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Abstract 

 

 

Colloidal particles and surfactants are commonly used, either individually or 

combined, as stabilisers of emulsions and foams. While the properties of 

surfactants and particles under a range of conditions and concentrations are 

relatively well known, there are some areas that require further investigation. The 

wettability of colloidal particles is one of the main factors that determine how they 

behave in a given system but determining the wettability is difficult due to the small 

size of the particles. The Film Calliper Method (FCM) has been proposed as a simple 

technique for the direct measurement of the contact angles of micrometer and 

submicrometer particles in their natural environment. One of the main aims of this 

work was to develop the Film Calliper Method for measuring contact angles at oil -

water interfaces. The FCM was therefore used to measure the contact angles at oil - 

water interfaces for a range of particles, such as latex and silica particles, in 

different systems. For the first time directly measured contact angles are linked to 

the types of emulsions stabilised by the particles.  

 

The FCM was also used to directly measure the contact angles of silica 

particles in cationic surfactant solutions at air and oil interfaces for the first time. 

The stability of foams and emulsions made with particle - surfactant mixtures were 

investigated and related to the particle contact angles. 

 

Janus particles are a special category of particles which have different 

properties on each hemisphere. A method for making Janus particles was 

developed using template silica particles masked with a polymerised Pickering 

emulsion. The portion of surface exposed for treating can be tuned by controlling 

the inherent wettability of the template particles as proven with fluorescence 

microscopy. Emulsions stabilised by amphiphilic Janus particles made with the 

method are compared with emulsions stabilised by homogeneous particles with 

similar wettability. 
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SAM = Self assembled monolayer 

SEM = Scanning electron microscope 
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SMA = Stearyl methacrylate 
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vol.% = Volume percentage 
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wt.% = Weight percentage 



V 
 

α = Janus particle angle between the centre of ‘apolar’ region and Janus boundary 

Γ = Surfactant coverage per unit area  

ζ = Zeta potential  

γ = Surface tension 

λ = Wavelength 

Ø = Diameter  

ϕe = Volume fraction of emulsion 

ϕo = Volume fraction of oil 

ϕw = Volume fraction of water 

θ = Contact angle  

θa = Contact angle of Janus particle ‘apolar’ region 

θaw = Contact angle at an air-water interface 
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γSL = Surface free energy at the solid-liquid interface  

γSG = Surface free energy at the gas-solid interface 

γLG = Surface free energy at the liquid-gas interface 
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Chapter 1 

 

Introduction 

 

 

The main focus of this thesis is towards the direct measurement of colloidal 

particle wettability and linking those measurements with the types of emulsions the 

particles stabilise. This work is extended by investigating the behaviour of particle 

and surfactant mixtures in relation to changing particle properties and in stabilising 

foams and emulsions. A method was also developed for making large amounts of 

particles with dual wettability. This chapter introduces the basic concepts and 

theory underlying the work detailed in later chapters. 

 

 

1.1 Wettability of solid particles 

 

Solid colloidal particles (1 nm to several tens of micrometres in diameter) are 

widely used in research and many industries e.g. food, cosmetics, pharmaceutics, 

etc.1. The particle wettability is amongst the most important characteristics of the 

solid particles alongside their chemical composition, size, shape and surface charge. 

It dictates the particle attachment to liquid interfaces and particle behaviour at the 

surface and in the bulk of liquids. Some basic definitions related to the particle 

wettability, how it can be controlled and quantified are considered in the next sub-

sections.  

 

 

1.1.1 Contact angle of solid particles at liquid interfaces 

 

Solid colloidal particles, similar to surfactants, can spontaneously attach to 

liquid interfaces and stabilise emulsions and foams2. Even solid particles with 

homogeneous surface composition are surface active, because when they migrate 
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through a water phase and attach to a water-air (or oil) interface, the interfacial 

areas of both particle-water and water-air (oil) are reduced, thus lowering the free 

energy of the system. Anisotropic (also called ‘Janus’) particles can be amphiphilic 

and surface active. Janus particles are considered separately in section 1.2 below. 

The surface activity of solid particles strongly depends on their wettability which is 

quantified by the particle contact angle. When a particle sits at a liquid interface 

(Fig. 1.1), the contact angle is the angle between the tangents to the particle 

surface and water-air (oil) interface at every point of the three-phase contact line. It 

is accepted practice to express the particle contact angle as measured through the 

more polar liquid (usually water). The particle contact angle, , is related to the 

interfacial tensions acting between the three phases in contact according to 

Young’s equation1, which in the case of an oil-water interface reads 

 

       
         

   
           (1.1) 

 

where γso, γsw and γow are the solid-oil, solid-water and oil-water interfacial tensions, 

respectively. 

 

 

 

Figure 1.1. Diagram showing the contact angle, θ, of a spherical particle at an oil-

water interface. Also displayed are the interfacial tensions (γso, γsw, γwo) between 

the solid and liquid phases, and the radius of the three phase contact line, rc 

 

Oil/air 
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γow 
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If the particle is equally wetted by both fluids, its contact angle is 90°. A 

contact angle of less than 90° corresponds to a hydrophilic particle, where the 

particle sits mostly within the water phase. The extent of hydrophilicity is shown by 

the size of the angle, with very small angles corresponding to very hydrophilic 

particles. Alternatively a contact angle of over 90° corresponds to a hydrophobic 

particle, with the contact angle increasing towards 180° as the hydrophobicity 

increases1,2. 

 

 

1.1.2 Methods for tuning particle wettability 

 

Inherent wettability of solid particles is a function of the chemical 

composition of their surface and is usually predetermined during the particle 

synthesis. For example, inorganic oxide particles (e.g. alumina, titania, silica) are 

very well wet by water and their high hydrophilicity is due to the large number of 

polar hydroxyl groups at the particle surface. Many practical applications require 

less hydrophilic or even hydrophobic oxide particles to enhance the particle 

attachment to liquid interfaces or improve particle dispersibility in non-polar 

organic liquids. Young’s equation shown above (eq. 1.1) suggests that the particle 

contact angle could be changed by altering the respective interfacial tensions. Two 

of the most common approaches for changing the particle contact angle, thus 

tuning particle wettability, are considered below. 

 

 

1.1.2.1 Chemical modification of the particle surface 

 

Chemical composition of the particle surface can be changed by reacting 

some of the surface groups with chemical reagents, thus grafting hydrophobic or 

hydrophilic chains by covalent bonding. The chemically grafted layer is usually 

referred to as a self-assembled monolayer (SAM) because it is spontaneously 

formed when the solid surface is put in contact with vapours or solution of the 

modifying reagent3. The SAMs form stable and often highly ordered films on a 
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variety of solid surfaces3,4. Alkylchlorosilanes, alkoxysilanes, or alkylaminosilanes 

are commonly used to modify hydroxylated surfaces (such as glass or silica), 

whereas alkanethiols are used for modifying metal surfaces (Fig. 1.2). Silanes react 

with the silanol groups (≡SiOH) from the surface of silica, thus forming Si-O-Si 

bonds. Di- and trichlorosilanes can self-assemble into very stable polysiloxane 

coatings and are often preferred for the modification of hydroxylated oxide 

surfaces3. Chemically grafted monolayers on the particle surface alter the solid-fluid 

interfacial tensions, thus changing the particle contact angle (see eq. 1.1). The 

degree of surface modification and, therefore the particle contact angle, can be 

controlled by varying the fraction of reacted surface groups via the reaction time 

and/or the concentration of silane5. Main advantages of this approach for changing 

particle wettability are in the high stability of modified surfaces and the ability for 

controlling the chemical composition of the particle surface by grafting different 

number and/or type of functional groups (e.g. amine, carboxyl, alkyl, etc.).  
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Figure 1.2. Schematic showing chemical modification of a hydrophilic surface, rich 

in hydroxyl groups, by alkyltrichlorosilane (top) and a gold surface by alkanethiol 

(bottom). 

 

 

1.1.2.2 Using surfactants for changing the particle contact angle 

 

Surfactants (surface active agents) have amphiphilic molecules consisting of 

two main sections; a hydrophilic (water-liking) ‘head’ and hydrophobic (water-

rejecting) ‘tail(s)’ as shown in Fig. 1.3. The tail group consists of one or more 

hydrocarbon chains and can vary considerably in length. The head-group can vary 

by chemical structure or composition and may carry electrical charge as a result of 

dissociation in water. Based on the electrical charge of the dissociated head-group, 

surfactants are classified into cationic (positive), anionic (negative), non-ionic (no 

charge), and zwitterionic (neutral net charge but possess both positive and negative 

charges)6. Due to their amphiphilic nature, surfactant molecules spontaneously 

accumulate (adsorb) at both fluid-liquid and solid-liquid interfaces. Therefore the 

OH surface 

(hydrophilic) 
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change of the particle contact angle in the presence of surfactant comes from 

changes in all of the interfacial tensions involved in eq. 1.1.  

 

 

Figure 1.3. Schematic representation of a surfactant molecule (left) and an oil 

droplet in water with surfactant adsorbed at the drop surface (right). 

 

 

1.1.2.1.1 Surfactant adsorption on fluid-liquid interfaces 

 

When an air-water or oil-water interface is created in the presence of 

surfactant, the surfactant molecules spontaneously migrate from the bulk onto the 

interface and accumulate (adsorb) there. The accumulation of surfactant at the 

interface continues until an adsorption equilibrium between the interface and the 

bulk is established. The adsorbed surfactant molecules align at the interface with 

the hydrophobic tail in the oil (or air) and the hydrophilic head in the water phase 

(Fig. 1.3), thus reducing the interfacial tension (Fig. 1.4). The adsorption of the 

surfactant molecules at the interface is driven by hydrophobic interactions in the 

bulk aqueous phase. The hydrocarbon chains of the surfactant in the aqueous 

phase are surrounded by a bonded ‘cage’ of water molecules and the resulting 

increase in system structure causes a decrease in entropy. The exclusion of 

hydrocarbon chains from the aqueous phase is therefore an entropically driven 
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Hydrophobic 
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process to decrease the free energy of the system6,7. This is also the reason for the 

formation of surfactant aggregates (micelles) at large concentrations above the 

critical micelle concentration (cmc). 

 

 

 

Figure 1.4. Variation of oil-water interfacial tension, γow, with logarithm of the 

surfactant concentration in water. Surfactant aggregates (micelles) appear in the 

solution when the concentration exceeds the critical micelle concentration (cmc). 

The interfacial tension remains constant above the cmc because aggregated 

surfactant has no tendency to adsorb to the oil-water interface.  

 

 

1.1.2.1.2 Surfactant adsorption on solid-liquid interfaces 

 

The amphiphilic nature of surfactant molecules leads to their spontaneous 

adsorption on solid-liquid interfaces. The surfactant adsorption changes the surface 

free energy per unit area (interfacial tension) of the solid-liquid interface, thus 

contributing to the change of the particle contact angle (eq. 1.1). Adsorption of 

surfactant molecules on solid surfaces is more complex than that at fluid-liquid 

interfaces. It occurs due to electrostatic and van der Waals interactions, and in 

some cases hydrogen bonding between the surfactant molecules and the solid 

surface. The orientation of the adsorbed surfactant molecules depends on the 

Log (concentration) 
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surfactant type, its concentration and the solid surface properties. It affects the 

solid wettability and may increase or decrease the particle contact angle depending 

on the experimental conditions. The surfactant adsorption is significantly enhanced 

when the charge of the solid surface has the opposite sign to that of the ionic 

surfactant. For example, cationic surfactants easily adsorb on negatively charged 

particles such as silica8–12. Extensive studies of such systems have shown that there 

are four distinct adsorption regions over the full range of concentrations up to and 

above the cmc (Fig. 1.5). At low adsorption densities (region I), the surfactant ions 

adsorb as individual ions without chain–chain association in a head-on orientation 

at the particle surface. When the adsorption density reaches a certain level in 

region II (the “surface concentration” being about that of the cmc), adsorbed ions 

begin to associate into patches or hemimicelles at the interface through chain–

chain interaction of adsorbed surfactant. This is characterized by a marked increase 

in adsorption and a sharp increase in the contact angle suggesting that the polar 

heads orient themselves towards the charged surface. In this and the subsequent 

regions, chain–chain association is the main contributor to the adsorption free 

energy. In region III, hydrophobic chain interactions are the driving force for 

adsorption to continue. In addition, electrostatic repulsion causes some of the 

adsorbed surfactant ions to orient in reverse manner, which results in the contact 

angle remaining constant or even decreasing as surfactant is added. The onset of 

Region IV occurs at or near the bulk CMC, when a bilayer or its equivalent is 

reached. The contact angle decreases further and the surface becomes hydrophilic. 

Adsorption of cationic surfactant on a negatively charged particle surface also 

causes sign reversal in the zeta potential of the particles. Trends of the zeta 

potential and contact angle of quartz as a function of cationic surfactant 

concentration at neutral pH are illustrated in Fig. 1.6. 
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Figure 1.5. Adsorption of anionic/cationic surfactants on oppositely charged solid 

surfaces in water: (left) a typical variation of the adsorbed amount with surfactant 

concentration; (right) a schematic of the reverse orientation model for adsorption. 

(Adapted from ref. 9) 

 

 

 

Figure 1.6. Trends in zeta potential (a) and contact angle (b) of quartz versus 

concentration of a cationic surfactant (dodecylpyridium chloride). (Adapted from 

ref. 10) 
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1.1.3 Methods for measuring particle contact angles 

 

The three phase contact angle of small solid particles adsorbed at the air (oil) 

- water interface (Fig. 1.7) is directly related to the particle hydrophobicity 

(wettability) and its knowledge is of great practical importance.  

 

Figure 1.7. Side view of a small solid spherical particle with radius r attached to the 

oil (or air) - water interface. The depth of immersion in water, hw, and the diameter 

of the three phase contact line, dc, depend on particle hydrophobicity measured by 

the three phase contact angle, . 

 

 

There are several experimental methods for measuring the three phase 

contact angle of small solid particles. The methods can be separated into two 

categories based on measurements of (i) collective particle properties (i.e. integral 

methods) and (ii) individual particle properties (i.e. discrete methods).  

 

The first group includes methods in which some properties of a macroscopic 

amount of solid particles packed together as a porous solid or a particle layer are 

studied and the contact angle is derived from the results by using appropriate 

theoretical models. Examples of such methods are the wicking methods13,14, 

immersion calorimetry15 and inverse gas chromatography16. All of them have some 

drawbacks and limitations related to their applicability to different systems 

(especially to oil-water interfaces) and some important assumptions for the packing 

density of particles and in the theoretical models used.  
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In the discrete methods the contact angle is determined either by measuring 

the force of detachment of an individual particle from the fluid interface, by side 

imaging of the particle attached to the fluid interface and measuring its depth of 

immersion in the fluids directly from the images obtained or by reconstructing the 

deformed fluid interface around the particle entrapped in a thin liquid film. The 

force measurement technique employs recent advances in Atomic Force 

Microscopy (AFM) for measuring very small forces17. This sophisticated and 

expensive technique has many drawbacks, including low productivity and 

limitations with respect to the particle size which must be greater than ~2 µm. The 

methods involving side imaging of the particles are less sophisticated and are based 

on simple relations between the contact angle and the geometrical parameters of 

the adsorbed spherical particle. When the spherical particle is small and not very 

dense, the deformation of the fluid interface around it is negligible and the contact 

angle through the water can be calculated by either of the following equations 

 

d

d
sin c      (1.2) 

 

1
2

cos 
d

hw     (1.3) 

 

where d and dc are the diameter of the particle and that of the three phase contact 

line and hw is the depth of immersion in water (Fig. 1.7). Since only the ratio 

between the geometrical parameters is involved their actual values are not 

important, which is one of the advantages of these methods. For larger particles (d 

 ~10 µm) optical microscopy has been used for side imaging of the adsorbed 

particles18,19. Although simple, this method is suitable only for relatively large 

particles. It is also difficult to determine if the particles are adsorbed or just 

touching the fluid interface. The latter in combination with the curved meniscus at 

the vessel edge can compromise the measurements. 
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An interesting extension of the particle side imaging method by means of 

scanning electron microscopy was introduced recently in the form of the gel 

trapping technique (GTT) 20,21,22. In this technique particles of interest are spread at 

the air (or oil) - water interface at ~50°C. The aqueous phase contains several wt.% 

of a gelling agent (gelan). After cooling to room temperature the aqueous phase 

gels and particles are trapped at the gel - air (oil) interface. The particles are then 

incorporated in a polymer matrix from the side of the air (oil) by means of a 

photopolymerisable oil. The adherent gel is removed and images of the particles 

incorporated in the polymer matrix are taken by a scanning electron microscope. 

The contact angle is determined by eqs 1.2 or 1.3 with the geometrical parameters 

measured from the images. The great advantage of this technique is that particles 

of small size (d > ~500 nm) or non-spherical shape can be studied. However, it is an 

indirect method of measurement where it is not clear if the contact angle measured 

is affected by the gelling procedure, the significant temperature change, fabrication 

of the polymer matrix or the gelling agent itself. 

 

The Film Trapping Technique23-25 allows the contact angle of micrometer size 

particles at the air-water interface to be determined. In this method the particle is 

entrapped within a liquid film of equilibrium thickness smaller than the particle 

diameter. Thus a liquid meniscus (a layer of uneven thickness) is formed around the 

particle. When observed in reflected monochromatic light, this meniscus appears as 

an interference pattern of concentric bright and dark fringes. From the radii of the 

interference fringes, one can restore the meniscus shape by using the solution of 

the Laplace equation of capillarity. In this way the three-phase contact angle of the 

particle and the capillary pressure can be determined23. The drawbacks of this 

method are mainly related to the complexity of obtaining and interpreting the 

experimental data. In addition, the three phase contact angle is determined by 

extrapolation of the meniscus profile measured at large distances from the particle. 

Therefore small experimental errors in determining the film thickness can lead to a 

significant error of the calculated contact angle value. This method is not suitable 

for particles smaller than ~1 µm and is rather sophisticated, which could explain 

why it doesn’t appear to be widely used.   
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Recently, a simple experimental method for determination of the three-phase 

contact angle of micrometer and submicrometer colloidal particles at liquid 

interfaces has been developed, the Film Calliper Method (FCM)26. Briefly, this 

method utilizes the behaviour of colloidal particles when they are simultaneously 

attached to both surfaces of a free-standing thin liquid film, thus forming stable 

particle bridges. Monochromatic light reflected from the thin film produces an 

interference pattern of bright and dark fringes which can be observed with a 

microscope, and used to determine the contact angle. The FCM is explained in 

more detail in Chapter 2 as it was used for much of the work presented in later 

chapters. 

 

 

1.2 Surface - anisotropic (Janus) particles  

 

It is widely believed that novel anisotropic particles will be useful in a variety 

of roles due to dual particle properties. One example is amphiphilic particles which 

are theorised to be better stabilisers of foams and emulsions than particles with 

homogeneous surface wettability. A general overview of such particles is presented 

below. 

 

 

1.2.1 General characteristics of Janus particles and their potential applications 

 

Janus particles are named after the two headed Roman god of beginnings and 

endings called ‘Janus’.  The idea of the ‘Janus particle’ was first thought up in the 

late 1980’s27 and relates to particles which have duality of either a physical or a 

chemical nature.  The Janus particle has two distinct surface segments (Fig. 1.8), 

each with different properties. For example, each hemisphere of the particle may 

have a different wettability (contact angle) or surface charge.  
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Figure 1.8. Janus particles consist of two distinct surface regions, 1 and 2, with 

different properties e.g. wettability, roughness, surface charge etc. in each region. 

 

 

This type of particle has received a lot of scientific interest over recent years 

because the inter-particle interactions are very different to that of homogenous 

particles and also because external fields can be used to exert control over their 

movement and orientation. Janus particles are characterised by the so-called ‘Janus 

balance’28 and what we shall call ‘Janus contrast’. The ‘Janus balance’, in its 

simplistic meaning, is the comparative surface area of each segment on the particle. 

The Janus contrast is the difference in magnitude of each segment property, for 

example the difference in contact angles between segments 1 and 2. 

 

The Janus particle described above follows a general concept of a spherical 

particle with a selectively modified surface but other anisotropic particles are also 

of great interest. There are a number of potential procedures to use when making 

anisotropic particles allowing for many interesting shapes and properties as an end-

product (Fig. 1.9). For instance shape anisotropy could be produced with dumbbell 

or acorn shaped particles, or any other shapes imaginable. In addition to variations 

in surface property or particle shape alone, the particles could also be partially 

raspberry-like. 

 

 

1 

2 
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Figure 1.9. Examples of different types of anisotropic Janus particle. (Adapted from 

ref. 38) 

 

 

There are a number of proposed uses for Janus particles which have been 

realised for a while but as research and knowledge of Janus particles increases, so 

more uses for them are predicted.  

 

By making the particles amphiphilic they could act similarly to surfactant 

molecules and can therefore be used as emulsion stabilisers (Fig. 1.10). This 

effectively combines the strong interfacial attachment of particles with the 

interfacial orientation and possible micellisation exhibited by surfactant molecules. 

It has been shown29 that the strength of interfacial attachment of amphiphilic Janus 

particles may be up to 3 times greater than homogeneous particles.  
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Figure 1.10. Diagram showing the oriented attachment of an amphiphilic Janus 

particle to a water - oil (air) interface, similar to that of a surfactant molecule. 

 

 

The dual properties of Janus particles allow them to self assemble into 

structures of various shapes and sizes under the right conditions. The self assembly 

of the particles could be driven from amphiphilic properties30, magnetic dipoles or 

variations in surface charge31. The structures formed are interesting due to 

differences observed with those formed by amphiphilic surfactant molecules and 

because they could potentially be used as building blocks for self assembly into 

novel materials. It has been shown that control of particles in an external field can 

also force the aggregation of particles into interesting arrangements32.  

 

More potential applications have been proposed, especially in the field of 

biomedicine for drug delivery specifically to target cells and in the production of 

self-propelled molecules. Most of the published literature generally concentrates 

on the synthesis and properties of Janus particles produced rather than 

investigation towards a particular application. One exception to this is work by 

Anker and Kopelman33 making magnetically modulated optical nanoprobes (mag-

MOONs) which fluoresce on one side only, allowing their orientation to be 

observed through fluorescence microscopy. These particles can be used to 

investigate both particle rotation due to Brownian motion and orientation induced 

by an external magnetic field.  

 

Janus particle Surfactant molecule 

Hydrophobic 

Hydrophilic 

Water 

Oil, air 
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1.2.2 Methods for producing Janus particles 

 

In general Janus and shape - anisotropic particles can be made either by direct 

synthesis or via selective modification of a homogeneous particle surface.  

 

 

1.2.2.1 Synthetic methods for producing Janus particles 

 

Microfluidic techniques generally involve two immiscible monomers forced 

into contact through junctions in capillary channels forming a droplet that is a mix 

of both monomers which, when polymerised produces a solid Janus particle (Fig. 

1.11). Due to the immiscibility of the two phases the monomers join up and fuse 

together but they do not mix so a distinct region of each monomer is produced.  

 

 

Figure 1.11. Diagram showing an example of a basic microfluidic system which 

could be used to form monomer droplets, with subsequent UV curing to make solid 

Janus particles. 

 

 

Perhaps the simplest microfluidic procedures are those that polymerise the 

Janus droplets within the microfluidic channels with ultraviolet light34,35 although it 

has been shown that thermal initiation can also be effective36. The diameters of 

Janus particles produced with the above procedures were between 50 and 120 µm. 

UV source 
Monomer 

flows 

Water flow 
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Microfluidics provide a reasonably good (if somewhat tricky) level of control over 

the particle morphologies produced via the control of the various channel flow 

speeds. The use of microfluidics is generally disadvantaged by low yields (few 

tenths of a gram) and the need to maintain even laminar flow without cross-mixing 

of the monomers occurring. 

  

Alternative methods have also been employed such as ‘the dual-supplied 

spinning disk technique’ described by Perro et al.37 (but developed by others), 

where molten polymers were streamed onto the top and bottom surface of a 

spinning disk which mixed at the edge and jetted off in small Janus droplets, 

solidifying as they fly through the air. By applying a magnetic field during the 

drying38 or polymerisation39 of droplets containing magnetic particles dipolar Janus 

particles can be produced. Photoresist layers can also be used to make particles by 

selective curing of the layer (using a patterned mask) with UV illumination to either 

create particles or to mask a layer below which is then selectively etched away40. 

Vapour deposition of metals onto similarly etched silicon has been used to make 

Janus particles41. 

 

 

1.2.2.2 Modification of particle monolayers to produce Janus particles 

 

The selective modification of the surface of particles in a flat monolayer is 

perhaps the simplest method available for producing Janus particles and can be 

performed in a variety of ways as depicted in Fig. 1.12.   
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Figure 1.12. Schematic representation of procedures used in the modification of 

monolayers of homogeneous particles. 

 

 

The deposition of material onto particle surfaces with vapour deposition 

requires the least amount of preparation, making it an attractive choice of 

procedure. This technique has been used to deposit thin metal42 coatings onto 

fluorescent base particles, acting to partially mask the fluorescence of the 

particles43. Microcontact printing is similar but the deposition of material onto the 
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particles is made through physical contact with a coating on the surface of a stamp. 

Paunov et al.44 investigated the procedure for the attachment of surfactants or 

colloidal particles onto particle surfaces and succeeded in producing anisotropic 

particles with raspberry-like regions and also particle doublets.  

 

The best way to control the particle modification is to partially mask the 

particles making up the monolayer. This masking layer controls the proportion of 

the particle surface that is exposed for modification and also prevents the particles 

from moving which could lead to a greater proportion of the surface being modified 

than desired. The first Janus particles27 used cellulose varnish as a masking medium 

for glass particles with diameters of 50 – 90 µm. A photoresist layer can also be 

cured with a monolayer of particles in place to trap and mask the particle surfaces 

before the modification step45,46. In recent years the ‘gel trapping technique’47 was 

developed, initially as a means to determine the contact angle of colloidal particles 

(see section 1.1.3), but later realised to be useful for producing Janus particles48. By 

choosing base particles of a particular contact angle the penetration depth of the 

particles and thus the resultant Janus balance can be tuned.  

 

The modification of particle monolayers on a flat surface can be a relatively 

quick and simple procedure for the production of Janus particles with the 

opportunity to control the Janus balance of the particles produced. It also allows for 

the modification of particles of a range of sizes and shapes. However the downside 

to using particle monolayers is that they have a very low yield of a few milligrams in 

each batch and this impedes the use of the procedure for industrial purposes. 

 

 

1.2.2.3 Particle stabilised emulsions as a tool for preparation of Janus particles 

 

Taking the concept of partially masking the particle surface and applying it to 

particle-stabilised emulsions (see section 1.3 below) enables a much greater 

number of particles to be masked at any one time compared with the monolayer 

technique, due to the significant increase in interfacial area. The emulsion drops are 
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generally solidified (by polymerisation or cooling) to fix the particles in place prior 

to modification of the exposed particle surfaces. This technique is generally 

considered to produce the best yield of Janus particles of a range of sizes without 

diminishing the ability to fine tune the Janus balance or the Janus contrast. With 

this technique the Janus balance can be varied by adjusting the contact angle of the 

initial particles to adjust the proportion of the particle surface which is masked (Fig. 

1.13). 

 

 

Figure 1.13. Diagram displaying how the initial particle contact angle, θo, can be 

used to adjust the Janus balance of Janus particles produced using a solidified 

Pickering emulsion route. 

 

 

A simple Pickering emulsion route pioneered by Granick et al.28,49 uses molten 

paraffin wax as the disperse phase during emulsification which subsequently 

solidifies on cooling to leave silica particle coated wax beads. After modification of 

the exposed particle surfaces the wax is dissolved in chloroform to retrieve the 

Janus particles. Due to its relative simplicity and fine tuning capabilities, this 

approach has been adopted by other groups50,51. Wax emulsions have also been 

used for subsequent etching of the exposed particle surfaces52, producing particles 

that are anisotropic in both shape and surface chemistry. The disadvantage of using 

wax is that it is soluble in a range of solvents and has a low melting temperature so 

options for the treatment and modification of particles may therefore be restricted. 
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For the Pickering emulsion method polymerisable oils can be used as the 

disperse phase with styrene generally used in this role53,54, however the emulsion 

route can also be used without solidifying the droplets if the reactive chemical used 

to modify the particle surfaces is soluble in the continuous phase only55. 

 

 

1.2.3 Properties of Janus particles 

 

Janus particles have been observed to gather at an interface between water 

and oil whereas bare or fully functionalised homogeneous particles disperse in one 

phase over the other28. Walther et al.56 show that interfacial tension is significantly 

reduced in the presence of Janus disks making them ideal as emulsion stabilisers. 

Nanoscale Janus particles have been used as emulsion stabilisers to produce 

polystyrene particles57, and can be suitable for producing monodisperse 

polystyrene latex particles58 where particle concentration can be used to control 

the size.  

 

Janus particles can be shown to be stimuli-responsive when dispersed in 

solutions of varying pH as aggregation can occur to create large structures51 or the 

particles may aggregate into chains55 over certain pH ranges. Amphiphilic Janus 

fibres59 and curved particles40 spread at a water surface form apparently random 

structures where chaining and branching occur while the Janus fibres are also seen 

to twist around each other. A greater degree of self assembly is sometimes seen 

with amphiphilic particles with chains of particles formed aligning in the same 

direction44 or aggregation into micelles at appropriate concentrations30,60,61. 

 

Janus particles with a fluorescent hemisphere can be used as modulated 

optical nanoprobes (MOONs) with which the orientation can be followed based on 

the intensity of fluorescent light observed. These particles have been used to 

investigate rotation of particles due to Brownian motion62 as well as changes in 

rotation influenced by nearby materials63 or magnetic fields64. Magnetic fields have 

been shown to align disperse particles into chains65 and near complete control of a 



23 
 

Janus particle can be achieved with three magnetic fields and optical trapping so 

that both the position and rotation of the particle can be controlled to a high 

degree46. Similar control of particle orientation using electrical switching can be 

used to make an optical display with coloured Janus particles36. 

 

Finally, Bucaro et al.41 used amphiphilic Janus disks coated with gold on one 

face which were suspended at the interface of an oil drop floating on water with 

the hydrophobic gold faces oriented upwards into the oil phase. This arrangement 

of closely packed gold disk faces acted as a mirror. The focal length of the mirror 

could be controlled by varying the contact angle formed by the oil droplet in the 

water, achieved with an applied voltage. 

 

 

1.3 Particle-stabilised emulsions 

 

1.3.1 General emulsion characteristics and stability 

 

When two immiscible liquids (e.g. water and oil) are mixed an emulsion is 

formed with droplets of one liquid (the disperse phase) within the other liquid (the 

continuous phase). Emulsion research has drawn a lot of attention as emulsions 

appear in many forms from food or cleaning products to cosmetics and industrial 

processes. Without some form of emulsifier present the droplets are expected to 

be unstable and swiftly combine until the individual bulk phases are separated. 

Emulsifiers, or surface active agents, can be in the form of molecules such as 

amphiphilic surfactants or colloidal particles. With emulsifiers present either a 

macro- or micro- emulsion can form.  If the interfacial energy is high macro-

emulsions tend to form which are thermodynamically unstable whereas micro-

emulsions are thermodynamically stable emulsions and form spontaneously66. 

Micro-emulsions are not considered further in this thesis and so the term 

‘emulsions’ will be used to mean macro-emulsions. Emulsions generally exist as 

either oil-in-water (o/w) or water-in-oil (w/o) emulsions, where the continuous 
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phase is water and oil respectively. The type of emulsion produced depends on the 

volume fraction of each phase and the emulsifier(s) used. 

 

The emulsions are stabilised kinetically and are considered stable as long as 

the number, size and distribution of the droplets remains constant over the 

experimental timescale. Flocculation, creaming/sedimentation, coalescence and 

Ostwald ripening are the four main instabilities (Fig. 1.14) which lead to breakdown 

of an emulsion and may occur consecutively or simultaneously.  

 

 

Figure 1.14. The different processes involved in the breakdown of an unstable 

emulsion. (Adapted from ref. 67) 

 

With flocculation the droplets gather together in aggregates that are 

distributed throughout the emulsion volume, with the number of droplets 

remaining the same. Droplets coming into near contact act under DLVO theory and 

as such, if a negative potential energy exists the droplets will stick together. This 

process is reversible in that the flocculated droplets can be separated by gentle 
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agitation if the inter-drop forces are weak but will require more energy to break up 

the aggregates if the interactive forces are strong. Polydisperse samples where 

differently sized droplets cream (or sediment) at different rates have a greater 

chance of flocculation occurring because the droplets come into close proximity 

with greater frequency66. Excess surfactants can increase the rate of flocculation 

due to depletion attraction of droplets66. It occurs when droplets come close 

enough that surfactant micelles are excluded from the intervening film of 

continuous phase and an imbalance in concentration arises. This causes the 

intervening fluid to move into the bulk continuous phase to restore equilibrium 

concentration and draws the droplets together. Polymeric stabilisers can help to 

reduce flocculation if the chains protruding from the droplet surfaces prevent the 

droplets from approaching too near. 

 

In an o/w emulsion creaming is the migration of the oil drops to the upper 

surface of the emulsion phase while sedimentation is present in w/o systems as the 

droplets migrate to the bottom of the emulsion phase. Creaming and 

sedimentation are gravity driven effects caused by differences in density between 

the continuous and the disperse phase, and will therefore be much more rapid with 

a larger density difference between phases. The creaming process can be slowed by 

reducing the density difference, increasing the viscosity of the continuous phase, or 

by creating smaller droplets which decreases the speed of creaming66. The rate of 

creaming can be increased by flocculation as the effective radius of the aggregated 

droplets is greater than that of the individual droplets. Creaming is also a reversible 

process.  

 

Coalescence is an irreversible process in which two or more droplets combine 

together to produce a single larger droplet, which can lead to complete phase 

separation if the process repeats throughout the emulsion. Coalescence occurs 

when the droplets approach until the film of continuous phase separating them is 

thin enough to rupture. A number of factors can affect the rate of coalescence such 

as droplet interfacial tension, stabilising barriers around the droplets (such as 

surfactants or particles) and the viscosity of the continuous phase. The close 



26 
 

packing of flocculated and creamed emulsion drops can also increase the rate of 

coalescence. It has been suggested that coalescence occurs when molecular and 

thermal waves in the thin film separating the close droplets cause localised film 

thinning which leads to rupture66.  

 

Ostwald ripening is another irreversible process, and arises due to differences 

in the aqueous phase solubility of oil in emulsion drops of varying size. More 

precisely, the oil in smaller drops are more soluble in the continuous phase than oil 

in the larger droplets66. This leads to the oil dissolving from the smallest droplets 

and diffusing through the continuous phase to then condense onto the larger 

droplets. The process causes the growth of larger droplets at the expense of smaller 

droplets and therefore an increase in average drop size and a decrease in drop 

count. Theoretically this would occur until just one drop remains but in practice as 

the average drop size increases, the rate of Ostwald ripening decreases. Stability 

against Ostwald ripening can be increased with suitable additives or by using a 

disperse phase which is less soluble in the continuous phase. 

 

 

1.3.2 Emulsions stabilised by solid particles alone 

 

The surface activity and strong energy of attachment of particles make them 

ideal for use as emulsion stabilisers. Particle-stabilised emulsions, also known as 

Pickering emulsions1 could be extremely stable (for years!). The great stability of 

these emulsions can be attributed to the strong energy of particle attachment to 

the oil-water interface. The particle wettability has a pronounced effect on the 

energy required to detach a particle from a liquid interface, ΔGd, which, for a 

spherical particle with radius r, is given by the equation1 

 

ΔGd = π γow r2 (1 - │cosθ│)2   (1.4) 

 

 ΔGd is greatest when the particles have medium wettability68 (contact angles 

close to 90°) at which point the energy required to detach a particle from the 
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interface into either phase is several thousand times the thermal energy (kT), even 

for very small particles with diameters ~10 nm. Close to either extreme of 

wettability (0° or 180°) when the particle sits mostly in its preferred phase it can be 

detached from the interface with relative ease.  

 

The particle wettability is also very important for the type of Pickering 

emulsion they can stabilise2. If the volumes of oil and aqueous phase are equal, 

hydrophilic particles (contact angle < 90°) will stabilise oil-in-water emulsions while 

hydrophobic particles (contact angle > 90°) will preferentially stabilise water-in-oil 

emulsions (Fig. 1.15). It is therefore expected that a phase inversion in the emulsion 

would occur if the particle wettability changed from hydrophilic to hydrophobic or 

vice versa (the so-called transitional phase inversion). For systems of unequal phase 

volumes a balance is achieved between emulsion type driven by the phase volumes 

and that of the particle wettability. Therefore, for example, hydrophobic particles 

may stabilise oil-in-water emulsions when the volume of water is greater than oil2.  

If a stable emulsion is formed and the system properties are subsequently changed 

by altering the liquid volume fractions a transition from one emulsion type to the 

other can occur which is called ‘catastrophic inversion’2. The phase volume 

fractions at which the inversion occurs depends on the wettability of the stabilising 

particles and the nature of the oil2.  
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Figure 1.15. Diagram of Pickering emulsion drops stabilised with (left) hydrophilic 

particles and (right) hydrophobic particles. 

 

 

Particles can act to stabilise emulsion drops in a variety of ways depending on 

the particle concentration in the emulsion. When the concentration of particles is 

high, and assuming particles with large free energy of attachment to the interface, 

it is expected that the droplet surfaces will be completely covered with a layer of 

particles (Fig. 1.16a). For droplet coalescence to occur the particles must be 

removed from the interface since the close packed layer on each droplet will form a 

physical barrier and lateral movement of the particles over the droplet surface is 

restricted67. The stability of the thin film separating droplets is also greater as film 

drainage is slowed and the capillary pressure needed to break the film is increased. 

If the particle concentration is sufficiently high it is also possible that a network of 

particles in the continuous phase between droplets can occur (Fig. 1.16b), 

preventing drops from coming into contact and slowing creaming of the emulsion. 
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Figure 1.16. Diagram showing the possible mechanisms of emulsion stabilisation 

with colloidal particles. (Adapted from ref. 67) 

 

 

When the particle coverage on emulsion drops is lower, stability may arise 

from particles forming smaller ‘islands’ or networks of particles around the droplets 

to act as barriers to coalescence. Particles of certain wettability may also bridge the 

film separating two emulsion drops (Fig. 1.16c). The bridging particles are 

simultaneously adsorbed at the interface of both droplets and can prevent the 

droplets from coming into contact, thus stabilising against coalescence. This is only 

beneficial when the particles preferentially sit more in the continuous phase. 

Bridging particles that sit more in the disperse phase or with contact angle of ~90° 

bring the interface of both droplets into contact and will therefore encourage 

coalescence67. 
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1.3.3 Pickering emulsions from particle-surfactant mixtures 

 

When surfactants are used to make emulsions, increased stability may arise 

from a reduction in the interfacial tension69 and Gibbs-Marangoni elasticity 

effects70,71. The concentration of surfactant is a key factor in determining the extent 

of these processes. Mixtures of particles and surfactant can offer great advantages 

in terms of stability under the right conditions. As described in section 1.1.2.1.2 

surfactant adsorbs onto the particle surfaces with increasing surfactant 

concentration, first increasing, then decreasing the particle contact angle. 

 

The behaviour of emulsions stabilised by a mixture of particles and surfactant 

is influenced by a balance of the interfacial tension, the particle contact angle and 

the particle surface charge, all of which vary with the surfactant concentration. The 

ability of particle-surfactant mixtures to stabilise emulsions is generally greater than 

that of the individual components over a range of surfactant concentrations, with 

the greatest stability observed when the particle contact angle is ~60 – 80° 12,72. At 

such surfactant concentrations where these particle contact angles are produced 

the energy of particle detachment from the interface is often high and particle 

flocculation in the continuous phase adds to stability against droplet coalescence. 

With increasing surfactant concentration a double phase inversion from o/w to w/o 

and back to o/w may occur due to changes in the particle wettability and surface 

charge caused by adsorption of the surfactant molecules12,73. The first inversion 

occurs when a monolayer of surfactant adsorbs onto the particles making them 

hydrophobic and relatively uncharged. Flocculation of particle dispersions is 

observed to be greatest at such surfactant concentrations where particles are most 

hydrophobic with very little surface charge. The second emulsion phase inversion 

relates to a bilayer of surfactant forming on particle surfaces with the head groups 

exposed, making the surfaces hydrophilic and highly charged. At surfactant 

concentrations above cmc the surfactant competes for the oil - water interface, 

greatly reducing the stabilising role of the particles74. The nature of the mechanisms 

involved in stability of emulsions by particle-surfactant mixtures are not yet fully 

understood, especially as the contact angles of particles within the surfactant 
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solutions has not presently been measured. Indeed indirectly measured contact 

angles have sometimes been at odds with that expected for the emulsion type and 

dispersion activity observed73. 

  

 

1.4 Particle-stabilised aqueous foams 

 

Aqueous foams are similar to emulsions in that they are made from 

immiscible phases mixed together, in this case a gas (usually air) is the non-aqueous 

phase and air bubbles are produced instead of droplets. Foams are also unstable 

without an added stabiliser.  Foams with a gas volume fraction lower than 0.74 will 

mostly consist of spherical bubbles while foams with a volume fraction of gas 

greater than 0.74 will have bubbles which are polyhedral in shape with just a thin 

liquid film separating them. 

 

The destabilising processes that occur in foams are similar to those which 

occur in emulsions. Much like ‘creaming’ the bubbles will rise to the liquid surface, 

often becoming closely packed, the film separating bubbles can rupture leading  to 

bubble ‘coalescence’ and similarly to ’Ostwald ripening’ the gas molecules may 

diffuse through the disjoining liquid films in a process termed 

‘disproportionation’72. In foams the migration of bubbles to the liquid surface is 

followed by the drainage of liquid from the volume of foam due to gravitational 

forces. This drainage causes tighter packing of the bubbles as the films separating 

the bubbles become thinner. After the films thin to micrometer thickness the rate 

of drainage due to gravity reduces greatly and becomes the less predominant 

factor70. For thinner liquid films the predominant factor for drainage is ejection of 

liquid to plateau borders between bubbles. This is because the pressure in the 

planar region of bubble contact is uniform but not in the plateau borders where the 

interface is curved, creating a capillary pressure which acts to thin the films. The 

liquid may also evaporate from the upper portion of the foam which further thins 

the stabilising films. 
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Particle stabilised foams can offer some advantages over foams stabilised by 

surfactants, especially with regards to foam lifetime75. The rigid shell of stabilising 

particles surrounding the bubbles takes a lot of energy to displace, aiding stability 

against coalescence and diffusion of gas across the thin film76. As the bubbles shrink 

in size due to disproportionation the particles at the interface become tightly 

packed, preventing lateral movement of the particles (improving stability to 

coalescence) and eventually reaches a point where further shrinking would require 

expulsion of particles from the interface. At this point the bubble can become 

misshaped as the surface is stressed77 and leads to a reduction in Laplace pressure 

which can halt diffusion of gas from the bubble. With higher concentrations of 

particles extra stability is also achieved by particles forming networks between 

foam bubbles affecting film drainage and thinning76. 

 

The ability of particles to stabilise foams varies with contact angle and has 

been shown78 to be optimal at intermediate hydrophobicities and poor for very 

hydrophilic or hydrophobic particles. At and above 90° the maximum capillary 

pressure needed to rupture films stabilised by bridging particles drops to zero so 

the films would be unstable79. However at lower contact angles where the 

maximum capillary pressure to rupture films is higher, the energy of particle 

attachment to the interface is low. The optimum stability of the foam occurs when 

the contact angle is balanced between these opposing effects. The maximum 

capillary pressure required for film rupture is higher for bilayers of particles, for 

which the pressure drops to zero at 129° rather than 90° 79. This means that slightly 

hydrophobic particles can stabilise foams but will benefit from a higher particle 

concentration to encourage bilayers over bridging monolayers between bubbles.  

Similarly, smaller particles should stabilise the films better with higher maximum 

capillary pressure for rupture79, however this is counterbalanced by the lower 

energy of attachment to the interface80. Therefore the optimum particle size for 

stabilising foams is also a balance between the opposing effects.  
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1.5 Motivation and aims of the thesis 

 

The contact angle of solid particles at the liquid-fluid interface is a key parameter in 

particle-stabilised foams and emulsions. It determines the foaming or antifoam 

action of solid particles1,76,78, the emulsion type1,2,67,80, and affects the mechanism 

of stabilisation in particle-stabilised emulsions67,79. Despite the great importance of 

the particle contact angle its direct measurement is difficult because of the small 

particle size. In the existing literature, important conclusions for the effect of 

particle contact angle on the particle behaviour in solid-stabilised foams and 

emulsions have been made using indirect information about the particle 

wettability. For example, the widely accepted rule that hydrophilic particles 

stabilise oil-in-water (o/w) emulsions, while hydrophobic particles give water-in-oil 

(w/o) emulsions1,2 has been deduced from indirect measurements of the particle 

contact angle values on a macroscopic piece of material with similar surface 

chemistry12,73 or deduced from the chemical composition of the particle surface2. 

Therefore, one of our aims in the present study is to develop the Film Calliper 

Method (FCM) for measuring particle contact angles at oil - water interfaces; to 

investigate the type of particle-stabilised emulsions and link it to the contact angle 

values measured directly on the particle surface by the FCM. 

 

Most of the particle-stabilised foam and emulsion systems used in practice contain 

surfactants. The roles of surfactant and particle combinations when stabilising 

emulsions and foams is not yet fully understood. Therefore a significant part of the 

present work aims to reveal the link between the wettability of the particles, their 

stabilising ability and mechanisms of stabilisation in foams and emulsions from 

particle-surfactant mixtures. This is achieved by investigating foams and emulsions 

of silica particle and cationic surfactant mixtures and measuring the particle contact 

angles directly on the particle surface using the FCM. 

 

Janus particles with dual wettability have received a lot of scientific interest over 

recent years 33,37,47,49. It is widely believed that such particles will provide, among 

other things, advantages to particle-stabilised foams and emulsions 29,56-58. It has 
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been shown theoretically that amphiphilic Janus particles should be superior to 

homogeneous particles in stabilising emulsions29. Nevertheless, the ability of Janus 

particles to stabilise emulsions has not been systematically investigated. To develop 

a method for making significant amounts of amphiphilic Janus particles with 

controlled structure and investigate their ability to stabilise emulsions are also 

amongst the main objectives of this thesis.  

 

 

1.6 Outline of thesis 

 

The rest of this Thesis is structured as follows: 

 

Chapter 2 summarises the materials and procedures used for the work 

presented. Chapter 3 details the work performed to further develop the Film 

Calliper Method for use with a range of particles at water and air or oil interfaces. 

Measurements at water-air and water-oil interfaces were carried out using latex 

particles with varying size and surface structure, silica particles which had been pre-

treated to alter the wettability and silica particles in surfactant solution. The 

systems measured were used to produce emulsions and relationships are drawn 

between the emulsion types and contact angles measured. 

 

The work on combinations of silica particles and surfactant is further 

extended in chapter 4. Two separate cationic surfactants were used to investigate 

changing system characteristics with varying surfactant concentration, such as the 

solution surface tension or particle contact angle. These are linked to surfactant 

adsorption on the particle surface for one of the surfactants used. Foams and 

emulsions were made which displayed synergistic behaviour between the particles 

and surfactant, greatly enhancing the stabilising properties. The changes observed 

between samples with and without particles are then linked to the measured 

particle properties. 
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Chapter 5 details the development of a method for producing large quantities 

of particles with dual wettability and work performed in refining the method. 

Examples of Janus particles produced are presented to show the control and 

flexibilities of the method. The chapter is finished off with an investigation into 

amphiphilic particles and their use as emulsion stabilisers.   

 

The final chapter of the thesis summarises the conclusions made and presents 

ideas for future work. The references used throughout the thesis are listed at the 

end of the chapter they were respectively used in. 
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Chapter 2 

 

Experimental 

 

 

2.1 Materials 

 

2.1.1 Solid particles 

 

2.1.1.1 Silica particles 

 

Precipitated silica particles were obtained from two sources in the form of dry 

powders with a range of sizes and narrow size distributions. Silica particles with 

diameters 0.5, 0.7 and 1.0 μm were purchased from Fiber Optic Center Inc., USA -

via Blue Helix, UK. The manufacturer quotes particle density of 1.8 g/cm3, purity of 

> 99.9 % and standard deviation of the particle size smaller than 10 %. Scanning 

electron microscope (SEM) images of these particles are shown in Fig. 2.1. To clean 

these particles they were dispersed in 25 ml ethanol (analytical grade, Fisher 

Scientific) and put in an ultrasonic bath (Grant Ultrasonic bath MXB6) for ten 

minutes. After sedimenting the dispersion with a bench centrifuge (Baird + Tatlock 

Auto bench centrifuge, Mark IV) the ethanol was removed and replaced with milli-Q 

water (25 ml). The process was repeated until the particles had been washed with 

three lots of fresh milli-Q water after which the water was removed and the 

particles were dried in an oven overnight.  

 

Monodisperse silica particles with diameters 2.76 ± 0.15 μm, 5.84 ± 0.26 μm 

and 7.75 ± 0.29 μm were purchased from microParticles GmbH and used as 

received (Fig. 2.1). 
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Figure 2.1. SEM images of silica particles used in this thesis, shown as received. 

Particles from Blue helix in sizes of 0.5 µm (a) and 1 µm (b) are shown with the 2.76 

µm (c), 5.84 µm (d) and 7.75 µm (e) particles from microparticles GmbH. Scale bars 

are 1 µm in images a-c and 4 µm in images d and e. 

 

 

2.1.1.2 Latex particles 

 

Two series of monodisperse latex particles with different functionality and 

diameters in the range 0.9 - 6.0 µm were used as received from Invitrogen 

Molecular Probes (Table 2.1). Carboxylate modified polystyrene latex (CML) 

particles have surface carboxyl groups and according to the supplier are hydrophilic 

and negatively charged in water. Polystyrene sulphate latex (SL) particles are also 

negatively charged and classified as hydrophobic latex by the supplier. Both types 

of latex particle were supplied as aqueous dispersions in purified surfactant-free 

water.  

 

 

 

 

a b 

c e d 
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Table 2.1. Properties of carboxylate modified latex (CML) and sulphate latex (SL) 

particles from Invitrogen Molecular Probes (data supplied by the manufacturer). 

The surface groups per particle refer to carboxyl groups (-COOH) on the CML 

particles and sulphate groups (SO4
-) on the SL particles. 

Latex type Diameter /µm 
Number of surface 

groups per particle 

Area per surface 

group /nm2 

CML 0.90 ± 0.02 5.5 x 106 0.46 

CML 1.20 ± 0.02 3.5 x 107 0.13 

CML 2.00 ± 0.04 4.1 x 108 0.03 

CML 3.00 ± 0.09 3.0 x 108 0.09 

CML 6.00 ± 0.51 2.3 x 109 0.05 

SL 0.89 ± 0.03 9.9 x 105 2.51 

SL 1.80 ± 0.04 4.3 x 106 2.37 

SL 2.90 ± 0.12 1.0 x 107 2.64 

SL 5.60 ± 0.39 4.0 x 107 2.46 

 

 

 

Poly(glycerol monomethacrylate)-Polystyrene (PGMA-PS) latex particles with 

different sizes and degree of polymerisation (DP) of PGMA were synthesised1 and 

supplied by Professor Steve Armes’ research group at Sheffield University (Table 

2.2). To synthesize these particles PGMA macromonomer was first dissolved in a 

mixture of methanol and water and heated. Azobisisobutyronitrile (AIBN) initiator 

dissolved in styrene was added to the reaction vessel and then the solution was 

stirred for 24 h at 70 °C. The resulting latex was purified by three centrifugation 

/redispersion cycles into methanol followed by three cycles replacing each 

decanted supernatant with deionised water. 
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Table 2.2. Summary of PGMA-PS latexes prepared by alcoholic dispersion 

polymerisation using azobisisobutyronitrile (AIBN) initiator at 70 °C. The AIBN wt.% 

values are relative to the amount of styrene used. Particle diameters are measured 

by Disk Centrifuge Photosedimentometry (DCP).  

 

 

 

2.1.2 Materials used in contact angle measurements, foams and emulsions 

 

Oils used in contact angle measurements and emulsions are summarised in 

Table 2.3. Before use they were passed 3 times through basic alumina (99 %, Acros 

Organics) to remove polar impurities.  

 

 

Table 2.3. Summary of oils used for contact angle measurements and emulsions. Oil 

properties are from the suppliers with densities specified for 25 °C. 

Oil Supplier 
Purity 

/% 

Density 

/g cm-3 

Refractive 

index 

Decahydronaphthalin 

(decalin) 

Sigma-

Aldrich 
98 0.896 1.474 

Dodecane 
Lancaster 

synthesis 
99+ 0.749 1.422 

 

 

Sample 

code 

Stabiliser 

type 

MeOH 

:H2O 

mixture 

AIBN 

/wt.% 

Stabiliser 

/wt.% 

Monomer 

conversion 

/% 

Solids content 

after 

purification /% 

DCP 

diameter 

/nm 

AW54 PGMA70 90:10 1 2.5 61 4.28 796 ± 167 

KLT208 PGMA50 90:10 1 10 100 9.60 834 ± 65 

AW52 PGMA30 98:2 1 10 60 4.87 820 ± 90 
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The cationic surfactants tetradecyltrimethylammonium bromide (TTAB, 99 %, 

Sigma, Fig. 2.2) and cetylpyridinium chloride (CPC, Sigma, Fig. 2.3) were used in 

contact angle measurements, foams and emulsions. TTAB with a critical micelle 

concentration of 3.5 mM at room temperature2-5, was used at various 

concentrations between 5 x 10-4 and 30 mM.   

 

 

 

Figure 2.2. Molecular structure of tetradecyltrimethylammonium bromide (TTAB) 

 

 

Cetylpyridinium chloride (CPC) with critical micelle concentration of 0.9 mM6-8 was 

used at concentrations between 0.01 and 5 mM.  

 

 

 

Figure 2.3. Molecular structure of cetylpyridinium chloride (CPC) 

 

 

2.1.3 Materials used in the preparation of Janus particles 

 

Polymerisable oils (monomers) such as styrene and methacrylates (see table 

2.4) were used in polymerisable Pickering emulsions with silica particles and 

azobisisobutyronitrile (AIBN, 98 %, Acros Organics) as thermo-initiator. Before use, 
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the monomers were passed through basic alumina to remove polymerisation 

inhibitors and impurities.  

 

 

Table 2.4. Summary of polymerisable oils used to make Pickering emulsions for the 

preparation of Janus particles. Included are the densities of the monomers (at 25 

°C), provided by the supplier and the glass transition temperatures (Tg) of the 

homopolymers9. (Tg for stearyl methacrylate from ref. 10) 

Monomer Supplier 
Purity  

/% 

Density 

/g cm-3 

Polymer 

Tg /°C 

Butyl methacrylate Acros Organics 99 0.894 20 

Isobutyl methacrylate Aldrich 97 0.886 53 

2-ethylhexyl 

methacrylate 
Acros Organics 99 0.884 -10 

Stearyl methacrylate Aldrich 
Technical 

grade 
0.864 38 

Styrene Sigma-Aldrich ≥ 99 0.906 100 

 

 

 

Tollen’s reagent (made using the procedure detailed in section 2.2.11) was 

used to make Janus particles with a silver hemisphere. The materials used in the 

preparation of this were silver nitrate (≥ 99 %, Alfa Aesar), potassium hydroxide 

(laboratory grade, Fisher Scientific), d-glucose (anhydrous, analytical grade, Fisher 

Scientific) and ammonia solution (33 w/w, Prime Chemicals) were used. Silica 

particles were also treated with 3-Aminopropyltriethoxysilane (APTES, Fluorochem) 

and then Rhodamine B isothiocyanate (mixed isomers, > 70 %, Aldrich) to make 

fluorescent Janus particles. Chloroform (laboratory grade, Fisher Scientific) was 

used to dissolve the polymers and retrieve the Janus particles. 
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2.1.4 Other chemicals used 

 

A solution of dichlorodimethylsilane (DCDMS, 99.5 %, Fluka) in anhydrous 

toluene (99.8 %, Sigma-Aldrich) was used to hydrophobise silica particles and slides.  

Nitric acid (70 %, laboratory grade, Fisher Scientific) was used to hydrophilise silica 

particles and slides and was also used to clean glassware for the Tollen’s reagent. 

Sodium hydroxide (analytical grade, Fisher Scientific) and hydrochloric acid (HCl, 36 

%, analytical grade, Fisher Scientific) were used to change the pH of particle 

dispersions for the measurement of zeta potential without added background 

electrolyte. 

 

Fluorescent dyes were used with select TTAB emulsions to determine the 

emulsion type. Fluorescein 5(6)-isothio-cyanate (90 %, Sigma-Aldrich) in water was 

used to dye the aqueous phase and nile red dye (technical grade, Sigma) dissolved 

in acetone (99.98 %, Fisher Scientific) was used to dye the oil phase. 

 

Methanol (analytical grade, Fisher Scientific) was used to aid the spreading of 

particles at aqueous surfaces for contact angle measurements. Ethanol (analytical 

grade, Fisher Scientific) and isopropanol (analytical grade, Fisher Scientific) were 

used to clean equipment and silica particles or glass slides. Sulfochromic acid was 

made using sulphuric acid (> 95 %, analytical grade, Fisher Scientific) and potassium 

dichromate (> 99 %, Sigma-Aldrich) and was used to clean glassware in preparation 

for contact angle measurements with the Film Calliper Method (FCM). 

 

Experiments were performed using deionised water with resistivity of ~18 

MΩ cm obtained by treating water through an Elgastat Prima reverse osmosis unit 

and then a Millipore Milli-Q reagent water system. Aqueous phase in some 

experiments contained sodium chloride (NaCl, 99.5 %, BDH) as background 

electrolyte. 
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2.2 Experimental procedures and methods 

 

2.2.1 Hydrophobisation of silica particles 

 

Particles of varying hydrophobicity were desired for making emulsions and as 

templates for Janus particles. These particles were produced by hydrophobising the 

surface of silica particles with a silanising agent. Solutions of dichlorodimethylsilane 

(DCDMS) in toluene were used for this procedure. Different extents of 

hydophobicity were achieved by changing the concentration of DCDMS. For more 

information on DCDMS concentrations used (up to 0.2M) and the resultant contact 

angles measured see section 3.3.2.1. 

 

To get an approximate measure of the degree of hydrophobicity of the silica 

particles after the procedure, glass microscope slides were treated simultaneously 

in the same solutions for the duration of the procedure. As the materials are similar 

an idea of the surface contact angle can be determined with sessile water drops on 

the large flat surface of the slides. The microscope slides were initially cut in half 

long ways (in order to fit into the procedure vessels) and then cleaned by sonication 

in isopropanol and then de-ionised water before drying in an oven.  

 

The DCDMS in anhydrous toluene solutions were first prepared in volumetric 

flasks to varying concentrations with approximately 36 ml of the solutions to be 

used in each sample vessel. Clean volumetric flasks were pre-treated to 

hydrophobise the inner surface by sealing the flasks overnight with 0.5 ml DCDMS 

inside. The flasks were cleaned after this to remove excess DCDMS using 

chloroform and ethanol and were then left to dry naturally before the 

DCDMS/toluene solutions were put in them. The pre-treatment of the flasks helped 

to keep them moisture free and meant that on addition of the DCDMS solution no 

hydrophobisation of the flasks would take place which could have altered the 

solution concentration.  
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The vessels used for the silanisation reaction and subsequent cleaning were 

Oak Ridge Teflon® centrifuge tubes supplied by Nalgene. These vessels are resistant 

to many chemicals while also able to withstand temperatures up to 200 °C and high 

centrifugation speeds.  Each sample was set up in a centrifuge tube as shown below 

in Fig. 2.4 which is presented to aid the description of the method. 

 

 

 

Figure 2.4. Schematic of the experimental setup used for the hydrophobisation of 

silica particles. On the left is the centrifuge tube which contains the particles and 

the silanising fluid. Up to six of these vessels could be fit into the main box (shown 

on the right) while still achieving optimal stirring of each sample.  

 

 

Each sample vessel contained 1.5 g of pre-cleaned and oven-dried (Advantage 

–Lab oven) silica particles to be treated. A magnetic stirrer bar was used to keep the 

particles dispersed during the procedure and the microscope slide was suspended 

with a clip over the top of the vessel to keep it from interfering with the stirring. 

Once the vessel was topped up with DCDMS solution and the microscope slides 

were in position the vessels were placed in a test tube rack inside an airtight plastic 

container. The container was modified to allow a through-flow of nitrogen and the 

lid was modified to fit a humidity probe. A humidity probe (meter DT-615 from 

Humidity probe 
Nitrogen 

out 

Sample tubes in test tube holder Nitrogen in 
Magnetic 

stirrer bar 

Silica particles 

DCDMS in 

toluene 

Clip holding slide 

Microscope slide 
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CEM) was fixed into the lid and then the box was sealed and positioned on a 

multiplace stirrer (Komet Variomag Poly 15 from Thermo Electron Corporation) so 

that the samples were each over a stirring position. The box was purged with dry 

nitrogen until the humidity dropped to the limit of the meter (at ~0.1 % relative 

humidity). The system was left stirring for an hour with regular checks on the 

humidity level and on the samples to ensure they remained dispersed. If the 

relative humidity rose above 1 % the box was again purged with nitrogen.  

 

After one hour 0.5 ml of ethanol was added to each vessel to react with the 

remaining DCDMS. The slides were removed, rinsed in chloroform and then 

sonicated in a fresh volume of chloroform. The chloroform was washed off by 

sonicating in ethanol and then the slides were dried in the oven. The particle 

dispersion was centrifuged at 4000 rpm for 15-20 minutes and then the toluene 

removed. After this they were sonicated in chloroform for 5 minutes and then 

centrifuged once more. This was repeated again with chloroform and then with 

ethanol before drying in the oven. 

 

 

2.2.2 Contact angle measurements on microscope slides 

 

Glass microscope slides which were hydrophobised simultaneously with silica 

particles could be used to measure the contact angle. The slides were initially 

etched (with a glass etching pen) to mark out small square segments approximately 

10 mm long and wide, a suitable size both for measurements and to fit in a 20 x 20 

mm cuvette.  The slides could then be split into the separate segments when 

required. Prior to measurements the slides were sonicated in ethanol for 5 minutes 

to remove contaminants and then dried with nitrogen. 

 

 The contact angle was measured with a Krȕss Drop Shape Analyser (DSA) 10. 

This instrument was used to observe the side-on profile of sessile liquid drops on a 

glass microscope slide and from the profile of the drop the three-phase contact 

angle was determined.  
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With the hydrophobised slides the advancing and receding contact angles 

were measured for a droplet changing in volume by 6 μl min-1. The rate of volume 

change was controlled using a syringe pump (New era systems, Inc., model NE-

1000) and measurements were taken in two second intervals. For measurements 

under oil the slides were placed in a 20 x 20mm glass cuvette which had been 

cleaned in ethanol the same way as the slides. Oil was added to the cuvette until 

the slide was fully immersed and then left for 15 minutes to equilibrate. The 

advancing and receding contact angle measurements were then made as before.  

 

 

2.2.3 Measuring particle contact angles with the Film Calliper Method 

 

This section describes the Film Calliper Method (FCM)11 which was used for 

measuring the contact angles of colloidal particles bridging a vertical thin liquid 

film. The experimental setup for the FCM is shown in Fig. 2.5. Particles bridging the 

thin liquid film were observed with a horizontal microscope using reflected 

monochromatic light which formed an interference pattern. The vertical liquid film 

was supported in a glass ring which was in turn attached via a needle to a 1ml glass 

syringe. The syringe allowed control of the volume of liquid within the ring and was 

used to withdraw some of the liquid to thin the film. It is during this film thinning 

that particles may bridge both film surfaces. 
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Figure 2.5. Photograph of the experimental setup for the FCM (left), and a 

schematic of the main components (right). To collect the water in the ring it was 

pulled through the bulk aqueous liquid in the cuvette, which had particles spread at 

its surface.   

 

 

The glass ring was suspended from a manually adjustable mount so that the 

ring could be moved swiftly through the bulk liquid surface and the surface layer of 

particles in the cuvette, acting to trap them within the ring. The cuvette and the 

holder for the ring were positioned on a moveable stage to allow for adjusting the 

focus. The monochromatic light source was a mercury lamp housed in the 

microscope (λ = 546 nm) and a fibre optic light source was used to backlight the film 

if greater contrast between the interference pattern and the bridging particles was 

required. Observations of the thin films were made with a Nikon Optiphot-2 

microscope fitted with a QICAM Fast 1394 camera from QImaging. An attachment 

was used enabling side-on images to be taken with 10, 20 and 40 x long distance 

objectives. Image-Pro Plus software (version 6.0.0.260, Media Cybernetics Inc.) was 

used to save the microscope images. 

 

Prior to setup all glassware was soaked in sulfochromic acid to clean off 

organic impurities and rinsed, first with tap water and then washed thoroughly with 

milli-Q water. Needle tips and syringe plungers were cleaned with tissue soaked in 

Glass 

ring 

Microscope 

Syringe 

Bridging 

particle 

Water 

meniscus 

Air/ 

oil 

Syringe Cuvette 
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ethanol to remove any dust and grime and then left to air dry. The ring used to 

support the thin film during measurements was first sonicated in ethanol, then 

chloroform, ethanol again and then finally with milli-Q water. 

 

Initially, the cuvette was filled with the aqueous solution to be measured. A 

pipette attached to a tap-mounted vacuum was used to clean the surface of the 

solution by slowly removing liquid from the surface until the cuvette was just under 

half filled. A 6 µl spreading suspension of particles was then carefully syringed at 

the liquid surface to encourage the particles to attach to the air/water interface. 

The spreading suspension consisted of approximately 2 wt.% particles in a mixture 

of the aqueous phase and methanol in equal volumes. After the particles were 

spread at the aqueous surface the cuvette was covered for half an hour, preventing 

dust from settling onto the liquid while allowing the particles to equilibrate and the 

methanol to evaporate off. 

 

The cuvette was put in position and the ring clamped to hang inside the 

cuvette, at rest above the liquid surface and face-on with the microscope. The 

cuvette opening was covered with microscope slides to give the thin films extra 

stability by minimising air disturbances and evaporation. To collect liquid and 

particles in the ring it was moved vertically to fully immerse in the liquid and then 

swiftly moved back into the resting position.  A thin film with particles bridging it 

could be formed when the volume in the ring was reduced using the syringe. 

Increasing the volume of liquid in the ring caused the thin film area to shrink and 

the particles were observed to move also, remaining at the same film thickness. 

Further increasing the volume could be used to close the thin film and reform the 

bulk phase in the ring. For each image a film with at least 9 bridging particles was 

desired and several images were taken for each sample. Between images the ring 

was re-immersed to refresh the liquid and particles. 

 

Monochromatic light reflected off the thin liquid film produced an 

interference pattern of concentric bright and dark fringes as shown in Fig. 2.6. The 

light intensity profile from the centre of the film to the point at which the bridging 
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particles were positioned could be measured from the microscope images and used 

to determine the thickness of the film for each dark fringe using the equation11, 

 

h = mλ/ 2nf       (2.1) 

 

where m is the order of interference, λ is the wavelength of the monochromatic 

light source and nf is the refractive index of the liquid film. The order of interference 

of the first dark fringe in Fig. 2.6 is m = 1 11.  Using the light intensity profile the film 

thickness in a line extending radially from the centre can be calculated and is also 

shown in Fig. 2.6.   

 

 

Figure 2.6. Interference pattern produced by monochromatic light (λ = 546 nm) 

reflected off a thin liquid film (left). Bridging particles are visible (P) and their 

position is marked on the plot of film thickness (right), calculated for the bright and 

dark fringes (white and black triangles respectively). 

 

 

By using the interference pattern to calculate the film thickness, he, at the 

equilibrium position of the particles and knowing the particle diameter, d, the 

particle contact angle, θ,  can be determined using the equation: 

 

cos θ = he/ d       (2.2)  
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The particle is in equilibrium with the film when deformation of the film 

surface is a minimum and the film thickness correlates with the particle contact 

angle (Fig. 2.7 top). Movement of the particle into thinner or thicker regions of the 

film will cause surface deformations, increasing the interfacial area and therefore 

the surface free energy, ΔE, will increase. The particles are therefore expected to 

move into a position where the film thickness h = he, surface deformations are 

minimal and the surface free energy is a minimum. This is, assuming that the film 

thickness across the particle surface remains equal to he, which directly relates to 

the particle contact angle as shown by eq. 2.2. If the film thickness across the 

particle surface does not remain equal to he the particle will also not be in the 

minimum energy position and will again move to a position where this is achieved.  

 

 

 

Figure 2.7. Sketch of a particle bridging a film of varying thickness and the expected 

increase of surface free energy due to surface deformations caused if the particle 

moves into film regions that are thinner (left) or thicker (right) than the equilibrium 

film thickness which directly relates to the particle wettability (top) via eq. 2.2.  

 

For measurements at the oil-water interface the oil was pipetted into the 

cuvette atop the aqueous phase after air-water measurements were completed. 

Bridging 

particle 
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Before the oil was added the ring was filled with aqueous phase to prevent 

displacement by the oil and interference with aqueous thin film formation. For 

these measurements the ring remained in the oil phase while images were taken. 

 

 

2.2.4 Measuring particle contact angles with the Side imaging Technique (SIT) 

 

The contact angles of 7.75 µm silica particles were measured by observing 

their depth of immersion at the aqueous-air or aqueous-oil interface. As previously 

detailed11 the contact angle, θ, was calculated with the equation cos θ = (2hw/d) – 1, 

where d is the particle diameter and hw is the depth of particle immersion in the 

water. The particles were spread at the planar aqueous surface in a cuvette using 

isopropanol as a spreading solvent. Side-on images of the particles were taken with 

a horizontal microscope (Optiphot 2, Nikon) using long working distance objectives 

in transmitted light. 

 

 

2.2.5 Making emulsions and foams 

 

To compare the measured particle contact angles with the behaviour of the 

particles in experimental conditions emulsions were made with equal volumes of 

aqueous and oil phase. Details of the emulsion systems studied are given in Table 

2.5. All emulsions were made with decalin oil, except when using PGMA-PS particles 

where dodecane was used to fit in with collaborative work with other research 

groups. The concentration of particles and total emulsion volume varied between 

different systems as a result of particle availability and cost.   

 

Hand-shaken emulsions were produced vigorously over 10 seconds with all 

samples from each emulsion series shaken simultaneously. The emulsions with 

surfactant solutions as the aqueous phase were produced over 30 seconds using an 

Ultra-Turrax homogeniser (IKA Labortechnik T25 Basic) fitted with a 10 mm head. 

TTAB (5x10-4 – 10 mM) emulsions with 1 µm silica particles were homogenised at 
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8000 rpm while those with 2.76 µm silica particles and CPC (0.01 - 1.0 mM) 

emulsions were made at 9500 rpm. Foams were also made with 5 ml surfactant 

solutions in sealed vessels by hand shaking 30 times over 30 seconds. In foams 

stabilised with a mixture of particles and surfactant, 1 µm silica particles were 

added at 4 wt.%. 

  

Table 2.5. List of emulsion systems used, with main constituents and emulsification 

methods detailed. Further details are provided in the main text.  

Particle 
material 

Particle 
size 
/µm 

Particle 
conc. 
/wt.% 

Aqueous phase Oil phase 

Total 
emulsion 
volume 

/ml 

Method of 
emulsification 

CML latex 0.9 -6.0 2 
NaCl solution  

(1mM) 
Decalin 1.2 

Hand-shaking 
10 secs 

PGMA-PS latex 0.8 3 
NaCl solution  

(0.1mM) 
Dodecane 2.0 

Hand-shaking 
10 secs 

Silica treated 
with DCDMS 

0.5, 
0.7, 1.0 

2 Milli-Q water Decalin 2.0 
Hand-shaking 

10 secs 

Janus particles 0.5, 1.0 2 Milli-Q water Decalin 2.0 
Hand-shaking 

10 secs 

Silica 1.0 4 
CPC + TTAB surf. 

solution 
Decalin 10.0 

Ultraturrax 
30 secs 

Silica 2.76 3, 9 
TTAB surf. 
solution 

Decalin 10.0 
Ultraturrax 

30 secs 

 

 

In all experiments where silica particles were to be used with surfactant 

solutions they were first allowed to fully equilibrate with the surfactant over time. 

Particle suspensions of 4 wt.% were made in surfactant solutions of the appropriate 

concentration. These suspensions were sonicated in an ultrasonic bath (Grant, 

MXB6) for ten minutes to break up aggregates and then stirred for at least a day in 

a sealed vessel. Immediately before use they were again sonicated for 5 minutes to 

disperse the particles and break up aggregates. 

 

Photographic images of the emulsions and foams were taken with a Fujifilm 

FinePix F480 8.2 mega pixel camera and edited using Adobe Photoshop CS3 version 

10.0 (2007) by Adobe Systems Inc. and Microsoft Office Picture Manager version 

12.0 (2006) by Microsoft Corporation. 
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2.2.5.1 Determining emulsion type  

 

To determine the emulsion types produced the drop test was used. The 

emulsion was pipetted into a vessel of water and a vessel of oil while watching to 

see which liquid the emulsion droplets dispersed into. When pipetted into a fluid 

which matched the continuous phase the emulsion droplets dispersed into the bulk 

fluid. When pipetted into a fluid matching the disperse phase, the emulsion volume 

was contained and did not disperse. For the TTAB and 2.76 µm silica particle 

stabilied emulsions fluorescent dyes were introduced to the emulsion on a 

microscope slide to aid in determining the emulsion type. Fluorescein dye (10-5 M in 

milli-Q water) was used to determine the aqueous phase and nile red dye dissolved 

in acetone (10-4 M) was used to highlight the oil phase. 

 

 

2.2.6 Measuring the absorption of surfactant on silica surfaces 

 

Cetylpyridinium chloride (CPC) solutions have an ultraviolet (UV) absorbance 

profile which varies with the concentration of the solution. This provides the 

opportunity to determine the adsorption of CPC surfactant on silica particles by 

measuring the change in UV adsorption between fresh solutions and those that 

were used as particle dispersions.  

 

Silica particle (1 µm) suspensions of 4 wt.% were prepared in solutions of a 

range of CPC concentrations. These suspensions were stirred over 24 hours in a 

sealed vessel to equilibrate. They were then centrifuged to sediment the particles 

so that the supernatant could be removed before being transferred to a UV quartz 

cuvette for UV absorption measurements. 

 

UV Absorption measurements were performed with a UV/VIS spectrometer 

(Lambda 40) by Perkin Elmer. To contain the solutions two UV quartz cuvettes were 

used with 10mm path lengths. The absorbance spectrum of each was compared to 
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ensure that differences between their absorbance profiles were negligible. One 

cuvette was used for milli-Q water alone and the other for CPC solutions. 

 

The UV absorbance profiles were measured for a wavelength range of 200 to 

300 nm for each sample but before each measurement a baseline reference had to 

be measured with milli-Q water. After use the cuvettes were washed with 

deionised water and then cleaned in alcoholic potassium hydroxide solution. 

 

 

2.2.7 Producing microscope images of samples 

 

Optical microscope observations of thin films for measuring the contact 

angles of particles with the Film Calliper Method were taken with a Nikon Optiphot-

2 microscope. The microscope was fitted with an attachment enabling horizontal 

observation with 10, 20 and 40 x objectives. Microscope images of emulsions and 

polymer surfaces were taken with a Nikon Labophot microscope, with 4, 10, 20 and 

40 x objectives. Both microscopes were fitted with a QICAM Fast 1394 camera from 

QImaging. Image-Pro Plus software (version 6.0.0.260, Media Cybernetics Inc.) was 

used to edit and save the microscope images.  

 

Images of fluorescent emissions were taken with an Olympus BX 51 

microscope fitted with an Olympus DP70 camera using 2, 10, 20 and 50 x objectives 

assorted filters and a mercury lamp. Image-Pro Plus software (version 6.0.0.260, 

Media Cybernetics Inc.) was used to edit and save the microscope images. 

 

Scanning electron microscope (SEM) images of silica particles and polymer 

surfaces were taken using a Zeiss EVO 60 SEM instrument with a voltage of 22 kV, a 

maximum resolution of 3 nm and a probe current of 20 pA. To improve electron 

reflectance of the samples they were coated with a carbon film. 
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2.2.8 Measuring particle zeta potentials 

 

The zeta potential of particles was measured with a Malvern Zetasizer 3000 

instrument which uses a laser with a wavelength of 633 nm at 10 mW. A flow-cell 

was used for the measurements. Zetasizer 3000 Advanced software (PCS version 

1.41, Malvern Instruments Ltd.) was used with the instrument. All measurements 

were performed at 25 °C. Zeta potentials of silica particles in surfactant solutions 

were performed at the natural solution pH. Other measurements on silica particles 

with no surfactant involved were over a range of pH from 1 to 10. The pH for each 

suspension was set by drop-wise addition of either hydrochloric acid or sodium 

hydroxide solution and measured with a glass electrode fitted to a Fisherbrand 

Hydrus 400 pH unit at 25 °C. Background electrolyte was not used. 

 

 

2.2.9 Measuring the hydrodynamic diameter of emulsion drops and polymers  

 

The hydrodynamic diameters of emulsion droplets or polymer beads were 

measured by light diffraction with a Malvern Mastersizer 2000 instrument using a 

Malvern Hydro 2000SM cell and a Hydro 2000SM water pump which was controlled 

with a Malvern QS Dispersion Unit Controller. The software used with the 

instrument was Mastersizer 2000 version 5.00.  

 

 

2.2.10 Measuring the surface or interfacial tension of TTAB surfactant and 

decalin oil 

 

Surface and interfacial tensions of TTAB surfactant solutionsand decalin oil 

were measured with a Krȕss K12 tensiometer using a Du Nouy ring 

(platinum/iridium alloy). The tensiometer was connected to a thermostated water 

bath to maintain a constant stage temperature of 25 °C. Prior to measurements the 

glassware was thoroughly cleaned in alcoholic potassium hydroxide and the ring 

was cleaned in water, ethanol and then dried over a Bunsen flame before use. After 
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attaching the ring to the tensiometer balance the weight was zeroed while in the 

light phase of the system to be measured (air for surface tension, decalin for 

interfacial tension). The ring was then lowered until fully immersed in the heavy 

phase and the oil was added if interfacial tension measurements were to be made. 

The ring was pulled upwards to form a meniscus until the maximum pressure on 

the ring was measured from which the tension was determined. Without fully 

lowering the meniscus repeat measurements were made over time until surface 

equilibrium was assumed to be reached, as shown by a plateaux in the readings 

which otherwise decreased over time. 

 

 

2.2.11 Preparation of Tollen’s reagent 

 

Tollen’s reagent was used to deposit a layer of silver onto silica particles 

attached to the surface of polymer. To prepare Tollens reagent ammonia was 

added dropwise to 30 ml silver nitrate solution (0.1 M) until brown precipitate had 

formed and subsequently dissolved. To this 15 ml potassium hydroxide solution (0.8 

M) was added and then further ammonia until the solution again turned clear. This 

solution was transferred to the vessel to be used for the silvering procedure along 

with the particle sample and then 5 ml glucose solution (0.3 M) was added. To carry 

out the silvering procedure the vessel was sealed and shaken for 5 minutes before a 

thorough washing with deionised water. Prior to making the solutions the 

glassware was cleaned with concentrated nitric acid. 
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Chapter 3 

 

Direct measurements of colloidal particle contact 

angles at the oil - water interface 

 

 

3.1 Introduction 

 

Solid colloidal particles can strongly attach to liquid interfaces and stabilise 

foams and emulsions1-4. The contact angle of solid particles at the liquid-fluid 

interface is a key parameter in these systems. It determines the foaming or 

antifoam action of solid particles5-10, the emulsion type1–4, and affects the 

mechanism of stabilisation in particle-stabilised emulsions11,12. It is accepted that 

hydrophilic particles with contact angles θow < 90° stabilise oil-in-water (o/w) 

emulsions, while hydrophobic particles (θow > 90°) give water-in-oil (w/o) 

emulsions3,4,12. However, these important conclusions for the effect of particle 

contact angle on the emulsion type are based on indirect information about the 

particle wettability obtained by measuring the contact angle on a macroscopic 

piece of material with similar surface chemistry3,12,13 or deduced from the chemical 

composition of the particle surface3,6. The direct measurement of the contact angle 

of solid particles used as emulsion stabilisers is difficult because of the small 

particle size. Only a few of the methods discussed in Chapter 1 are capable of 

measuring the contact angle of individual colloidal particles at oil-water interfaces. 

The Film Calliper Method13 (FCM) described in Chapter 2 has significant advantages 

over the other techniques. It has been demonstrated that the FCM works well at 

the air-water interface, but it has never been used for measuring particle contact 

angles at oil-water interfaces.  

 

The main objectives of the present study are: 

(i) to further develop the FCM for measuring particle contact angles at oil-

water interfaces,  
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(ii) to investigate the type of particle-stabilised emulsions and link it to the 

contact angle values measured directly on the particle surface by the FCM. 

 

The systems studied are briefly described in the next sub-section. It is 

followed by results and discussion where FCM contact angle measurements at oil-

water interfaces are presented for latex particles (charge and sterically stabilised) 

and silica particles which have been modified chemically or with cationic surfactant. 

The contact angles are linked to the emulsion types stabilised with the particles. 

The chapter is finished with a summary of conclusions and a list of the references 

used.  

 

 

3.2 Experimental 

 

We investigate several systems of practical importance. These are: (i) latex 

particles with surface chemistry predetermined by their synthesis, (ii) silica particles 

with chemically modified surfaces and (iii) mixtures of silica particles and a cationic 

surfactant. Particle contact angles at the air-water interface have also been 

measured and are shown for comparison. 

 

Initial tests involved an investigation of contact angles on particles of varying 

size for which latex particles were used because their surface composition is 

relatively well quantified. Two different types of charge stabilised latex were used 

for this, sulphate particles which were described as hydrophobic by the producer 

and carboxylate modified latex (CML) particles which were described as being 

hydrophilic and highly charged (see Table 2.1). Contact angles were then measured 

for sterically stabilised latex particles with varying degrees of polymerisation 

(Table2.2). Silica particles of variable wettability were also used with the wettability 

controlled either through chemical modification of the particle surface or by the 

presence of surfactant solutions. Silica particles with diameters of 700 nm and 1 µm 

were hydrophobised with different concentrations of dichlorodimethylsilane 
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(DCDMS) (Chapter 2.1.4). Details of the silica particles are presented in Chapter 

2.1.1.1 while the hydrophobising procedure using DCDMS is detailed in Chapter 

2.2.1. Silica particles with 2.76 µm diameters were dispersed in aqueous solutions 

of tetradecyltrimethylammonium bromide (TTAB) cationic surfactant at 

concentrations of 5 x 10-4 to 3 mM (Chapter 2.1.2). Oils used in the experiments 

were decalin and dodecane (see Table 2.3). They were purified as described in 

Chapter 2.1.2. The experimental setup and procedure for using the FCM are 

detailed in Chapter 2.2.3. 

 

 

3.3 Results and discussion 

 

3.3.1 Measuring contact angles of latex particles with the FCM at air-water and 

oil-water interfaces 

 

3.3.1.1 Contact angles of carboxylate modified latex particles  

 

Contact angles of carboxylate modified latex (CML) particles with diameters in 

the range 0.9 – 6.0 µm are shown in Fig. 3.1. 
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Figure 3.1. Contact angles and area per -COOH group (diamonds) for CML latex 

particles of varying diameter. Contact angles were measured at the air-water 

interface (squares) and decalin-water interface (circles) using the Film Calliper 

Method. Information for the area per -COOH group was supplied by the 

manufacturer. Measurements were performed at room temperature within milli-Q 

water at neutral pH. The dashed line at 90 degrees is included as a visual aid.  
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The CML particles were measured to be hydrophilic at the air-water interface 

(θow < 90°) with contact angles increasing as the particle diameter decreased. 

Contact angles of ~20° were measured for the larger particles with a sharp increase 

in contact angle observed for the 0.9 μm particles to 58°. The change in the contact 

angle with particle diameter is shown to correspond with data for the area per 

carboxyl group on the particles. With a greater area per carboxyl group the number 

density of groups on the surface is lower, such as for the 0.9 µm particles, and the 

hydrophobicity is therefore significantly higher. 

 

The contact angles at the decalin interface were greater than those at the air 

interface but followed a similar trend. The contact angle of the 0.9 μm CML 

particles at the decalin interface could not be measured as the film ruptured when 

the particles attached to the film, suggesting that the particle contact angle was 

greater than 90°. Hence, these particles should stabilise w/o emulsions in contrast 

to the bigger particles with contact angles < 90°. Images of emulsions made from 

equal volumes of decalin and aqueous suspensions of 2 wt.% CML particles are 

shown in Fig. 3.2. The CML particles with contact angles smaller than 90° gave o/w 

emulsions evident from the creaming observed. The opposite emulsion type (w/o) 

was obtained in the presence of the smallest particles since their contact angle was 

bigger than 90°. The emulsion type deduced from the creaming/sedimentation 

behaviour was also confirmed by drop tests. These results demonstrate that the 

data for the particle contact angles measured by the FCM at the oil-water interface 

can be used to predict the type of particle-stabilised emulsions. The results also 

show that the wettability of similar latex particles could be very different due to 

variations in the surface composition introduced at their synthesis. 
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Figure 3.2. Images of hand shaken emulsions made from equal volumes of decalin 

and aqueous suspensions of 2wt.% CML particles with different diameters (shown) 

at 1 mM NaCl background electrolyte. 

 

 

3.3.1.2 Contact angles of polystyrene sulphate latex particles  

 

Contact angles of sulphate latex particles at the air-water interface measured 

by the FCM are shown in Fig. 3.3. The contact angle increases from ~41° to ~55° 

with decreasing particle size from 5.6 to 0.9 µm. The observed variation of the 

contact angle with particle size is smaller than that for CML particles. The area per 

sulphate group at the particle surface is almost the same irrespective of the particle 

size (Fig. 3.3). Hence the variation in the sulphate latex particle contact angle with 

particle size cannot be explained by changes in the surface composition as in the 

case of CML particles. Other factors, such as differences in the particle surface 

roughness, could be responsible for the observed changes in the contact angle of 

sulphate latex particles. These need further investigation. 

 

The sulphate latex particles caused rupturing of the water film in decalin, thus 

suggesting that their contact angles at the decalin-water interface were greater 

than 90°. This finding is consistent with the manufacturer information that the 

sulphate latex particles are hydrophobic.  
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Figure 3.3. Contact angles of sulphate latex particles at the air-water interface 

(filled circles) and area per -SO4 group (open diamonds) versus particle diameter. 

Contact angles were measured using the Film Calliper Method. Information for the 

area per -SO4 group (±0.01 nm2) was supplied by the manufacturer. Measurements 

were performed at room temperature within milli-Q water at neutral pH.  
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3.3.1.3 Contact angles of poly(glycerol monomethacrylate)-Polystyrene latex 

particles  

 

Poly (glycerol monomethacrylate) - Polystyrene (PGMA-PS) latex particles 

sterically stabilised by PGMA chains of varying degree of polymerisation (DP) of 30, 

50 and 70 attached to the surface but very similar in size have been studied. 

Contact angles at the air-water and dodecane-water interface have been measured 

in order to investigate the effect of DP of PGMA on the particle wettability. The 

results are summarised in Table 3.1. 

 

 

Table 3.1. Contact angles of PGMA-PS latex particles with different degree of 

polymerisation (DP) of PGMA chains at the air-water and dodecane-water 

interfaces measured with the FCM in the presence of 0.1 mM NaCl in the aqueous 

phase at pH 7.0 ± 0.1. 

Sample 
code 

Particle 
diameter /nm 

DP of 
PGMA 

Contact angle /degrees 

Air-water Dodecane-water 

AW52 820 ± 90 30 49 ± 3 68 ± 6 

KLT208 834 ± 65 50 46 ± 2 76 ± 6 

AW54 796 ± 167 70 46 ± 2 59 ± 7 

 

 

 

It is seen that the air-water contact angle decreases slightly from 49° at DP = 

30 to 46° at DP = 50 and levels off at a higher DP, although the observed tendency is 

rather weak bearing in mind the experimental error. The contact angles at the 

dodecane-water interface are bigger than those at the air-water surface. Significant 

aggregation of the particles at the dodecane-water interface has made the 

determination of the contact angles more difficult and contributed to the bigger 

uncertainties in comparison to those at the air-water interface. The dodecane-

water contact angles for all the particles were similar within the experimental error 
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irrespective of the DP of PGMA. One can conclude that the increase of the DP of 

PGMA from 30 to 70 (hence, the length of the PGMA chains grafted at the particle 

surface) does not significantly affect the contact angle of the PGMA-PS latex 

particles. A similar ‘saturation’ of the contact angle at hydrophobic alkylamine films 

on macroscopic flat surfaces has been observed14 with the increase of the alkyl 

chain length from C4 to C18. 

 

The average particle contact angle at the dodecane-water interface is 69 ± 7°. 

Hence all studied particles are hydrophilic and should stabilise o/w emulsions. This 

hypothesis has been tested by preparing emulsions from equal volumes of 

dodecane and 3 wt.% particle suspensions in water containing 10-4 M NaCl by hand-

shaking. The emulsions were unstable to creaming but stable to coalescence for at 

least a week. Their type in each case was confirmed to be oil in water by drop test. 

This confirms the hydrophilic nature of the PGMA-PS particles and demonstrates 

that the FCM can be used for measuring the contact angles of sterically stabilised 

sub-micron particles at oil-water interfaces. 

 

 

3.3.2 Contact angles of silica particles at air-water and oil-water interfaces 

 

The wettability of silica particles is often controlled to enhance the particle 

attachment to liquid interfaces or to improve particle dispersibility in non-polar 

organic liquids.  Two of the most common approaches for changing the particle 

wettability are with surfactants or chemical modification of the particle surface (see 

section 1.1.2). Quantifying the change in particle wettability, or contact angle, has 

so far been achieved only through indirect means. Here the contact angles of 

particles, which have been modified by chemically altering the particle surface or by 

dispersion in surfactant solution, are measured directly using the FCM.  
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3.3.2.1 Contact angles of silica particles with chemically modified surfaces 

(DCDMS) 

 

The surfaces of silica particles were hydrophobised to different extents using 

solutions of dichlorodimethylsilane (DCDMS) in toluene as described in section 

2.2.1. Contact angles of 1 µm silanised silica particles were measured at the air-

water and decalin-water interfaces using the FCM. The obtained results are plotted 

versus concentration of DCDMS solution used for particle silanisation in Fig. 3.4. 
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Figure 3.4. Contact angles of 1 µm silica particles measured with the FCM at the air-

water (circles) and decalin-water (triangles) interface versus concentration of 

DCDMS solutions used for particle hydrophobisation. Lines are drawn to guide the 

eye. 
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The particle contact angles at both air-water and oil-water interfaces increase 

with the concentration of DCDMS solutions used for their hydrophobisation. The 

decalin-water contact angles are bigger than those at the air-water interface. 

Similar trends are observed for contact angles of smaller silica particles with a 

diameter of 700 nm (Table 3.2). The contact angles of hydrophobised 700 nm 

particles are slightly bigger than those of 1 μm particles hydrophobised by DCDMS 

at the same concentration, although the contact angles of the original particles are 

practically the same. The observed difference could be due to differences in the 

density and/or chemical reactivity of the surface silanol groups involved in the 

hydrophobisation with DCDMS. This needs further investigation.  

 

 

Table 3.2. Contact angles of hydrophobised silica particles with diameters of 700 

nm and 1 m measured by the FCM at the air-water, aw, and decalin-water, ow, 

interfaces. 

[DCDMS] used to 
hydrophobise 
particles /M 

θaw / degrees θow / degrees 

d = 700 nm d = 1 µm d = 700 nm d = 1 µm 

0 25 ± 3 22 ± 4 28 ± 9 30 ± 3 

1.0 x 10-5 36 ± 3 27 ± 2 46 ± 16 30 ± 3 

5.0 x 10-4 44 ± 2 33 ± 3 65 ± 4 53 ± 4 

 

 

The contact angles of water drops on macroscopic glass slides hydrophobised 

by DCDMS were measured using the sessile drop method (see section 2.2.2 of 

Chapter 2). The obtained results for the advancing and receding contact angles at 

the air-water and decalin-water interface are plotted against DCDMS concentration 

in Fig. 3.5. The advancing angles are bigger than the receding ones due to the 

contact angle hysteresis. The contact angles at both air-water and decalin-water 

interfaces increase with the DCDMS concentration. Similar trends are observed for 

the contact angles of DCDMS treated silica particles measured by the FCM (Fig. 3.4). 
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(a) 

 

(b) 

Figure 3.5. Advancing (filled circles) and receding (open circles) contact angles of 

water drops on glass slides hydrophobised at different DCDMS concentrations 

measured in: (a) air and (b) decalin by the DSA 10 instrument. 
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Contact angles of 1 m silica particles measured by the FCM are compared to those 

measured on glass slides hydrophobised simultaneously with the particles in Table 

3.3. 

 

 

Table 3.3. Contact angles of 1m hydrophobised silica particles at the air-water, 

aw, and decalin-water, ow, interfaces measured by the FCM, and the type of 

emulsions made from equal volumes of decalin and water in the presence of 2 wt.% 

silica particles in water. The values in brackets are average contact angles of water 

drops on glass plates hydrophobised simultaneously with the particles by DCDMS 

solutions. 

[DCDMS] /M θaw / degrees θow / degrees 
Emulsion 

type 

1 x 10-5 27 ± 2 (39 ± 19) 30 ± 3 (53 ± 15) o/w 

1 x 10-4 27 ± 2 (52 ± 12) 41 ± 8 (67 ± 17) o/w 

5 x 10-4 33 ± 3 (60 ± 10) 53 ± 4 (81 ± 12) o/w 

1 x 10-3 37 ± 6 (69 ± 10) 65 ± 3 (98 ± 12) o/w 

5 x 10-2 > 90 (100 ± 3) > 90 (125 ± 10) w/o 

 

 

 

It is seen that the contact angles of both silica particles and glass slides 

increase with increasing concentration of DCDMS as expected. It was found that the 

silica particles treated with the most concentrated DCDMS solution (5 x 10-2 M) 

broke the water films after bridging in the FCM experiments. This suggests that the 

contact angle of these particles is bigger than 90°, although its actual value could 

not be determined. The contact angles measured on glass slides are systematically 

bigger than those on silica particles. Similar discrepancy between the air-water 

contact angles on hydrophobised glass slides and 3 µm silica particles has been 

reported previously13 and attributed to the differences in the surface chemical 

compositions and surface roughness. In addition, the contact angle hysteresis could 
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also contribute to the observed discrepancy. In the FCM measurements, the 

particles are initially attached to one of the film surfaces. Immediately after they 

become attached to the opposite film surface, the particles are in a thicker film 

region. They then spontaneously move into a thinner film region to reduce 

deformation and minimize the surface free energy (see Fig. 2.7). As a result, the 

three-phase contact line recedes across the particle surface. It is therefore expected 

that a receding contact angle could be determined. For particles with a smooth and 

chemically homogeneous surface the contact angles should practically coincide 

with the equilibrium contact angle. However, particles with a rough or 

inhomogeneous surface may encounter pinning of the three-phase contact line. 

This could result in hysteresis and measurement of a contact angle lower than the 

equilibrium contact angle. The differences in contact angles measured with the 

FCM on silica particles and with the sessile drop method on glass slides are likely 

due to a combination of hysteresis effects and differences in the surface 

composition. 

 

The measured particle contact angles (Table 3.3) suggest that particles 

silanised at DCDMS concentrations up to 1 x 10-3 M are hydrophilic and should 

stabilise o/w emulsions, while those silanised at 5 x 10-2 M DCDMS are hydrophobic 

(θ > 90°) and should stabilise w/o emulsions from equal volumes of oil and water. 

To test this hypothesis, emulsions were made from equal volumes of decalin and 

water in the presence of 2 wt.% silica particles. Hydrophilic particles were dispersed 

in water, whereas the hydrophobic ones were dispersed in decalin. The emulsion 

type was determined by drop test (see section 2.2.5.1) and the results are shown in 

Table 3.3 above. It is seen that the emulsions made with DCDMS treated particles 

are o/w type when the particle contact angle is less than 90°. The opposite type of 

emulsion (w/o) was obtained in the presence of hydrophobic particles with contact 

angle > 90°. These results show that the FCM can be used for measuring the contact 

angle of micron and submicron particles with chemically modified surfaces at both 

air-water and oil-water interfaces. They confirm that a change in the Pickering 

emulsion type from o/w to w/o does occur when the contact angle measured 

directly on the particle surface exceeds 90°. 
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3.3.2.2 Contact angles of silica particles in the presence of cationic surfactant 

 

Cationic surfactants strongly adsorb at negatively charged silica surfaces and 

have a pronounced effect on the particle contact angle at the air-water and oil-

water interfaces (see section 1.1.2.1.2). This can be used to tune the particle 

wettability by varying the concentration of the surfactant in the particle-surfactant 

mixtures. Nevertheless, reliable methods for measuring the contact angle of 

colloidal particles in the presence of surfactants do not exist. The Gel trapping 

technique, for instance, cannot be used for measuring particle contact angles at 

fluid-water interfaces in the presence of cationic surfactants due to strong 

interactions of such surfactants with the negatively charged molecules of the gelling 

agent (gelan)15.  

 

Here we apply the FCM for measuring the contact angle of 2.76 um silica 

particles at the air-water and decalin-water interfaces in the presence of 

tetradecyltrimethylammonium bromide (TTAB) at concentrations up to the cmc (3.5 

mM16–19) in the aqueous phase. 

 

Contact angles of silica particles at the air-water and decalin-water interfaces 

in the presence of TTAB in the aqueous phase determined by the FCM are shown in 

Fig. 3.6 and Table 3.4. At the air-water interface the particle contact angles 

increased with increasing surfactant concentration, reaching a maximum in the 

range 0.5 – 1.0 mM, and then decreased at concentrations approaching cmc.  The 

particles were found to be hydrophilic (θ < 90°) for the complete range of surfactant 

concentrations with maximum contact angle of ~50°.  
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Figure 3.6. Contact angles of silica particles with a diameter of 2.76 m at the air-

water (triangles) and decalin-water (circles) interface versus TTAB concentration in 

the aqueous phase with no extra electrolyte added. The pH is not adjusted and 

decreases with the TTAB concentration in the range 6.8 - 5.0  0.2. Empty circles 

correspond to contact angles > 90 degrees. Lines are drawn to guide the eye.  
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Table 3.4. Contact angles of silica particles with a diameter of 2.76 m at the air-

water, aw, and decalin-water, ow, interfaces measured by the FCM in the presence 

of TTAB in the aqueous phase, and the type of emulsions made from equal volumes 

of decalin and water in the presence of 3 wt.% silica particles in the TTAB solution.    

[TTAB] /mM aw / degrees ow / degrees Emulsion type 

0 27  4  30  3 o/w 

5.0  10-4 30  3 37  3 o/w 

1.0  10-2 39  3 59  3 o/w 

5.0  10-2 41  4 61  3 o/w 

0.1 46  3 65  2  o/w 

0.2 44  3 75  2 o/w 

0.5 49  3 > 90 w/o 

1.0 48  3  > 90 w/o 

2.0 39  3 59  4 o/w 

2.5 34  3 46  4 o/w 

 

 

The trend of contact angle with increasing surfactant concentration is as 

expected20 (see section 1.1.2.1.2). At lower concentrations surfactant molecules 

adsorb to the silica surface with tail groups extended outwards, increasing the 

hydrophobicity of the particle and the particle contact angle increases. At high 

surfactant concentrations approaching the cmc the surfactant molecules adsorb to 

the surface with the head groups outwards, thus making the particles less 

hydrophobic and the contact angle decreases. Therefore the particle contact angle 

shows a maximum at a certain intermediate surfactant concentration. At surfactant 

concentrations above the cmc a complete bilayer of surfactant is expected on the 

particle surface making the particle vey hydrophilic (see Fig. 1.5). 

 

The silica particle contact angle at the decalin-water interface follows a 

similar trend to that obtained for the contact angle at the air-water surface with the 
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increase of TTAB concentration. Initial increase of the contact angle is again 

observed, followed by a decrease in contact angle at TTAB concentrations near to 

cmc. At the concentrations relating to maximum contact angle in air, the film in 

decalin was ruptured by particles and therefore particle contact angles at these 

concentrations (0.5 and 1.0 mM TTAB) are expected to be greater than 90°. In order 

to verify the contact angle values obtained by the FCM we have measured the 

contact angle of larger silica particles with diameter 7.75 µm at selected 

concentrations of TTAB using the Side Imaging Technique (SIT). Particle suspensions 

in TTAB solutions were spread at the air-water or decalin-water interface and side 

images of the particles attached to the liquid interface were taken by a horizontal 

microscope as described in section 2.2.4. Typical images are shown in Fig. 3.7. The 

particle and its reflection are clearly seen, thus making it possible to locate the 

liquid interface (dashed lines). Drawing a circle around the particle image allowed 

us to measure the particle diameter, d, its depth of immersion into the aqueous 

phase, hw, and to calculate the contact angle by the formula, cos θ = 2hw /d – 1 (see 

eq. 1.3). The obtained results are summarised in Table 3.5 and compared to the 

particle contact angles measured by the FCM. 

 

 

 

Figure 3.7. Side images of silica particles with diameter 7.75 µm attached to the 

interface of aqueous TTAB solutions at concentrations shown, in contact with air 

(top) and decalin (bottom), used to determine the particle contact angles by the 

Side Imaging Technique. 
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Table 3.5. Contact angles of silica particles in aqueous TTAB solutions at air-water 

and decalin-water interfaces measured by the Side Imaging Technique (SIT) and the 

Film Calliper Method (FCM). The particle diameters in SIT and FCM measurements 

are 7.75 µm and 2.76 µm, respectively. 

 [TTAB] 

/mM 

SIT contact angle / degrees FCM contact angle / degrees 

air-water decalin-water air-water decalin-water 

0.1 48 ± 3 64 ± 4 46 ± 3 65 ± 2 

0.5 48 ± 4 95 ± 3 49 ± 3 > 90 

1.0 46 ± 4 94 ± 3 48 ± 3 > 90 

2.0 40 ± 3 72 ± 4 39 ± 3 59 ± 4 

 

 

The contact angles measured by both methods are in very good agreement. 

The values obtained at the air-water interface by the SIT are almost an exact match 

with those determined by the FCM and coincide within the experimental error. The 

same is true for the contact angle values at the decalin-water interface measured 

by both methods at 0.1 mM TTAB. The oil-water contact angle measured by the SIT 

at 2.0 mM TTAB is slightly higher but close to that determined by the FCM. More 

importantly, the contact angles at 0.5 and 1 mM TTAB obtained by the SIT are close 

to but greater than 90° as deduced from the FCM measurements. 

 

The images in Fig. 3.8 show emulsions made from equal volumes of decalin 

and aqueous suspensions of 2.76 µm silica particles in TTAB solution of varying 

concentration. Oil-in-water emulsions were produced with all surfactant 

concentrations except 0.5 and 1.0 mM where a change to w/o emulsions occurred. 

The surfactant concentrations at which emulsion inversion occurred coincided with 

those at which the measured contact angles exceeded 90° (hydrophobic particles). 

The inversion of emulsion type was confirmed by adding fluorescent dyes to the 

continuous phase of the emulsions. Water-soluble fluorescein isothiocyanate dye 

stained the continuous phase of o/w emulsions and oil-soluble nile red dye stained 

the continuous phase of w/o emulsions as shown in Fig. 3.9. When added to the 
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opposite emulsion type the dyes preferentially dissolved into the emulsion drops 

rather than the continuous phase. 

 

 

 

Figure 3.8. Images of emulsions taken 2 hours after preparation from equal 

volumes of decalin and TTAB solutions at concentrations shown (in mM) in the 

presence of 3 wt.% silica particles with a diameter of 2.76 m. The emulsions were 

homogenised with an Ultra-Turrax homogeniser (head 10 mm, IKA) at 9500 rpm for 

30 secs. The emulsion type shown is determined by drop tests. 
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Figure 3.9. Images of emulsions taken at lower (left) and higher magnification 2 h 

after preparation from equal volumes of decalin and TTAB solutions at 

concentrations shown in the presence of 3 wt.% silica particles with a diameter of 

2.76 m. The emulsion type determined by drop tests (shown) is confirmed by the 

fluorescent microscopy images (right) obtained after staining the continuous phase 

with: (a, d) water-soluble fluorescein isothiocyanate (FITC) and (b, c) oil-soluble Nile 

Red fluorescent dyes. The scale bars are: (a) 200 µm, (b, c) 100 µm and (d) 50 µm 
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Such a double phase inversion in Pickering emulsions from silica particles and 

single chain cationic surfactant has not been reported before. Binks et al.21 did not 

observe phase inversion in emulsions from water, dodecane and silica nanoparticles 

(Ludox) in the presence of cetyltrimethylammonium bromide (CTAB) in a broad 

range of CTAB concentrations (from zero up to 100 times cmc). All emulsions 

studied were o/w type. An important difference between their and our 

experiments is that we used much bigger silica microparticles. Although the wt.% 

concentrations in both studies are similar, their systems contained a much bigger 

number of particles that could result in a significant excess of particles in the 

continuous phase unattached to emulsion droplet surfaces. This suggests that the 

mechanism of stabilisation in their experiments could be different to that in ours. 

To test this hypothesis additional emulsions were made at a much higher 

concentration of 2.76 µm particles (9 wt.%). 

 

With greater particle concentration (9 wt.%) the emulsion type was o/w at 0.5 

mM so the higher particle concentration prevented the emulsion inversion seen 

with the 3 wt.% emulsion. At 1.0 mM TTAB an o/w/o was formed with the higher 

particle concentration. It is therefore concluded that the particle concentration is 

an important factor in determining whether emulsion inversion will occur with 

particle-surfactant mixtures. There are two factors hypothesised to explain this 

behaviour. Firstly, that the surfactant molecules absorb to the interface quicker 

than the much larger particles, initially forming oil droplets in an aqueous 

continuous phase, as observed for surfactant systems in the absence of particles. 

Secondly, that aggregation of particles prior to attaching to the droplets prevents 

the particles from absorbing to the interface in a manner typical of hydrophobic 

particles. The particle aggregates may attach to droplet surfaces with the bulk of 

the aggregate in the continuous phase, as the adsorbed particles are unable to 

cross the interface. The curvature of the interface, with the absorbed aggregates, 

would then favour that of o/w emulsions. In sedimentation tests it was observed 

that the particles aggregated and sedimented quickly at 0.5 and 1.0 mM which 

supports the ideas above. 
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Figure 3.10. Images of emulsions taken at lower (left) and higher magnification 

after preparation from equal volumes of decalin and TTAB solutions at 

concentrations (a, b) 0.5 mM and (c, d) 1.0 mM in the presence of silica particles 

with a diameter of 2.76 m at concentrations in the aqueous phase equal to (a, c) 3 

wt.% and (b, d) 9 wt.%. The emulsion type determined by drop tests (shown) is 

confirmed by the fluorescent microscopy images (right) obtained after staining the 

continuous phase with oil-soluble Nile Red fluorescent dye. The scale bars are: (a, c) 

100 m, (b, d) 400 m. 
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3.4 Conclusions  

 

The Film Calliper Method was further developed from measuring contact 

angles at air-water interfaces to successfully measure the contact angles of colloidal 

particles directly at oil-water interfaces also. The technique was shown to be 

compatible with a variety of particle types, aqueous solutions and oils. The directly 

measured contact angles were compared with emulsions stabilised and it was 

shown that particles determined to be hydrophilic (θ < 90°) stabilised oil-in-water 

emulsions while hydrophobic particles (θ > 90°) stabilised water-in-oil emulsions. 

This relationship between the particle contact angle and the emulsion type was 

demonstrated for particles of different chemical nature and also for particle-

surfactant mixtures. 

 

The contact angles of charge stabilised latex particles were shown to depend 

strongly on the density of surface groups. Emulsions stabilised by CML particles 

were oil-in-water with particles measured to be hydrophilic (with high density of 

surface groups) and water-in-oil for particles measured to be hydrophobic (low 

density of surface groups). With sulphate latex particles a decrease in contact angle 

was measured with increasing size despite relatively consistent density of surface 

groups and is assumed to be due to differences in surface roughness. At the oil-

water interface the sulphate particles were observed to rupture the FCM film 

suggesting contact angles > 90°, consistent with the manufacturer’s description of 

the particles being hydrophobic. The contact angles of sterically stabilised latex 

particles were also measured, showing that changing the length of the steric groups 

did not significantly affect the contact angle. It is hypothesised that the steric chain 

lengths used were large enough to have ‘saturated’ the contact angle, as observed 

previously14. The particles were measured to be hydrophilic and they all stabilised 

oil-in-water emulsions. 

 

Contact angles of particles hydrophobised with DCDMS solutions increased 

with increasing DCDMS concentration. Particles with contact angles < 90° stabilised 

o/w emulsions while particles with contact angles > 90° stabilised w/o emulsions. 
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Contact angles of particles measured with the FCM were systematically lower than 

average contact angles measured with the sessile drop method on glass slides. 

These differences are attributed to differences in surface chemical composition and 

surface roughness. Contact angles of 700 nm particles were greater than those of 1 

µm particles when the particles were hydrophobised but not for untreated 

particles. This suggests differences in the density and/or reactivity of the surface 

silanol groups but requires further investigation. 

 

The contact angles of particles in TTAB surfactant solutions, measured directly 

with the FCM, initially increased up to a maximum before decreasing at 

concentrations approaching cmc. At the air-water interface the particles were all 

hydrophilic but at the oil-water interface the contact angles were higher, causing 

the film to rupture at the concentration range relating to maximum contact angles 

(0.5 – 1.0 mM). Measurements by FCM were compared with measurements of the 

contact angles of 7.75 μm particles using the Side Imaging Technique. The contact 

angles measured with both methods were a close match and with concentrations at 

which particles broke the FCM film, suggesting contact angles > 90°, the SIT 

measurements  were also greater than 90°. Oil-in-water emulsions were produced 

with the hydrophilic particles and inversion to water-in-oil emulsions occurred 

when contact angles exceeded 90°. It was shown that this inversion to water-in-oil 

emulsion type could be prevented by increasing the particle concentration.  
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Chapter 4 

 

Foams and emulsions of silica particle and cationic 

surfactant mixtures 

 

4.1 Introduction 

 

Foams and emulsions can be stabilised by surfactants or solid particles alone, 

but in many systems and processes of practical interest (food and cosmetic 

products, flotation of minerals, etc.) mixtures of particles and surfactants are 

involved1. When surfactants are used to stabilise foams or emulsions the stability 

arises mostly from lowering the surface/interfacial tension2 and Gibbs-Marangoni 

elasticity effects3. The concentration of surfactant is a key factor in determining the 

manner in which surfactant acts in regards to these processes. In particle-stabilised 

systems stability arises from the physical barriers to coalescence created by 

particles at bubble/droplet surfaces or networks of flocculated particles in the 

continuous phase preventing bubble/droplet contact (see Fig. 1.16). The 

effectiveness of particles in this role depends on particle size and contact angle 

which have been related to stability via the energy of detachment4 and the 

maximum capillary pressure for breaking the liquid films separating the 

bubbles/drops covered with particles5,6. The concentration of particles is an 

important factor in determining the stabilising mechanism of foam or emulsion 

systems; at low concentrations stability will be produced by bridging particles or 

small islands of particles which move to points of droplet contact whereas 

monolayers of particles coating the droplets will occur at high concentrations. If the 

particles are able to move laterally along the drop/bubble surface, away from the 

point of contact, instability can occur despite other factors.  

 

When both types of stabilisers (surfactant and particles) are present, the 

stability of a foam/emulsion system results from the complex interplay and mutual 

influence of the particles and surfactant. Adsorption of the surfactant on the 



90 
 

particle surface changes the particle wettability, but also reduces the concentration 

of free surfactant in the solution. These effects are very significant in mixtures 

where the particles and surfactant molecules bear opposite electric charges. Such 

mixed systems of silica particles and cationic surfactants are investigated here. 

When dispersed in water the dissociated charges on silica particles are negative 

while those of a cationic surfactant head group are positive so charge attraction will 

exist. It is generally thought7 that there is a 4 stage process to surfactant adsorption 

on silica based on the overall surfactant concentration. At low concentrations 

individual surfactant molecules adsorb to the surface by the head group with the 

tail either protruding outwards or parallel to the surface. As the concentration 

increases more molecules adsorb, forming hemi-micelles with the tail groups 

extending into the aqueous phase, thus increasing particle hydrophobicity and 

decreasing the net charge. This state is often referred to as the charge 

compensation point (ccp) at which the surface charge is neutralised, the particle 

hydrophobicity (and hence contact angle) is approximately maximum and 

aggregation of particles is expected to occur8. As the concentration is increased 

further, tail association occurs and additional surfactant will adsorb onto the first 

layer with head groups outwards, acting to lower the hydrophobicity and increase 

the net positive charge. The final stage occurs close to the critical micelle 

concentration (cmc) when a complete bilayer of surfactant is formed rendering the 

particles hydrophilic and positively charged. It has also been suggested9 that 

surfactant may adsorb onto the silica surface in spherical surfactant aggregates, and 

that such aggregates may be present when the surface coverage is low 10.   

 

The stability of foams or emulsions by a mixture of particles and surfactant is 

influenced greatly by a balance of the surface/interfacial tension and the particle 

contact angle, both of which are affected by the surfactant concentration. It is 

generally found that an intermediate concentration of surfactant produces the 

greatest stability for foams and emulsions when the particle contact angle is ~60 - 

80 degrees11,12. At these concentrations the energy of particle detachment from the 

interface is generally high (see eq. 1.4) and particle flocculation in the continuous 

phase adds to the stability against coalescence. If the contact angles exceed 90° 
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particles could destabilise the system or cause inversion from o/w to w/o 

emulsions12. At high surfactant concentrations (close to cmc) the surfactant 

competes for the liquid - air (or oil) interface, greatly reducing the stabilising role of 

the particles13.  

 

Despite previous research8,13,14, the combined action of surfactant and 

particles in stabilising emulsions and foams is not yet fully understood. The lack of 

reliable methods for direct measurements of particle contact angles in surfactant 

systems is amongst the reasons holding back the progress in this field. Previous 

studies on the role of particles in foam/emulsion systems containing surfactants 

relied on indirect information about the particle wettability obtained by measuring 

the contact angle on a macroscopic piece of material with similar surface 

chemistry12-15. 

 

In the previous chapter (Chapter 3) it was demonstrated that the FCM can be 

used for direct measurements of colloidal particle contact angles at air - water and 

oil - water interfaces even in the presence of surfactant. Here, the aim is to 

investigate foams and emulsions of silica particle and cationic surfactant mixtures 

and measure the particle contact angles using the FCM in order to reveal the link 

between the wettability of the particles, their stabilising ability and mechanisms of 

stabilisation in the studied systems. Adsorption of surfactant on the particle surface 

and its effect on the particle charge (zeta potential) as a function of the surfactant 

concentration are also investigated and correlated to the particle contact angles 

obtained for these systems. 

 

 

4.2 Experimental 

 

Investigations were performed into the changes in system properties and 

stabilisation of foams and emulsions with mixtures of silica particles and cationic 

surfactants. Two cationic surfactants were used; tetradecyltrimethylammonium 

bromide (TTAB) and cetylpyridinium chloride (CPC), with critical micelle 
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concentrations of 3.5 mM16-19 and 0.9 mM20-22, respectively, at 25 °C (section 2.1.2). 

Silica particles 1 μm in diameter were investigated for adsorption of CPC surfactant 

on the silica surface, changes in contact angle and particle charge, and for 

stabilising foams and emulsions. Silica particles with diameter of 2.76 μm have been 

used for measuring changes in contact angle and for making emulsions. Both sets of 

particles are described in section 2.1.1.1. The oil used was decalin which was passed 

three times through basic alumina before use (section 2.1.2).  

 

 

4.3 Results and discussion 

 

4.3.1 Surface and interfacial tensions of surfactant solutions 

 

The surface and interfacial tensions measured for TTAB surfactant are shown in 

Table 4.1 and Fig. 4.1. The surface tension decreases with increasing surfactant 

concentration until a concentration of 3 mM, above which the surface tension 

plateaus at ~36 mN m-1 and suggests that the cmc is close to 3 mM. A similar trend 

has been observed previously23 and the surface tension values obtained were a 

close fit to those in the literature24,25. The interfacial tension with decalin as the 

light phase was measured and shows the same trend to that of the surface tension. 

The interfacial tension of pure water and decalin was 42.4 mN m-1. This decreased 

with increasing concentration to ~6 mN m-1 at 3 mM and remained constant at 

higher concentrations as with the surface tension. The data for surface and 

interfacial tension both show that the TTAB cmc is close to 3 mM, close to the 3.5 

mM reported in the literature16-19. The surface tension of CPC solutions23,26,27 is 

seen to follow the same trend as that of TTAB with surface tension decreasing as 

surfactant concentration increases (Fig. 4.1).  
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Table 4.1. Surface and interfacial tension of aqueous TTAB solutions measured by 

the Du Nouy ring method at 25 °C. Interfacial tension was measured with a decalin 

light phase. Uncertainty in the measurements is ± 0.2. 

[TTAB] /mM 
Surface tension 

/mN m-1 

Interfacial tension 

/mN m-1 

0 72.5 42.4 

0.01 71.4 39.3 

0.1 67.0 32.2 

0.5 60.9 25.0 

1.0 54.9 22.0 

2.0 44.9 10.6 

3.0 36.2 5.6 

10.0 36.1 5.6 

30.0 36.1 5.3 
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Figure 4.1. Surface tension (circles) and decalin-water interfacial tension (triangles) 

of TTAB solutions measured by the Du Nouy ring method at 25 °C. The uncertainty 

in these measurements is ±0.2 mN m-1. Open squares show the surface tension of 

CPC solutions26. The respective critical micelle concentrations are shown with 

arrows.  
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4.3.2 Zeta potential of silica particles in surfactant solutions 

 

The zeta potentials of 1 µm silica particles in CPC solutions are shown in Fig. 

4.2a. At low surfactant concentrations the particles are negatively charged (-33 

mV). With increasing surfactant concentration the particle charge gradually 

increases up to 0.1 mM at which a large change in charge occurs for a small 

increase in surfactant concentration and particle charge shifts from negative to 

positive. At concentrations above this the positive charge increases to 66 mV at 1 

mM (near cmc). The same trend is observed with 1 µm particles in TTAB (Fig. 4.2b) 

with particle charge -40 mV at low concentrations, a large change in surface charge 

and sign close to 0.05 mM, before levelling off and reaching a charge of +75 mV at 3 

mM (near cmc). The trends determined are the same as those shown in Fig. 1.6, 

and match with previous observations of cationic surfactant molecules absorbing 

on negatively charged particles9,14,28.  
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(a) 

 

 

(b) 

Figure 4.2. Zeta potential of silica particles with diameter 1 µm in aqueous 

surfactant solutions versus total concentration of (a) CPC and (b) TTAB at natural pH 

and ionic strength. 
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4.3.3 Adsorption of CPC on the silica particle surface 

 

Aqueous solutions of CPC show strong UV light absorbance at a wavelength of 

260 nm (Fig. 4.3). The absorbance at this wavelength depends on the CPC 

concentration. This can be used for determining the CPC concentration in a solution 

by measuring its absorbance, if the absorbance versus concentration dependence is 

known. The adsorption of CPC on the surface of silica particles reduces its 

concentration in the solution, hence the adsorbed amount can be calculated from 

the decrease of the CPC concentration in the clear solution obtained after 

centrifugation of an equilibrated particle suspension. 

 

The UV absorbance of CPC solutions with varying concentration was 

measured in order to create a calibration curve. Three measurements were 

performed with each pure solution to determine the average and standard 

deviation. These measurements were performed against a ‘background’ sample of 

milli-Q water (i.e. zero concentration solution of CPC) which acted as the baseline. 

Fig. 4.1a shows the UV absorbance curves measured for various concentrations 

over the wavelength range 200 – 300 nm. The values at 260 nm were taken for the 

calibration curve, as has been used previously29. A plot of changing absorbance with 

surfactant concentration is shown in Fig. 4.1b. In the low concentration range the 

increase of absorbance was linear, however at the cmc of the surfactant (~1 mM) 

the gradient of the line changed dramatically. Therefore, measurements at lower 

concentrations alone were used for producing the calibration. The calibration line 

for determining the surfactant concentration from a set measurement of UV 

absorbance was obtained from the best linear fit to the concentration versus 

absorbance data (Fig. 4.4). 
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(a) 

 

 

(b) 

Figure 4.3. (a) UV absorbance (±0.001 a.u.) of CPC surfactant solutions and (b) UV 

absorbance (±0.001 a.u.) at a wavelength of 260 nm for a range of surfactant 

concentrations.  
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Figure 4.4. Calibration line of CPC concentration versus UV absorbance measured at 

260 nm. The fit of this calibration line gives equation 4.1. 
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A linear relationship between the CPC concentration, C, and the absorbance at 260 

nm, A, was found for A  2.3 a.u. and the calibration equation (4.1) was obtained. 

 

C = (0.259 ± 0.002)A – (0.003 ± 0.003)  (4.1) 

 

This equation holds true for absorbance measurements up to 2.3 a.u. (0.6 

mM) although above this, up to 3.6 a.u. (1 mM), there is still a relatively close 

match between the actual and calculated solution concentrations. If a solution of a 

higher concentration needed to be measured it was diluted by a set volume, 

measured and then the original concentration calculated. 

 

To determine the CPC adsorption on the particle surface, suspensions of silica 

particles in CPC solutions of varying surfactant concentration were prepared and 

left to equilibrate for 24 hours. The supernatant was subsequently removed after 

sedimenting the particles and UV absorbance measurements were acquired. Using 

equation 4.1 and the measurements of supernatant UV absorbance the 

concentration of each supernatant was determined and the drop in concentration 

which had occurred was calculated. From the drop in concentration and total 

particle surface area, the adsorption of the surfactant onto the silica surface (Γ) was 

calculated for a range of initial surfactant concentrations (Fig. 4.5). Γ increases with 

surfactant concentration, but reaches a plateau near the cmc (0.9mM21,22). Similar 

trend of Γ with CPC concentration has been reported for the adsorption on the 

surface of fumed silica particles8,29. 
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Figure 4.5. CPC adsorption (±0.04 µmol m-2) onto 1 μm silica particles versus total 

CPC concentration in 4 wt.% aqueous suspensions at room temperature with no 

added electrolyte.  
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Figure 4.6. Zeta potentials measured on 1 µm silica particles in CPC solutions versus 

the surfactant adsorption. Measurements were performed at room temperature 

with no added electrolyte. 
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The change of zeta potential with surfactant adsorption is shown in Fig. 4.6. 

The particle charge is shown to change proportionally with increasing surfactant 

adsorption. This to be expected as the positive charge of the surfactant headgroups 

counterbalances the negative surface charge. The pH of CPC solutions both with 

and without particles, are shown in table 4.2. With surfactant solution the pH is 

constant across the concentration range but the pH of particle suspensions 

decreases with increasing surfactant concentration. This occurs because the 

adsorption of cationic surfactant encourages dissociation of hydroxyl groups on the 

silica surface, releasing hydrogen ions into solution, and thus decreasing the pH.  

 

 

Table 4.2. Measurements of the pH of CPC solutions and suspensions of 1 µm silica 

particles at 25 °C.  

[CPC] /mM 
pH ± 0.2 

no particles 4 wt.% particles 

0 7.4 6.8 

0.1 7.2 6.5 

0.15 6.9 6.9 

0.2 7.0 6.8 

0.3 7.0 5.0 

0.4 7.0 4.5 

0.5 6.9 4.4 

0.6 7.0 4.3 

1.0 6.8 4.3 

5.0 6.8 4.0 

 

 

The concentration of TTAB surfactant solutions cannot be determined with 

photometric methods in the same way as CPC, however changes in zeta potential 

(Fig. 4.2b) and pH of TTAB solutions and suspensions (Table. 4.3) show the same 

trends as those with CPC surfactant. 
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Table 4.3. Measurements of the pH of TTAB solutions and suspensions of 1 µm 

silica particles at 25 °C. 

[TTAB] /mM 
pH ± 0.2 

No particles 4 wt.% particles 

0.0 7.4 6.8 

5 x 10-4 6.7 6.6 

5 x 10-3 6.8 6.6 

0.01 6.8 6.5 

0.02 6.9 6.5 

0.05 6.6 6.2 

0.1 7.0 6.2 

0.5 7.0 6.1 

1.0 6.9 5.4 

2.0 7.0 5.3 

3.0 7.0 5.0 

10.0 6.7 4.8 

 

 

 

4.3.4 Contact angles of silica particles at the air-water interface in the presence 

of surfactant 

 

In order to relate the surfactant adsorption to the silica particle wettability, 

measurements of the particle contact angle at varying concentrations of CPC were 

made using the Film Calliper Method (FCM). These results are shown in Fig. 4.7 for 

contact angles at an air - aqueous solution interface. The contact angle increases 

with increasing surfactant concentration until an adsorption of   2 mol m-2 is 

reached, but rapidly decreases at higher concentrations and . The trend in the 

particle contact angle with CPC concentration can be understood using the reverse 

orientation model for the adsorption of surfactant molecules discussed in chapter 1 

(Fig. 1.5). At low CPC concentrations, the CPC molecules adsorb on silica in head-on 

orientation exposing the hydrophobic tails towards the water, hence the silica 

particle surface becomes more hydrophobic and the contact angle increases. At 

higher concentrations surfactant molecules aggregated against the extended 

hydrophobic tails, thus exposing the hydrophilic heads towards water and the 
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particle contact angle decreases. Therefore the contact angle of silica particles 

passes through a maximum at some intermediate concentration of CPC, while the 

adsorption monotonically increases. Above the cmc, a complete bilayer of 

surfactant molecules surrounding the particles can be formed and the particle 

contact angle could drop to zero degrees, but  reaches a plateau. 
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Figure 4.7. Surfactant adsorption (±0.04 µmol m-2) and particle contact angle both 

plotted as a function of total surfactant concentration in 4 wt.% aqueous 

suspensions of silica particles with 1 µm diameter. 
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The relationship between the CPC adsorption and silica particle contact angle 

is illustrated in Fig. 4.8, where the contact angle at the air-aqueous CPC solution 

interface is plotted against the adsorption, . The contact angle of bare silica (22  

3°) gradually increases with  until it reaches its maximum value of 42 ± 2° at  = 

2.17 mol m-2. After the maximum, aw rapidly drops to very small values (~10°) 

due to a small change in the CPC adsorption. 

 

Particle sedimentation in CPC solutions was observed over time and the 

fastest sedimentation related to a concentration of 0.4 mM, where the particles 

were measured to be the most hydrophobic (see figure 4.9 a and b). The rapid 

sedimentation at this CPC concentration suggests that the electrostatic repulsion 

between the silica particles is largely reduced due to the adsorption of surfactant, 

hence the net particle charge should be close to zero. This apparently contradicts to 

the zeta potential versus CPC concentration dependence shown in Fig. 4.2. To 

resolve this apparent discrepancy one should take into account that the particle 

concentration in the zeta potential measurements (less than 0.04 wt.%) is much 

smaller than that in the adsorption and contact angle experiments (4 wt.%). Hence 

the adsorbed amount of CPC on the particle surface in the zeta potential 

experiments is negligible and the equilibrium concentration of CPC in the solvent is 

practically equal to the total CPC concentration in the suspension. In concentrated 

suspensions, the equilibrium and total CPC concentrations could be very different 

and this should be taken into account when comparing the results for zeta potential 

with those for the adsorption and contact angle. 
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Figure 4.8. Contact angles of 1 µm silica particles versus the surfactant adsorption 

at the silica surface. 
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Particle contact angles at the air - aqueous CPC solution interface and 

zeta potential of 1 um silica particles are plotted against equilibrium CPC 

concentration in Fig. 4.9 for comparison. It is seen that the equilibrium 

concentration relating to maximum hydrophobicity and zero net particle charge is 

~0.1 mM. At the same equilibrium concentration (0.11 mM) the greatest 

aggregation and sedimentation of particles is also observed and resolves the 

discrepancy described above. 
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[CPC]equilibrium:     0.002    0.013    0.048    0.11      0.19       0.28      0.67  

 [CPC]total:     ( 0.1)     ( 0.2)     (0.3)     (0.4)     (0.5)       (0.6)      (1.0)      

 (a) 

 

 

(b) 

Figure 4.9. (a) Images of 4 wt.% silica particle suspensions in CPC solutions with 

varying concentrations (shown) taken 1 hour after homogenisation. (b) Contact 

angles (filled circles) at the air - aqueous CPC solution interface and zeta potential 

(boxes) of 1 μm silica particles versus equilibrium CPC concentration. For details see 

the text.   

 

-60 

-40 

-20 

0 

20 

40 

60 

0 

10 

20 

30 

40 

50 

0.001 0.01 0.1 1 

C
o

n
ta

ct
 a

n
gl

e,
 θ

aw
  /

d
eg

re
es

 

Ze
ta

 p
o

te
n

ti
al

 /
m

V
 

Equilibrium CPC concentration /mM 



111 
 

The contact angles of 1 μm silica particles at the air - aqueous TTAB solution 

interface were measured and are compared with the stability of suspensions in Fig. 

4.10. The contact angles of silica particles at the air surface increase gradually with 

TTAB concentration to 0.05 mM where it plateaus at 39°, before rapidly decreasing 

at concentrations greater than 1 mM, to 22° approaching cmc. A similar trend was 

observed for the contact angle of larger silica particles in TTAB solutions (Chapter 3, 

Fig. 3.6), although the contact angle values were 10 – 30 % larger than those for 1 

μm silica particles. The discrepancy could be due to differences in the number 

density of silanol groups at the surface of these silica particles obtained from 

different suppliers. The particle contact angle versus TTAB concentration 

dependence is similar to that obtained with CPC, but there is a broad region of 

TTAB concentrations where the contact angle does not change appreciably and 

stays close to its maximum value (~39°). 
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    0.0   0.0005  0.005    0.01     0.02    0.05      0.1       0.5       1.0       2.0      3.0      10.0 

(a) 

 

 

(b) 

Figure 4.10. (a) Suspensions of silica particles with a diameter of 1 µm in TTAB 

solutions with varying concentrations (shown in mM) after standing for 1 hour and 

(b) contact angle of the same particles measured by the FCM as a function of TTAB 

concentration.  
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4.3.5 Differences in foaming between surfactant solutions and surfactant 

solution/silica particle mixtures  

 

Suspensions of 4 wt.% silica particles in both CPC and TTAB solutions of 

varying concentrations were used to produce foams. The foamability of the 

suspensions and stability of the foams were determined and compared to those of 

surfactant solutions in the absence of particles. Images taken shortly after the foam 

was produced (~5 minutes) by hand-shaking and at a later time are shown in Figs. 

4.11 and 4.12 for both CPC and TTAB, respectively. It is seen that the amount of 

foam varies with the surfactant concentration and foam ageing time. These 

dependencies are even clearer in Figs. 4.13 - 4.16 where the foam heights 

measured at different times are plotted against the total surfactant concentration 

for CPC and TTAB, respectively. 

 

At low surfactant concentrations the initial amount of foam produced is very 

low for both CPC and TTAB, both with and without particles present. The initial 

foam height increases significantly at intermediate concentrations, then plateaus 

approaching cmc with foam height > 45 mm in all samples. CPC solutions without 

particles could not stabilise the foam for up to 24 hours (Fig. 4.13) at any surfactant 

concentration, however with particles present the foam was much more stable at 

intermediate surfactant concentrations for up to a month (Fig. 4.14), with half of 

the foam remaining at a surfactant concentration of 0.4 mM. At high CPC 

concentrations breakdown of the foam occurred within 24 hours even with 

particles present. Foams made from TTAB solutions alone (Fig. 4.15) were present 

for up to a week at 3 mM (cmc) with ~13 mm foam remaining but complete or near 

complete foam breakdown was observed at all other concentrations. With a 

mixture of 4 wt.% particles and TTAB solutions (Fig. 4.16) the foams were more 

stable at intermediate concentrations (0.05 - 0.5 mM) for over a week, similarly to 

CPC, with almost all of the initial foam remaining. At high TTAB concentrations the 

foam stability with particles present was nearly identical to that of surfactant alone, 

with ~13 mm foam remaining at cmc after a week.  
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Time = 5 minutes 

 

 

Conc.:    0.0      0.01    0.05      0.1      0.15      0.2       0.3      0.4        0.5       0.6        1.0 

 

 

 

Time = 24 hours 

 

 

Conc.:    0.0      0.01      0.05     0.1      0.15      0.2       0.3       0.4       0.5       0.6       1.0 

 

 

Figure 4.11. Images of foams produced from CPC solutions of varying 

concentrations (listed in mM) in the absence (a, c) and presence of 4 wt.% silica 

particles with diameter of 1 μm (b, d) taken 5 min (a, b) and 24 h (c, d) after 

foaming. 

c) 

d) 

a) 

b) 



115 
 

Time = 5 minutes 
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Time = 1 week 
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Figure 4.12. Images of foams produced from TTAB solutions of varying 

concentrations (listed in mM) in the absence (a, c) and presence of 4 wt.% silica 

particles with diameter of 1 μm (b, d) taken 5 min (a, b) and 1 week (c, d) after 

foaming.    
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Figure 4.13. Foam height versus CPC concentration measured 5 min (open squares), 

1 h (circles) and 24 h (triangles) after foaming by hand shaking of 5 ml aqueous 

solutions without added particles.  
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Figure 4.14. Foam height versus CPC concentration measured 5 min (boxes), 1 h 

(circles), 24 h (triangles), 1 week (open diamonds) and 1 month (full diamonds) 

after foaming by hand shaking of 5 ml aqueous suspensions containing 4 wt.% silica 

particles with diameters of 1 um.  
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Figure 4.15. Foam height versus TTAB concentration measured 5 min (boxes), 1 h 

(circles), 24 h (triangles) and 1 week (open diamonds) after foaming by hand 

shaking of 5 ml aqueous solutions without added particles. 
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Figure 4.16. Foam height versus TTAB concentration measured 5 min (boxes), 1 h 

(circles), 24 h (triangles) and 1 week (empty diamonds) after foaming by hand 

shaking of 5 ml aqueous suspensions containing 4 wt.% silica particles with 

diameters of 1 um. 
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The amount of foam obtained shortly after foaming is a measure of the foamability. 

The initial foam height scaled with the maximum initial height, h0/h0max is plotted 

versus total surfactant concentration in Fig. 4.17. 
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(a) 

 

 

(b) 

Figure 4.17. Relative initial foam height obtained after hand shaking of 5 ml 

solutions of (a) CPC and (b) TTAB in the absence (boxes) or presence (circles) of 4 

wt.% silica particles with diameter of 1 μm versus total surfactant concentration. 
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The foamability (h0 /h0max) of both CPC and TTAB solutions rapidly increases as 

the surfactant concentration approaches the cmc. The addition of 4 wt.% particles 

improves the foamability of the surfactant solutions at those concentrations where 

the particle contact angle is close to its maximum value. This effect is more 

pronounced for TTAB where a plateau of the particle contact angle values was 

observed in a broad range of surfactant concentrations. At surfactant 

concentrations close to and above the cmc the particles do not affect the 

foamability of solutions, probably because their attachment to the bubbles is 

hindered by the surfactant adsorbed at the bubble surface13. 

 

The stability of the foams with added particles in a certain range of CPC and TTAB 

concentrations is significantly different to that without particles (Figs. 4.13 – 4.16). 

The foams with no added particles are (almost) completely destroyed 24 h after 

preparation, while some of the foams with particles survive for at least 1 week. The 

change of the foam volume with time can be used to characterise the foam 

stability: 

 

    

 

where V0 is the initial foam volume and Vt is the foam volume measured at time t. 

According to eq. 4.2, the foam stability at a certain time can vary between zero 

(completely unstable foams) and 1 (completely stable foams). The long term 

stability of foams from CPC and TTAB solutions in the presence of 4 wt.% silica 

particles is shown in Fig. 4.18. The maximum stability is observed at the surfactant 

concentration where the particle contact angle is largest. 

 

 

 

V0 

Vt 
Foam stability = (4.2) 
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(a) 

  

(b) 

Figure 4.18. Stability of foams (circles) obtained from surfactant solutions of (a) 

CPC, after 1 month and (b) TTAB, after 1 week, in the presence of 4 wt.% silica 

particles with diameter of 1 um. The energy of particle detachment from the air-

solution interface into solution (diamonds) is calculated using eq. 1.4 and the 

surface tension data from Fig. 4.1.  
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Using the surface tension and contact angle data the detachment energy of 

the particles from air - aqueous solution interfaces into the solution, Ed, was 

calculated using eq. 1.4 (Fig. 4.18). The detachment energy alone cannot explain 

the lack of foam at lower surfactant concentrations and the sharp decrease in the 

foam stability at higher concentrations. Ed is much larger than the thermal energy 

by several orders of magnitude in the whole concentration range studied. 

Therefore, if the particles can enter the air - water interface, they will become 

irreversibly attached to the bubble surface and should stabilise the foam. Hence, 

the key question is whether the particles are able to enter the air - water interface 

at the studied conditions. The stability of the asymmetric liquid film formed 

between the particle and the bubble surface (the wetting film) should significantly 

affect the ability of the particle to attach to the interface. At low surfactant 

concentrations smaller than ~0.02 mM, the wetting film should not be very stable30 

and particles should easily attach to the bubbles during the foam generation. 

However, the foamability of dilute surfactant solutions is low31 due to the high 

surface tension (> 65 mN m-1) and foam stability at such surfactant concentrations 

is also low. In order to remain stable, any bubbles formed should be covered with 

dense particle monolayers to prevent coalescence6. The lack of foam at low 

surfactant concentrations suggests that the amount of particles attached to the 

surface of bubbles during the foaming process by hand shaking for a very limited 

time ~30 s is insufficient to prevent them from coalescing. Increasing the foaming 

time and particle concentration is expected to produce more foam, however this 

requires further investigation.  

 

The stability of wetting film between the particle and bubble surface is 

expected to increase with the surfactant concentration due to the increasing 

number of surfactant molecules adsorbed at the interface and stronger 

electrostatic repulsions that result30. The particles may not be able to enter the air-

water interface at greater surfactant concentrations, near the cmc. This would 

prevent the particles from contributing to the foam stability. Our observations on 

the particle behaviour in vertical aqueous films during FCM measurements give 

strong evidence in support of this hypothesis. We have found that when silica 
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particles are attached only to one of the film surfaces, they move downwards due 

to gravity, thus entering thinner parts of the film meniscus (Fig. 4.19). In some 

cases, depending on the surfactant concentration, the wetting film between the 

particle and the opposite film surface becomes unstable and breaks (Fig. 4.19 c1-

c2); the particle bridges both film surfaces and very rapidly moves into a thinner 

part of the film to diminish the deformations of the film surfaces and minimise the 

surface free energy (Fig. 4.19 c2-c3). This process is very fast (< 100 ms) and the 

particles appear to “jump” from thicker to thinner film regions during microscope 

observations (Fig. 4.19 a,b). We call this gravity driven process spontaneous 

bridging. Such spontaneous bridging was not observed at all TTAB concentrations 

studied (Table 4.4). We have calculated the critical thickness, hcr, for rupture of the 

wetting film (see Fig. 4.20) when spontaneous bridging occurred. The values of hcr 

are summarised in Table 4.4 together with the foam stability at various surfactant 

concentrations. In the absence of surfactant, spontaneous bridging was not 

observed. In this case the wetting film is stable because it is formed between a 

negatively charged silica particle (zeta potential -30 mV) and negatively charged air 

- water interface30. In the presence of TTAB the wetting film becomes unstable and 

breaks at a certain critical thickness due to reduced electrostatic repulsions. The 

critical thickness, hcr, decreases from ~410 nm at 5 × 10-4 mM to ~130 nm at 0.5 

mM TTAB, hence the wetting film stability increases with the surfactant 

concentration. The lack of spontaneous bridging at concentrations above 0.5 mM 

TTAB suggests that the wetting films are stable at surfactant concentrations 

approaching the cmc. This should hinder the attachment of particles to bubbles 

during foam generation and the particles would play a marginal role (if any) in the 

foam stabilisation. This is supported by our findings that the foam stability at such 

TTAB concentrations is low and unaffected by the presence of 4 wt.% particles. 

Similar observations were made for the CPC systems, but further experiments are 

needed to quantify the observed effects. Our results suggest that the stability of 

wetting films (i.e. kinetic factors) could be more important than the free energy of 

particle attachment/detachment (thermodynamic factors) in determining if the 

presence of particles in surfactant solutions will provide benefits to foam 

production and stability. 
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Figure 4.19. (a, b) Consecutive images at 100 ms intervals of a vertical film of 0.1 

mM TTAB solution in air taken in monochromatic reflected light. (c) Schematics of 

spontaneous particle bridging: 1 – just before bridging, 2 – just after bridging, 3 – 

the bridging particle attains its equilibrium position. Particles of interest in (a) and 

(b) are encircled. White arrows in (a) point to particles just before bridging (c-1); 

black arrows in (b) point to the same particles after bridging (c-3); white arrows in 

(b) show the location of particles before bridging. 
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Figure 4.20. Schematic of a particle with diameter d just before bridging the 

surfaces of a water film in air at a film thickness h. The thickness of the wetting film, 

hcr, is calculated by the formula hcr = h - hw, where hw = (1 + cosθ)d /2. 

 

Table 4.4. Spontaneous bridging of aqueous films in air by 1 um silica particles and 

the critical thickness of the wetting film, hcr, between the particle and the film 

surface just before bridging at various TTAB concentrations in the film. 

[TTAB] /mM Spontaneous bridging hcr /µm 
Foam stability 

V(1 week)/V(initial) 

0 No N/A 0.00 

0.0005 Yes 0.41  0.03 0.00 

0.01 Yes 0.29  0.04 0.00 

0.05 Yes 0.26  0.02 0.64 

0.1 Yes 0.24  0.02 0.58 

0.5 Yes 0.13  0.02 0.90 

1.0 No N/A 0.10 

2.0 No N/A 0.17 
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4.3.6 Differences in emulsion type and stability stabilised by surfactant solutions 

or surfactant solution/silica particle mixtures 

 

Emulsions from equal volumes of decalin and aqueous solutions of CPC and 

TTAB in the absence and presence of 1µm silica particles were investigated in order 

to determine the effect of particles on their type and stability. Images of the 

emulsions approximately 5 minutes and 1 week after emulsification with an Ultra-

Turrax homogeniser for 30 seconds are shown in Figs. 4.21 and 4.22. The type of all 

emulsions was oil-in-water as determined by drop tests (see Chapter 2). 

 

All emulsions produced were unstable to creaming but generally had a longer 

lifetime than the foams. Indeed once initial coalescence and creaming within the 

first hour has ceased most of the samples, especially when stabilised with particles, 

change imperceptibly over the following 1 week period.  
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Time = 5 minutes 

 

 

Conc.:   0.0        0.01     0.05       0.1       0.15       0.2        0.3      0.4      0.6      1.0      5.0 

 

 

 

Time = 1 week 

 

 

Conc.:   0.0       0.01     0.05       0.1     0.15      0.2       0.3        0.4      0.6       1.0       5.0 

 

Figure 4.21. Images of emulsions produced from equal volumes of decalin and 

aqueous CPC solutions of varying concentrations (listed in mM) in the absence (a, c) 

and presence of 4 wt.% silica particles with diameter of 1 µm (b, d), taken 5 min (a, 

b) and 1 week (c, d) after emulsification with an Ultra-Turrax homogeniser at 9500 

rpm for 30 seconds. 
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Time = 5 minutes 
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Time = 1 week 
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Figure 4.22. Images of emulsions produced from equal volumes of decalin and 

aqueous TTAB solutions of varying concentrations (listed in mM) in the absence (a, 

c) and presence of 4 wt.% silica particles with diameter of 1 µm (b, d), taken 5 min 

(a, b) and 1 week (c, d) after emulsification with an Ultra-Turrax homogeniser at 

8000 rpm for 30 seconds. 
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The emulsion stability can be quantified by monitoring the volume fractions 

of oil, ϕO, water, ϕW, and emulsion, ϕE, with time. The volume fractions are 

calculated by the following equations 

 

 

 

where VO and VW are the volumes of oil and water used for making the emulsion, 

VOR(t) , VWR(t) and VER(t) are the volumes of oil, water and emulsion (cream or 

sediment, depending on the emulsion type) resolved at time t after emulsification. 

In the case of o/w emulsions investigated here, ϕW shows the stability against 

creaming, ϕO - that against coalescence and ϕE is the outcome of both destructive 

processes. 

 

Volume fractions of oil, water and emulsion (cream) are shown for the CPC 

system in Fig. 4.23. At concentrations less than 0.2 mM the fraction of oil resolved 

is high without particles present and correlates with a low fraction of emulsion 

resolved (< 0.2) showing that the emulsions were not stable against coalescence. At 

concentrations ≥ 0.2 mM the opposite is apparent with a high fraction of emulsion 

resolved (> 0.6) and low fraction of oil resolved showing that the stability against 

coalescence was much greater at these concentrations. With 4 wt.% particles 

present the fraction of oil resolved is low at all concentrations greater than 0.01 

mM and for these the fraction of emulsion resolved was high showing strong 

stability against coalescence. The addition of particles therefore increases stability 

against coalescence at lower concentrations of 0.05 – 0.2 mM but has little 

influence at other concentrations. The fraction of water resolved is similar for all 

ϕO =  

ϕW =  

ϕE =  

VOR(t) 

VO 

VWR(t) 

VW 

VER(t) 

VO + VW 

 

(4.3) 

(4.4) 

(4.5) 
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the emulsions but lower for a mixture of particles and CPC solution, except for 

concentrations of cmc and above where the fraction of water is the same. With 

particles present a minimum in the fraction of water resolved occurred at 0.6 mM, 

just below cmc, and correlates with the greatest stability against coalescence. The 

addition of particles therefore produced a slight increase in stability against 

creaming at concentrations lower than cmc. 
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Figure 4.23. Fractions of oil (a), cream (b) and water (c) resolved from decalin-in-

water emulsions (VO = VW = 5 mL) one week after emulsification with an Ultra-

Turrax homogeniser at 9500 rpm for 30 seconds without (open symbols) and with 4 

wt.% silica particles with a diameter of 1 um in aqueous CPC solutions (solid 

symbols) versus total CPC concentration.  
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The volume fractions of oil, water and emulsion (cream) are shown for the 

TTAB system in Fig. 4.24. At concentrations less than 0.5 mM the fraction of oil 

resolved is high without particles present and correlates with a low fraction of 

emulsion resolved showing that the emulsions were not stable against coalescence. 

At concentrations ≥ 0.5 mM the fraction of emulsion resolved is higher and the 

fraction of oil is lower (less than 0.4) showing that there was increased stability 

against coalescence at these concentrations. With particles present the fraction of 

oil resolved is low at all concentrations ≥ 0.01 mM and at these surfactant 

concentrations the fraction of emulsion resolved was high (> 0.6) showing strong 

stability against coalescence. The addition of particles therefore greatly increased 

stability against coalescence at these surfactant concentrations (0.01 - 2 mM) but 

had little influence at higher concentrations (cmc and above) which displayed 

similar stability against coalescence to emulsions stabilised only with surfactant. At 

cmc and above the fraction of water resolved is identical for emulsions with and 

without particles but at lower concentrations (0.5 – 2 mM) the fraction of water 

resolved is lower for emulsions with particles present (≤ 0.3) compared to that 

without particles (~0.6 – 0.8). With particles present a minimum in the fraction of 

water resolved occurred at 1mM, just below cmc, and correlates with the greatest 

stability against coalescence, as with CPC. The addition of particles therefore 

increased the stability against creaming for concentrations below cmc. 
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Figure 4.24. Fractions of oil (a), cream (b) and water (c) resolved from decalin-in-

water emulsions (VO = VW = 5 mL) one week after emulsification with an Ultra-

Turrax homogeniser at 8000 rpm for 30 seconds without (open symbols) and with 4 

wt.% silica particles with a diameter of 1 um in aqueous TTAB solutions (solid 

symbols) versus total TTAB concentration.   
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The emulsion stability of surfactant solutions without particles increases with 

increasing concentration towards cmc. The emulsion stability with TTAB increases 

with decreasing interfacial tension and although such measurements between 

decalin and CPC solutions are not available it is assumed that a similar trend would 

also be observed. With the addition of particles the emulsion stability at lower 

surfactant concentrations is increased significantly. At and above cmc emulsion 

stability matches that of surfactant only samples. In the absence of particles the 

emulsions remained after a week but the TTAB samples with the greatest volumes 

of emulsion were at concentrations where the interfacial tension was lowest (close 

to and above cmc).  

 

In emulsions stabilised with 2.76 μm silica particles and TTAB surfactant 

(Chapter 3, Fig. 3.8) the emulsion type inverted to w/o at higher contact angles > 

90° (TTAB concentration 0.5 and 1.0 mM). This was observed to be prevented by 

increasing the particle concentration so that the total particle surface area was 

closer to that of the 1 μm systems. Therefore when the number of particles is 

greater the oil droplets must be stabilised by particles networking in the aqueous 

phase, preventing the creation of water droplets within an oil continuous phase. At 

TTAB concentrations of 0.02 - 1 mM the emulsions were observed to become 

viscous and flocculated, whereas at other surfactant concentrations the emulsion 

droplets flowed freely. The concentration range 0.02 - 1 mM correlates with low 

particle charge and high contact angles so stability against particle aggregation and 

networking is expected to be lower. As with the air - water interface, spontaneous 

bridging was observed with surfactant films in oil at surfactant concentrations 

below 0.5 mM. The critical film thickness for rupture decreases with increasing 

surfactant concentration as with the air-water interface, showing that the wetting 

film becomes more stable. Approaching cmc the wetting film is stable and restricts 

the attachment of particles to the interface. This was supported by microscope 

images of emulsion droplets (Fig. 4.25). At surfactant concentrations ≤ 1 mM full or 

close to full coverage of droplet surfaces by stabilising particles was observed. At 

concentrations approaching cmc (2 – 3 mM) the number of particles stabilising the 

droplets was much lower while above cmc no particles were observed on the 
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surface of any emulsion drops. In correlation with the stability of the wetting film 

above cmc the emulsions were seen to be predominantly (or completely) stabilised 

by surfactant and the average drop size was very small as a result (tens of μm). 

 

 

Figure 4.25. Microscope images of decalin-in-aqueous TTAB solution emulsion 

drops in the presence of 2.76 μm silica particles at a concentration of 3 wt.% in the 

aqueous phase. The surfactant concentrations are (a) 0.0005, (b) 0.1, (c) 2.0 and (d) 

3.0 mM TTAB. Scale bars are equal to 50 μm. 

 

 

4.4 Conclusions  

 

The properties of surfactant-particle mixtures have been shown to result from 

the complex interplay and mutual influence of the particles and surfactant. The 

adsorption of surfactant at air-water and oil-water interfaces causes a reduction in 

the surface and interfacial tensions with increasing surfactant concentration, 

reaching a minimum and plateau at cmc where the interface is saturated with 

(a) (b) 

(c) (d) 
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surfactant molecules. The adsorption of cationic surfactant (CPC) on silica surfaces 

was shown to increase with increasing concentration, also reaching a plateau at 

cmc. Increasing adsorption causes a change in the particle surface charge from 

negative to positive and a decrease in suspension pH occurs as dissociation of 

hydroxyl surface groups increases. Particle hydrophobicity increases gradually with 

increasing surfactant concentration (and adsorption), reaches a maximum and then 

decreases rapidly approaching cmc. This fits with the reverse orientation model 

described in Chapter 1 (Figs. 1.5 and 1.6). Similar changes in silica particle 

properties were also shown with TTAB surfactant. An increase in the rate of particle 

aggregation and sedimentation was observed at an equilibrium suspension 

concentration (after surfactant adsorption on particles) which matched that of the 

maximum particle hydrophobicity and neutral particle charge. 

 

Foamability of CPC and TTAB solutions/suspensions increased with surfactant 

concentration, with a rapid increase approaching cmc. The addition of particles 

improved the foamability when contact angles were near maximum but made no 

difference to the foamability close to, or above cmc. The stability of foams without 

particles was low and they broke down within 24 hours. With particles present 

foam remained after a week, however increased stability only occurred at 

concentrations where particle contact angles were near the maximum. 

 

The energy of particle detachment from the air - water interface into solution 

was much greater than kT across the range of surfactant concentrations used and 

therefore particles should have provided strong foam stability. At low surfactant 

concentration the surface tension was higher and bubbles were larger. It is 

proposed that the particle coverage achieved on the large bubbles was insufficient 

for prevention of coalescence. At low surfactant concentrations (≤ 0.5 mM) 

spontaneous bridging of a liquid film by particles occurred when the wetting film 

between particle and bubble surface became unstable. The separation distance for 

spontaneous bridging to occur decreased with increasing surfactant concentration, 

suggesting that the wetting films become more stable with increasing 

concentration. This was proven close to cmc where the wetting film was very 



139 
 

stable, spontaneous bridging did not occur and it became increasingly difficult to 

attach particles to the interface. Our results suggest that the stability of wetting 

films (i.e. kinetic factors) could be more important than the free energy of particle 

attachment/detachment (thermodynamic factors) for the stabilisation of foams 

from mixtures of surfactants and solid microparticles. 

 

All emulsions produced with 1 µm particles (4 wt.%) and surfactant were oil-

in-water emulsions and had greater lifetimes than the foams but were unstable to 

creaming both with and without particles. Emulsion stability increased with 

increasing surfactant concentration, with addition of particles making no difference 

to the volume of emulsion produced at high concentrations close to cmc. This is 

again due to strong wetting films preventing particle attachment at the interface. At 

intermediate concentrations the stability of emulsions against coalescence was 

much greater with particles present and increased stability against creaming also 

occurred. 

 

Emulsion inversion was observed when using 2.76 µm silica particles in TTAB 

(3 wt.%) at concentrations where the contact angle was maximum and > 90°. This is 

different to the emulsion series made with 1 µm particles where no inversion was 

observed and is due to the lower number of particles present in the suspension. 

This was proven by making emulsions with the larger particles at a higher 

concentration (9 wt.%) with total surface area closer to that of the 1 µm particles 

and was observed to prevent inversion to w/o emulsions. The stability against 

emulsion inversion is attributed to particle networks in the aqueous phase which 

prevent the formation of water droplets with an oil continuous phase. 

 

Microscope images of emulsion drops showed that at lower concentrations a 

monolayer of particles stabilised droplets. Approaching cmc the number of particles 

stabilising droplets reduced significantly while above cmc no particles were seen 

attached to droplet surfaces. This correlates with observations of spontaneous 

bridging which showed that the wetting films at the oil-water interface became 

more stable with increasing surfactant concentration. 
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Chapter 5 

 

Preparation and properties of Janus Particles 

 

5.1 Introduction 

 

As previously mentioned Janus particles are particles with a  surface which is 

split into two regions of different chemical composition. These particles are of great 

interest as building blocks for either self-1,2 or directed-3 assembly into various 

shapes or structures, for the observation of particle orientation4,5 or directed 

orientation6,7 driven by the dipolar nature of the particles, and for potential 

benefits as amphiphilic stabilisers8. Over the past decade research in the area has 

stepped up greatly with many methods for producing these particles now identified 

varying greatly in regards to the yield, particle diameter and control of the Janus 

balance (see section 1.2). Investigations into the behaviour of these particles under 

a range of conditions and for a variety of uses are presently in the infant stage, 

especially so when concerning spherical Janus particles.  

 

The most significant research group in this field over previous years has been 

Granick et al.9 who have developed a patented method of preparing relatively large 

yields of Janus particles in a controllable fashion. This method uses solidified 

Pickering emulsions to partially mask particles ready for treatment9. The work 

presented in this chapter also uses particle-stabilised emulsions for the benefits of 

larger yield and control of the Janus balance but has distinct differences to their 

procedure. Polymerisable oil is used instead of wax which can, in solid form, offer 

much greater temperature resistance than wax, greater rigidity of the solid globules 

and possibly better chemical resistance, allowing for more freedom in the 

treatment of particle surfaces. In addition, the wettability of the template particles 

used in our procedure is permanently altered by treatment of bare silica particles 

with silane solutions of varying concentration. The procedure does not therefore 
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use surfactants and the wettability of the template particles is retained in the 

masked region, even after retrieval and washing of the Janus particles. 

 

To date most of the investigation work using amphiphilic Janus-like particles 

has been aimed at proving their Janus nature rather than investigating their abilities 

as stabilisers of emulsions or foams. Proving the Janus nature is generally 

performed in a 2-phase system of oil and water by measuring the contact angle of 

the particles at the interface10,11 or by observing which phase the particles 

preferentially disperse into, whereby the amphiphilic particles are commonly seen 

to sit at the interface between phases8, 12.  

 

Investigations into amphiphilic particles as emulsion stabilisers generally use 

particles different to the traditionally imagined spherical Janus particle (hundreds of 

nanometers to micrometers in diameter). These works use for example, dimer13, 14 

or mushroom15 shaped particles or very small particles16 (~20 nm diameter). 

Granick et al. showed amphiphilic Janus particles to stabilise emulsions over 

extended periods of time17, however those emulsions were only compared with 

those made by untreated hydrophilic silica particles, not homogeneous particles of 

intermediate contact angles. 

 

The aim of this chapter is to develop a method for making particles with dual 

wettability (Janus particles), and to then use those particles as emulsion stabilisers. 

The general outline of the procedure for making the particles, based on a particle 

stabilised emulsion route is shown in Fig. 5.1. First the template silica particles with 

controlled wettability are used to stabilise o/w emulsions of water and 

polymerisable oil, which contains a thermally-activated initiator. The particle-

stabilised emulsions are heated to polymerise the droplets and then, once cooled, 

the solid globules (polymer beads) are separated from the continuous phase and 

excess dispersed particles by filtration. The solid polymer partially masks the 

surface of the silica particles trapped at the polymer bead surface, allowing just the 

exposed portions to be chemically modified. The polymer is finally dissolved with an 

appropriate solvent (e.g. chloroform) to release the Janus particles.  
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Different types of Janus particles were made to show that dual properties 

were achieved. Particles with dual wettability made using the method detailed 

were used to stabilise emulsions, which were compared to those stabilised by 

particles with homogeneous properties. 

 

 

 

Figure 5.1. Procedure for the preparation of Janus particles using particle-stabilised 

emulsions 

 

 

 

 

 



145 
 

5.2 Experimental 

 

In this chapter silica particles with a narrow size distribution were used with 

diameters of 0.5, 1.0, 2.76, 5.84 and 7.75 µm (see section 2.1.1.1). The wettability 

of these particles was adjusted using solutions of dichlorodimethylsilane (DCDMS) 

in toluene as described in section 2.2.1. The oils used were butyl methacrylate 

(BMA), 2-ethylhexyl methacrylate (EHMA), isobutyl methacrylate (IBMA), stearyl 

methacrylate and styrene (Table 2.4). Impurities and polymerisation inhibitors were 

removed by passing the oils through basic alumina, with polymerisation initiated 

thermally using the initiator azobisisobutyronitrile (AIBN), both of which are 

described in section 2.1.3. The materials used to modify the template particles are 

also described in the same section. 

 

 

5.3 Results and discussion 

 

5.3.1 Janus particle contact angles and wettability 

 

There are important differences in the structure and wetting behaviour of Janus 

and homogeneous particles. Wetting properties of colloidal particles with 

chemically homogeneous surfaces are well characterised by the particle contact 

angle, . Hydrophilic homogeneous particles (θ < 90°) have lower surface energy 

when dispersed in water rather than in oil. The opposite is true for hydrophobic 

particles ( > 90°). The contact angle of the particle dictates its position at the oil-

water or air-water interface. For example, the depth of immersion into water, hw, of 

a spherical particle with radius r, is hw = r (1 + cos θ). Janus particles have two 

distinct surface regions with different contact angles (Fig. 5.2). Following the early 

work of Casagrande and Veyssie10,11,18 we label these as a “polar” region with 

contact angle θp and an “apolar” region with contact angle θa. The “polar” region 

has higher affinity to water and lower contact angle than the “apolar” region, i.e. θp 

< θa. There is no need to assume that the “polar” region is hydrophilic, nor that the 

“apolar” one is hydrophobic11 and the contact angles of both regions could be 
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simultaneously lower or higher than 90°. The wetting properties of a Janus particle 

also depend on the relative areas of both regions10, 11 with area fractions ϕa and  

ϕp = 1 - ϕa. It is convenient to express these using the central angle α measured 

from the middle of the “apolar” region to the boundary between the regions (Fig. 

5.2). The relationship between  and ϕa is  

 

ϕa  = (1 – cos α) /2    (5.1) 

 

 

 

Figure 5.2. Schematic of a spherical Janus particle with radius r. The “polar” region 

has higher affinity to water and lower contact angle than the “apolar” region, i.e.  

θp < θa. 

 

 

Hence the wetting properties of a Janus particle can be fully characterised by 

the three angles, θp, θa and α. Assuming that the Janus particle is oriented with its 

“polar” region towards the water (Fig. 5.3), it has been shown that for a given set of 

angles there is a unique attachment with lowest free energy10,11 and equilibrium 

contact angle . Three distinct modes of attachment can be distinguished, 

depending of the relative magnitude of the angles θp, θa and α11. When θp ≤ α ≤ θa 

the three phase contact line is pinned at the boundary between the regions, hence 

θ = α. This mode of attachment is unique for the Janus particles and can be named 

‘J-mode’10,11. The other two modes, named here as ‘H1’ and ‘H2’, are similar to the 

p

a


r

“apolar” region  
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attachment of a homogeneous particle and the equilibrium contact angle equals 

that of the “polar” or “apolar” region, respectively (Table 5.1 and Fig. 5.3). 

 

Table 5.1. Modes of attachment to a fluid-liquid interface for a Janus particle with 

θp < θa, the condition for  that must be fulfilled and the respective equilibrium 

contact angle. 

Mode of attachment Condition for  Equilibrium contact angle,  

H1 p   
p   

J ap       

H2 a   
a   

 

 

Note that we do not impose the conditions θp < 90°, θa > 90° as assumed 

previously10,11,18-20. Our approach is more general so all three modes of Janus 

particle attachment could be realised for any value of the equilibrium contact angle 

either smaller or bigger than 90°. Examples of Janus particles when both regions are 

simultaneously hydrophilic or hydrophobic will be shown later in this chapter. One 

should expect that the equilibrium contact angle of Janus particles will determine 

their interfacial behaviour and the type of emulsions they could stabilise. Similar to 

homogeneous particles, Janus particles with θ < 90° could be labelled as hydrophilic 

and would stabilise o/w emulsions, while those with θ > 90° could be considered as 

hydrophobic and would preferably stabilise w/o emulsions. These hypotheses have 

been tested by experiments and the obtained results will be discussed later in this 

chapter. 
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Figure 5.3. Janus particle modes of attachment to a fluid-liquid interface, (a) H1-

mode: the three-phase contact line (t.c.l.) is located within the region with the 

lower contact angle θp. (b) J-mode: the t.c.l. is located at the boundary between the 

regions with different wettabilities. (c) H2-mode: the t.c.l. is located within the 

region with the higher contact angle θa. H1 and H2 modes are similar to the 

attachment of a homogeneous particle, while the J-mode is unique for amphiphilic 

Janus particles. 

 

 

5.3.2 Preparation and polymerisation of Pickering emulsions 

 

Pickering emulsions were chosen as the best method for producing Janus 

particles since the yield is expected to be greater compared to other methods (see 

section 1.2.2). Following our research strategy described above we use methacrylic 

and styrene monomers as an oil phase because they can be polymerised in the 

presence of appropriate initiators at elevated temperature and the resulting 

polymers can be easily dissolved in various solvents (e.g. chloroform), which is an 

important requirement for the last step of Janus particle preparation (see Fig. 5.1). 

It is known that the particles must be partially hydrophobic in order to stabilise 

Pickering emulsions21. The initially trialled approach was to use a cationic surfactant 

solution as the aqueous phase to hydrophobise silica particles so that they could 

stabilise oil-in-water emulsions of polymerisable monomer. This approach has the 

advantage that the ratio between the masked and unmasked portions of the 
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particles attached to the emulsion droplets could be varied by altering the 

concentration of the surfactant used, thus tuning the angle α of the Janus particles 

produced as described previously22. Using aqueous suspensions of 3 wt.% silica 

particles with a diameter of 1 µm in dilute TTAB solutions and 30 vol.% 2-ethylhexyl 

methacrylate (EHMA) as an oil phase, we were able to make stable o/w Pickering 

emulsions. However it was found that the emulsions droplets were not covered by 

a monolayer of discrete silica particles but by a layer of particle aggregates with 

uneven thickness. As a result, the depth of immersion of the particles into the oil 

droplet varied greatly. This suggested that it would be impossible to control and 

tune the angle α of the Janus particles which could be produced from these 

emulsions after polymerisation. In addition, we observed a strong interference 

between the surfactant and water soluble thermo initiators which inhibited the 

polymerisation process. To overcome the above issues the particles were pre-

treated to varying degrees with a silane in order to hydrophobise the surface 

without the use of surfactant. The oil-soluble thermo initiator azobisisobutyronitrile 

(AIBN) was used in systems containing such particles and no problems were 

encountered with emulsifying or polymerising the systems for 2 hours at 70 °C. 

Optical and electron microscopy of the polymerised Pickering drops revealed that 

they were predominantly covered by a monolayer of particles (Fig. 5.5). The angle α 

can be estimated from the SEM images by measuring the height of the particle 

exposed in air (initially in water), hw and its diameter, d (see Fig. 5.4) using the 

equation:  

 

    
(5.2)

 

 

 

cos α =          - 1 
d 

2 hw 
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Figure 5.4. The contact angle, α, of a particle at the polymer surface can be 

estimated using eq. 5.2 by measuring the diameter, d and height of particle 

exposed, hw. 

 

 

Measuring the contact angle α of 50 particles at a poly-EHMA surface for the 

system shown in Fig. 5.5 SEM images and eq. 5.2 yielded an average value of 69 ± 

4°.  This value is not very different from the average contact angle of water drops 

on similarly treated glass slides in EHMA monomer (78 ± 8°) measured before 

polymerisation at room temperature. These results suggest that the area fractions 

of the two regions at the Janus particle surface (see eq. 5.1) can be varied by 

changing the hydrophobicity of the silica particles used in the polymerised Pickering 

emulsions. 

 

The method for emulsification was investigated with hand-shaking, stirring, 

ultrasonication and homogenisation with an Ultra-Turrax homogeniser. Both 

ultrasonication and stirring alone failed to produce sufficient emulsification. 

Emulsion droplets made with an Ultra-Turrax at 8000 rpm were sometimes more 

polydisperse in size than the hand-shaken emulsion but the hand-shaken drops 

were generally larger and had non-spherical shapes (see Fig. 5.6). The Ultra-Turrax 

homogenisation was selected for use to enhance the reproducibility of the 

experimental conditions. Different homogenisation speeds were investigated but 

little change was observed in the polymerised products, likely caused by emulsion 

instabilities prior to full polymerisation. Although the Pickering emulsions were 

stable against coalescence at room temperature for days, we observed that without 

Particle 

Polymer 
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stirring, the emulsion droplets would regularly fuse together during polymerisation 

at 70 °C. Further emulsions were therefore diluted and stirred during 

polymerisation to reduce aggregation and coalescence. The polymerised Pickering 

emulsion drops are herein termed ‘polymer beads’ in order to avoid confusion. 

These so-called beads consist of a polymer core with a layer of particles attached to 

the surface. 
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Figure 5.5. Silica particles on the surface of an EHMA polymer bead imaged with 

optical microscopy (top) and scanning electron microscopy (bottom). Particles can 

be seen covering the polymer surface as a monolayer with some defects of bare 

polymer. The emulsion (prior to polymerisation) was made via Ultra-Turrax 

homogenisation over 5 minutes using 3 wt.% of 1 µm silica particles, pre-treated 

with 5 x 10-4 M DCDMS, in water and 30 vol.% of EHMA as an oil phase. The scale 

bars are 10 µm. 
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Figure 5.6. Oil-in-water Pickering emulsions formed by hand-shaking (top) over 30 

seconds with 30 shakes and with the Ultra-Turrax (bottom) homogeniser at 8000 

rpm over 5 minutes with 2 minutes total mixing time. Emulsions were made using 1 

µm silica particles in water (3 wt.%) with a 30 vol.% oil phase of EHMA (1 mol.% 

AIBN). The scale bars are 400 µm. 
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The initial experiments were carried out with EHMA monomer as the oil 

phase. The main problem with the polymer formed with EHMA was that it had a 

low glass transition temperature (-10 °C23), which means that at room temperature 

the polymer was relatively soft and the polymerised drops tended to stick together 

or onto any surface they touched if left dry. The polymer therefore had to be kept 

in water at all times to prevent deformation of either the polymer or the coating 

layer of particles and could have created problems further on so an alternative 

monomer was sought. 

 

The monomers tested were butyl methacrylate (BMA), 2-ethylhexyl 

methacrylate (EHMA), isobutyl methacrylate (IBMA), stearyl methacrylate and 

styrene. Series of samples were prepared for each oil to investigate polymerisation 

at different temperatures (0, 40, 70, 75 and 80 °C), concentrations of initiator (0.5, 

1.0 and 2.0 mol.% AIBN) and a range of polymerisation timescales (1 - 4 and 20 

hours). Some of these systems did not polymerise. The polymers were qualitatively 

investigated for flexibility, stickiness, air bubbles in the polymer, polymerisation 

time, and the appearance of the water phase after polymerisation. 

Isobutylmethacrylate with 1 mol.% AIBN polymerised at 75 °C for 2 hours was found 

to be the best system from those tested. 

 

As a final comparison between the more promising monomers they were 

used to make emulsions and then turned into polymer beads. It was found that the 

emulsion droplets made with each oil were effectively the same, all relatively 

polydisperse in microscope observations and with similar drop sizes between oils, 

as measured with a Malvern Mastersizer 2000 instrument. Typical emulsion drop 

size profiles are shown in Fig. 5.7 for the different monomer oils.  
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Figure 5.7. Drop size profile of Pickering emulsion drops made with three different 

monomer oils. The dotted line depicts emulsion drops of EHMA, dashed line is BMA 

and the continuous line shows the IBMA profile. Each emulsion was made via Ultra-

Turrax homogenisation over 5 minutes using 1 µm silica particles (3 wt.%) pre-

treated with 5 x 10-4 M DCDMS, in water and 30 vol.% oil phase. 
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A difference in diameter arises between the emulsion droplets and the 

polymerised beads, shown in Fig. 5.8, where the polymer beads are seen to be 

approximately ten times bigger than the emulsion droplets when using the EHMA 

monomer. Comparing the size of beads made (Fig. 5.9) it is seen that there is a 

greater range of diameters measured between the different monomers in this case 

than for the emulsion droplets (Fig. 5.7). The monomer BMA was found to 

polymerise swiftly and the polydispersity of the polymer beads tends to be greater, 

with a greater proportion of smaller beads compared to those of the other 

monomers. This suggests that coalescence and Ostwald ripening can occur during 

polymerisation and occurs to a greater extent for monomers slower to polymerise. 

There is a well defined upper diameter measured for the polymer beads (Fig. 5.9), 

which may be partially due to limitations of the equipment, while the lower limit of 

sizes measured relates to that of the emulsion drops (Fig. 5.10). 
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Figure 5.8. Size profiles measured for emulsion droplets and polymer beads made 

with the EHMA monomer. The sizes of emulsion droplets are displayed by the 

dashed line while the continuous line shows the size profile of polymer beads. 
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Figure 5.9. Size profiles of polymer beads made with three different monomers. The 

dotted line relates to beads made from EHMA monomer, the dashed line shows 

beads made from BMA monomer and the continuous line those from IBMA. 
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Figure 5.10. Size profiles measured for emulsion droplets and polymer beads made 

with the IBMA monomer. The sizes of emulsion droplets are displayed by the 

dashed line while the continuous line shows the size profile of polymer beads. 
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The polymerisation was stopped swiftly after the allocated time period by 

stirring in a cold water bath to cool the sample. This was to stop additional 

polymerisation of remaining monomer dissolved in the water phase, reducing 

detrimental effects such as polymer globules forming on the exposed particle 

surfaces.  

 

Prior to treatment of the exposed particle surfaces, excess silica particles on 

the polymer bead surface were removed. The first part of this was the vigorous 

stirring during the cooling period, followed with two lots of filtration and washing 

with milli-Q water in a Buchner funnel. Sonication was not used to loosen excess 

particles as it can detach a lot of the particle monolayer. 

 

The optimum system chosen for our technique of making Janus particles used 

silica particles initially hydrophobised with DCDMS solutions (10-5 - 0.1 M in 

toluene) as a base. Oil-in-water emulsions of milli-Q water and 30 vol.% IBMA 

monomer, containing 1 mol.% AIBN, were stabilised with these particles at a 

concentration of 3 wt.% with respect to the aqueous phase. The emulsions were 

prepared with an Ultra-Turrax homogeniser at 8000 rpm over 5 minutes with a total 

mixing time of 2 minutes. They were then diluted with heated deionised water 

equal to half of the total emulsion volume and polymerised in a test tube (24/3) 

over 2 hours at 75 °C while stirring with a magnetic stirrer. The polymerisation was 

stopped swiftly by stirring in a cold water bath. 

  

 

5.3.3 Preparation of different Janus particle types by varying the chemical 

treatment of polymerised Pickering drops 

 

To turn the masked particles into Janus particles 4 treatments were 

performed on the exposed silica surfaces (see Fig. 5.11): metal deposition, 

amination, decreasing the surface hydrophobicity with oxidation, and further 

hydrophobising the exposed surface with DCDMS vapours.  
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Figure 5.11. Exposed surfaces of silica particles trapped at the surface of polymer 

beads were modified by various techniques to produce 4 types of Janus particle 

(right). 

 

 

5.3.3.1 Metal/ dielectric Janus particles 

 

To test the applicability of our approach for making metal/dielectric Janus 

particles we used the silver mirror reaction to coat the exposed surface of the 

particles on the polymer beads with a layer of silver. The Tollen’s reagent procedure 

(see section 2.2.11) was used to produce the silver layer. Initial tests were carried 

out on microscope slides in plastic reaction vessels and showed that the silver layer 

attached very well to glass but not to plastics. SEM images obtained after dissolving 

the polymer core show that silver/silica Janus particles have been produced (Fig. 

5.12). The unmasked silica particle surface is covered with a layer of silver with 

grainy structure. It is possible that a slower method of depositing the silver on the 

particles could produce a thinner, more even layer of silver on the silica.  

 



162 
 

 

Figure 5.12. (a) Schematic of a silver/silica Janus particle. (b) SEM image of 

silver/silica Janus particles obtained after dissolving the polymer core. The particle 

diameter and scale bar are 1 µm. 

 

 

5.3.3.2 Bifunctional Janus particles 

 

Silica particles are negatively charged in water due to ionisation of surface 

silanol groups. Attaching different functional groups (e.g. amine) to the unmasked 

part of the particles exposed outside of the polymer beads would generate Janus 

particles with dual functionality. For example, applying an amination reaction to the 

exposed silica particle surface would form hydroxyl/amine bifunctional Janus 

particles (Fig. 5.11). Amine groups are neutral at high pH but become protonated 

and positively charged at low pH. Therefore, such bifunctional Janus particles could 

have interesting properties because the two surface regions could become 

oppositely charged, thus forming a macro dipole. Amination of the silica particles 

could be achieved by treating them with 3-aminopropyltriethoxysilane (APTES) 

solutions at 10 vol.% in water over 2 hours. This was tested on unmasked bare silica 

particles first. Zeta potentials of the original and aminated silica particles measured 

at different pH are shown in Fig. 5.13. 

 

Silica Silver 
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At low pH the untreated silica particles display a positive charge which can be 

explained by the presence of hydronium species24 (SiOH + H+
(aq)  SiOH2

+).  The 

zeta potential of the aminated particles is shifted positively compared to that of 

untreated silica at pH lower than 8. The isoelectric point also changes significantly 

from a pH of approximately 2.5 to a pH of about 7. This occurs as the surface 

hydroxyl groups are replaced with amine groups.  
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Figure 5.13. Zeta potentials of 1 µm silica particles treated with APTES solution 

(filled circles) or clean i.e. untreated (open circles). The APTES treatment used a 10 

vol.% solution in water over 2.5 hours. For each measurement a fresh volume of 

stock suspension was taken, to which sodium hydroxide or hydrochloric acid were 

added drop-wise to alter the pH. 
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APTES was used to aminate the surface of partially masked silica particles 

hydrophobised at 5 x 10-4 M DCDMS thus making bifunctional Janus particles. The 

zeta potentials of these particles with varying pH are shown in Fig. 5.14 with those 

measured on the base particles, and base particles which had been fully treated 

with APTES. The surfaces of the two types of homogeneous particle therefore 

match with each region on the bifunctional Janus particles. It was expected that the 

Janus particles would have a zeta potential and isoelectric point that lay between 

those of the homogeneous particles.   

 

Zeta potentials of the base particles (Fig. 5.14) hydrophobised with 5 x 10-4 M 

DCDMS are shifted positively from those of bare silica (Fig. 5.13) in the pH range 3 – 

5, increasing the pH of the isoelectric point from ~2.5 for bare silica to ~5. The zeta 

potential of particles treated with both DCDMS and APTES (Fig. 5.14) had a much 

greater positive shift than that of the base particles and therefore an increase in the 

pH of the isoelectric point occurred to ~7.5. The zeta potential of the Janus particles 

is also shifted positively from that of the base particles, with an isoelectric point of 

~6.5. Both the zeta potential and isoelectric point of the Janus particles are 

observed to lie between those of the homogeneous particles, relating to each 

region on the Janus particle surface. At the isoelectric point of the Janus particles it 

is expected that the charge of the two different regions cancel each other out, 

negative for the masked DCDMS treated region and positive for the DCDMS and 

APTES treated region.  
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Figure 5.14. Plot showing zeta potentials of three 1 µm silica particle samples, all 

initially treated with 5 x 10-4 M DCDMS. The three plots are for the homogeneous 

base particles (diamonds), homogeneous particles treated further with APTES 

solution (circles) and Janus particles made through APTES treatment of masked 

particles (squares). The APTES treatment used a 10 vol.% solution in water over 2.5 

hours. For each measurement Sodium hydroxide or hydrochloric acid was added 

drop-wise to a fresh volume of the stock suspension to alter the pH. 
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The results from the zeta potential measurements are convincing, but indirect 

evidence for the Janus structure of the hydroxyl/amine bifunctional particles 

obtained. To prove the Janus structure we decided to attach fluorescent markers to 

the exposed aminated surface of the particles, and use fluorescent microscopy. 

Rhodamine B isothiocyanate (RBITC) was covalently bonded onto the aminated 

exposed silica surface. RBITC is traditionally used in alcohol or hydrocarbon 

solutions. To avoid the damaging effect of these solvents to the polymer mask the 

RBITC treatment was done using aqueous solutions in milli-Q water which is 

possibly slower to react but has been used in this way previously25. Samples were 

therefore stirred in 10-3 M aqueous RBITC solutions overnight.  

 

Images are presented (Fig. 5.15) showing particles on the surface of a polymer 

bead which have been treated with a fluorescent dye. In the overlay image it was 

seen that the polymer surface itself did not become fluorescent but the particles 

did. When un-dyed particles were viewed with just the fluorescent excitation 

source switched on nothing was seen except a black image, even when the 

exposure time was increased significantly. 
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Figure 5.15. Images of fluorescently dyed particles on a polymer surface. The top 

image is taken with bright field microscopy, no fluorescent excitation. The bottom 

image shows an overlay of the fluorescence image over the bright field image in 

which it can be seen that the particles fluoresce with a red colour while the 

exposed polymer does not fluoresce. The dye used was RBITC and the excitation 

wavelength range was 520 - 550 nm. The scale bars for these images are 30 µm.  
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To prove that the treatments being performed were producing Janus 

particles, particles were made with a fluorescent dye (RBITC) on one Janus region. 

To make the direct observation of the Janus particle fluorescence possible we used 

larger silica particles with diameters of 2.76, 5.84 and 7.75 µm. Images of Janus 

particles made with each of these particles are displayed in Fig. 5.16. 
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Figure 5.16. Images of Janus particles produced by amination of exposed particle 

surfaces with 10 vol.% aqueous APTES solutions over 3 h, followed by treatment 

with aqueous RBITC solutions overnight. The Janus particles were made from base 

particles of a variety of sizes and a variety of initial hydrophobicities (shown). Also 

shown is the angle αn that was measured for the non-fluorescent region of the 

particles.  

 

 

 

 

 

 

 

 

 

 

 



171 
 

It is clearly seen that the fluorescent portion of the particles changes 

significantly across particles pre-treated with different concentrations of DCDMS. 

With changing particle diameter the fluorescent portion of the particles is similar 

for particles with the same pre-treatment of DCDMS. As the initial particle 

hydrophobicity increases (increasing DCDMS concentration), the particles are 

expected to sit further into the oil of the emulsion, which means that a larger 

proportion of the particle was subsequently masked by the polymer. The treated 

area of these particles would then be smaller than that of more hydrophilic 

particles, which sit more in the aqueous phase and would be masked less by the 

polymer. This is observed in Fig. 5.16 where the portion of fluorescent particle 

decreased significantly with increasing DCDMS concentration as would be expected. 

In addition to this it was found that the contact angles measured for these particles 

were approximately the same for particles made with the same initial 

hydrophobicity, independent of size, with a variation of ~3°. 

 

These images show that Janus particles can be produced with the emulsion 

polymerisation method used, and in using this method the area fractions of the two 

regions on the particle surface can be controlled by varying the initial 

hydrophobicity. Further to this, the method is transferrable to particles of varying 

size. 

 

 

5.3.3.3 Amphiphilic Janus particles and Pickering emulsions stabilised by them 

 

‘Hydrophobic’ Janus particles were made by treating the masked particles 

with DCDMS vapour to increase the hydrophobicity of the exposed silica surface. 

This procedure was attempted with the DCDMS in several different solvents 

however the DCDMS as a liquid phase was found to dissolve the polymer masking 

the particles. The vapour treatment was performed overnight to ensure maximum 

hydrophobicity was achieved.  
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‘Hydrophilic’ Janus particles were made by treating the exposed silica surfaces 

with nitric acid to lower the hydrophobicity. To determine the agent to use in this 

treatment previous experiments had been carried out. In these trials microscope 

slides which had been silanised with DCDMS were washed in either nitric acid or 

sodium hydroxide to lower the contact angle. Several slides were treated 

simultaneously for different periods of time and washed thoroughly with milli-Q 

water to end the treatment. Sodium hydroxide at room temperature reduces the 

contact angle down to the minimum that can be measured using the sessile drop 

method within minutes. Nitric acid on the other hand takes a couple of hours at 

room temperature to reach the minimum contact angle as shown in Fig. 5.17. Using 

the nitric acid at 40 °C was seen to speed up the treatment if necessary. The nitric 

acid was chosen over sodium hydroxide as it is less damaging to the silica surface 

and fast treatment times (as with sodium hydroxide) were not necessary. By using 

nitric acid there was also the possibility of controlling the reduction in 

hydrophobicity by varying the treatment times. 

 

  



173 
 

 

Figure 5.17. Plot showing the decrease in the advancing (filled circles) and receding 

(open circles) contact angles measured on hydrophobised glass slides which was 

caused by treatment with nitric acid. The slides were submerged in 20 vol.% nitric 

acid solution for several hours at room temperature, then washed with deionised 

water and dried before contact angle measurements were made.    
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A range of amphiphilic Janus particles were made in order to observe their 

suitability as emulsifiers. Two sizes of silica particles were used, pre-treated to 6 

initial hydrophobicities with DCDMS. Two series of amphiphilic particles were made 

for each size: the masked particles were treated with nitric acid to make the 

exposed surfaces more hydrophilic, or treated with DCDMS to make them more 

hydrophobic (Figs. 5.18 and 5.19). Unmasked particles were also fully treated with 

nitric acid and DCDMS under the same conditions to produce homogeneous 

particles with the same surface make-up as the treated regions on the Janus 

particles. Emulsions stabilised by the Janus particles could then be compared with 

emulsions stabilised with homogeneous particles matching each of the surface 

regions.  
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Figure 5.18. Schematic of the series of particle types produced from treatments on 

masked or unmasked base particles of medium hydrophobicity. 
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Figure 5.19. Schematic of the series of particle types produced from treatments on 

masked base particles where the initial hydrophobicity of the particles is varied. It is 

shown that initially hydrophilic particles will have a larger portion of the surface 

unmasked and therefore treated, so they will be mostly hydrophobic when treated 

with DCDMS (as shown) or hydrophilic when treated with nitric acid. Particles that 

were initially hydrophobic will be mostly masked (as shown) and only a small 

portion of the surface will be treated so whether treated with DCDMS or nitric acid 

they will remain mostly hydrophobic. 
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Figure 5.20. Expected equilibrium contact angles of Janus particles at the decalin-

water interface versus the central angle  of the more hydrophobic region. The 

data shown are for Janus particles prepared by oxidation of the unmasked 

hydrophobised silica particle surface with nitric acid (open circles) or 

hydrophobisation to the maximum extent with DCDMS vapours (filled circles). Data 

values are presented in Tables 5.2 and 5.3. 
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For particles of low initial hydrophobicity, treatment with nitric acid will leave 

a low equilibrium contact angle whereas treatment with DCDMS will leave a high 

equilibrium contact angle (Fig. 5.20). On the other hand if the initial hydrophobicity 

is high the average contact angles are high for both nitric acid and DCDMS treated 

Janus particles. The reason for this lies in the initial hydrophobicity which 

determines the amount of each particle masked and therefore treated, and is 

displayed schematically in Fig. 5.19. When the initial hydrophobicity is low the 

particle does not protrude far into the monomer prior to polymerisation and is 

masked only slightly, whereby most of the particle is treated and the small masked 

portion has low contact angle. When the initial hydrophobicity is high the particle 

will sit mostly in the monomer oil and will then be largely masked by polymer, 

whereby only a small proportion of the particle is treated and the larger portion 

retains its high contact angle.  

 

Janus particles were made using both 1 µm and 500 nm diameter silica 

particles as a base. Batches of particles of each size were treated with DCDMS to 

create base particles of a range of initial hydrophobicities. Two series of Janus 

particles were made for each particle size where the base particles were treated 

with either nitric acid or DCDMS. The characteristics of these Janus particles are 

summarised in Tables 5.2 and 5.3. Base particles in suspension (not masked) were 

treated simultaneously in separate vessels to produce homogenous particles which 

matched the treated portion of the Janus particles. Emulsions of equal volume 

water and decalin were prepared from all of the various particles available and 

observed over a month. Images from the 500 nm particle stabilised emulsions are 

shown below (Figs. 5.21 & 5.22) with 1 µm particles observed to act similarly. All 

emulsions were unstable to creaming but were stable to coalescence after the 

initial 5 minutes with no changes perceived over the period of observation. 
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Table 5.2. Janus particles were obtained by oxidation of silica particles (initially 

hydrophobised at various DCDMS concentrations) using nitric acid. Given are the 

contact angles (± 4°) of the polar (θp) and apolar (θa) regions at the decalin - water 

interface (measured with the FCM for similarly treated homogeneous particles), 

expected mode of attachment, equilibrium contact angle (θ) and observed 

emulsion type produced from equal phase volumes (1:1) of decalin and water.  

[DCDMS] 

/M 
α/deg. p/deg. a/deg. 

Mode of 

attachment 

Equilibrium 

θ /deg 
Emulsion type 

1.0 x 10-5 36 30 53 J 36 o/w 

5.0 x 10-5 43 30 66 J 43 o/w 

1.0 x 10-4 47 30 67 J 47 o/w 

5.0 x 10-4 69 30 81 J 69 o/w 

1.0 x 10-3 89 30 98 J 89 o/w 

5.0 x 10-3 124 30 102 H2 102 o/w 

 

 

 

Table 5.3. Janus particles were obtained by further hydrophobisation of base silica 

particles (initially hydrophobised at various DCDMS concentrations) using DCDMS 

vapours. Given are the contact angles (± 4°) of the polar (θp) and apolar (θa) regions 

at the decalin - water interface (measured with the FCM for similarly treated 

homogeneous particles), expected mode of attachment, equilibrium contact angle 

(θ) and observed emulsion type produced from equal phase volumes (1:1) of 

decalin and water.  

[DCDMS] 

/M 
α/deg p/deg. a/deg. 

Mode of 

attachment 

Equilibrium 

θ /deg 

Emulsion 

type 

1.0 x 10-5 144 53 130 H2 144 w/o 

5.0 x 10-5 137 66 130 H2 137 w/o 

1.0 x 10-4 133 67 130 H2 133 w/o 

5.0 x 10-4 111 81 130 J 111 w/o 

1.0 x 10-3 91 98 130 J 98 w/o 

5.0 x 10-3 56 102 130 H1 102 w/o 
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Figure 5.21. Images of water and decalin emulsions after 24 hours stabilised by: (a) 

Janus particles obtained by oxidation of the base hydrophobised silica particles with 

nitric acid, (b) homogeneous base particles and (c) homogeneous base particles 

oxidised fully with nitric acid. 
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As expected with the homogeneous base particles, emulsion inversion is 

observed from oil-in-water emulsions at lower particle contact angles to water-in-

oil emulsions stabilised by hydrophobic particles (Fig. 5.21b).  Little emulsion was 

stabilised by the base particles with contact angle of 98°.  

 

When the particles are fully treated with nitric acid (θ = 30°) they are seen to 

be poor emulsion stabilisers (c) suggesting that they are in this instance too 

hydrophilic to be good stabilisers, even compared to the most hydrophilic base 

particles. In contrast to these it can be seen that the Janus particles are generally 

good emulsion stabilisers (a). The most stable emulsions are those where the 

equilibrium contact angle of the Janus particles is expected to be the lowest. As the 

equilibrium contact angle increases the volume of separated oil also increases. In 

general the emulsions stabilised by Janus particles appear to be composed of 

smaller droplets than those stabilised by the base particles. 

 

An inversion from o/w into w/o emulsion is expected to occur when the 

equilibrium contact angle of homogeneous or Janus particles becomes bigger than 

90°. Such an inversion of the emulsion type is observed with the homogeneous 

particles but not with the Janus particles. This interesting difference in the 

behaviour of Janus and homogeneous particles needs further investigation.  

 

Based on approximate contact angle measurements we can compare the 

emulsions stabilised by the base particles (θ = 53° and 67°) with the Janus particles 

(θ = 47° and 69°) and can see that the emulsion types are the same (o/w) but Janus 

particles are better stabilisers with smaller emulsion drops. The emulsion types 

stabilised by particles with a 102° equilibrium contact angle are stable w/o for 

homogeneous particles and unstable o/w for Janus particles. This unexpected result 

needs further investigation as mentioned above. Of most significant difference is 

when comparing the homogeneous nitric acid treated particles (θ = 30°) with the 

most hydrophilic Janus particles (θ = 36°) where it is seen that the Janus particles 

are far superior emulsion stabilisers to the homogeneous particles which cannot 

stabilise emulsion. 
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Figure 5.22. Images of water and decalin emulsions after 24 hours stabilised by: (a) 

Janus particles obtained by further hydrophobisation of the base silica particles 

with DCDMS, (b) homogeneous base particles and (c) homogeneous base particles 

hydrophobised fully with DCDMS.  

 

o/w w/o w/o o/w o/w o/w 

 / deg.                       144             137         133           111           98            102 

 / deg.                      144             137         133           111           91             56 

(a) 

(b) 

  = 180° 

 / deg.                                  53              66            67             81             98           102 

 
(c) 

  = 180° 

 = 130° 

a = 130° 

w/o w/o w/o w/o w/o w/o 

w/o w/o w/o w/o w/o w/o 



183 
 

The two series of samples stabilised by particles hydrophobised further with 

DCDMS (Fig. 5.22a,c) are very different to those with nitric acid treated particles. 

Homogeneous particles treated with DCDMS (c) to an equilibrium contact angle of 

130° all stabilise water-in-oil emulsions. It can be seen in this series that those 

which were initially hydrophilic base particles stabilise emulsions better than the 

hydrophobic base particles, suggesting that the maximum contact angle was not 

achieved, although they are still much more hydrophobic than to begin with. One 

possibility for this is that the hydrophilic particles retained a small amount of water 

on the surface after drying, which then hindered the silanising procedure. The 

particles treated with DCDMS which were initially more hydrophobic are assumed 

to have contact angles that are too high for suitably stabilising emulsions. 

 

The Janus particles also all stabilise water-in-oil emulsions as predicted with 

the equilibrium contact angle calculations. Almost all the Janus particles are 

excellent emulsifiers with the sole exception being the particles with equilibrium 

contact angle 102° which poorly stabilised w/o emulsion. The difference in 

emulsions stabilised by Janus particles with 102° equilibrium contact angles 

between Fig. 5.21 and 5.22 could be due to variations in the contact angle of each 

region or some factor relating to the specific treatment used to make them 

amphiphilic, i.e. oxidation (Fig 5.21) and hydrophobisation (Fig. 5.22). 

 

It was observed that the emulsions stabilised by the homogeneously treated 

particles and the Janus particles generally match each other and that stabilised by 

the most hydrophobic base particles. The emulsions are very similar with neither 

particle type apparently better emulsion stabilisers, except for the most 

hydrophobic Janus particles which are good emulsion stabilisers in comparison to 

those homogeneously treated particles in (c) which are thought to be slightly more 

hydrophobic than the rest. Based on the results hydrophilic Janus particles are 

apparently more beneficial as emulsion stabilisers in comparison to homogeneous 

particles than hydrophobic Janus particles but in all cases the Janus particles are 

observed to be good stabilisers against coalescence for at least a month. Longer 



184 
 

term studies could show exceptional emulsion stability over extended periods of 

time, perhaps for longer than homogeneous particles. 

 

 

5.4 Conclusions  

 

A procedure for producing Janus particles has been developed utilising 

polymerised Pickering emulsions as a means to mask template silica particles. The 

procedure is relatively quick and allows for control of the relative proportion of 

each Janus region (angle α) by changing the initial template particle hydrophobicity. 

The procedure benefits from simplicity while being scalable. In addition to this, the 

contact angle of both Janus regions can be permanently controlled, as opposed to 

Janus particles from systems using surfactant which, once removed from the 

polymer, will lose the hydrophobicity of the region that had been masked.  

 

Using different modifications we produced 4 different types of particles. 

Particles consisting of a silica core with one hemisphere coated with silver were 

produced using Tollen’s reagent and bifunctional particles were created by 

aminating the exposed silica surface. Amphiphilic particles were made by reducing 

the template particle hydrophobicity with oxidation using nitric acid or by 

increasing the hydrophobicity with DCDMS vapours. 

 

The Janus nature of particles made with this procedure has been proven with 

zeta potential measurements and fluorescence microscopy. With varying pH the 

zeta potential of the bifunctional Janus particles was seen to lie between those of 

homogeneous particles with surface make-up identical to the two Janus regions. 

The isoelectric point of the Janus particles also occurred at a pH inbetween those of 

the homogeneous particles. The treated portion of some bifunctional particles were 

tagged during production with a fluorescent dye and then fluorescent microscopy 

images were used to show that Janus particles had been produced. It was shown 

that the Janus balance could be controlled with the hydrophobicity of the base 

particles and that variations between particles of different sizes were small. 
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Amphiphilic Janus particles were shown as emulsion stabilisers and compared 

with emulsions stabilised by homogeneous particles that were treated in a likewise 

fashion to the individual Janus regions. Emulsions were stable against coalescence 

over the course of a month for both homogeneous and Janus particles. The 

emulsions stabilised by hydrophobic Janus particles were similar to those of 

homogeneous particles with similar equilibrium contact angles, but the Janus 

particles also stabilised emulsions at very high equilibrium contact angles. 

Hydrophilic Janus particles were better stabilisers than homogeneous particles with 

similar equilibrium contact angles. Homogeneous particles oxidised with nitric acid 

(30°) were not able to stabilise emulsions whereas Janus particles with similar 

equilibrium contact angle (36°) made very stable o/w emulsions. 
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Chapter 6 

 

Summary of main findings, conclusions and future work 

 

The main focus of this thesis is to investigate the relationship between the wetting 

of solid particles and their ability to stabilise foams and emulsions. The 

investigation of homogeneous colloidal particles of various types described in 

Chapters 3 and 4 is extended to particles with dual wettability (Janus particles) in 

Chapter 5. The overall aim of the work with homogeneous particles is to achieve 

deeper understanding of the role of solid particles in foam and emulsion stability in 

the absence and presence of surfactants. This is done by developing a method for 

direct measurements of the particle contact angle at air - water and oil - water 

interfaces (Chapter 3) and using it to study the effect of solid particles on foam and 

emulsions from particle-surfactant mixtures (Chapter 4). The main objectives of 

Janus particle investigation in Chapter 5 are to develop a method for producing 

large amounts of amphiphilic Janus particles with controlled structure and 

investigate their ability to stabilise emulsions in comparison to homogeneous 

particles. The main findings and conclusions from our study are summarised below. 

 

 

6.1 Main findings and conclusions 

 

In chapter 3 the Film Calliper Method (FCM) was developed further for 

directly measuring the contact angles of micron and submicron particles at oil - 

water interfaces. This is demonstrated for different systems such as charge 

stabilised latex particles at decalin - water interfaces, sterically stabilised latex 

particles at dodecane - water interfaces and silica particles hydrophobised with 

DCDMS at decalin - water interfaces. It is shown that the contact angles of charge-

stabilised latex particles depend strongly on the density of surface groups and that 

the wettability of similar latex particles could be very different due to variations in 

the surface composition introduced at their synthesis. It is also demonstrated for 
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the first time that the FCM can be used for the direct measurement of contact 

angles of micron and submicron particles in the presence of surfactants where 

other methods (e.g. GTT) cannot be used.  

 

The first direct evidence for the relationship between the particle contact 

angle and the emulsion type using particles of different chemical nature and also 

particle - surfactant mixtures was given. Particles measured to be hydrophilic (θ < 

90°) with the FCM were shown to stabilise oil-in-water emulsions while particles 

measured to be hydrophobic (θ > 90°) stabilised water-in-oil emulsions. For the first 

time a double inversion (o/w to w/o to o/w) of emulsion type was observed for 

emulsions stabilised with a mixture of silica particles and single chain cationic 

surfactant. It is shown that the particle concentration is an important factor for the 

emulsion type and phase inversion because it may change the mechanism of 

stabilisation. 

 

In chapter 4 the contact angles of silica particles in the presence of cationic 

surfactants (CPC and TTAB) are directly measured and linked to the surfactant 

adsorption and zeta potential. The results are consistent with changes in the 

contact angle expected from the reverse orientation adsorption model. The 

maximum contact angle when zeta potential is ~zero is in agreement with the 

sedimentation behaviour of particle suspensions. 

 

The foam stability of particle - surfactant mixtures cannot be explained by the 

variation of the energy of particle detachment from the air - aqueous solution 

interface with changing contact angle. Observations of spontaneous particle 

bridging suggest that the stability of the wetting film between particles and bubble 

surfaces increases with surfactant concentration. Close to or above cmc the wetting 

films can become sufficiently stable to prevent particles from attaching to the 

bubble surfaces. Kinetic factors (i.e. wetting film stability) of foam stabilisation are 

therefore very important. Particles are shown to improve the emulsion stability in a 

certain range of surfactant concentrations where the particle contact angle is large. 

Similarly to foams, at concentrations close to or above cmc the particles have an 
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insignificant effect on emulsion stability because they cannot attach to droplets due 

to stable wetting films. 

 

In chapter 5 a procedure for producing Janus particles was presented utilising 

polymerised Pickering emulsions as a means for partially masking template silica 

particles before subsequent treatment of the exposed particle surfaces. The 

procedure allows for variable proportions of each surface region by altering the 

initial template particle hydrophobicity. The technique benefits from simplicity 

while being scalable. In addition, the contact angle of both Janus regions can be 

controlled permanently, as opposed to Janus particles from systems using 

surfactant which will lose the original hydrophobicity with washing or dispersion in 

a fresh medium  

 

The Janus nature of the particles made with this procedure has been proven 

with zeta potential measurements and fluorescence microscopy. The particles 

investigated had different charge on each hemisphere with the zeta potential and 

isoelectric point measured to lie between that of the two regions. Fluorescence 

microscopy of fluorescently tagged Janus particles showed that the geometry of the 

particles could be controlled by adjusting the base particle hydrophobicity and that 

the technique is applicable to particles of varying size.  

 

Particles with dual wettability were produced and used to stabilise emulsions. 

The emulsions were unstable to creaming but stable to coalescence over the course 

of a month for both homogeneous and Janus particles. Emulsions from the Janus 

particles were compared with emulsions stabilised with homogeneous particles 

that were treated in a likewise fashion to the individual Janus hemispheres. It was 

seen that emulsions stabilised with hydrophobic Janus particles were similar to 

hydrophobic homogeneous particles with similar equilibrium contact angle but the 

Janus particles were also good stabilisers at high equilibrium contact angles. 

Hydrophilic Janus particles were shown to be better stabilisers than homogeneous 

particles with intermediate contact angle and far superior stabilisers at low 
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equilibrium contact angles (36°), where homogeneous particles did not stabilise 

emulsions. 

 

 

6.2 Future work 

 

The Film Calliper Method has been shown to be suitable for measuring the 

contact angles of hydrophilic particles at air - water and oil - water interfaces for a 

variety of systems and particle types. It would be of major benefit if the method 

could be developed further still for measuring the contact angles of hydrophobic 

particles too. For these measurements a stable film of air or oil within the aqueous 

phase would be required and particles bridging across the film. Achieving both of 

these conditions could prove difficult and would likely require changes to the 

experimental setup.  

 

The investigation into mixtures of silica particles and cationic surfactants 

could be expanded upon by using a series of surfactants of varying tail length. It 

would be interesting to observe changes in surfactant adsorption and particle 

contact angle as a result of the changing tail lengths and determine if they can be 

directly related to the changing surfactant properties. It would also be of interest to 

investigate how changes in the surfactant tail length or head group would affect the 

stability of the wetting films at the air-water and oil-water interface and determine 

whether the stabilisation of foams and emulsions is also affected. 

 

The work with Janus particles presents many opportunities for further work. 

Comparing particles with dual wettability and homogeneous particles in the role of 

foam stabilisers would prove interesting. It would also be of great interest to study 

the orientation of Janus particles at interfaces because it is still unknown if they 

orientate on adsorption at the interface with the polar region in the more polar 

phase. The best way to achieve this would be to use fluorescence microscopy with a 

horizontally mounted microscope. 


