models built from the 

same five wavenumbers. 

5 LV PLS model using 5 selected variables 
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Figure 3.2.12 Results from PLS models using selected wavenumbers 

In this case, the lowest SEPs were obtained for data that had been divided by a reference 

point and the effect of normalising the data seemed to make little difference. For this 

data treatment, the errors in prediction for the validation data were approximately the 

same as those obtained for the calibration data. Comparing these to the SI-11's from the 7 

latent variable models built from the entire spectra it can be seen that they are similar to 

the SEPs obtained for the validation data. 

3.2.2.3 Conclusion 

This section compared PLS models built from differently pre-treated data. This 

compared absorption data (i. e. sample scans ratioed against background scans) against 

raw (unratioed scans) and data divided by a SF,, reference peak and data divided by a 

wavenumber where no absorption occurred (variable 130). 

When only five latent variables were employed the absorption data gave the best results 
(with SEPs of less than 0.8); however, when the number of latent variable were 

increased to seven there was no longer any significant diftcrencc in prediction errors 
between absorption data and data divided by reference point models. This proved that 
dividing the data by a reference point was an effective method of data pre-treatment and 
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has the advantage over absorption data in that there was no requirement to collect 

background scans. 

Also shown from the results was that dividing the data by a point where no absorption 

occurred was just as effective as dividing the data by a reference SF6 peak, therefore the 

addition of SF6 was dropped from further sample preparation. 

Models built from the five selected variables gave the best results for data divided by 

reference points; however, it should be noted that the wavenumbers were chosen from 

VS-MLR performed on data treated by dividing by the reference SF6 peak hence these 

selected wavenumbers may not necessarily be optimal for the raw and absorption data. 

What was clear is that the SEPs obtained with the five selected wavenumbers for the 

data divided by a reference point was lower than the SEPs obtained when employing the 

entire spectra. From this it can be concluded that variable selection was effective in 

reducing the number of wavenumbers required down to five without significantly 

reducing the error in prediction and the objective of this work was achieved. 

3.2.3 Conversion of wavenumber measurements to wavelengths 

The next stage of the work was to employ narrow band filters to restrict the 

wavenumbers of light reaching a mid IR detector, hence simulating QWIP detectors 

operating at the selected wavenumbers. Generally in the field of optics and optical 

engineering, units in wavelengths are preferred to wavenumber measurements, thus 

narrow band filters are designed and manufactured in terms of the wavelengths they 

restrict. In order to determine what wavelength of narrowband filters to employ for the 

next stage of the work and for future work developing QWIPs measuring at specific 

wavelengths, the wavenumbers selected in the previous selection models were 

converted to wavelengths (µm). 

Converting selected wavenumbers to their equivalent µm wavelength resulted in 

numbers to several decimal places. For example the selected wavenumber at 2114 cm 1 

corresponded to 4.73042 µm and 2129 cm -1 corresponded to 4.696121 µm. The interval 

between measurements was determined by the FTIR which in turn was based on the 

resolution used, at 32 cm-1 resolution this corresponded to measurements made every 
15.4 cm', this meant that due to the inverse relationship between wavenumbers and 

wavelengths that the wavelength interval between measurements increased at longer 
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wavelengths (e. g. the interval between 500 cm- ' and 515.4 cm-' corresponds to 0.6 µm, 

whereas the distance between 5000 cm-1 and 5015.4 cm-' corresponds to 0.006 µm). 

To find out the effect of rounding p. m measurements to two decimal places and to the 

nearest 0.05, e. g. rounding 4.73042 µm to 4.73 and 4.75 µm, the Bio-Rad win IR 

software was utilised (by converting the units to wavelengths and using xy coordinates 

on the corresponding spectral plot) to determine the corresponding response. 

Figure 3.2.13 is a plot of the data collected (this included wavelengths 10.6 and 10.62 

µm (corresponding to SF6 absorptions) and 3 µm (region with no absorptions)) and 

figure 3.2.14 displays the correlation between these measurements and the 

concentrations of the different gases. For comparison, responses were also collected at 

wavelengths quoted in other references as being the main absorption bands (based on 

the HITRAN98 database). Results using these measurements were compared to those 

obtained from the selected wavelengths. 
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c 0.8 
O 

N 0.6 

0.4 
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0 

Data at selected wavelengths 

Figure 3.2.13 Plot of IR response (for single beam spectra collected from four 
component samples mixtures of CH4, CO, CO2 and N20) for selected wavelengths 
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Correlation between selected wavelengths and concentration 
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Figure 3.2.14 Correlation between IR response (single beam spectra) and 
concentration of CH4, CO, CO2 and N20 
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The correlations between concentration for each of the gases and the energy 

transmission at the chosen wavelengths show that at most of these wavelengths the 

response correlates highly to one specific analyte and gives only limited correlation 

with the remaining gases. 

Measurements at 10.6 and 10.62 µm correspond specifically to the SF6 employed as the 

internal reference; therefore low correlations with CH4, CO, CO2 and N2O 

concentrations would be expected at these wavelengths. 

Figure 3.2.15 shows SEPs obtained from MLR models built for different combinations 

of wavelengths. The wavelengths employed in each set are shown in table 3.2.11. 

From the results obtained sets 4 and 5 gave the lowest average SEP values, hence the 

best prediction results. Wavelengths common to both sets included 4.35,3.25 and 2.89 

µm. From figure 3.2.14 it can be seen these wavelengths gave high (negative) 

correlation to C02, CH4 and N20. 
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SEP obtained for different wavelength sets 
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Figure 3.2.15 SEPs obtained from MLR models built using selected wavelength sets 

et avelen the 

1 10.6,10.62,4.7,4.4,4.35,3.25,3.15,2.85,2.89,3.17 

2 10.6,10.62,4.7,4.4,4.35,3.25,3.15,2.85,2.89,3.17,7.12,7.15,4.73,2.7,3.29,3.3,3.9 

3 L74.35,3.25,3.15,2.9 

4 . 7,4.35,3.25,3.15,2.89,3.17,7.12,2.7,3.29,3.9 
15 

. 
35,3.25,2.89,7.12,4.73, 

Table 3.2.11 Wavelengths employed in selected wavelength sets 

Based on these results it was decided to carry out further investigations into the 

combination of wavelength measurements at 2.9,3.25,4.35,4.73 and 10.62 µm. 
The results of employing narrowband filters centred at these wavelengths are discussed 

in section 3.4. 

3.2.4 Conclusion 

The aim of this stage of the work was to determine sets of wavenumbers, suitable for 

incorporating into a detector array, that give comparable results to models based on the 

entire spectra. As demonstrated by the results obtained this aim was achieved. 
Investigations employing VS-MLR brought out two weaknesses of the process, the first 

that the values of the convergence levels had a major impact on the final wavenumbers 

selected and that there was a tendency for the model to `overfit'. 
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Optimising the convergence levels was no major problem as the selection process was 

relatively quick, on average only taking a few minutes for each selection run, so it was 

possible to perform selection runs over a range of convergence levels in a short time 

period. 
The problem of the model `overfitting' the data was possibly due to all the spectra being 

collected over the same couple of days, hence to overcome the problem a second set of 

validation data collected on a different week was employed. Selection models that gave 
low SEPs with the original data were tested with the second set of validation data to 

identify models that gave low SEPs for the new validation data. From this the selected 

set of wavenumbers 2129,2284,3071,3148 and 3488 cm -1 were found to give similar 
SEPs for both validation data sets. 
To prove VS-MLR gave comparable results to other multivariate modelling techniques, 
PLS was employed. PLS is commonly employed for analysis of FTIR spectra and its 

effectiveness is shown in work by Griffiths et al 89 and Spiegelman et a1.91 
PLS models were built for raw data, data divided by the SF6 reference peak, data 

divided by a wavenumber where no absorption occurred and for absorption data. 

Comparing five latent variable models showed that the absorption data gave the best 

results; however, at seven latent variables the `dividing by a reference point' treatment 

gave comparable results to the absorption data, thus proving that the data treatment was 

effective. 
Another important conclusion drawn from the results was that there was very little 
difference obtained between data divided by the SF6 reference peak and data divided by 

a wavenumber where no absorption occurred, thus SF6 was no longer added to further 

samples. 
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3.3 Dilution system 
The aim of this work was to set up a gas dilution system incorporating a GC as an 

independent means of measuring gas concentrations. 
The system was based on an exponential dilution system, as mentioned in the 

introduction, the aim of which is to start with a known concentration of calibrant, which 
is diluted with a carrier gas at a controlled rate. This allows a range of different 

concentrations to be produced from just one original standard mixture, and can be used 

to evaluate detector performance over of wide concentration range and determine limits 

of detection. 

3.3.1 Trial run of dilution system 
Initially the system was tested with a gas mixture standard of 1000 ppm each of C114i 

CO, CO2 and N20 made up in nitrogen, this was measured with both the GC (with the 

response measured on chart recorder) and FTIR. 

The GC carrier gas employed was helium using TCD detection; hence the response 
obtained from the GC was a single peak resulting from the high concentration of 
nitrogen (this was due to the high conductivity of nitrogen compared to helium), which 
swamped the response to the other gases. 
Figure 3.3.1 is a plot of the GC response, using the peak height recorded by the chart 
recorder, against time. The peak height is directly proportional to the concentration of 
sample, hence over time the peak height drops exponentially as the sample gets more 
dilute. Plotting the log of the peak height against dilution time gave a linear plot, with a 
R2 correlation of 0.9978 (figure 3.3.2), which indicated the nitrogen in the system was 
diluted exponentially and it can be assumed the other gases in the sample were similarly 
diluted. 

The IR spectra from the trial run of the dilution system were collected as single beam 

spectra i. e. transmission, hence as the sample was diluted less light was absorbed, 
resulting in an increase in the amount of light transmitted. The spectra collected are 
shown in figure 3.3.3. Plots of IR response versus time for wavenumbers relating 
specifically to the gases of interest are shown in figure 3.3.4; these give R2 values of 
greater than 0.98. The different gradients are due to the different molar absorptivity 
coefficients at the chosen wavenumbers. 
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Figure 3.3.1 GC response (peak height) versus time for trial run of the dilution 
system using the 1,000 ppm gas standard made up in nitrogen 
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Figure 3.3.2 Log of GC response (peak height) versus time for trial run of the dilution 
system using the 1,000 ppm gas standard made up in nitrogen 
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IR Spectra from trial run of dilution system 
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Figure 3.3.3 Close-up of the region 2000-3200 cm `for IR spectra collected during the 
trial run of the dilution system 
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Figure 3.3.4 Response (Irom trial run of dilution system) versus time for specific 
wavenumbers relating to gases of interest (NB. The gap in measurements between 
4000 and 5000 was due to an interval in taking measurements) 
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Figure 3.3.3 Close-up of the region 2000-3200 cm-'for IR spectra collected during the 
trial run of the dilution system 

f 2130crt-1 (CO) 
IR response for trial run of dilution system   2216crrý1 (N20) 

1.6 

1.4 

1.2 

c1 0 

E 
0.8 

a c 
0.6 

0.4 

0.2 

0 

y= 2E-05x + 0.2216 
Rz = 0.9901 

0 2000 4000 6000 8000 

tim e/s 

Figure 3.3.4 Response (from trial run of dilution system) versus time for specific 
wavenumbers relating to gases of interest (NB. The gap in measurements between 
4000 and 5000 was due to an interval in taking measurements) 
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From these results it could be assumed the basic dilution set-up was operational, 

therefore further work was undertaken to optimise the GC conditions and LabVIEWTM 

program for data recording using a gas standard mixture made up in helium. 

3.3.2 Optimisation of GC conditions 

Originally samples of the individual gases were injected directly into the GC, but 

problems with backpressure made injections difficult, so samples were prepared in the 

mixing flask using a helium flow to fill the gas-sampling valve on the GC. 

This allowed individual retention times to be determined; however there was still a 

problem with air getting into the system resulting in a GC response to nitrogen. 
With a gas standard mixture of the four gases (CH4, CO, CO2 and N20) made up in 

helium instead of nitrogen, the effect of different GC conditions could be more fully 

investigated to optimise resolution. 

Increasing the oven temperature of the GC only served to decrease resolution between 

the gases, therefore the oven was left at room temperature (25°C) and the effect of 
different column pressures (i. e. flow rates) and detection temperatures were 

investigated. The change in retention times with different column pressures is shown in 

table 3.3.1, with some of the GC traces obtained from the chart recorder shown in figure 

3.3.5. 

Original lm column filled with Porapak Q 
Pressure(kPa) N2/ CO CH4 CO2 N20 

400 25s 35 75 100 
200 70s 80 150 200 
60 70s 100 180 230 

With new 5m column 
Pressure(kPa) N2/ CO CH4 CO2 N20 

100 140s 190 360 460 
160 80s 120 240 310 
200 85s 110 220 280 

Table 3.3.1 Retention times (s) obtained for the different gases using different column 
pressures 
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column pressure 400kpe } column pressure 200kpe c°bmmpressure601d'e column pressure 60kPe 
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Figure 3.3.5 GC traces obtained using different column pressures, (NB. The first 
peak is due to both N2 and CO, hence the high response) 

The original sample loop was 3 ml, which was later increased to 10 ml. Overall the best 

conditions were; oven at room temp (25°C), detector temperature at 180°C, the filament 

temperature at 230°C, attenuation set to 1 and gain at x 10. 

Co 
coý 

Figure 3.3.6 GC trace obtained for 5m column 
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3.3.3 Optimisation of GC data recorded in LabVIEWTM 

Previously the GC data was recorded on a chart recorder, therefore the LabVIEWTM 

program was written to allow the GC response to be recorded on computer, this required 

determining sampling rates and number of samples to acquire to achieve similar results 

to the chart recorded traces. Originally data collected by LabVIEWTM from the GC was 

acquired as a waveform at a sampling rate of 1000 samples per second with 100 

samples collected per iteration. For ambient air samples consisting mainly of nitrogen, 

the TCD gave a good response (due to the high conductivity of nitrogen compared to 

the helium carrier gas), thus the noise to signal ratio was low. When analysing the 1000 

ppm gas standard in helium, the signal responses (the peaks due to analytes) were found 

to be very low in comparison (see figure 3.3.7), with changes in the order of less than I 

mV, resulting in the signal due to the analytes being lost in 'noise'. 

Trace recorded with chart Response recorded by LabVIEWTM 

CO CHq_ C02 N20 -18.1 
-18.2 

". .m -18.3 

-18.4 
Tm 

-18.5 

-18.6 

-18.7 
tim e 

Figure 3.3.7 GC response for standard mixtures of 1,000 ppm each of CO, C02, CH4 
and N20 made up in helium, recorded by chart recorder (left) and in Lab VIEWTM 
(right) 

The data acquisition conditions in LabVIEWT M were modified to rectify the situation. 

Limit settings were used to set the maximum and minimum expected values. The limit 

settings form a cluster, which assigns limits to the channels in the channel string array; 

the default value is normally ±10 V, which in this case meant limited sensitivity. The 

gain (amplification or attenuation) is determined by the programming based on the limit 

settings. 

The sampling rate and the number of samples averaged were both altered in order to 
find the optimum conditions. Due to the low response to the gas sample mixture, 

ambient air was let into the system so that the nitrogen peak could be used as an 
indication of whether the signal to noise ratio had improved. 
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At high sampling rates with a low number of samples taken, the signals are lost in the 

high levels of noise. The optimum sampling rate appeared to be 600 samples per 

second. Increasing the sampling rate resulted in high `noise' levels, which combined 

with a low number of samples taken resulted in no peaks being present; using sampling 

rates of less than 600 also had the effect of increasing the noise levels. 

The number of samples taken had a similar effect, i. e. too many or too few samples 

resulted in a loss of the signal peak. It can be assumed that the noise is due to electrical 

fluctuations, therefore increasing the number of samples taken helps average out the 

noise; however, if too many samples are taken the change in signals due to sample 

peaks also gets `averaged out'. This is demonstrated in figure 3.3.8, which compares 

the response obtained for different sampling rates and number of samples taken. 

For a sampling rate of 600 samples per seconds the best signal to noise ratio was 

obtained when 60 samples were taken. 
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Figure 3.3.8 Data recorded in LabVIEWTM using different sampling rates and 
number of samples averaged (NB. Response is in mV) 
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3.3.4 Reproducibility of injections 

Repeat injections of the undiluted I% standard mixture, were performed to assess the 

reproducibility of response (using column pressure of 200 kPa, 5 ml sample loop, with 

sampling rate of 600 s"1 and 60 samples averaged for data acquisition in LabVIEWTM) 

The peak integration and peak detection functions available in the LabVIEWTM 

software were incorporated into the LabVIEWTM program. These functions required 

threshold limits to be inputted in order to identify peaks and as the GC employed in this 

work was prone to baseline shifts this caused major problems. Baseline drifts above the 

threshold level resulted in an increased number of peaks detected. Subsequently, peak 

areas were determined using Excel, where baseline shifts could be compensated for 

before calculating the peak area. 

Figure 3.3.9 displays data collected for four repeat injections of the 10,000 ppm gas 

mixture standard; from this the change in response due to instrument drift over time can 
be seen by the different magnitudes obtained for the baselines from different runs. 
Smoothing using the median filtering function in LabVIEWTM with a window of 50 was 

applied to the data; the effect of this can also been seen in figure 3.3.9. 

Filtered GC data Unfiltered GC data 
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Figure 3.3.9 Data recorded in Lab VIEWTM for repeat injections of 10,000 ppm gas 
mixture standard, with and without filtering (smoothing) applied to the data 
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Chromatograms after baseline subtraction 
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Figure 3.3.10 Data recorded in Lab VIEWTM for repeat injections of 10,000 ppm gas 
mixture standard after baseline correction 

Figure 3.3.10 is a plot of the data after baseline correction. The standard deviation and 

RSD between replicate samples is displayed in table 3.3.2. The filtered data generally 

gave lower deviation in responses than the unfiltered data, and lower deviations (with 

one exception) were obtained for peak height measurements than for peak area 

calculations 

Areas with f iltered data 

analyte average std dev rsd 
CO -677.73 45.65 6.74 
CH4 -610.52 22.13 3.63 

CO2 -770.90 20.61 2.67 
N20 -807.97 117.87 14.59 

Peak heights with filtered data 

analyte average std dev rsd 
CO -5.09 0.12 2.37 
CH4 -4,14 0.09 2.15 
CO2 -5.12 0.15 2.95 
N2O -4.87 0.28 5.69 

Areas with non-filtered data 

analyte average Std dev rsd 
CO -679.46 52.40 7.71 
CH4 -620.77 28.03 4.52 
CO2 -761.01 29.41 3.86 
N20 -819.09 111.40 13.60 

Pea k heights wit h non-filtered data 
analyte average std dev rsd 

CO -5.14 0.14 2.72 
CH4 -4.17 0.08 1.99 
CO2 -5.17 0.18 3.44 
N20 -4.91 0.17 3.53 

Table 3.3.2 Standard deviations between GC responses (collected in Lab VIEWTM) for 
repeat injections of 10,000 ppm standard mixture 
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Column CO peak area CO peak height 

pressure raw filtered raw Filtered 

140kpa -9923.1 -9929.7 -31.5 -31.4 

160kpa -9145.8 -9150.9 -29.0 -29.0 
200kpa -8124.0 -8130.7 -30.5 -30.4 

260kpa -13048.1 -13048.4 -30.6 -30.6 
% RSD -21.1 -21.1 -3.4 

L 

-3.3 

Column CO2 peak area CO2 peak height 

pressure ° raw - filtered raw Filtered 

140kpa -16997.6 -16997.2 -32.0 -32.0 
160kpa -13709.7 -13708.6 -29.0 -29.1 
200kpa -46960.3 -46966.9 -29.3 -29.2 
260kpa -17800.1 -17797.8 -31.3 -31.3 

% RSD -64.9 -64.9 -5.0 -4.9 

Column CH4 peak area CH4 peak height 

pressure raw filtered raw filtered 

140kpa -12824.0 -12824.7 -30.5 -30.7 
160kpa -10751.9 -10753.7 -28.1 -28.1 
200kpa -10002.9 -10003.6 -29.6 -29.5 
260kpa -15216.9 -15216.9 -30.2 -30.2 
% RSD -19.2 -19.2 -3.6 -3.8 

Column N20 peak area N20 peak height 

pressure raw filtered raw filtered 

140kpa -20909.5 -20908.3 -32.4 -32.4 
160kpa -14938.7 -14936.9 -28.9 -28.8 
200kpa -11240.5 -11234.6 -29.0 -28.8 
260kpa -22746.9 -22746.3 -31.4 -31.4 

%RSD -30.5 -30.5 -5.8 -5.9 

Table 3.3.3 The effect of different column pressures (Helium flow rates) on the peak 
areas and heights 

Comparing the peak areas and peak heights obtained for different column pressures, the 

% RSD for peak areas ranged from 19.2 to 64.9 %; whereas, peak heights gave lower 

RSD, ranging from between 3 and 6%. 

3.3.5 Dilution using 1% mixture with set-up 2 

Three dilutions of the 1% standard mixture were performed using set-up 2 (refer to 

section 2.4.5). Results from one of the dilution runs are shown in figure 3.3.11, this 

displays traces obtained with and without mean filtering. 
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Data collected in LabView, for dilution of 1% gas standard, after 
background correction and alignment of data 

3 
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c 0 -2 
CL 
dU+ -3 

-4 

-5 

-6 

Figure 3.3.11 Data collected in LabVIEW TM from dilution of I% gas standard 
mixture using dilution system set-up 2. (NB. Background correction was applied to 
remove the effect of baseline drift from the instrument and peaks were aligned for 

comparison purposes) 

Plots of peak area versus dilution time are shown in figure 3.3.12, these gave good 

correlations (greater than 0.95) for exponential trend lines. 

Dilution of 1% standard mixture: Peak area of GC response 
recorded in LabView vs time 
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Figure 3.3.12 Plot of peak area versus dilution time for data collected in LabVIEWTM 
from dilution of I% gas standard mixture using dilution set-up 2. 
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Peak area vs time for filtered GC data collected from 
dilution run (dilution stopped during IR data 

collection) 
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Figure 3.3.13 Plot of peak area versus dilution time for data collected in Lab VIEWTM 
from dilution of I% gas standard mixture with stoppages in dilution for IR data 

collection 
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Figure 3.3.14 Plot of transmission versus dilution time for data collected in 
Lab VIEWTM from dilution of 1% gas standard mixture with stoppages in dilution for 
IR data collection 

Figures 3.3.13 and 3.3.14 display the GC and IR results obtained when the dilution was 

stopped while collecting IR data, rather then collecting data while the sample contained 
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within the gas cell was still being diluted. As seen in figure 3.3.13 there was an adverse 

effect on the GC data, particularly for CO and CH4 responses, so this method was 

abandoned. 

3.3.6 The effect of bleeding SF6 into the system 

The effect of bleeding SF6 into the system was investigated using the set-up described 

in section 2.4.6. A close-up of the IR region of interest from spectra obtained during the 

investigations is displayed in figure 3.3.15 which shows the variation in transmission 

arising from differing concentrations of SF6, generally it was found to be a difficult and 

time consuming process to maintain a constant concentration of SF6 within the system, 

so further work was carried out without the use of SF6. (N. B. From comparisons of PLS 

models built for different pre-treated data (section 3.2) it was concluded that it was not 

necessary to add the SF6) 

Effect of adding SF6 to the dilution system 
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Figure 3.3.15 Close-up of SF6 peaks from spectra obtained during investigations in to 
the effect of bleeding SF6 into the dilution system 

3.3.7 Correlation between GC and IR measurements 

The GC and IR responses for different sample mixtures were measured utilising the 
dilution system to fill the GC sampling loop. This was performed to determine the 

correlation between IR and GC measurements so that in later work developing the IR 
detector array the GC could be used as reference method to check the composition of 
gas samples. 
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The following plots relate the GC responses to the corresponding concentration of gas 

in the sample (after taking into account the dilution with helium employed to fill the 

sample loop). The correlation for CH4, CO2 and N20 was greater than 0.98 with the 

main source of deviation assumed to be due to experimental technique. The correlation 

for CO was poor, this was mainly due to small amount of air entering the gas cell as 

samples were prepared and as mentioned previously, the GC response for N2 is the same 

as CO. 
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Figure 3.3.16 Plots relating GC peak height to concentration 

The GC peak heights were plotted against absorption at wavenumbers known to relate 
to the gases of interest, i. e. 3088 cm-t for CH4,2075 cm-' for CO, 692 cm-1 for CO2 and 
2536 cm-1 for N20. Apart from CO, the correlations obtained were greater than 0.988. 
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N20 (using IR response at 2536 cm") 
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Figure 3.3.17 Plots relating GC peak height and IR absorption 

IR spectra were also collected employing the 3.25 µm and 4.35 µm filters. Figure 3.3.18 

contains plots of the log peak area of the spectra obtained with the filters versus the GC 

peak height; these resulted in correlation coefficients of 0.97 and 0.92 for CH4 and CO2 

responses respectively. Further discussions about the narrow band filters are contained 

in the next section (3.4). 
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Figure 3.3.18 Plots relation GC peak height to IR response with 3.2S1on and 4.35 Ion filters 
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3.3.8 Conclusion 

A dilution system was constructed and different layouts were tested to determine what 

was the most effective design. A major component of the system was the GC which 

was incorporated as a reference method for measuring gas concentrations. This 

required the GC conditions to be optimised, as well as a LabVIEWTM program to be 

written to allow the GC response to be recorded. Once the conditions were optimised it 

was found that it was possible to obtain a RSD of less than 3.53% for peak height data. 

Generally smooth decay curves were obtained for both GC and IR responses; however, 

work showed that stopping and starting the dilution flow did have a detrimental effect 

on the GC response, thus each dilution run was performed without stopping the flow of 
diluent gas. The results obtained demonstrated that the dilution system built could be 

employed as a means of exponentially diluting a single sample to allow investigations in 

response over a range of concentrations; therefore it could be adopted for sample 

preparations in future work. 

Good correlation was obtained between GC and IR responses (with the exception of CO 

for which the GC response was affected by N2) thus the GC could act as a reference 

method for when the FTIR is replaced with other IR detectors. 
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3.4 Narrow band filters with FTIR 

To simulate the effect of photodetectors measuring at selected wavelengths, narrowband 

filters that restricted the wavelengths of light, so that only light at the chosen 

wavelengths were transmitted to the mid IR detector in the FTIR, were employed. 

3.4.1 Characterisation of 3.25 p. m and 4.35 µm filters 

The following plots (3.4.1) show the single beam transmission spectra obtained with the 

filters for different gas concentrations; it can be seen that these filters successfully 

blocked light except for the chosen wavelengths. For the 4.35 µm filter, the light 

transmitted through the filter ranged from 2280 to 2320 cm-1; for the 3.25 µm filter the 

range was 3048-3 100 cm-'. 

The response of photodetectors measuring at these wavelengths would be single 

measurements corresponding to the total amount of light detected, thus it is assumed 

that such responses would correspond to the area of the spectra obtained when the 

equivalent filter is employed. 

IR Response using 4.35 pm filter IR Response using 3.25 pm filter 
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Figure 3.4.1 Spectra obtained with 3.25 and 4.351on filters 
(NB. due to the range of light transmitted through the filter this can include several 
gas absorption peaks, as can be seen by the 3.251um filter response which shows three 
CH4 absorption peaks) 

Calibration plots obtained for the two filters measuring statically prepared samples are 
displayed in figure 3.4.2, these showed R2 values of 0.95 or greater for total response 
(area under ̀ peak') versus concentration. 
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Figure 3.4.2 Total response versus concentration of gas (from statically prepared 
samples) obtained with 3.25 and 4.35fan filters 

Figure 3.4.3 displays the responses obtained using the dilution system; these also gave 

good correlations between response with filter and concentration. Responses with these 

two filters were promising; therefore further filters were obtained with band centres at 

2.9,4.73 and 10.62 µm to investigate responses to N20 and CO, plus the 10.62 µm filter 

to act as a reference wavelength. 
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3.4.2 Characterisation of 2.9,3.25,4.35,4.73, and 10.62 µm filters 

Figure 3.4.4 compares transmission spectra obtained with and without the narrowband 
filters, with close-ups of the individual filters shown in figure 3.4.5, the main points to 

be noted are: 

a) The amount of light transmitted through the filters is significantly lower than without 
filters (see figure 3.4.6), 

b) At this resolution the 3.25 µm filter covers several CH4 absorption peaks 

c) There is no SF6 in the samples scanned; hence, there is no absorption at 10.62 µm 

IR spectra with and withoiA filters 
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Figure 3.4.4 Single beam transmission spectra obtained with and without 
narrowband filters 

151 



3.25 um filter 

0.6 

0.5 

0.4 

m 
c 0.3 
0 

0.2 

0.1 

0 
3 

-0.1 

4.73 pm filter 
0.7 

0.6 
no filter 

0.5 

0.4 

C °a 0.3 

0.2 
F filter 

0.1 - 

0 
20 2100 2120 2140 

-0.1 
wavenumbers (cm-1) 

4.35 um filter 

0.58 

0.48 
F no filter 

0.38 

to i 
ö 0.28 

[me 

0.18 

0.08 / filter 
. 00 

-0.02 1 -- 2270 2290 2310 2330 

wavenumber(cm-1) 

0.45 

0.4 

0.35 

0.3 

0.25 

n 0.2 

m 0.15 

0.1 

0.05 

0 

-0.05 

2.9 um filter 

F no 

3420 3- 

wavenumber (cm-1) 

Figure 3.4.5 Close-ups of individual filter responses 
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Figure 3.4.0 Comparison of energy transmission between responses with and without 
filters at chosen wavelengths 
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Calibration plots between response and concentration of gas gave very poor 

calibrations, i. e. R2 values of less than 0.71, regardless of the data treatment applied; 

this is clearly illustrated in figure 3.4.7, which contains some of the calibration plots 

obtained with 3.25 µm filter. Figure 3.4.8 shows calibration plots obtained with the 4.35 

µm filter; these gave better correlations between response and concentration than for the 

3.25 µm filter, particularly when using peak area response minus the peak area obtained 

for the purged gas cell. Similar calibration plots were obtained for the 4.73 and 2.9 µm 

filters. 
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Figure 3.4.7 Calibration plots of response obtained with 3.25 uon filter (with different 
data treatments applied) for different concentrations of standard gas mixture 

As previous calibrations, obtained when just the 3.25 and the 4.35 µm filter were 
employed, were significantly better, this implied a problem either with the FTIR or 
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more variation in response arising due to switching between the different filters 

(possibly resulting in slight changes in alignment causing changes in response). 

Response with 4.35 pm filter after different data 
treatments versus concentration 
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Figure 3.4.8 Calibration plots of response obtained with3.25 pm filter (with different 
data treatments applied) for different concentrations of standard gas mixture 

Variation in response 

Table 3.4.1 compares the deviations in response obtained with and without 

repositioning of the filter holder (the corresponding spectra obtained are shown in figure 

3.4.9). The RSD rose by 0.046 % when the filter was realigned; switching the filter to 

a different holder had a more significant effect, increasing the RSD by 0.8 %. 

Even allowing for the increased variation arising due to repositioning of filter and 

switching between filter holders (there were only two filter holders thus making 

measurements with all five filters required some switching between holders), the poor 

correlation in the calibration plots was not accounted for; however the IR source later 

developed problems therefore this possibly affected the results. 

Variation between peak area for 2.9 m filter 
Conditions Average N=3 Standard deviation % RSD 
without moving filter 8.94 0.05 0.52 
ilter moved and realigned 9.01 0.05 0.57 

witching filter to different holder 8.98 0.12 1.33 

overall 8.98 0.07 0.83 
aase 3.4.1 vevianons in response for z. Y , um piter obtained with and without the 

repositioning of the filter 
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Variation between spectra (using 2.9 um filter) with same sample 
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Figure 3.4.8 Transmission spectra obtained for 2.9 pin filter obtained with and 
without the repositioning of the filter 

Automated Filter Wheel 

To reduce the variations in response arising due to repositioning of the filters and to 

make it easier to switch between different filters, an automated filter wheel was 

employed. The wheel held up to six filters thus allowing the five filters to be placed in 
five of the positions and the remaining space left empty for full spectrum scans; the 

wheel could then be turned with either a manual switch button or via computer control. 
Figure 3.4.9 gives a plot of the responses obtained using the filter wheel to switch 
between different filters, for samples prepared by dilution of the I% gas standard 

sample. Good correlation between concentration and response were obtained for the 
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4.73,2.9 and 3.25 µm filters (relating to CO, N20 and CH4), with slightly worse results 

obtained for the 4.35 µm filter (C02). As expected, the 10.62 µm filter, acting as 

reference, showed no correlation between response and concentration. 
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Figure 3.4.9 Responses obtained with different filters (placed in filter wheel) for 
samples prepared by dilution of gas standard sample 

3.4.3 Conclusion 

These results demonstrated that it was possible to measure different concentrations of 
CO, CO2, CH4 and N20 using filters at the selected wavelengths of 3.73,4.35,3.25 and 

2.9 µm, thus indicating it would be possible to build a detector array using detectors 

measuring at these wavelengths. These results were collected using a FTIR instrument, 

where all the optical components and signal processing were already optimised; the next 

stage of the work was to develop a simple prototype instrument including investigations 

into the design of the optical layout and means of signal processing and data recording. 
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3.5 Filter work independent of FTIR 

This stage of the work. focused on developing an infrared measuring system independent 

of the FTIR, thus demonstrating the feasibility of building a gas measuring system 

based on an array of detectors at wavelengths selected from the VS-MLR modelling. 

3.5.1 General set-up for IR detectors 

In the FTIR instrument used previously (sections 3.1 - 3.4) all the components, 

alignments and signal processing where already in place and optimised; for an 

independent set-up the arrangement of components and optimal alignment and 

conditions all had to be determined. 

Figure 3.5.145 is an example of a design for a detector based on an array of IR detectors. 

The basic components are the IR source, a chopper, a gas cell, the filter array and 

detector array. A similar layout was adopted for this work, but with the automated filter 

and a general mid IR detector in place of the fill 

I IA source 

chopper 

911, 

yea exit 

f ý-t mw rMr 

Figure 3.5.1 Set-up for IR detector45 

3.5.2 Different Detectors 

er and detector array. 

The available detectors included the MCT detector from BioRad and the InSb from 

Hamamatsu Photonics K. K. The internal detector of the FTIR instrument employed in 

all the previous work was a peltier-cooled DTGS detector. These detectors were tried 

with the different set-ups to determine which one worked best. Ultimately QWIP 
detectors will replace these detectors, thus the actual performance of the QW IPs may be 
different to the results obtained for this work, but the principles will be the same. 
The responses obtained from the two BioRad detectors for background scans (no gas 

cell present) using the FTIR are shown in figure 3.5.2. The main differences between 

the responses are the increased response of the MCT detector for wavenumbers between 
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900 and 3500 cm-' and different cut-off values (cut-off for the DTGS detector is 500 

cm-1 whereas the cut-off for the MCT is around 800 cm-1). 
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Figure 3.5.2 Background scans for MCT and DTGS detector using FTIR 

Figure 3.5.3 is the response obtained with the InSb detector connected to Excaliber 

instrument using the external right window (a window on the right side of the 

instrument through which the IR beam could be directed so that the detector could be 

placed externally next to the FTIR). 
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Figure 3.5.3 Background Scan obtained for InSb detector using FTIR 
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The InSb detector had a much higher cut-off point at 1800 cm"'. The response obtained 

was low compared to the BioRad detectors this is assumed to be due partially to 

incompatibility with the BioRad hardware. The detectors have additional signal 

processing and amplification to maximise the signal obtained. 

3.5.3 Different set-ups 

Details about the different set-ups can be found in section 2.6. 

The results obtained with the InSb detector in set-up (1) were inconsistant. The signal 

with no filter was significantly higher than those obtained with the filters, but otherwise 

there was no significant difference between the various filters or when the all the light 

blocked, thus suggesting either a problem with the set-up and conditions or not enough 

response from the detector. Fluctuation of values on multimeter made it difficult record 

precise values also making it hard to determine the effect of changing the lock-in 

settings. 

Another major problem was how to check the alignment as the low fluctuating 

responses made it difficult to determine what the optimal response was. To counteract 

this problem, set-up (2) was adopted. The detector was switched from the InSb to the 

MCT as this gave a higher response with the FTIR. Set-up (2) allowed the signal 

obtained by the FTIR to be used as a means to optimise the alignment; this was 

achieved by adjusting the position of the components to maximise the interferrogram 

signal on the FTIR. Although the magnitude of the signal obtained in the FTIR was 
different to that shown on the multimeter display (the FTIR has a built in amplifier 

which enhances the signal), initial results suggested that the responses with the lock-in 

amplifier correlated with the FTIR. 

The values displayed on multimeter fluctuated and as there was no means of 

electronically logging the data this caused problems with recording the response; hence 

set-up (3) was employed where responses were logged in LabVIEWTM. 

With this set-up the effect of different lock-in settings could be investigated more fully, 

as well as looking at the effect of drift (this work is discussed in section 3.5.4 and 
3.5.5). 

Set-up (4) was employed for two main reasons, one was that the detector did not require 
filling with liquid nitrogen and the other was that very little alignment was required. 
The source and detector were already optimised in the instrument and the gas cell could 
just be slotted into the sample holder with the filter wheel placed next to it, leaving just 
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the chopper to align. The disadvantage was the limited space in the sample chamber. 

Different amounts of gases were injected into the cell, but the responses with the 

different filters bore little relation to the gases injected. 

One possible problem with the previous set-up could have been the effect of the 

interferometer, in the FTIR this resulted in the interferogram, which is Fourier 

transformed, whereas with the lock-in amplifier no such treatment was applied. To 

remove this effect (and make the set-up totally independent of the FTIR) the source was 

removed from the FTIR. Injecting different amounts of gases into the small gas cell did 

not have a significant effect on the responses, therefore it was replaced with the long 

path gas cell which had the disadvantage of a drop in the amount of light reaching the 

detector; however, the increased path length increases the proportion of absorption due 

to the gases injected. The following plot (figure 3.5.1) shows responses obtained with 

the long path gas cell. The expected results would be a change in response for the 2.9 

µm filter upon the addition of N2O, similarly changes in response for 4.73 µm with CO 

and 4.35 µm with CO2 would also be expected. 

Measurements made with long path gas cell 
using set-up (5) 
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Figure 3.5.1 Results for long path gas in set-up (S) 

A lens was incorporated into the set-up to focus the light onto the detector. 
The small gas cell was used in the set-up because this was easier to align (with the long 

path gas cell, light is reflected back and forth between mirrors resulting in a significant 
loss in the amount of light finally reaching the detector, and small deviations in the 
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positioning of the cell are more significant). One disadvantage with this was that there 

was only a relatively small volume of gas (100 ml) with only a short path length (10 

cm) hence this set-up is less effective for low concentrations of gases. 

Figure 3.5.2 shows typical responses with the small gas cell, obtained from set-up (5) 

with the lens incorporated. `Light blocked' is the response obtained when light from the 

source is blocked. (NB. Blocking the light entirely was difficult, as the set-up was not 

fully enclosed resulting in stray light reaching the detector, thus there was still a high 

response obtained with no filter present when the light was blocked) 

The flat horizontal portions of the plot relate to the filters, with the fluctuating peaks in 

between corresponding to the wheel rotating to the next position. 

Result from set-up (5) (incorporating lens) 
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Figure 3.5.2 Responses obtained with small gas cell in set-up (5) incorporating lens 

Figure 3.5.3 displays plots of the average response obtained for each filter under 
different conditions. The improvement in response after the addition of a lens into the 
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set-up is clearly seen by the higher response with the lens compared to the response 

obtained without the lens. 

Upon the addition of C02, the response with the 4.35 µm filter dropped which is as 

expected. There was a slight increase in response with the other filters, but as there was 

no reason why this was the case it is assumed that this was most likely the result of 

drift). 

The addition of N20 resulted in the expected drop in response for 2.9 µm filter. In this 

case, the responses with the other filters also dropped; again this is attributed to drift. 

By subtracting the reference response (in this instance the reference employed was the 

response for the 3.25 gm filter (as no CH4 was being used this could be used as a 

reference) which gave better results than using 10.62 gm as a reference), followed by 

subtraction of the response for the cell after purging, it can be seen that the responses 

clearly relate to the gases injected into the cell. 

Set-up (5) plus Ions using long path Subtraction of reference and purged 
gas cell response (set-up (5) plus lens) 
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Figure 3.5.3 Results from set-up (5) plus lens employing small gas cell 

As the results looked promising the set-up was tried again, this time replacing the small 
gas cell with the long path gas cell. The advantage of using the long path gas cell is that 
lower concentrations of gases can be measured. Initial results from trials utilising the 
long path gas cell are shown in figure 3.5.4. 
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set-up(5) plus lens using longpath gas cell subtraction of rote re nce(3.25um), plus subtraction of 
purge 
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Figure 3.5.4 Results from set-up (5) plus lens using long path gas cell 

3.5.4 Optimisation of the lock-in amplifier settings 

As mentioned in the experimental section, the main criteria for determining the 

optimum settings for the lock-in amplifier were stable responses of different magnitudes 

(relating to the IR source emission) for the different filters. With no chopper the 

responses were unstable and fluctuated wildly (as can be in figure 3.5.5). With low 

chopper speeds (e. g. 5 Hz) the responses obtained with the different filters were all of 

the same magnitude whereas at higher speeds (greater than 200 Hz) the difference in 

response (corresponding to the source emission at the different wavelengths) is clear. 

The frequency range employed on the lock-in amplifier wasl 50-300 Hz. Changing the 

time output from 10 ms to 100 ms did not make any significant difference, but 

increasing this to 1s and 3s meant the signal took longer to stabilise between changing 
filters. 

Changing the gain and sensitivity of the signal increased the amplitude of the signals, 

thus increasing the difference between the different filters and also the sensitivity to 

changes in response, making detection of changes due to absorbing gases more 

noticeable. The DAQ card had a maximum output/input of ±5 V therefore increasing 

the sensitivity too much resulted in signal overload. 

The response obtained with no filter was significantly higher than with the filters and 

tended to exceed the ±5 V cut-off, thus this response was ignored and only used for 

alignment purposes. 
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Figure 3.5.5 Effect of changing the chopper speed 

3.5.5 Signal drift 

A typical plot of signal drift is shown in figure 3.5.6; changing the lock-in conditions 

did little to rectify this drift. The most likely causes for the drift are variations in the 

blackbody source emission (due to small deviations in temperature of the source 

resulting in variations in emission), or variation in the detector response (later work 

indicated the problem lay mainly with the detector). Figure 3.5.7 shows the changes in 

response for each filter over time. In this case, the response shown at a given time for a 

specific filter is an average (calculated in Microsoft Excel) response over 10 seconds 

(LabVIEW rM records 100 measurements per second, thus 10 seconds corresponded to 

1000 measurements). The different filter responses all follow a similar trend so it 

should be possible to compensate for this variation using the reference filter (10.6 µm 

response). 
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Figure 3.5.6 Change of response over time using the 3.25pm filter 
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Figure 3.5.7 Change of response over time for different filters 

3.5.6 Responses obtained for dilution runs 

The results obtained from dilution runs are shown in figure 3.5.8. These are plots of 

filter response versus the concentration of gas that the filter relates to, i. e. 2.9 µm filter 

response versus N20 concentration, 3.25 µm filter response versus CH4 concentration, 

4.35 µm filter response versus CO2 concentration and 4.73 µm filter versus CO 

concentration. From these plots it can be seen that there are changes in response to 

changes gas concentration; however, there is poor sensitivity to small changes in gas 

concentrations (i. e. less than 100 ppm changes) as demonstrated by the poor 

correlations for concentrations of less than 10,000 ppm (N. B. The different magnitude 

in response between the two runs is due to changes in alignment in the optical set-up). 
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Log response versus concentrations for first dilution run Log response versus concentrations for first dilution run 
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Figure 3.5.8 Filter response versus corresponding gas concentration for dilution of 
samples 

Comparing these results with those obtained when using the FT IR it is clear that there 

was significant room for improvement in the optical set-up. 

One of the main problems causing the lack of sensitivity was the drift in response (as 

shown earlier in figures 3.5.2 and 3.5.3). Repeat measurements were made over a 3- 

hour interval, measuring the same gas sample without changing any of the optical 
layout or amplifier settings so that the RSDs for different data treatments could be 

compared (table 3.5.1). This showed subtraction of the reference filter (10.62µm) 

response was more successful than dividing by this response. 
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Data treatment 2.9 m 3.25 m 4.35 m 4.73 m 10.62 m 
Raw average 1.76 1.88 1.63 1.67 0.61 

std deviation 0.06 0.07 0.06 0.06 0.06 
RSD 0.04 0.04 0.04 0.04 0.11 

Subtraction average 1.16 1.28 1.02 1.07 - 
of reference std deviation 0.02 0.04 0.02 0.01 - 

RSD 0.02 0.03 0.02 0.01 - 
Divided by average 2.93 3.13 2.71 2.78 - 
reference std deviation 0.21 0.23 0.19 0.19 - 

RSD 0.07 0.07 0.07 0.07 - 
Table 3.5.1 Variation in response (for different filters) using optical set-up 5 for 
different data treatments 

3.5.7 Conclusion 

Important considerations for the design of the IR measuring system were the component 
to incorporate, their arrangement, and the signal processing. 

A number of different set-ups were considered and tested before the desired response 
(i. e. changes in response relating to changes in concentrations of gases) was achieved. 
The most important factors were found to be; the alignment of the components, the 

lock-in amplifier, and the chopper speed. It was also found that it was necessary to 
include a lens into the set-up to focus the light directly onto the detector. Once these 

criteria were met (with set-up (5)) it was possible to obtain changes in response for 

different gas concentrations and the relationship between response and gas 

concentration was further investigated using exponentially diluted gas samples. 
The results obtained for the dilution runs gave linear changes in response for 10,000 

ppm changes in response; however, there was poor sensitivity to smaller changes of less 

than 100 ppm in concentrations. In the previous work (section 3.4) where similar 

sample dilutions were prepared and the response for different filters employed in the 

FTIR were collected, a higher sensitivity was achieved for lower concentrations. 
Since the previous work utilised the same main components (with the exception of the 
lock-in amplifier) i. e. the same light source, detector, gas cell and narrowband filters, it 

could be assumed that there was considerable room for improvement either with the 

optical set-up or in the signal processing. 

One of the main sources of potential problems was the effect of ambient air and 
temperature on the optical set-up. The set-up was unenclosed therefore ambient air and 
light could effect the measurements. Another problem was the non-permanent fixture 

of the components; this was to facilitate the easy rearrangement of components to 
investigate the effect of different arrangements, but had the disadvantage that the 
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components required realignment for each session, thus affecting the repeatability of 
results collected over different sessions. To counteract these problems the next stage of 
the work was to design and build a sealed box (that could be purged) to house the 

optical set-up with a metal plate to which all the components to be fixed in place. 
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3.6 The purgable box 

To remove the effects of ambient air, in particular CO2. and to also reduce the amount 

of stray light reaching the detector, it was decided to build a black sealed box that could 
be purged. This work looks at the testing of this box, which is designed to be a 

prototype for the IR analyser that will eventually be built with QWIPs. 

Description of box 

A rectangular box was made of black vinyl material, although this resulted in a lot of 

empty space thus increasing the area to purge (compared to a T-shaped box which 

would be the minimum geometry required to enclose the source, detector and gas cell), 
it was the simplest design to construct. 
The optical alignment of the components was based on set-up 5 from the previous work 
(section 3.5). The components were mounted on a metal plate to keep them fixed in 

place thus eliminating the need to constantly check the alignment. 

3.6.1 Replacement of MCT detector with the DIGS detector 

Originally the MCT detector was employed, but problems with large drops in response 
over short time intervals occurred due to loss of the vacuum in the dewer flask. While it 

was being fixed, the DTGS detector was utilised, this had not been used in the previous 

set-ups due to the physical restraints of the apparatus; however, with the new box, 

connectors and independent power supply (previously the IR source was still powered 
from the FTIR so could only be placed in limited positions) this was now possible. 
The sensitivity of DIGS detectors was lower than for the MCT detector and it was 
found that the sensitivity setting on the lock-in amplifier needed to be increased in order 
to obtain responses of a similar magnitude to those obtained by the MCT. 

Initial results obtained with the DTGS detector were found to be more consistent and 
less prone to long-term drift than the MCT. Figure 3.6.1 compares the drift obtained 
over a two-minute interval using the 2.9 µm filter with the DTGS detector. 

3.6.2 Effect of purging 
Purging the box resulted in a drop in signal which eventually levelled off. Increasing 
the flow rate resulted in a larger drop in signal. Possibly this was due to a cooling effect 
of the helium flow on the source or some kind of pressure effect. An example of this is 
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shown in figure 3.6.2. Once the responses had stabilised, a 20 cm3min' flow rate of 

helium was passed through the box (from the reference column outlet on the GC), this 

wnc to Pnciire the box was constantly nurued. 

Figure 3.6.1 Drift in response from DTGS using 2.91an filter (in purgable box set-up) 
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Figure 3.6.2 The effect of purging (60 cm3min"ý flow rate) on the responses obtained 
with different filters 
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3.6.3 Testing the box 

3.6.3.1 Static samples 

The responses obtained for the static samples (and the purges between samples) are 

shown in figure 3.6.3. Calibration plots relating the response to concentration are 

shown in figure 3.6.4, these resulted in poor correlations even after subtraction of purge 

and reference responses. To further investigate whether this was due to problems with 

the box set-up, errors in sample preparation or lack of sensitivity, dilution samples were 

prepared. 

Responses obtained for static samples measured in 
purgable box 
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Figure 3.6.3 Plot of responses obtained for static prepared samples measured in 
purgable box 
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Figure 3.6.4 Plots of response versus % concentration for different filters using the 
purgable box 

3.6.3.2 Dilution samples 

Figure 3.6.5 displays the results for the dilution of a mixture of the four gases (sample 

1). Looking at the raw data, there are clear `kinks' in the response that are particularly 

noticeable when the time measurements are converted to corresponding concentration 

levels; these are reflected in the responses for the 10.62 . tm filter, which as there is no 
SF6 (or any other species that absorbs at this wavelength) present in the sample, should 
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not show any change in response over time. Subtracting the 10.62 µm reference 

response from the other responses (figure 3.6.6) had the effect of removing most of this 

variation. According to Beer's law there is a linear relationship between absorption and 

concentration, therefore a linear response is expected for concentration versus log 

response; however, deviations can occur over large concentration ranges as 

demonstrated by the 4.35 µm filter response (figure 3.6.6). 

Raw data response versus time for dilution of four 
component sample 
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Figure 3.6.5 Raw responses obtained using the purgable box, for the dilution of a 
sample mixture of CH4, CO, CO2 and N20 using a flow rate of 20 cm3min"'. (N. B. 
The concentrations are calculated according to equation 1.4 shown in section 1.2.2) 
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Figure 3.6.6 Effect of subtraction of reference response and of taking logs on the 
responses obtained (using the purgable box), for the dilution of a sample mixture of 
CH49 CO, CO2 and N20 

Figure 3.6.7 diplays at the change in response for concentrations less than 6,000 ppm, 

compared to the dilutions made prior to the purgable box (using the MCT detector) the 

results are greatly improved, with correlations ranging from 0.88 to 0.97. 
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Figure 3.6.7 Log of the responses obtained for concentrations of less than 6,000 ppm 
(using the purgable box), for the dilution of a sample mixture of CH4, CO, CO2 and 
N20 

Further dilutions 

Dilutions were performed on single gas mixtures to investigate the sensitivity of 

detection for individual gases and to determine detection limits. In all cases the 

correlation between concentration and the GC response for the gases of interest gave 

correlations greater than 0.99 so these results are not discussed further, and it can be 

assumed any deviations in the IR response are not due to sample variations. 

The correlations for log response versus concentration, over the concentration range 
1,000 to 60,000 ppm for N20 and CH4 were both 0.97. 

For concentrations less than 10,000 ppm the R2 values obtained for N20 and CH4 were 
0.956 and 0.900 respectively. Responses for concentrations less than 1000 ppm were 

varied indicating the measuring system was not sensitive enough for these 

concentrations. Removing responses below 1000 ppm resulted in R2 values of 0.947 and 
0.954 for N20 and CH4 (refer to figure 3.6.8). 
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Figure 3.6.8 Log of the responses obtained for concentrations of less than 10,000 
ppm, using the purgable box, for the dilution of a sample mixture of CH4 and N20 

Correlation plots obtained for the dilutions of individual gas samples are shown in 

figures 3.6.9 to 3.6.12. These display the different filter responses over the entire 
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concentration range, as well as a close-up of the relevant filter response (wavelength 

relating to the gas of interest) over a narrower concentration range. 
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Figure 3.6.9 Calibration plots obtained for dilutions of CO samples, using the 
purgable box 
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Figure 3.6.12 Calibration plots obtained for dilutions of CH4 samples, using the 
purgable box 

180 



These demonstrate that each filter only responds to the analyte of interest, as indicated 

by the low correlations between response and concentration obtained for gases not 

relating to the filter wavelength. 
The concentrations achieved over the entire dilution runs were too wide to obtain a 

linear response over the entire concentration range (as demonstrated by the response 

curves obtained); this was particularly pronounced for the CO2 dilution; however, the 

plots were linear over narrower concentration ranges. Good responses were obtained for 

CO2 using the 4.35 µm filter for the concentration range of 100-1000 ppm which gave a 

correlation of greater than 0.996. The other filters, particularly the 3.25 . im filter (for 

CH4) and the 2.9 . im filter (for N20) were much less sensitive to changes in analyte 

concentrations over this concentration range. 

3.6.4 Five level experimental design calibrations 

A five level experimental design was adopted as a means of determining concentration 

combinations to employ for preparing sample mixtures to build calibration models 
from. This meant the response for each gas was measured at five different 

concentrations. The different combinations of levels employed in each sample can also 
be used as a means of checking for interference or interaction effects between different 

analytes. Figure 3.1.13 is a plot of the five level design matrix utilised. 
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Figure 3.1.13 Plot of the experimental design matrix, showing the levels of each 
component employed for each sample 
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Results from the initial samples gave very poor correlations between level (gas 

concentration) and responses obtained by GC and IR, therefore the work was repeated 

to check whether this was due to equipment or analyst errors. Previous work relating the 

FTIR response obtained with the narrowband filters to GC peak heights gave good 

correlations for CH4, C02, and N20, thus correlation plots between the IR and GC 

response were utilised to indicate whether the poor correlation between responses and 

concentration levels were due to errors in sample preparation or with the measurement 

system. Figure 3.6.14 shows correlation plots between GC and IR responses (log of 

response after subtraction of reference) for the original data and the repeated data. The 

original data gave poor correlations, so this was assumed to be due to instrumental or 

sample preparation error. The data collected after repeating the work gave relatively 

good correlations between the GC and IR responses, therefore it can be assumed the 

previous data was erroneous. 

Figure 3.6.15 displays plots of IR response versus concentration level (for the repeated 

data), ideally there should be distinct differences in response for each of the different 

concentration levels. 
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Figure 3.6.14 Correlation between GC peak height and IR response (log of response 
after subtraction of reference) for sample concentrations prepared from a five level 
experimental design 
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From these plots it can be seen there is very poor correlation for the CO and CH4 and 

there is a wide deviation of response. There is clearly some overlap between the 

responses obtained for different concentration levels, indicating a problem with 

sensitivity. 
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Figure 3.6.15 Correlation between IR response (after taking log of response after 
subtraction of reference) and concentration level 

Calibration models 

MLR and PLS models were built using all the samples. As there were only five IR 

responses measured (including the reference response) and four GC responses, PLS 

models had no advantage over MLR models. The models based on the `log of response 

minus the reference response' data gave slightly improved predictions over raw data and 

responses with the reference subtracted; however, most of the predictions in errors 

obtained, regardless of the data treatment, were greater than 25 % with many exceeding 

50 %. Table 3.6.1 shows the average error in prediction obtained for a MIA model 

using the IR responses (after taking logs of the responses minus reference) to predict 

concentrations; the worst results were those obtained for CH4. Since better correlations 
between GC and IR response were obtained than those between concentration and IR 

response, models were also built to predict the GC response from the IR data. Figure 
3.6.2 shows the average error in prediction obtained for a MLR model using the IR 
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responses (after taking log of response minus reference) to predict GC responses; the 

average % error in prediction was improved for CO and CH4, but worse for CO2 and 

N2O, whilst the error in prediction for CH4 was still significantly higher than the others. 

Prediction of concentration from IR res ponse 
Gas Hi hest error Lowest error Average 
CO 102.6% 0.8% 22.6% 
CO2 50.9% 1.1 % 12.6% 
CH4 222.2 % 7.8 % 71.4 % 

N20 73.6% 1.1 % 21.3 % 

Table 3.6.1 % error for prediction of concentration from IR response (log of response 
minus reference) using MLR model 

Prediction of GC res ponse from IR response 
Gas Highest error Lowest error Average 
CO 35.1% 0.5% 14.7% 
CO2 72.4% 0.3% 13.3% 
CH4 196.0% 4.9% 56.9% 
N20 88.8 % 4.2 % 24.9 % 

Table 3.6.2 % error for prediction of GC response from IR response (log of response 
minus reference) using MLR model 

Investigation into CH4 responses 

Figure 3.6.15 shows the IR responses with and without data treatment for samples of 

CH4 in helium. After taking logs of the response minus reference, the correlation 

between treated response and concentration was 0.95. 
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Figure 3.6.15 IR response for different concentrations of CH4 
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GC response vs conc (CH4) 
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Figure 3.6.16 GC responses for different concentrations of CH4 

The correlation between the data shown in figure 3.6.15 (GC versus IR response for 

different concentrations of CH4) is vastly improved over the previous IR response 

versus concentration of CH4 in different sample mixtures (figure 3.4.14). This suggests 

that in previous work (section 3.6.4) there was either a problem with interference from 

the other gases or experimental error. 

Reproducibility of response 

To further check reproducibility of CH4 responses, repeat sample of 1.89 % (used for 

level 5) and 0.4 % (employed for level 1) concentrations were prepared with varying 

amounts of the other gases or just helium injected. The standard deviations and the % 

RSD these correspond to are shown in table 3.6.3. The results indicated that the 

presence of other gases at different concentrations had no significant effect on the 

response obtained with the 3.25 µm filter. 

Repeat samples of 1.89% Average Std. deviation % RSD 
raw data 
reated data 

1.69 
0.18 

0.05 
0.01 

2.86 
8.13 

Repeat samples of 0.4% Average Std. deviation % RSD 
raw data 

reated data 
2.01 
0.26 

0.03 
0.01 

1.61 
1.99 

Table i. b. s Deviation in response, jor replicate samples of CH4 
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Addition of sample loop 

The sample loop was introduced into the system to reduce variation in the amounts 

injected into the cell by employing fixed volumes (as opposed to a syringe). The results 

show improvement (i. e. lower standard deviations between repeat injections) over the 

syringe injection method, but still high variation in the model due to inherent error in 

the data. 

Calibration plots of IR response after treatment versus concentration levels (figure 

3.6.17) gave correlation coefficients of 0.83,0.91,0.91 and 0.92 for CO2. CO, CH4 and 

N20 respectively. 
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Figure 3.6.17 Plots of IR response (after treatment) versus concentration level for 
samples prepared using sample loop 

Table 3.6.4 lists the average response, giving the standard deviation, and % RSD 

obtained for each concentration level. 
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level 
Average response 

CO2 CO CH4 N20 
Standard deviation 

C02 CO CH4 N20 CO 
% RSD 

CO CH4 N20 
1 0.41 0.88 1.38 0.98 0.03 0.02 0.01 0.04 6.99 1.69 1.04 4.49 
2 0.36 0.85 1.34 0.91 0.01 0.03 0.01 0.02 3.26 3.88 0.79 1.72 
3 0.26 0.79 1.31 0.90 0.02 0.03 0.01 - 8.46 3.52 1.03 - 
4 0.18 0.72 1.26 0.83 0.04 0.01 0.01 0.03 20.47 0.88 0.65 3.14 
5 0.16 0.63 1.21 0.78 0.01 0.01 0.02 0.02 4.26 1.89 1.64 2.09 

Table 3.6.4 Average response, standard deviation and % RSD for filter responses (2.9 

Ion filter for N20,3.25 fan filter for CH4,3.45 ton filter for CO and 4.73 Ion filter for 
CO) after data treatment (log of response minus reference) 

PLS modelling 
With the exception of CO2, the PLS models built from the data collected for samples 

prepared using the sample loops had poor prediction ability. Figure 3.6.18 displays 

plots of the levels predicted by the PLS model versus the actual concentration levels. 
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Figure 3.6.18 Predicted versus actual levels for PLS models 
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The main reason for the poor predictions is due to the overlap in magnitude in response 
between the responses for different concentration levels resulting in a lack of sensitivity 

to the changes in concentration. 
Correlation between f lter responses 
Tables 3.6.5 and 3.6.6 show the correlation between different filter responses. These 

show a higher than expected correlation between different filter responses even after 

subtraction of the reference response, thus implying there are still problems with the 

detection system, most likely drift in the response that is not fully compensated for by 

the data treatment. 

Correlation for untreated data 
filter 2.9 3.25 4.35 4.73 10.62 

2.9 1 0.74 0.76 0.75 0.69 
3.25 1 0.98 0.99 0.97 
4.35 1 0.97 0.94 
4.73 1 0.99 

10.62 1 

Table 3.6.5 Correlation between untreated filter responses 

Correlation for treated data 
filter 2.9 3.25 4.35 4.73 

2.9 1 0.39 0.46 0.55 
3.25 1 0.84 0.87 
4.35 1 0.73 
4.73 1 1 1 

Table 3.6.6 Correlation between treated filter responses 

3.6.5 Conclusion 

The enclosed box gave improved results over the unenclosed optical set-up, as 
demonstrated by the results obtained for responses from dilution runs (results in section 
3.5.6 compared to those in section 3.6.3). After subtracting the reference filter 

response, smooth response curves were obtained for the dilution runs. Over smaller 
concentration ranges, linear plots between concentration and log of treated response 
were obtained; the best results were obtained for CO2 (4.3511m filter) which gave good 
linearity for concentrations less than 1,000 ppm. Results for the other gases, in 

particular N20, gave less sensitivity for concentrations below 1,000 ppm. 
The next step of collecting responses from mixtures of different concentration 
combinations gave very poor correlations between concentrations and responses. The 
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poor correlation between GC and IR responses indicated this was caused by equipment 

problems as opposed to errors in sample preparation. Data collected from a repeat of 

the work gave improved correlation between the GC and IR responses, hence further 

analysis was carried out the data obtained from the repeat data. 

From analysis on these data it was clear, by examining plots of the data, that in some 

cases there was a wide deviation in response for gases of the same concentration, for 

example the level 5 concentration responses for CO and CH4 (figure 3.6.15) obtained 

with filters 2.9 and 3.25 gm respectively. 
To address this, further investigations were performed on the reproducibility of C114 

responses. The correlation obtained between concentration and response from these data 

was lower than that obtained for the previous data. This suggested either interference 

from the other gases or experimental error. Further work assessing the reproducibility 

of CH4 responses showed that the addition of other gases to the sample made no 
difference to the response, thus ruling out the possibility of interference from the other 

gases. 
To reduce error in the sample preparation technique a sampling valve was introduced 

into the system to ensure only fixed volumes of gas were introduced into the system (as 

opposed to varying amount from a gas syringe). This improved the correlation between 

concentration level and response, with R2 values of 0.94,0.91,0.95 and 0.87 for C02, 
CO, CH4 and N20 respectively; however, responses for different concentration levels 

still lacked sensitivity to the different concentrations. Deviations in response at the same 
concentration levels resulted in overlap in the magnitude of response between different 

concentration levels. As a result, the PLS model built from this data still had high 

prediction errors. 
A study of correlations between filter responses was conducted to determine if the 

variation in filter responses were independent of each other or linked. Without the data 

treatment, high correlations were obtained between all the filters due to the effect of 
detector drift and source variations i. e. a drop in detector response causing a drop in all 
the filter responses. With data treatment the effect of these variations should be 

removed leaving just random error and there should be little or no correlation between 
the different filters. Correlations between filter responses after data treatment were 
higher than expected between 4.35µm and 3.25µm, and between 4.73µm and 3.25µm 

which implied the data treatment was not fully compensating for drift in detector/ 

system response. 
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A main problem with the system was that most of the equipment was borrowed from 

other instruments therefore was not specifically tailored for this set-up. Since the 

equipment was borrowed it had to be shared with other research projects, thus resulting 
in the chopper and occasionally the detector being removed in between measurement 

sessions, which could have also attributed to the reproducibility problems. 
The mid IR and narrowband filters will eventually be replaced with QWIP detectors, 

which should simplify the system (less components to align), and therefore reduce 

errors in the system. Without the filters there should be a higher % of light reaching the 

detector which coupled with the expected higher sensitivity of the QWIP detectors 

should improve the detection limits. There is also the possibility that the lock-in 

amplier and chopper may be removed from the set-up which would further simplify the 

system. 
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3.7 Results and Discussion for Vapour Analysis 

The aim of this stage of the work was to look at the feasibility of developing a QWIP IR 

detector array for the qualification and possible quantification of different organic 

vapour mixtures. This was investigated by, first collecting spectra for different organic 

compounds and investigating the similarity by cluster analysis, before performing 

variable selection on a few simple mixtures. 

3.7.1 Spectra collected by sampling vapour with syringe 

In order to obtain spectra, of a suitable format, for a variety of compounds, samples 

were collected and scanned using the same (Excaliber) FTIR instrument. Samples were 

collected using a syringe to sample the air, along with any vapour present, from bottles 

containing the compounds of interest. Figure 3.7.1 displays some of the absorption 

spectra obtained from different compounds, `noise' refers to samples of ambient air 

(mainly consisting of CO2 and water vapour). 
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Figure 3.7.1 Absorption spectra obtained by vapour sampling with syringe 
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Absorption peaks due to CO2 and H2O were visible (to a varying extent) in all the 

spectra; the spectra obtained for each of the different compounds were compared to 

reference spectra (from NIST64 and Aldrich97) thus confirming the remaining absorption 

peaks were due to the compounds sampled. 

3.7.1.1 Principal Component Analysis (PCA) 

PCA on entire spectra 

PCA was performed on the entire spectra; table 3.7.1 lists the amount of variance 

described by each principal component. In this case over 99 % of the variance was 

described by the first principal component (PC I) and very little information can be 

abstracted from the remaining variance. Score plots of the principal components 

showed most of the samples clustered around the origin with one or two outliers. As 

mentioned earlier all the spectra contained absorption peaks, of varying amounts, due to 

water vapour and C02, hence some of the variance described by the principal 

components can be attributed to this. 

Figure 3.7.2 is a plot of the loadings for the different components. Focusing on the 

loadings for PCI and PC3, peaks due to CO2 (centred around 2200 cm-1) and H2O 

(3800-4000 cm-1 and 1800-2000 cm-') are included. To investigate how selecting 

specific portions of spectra compared to analysing the entire spectra, the spectral data 

was split into different portions and each section separately analysed. 

PC Number % Variance Total % Variance 
1 99.615 99.615 
2 0.192 99.807 
3 0.058 99.865 
4 0.052 99.918 
5 0.042 99.960 
6 0.013 99.973 
7 0.010 99.983 
8 0.008 99.991 

Table 3.7.1 Results from PCA for entire spectra (4000-500 cm-') 
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Figure 3.7.2 Loadings obtained from PCA performed on entire spectra 

PCA on Region one (4000-3400 cm-') 

Region one is where O-H stretches occur therefore absorption peaks in this region are 

due to water vapour and O-H stretches on alcohols. PCA gave three components; PC 1 

described 99.961 %; PC2,0.025 %; and PC3,0.008 %. Referring to the plot of the 

loadings (figure 3.7.3) it is clear that PC I describes mostly absorption due to OH group 

n� the al'nhnls and PC2 contains mostly variation due to water vapour. 

Figure J. 7.3 Loadings from PC, A of vapour spectra using just wavenumbers 4000- 
3400 cm-1 
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By plotting the sample scores of different components (refer to figure 3.7.4) it can be 

seen that there is clustering of the different samples. The methanol (sample 24), ethanol 

(samples 31 and 32) and the most concentrated t-butanol spectrum (sample 35) are 

clearly distinct from the other samples. 

The remaining samples (excluding alcohol spectra) are split into two groups, one 

containing samples 1 to 15 and the other samples 16 to 34. The two groups relate to 

spectra collected on different weeks, and clustering is due to the different water vapour 

levels present at the time of analysis. 
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Figure 3.7.4 Score plots obtained from PCA of vapour spectra using just 
wavenumbers 4000-3400 cm-1 
(Sample 24 was the spectra obtained for methanol, samples 29 and 30 for butan-I -ol, 
samples 31 and 32 for ethanol, samples 35 and 36 for t-butanol) 

PCA on Region 2 (3200-2600 cm-') 
Region 2 relates to frequencies of C-H stretches, hence all the compounds had 

absorption peaks in this region. PCA gave 7 components; the loadings for the first Five 

Ps are shown in figure 3.7.5. The score plots (figure 3.7.6) clearly demonstrate the 
distinction of benzene samples (samples 6,7 and 8, with sample 8 being the most 

concentrated) from the other spectra. There was also some clustering of alcohols, 

cyclopentane and heptane; however, there was little difference between the remaining 
samples. 
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Figure 3.7.5 Loadings obtained for PCA on vapour spectra for the wavenumber 
range 3200-2600 cm-' 
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Figure 3.7.6 Score plots obtained from PCA on vapour spectra for region 3200-2600 
cm 

Region 3 (2100-500 cm-) 

Region three also gave 7 principal components, this region is where characteristic C'-C, 

C-H and C-O stretches occur, as well as H-O stretches (from water). 

Loadings for the first four PCs are displayed in figure 3.7.7. 
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Most of the score plots gave little evidence of clustering between compounds containing 

the same functional groups and the majority of the samples were centred around the 

origin. In some cases there was separation of alcohols and benzenefrom the main bulk 

of the samples as displayed by the score plot in figure 3.7.8. 

Figure 3.7.7 Loadings obtained for PCA on vapour spectra using just wavenumbers 
2100-500 cm 

Figure 3.7.8 Score plot obtained from PCA on vapour spectra for region 2100-500 
CHI 

Region 4 (1300-500 cm-') 
Region 4 corresponds to the region where characteristic C-C, C-H and C-O stretches 
occur (as in the case of region 3, but avoiding the water stretches in the region 2100- 
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1300 cm-1). PCA resulted in seven principal components and similar score plots wre 

obtained that were similar to previous region 3. 

3.7.1.2 Mean centring pre-treatment of data 

Mean centring by sample and by variable was applied to see whether data pre-treatment 

had any significant effect on the PCA results. Figure 3.7.9 contains plots of the spectra 

after mean centring was applied. 
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Figure 3.7.9 Effect of mean centring by variable (wavenumber) and by sample on 
vapour spectra 
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As with the analysis on the untreated spectra, PC 1 described the majority of variation 

(over 80 %) and the remaining components gave little information to distinguish spectra 

of different compounds; thus indicating that mean centring offered no significant 

improvement over untreated spectra. 

3.7.1.3 Standard Normal Variate pre-treatment of data 

In SNV treatment data is divided by the standard deviation, thus giving added weighting 

to samples or variables (depending on whether SNV is by sample or by variable) where 

the magnitude of variation is low. This treatment was applied to the data to emphasise 

the weaker absorption peaks and determine if better clustering between different types 

of compounds could be achieved. With SNV treated data, PC 1 described only 49 % of 

the variation. Score plots of PC 1 and PC2 now show clearer clustering of similar 

compounds. The region 2600-2100 cm-' displayed very little spectral information, apart 

from absorptions from ambient C02; therefore, this portion of information was removed 

from the data. 
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Figure 3.7.10 Effect of Standard Normal Variate treatment on Spectra 
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Figure 3.7.11 Score plots from PCA performed on SNV treated data 

3.7.1.4 Cluster Analysis 

Cluster analysis is a useful way of comparing similarities between samples by grouping 

samples together according to the relative distance between them. Dendrograms were 

employed as a means of displaying this information. A large number of dendrograms 

were generated using different distancing and data treatment, so only some of the 
dendrograms obtained are displayed in figures 3.7.12 and 3.7.13. 

199 



As can be seen, spectra of different concentrations of benzene are clustered together as 

are those of p-xylene. There is some grouping of similar compounds for example 

ethanol and methanol, but not with butanol and there is no clustering of the different 

isomers of xylene. 

Dendrogram Using Unscaled Data 
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Figure 3.7.12 Dendrograms displaying results from cluster analysis of untreated data 
using distancing between nearest neighbour and distancing to nearest group 
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Dendrogram Using Mahalanobis Distance of Dendrogram Using Unscaled Data 

ne 
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Figure 3.7.13 Dendrograms displaying results from cluster analysis of untreated data 

using Mahalonobis Distancing (employing 10 PCs) and distancing to nearest group 
on SNV treated spectra 

3.7.1.5 Conclusion 

Results from PCA and cluster analysis indicated that some distinction between different 

types of compounds could be achieved as shown by the clustering of alcohols in the 

score plots and groupings in the dendrograms; however, the varying water vapour and 

CO2 peaks appeared to have a significant effect particularly in PCA where a large 

proportion of the variation described by the PCs can be attributed to them. 

3.7.2 Spectral Correction 

To remove the possible effect and interference of the varying water and CO- peaks, 

various means of correction where applied to the spectra. 

As described in section 3.1, the spectra were ratioed against a cell that was evacuated 

employing the sampling rig before being filled with air from the surrounding 

environment and this helped remove some of the water and CO2 peaks. The 

concentration of sample was dependent on the vapour phase of the solvent. For the more 

volatile compounds such as benzene, toluene and methanol the noise (water and CO, 
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peaks) to sample ratio was low, while for the less volatile compounds the low 

concentrations of sample meant there was a high noise to sample ratio. 
Figure 3.7.14 displays the original spectra obtained for toluene. A large amount of 

absorption due to water vapour can be seen in the regions 1400-2000 cm-1 and 3500- 

4000 cm-1. Figure 3.7.15 shows a spectrum for toluene obtained employing the new 

conditions to reduce water vapour. The amount of water vapour present is greatly 

reduced and it is much easier to identify peaks in the region 1400-2000 cm-1, which 

overlap with the water vapour absorptions. Figures 3.7.16 and 3.7.17 compare a-pinene 

spectra obtained by vapour sampling and with the sampling rig. Again, there is a 

significant improvement in the spectra. 
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Figure 3.7.1.4 Spectrum obtained for toluene by sampling vapour 
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Figure 3.7.15 Spectrum for toluene employing the sampling rig 
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Figure 3.7.16 Alpha pinene spectra obtained by vapour sampling 
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Figure 3.7.17 Alpha pinene spectra obtained employing the sampling rig 

3.7.2.1 PCA on corrected spectra 

For PCA on the entire spectra, without using any data pre-treatment, PC l described 

over 90 % of the variance. The score plots (figure 3.7.18) show clustering of the 

alcohols, butan- l -ol, butan-2-ol, methanol, ethanol and t-butanol, samples 3,10,16,19,21 

and 22 respectively. They also show clustering of the alkanes 5,6,7,14, and 15 

corresponding to cyclohexane, hexane, octane, cyclopentane and heptane, and general 

separation of the rest. 
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Figure 3.7.19 Effect of SNVpre-treatment on corrected vapour spectra 

Figure 3.7.19 shows the spectra after SNV pretreatment, and two of the score plots 

obtained from PCA (on the SNV treated data) are displayed in figure 3.7.20. Again. 

score plots display a greater dispersion then the original analysis on spectra collected by 

vapour sampling. Looking at table 3.7.2, only 52 % of the variation between spectra is 

described by PC 1. 
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Figure 3.7.20 Score plots for SNVpre-treated vapour spectra 

PC Number % Variance Total % Variance 
1 53.813 53.813 
2 10.599 64.412 
3 5.838 70.251 
4 5.194 75.445 
5 4.406 79.851 
6 4.288 84.140 
7 3.512 87.652 
8 2.887 90.539 
9 2.321 92.860 
10 1.899 94.758 
11 1.032 95.790 

Table 3.7.2 Results of PCA on corrected spectra, using SNV pretreatment 

3.7.2.2 Cluster Analysis 

Dendrograms of data using both untreated data and SNV treated data were produced. As 

before, various methods were used including; K distancing to the nearest group, K 

distancing to nearest neighbour and using data with and without PCA. 

The dendrograms (figure 3.7.21) demonstrate good clustering for alcohol and alkane 

compounds, so in theory the information can be utilised to identify different types of 

compounds to a limited extent. 
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Figure 3.7.21 Dendrograms displaying results for cluster analysis on corrected 
spectra with no further data pre-treatment 
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Figure 3.7.22 Dendrograms displaying results for cluster analysis on corrected 
spectra with SNVpre-treatment 

3.7.2.3 Conclusion for corrected spectra 

Results obtained for corrected spectra gave better clustering of similar types of 

compounds than the previous uncorrected spectra. A drawback with this approach to 

collecting spectra was the very limited control of sample concentrations particularly for 

the less volatile compounds, this led to the next stage of the work where a different 

approach to sample preparation was applied. 
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PC Number % variance Total % variance 
1 99.438 99.438 
2 0.382 99.820 
3 0.106 99.926 
4 0.063 99.988 
5 0.005 99.993 

Table 3.7.3 Results of PCA on all the vapour spectra prepared from liquid injection 

3.7.3.3 Reduction of the numbers of spectra analysed 

The data was then split into smaller groups to make it easier to analyse clustering. An 

average spectrum for each compound was calculated; table 3.7.4 lists the % variance 

described by the first 6 PC's. The sample numbers 1-15 refer to acetone, butanol, 

cyclohexane, ethanol, heptane, hexene, limonene, methanol, m-xylene, o-xylene, 

propanoic acid, p-xylene, tert-butyl alcohol, toluene and hexane, respectively. From the 

score plot of the first two principal components, the alcohols (methanol, ethanol, and 

butanol (samples 2,4 and 8)) are clustered together, as are hexane and heptane (5 and 

15), the aromatic compounds (xylenes and toluene) also lie in close proximity to each 

other. 

PC number % variance Total % variance 
1 58.865 58.865 
2 24.890 83.754 
3 7.126 90.880 
4 3.588 94.468 
5 2.329 96.797 
6 1.386 98.183 

Table 3.7.4 Results of PCA on all the "average" vapour spectra (prepared from liquid 
injection) 
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Figure 3.7.24 Score plots obtained for "average" vapour spectra (from samples 
prepared by injection of liquid technique) 

3.7.3.4 Analysis of Alcohols 

This consisted of the analysis on just alcohol spectra. Samples 1-8 were different 

concentrations of butan- l -ol. samples 9-15 were methanol, samples 16-24 were ethanol 

and samples 25-32 consisted of tert-butyl alcohol. These spectra are shown in figure 

3.7.25. 

Over 99 % of variation was described by four PCs (table 3.7.5). 
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Figure 3.7.25 Spectra obtained for alcohol samples (prepared by injection of liquid 
technique) 

PC number % variance Total % variance 
1 71.576 71.576 
2 20.605 92.181 
3 4.653 96.834 
4 2.215 99.048 

Table 3.7.5 PCA results for first 4 principal components 

Score plots (figure 3.7.26) show increasing separation of the alcohols as the 

concentration increases. This was particularly pronounced in the score plot of PC4 

versus PC2 where each alcohol is spread on a different axis. 
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Figure 3.7.26 Score plots obtained from PCA performed on alcohol spectra 
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Cluster analysis (figure 3.7.27) linked spectra of the same alcohols together but was 

dependant on the concentration. For example, on the dendrogram obtained for unscaled 

data, the ethanol samples 1,3 and 6 (low concentrations) are separated from samples 

2,4,5 and 8 (higher concentrations). 

Dendrogram Using Unscaled Data 

01234 
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Figure 3.7.27 Dendrograms from cluster analysis on alcohol spectra 
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3.7.3.5 Analysis of mixtures 

A mixture of different types was included in this analysis. This consisted of compounds 

that gave no clear clustering in previous work and consisted mainly of aromatic and 

cyclic compounds. Table 3.7.6 lists the compounds used and the corresponding spectra 

numbers. 

Compound Sample numbers 
cyclohexane 1-9 
limonene 10-13 
p-xylene 14-18 
m-xylene 19-25 
o-xylene 26-30 
toluene 31-39 
hexene 40-46 

Table 3.7.6 Compounds analysed and the corresponding spectra numbers 
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Figure 3.7.28 Score plots obtained from PCA performed on a mixture of spectra 

Dendrograms from cluster analysis (figure 3.7.29) demonstrated good grouping of same 
compound spectra. 
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Figure 3.7.29 Dendrograms obtained for analysis of a mixture of spectra 
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3.7.3.6 Analysis of xylene spectra 

This consisted of analysis of just the xylenes. Samples 1-7 were different 

concentrations of m-xylene, samples 8-12 from o-xylene and samples 13-17 from p- 

xylene. The spectra are displayed in figure 3.7.30. PCA resulted in PCs describing 

over 99% of the variance (table 3.7.6). 
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Figure 3.7.30 Spectra obtained for alcohol samples (prepared by injection of liquid) 

From the score plots (figure 3.7.31) it was possible to distinguish the different isomers 

with increasing concentrations. At lower concentrations, the spectra were more centred 

around the origin. This was also true for the dendrograms; high concentrations of the 

same isomer were grouped together but with less distinction for lower concentrations. 

PC number % variance Total variance 
1 81.643 81.643 
2 10.384 92.027 
3 5.858 97.885 
4 1.536 99.422 

Table 3.7.6 PCA results from analysis of Xv! enes 
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Figure 3.7.31 Score plots from PCA analysis 
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Figure 3.7.32 Dendrograms from Xylene Analysis (letters refer to the isomer) 

3.7.3.7 Analysis of acetone, propanoic and tert-butyl alcohol 

This analysis was performed on acetone spectra (samples 1-6), propanoic spectra, 

(samples 7-13) and tert-butyl alcohol (samples 14-21). The spectra are shown in figure 

3.7.33, with results from PCA displayed in table 3.7.7. Two of the score plots obtained 

are shown in figure 3.7.34, the plot of PC2 versus PC3 demonstrates clustering of the 

different compounds; however, many of the samples are close to the origin making it 

harder to distinguish between low concentration samples. From the dendrograms (figure 

3.7.35), it can be concluded that it is possible to identify propanoic acid (based on the 

fact that most of the propanoic samples were closely linked), but acetone and tert-butyl 

were much harder to distinguish. 
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Figure 3.7.33 Plot of spectra for acetone, propanoic acid and tert-butyl alcohol 

PC number % variance Total % variance 
1 90.278 90.278 
2 5.109 95.387 
3 4.492 99.879 

Table 3.7.7 Results from PCA Analysis 
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Dendrogram Using Mahalanobis Distance on 5 PCs 
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Dendrogram Using Unsealed Data 
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Figure 3.7.35 Dendrograms from cluster analysis on acetone, propanoic and tert- 
butyl alcohol 

3.7.3.8 Analysis of alkanes 

In this case, samples 1-9 were different concentrations of cyclohexane; samples 10-29 

were hexane; and samples 30-34, heptane. The spectra for heptane and hexane are 

practically indistinguishable from each other as demonstrated in the score plots (figure 

3.7.37) and dendrograms (figure 3.7.36), whereas, cyclohexane was clearly identified in 

the score plots. 
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Dendrogram Using Autoscaled Data 
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3.7.36 Dendrograms from cluster analysis on acetone, propanoic and tert-butyl 
alcohol 
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Figure 3.7.37 Score plots from analysis on alkanes 

3.7.3.9 Analysis of four compounds with different functional groups; cyclohexane, 
ethanol, heptane and xylene 

In this analysis, each component contains a different functional group i. e. an alkane, a 

cycloalkane, an alcohol and an aromatic. Samples 1-7 were ethanol, samples 8-12, o- 

xylene; samples 13-17 heptane and samples 18-26 were cyclohexane. The score plots 

(figure 3.7.38) demonstrate increased separation with increasing concentrations of each 

analyte. The dendrograms (figure 3.7.39) showed clustering of the same compound but 

was dependent on the concentrations, with high concentration spectra grouped 

separately from lower concentration spectra of the same compound. 

PC number % variance Total % variance 
1 71.333 71.333 
2 24.541 95.874 
3 2.354 98.228 
4 1.093 99.321 

Table 3.7.8 Results from PCA analysis of cyclohexane, ethanol, heptane and xylene 

Scores for PC# 2 versrs PC# 1 
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Figure 3.7.38 Score plots from analysis of cyclohexane, ethanol, heptane and xylene 

Figure 3.7.39 Dendrogram from cluster analysis of cyclohexane, ethanol, heptane 
and xylene 

3.7.3.10 Conclusion 

The injection of different amounts of liquid followed by evapouration allowed spectra 

of different concentrations for the compounds of interest to he produced. Scores plots 

produced from the analysis of the entire data set displayed definite clustering of 
samples. Analysis of the reduced data set (where average spectra were generated to 

represent each compound) resulted in clusters of alcohols, hexane and heptane, and the 

aromatic compounds (toluene and xylenes). 
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Analysis of particular groups demonstrated it was possible to differentiate between 

different alcohols, and between different isomers of xylene, although the spectra for 

hexane and heptane were too similar to achieve any distinction between samples. A 

drawback of employing clustering to distinguish between the different spectra is the 

dependence on concentration, as demonstrated by the inability to separate different low 

concentration spectra. The score plots show the amount of separation between samples 

corresponding to increasing concentration, with low concentration samples centred 

around the origin. 

The score plot of PC2 versus PC4 from the analysis of four different groups (hexane, 

cyclohexane, ethanol and o-xylene) displays the increasing separation of more 

concentrated samples on a different axis for each compound (refer to figure 3.7.39). 

Therefore was decided to focus on these four compounds and build prediction models 
for mixtures of these four compounds and determine whether the VS-MLR algorithm 

employed in the previous work (section 3.1-3.6) could be applied in a similar manner. 
3.7.4 Analysis of mixtures of heptane, cyclohexane, ethanol and o-xylene 
3.7.4.1 PLS analysis 
Prediction models are generally based on a ̀ best fit' to describe trends in data, for 

example, in a univariate model based on y= mx + c, m and c are determined from the 

equation of the line of best fit; this means that erroneous samples (or outliers) i. e. 
abnormal samples or samples with a larger degree of error can have a leverage effect, 
which adversely affects the models prediction capability. This is also true for MLR 

models; however, identifying outliers or possible erroneous samples can be difficult, 

particularly when a large number of variables are measured. In this case, the IR spectra 
obtained from vapour mixtures were investigated using PLS. 

The first set of data examined was the FTIR spectra obtained from mixtures of 
cyclohexane, ethanol, heptane and o-xylene; this consisted of the training data (22 

samples each containing 1801 absorption measurements (from 4000 cm 1 to 400 cm 1 

with a resolution of 8 cm-1 and measurements taken every 2 cm 1)) and the validation 
data (11 samples collected a couple of days later, using same conditions as training 
data). Plots of the data with and without mean centring are contained in figure 3.7.40. 
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Figure 3.7.40 Spectra obtained for mixtures of cyclohexane, heptane, ethanol and o- 
xylene, left: absorption spectra, right: absorption spectra after meaning centring 
applied 

PLS was performed, employing "leave one out at a time" cross validation, with no 

scaling and then with mean centring. PRESS (predicted residual error from sum of 

squares) was examined for models employing up to 10 latent variables. Figure 3.7.41 

shows PRESS as a function of the number of latent variable employed in the model. 
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Figure 3.7.40 Spectra obtained for mixtures of cyclohexane, heptane, ethanol and o- 
xylene, left: absorption spectra, right: absorption spectra after meaning centring 
applied 

PLS was performed, employing "leave one out at a time" cross validation, with no 

scaling and then with mean centring. PRESS (predicted residual error from sum of 

squares) was examined for models employing up to 10 latent variables. Figure 3.7.41 

shows PRESS as a function of the number of latent variable employed in the model. 

r ggurr .,... yi u3 u juncrcun of we number of latent variables for PLS models 
on spectra obtained from mixtures of cyclohexane, ethanol, o-xylene and heptane 
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From this it can be seen that the minimum cumulative PRESS was obtained when four 

latent variables were used, this tied in with the fact that the samples contained four 

components of varying concentrations. 

Autoscaling was also applied to the data, but this had the effect of increasing the 

influence of noise. This is demonstrated in figure 3.7.42 where high PRESS values 

were obtained and there is no clear minimum number of latent variables; hence no 

further analysis was performed with autoscaled data. (NB. Autoscaling divides the 

average by the standard deviation, therefore in regions with little or no absorption, i. e. 

values close to zero, dividing by the noise variation results in large numbers, which 

mask high values due to absorption). 

PRESS as a Function of Number of Latent Variables 
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Figure 3.7.42 PRESS as a function of the number of latent variables for PLS models 
on SNV treated spectra obtained from mixtures of cyclohexane, ethanol, o-xylene and 
heptane 

3.7.4.2 Investigation into the effect of number of latent variables 
As the number of latent variables incorporated in a PLS model increases, so does the 

risk of overfitting the data, i. e. modelling incorporates errors particular to the calibration 

samples, this results in a decrease in the prediction error for the calibration samples (i. e. 
the data employed to build the PLS model), but an increase in the prediction error for 
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any new independent validation data. Figure 3.7.43 displays the SEPs obtained for the 

calibration and validation data from PLS models built employing different numbers of 

latent variables. This shows that the prediction error for the calibration data decreases, 

as the number of latent variables increases, initially due to the latent variables 

describing variation arising from the analytes of interest, then later due to overfitting of 

the data. The prediction error for the validation data initially decreases, as the latent 

variables included in the model describe variation due to the analytes of interest, till it 

reaches a minimum and then increases as latent variables included in the model start to 

describe variation unique to the original calibration data. 
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Figure 3.7.43 Plots of SEP obtained for calibration and validation data for PLS 
models built employing different numbers of latent variables. (NB. plots show results 
in order of highest to lowest for o-xylene, etoh, heptane, cyclohexane) 

From figure 3.7.43 it can be seen that a minimum SEP for the validation data was 

obtained when 4 LVs were employed, subsequently models using 4 LVs were used for 

further analysis. 

Plots of T2 and Q (figure 3.7.44) for each of the samples were employed as a means of 
detecting outliers. In both untreated data and with mean centred data models, a large Q 

value was obtained for sample 3. 
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Figure 3.7.44 Plots of TZ and Q for PLS models built from mixtures of for o-xylene, 
etoh, hexane and cyclohexane 

A plot of leverage versus the residuals (figure 3.7.45) showed that samples 3 and 16 had 

high leverage effects. Sample 3 can be explained as it contained high concentrations of 

all the components, but there was no significant reason why sample 16 should have such 

an effect therefore it was removed from subsequent analysis. An investigation into the 

spectra for sample 16 revealed a large residual CO2 peak, which obviously had some 

influence on the model prediction. 
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The plot of predicted versus actual values for the model showed poor predictions for 

sample 10 and 1l (figure 3.7.46). The poor prediction for sample 10 turned out to be 
due to a wrong value entered into the concentration matrix. The error for sample 11 
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was for the o-xylene concentration, which is less volatile then the other 3 compounds, 

therefore there is the possibility that the o-xylene in this sample had not fully vaporised. 
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Figure 3.7.46 Predicted versus actual amounts injected into the samples 

3.7.4.3 Comparison of different data treatments and single component versus all the 
component models 

Previously the PLS models were built to predict concentrations all the components at 

the same time. To investigate whether individually predicting each component had any 

effect of the prediction error, PLS models were built separately for each component, i. e. 
PLS models built using just the concentration information of the component of interest. 

This was performed on the absorption spectra, and then on the spectra after mean 

centring was applied. The SEPs obtained for the validation data from PLS models 

employing different numbers of latents variables were compared to determine which 

models gave the best prediction results. Figure 3.7.47 compares the SEPs of heptane 

obtained for both the calibration and validation spectra from different models for up to 

10 lvs. 
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Figure 3.7.47 SEPs of hexane obtained for both the calibration and validation spectra 
from different models for up to 10 LVs ('single component' refers to models built 

only to predict hexane, otherwise models were built to predict all four component 
simultaneously) 

The results showed that SNV treatment of the data had a detrimental effect oil the 

effectiveness of the PLS models for prediction of all the components. 

For heptane (shown in figure 3.7.47), the minimum SEP was obtained when mean 

centring was applied to the data (with all the components were modelled for 

simultaneously) and 5 LVs were employed. 

In the case of o-xylene (not shown) there was no significant difference in whether the 

other component were modelled simultaneously or not. The lowest SEPs were obtained 
for the mean centred data when 5 LVs were employed. There was no signifcant 
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difference in whether the other components were modelled simultaneously or not for 

cyclohexane; however, better results were obtained when no data treatment was applied. 

This time the lowest SEPs were obtained when 4 LVs were employed. 

For ethanol, similar SEPs were obtained (with the exception of the SNV treated data) 

with all the models for both 4 and 5 LVs. 

Figure 3.7.48 compares the SEPs obtained for different components from the 4 LV and 

5 LV models. 
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Figure 3.7.48 SEPs obtained for different components from 4LV and 5LV models 

3.7.4.4 VS-MLR 

Figure 3.7.49 displays the SEPs obtained from different selection runs using the raw 

absorption data. Comparing these results to the previous results (figure 3.7.48) obtained 
from the PLS models it can be seen that similar SEPs are achieved with the selected 

wavenumber sets. 
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SEP obtained from different selection runs on mixtures of 
cyclohexane, ethanol, heptane and xylene 
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Figure 3.7.49 SEPs obtained from VS-MLR applied to absorption spectra from 
mixtures of cyclohexane, ethanol, heptane and o-xylene 

The lowest average SEP was obtained when the wavenumbers 3754,1454,1458,3864, 

2952,1448,1456,3902 and 1444 cm-' were selected. 

Figure 3.7.50 is a plot of the predicted versus actual concentrations for the model based 

on these wavenumbers. 
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Figure 3.4.50 Predicted versus actual concentrations for model built from selected 
wavenumbers: 3754,1454,1458,3864,2952,1448,1446,1456,3902 and 1444 cm"1 
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3.7.4.5 The effect of preparing mixtures in liquid form before injecting into the cell 

The SEPs obtained were for predictions in the amount of component injected into the 

gas cell. The injection amounts ranged from 1-5 µ1, hence a SEP of 0.5 corresponds to 

a 50 % error for a1 µl injection and a 10 % error for a5 µl injection. The prediction 

models were improved by utilising PLS to determine the most effective data treatment 

as well as identifying outliers; however, a large amount of error can be attributed to the 

sample preparation technique. In the analysis of mixtures of CH4, CO, CO2 and N20 

(sections 3.1 and 3.2) it was demonstrated that employing an internal standard was an 

effective means of improving the data for building prediction models. To see if an 

internal standard could be employed in this stage of the work, liquid mixtures including 

acetone as an internal standard were prepared. 

Figure 3.7.51 compares SEPs obtained from variable selection runs performed on the 

raw absorption data (i. e. no further data treatment) with those from data divided by an 

acetone peak. From this it can be seen that higher SEPs were obtained when the data 

was divided by the reference peak, hence it can be concluded that the addition of an 
internal standard was not successful in lowering the prediction errors. 
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Figure 3.7.51 SEPs obtained from variable selection performed on the raw absorption data (i. e. no further data treatment) and from data divided by an acetone reference 
peak 
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3.7.4 .4 Conclusion 

PLS investigations on the data determined the optimum number of latent variable to 

employ was four; this corresponded to the fact that four compounds (heptane, 

cyclohexane, ethanol and xylene) of varying concentrations were contained in the 

sample. It was also possible to identify that sample 16 had a abnormally high CO2 

absorption peak and samples 10 and 11 gave poor predictions for o-xylene 

concentrations. It followed that sample 11 had a wrong concentration value entered in 

the concentration matrix and sample 10 was assumed to be due to experimental error. 

A comparison of SNV, mean centring, and absorption spectra with no further treatment 

showed that mean centring was the most effective means of lowering errors in 

prediction, whereas SNV had a detrimental affect. It was also found that there were 

only slight differences between models built to individually predict single components 

and those built to predict all four components simultaneously. 
VS-MLR performed on the data gave similar SEP levels to those obtained from PLS 

models with the number of variables selected ranging from 4 to 15. The lowest errors in 

prediction were obtained when the wavenumbers; 3754,1454,1458,3864,2952,1448, 

1446,1456,3902 and 1444 cm' were selected. 
Previous work with the gas mixtures of CH4, CO, CO2 and N20 demonstrated that the 

addition of SF6 to act as an internal standard was successful in improving the prediction 
models; therefore an investigation was carried out to see if it was possible to also 
employ an internal standard in this work to lower the errors in prediction. A different 

approach was also applied to the sample preparation technique whereby liquid mixtures 
of the four components were prepared then injected (as opposed to each component 
being injected separately). The SEPs obtained from VS-MLR (figure 3.7.5 1) on this 
data gave no significant improvement to the previous data thus it can be assumed the 

sample preparation technique made no difference. It can also be seen that similar SEPs 

were obtained with and without division by the reference peak. A reason why the 

reference peak is less effective with this work than the previous gas mixtures (section 
3.2) is that this data was collected as absorption spectra therefore was ratioed against a 
background scan while the gas mixture data relied on the reference peak to compensate 
for background variations. 

231 



4 Conclusions and Future Work 

4.1 Conclusions 

As stated in the introduction, this work was part of a project to develop a solid state IR 

gas analyser system based on an array of QWIP detectors. This would lead to the 

development of simple, inexpensive, portable systems with possible applications 

including monitoring of gases at landfill sites, process control, stack and exhaust fumes. 

The main crux of this work was the determination of suitable sets of wavelengths to 

measure selected ranges of concentrations in such a detector array, and the building of a 

prototype system to prove the feasibility of constructing an analyser system at the 

chosen wavelengths. Throughout this work, chemometrics was applied as the means of 

analysing data and problem solving. 

The method of determining suitable wavelength sets was to apply a variable selection 

algorithm to FTIR spectra. The chosen method of selection for this work was VS-MLR. 

The different approaches to variable selection and the advantages of VS-MLR are 

discussed in section 1.3.4. 

The first stage of the work involved the collection of spectra suitable for model 
building. The gas samples analysed were prepared using a simple injection method as 

this was a fast, cost effective way to prepare samples of varying concentration 

combinations 
One of the areas investigated was the determination of a method to compensate for 

background variations without requiring the collection of separate background scans. 
This involved applying different data treatment techniques and comparing the prediction 

errors obtained from models built from the differently treated data. Two particular data 

treatments applied were Savitsky-Golay smoothing and reconstruction of the data 

employing PCA. Applying the VS-MLR algorithm to the Savitsky-Golay smoothed 
data generally gave lower SEPs than for the raw untreated data; however an 

examination of the selected wavenumber sets indicated the majority of the selected sets 

were unsatisfactory as they either contained too many wavenumbers or wavcnumbcrs 
that did not relate to absorption regions of the gases of interest (section 3.1.1.2). It was 
concluded that the main reason for this was that the techniques were not compensating 
for background variations and that these variations were still having a major influence 

on the selection process. 
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In the case of the data reconstructed from PCA the variables selected from the treated 

data were closer to absorption regions; however, the SEPs obtained were worse than 

those obtained with raw data (section 3.1.1.3): this lead to the approach of employing an 
internal standard to provide a reference peak that the data could be ratioed against. The 

employment of an internal standard initially gave mixed results (section 3.1.1.4), but its 

worth was shown when analysing replicate samples made during different weeks. This 

work demonstrated that dividing the data by a reference peak, followed by 

normalisation, was effective in removing a large amount of the variation caused by 

changes in the baseline (section 3.1.2.5), and lent weight to the idea of employing an 

internal standard as a means of compensating for background variation. 

Having found a method which successfully reduced the effect of baseline variations, 
further analysis employing VS-MLR was performed on mixtures of C114, CO, C02 and 
N20; in this case the concentrations were in the range 0.19 - 2.08 %. 

This brought out two weaknesses of the VS-MLR process, first that the values of the 

convergence levels had a major impact on the final variables selected and second that 

there was a tendency for the model to `overfit'. 

Optimising the convergence levels was not a major problem as the selection process 

was relatively short, taking on average only a few minutes for each selection run, thus it 

was possible to perform selection runs over a range of convergence levels in a short 
time period. 
The problem of the model 'overfitting' the data was possibly due to all the spectra being 

collected over the same few days, hence to overcome this problem a second set of 
validation data collected on a different week was employed. Selection models that gave 
low SEPs with the original data were tested with the second set of validation data to 
identify models that gave low SEPs for the new validation data. From this the selected 

set of wavenumbers 2129,2284,3071,3148 and 3488 cm' were found to give similar 
SEPs for both validation data sets. 
To prove VS-MLR gave comparable results to other multivariate modelling techniques, 
PLS was employed. PLS is commonly employed for analysis of FTIR spectra and its 

effectiveness has been demonstrated in work by Griffiths et al 81 and Spiegelman et al. 83 

PLS models were built for raw data, data divided by the SF6 reference peak, data 
divided by a reference wavenumber (where no absorption occurred) and for absorption 
data. A comparison of the five latent variable models for each of the differently treated 
data showed that the absorption data gave the best results; however, when seven latent 
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variables were included the `dividing by a reference point' treatment gave comparable 

results to the absorption data, thus proving that the data treatment was effective. 
Another conclusion drawn from the results was that there was very little difference 

obtained between data divided by the SF6 reference peak and data divided by a 

wavenumber where no absorption occurred, thus SF6 was no longer added to further 

samples. 
To investigate the suitability of this approach of using selected wavelengths a rig was 
designed which included a gas dilution system. Different layouts for the rig were tested 

to determine what the most effective design was. A major component of the rig was the 

GC, which was incorporated as a reference method for measuring gas concentrations. 
This required the GC conditions to be optimised, as well as a LabVIEW program to be 

written to allow the GC response to be recorded. Once the conditions were optimised it 

was found that it was possible to obtain a RSD of <3.53% for GC peak height data from 

repeat injections of a certified standard gas mixture. 
Generally smooth decay curves were obtained for both GC and IR responses; however, 

work showed that stopping and starting the dilution flow did have a detrimental effect 
on the smooth dilution of samples. Generally, the results obtained demonstrated that the 
dilution system built could be employed as a means of exponentially diluting a single 
sample (in this case a certified standard gas mixture) to allow investigations in response 
over a range of concentrations. 
Good correlation was obtained between GC and IR responses (with the exception of CO 
for which the GC response was affected by N2) thus the GC could act as a reference 
method for when the FTIR was replaced with other IR detectors. 

The next stage of the work was to prove that an array of detectors measuring at the 

selected wavenumbers would be effective for measuring different concentrations of 
CH4, CO, CO2 and N20. As no QWIP detectors were available at the chosen 
wavenumbers, narrowband filters (with a 1% bandwidth) were employed instead. The 
filters blocked out light except at the chosen wavelengths hence combined with a 
general mid IR detector these could simulate the effect of detectors measuring at 
specific wavelengths. The results obtained demonstrated that it was possible to obtain 
good correlation between gas concentration and FTIR transmission response when 
different filters were in place (section 3.4). 

This led to the development of a simple, robust optical set-up, independent of the FTIR, 
which was designed from available components that included a mid IR source, and 
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InSb, MCT and DTGS detectors (section 3.5). The gas cell and filter wheel (containing 

the different filters) were placed between the light source and one of the detectors and 

the detector response was measured. A lock-in amplifier and optical chopper were 

incorporated to maximise the detector signal, and results were recorded using 

LabVIEW. It was also found necessary to employ a lens to focus the light onto the 

detector. Once the best layout was determined (set-up 5), the set-up was tested using 

the dilution system. The results obtained with this optical set-up gave much lower 

correlations between response and concentrations than the previous work that employed 

the filters within an FTIR instrument (section 3.4). 

Further investigations into the set-up highlighted problems with drift in response and 

stray light entering the system. To combat this problem a black box, that could be 

purged, was built to enclose the optical components. Results with the black box gave a 

significant improvement over the unenclosed set-up; this was particularly evident in the 

dilution runs where smooth response curves could be obtained after subtraction by the 

reference measurement. Good linearity between logs of the 4.35 un filter response 

(after subtraction of reference response) at different CO2 concentrations were obtained 
for concentrations less than 1,000 ppm; whereas the other filter responses gave less 

sensitivity to their corresponding gases. 
Results for statically prepared samples (using concentration combinations determined 

by a five level experimental design) were much more disappointing. Poor correlations 
between GC and IR responses indicated equipment problems, but even a repeat of the 

work gave unsatisfactory results with a wide deviation in response for replicate 

concentrations of gases. To ensure the deviation in response was not caused by 

interference of the other gases, the reproducibility of CH4 responses with and without 
the addition of the other gases was investigated. This determined that the problem was 

not due to inference between the different gases. 
To further explore the effect of errors caused by the sample preparation technique, 

sampling loops were introduced into the system: this reduced errors arising due to 

variations in the amount of sample injected into the gas cell. Wide variations in 

response were still seen, even with the sampling valve, and the overlap between 

responses for different concentration levels meant that high prediction errors were 
obtained for prediction models built from the data. 

A comparison of results collected from the box set-up over different data collection 
sessions shows clear differences in the magnitude of response over time. A study of 
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correlations between filter responses (after subtraction of the reference response) gave 

higher than expected correlations between 4.35 µm and 3.25 µm, and between 4.73 µm 

and 3.25 pm thus indicating the data treatment was not fully compensating for drift in 

response. A contributing factor to difference in magnitude between sessions was the 

occasional removal of the chopper and detector (as these were borrowed equipment and 

shared with other research projects) from the set-up. Work by Fructos et al. which 

employed a similar scheme for a sensor system (i. e. IR source, chopper, long path gas 

cell and a filter array and detector array) for the detection of CO and SO2 gave detection 

limits down to a few ppm. 47 The 4.73 pm wavelength employed in their system for 

measuring CO was the same as that chosen in this work, thus parallels can be drawn 

between results, and it can be assumed that further improvements to this system can be 

achieved. Due to time restraints and because this system was only an intermediate 

stage in the development of a solid state analyser system based on QWIPs these 

problems were not fully resolved. 

When the mid IR detector and filters are replaced with QWIP detectors the optical set- 

up will be more simplified, as there will be fewer components to align. In theory the 

QWIP detectors will be more sensitive and combined with the fact that more light will 
be reaching the detectors (as the filters will no longer restrict the amount of light) the 

system should have increased sensitivity to changes in response due to different 

concentrations of analyte gases and lead to improved detection limits. Possibly the 

lock-in amplifier and chopper may no longer be required which would further simply 
the set-up and signal processing, as well as reduce the size of the set-up. 
The other area of investigation carried out in this research was the feasibility of 
developing a system for identifying and measuring different volatile organic 

compounds. A major part of this work was the collection of suitable spectra on which 
to perform the analysis. Initial problems with low concentrations of sample with high 

amounts of CO2 and water vapour peaks in the spectra were solved by employing a 

simple injection of the sample in liquid form and allowing it to vaporise. This was 

particularly effective for the more volatile compounds and good correlations between 

concentration and response were obtained. 
Cluster analysis utilising score plots between PCs from PCA and dendrograms produced 
from different distancing methods were used to see if different types of compound were 
grouped together. These resulted in clusters of: alcohols, hexane and hcptanc, and the 
aromatic compounds (toluene and xylenes); thus demonstrating the feasibility of 
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developing a system to distinguish between these different groups. Analysis of 

particular groups displayed separation between alcohols, and between different isomers 

of xylene, although the spectra for hexane and heptane were too similar to achieve any 
distinction between samples. The clustering demonstrated a high dependence on 

concentration and differentiation between low concentration spectra was not always 

achieved. Further work in this area would be to reduce the number of wavenumbers 

employed in the spectra while still retaining the information required to differentiate 

between types. A possible application for this includes devices for the identification of 

vapours from unknown waste solvents e. g. dumped oil drums, or odours from landfill 

sites. 
Other applications include devices for monitoring process analysis or stack emissions 

where the concentrations of known gases are measured. It was decided to focus on 

simple four component mixtures and investigate the possibility of employing VS-MLR 

to select wavenumber sets tailored for analysis of known mixtures. For this purpose, 

mixtures of hexane, cyclohexane, ethanol and o-xylene were employed. PLS was 

employed to analyse the data and was found to be effective in identifying sources of 
error in the data (i. e. identifying a mistake in the concentration matrix, a sample with a 
high CO2 absorption peak and a possible error in sample preparation). VS-MLR was 
performed on the data and sets consisting of four to fifteen wavenumbers were selected 
which gave similar levels in SEP as those obtained by the PLS models, thus 
demonstrating its effectiveness in reducing the number of wavenumbers to measure. 
In conclusion, this project has been successful in proving that the application of 
chemometric techniques including, PCA, PLS and VS-MLR can play an important part 
in the development of analytical instrumentation. Once the problems of removing 
background variation was solved, it was demonstrated that the VS-MLR algorithm 
could be employed on both mixture and vapour mixture FTIR data to determine 

combinations of wavenumbers to measure in a detector array. A simple optical 
instrument was built which employed narrow band filters in combination with a general 
mid IR detector to simulate the effect of an array of QWIP detectors measuring at the 
selected wavelengths and look at the practical aspects of optical layout, signal 
processing and general construction of a measuring system. 
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4.2 Future work 
The main areas for further work are outlined below. 

" Development and testing of QWIP detectors tailored to measure at the selected 

wavenumbers 

" Incorporation and optimisation of QWIP detectors into the purgeable box set-up 

" Further investigations into vapour analysis and determination of wavenumber 

sets to allow characterisation of different organic vapours 

Delays in the development of processed QWIP detectors measuring at the selected 

wavelengths meant that the performance, detection limits and suitability of the selected 

wavelengths could not be proved with actual QWIP detectors. The main area for further 

work is in the development and testing of QWIP detectors. This will lead to the 
incorporation of the QWIP detectors into a scaled down purgeable box or a similar, to 

allow detector responses to be measured for different gas mixtures. 
As mentioned in the conclusion the optical set-up using the QWIPs will be simplified 
(the narrowband filters, and possibly the lock-in amplifier and chopper will not be 

required), which will reduce any errors associated with misalignment of components, 
however the actual optical arrangement may have to be reconsidered depending on the 
final size and geometry of the processed QWIP detectors and whether mirrors and 
lenses need to be incorporated. 

Alternatively the narrow band filters could be incorporated onto the QWIP detectors to 
investigate whether this improves detection by increasing the signal to noise ratio. 
Another area for further investigations is the vapour analysis. This can include 
determining wavenumber sets to measure to allow the possible identification of 
unknown organic vapours as well as building further calibration models for measuring 
concentrations of specific mixtures. 
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4.3 Comments about the Application of Chemometrics 

A major part of this research was the application of chemometrics to aid in the 

development of a solid sate analyser. In this work a variety of techniques were used at 

different stages and the results of their application have been discussed previously. 

Based on these results the following recommendations for future analysis are: 

Data pre-treatment 

" For transmission spectrum, it would be advised to divide the data by a reference 

point followed by normalisation to remove baseline variations. (N. B. This scales 

the data so that the point of maximum transmission is 1 and minimum 

transmission is 0) 

" For absorption spectrum, (where data is ratioed against a background spectra to 

remove background effects) mean centring prior to analysis is recommended. 

" In this research, smoothing, reconstructing the data from PCA and autoscaling 

gave no significant improvement on results, therefore suggesting there is no 

need to apply these treatments. 

Principal Component Analysis 

" Examining for score plots for different PCs is a convenient way to 

compare/contrast samples and identify any outliers of abnormalities with 
samples. 

Partial Least Squares 

" The most important consideration for PLS models is the number of latent 

variables employed. This can be checked by comparing SEPs obtained for 

calibration data and validation data for different numbers of latent variables and 
employing the number that gives low SEPs for both sets of data. 

Variable Selection using Multivariate Linear Regression 

" The parameters that had the most influence on the results, i. e. the variables 
selected, were the convergence levels. The optimum values to choose depends 

on the data analysed, therefore it would be recommended to determine the 
optimum values by using a range of values with cl 2 greater or equal to cl 1. 
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The number maximum numbers of variables employed also had an impact on 
the final result, therefore it would be recommended to employ all or as many as 

possible. 

" The VS-MLR process was found to be prone to overfitting the data, therefore 

additional validation data to check for this would be recommended. 
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6 Appendices 
6.1 Plot of wavenumbers versus wavelengths 
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6.2 Reference spectra (from NIST database) 
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6.3 Wiring for MCT detector 
For Bio-Rad Spectrometer: 
Detector had 9-pin connector 
pin 1: -1-wire identification device, 
pint: - signal#2 
pin 3: - no connection, 
pin 4: - 15volt return, 
pin 5: - +15 volts to detector, 
pin 6: - chassis ground at detector, 
pin 7: - signal return, 
pin 8: - signal#1, 
pin 9: - -15 volts to detector) 
Signal#1 and signal#2 were differential signals, in FTIR instrument- they go to an 
instrumentation amplifier on the spectrometer electronics board where they are 
subtracted by amplifier 

For lock-in set-up: 
Pin 8 (signal 1) and pin 7 (signal return) were connected to lock-in via co-axial cable 

Wiring to DAQ card (set for referenced single ended analog input) 
For dilution system: 
GC 
green wire to pin! A1GND 
brown wire to pin IAl GND 
white wire to pin 6 ACH2 
red wire to pin 8 ACH3 
(two output signals from GC connected to analogue channels 2 and 3) 

Mass flow controllerl 
green wire to pin! A1GND 
brown wire to pin 21 DOUTI 
white wire to pin 2 ACHO 
red wire to pin 16 DOUTO 
(output for mass flow controller connected to channel 0) 

Mass flow controller2 
green wire to pinl A1GND 
brown wire to pin 27 DGND 
white wire to pin 4 ACH1 
red wire to pin 17 DOUT1 
(output for mass flow controller connected to channel 1) 

For lock-in amplifter: - 
Out put from lock-in using co-axial cable, 
shielding wired to ground (pint Al GND) 
core wired to pin 2 ACHO 
(output connected to analogue channel 0) 
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6.4 Characteristic IR absorptions 
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6.5 Vapour Spectra 
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6.6 Calibration plots for vapour samples prepared by injectingpl amounts into gas 
cell 
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6.7 Lab VIEWTM 

For this work LabVIEW TM version 5.0 was employed with a PC-516/DAQ card TM 

from National Instruments. 
LabVIEWIM is a graphical development environment for signal acquisition, 
measurement analysis and data presentation. More details about LabVIEWTM can be 
found by referring to the software training manual or by obtaining information from 
National Instruments. This section shows the different programs created in LabVIEW 
highlighting the functions included in the design. 

Collection of Response from GC including; signal filtering, and integration 
functions 
This program uses the single ended reference mode of the DAQ card (this was the 
default setting on the DAQ card). This results in the collection of two GC responses 
(high and low) from each of the detectors. 

Displays an xy plots of 
data versus s time 

Integration function (set 
limits not shown) 

®ýµ lom6 ®D 
" Displays a integration plot 

1 

Data collected as an array, 
transposed and saved to 
file 

Displays a integration plot \ (from filtered data) 

Displays number of peaks 

Data collected as an array, 
transposed and saved to file 

Real time display of signal 
collection 

Acquisition Input: 
Collection of input from 
channel "I ", at "600" s'' 
sampling rate, "60" samples 
taken 

Detects the number of 
positive ("I") peaks 
above "0.1 " threashold, 
with width > "100" 

Displays plot of data after 
Lmedian filtering 

Median filter function 
using a window of "40" 
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Collection of Response from GC (using differential mode on DAQ) 
This program uses the differential mode of the DAQ card. This results in the collection 
of a differential response between the two detectors in the TCD on the GC (i. e. a 
differential signal from the difference in conductance between the sample and reference 
detector) 

Real time display of signal 
collection 

Displays an xy plots of 
data versus time 

Data collected as an array, 
transposed and saved to 
file 

Display of signal after 
processing "multiplied by 
1000, the 60 samples 
averaged" 

Displays data after median 
filtering 

Median filter function 
using a window of "40" 

LabVIEW program for recording output from lock-in amplifier 
This program uses the single ended reference mode of the DAQ card 

Displays an xy plots of OFF sw itch data versus time 
12 
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hint of rat nrded data 

Ichancie in voftaae w ith timel 

E-1 
Data collected as an array, 01 z® 
transposed and saved to 
file 

Acquisition Input: 
Collection of input from channel "I", at "600" s" sampling rate, 
"60" samples taken 

1-1- .......... r..... 
Collection of input from channel "1 ", at "600" s"' sampling rate, 
"60" samples taken 


