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THESIS SUMNLARY 

Estimation and Inference with Nonstationary Panel Data 

This PhD thesis applies the time-series concepts of unit-roots and cointegration to 
nonstationary panel data. The first three chapters set the scene for what follows and 
together are the first methodological core of the thesis, on nonstationary panel data 
estimation and testing. 
In chapter I we consider the established panel unit root tests of Levin, Lin and Chu 
(2002) and Im, Pesaran and Shin (2003) and also Pesaran (2005) for cross-sectional 
dependence, with a panel of 20 OECD inflation rates. 
In chapter 2 we consider the established panel cointegration tests of Kao (1999), Pedroni 
(1999) and Larsson, Lyhagen and Lothgren (200 1) with a panel of 25 OECD exchange 
rates to test for long run PPP, again including cross-sectional dependence. 
In chapter 3a more original contribution is given. We conduct an extensive empirical 
study of the long run determinants of consumption expenditure for a panel of 20 OECD 
countries. A panel data cointegrating regression is estimated using the panel DOLS and 
FMOLS estimators of Kao and Chiang (2000) and Pedroni (2000,2001). Using Bai and 
Kao (2005) we again consider cross-sectional dependence. 
The second methodological core is the statistical inference of nonstationary panel data, in 
the last two chapters. 
In chapter 4 is another original contribution using the bootstrap with nonstationary panel 
data. New bootstrap algorithms are presented for the panel DOLS estimators mentioned 
above and also the group-mean estimator of Pesaran and Smith (1995). 
In our last original contribution, in chapter 5, we consider the asymptotic properties of 
nonstationary panel data estimators. The asymptotic normality and asymptotic 
consistency of our panel FMOLS, DOLS and OLS estimators are proved for the simple 
case of the panel cointegrating regression with a constant intercept and trend. The new 
sequential limit asymptotic theory of Phillips and Moon (1999) is highlighted. 



INTRODUCTION 

A longitudinal or panel data set is one that follows a given sample of indi- 

viduals over time and thus provides multiple observations on each individual 

in the sample. One can obtain a panel dataset by carrying out a number of 

cross-section surveys at consecutive periods in time. A well known US panel 

dataset is the Panel Study of Income Dynamics (PSID) of the University 

of Michigan. The British Household Panel Study (BHPS) is a well known 

UK panel data set. The BHPS is a continuum of surveys that first started 

in 1991. Since then there have been 13-15 waves (or surveys). The panel 

consists of a sample of around 5,500 households with detailed information on 

opinions and socio-economic data. Other European panels exist, for exam- 

ple the German Socio-Economic Panel (GSOEP), see also Alessie, Kapteyn 

and Melenberg (1989) on the Intornart Dutch panel of households. Panel 

data possess many advantages over cross-section or time-series data. They 

give the researcher a much larger number of data points (or observations) 

thus increasing the degrees of freedom and reducing the collinearity amongst 

explanatory variables, therefore improving the efficiency of the estimates. 

They allow us to construct and test more complicated behavioural models 

than pure cross-section or time-series models. Finally panel data are better 

for studying the dynamics of adjustment, eg in labour studies a cross-section 
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study can be used to show what proportion of the population is unemployed 

at a particular point in time, whilst repeated cross-sections, ie panel data, 

can show how this proportion changes over time. Some classic texts on the 

econometrics of panel data are Hsiao (1986), Matyas and Sevestre (1996) and 

Baltagi (2001). 

More recently there has been much interest shown in large macro panels, 

with large N and large T. These are very different from the traditional, and 

hitherto very common, micro panels with small T and large N, customary 

for labour panels and consumer household panels (see Baltagi (2001) for a 

review). The new macro panels have originated from the new availability 

of large cross-country datasets such as the Penn World Tables (Summers 

and Heston (1991)). A feature of these new datasets is that contrary to the 

traditional panels which give rise to regressions with stationary regressors, 

these new cross-country datasets are to be used for regressions with nonsta- 

tionary regressors. This is because as noticed by Nelson and Plosser (1982) 

the actual macroeconomic time-series contained in the panels have become 

identified as containing unit roots. This gives rise to the nonstationarity in 

the panel dataset to which we should apply the time-series methods of unit 

roots and cointegration. A good recent text here is Baltagi (2000) and see 

also Baltagi and Kao (2000) and Breitung and Pesaran (2005) for reviews. 
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As to be expected this new area of panel data econometrics has become 

equipped with its own tools of investigation. Consider the following three 

panel regessions: 

Model 1 

yit =a+R+ flIxit + cit 

Model 2 

yit = ai + At + Jit + j3lxit + eit 

Model 3 

yit = ai + At + Jit + Pi1xit + cit 

Model 1 is the homogeneous panel data model with a constant intercept, 

trend and slope. Model 2 is the homogeneous panel data model with in- 

dividual and time-specific effects, ai and At and individual-specific trends. 

Finally Model 3 is the heterogeneous panel data model with individual and 

time-specific effects and individual-specific trends. It is the use of the deter- 

ministic terms such as the individual-specific trend term and also the non- 

stationary variables, eg fyit, xit} - I(l), taken from the parent time-series 

literature, that are the new additions to the formulation of the panel data 

regressions. Rirthermore the usual division between estimating the ai and 

At as Fixed Effects or Random Effects is still possible. When fixed ai and At 

take the form of dummy variables to be treated like constants, whilst when 
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random they have their own probability distribution, eg E(aj) = E(At) =0 

with Var(aj) = a, 2,, and Var(At) = or, 2% 
. It is these types of regressions, per- 

haps in their dynamic autoregressive form, that are to be investigated with 

nonstationary panel data. ' 

Thus this thesis is concerned with estimation and inference with nonsta- 

tionary panel data. This very recent area of panel data study has already 

produced an eclectic mix of traditional time-series results as well as new 

and exciting results from panel data. Issues such as Panel Unit Roots and 

Panel Cointegration are important to ascertain information on the long run 

relationships between economic variables using panel data. Only once these 

notions have been identified can the issue of how best to extract estimates 

of the long run relationship, ie the cointegrating vector, be considered. Also 

in this thesis we deal only with the case of a single cointegrating vector in 

the panel data. Thus we focus our attention on the panel Fully Modified 

Ordinary Least Squares (FMOLS), panel Dynamic Ordinary Least Squares 

(DOLS) and panel Ordinary Least Squares (OLS) estimators that have re- 

cently been developed by Phillips (1999), Kao and Chiang (2000), Pedroni 

(2000,2001) and others. When more than one cointegrating vector exists 

in the panel, then the panel Vector Error Correction Methods (VECM) of 
'More commonly a fixed effects specification is used, with perhaps a random factor 

structure to cope with cross-section dependence. 
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Groen and Kleibergen (2003), Larsson, Lyhagen and Lothgren (2001) and 

Breitung (2005) should be used. These methods are outside the scope of the 

present study for reasons of space. Finally we have taken care in the thesis 

to use relatively simple moderate to large panel datasets. This has enabled 

us to concentrate more on the statistical inferential issues associated with 

the use of nonstationary panel datasets. 

In chapter 1 we discuss and apply some of the panel unit root tests that have 

emerged in the panel data literature, eg the Levin and Lin (1992,1993) tests, 

Levin, Lin and Chu (2002) test and the Im, Pesaran and Shin (2003) test. 

It is well known that the standard Dickey-Fuller type tests for unit roots 

lack power in distinguishing the unit root null hypothesis from stationary 

alternatives. One of the motivations for the panel unit root tests was to 

increase the power of these time-series unit root tests by adding the cross- 

section dimension to the dataset, giving a larger number of observations. 

This has been quite a success and in many empirical applications there has 

emerged the stark contrast whereby single country ADF tests conducted on 

such time-series as real exchange rates, inflation and investment, etc do not 

reject the null hypothesis of a unit root, whilst the panel unit root tests usu- 

ally do. Also one of the main contributions of the thesis is to give a concise 

analysis and application of cross-section dependence in panels. The problem 
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of cross-sectional dependence is unique to panel data and is a very serious 

one as in the existing nonstationary panel literature most of the studies as- 

sume cross-unit independence. In empirical applications this assumption was 

almost always violated. Hence recently new approaches to the problem of 

panel unit roots with cross-sectional dependence have come about which we 

discuss. Finally in chapter 1 we present an empirical application of some 

panel unit root tests and their extension to cater for cross-sectional depen- 

dence. This is done with a panel dataset of 20 OECD country inflation rates. 

In chapter 2 we discuss and apply some of the panel cointegration tests that 

have emerged in the literature, eg the Kao (1999) tests, Pedroni (1999) tests 

and Larsson, Lyhagen and Lothgren (2001) test. Again the aim has been to 

pool the cross-section and time-series dimension in order to benefit from the 

increased power of the panel cointegration tests. We illustrate these tests 

with an empirical application concerned with testing for long run PPP in 

a panel of 25 OECD countries. Here the panel unit root and panel cointe- 

gration tests are combined in a novel approach in order to gain a stronger 

overall consensus as to whether long run PPP exists. Also the issue of cross- 

sectional dependence is considered again. 

In chapter 3 we continue with the issue of panel cointegration, this time with 

the aim of obtaining estimates of the long run economic relationships pre- 
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dicted by economic theory, that are contained in the panel. The setting for 

the study is the panel cointegration model with at most one single common 

cointegrating vector. As mentioned above this enables the panel analogues of 

the single-equation methodologies of the time-series literature to be applied. 

We discuss and apply the panel FMOLS and panel DOLS estimators of Kao 

and Chiang (2000) and Pedroni (2000,2001). These estimators are of recent 

origin and are designed specifically for panel regressions with I(1) variables, 

ie nonstationaxy panels. Our main contribution in this chapter is to present 

an extensive empirical application of these estimators in a panel data study 

of the determinants of consumption in 20 OECD countries and also to extend 

the model to cater for cross-sectional dependence. The recent modifications 

to the panel FMOLS estimation framework by Bai and Kao (2005), to cater 

for cross-sectional dependence, are highlighted in our applications and the 

latest contributions using the DSUR estimators are discussed, see Phillips 

and Sul (2003) for details. 

In chapter 4 we consider some inferential issues related to the use of non- 

stationary panel data. Here we consider the Bootstrap. In the first part of 

the chapter we present a new method of constructing bootstrap confidence 

intervals for a panel cointegrating regression. This contribution has never 

before been seen in the panel data literature and it involves using the Pairs 
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Bootstrap method with a panel data cointegrating regression. A new mod- 

ified bootstrap algorithm is presented for both the pooled Kao and Chiang 

(2000) DOLS panel estimator and the Pedroni (2001) group-mean DOLS 

panel estimator. Then using the exchange rate panel of chapter 2 bootstrap 

confidence intervals are computed and reported. In the second part of the 

chapter we show how the bootstrap can be used with other panel time-series 

models. A new method for constructing bootstrap quantiles is shown for 

a panel data AR(p) autoregression. This contribution also has never been 

presented before in the panel data literature and involves using the Block 

Bootstrap and Residual Bootstrap to construct the bootstrap samples. A 

new modified bootstrap algorithm is presented for the Pesaran and Smith 

(1995) group-mean panel estimator. Finally the inflation rate panel of chap- 

ter 1 is used to construct bootstrap quantiles. 

In chapter 5, our final chapter, we continue in an inferential setting and dis- 

cuss panel data asymptotic theory. The recent use of large N and large T 

macro panels necessitated the development of a new regression limit theory 

for nonstationary panel data by Phillips and Moon (1999). It was found that 

the asymptotic properties of the panel estimators such as panel DOLS and 

panel FMOLS were very different from their analogous time-series equiv- 

alents. Whereas the limiting distributions of the time-series FMOLS and 
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DOLS estimators converged to nonstandard functionals of Brownian motion, 

the panel FMOLS and DOLS estimators had limiting normal distributions 

which could be easily standardised after a suitable adjustment. This makes 

hypothesis testing and inference much simpler. The main contribution of this 

chapter is to present a detailed study of the new sequential limit theory of 

Phillips and Moon (1999). Nearly all the panel statistical tests and panel es- 

timators discussed in the thesis can be based on an asymptotic theory which 

uses sequential limit probability theory arguments. We derive the asymp- 

totic consistency and asymptotic normality properties of the panel FMOLS, 

DOLS and OLS estimators giving a much more detailed account than is usu- 

ally given in the panel data literature. 
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Program 2.13 Computation for Pedroni Parametric Group t-statistic 
Ox File: PEDRONIlOXXXT. oxtut4b. ox, CH2PEDRONIdata5. in7 

Program 2.14 Computation for Pedroni Parametric Panel t-statistic 
Ox File: PEDRONII IXXXTa. oxtut4b. ox, CH2PEDRONIdata5. in7 

Program 2.15 Computation for Kao &2 statistic for contemporaneous v 
covariance matrix Ox File: KAOTEST2. ox, KAOU. TestDatal. iO 

Program 2.16 Computation -for Kao 602, statistic for long run 
covariance matrix Ox File: KAOTESTLAG. ox, KA012. TestData4. in7 
Program 2.17 Computations for Kao DFt DF, DF*t DF*T DF,,,,, statistics 
Ox File: CH2. DOLS 1 4pval Lox, CH2. KAO I 2. TESTDATA3. in7 

Program 3.01 Computation for Kao d' statistic for contemporaneous v 
covariance matrix Ox Files: Chapter3-KAO. TESTLAGLA. ox, 
Chapter3-KAO. TESTLAGINF. ox, Chapter3-KAO. TESTLAGIR. ox, 
CHAPTER3X-LA2. in7, CHAPTER3X-INT. RA2. in7, 
CHAPTER3X-INFI. in7 
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Program 3.02 Computation for Kao &2 statistic for long run Ov 
covariance matrix Ox Files: Chaptcr3-KAO. TESTLA. ox, 
Chapter3-KAO. TESTINF. ox, Chapter3-KAO. TESTIR. ox, 
Chapter3-KA012. TestDataLAA0, Chaptcr3-KA012. TestDataIRAO, 
Chapter3-KA0l2. TestDataINF. in7 
Program 3.03 Computations for Kao DFt DF, DF*t DF*f DFMFstatistics 
Ox Files: Chapter3-FMOLS12devLA. ox, 
Chapter3-FMOLS12devINF. ox, Chapter3-FMOLS12devIR. ox, 
CH3-FMOLS. I. R. DATAI. in7, CH3-FMOLS. I. R. DATA2. in7, 
CH3-FMOLS. LADATAI. in7, CH3-FMOLS. LADATA2. in7, 
CH3-FMOLS. INFDATAI. in7, CH3-FMOLS. INFDATA2. in7, 
FMOLS. PANELdummies. in7 
Program 3.04 Computation for Pedroni Panel v-statistic 
Ox File: PEDRONI5YYYa. oxtut4b. ox, CH3-pedroniTESTDATAl. in7 
Program 3.05 Computation for Pedroni Panel p-statistic 
Ox File: PEDRONI6YYY. oxtut4b. ox, CH3-pedroniTESTDATAI. in7 
Program 3.06 Computation for Pedroni Panel t-statistic 
Ox File: PEDRONI7YYYa. oxtut4b. ox, CH3-pedroniTESTDATAI. in7 
Program 3.07 Computation for Pedroni Group p-statistic 
Ox File: PEDRONI8YYY. oxtut4b. ox, C113-pedroniTESTDATAIJO 
Program 3.08 Computation for Pedroni Group t-statistic 
Ox File: PEDRON19YYY. oxtut4b. ox, CH3-pedroniTESTDATAI. in7 
Program 3.09 Computation for Pedroni Parametric Group t-statistic 
Ox File: PEDRON110YYY. oxtut4b. ox, CH3-pedroniTESTDATAI. in7 
Program 3.10 Computation for Pedroni Parametric Panel t-statistic 
Ox File: PEDRONI1 IYYYa. oxtut4b. ox, CH3-pedroniTESTDATAl. in7 
Program 3.11 Computation for Pedroni Panel v-statistic (T=trends) 
Ox File: PEDRONI5YYYTa. oxtut4b. ox, CH3-pedroniTESTDATA2. in. 7 
Program 3.12 Computation for Pedroni Panel p-statistic 
Ox File: PEDRON16YYYT. oxtut4b. ox, CH3-pedroniTESTDATA2. in7 
Program 3.13 Computation for Pedroni Panel t-statistic 
Ox File: PEDRONI7YYYTa. oxtut4b. ox, CH3-pedroniTESTDATA2. in. 7 
Program 3.14 Computation for Pedroni Group p-statistic 
Ox File: PEDRONI8YYYT. oxtut4b. ox, CH3-pedroniTESTDATA2. in7 
Program 3.15 Computation for Pedroni Group t-statistic 
Ox File: PEDRONI9YYYT. oxtut4b. ox, CH3-pedroniTESTDATA2. in7 
Program 3.16 Computation for Pedroni Parametric Group t-statistic 
Ox File: PEDRONIIOYYYT. oxtut4b. ox, C113-pedroniTESTDATA210 
Program 3.17 Computation for Pedroni Parametric Panel t-statistic 
Ox File: PEDRONII 1YYYTa. oxtut4b. ox, CH3-pedroniTESTDATA2. in7 
Program 3.18 Part A Computations for the pooled and group-mean 
FMOLS estimates: 3 Ox Files: PedroniMATRIXI. INF. ox, (con) 
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PedroniMATRIXI. IR. ox, PedroniMATRIXI. LA. ox, CHAPTER3X- 
LA2. in7, CHAPTER3X-INT. RA2. in7, CHAPTER3X-INFl. in7 
Program 3.19 Part A Computations for the pooled and group-mean 
FMOLS estimates: 3 Ox Files: PedroniMATRIX2. INF. ox, (trend) 
PedroniMATRIX2. IR. ox, PedroniMATRIX2. LA. ox, 
CHAPTER3-INF. in7, CHAPTER3-INT. RA. in7, CHAPTER3-LAl. in7 
Program 3.20 Part A Computations for the pooled OLS estimates: 3 Ox 
Files: PedroniNUTRIX1. INF. ox, PedroniMATRIX1. IR. ox, (con) 
PedroniMATRIX1. LA. ox, CHAPTER3X-LA2. in7, 
CHAPTER3X-INT. RA2. in7, CHAPTER3X-INFI. in7 
Program 3.21 Part A Computations for the pooled OLS estimates: 3 Ox 
Files: PedroniMATRIX2. INF. ox, (trend) 
PedroniNlATRIX2. IR. ox, PedroniMATRLX2. LA. ox, 
CHAPTER3-INF. in7, CHAPTER3-INT. RA. in7, CHAPTER3-LAI. in7 
Program 3.22 Part A Computations for the group-mean DOLS 
estimates: 3 Ox Files: Chapter3 -DOLS 81NF. ox, (con) 
Chapter3-DOLS8IR. ox, Chapter3-DOLS8LA. ox, CHAPTER3X-LA2. in7, 
CHAPTER3X-INT. RA2. in7, CHAPTER3X-INFl. in7 
Program 3.23 Part A Computations for the group-mean DOLS 
estimates: 3 Ox Files: Chapter3-DOLS9INF2. ox, Chapter3-DOLS9IR2. ox, 
Chapter3-DOLS9LA2. ox, CHAPTER3-INF. in7, CHAPTER3-INT. RA. in7, 
CHAPTER3-LAI. in7 (trend) 
Program 3.24 Part A Computations for the pooled DOLS estimates: 3 
Ox Files: POOLED. DOLS. TEST7. ox, POOLED. DOLS. TEST8. ox, 
POOLED. DOLS. TEST9. ox, CH3-FMOLS. INFDATAI. in7, (con) 
CH3-FMOLS. INFDATA2. in7, CH3-FMOLS. LADATAI. in7, 
CH3-FMOLS. LADATA2. in7, CH3-FMOLS. I. R. DATAl. in7, 
CH3-FMOLS. I. R. DATAI. in7 
Program 3.25 Part A Computations for the pooled DOLS estimates: 3 
Ox Files: POOLED. DOLS. TESTIO. ox, POOLED. DOLS. TESTII. ox, 
POOLED. DOLS. TEST12. ox, CH3-FMOLS. IR. 2DATAI. in7, (trend) 
CH3-FMOLS. IR. 2DATA2. in7, CH3-FMOLS. INF2DATAI. in7, 
CH3-FMOLS. INF2DATA2. in7, CH3-FMOLS. LA2DATAI. in7, 
CH3-FMOLS. LA2DATA2. in7 
Program 3.26 Part B Computations for the pooled and group-mean 
FMOLS estimates: 3 Ox Files: Chapter3-FMOLS8devINF. ox, (con) 
Chapter3-FMOLS8devIR. ox, Chapter3-FMOLS8devLA. ox, 
CHAPTER3X-LA2. in7, CHAPTER3X-INT. RA2. in7, 
CHAPTER3X-INFl. in7 
Program 3.27 Part B Computations for the pooled and group-mean 
FMOLS estimates: 3 Ox Files: FMOLS. KAOXSTRENDINF. ox, (trend) 
FMOLS. KAOXSTRENDIR. ox, FMOLS. KAOXSTRENDLA. ox, 
CHAPTER3-LAI. in. 7, CHAPTER3-INT. RA. in7, CHAPTER3-INF. in7 
Program 3.28 Part B Computations for the group-mean DOLS 
estimates: 3 Ox Files: Chapter3 -DOLS 8devINF. ox, Chapter3- 
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DOLS8devIR. ox, Chapter3-DOLS8devLA. ox, CHAPTER3X-LA2. in7, 
CHAPTER3X-INT. RA2. in7, CHAPTER3X-INFl. in7 (con) 
Program 3.29 Part B Computations for the group-mean DOLS 
estimates: 3 Ox Files: Chapter3-DOLS9devINF2. ox, (trend) 
Chapter3-DOLS9devIR2. ox, Chapter3-DOLS9devLA2. ox, 
CHAPTER3-LAl. in7, CHAPTER3-INT. RA. in7, CHAPTER3-INF. in7 
Program 3.30 Part B Computations for the pooled OLS estimates: 3 Ox 
Files: Chapter3-FMOLS8devINF. ox, (con) 
Chapter3-FMOLS8devIR. ox, Chapter3-FMOLS8devLA. ox, 
CHAPTER3X-LA2. in7, CHAPTER3X-INT. RA2. in7, 
CHAPTER3X-INFI. in7 
Program 3.31 Part B Computations for the pooled OLS estimates: 3 Ox 
Files: FMOLS. KAOXSTRENDINF. ox (trend) 
FMOLS. KAOXSTRENDIR. ox, FMOLS. KAOXSTRENDLA. ox, 
CHAPTER3-LAI. in7, CHAPTER3-INT. RA. in7, CHAPTER3-INF. in7 
Program 3.32 Part B Computations for the pooled DOLS estimates: 
3 Ox Files: POOLED. DOLS. TEST4. ox, POOLED. DOLS. TEST5. ox, 
POOLED. DOLS. TEST6. ox, (con) 
DOLSTEST7. in7, DOLSTEST8. in7, DOLSTEST910, 
DOLSTESTIO. in7, DOLSTESTI I. in7, DOLSTEST12. in7 
Program 3.33 Part B Computations for the pooled DOLS estimates: 3 
Ox Files: POOLED. DOLS. TEST. ox, POOLED. DOLS. TESTI. ox, 
POOLED. DOLS. TEST2. ox, (trend) 
DOLSTESTI. in7, DOLSTEST2. in7, DOLSTEST3. in7, 
DOLSTEST4. in7, DOLSTEST5. in7, DOLSTEST6. in7 
Program 3.34 Part C Computations for the pooled FMOLS CSD 
estimates: 3 Ox Files: FMOLSKAOXScorINF Lox, (con 5F) 
FMOLSKAOXScorIRI. ox, FMOLSKAOXScorLAl. ox, 
CHAPTER3X-LA2. in7, CHAPTER3X-INT. RA2. in7, 
CHAPTER3X-lNFl. in7 
Program 3.35 Part C Computations for the pooled FMOLS CSD 
estimates: 3 Ox Files: FMOLSKAOXScorINF2. ox, (con 7F) 
FMOLSKAOXScorIR2. ox, FMOLSKAOXScorLA2. ox, 
CHAPTER3X-LA2. in7, CHAPTER3X-INT. RA2. in7, 
CHAPTER3X-INFl. in7 
Program 3.36 Part C Computations for the pooled FMOLS CSD 
estimates: 3 Ox Files: FMOLSKAOXScorINFX. ox, (con 9F) 
FMOLSKAOXScorIRX. ox, FMOLSKAOXScorLAX. ox, 
CHAPTER3X-LA2. in7, CHAPTER3X-INT. RA2. in7, 
CHAPTER3X-INFl. in7 
Program 3.37 Part C Computations for the pooled FMOLS CSD 
estimates: 3 Ox Files: FMOLSKAOXScorINFY. ox, (con 12F) 
FM0LSKA0XScorIRY. ox, FMOLSKAOXScorLAY. ox, 
CHAPTER3X-LA2. in7, CHAPTER3X-INT. RA2. in7, 
CHAPTER3X-INFl. in7 
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Program 3.38 Part C Computations for the pooled FMOLS CSD 
estimates: 3 Ox Files: FMOLSKAOXScorINFITREND. ox, (trend 5F) 
FMOLSKAOXScorIRITREND. ox, FMOLSKAOXScorLAlTREND. ox, 
CHAPTER3-LAI. in7, CHAPTER3-INT. RA. in7, CHAPTER3-INF. in7 

Program 3.39 Part C Computations for the pooled FMOLS CSD 
estimates: 3 Ox Files: FM0LSKA0XScorINF2TREND. ox, (trend 7F) 
FM0LSKA0XScorIR2TREND. ox, FMOLSKAOXScorLA2TREND. ox, 
CHAPTER3-LAI. in7, CHAPTER3-INT. RA. in7, CHAPTER3-INF. in7 

Program 3.40 Part C Computations for the pooled FMOLS CSD 
estimates: 3 Ox Files: FMOLSKAOXScorINFXTREND. ox, (trend 7F) 
FMOLSKAOXScorlRXTREND. ox, FMOLSKAOXScorLAXTREND. ox, 
CHAPTER3-LAU0, CHAPTER3-INT. RA. in7, CHAPTER3-INF. in7 
Program 3.41 Part C Computations for the pooled FMOLS CSD 
estimates: 3 Ox Files: FMOLSKAOXSeorINFYTREND-ox, (trend 12F) 
FMOLSKAOXScorIRYTREND. ox, FMOLSKAOXScorLAYTREND. ox, 
CHAPTER3-LAI. in7, CHAPTER3-INT. RA. in7, CHAPTER3-INF. in7 
Program 4.01 Residual Bootstrap Ox code for a country AR(12) 
regression 20 Ox Files: BOOT. AR12AUS. ox, BOOT. AR12BEL. ox, 
BOOTAR12CAN. ox,..., BOOTAR12US. ox, Chapter4. BOOT2. Datal. in7 
Program 4.02 Block Bootstrap Ox code for a country AR(12) regression 
20 Ox Files: MOV. BlockAR12AUS. ox, MOV. BlockAR12BEL. ox, 

............. MOV. BlockAR12US. ox, Chapter4300T2. Datal. in7 

Program 4.03 Ox code for the Block Bootstrap quantiles of the panel 
mean-group estimates ofai, 04,,, "' 0,2, Ox Files: CH4. DOLSCONF5. ox, 
1300TDATAMl3. AUS. in7,....., BOOTDATAMB. US. in7 

Program 4.04 Ox code for the Block Bootstrap quantiles of the panel 
mean-group estimates of t-, 

It-4i' -9 
t-121 Ox Files: CH4. DOLSCONF6. ox, 

B00TDATAMl3. AUS. in7,....., 
l300TDATAMB. US. in7 
Program 4.05 Ox code for the Residual Bootstrap quantiles of the panel 
mean-group estimates of a0k.... ' 012, Ox Files: CH4. DOLSCONF7. ox, 
BOOTDATAAR. AUS. in7 ......... BOOTDATAAR. US. in7 
Program 4.06 Ox code for the Residual Bootstrap quantiles of the panel 
mean-group estimates of t0t-40 

..., t.., Ox Files: CH4. DOLSCONF8. ox, 
BOOTDATAAR. AUS. in7 ......... l300TDATAAR. US. in7 
Program 4.07 Ox code for the first estimate of the Kao panel DOLS 
pooled regression Ox Files: CH4. DOLS14viva. ox, 
CH4. KA012. TESTDATA3. in7, CH4. DOLS. BOOTDatal. in7 
Program 4.08 Ox code for the Pairs Bootstrap Replications of the Kao 
panel DOLS estimator Ox Files CH4. DOLS 14pval4. ox , CH4. KA012. TESTDATA3. in7 
Program 4.09 Ox code for the Pairs Bootstrap Replications of the Kao 
panel Residual Asymptotic Covariance Matrix 12 Ox Files: 
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Ch4DOLSBootAUS2. ox,........, CH4DOLSBootTUR2. ox, 
DOLSAUS2. in7 . ........ DOLSTUR2. in7 
Program 4.10 Ox code for the bootstrap averaging for the of the Kao 
panel Residual Asymptotic Covariance Matrix Ox Files: 
CH4. DOLSASYCOVI. ox, Ch4BOOTtestl. in7, 
DOLSCOVAUSI. in. 7 . .............. DOLSCOVTURKI. in7 
Program 4.11 Computation of iO in the panel pooled DOLS regression 
Ox Files: CH4. DOLS216. ox, Ch4BOOTtestl. in7 
Program 4.12 Jackknife Regression for the panel pooled DOLS 
regression Ox Files: CH4. DOLS16. ox, CH4. KA0l2. TESTDATA3. in7 
Program 4.13 Computation of Jackknife estimate of b in the panel 
pooled DOLS regression Ox Files: CH4. DOLS206. ox, 
Ch4BOOTJACKtestl. in7 
Program 4.14 Jackknife Regressions for the individual country DOLS 
regressions 12 Ox Files: CH4. DOLS. AUSJack. ox, .-- CH4. DOLS. TURJack. ox, DOLSAUS2. in7,......., DOLSTUR210 
Program 4.15 Computation of Jackknife estimate of b in the individual 
country DOLS regressions Ox Files: CH4. DOLS26. ox , DOLS. AUSJack. in7, DOLS. TURJack. in7 
Program 4.16 Ox code for the Pairs Bootstrap Replications of the 
Pedroni panel group-mean DOLS estimator 12 Ox Files: 
CH4DOLS. bootAUS. ox, CH4DOLS. bootTUR. ox, 
DOLSAUS2. in. 7 . ........ DOLSTUR2. in. 7 
Program 4.17 Ox code for the bootstrap averaging for the Pedroni 
mean-group DOLS estimates OxFiles: CH4. DOLSCONF9. ox, 
CHAPTER4DOLSAUS1. in7 . .............. CHAPTER4DOLSTURI. in7 
Program 4.18 Ox code for the bootstrap-t computations of the Pedroni 
mean-group DOLS estimator OxFiles: CH4. DOLSCONFIO. ox, 
CHAPTER4DOLSAUSI. in7,...., CHAPTER4DOLSTURI. in7 
Program 4.19 Computations for the coverage probability of the Pedroni 
mean-group bootstrap estimators 4 OxFiles: CH4. DOLScoverage6. ox, 
CH4. DOLScoverage7. ox, CH4. DOLScoverage8. ox, 
CH4. DOLScoverage9. ox, CH4. DATAI. in7 
Program 4.20 Computations for the coverage probability of the Kao 
pooled bootstrap estimators 4 OxFiles: CH4. DOLScoveragelO. ox, 
CH4. DOLScoveragel Lox, CH4. DOLSooveragel 2. ox, 
CH4. DOLScoveragel3. ox, Ch4BOOTtestl. in7 
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Chapter I 

Panel Data Unit Roots 

1.1 Introduction 

In this chapter we discuss unit root tests in panel data. Since the econometric 

methodology involved in testing for unit roots with panel data is similar to 

the time-series case we devote some of the chapter to the latter, to gasp the 

salient points. 

Of the many panel unit root tests presented in the panel data literature the 

most popular have been the Levin and Lin (1992,1993) (see also Levin, Lin 

and Chu (2002)) and Im, Pesaran and Shin (2003) tests. These we discuss 

in detail. One of the weaknesses of many of the recent tests for unit roots in 

panel data was the reliance on the unrealistic assumption of cross-sectional 

independence. In empirical applications this assumption was often seen to 

be violated. Hence there has emerged a growing literature on panel unit root 

tests with cross-sectional dependence. One of our main contributions in this 
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chapter is to bridge the gap between existing panel unit root techniques and 

the newly emerging literature on cross-sectional dependence. We do this with 

a thorough review and application. Thus we conclude the chapter with an 

empirical application of testing for unit roots in a panel dataset of inflation 

time-series accounting for cross-sectional dependence. 

The sections are as follows. In section 1.2 we have unit root tests in time 

series, whilst in section 1.3 we have unit root tests with panel data. In 

section 1.4 are panel unit root tests with cross-sectional dependence. Finally 

in section 1.5 we have the empirical application. 

1.2 Unit Root Tests in Time Series 

The concepts involved in testing for unit roots in panel data are very much 

analogous to the time-series case. From an inferential point of view treating 

a nonstationary regressor as if it were stationary will give very misleading 

and at worst nonsensical results. A variable is termed nonstationary if it 

contains a unit root. Such variables need to be differenced once or more to 

obtain a stationary variable. ' 

'A variable that has to be differenced once to acheive stationarity is termed an I(1) 
variable, ie integrated of order 1. Twice differencable variables are integrated of order 2, 
and so on. A stationary variable is 1(0). 
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Figure 1.01 

a) A Nonstationary Time-Series 
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Here we may use the term stationary to mean covariance-stationary or weakly 

stationary. The time-series properties of a weakly stationary random variable 

Xt are 

(1.1) E(Xt) =p Vt 

Vt, s. 

Consider the AR(1) model 

Yt = pyt-, + Et 

where et is n. i. i. d(O, a, 2, ), ie a Gaussian white noise random disturbance term 

or shock. When p=1 then we have a random walk model given by 

Yt = Yt-l + et. 

By backward substitution write 

(1.5) Yi = Yo+ Ei 

Y2 yl + 62 : -- YO + 61 + 62 

(1.7) 
t 

(1.8) Yt = YO + Eci. 
i=l 

In the random walk model Yt has infinite memory, ie shocks persist forever. 

Also given YO =0 then E (Yt) =E (Eit 1 -i) =0 and Var (Yt) = Var (Eit= 1 -i) J= 1 

4 



E! (6, ) ar2 = tor2 
, =, 

Var e e. Then as T -+ oo Var(Yt) -+ oo. 

Contrast this with the case where IpI < 1. Then given 

Yt = pyt-, + ct. 
By backward substitution we have 

(1.10) Y, =A+ 61 

p2y f (1.11) Y2 = Pyl + 62 0+ PC, + C2 

3y P0+ P26, (1.12) Y3 PY2 + 63 -- f+ P62 + 63 

y t= pty f 0+ Epict-i- 
i=O 

As T -+ oo given IpI <1 and Yo = 0, then E! -' pict-i -+ 0 and so Yt 1=0 

has finite memory. Hence the shocks die out. E(Yt) = E(Eý-' p'et-j) =0 S=O 

Or2 Eý-l 2i and Var(Yt) = Var(Eý-' pict-j) e 1=0 p and as T -+ oo Var (Yt) 
1=0 

2 

Py < oo. So when IpI <1 it can be shown that Y 10'ý t is asymptotically 

stationary with means and covariances, etc independent of time. From an 

econometric modelling viewpoint then it is important to be aware of the 

problems involved when using nonstationary variables in regressions so as to 

choose an appropriate modelling strategy. 

It was Nelson and Plosser (1982) who first commented on the nonstationar- 

ity of many U. S. macroeconomic time-series. This led to a large number of 
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methodological and empirical studies on testing for unit roots in macroeco- 

nomic time-series data. 

1.2.1 The Dickey-Fuller Tests for Unit Roots with Time 
Series Data 

Fuller (1976) and Dickey and Fuller (1979,1981) were the first to develop 

tests for unit roots with time-series data. The model develops in a series 

of stages with constants and trends being added in turn to the regression. 

Consider the simple AR(1) model again 

Yt = pyt-I + Et 

where -t is Li. d(o, U2). Consider the test of the null hypothesis HO :p=1. 

Under the null the true DGP is 

Yt = Yt-l + Et. 

However when Ho : IpI <1 the limiting distribution of ý under the null is 

Gaussian and given by 

vlT-(p - p) -4 N(O, 1- p2). 

In 2 contrast when HO :p=I is true then the estimator ý is termed, "super- 

consistent" converging at rate T instead of VTT Also the limiting distribution 

2 Here -dý means converges in distribution. 
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under the null is to a nonstandard ratio of functionals of Brownian motion 

using a functional central limit theorem (FCLT) as T -+ oo, ie 

(1) f[W(1)12 
_ 11 

T(p - 1) 2f1 
[W(r)]2dr 

0 

where W(1) and W(r) are standard Brownian motion 3. Critical values for 

this distribution are obtained by Monte Carlo simulation and can be found 

in Fuller (1976) p. 371 case P. 

Similarly for the t-statistic, tp, of p in equation (1.15) for the null hypothesis 

Ho :p=1, the limiting distribution is given, as T -+ oo, by 

(1) f[W(l)]2 
- 1}21 

2 to 
fI [W(r)]2dr 
0 

Critical values for this distribution are again obtained by Monte Carlo sim- 

ulation and can be found in Fuller (1976) p. 373 case f. 

The above AR(1) model could also be written as 

(1.20) Ayt = -Yyt-l + ct 

where y=1-p. Under the null hypothesis of Ho :p=1 then y=0. So we 

could use a t-test of y=0 to test for a unit root in Yt. A summary of the 

Dickey-Fuller tests for unit roots is given in Hamilton (1994) p. 502, Table 

17.1. 
3Here #, - means converges weakly. 
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The unit root tests discussed make the assumption that -t is i. i. d(O, Or2) . To 

cater for the case when -t is serially correlated the unit root tests evolved in 

two directions. First Dickey and Fuller (1981) used parametric corrections 

in the form of adding lagged differences of the dependent variable into the 

regression to, "whiten" the residuals. ' As in Fuller (1976), p. 374 consider 

the following AR(p) model 

yt : -- 11 + Clyt-I + C2yt-2 +---+ Cpyt-P + 6t- 

For this AR(p) model we have the equivalent ADF(p - 1) model given by 

P-1 
(1.22) AYt =p+ pYt-I +E ajAYt-j + ct 

j=l 

where p= (ý, + ý2 + ý3 +. .. + 6p-, - 1), etc. When there is serial correlation 

of the residuals we use these "augmented" Dickey-Fuller (ADF) regressions 

for unit root tests. 

The second method came from Phillips (1987) and his co-workers, in Phillips 

and Perron (1988) who used nonparametric corrections to the Dickey-Riller 

model to cater for serial correlation. The two methods, ie the Augmented 

Dickey-Fuller or ADF method and the Phillips and Perron (1988) method 

are asymptotically equivalent as shown by the following distributions. For 
4 Give them white noise properties. 
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Z,, of' Phillips and Perron (1988) we have under the null of a unit root 

1 
2&2 S2) (ý2 

(1) f[W(1)12 1} 
(1.23) Z,, =T(ý-1)--(T 

ýo 2 

2p fol [W(r)]2dr 

=. L ET where ýj T ýt=j+j 
ttet-j, Et is the OLS sample residual from the estimated 

ý2 Eq=l (1 
-1 

)ý 
S2 =i ET 

1 
g2 regression, = ý0+2 dj (q+l) j (T-k) t= t, k is the number 

of parameters in the estimated regression and &, is the OLS standard error 

for ý. The same critical values as in the case without serial correlation are 

used. A summary of the Phillips and Perron (1988) tests for unit roots is 

given in Hamilton (1994) p. 514, Table 17.2. 

For the ADF tests we have the distribution under the null of a unit root of 

(. 1) f[W(l)]2 - 1} 
(1.24) T(A - 1) 

-7- =4* 
2f1 

[W(r)]2dr 1- 61 - &2 --- ap-1 0 

where a,, a2, ... ap-, are as in the above ADF(p - 1) regression of equation 

(1.22). Again the same critical values as above are used. A summary of 

the Augmented Dickey-Fuller tests for unit roots is given in Hamilton (1994) 

p. 528, Table 17.3. 

1.2.2 A Unit Root Testing Strategy 

In order to carry out unit root tests effectively one needs a formal testing 

strategy. If the researcher has knowledge of the DGP which generated the 
5This is case 1 the model without a constant or trend. 
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data then this would dictate the choice of the test. If not one needs a rea- 

sonable testing strategy. It is wise if testing for one unit root to: (a) Graph 

the data in levels (b) Graph the data in differences (c) Graph the autocor- 

relations of the data in levels (d) Graph the autocorrelations of the data in 

differences. If testing for two unit roots then add to these (e) Graph the 

data in second differences (f) Graph the autocorrelations of the data in sec- 

ond differences. The formal testing strategy used in this thesis for ADF tests 

is the one followed by Perron (1988). Here a sequence of unit roots tests are 

carried out using t and F-tests in a certain order. This helps in identifying 

the model, ie one with a trend or not (see Perron (1988) for details). 

1.2.3 Other Unit Root Tests and Extensions 

The unit root tests just described have been extended in a number of direc- 

tions. First the null hypothesis of stationarity as opposed to nonstationarity 

has been used by Kwaitkowski, Phillips and Schmidt (1992) and also by Ley- 

bourne and McCabe (1994). These models use structural time-series models 

for their testing framework. Tests for the presence of two unit roots in a 

time-series have been developed by Haldrup (1994) and Dickey and Pantula 

(1987). Whilst structural breaks have been incorporated into unit root tests 

by Perron (1989,1997) and Zivot and Andrews (1992). Finally it is prefer- 
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able to use time-series data in its seasonally unadjusted form. This may 

necessitate seasonal differencing to obtain stationarity. Osborn (1990) has 

concluded several studies on seasonal unit roots in time-series models. Other 

contributions come from Hylleberg, Engle, Granger and Yoo (1990) (HEGY). 

1.3 Unit Root Tests with Panel Data 

Numerous unit root tests have been proposed for use with panel data, ie 

the Levin and Lin (1992,1993) and Levin, Lin and Chu (2002) tests, the 

Im, Pesaran and Shin (2003) tests, the Maddala and Wu (1999) and Hadri's 

(2000) test to name a few. We shall concentrate here on the first three. 

1.3.1 The Levin and Lin Tests 

In their paper, Levin and Lin (1992) (LL) develop unit root tests for the 

general model6: 

(1.25) Ayit = pyit-, + ao + Jt + ai + Ot + cit 

for i=1,2,..., N and t=1,2,..., T. 

Thus the autoregressive model incorporates a time trend and individual and 

time-specific effects. It is assumed in this paper that cit - i. i. d. (O, 0,2). 

Levin and Lin consider several subcases of the above model. In all cases 
"Here we write the general model and the subcases in first difference form. 
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the equation is estimated by OLS as a pooled regression and in all cases the 

limiting distributions are as N -+ oo and T -+ oo. These submodels are 

Model 1 Ayit = pyit-I + Eit, HO :p=0. 

Model 2 Ayit = pyit-, + ao + Eit, Ho :p=0. 

Model 3 Ayit = pyit-1 + ao +R+ Eit, Ho :P=0, J=0. 

Model 4 Ayit = pyit-I + Ot + cit, Ho :p=0. 

Model 5 Ayit =pyit-, +cei+cit, Ho: p=O, ai=O, Vi. 

Model 6 Ayit = pyit-, + ai + Sit + cit, HO :p=0, Ji = 0, Vi. 

An important feature of the unit root test statistics is that in contrast to 

the nonstandard distributions of unit root test statistics for a single time 

series, the panel data test statistics have limiting normal distributions. Also 

convergence rates are faster with T (ie superconsistency as T -+ oo) than it 

is with N (ie N -+ oo). For models (1) to (4) we have under the null 

(a) T-v1N-A =: ý. N(O, 2), 7 

N(o, 1). " 

For Model (5) if -52 -+ 0 then T 

' Where 6 is the OLS estimate of p and t. is the t-statistic of 
'Again =* means weak convergence. 
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Tý, FYP + 3vfN- =: ý- N(O, 10.2), 

(b) Vl--. 25tp + Vl--. 875N =>- N(O, 1). 

Finally for Model (6) if 'IN- -ý 0 then T 

(a) VNJTý + 7.5} =: ý- N(O) 645), 
112 

(b) F1242-87 It,, + V3--. 75N} =:: >. N (0,1). 

In a later paper Levin and Lin (1993) (see also Levin, Lin and Chu (2002)) 

extend the model to incorporate error processes with heteroscedasticity and 

autocorrelation such as the following stationary invertible ARMA error pro- 

cess 
00 

(1.26) (it E oij(it-j + cit j=o 
where (it, Vi, t has finite non-zero fourth moments and the variance of the 

innovation process cit is finite. In this model Levin and Lin prescribe the use 

of augmented Dickey-Fuller (ADF) tests to each individual series to test for 

unit roots. Using Model 5 then we have 

A (1.27) Ayit = piyit-i +E oijAyit-j + cei + Cit. j=1 
In equation (1.27) the pi is the autoregression coefficient for the ith equation 

and pi is the order of the lag distribution function for the lags of the differ- 

enced dependent variable. The above regression is equivalent to performing 
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two auxiliary regressions of Ayit and yit-, on the remaining variables in equa- 

tion (1.27), ie 

Pi 
(1.28) Ayit L OijAyit-j + ai + eit and 

j=l 
A 

yit-l = 2_'OijAyit-j + ai + Vit-1. 
j=l 

A 

Obtaining the residuals git and Vit-, regress 6it on Vit-1, 

(1.30) eit --"4 
Wilt-I + cit 

to get pi for the ith cross section. 

The following expressions are next required to control for heteroseedasticity 

in Eit 

t_1)2 2, 
-run variance &i 

T- pi -1 
(6't ii short 

t=pi+2 

(1.32) git - 
eit 
O'ei 

Iýit-i 
(1.33) 

7 O'ei 

&y2i = 2WL 14it"INt-L T1 
Ayjt+2 

TI 
long-run varianceg 

t=2 L=1 t=L+2 

(1.34) 
N- 

(1.35) IýNT "': E ly--i ratio of variances. i=1 
aci 

'Here k is the lag truncation parameter and WkL is the lag window, eg Bartlett or 
Parzen. 
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The final step is to estimate the panel regression (using all i and t) and the 

homoscedastic residuals 

(1.36) jit = A't-l + jit 

and compute the t-statistic 

(1.37) tp =AI RSE(A) 

where 
-1 T2 

(1.38) RSE(A) 2 

t=pi+2 

1NT 
&2 (jt-ýJý 

t_1)2 (1.39) 
eii i; ý NT i=l t=pi+2 

N 
(1.40) P=-I: pi and t=(T-fi-l). 

N i=l 

The Levin and Lin statistic is an adjusted version of equation (1.37) and 

given by 

t NTSN dr-RSE(&t (1.41) t* pTT 
p ol 

where * and at are the mean and standard deviation adjustment terms flý T 

obtained by Monte Carlo and tabulated in their paper. Given the null hy- 

pothesis and the alternative hypothesis 

(1.42) Ho : p, --ý P2 ..: ---" PN P : --: 

(1.43) HI: Pl -: ýP2 ': ... -`PN ýP 
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the panel test statistic t, * has the property under the null 

(1.44) N(O, 1) as T, N -+ w and 
N 
T -+ 0' 

1.3.2 The Im, Pesaran and Shin Test 

Im, Pesaran and Shin (2003) (IPS) extend the Levin and Lin framework to 

allow for heterogeneity in the value of pi under the alternative hypothesis. 

Let 

(1.45) Ayit : -- ai + piyit-l + (it, 

for i=1, ..., N and t=1, ..., T and where the errors (it are serial correlated 

with different serial correlation properties across the units. The null and 

alternative hypotheses are 

(1.46) Ho : Pl ---: P2 = ... ` PN ---: P=0 

(1.47)Hl : pi < 0, i=1,2,..., Ni, pi = 0, i= Ni + 1, Ni + 2,..., N. 

Following the critique of Pesaran and Smith (1995) on pooled estimators in 

dynamic, heterogeneous panels, such as those used by Levin and Lin (1992) 

and (1993), Im, Pesaran and Shin (2003) propose a group-mean Lagrange 

multiplier (LM) statistic. The ADF regressions 

Pi 
(1.48) Ayit = piyit-i + OijAyit-j + ai + cit, 

j=l 
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are estimated for each i and the LM-statistic for testing pi =0 is computed. 

Defining 

1N 
LMNT LAT (Pi) Oi)) 

where Oi =(Oil 7 
Oi2 

i .... Oiji)/ and LMjT(pj, Oj) is the individual LM-statistic 

for testing pi = 0, the standardised LM-bar statistic is given by 

-, IN-- 
- N'Eýv , E[LMiT(Pi f LIINT 

Z= 10)ipi = 011 
(1.50) XPL2j -- ýN-1 Eijv=, Var[LMiT (pi, 0) Ipi = 0] Z= 

The values of E[LIMT(A7 0) IPi = 0] and Var[LMiT(Pi) 0) IPi = 0] are found 

by stochastic simulation and tabulated in their paper. It is shown that under 

Ho : pi =0 for all i, 

xFL-M =ý- N(O, 1) 

as T, N -+ oo and L -+ k where k is some finite positive constant. Im, T 

Pesaran and Shin (2003) also propose a group-mean t-bar statistic given by 

%7N-- fiNT 
- N-1 EiM1 E[tiT (pi, 0) Ipi = 0] 1 

(1.52) XPE =-- ýN-1 Eiý, Var[tiT(Pi) 0)JA = 01 

where 
N 

TNT 
= N-1 tiT(Pii Oi)) 

and tiT (Pis Oi) is the individual t-statistic for testing pi =0 for all i. Again 

ERU(Pii 0) JA = 0] and Var[tff(Pi, 0) JA = 0] are found by stochastic simula- 

tion and tabulated in the paper. Also TE =: ý- N(O, 1) as above. 
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1.3.3 Other Panel Unit Root Tests and Extensions 

There have emerged alongside the IPS and LL tests a number of other tests 

for unit roots in panel data. Harris and Tzavalis (1999) find in Monte Carlo 

simulations that the LL test has poor power properties when T is small. 

They propose a test for when T is small. Breitung (2000) develops a test to 

overcome the lack of power the LL and IPS tests suffer when fixed effects 

and trends are included in the DGP- Other important Monte Carlo simula- 

tion work on the power of the LL and IPS tests has been done by Karlsson 

and Lothgren (2000). Maddala and Wu (1999) have proposed a Fisher type 

test using p-values to test the null of a unit root. The advantages of this 

test are that it can handle unbalanced panels, it is easy to compute and can 

handle more general forms of cross-sectional dependence than LL and IPS. 

Hadri (2000) proposed a test based on the null of stationarity as opposed 

to nonstationarity. Structural breaks have been used in unit root tests by 

Culver and Papell (1997), Murray and Papell (2000) and Im, Lee and Tieslau 

(2005). Dreger and Reimers (2004) consider panel seasonal unit root tests. 

More recently new approaches have been proposed by Pedroni and Vogelsang 

(2005). Here they use kernel based estimators for panel unit root testing that 

are robust to incidental trends and cross-sectional dependence of unknown 

form. These are similar in spirit to the Phillips and Perron (1988) tests dis- 
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cussed in § 1.2. Jonsson (2005) studies the size distortions of cross-sectional 

dependence in panel unit root tests. The works of Bai (2003) and Bai and 

Ng (2002,2004) on factor models, initiated a new approach to the methods of 

panel unit root tests. These factor models are gaining ground with numer- 

ous applications such as Moon and Perron (2004), Phillips and Sul (2003), 

Pesaxan (2003,2005) and Harris, Leybourne and McCabe (2005). 

1.4 Panel Unit Root Tests with Cross-Sectional 
Dependence 

Cross-sectional dependence occurs when the residuals in country i are corre- 

lated. with the residuals in country j. One can detect certain dependencies by 

inspecting the cross-correlation matrix of the I(1) regressors. Cross-sectional 

dependence in panels can originate from a number of sources. One major 

source is global or common shocks, eg. the oil price shocks of the 1970's 

and their resulting inflation. Another example is in real exchange rates when 

using cross-country data, cross-sectional dependence is likely to arise due 

to the strong inter-economy linkages causing co-movement amongst the real 

exchange rates. Pesaran (2004) proposed a general diagnostic test for cross- 

sectional dependence. 

The traditional way of dealing with cross-sectional dependencies has been 
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to use time-effects in an error components model. However this assumes 

that the correlations are the same for each cross-unit, a very restrictive as- 

sumption. More recently, in the case of panel unit root tests, cross-sectional 

dependence has been modelled using a factor approach by Bai and Ng (2004), 

Phillips and Sul (2003), Moon and Perron (2003,2004) and others. Here one 

"defactors" the data using orthogonalisation procedures and then applies 

the standard panel unit root tests on the defactored data. The resulting new 

test statistics often have the meta-analysis form used in Maddala and Wu 

(1999) using p-values. Breitung and Das (2005) use a CLS SUR framework 

similar to the one that Phillips and Sul (2003) use for their dynamic panel 

data estimators for cross-sectionally dependent data. However for consistent 

estimates this requires that T>N. Chang (2002) use an IV approach for 

her panel unit root test with cross-sectional dependence using as instruments 

nonlinear transformations of the lagged levels in an augmented regression. 

Some Monte Carlo simulation studies of the finite sample performance of 

these tests incorporating cross-section dependence have come from Moon 

and Perron (2003) and Trapani (2004). 
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1.4.1 The Pesaran Panel Unit Root Test 

In contrast to most other panel unit root tests that allow for cross-sectional 

dependence by defactoring the data, eg Bai and Ng (2004), Moon and Perron 

(2003,2004) and Phillips and Sul (2003), Pesaran (2003,2005) proposes a 

test where the standard DF or ADF regressions are augmentedlo with cross- 

section averages of lagged levels and first-differences of the individual series. 

Consider the model 

(1.54) Yit = (1 - Oi)/-' + oiyit-i + Uit 

for i=1,2,..., N and t=1,2,..., T. 

This is a simple dynamic linear heterogeneous panel data model. To incor- 

porate cross-sectional dependence into the model we assume the initial value 

yiO =0 and the error term uit has the one-factor structure 

Uit = 'Yift + Cit 

where ft is the unobserved common effect and -it is the idiosyncratic error 

term. Write the above regression as 

(1.56) Ayit = ai + Piyit-l +, yift + cit 
loOnly Chang (2002) uses an augmented regression approach with her IV's. 
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where ai = (i - Oi)IL, fli =- (1 - Oj) and Ayit = yit - yit-l - 

The unit root hypothesis of Oi =1 can be shown as 

(1.57) Ho:, 8i=O Vi 

(1 
-58)Hl : ßi < 0, i=1,2,..., Ni, ßi = 0, i= Ni + 1, Ni + 2, ..., N. 

Given a number of assumptions on Eit, ft and yj it is shown in Pesaran 

(2002,2005b) that the common factor ft can be proxied by the cross-section 

N 
mean of yit, ie pt =N Ejl=l yjt and its lagged values Pt-1,9t-2, 

--., for N 

sufficiently large. In the case of no serial correlation in uit then we base 

our test of the unit root hypothesis of equation (1.56) on the t-ratio, of the 

OLS estimate of bi in the following cross-sectionally augmented DF (CADF) 

regression 

(1.59) Ayit -= ai + biyit-l + cipt-1 + diAgt-l + eit. 

Denote this t-ratio, by tj (N, T). Pesaran shows that by sequential limit and 

joint limit probability theory these ti(N, T) statistics have limiting distri- 

butions called Cross-Sectionally Augmented Dickey-Fuller distributions. Pe- 

saxan (2003,2005) tabulates the critical values for the individual CADF statis- 

tics in the cases of no intercept, intercept and intercept and trend, included 

in the regression, for a range of values of N and T. 

To generalise the CADF statistics to panel data Pesaran (2003,2005) pro- 
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poses a version of the t-bar test of IPS (2003). This is the cross-sectionally 

augmented IPS test 

1N 
(1.60) CIPS(N, T) Eti(NT). 

i=l 
Pesaran (2003,2005) next extends the CIPS statistic to models with vari- 

ous forms of serial correlation. Although he discusses three such models he 

derives proofs only for the last, model 3, shown as follows 

Uit --"4 piuit-l + 77it 

(1.62) 77it ..: 7ift + Cit 

where I pi I<1 for i=1,2, ..., N. This yields 

(1.63)Ayit = -piOi(l - pi) + fli(l - pi)yit-l + pi(l + Pi)Ayit-l + lyift + Eit. 

All three model specifications yield the same ADF regressions but with dif- 

ferent error specifiations and parameter heterogeniety. The final estimation 

equation is given by the following cross-sectionally augmented DF regression. 

Extending the first-order autocorrelation error schemes to an AR(p) error 

process we get the following pth order cross-section time-series augmented 

regession 

pp 
(1-64) Ayit = ai + biyit-, + cýgt-, +E dijAgt-j +E dijAyit-j + eit. 

j=O j=O 
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The relevant individual CADF statistic is given by the OLS t-ratio of bi 

in the above regression for the ith individual. The critical values for the 

CIPS statistics used for the serially uncorrelated model apply equally to the 

serially correlated case. These are computed by Monte Carlo simulation and 

tabulated by Pesaran (2003,2005) in Tables 3a-3c. 

1.5 An Empirical Application 

1.5.1 Testing for Unit Roots in Inflation Panel Data 

In this application we study whether there is a unit root in a panel of inflation 

time-series. We do this in two parts. In the following sections the methods 

of panel unit root testing discussed in § 1.3.1 and § 1.3.2 are presented for 

a panel of OECD inflation time-series. In the sections after we apply the 

Pesaran (2003,2005) panel data unit root test allowing for cross-sectional 

dependence of § 1.4.1 to see whether the panel data with cross-sectional 

dependence formulation sheds any further light on the issues of stationarity 

and nonstationarity. 

1.5.2 The Dataset 

The dataset is the Consumer Price Index (CPI) for twenty OECD countries 

obtained from the OECD Main Economic Indicators (MEI). We calculated 

the inflation rate by differencing the logarithm of the individual CPI's. The 
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data was monthly time-series running from 1960: 1 to 2000: 8. So N= 20 

and T= 488. Given monthly data for the countries it was expected that 

a lag of 11 or 12 periods (one year) would best fit the data. These were 

data determined in the ADF regressions rather than fixed a priori. Using 

the recursive t-statistic method suggested by Campbell and Perron (1991), 

we set an upper bound on k eg k,,,,,,, if the last lag included was significant 

we choose k=k,,,., if not reduce k by one until the last lag becomes signif- 

icant. If no lags are significant set k=0. We set k,,,,, 
_. = 16 for the monthly 

data in the tests. Also the 5% significance level of 1.96 of the asymptotic 

normal distribution is used as the critical value. The Akaike Information 

Criterion (AIC) was used also and gave similar results. These methods were 

used throughout the thesis when choosing ADF lag lengths. " 

The ADF regressions contained individual-specific intercepts but did not 

contain a trend as this would have been consistent with ever accelerating 

inflation, (ie Model 5 of LL). 

The issue of whether inflation is nonstationary or not has recently been stud- 

ied using panel data by Culver and Papell (1997). They also applied the 

conventional time-series unit root tests to the individual inflation rates of 

13 OECD countries. Their findings were that, contrary to the acceptance 
"Ng and Perron (1995) discuss the advantages of the recursive t-statistic method. 
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of the unit root hypothesis, found in most of the individual country time- 

series, the panel data unit root tests strongly reject it for the whole panel of 

13 countries and various sub-panels. Culver and Papell (1997) also studied 

structural break models with the OECD time-series. 

1.5.3 The Estimation Results 

On a visual inspection of Figures 1.02-1.05 in Appendix 4 we see that in Fig- 

ure 1.02 no trend is noticeable in any of the individual time-series, although 

many show a gradual incease up until 1980 and then a gradual decline. In 

Figure 1.03 we see the first differences of the time-series definitely exhibit- 

ing signs of stationarity and a zero mean. This is evidence of at least one 

unit root. Our suspicions are confirmed when we inspect the autocorrelation 

functions of Figures 1.04 and 1.05. The first shows the levels data dying away 

very slowly, indicative of a series with a long memory. That is, as discussed 

in § 1.2, the presence of a unit root means that shocks are persistent. In the 

second we see no persistence of the autocorrelations in the differenced data. 
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Table 1.01 Individual Country Inflation ADF Regression Estimates 
Country t-statisýF ý 

Austria -3.095 b 11 

Belgium -2.366 12 
Canada -1.902 11 
Denmark -3 . 

001b 11 

Finland -3.155b 12 
France -1.492 11 
Germany -2.323 11 
Greece -2.444 12 
Iceland -2.568 11 
Ireland -2.101 12 
Italy -2.120 12 
Japan -2.050 11 
Luxembourg -2.263 11 
Norway -2.436 11 
Portugal -2.8866 12 
Spain -2.205 11 
Sweden -2.368 11 
Switzerland -2.799 12 
U. K. -2.306 12 
U. S. -2.067 1 12 

In Table 1.01 we 12 have the results of the individual country ADF tests. 

It appears that the vast majority of the countries support the unit root 

hypothesis. Only Austria, Denmark, Finland and Portugal reject the null 

hypothesis at the 5% significance level. When considering the results of the 

IPS and LL panel unit root tests in Tables 1.02 and 1.03 we obtain seemingly 

conflicting results. IPS rejects the unit root null at the 1% significance level 

while LL accepts it. On closer inspection though we notice the following. 
12 Here b) means significant at the 5% level. 
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With the LL test the null hypothesis is that all members of the panel have 

a unit root, whilst the alternative is all members of the panel are stationary. 

This has been often criticised as unrealistic. The IPS test has the null that 

all members of the panel has a unit root, whilst the alternative is that at 

least one member of the panel is stationary. So we reject the null if any one 

member of the panel is stationary. This is a much more realistic hypothesis. 

In Monte Carlo simulations Maddala and Wu (1999) found the IPS test is the 

more powerful test. On these grounds and also since it does seem compati- 

ble with the results from the time-series unit root tests, that some countries 

reject the null, we give support to the IPS test and conclude that some but 

not all the members of the panel do not contain a unit root. To gain some 

further insights we consider the panel unit root tests with cross-sectional de- 

pendence. 

Table 1.02 IPS Panel Unit Root Tests 

q1t stat 
a 

-4.88569"_ 
Table 1.03 LL Panel Unit Root Tests 
r -t, *, -sta-t. 7-1 

In Table 1.04 we have the results of the individual country CADF regressions 

and the picture changes dramatically. Now only five of the countries accept 

the null hypothesis these being France, Germany, Japan, Switzerland and the 
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US. Thus by accounting for cross-sectional dependence we have increased the 

power of the ADF tests to reject the unit root null. Finally in Table 1.05 

we have the result of the Pesaran CIPS test and again the unit root null is 

rejected at the 1% significance level. 

Table 1.04 Individual Country Inflation CADF Regression Estimates 
Country t-statistic Lag 

Austria -4-31' 11 
Belgium -3.80b 12 
Canada -3-83b 11 
Denmark -3-93* 11 
Finland -5.401 12 
France -2.34 11 
Germany -2.51 11 
Greece -3-38 b 12 
Iceland -4.28a 11 
Ireland -3.44b 12 
Italy -5.25a 12 
Japan -1.81 11 
Luxembourg -4.26a 11 
Norway -4.44' 11 
Portugal -5.26a 12 
Spain -4-79a 11 
Sweden -4-87a 11 
Switzerland -2.56 12 
U. K. -3.83b 12 
U. S. -2.37 1 12 

Table 1.05 Pesaran Panel Unit Root Test 
CIPS(N, T) stat I 

-3.833ý 
The findings appear that by accounting for cross-sectional dependence one 

obtains stronger support for the stationary alternative hypotheses. 
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Notes to the Tables 

a) means significant at the 1% level, b) means significant at the 5% level. DF 

critical values 1% = -3.44,5% = -2.87. Pesaran CADF critical values 1% = 

-3-84,5% = -3.23. Pesaran CIPS critical values 1% = -2.36,5% = -2.20. 

N(0,1) one-sided critical values 1% = -2.33,5% = -1.65. Lag lengths cho- 

sen by Ng and Perron (1995) method. 
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Chapter 2 

Panel Data Cointegration 

2.1 Introduction 

In chapter 1 we tested for nonstationarity in panel data. In this chapter we 

build upon this framework and enquire, given the panel data in question has 

a unit root, whether or not there exists a long run equilibrium relationship 

amongst the variables of the panel (that is, enquire whether there is panel 

cointegration). To this end we discuss here the panel cointegration tests that 

have emerged in the panel data literature. As in chapter 1 much of their 

origin comes from the tests for cointegration of the time-series literature and 

so we devote some of the chapter to discussing these. 

The tests for cointegration considered in this chapter are those proposed by 

Kao (1999), Pedroni (1999) and Larsson, Lyhagen and Lothgren (2001) and 

we apply these in an empirical application of testing for long run PPP with 

panel data. 
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The sections are as follows. In section 2.2 we have cointegration tests in 

time-series, whilst in section 2.3 we have residual based tests for cointegra- 

tion. In section 2.4 is likelihood based tests for cointegration and in section 

2.5 cointegation tests with panel data. Finally in section 2.6 we have the 

empirical application. 

2.2 Cointegration Tests in Time Series 

Similar to the case of unit roots in time-series and panel data, the concept 

of testing for cointegration in panel data is analogous to the time-series case. 

We have here in mind the Engle and Granger (1987) two-step method. In 

the first step one conducts a Dickey-Fuller type test for (non)cointegration. 

If there is cointegration then we may go a step further and estimate the 

cointegrating (or equilibrium) relationship. 

To formally define cointegration consider an (n x 1) vector time-series Yt. This 

vector Yt is said to be cointegrated if each of the series taken individually is 

I(l), ie nonstationary with a unit root, while some linear combination of the 

series JlYt is stationary or 1(0) for some nonzero (n x 1) vector J. We may note 

that this cointegrating vector may not be unique. For if JlYt is stationary 

then so is aVYt, for any nonzero scalar a. Usually an arbitrary normalisation 
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is made of the cointegrating vector such as that the first element is unity. 

Finally given Yt if there are more than two variables contained in Yt then 

there may be at least two cointegrating vectors J, and J2 such that JI'Yt and 

J IY 
2t are both stationary. 

2.2.1 Cointegrating versus Spurious Regression 

Before discussing the cointegrating regression we must note its opposite the 

spurious regression. A spurious regression is one where there is no relation- 

ship at all between Yt a dependent variable and Xjt and X2t, the candi- 

date regressors, in their joint generation through the DGP, but we conclude 

wrongly from a regression analysis that such a relationship exists. The dif- 

ference between a cointegrating regression and a spurious one is whether the 

linear combination of I(1) candidate variables and the dependent variable, 

is reduced to stationarity. Thus if Ut is the residual in the above regres- 

sion, if it is 1(0), given Yt, Xlt and X2t are I(l), then it is a cointegrating 

regression. If Ut is I(l) then it is a spurious regression. This property has 

been exploited for residual based tests of cointegration in both time-series 

and panel data. In general a spurious regression has the following charac- 

teristics: (a) estimates are not consistent (b) OLS t and F-statistics diverge 

(c) R2 may not tend to 0. An alternative approach for testing for cointegra- 
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tion has come from Johansen (1988,1991,1995) in his multivariate maximum 

likelihood framework. 

2.3 Residual Based Tests for Cointegration 

2.3.1 The Phillips- Ouliaris-Hansen Test 

Phillips and Ouliaris (1990) and Hansen (1992) build upon the approach of 

Engle and Granger (1987). The first step is to check the order of integration 

of each of our series and candidate regressors, so as to ensure they are all 1 (1). 

This is done usually by a Dickey-Fuller or ADF test of the type mentioned 

in chapter 1. Once this condition is satisfied the cointegrating regression is 

said to be "balanced" in its time-series properties, a necessary condition for 

cointegration. To obtain an estimate of the Ut the cointegrating regression 

is estimated by OLS called the "static" or "Engle-Granger" regression since 

the dynamics are ignored. Stock (1987) has shown that the OLS estimates of 

the cointegrating regression parameters are superconsistent converging faster 

than in the stationary case. 

As in § 1.2.2, in the case of the Dickey-Fuller unit root test, we check whether 

the DGP is known to the researcher, ie whether economic theory has any a 

priori hypotheses about the coefficients in the cointegrating regression. If 

this is the case and the coefficients are known then one can proceed and con- 
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duct a Dickey-Fuller type unit root test on the residuals and use the Fuller 

(1976) and Dickey and Fuller (1981) critical values. If this is not the case 

and the coefficients are estimated by OLS then other critical values must be 

used with the Dickey-Fuller test for unit roots. These again are obtained by 

Monte Carlo simulation. If the Ut are serially correlated then Phillips and 

Perron (1988) or an ADF regression will be used for the unit root tests as 

discussed in chapter 1. A summary of the Phillips-Ouliaris-Hansen tests for 

cointegration is given in Hamilton (1994) Table 19.1. 

An alternative method of computing critical values has come from MacKin- 

non (1991) who has provided response surfaces for calculating critical values 

appropriate for cointegration tests, which are applicable whatever the sample 

size. MacKinnon (1991) response surfaces have the general form 

(2.1) C(a, T) = r.. + r., IT + K2/T 2 

where C(a, T) is the one-sided A critical value for a sample of size T. K, 

and K2 are given in a table of values by MacKinnon (1991) for various cases 

of constant and/or trend. 
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2.4 Likelihood based Tests for Cointegration 
2.4.1 The Johansen Test 

A second method for testing for cointegration. comes from Johansen (1988,1991,1995) 

using a multivariate maximum likelihood approach. The cointegrating regres- 

sion can be written 

(2.2) Yt --": 0 +, 31xlt+i 
... i +, 8kXkt + Ut7 

where yt, Xit, --., Xkt are I(1) variables and ut is a stationary disturbance 

term. The framework of Johansen's (1991) cointegrating Vector Autoregres- 

sion (VAR) is given by the following general Vector Error Correction model 

(VECM) 
P-1 

(2.3) Ayt = ao + alt + Hyt-, +E lPiAyt-i + ewt + et, 
i=l 

for t=1,.. ., T. 

Where yt is an (m x 1) vector of jointly determined (endogenous) I(1) vari- 

ables, wt is a (q x 1) vector of exogenous/deterministic 1(0) variables, ex- 

cluding the intercepts and/or trends. The disturbance vector et satisfies the 

following assumption 

(2.4) et - i. i. d(O, E) 

where E is a positive-definite matrix. The disturbances of the model et are 

distributed independently of wt, ie E(, -tlwt) = 0. The intercept and trend 

36 



coefficients, ao and a, are (m x 1) vectors, H is the long run multiplier matrix 

of order (m x m) r,, IP2,. . ., rp- I axe (m x m) coefficient matrices capturing 

the short run dynamic effects and iP is the (m x q) matrix of coefficients on 

the 1(0) exogenous variables. 

2.4.2 Cointegrating relations 

The cointegrating VAR analysis is concerned with the estimation of equation 

(2.3) when the rank of the long run multiplier matrix H could be at most 

equal to m. Therefore rank deficiency of H can be represented as 

(2.5) Ho : Rank (H) =r<m. 

Here we can write H= ap/ where a and P are (m x r) matrices each with 

full column rank r. In the case where H is rank deficient we have yt - 

I(l), Ayt - 1(0) and 8/yt - 1(0). The (r x 1) trend-stationary relations 

0/yt are referred to as the cointegrating relations and characterize the long 

run (steady state) of the VECM equation (2.3). This model can be used to 

examine the relationship between yt, Xjt ... Xkt. An important feature of the 

Johansen model is that it is a multivariate systems framework. In the case 

of more than two regressors the single equation methodology of Engle and 

Granger breaks down since there can be more than one cointegrating relation 

between the variables. The framework of Johansen can accommodate up to 
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N cointegrating relations among (N + 1) variables. 

2.5 Cointegration Tests with Panel Data 

2.5.1 Cointegration Tests for Homogeneous Panels 

We discuss here the residual based cointegration tests for homogeneous panels 

of Kao (1999) and Kao, Chiang and Chen (1999). 

2.5.2 The Kao Tests 

Consider the panel analogue of equation (2.2) 

(2.6) yit ---.: ai + PlXlit) 
---s 

+#kXkit + Uiti 

where yit, Xlit, ..., Xkit are assumed integrated processes of order one, Vi, ai 

an individual effect and uit a stationary disturbance term. Thus equation 

(2.6) describes a system of cointegrated regressions with yitj Xjjtj ... v Xkit 

assumed independent across cross-sectional units and with uit. 

Kao (1999), McCoskey and Kao (1999), Kao and Chiang (2000), Kao, Chi- 

ang and Chen (1999), Phillips and Moon (1999) and Pedroni (2004) analyse 

similar models for panel cointegration in homogeneous panels. Here we dis- 

cuss the tests of Kao (1999) and Kao, Chiang and Chen (KCC) (1999) for 

whether a cointegrating relationship exists in the estimated equation. A DF 
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type test is computed from the estimated residuals of equation (2.6) using 

(2.7) flit : -- YfLit-i + 7rit 

where fiit are the estimated residuals and irit is assumed a white noise error 

term. To test the null hypothesis of no cointegration the null is written as 

HO :y=1. The OLS estimate, ý, of -y can be given as 

EýV I j: 
T ^- 

, L-S= t=2 UitUit-l 
(2.8) 

EýV ET fi2 
_1 

* 
2=1 t=2 it 

Kao (1999) constructs five DF type tests using ý, which we now show 

DFy =Tý17(1-1)+3 
N 

V'10.2 

(b) DFt=Vl--. 25ty + -, /-l. 8-75N. 

2/602j 

DFY* ý3-+(7.2&4/&4 
w 0. ) 

(d) DFt* =- 
t, +(Vr6-N&�/2&�) 

ý(&02�/2&, 2) + (3&2/10&2 
v 0. ) 

tADF+(%ýr6-Na-. 12&o�) 
(e) ADF = ý(&02�/2&2 

/10&2 
")+(3&, 

2 
Ou 

Here ty is the t-statistic of ý, &,, 2, = E. - and &2 = Q,, - the Ov 

contemporaneous covariance and long run covariance matrices' and where 

tADFis the t-statistic of ý in the ADF regression fiit = yfiit-, +Ejp 3=1 OjAfiit-j+ 

-7rit. The asymptotic distributions of DFy, DFt, DR*,, DFt* and ADF converge 

to a standard normal distribution N(O, 1). 
'See chapter 3 for a detailed discussion of these matrices. In the above these matrices 

are scalaxs. 
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2.5.3 Cointegration Tests for Heterogeneous Panels 

We shall discuss here two types of cointegration tests for heterogeneous pan- 

els. The first is a residual based test proposed by Pedroni (1999), whilst the 

second a likelihood based test proposed by Larsson, Lyhagen and Lothgren 

(LLL) (2001). 

2.5.4 The Pedroni Tests 

Consider the following panel cointegrating regression 

(2.9) yit = ai + Jit + PliXiit, ..., 
+, 3kiXkit + uit, 

where yjt, Xjjt,..., Xkjt are as before. However now the slope coefficients 

, 61i and 82j, etc. are permitted to vary across the individual members of 

the panel. Pedroni (1999) focuses on reporting critical values for the null 

hypothesis of no cointegration versus cointegration in the panel cointegration 

regression of equation (2.9). Pedroni derives the asymptotic distribution and 

explores the small sample performance of seven different panel statistics for 

the above model. We report all of the panel statistics here: 

(a) The Panel v-statistic 

NT 
(2.10) T2 N2 2EE. L-2fi2 IZONT 

=T 
N12 

(i=l 

t=l 
11i it-, 

) 
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(b) The Panel p-statistic 

NTNT 
EE i-2fi2 EEj -2 (fi, t- I Afiit (2.11)TVN--ZpNT-1 = T-VN-- 

(i=1 

t=I 
Ili it 

i=I t=1 -, 
Ili 

(c) The Panel t-statistic (nonparametric) 

-1 NT2NT 
2 1: E L-2fi2 

-1 EE L-2 (fi, t_l Afi, t (2.12) ZtNT 
NT 

i=l t=l 
11i it 

) 

i=l t=l 
11i 

(d) The Group p-statistic 

.1NTT -2 TN-2 E Efi2 Dflit-lAfiit 
- (2.13) TN 12ANT-1 

i=l 

(t=l 

it- 
t=l 

(e) The Group t-statistic (nonparametric) 

N(T- '21 T 
fi2 

_1) 
(2.14) N2&i -1 2tNT 

= 
N-126E 

E it E(fiit-lAfiit - ý0- i=l t=l t=l 

(f) The Panel t-statistic (parametric) 

I NT2T 
2T L-20 (fii*t_ Afi* (2.15) ZtJNT "= 

( 

i=l t=l 
Ili it-1 

i=I t=I 
Ili 1 it 

(g) The Group t-statistic (parametric) 

NTT 

2 it- 
z 

(Zýý 
2fi*2 Z(fi * (2.16) N-Y' 2tNT -N it Afiit) 

i=l t=l t=l 

Where 
k- T 

(2.17) s)E pupi,. ki +1 t=8+1 

and 

L2 1T 
ýi2 

2 ki 
sT 

1 (2.18) 
t+ 

t=l ki + 1) t=s+l 
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Alsog2 - _LET 1A2, &j2 = 9? + 2ýi, &2 =1 EýV 1 
L-2 &2, g2 =1 ET 

1 
A*2 i-T tý it NT t= it 

g*2 =I EýV 
1 

S! 2, and NT W 2= i Ait, Ai*, t and ýit are obtained from the auxiliary re- 

gresions fiit =ýjfiit-j + Ait, K flit =ýifiit-l + Ek=i 
1 

ýikAflit-k + Aj*t and Ayit 

flIiAX1it +---+ OkiAXkit + ýit- For the Panel p-statistic the test for the null 

of no cointegation is 

(2.19) Ho : yi = 1, Vi, 

(2.20) against H, : yj =y<1, Vi. 

Under certain assumptions Pedroni shows that following an appropriate stan- 

dardisation each of the seven panel statistics are distributed as a standard 

normal distribution as N -+ oo and T -+ oo. The particular standardisations 

required are computed by Monte Carlo simulation and tabulated in Pedroni's 

paper. 

2.5.5 The Larsson, Lyhagen and Lothgren Test 

LLL develop a panel cointegration test based on the multivariate maximum 

likelihood framework of Johansen (1988,1991,1995). The heterogeneous panel 

VECM is given by 

ki-1 
(2.21) AYit ý lliYit-1 +E rikAYit-k + Cit 

k=l 

for i=N and t=T. 

Where IIj is of order (p x p). If Hi is of reduced rank we may let IIj = aigil 
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where ai and Pi are of order (p x ri) and of full column rank. Note that T 

must be large enough' so that equation (2.21) can be estimated separately 

for each group. We are interested in testing the hypothesis that all of the 

matrices rIj, Vi, have rank < r. That is, we consider testing the hypothesis 

that all of the N groups in the panel have at most r cointegrating relations 

among the p variables. The following rank hypothesis is considered 

(2.22) Ho : rank(rIj) = ri < r, Vi, 

(2.23) against H, : rank(rli) = p, Vi. 

Denote the trace statistic for group or country i, obtained from equation 

(2.3), as LR4TjH(r)jH(p)j. Now define the LR-bar statistic as the average 

of the N individual trace statistics 

1N 
(2.24) fRNTIH(r) IH(p)} LRiTIH(r) IH(p)}. 

LLL use a standardised LR-bar statistic for their panel cointegration rank 

test defined by 

(2.25) xFCRjH(r)jH(p)} = 
VN--(. L-RNTIH(r)IH(p)} - 

E(Zk)) 

ý-Var(Zk) 

where E(Zk) and Var(Zk) are the mean and variance of the asymptotic trace 

statistic. These are computed by Monte Carlo simulations and are also given 
2LLL states that the rule T> Np+2 should be used, where p is the number of variables. 
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in LLL. The xFCRjH(r)jH(p)} statistic converges weakly in distribution to 

N(O, 1) as T, N -4 oo and jM -+ 0. T 

2.5.6 Other tests for panel cointegration 

A notable other test for cointegration in panels is the LM test of McCoskey 

and Kao (1998). This has the often more attractive null hypothesis of coin- 

tegration. Some finite sample Monte Carlo simulations have been performed 

by McCoskey and Kao (1998b) and Wu and Yin (1999). McCoskey and Kao 

(1998b) compare their LM statistic to two of Pedroni's (1999) statistics and 

find the LM test outperforms the other two. 

More recent developments has seen the field of cross-sectional dependence 

extend to panel cointegration as in Pedroni and Vogelsang (2005) and also 

Chang (2005) who proposes residual based tests for cointegration in de- 

pendent panels. Banerjee and Carrion-i-Silvestre (2005) consider structural 

breaks and panel cointegration. Hu (2005) considers panel cointegration in 

panels of a mixture of 1(0) and I(l) variables. 

2.6 An Empirical Application 

2.6.1 Testing for Long Run PPP with Panel Data 

Though purchasing power parity (PPP) perforns poorly in the short run, 

many economists still hold the view that over the long run, relative prices 
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may move in proportion to the change in the nominal exchange rate, so that 

the real exchange rate will revert to its parity. This section aims to add 

support to this belief by using quite recent panel methods to test for PPP. 

Moreover we combine detailed evidence from both panel unit root tests and 

panel cointegration tests to study long run PPP, an approach that has so 

far not yet been undertaken with OECD datasetS3 . However many authors 

have commented one needs to be cautious when forming conclusions based 

on panel unit root and cointegration tests. There is always the possibility 

of a large range of outcomes due to the different hypotheses being tested, 

different power properties between tests and panels with different mixes of 

variables. Hence it may be impossible to get all tests to give the same result. 

Early empirical time-series studies for PPP are Adler and Lehman (1983), 

Frenkel (1981,1981b). More recent tests for the post Bretton Woods period 

are Meese and Rogoff (1988), Eddison and Pauls (1993). Empirical studies 

spanning longer time-series are Abauf and Jorion (1990), Lothian and Taylor 

(1996), Taylor (2002), Lee (1978) and Officer (1982). Most recently applied 

researchers have started to use panel methods to test for PPP, especially for 

the post Bretton Woods period, and with great success, ie. Oh (1996), Pa- 

pell (1997), Wu (1996), MacDonald (1996) and Coakley and Fuertes (1997). 

30nly one other study has used this approach-Cerrato and Saxantis (2003) for a panel 
of blackmarket exchange rates. 
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Recently PPP has been studied in panels with cross-sectional dependence, 

see O'Connell (1998) and Harris, Leybourne and McCabe (2005). 

2.6.2 The Dataset 

Our dataset is quarterly observations over the period 1957Q1-1991Q2, for 25 

OECD countries obtained from the IMF International Financial Statistics 

(IFS). So N= 25 and T= 138. Thus Et was taken as the market exchange 

rate per U. S. Dollar, Pt the domestic consumer price level (CPI) and Pt* the 

foreign consumer price level (CPI), for each country. 

2.6.3 The Econometric Methodology 

One way to test for PPP is to test if the real exchange rate has a unit root. If 

PPP is to hold in the long run any shocks to the real exchange rate would be 

only transitory and the real rate should be mean reverting (or stationary). 

A strong form of PPP is as follows, let 

(2.26) qt -= et + p* - pt, t 

where qt is the logarithm of the real exchange rate, et is the logarithm of the 

nominal exchange rate, pt* is the logarithm of the foreign price level and pt is 

the logarithm of the domestic price level. We can use the augmented Dickey- 

Fuller (ADF) method to test for unit roots in qt, utilising lags of differenced 
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qt to counter any serial correlation in the time-series. The null hypothesis is 

HO: a=0 and Hl: a<0. 

Thus we have 4 
k 

(2.27) Aqt =p+ aqt-l +E OjAqt-j + et, 
j=l 

where p is the intercept, a and Oj the parameters of interest and -t a white 

noise disturbance term. Our choice of lag length k is again data determined 

rather than fixed a priori. We use the method suggested by Campbell and 

Perron (1991) discussed in chapter 1. 

A second method for testing for long run PPP is by using the cointegration 

methods discussed above in § 2.3 and § 2.4 . The cointegrating regression 

can be written 

(2.28) et =a+ flipt + #2p* + ut, t 

where et, pt and p* are as before and ut is a stationary disturbance term. We t 

proceed by first testing that each of et, pt and p* is I(l) and then show that t 

some linear combination of them, ie a cointegrating regression, is 1(0). If long 

run PPP holds then et should be cointegrated with pt and pt*. A strong PPP 

hypothesis requires the cointegrating vector to satisfy joint symmetry and 

proportionality conditions P, = -02 = 1. Whilst a weak PPP hypothesis 

might allow 0 <, 31 <2 and -2 <, 82 < 0. 
"See the AR(1) model on p. 7 for an example of the re-paxameterisation of the autore- 

gressive coefficient which is used here. 
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2.6.4 The Estimation Results 

Visual inspection of the time-series graphs of nominal exchange rates in Fig- 

ure 2.01 of Appendix 4 show them as stationary after first differencing. Also 

the autocorrelation functions in Figure 2.03 show a large degree of persis- 

tence which dissappears on taking first differences. In the graphs of Figure 

2.01 the flat portions up to the 1970's reflect the fixed exchange rate system 

that existed prior to the breakdown of the Bretton Woods system in 1973. 

After this a floating exchange rate system existed in most countries. This 

change in exchange rate regime is a good example of a structural break which 

could be incorporated into our panel unit root and cointegration tests by the 

methods of Culver and Papell (1997), Im, Lee and Tieslau (2005) and Baner- 

jee and Carrion-i-Silvestre (2005). One problem revealed here is that many 

countries exchange rates seem to move together, ie there are cross cointe- 

grating relations between countries, eg the U. K. and Ireland have seemingly 

identical nominal exchange rates right up to the 1980's. It seems that some 

countries like the U. K. and Ireland may have their exchange rates pegged 

together. However current panel unit root and cointegration tests rule out 

the existence of such relationships, 

(2.29) Eit -7-1 Ejt and Pit -74 Pjt Vi, 
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See Banerjee, Marcellino and Osbat (2004,2005) and Pedroni (2001) for a dis- 

cussion. This is one form of cross-sectional dependence which causes causes 

size distortions and severe loss of power (see O'Connell (1998)) in the panel 

unit root and cointegration tests if not catered for. Also on inspecting Figure 

2.11 for stationarity in real exchange rates shows that most countries have 

real exchange rates with mean reversion occuring after shocks. See also A. 

Taylor (2002). This highlights the well known stylised fact of exchange rates 

being very sensitive to common global shocks across countries. 

2.6.5 Panel Unit Root Tests 

We use here the LL and IPS panel data unit root tests discussed in chapter 

1 for the strong PPP model. To cater for serial correlation we have the 

following ADF test. Here the null is HO : p, --ý P2 : --i ... I : -- PN : -- P --": 
ji : -- 0 

and H, : Pl = P2 's ... 1: --PN =p < 0, Ji ER 

Ki 
(2.30) Aqit -= piqit-l +EOijAqit-j + ai + Ot + Jit + cit. 

j=l 

for i=1,2,..., N and t=1,2,..., T. 

Thus the autoregressive model incorporates a time trend and individual and 

time-specific effects. Before conducting the panel unit root tests both LL and 

IPS also suggest an adjustment to account for any cross-sectional dependence 

if any is suspected in the panel. Assuming a single aggregate common factor 
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having identical impact on all individuals in the panel, LL and IPS suggest 

eliminating the influence of the aggregate effects by subtracting cross-section 

averages from each variable. This removes the influence of the limited de- 

gree of cross-sectional dependence coming from the time-specific aggregate 

effects Ot in equation (2.30). Thus use the demeaned series qit - qt, where 

IN qt = -Y i=l qit. 

Table 2.01 Individual Countrv ADF Rearession Estimates 
COUNTRY et t-stat I lag pt t-stat I lag Apt t-stat 

Australia -1.779 3 -2.483 4T -2.048 3 
Austria -2.567 3T -2.186 4T -3.128 b 3 
Belgium -2.097 3 -2.760 3T -2.315 2 
Canada -1.445 3T -2.911 4T -1.637 3 
Denmark -2.281 3 -2.089 2T -4.715a 1 
Finland -2.537 4T -1.168 2 -1.719 1 
France -2.881 4T -3.914 b 4T -3.4441 3T 
Germany -2.475 3T -2.922 4T -2.144 3 
Greece -1.139 4T -1.620 5T -3.526 b 4T 
Iceland -1.449 OT -2.166 4T -6.372a 3T 
Ireland -3.123 4T -1.988 1T -1.281 3 
Italy -2.472 4T -1.288 2 -1.578 1 
Japan -2.366 5T -1.379 4T -2.814' 3 
Luxembourg -2.097 3 -2.870 4T -1.950 3 
Mexico -1.262 3T -1.023 1 -3.898a 1 
Netherland -2.610 3T -2.334 2T -2.753' 3 
New Zealand -2.512 3T -2.155 4T -4.063a 2 
Norway -1.858 1T -2.267 4 -3.146 b 3 
Portugal -1.836 4T -2.156 4T -2.330 3 
Spain -2.436 3T -1.749 2T -3.519a 1 
Sweden -1.498 3 -2.483 4T -3.091 3T 
Switzerland -2.618 4T -3.491b 4T -2.6831 4 
Tirkey -0.033 3T -2.285 1T -4.319a 4T 
U. K. -3.089 3T -2.640 4T -2.482 4 
U. S. -I -1 -2.053 3T 1 -2.053 1 2 
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In Table 2.01 we have the results of our individual country ADF tests. As 

indicated from our graphs all of the nominal exchange rate series accepts 

the unit root hypothesis and only two countries of the CPI time-series re- 

ject it at the 5% significance level, that is France and Switzerland. However 

a most disturbing characteristic of the panel is that a large number of the 

individual country CPI time-series exhibit two unit roots. This can be seen 

on re-inspection of Figures 2.05-2.10 with the CPI series requiring second 

differencing before showing the signs of a stationary series. Moreover our in- 

dividual country ADF tests show 12 out of 25 accepting the unit root null in 

the differenced CPI time-series. This is at the 10% significance level. These 

are Australia, Belgium, Canada, Finland, Germany, Ireland, Italy Luxem- 

bourg, Portugal, Sweden, the UK and the US. This clearly indicates that 

these are 1(2) variables which has important implications for our panel unit 

root and cointegration methodology. For these variables can no longer form 

the balanced cointegrating regression in equation (2.28) neither can they se- 

riously be considered to form the real exchange rate equation in equation 

(2.26). For this reason a sub-panel of 13 countries was used to test for PPP 

consisting of Austria, Denmark, Rance, Greece, Iceland, Japan, Mexico, the 

Netherlands, New Zealand, Norway, Spain, Switzerland and Turkey. Thus 

13 countries which when using Japan as numeraire left us with a panel of 12 
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countries to test for PPP. 

In Table 2.02 we have the results of our individual country sub-panel ADF 

tests on the real exchange rate (RER) together with the demeaned' series 

to cater for the cross-sectional dependence. The time-series graphs for these 

series are shown in Figures 2.11-2.18. In Table 2.02 only Iceland and Turkey 

reject the unit root null at the 1% significance level, whilst in the demeaned 

series Rance and Mexico also reject it at the same significance level. This 

indicates that the individual country ADF tests do not give support to long 

run PPP. 

Tablp 2. ()2 Tndividlial Countrv RER ADF Rearession Estimates 
COUNTRY 1 1 RER t-stat I lag Demeaned RER t-stat ýg 

Austria -2.290 3T -3.398 4T 
Denmark -2.486 3T -2.574 2T 
France -2.818 4 -4.154a 4T 
Greece -2.684 4 -3.396 1T 
Iceland -3.642a 4 -4.6531 4 
Mexico -3.296 3T -4.369' 3T 
Netherland -2.805 3T -2.137 4 
New Zealand -2.095 3 -2.009 4 
Norway -2.325 1T -1.646 3T 
Spain -2.757 3T -4.061 4T 
Switzerland -2.812 4T -2.123 5T 
'Birkey -3.270a 0 -5.742a 3T 

'Pedroni (2001) notes that care must be taken when using this procedure since it can 
be shown that the demeaned series can become stationary and cointegrating relations 
destroyed. 

52 



Table 2.03 LL Panel Unit Root Tests 

RER t, * stat Demeaned RER t* sta to 
0.00028183 2.994 

Table 2.04 IPS Panel Unit Root Tests 

RER Tr stat Demeaned RER TE stat 

-5.83133' -9.44733 a 

In Tables 2.03 and 2.04 we have the results of our panel unit root tests. Both 

the RER and demeaned RER IPS tests reject the unit root null at the 1% 

significance level, whilst both the LL tests accept the null. Thus support for 

long run PPP is not clear cut by our panel unit root tests. However if we 

again take the position we did in chapter 1, in exactly the same situation with 

inflation time-series, we conclude that given the IPS test is the more powerful 

of the two tests and that its null and alternative hypothesis are more reason- 

able and its results compatible also with the evidence at the individual level, 

then we can give support to this panel test. In general the recent empirical 

evidence using panel data is in support of long run PPP. However, we often 

have, on the one hand, the inability of the individual country ADF tests to 

reject the null hypothesis of a unit root, and on the other, the overwhelming 

support for mean reversion, ie PPP, obtained by panel methods. One of the 

reasons for this stark contrast in results is attributed to the low power of 

the time-series unit root tests. Similar results are reported by MacDonald 
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(1996) using annual data for 20 OECD countries and Coakley and Fuertes 

(1997) using monthly data for 10 OECD countries, both for the post Bretton 

Woods period. Papell (1997) and Wu (1996) report similar results. 

2.6.6 Panel Cointegration Tests 

We can also use the panel cointegration tests discussed in § 2.5 to test for long 

run PPP. In Table 2.05 we briefly note the results of our Phillips-Ouliaris- 

Hansen individual country cointegration tests. In the regression with a con- 

stant only two countries are able to reject the null hypothesis of no cointe- 

gration. This again a symptom of the low power problem. McCoskey and 

Kao (1999) report similar problems. 

Table 2.05 Phillips- Ouliaris-Hansen Country Cointegration Tests 
COUNTRY 1 1 ADF t-stat (Const) 

Austria r, r, -3.0856 
Denmark -2.5821 
France -3.2365 
Greece -3.7800 
Iceland -3.90696 
Mexico -3.3690 
Netherland -2.7879 
New Zealand -3.2012 
Norway -2.4018 
Spain -3.0537 Switzerland -2.9494 

1 Turkey -4.3623' 

The results of the panel cointegration tests are shown in Tables 2.06,2.07 

and 2.08. In Table 2.06 we see the null of no cointegration being rejected 
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by all of the Kao, statistics at the 1% level of significance. We can con- 

elude that the Kao6 test results strongly support the alternative hypothesis 

of cointegration. In Table 2.07 we have the results of the Pedronj panel coin- 

tegration tests. The panel cointegration statistics are of two types. The first 

are within-dimension-based statistics termed, "Panel statistics". The second 

are between-dimension-based statistics termed, "Group statistics". Many of 

the test statistics are nonparametric tests that correct for serial correlation 

in analogous ways as the Phillips and Perron (1988) statistic. The issue of 

which test to use in a particular circumstance often arises. The nonparamet- 

ric tests are robust to outliers but have poor size properties. The parametric 

tests have greater power when modelling processes with AR(p) errors. To 

compute the panel statistics an estimate of L11j, the long-run variance of 

ýjt, is needed. Pedroni (1999) recommends the Newey-West (1987) estimator 

for this. To calculate this type of estimator one needs an estimate of ki for 

the lag windoW. 8 To estimate ki the auto-correlation functions (ACF) of the 

residuals, fiit, pit, ýjt and Ai*t were inspected for the lag length of the decay in 

the residual auto-correlation. These ACF's are shown in Figures 2.19-2.22 

in Appendix 4. In Figure 2.19 we see the auto-correlations of ýIit, just dying 
OKao test statistics computed using a pooled panel DOLS regression with fixed effects. 
"The Pedroni tests computed using residuals obtained from equation by equation OLS 

regressions. 
8Pedroni uses the Bartlett lag window in his paper. 
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out after 12 lags. Whilst in Figures 2.20-2.22, for the ACF's of Pit, ýit and 

pit respectively, we see the lag decay in the residuals not significantly dif- 

ferent statistically from zero (indicated by the lags being contained within 

the confidence band of zero). For this reason ki could be set to zero for 

both Ai and L11j, however even when ki is set to 10 the change in results is 

negligible. After computing the test statistics, for the model with a constant 

only, we found that the null of no cointegration was rejected by 4 out of 7 

of the Pedroni panel cointegration test statistics, in three instances, at the 

1% level of significance. For the model with a constant and trend, 2 out 

of 7 of the Pedroni panel cointegration test statistics rejected the null of no 

cointegration, but in 1 case, only at the 10% significance level. We find that 

with 6 out of 14 Pedroni panel cointegration tests rejecting the null of no 

cointegration the results are inconclusive. 

Table 2.06 Kao Panel Cointegration Tests 
1 11 DFt-stat DF,, -stat DFt*-stat DF, *-stat ADF-stat 
I Constant 11 125.86' -10.5351 92.827' -20.735' 
Table 2.07 Pedroni PanpI Cnintp. crrntinn Tt-. qt. -, 

11 Panel-v Panel-p Panel-t Group-p Groul)-t Panel-t" Groui)-7] 
Const 
Const+rR 

4.53671 
1.2813c 

-1.8083 
b 

0.5622 
2.5585 
5.2279 

-1.1366 
1.4144 

4.2209 
6.7065 

-159.96401 
-153.26201 

-4.385411 
-1.1464 4] 

vve turn now to tne imennooci Dasea tests ior cointegration wnicn in cer- 

tain circumstances will have more power than residual based tests. These 

results are given in Table 2.08. We show here the cointegration LR test 
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trace statistics for each country, in columns five, six and seven. In 8 out of 

12 countries the null hypothesis of r=1 cointegrating vectors was chosen 

correctly. After normalising on pt the cointegrating vector for strong PPP 

becomes (1, -1, -1). This strong PPP hypothesis was tested by imposing 

the over-identifying restrictions (1, -1, -1) on the cointegrating vector. The 

results shown in the third column of Table 2.08 show 9 out of 12 countries 

rejecting the strong PPP hypothesis. Also in Table 2.08 we find, using LLL 

panel cointegration tests, that there is evidence there exists a common coin- 

tegration rank in the panel, or at least a common largest rank of 2. This 

seemingly conflicts with the earlier results of the individual country Johansen 

LR tests, where 8 of the 12 cointegration vectors showed a rank of one. How- 

ever due to the fact that three of the other cointegration rank estimates gave 

an r=2 and one an r=0 we conclude the LLL results are compatible 

with the Johansen results in that the LLL results only indicate a common 

cointegrating vector of maximum rank 2, exists for each country, and the 

possibility that this is of rank r=1 is not ruled out. The more conclusive 

results of the likelihood based tests are comforting given the ambiguity of the 

Pedroni residual based tests. We can now conclude more surely from both 

panel unit root and cointegration tests there exists a long run relationship in 

the panel between exchange rates, domestic and foreign prices. These results 
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do coincide with the findings of a number of empirical studies. Jacobson, 

Lyhagen, Larsson and Nessen (2002) use a multivariate VECM panel model 

for four OECD countries to test for PPP and find support for a weak form 

of PPP of the type discussed in this chapter. Their estimated cointegrating 

vector was (1, - 1.5,0.9) instead of the strong form of (1, - 1,1). A. Taylor 

(2002) finds evidence for the PPP hypothesis using the Johansen multivari- 

ate VECM and panels of up to six OECD and developing countries. Finally 

Pedroni (2001) decisively rejects the strong PPP hypothesis using his fully 

modified OLS and DOLS estimators and his panel cointegration tests for a 

panel of 20 OECD and developing countries. 

Table 2.08 LLL Panel Cointeeration Tests 
COUNTRY Lag chi rank Cointegration LR 'Race Statistics 

L14*T(H(r)jH(p)) 
r=O jr=1 jr=2 

Austria 4 23.39' 1 35.700 8.8566 1.4046 
Denmark 3 19.56' 1 32.302 10.037 1.3893 
France 2 21.99' 1 40.662 12.535 5.7219 
Greece 4 23.31a 1 42.255 10.125 2.2571 
Iceland 2 13.52a 2 42.139 17.855 3.0748 
Mexico 2 5.059 1 33.047 12.227 2.4856 
Netherland 2 17.04a 1 31.464 10.960 1.0352 
New Zealand 2 25.57a 2 58.149 20.398 2.1970 
Norway 3 20.42a 1 30.960 9.5516 0.8944 
Spain 2 38.71a 1 55.921 14.121 2.9815 
Switzerland 2 3.960 0 12.427 4.1593 0.0056 
rurkey 41 8.325 1 21 43.963 1 18.307 1 2.1844 
Aver. Trace 38.249 12.427 2.1359 
E(Zk) 14.955 6.086 1.137 
Var(Zk) 24.733 10.53 2.212 
Statistic 16.225 6.769 2.326 b 
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************* * ***** ***** ** ** ***************** * *** * 

Notes to the Tables 

a) means significant at the 1% level, b) means significant at the 5% level, c) 

means significant at the 10% level. DF(constant only) critical values 1% = 

-3.51,5% = -2.89,10% = -2.58. DF(constant+trend) critical values 1% = 

-4.04,5% = -3.45,10% = -3.15. Phillips-Ouliaris-Hansen (constant only) 

critical values 1% = -4.31,5% = -3.77. Phillips-Ouliaris-Hansen(constant+trend) 

critical values 1% = -4.36,5% = -3.80. MacKinnon (constant only) crit- 

ical values 1% = -4.40,5% = -3.80. N(0,1) one-sided (LHS) critical val- 

ues 1% = -2.33,5% = -1.65. N(0,1) one-sided (RHS) critical values 1% = 

2.33,5% = 1.65,10% = 1.28 N(0,1) two-sided critical values 1% = : L2.58,5% = 

±1.96. T denotes model estimated with a constant and trend. Chi-squared 

statistic for test of over-identifying restrictions of normalised on pt. 

x2 (2) critical values 1% = 9.210,5% = 5.991. Lag lengths chosen by Ng and 

Perron (1995) method. 
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Chapter 3 

Panel Data Cointegrating 
Regressions 

3.1 Introduction 

In chapters 1 and 2 we discussed panel unit root tests and panel cointegration 

tests respectively. In this chapter we complete the analysis by considering 

the estimation and inference of a panel data cointegrating regression. We 

highlight the FMOLS and DOLS panel estimators of Kao and Chiang (2000) 

and Pedroni (2000,2001). 

Our contribution in this chapter is to provide an in depth study of consump- 

tion expenditure in a panel of 20 OECD countries. It's originality lies in the 

fact that a large number of panel cointegration estimators are used in the 

study. As well as comparing the panel DOLS and FMOLS estimators we also 

contrast the group-mean and pooled estimators in current use. We also note 

the important extension of the model to the estimation and inference of a 
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panel data cointegrating regression with cross-sectional dependence. These 

modifications to the panel cointegration estimator have only recently been 

introduced and so the results could be seen as very illuminating. 

The sections are as follows. In section 3.2 we have the efficient estimation of a 

panel data cointegrating regression, whilst in section 3.3 we have the estima- 

tion of a panel data cointegrating regression with cross-sectional dependence. 

In section 3.4 we present the empirical application. 

3.2 The Efficient Estimation of a Panel Data 
Cointegrating Regression 

With the increasing use of nonstationary panel data the focus of panel data 

econometrics has shifted towards the study of the asymptotics of macro pan- 

els, with large N (eg individuals) and large T (eg time-series), as opposed 

to the usual asymptotics of micro panels with large N and small T. This 

has necessitated the development of a new limit theory for nonstationary 

panel data, ie limit distributions for double indexed integrated processes, by 

Phillips and Moon (1999,2000). It was found that the statistical properties 

of the nonstationary panel data were very different from those of the non- 

stationary time-series data-the estimators of the former converging to Gaus- 

sian normal variates in the limit, whilst those of the latter had nonstandard 
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limiting distributions that were composed of Brownian Motion functionals. 

The differences in the asymptotic statistical properties of the nonstationary 

panels have been highlighted by Kao and Chiang (1998,2000), Phillips and 

Moon (1999) and Pedroni (1996) in their works on the panel Fully Modi- 

fied OLS (FMOLS), DOLS and OLS panel cointegration estimators. These 

works extend the field of panel cointegration to the estimation and inference 

of cointegrated regressions with panel data. 

The FMOLS estimator of Phillips and Moon (1999) and Pedroni (2000) is the 

panel analogue of the Phillips and Hansen (1990) FMOLS estimator of the 

time-series literature. These FMOLS estimators use nonparametric correc- 

tions for bias and endogeneity problems in the OLS estimator. Similarly the 

DOLS estimator of Kao and Chiang (1998,2000) and Mark and Sul (1999), 

can be seen as the panel analogue of the Saikkonen (1991) and Stock and 

Watson (1993), DOLS estimators of the time-series literature. These DOLS 

estimators add leads and lags of the differenced regressors into the regression 

as parametric corrections for the bias and endogeniety problems. They are 

asymptotically equivalent to their FMOLS counterparts. 

Since the introduction of these panel cointegation estimators a few Monte 

Carlo simulation studies of their finite sample properties, and some empiri- 

cal applications, have appeared in the panel data literature. In a simulation 
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study Kao and Chiang (2000) obtained mixed results for the FMOLS and 

OLS estimators and DOLS seemed more promising than both in estimating 

panel cointegration regressions. Kao, Chiang and Chen (1999) applied the 

panel cointegration methods developed in Kao and Chiang (2000) to study 

R&D spillovers. They found FMOLS and DOLS produced slightly different 

results but were unanimous on the main issues. Funk (1998) also studied 

the same R&D spillovers using the panel cointegration methods developed 

by Kao (1999), Kao and Chiang (2000) and Pesaran, Shin and Smith (1999). 

Pedroni (2001) developed group-mean DOLS and FMOLS estimators which 

are the average of the individual time-series DOLS and FMOLS estimators. 

He compared his DOLS estimator with the ones of Kao and Chiang (2000) 

and of Mark and Sul (1999). Sun (2004) proposed new panel cointegration 

estimators based on exponential kernel estimation. Other empirical applica- 

tions have come from Ho (2002), Bac and Le Pen (2002), Dreger and Reimers 

(2003) and Westerland (2003). 

3.2.1 The Kao and Chiang Pooled Panel Estimators 

Consider the fixed effects panel regression 

yit == ai + x, ýtp + uit 

(3.2) Axit = fit 
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where jyjtj , I(l) is (1 x 1), juitj - 1(0) is (1 x 1) and xit = xit-1 + Cit so 

xit , I(l) is (k x 1). Independence is assumed of the jyjt}, jxjtj and Juitl 

across i. Also the xit are assumed not to be cointegrated. 

Let wit = (uit, cit 

The long run covariance matrix Q of wit (see Kao and Chiang (2000)) is 

(3.3) Q= Ejt (wijwl ) 
-. 

E jo 

(3.4) E+r+ip/ 

(3.5) 
nu Que 1 
Qcu Q'I. 

The auto-covariance matrix of wit is 

(3.6) r=r, ýo , i/" )= ru rue 

., =, 
E(wiju, 

I 
rl. Irl 

I 

and E is the contemporaneous covariance matrix 

/) EU Eue 
(3.7) E= E(wiowio 

I 
Efu Ec 

I- 

The one-sided long run covariance is 

(3.8) ,L= E+r 

(3.9) EOOOE(wijwl), j= io 

(3.10) with A Au Auf I 
AM 'L, 

Here we assume that the panels are homogeneous, ie the variances are con- 

stant across the cross-section units. When the panels are heterogeneous then, 
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sij, ri, Ai and Ej are different for each i. 

FMOLS estimators are formed by making the following corrections: 

The endogeneity correction is obtained by 

1 
x j*t 

2 
if Xit, 

(3.12) u2ü+ it iu. e it 1 

(3.13) Üi+t Uit - 
i2iueýäieleit 

1 -i -2 üi+t = yit - 
ýiu, ýä-'Axit - ýä- 22- 

ic ZU. £ ZU. £ X 11) Xitb 

y* it 
2'üi+ 

t ZU. £ t 

and Qi,,., = Qj. - Qj. eQj-e'Qj,,.. 
1 2 

(! 
ý-126 2 Also the correction terrn! ý- ý 

-C is needed'. 
-1 ) XJ Me SU. 6 9 

The serial correlation correction is 

(3.16) f2i 
, 

- 1! %u (3.17) 
se 

Aifu 
- 

Aie! k 

In heterogeneous panels then: 

The pooled FMOLS estimator is given by 

T1 (X* 
_ X; -! ) (X* _ jý! -1 

., 
ýVjr 

t= it it 
ýV 

1 
(ET 

1 
(X* T, &! 

j= t= it it scu 

(3.18) 
"Here true 6 is replaced by a consistent estimate. 
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where &i*, ,,: ' 
Q2 At Q, 

U2 scu if scu x, 

The t-statistic for an element of 4;,,, is 

(3.19) vfN-T (4j*f 
m- 

0) 
tjA;,. =S j4;,. 

where t 4. is the t-statistic of #j*f , which is the jth element of Pf*m. Also J fin 3M 

s2 [61k]jj, the jth diagonal element of [61k]. 
. 7,8;,. 

The pooled DOLS estimator, is obtained from 

+ Xi*tjp + Ejqi (3.20) yilt = ai =-qiCijllýýXit+j 
+ Vit* 

The t-statistic for an element of 4, ', ' is 

(3.21) tj4,. = 
vIN-T 

(ýjd 

SA 

where t, 4, is the t-statistic of Pid, which is the jth element of Pd*. Also 

2 sj, 
ad. = [61k]jj, the jth diagonal element of [61k]. 

We see here that the heterogeneous DOLS panel estimator of P has the same 

limiting distribution as the heterogeneous FMOLS panel estimator, this is 

proved in Kao, and Chiang (2000). 

In homogeneous panels then: 

The pooled FMOLS estimator is given by 

M= 
[F 

, 
ýVJET 

J(X, t _: t, )(X, t , 
ýV 

1 
(ET 

1 
(X, 

t Of t= t= - A)Ppt - T, &+ 
fu 

(3.22) 
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where A+ = &,,, and Pilt = yit -! 
ft. &'Axit- 

fu ce 

The t-statistic for an element of 4f,,, is 

(3.23) tjAf. = 
ý\IN-T 

(Ajf 
m- ß) 

SiAf 

. 
where tj4fm is the t-statistic of gjf,,,, which is the jth element of 3f,,,. Also 

S2 the jth diagonal element of [M-lf2u. 
el , where Qu - A 

m=[6CI, -'h.. cjjj 1e 

and Q= lirnn,. ý; 'ý Ein- n -=l 
Qi- 

The pooled DOLS estimator, 4d, is obtained from 

Eqi (3.24) yit = ai + xito + j=-qiCiiAXit+j + Vit' 

The t-statistic for an element Of ýd iS 

(3.25) %IN--T 
(Aid 

- ß) 
tiAd -'ý 

SiAd 
- 

where to 
d 

is the t-statistic Of ýjd, which is the jth element of ýd. Also 

2 
ýd 

[62-1fý 
3c 

the jth diagonal element of [Me 

Again we see here the asymptotic equivalence of the homogeneous, DOLS 

and FMOLS, panel estimators of P. See again Kao and Chiang (2000) for 

a proof. Moreover an important departure from the usual panel literature 

is that the asymptotics are calculated using the sequential limit theorem of 

Phillips and Moon (1999). 

We also use a Pedroni (2000) FMOLS t-statistic (see Pedroni (2000), Corol- 
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lary 1.2, p. 104) given by 

NT 05 

(3.26) - 18) -1 E(Xit - : ti)(xit - -: ti), tAIT = 
(ýNT 

E C263 
t=l 

To cater for the estimation of a constant intercept and trend in our regressions 

we use the modified Pedroni t-statistic 

NT0,5 

-, a) **/ (3.27) t4NT = 
(ýNT E Xitxit 

t=1 

where rIj is a (k +1xk+ 1) block diagonal matrix with &ý; ', j and ! %il 
U. 6 ei 

along the diagonal and xi*t = (1, xilt)l. This is the case for the model with an 

intercept only, in the model with an intercept and trend, IIi is an analogous 

(k +2xk+ 2) block diagonal matrix and x* = (1, t, xl)l. it it 

The pooled OLS estimator of 8 is given by 

T1 gt ; pi) (xit ; i; i) 
T 

l('�t Z= t= Z= t= ) (yit 

where : ti Et'=' (x't) and pi = 
r,, T=, (yi t) 

TT 

The t-statistic for 6,1, is 

, 
ýV 

lET 
(3.29) a) (Cr-2F 0.5 

S= t=l(xit-xi)(xit-. 2i)l) 

where a2 
(r-Lr-tT=ifij2t) 

NT-k 

3.2.2 The Pedroni Group-Mean Panel Estimators 

Both the Pedroni (2000,2001) goup-mean FMOLS and DOLS panel estima- 

tors are formed by averaging over the individual FMOLS and DOLS time- 
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series estimators applied to the ith member of the panel. We show first 

how the panel DOLS estimator is formed. Using regression (3.24) Pedroni 

constructs his group-mean DOLS panel estimator as follows 

1Eýv ET Z. (3.30) - s=l 
( 

t=lzit t) 
-1 (ET 

JZ tq t)] 
46 : -- 

[N 
s t= ii 

where zit is the (K(2p + 2) x 1) vector of regressors 

(3.31)zit = ((xlit - -tij) I ... i 
(Xkit 

- -T-ki) i 
AXlit-p) 

... I 
Axkit-P) 

... i 
AXkit+p) /- 

Here git = (yit - gi), jýjj F"4" and so on. The subscript 1 outside the T 

square brackets indicate that we are considering only the first element of the 

vector for the pooled slope coefficient. The estimator can also be written 

simply as 

(3.32) 

where #Lj is the conventional DOLS time-series estimator applied to the ith 

member of the panel. 

Let a, 2 [T- I (ET 
1 

4ý, 
t) 

2 : -- liMT--+,,. E ýt= V] be the long run variance of the residu- 

als from the DOLS regression. This can be estimated using standard HAC 

methods, such as the Newey-West HAC estimator shown below. Then the 

t-statistic for the Pedroni estimator is written 

(3.33) N-"Ejlý 
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where 

t (&-2ET 
lZitZ%t)0*5, (3.34) 

and zit is as above. For estimation purposes the following HAC Newey and 

West (1987) standard error estimator, with the Bartlett kernel, was used for 

the above DOLS estimator 

('ETJZ 
tZ/ T t= i it 

-1 
X 

(ET 2t + Eq t= Jbi -1 
1- ET vvv 

S 
t= vit it-8 + Nt-8 Nt 

q+ 

(3.35) 

The Group-Mean FMOLS estimator is given by 

1-1 
(3.36) 4ýFM 

= N-'Ejlý= 4; 
Mi 

where 4pmi is the conventional FMOLS time-series estimator. 

The associated t-statistic is 

(3.37) %PM = N-"Ejlýjt 4mi, 

3.3 The Estimation of a Panel Data Cointe- 
grating Regression with Cross-Sectional 
Dependence 

In chapter 1 we dealt with panel unit root tests with cross-sectional depen- 

dence. When estimating a panel cointegrating regression the same problem 

of dependencies between cross-sectional units occurs violating the indepen- 

dence assumption of the panel. The problem of estimation and inference 
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in panels with cross-sectional dependence has been considered recently by 

Pesaran (2002,2005b), Coakley, Fuertes and Smith (2002), Phillips and Sul 

(2003) and Bai and Kao, (2005). However in all the above papers only Bai and 

Kao (2005) deal specifically with, and present results for, the cointegrated 

panel data regression model. That is the results and proofs of all the other 

papers are for the model with stationary regressors, although they state the 

models can be extended to I(l) regressors. Phillips and Sul (2003) deal with 

three main problems in their paper, which concerns dynamic panel data esti- 

mation, cross-section dependence, homogeneity restrictions and small sample 

bias. Pesaran (2002,2005b) uses a factor model to deal with the cross-section 

dependence problem. Similar to his panel unit root test discussed in chapter 

1, Pesaran proposes eliminating the unobserved common factors by adding 

cross-section aggregates into the regression. Coakley, Fuertes and Smith 

(2002) (CFS) also use a factor model to cater for omitted global variables 

or common shocks (factors) correlated with the regressors proxying these by 

the principal components of the residuals from an auxiliary regression. Fi- 

nally, for their panel cointegrating regression Bai and Kao (2005) propose a 

two-step FMOLS and continuous updated FMOLS (CUP-FM) estimator for 

the cross-sectional dependence, which they model by factors. 

More recently Moon and Perron (2004), Mark, Ogaki and Sul (2005) and 
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Westerlund (2005), have used a Dynamic SUR estimator (DSUR), as in 

Phillips and Sul (2003), in some empirical applications (and Monte Carlo 

simulations) using panels with cross-sectional dependence. These panel coin- 

tegration estimators are useful in the case where N is small relative to T and 

so complement the panel estimators studied in this chapter which are for 

use with large N. Mark, Ogaki and Sul (2005) and Westerlund (2005) note, 

along the lines of Saikkonen (1993), that systems DOLS (SDOLS) estima- 

tion is more efficient than DOLS estimation. This results when one augments 

each equation's regression with leads and lags of regressors not only of the 

same equation but also of others. Similarly they distinguish between system 

DSUR (SDSUR) and DSUR noting the former is more efficient in the pres- 

ence of cross-equation endogeniety. Both DSUR models cater for long run 

cross-equation correlation in the equilibrium errors. Thus Westerlund (2005) 

obtains the ranking SDSUR < SDOLS < DSUR < DOLS where 

means 94more efficient than". 2 Westerlund (2005) also considers new meth- 

ods for the selection of lag lengths using data dependent information criteria 

such as the Schwartz Bayesian IC (SIC), the Akaike IC (AIC) and others. 
'All three papers report similar efficiency rankings. 
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3.3.1 The Bai and Kao Panel FMOLS Estimator 

Consider the fixed effects model of equations (3.1) and (3.2). To model cross- 

sectional dependencies, Bai and Kao, (2005) use the following factor model 

for the error term 

(3.38) uit = A, ýFt + vit 

where Ft is an (r x 1) vector of common factors, which we assume random, 

Ai is an (r x 1) vector of factor loadings and vit the idiosyncratic error term. 

Now let wit = (F/ mt cl)/ t2s) it 

The long run covariance matrix Qj of wit (see Bai and Kao (2005)) is now 

(3.39) Di = Eý'- E(wijwio J= 00 

(3.40) = Ei + Iri + ri 
QFi QFui OFei 

(3.41) QuFi Slui Oud 

QeFi Peui Od 

The auto-covariance matrix of wit is now 
rFi rFui rFei 

(3.42) ri = EjtjE(wjjwj/O) ruFi rui r,,, i 
reFi r, 

ui 
r, i 

and Ej is now the contemporaneous covariance matrix given by 
EFi EFui EFei 

(3.43) Ej = E(wjowjO EuFi Eui Eud 
EeFi Ecui Ed 

I 

The one-sided long run covariance is now 

(3.44) Ai = si + ri 

73 



(3.45) EjtoE(wijwio 

(3.46) with Ai 
Abi Abei [ 

Aebi Ad 

The FMOLS estimator is formed by making the following corrections: 

The endogeniety correction is obtained bY 

(3.47) Pi+t ̀ Yit + kei) 

The serial correlation correction has the form 

(3.48) "': Abei 
bei 

Therefore the feasible two-step FMOLS estimator is 

ýV 
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ýV 
1 FT 1 

(X, 
t ýýi) (Xit -1 [F + 

Xt (Xit T &M 
t= J= t= iF 

(3.49) 

The t-statistic for an element of ý,,, is 

(3-50) 'OFM = 

VN-T (4jFM 

sopm 

where 
tOFM is the t-statistic of 4jFmt which is the jth element Of 

4FM. Also 

1n 
(3.51) sj2AFm = M-1 HM -E 

(WIFAýAi + Sý ^ 
ei uxilsl n-400 n) 

the jth diagonal element of 
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Here A, F, Ej and Pi are consistent estimates of A, F, Ej and Sli obtained in 

the first estimation step. To estimate Ai and F the principal components 

method of Bai and Ng (2002,2004) is used. 

Let A= (Ali A21 
... ) 

ANY and F= (FI, F2,..., FT)l and then write Z= 

(fib fi2) 
... I 

fiN)l a (T x N) matrix and fij = (f4l 
i 
f42) 

... ) 
f4T) I 

where fiit = 

Yit - &i - Xý , tý, with a consistent estimator ý. The estimated (T x r) factor 

matrix denoted P is -, IT-- times eigenvectors corresponding to the r largest 

eigenvalues of the (T x T) matrix ZZI and (P1. P)-l. P1Z = 
E-4 is the T 

corresponding matrix of the estimated factor loadings. 

While E and Q can be estimated as follows 

(3-53) t=1 
tb/ EE Ibit it NT i=1 t=1 

where Pit = fiit - 
ýj/ Pt and tbit = (-Pt/, Oit) Axjý Also 

St 
NTT 

(3.54) C2 =7EE tbittbi/t + 7; E (7ýiobit-, + bit-, 17vit) 
i=1 

I 

t=1 1-1 t=-r+l 

where zu, ' is some weight function or kernel. 4 Phillips and Moon (1999) 

show that 1ý and t are consistent for Q and E. These estimators are also 

valid in the case without cross-sectional dependence in § 3.2. Also we have 

assumed here the number of factors r is known. However if this is not the 

case Bai and Ng (2002) have shown that the number of unknown factors k 
'fiit residuals estimated from equation by equation OLS regressions. 
4 The Bartlett kernel with 4 lags was used in the computations. 

75 



can be found by minimising an information criterion (IC), 

(3.55) IC(k) = log(V(k)) +k 
N+T 

log 
NT ( 

NT 
) (N 

+ T') 

where V (k) = --L Eý' 1 E' 12 NT 2= t= 
(fiit 

- 
kpol 

- 

3.4 An Empirical Application 

In our empirical multi-country consumption study we cover a much wider 

range of panel cointegration estimators and examine more candidate I(1) re- 

gressors than have previously been examined in such studies. Similar less 

detailed empirical studies have come from Pesaran, Shin and Smith (1999), 

Sarantis and Stewart (1999) and Larsson, Lyhagen and Lothgren (2001). In 

Pesaran, Shin and Smith (1999) alternative5 estimators to existing panel es- 

timators are developed called Pooled Mean-Group estimators. These can 

be used with stationary and nonstationary regressors. Pesaran, Shin and 

Smith use these to estimate aggregate consumption functions for 24 OECD 

economies over the period 1962-93. They find a long run equilibrium relation- 

ship in this panel cointegration model between the log of real consumption 

per capita and the log of real disposable income per capita and inflation. 

Sarantis and Stewart (1999) test for stationarity in the consumption-income 

ratio using a panel of 20 OECD countries and panel unit root tests. Their 

'Termed as intermediate estimators between Kao's and Pedroni's estimators. 
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findings are that the ratio is generated by a nonstationary stochastic pro- 

cess and hence consumption and income do not form a long run equilibrium 

relationship. Larsson, Lyhagen and Lothgren (2001) estimate a panel con- 

sumption function using the panel error-correction methods developped in 

their paper. They use the same variables and definitions as Pesaran, Shin 

and Smith (1999) for a panel of 23 OECD countries over the period 1960- 

1994. They find that using individual country trace tests 17 countries in the 

panel select a rank of 1, whilst their panel test selects r=2 as the largest 

common rank. Thus showing good support for the cointegrated panel model. 

3.4.1 The Data Set 

We use a balanced panel of annual observations from 1961-1999 for 20 OECD 

countries obtained from the World Bank Development Indicators. So N= 20 

and T= 39. The variables are: 

1) Real Consumption Expenditure Per Capita (US$). 

2) Real Gross Domestic Product Per Capita (US$)6 (+). 

3) Interest Rates (-): Subject to availability these were the short-term 

24 hr Discount Rate (otherwise the 30 day Treasury Bill Rate 

or the Long-Term 10 year Government Bond Yield). 

4) Inflation is the change in the logarithm of the (CPI) x 100 (-). 
6 The symbols in brackets indicate the expected sign of the coefficient. 
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5) The ratio of Real Liquid Assets to Real GDP (US$) (-). 

Our estimation equation is 7 

Real CONitlNit=ai + Jit+Real GDPit/Nit+Real LAit/Real GDPit + uit. 

Here Real Consumption Expenditure Per Capita is final consumption ex- 

penditure deflated by the GDP deflator and divided by total population, 

similarly for the others, etc. Real Wealth or Real Liquid Assets consisted 

of Real National Savings plus Real Time, Savings and Demand Deposits at 

commercial banks and also when available the Real Stock of Bonds at com- 

mercial banks. The rationale behind the last variable is that there is assumed 

a desired ratio of real liquid assets to real GDP and that if the actual ratio 

falls short or exceeds the desired or equilibrium ratio, then consumers ex- 

penditure will either be constrained or expanded until equilibrium is reached 

again. Inspecting the time-series graphs of the ratio of real liquid assets to 

real GDP in Figure 3.09 of Appendix 4 we see the actual ratio falling in 

the majority of the countries in the panel (16 out of 20). This is expected 

to exert a negative influence on consumers expenditure as households con- 

strain expenditure in order to boost savings in order to maintain a desired 

equilibrium level of real liquid assets to real GDP. In calculating the ratio 

of real liquid assets to real GDP we divided real liquid assets per capita by 

7Two other regression formulations are used where Real LA/Real GDP is replaced by 
interest rates and inflation variables. 
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real GDP per capita. Since the population variable, Nit, appears in both the 

numerator and denominator it is cancelled out. To compute real national 

savings we multiPlied real GDP by the national savings rate (% of GDP). 

3.4.2 The Estimation ResultS8 

Table 3.01 Individual Countrv ADF Reizression Estimates 
COUNTRY Int. Ratet t-stat lag Inft t-stat lag LAtlyt t-stat ý9: 1 

Australia -1.614 1 -1.260 4 -2.207 OT 
Austria -3.527 

b 3 -1.378 4 -1.971 OT 
Belgium -1.189 2 -3.141b 1 -1.386 0 
Canada -2.329 1 -1.962 1 -2.849 OT 
Denmark -1.368 3 -1.044 2 -1.758 1 
Finland -0.676 1 -2.041 1 -3.070 OT 
France -2.236 1 -1.526 1 -2.087 OT 
Greece -1.522 1 -1.474 2 -1.238 OT 
Ireland -0.980 4 -2.298 1 -1.672 OT 
Italy -1.340 3 -1.918 3 -2.884 1T 
Japan 0.509 4 -1.324 2 -2.205 1T 
Korea -2.747 1 -2.871 1 -3.099 1T 
Netherland -3.415 

b 3 -1.220 4 -2.303 0 
Norway -1.583 3 -0.803 4 -3.118 OT 
Portugal -1.722 1 -1.165 4 -1.691 4 
Spain -1.317 2 -1.678 3 -2.392 OT 
Sweden -0.934 1 -0.970 2 -2.174 1 
Switzerland -2.327 1 -3.141b 1 -1.845 1 
U. K. -2.586 1 -1.290 3 -3.702 

b 1T 
U. S. -2.674 1 -3.084 

b 1 
-4.121b 1T 

Our consumption model then has similarities to a permanent income hy- 
'This chapter makes extensive use of the Ox progamming language for the compu- 

tation of the FMOLS, DOLS and OLS econometric estimators. Other software appli- 
cations that are available include the Nonstationary Panel Time series (NPT) suite of 
programs written in Gauss by Professor Chihwa Kao and available for public use at 
http: //www. maxwell. syr. edu/maxpages/faculty/cdkao/working/npt. html. See Appendix 
2 for more details on econometric software packages. 
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pothesis model. In the initial stages a choice was made on the formulation 

of the consumption model. The linear form was opted for after a number of 

model selection tests (namely Bera and McAleer (1982) tests and the tests of 

loglinear vs linear specification of MacKinnon, White and Davidson (1983)), 

indicated the linear form better suited the data. 

Table 3.02 Individual Country ADF Regression Estimates 
COUNTRY ContINt t-stat I lag ytINt t-stýý Pýfl 

Australia -2.248 1T -2.435 1 
Austria -2.807 1T -3.245 4T 
Belgium -3.154 1T -3.001 1T 
Canada -3.234 1T -3.460 2T 
Denmark -2.773 1T -2.996 4T 
Finland -3.734 4T -4.233' 1T 
France -2.643 1T -2.591 1T 
Greece -2.688 1T -2.598 1T 
Ireland -2.120 1 -0.845 OT 
Italy -2.631 1T -2.619 1T 
Japan -1.132 3T -1.392 3T 
Korea -2.690 0 -2.582 OT 
Netherland -3.391 4T -3.206 4T 
Norway -2.468 1T -2.592 1T 
Portugal -2.732 1T -2.502 1T 
Spain -2.833 1 -2.678 1 
Sweden -2.792 4 -2.714 4 
Switzerland -3.352 4T -3.241 4T 
U. K. -3.002b 1 -3.333b 1 
U. S. -2.152 1T -2.601 1T 

All the initial time-series were pre-tested for nonstationarity using the ADF 

tests described in chapter 1. They were practically all found to be I(1) vari- 

ables and so the Engle and Granger (1987) two-step modelling stategy could 
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be applied to the panel data to undertake a panel cointegration consumption 

analysis. First test for panel unit roots and cointegration, if successful then 

estimate the panel cointegration vectors. The results of the country ADF 

tests are shown in Tables 3.01 and 3.02. Only one or two countries in each 

panel were found not to support the unit root hypothesis. These are Austria 

and the Netherlands in the interest rate panel, Belgium, Switzerland and 

the US in the inflation panel, the UK and the US in the ratio of real liquid 

assets to real GDP panel, the UK in the real consumption per capita panel 

and finally the UK and Finland in the real GDP per capita panel. All these 

except the Finland are significant at the 5% level. In order to increase the 

power of the univariate unit root tests panel unit root tests were undertaken. 

The individual country ADF tests were further supported by results from the 

Im, Pesaran and Shin (2003) panel unit root tests. All the variables in the 

panels were found nonstationary at the 1% level. The results of these tests 

are found in Table 3.03. In order to avoid the spurious regression problem 

we conduct panel cointegration tests. The panel cointegration tests of Kao 

(1999)9 and Pedroni (1999)'0, described in chapter 2, were conducted. From 

the results of the Kao" tests in Table 3.04 we see the null hypothesis of no 
9We use all 5 Kao test statistics in the tests. 

10AR seven statistics are reported here. 
"We use the pooled fixed effect DOLS regressions for the Kao tests. 
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cointegration being rejected by all the test statistics for all the regressions. 

Table 3.03 IPS Panel Unit Root Tests 
1 1 yitlNit Conit/Nit L. A. it/yit I I. R. it I Infit ] 

Tr 1 1 -0.6479 -0.4928 -0.8321 1 -1.399435 1 -1.459278] 

T. qhb- RM Wnn Pnnp. l Cnintpvrafinn Tpsts 
Regression 1 1 DFt-stat I DFy-stat I DFt*-stat I DF*, -stat I ADF-stat 

L. A. it/yit 63.260 a -9.1948a 38.214a -17.0 30-700a 
I. R. it 66.612a -7.6548a 41.215a -16.464a 
Infit 68.614a -6.8446a 42.987a - 15.636a 

Tnblp ,An. r, Pprlrnini Pnnpl (Ininf. p. crrntion Ti-. qt-q 
Regr Panel-v Panel-p Panel-t Group-p I Group-t Panel-t-P Group-t-"] 

Con+Tr 
Con 

1.4532' 
-0.6340 

-2.8154 a 
-1.1884 

1.7879 
3.6991 

0.0316 
1.6821 

5.3425 
7.3742 

4.2481 
7.2856 

-1.7j82 
-0.6232ý 

The results of the Pedroni tests are shown in Table 3.05, to compute these 

statistics one needs an estimate of the lag truncation parameter in the Newey- 

West variance estimators. On inspection of the graph of fiit, in Figure 3.21 

of Appendix 4, a lag length of 4 was chosen for the kernel functions. How- 

ever, as in chapter 2, the parameter ki could equally have been set to zero as 

indicated by the autocorrelation, functions for Pit and ýit, in Figure 3.22 and 

Figure 3.23 12 
. When constructing the FMOLS estimators one also needs to 

set the lag length for the Barltett scheme (or any lag window) in the Newey- 

12 Equation by equation OLS regressions were used to obtain the residuals for the Pedroni 
tests. 
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West (1987) HAC estimator. In this case one inspects the cross-correlation 

function of the residuals fzit and iit. This is unlike the case for the DOLS es- 

timator 13 where one only needs to inspect the autocorrelation funtion of the 

residuals bit. A visual inspection of the graph of residual cross-correlations in 

Figure 3.25 in Appendix 4 indicated that a lag length of 4 periods was neces- 

sary in the FMOLS cases. As mentioned, in the analogous case for the DOLS 

estimator, the ACIT gave us a lag length of 3-4 periods (4 again chosen), see 

Figure 3.26 in Appendix 4 14 
. The results of the Pedroni tests in Table 3.05 

are again less conclusive. In the model with a constant only, 3 of the test 

statistics rejected the null of no cointegration, one at the 1% level, one at the 

5% level and one at the 10% level. In the model with a constant and trend 

no test statistics rejected the null of no cointegration. The poor perfomance 

of the Pedroni tests which was apparent in chapter 2 is attributed to the 

method by which the residuals are obtained, ie equation by equation OLS, 

and it is concluded perhaps alternative estimators may give better results. 

We can conclude on the strength of our Kao tests that there is a long run 

relationship between real consumption expenditure per capita and real GDP 

per capita and either of the other three candidate panel regressors. 
13 In all the DOLS regressions a uniform lag and lead of three periods was used with the 

differenced regressors. 
14 The residuals in Figure 3.26 are from the group-mean DOLS regressions, without a 

trend, for L. A. 's. 
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A number of regression diagnostic tests were carried out to check for speci- 

fication errors. In the individual regressions for the mean-group estimators 

(and pooled regressions) a D. W. test was carried out for each regression. 

In each case the time-series showed strong residual autocorrelation, most 

D. W. statistics being below 1.000 (nearly all < 1.5). This indicates that the 

serial correlation and endogeneity problems in cointegration regressions are 

quite serious and should be tackled at all times using the HAC Newey-West 

or similar estimators. This method was used to compute standard errors 

and t-statistics for every cointegration estimator. Also an F-test on the ex- 

planatory power of the regressors was carried out for each regression. With 

F-statistics of F(k-1, T-k) = 
F(2,36), in the individual regressions for the group- 

mean estimator and F(k-1, N(T-k)) :` F(2,720) in the pooled regressions, we had 

critical values of F(2,36) = 3.26 and 5.25 and F(2,720) = 3.00 and 4.62 at the 

5% and 1% levels of significance, respectively. These critical values are for 

the FMOLS regressions, the DOLS cases are analogous. These were greatly 

exceeded by computed F-statistics of 3 or 4 significant figures before the dec- 

imal point in most cases. These F-statistics, along with the D. W. statistics 

and R' statistic are shown together in the individual country regressions. 

The R' statistics were usually quite high (around 0.9 for the both the group- 

mean and pooled estimators). This indicated that the models were a very 
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good fit of the data. The individual country regressions which go to make 

up the group-mean estimates for DOLS and FMOLS are reported in Tables 

3.34-3.57 in Appendix 3. 

A panel Chow test for the homogeneity of slope coefficients was also carried 

out using an F-statistic 

ele - el el - el e2 ---- e' eNAN - 1)(K + 1) 
(3-56) Fhow =112N 

ele, + e'e2 + e' eNIN(T -K- 1) 2N 

Under HO : 3i =3 Vi F- F((N-1)(K+1), N(T-K-1))- Where eýej are the 

residual sum of squares from the individual country FMOLS Within esti- 

mates of the model, whilst e'e are the residual sum of squares for the pooled 

FMOLS Within estimates of the fixed effects model. The F(57,720) critical 

values at the 1% and 5% significance levels were 1.54 and 1.36, respectively. 

Our computed F-statistics for the Real LA/Real GDP, Inflation and Interest 

Rates regressions, respectively, were 1.4540,0.83709 and 0.76138. Hence we 

accept the hypothesis of a common slope for all countries, in all the regres- 

sions, at the 1% significance level. This result should be viewed with caution 

since the F-test is only applicable in the case of homoscedastic residuals 

and strictly exogenous regressors. Recently Phillips and Sul (2003) proposed 

homogeneity tests in dynamic panels with cross-sectional dependence using 

modified Hausman tests. Also Pesaran and Yamagata (2005) recently devel- 

oped tests for slope homogeneity in large panels using a Swamy type test. 
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However both these tests are designed more for stationary dynamic autore- 

gressions. Thus there does not seem to be a test for homogeneity that is 

easily applicable to our panel cointegration model-" 

In Tables 3.06-3.33 we 16 have the results of our panel cointegration study. 

The analysis was conducted in three parts. In Part A, Tables 3.06-3.15 relate 

to the estimation of the model with a constant intercept and trend. In Part 

B, Tables 3.16-3.25 relate to the estimation of the fixed effects model with 

individual-specific intercepts and trends. Finally in Part C, in Tables 3.26- 

3.33, we have the results of the estimation of the fixed effects model with 

individual-specific intercepts and trends, allowing for cross-sectional depen- 

dence. 

Unfortunately both the Kao pooled panel FMOLS estimators (heterogeneous 

and homogeneous) perforned badly in the regressions. In the former, numer- 

ous problems were encountered in trying to compute the correction factor 

discussed in § 3.2.1. Also with the Kao homogeneous pooled panel estimator, 

not including individual-specific long run residual covariances led to a sharp 

deterioration in the results. These findings are not suprising as both Pedroni 

(2000) and Kao and Chiang (2000) strongly recommend not using the pooled 

FMOLS estimators in their papers based on their small sample performance 
"A fully modified Wald test maybe the most appropriate. 
16 See the end of the chapter for Tables 3.06-3.33. 
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in Monte Carlo simulations. A slight modification to the Kao and Chiang 

pooled homogeneous estimators estimated with individual-specific long run 

residual covariance matrices had the effect of obtaining results comparable 

to the group-mean estimators. We also note that Kao and Chiang (2000) 

and Pedroni (2000) use two different methods to compute their t-statistics. 

Kao, and Chiang (2000) use unweighted estimators that use the long run 

asymptotic innovation covariance matrix for their t-statistics. This is shown 

in § 3.2.1, equation (3.23). Pedroni (2000) uses weighted estimators that 

use weighted finite sample estimates of the regressor covariance matrix for 

their t-statistics, with weights that come from the long run asymptotic in- 

novation covariance matrix. This is shown in § 3.2.1, equation (3.26). As 

mentioned in § 3.2.1, a modified Pedroni (2000) estimator is used in Part A, 

as shown in equation (3.27), to obtain t-statistics for the constant intercept 

and trend terms in the pooled models. In Part B and Part C the Kao and 

Chiang (2000) estimator is used for the t-statistics in the pooled models. In 

all the parts the RI figure is very high and also the F-statistics are strongly 

significant, indicating good fits of the data. However, considering the fact 

that all regressions exhibited substantial serial correlation, indicated by very 

low D. W. statistics, unreported in the main text, one can say that the OLS 

estimates have substantially biased standard errors and thus the t-statistics 
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are of little use. Thus from an inferential point of view one should direct 

attention to the DOLS and FMOLS estimates only. 

The results for Table 3.07-3.08 are similar and refer to the pooled (and mod- 

ified) Kao panel estimators of the model without a trend. In all of these 

tables for the FMOLS and DOLS estimates, we have interest rates and in- 

flation incorrectly signed. These are to be compared with Tables 3.09-3.10 

of the group-mean estimators. Both the FMOLS and DOLS group-mean es- 

timators performed well for this model with all coefficients correctly signed. 

This theme is familiar throughout the study. That is, for different groups 

of estimators, in different parts, the results tend to replicate themselves. In 

Tables 3.12-3.13 we have the model with the trend estimated. In most of 

these pooled estimates the trend is significant, however, it is usually esti- 

mated very close to zero. This is also the case for the group-mean esti- 

mates in Tables 3.14-3.15. Again the group-mean estimators have the correct 

signs on coefficients. The significance of most of the important estimates in 

Part A is good. The MPC ie, real GDP per capita coefficient, is always 

0< MPC < 1, it is always very strongly significant and correctly signed for 

all estimators. For example for group-mean DOLS, in Table 3.09 we have 

MPC's of 0.73297,0.73390 and 0.730221 as with a priori expectations, and 

t-statistics of (325.60), (274.91) and (214.51) respectively. Thus the group- 
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mean estimators do better in terms of accuracy and are more efficient in 

the models with a constant only. In comparing the DOLS and FMOLS esti- 

mators in Part A there is often very little difference. For both groups both 

estimators deliver stable estimates of the regression parameters, of just below 

unity in absolute value, for all coefficients excluding the deterministic terms. 

However the group-mean estimates often push the real LA/real GDP coeffi- 

cient to above 1. A slight defect is noted with the group-mean estimator in 

Table 3.09. With the group-mean estimators here the estimated coefficient 

and t-statistic have the opposite sign. 17 

The assumption of a fixed intercept and trend in the model of Part A is 

very restrictive. We we now relax this assumption and in Part B and Part 

C we estimate a fixed effects model with individual-specific intercepts and 

trends. To cater for the heterogeneous intercepts we transform the data into 

deviation-from-mean form. These FMOLS and DOLS estimates are termed 

"demeaned", in the results. To cater for the heterogeneous intercepts and 

trends we first transform the data into deviation-from-mean form and then 

we detrend the regressions. The following detrending procedure is used. First 

regress Real CONitlNit on an intercept and time-trend and obtain the resid- 

uals, say elit. Second regress Real GDPit/Nit on an intercept and time-trend 

"When averaging the individual country t-statistics when they are close to zero, positive 
and negative values tend to cancel, leading to perhaps the opposite sign to the coefficient. 
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and obtain the residuals, say e2it. Third regress either of Real LAit/Real 

GDPit, Inflationit or Interest Ratesit on an intercept and time-trend and ob- 

tain the residuals, say e3it. Finally regress elit on e2it and e3it, which are 

free of the influence of the linear time-trend, to get the true slope coeffi- 

cients required. These FMOLS and DOLS estimates are termed "demeaned 

and detrended", in the results 18. In Tables 3.17-3-18 we see that allowing 

for differing intercepts improves the estimation of the inflation coefficients, 

in the pooled FMOLS estimates, which are now correctly signed and sig- 

nificant. Hoever it is still incorrectly signed in the pooled DOLS estimates 

as is interest rates for both estimators. Contrast this with the group-mean 

estimates in Tables 3.19-3.20 where all the coefficients are correctly signed 

except for interest rates in the DOLS regression, and all the coefficients sig- 

nificant except for interest rates in the FMOLS regression. For example, 

for group-mean DOLS, in Table 3.19, we have MPC's of 0.74035,0.74491 

and 0.75483 with t-statisics of (259.75), (190.34) and (207.21) respectively. 

A comparison of Tables 3.22-3.23 with Tables 3.24-3-25 in the model with a 

trend gives very similar findings as before. The group-mean estimators do 

much better in terms of accuracy, but now the pooled estimators are more 

efficient in the models with a trend. Finally comparing DOLS with FMOLS 

"In some of the group-mean estimates the regressions were simply estimated with trend 
terms. 
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for both groups in Part B we see there is again very little difference between 

them, perhaps with FMOLS having slightly more significant estimates and 

more often the correct signs on coefficients and t-statistics. Thus they are 

slightly more efficient and accurate. 

Finally Part C contains only the pooled FMOLS estimators of Bai and Kao, 

(2005) for the fixed effects model with individual-specific intercepts and 

trends. These extend the basic framework to cater for cross-sectional de- 

pendence. The model is estimated with 5,7,9 and 12 factors. Here again 

being a pooled panel estimator one notices again the incorrect sign on inter- 

est rates for all regressions. The results in Tables 3.26-3.29 refer to the model 

with a constant only. We can see that in allowing for cross-sectional depen- 

dence we reduce the significance of the MPC coefficients, although all are 

still with a priori expectations and correctly signed. For example, for pooled 

FMOLS, in Table 3.26, we have MPC's of 0.73525,0.73877 and 0.74491 with 

t-statistics of (62.682), (75.523) and (72.043) respectively. The coefficients 

of Real LAit/Real GDPjt and Inflationit are also significant and correctly 

signed. In Tables 3.30-3.33, for the model with a constant and trend, we 

have similar results as before, except inflation is now insignificant in all the 

regressions. In both the models, with and without a trend, the estimated 

regression improves as we reduce the number of factors from 12 to 5. This is 
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also supported by the IC criterion. 

To conclude we can summarise the results of each part. It is clear that the 

pooled panel estimators are more unreliable estimators when compared to 

the group-mean estimators, but are equally efficient. This is generally the 

case for both models with and without a trend term. It is also apparent 

that most estimators improved in performance as we moved from the mod- 

els of Part A to those of Part B indicating that the constant intercept and 

trend'9 assumption is too restrictive in this study. In ranking the estima- 

tors FMOLS appears to be more reliable at extracting strong signal-to-noise 

ratios throughout the samples and is to be preferred. But one must be care- 

ful to note that the FMOLS and DOLS results are very similar, in both 

the pooled and group-mean estimates. This raises the minor but important 

point of nonparametric versus parametric estimation. As in this study, Pe- 

droni (2000) finds FMOLS estimators more robust and excelling in panels 

where there is considerable heterogeneity. He also prefers the group-mean 

estimators as in his Monte Carlo studies they exhibit much -less size distor- 

tion compared to other estimators. DOLS estimators do well when there is 

not a lot of data available for estimation. However this is not a problem 

when using panel data. In most cases, as shown above, the far more stable 
191n chapter 5 we derive asymptotic results for this simple model. 
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group-mean estimators should be preferred on the grounds that point esti- 

mates are much more accurate, and equally efficient. As a likely compromise 

between nonparametric and parametric estimators, the group-mean FMOLS 

estimator could be ranked as best, in this study, followed by the group-mean 

DOLS estimator with the pooled heterogeneous FMOLS and DOLS estima- 

tors following suit. Yet, when also considering cross-sectional dependence, 

(and given a well specified model) the performance of the Bai and Kao (2005) 

pooled FMOLS estimator is superior to the group-mean FMOLS and DOLS 

estimators. This may be the estimator's redeeming merit in large N panels 

to which the DSUR estimators cannot be applied. 
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Part A 

Model with constant only 20 

Tnbla q or, Pnni.,:, r] Pnnpl OTA 1P.. qfimnf. p. q 

Regression 
Constant 10.757 0.54683 -3.4333 

(0.23181) (0.016653) (-0.092045) 
Real GDPit/Nit 0.74997 0.75216 0.75483 

(5.8210) (5.5534) (5.7722) 
Real LAit/Real GDPit -0.28553 

(-0.24678) 
Inflationit 0.19457 

(0.069821) 
Interest Ratesit 0.60222 11 

1 (0.20615 
R2 0.99696 0.99663 0.99685 
F-statistic 

1 
127230 

1 
114770 123130 

Tnhlp 107 Pnnl, -rl Pnnt-I T)OTA Estimates 
Regression 
Constant 8.7307 -1.3052 -5.4830 

(84.071) (-8.2932) (-28.397) 
Real GDPit/Nit 0.75452 0.75785 0.75891 

(145.05) (136.23) (133.88) 
Real LAit/Real GDPit -0.24600 

(-10.752) 
Inflationit 0.32595 

(11.042) 
Interest Ratesit 0.77158 

(27.138) 
R2 0.99712 0.99692 0.99711 
F-statistic 16531.0 15437.0 16479.0 

20The dependent variable in Part A regessions is Real CONitINit. 
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T. qhlp R nR Pnnlprl Pnnpl VX4()T,. q 

Regression 
Constant 8.9684 1.8440 -3.2218 

(86.359) (11.717) (-16.689) 
Real GDPit/Nit 0.74970 0.75157 0.75593 

(144.13) (135.10) (133.35) 
Real LAit/Real GDPit -0.22860 

(-9.9909) 
Inflationit 0.029588 

(1.0023) 
Interest Ratesit 0.58181 

(20.466) 
R2 0.99609 0.99600 0.99672 
F-statistic 91770.0 89543.0 109510 

Table 3.09 GroUD Mean Panel DOLS Estimates 
Regression 
Constant 31.737 4.3280 5.8599 

(29.424) (3.7686) (1.5210) 
Real GDPit/Nit 0.73297 0.73390 0.730221 

(325.60) (274.91) (214.51) 
Real LAit/Real GDPit -0.95989 

(-29.720) 
Inflationit -0.42049 

(-9.2602) 
Interest Ratesit -0.12954 

(2.1487) 
Average R2 0.99949 0.99952 
F-statistic - - 
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Table 3.10 Grout) Mean Panel FMOLS Estimates 
Regression 
Constant 31.735 5.4750 1.9351 

(26.910) (4.9986) (0.19568) 
Real GDPit/Nit 0.74074 0.73296 0.74583 

(306.13) (233.82) (206.09) 
Real LAit/Real GDPit -1.0586 

(-30.325) 
Inflationit -0.57345 

(-11.637) 
Interest Ratesit -0.16471 I1 

1 (-0.84555 
Average RIDT 0.99777 0.99738 0.99729 
F-statistic 

1 I- 1 

- 

Model with constant and trend 

Tablp 3.11 Ponlt-. fi Panp. ] OLS F, -, timntt-q 
Regression (i) I (ii) I (iii) 7] 

Constant 10.103 -0.58641 -3.5571 
(0.20499) (-0.014984) (-0.089381) 

'ftend 0.045360 0.066262 0.010671 
(0.038975) (0.052884) (0.0089185) 

Real GDPit/Nit 0.74867 0.75015 0.75452 
(5.6340) (5.3462) (5.5680) 

Real LAit/Real GDPit -0.28562 
(-0.24722) 

Inflationit 0.22693 
(0.079745) 

Interest Ratesit 0.59852 
(0.20287 

R' 0.99696 0.99664 0.99686 
F-statistic 84960.0 76830.0 81996.0 
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Table 3.12 Pooled Panp. ] nOLIS F,. qfimqtp. q 
Regression (i) (ii) (iii) 

Constant 7.7178 -1.8446 -5.1634 
(93.802) (-13.034) (-33.020) 

Trend 0.057686 0.029612 -0.031010 
(16.090) (4.8020) (4.5512) 

Real GDPit/Nit 0.75353 0.75716 0.75977 
(144.86) (136.10) (134.03) 

Real LAit/Real GDPit -0.24433 
(-10.679) 

Inflationit 0.33928 
(11.493) 

Interest Ratesit 0.78946 
(27.771) 

R2 0.99714 0.99692 0.99712 
F-statistic 15612.0 14522.0 15504.0 

Tihlp. '1-1. 'l Pnnlprl Pnni-. 1 FMOTA Fqti*mnf. p.. q 
Regression (i) I (ii) I 

Constant 8.3540 0.78829 -2.5171 
(101.53) (5.5701) (-16.097) 

TYend 0.057666 0.042487 -0.0032775 
(16.085) (6.8898) (-0.48102) 

Real GDPit/Nit 0.74761 0.75013 0.75432 
(143.73) (134.84) (133.07) 

Real LAit/Real GDPit -0.23127 
(-10.108) 

Inflationit 0.099043 
(3.3551) 

Interest Ratesit 0.52417 
(18.439) 

R 0.99620 0.99650 0.99685 
F-statistic 61148.0 66469.0 73873.0 
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Table 3.14 Group Mean Panel DOLS Estimates 
Regression (i) I (ii) I (iii) I 

Constant 34.710 10.009 8.2637 
(28.911) (4.1494) (4.5482) 

Trend -0.015059 0.22578 0.035559 
(-0.23720) (3.5248) (4.2151) 

Real GDPit/Nit 0.73325 0.69601 0.73147 
(192.77) (109.33) (130.29) 

Real LAit/Real GDPit -1.0684 
(-27.350) 

Inflationit -0.27920 
(-7.2058) 

Interest Ratesit -0.19944 
(-0.34646)j 

Average R 0.99981 0.99964 0.99969 
F-statistic I -I - - 

Table 3.15 GroUD Mean Panel FMOLS Estimates 
Regression (i) I (ii) 

Constant 34.597 6.3529 5.5025 
(24.275) (5.2481) (3.1819) 

Trend 0.014125 0.088841 0.090237 
(0.019343) (4.6440) (3.8999) 

Real GDPit/Nit 0.73757 0.72551 0.72646 
(237.04) (129.90) (133.64) 

Real LAit/Real GDPit -1.1442 
(-23.970) 

Inflationit -0.24994 
(-5.8020) 

Interest Ratesit -0.13287 
(-1.6790) 

Average R2 0.99861 0.99904 0.99915 
F-statistic -I - - 
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Part B 

Fixed Effects Model with Individual Intercepts (Demeaned)21 

Table 3.16 Pooled Panel OLS Estimates 
Regression (i) I (ii) I (iii) 

Real GDPit/Nit 0.72839 0.73979 0.74255 
(7.1104) (6.2580) (6.2450) 

Real LAit/Real GDPit -0.52236 
(-0.46113) 

Inflationit -0.055607 
(-0.025880) 

Interest Ratesit 0.30029 
(0.12124 

0.99085 0.98708 0.98742 
F-statistic 1ý 42135.0 29710.0 30533.0 

Tablp 3-17 Pnnlpd Panpl T)OLS Estimates 
Regression 1 1 (i) I (ii) 

Real GDPit/Nit 0.72643 0.74055 0.74501 
(232.84) (236.72) (234.75) 

Real LAit/Real GDPit -0.50181 
(-13.979) 

Inflationit 0.033953 
(1.5418) 

Interest Ratesit 0.51476 
(16.530) 

R2 0.99137 0.98821 0.98844 
F-statistic 5484.2 4000.4 4082.3 

2'The dependent variable in Part B regressions is Real CONitINit. 
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Tnhlp. 'l lk Pnnlprl P-qnpl FMOTA Fqfimnf. p.. q 
Regression 1 1 (i) I (ii) 

Real GDPitlNit 0.72627 0.73764 0.74321 
(232.79) (235.80) (234.19) 

Real LAit/Real. GDPit -0.49518 
(-13.794) 

Inflationit -0.24787 
(-11.256) 

Interest Ratesit 0.27941 
(8.9726) 

R2 0.97387 0.96257 0.96415 
F-statistic 13789.0 9516.3 9950.2 

Table 3.19 GrOUD Mean Panel DOLS Estimates 
Regression 1 1 (i) I (ii) I (iii) 

Real GDPit/Nit 0.74035 0.74491 0.75483 
(259.75) (190.34) (207.21) 

Real LAit/Real GDPit -0.97204 
(-26.193) 

Inflationit -0.41214 
(-5.3260) 

Interest Ratesit 0.039328 
(6.035 

0.99973 0.99934 0.999 
F-statistic - - - 
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Table 3.20 Group Mean Panel FMOLS Estimates 
Regression (i) (ii) (iii) 

Real GDPit/Nit 0.74074 0.73296 0.74583 
(306-13) (233.82) (206.09) 

Real LAit/Real GDPit -1.0586 
(-30.325) 

Inflationit -0.57345 
(-11.637) 

Interest Ratesit -0.16471 
(-0.84555) 

Average R2 0.98167 0.96440 0.96229 
F-statistic - - - 

Fixed Effects Model with Individual Intercepts and Individual T! rends 

(Demeaned and Detrended) 

Table 3.21 Pooled Panel OLS Estimates 
Regression (i) (ii) (iii) 

Real GDPit/Nit 0.72460 0.72796 0.72899 
(5.5082) (4.4666) (4.7624) 

Real LAit/Real GDPit -0.87334 
(-0.43484) 

Inflationit 0.020774 
(0.010822) 

Interest Ratesit 0.14774 
(0.064128 

R 0.98373 0.97774 0.97791 
F-statistic_ 23519.0 17082.0 17219.0 
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Tnlklp 
-199 

Pnnlarl Pnlnpl nOT, q 

Regression 1 1 (i) I (ii) I (iii) 

Real GDPit/Nit 0.72226 0.72982 0.72931 
(253.69) (302.74) (308.99) 

Real LAit/Real GDPit -0.68916 
(-21.037) 

Inflationit 0.051108 
(3.0116) 

Interest Ratesit 0.12957 
(5.5944 

R2 0.98477 0.98084 0.98046 
F-statistic 3085.7 2443.5 2395.6 

Tnbla q)qPnnlx3, rl Pnindml PA4f)T.. q IP. e+l*irnn+p. q 

Regression 
Real GDPit/Nit 0.72263 0.71585 0.72193 

(253.82) (296.95) (305.86) 
Real LAit/Real GDPit -0.75215 

(-22.960) 
Inflationit -0-060837 

(-3-5849) 
Interest Ratesit 0.033609 

(1.4512 
R2 0.98255 0.97582 0.97630 
F-statistic 20839.0 14933.0 15239.0 
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Table 3.24 Groui) Mean Panel DOLS Estimates 
Regression 1 1 (i) I (ii) I (iii) I 

Real GDPit/Nit 0.74285 0.74761 0.74918 
(170.03) (121.12) (125.76) 

Real LAit/Real GDPit -1.0159 
(-18.185) 

Inflationit -0.21834 
(-3.6296) 

Interest Ratesit 0.0041037 
(2.7436 

Average R1 0.99984 0.99970 0.99975 
F-statistic - - - 

Table 3.25 Groun Mean Panel FMOLS Estimates 
Regression (i) I (ii) 1ý 

Real GDPit/Nit 0.73757 0.72551 0.72646 
(237.04) (129.90) (133.64) 

Real LAit/Real GDPit -1.1442 
(-23.970) 

Inflationit -0.24994 
(-5.8020) 

Interest Ratesit -0.13287 
(-1.6790 

Average R2 0.98261 0.98613 0.98677 
F-statistic - - - 
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Part C 

The Fixed Effects Model with Individual Intercepts (Demeaned) 22 

Table 3.26 Pooled Panel FMOLS Estimates (5 Factors) 
Regression 1 1 (i) I (ii) I (iii) 

Real GDPit/Nit 0.73525 0.73877 0.74491 
(62.682) (75.523) (72.043) 

Real LAit/Real GDPit -0-35697 
(-1.6383) 

Inflationit -0.28699 
(-3.6899) 

Interest Ratesit 0.31773 
(7.4775) 

R 0.99045 0.98678 0.98741 
F-statistic 38385.0 27621.0 29019.0 
Ic 4.1754 5.1701 5.1848 

Table 3.27 Pooled Panel FMOLS Estimates (7 Factors) 
Regession 
Real GDPit/Nit 0.73624 0.73986 0.74511 

(56.106) (74.028) (69.468) 
Real LAit/Real GDPit -0.37007 

(-1.5670) 
Inflationit -0.27485 

(-3.4784) 
Interest Ratesit 0.33903 

(7.7094) 
R2 0.99049 0.98681 0.98741 
F-statistic 38548.0 27690.0 29008.0 
Ic 4.6302 5.6056 5.6268 

22 The dependent variable in Part C regressions is Real CONitINit. 
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Table 3.28 Pooled Panel FMOLS Estimates (9 Factors) 
Regression (i) I (ii) 

-1 
(iii) 

Real GDPit/Nit 0.73590 0.74030 0.74542 
(57.610) (72.697) (68.285) 

Real LAit/Real GDPit -0.36702 
(-1.5833) 

Inflationit -0.28083 
(-3.5604) 

Interest Ratesit 0.35433 
(7.5395) 

R 0.99049 0.98680 0.98740 
F-statistic 38520.0 27659.0 28991.0 
Ic 5.0211 6.0162 6.0380 

Table 3.29 Pooled Panel FMOLS Estimates (12 Factors) 
Regression (i) I (ii) I (iii) I 

Real GDPit/Nit 0.73614 0.73999 0.74504 
(56.941) (71.541) (68.437) 

Real LAit/Real GDPit -0.38031 
(-1.6282) 

Inflationit -0.26758 
(-3.3509) 

Interest Ratesit 0.33137 
(7.1729) 

R 0.99053 0.98683 0.98741 
F-statistic 38712.0 27727.0 29013.0 
Ic 5.6507 6.6325 6.6264 
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Fixed Effects Model with Individual Intercepts and Individual Trends 

(Demeaned and Detrended) 

Table 3.30 Pooled Panel FMOLS Estimates (5 Factors) 
Regression 1 1 (i) I (ii) I : ýý 

Real GDPit/Nit 0.73436 0.72186 0.73211 
(85.336) (80.587) (76.041) 

Real LAit/Real GDPit -0.45509 
(-2.4439) 

Inflationit -0.081412 
(-1.0869) 

Interest Ratesit 0.025979 
(1.0019) 

R2 0.98224 0.97746 0.97777 
F-statistic 20464.0 16048.0 16271.0 
Ic 4.0335 5.0605 5.0575 

Table 3.31 Pooled Panel FMOLS Estimates (7 Factors) 
Regression (ii) 

Real GDPit/Nit 0.73436 0.72315 0.73294 
(81.378) (79-168) (75.605) 

Real LAit/Real GDPit -0.40592 
(-2.1228) 

Inflationit -0.080151 
(-1.0683) 

Interest Ratesit 0.029831 
(1.0487) 

R' 0.98190 0.97751 0.97776 
F-statistic 20077.0 16080.0 16268.0 
Ic 4.4557 5.4488 5.4623 
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Table 3.32 Pooled Panel FMOLS Estimates (9 Factors) 
Regression 1 1 (i) I (ii) 

Real GDPit/Nit 0.73440 0.72396 0.73370 
(81.393) (77.608) (75.174) 

Real LAit/Real GDPit -0.39585 
(-2.0675) 

Inflationit -0.076657 
(-1.0139) 

Interest Ratesit 0.037720 
(1.2711) 

R2 0.98183 0.97754 0.97776 
F-statistic 19993.0 16104.0 16269.0 
Ic 4.8509 5.8801 5.8904 

Table 3.33 Pooled Panel FMOLS Estimates (12 Fact rs) 
Regression 1 1 (i) I (ii) I (iii) I 

Real GDPit/Nit 0.73461 0.72441 0.73421 
(80.555) (77.272) (74.675) 

Real LAit/Real GDPit -0.38798 
(-2.0170) 

Inflationit -0.064364 
(-0.84854) 

Interest Ratesit 0.042730 
(1.3602) 

R2 0.98176 0.97759 0.97776 
F-statistic 19920.0 16137.0 16269.0 
Ic 5.4577 6.4789 6.4957 
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* ** **** ************* ************* * ** ** ********* ****************************** * ** * 

Notes to the Tables 

a) means significant at the 1% level, b) means significant at the 5% level. 

DF(constant only) critical values 1% = -3.64,5% = -2.95. DF(constant+trend) 

critical values 1% = -4.22,5% = -3.55. N(0,1) one-sided (LHS) critical val- 

ues 1% = -2.33,5% = -1.65. N(0,1) one-sided (RHS) critical values 1% = 

2.33,5% = 1.65. N(0,1) two-sided critical values 1% = ±2.58,5% = ±1.96. 

T denotes model estimated with a constant and trend. The figure shown in 

group-mean regressions is the Average R2 of the individual countries. Lag 

lengths chosen by Ng and Perron (1995) method. 

********************************************************************************* 
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Chapter 4 

Nonstationary Panel Data and 
the Bootstrap 

4.1 Introduction 

In this chapter we illustrate how the bootstrap can be used with nonstation- 

ary panel data. There now exists a growing literature on the application of 

the bootstrap to time series models and a natural extension of this is to the 

area of stationary and nonstationary panel data. 

Our contribution is to present a new and unique method to obtain bootstrap 

samples for constructing bootstrap confidence intervals for a panel data coin- 

tegrating regression, with the Kao and Chiang (2000) and Pedroni (2001) 

DOLS panel cointegration estimators being highlighted. Also using similar 

new and unique methods we show how the bootstrap can be used to compute 

the quantiles of a panel data AR(12) autoregression, using the Pesaran and 

Smith (1995) mean-group estimator. 
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The sections are as follows. In section 4.2 we describe the bootstrap and in 

section 4.3 the bootstrap confidence interval procedures are given. In section 

4.4 the panel data estimators are discussed. In section 4.5 the bootstrap 

is used with time-series models and in section 4.6 the bootstrap panel data 

algorithms are presented. In section 4.7 are the bootstrap applications. 

4.2 The Bootstrap 

Since its introduction by Efron (1979) the bootstrap has been the focus of 

much research in statistics and econometrics. Numerous books have appeared 

on the topic, Davison and Hinkley (1997), Efron and Tibshirani (1993) and 

Hall (1992). Some bootstrap published research papers with an econometric 

orientation are Maddala and Jeong (1993), Hall (1994), Horowitz (1997) and 

Vinod (1993). The bootstrap is a method by which you can estimate the 

distribution of an estimator or test statistic by resampling your data. You 

actually treat the data as if it were the population for the purpose of evaluat- 

ing the distribution of interest. In finite samples the bootstrap is often more 

accurate than first-order' asymptotic approximations. Thus it is a practi- 

cal method of improving upon first-order asymptotic approximations. Such 

improvements are called asymptotic refinements and lead in general to more 

'See § 4.7.3 on Efficient Estimation for a comment on the notion of first-order asymp- 
totics. 
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efficient estimation. The bootstrap can provide asymptotic refinements in a 

number of situations, eg hypothesis testing and confidence interval estima- 

tion. The bootstrap can be used to obtain confidence intervals with reduced 

errors in coverage probabilities. That is the difference between the true and 

nominal coverage probabilities is often lower when the bootstrap is used than 

when first-order asymptotic approximations are used to obtain a confidence 

interval. ' 

A formal definition of Efron's (1979) nonparametric bootstrap is as follows. 

Consider a sample of I. I. D random variables (yi, y2,..., y,, ) taken from a dis- 

tribution characterised by the parmeter 0. Let T be a statistic which is a 

function of the data, T(O). T might be the sample mean of (yi, y2,..., y,, ) for 

example. The bootstrap defines the empirical distribution function (EDF) 

of the data by assigning probability -1 to each observed value of the random n 

variables yi, Vi. Next the bootstrap draws repeated samples with replace- 

ment from the EDF, ie (yj, y2,. .., y,, ) to obtain a new bootstrap sample 

(y1* 
IAI... I Y, *, ) . We then use this sample to construct the bootstrap version 

of the statistic T, called T*. We do this B times. The distribution of T* is 

called the bootstrap distribution of T. 
'Thus the real attraction of the bootstrap is that it offers a viable alternative in two 

important situations: (i) When calculation by mathematical analysis of the distribution 
of an estimator is too difficult or too tedious. (ii) When the asymptotic approximations of 
distributions used commonly for inference are inappropriate. This may occur when using 
small samples with estimators that have only asymptotic justification for their validity. 
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4.3 Bootstrap Confidence Interval Procedures 

4.3.1 The standard or asymptotic confidence interval 

The interVaJ3 estimate for a parameter flk is just as useful as a point estimate. 

Together they tell us what the best estimate for 9k is and how much error 

we can expect. Texts such as Cramer (1946), Malinvaud (1980) and Casella 

and Berger (2002) provide general discussions of the interval estimate. Large 

sample theory is often used here with unknown confidence interval parame- 

ters substituted by their large sample plug-in estimates, which then provides 

asymptotic justification for the confidence interval. 

Assume Z N(O, 1) and let PI) be the 100ath percentile point 

of a N(O, 1) distribution as given by the standard normal table. Thus 

for a=0.025 and 0.05 then Z(O. 025) = -1.96 and z(O-0-5) = -1.645 and 

Z(l-a) = Z(O. 975) 
= 1.96 and z('-") = 1.645, respectively etc. Thus we can 

write 

Prob Z(ct) <&- 
Ok 

< Z(J-a) 1- 2a 
I 

se (4k) -I 

or 

(4.2) Prob J& 
- z(l-*)se(&) :5 Ok :5&- z(')se(4k)l =1- 2a 

3 When constructing confidence intervals for multiparameter vectors, eg 0= 
0J2,.. jk)I we get Mimensional confidence rectangles. To avoid notational diffi- 
culties we shall restrict our bootstrap confidence intervals to the single parameter case, ie 
the element & of 4. However, it should be noted that these single parameters belong to 
multiparameter vectors. 

112 



or 

(4.3) Prob 10k E [4k 
- z('-')se(4k), &- z(')se(4k)] I=1- 2a. 

In general we can write 

(4.4) [& 
- z('-')se(4k), &- z(')se(4k)] 

as the standard confidence interval for Ok with coverage probability =1- 2a. 

We can also write the confidence interval as 

(4.5) z(l-a)se(&)] . 

The latter formula shows that z(*) = -z('-a), which when a=0.05 and 

1- 2a = 0.90 means that we get 

(4.6) [& 
± 1.645se(&)] . 

We can also write equations (4.4), (4.5) and (4.6) in terms of the upper and 

lower confidence bounds, that is 

(4.7) ý18. 
= 

[& 
- z('-`)se(4k)] = Lower Bound. 

(4.8) O. 'P = [4k 
- z(*)se(4k)] = Upper Bound. 

Hence the standard (1 - 2a) confidence interval becomes [ 
0, p]. 

01 01 

The above confidence intervals are exact. However assuming Z 

N(O, 1) holds only asymptotically, then these confidence intervals become 

approximations with large sample justification only. 
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4.3.2 The Percentile Method 

This was developed by Efron (1981,1982) and uses the bootstrap estimates of 

, 8k to construct a confidence interval. Given the bootstrap data set JXj*t, i= 

1, ..., N, t=1, ..., T} for b=1, ..., B, let the vector of bootstrap replica- 

tions (ie ý*(b) = s(Xi*tb), the estimate of Pk), be 4*. Let 6 be the cumulative 

distribution function (CDF) of 4*. Then the exact (1 - 2a) percentile confi- 

dence interval is defined by the a and (1 - a) percentiles of 6 

(4.9) [ei 
, 
bP�p] = 

[Ü-' (a), Ö- 1 (1 - a)] . 

Since 6-1 (a) = ý*(cl) = 100ath percentile of the bootstrap distribution and 

6-'(1 
- a) = ý*(I-cl) = 100(l - a)th percentile of the bootstrap distribution 

we have 

,, 
b, (4.10) pip 

To implement this in practice one uses a finite number of bootstrap replica- 

tions. It is well known that the number of replications required to compute 

a confidence interval is around 1000 and is much greater than the number 

required to compute standard errors, ie around 100 (see Hall (1986) on the 

number of bootstrap replications needed to form a confidence interval). The 

percentile method does, however, have problems when used with small sam- 

ples or with asymmetric distributions. 
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Percentile Bootstrap Algorithm 

1. Generate B independent bootstrap data sets X*I, X*l.... Ix *B , where 

X-. j = lxj*, i, i=N, t= T}. 

2. Compute the bootstrap replication ý* (b) =s (Xi*tb) for b=1, ..., B. 

3. Let be the 100ath empirical percentile of the ý*(b) values, ie the 

Rath value in the ordered list of B replications. 

Hence if B= 2000 and a=0.05 then 4*(') is the 100th ordered value of the 

replications. Similarly is the 100(l - a)th empirical percentile. 

Thus the approximate (1 - 2a) percentile interval is 

[Olpw O. Pp] = 
[4B 

B here denotes that the approximation is based on B replications. As B -+ oo 

then 4B*(") 
-* 

4*(0) and *('-0') -+ 

4.3.3 Bias Corrected Method (BC) 

Both the bias corrected method, and the bias corrected and accelerated 

method modify the percentile bootstrap method. Both were introduced by 

Efron (1987) and Efron and Tibsharani (1986). They depend on two param- 

eters: (i) a called the acceleration and (ii) io called the bias correction. We 
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now show how to calculate the bias corrected interval endpoints 

bc bc al), ý*(C12)] (4.12) plo 
7 
bupl = P*( 

where a, = (D (2io + z(cl)) and a2 = 4D (2io + z('-")) . 

Hence 

[obc, &c 
14 (4.13) 
0 P] 

(4.14) = [6-1 (4ý (2ic, + z('))) , 
6-1 (ID (2io + z('-a)))] - 

Where (D(. ) is the standard normal cumulative distribution function and z(cl) 

is the 100ath percentile point of a standard normal distribution, eg P-95) = 

1.645 and (D(1.645) = 0.95. When io =0 the BC interval is the same as the 

percentile interval. 

Computation of io 

We compute io directly from the proportion of bootstrap replications less 

than the original estimate of flk, ie k4 

(4.15) io = CD -# 
14*(b) < 

4k} 

B 

Where (D-1 is the inverse function of a standard normal cumulative distribu- 

tion function, eg (D-'(0.95) = 1.645. 
4Here # means proportion. 
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4.3.4 Bias Corrected and Accelerated Method (BC. ) 

Here we calculate the BC,, interval endpoints as 

[ý11'11- 

, 

ýUC;. ]= 
(4.16) 

p 
[4*101), 4*(C12)] 

where 

(4.17) al=4) io+ 
io + Z(Q) 

i-a Po + z(a)) 

) 

(4.18) a2 ý 41ý +i0+ 
(io 

i- a(io + z('-c, )) 

Hence 

[6-'(al), 6-'(a2)] 

((p (io + io + Z, Q) 
- 'd-1 (1) (io + io + 1- 

apo +0+ 

(4.20) 

Where 4ý(. ) is as before. Again when &= ýO =0 the BC,, interval is the same 

as the percentile interval. 

Computation of ti 

Of the number of parametric and nonparametric ways to compute &, the sim- 

plest is probably the Jackknife estimate which we now explain. The jackknife 

method was developed by Quenouille (1949) and discussed in Efron (1982). 

See Wu (1986) for applications to regression analysis. 
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The Delete-One Jackknife in the Panel Data Regression Model 

Given the linear panel data model 

(4.21) yit = ai + x'itfl + eit 

for i=N and t=T, 

where jyjt} , I(l), fxit} - I(l), are random variables, feitj - 1(0) a station- 

ary disturbance term, and P and ai are ((k - 1) x 1) and (1 x 1) parameters 

of interest, respectively. Then writing in matrix form 

(4.22) Y ý-- [IN 0 iTIPI + Xfl. 

(4.23) [IN 0 iT xsl + 

(4.24) = Xß + 

where y= (Ylb 
---i YNT)t is (NT x 1), e= (ell,..., eNT)' is (NT x 1), iT = 

(1,1)'is (T x 1), 0, = (02 ...... 6k)'is ((k - 1) x 1),, 61 = (011, ---, PlNY 

is (N x 1), X= [IN 0 iT X, ] is (NT x (k - 1) + N) and is 
XM2 X31t) ... i Xk1t 

((K - 1) +Nx 1). Note that X, 
X22t2 X32ti -... 2 

. 

Xk2t 

and var(e) = E. 

X2nti X3nt) ... 9 Xknt 

Given X'X is non-singular and Ea diagonal matrix with constant elements, 

the Ordinary Least Squares (OLS) estimator of fl is 

(4.25) 4= (X, X)-l X, Y. 
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Computation of the Delete-One Jackknife estimator 

1. Let be the itth jackknife (OLS) estimate of 0 obtained by recom- 

puting 4 in equation (4.25) with the itth group (Yiti li 12it) ... ) -27kit) 

deleted from the sample. 

2. Compute the jackknife estimator as 

r, ýv ET it) j=i t=Iß( (4.26) ß(-) = NT 

Since ý(jt) is a ((k - 1) +Nx 1) multiparameter vector we can choose 

our parameter of interest as 4(kit), ie the kth element of 4(it) (see above 

note on confidence intervals for multiparameter vectors). Then a simple 

expression for the single parameter accelerator constant is 

, 
ýV 

1 
ET )3 r 

(4.27) a --t=j(k. 
) 

ý(kit) 

-4. 
JýV lET 6 
S= t=l 

ý(kit) 

where is the kth element of 

The confidence intervals mentioned so far, ie the standard or asymptotic, 

percentile, BC and BC. work well if & or some transformation of it has an 

approximate Gaussian distribution and the other parameters of the model 

satisfy some relatively simple regularity assumptions. These are called trans- 

formation repecting properties of the interval and allow modifications and 

improvements to be made to the interval. See also Efron (1987). 
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4.3.5 The Bootstrap-t Method 

This was introduced in Efron (1982) and detailed in Efron and Tibshirani 

(1993). The bootstrap-t improves upon the percentile method. It is less com- 

puter intensive than the double bootstrap 5 and easier to implement than the 

BC and BC. methods, ie it involves no difficult computations. See DiCiccio 

and Romano (1988) for a review of bootstrap confidence intervals. 

Consider the standard confidence interval derived in the previous section. 

Starting with Z= IL-4-L - N(O, 1). This led to the exact confidence interval 
se(, 3k) 

(4.28) [4k 
- z('-c)se(4k), &- z(")se(4k)] - 

We know that when we use plug-in estimates, when the variance of & is 

unknown, that this interval holds asymptotically only in large samples. In 

finite samples, then, we obtain only approximate confidence intervals. For 

small samples the approximation of Z was improved upon by W. Gosset 

in 1908 with his Student's t-distribution. Now for small samples of size n 

with plug-in estimates for var(&) we have Zt = 
&--, 4L - Here t(,, -, ) se(jah) 

means Student's t-distribution with (n - 1) degrees of freedom (d. f. ). Also 

t(,, -I) --+ N(O, 1) as n -+ oo. The percentiles of the t-distribution for varying 

degrees of freedom are tabulated in the Student's Wables. 
'The double bootstrap is sometimes called bootstrap iteration. It was developed in 

Hall and Martin (1988), Martin (1990) and Hall (1992) and is another way to improve on 
interval accuracy. It is a second-order accurate method. 
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Let t(c) (n-1) denote the ath percentile of the Student's t-distribution with (n-1) 

dI Then our approximate (1 - 2a) confidence interval is 

(4.29) t(l-a) se(Ok),, 8k se (, 8k) [& 
- (n-1) - t(n-1) ^I- 

Our bootstrap-t interval is a generalisation of the above Student's t interval. 

The procedure estimates the distribution of Zt directly from the data and 

tabulates percentiles that are appropriate for the data at hand. 

The Bootstrap-t Algorithm 

1. Generate B independent bootstrap data sets X*1, X*2,..., X*B, where 

X-i = fxi*ti, i=N, t= T} and j=B. 

2. Compute the bootstrap replication 

(4.30) Z*(b) = 
4*(b) 

- for b=l,..., B. 
A* (b) 

Where as above 4*(b) is the value of & for the bootstrap sample X*b 

and ee*(b) is the estimated standard error of 4*(b) for the bootstrap 

sample X*b. N. B. A*(b) is estimated as the regression se(4k) from each 

bootstrap sample X*I regression. 

3. Let Z* be the ordered list of Z*(b) replications. Estimate the ath 

percentile of the sorted vector of Z*(b)'s by the value i(l) such that 

(4.31) #f Z* (b) :5 i(c)} 
= 
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Thus if B= 1000 and a= 5% then the 100ath empirical percentile 

is the B. ath = 1000. (0.05) = 50th value of the ordered list of Z*(b) 

replications (or Z*). Also for a= 95%, this gives the 950th value of 

the ordered list of Z* (b)'s (or Z*). Thus the bootstrap-t confidence 

interval is given by 

(4.32) [4k 
- i('-')se(4k), &- 

where i(') is the ath percentile of the Z* distribution. 

We can also write equation (4.32) using endpoints as 

(4.33) 01,, 
= 

[& 
- 

P-')Se(4k)] 
= Lower Bound. 

(4.34) Oup = [4k 
- i(Q)se(4k)] = Upper Bound. 

Hence the (1 - 2a) bootstrap-t confidence interval becomes [Ot 
, 
Ot 

10 up] 

4.4 The Panel Data Estimators 

4.4.1 The Panel Cointegration Estimators 

In this chapter we use some of the panel cointegration estimators discussed 

in detail in chapter 3, ie the Kao and Chiang (2000) pooled panel DOLS 

estimator and the Pedroni (2001) group-mean panel DOLS estimator. These 

panel cointegrating regression estimators utilise a pairs bootstrap technique 
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for their application, discussed later. Finally the last panel estimator to be 

used here is also a group-mean estimator as follows. 

4.4.2 The Pesaran and Smith Group-Mean Estimator 

In their paper Pesaran and Smith (1995) propose the use of group-mean es- 

timators for dynamic heterogeneuos panels. They show that the aggregation 

or pooling of dynamic heterogeneous panels can produce very misleading esti- 

mates. Here we use the group-mean estimator for a panel data autoregressive 

AR(p) model. Consider the heterogeneous panel data model 

(4.35) Yit Cii + OliYit-1 + 02iYit-2 +---+ OpiYit-p + Vit 

where vit - i. i. d. (O, a2) for i=N and t= 

One alternative to using an ADF(p - 1) regression to form bootstrap samples 

and risk the bootstrap inconsistency problem when there is a unit root is to 

bootstrap the levels autoregression. Here a unit root in yit coincides with 

Ou + 02i +---+ Opi = 1, Vi. Let us write the above model as 

(4.36) yj --,:, aiI + Oliyi-l + 02iYi-2 +---+ OpiYi-p + Vi- 

Or 

(4.37) yi = Xifli + vi 

wherefli = (ai 
, 

Oli 
2 

02i) 
.... Opi) /a ((p+l) x 1) vector and Xi = (I) Yi-I i Yi-2, ---I Yi-P) 

a (T x (p + 1)) matrix also yj and vi are (T x 1) column vectors and I is a 
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column vector of ones. Then the OLS estimator of Pi is 

(4.38) bi = (Xil xi) -, xil yi - 

The group-mean estimator of Pesaran and Smith (1995) then becomes 

1 Ný 

(4.39) bGM bi. 

Also the t-statistic of bGm, ie t(bGM), becomes the averaged t-statistics of bi, 

ie t (bi), 

1Ný 
(4.40) t(bGM)= t (bi). 

This estimator can now be bootstrapped in the same way as the group-mean 

DOLS estimator. However in this case we do not have N cointegrating regres- 

sions for which a pairs bootstrap is appropriate but N time-series regressions 

for which we may use a residual bootstrap or a block bootstrap scheme. See 

below for details. 

4.5 The Bootstrap and Time Series Models 

4.5.1 The Bootstrap and Cointegrating Regressions 

The simple bootstrap method of Efron (1979) was originally designed for 

id. d. errors. When using time-series models, such as unit root and coin- 

tegration models, the bootstrap methodology needs to be modified to cope 
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with errors that might not be i. i. d., eg the assumptions on uit might range 

from white noise or weak stationarity to an m-dependent, strong mixing 

sequence. Li and Maddala (1996,1997) discuss a number of bootstrap meth- 

ods that are applicable to time-series models. In particular cointegrating 

regressions are studied and the appropriate bootstrap method considered. 

Discussed are the recursive bootstrap, the moving blocks (MBB) bootstrap 

and the stationary (SB) bootstrap and it is explained which method suits 

a particular situation. Li and Maddala (1996,1997) also discuss the choice 

of procedure for the generation of the bootstrap samples when using coin- 

tegrating regressions and highlight the choice between the direct method 

of bootstrapping the data or the alternative of bootstrapping the residu- 

als. They explain that for cointegrating regressions only the latter is ap- 

propriate. The basic argument is that all the information of the struc- 

ture of the model should be used when generating the bootstrap samples. 

Only when the residual bootstrap method is used is this condition satisfied. 

They suggest the pairs bootstrap method for bootstrapping the residuals 

in the cointegrating regression. Thus estimate equation (3.24), in chapter 

3, by DOLS and obtain residuals Vibit, noting that ý, 
... 

& are superconsis- 

tent. Obtain also the residuals iblit , Ax1it, ... ) tbkit ---: 
AXkit. Bootstrap 

the pairs (vbit,?. bj1t)1 where zhýt ý (? ýjitj ... W^kit), perhaps after recentering the it 
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residuals. Next construct the bootstrap samples of x*jit, ..., Xk*it recursively 
A 

and finally using P1, Ok, Vi*t, X*jit ... x*kit, etc. Vi, t, construct the sample 

y (YIII Y1127,7 yýt)l to be used for computing the bootstrap replications 

Of in equation (3.24). Finally Li and Maddala (1997) conduct a 

Monte Carlo experiment to compare the asymptotic FMOLS methods with 

MBB and SB methods using FMOLS, in a cointegrating regression with serial 

correlation in the errors and endogeneity of the regressors. They conclude 

that complications arise if there is serial correlation in the residuals of the 

cointegrating regression. Hence in the presence of serial correlation of the 

errors the pairs bootstrap should be modified to take this into account. If the 

auto-correlation structures of bit are known then a recursive bootstrap can 

be applied to them, in addition to the pairs bootstrap. Otherwise for gen- 

eral unknown serial correlation one can use the moving block bootstrap, in 

addition to the pairs bootstrap. Li (1994) and Psaradakis (2001) also study 

the topic of bootstrapping cointegrating regressions as does Chang, Park 

and Song (2002) although they do so for the time-series case only. Chang, 

Park and Song (2002) employ the sieve bootstrap method coupled with the 

pairs bootstrap for generating bootstrap samples. They also conduct some 

Monte Carlo simulations. The sieve bootstrap (see Buhlmann (1997)) is 

used when the DGP can be represented as an infinite order autoregression. 

126 



The sieve bootstrap replaces this infinite order autoregression by an approx- 

imating finite order autoregression from which coeffients are estimated and 

residuals resampled. Balcombe (2004) and Fachin (2000) use the bootstrap 

with cointegated systems, whilst Herwartz and Neumann (2005) use the 

wild bootstrap for systems of single-equation ECM's. In the wild bootstrap, 

introduced by Liu (1988), the error vector is resampled from a constructed 

distribution satisfying some conditions on the first three moments. A single 

observation is used to estimate the true distribution of the residual. Monte 

Carlo simulations of small sample properties are also carried out in the above 

papers. Other bootstrap applications in this area have come from Phillips 

(2001), Park (2003), Davidson (2002), Burridge and Taylor (2004). Park 

(2003b) and Chang (2004) have considered bootstrap unit root tests, the 

latter for panels with cross-sectional dependency. Other work on panels in- 

clude Hahn and Newey (2004) who correct for incidental parameter biases in 

fixed effects models using the Jackknife. Although the use of the bootstrap 

in empirical and theoretical studies is quite widespread in the time-series 

literature, however the use of the bootstrap is very limited in the field of 

nonstationary (and stationary) panel data. This is due to the literature be- 

ing in the very early stages of its development. 

Our main contribution in this chapter then is to develop two different ap- 
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proaches to bootstrapping a panel cointegrating regression. In the first the 

pooled panel DOLS estimator of Kao and Chiang (2000) is studied using 

the pairs bootstrap method. The second is based on the Pedroni (2001) 

group-mean panel DOLS estimator. Here we apply the pairs bootstrap to 

each individual country in the panel and use the bootstrap methodology to 

compute group averages. 

4.5.2 The Bootstrap and Time Series Regressions 

One of the key characteristics of time-series data is the great deal of depen- 

dency that exists in the data. Thus when using the bootstrap with time-series 

data the bootstrap sampling must be carried out in a way that captures the 

dependence structure of the DGP. There are two main ways of doing this. 

The first is parametric. By fitting a parametric model the time dependent 

data is reduced to an i. i. d. structure suitable for niave bootstrap resampling. 

Such a parametric model is the stationary autoregressive AR(p) model. Efron 

and Tibshirani (1986) bootstrap an AR(1) and AR(2) model and Stine (1987) 

extends the analysis to an AR(p) model. Consider the general AR(p) model 

of the form 

(4.41) yt ---= alyt-, + a2Yt-2 +---+ apYt-p + Ct. 
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where ct - i. i. d(O, a 
2) 

and the roots of (1 - a, L - a2L 2-... 
- apLP) lie 

outside the unit circle. The recursive method, first introduced by Freed- 

man and Peters (1984) and used by Efron and Tibshirani (1986), is used 

now to generate the bootstrap samples. Estimate equation (4.41) by OLS 

and obtain the residuals et. Rescale and/or recentre the residuals so Et = 
I 1 ET T2 

T tý T-p . Resample et with replacement to get the bootstrap 

residuals c, *. Then conditional on the initial conditions generate the bootstrap 

samples recursively using yt* = 61 y* 1+ &2Y* 2++ &pyt*-p + c*. Although t- t- t 

conditioning on any particular initial conditions is asymptotically negligible, 

caxe must be taken. One solution is to set yt* = yt for t=1-p,..., O. 

Another is setting (yl-p, 
..., yo) = 0, see Rayner (1990). Finally with the B 

bootstrap samples of yt* obtain B bootstrap replications of the parameters 

*(B) *(B) *(B) of interest a, , a2 '... ,%, by OLS. Inoue and Kilian (2002) bootstrap 

an AR(p) model with possible unit roots this way. 

The second way of bootstrapping dependent data is nonparametric and in- 

volves the resampling of blocks of data mentioned earlier, that is the MBB. 

Carlstein (1986) first discussed the idea of bootstrapping blocks (BB) of ob- 

servations rather than individual observations. His blocks were non-overlapping. 

Later Kunsch (1989) and Liu and Singh (1992) introduced the moving block 

bootstrap (MBB) with overlapping blocks. Both block methods divide the 
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data of n observations into blocks of length I and select b of these blocks by 

resampling with replacement from all the possible blocks. Assume n=bx1, 

then in Carlstein's scheme there are just b blocks whilst in Kunsch's scheme 

there are n-I+1 blocks. As an example let n=6 and I=3 and 

suppose the data are Xt = 14,5,8,3,1,91. The blocks according to Carl- 

stein are 1(4,5,8), (3,1,9)1 = 2, whilst the blocks according to Kunsch are 

1(4,5,8, ), (5,8,3), (8,3,1, ), (3,1,9)} = 4. The MBB is reputedly more ef- 

ficient than the BB but the available evidence indicates that the efficiency 

gain is small. A problem with both the block bootstrap methods is that the 

pseudo time-series generated by the block method is not stationary, even if 

the original series was. For this reason Politis and Romano (1994) introduced 

the stationary (block) bootstrap where the stationarity of the bootstrap is 

preserved. In their papers both Carlstein and Kunsch give some general rules 

for choice of the optimal block size. This is extended in Hall and Horowitz 

(1993). For the thesis we used a sensitivity analysis similar to the one dis- 

cussed in Berkowitz and Kilian (2000). Consider a realisation of length T of 

a linear stationary time-series lyt}. 

1. Approximate the DGP by a parametric AR(p) 
. 

2. Using a small pre-specified number of replications generate block boot- 
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strap data lyt*} for many different block sizes k. 

3. Calculate the statistics of interest for fy*(k)}. t 

4. Select the block size k which on average produces the most accurate 

statistic or point estimates. 

5. Use this optimal block size in the full replications block bootstrap 

model. 

4.6 The Panel Data Bootstrap Algorithms 

A very important part of the bootstrap methodology 6 is the generation of 

bootstrap samples. When the data is not i. i. d., as mentioned before, the 

bootstrap needs to be modified to cope with the new data structure. We 

describe now the new and unique bootstrap algorithms for generating the 

bootstrap samples for panel cointegrating regressions. These are original 

and developed by the author and hitherto unpresented in the panel literature. 

The methodologies for § 4.6.1 and 4.6.2 are similar. In both we apply the 

pairs bootstrap to the residuals of a cointegrating regression. In § 4.6.1 this 

for an NT observation regression, whereas in § 4.6.2 it is for aT observation 
6 This chapter makes extensive use of the Ox programming language for the im- 

plimentation of the bootstrap algorithms and computations of the bootstrap statisti- 
cal models. A preprogrammed package available for bootstrap and simulation appli- 
cations is the Bootstrap Ox Package written by Professor James Davidson available at 
http: //www. o=etrics. net/. See Appendix 2 for more details on the Ox software. 
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regression, before averaging over the cross-section dimension. 

4.6.1 The Pairs Bootstrap and the Pooled DOLS esti- 
mator 

The pairs bootstrap procedure is carried out by resampling the errors from 

the estimated equation (3.24), in chapter 3, and the stochastic error terms 

of the I(l) regressors. 

1. Compute the predicted residuals using the estimates from equation 

(3.24), ie di, ý and 6ij thus 

(4.42) vit -= yit - di -- Xý it . 7=-q6ijAXit+j 

for i=N and t=T. 

2. Obtain the residuals iblit : --- Ax1it, ... I 24it : -- AXkit and form the vector 

wit = (? blit,..., tbkit)l and ?b Recentre these 

using 

(4.43) 
lTN 

tbo ýýTEt=A=ltbit 

for i=N and t= 

Thus we have 7. bl = tb'l, tb'l )' where il i2 NT 

(4.44) tb' --"ý 
(týil - 17V(. ))) I-bc -" 

(?, bi2 - NT ii i2 tb(. ))) ... i Ibc (? bNT - tb(. 
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3. If we assume that the residuals Obit follow an AR(1) process then 

(4.45) vit = Oit-i + cit 

where cit is a white noise error term. 

Run the regression of equation (4.45) and obtain the residuals eit and 

also P and the vector of residuals t= (41,9i21 
... ) 

eNT)'. Recentre these 

using 
1 

(4.46) eo = 7T-F-t=lF-i=leit- 

Thus the vector of recentred residuals is ec = (eicl, ejý2., 
..., 

&NIT)' 

where 

(4.47) ef = (eil 
- e(. )), e' = (ei2 

- e(. )).... I 
ec 

ii Q NT = (eNT 
- e(. ))- 

4. Resample with replacement from the paired vector of recentred resid- 

uals, iit = (e',?. bc1)1 to get the bootstrap sample zi*t = (, -*, w*/)/. So it it it it 

that e* and w* are the vectors of resampled residuals 

N )' and w*=(w*', w*/,..., w */ y. T il Q NT 

5. Obtain the bootstrap samples of x*lit,..., xk*it by recursion using the 

initial conditions x*00 XkOO. That is k 

(4.49) X*Iit -*-ý '2711it-1 
+ Wlit, Xkit - Xk*it-1 + Wkit* 
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Alternatively form x*it from k 

Xk*oo + ET jr , 
ýV 

JW* (4.50) Xkit t= S= kit' 

Also obtain the bootstrap samples of vi*t by recursion using the esti- 

mated P of equation (4.45) and the initial conditions v* = boo. Thus 00 v 

vi*t = &U-1 + ci*t. 

6. Construct the bootstrap samples of yi*t from 

t= i+X*14+rq= &, j _q Iýj AX* 
+j + (4.52) it it Vi*t - yiý 

7. Using the bootstrap samples yi*t, ai and xj*t, estimate #* (b) the bootstrap 

DOLS estimate of 8. 

8. Repeat steps (2) to (7) B times. 

9. Construct the bootstrap distribution of 8, ie P*(b) for b=1,... 5000 

and other bootstrap statistics. 

4.6.2 The Pairs Bootstrap and the Group-Mean DOLS 
estimator 

The pairs bootstrap procedure for the group-mean DOLS estimator is carried 

out by resampling the errors from the individual country estimates and I(1) 

regressor stochastic error terms. Form bootstrap samples and estimates for 

each country i and then average over the panel. This is done B times. 
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1. Using equation (3.24), in chapter 3, compute the DOLS estimates for 

the ith individual country and obtain the predicted residuals using &, ý 

and 6j thus 

:1 (4.53) vt=yt-&+x'P+rq J= qýjlýkXt+j 

fort= 1,..., T. 

2. Obtain the residuals ? bit : -- Axit, ... I 14t -': -- 
AXkt and form the vector 

lbt -= 
(lblts 

---7 lbkt) and tb = (tbll, tb2l,..., tbT')'. Recentre these using 

1TA 
(4.54) yEt=, Wt 

for t=1,... 

II Thus we have 0=(? bl 2 .... tbý where cl, 6cl, cl) 

c'= ObT (4.55) tbl --": 
ON lb2 --'ý 

(tb2 6T 

3. Similarly if we again assume that the residuals vbt follow an AR(1) 

process then 

(4.56) Vt PVt-j + Ct 

where again ct is a white noise error term. 

Run the regression of equation (4.56) and obtain the residuals et and 

also P and the vector of residuals e= (el, e2,. 
.., tT). Recentre these 
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using 
1T 

(4.57) eo 7; Et=let. 

Thus the vector of recentred residuals is P= (e C, ec, eTCY 
12 

where 

(4.58) ell = (el 
- e(. )) 1 

42 = (e2 
- e(. )), ---, 

eT, = VT 
- eo) 

- 

4. Resample with replacement from the paired vector of recentred residu- 

als, if = (to, ibcl)l to get the bootstrap sample zt* = (et*, wt*l)/. So that ttt 

c* and w* are the vectors of resampled residuals 

(4.59) c* = (e*,, and w* = (wl*, w2*, ---, Wý)'- 

5. Obtain the bootstrap samples Of X*jt.... IXk*t by recursion using the 

initial conditions Xk*O --*-: XkO. That is 

(4.60) 
. 27it Xit-i + Wit, ---, Xkt --": Xkt-1 + Wkt 

Alternatively form xk*t from 

+ 2T 
t=jWjt* (4.61) Xk*t : -- XkO 

Also obtain the bootstrap samples of v* by recursion using the esti- 

mated . of equation (4.56) and the initial conditions vo* = Vbo. Thus p 

(4.62) vt* = &t*- I+ -t* - 
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6. Construct the bootstrap samples of yt* from 

yt* + Xt*tý + Fq= 
, _96 

AXt + V* (4-63) jj +j t 

7. Using the bootstrap samples y, *, a and x* estimate ý* (z) the bootstrap t 

DOLS estimate of 8 for country z. 

8. Repeat steps (2) to (7) for each country in the panel. 

9. Compute the bootstrap group-mean #*(b) DOLS estimator as 

(4.64) #*(b) = 
Ez=lo*(z) 

N 

10. Compute the bootstrap group-mean fi*(b) DOLS t-statistic as 7 

N 
(4.65) 

EZ=li* (Z) 

VN- 
A 

where ! *(z) is the bootstrap DOLS estimate of the t-statistic of P*(z) 

for country z. 

11. For each panel of N countries construct B bootstrap samples using the 

initial regressions described above in step (1). That is repeat steps (2) 

to (10) B times. 

12. Construct the bootstrap distribution of 8 and its t-statistic, ie #*(b) 

and t(O*(b)) for b=1,... 5000. 
7 For the group-mean 3 DOLS bootstrap-t confidence interval the t-statistic Z*(b) of 

equation (4.30) was used in the above procedure. 
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4.6.3 The Pairs Bootstrap and the DOLS Asymptotic 
Covariance Matrix of the Residuals 

The pairs bootstrap procedure for the DOLS asymptotic residual covariance 

matrix is carried out by resampling the errors from the individual country 

estimates and I(1) stochastic error terms. One forms bootstrap samples and 

estimates of the asymptotic covaxiance matrix for each country i and then 

averages over the panel. This is done B times. 

1. Using an OLS regression for each individual country obtain the pre- 

dicted residuals, ie fit where 

(4.66) fit = Yt -&- X'tý 

for t=I, .., T. 

2. Obtain the vector of residuals fi = 
(fibfi21 

... I 
fiT)' and recentre the 

residuals using 
1T 

(4.67) fi(. ) = TEt=lfit. 

Thus the vector of recentred residuals is fi' = (fi', fi fie)? 12T 

where 

(4.68) 14 -*-'": 
Oll 

- 42 
..: 

(62 - ý1(. )) i---I 
fiý ý (flT 

- fi(. )) - 

3. Also obtain the residuals, tblt =4 AXIty tb2t AX2ti 
... I Ibkt AXkt and 

form the vector tbt = 
(tNti tb2ty ---9 24TY and tb = (611, lb2 ..... tbT)'- 
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Recentre the residuals using 

(4.69) 

Thus the vector of recentred residuals is tb' = (tb" ^'I ýC/)/ 1 IW2 I**-WTJ 

where 

(4.70) tbl' cc : '-- 
ObT ON - tk) tb2 -": 

Ob2 6T c 

4. Resample with replacement from the paired vector of centred residuals 

1' = (fic, tv^cl)' to get the bootstrap sample ýt* = (fi*, tb*l)' . So that u* ttttt 

and w* are the vectors of resampled residuals 

(4-71) u*=(u*,, u2*,..., uý)' and w*=(wj*', w2*',..., Wý')'. 

5. Using the bootstrap sample construct the bootstrap estimate of the 

long run asymptotic covariance matrix for country s, ie Q*(s) where 

(4.72)Q* (s) ET it* ^*I + Eq 
I 

[i - ET + it, *-, Z-t*, 
) 

- t= Zt 1= q+1T t=l 
(it 

6. Repeat steps (2) to (5) for each country in the panel. 

7. Compute the bootstrap average long run covariance matrix as 

N 
(4.73) W(b) 

N 
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8. For each panel of N countries construct B bootstrap samples using the 

initial regressions described above in step (1). That is repeat steps (2) 

to (7) B times. 

9. Construct the bootstrap distribution of Q. That is obtain 5000 repli- 

cations of &ý*(b), for b= 5000. 

4.6.4 The Recursive Residual Bootstrap and the Group- 
Mean AR(p) estimator 

The recursive residual bootstrap procedure for the group-mean AR(p) esti- 

mator is carried out by resampling the errors from the individual country 

estimates. Using the recursive bootstrap, form bootstrap samples and esti- 

mates for each country i and then average over the panel. This is done B 

times 

1. Using equation (4.35) compute the AR(p) estimates for the ith indi- 

vidual country and obtain the predicted residuals using 61, ýI 
1 
62 

1 ... 9 
6P 

thus 

(4.74) ýlt 
--ý Yt - 61 - OlYt-I - 02Yt-2 OpYt-p 

for t=1,..., T. 

2. After obtaining the residuals ýt form the vector of residuals 0= (01) 02) 
1 

OT)I- 
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Recentre these using 
1T 

(4.75) 7; Et=j&. 

- 0C bc 
'OTCY Thus the vector of recentred residuals is fic 11 21 ... 

where 

C (4.76) Ol ý (01 - 0(. )) 1 
02 

-" 
(02 - 0(. )) 1 ... )OTC : -"-- 

(OT - 0(. )) - 

3. Resample with replacement from the vector of recentred residuals, Oc = 

(ýc 1. 
Is 

62c, 
.... 

6Tc)' to get the bootstrap residual sample v* = (vl*, v*, 2 

4. Construct the bootstrap samples of y* recursively from t 

(4.77) Yt* + 6IYt-1 + 024-2 ++ OPyi-p + Vt' 

5. Using the bootstrap samples yt* estimate 0* (i) = (a*, 01*, 02*, ..., OP*) / the 

bootstrap AR(p) estimate of 0= (a, 01,02, .., Op) / for country i. 

6. Repeat steps (2) to (5) for each country in the panel. 

7. Compute the bootstrap group-mean AR(p) estimator O*(b) as 

(4.78) 0*(b) = 
Ei 10*(i) 

8. Compute the bootstrap group-mean AR(p) t-statistic as 

(4-79) t(O*(b)) 7' 
Eiýlf*(i) 

N 
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where k(i) is the bootstrap AR(p) estimate of the t-statistic of ý*(i) 

for country i. 

9. For each panel of N countries construct B bootstrap samples and esti- 

mates using the initial regressions described above in step (1). That is 

repeat steps (2) to (8) B times. 

10. Construct the bootstrap distribution of bGm and its t-statistic, ie O*(b) 

and t(e*(b)) for b=1,... 5000. 

4.6.5 The Block Bootstrap and the GrouP-Mean AR(p) 
estimator 

The block bootstrap procedure for the group-mean AR(p) estimator is carried 

out by resampling blocks from the individual country time-series of weakly 

dependent (stationary) data, forming bootstrap estimates from the new series 

and averaging these over the panel B times 8. 

1. Consider a time-series of weakly dependent data for individual country 

i given by the sequence 

(4.80) fxltx27x3v 
... IXN}- 

'In the block bootstrap, one chooses a block length L= Nlk, where N is the number 
of observations in the time-series and k is the number of blocks to resample. The idea is 
to choose a large enough block length L that observations more than L time units apart 
will be nearly independent and so mimic I. I. D. sampling. 
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2. Divide this into blocks of observations Mi, for i=1..., k, of equal 

length L. Thus the first block M, = IX,,..., XLI, the second block 

M2 
-= 

IXL+li 
... I 

X2LJ and so on to Mk = IX(k-l)L+l) 
... v 

XkL}- 

3. Resample k blocks randomly with replacement from the sequence 

(4-81) fml9m2)m3s... 
)Mk}- 

4. Denote the k resampled blocks as Ml*, M2*, M3*, 
---, Mk*. Concatenate 

these blocks into one vector, that is lay the blocks end-to-end to form 

the vector 

(4.82) Ml*, M2*, M3 Mk IX1 
I 

X21 X3), 

5. Construct the N-vector y* the bootstrap sample of the country time- 

series given by 

(4.83) Y* --2 
{Xl 

7 
x2) x3 x2, 

7. Using the bootstrap sample y*, for t=N, fit an AR(p) model to 

the bootstrap data 

(4.84) Yt = *-2 + +0 a+ Olyi-, + 02Yt 
PYt-p + 6t, 

8. Estimate 0*(i) = (a*, 0, *, 02*,..., Op*)/ the bootstrap AR(p) estimate of 

0= (a, 01,021 
... I 

Op)l for country i. 
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9. Repeat steps (2) to (8) for each country in the panel. 

10. Compute the bootstrap AR(p) group-mean O*(b) estimator as 

r, ýv 
(4.85) 0*(b) -- - t=lö*(i) 

N 

11. Compute the bootstrap AR(p) group-mean t-statistic as 

Eýv 
(4.86) t(O*(b)) - 

Z=li*(i) 
N 

where 1*(i) is the bootstrap AR(p) estimate of the t-statistic of 0*(i) 

for country i. 

12. For each panel of N countries construct B bootstrap samples and esti- 

mates using the initial time-series described above in step (1). That is 

repeat steps (2) to (10) B times. 

13. Construct the bootstrap distribution of bGm and its t-statistic, ie O*(b) 

and t(OO(b)) for b=1,... 5000. 

4.7 The Bootstrap Applications 

4.7.1 Bootstrap Confidence Intervals for a panel data 
PPP Cointegrating Regression 

In this application we use the pooled DOLS panel estimator of Kao and Chi- 

ang (2000) and the group-mean DOLS panel estimator of Pedroni (2001) to 
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construct bootstrap confidence intervals for a purchasing power parity (PPP) 

panel cointegration regession. 

In chapter 2 we showed that there existed a long-run equilibrium (cointegrat- 

ing) relation between the nominal exchange rate and the prices of domestic 

and foreign goods in our panel data using our panel cointegration tests and 

the panel PPP cointegrating regression 

(4.87) eit -= ai + #, pit + 02pi*t + uit, 

where Jejt, pjt, pj*t} - I(1) are the logarithms of the nominal exchange rate, 

domestic prices and foreign price level, respectively for country i at time t and 

similarly uit is a stationary disturbance term. We now go one step further in 

the spirit of Engle and Granger (1987) and estimate the cointegration vectors 

using the panel data DOLS estimators described in § 4.4.1. The Kao pooled 

panel DOLS PPP estimator is obtained from the following regression 

(4.88) eit = ai + flipit +, 82pi*t + Ejq - diijApit+j + Ej' it+j + fit- 3= q J= qd2ijAPi 

The Pedroni group-mean panel DOLS PPP estimator is given by 

1 
(ET 

JZ 
-1 (ET (4.89) -'rly tZ-. t) , t=lziteit )tD = 

IN 
J= t= i1 

)113 

where zit is the (4(p + 1) +Nx 1) vector of regressors 

(4.90) zit = (1,0.... 
1 0) Pit, Pit"Lpit-P) --- 'Apit+p, Api*t-p, --., Api*t+p),. 
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The subscript 13 outside the square brackets indicate that we are considering 

only the thirteenth element of the vector for the pooled slope coefficient. ' In 

Kao, Chiang and Chen (1999) it was noted that there was not a coherent 

strategy to be applied for estimating the lengths of lags and leads in these 

panel cointegation models. Since this time Westerlund (2005) has developed 

data dependent methods for lag selection in panel cointegration models. The 

method used in this thesis was the general-to-specific method advocated by 

D. F. Hendry (1995). Here we start with an overparameterised model and use 

sequential test procedures to test down for a more parsimonious representa- 

tion. In practice this meant setting leads and lags of 3 for both regressors 

and then testing for their significance. All insignificant regressors were sub- 

sequently dropped from the regression. 

In our panel unit root and panel cointegration tests of chapter 2 some of the 

results were in favour of PPP using a strong form of the hypothesis which 

involves the joint symmetry and proportionality assumption P, = -02 = 1. 

Whilst other tests supported a weak form of PPP where the fli coefficients 

fall within the range (0 < 81 < 2, -2 < 82 < 0). Given the two main PPP 

hypotheses it is interesting to highlight the theories in a confidence interval 

framework. Thus given point estimates close to unity and a small variability 
9We estimated both the Kao pooled and Pedroni group-mean regressions in levels form. 
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of the interval estimates would lend support to the strong PPP hypothesis. 

Whereas point estimates falling within the range (0 < fl, < 2, -2 < 82 < 0) 

and interval estimates with large variability would lend support to the weak 

PPP hypothesis. One of the panel cointegration regressions is constructed 

by pooling the cross-section dimension and assuming heterogeneity in the 

intercepts, see Kao (1999), Kao, Chiang and Chen (1999) and Kao and Chi- 

ang (2000). Thus by assuming homogeneity of P across panels we in effect 

impose a strong PPP hypothesis, if it turns out that 81 = -P2 =1 for all 

units. The other panel cointegration regression of Pedroni (2000,2001) differs 

in that he uses heterogeneous panels where the 8 coefficients are allowed to 

vary across individuals or countries. This is compatible with the weak PPP 

hypothesis given the country coefficients are allowed to vary within the range 

< 27-2 < ß2 

4.7.2 The Data Set 

The data set was the sub-panel for the 12 OECD countries discussed in chap- 

ter 2. That is quarterly observations over the period 1957Q1-1991Q2, on Eit 

the nominal exchange rate, Pit the consumer price level (or CPI) and Pi*t the 

foreign (Japanese) consumer price level (or CPI). 
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In Table 4.01 we have the DOLS estimation results for the pooled panel 

cointegration model. A fixed effects model was estimated with individual- 

specific intercepts. Also three leads and lags were used with the differenced 

regressors to counter any serial correlation in the model. These are not 

reported here. The R' is very high with an R2=0.99368 and also the F- 

statistic of the overall estimated regression is strongly significant at 14297.0. 

This indicates that the model is a very good fit of the data. However the 

regression D. W. statistic is very low D. W. = 0.18429 and so we should use 

the appropriate panel data tests for serial correlation. To test for first-order 

serial correlation in a fixed effects model we use the LM test developed in 

Baltagi and Li (1995). Consider the model of equation (4.88) with the errors 

described by the AR(l) process 

Uit piiit-i + Eit) 

where cit is a Gaussian white noise process. Under the null hypothesis, 

Ho: p=0 and Hl: p --L 0 7- 

(4.92) LM, = 
NT 21 (ELF'Tt=IU'ý'itU4it-1 2 

T ! t2 

17T--, 
)j ý-iE-Et=iuit 

As T -4 oo the statistic LM, is distributed as a X21 variable. 

Our computed statistic LM, = 1374.7. With critical X2 values of 3.84 and 1 

6.63 at the 5% and 1% significance levels, respectively, the null hypothesis is 
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decisively rejected in favour of the hypothesis of first-order serial correlation 

in the errors. 

Tnhlp A nl Pnnlpcl Pnnpl nOT. I. q 'R. Piorrpq-qinn Estimates 

Regression Pit Pj* DW F-statistic TI 

Pooled ý 1.0688 j 
166.59 [0.000 

-1.1036 
-176.94 [0.000] 

0.18429 1, 

-1 
14297.0 
[0.0001 

0.9§368 

-I 

Our preliminary regression in Table 4.01 shows a quite well estimated panel 

PPP cointegrating regression. The expected signs and significance of the 

PPP regression parameters are satisfactory. Our estimates are 31 = 1.0688 

and 32 = -1.1036, with t-statistics of (166.59) and (-176-94), respectively. 

These are shown underneath the point estimates, alongside the p-values. To 

test the joint proportionality and symmetry assumption of P, = -02 =1 

we conducted t-tests of the hypotheses 01 =1 and P2 = -1. Our estimated 

t-statistics were 10.7202 and -16.6095. With critical values of ±1.96 we reject 

the strong PPP hypothesis at the 5% significance level. 

In Table 4.02 we have the DOLS estimation results for the group-mean panel 

cointegration model. These are much more conservative than the pooled 

panel estimates. Both the regressor point estimates, and their associated 

HAC t-statistics and p-values (again shown under the point estimates), are 

consistently lower than those of their pooled panel counterparts. Eleven of 

twelve countries had domestic price estimates below unity and similarly for 
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foreign prices. This indicates some underprediction in the model. The high 

R' values, in the final column, and significant F-statistics, in the fifth col- 

umn, indicate that again we still have good fits of the data. However, again, 

all the individual country DW statistics are very much below unity indicat- 

ing positive first-order serial correlation. This indicates that Newey-West 

(1987) HAC standard error estimators should be used at all times. Pedroni 

(2001) recommends these for his group-mean estimators due to endogeniety 

and serial correlation problems in the individual cointegrating regressions, 

see § 3.2.2 in chapter 3. These HAC Newey and West (1987) standard error 

estimators correctly account for the serial correlation structure in the errors 

by using the long run variance of U'it, for each i. in their computations. The 

Barltett window was chosen to describe the lag structure of the Newey and 

West estimators with a truncation point of 10 (ie q=10). This was chosen af- 

ter inspection of the sample autocorrelation function (ACF) of the residuals 

A iijt, for each i. The graph depicted lagged correlations persisting even after 

10 lags, similar to the OLS residuals in Figure 2.19 of Appendix 4. Finally 

the leads and lags of the differenced regressors, shown under the R' figures 

in the final column, were chosen so that they were significant at around the 

10 - 20% significance level. 
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Table 4.02 Individual Countrv DOLS Regression Estimates 
Regression constant Pt Pt* DW/F-stat R'/le, la 

Austria 4.5731 0.029890 -0.45177 0.14095 0.99805 
6.577 [0.000] 0.046 [0.962] -0.904 [0.366] 11159.0 (0,1,3) 

Denmark 2.4266 0.51624 -0.60395 0.13659 0.99525 
7.342 [0.000] 1.912 [0.055] -1.856 [0.063] 9354.3 (1,0) 

France 1.3761 0.44216 -0.32366 0.20458 0.99388 
5.288 [0.000] 1.889 [0.059] -1.175 [0.239] 7252.0 (110) 

Greece 3.1241 0.78002 -0.43285 0.15162 0.99904 
10.818 [0.000] 13.804 [0.000] -3.712 [0-000] 39794.0 (1,1,1) 

Iceland 1.1454 0.85646 -0.36978 0.48007 0.98846 
1.456 [0.145] 16.017 [0.000] -1.694 [0.090] 2849.2 (1,1) 

Mexico 4.6275 0.97118 -0.79893 0.40165 0.99919 
19.119 [0.000] 53.699 [0.000] -11.324 [0.000] 55255.0 (1,0) 

Netherl 1.7003 1.0962 -1.2788 0.20507 0.98686 
2.933 [0-003] 1.319 [0-187] -1.803 [0.071] 1982.4 (1,2) 

New Zeal -0.83863 0.45388 -0.18369 0.24785 0.90869 

-2.847 [0.004] 4.076 [0.000] -1.050 [0.293] 262.73 (3,0) 
Norway 2.4977 0.46013 -0.59054 0.16370 0.99732 

14.549 [0.000] 2.946 [0.003] -3.412 [0.000] 12374.0 (2,0) 
Spain 4.1215 0.51075 -0.35914 0.14615 0.99868 

5.942 [0.000] 2.538 [0.011] -1.020 [0.307] 33822.0 (1,0) 
Switzerl 4.0434 -0.30050 -0.46362 0.22892 0.98260 

3.575 [0.0001 -0.428 [0.668] -1.009 [0.312] 2522.5 (0,1) 
Mirkey 2.4982 0.97008 -0.17052 0.36323 0.99681 

4.388 [0.000] 20.577 [0.000] -1.011 [ 0.312] 10383.0 (1,1) 

Group-Mean 2.6079 0.56554 -0.50227 - 0.98709 
22.845[0.000] 34.177[0.0001_ -8.416 [0.0001 - 

Continuing the discussion of § 4.7.1, we now see that the pooled DOLS panel 

regression rejects the strong PPP hypothesis, whilst the group-mean DOLS 

panel regression gives good support to the weak PPP hypothesis. This indi- 

cates that our bootstrap confidence interval approach provides a quite general 

framework for making inferences on the long run PPP hypotheses. 
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Table 4.03 Bias Correction Constants io 
Model IA t P*- 
Group-Mean I 

_ Austria -0.11 0.13 
Denmark 0.18 -0.17 
France -0.18 0.20 
Greece -0.19 0.20 
Iceland -1.22* -3.40* 
Mexico -0.36 0.09 
Netherland 0.24 -0.24 
New Zealand -0.47 0.46 
Norway 0.12 -0.10 
Spain 0.07 0.03 
Switzerland 0.86 0.07 
Mirkey 0.15 1 0.72 
Average 0.025 333 0.115833ý3 
Pooled 0.06 0.167] 

Tnlhlp A oA A evi-li-rnflinn (nin--. qf. ants h 

Model Pt Pt* 
Group-Mea_n 
Austria -0.0082959 0.0133480 
Denmark -0.0153550 0.0168650 
France -0.0040728 0.0020222 
Greece 0.0041270 0.0113320 
Iceland 0.0066912 -0.0066642 
Mexico -0.0012256 0.0067793 
Netherland 0.0136930 0.0122610 
New Zealand -0.0222160 0.0222100 
Norway -0.0244130 0.0246500 
Spain 0.0058567 -0.0037768 
Switzerland -0.0173820 0.0221160 
Mirkey 0.0253340 1 -0.0225 
Average 1 1 -0.00 1048 1 0.0082197 
Pooled 1 1 0.0042951 1 -0.00 

Inlo Tables 4.03 and 4.04 we have our bias and acceleration constant esti- 
'OHere * means outlier country omitted from average. 
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mates. The values for the group-mean estimator were obtained by applying 

the Jackknife method and bootstrap proportion method, described in § 4.3.3 

and § 4.3.4, to each individual country and then taking the average. 

4.7.3 Efficient Estimation 

One of the purposes of this study is to see how well the bootstrap" works 

with nonstationary panel data. One would like to judge the performance 

and efficiency of the bootstrap in a general setting when compared with its 

counterparts from first-order asymptotic theory. We have already mentioned 

about the power of the bootstrap to deliver asymptotic refinements, these 

lead to more efficient estimates. There are methods of evaluating confidence 

intervals in order to make efficiency judgements. Two criteria are used to 

judge confidence intervals: (i) size and (ii) coverage probability. An optimal 

and hence efficient confidence interval is one with small size and large cover- 

age, but these are difficult to obtain. We may measure coverage probability 

by the true coverage probability and size by the length of the interval. 

We find that the difference between the true coverage probability and the 

nominal coverage probability of the asymptotic confidence interval is 0(n-' 
"Horowitz (2000) notes that efficient estimation often results when one uses the para, 

metric bootstrap, as opposed to the nonpaxametric bootstrap. If one knows the parametric 
distribution of the errors being sampled then this, when used, will be more accurate than 
using the empirical distribution function and leads to smaller errors. With the parametric 
bootstrap an assumption is made as to the form of the distribution being sampled (eg 
normal), whilst with the nonparametric bootstrap no assumptions are made. 
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that is 

(4.93) P(IAk 1 ,5 z(c» -..: 1-a+ O(n-1). 

Whilst we have that for the bootstrap this error is O(n -2) given by 

(4.94) P(J& 1 :5 z*(*)) =1-a+ O(n -2). 

Note these confidence intervals are two-sided intervals. In general for one- 

sided and equal-tailed confidence intervals the difference between the true 

coverage probability and the nominal coverage probability for the asymp- 

totic interval is 0(n--2'). In this case the asymptotic confidence interval is 

said to be first-order accurate. However the analogous difference for the 

bootstrap confidence interval is 0(n-'). In which case we say it is second- 

order accurate. These notions of accuracy give us a good guide as to the 

expected performance of our confidence interval methodologies. We see that 

the errors are much smaller with the bootstrap than with the asymptotic 

confidence interval. The standard or asymptotic confidence interval and per- 

centile intervals are first-order accurate, whilst the BC,, and bootstrap-t in- 

tervals are second-order accurate. See Efron (1987) for a good discussion. 

The asymptotic theory, for these accuracy, coverage probability and interval 

size concepts, have been rigourously proved by Hall (1992) using Edgeworth 

and Cornish Fisher expansions. 
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4.7.4 Pooled Panel DOLS Bootstrap Estimates12 

Table 4.05 80% Nominal Confidence Interval for pit 
Method Lower Bound Upper Bound Length of Conf. Int. Cover. Prob% 
Asymptotic 1.06059 1.07701 0.01642 0.2242 
Percentile 1.03542 1.12571 0.09028 0.7998 
BC 1.03889 1.13207 0.09317 0.7962 
BCa 1.03914 1.13207 0.09266 0.7942 

1 Bootstrap-t 1.01235 1.10157 0.08921 0.7714 

Table 4.06 80% Nominal Confidence Interval for pi*, t 
Method Lower Bound I Upper Bound I Length of Conf. Int. Cover. Prob! Ol 
Asymptotic -1.11158 -1.09562 0.01595 0.0894 
Percentile -1.21073 -1.01533 0.19540 0.8000 
BC -1.19409 -0.99811 0.19597 0.7906 
BCa -1.19486 -0.99969 0.19516 0.7900 
Bootstrap-t -1.17862 -1.01241 0.16621 0.7198 

Table 4.07 90% Nominal Confidence Interval for pit 
Method Lower Bound Upper Bound Length of ConL Int. Cover. Prob% 
Asymptotic 1.05821 1.07939 0.02117 0.2886 
Percentile 1.02458 1.14430 0.11972 0.8996 
BC 1.02767 1.15082 0.12314 0.8986 
BCa 1.02828 1.15123 0.12294 0.8970 

1 Bootstrap-t 0.99356 1.11301 0.11945 0.8434 j 

Table 4.08 90% Nominal Confidence Interval for pi*t 
Method Lower Bound Upper Bound Length of Conf. Int. Cover. Prob% 
Asymptotic -1.11389 -1.09331 0.02058 0.1164 
Percentile -1.24673 -0.98258 0.26414 0.9002 
BC -1.22528 -0.96501 0.26026 0.8946 
BCa -1.22630 -0.96710 0.25924 0.8938 
Bootstrap-t -1.20963 -0.97853 0.23110 0.8504 

"5,000 Bootstrap replications used. 
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4.7.5 Group-Mean Panel DOLS Bootstrap EstimateS13 

Table 4.09 80% Nominal Confidence Interval for pit 
Method Lower Bound Upper Bound Length of Conf. Int. Cover. Prob% 

Asymptotic 0.21157 0.91950 0.70793 0.7288 
Percentile 0.19588 1.01833 0.82244 0.7998 
BC 0.21722 1.02953 0.81231 0.7938 
BCa 0.21159 1.03352 0.82192 0.7972 
Bootstrap-t 0.62009 0.93756 0.31746 0.3216 

Table 4.10 80% Nominal Confidence Interval for pi*t 
Method Lower Bound Upper Bound Length of ConE Int. Cover. Prob% 

Asymptotic -0.88010 -0.12443 0.75566 0.7714 
Percentile -0.82212 -0.04516 0.77700 0.8000 
BC -0.74471 0.02702 0.71770 0.7852 
BCa -0.74146 0.02974 0.71443 0.7842 
Bootstrap-t -0.96174 -0.61927 0.34247 0.2188 

Table 4.1190% Nominal Confidence Interval for pit 
Method Lower Bound Upper Bound Length of Conf. Int. Cover. Prob% 

Asymptotic 0.10925 1.02182 0.91257 0.8422 
Percentile 0.07750 1.14555 1.06804 0.9000 
BC 0.09675 1.17140 1.07464 0.8998 
BCa 0.09363 1.16971 1.07608 0.8994 
Bootstrap-t 0.56869 0.98640 0.41771 0.4222 j 

Table 4.12 90% Nominal Confidence Interval for p*ý it 
Method - I Lower Bound Upper Bound Length of Conf. Int. Cover. Prob% 
Asymptotic -0.98932 -0.01521 0.97410 0.8782 
Percentile -0.93765 0.06742 0.87022 0.8996 
BC -0.86895 0.14724 0.72171 0.8906 
BCa -0.86125 0.15501 1.01626 0.8890 
Bootstrap-t -1.01812 -0.57225 0.44586 0.2774 

13 5,000 Bootstrap replications used. 
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In Tables 4.05-4.08 we have the results of the pairs bootstrap Monte Carlo 

simulations for the pooled DOLS estimator. Here the percentile method per- 

forms best with the smallest coverage errors for both coefficients at both 

nominal levels. Here also the asymptotic method provides the shortest in- 

tervals for both coefficients at both nominal levels. It has intervals approx- 

imately one-tenth the size of those of the bootstrap-t method. However it 

does so at the cost of very large coverage errors. That is the confidence in- 

tervals are too narrow for 80% or 90% of all the bootstrap replications to fall 

in them. The very bad performance of the asymptotic method is due to the 

very small estimated standard errors of the model. However, the bootstrap-t 

method performs quite reasonably at both nominal levels. Here close to 80% 

and 90% of all the bootstrap replications fall in the bootstrap-t confidence 

interval at the respective nominal levels. The BC and BC,, methods are very 

similar with the BQ, method providing shorter intervals and the BC better 

coverage probabilities. 

In Tables 4.09-4.12 we have the results of the pairs bootstrap Monte Carlo 

simulations for the group-mean DOLS estimator. With the group-mean 

DOLS estimates we have the percentile method again providing the smallest 

errors in coverage probabilities in both coefficients at both the 80% and 90% 

nominal levels. However now the bootstrap-t method provides the shortest 
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confidence interval for both coefficients at both nominal levels. But again 

with very high cost in coverage probability. The asymptotic method performs 

very reasonably at both nominal levels as does the BC and BC,,, which again 

provide very similar results. 

By modifying the bootstrap to correctly account for the serial correlation in 

the residuals of the cointegrating regression and using the pairs bootstrap, 

we see that the bootstrap confidence interval estimators perform, as well as, 

if not much better than the asymptotic confidence interval estimators. The 

asymptotic method is shown at times to be very unstable in this panel data 

cointegrating regression. With the pooled DOLS estimator it undercovers 

by over 60% at both nominal levels, whilst all the bootstrap methods de- 

liver consistently small coverage errors of less than 5%f for both panel DOLS 

estimaors. The only exception being the bootstrap-t estimator in the group- 

mean estimates which also undercovers by as much as 60%. The pairs boot- 

strap method hence is shown to be remarkably accurate and efficient both 

with the group-mean and pooled DOLS estimators. Finally the percentile 

methods (including BC and BQ seem to be best in delivering optimal con- 

fidence intervals, in terms of shortest intervals and smallest coverage errors. 

Our results do coincide with some of the findings in the bootstrap literature. 

However, to our knowledge no applications exist, in the econometric litera- 
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ture, of bootstrap confidence interval studies with cointegrating panel regres- 

sions. Rilstone and Veall (1996) use the bootstrap to reduce the downward 

bias of SUR standard error estimates. However the panels they investigated 

gave rise to stationary regressors. They found the bootstrap-t estimator out 

performed the BCa estimator. Hansen (1999) proposed a Grid bootstrap for 

constructing confidence intervals in autoregressions when the auto-regressive 

root is close to unity, whilst Kilian (1999) conducted a Monte Carlo analysis 

of bootstrap confidence intervals for impulse response estimators. Also an- 

other econometric application of the bootstrap has come from Kazimi and 

Brownstone (1999) who provide bootstrap confidence bands for shrinkage 

OLS estimators. They find that of the numerous methods they consider that 

the BQ, methods perform best (and the double bootstrap poorly). In the 

general statistical literature DiCiccio, and Romano (1988) provided examples 

of the percentile, BC, BQ, and percentile-t methods for the confidence inter- 

vals of a correlation coefficient and an exponential mean. They found that 

the BC and BC. improve on the percentile method in terms of accuracy. 

Finally Efron (1987) introduced his corrections to the percentile method for 

the central (1 - a) BC and BQ, intervals in a theoretical study. He showed 

the BC,, interval was nearly identical to the exact interval. 
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Figure 3.01 Histograms of Pairs Bootstrap Replications of Pooled DOLS P19 P2 
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Figure 4.01 shows the histograms of the pooled DOLS bootstrap replications 

of 31 and 32, For #2 we see the bootstrap distribution is a close approxima- 

tion to the normal distribution (some slight mesokurtosis shown), whilst P, 

shows some positive skewness. 

4.7.6 Bootstrap Quantiles for a panel data Inflation 
AR(12) Autoregression 

In this application we use the panel group-mean estimator of Pesaran and 

Smith (1995) for bootstrap quantiles of an inflation AR(12) autoregression. 

In chapter 1 we showed that there may exist a unit root in our panel of 

inflation rates by our panel unit root tests. We now go further and show 

how these autregressions can be bootstrapped. The methodology follows 

Inoue and Kilian (2002) who also bootstrap autoregressions with possible 

unit roots. 

4.7.7 The Data Set 

The dataset is the same dataset for 20 OECD countries discussed in chapter 

1, consisting of monthly observations from 1960ql-2OOOq8, on inflation rates. 

In Tables 4.18-4.22 of Appendix 3 we have the individual country AR(12) 

regression estimates. All show a reasonable fit of the data with R' above 
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0.5 in all cases except Japan, Finland and Portugal, and no evidence of se- 

rial correlation. All the F-statistics are significant. These individual country 

AR(12) regressions combine to produce the group-mean AR(12) regression 

shown in Table 4.13. The average R' = 0.60768 is quite high. 

Table 4.13 Group-Mean AR(12) Regression Estimates 
Cf GROUP-MEAN 

ai 0.0010208 
9.4675 [0.000] 

oli 0.14814 
15.0554 [0.000] 

02i 0.024655 
2.3472 [0.019] 

03i 0.041889 
4.4179 [0.000] 

04i 0.025006 
2.1451 [0.032] 

05i 0.020952 
2.1136[0.034] 

06i 0.11465 
11.5756[0.000] 

ON 0.018694 
1.8502[0.064] 

08i 0.041117 
4.0175[0.000] 

09i 0.062330 
6.0664[0.000] 

010i -0.00049967 
-0.0105[l. 008] 

olli 0.028197 
3.0059[0.002] 

012i 0.28596 
29.6699 [0.000] 

Aver. W=0.60768 

As mentioned we used the modelling strategy of Inoue and Kilian (2002) 
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to bootstrap the AR(12) autoregressions with possible unit roots. This for- 

mulation avoids the well known bootstrap inconsistency problem of Basawa, 

Malik, McCormick, Reeves and Taylor (1991) and Datta (1996). Here the 

bootstrap is invalid in ADF(p) and AR(1) autoregressions when the autore- 

gressive parameter is unity. This violates the consistency conditions of the 

Beran and Ducharne (1991) Theorem. The intuition behind their formulation 

is that only the bootstrap estimates of the slope parameters of the differenced 

regressors are valid when the bootstrap is used for an ADF(p) autoregression, 

when the time-series is I(l). The autoregressive parameter is not. However 

given that the slope parameters of the levels AR(p) autoregression can be 

shown to be linear combinations of the ADF(p) slope parameters of the dif- 

ferenced regressors, since the latter are valid for bootstrapping, then so are 

the former. Now our conditions for stability of the levels autoregression are 

that the roots of the polynomial in equation (4.41) lie outside or on the unit 

circle. 

It is very important to note that the theoretical results for the BB and 

MBB have, up until recently, only been developed and proved for stationary 

weakly dependent processes. Many results for the nonstationary case remain 

unknown. Despite the lack of a theoretical basis for the BB and MBB with 

nonstationary data Li and Maddala (1996,1997) note that in Monte Carlo 
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simulations these methods seem to improve significantly on asymptotic in- 

ference and thus recommend them for use by empirical researchers (see also 

Hinkley (1997)). More recent studies on the BB and MBB also consider this 

caveat, see Fachin (2000), p. 3. Also Hidalgo (2003) and Paparoditis and 

Politis (2003) present new alternatives. Lahiri (1992) provided a proof for 

the MBB with nonstationary data, but his study was limited to the small 

case of a studentized sample mean. The first attempt to develop on the work 

of Li and Maddala (1996,1997) and Hinkley (1997) and also provide the- 

oretical results for the MBB with dependent nonstationary data has come 

from Phillips (2001). He used the simple and block bootstrap in spurious 

regressions, ie with a random walk process and the I(1) residuals from a spu- 

rious regression. The results of Phillips (2001) showed that both bootstrap 

methods failed to reproduce the original properties of the regressions. Al- 

though Phillips (2001) found that the block bootstrap performed much better 

than the simple bootstrap in capturing data dependence in these models, he 

strongly advised against using the bootstrap for residual based tests for unit 

roots and cointegration. He paralleled his results from bootstrapping inte- 

gated data with the Basawa, Malik, McCormick, Reeves and Taylor (1991) 

problem of bootstrap inconsistency in unit root inference. However the re- 

sults of Phillips (2001) can be criticised in that they are very case specific 
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and that no Monte Carlo simulation study is carried out. 

Our justification for using the BB with nonstationary data then is that in 

our simulations it adequately modelled the dependence structure in the non- 

stationary time-series and maintained the main characteristics of the data. 

Thus we do give evidence of a good performance of the BB, in our results 

below, where we see it performing similarly to the residual bootstrap of In- 

oue and Kilian (2002). We must however qualify these statements with a 

few observations. Firstly our bootstrap histograms, in Appendix 4, show the 

block bootstrap behaving very differently to the residual bootstrap, whereas 

the latter give rise to bootstrap distributions that have good normal proper- 

ties, in Figures 4.04-4.05, the former have distributions, in Figures 4.06-4.07, 

that are very un-Gaussian and often bi-modal. This is caused by the boot- 

strap block length being too long and hints that the application may be 

rather crude here. It also must be noted that no theoretical results exist 

for the block bootstrap and the nonstationary AR(p) model and this is in 

direct contrast to the residual bootstrap. To implement the block bootstrap 

the sensitivity analysis 14 described in § 4.5.2 was conducted to ascertain the 

length of the blocks. This gave a length of 122 for both the block bootstrap 

methods, given an original time-series of 488 observations. This block size 
"We show only the results for the block bootstrap as in this application the MBB 

produced slightly inferior results. 
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was consistent with the findings of Berkowitz and Kilian (2000) who found 

a block length of k= 36, for a time-series sample of T= 80, and k= 120, 

for a sample of T= 480 for the MBB. 

Table 4.14 Panel AR(12) Residual Bootstrap Regression Quantiles 
Level-% ai I Oli 04i 08i 0 

0.99 0.0016751 0.16791 0.047878 0.060422 
0.975 0.0015967 0.16393 0.043109 0.057027 0.29509 
0.95 0.0015420 0.16091 0.038682 0.053674 0.29172 
0.9 0.0014886 0.15721 0.034408 0.049433 0.28772 
0.8 0.0014142 0.15252 0.029627 0.044676 0.28308 
0.5 0.0012744 0.14334 0.020353 0.035334 0.27419 
0.2 0.0011448 0.13446 0.011102 0.026220 0.26554 
0.1 0.0010867 0.12980 0.006297 0.021178 0.26085 
U. U 0.0010344 0.12590 0.002472 0.017444 0.25687 
0.025 0.0009873 0.12241 -0.000601 0.013717 0.25373 
0.01 0.0009457 1 0.11892 1 -0.004981 1 0.009858 1 0.25045 

Table 4.15 Panel AR(12) Residual Bootstrap Regression Quantiles 
Level-% I-i 101i t04i togi I tOl2i 

0.99 2.8955 3.8100 0.98462 1.3244 6.9290 
0.975 2.8408 3.7189 0.87508 1.2487 6.8553 
0.95 2.8005 3.6478 0.78004 1.1733 6.7587 
0.9 2.7389 3.5655 0.68463 1.0801 6.6594 
0.8 2.6670 3.4573 0.57741 0.9737 6.5515 
0.5 2.5294 3.2486 0.37421 0.7705 6.3171 
0.2 2.3944 3.0457 0.17194 0.5665 6.1035 
0.1 2.3225 2.9369 0.06794 0.4541 5.9888 
0.05 2.2583 2.8514 -0.01423 0.3726 5.8948 
0.025 2.7772 -0.08746 0.2905 5.8175 
0.01 2.6929 1 -0.16954 1 0.2113 1 5.7341 

In Tables 4.14-4.15 we have the AR(12) residual bootstrap regression quan- 

tiles for selected regression coefficient estimates and t-statistics, whilst in 
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Tables 4.16-4.17 we have the AR(12) block bootstrap regression quantiles for 

the same estimators. As with Phillips (2001) our results can be seen as being 

very case specific. No Monte Carlo simulation study is carried out nor any 

theoretical results given. Bearing this in mind, and our above discussion, 

however we can see that the results are similar for both methods and quite 

accurate. To get an idea of the bootstrap accuracy we can construct some 

nominal percentile confidence intervals for 01i and compare these with the 

group mean estimates in Table 4.13. At the 1- 2a = 90% nominal level 

we have, for 01j, for the residual bootstrap method, an interval of 0.12590- 

0.16091 and for the block bootstrap, an interval of 0.10304-0.21270. Our 

group-mean estimate from Table 4.13 for 01i is 0.14814 which lies well inside 

both of the given intervals. The bootstrap t-statistics given in Tables 4.15 

and 4.17 can also serve as exact finite sample critical values. Computing such 

critical values is often useful to avoid small sample bias. 
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Table 4.16 Panel AR(12) Block Bootstrap Regression Quantiles 
Level-% ai 

-01i 04i 08i 0ý12i 

0.99 0.0031886 0.22593 0.037611 0.045742 0.30295 
0.975 0.0027341 0.21937 0.037105 0.042864 0.29607 
0.95 0.0023933 0.21270 0.036177 0.038635 0.28989 
0.9 0.0020709 0.20491 0.034979 0.035155 0.28107 
0.8 0.0017821 0.19569 0.032155 0.031137 0.26692 
0.5 0.0013758 0.17815 0.025746 0.022638 0.24371 
0.2 0.0010968 0.15189 0.020682 0.013177 0.21941 
0.1 0.0009959 0.13658 0.016701 0.007366 0.20584 
0.05 . 0009192 0.10304 -0.008874 0.003700 0.19653 
0.025 0.0008370 0.08948 -0.011527 -0.003283 0.19093 
0.01 0.0008034 1 0.08271 1 -0.017378 -0-006409 1 0.18372 

Table 4.17 Panel AR(12) Block Bootstrap Regression Quantiles 
Level-% t,, i to'i t04i to8i 

0.99 4.0944 5.0638 0.77147 0.92687 7.1328 
0.975 3.8869 4.9518 0.74013 0.90040 6.9421 
0.95 3.6217 4.7915 0.72622 0.82716 6.7793 
0.9 3.3776 4.6129 0.68072 0.74957 6.5302 
0.8 3.0786 4.4345 0.61760 0.67173 6.1596 
0.5 2.7078 3.9869 0.49086 0.48367 5.5690 
0.2 2.3717 3.4140 0.36109 0.26941 5.0087 
0.1 2.2092 3.0672 0.24669 0.15069 4.6805 
0.05 . 1234 2.3619 -0.25554 0.06869 4.4477 
0.025 2.0151 2.0197 -0.32821 -0.09128 4.3302 
0.01 1.9127 1 1.8464 -0.45394 1 -0.13686 1 4.1409 
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********************************************************************************* 

Notes to the Tables 

BC means Bias Corrected. BCa means Bias Corrected and Accelerated. 

5,000 Bootstrap replications used. (*) means outlier country omitted from 

average. Lag lengths chosen by Ng and Perron (1995) method. 
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Chapter 5 

The Asymptotic Properties of 
Nonstationary Panel Data 
Estimators 

5.1 Introduction 

This chapter presents a study on the sequential limit asymptotic theory for 

nonstationary panel data estimators. It builds upon the recent pioneering 

work of Phillips and Moon (1999) concerning an asymptotic theory for dou- 

ble indexed integrated statistical processes. The homogeneous cointegrated 

panel data model is studied and estimators such as the panel FMOLS, panel 

DOLS and the panel OLS are derived. Asymptotic consistency and asymp- 

totic normality is proved for the estimators with two specific cases for the 

panel data model being investigated. Firstly the case of the homogeneous 

panel data model with a constant intercept. Secondly the case of the homo- 

geneous panel data model with a constant intercept and trend. The main 
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contribution of this chapter is that it provides a more detailed analysis of 

the subject than is usually available in the panel data literature. Kao and 

Chiang (2000) study the model with varying intercepts and trends and also 

heterogeneous slopes, whilst Kauppi (2000) considers the model with near 

integrated regressors. The chapter evolves as follows. In section 5.2 an intro- 

duction is given to the new sequential limit panel data asymptotic theory. In 

section 5.3 some technical preliminaries are given. In section 5.4 we present 

the homogeneous cointegrated panel data model and the various estimators 

and in section 5.5 we have hypothesis tests. In the appendices, in Appendix 

1, we have the proofs to the theorems discussed in the chapter. 

5.2 The Panel Data Asymptotic Theory- Sequential 
Limit Probability Theory 

Panel data limit theory concerns itself with double indexed processes XNTi 

where both N and T tend to infinity. Recently Phillips and Moon (1999) have 

highlighted three different approaches to nonstationary panel data limit the- 

ory. The first, diagonal path asymptotics, allows N and T to pass to infinity 

along a diagonal path where one index is a monotonic increasing function of 

the other, of the type T= T(N) as the index N -+ oo. The second approach 

discussed in detail by Phillips and Moon (1999) is called the sequential limit 
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theory for double indexed integrated processes. Here one derives the limiting 

distribution in two steps. First one fixes (holds constant) one index, say N, 

the cross-section dimension of the panel, and allows the other, say T, the 

time-series dimension, to pass to infinity giving an intermediate limit. The 

final limit result is obtained by subsequently letting N tend to infinity. The 

final approach discussed by Phillips and Moon (1999) is joint limits where 

N and T -+ oo simultaneously subject perhaps to some rate condition, say 

N 
yr -+ 0. This last form of limit theory is the one most used and most well 

known in the panel data literature. 

This chapter is solely concerned with the sequential limit theory and how it 

is applied. In general one may obtain different results when using sequential 

probability limits compared to joint probability limits. One may in certain 

situations prefer one to the other according to ease of use. In Phillips and 

Moon (1999) sufficient conditions are given under which joint probability 

limits and sequential probability limits give identical results. 

It is now a well known fact that many macroeconomic time-series exhibit 

the characteristics of a nonstationary stochastic process. Nelson and Plosser 

(1982) provided convincing evidence that many macroeconomic time-series 

could be better described as integrated processes with drift. Subsequently 

there has emerged a growing body of literature concerned with the general 
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theory of statistical inference for time-series regressions with integrated pro- 

cesses. Phillips and Durlauf (1986), Park and Phillips (1988) and Phillips 

and Hansen (1990) are just a few examples. 

When dealing with nonstationary panel data the same need for a general 

theory of statistical inference for panel data regressions with I(1) processes 

arises, ie for a nonstationary panel data limit theory. The recent work of 

Phillips and Moon (1999), Kauppi (2000) and Kao and Chiang (2000), etc. 

have emerged to fill this gap. 

One of the key characteristics of the limiting distributions of the integrated 

time-series processes is that the least squares estimators are not asymptot- 

ically normal when appropriately scaled and centred. This nonnormality 

results from the fact that suitably scaled sample moments converge weakly 

to random matrices rather than constant matrices. When dealing with panel 

data by using sequential probability limits this property of convergence to 

random matrices can be exploited to derive an intermediate limit by an ap- 

plication of an appropriate Law of Large Numbers (LLN) or FCLT across the 

time-series dimension as T -+ oo. The final limit being then obtained sub- 

sequently on using a second LLN and/or CLT for random matrices over the 

cross-section dimension, as N -4 oo. This then gives the Gaussian properties 

to the limiting distributions in the final limit and smooths out the nonnor- 
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mality of the limiting distributions of the time-series dimension. This then 

is the appeal of the new panel data sequential limit theory. An important 

condition here is that the random matrices used in taking the second limit, 

using a LLN or CLT across the cross-section dimension, are all defined on 

the same probability space. This is so the sum of the limit of the random 

matrices is well defined on the same space. Phillips and Moon (1999) Ap- 

pendix b, shows how one can accomodate this by enlargening the probability 

space if necessary. 

5.3 Technical Preliminaries 

5.3.1 A Functional Central Limit Theory (FCLT) 

Consider the panel data discrete time stochastic process' Jyjt}i-t where 

yit = ayit-I + uit. 

When a=1 this then describes a random walk process 

(5.2) Yit = Yit-l + Uit. 

Under this representation by backward substitution we can write yit in terms 

of a partial sum process of the innovation sequence juitlilt 
, ie 

(5-3) Yit = Sit + M0, 
'Or dynamic panel data model or panel AR(1) model. 
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where Sit = E. ý=, uij and letting Sio = 0, yio is the initial condition. We can 

choose many alternatives for yio (see Phillips (1987) for examples of different 

initial conditions in the time-series case), but here we let yjO = 0. 

As an introduction we distinguish two cases 2: 

(i) uit is i. i. d. (0, a') a scalar. Hence jyjt} is also a scalar sequence. 

(ii) ut is an (n x 1) vector ut = (Uil 
i Ui2 i ... 7Uin)/7 with E(ut) =Qan (nx 1) 

null vector, E(utul) =E< oo a positive definite symmetric matrix. Hence 
t 

jyj is an (n x 1) vector sequence. We shall be concerned with the limiting 

distributions of the standardised sums. 

Case (i) Let uit be a random scalar defined on probability space (Q, B, P) 

then 

(5.4) XT (r) =1 -Si[T, ] 
U 1) 

:5r< -i- (i = 7TU TT 

(5.5) XT(l) =1 
V/T-or 

iT- 

Here [] denotes the integer part of its argument. 

We see the sample paths of 

(5.6) XT(r) ED= D[O, 1] a. s. 

the space of all real valued functions on [0,1] that are right continuous at 

each point of [0,11 and have finite left limits. Thus being in D space jump 

2 In what follows 0 will sometimes denote a null vector and othertimes a null matrix 
whilst 0 will always denote a null scalar. 
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discontinuities (or discontinuities of the first kind) are allowed. 3 We may 

endow D space with the modified metric d(f, g) in Skorohod topology given 

by the norm 

(5.7) 11(f, g)II =d(f, g) = inf, >oje: IJAII :5C, sup If (t) -9(At) 1 :5 -'Is 

where IIAIJ = supt, ý, InA(t)-A(S) t, SE [0,1]. For a definition and the I 
t-S 

properties of this metric in Skorohod topology see Billingsley (1968) p. 111- 

112. This renders D[O, 11 a separable and complete space. 

Then for case (i) XT(r) is a random element in the function space D. Also 

under these conditions XT(r) can be shown to converge weakly to a limit 

process known as standard Brownian motion or the Wiener process. This 

result is called the functional central limit theorem (FCLT) (ie a CLT on a 

function space) or as an Invariance Principle (see Billingsley (1968) p. 68 on 

Donsker's Theorem). The limit process called the Wiener process we denote 

by W(r) has sample paths which lie in C= C[O, 1] the space of all real 

valued continuous functions on [0,11 so W(r) E C[O, 1] a. s. Moreover TV(r) 

is a Gaussian process, ie for fixed r TV(r) - N(O, r), and has independent 

increments, ie W(u) - W(r) is independent of W(s) - W(t) for all 0<t< 
'Note that f) = D[O, 11 here then. 
4 The name Invariance Principle stems from the fact that if h is continuous on C[O, 1] 

then X,, =: ý W implies h(X,, ) =ý* h(W). Thus the FCLT holds under very general condi- 
tions. There may be great dependence (and heterogeneity) among the innovations of the 
strong mixing form or they may be white noise or i. i. d. The FCLT is invariant to the 
conditions and holds in all cases. 
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s<r<u, also W(s) - W(t) - N(O, s- t). We write 

(5.8) XT(r) ==>. W(r) 

to denote the weak convergence of the process XT(r) to TV(r) ie " =* )l 

signifies the weak convergence of the associated probability measures5 as 

T -+ oo. See also Billingsley (1968) on convergence of probability measures. 
)2. 

We will endow this space C[O, 11 with the norm IJAII = (fol IA(x) 12 dx 

The FCLT or Invariance Principle (IP) discussed above are given a good 

treatment in Phillips and Durlauf (1986), Phillips (1987) and Phillips and 

Solo (1992). 

Case (ii) When ut is an (n x 1) random vector defined on some probability 

space (Q, B, P) then for E(ut) = Q, Vt we have the vector partial sums St = 

uj and the vector random function 

U- 1) (5.9) XT E-2 S[Tl <r<- (j=l,..., T) 
VIT- TT 

(5.10) -1" EAST. XT(, ) "' 77: 

Note that 

(5.11) XT(r) ED= D[O, 1]n a. s. 

where 

(5.12) D[O, 1]" = D[O, 1] x D[O, 11 x D[O, 11 x ... x D[O, 1] 
5This is the analogue for function spaces of convergence in distribution for random 

variables see Hall and Heyde (1980) for a discussion. 
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the product metric space of n copies of the D[O, 1] space. We endow the 

D[O, 111 space with a suitable metric again in Skorohod topology. This metric 

renders D[O, 111 a complete and separable metric space. This metric being 

given now by the norm 

(5.13) il (x, y)11 = d(x, y) = maxild(xi, yi) : xi, yi G 

Then under these conditions 

(5.14) XT(r) =ý. W(r). 

Here W(r) is a multivariate Wiener process with each element of TV(r) being 

a univariate Wiener process and independent of each other. Thus TV(r) is 

termed an n-dimensional Wiener process. Note again that 

(5.15) W(r) E C[O, 1]' a. s. 

where 

(5.16) C[O, i]- = C[O, 1] x C[O, 1] x C[o, 1] x ... x C[O' 

This is the product space of n copies of the C[O, 1] space defined above. We 

shall endow the C[O, 1]' space with the following Euclidian norm 11 11. Thus 

'9 given any matrix A, IJAII = (tr(AIA))'. 

The FCLT described operates under very restrictive conditions, which we 

may need to relax to cater for innovations that may be only weakly stationary 
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and not i. i. d. The following proposition gives the necessary conditions which 

should suffice for our purposes, endowed with the above norms. We state the 

case for the vector sequence jutIO0 as in Phillips and Durlauf (1986). For 
t 

scalar sequences see Phillips and Solo (1992). 

Proposition 5.3.1 Let jut}00 be a weakly stationary sequence of (n x 1) 
t 

random vectors. Given ST = F,, T=l uj if 

(i) E(ut) =Q an (n x 1) null vector Vt. 

(ii) E luil 15 < oo (i = n) for some 2<J< 00. 

I-j 1-2 

(iii) either Vn < oo or >2 and aI< oo then 
M= M= m 

(5.17) E= lim E(T-'STST) 
T-+oo 

00 
1) E+1: (ulul JE(ulu/k) + E(UkU'1)}- 

k=2 

If E is positive definite, then XT(r) =: * TV(r) as T -+ oo. 

Again note that XT(r) E D[O, 1]1 a. s. and TV(r) E C[O' 1]n a. s. as before. 

Remark 5.3.2 The conditions given allow a large degree of temporal depen- 

dence and heterogeneity among the innovation processes fut}lt. The strong 

and uniform mixing conditions given state how much dependence exists in 

the fut}- processes that are seperated by at least m periods. Events that are t 
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over m periods apart are independent. Hence allowing m -+ oo we obtain 

asymptotic independence. For a good discussion on strong and uniform mix- 

ing conditions see Rlite (1984). The summability condition in (iii) shows 

1- 1 1-2 

for Eýý, vm ýý < oo, Vm is uniform mixing and for E. tl am I< 00, am n= 

is strong mixing. The conditions are satisfied, for say am, when the mix- 

ing decay rate is am = 0(m-A) for some A> (66 2) . We can make precise 

statements about the memory of a sequence that we can relate to the moment 

conditions expressed in terms of 6. For sequences with longer memories 6 is 

greater and hence our moment restrictions in (ii) increase accordingly (see 

White (1984) p. 47)'. The case of strict stationarity follows as a special case. 

The FCLT is often used in conjunction with the Continuous Mapping The- 

orern (CMT) now given. 

Lemma 5.3.3 If as in Case (i) of equation (5-8) XT(r) =* W(r) as T -+ oo 

and h is any continuous junctionaF on D[O, 1], continuous that is except for 

at most a set of points Dh E D[O, 1] for which P(W(r) E DO =0 then 

h(XT(r)) =ý- h(W(r)) as T -ý oo. 

Having established by FCLT the weak convergence of the partial sum pro- 

cesses to random matrices defined on Brownian motion the following theo- 

6This way of showing the tradeoff between moment and mixing conditions was first 
developed by McLeish (1975). 

'The extension to where h is an n-dimensional continuous functional is immediate. 

180 



rems concerning the Strong Law of Large Numbers (SLLN) and CLT will be 

useful. Also a formal definition of the sequential limit probability theory is 

given (see Phillips and Moon (1999) p. 1065. ). 

Theorem 5.3.4 (Komolgorov's Theorem) Let lZil be a sequence of 

random variables. " Then 2,, #p if and only if E lZil < oo and E(Zi) = p. 

IN Here Z,, =T Fi=l Zi. 

Theorem 5.3.5 (Komolgorov's Theorem Multivariate Version) Let jZj} be 

a sequence of i. i. d. random K-vectors with E(Zj) = p. Then 2n #p if and 

only if E (Zi) exists and E (Zi) < oo. Here Z, = -L Zi. N 

Theorem 5.3.6 (Lindeberg-Levy CLT) Let lZil be a sequence of i. i. d. ran- 

dom variables. If var(Zi) = or2 < 00, U2 :A0, then 

(5.19) 

1N 
(5.20) EiZ1 (Z ' 11) 4N (0,1) - %7N-- u 

Theorem 5.3.7 (Lindeberg-Levy CLT Multivariate Version) Let JZJ be a 

sequence of i. i. d. random K-vectors with mean it and covariance matrix E 

oo, then 
1N 

%IN- 
(NZ 

Zi -m4 N(Q, S). 

8Here, '4* means almost sure convergence. 
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Definition 5.3.8 (a) A sequence of m-vectors IXNT} on a probability space 

(0, F, P) is said to converge in probability to X sequentially written' XNT 2+ 

X in sequential limit as (T, N -+ OC)seq if 

(5.22) liM liM PJJJXNT - XII > EI:: z 0 VC > 0- 
N-+oo T-+oo 

(b) XNT converges in distribution sequentially to the m-vector X, written 

XNT 
=: > X, in sequential limit as (T, N -4 OO)seq if 

(5.23) lim lim lEf (XNT) 
- Ef (X) 1=2 Vf EC N-+ooT-+oo 

where C is the class of all bounded, continuous, real functions on RI and 0 

is an (m x 1) null vector. 

Many LLN's and CLT's can be handled together using Slutsky's Theorem. 

Proposition 5.3.9 (Slutsky's Theorem) If X,, -y+ X and Y,, -9+ a then 

X. +Y. -4X+a 

(ii) X. Y. -4 aX 

(-X) 2+ 1, provided a ýý 0 Yn cl 

To cater for the multivariate versions of Theorems (5.3.4) and (5.3.6), ie 

Theorems (5.3.5) and (5.3.7), we have the following Cramer-Wold device. 
'Here 4 means converges in probability. 
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Proposition 5.3.10 (Cramer-Wold device) Let fb,, ) be a sequence of ran- 

dom (k x 1) vectors and suppose that for any real (k x 1) vector A such that 

A/A =1 then A/b,, -4 A/Z where Z is a (k x 1) vector with joint distribution 

function F(z). Then the limiting distribution function of b,, exists and equals 

F(z). 

Finally in order to carry out block covariance matrix inversions we have the 

following partitioned matrix proposition. 

Proposition 5.3.11 Define the (k x k) nonsingular symmetric matrix 

(5.24) A=[B Cl 
CD 

where B is (k, x kl), C is (k2 x kl), D is (k2 x k2) and k= (k, + Q. Then 

defining E=D- CB-'Cly 

(5.25) A-' B-I(I+CIE-ICB-1) -B-ICIE-1 
-E-ICB-1 E-1 

I. 

Phillips and Moon (1999) and Kauppi (2000) have derived panel generalisa- 

tions of LLN's and CLT's for double indexed processes. In Phillips and Moon 

(1999) Theorem 1 generalises a WLLN to double indexed processes that are 

independent across i, for all T. Theorem 2 generalises a CLT due to Eicker 

(1963) and Theorem 3 generalises the Lindeberg-Feller CLT to double in- 

dexed processes. Similarly in Kauppi (2000) Theorem 1 follows Phillips and 
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Moon's (1999) Theorem 1, Theorem 2 generalises Markov's LLN to double 

indexed processes whilst Theorem 3 follows Phillips and Moon's (1999) The- 

orem 3 again. Levin and Lin (1992,1993) use another form of limit theory 

for double indexed processes called triangular array asymptotics see Levin 

and Lin (1992,1993) Lemma 2.2 and 2.3 for details. Phillips (1987) also uses 

triangular arrays in his paper. 10 

5.4 The Homogeneous Cointegrated Panel Data 
Model 

5.4.1 Case (1) The Model with a Constant 

Consider the following homogeneous panel data model with a constant inter- 

cept 

(5.26) yit ..: a+ xilto + uit 

(5.27) Xit ý Xit-i + Cit (2) 

where 0 is a (k x 1) vector of slope coefficients, ja} the intercept term, 

Juitl the stationary disturbance term, ie juitj - 1(0). Also jyjt} which is 

(1 x 1) and Ixitl which are (k x 1) are integrated processes of order one 

for all i. That is jjyjtj, jxjt}j - I(l). This is the panel data version of 

Phillips triangular form (see Phillips (1991)) and thus describe a system of 
'()These triangular array methods form the basis of Phillips and Moon's (1999) diagonal 

path asymptotics. 
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cointegrated regressions. 

The DOLS panel estimator 

Following Kao and Chiang (2000) and Pedroni (2001) the Panel Data Dy- 

namic Ordinary Least Squares (DOLS) estimator generalises the Saikkonen 

(1991) cointegrated regression estimator of the time-series literature to the 

panel setting. In contrast to the time-series fully modified FMOLS esti- 

mators; of Phillips and Hansen (1990) and their panel analogues that use 

nonparametric corrections for serial correlation and endogeniety problems 

in the cointegrated OLS model, the DOLS estimator uses parametric cor- 

rections to account for serial correlation and endogeniety. One way to en- 

sure that the juit} (which we can assume is a strictly or covariance sta- 

tionary sequence), is uncorrelated with fcit} is to add past and future val- 

ues of (Axit} into the regression. Then we use the classical assumptions 

E (fiit6it+k) 
=Qa (k x 1) null vector, for k= -j, - (j + 1), . .., 0,1,2 

1), j. Formally let fzit} be the residual from the linear projection of f uit} on 

fEit-p 
I Eit-p+ I Eit- II Eit2 Eit+1 

7 ... Eit+p}- so 

p (5.28) Uit : -"ý E C-ij-'it+j + Zit. j=-p 
Then zit is uncorrelated with cit-, for s= -p, - (p + 1), ..., 0,1) 

Remark 5.4.1 Two important assumptions made by Saikkonen (1991) (see 
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also Kao and Chiang (2000)) is that the lags and leads of the Axit tend to 

infinity, across the time-series dimension, at a suitable rate and in the limit 

the coefficient matrices cij should be zero. These are stated formally as 

p -+ oo as T -+ oo such that 2ý -4 0 
T 

(ii) T12 Eljl;;. 
p 

IICjll-+O. 

Substituting for uit in (1) we get 

p (5.29) yit =a+ xit, 3 +E cjLxit-j + zit 
j=-p 

(5.30) Xit = Xit-i + Cit. (2') 

Writing the above in matrix form we get 

(5.31) yit =a+ Xi', T + zit 

where Xit [milt 1 xl ]I and Ta it 

11 

where mit (c/ it-p,, it-p+l .... Eit-1, Cit, cit+l,..., Cit+p)/ 

and (c. 1 cl Cý sp, ip-1 I i-P 

Hence the DOLS estimator of T is 

(5.32) tDOLSI 
"NT it) 

-1 NT (EExi, xl EExityit i=l t=l i=l t=l 

NT( Mit I 

IM, 1 X, 1) 
NT( Mit Yit 

(5.33) =EE1 it it EE vit i=l t=l Xit i=l t=l Xityit 
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NT mitmit mit mitxit NT( MitYit I). 

(5.34) =EE mjýt 1x 
iýt EE yit 

i=l t=l xitm/ xit i=l t=l it xitXit; -) Xityit 
Since Axit-p it is a (k x 1) column vector so Eit p 

is a (1 x k) row 

vector. Hence mit above is a ((2p + 1)k x 1) column vector and Xit is a 

(((2p + 2)k + 1) x 1) column vector. 

Assumption 5.4.2 Let wit 
zt be an (N* x 1)" vector generated by 
Cit 

I 

the linear process 

(5.35) Wit = qf(L)cit 

where T(L) = Ej'ýO FjLj so that wit = Ej"=o xFjcit-j 

(i) Tj is an (N* x N*) constant matrix with To = IN- 

(ii) Ej'ojllxFjll oo so jjxFj}ý' is an absolutely summable sequence 

(iii) T (1) has full rank 

(iv) Icitlilt is an i. i. d. sequence of (N* x 1) vectors 

(v) E(cit) and E(citfilt) = Ej a positive definite matrix such that PiRl - i- 

Ej where Pi is the Cholesky factor of Ej 

(v i) E 11 citI14 ý', 00 ie cit has finite fourth momentS12. 
"here N* =k+1. 
"Condition (ii) and condition (vi) ensure that the components of the long run covariance 

matrices are finite eg 110ill = jj%F(l)Ej%P/(1)jj < oo since (ii) also implies ll%F(1)11 < oo. 
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Remark 5.4.3 Here the absolute sum7nability of fjxFj}j" is stronger than 

the absolute surnmability condition Ejto JjxFjjj < oo and hence Ej'ýOjjjqfjjj J= 

oo implies Ejto JjxFjjj < oo. The stronger condition is useful when using the 

Beve7idge-Nelson Decomposition much used by Phillips and co-workers in his 

papers Phillips and Solo (1992) and Phillips and Moon (1999). 

Under the conditions of Proposition (5.3.1) and Assumption (5.4.2) we see 

that EIT"I wit satisfies the following multivariate invariance principle (again t=1 

see Phillips and Durlauf (1986)) 

1 [Trl 

(5.36) 7=ýwjt=: >. Wj(r)=BMj(Qj) as T-+oo Vi 
T t=l 

where lVi(r) is standard N*-dimensional Brownian Motion (or Wiener Pro- 

cess) with covariance matrix Qj = Also Wi(r) E C[O' 1]N* a. s. 

Since zit is uncorrelated with -i, for all t and 7- we can partition IF(L) and 

Pi accordingly and write 

(5.37) Pi Pill Q, Til(L) 0/ 
0 Pi22 Q 4122 (L) 

where A22 and 4122(L) are (k x k) matrices and Pill and Tll(L) (1 x 1) 

scalars. Hence Pi and T(L) are (N* x N*) matrices. Also 0 is the (k x 1) 

null vector. Then 

(5.38) f2i = 
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, 1112 (5.39) 111(1)p. 0 
0 lf22(1)pi22Pi/224f22(l) 

Assumption 5.4.4 The (k x 1) vector xit are not cointegrated (ie Qi22 iS 

nonsingular). Where Qj is also partitioned according to the above 

(5.40) 
Pill Qil2 1 

SIM Qi22 j 

(5.41) = 
1 Pill 0/ ]- 

0 OM 

Hence Qj is block diagonal here with the panel DOLS correction. Since Pi 

is usually unknown consistent estimates can be obtained of the components 

of Ili (shown below for the panel FMOLS estimator), which can be used to 

form feasible panel DOLS estimators. The following Lemma will simplify the 

DOLS computations to come for case (1) 

Lemma 5.4.5 By the FCLT of Proposition (5.3.1) and the CMT of Lemma 

(5.3.3) 

(5.42) 1 
y; i xitxit =: ý. Ai22 [wi2(r)][Wi2(r)]/dr Ai/22 (a) 

t=l 

I fo, I 

1T1 
(5.43) - Exit Ai22 

f 

i2(r)]dr i0 (b) T2 
t=l 

[w 

1T 
(5.44) =E zit Ail, Wil (1) (C) 

T! t=l 

(5.45) 
T 00 

E Eit-'x 
Ai22 

i2(r)1[dWi2(r)]' (d) it 
0 i22 +Er, ý, 

T t=l 01 V=l 
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(5.46) 1 Ai22 
If 

7; xitzit [Wi2(r)][dWjl(r)] I Ail, (e) 
t=l 

/ 2+ ri, = E(Axit)(Axit-, )l by LLN (5.47) - E, -it, -it-s (f 
T t=l 

1T (5.48) E mitmilt -4 Vi by LLN (g) 
T t=l 

T2 

(5.49) 1: mitzit -4 N(2, ViAll) by CLT (h) 
22 t=l 

T 

(5.50) E cit =: ý- Ai22 TVi2 (1) W 

TI t=l 

where Ail, = xPll(l)Pill a (1 x 1) scalar, Ai22 = q'22(1)Pi22 a (k x k) matrix, 
Cit+p 

--it+(p-l) 

Mit a ((2p + 1)k x 1) vector, Cit-1 
Cit-2 

L Eit-P j 
rio ril 

... 
rip rip+, 

... 
ri2p 

rip rs-P 
Vi E(mitmit) = ri-(p+, ) ]Pip+l 

]Pi-(p+2) ri(p+2) 

L ri-2p 
... ... ... ... 

rio j 
a ((2p + 1) kx (2p + 1) k) matrix. 

Note here Wi (r) is partitioned as Wi (r) = (Wil (r), WjI2 (r)) 
1 

where Wil (r) is standard scalar Brownian motion and TVi2 (r) is k-dimensional 

standard Brownian motion. Also note the integrals above are understood to 

be taken with respect to Lesbesgue measure (that is fo' TV(r)dr). See Pfieffer 
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(1990) for a good discussion of Lesbegue measure. The appendix of Levin 

and Lin (1992) gives a useful summary of some integrals of Brownian motion. 

See also Bispham (2002) for an introduction to Wiener processes 13 
. 

Theorem 5.4.6 Suppose Proposition (5.3.1) and Assumptions (5-4.2) and 

(5.4.4) hold and the data are generated by (1') and (2'). Then by sequential 

limit probability theory 

(i) As (N, T -+ 0O)seq 
&LS1 2+ 0 

(ii) As (N, T -+ OO)seq 

vrN-T 
(ýDOLS1 N (Q, M-1011). 22 

The FMOLS panel estimator 

Consider again the model of (1) and (2). 

Assumption 5.4.7 Let fvit u't ] 
be an (N* x 1) vector generated by the 

Eit 
linear process 14 

(5.51) t7vit = ýF(L)cjt 

where IF(L) = Ejto lFjLj so that z7vit = ZýO - 
j=0 

FjEit-j 

(i) iij is an (N* x N*) constant matrix with ýFo = IN. 

(ii) E; '=OjjjIFjjj < c)o so IjIFj}j00 is an absolutely summable sequence 
"Banerjee et al (1993) is useful and also the Mathematical Appendix in Pedroni (2000). 
"Here N* =k+1 again. 
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(iii) ýF (1) has full rank 

(iv) fcit}i't is an i. i. d. sequence of (N* x 1) vectors 

E(, Eit) =Q and E(citeilt) = Ej a positive definite matrix such that PiPil = 

Ei where Pi is the Cholesky factor of Ei 

(vi) E 11fitI14 , cý 00 ie cit has finite fourth moments. 

Again we see that under the conditions of Proposition (5.3.1) and Assumption 

_ E[Tr],, (5.4.7) we have that ' V. t satisfies the following multivariate invari- 
, IT- t=1 % 

ance principle (Phiilips and Durlauf (1986)) 

1 IT'j 

(5.52) 7=Efvjt=ý. TTVj(r)=BMj(f2j) as T-+oo Vi 
T T t=l 

where Oi is the long run covariance matrix of {fD-jtj given by 

00 00 
(5.53) Qj = E(iv-iofvilo) +E E(t7viofvilk) +E E(i-viofvilk)l 

k=l k=l 

(5-54) 

Here 

+ rIj + rIj. 

(5.55) 
Oill f2i12 

f2i2l f2i22 

where flill iS (1 X 1)i f2i12 iS (1 x k) and 
fli22 iS (k x k). 

Ek'ýo E(UitUit+k) + Ek'ýl E(UitUit+k) EkýO E(UitEi/t+k) + Ekýl E(Ei/tUit+k) f2i 
= k= k= k= k= it 

[ 
E' 0 

E(eitUit+k) + Z' , 
E(UitEit+k) E' 0 E(eit, -I k= k= it+k) + E'k%, E(eit, - it+k) 

(5.56) 
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The one-sided long run covariance matrix is given by 

00 
(5.57) foik E E(7-140 

k=O 

(5-58) = . 1i + iii 

(5.59) 
riii ril2 

rI 

Ekto E(UitUit+k) Ekjo E(UitEilt+k) 
(5.60) 

Ekto E(CitUit+k) Fkto E(citE it+k) 

Also ýDj = E(t7vjotbýo) the contemporaneous covariance matrix and 2 

fli 
li ý 

12 
ri 

I 

f12111 

Ils'22 

=[ 
Ek"=, E(UitUit+k) E'k%, E(UitEi/t+k) 

(5.62) 
Z' , 

E(EitUit+k) r, ' , E(eit, -I k= k= it+k) 

Remark 5.4.8 Note that the long run covariance matrix is an alternative 

way of w7iting ni = ýF(1)EJF/(l) = ! Di = ýF(l)PiPi'V(1). This is just 

the autocovariance-generating function G(z) = T(z)PjR/T/(z-1) evaluated i 

at z=1 and now conforms with the covariance matrix formulation given for 

the panel DOLS estimator. 

Assumption 5.4.9 The (k x 1) vector xit are not cointegrated (ie OM iS 

nonsingular). 

As mentioned earlier the FMOLS estimators of Phillips and Hansen (1990) 

and their panel analogues, eg Pedroni (2000), Kao, and Chiang (2000) and 
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Phillips and Moon (1999) use nonparametric corrections for endogeneity and 

serial correlation problems in the model. 

Consider first the effect of correlation between cit and uit. This gives rise to a 

non-zero value for Qi2l. This endogeneity problem is similar to the simultane- 

ity bias in simultaneous equations. We can correct for this by subtracting 

-1 f2il20j22Axjt from yit and uit in (1). Define 

(5.63) Uit Uit - 
f2il2f2i-2126it) 

(5.64) YPt Yit - 
N20i-2126it* 

So now 

(5.65) u 1+1 u" Llfvit 
"it 

Ll 
Cit 

where 

'2 (5-66) Lil 1 -f2il2f2i22 Lil 

0 IK L 
jý2 

where Li is ((k + 1) x (k + 1)), Lill is (1 x (k + 1)) and LjI2 is (k x (k + 1)). 

Now 

-1 (5.67) Ui+t -OMOM Uit 

Cit IK 

11 

Cit 

which has long run covariance matrix 

(5.68) LilOiLi = Lil 
nill f2i12 

L 
[ 

ni2l ni22 

Ii 
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(5.69) =[1 
-f2i21f2i212 

1[ f2i11 Üi12 1-1 01 1 

0 IK f421 Üi22 
-(2i21fýi22 

IK 

(5.70) 
oi 10 

01 Üýi/22 

where f2i+11 
---: 

Oill 
- QMOMOM. Thus the transformed long run covariance 

matrix is block diagonal as in the panel DOLS case. 

The serial correlation problem axises from the constant term that appears 

in the OLS equation without correction, arising from the non-zero value for 

ýZ+ = E'OE(citu+ _+ ed to remove what k= it+k) = ri2l. Thus corrections are need 

is termed the second-order bias in the time-series caseI5 effects arising from 

the temporal correlation between Eit and uj+t. This is given by the off-diagonal 

elements of the one-sided long run covariance matrix ri. This is also called 

the bias correction as the estimator is knocked off centre and gives rise to 

the non-normality in the OLS time-series estimator. Write 

00 
(5.71) E E(6itUi+t+k) 

k=O 

00 
(5.72) E(Eit[Uit+k - 

Üil20i226it+k1) 

k=O 
00 00 

(5.73) 
t 

E(eitUit+k) - 
f2i12Üi, 

22 E E(EitEit+k)- 

k=O k=O 

From above we see using our one-sided long run covariance matrix Fj that 

(5.74) r+ = 
ri2l 

- 
Oil2n- 1 ri22- 

i2l i22 

151n the time-series literature it is termed "second-order" because the consistency of 
time-series estimators is unaffected. In the panel case though they are. The bias does 
influence the centering of the time-series limiting distribution and normally indicates that 
the finite sample bias can be substantial. 
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Consistent estimators for the nuisance parameters Qj, ri and -+ Qill can be 

used to obtain feasible FMOLS estimators. Similar analogous consistent 

estimators are valid for use in the DOLS case. These estimators are the 

same as the time-series estimators of the long run covariance matrices as 

T -+ oo. Some are scalar as in Phillips and Perron (1988), p. 340 and Phillips 

(1987), P-285 who discusses some of the conditions necessary on the lag 

window truncation parameter for consistent estimation. Further discussion 

of consistent estimation of covariance matrices can be found in White (1984) 

ch. 6. For the matrix case Phillips and Durlauf (1986), p. 479 give conditions 

for consistent estimates of long run covariance matrices. 

Remark 5.4.10 The conditions on the rate at which I -+ oo as T -* oo 

necessary for consistent estimation of long run covariance matrices are 

(i) 1 -+ oo as T -+ oo 

(ii) L4 
-+ 

Newey and West (1987) Heteroscedasticity and Autocorrelation Consistent 

(HAC) estimators are also discussed by Phillips and Durlauf (1986) and can 

be used to ensure non-negative variances. Hence for the time-series estimates 

of f2j, ri and f2i'll and the analogous DOLS nuisance parameters we can refer 

to Phillips and Durlauf (1986). 
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For the panel analogues of the long run covariance matrices we follow Kao 

and Chiang (2000). Note that under the assumption of a homogeneous panel 

2+1 Vi and we have the following simplifications Pi = Q, Fj r and Oi+11 =f1 

similarly for the DOLS case. First obtain estimates of fiit and eit by the OLS 

regression of (1) and (2). For the DOLS iit and tit, use the OLS regression 

of (li) and (2i). Thus we can form tbit and 'wit. 

ýt 

Now 4) is estimated by 

NT- 
fvit (5.75) (D fvit VT_ 

t=1 

and Q is estimated by 

1NTIT 
(5-76) -+-E0,1 fv-iti^V-it- W -,, Wit it + !! it f2 =NýTý fv fv't Tr=l t=T+l i=1 

( 

t=1 

where Cv,, is some weight function or kernel. Popular choices are the Bartlett 

or Parzen kernels. By Phillips and Durlauf (1986) and a sequential limit 

theory Q and -(D can be shown to be consistent estimators of 0 and C Phillips 

and Moon (1999) p. 1084 also give detailed conditions for consistent estimates 

of the panel analogues of the time-series long run covariance matrices. Using 

4t 

a Parzen lag window Phillips and Moon use averages (as in Q above) of 

the usual nonparametric, and consistent as T -+ oo, kernel estimates for 

each i. These methods are reproduced in Kauppi (2000) who uses the kernel 

estimation strategy of the panel pooled fully modified (PFM) estimator of 

197 



Phillips and Moon (1999). 

Remark 5.4.11 Compa7ing the DOLS and FMOLS long run covariance 

matrices we can see 

(5.77) gi = 
nill 0/ 1 

11 9i22 

[p 
, llqfl, 

(1)]2 
(5.78) 

0 11f22 (1 

(5.79) LilÜiLi = 
Ü'+ll 10 

Ai'l 1 
0 Ai22Ai22 

o/ for DOLS. )Pi22Pi/221112/2(l) 

I 

for FMOLS. oi22 
I/ I 

17V Now we still have Wj (r) defined as Wi (r) = 
(Wil (r), WjI2 (r)) / 

where j, (r) 

and Wi2(r) are correlated since Wi(r) is standard Brownian motion with co- 

variance matrix Oi where the off-diagonal elements are nonzero as in equation 

(5.55). So we now define Wj'(r) = BMj(LjOjLj) where Wj+(r) is standard 

N*-dimensional Brownian Motion with covariance matrix 

k+2 
(5.80) LýOiLi ill Q 

/+ I+- 

CO 

Qi22 

]=- 

i22 i22 i22A 

Partitioning BMj(LýnjLj) conformably with i7vit then s 

17V+ BMj(LýOiLi) A +2 0/ 
BMj(Lj'f2iLi) 

+- /+ -l 
(r) [ 

BMj(Lj1f2iLi) 0 Ai22Ai22 IVi2 (r) 

(5.81) 

Where f'V-i' (r) = 
(TIVill (r), t-Vi+21 (r)) / 

where Wi+l (r) and fVi+2 (r) are indepen- 

dent. Note we cannot set Oi+11 = f2ii, except in special circumstances al- 

though it is easy to see that Qi22 f2i22 
-"": 

f2i+22 
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The feasible FMOLS panel estimator 

On substitution of our estimators 6i and Fj for fli and ]Pi, etc we have the 

estimating regression 

(5.82) Yit - f2il2Qi226it a+ xýtp + uit - Qil2Qi226it 

(5-83) Xit = Xit-i + Cit. 

Writing the above in matrix form we get 

(5.84) x/, r + fi+ 
it - it it 

where Xit = [l xýtjl and T=[a 2 13 
Hence we have the FMOLS estimator of T as 

&FMOLS1 NT1 
(5.85) t- (E 1: xi, xi,, ) E( xitat) 

[ 

ýFMOLS1 
i=l t=l i=l t= 

NT -1 N (T [ P+ 
(5.86) it I 

ýj X, I) it EE Xi it xitpi+t - TR+ i=l t=l 

G 

i=l t=l 
NTN (T 1 xit t (5.87) it EE 

I xitpi+t - Tý+ i=l t=l 

G 

Xit 

1) 
EE 

Xitxit i=l t=l 
The following Lemma simplifies the FMOLS computations for case (1). 

Lemma 5.4.12 By the FCLT of Proposition (5.3.1) and the CMT of Lemma 

(5.3.3) 

(5.88) 1T 
A+ ff 1 

[TTVj+2(r)][Wj+2(r)]/drjA+/ T2- AE 
TitXit ": * i22 i22 

(a) 
t=l 
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1T 
&+ 

1 
(5.89) TE Xit #- i22fo [Wi+2(r)]dr (b) j2 

t=l 

1T 

(5.90) 
1E fii+t =: ý. Aj+l I Wj+l (C) F2 

t=l 

iT 

(5.91) -E xitfii+t Aj+2 j2 (r)] [dfVi+l (r)] I At,, (d) 
T t=l 

i22 
ýfol[W'+ 

il 

Theorem 5.4.13 Suppose Proposition (5.3.1) and Assumptions (5.4.7) and 

(5.4.9) hold and the data are generated by (1") and (2"). Then by sequential 

limit probability theory 

(i)As(N, T-+00)seq ýFMOLS12+# 

(ii) As (N, T -+ OO)seq 

v, rN-T (ýFMOL. 
l N (Q, 2Qý210+11) 22 

The OLS panel estimator 

Consider again the model of (1) and (2) and the conditions of Assump- 

tions (5.4.7) and (5.4.9). We can write for the untransformed model f2i = 

'ýF (1) Ei iF_/ (1) as before. Using this framework for the OLS case write 4F (1) Ej dF/ (1) 

and A? A*/ - So now A? = xF*(I)Pi, Aý = [Ai*,,, A*22 
Ii- 

Qi = W. Note that in this case A? Ai*/ is not block diagonal 

2 */M 2 (5.92) 
I&IT11M], 111*11 Mpill Pi22T22 

IýP2*2(1)Pi22PillT*jl(1) IP2*2(1)Pi22Pi/221I12*/2M 

(5-93) 
f2ill OM 

ni2l OM 
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We can write the panel OLS estimator then as follows based on OLS estima- 

tion of (1) and (2) and the above assumptions. Writing (1) in matrix form 

we get 

(5.94) Yit = Xi/tT + Uit 

where Xit = [1 xiltll and T 

Hence we have the OLS estimator of T as 

(5.95) 
&OLS1 NT 

xi, xil, 
)-I NT 

EEEE Xityit ýOLS1 
(i=l 

t=l i=l t=l 
(5.96) 

NT ([ 111X, 
j)-l 

NTX 
yit 

t it EE 
i=l t=l Xit i=l t=l it Yi 

(5-97) 
1x 

EE ([ it/ 
i=l t=l xit Xitx ityi it 

1) 
i=l t=l 

G 
xyit tD 

Theorem 5.4.14 (Inconsistency) Suppose Proposition (5.3.1) and Assump- 

tions (5.4.7) and (5-4-9) hold and the data are generated by (1) and (2). Then 

by sequential limit probability theory 

p (i) As (N, T -+ 00),, q OLS is inconsistent POLS1 A 

(ii) As (N, T -+ C)O)seq 

v(N-T (AOLSI 
- ß) =: > N (2r*19-1, 

2 22 22 2 21 22 
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5.4.2 Case (2) The Model with a Constant and a Trend 

Consider the following homogeneous panel data model with a constant inter- 

cept and trend 

(5-98) yit =a+R+ xilt, 3 + uit 

(5.99) Xit : -- Xit- i+ Cit - 
(2 ) 

This again is the panel data version of Phillips triangular form (Phillips 

(1991)) now with a constant intercept and deterministic trend added. The 

other parameters and variables are the same as before. 

The DOLS panel estimator 

The model develops exactly as before so we shall use the same notation as 

before with alterations explained where necessary. The estimating regression 

now becomes 

(5.100) (Jiv) yit =a+R+ xit, 6 + cijAxit-j + zit 
j=-p 

(5.101) Xit = Xit-i + Cit. (2") 

Writing the above in matrix form we get 

(5.102) Yit = xilty + zit 
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V 

where Xi, = [ml 1 xl t]l and T-a with mýt and ý as before. it it 

Hence the DOLS estimator of T is 

(5.103) 
NT 

1: Xi, Xi/, 
NT )EE 

Xityit 

Mit Mityit 

(5.104) 
T 

E 
1 

[M/ 

it 
1 T/ 

it t] 
T 

EE 
Yit 

t=l Xit i=l t=l Xityit t tyit 
mitmit 7nit Mitxit mitt Mityit 

NT 

(5.105) =EE 
mit 1 xit t NT 

EE Yit 

i=l t=l Xitmit Xit xitxit - x%tt i=l t=l Xityit 
tm t tx1 t2 tyit 

zt it 

The following Lemma will simplify the case (2) DOLS computations. 

Lemma 5.4.15 By the FCLT of Proposition (5.3.1) and the CMT of Lemma 

(5.3.3) 

(5.106) 11 
T2- 

E t-*- 
2 

(a) 

(5.107) t2_ý 
1 

TT E 
3 

(b) 
t=1 

(5.108) 
1 

(v + t 

(C) 

= 

(5.109) / 
=ý- 

1 

r[Wi2(r)jIdrAI 
tI 

it i22 TY (d) 
2 t=1 

(5.110) 
1T 

31: teit =* Ai22 Wi2 (1)- Ai22 
f 

i2(r)]dr 
[Iv. 

jT (e) 
2a 2 t=l 1) 

T1 

TyEtzit =:: >. AillTVjl(1) - Ail, I il (r)]dr 
0 2 t=1 
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Theorem 5.4.16 Suppose Proposition (5.3.1) and Assumptions (5-4.2) and 

(5.4.4) hold and the data are generated by (1") and (2"). Then by sequential 

limit probability theory 

(i) As (N, T -+ 00),, q 
&LS2 2+ 

(ii) As (N, T -4 OO)seq 

VN--T (4DOLS2 N (Q, 20-'Qll). 22 

The FMOLS panel estimator 

Again the model develops exactly as before so we shall use the same nota- 

tion as before with alterations explained where necessary. Now our feasible 

FMOLS estimator can be obtained from the estimating regression 

& &-l & &-l 
Yit - Qil2Qi226it =a+ Jt + x, i', 

# + Uit - Qil2Qi226it 

Xit ý-- Xit-i + Cit. 

Writing the above in matrix form we get 

(5.114) oi+t = xi/tT + fipt it 

where Xit = [l xilt t]l and T 
'I. 

Hence we have the FMOLS estimator of T as 

61FMOLS2 
NTN 

Xitqj + (5.115) ýFMOLS2 XitXit t JFMOLS2 t=l i=l t=l 
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-1 + 
NT 

11 XI tj) 
N 

(T Oit 

(5.116) = EX: xit it EE xitqj+t - TR+ 
i=1 t=1 t i=1 t=1 tqj+t 

NT1xtN 
(T Zt 

it / Xitqj+t Tý+ (5.117) Xit Xitxit xitt EE 
i=1 t=1 q+ i=1 t=1 t2 t it 

("t 

txit 

The following Lemma simplifies the FMOLS computations for case (2). 

Lemma 5.4.17 By the FCLT of Proposition (5.3.1) and the CMT of Lemma 

(5.3.3) 

1T+ (5.118) F5 
1: t27it ý* '42 r[17Vi' 

2 
t=l 02 

(r)]dr (a) 

T 

t ==> &, 
1117,1 

(1) (5.119) tfi, + + V+ TTVj+j (r)dr (b) F2 

t=l 
it il il 

fo 

Theorem 5.4.18 Suppose Proposition (5., 3.1) and Assumptions (5-4.7) and 

(5.4.9) hold and the data are generated by (1v) and (2). Then by sequential 

limit probability theory 

(i) As (N, T -+ ()O)seq 
&MOLS2 

-4 0 

(ii) As (N, T -+ CO)seq 

ýIN-T 
(bFMOLS2 

- 0) 
=> N (2,2912'Ü+, 1) . 22 11 

The OLS panel estimator 

Again the OLS case for the model of (1iii) and (2"i) and the conditions of 

Assumptions (5.4.7) and (5.4.9) are as follows. Let. Pi = A, ýA,! ' 

(5.120) 11(j)]2 2,24122(l) [p qllýMpillPi' '01 
412*2(1)p ill4l*l(l) 'I'l (1) J 

i22P I lF22 (1) A22 Pi/2214ý22 
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Writing (liii) in matrix form as before we get 

(5.121) Yit ý-- xilt-f + Uit 

where Xit = [1 x1 t]/ and T it 

"I. 

Hence we have the OLS estimator of T as 

(5.122) 
&OLS2 
ýOLS2 

NT 
XitXil 

)-l NT 

1 t 
Xityit 

SOLS2 i=l t=l i=l t=l 

NTl NT Yit 

(5.123) t EE Xi 
ýj X/ it fl) t E Y, Xityi 

i=l t=l t i=l t=l tyit 
NT1 xit t- -1 NT Yit 

(5.124) Xit 

( 

xitx/ it Xitt Xityi 
i=l t=l t tx t2 i=l t=l tyit 

. 
it 

Theorem 5.4.19 (Inconsistency) Suppose Proposition (5.3.1) and Assump- 

tions (5-4.7) and (5.4-9) hold and the data are generated by (1iii) and (2"i). 

Then by sequential limit probability theory 

p 
(i) As (N, T -+ OO)seq OLS is inconsistent 

ýOLS2 
-/+ 0 

(ii) As (N, T -+ OO)seq 

'\OINT 
(AOLS2 

=> N (2]P2*19-1,29-192*, n*/9-1/ 22 22 21 22 
)- 

5.5 Hypothesis Testing 

We can use either of the panel FMOLS or DOLS estimators to give an ex- 

ample of how many hypotheses of interest can be tested in the homogeneous 
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panel framework. Assume a set of linear restrictions given by the following 

linear combination of parameters 

(5.125) Ro = 

where R is (q x k), 0 is (k x 1) and r is (q X 1). 

02 

For example R= [1,1] and r=1 gives [1,1,11 1 and so 

)3k 
, 
81 +02 +---+ Ok = 1- This is the hypothesis that the elements of # sum to 

unity. As a preliminary note the following. 

-1 V2 
-+oo Lemma 5.5.1 Let . b,,, - N(Q, Ik) as T 

i-i 
Then b/V-lb = bIV, - 2 V, 2 bn , X2 nnnn k* 

Typically V,, will be unknown, but there will be a consistent estimator 'ý, 

such that '(ý 2* V,, or '(ý - V,, 2+ 0a (k x k) null matrix. 

I Proposition 5.5.2 Let Vn I b,, - N(Q, Ik) as T -+ oo and suppose there 

2 + exists Vn positive semi-definite and symmetric such that V, where 

Vn is 0(1) andfor all n sufficiently large, det" Vn >5>0. Then bJ'n-Ibn 

2 Xk* 

Now consider the main theorem of this section. 
"det Q means determinant of Q here. 
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Theorem 5.5.3 (Walds Test) Let the conditions of Theorem (5-4.6) hold 

and let rank R q: 5 k. Then under Ho : R, 3 =r 

-2 (a) (5.126) ýýn! VNT(R&LSI-r)=: ýN(fljk) as (N, T-+00)seq 

where 4),, = 2RQ-lf2l, R/. 22 

The Wald Statistic 

22 (W)=NT(R, 3DOLSI-r)(D-'(R, 3DOLS1-r)=ý'Xk as (NT-+00)seq- (b) 
n 

(5.127) 
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5.6 PROOFS TO THEOREMS 

Proposition (5.3.1) 

Proof 

See Phillips and Durlauf (1986), Corollary 2.2. 

Lemma (5.3.3) 

Proof 

See Billingsley (1968), Corollary 1, p. 31. 

Theorem (5.3.4) 

Proof 

See Rao (1973), p. 115. 

Theorem (5.3-5) 

Proof 

Let Zi = (Zill 
... I 

Zik)l and E(Zj) =p= (pis ... itlk)l 
< 00, Vi- Consider 

now the real valued vector A= (Al) ... I Ak)/. Now write Zj'A = (ZjjAj 

---+ Zik Ak) / and E (Zil A) = til A< oo, Vi . Then by Komolgorov's Theorem 

(5.3.4) (see also Rao (1973), p. 123, (xi)), we have 

1N (5.128) -E Zi/A e4' p/A that is 
N j=1 

N 
(5.129) 

N 
E(ZilAl ++ ZikAk) (AlAl +---+ PkAk)/- 
i=l 

210 



Given the above then by Proposition (5.3.10) we conclude 

1N 
(5.130) jv E zi 9, it. 

i=l 

QED 

Theorem (5.3.6) 

Proof 

See White (1984), p. 108. 

Theorem (5.3.7) 

Proof 

Let Zi (Zill 
... I Zik)l and E(Zj) ýp.. : (pi, 

... IM)l < oo, Vi and 

var(Zi) E< oo. Consider now the real valued vector A= (All 
... ) Ak)/- 

Now write Zi/A = (ZilAl +---+ ZikAk)l then E(Zi/A) = p/A < oo, Vi and 

var(Zi/A) = A/EA < oo, Vi. Then by the Lindeberg-Levy Theorem (5.3.6) 

(see also Rao (1973), p. 123, (xi)), we have 

1N 
(5-131) 7= E(ZilA - pIA) -4 N(O, AlEA). 

N N i=l 

Given the above then by Proposition (5.3.10) we conclude 

(5.132) 1 
N 

Z(Zil - til) 4 N(Q, E). 77 
i=l 

QED 

Proposition (5.3.9) 
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Proof 

See Rao (1973), p. 122. 

Proposition (5.3.10) 

Proof 

See Rao (1973), p. 123. 

Proposition (5.3.11) 

Proof 

See Goldberger (1964), p. 27. 

Lemma (5.4.5) 

Proof 

Consider the N*-dimensional ild vector process jvjt}tctj, where E(vit) 

and E(vitvilt) = IN.. Write the vector partial sum processOT (r) as 

GT(r) ý -(Vil + Vi2 ++ Vi[Tr])- 
T 

Then by the multivariate FCLT and CNIT as T -+ oo we have 

-- OTG) (5.134) 'VT 

(5.135) and '%fTOT(r) 

Here we assume lVi(r) is an N*-dimensional Wiener process with covariance 

matrix IN.. Now consider Assumption (5.4.2) where wit zt Here we Cit 

I. 
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could write 

(5-136) Xit ýCjj +6i2+ ---+Cit 

(5-137) and say ift : -- Zil + Zi2 +---+ Zit 

with both xio and zio equal to zero. Now let 

(5-138) Zit 
Ct = ý[ t=i Cit 

Then we could write 

(5.139) 6i*lt ": Wil + Wi2 +-.. + Wit. 

Given wit = %P(L)cit then let cit = Pivit so that E(PivitviltPil) = PiINPj1 = Ei 

again. Now write the partial sum process GT(r) as 

[TrI 

(5-140) GT(r) Tý Wit. 
t=l 

Then 

1 [Tr] 

(5-141) GT(r) XF(l)- 1: fit = fll)AOT(r) 
T t=l 

(5.142) =T(1)Pi7; (Vil+Vi2+---+Vi[Tri) SO 

15-143) %ITGT(r) = 1ýFMPOITOT(r). 

But we know VfT-OT(r) =: ý lVi(r) so that 

1 [Tr] 

(5.144) 7=ýwjt=ý-xF(1)PjTVj(r)=AjTVj(r) as T-+oo. 
T t=l 
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Now consider 

T (a) Given the partial sum process VT--GT(r) Etl=rll wit write the new 

function ST(r) = [VT--GT(r)][VT--GT(r)lj. But we know vlT-GT(r) =ý- AilVi(r) 

as T -+ oo so that ST(r) =: > [AiWi(r)][Wil(r)Ailj as T -+ oo. If 

(5.145) &*t-1 : -- Wil + Wi2 +---+ Wit-1 

then by the step function method 

1T -vilcil + 
Li*2 * 

(5.146) 
§2/ 

+... + 
CT-I&T-1 

T25- -T 2 T2 T2 
t=l 

But this is just the integral of ST(r) using the step function method 

(5.147) ST(r)dr T2 
10 

t=l 

It follows then given ST(r) =ý. [Aj1Vj(r)](Wj1(r)A, ý] that 

1T1 
(5.148)- E ýj*t_gj*týl =* Ai If j(r)][Wj(r)]ldrjAý as T-+oo. 

0 
T2 

t=l (ý 
[W 

This also implies 

1T 
(5.149) -1: ýi*týi*t==>Affl[lVi(r)][Wi(r)]IdrIAý as T-+oo. 

a 
T2 

t=l 0 

Now for -1 ET TT t=l xitxit we have 

TI 

-i 

T**1 
1: XitXit ý 10 Ik] 0A T2 i22 i2(r)][TVi2(r)]ldrj Al T -+ oo. i22 
t=l 

[T2 

t=l 
Ik 0 

[IV 

(5.150) 
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QED. 

1 : [Trj 
(b) Given the partial sum process VfT-GT(r) = 7T- t=1 wit and that 

(5.151) Wil + Wi2 +-+ Wit-I 

then by the step function method 

T 

(5.152) 
C1 

+ 
C2 

++CT-1 
T2 

F2 
T22 

F1 * 

But this is just the integral of VT--GT(r) again using the step function method 

r-1T (5.153) fv TGT(r)dr -I 
F12 

t=1 

But we know V-T-GT(r) =* AiWi(r) hence 

1T1 
(5.154) TFEýj*t-, =ý-Ajf lVi(r)dr 

220 t=l 

which implies 

(5.155) 1 
ýj*t =>. A, IVj (r) dr. fo 

F2 

t=1 

Now for I ET 
T t=l xit we have 

(5.156) 1 [0 
1 

Ai22 as T -+ oo. F3 Exit Id F! 
E cit Tv; 2 (r) dr 

2 t=l 

12 

t=1 

I fo 

QED 

(c) Given wit = IF(L)cit then let -vfT-GT(r) =I Eýrrl wit but we know 7T- t=1 

v'T-GT(r) = 41MAVTOT(r) and V/T-OT(r) =: ý lVi(r) so that 

[Trl 

(5.157) E wit =: ý. AilVi(r) as T -+ oo. T t=l 
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(5.161) 

Now evaluated at r=1 the function gives us the result 

1T 
(5.158) 7= ý wit =: >. Ai Wi (1) as T -+ oo. T t=l 

I ET Now for -ý, T t=l zit we have 

1T1T 
(5.159) zi 7= wit] =: ý. AillWil (1) as T -+ oo. tT 7T 

t=l t=l 

QED 

(d) See Phillips (1988). 

(e) By (d) we have 

T 00 
T t=l 0 

[lVi(r)][dlVi(r)]IIAý+EE(witw/-,, ) as T-+oo. Ct-lw =: ý Ai If 
it a it 

V=l 
(5.160) 

This also holds for 1 ET 1. But we know that zit is uncorrelated with T týi 
Gtwit 

.1 ET cit-, q IV, s, t. So for 
T t=1 xitzit we have 

TT 

-Z xitzit = [0 kl TZ 
ei*t iwilt 0 

t=l t=l 

[1 

(5.162) => [0 Ik]Ai ýfl[lVi(r)][dlVi(r)]l Aý 
0 0 

(5.163) +[0 Ik] 1: E(witwit v) 0 
00 

v=l 

1-11. 

The last term can be written 

00 [0 Ik] E E(witwi/t-, ) [0 Ik] 
"0 

E[ 2't 

V=l 
0 

V=l Eit 
(5.164) 
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Co (5.165) =[0 IJEE Zitzit-v Ziteit-v 
L0 

v=l eitzit-v eitEit v 

11 

- 

11 

=0 
by assumption. So we have by the first term 

[0 Ik]Ai If 111 
=>. A l[w 

jl(r)]I Al 
001 

i22 
If 

Q(r)][M [Wj(r)][dWj(r)1I I Aý 
10 

0 
(5.166) 

which gives us the desired result. 

QED 

(f) Given E(witwilt-, ) = Eto < oo for s=0,1,2.... Then by a LLN 

T 
Witwit (5.167) E/ 

-3 -4 E(witwi/t-,, ) as T -+ oo. 
t=l 

ET Now for T ýt=j citEit-, we have 

T1T 

E Citeit-., [0 Ikj E WitWit- 
0] 2+ E(Axit) (Axl ri, as T -+ oo. 

t=l t=l 
A it 

(5.168) 

See also Hamilton (1994) Proof of Proposition 10.2(d). 

QED. 
Cit+p 

Cit+(P-l) 

(g) Given mit Cit 
a ((2p + 1) kx 1) vector. 'it-I 

Cit-2 

Cit-P 

Then by the LLN if E(mitmilt) < oo if follows by (f) above that 

1T 
(5.169) 7; E mitmilt 2+ Vi by LLN 

t=l 
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rio 

ri p where Vi = E(mitmit 
ri-(P+l) 
'ri-(p+2) 

L ri-2p 

a ((2p + 1)k x (2p + 1)k) matrix. 

QED 

(h) Let 

rip ri(p+, ) ... 
ri,, 

ri, 

ri(p+, ) 
ri(p+2) 

... ... ... ... ... 
rio j 

'it+pZit 
'it+(P-I)Zit 

TT 
Cit Zit (5.170) 1:, Mit Zit E T t=1 t=1 Eit-lZit 

Cit-2Zit 

L Cit-pZit j 

By the LLN each element of the vector converges to zero as T oo so that 

1T (5.171) - 1: rn, tzt 2+ 0 
T t=1 

and also 
T 

(5.172) E mjtmjýt 2+ Vi by the LLN and (g). 
T t=1 

Hence given E(zi2t) = Ai2j, then from (g) and applying the CLT we get the 

result 
T 

(5.173) 
TE mitzit -4 N(D, All Vj) 

t=1 
as T -+ oo. See also Hamilton (1994) equation 11. A. 3. 

QED 
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(i) Rom (c) we have that 

[Tri 

(5.174) E wit =: ý- AiWi(r) as T -+ oo. T t=l 

Now evaluated at r=1 the function gives us the result 

(5.175) 1 
wit =: ý- AiWi(l) as T -+ oo. 77 

tl=ýl 

I ET Now for 7T- t=l cit we have 

T1T 
E Eit = [0 IkI =ý- 

Ai22Wi2(1) as T -+ oo. 7T= 
t=l 

[77= 
E wit] 
t=l 

(5.176) 

QED 

Theorem (5.4.6) 

Proof 

We have from equation (5.34) the panel DOLS estimator 

NT Mitmit 
^fDOLS1 mi't 

i=l t=l 

(. 

Xitmit 
(5.177) 

/« -1 Mit Mitxit NT( MitYit 
xit yit 

Xit Xitx it 
i=l t=I Xityit 

Substitute for yit to obtain 

NT Mitmit Mit Mitxit NT Mitzit 
(tDOLS1 T) : -- EE 

mi/t xi/t 2: E zit 
i=l t=l i=l t=l 

(. 

Xitmit Xit' Xitxit Xitzit 
(5.178) 
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To obtain the limiting distribution we must rescale the estimator with a 

scaling matrix. This is done because as discussed in chapter 1 different 

parameters have different convergence rates. The parameter fl, for example, 

is termed "superconsistent" since it converges to its limiting distribution 

across the time-series dimension at rate T rather than VT as in the usual 

stationary case. Define the scaling matrix 
VN--TI(2p+l)k 00 

(5.179) DT 0/ VN-T 0/ 
0/ 0 VN-TIk 

So that 

N-2T- 2 I(2p+1)k 00 
ii (5-180) DT('ýDOLS1 - T) = 0/ N-2T-2 0/ 

1 0/ 0 N-'iT-lIk 

NT Mitmit Mit Mitxit N-IT- 2 I(2p+1)k 0 0 

mit xit 0/ i N-2T i 0/ -2 

i=l t=l 
Xitm Xi Xi x 

- 
0 1 N-U-lIk it t t it 

N-2T-2 I(, 2p+1)k NT Mitzit 

x 0/ N-IIT-u ü/ ZZ zit 
0/ 1 N-2T-'Ik Xitzit 

Hencel7 
VN-T(ýDOLSI 

- 
(5.181) VrN--T(&DOLS1 - a) 

VTT(ýDOLS1 
- 0) 

N-'T-IEEmitml N-'T-'EEmit N-'T-IEEmitx/ 
N-'T-'EEm/ 

it 
N-'T-IEExilt 

it 
it 

N-'T- 2 EEXitMi/t N-IT-12EExit N-IT-IEExitxil, it 
17 See below for the dimensions of the null vectors and null matrices. 
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N-2T-2EEmitzit 
Ii 

N-2T- 2 EFZit 
i N-2T-IEExitzit 

Now apply the sequential limit theory first holding N fixed and letting 

T -4 oo. To do this write the above more conveniently as 

$VFN-T 
(& 0LS1- 6) 

(5.182) VN--T(&DOLS1 
- 0) 

-výN-T(ýDOLS1 - 0) 
. 

ET ET 1 j: T /- -1 
N T-1 t=l MitMil, T-1 1 mit 

T-2 
I Mitx it t= t= it 

T-1 ET I M/ 
T-2 ET 1 X/ 

(N 

t= it t= it 3ý 
ET j: T ET 1 X, tX1 T- t=l xitmit 

T-2 
t=l xit T-' t= it 

ET t 1N T-12 t=1 Mitzi 

-E 1 ET 1 Zt VNY 
i=l 

T-11 
T 

t= 

T-1 Et=l xitzit 
By Lemma (5.4.5) and the FCLT of Proposition (5.3.1) and the CMT of 

Lemma (5.3.3) as T -+ oo, and N is held fixed we have by applying the 

FCLT to each element of the (3 x 3) block matrix and (3 x 1) block vector 

the following. Let 

1T1 
(5.183) -Emit= -E (6ý-Plc 

_P+l .... 6 _1,6 c +P)/ T t=l T t=l 
it it it it it it 

(5.184) +P) T 't-P'T 't-P+l it t=l t=l t=l 
a ((2p + 1)k x 1) vector. But by Lemma (5.4.5) (i) 

(5.185) 1 
eit «2* Ai221Vi2 (1) 

- 

ET I M/ , ET 
N 

T-' t= it T-1 t=l x 
_ 3ET 1 j: T ET 1 X, tX T1 Xitm T-2 

it 

t= it t=l xit T-' t= it 
-1 ET M NT2 t= 'itz it 

7E- E't= 1, t T2 zi 

N= i=l 1 ET T- t=1 xitzit 
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Therefore 
T 

(5.186) E Cit T t=1 

a (k x 1) null vector and so 

l'nit =( 6/ 
/ 

6/ +P) (5.187) 
TE it_P) eit-p+l TZ it 

t=l t=l t=I t=l 
(5.188) Vp=-l, -2,..., O, +l, +2 

a ((2p + 1)k x 1) null vector. So 

(5.189) 
1 

-Z mit => 

a ((2p + 1)k x 1) null vector. Similarly let 

TTL 

T3E 
MitXit 

(Cit 
P) Eit P+j .... Eit 1, Eit, Eit+l) cit+p) xit 

ýi t=i 
ý712 

tý=l 
- 

(5.190) 

(5.19 1) it F21 
ý 

Cit j72 eit+PXI 

t=l 
-pXitl FF2 eit-p+lXit 

t=l t=l 

But by Lemma (5.4.5) (d) 

(5.192) 1Er! 
Eit-PX Ai22 Q (r) ] [dTv i22 + 

tv, it i2(r)]/l A/ 
T t=l 0 V=l 

Hence 
T 

(5.193) Eit-pxl it =: ý- 0 i; 
2 t=l 

Vp = -1, -2,..., O, +l, +2 

a (k x k) null matrix and so 

iT/=1T/1T/1-T /) 
/ 

Mitxit 

irE 
Eit-Pxit) Eit-P+Ixit ... Eit+Pxit Ti i 2 t=I t=l t=l t=I 

(5.194) 
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(5.195) 

Here some (2p + 1)k (k x k) null matrices. So 

1T 
(5.196) yy 

ý 7nitxit 
, t=l 

a ((2p + 1) kx k) null matrix. By the rest of Lemma (5.4.5) (a)-(i) 

VN--T(&OLS1 
-0' 

(5.197) V(N-T(61DOLS1 -a) 
'*vFN-T(&LSI - 0) 

. 

N 
vi 00 

fo' TV! (r) drAl 
N 12 i22 

Ai22fo Wi2(r)dr Ai22jfo[Wi2(r)1[Wi2(r)j/dr}Aý2 i22 

xN AillWil(l) N i=l Ai22{fo [Tvi2(r)][dlVjj(r)]}Ajjj 

The first matrix is a (3 x 3) block diagonal matrix and we can see for the 

stationary Axit-p Vp the coefficient ýDOLS1 

has a Gaussian distribution that is given by 

1N1N 
(5.198) VN-T(ýDOLS1 vi 

where Ej - N(Q, ViAll) and Vi is the ((2p + 1)k x (2p + 1)k) covariance 

matrix. 

For the second stage of the sequential limit theory as N -+ oo let us look at 

the (2 x 2) lower block diagonal matrix of the parameters of interest, ie 

(5.199) '\rN-T(&DOLS1 - a) I 

=: ý. 
\INTODOLS1 
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N fol WjI2 (r) drAi22 -1 

-E 
(N 

i=l 

[ 
Ai22 fol Wi2 (r)dr Ai22 f fol (Wi2 (r)] [Wi2 (r)]/dr}Al i22 

X(1N[ 
AillWil(l) 

I 7N ý Ai22ffo [TVi2(r)][dTVjj(r)]JAjjj 

Now under the assumption of a homogeneous panel each element of the (2 x 2) 

block matrix and (2 x 1) block vector are independent and identically dis- 

tributed random variables for all i. Hence we can apply the Lindeberg-Levy 

CLT to each element of the block vector and the Komolgorov SLLN to each 

element of both the block matrix and vector. Hence we can now show the 

asymptotic consistency and asymptotic normality of our parameters of inter- 

est &DOLS, and 
&LS1. For asymptotic consistency we use Theorem (5.3.5) 

Komolgorov's SLLN. We note that the limit of the inverse of a matrix is the 

inverse of the limit by the CMT. Then we shall apply the Komolgorov SLLN 

to each element of the (2 x 2) block matrix and (2 x 1) block vector before 

inverting as follows. 

Asymptotic Consistency 

1 (a) First take AM fo Wi2 (r) dr. We must first verify the conditions of Komol- 

gorov's Multivariate SLLN Theorem (5.3.5) and write 

(5.200) Zi = Ai22 
fo 1 

Wi2 (r) dr. 

Then to show E (Zi) < oo it suffices to show E 11 AM f(Il TVi2 (r) dr 11 < oo as in 

Phillips and Moon (1999), Lemma 4. 
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By the Cauchy-Schwartz Inequality 

I 
1 112 21 

112] 2 

a 
(5.201) E Ai22 Wi2(r)drll: 5 [EllAi22 ]l [Ellf 

Wi2(r)dr fo 
0 

I 21 2 

(5.202) 
[E (Vtr(AMAi/2 

2 

ý) 

/)2- 2 

x 
[E (Vftr (fo'Wi2(r)dr) (fo 

Wi2(r)dr) 

1 
2 [E (tr Wi2 (r) dr) Wi2 (r) dr) (5.203) < [E (tr(Ai22AI ))] 1 

i22 C, 0 0 

Interchanging the expectation operator with the trace operator 18 

1 
2 (5.204) < [tr (E(Ai22A/ 2))]! tr 

(E 
Wi2(r)dr) Wi2(r)dr) Q0 

10a 

Now on evaluating the integrals in second term of the R. H. S. '9 

0f 
(5.205) [tr (E(Ai22AI 2))]'! 

[tr E[lVj2(s))[Wi2(t)]1dsdt)] 
3 

i2 a 

I 2 
2< 00. (5.206) [tr (Q22)11 [tr (3 Ik) 

Denote the diagonal elements of the (k x k) finite symmetric positive definite 

matriX20 022 aS (Q1122, Q222221 
... I 

Qkk22). Then tr(022) ý-- 01122 + 02222 + 

"As in the case of infinite sums we can interchange the order of the expectation operator 
and infinite sums if EýýO Zi < oo. Hence E Zi EZj. Similarly with the trace 
operator because tr(. ) and E(. ) are both linear operators it is possible to write tr(E[z]) 
E[tr(z)] for any argument z. Hence above we have E(tr(AMAi/22)) = tr(E(Ai22A/i22))- 

"See Levin and Lin (1992) Appendix A2.2 and Pedroni (2000) Mathematical Appendix 
A17, for a scalar method of computation that can be applied to vector Brownian motion. 
Also note we can interchange the expectation operator and integral fo' since r is a number 
see Levin and Lin (1992) Appendices. 

20 We make use of the homogeneous panel assumption here in the proofs, so that fli22 
f1221 Vi, etc. 
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---+ 
Qkk22 < oo by Assumption (5.4.2) (ii) and (vi). Similarly tr(Ik) ý-- 

1+1+1=k so tr(! Ik) < oo. Hence 3 

Q1122 + Q2222 ++ Qkk22) 
(V 

39 ": ý 00. E 
IlAi22 fo 

IVi2(r)drll: 5 (F 

(5.207) 

So we have verified the conditions of Theorem (5.3.5) and given E(Zj) = 

E (Ai22 fol IVi2(r)dr) =Q then by Kornolgorov's SLLN 

(5.208) 1 Ai22 
fo, 

Tvi2 (r) dr as N -+ oo. 

(b) Now take AM jfOl[Wi2(r)][lVj2(r)]/drj AiI22. Again to verify the conditions 

of Theorem (5.3.5) write 

(5.209) Zi = 
Ai22 

f 
i2(r)][IVi2(r)]Idr 

Ai'22' 
0 

[w 
0 

As in Phillips and Moon (1999), Lemma 4 to show E(Zj) < oo it suffices to 

I show E Ai22 Ifo [wi2(r)][Wi2(r)]/drj Aiý 
211 < 00' 

11 
i2 

By the Cauchy-Schwartz Inequality 

i2(r)][Wi2(r)]Idr A' [E IlAi22A/ 
2 

112] 2 [E E Ai22 [w 
i22 i2 

0 
i2(r)1[TVi2(r)]/drjj 

11 10 [TV 

(5.210) 

The above follows by the independence of AM and fO'[TVi2(r)][TVi2(r)]/dr 

21 ldr, 12] 

a 
(5.211) [EllAi22114]1 [Ellf 

Q 
(r)] [fVi2 (r)] 

C, 
[W 
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I 4 '1 
(5.212) E (N[tr(7Ai22Aj'22ý) 

x 
[E (Vtr (fo'l [Wi2 (r)] [W 1 

)2]12. 

i2(r)]/(r)dr) 
(fo' [Wi2(r)][Wi2(r)]/dr)/ 

Now write for some positive definite (kxk) matrix, Mi2(r) = [TVi2(r)][Wi2(r)]/ 

for simplicity. Then interchanging the expectation operator and the trace op- 

erator again 

11 
(5.213): ý tr (E(Ai22AI ))2]i [tr (E (f Mi2(r)dr) i22 

0 
Mi2(r) dr) (f 

0a 
10 

As in (a) we have the reversal of E and fo' 

[tr (f (5.214) :5 [tr 
(E(Ai22Ail2 

2 
)2 2f E[Mi2 (S) Mi2(t)]Idsdt)]5 

On evaluating the integrals 

1 
(5.215) [tr (Q22 )2] 

12' [tr 1 
Ik) < 00. 

(3 

)2 -= Q2 2++ S12 Again as in (a) we have tr(Q22 1122 + S12222 
kk22 < oo and 

tr(Ik) =1+1+... +1=k< oo by Assumption (5.4.2) (ii) and (vi). Hence 

(5.216) E 
jjAi22 If 

i2(r)][Wi2(r)]/dr A/ 
0 

i22 
0 

[IV 
1 

2+ Q2 
nk 

(5.217) 
(VQ1122 

2222 ++ 02kk22 
)(v 

ý) < 00. 

Thus we have verified the conditions of Theorem (5.3.5) and since now 

(5.218) E(Zi) =E Ai22 
ff1A 

j/2 
0 

i2(r)][Wi2(r)]/drj 2 0 
[w 

0 
(5.219) E (Ai22A/ l[wi2(r)][IVi2(r)]/dr) 

i22) E (f 
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I The last line following by independence of AM and fo' [Wi2(r)j(Wi2(r)]/dr. 

5.22O) 

Thus we have on evaluating the integral in the second term of the R. H. S. 

E(zi) = 
(022 

X1 Ik 
1 

022- 

2H 

So that by Komolgorov's SLLN 

(5.221) 1N Ai22 (r)]Idr Al 21 
Q22 as N -* oo. N 

fo, [Tvi2(r)][Wi2 
i2 2 

(c) Next Ail, lVil(l) and now we verify the conditions of Theorem (5.3.4) as 

follows. Write Zi = AjjjTVjj(1) a simple scalar composition so that EjZjj = 

ElAililVil(l)l. 

By the Cauchy-Schwartz Inequality write 

II 12] 2 IIV (5.222) ElAillWil(l)1: 5 [ElAill [E 1(1)12] 
2 

(5.223) :5< 00 

by Assumption (5.4.2) (ii) and (vi). Thus we have verified the conditions of 

Theorem (5.3.4) and since E(AjjjTVjj(1)) =0 it follows 

1N 
(5.224) Tj: AjjjTVjj(l)#0 as N-+oo. 

i=l 

(d) Finally take Ai22 jfO1[Wi2(r)][dWjl(r)]j Ail,. Again to verify the condi- 

tions of Theorem (5.3.5) write 

(5.225) Zi = 
Ai22 

ýfl 
i2 (r)] [dTVil (r)] I Ail,. 

0 ( 
[w 
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To show E(Zj) < oo we can write as in Phillips and Moon (1999), Lemma 4 

1 E 
jjAi22 jfO [W; 

2 (r)] [dWil (r)] I Ail, 11 < oo. 

By the Cauchy-Schwartz Inequality 

2] 
E 

jjAi22 ff 

i2(r)][dWjl(r)j Ailill :5 [E jjAi22Aill 112]2 [E 
[TV 

n0 
[Wi2(r)][dWjl(r)] 

(5.226) 
1 

2 
21 5 

(5.227) :5 
[E ( Ftr(AMýýjý,, 

Ai/22) 

2] 2 

X 
[E (Vtr (fo [lvi2(r)][dTVjj(r)]) (fOl[TVi2(r)][dTVjj(r)])/ 

Interchanging the expectation operator with the trace operator the first term 

on the R. H. S. is a quadratic form in Ail, and Ai22. Also the second term on 

R. H. S. is an Ito Stochastic Integral (see Phillips (1988)) 

(5.228) [tr (E(Ai22A 2 A/ 
2)) il i2 

I [TV 2 

x 
[tr (E (fol [TVj2 (r)] [dWil (r)]) (fo 

i2(r)][dWjj(r)])' 
i6 

(5.229) :5 [tr (E(Ai22A 2 A/ 
2)) 

] 
12 

il i2 

I 
x [tr (E (fol[Wi2(r)j[Wi2(r)]/dr))] 5. 

The second term on the R. H. S. follows by the properties of Ito Stochastic 

Integrals. Then we have using (a) for the first term on R. H. S. and (b) for 

the second term on R. H. S. 

11 (5.230) [tr (011022)11 tr < 00. 
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So tr(QllQ22) --` 
Qll(Q1122 + Q2222 +---+ Qkk22) < oo and tr(Ik) =1+1+ 

+1k so tr 
('Ik) 

< oo by Assumption (5.4.2) (ii) and (vi). Hence 
2 

E Ai22 
1 
[w; 2(r)][dWjl(r)j Ailill : ý- 

(VQll(Qll22 
+ Q2222 +-+ Qkk22)) 

(k< 

00. 11 fo 

(5.231) 

So we have verified the conditions of Theorem (5.3.5) and given E(Zj) 

1 E (Ai22 Ifo [TVi2(r)j[dWjl(r)jj Ail, ) = -0 
then by Komolgorov's SLLN 

1N 
(5.232) Ai22 

Ifol 
[TVi2(r)j[dWjl(r)j I Ail, as N -+ oo. 

Using Komolgorov's SLLN we have now shown that as N -* oo by (a)-(d) 

VorNT(&DOLS1 (5.233) ,[110 
[ 

NINT(&LS1 - 0) f! ý022 

]XII- 

Thus 
f- 

(5.234) V NT(&DOLS1 - a) 
0 

[ 

VN-T(&LS1 
- 

0) 

1 

=-. 

[I 

Hence 62DOLSI 2* a and 
&LS1 2* P as (N, T -+ 

00)8eq and so we have 

shown that &DOLS, and &LS, are asymptotically consistent estimators as 

(N, T -+ ()O)seq- 

Asymptotic Normality 

For asymptotic normality we apply the Lindeberg-Levy CLT to each element 

of the (2 x 1) block vector. Since we already have the limiting distribution 

of the (2 x 2) block matrix the desired result follows after an application of 
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Proposition (5.3.9) (Slutsky's theorem). 

(a)/ First take AillWil (1). We must first verify the conditions of the Lindeberg- 

Levy CLT, that is given Zi then var(Zi) = or 
2< 

oo and or2 :A0. Since 

AillWjl(1) is a scalar write Zi =AillTVjl(1). Then var(Zi) = var(AililVil(l)) = Ail,, 

since Wil is scalar Brownian motion Wil - N(O, 1). Therefore 

(5.235) var(Zi) = var(Ail, Wil(l)) = Ail, = Qll < oo. 

Hence we have satisfied the conditions of Theorem (5.3.6) and given E(Zj) = 

p then E(AililVil(l)) =0 and by the Lindberg-Levy CLT 

(5.236) 1 (Ail, Wil(l)) 
-4N(0,1) as N-+oo. 7N F' 

V -0 1-1 

Hence we can write 

N 
(5.237) EAilllVil(l) -9+ N(O, 011) as N-+oo. 

i=l 

(b)l Now take Ai22 jfO1[TVi2(r)][dWjl(r)]j Ail, and again to verify the condi- 

tions of the Lindeberg-Levy CLT write 

(5.238) Zi=Ai221fl 
i2(r)][dIVjl(r)jj Ail,. 

,) 
[w 

0 

Now var(Zi) is 

(5.239) var 
(Ai22 

i2 (r)] (dWil (r)] I Ail 1) [w 
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and given 

Cý 
[w il (r)] 

I Ail, ) =0 (5.240) E(Ai22jfl 
i2(r)][dW 0 

then 

(5.241) var 
(Ai22 If I 

i2(r)][dWjl(r)] Ail, ) 
0 

[W 
0 

E 
[(Ai22 If l[wi2(r)j[dTVjl(r)]j 

Ail, ) 
(Ai22 If 

i2(r)][dTVjl(r)]j Ail, ) 
a () 

[W 
0 

(5.242) 

(5.243)= (Ai22A 2 A/ )E 
0 

(wi2(r)][dTVjj(r)]) (f 
il i22 [Tvi2(r)][dWjj(r)] 

0 
(5.244) (Q22QI1) [Efl 

i2(r)][Wi2(r)]Id(r)] 
(ý 

[w 

The above bracketed term on the R. H. S. follows by the properties of Ito's 

Stochastic Integral. Then using (b) above we have 

(5.245) var(Zi) -= 
(022Qll) X1 Ik =1 Q22Qll < 00 

22 

Hence we have satisfied the conditions of Theorem (5.3.6) and given E(Zj) = 

I /. z we have E(Ai22ffO[Wi2(r)][dTVjl(r)] I Ail, ) and so by the Lindberg- 

Levy CLT 

I N Ai22 Ifo [1vi2(r)][dTVjl(r)jj Ail, 

07E 
2+N(a, Ik) as N-+oo. 

i=l Q22Qll 

(5.246) 

Hence we can also write 
N (Ai22 

il Ail, ) 2+ N (2 1- 
11 

02211 as N -+ oc. ýTN 
[1v; 2(r)](dTV 

(5.247) 
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Using the Lindeberg-Levy CLT we have now shown that as N -+ oo by 

(a)! - (b)I 

1N AillWil(l) N 00 1022Qll 'ýN 0 Vi2(r)][dWjj(r)]}Ajjj 
]] 

-2 
Ai22 f( 

Go I, 12,1) 

(5.248) 

Note that the off-diagonal zeros elements in the covariance matrix follow 

since 
21 

0 
[Wi2(r)j[dWjj(r)]jAjjj) (5.249) cov 

(AilWil(l), Ai22ff 

0 
[Wi2(r)j[dWjj(r)]jAjjj) = 0. (5.250) E (AjjjWjl(l)Ai22jf 1 

a 

Our final asymptotic normality result comes from using the Slutsky device 

Proposition (5.3.9) applied to our equation 

(5.251) VrN-T(&DOLS1 - a) [ 
VN--T(&LS1 

- 0) 

N1 fol WjI2 (r) drAI 
N 

i22 
dr}A/ 2 i=l 

[ 
Ai22 fol Wi2(r)dr Ai22jfol[TVi2(r))[Wi2(r)]/ i2 

X(1N 
AililVil(l) 

TF- Ai22jfol[Wi2(r)][dWjj(r)]}Ajjj i=l 

1) 
- 

Which has the asymptotic distribution 

NINT(61DOLSI - a) 
=: ý- N 

NINT(&LS1 

1 
201 

1 
20/ 22 

IS122SI 
22 2 

(5.252) 

"The usual formula for the covariance between random variables X and Y is 
cov(X, Y) =E(X-E(X))(Y-E(Y)) =E(XY) whenE(X) =E(Y) =Oasabove. 
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So 

(5.253) '\INT(&DOLS1 - a) N 
NIINT(&LS1 - 0) Q2 22 

G, 1,1 "" 

QED 

Remark 5.6.1 We can see now the Gaussian limiting distribution of our 

panel cointegration estimator. This also holds for FMOLS and OLS. The 

non-normality of the limiting distributions of the time-series estimators is 

smoothed out in their panel analogues by an application of an appropriate 

CLT across the cross-section dimension. 

Lemma (5.4.12) 

Proof 

(a) Follows Lemma (5.4.5) (a) with exactly the same derivations since xit 

is identical in the DOLS case. We denote the analogous FMOLS case with 

a bar and plus, 17Vi+2 (r) over the Wiener processes and covariance matrices, 

etc. 

(b) Again follows the same derivations as in Lemma (5.4.5) (b). 

(c) This follows Lemma (5.4.5) (c) with zit substituted b ^+ y Uit. 
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(d) We know ýt+ E(eitfitt j= fi+21 so that by above =0 it+ 

1T1 00 / 
-j: ýj*t-jL/wlit=: ý., &jl [Wi+(r)][dfVi+(r)]. Ai+/+FE[L/w wit- L]. s it v N t=l 0 V=o 

(5.259) 

(5.254) 

Then we have 

T1T 

(5.255) E xitfii+t = [0 IK] jý 
E ýj*t Ll ib"it 

T t=l t=l 

1 101 

[0 IK]Ä, ý11[17V+(r)][d17Vi+ 
0 0 

. (r)lÄt, 
[1] 

+[0 IK] 
fE 

[üit-�git-, ]) 

v=O eit 
it 0 

(5.256) 

The last term can be written as 

it it- (5.257) ý [0 IKI tE([ ýL+ fL+ ' f. I't 6, t-v ])[1] 

eitfi+-v 0 V=O it Citeit-V 

00 00 
(5.258) E[fiilteit-v eitel E(fileit-, ) E(eitfi+ J. it-VI 0 it it+ 

V=O 

1-11=v'=O 

V=O 

But this last term is just ý+ and so the result follows since the first term 

i22 
Ifol [fVi+2 (r)] [dWi+l (r)], &+' so that gives A+ ill 

1++ [Wi+2 (r)] [dWi+l (r)]A+l + -E Xitfistt Ai22 I fa 
ill T t=l 

and the last two terms drop out, hence the result. 

QED 

Theorem (5.4.13) 

Proof 
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We have from equation (5.87) the panel FMOLS estimator 
NT ([ lt X/ 

NT[ ýP 
(5.260) tFMOLS1 =EE it t 

i=1 t=1 Xi itx it i 
F=-I 

(t 
F=-I 

xitgtt - Tý+ 

Substitute for ýj+t to obtain 

NT ([ lt X/ 
NT 

(tFMOLS1 
-T 

it it I+ 

Xi XitUitf- Tý+ i=1 t=1 xitxit i=1 

(t=1 
.+ 

(5.261) 

Again we rescale (74MOLS1 
- 7f) to obtain a non-degenerate limiting dis- 

tribution. Where again ýFMOLS1 is superconsistent converging across the 

time-series dimension at rate T. Define DT now as 

(5.262) DT vfN-T 21 
0 VN--TIk 

then we have 

1 
(5.263) DT (tFMOLSI N-2T-21 

Q N-12T-lIk 

N -1 1 Q/ 
EE 

([ 1, 
'Xit / 

N-iT-l 
I 

i=l t=l Xi -itxit 

I)IQ 
N-2T-llk 

iiNT N-2T-2 0/ 
it 

x 

Tý+ 
1) 

' 
I 

N-2T-llk i=l t=l xitfLi+t - 

Hence 

(5.264) 
VNT(61FMOLSI 

- Cf) 
[ 

VfNWT(ýFMOLS1 - 0) 

] 

1 N-ITA2 EEXilt 

-2F =[N T-2EExit N-IT M xitxit 

x 
N-32E(T- 12Efii+t) 
I N-'§E(T-'Exitfii+t - 
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Now again apply the sequential limit theory first holding N fixed and letting 

T -+ oo. To do this write the above in the more convenient form as 

(5.265) '\INT(&FMOLSI a) 

(1 N T-12 FT -1 
, t= jý 

jqE ET -2 ET 
=1 Xit. 

T-21 x. T t=l st t=i xitxilt 
ET T-2 

t=, 
ýli+t 

ET 1 X, tj t 77 T-1 ý+ - ý+ 
1) 

- t= 
By Lemma (5.4.12) and the FCLT of Proposition (5.3.1) and the CMT of 

Lemma (5.3.3) as T -+ oo, and N is held fixed we have by applying the 

FCLT to each element of the (2 x 2) block matrix and (2 x 1) block vector 

the following. 

By Lemma (5.4.12) (a)-(d) 

(5.266) VINT(61FMOLS1 - a) 
[ 

VNYT(ýFMOLS1 
- 0) 

] 

N fol TIVi+2 I (r) dr, & +1 -1 

-E 
i22 

+/ 
(N 

VI-7j+2 (r) dr A i=l 

[ 

i22 
fO Ai+22 A 

i+2 
(r)] [Wj+2(r)]/drjI&i22 

N VV+ 
il 

7N==ý 
'ki+22{fO1[wi+2(r)][dWj+j(r)]} il 

The rest of the proof of Theorem (5.4.13) follows along the same lines as the 

proof of Theorem (5.4.6). The only difference is to replace Q1, and Q22 by 

O'll and f222, respectively in the final computations. Note that the exactly 

analgous FMOLS case (to DOLS) is depicted with a bar and plus, Wj+2 (r) 
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over the Wiener processes and covariance matrices, &i+,,, etc. As stated ear- 

Her 1122 = 
02+2 

and so Ai22Ajl22 = 
Ai+22Ai2l2* 

QED 

Remark 5.6.2 We noted earlier that in general III, :A 0+11. However in 

the special case it does then we have the well known result of the time-series 

literature of the asymptotic equivalence of the DOLS and FMOLS estima- 

tors this carries over to their panel data analogues if and only if 01, = Q11. 

Conditions for this are stated generally in Banerjee et al (1993) and are as 

follows: If the Brownian motion Wil(r) is uncorrelated with Wi2(r) at all 

frequencies, then the conditional process generating the residuals zit is com- 

pletely informative for the purpose of estimating 0 and the marginal process 

Axit generating cit in equation (2) can be ignored. In this case Q1, = 0111. 

Also the panel OLS estimator is biased and inefficient when compared to the 

asymptotically equivalent panel FMOLS and DOLS estimators. 

Theorem (5.4.14) 

Proof 

From equation (5.97) we have the following OLS estimator 

NT 

Xl. t 

X// 
NT ([. 

t (5.267) 7fOLSI it yi 
xitxit xityit i=l tI j=l t=l 
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Substituting for yit we obtain 

NT 1 Xit Uit 
(5.268) (TOLS1 - T) =EE Xituit 

D- 
i=l t=l 

(I 
Xit Xitxit i=l t= 

G 

Rescale the equation as before using 

(5.269) DT vrN-T ! 11 
0 v'N-TIk 

then we have 

ii 0/ (5.270) DT (tOLS1 N-2T-2 
1- 0 N-iT-'Ik 

NT111 2/ 
EI: 

([ it xit/ ]) [ N-U-11 
1 ij 

i=l t=l Xi xitxit 0 N-UT- k 
iiNT N-2T-2 0/ Uit 

x 

N-i' 
ýý 

[ 
Xituit T-lIk 

1 

i=l t=l 

Hence 

(5.271) 
V. NT(&OLS1 0) [ 

-vINNT(ýOLSI 13) 

1 

N-'T- 2 FEXit 
12F 

-2E 
, Exit N-lT Mxitxit N-lT-1 

xN 
2T- 2 EEUit [ 

N-2T-'EF-xituit j 

We now again apply the sequential limit theory first holding N fixed and 

letting T -+ oo. To do this write the above in the more convenient form as 

(5.272) 
VNT(&OLS1 - a) [ 

vfN-T(ýOLS1 - 0) 
1 
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N[gT/ -1 T-, Et=, xit. 1 
_E i ET -2 ET /j) 

j=, 
T-2 

t=,. Tit T t=i Xitxit 

X( 
1N[ T-12 ETt 

=, Uit 
7N=ý T-'Et=lxituitj)- 

On substituting Aj* for Ajý', etc we have an exactly analagous case for OLS to 

ET the proofs of Theorem (5.4.6) and Theorem (5.4.13) except for T-' t=l xituit. 

So 

(5.273) 
VN--T(&OLSI - a) 
VFN-T(ýOLSl -P) 

N fol Wj*21 (r) dr A E i22 

i=l A1 lVi*2(r)dr A l[Wi*2(r)][Wi*2(r)]/dr}A*/ i*22 
fO 

i*22 
f fO 

i22 

XN[ 
Ai*,, Wi*, (l) 

A*22ff(l[TVj*2(r)j[dWj*j(r)]}A* i2 i0 ill+ r* 1 

where ]Pj*21 = Ev'=O E(ejtujt+, ) is the bias term which gives the distribution 

the non-zero mean. For a detailed derivation of the asymptotic distribution 

of the time-series OLS estimator in the cases with a constant and/or trend 

see Park and Phillips (1988). 

Asymptotic Consistency 

Using (c) and (d) above we have 

N 
(5.274) 

N 
ýj Ai*l I Wi*l (1) #0 as N -+ oo. 

and 

(5.275) Ai22 

()I[lVi*2(r)][dlVi*, 
(r)]IAi*ll#*D as N-+oo. 
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However note that in the DOLS and FMOLS case Wil(r) is independent of 

IV; 2 (r) and IVj+l (r) is independent of 17Vi+2 (r). Also A21= Oil, and AMAiL il 

11i22 and also '&+2 - f2+ and A+ A+1 - f2+ only. This is due to the zero ill - ill i22 i22 - i22 

off diagonal elements in Qi. With OLS this is not the case and we must 

compute (d) under the assumption of correlation between Wi*, (r) and Wi*2(r) 

and where Ai*,, Ai*22 = f2i2l* 

i22 
IfO 

j*2 (r)] [dlVi*l (r)] I A* 1. To verify the conditions of Theorem (d) Take A [TV 

(5.3.5) write 

[Wi*2 (r)] [dWi*l A* (5.276) Zi =A i*2 2 
fa 

ill* 

To show E(Zj) < oo we can write as in Phillips and Moon (1999), Lemma 4 

E JJA* " [TV *', III < 00. i221fo j*2(r)][dTVj*j(r)]jAj 

By the Cauchy-Schwartz Inequality 

22 E IIA* 
i'O, A* 1112] 

" [EIIf 
[TVj*2(r)][dWj*j(r)] 

01 
Vj*2 (r) d Wj*I (r) A* III 

[E 11A i22 
Ifi1 

22 iI 

(5.277) 

*2 
21 5 

(5.278) 
[E (ý(hr (ýi; 

22Aýj,, 
AQ2) 

x 
[E ( Vt 

r (fol [I Vj*2 (r) d Wj*j (r) ]) (fol [I Vj*2 (r) d Wi", (r) 

Interchanging the expectation operator with the trace operator the first term 

on the R. H. S. is a quadratic form again in A, *,, and Ai*22. Also the second 
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term on R. H. S. is an Ito Stochastic Integal (see Phillips (1988)). 

(5.279) [tr (E(A"' A *2 A*I))]' i22 ill i22 

2 

x 
[tr (E (fol [Wi*2 (r)] [dWi", (r)]) (fol [Wi*2 (r)) [dWi*l (r)]) 1) ] 1" 

I*2 */ ) (5.280) tr (E(Ai22A7 jAi22 

I 
x [tr (E (fo'[TVj*2(r)][TVj*2(r)]/dr))] i 

The second term on the R. H. S. follows by the properties of Ito Stochastic 

Calculus. Now however Ai*22Ai*ll = Qjý, 21 a (k x 1) vector so for the first 

term on R. H. S. tr (E(A* 
2A*2 A*I )) = tr (Q2*, Q*I). Denote the diagonal el- i2 ill i22 21 

ements of the (k x k) finite symmetric positive definite matrix as 2 21 

(Q*11211 Q222D Qkk2l). Then 1&422, Q) = 
Vf2*1121 + f22221 ++ f2kk2l 

oo and tr(Ik) 1+1+... +1=k so tr 
('Ik) 

< oo by Assumption (5.4.7) 2 

(ii) and (vi). Hence 

0 
E 11 Aj*22 [TV" 

(V(nl 
221 ++ nk < 00. 

0 j2(r)][dWj*j(r)]jAj 121 + n2 
k2l)) 

(n2 

(5.281) 

So we have verified the conditions of Theorem (5.3.5). Now 

E(Zi) =E 
(AM f 

[W. ', z(r)][dWj*j(r)]j A"' 1) = E(Q21)E 
0i il 0 

[W, * 
0 j2(r)][dWj'j(r)]j) 

(5.282) 
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By the properties of Ito Stochastic Calculus the second term on R. H. S. is 

made up of two correlated Wiener processes Wj*j (r) and Wj*2 (r). Thus 

(5.283) fI [Wi'2 (r)] [dWi*l (r)] = 
('I 

k) 
(X2(1) 

_ 1) 
02 

However this has expectation zero so that E (fOl[Wj*2(r)][dWj*j(r)]) =0 and 

so E(Zi) = Q*l(Q) = 0. Then by Kornolgorov's SLLN 2 

N1 
[Wi*2(r) d Wi*l il (5.284) EAi*22 f 

(r)] A* 0 as N -4 oo. 
00 

(e) Now take Ai*22 f fO [TV *21 again we verify the condi- i2 (r)] [aWi*l (r)] lAill + Fj 

tions of Theorem (5.3.5) as follows. From (d) above E 
jjAi22 f fol [Wi*2 (r)] [dWi*l (r)] I Ai*11 11 

oo so now we show only EIIr;, 21 11. Write Zi = r; 2,1. Since 11 Ijý, 21 11 is a constant 

then 
1 

(5.285) E JIZill =E llr* 111 = 
[tr (E(r* r* )" i2 i21 i21 

Denote the diagonal elements of the (k x k) finite symmetric positive def- 

inite matrix E(rj*21rj*2ý1) as (r*1121, r2,0221, I'k*k2l). Then 
jtrEOýi*21ri*21) 

VW11121 + r2*221 ++ 1ýk*k2l) < oo since W21172*11) < oo by Assumption (5.4.7) 

(ii) and (vi). Thus we have EIr;. 21 11 < oo and hence 

i2 
(1 i (r)] [dlVi'j (r)] 1 Ai11 + r* , 

11 (5.286) E 
IIA* 

2f 
It)IIW'2 

i2 

<EIIA. ' "[W. * * 111 +E l1ri2111 < oo i22ffo i2(r)][dWj`j(r)]j Ail 

by the triangle inequality. Hence we have verified the conditions of Theorem 
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(5.3.5) and given 

E(Zj) =E (A'2lfjl[lVi*2(r)][dlVi", (r)]}A*' *21) = r- 
i2 0 ill + ]ýi 

i2l 

since we have E(A l[Wi*2(r)][dWi*, (r)]IA* 1) by (d) above, then by i22ffO il 

Komolgorov's SLLN 

N 

(5.287) A" 
2{f as N-+oo. i2 

a NaI 
Wi2 

iIQ2 

Using Kornolgorov's SLLN we have now shown that as N -+ oo by (a)-(e) 

V#rN-T(&OLS1 CO ol -1 0 (5.288) 
IF* 

[V 

fl) 

I 
ý* 

[ 

ý1-022 
x[2 

NTOOLS1 2 Fýj 

Thus 

(5.289) 
VN---T(61OLS1 - a) [ 

VFN-T(ýOLSI -, 8) 
1 

ý* 
[ 

21F2*0 -1 

1" 

1 
f222 

P 
Hence &OLS1 2+ a but ýOLS1 

-/+ 0 as (N, T -+ 00),,, q and so we have shown 

that &OLSI is asymptotically consistent but ýOLSI is not an asymptotically 

consistent estimator as (N, T -+ 00) seq - 

Remark 5.6.3 It is of interest to compare our OLS bias term with the Kao 

and Chiang (2000) bias term for their OLS estimator in the same modeP2. 

Kao and Chiang (2000) compute their bias ter7n aS23 

SNT Eýv ET II 11- 
Xý-O(Xit --; ýr-i)Tl EýV, Q, (flT7Vj(r)dWjl(r)) f2, -'Qcu + Af . =i(xit a Ul N0 

(5.290) 
22 Kao and Chiang (2000) give results for the fixed effects specification. 23 In equating their notation with ours fl, -` 

022Y fleu " 02*1 and A,,, = r2l, 
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where Wj (r) = Wi (r) - fo' Wi (r) dr is demeaned Brownian motion. It is shown 

p1 that ýNT 
-': -* -3Q, - f2,. + as (N, T -4 OO)seq- 

The first term on R. H. S. Of JNT converges as follows 

(5.291) 1 
Eýv 11 ET 

1 
N 2= Ti %=I 

(. 27it A) (Xit - -A) 
12+ ý Q, as (N, T -+ 00) seq - 

The denominator of 6 in the fraction on the R. H. S. above follows since the 

data has been demeaned. Thus we have demeaned Brownian motion. 

The second term on R. H. S. converges as follows 

ýv Q22 

0 
1=1 4E! 

(f 1T7Vj(r)dWjl(r)) 
- -42 02 eu+A, u as N -+ oo. 

(5.292) 

The denominator of -2 in the fraction in the first term on the R. H. S. above 

follows since when using demeaned Brownian motion we get E (fol fVj(r)dIV/(r)) 
i 

IN 
-SO 

(5.293) JNT 
-4 (ffle 1) Peu + Acu as (N, T -+ 00) seq 2 

and 

(5.294) SNT2+-3Q, -lf2,,, +6Q, -lA,,, as (N, T-+00)seq- 

In our model 

JNT F, ýv 
1 E7, lxitx/ 

Eýv, AiUf T2- it 
fo i 

[Wj*2(r)][dWj*j(r)jjAj*jj + ]Pi*21 

(5.295) 
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Giving as before 

(5.296) 1 Eiv 11 ET jXitXl 
2+ 

-4222 as (N, T -+ OO)seq 
N Z= ýý Z= it 2 

and 

11 

1= , 
[lVi'2(r)][dWi*, (r)]}A* 1+ r* (5.297)-, --, Eýv Ai*221fo 2+ r* as N -+ oo. ii i2l 21 N0 

Note that in our case with the data not in deviation from mean form we 

get Brownian motion E (fol TVj(r)dWjl(r)) = 2. So the first term on R. H. S. 

above (involving 02*1) drops out of the equation. Hence 

(5.298) SNT2+2Q-'IP2*1 as (N, T-+ 22 OO)seq- 

Asymptotic Normality 

For asymptotic normality we can apply the Lindeberg-Levy CLT to each 

element of the (2 x 1) block vector. Since we already have the limiting 

distribution of the (2 x 2) block matrix the desired result follows with an 

application of Slutsky's Theorem. Also we need only to apply the Lindeberg- 

Levy CLT to Ai*22 IfOlj [Wi*2 (r)] [dlVi*l (r)] JAj*jl + IF* 1 since we already have that i2 

of Ai*lllVi*, (l) by (a)/ with Ail, substituted by Ai'll. This gives 

N 
(5.299) - E(Aj*llWj*j(1)) -4 N(O 11) as N -4 oo. 77 

i= I 

The Lindeberg-Levy CLT has already been applied to the first term in our 

bias equation above by (b)1. However this was in the case of independence 
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of Wil(r) and TVi2(r) and AjjjAi22 :: -- 
-0- 

With OLS these two are correlated 

so as above we write 

(b)l Take A; jfOl[Wj*2(r)j[dWj*j(r)jj Aj* 1 and again to verify the conditions i22 1 

of the Lindeberg-Levy CLT write 

D 
(5.300) Zi = 

Ai*22 
If 

2 (r)] [dWi*l (r)] I A" 
() 

[ Wj* ill 

Now var(Zi) is 

Wi*2 (r) d Wi*l il i2, r)] A* 1 (5.301) var 
(A" 

2 

and given 

(ý 
[Wi'2 (r)] [dWi'l (r)] I A* 1) (5.302) E (M 1 

i22 
I fn 

ii 

by the properties of Ito's Stohastic Calculus and the new calculation of (d) 

above then 

' 
l[W "11) = 

0 
(5.303) var 

(Ai22 If 
*2 (r) d Wi", (r)) IAi 

I[Tvit, 
2(r)][dWi"*, (r)]IA'i'll) (A*21fol[Wi*2(r)][dWi*, (r)])Ai*ll)'] E AM IfO 

i2 

*2 

a 0 
[Wj*2(r)][dWj*j(r)])I] i22 [TVj*2(r)][dWj*j(r)]) (f (5.304)= (Ai22A 

illA*I)E 

Since now (A* 2A*2 A*I Q* lQ*I a (k x k) matrix as in (d) above, this i2 ill i22 Q i2l 

gives the first term on R. H. S. For the second term on R. H. S. when TVj*j(r) and 

W! (r) are correlated we have by the properties of Ito's Stochastic Integral Q 

(5.305) f [Wi*2 [dWi*l 
(1I 

k 
0 
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but 

i2(r)][dWi*, (r)]) (5.306) E (f 1 [W* 
00 

and 

(5.307) var [Wi*2(r)][dWi*, (r) 
2 

Ik' 

Hence we now get 

(5.308) var(Zi) --": 
(Q; 

21021) X2 Ik Q; 
2lQ21 < oo i4 

Hence we have satisfied the conditions of Theorem (5-3-6) and given E(Zj) = 

p we have E(Ai*22 jfOl[Wj*2(r)][dWj*j(r)]j Ai*ll) and so by the Lindberg- 

Levy CLT 

N (A I[w i22 
f fo' 

j*2 (r)] [dlVi*l (r)] I Ai 
-- -) 

4 N(q, Ik) as N -+ oo. 
NrN- i=l 

ýT* rj*/ 
Fil Q21921 

(5.309) 

Hence we can also write 

1N1 
7= E (Ai*22 [W* 

N0 j2(r)][dWj'j(r)]j 
Ail, ) 

-4 N 
(Qj 

ýý2211121 as N -+ oo. 
N 

(5.310) 

(c)l Now take A* 
21f 'l[Wj*2(r)](dWj*j(r)]}Aj*jj + r* 1. We must verify the con- i2 0 i2 

ditions of the Lindeberg-Levy CLT here. Let 

(5.311) Zi = Ajý, i22 
f fo 

[Wj*2(r)j[dlVj*j(r)]j Ai*ll + ri-21. 
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Then var(Zi) can be found from var(Zi) = E(Zi - E(Zi))(Zi - E(Zi))I. 

Again note E(Zj) = ]Pjý. 21 because rjý. 21 is a constant and 

(, j2(r)][dWj*j(r)]jA*j)=ý (5.312) E 
(Ai*22 I fol 1W* 

ii 

from the new (b)l above then 

r* 
, i2 

) i2(r)][dWi*, (r)]lAi*ll+ i2) (5.313) var 
(A* 

2 
flollW* 

j2 (r)] [dWi*l (r)] I A* 1) i2(r)][dWi*, (r)]IAil [W* 2a 
[W* 

1) 
(Ai!, 

2f =E Ai!. 
2ffl Q1 ii 

(5.314) 

This has been found before in (b)1. Then using this information we have 

(5.315) var(Zi) =x2 
Ik =2 02"J221 

2 21 
*1 

'ýý 00 

Hence we have satisfied the conditions of Theorem (5.3.7) and given E(Zj) = 

]Pj*21 we have by the Lindberg-Levy CLT 

N A*21fo"[Wi, 2(r)][dWi", I(r)]IAi*l1 i2 
-4N(Q, lk) as N-+oo. ýý* rl*1 

V5112 
If 221921 

(5.316) 

Hence we can also write 

0i 
(r)] [dTVj*j A" 1) -4 N Q*, Q 7= E (Ai"22 f l[W2' 

ii 2 21 *') as N -+ oo. N0 
(5.317) 
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To find the off-diagonal elements in the asymptotic covariance matrix we 

have 

(, 
[Wj*2(r)][dWj* (5.318) cov 

(Ai"l 
1 Wi", (1), A" 1 (r)]}A* *21) 

i22{fo ill + ri 

[Wj*2(r)][dTVj*j(r)]}Aill)) (5.319) E (Ail, Wi*, (l) 
(Ai221fo 

i; [Wi*2(r)][dWi*l (5.320) =E 
(Ai*lllVi*, (l)Ai22{fo' (r)]JAill )=Q. 

The term on the R. H. S. equals zero by the properties of Ito's Stochastic 

Calculus when Wi*, (r) and TVj*2(r) are correlated. 

Using the Lindeberg-Levy CLT we have now shown that as N -+ oo by the 

above 

(5.321) 1 Ai*,, Wi*, (l) 17N= 
A* ol 

[Wi*2(r)][dWi*, (r)]}Ail i221fl 1+ 
]ýi*21 

N0 
*1 '/ 

*/ - 

G "Q 

1202*1021 

1) 

Our final asymptotic normality result comes from using the Slutsky device 

of Proposition (5.3.10) applied to our equation 

(5.322) 
VN--T(&OLS1 - Ci) 
NINTOOLS1 

N fol Wj*21 (r) dr A *1 E i22 

i=l 

[ 
Ai* Wj*2 (r) dr A I[lVi*2(r)][Wi*2(r)]/dr}A*l 22 

fO 
i*2 21 

fO 
i22 

X[1N 
Ai*iilvi*i(l) 

A Wi*2(r)][dlVi*, (r)]}Aill + ri2i 7N7- i*2 2f 
fOl 

Which has asymptotic distribution (and using the result ý22*2 ý 022) 

(5.323) VrNT(60LS1 - Cf) [ 

xl-N-TOOL 

I 
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1 0/ 
9-1 

11 u/ ]1 

2]P* 
1 

20/ 
90 

lo*1q*/ 21922 22 22 21 22 

So 

VINT(61OLS1 - a) N01 2r* - 20 VNT(ýOLS1 
-, 8) 21922 2-21il2*1"21 22 

(5.324) 

QED 

Lemma (5.4.15) 

Proof 

(a) Given 

(5-325) 
Tt= T(T + 1) T2T 

tý 
T+ -i' 

Then the leading term in I: T 
1t 

is L2 
thus t= 2 

(5-326) 
T 

t= 
[T 2+ Tj 

=11 T2- T2- -T 
22+ TT 

t=l 

as T -+ oo. 

QED 

(b) Given 

(5.327) 
T2= T(T + 1)(2T + 1) 2T3 3T 2T Et 

t=l 66 -6 T 

ET 3 Then the leading term in t=1 t' is L3- thus 3 

(5.328) 
T 

t2 
1 2T 3+ 3T 2+T111 

T3- T3 --3+ TT + ýT-2 -+ 3 t=l 66 
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as T -+ oo. 

QED 

ET (c) By induction we can see the general pattern. The leading term in t=1 tv 

is 7`1+1 thus (v+l) 

(5.329) tv 
T(v+l) t=l 

(v + 

as T -+ oo. 

QED 

(d) Using ýj*t-j and Lemma (5.4.5) (b) write 

(5.330) 1A=1-- 
5it) ýjt-j rýjt-j tý= 

T2 T T2 
t=l 

F52 

1 t=l 

where r= (TO 
- But we know from proof of Lemma (5.4.5) (b) 

1T1 (5.331) 77 �Erei*t-, =>Ai rWi(r)dr. 
t=l 

10 

So that 

(5.332) 1 
=> Ai rIVi(r)dr ize- E tei*t-, 2 t=l 

10 

which implies 

(5.333) Ai 1 
rWi(r)dr. F'2 

týit 
fo 

Now for 1 ET 
TF t=l txit we have 

1T1T (5.334) iz, E txjl, it 
10 ikl 

iz r, ] 
=>flr[I'vi2(r)]/drA/ 2 2 t=l 

12 

t=l 0 
i22 
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as T -+ oo. 

QED 

(e) We know that 

T 

Wil+(IDil+Wi2)+(Wil+Wi2+Wi3)+- - -+(Wil+Wi2+Wi3+- - -+WiT-1) 
t=l 

(5.335) 

(5.336) 
TTT 

E(T - t)wit =TE wit -E twit. 
t=l t=l t=l 

So then 

(5.337) 
T 

E F 

T 
E wit - 

T 
E twit. F 

2 t=l 

F2 

t=l 

F2 

t=l 

Hence 

(5.338) twit jT Wit - F 1 FF 
6it 

2 t=l 2 t=l 2 t=l 

But we know from (c) that 

1T 
(5-339) Wit -= 

VTGT(r) 

t=l 

evaluated at r=1. Since VTTGT(r)=ý Pi'F(1)Wi(r) = AjTVj(r) then when 

evaluated at r=1 VTGT(r)=: ý- AjTVj(1). Similarly 

(5.340) => Ai 
1 

IVi(r)dr 
2 t=l 

fo 

by proof of Lemma (5.4.5) (b) so that 

T 
(5.341) E twit =: ý- AiWi(l) - Ai Wi(r)dr. T2 

t=l 

fo , 
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This holds for all s=0,1,2.... Now for -IT ,f 
Et=l tsit we have 

T 

T1T1 
(5.342)1 1 1: t6it = [0 Ikl wit Ai22 Wi2 (1) 

- 
AM 

fo 
Ivi2(r)dr F12 jT2 

t 

t=l 

I 

t=l 

as T -+ oo. 

QED 

I ET (f) This follows by (e) above by writing for 
TT t=1 tzit 

1Tý, [1T 
(5-343)F3 E tZit = 

[1 
wit] =ý- AillWjl(1) - Ail, f1 Wil(r)dr. 

2T (I 2 t=l 

T2 

t 

ý=l t0 

as T -+ oo. 

QED 

Theorem (5.4.16) 

Proof 

We have from equation (5.105) the panel DOLS estimator 

mitmilt mit 7nitxi't mitt 
1 

mityit 
NT 

T DOLS2 mit I xit t 
NT 

Yit 
i=l t=l / Xitmit Xit / Xitxit Xitt i=l t=l Xityit tm t tx t2 tyit 

it it I 
(5.344) 

Substitute for yit to obtain 

( Mitm / 
it mit Mitxi/, mitt, Mitzit 

NT/ 
(^4OLS2-T) =EE it X/ 

it Zit / i=l t=l xitmit / xit xitxit Xitt i=l Xitzit tm / t tx1 t2 ) tzit 

(5.345) it it i 
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Rescaling again by DT to obtain a non-degenerate limiting distribution we 

note that not only is 0 "superconsistent" but also that SDOLS2 the time trend 

3 

coefficient converges at rate 
T2 SO 

. NINTI(2p+1)k 00 

(5.346) DT -, IN-T 2/ 0 

0 -%, IN-TIk 
-0 0/ 0 2/ -�1-N-T3 

Hence 

(5.347) DT(tDOLS2 

N-2 T- 2 I(2p+1)k 

0/ 
0/ 

N- 2 T- 2 0/ 
i 0 N- 2 T-'jk 

0 

0 
0 
0 
i3 N-2T-'f 

Mitt 
t 

Xitt 
P 

Mitm / M. X / it Mit it it 
NTm/1x/ 

EE it/ it/ 
i=l t=l xitmit Xit Xitxit 

tmilt t txl I it 
i1 N- 2 T- «i I(2p+1)k 

0/ N-IT-11 
0/ 0 
0/ 0 

00 

N-iT-'Ik 0 
N-iT-12 

N-2T-2I(2p+1)k 00 mitzit 
0/ iiNT 

x 
N-2T-2 0 

1: Z Zit 

0/ 0 N- 12 T-ljk Xitzit 
i=I t=l 

0/ 0 0/ N-2T-2 tzit 

So 
VN--T(&OLS2 

- ý) " 

(5.348) ý, fNVT(&DOLS2 a) 
VNTODOLS2 

t8) 

VfN-T3 
(SDOLS2 9) 
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N-'T-'EEmitmjýt N-IT-IEEmit N-'TAEEMitXitý N-IT-2EEM, tt" 
-' 

N-'T-'EEm/ it 1 N-IT-12 EEX/ it N-'T-2EEt 
3 N-'T-2=xitmý it -2EEX, tX N-IT-12EExit N-IT jý t N-IT-! 2EFXitt 
-2EEM N-'T itt 

, Et i -2r N-IT N-lT- 2 EEXiltt -3EEt2 N-'T 
N-2T-2EEMitZit 

I N-2T-12 rrzit 

x I 
N-2T-'F, Exitzit 

Ii N-2T-2EEXitZit 
j 

We now apply the sequential limit theory first holding N fixed and letting 

oo. To do this write the above more conveniently as 

vlNff(ýDOLS2 - 
r 

(5.349) V NT(61DOLS2 
- a) 

ýVNTODOLS2 

- 
'VrN-T3(SDOLS2 - 6) 

. 

T-'ET 1 Mitm, it tý T-1 ET 
1 mit t= 

3 
T- I ET I M, tXl t= it T-2 ET 

t=1 mitt 
N ET T-1 t=l mit 

-E 1T 
1 

1 T - 

1 ET T-2 

t=l Xit 
T 1 

-2 

-2 ET T t=l t 1 T - N i=l T-2Ft=l x, tmit 
E 2 t=l xit 

T j: I X, tX T t= it 
E T 2 t=1 Xitt 

T -2 ET 
t=l Mitt -2 ET T t=l t 

A ET T-2 
t=j Xj/, tt -3 ET T 

t=l t2 

I ET T-2 

t=l mitzit 
N 

F X = 
T-1 j: T 

=1 Z, t t, 
- 7N 

j =1 
T-IT t=1 Xitzit 

T T- 2 Et=l tZit 

By Lemma (5.4.15) and the FCLT of Proposition (5.3.1) and the CMT of 

Lemma (5.3.3) as T -+ oo, and N is held fixed we have by applying the 

FCLT to each element of the (4 x 4) block matrix and (4 x 1) block vector 

the following. 
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Let 

(5.350) 11E///I... 
le 

/ 
-1, E Mitt = T2- E( it-P'6it-P+l g"t'6't+l it+P) 

/t 
T2 

t=l t=l 

_pt, 

/ 
C/ +It -F.. TE it (5.351) 7:; i it 72 - 

eit-P+lt 
t=l t=l t=l 

a ((2p + 1)k x 1) vector. But by Lemma (5.4.15) (e) 

(5.352) 

Hence 

(5.353) 

1TI 
Ty E tEit =ý- Ai22 Wi2 M- Ai22 Wi2(r)dr. 

2 t=l 

fo 

1 Vp 1, - 2,..., 0, +1, +2 T2- 6't-Pt 0 
t=l 

a (k x 1) null vector and so 

(5.354) 1 
Mitt =111-/ -P+lt ... 11/t T25- 

E T25- Cit-Ptl T2 6it T2 Cit+P 
t=l t=l t=l t=l 

(5.355) Vp=-1, -2,..., 0, +1, +2 

So 

(5.356) 1 
Ti mitt 

t=l 

a ((2p + 1)k x 1) null vector. By the rest of the Lemmas (5.4.5) and (5.4.15) 

NINNDOLS2 - 

(5.357) V(NT(61DOLS2 - a) 
ý, 

FYTODOLS2 
- 0) 

. 
'rN-T 3 (SDOLS2 - 6) 

j 
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v 4 i0 
1N 0/ fol WjI2 (r) dr A/ i 

-E - i22 2 
11 Nj=j a/ Ai22fOWi2(r)dr Ai221fo[wi2(r)][TVi2(r)]/dr}Ai/22 Ai22fO1rWi2(r)dr 

i2 
fol rWi/2(r)drA/ 2 i22 3 

XN 
AjjjWjj(1) 

Ai22jfO[Wi2(r)][dWjj(r)]jAjjj 

L AililVil (1) - fol AjjjWjj (r)dr J) 
The first (4 x 4) matrix is block diagonal and hence we can see for the station- 

ary 1(0) regressors Axit-p Vp = the coefficient 

CDOLS2 has a Gaussian distribution that is given again by 

1NN 
(5.358) 'VNT(ýDOLS2 - 6) `ý* 

(- 
E vi 

Yl 
1= 

) 

N i=l 
TN= E 

-i 

21). 
where N(fl, ViAl 

Again for the second stage of the sequential limit theory as N -+ oo let us 

look at the (3 x 3) lower block diagonal matrix of the parameters of interest, 

ie 
VýNT(61DOLS2 - a) 

(5.359) -, 
I-NT(4DOLS2 

- 
VN-T3 (SDOLS2 

- 

N 
fol TVj/2 (r) drA/ i22 2 

Ai22 fo wi2(r)dr Ai221fo [Wi2(r)][Wi2(r)]/dr}Aiý 
2 

Ai22 fol rIvi2(r)dr 
fol rIVi/2(r)drA/ 

i2 
I 

i22 3 

N AillWjl(1) 

Ol 
[M2 (r)] (dWil (r)] 7 Ai221f }Ail, 

Ail I Wil (1) - Ail I fol Wil (r) dr 

Again under the assumption of a homogeneous panel each element of the 

(3 x 3) block matrix and (3 x 1) block vector are independent and identically 
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distributed random variables for all i. Hence we can apply the Lindeberg- 

Levy CLT to each element of the block vector and the Komolgorov SLLN 

to each element of both the block matrix and the block vector. We can now 

show the asymptotic consistency and asymptotic normality of our parame- 

ters of interest 6DOLS2,, 3DOLS2 and JDOLS2. For asymptotic consistency we 

again use Theorem (5.3.5) Komolgorov's SLLN. Taking note again that the 

limit of the inverse of a matrix is the inverse of the limit by the CMT. Then 

we shall again apply the Komolgorov SLLN to each element of the (3 x 3) 

block matrix and (3 x 1) block vector before inverting as follows. 

Asymptotic Consistency 

First note that elements (a)-(d) of the (3 x 3) block matrix have been con- 

sidered in the proof of Theorem (5.4.6), as well as (e) so we shall consider 

only elements (f) and 

(f) Take AM fol rWi2(r)dr. We must first verify the conditions of Komolgo- 

rov's SLLN Theorem (5.3.5) so write 

(5.360) Zi = 
Ai22 

fo, 
rTVi2 (r) dr. 

Then to show E(Zj) < oo it suffices to show E 
IlAi22 fol rWi2(r)drll < oo as 

in Phillips and Moon (1999), Lemma 4. 
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By the Cauchy-Schwartz Inequality 

I 
(5.361) E Ai22 rWi2(r)drll: 5 

[EllAi22 112] 2 [E Ilf 
rWi2(r)drll 

11 fo 

21 ]2 

f (Ai22A /) (5.362) 
[E 

vtr Mý) 

i 2' 2 

x 
[E ( 

VFt r (fol r Wi 2 (r) dr) (fol rI 
ýi 

2 (r) dr 
ýY 

2 [E (tr(Ai22Ail22 A))] 
1 [E (tr (fo rWi2(r) dr) (fo 

rWi2(r)dr)')]' 

(5.363) 

Interchanging the expectation operator with the trace operator 

i 
2 

rWi2(r)dr [tr (E(Ai22Ai22 
r 

(E (flrlvi2(r) dr) (f 1 It 
00 aa 

(5.364) 

Now on evaluating the integrals in second term of the R. H. S. 

(5-365) < [tr (E(Ai22A/ 2r (f f1 rsE[wi2 (8)] [1vi2 (t)]Idsdt) i22))] 
0 

It 

0a 

(5-366) :5 [tr 
(022)] 1 

2, 

k)] 

12 
1 [tr 

T5 < 00* 

Again by the proof of Theorem (5.4.6) and Assumption (5.4.2) (ii) and (vi), 

tr(Q22) 01122+Q2222+- 
- -+Qkk22 < 00. Similarly tr(lk) = 1+1+. . . +1 =k 

so tr(-ý-Ik) < oc. Hence 15 

E Ai22 
1 

rWi2(r)dr 
V01122 + P2222 ++ QU22 

/-2-k--ý 
< 

11 fo 
T-5) 00' 

(5.367) 
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So we have verified the conditions of Theorem (5.3.5) and given E(Zj) = 

E (Ai22 fo'rWi2(r)dr) 
=Q then by Kornolgorov's SLLN 

(5.368) Ai22 rWi2(r)dr #0 as N -+ oo. 
fo, 

- 

Take now AillIVjl(1) - Ail, fol Wil(r)dr. 

This we can split into two parts since 

1N1 
(5.369) (Ail, Wil(l) - Ail, fo Wil(r)dr) 

NN 

(5-370) 
N 

EAil, Wil( 
NE 

Ail, fo Wil(r)dr. 
i=1 i=1 

The first term on the R. H. S. is case (c) of the above so we need only to 

take Ail, fOl Wil(r)dr and thus verify the conditions of Komolgorov SLLN 

Theorem (5.3.4). Note the above is a scalar composition so 

(5.371) Zi = Ail, fo 1 Wil(r)dr and jZjj = 
jAill fo i Wil(r)drl. 

Now we verify ElZil =E lAill fol Wil(r)drl < oo. By the Cauchy-Schwartz 

Inequality 

121 121 
12 

(5.372) E Ail, Wil(r)drl: 5 [EjAillj2]1'[Ejf IVil(r)dr I fo 
a 

(5.373) 
00. 

By Assumption (5.4.2) (ii) and (vi) and evaluating the integral. Thus we have 

verified the conditions of Theorem (5.3.4) and since E (Ail, fol Wil(r)dr) = 
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A=0 it follows, 

(5.374) Ail, Wjl(r)dr#0 as N-+oo. fo 

Hence it follows 

N 

(5.375) 
N 

(Ail, Wil(l) - Ail, fo i Wil (r) dr) #0 as N -+ oo. 

Using Kornolgorov's SLLN we have now shown that as N -4 oo by (a)-(g)" 

ý%IN-T(ÜDOLS2 2 
-, 

0 (5.376) \1-N-T(bDOLS2 - ß) :: * 2 j922 0 

1 0/ 10 3 'ýINT3(3DOLS2 2 

Thus 
VN--T(6ZDOLS2 

- a) 
(5.377) -ýINYT(ýDOLS2 - 0) 0 0 

VINT3 
(ýDOLS2 0 

Hence 61DOLS2 2+ a, 
&LS2 2+ 0 and 

SDOLS2 2+ 6 aS (N, T -* 00)seq. Hence 

we have shown that &DOLS2, &LS2 
and 

SDOLS2 
are asymptotically consistent 

estimators as (N, T -+ OO)seq- 

Asymptotic Normality 

For asymptotic normality we apply the Lindeberg-Levy CLT to each element 

of the (3 x 1) block vector. Since we already have the limiting distribution 

of the block (3 x 3) matrix the desired result follows after an application of 

Proposition (5.3.9) Slutsky's device. 

First note that elements (a)/ - (b)l of the (3 x 1) block vector have already 
"Since 1 and 1 are constants there is no change on using the SLLN. 23 
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been considered in the proof of Theorem (5.4.6) so we shall consider only 

element (d)l given by 

(d)l Take Ail, Wil(l)-Aill fol Wil(r)dr, we must first verify the conditions of 

the Lindeberg-Levy CLT. That is given Zi then show var(Zi) =a2< 00 54 0. 

Since AillTVjl(1) - Ail, fol Wil(r)dr is a scalar write 

1 
(5.378) Zi = AillWjl(1) - Ail, fo Wil(r)dr. 

Then 

(5.379) var(Zi) = var 
(AililVil(l) 

- Ail, fo I IVil(r)dr) 

= var (AillWjl(1))-2cov (Ail, Wil(l), Aill fo Wil(r)dr)+var (Ail, fo Wj 1 (r) dr) 

(5.380) 

0 
21W (5.381) E (A (1)2) 

- 2E (A 21f Wjl(1)TVjl(r)dr ii 0 

(5.382) +E 
(Ail, f1 IVil(r)dr) (Ail, f1 Wil(r)dr) 

00 

Q,, - Mil f E[Wjj(l)][TVjj(r)]dr+Qjj 
0 

E[TVjj(r)][TVjj(r)]drds. 
0 0 

(5.383) 

For the second term on the R. H. S. we have by the properties of Wiener 

processses the covariance E[TVjj(1)][Wjj(r)] = min(r, 1) and since r<1 it 

follows E[Wjj(1)][Wjj(r)] = r. The last term follows by (a) above. Thus 

111 (5.384) var(Zi) = 211 -22 9211 +3 911 = änn < oo 54 0. 
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Also 

(5.385) E (Ail, Wil(l) - Ail, fo i IVil(r)dr) 

1 
(5.386) AillE (Wil(l)) - Ail, 

0E 
(Wil (r)) dr = 0. 

Hence we have satisfied the conditions of Theorem (5.3.4) and given = 

E (AillWil (1) - Ail, fol Wil (r)dr) =p=0 then by the Lindeberg-Levy CLT 

N AillWil(l) - Ail, fol Wil(r)dr N(o, 1) as N -+ oo. V13911 

(5.387) 

Hence 

N (Ail, Wil(l)-Aill Wjj(r)dr)-4N(0,1Qjj) as N-4oo. 
-ON7 ý fo 

3 

(5.388) 

Using Lindeberg-Levy's CLT we have now shown that as N -4 oo 

by (a)/ - (d)l 

N AillWjl(1) inil 
AI illjj-9+N( 

01, nll 
i2 11 

2 
_77 F' i221fo [Tv; 2(r)][dWjl(r)]}A 212 21122SI 

12 

1) 

- 

i=l AillTVjl(1) - Ail, fol Wil(r)dr 0 Qll a/ iQll 3 
(5.389) 

Note again as in the proof of Theorem (5.4.6) the off-diagonal elements in 

the covariance matrix. These follow since 

AillTVjl(1) 1 
(5.390) E Ai22(fo [1v; 2(r)][dTVjl(r)]}A 

Ail, Wil (1) - Ail, fol Wil (r)dr 
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1 x [Ail, Wil(l), Ai22jfo[Wi2(r)][dWjj(r)jJAjjj, AjjjWjj(l)-AjjjfolWjj(r)dr]= 

AB C' 
(5.391) D E* F 

GH I_ 

where A-I are given by 

(5.392) A=E [Ail, Wil (1)Wil (1)Ajill = 01, 

as in the proof of Theorem (5.4.6) (a)/. 

(5.393) B=E AillTVjl(1)Ai22jf 
10 [w; 

2 (r)] [dlVil (r)]}Aill] = 0. 
a 

(5.394) C=E[AillTVjl(1) (AililVil(l) 
-Ail, 

fo 1 IVil(r)dr)] 

21W (5.395) E (A 1(1)2) -A2 lE [Wjl(1)][Wjl(r)]dr il ii 
(fo 

1 (5.396) oll - sill fo E[Wjl(1)][Wjl(r)]dr 

As above E[Wil (1)] [Wil (r)] = min(r, 1) =r for r<1 so on evaluating the 

integral 

111 (5.397) nil - nil fo 
rdr = Qll - oil = ýQll- 

0 since it follows B. 

E* =E Ai22111 
i2(r)][dW 

I 
i(r)]JAill 

022fl1l [w ii(r)]IAill) 
(Ai22{1 

i2(r)][dlVi 0 
[IV 

(5.398) 

as in proof of Theorem (5.4.6) (b)1. 

F=E (Ai22jf 
i2(r)][dWjl(r)]jAill) 

(AililVil(l) 
- Ail, fI IVil(r)dr 

(I 
[w 

0 
(5.399) 
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(5.400) =E[AillIVjl(1)Ai22jfl i2(r)][dWjl(r)]jAill] () 
[w 

a 

(5.401) -E 
[Ail, 1 

TVjl(r)drAi22jf 
1 [wi2(r)][dWjl(r)]}Aill =0-0=2. 0 

fo 
0 

The first zero on R. H. S. follows from B and the second zero follows on eval- 

uating the integrals 

(5.402) G ,,.: 
1 Qll 
2 

as it follows C. 

0 as it follows F. 

I= E (AillIVil(l) 
- Ail, f1 Wil(r)dr) (AililVil(l) 

- Ail, Wil(r)dr -nil 0 0 
fo 

3 
(5.403) 

as in (d)l above. Finally we need to calculate the inverse of our (3 x 3) 

block covariance matrix called P, say, using the partitioned matrix method 

of Proposition (5.3.11). Now for our (k +2xk+ 2) matrix 

1 0/ 
2 

(5.404) 0121 j92 0 
1 2/ 1 
23 

let 

a (1 x 1) scaJar 

[0,0, 
---, 0,11 ]= [Q/, 11 ] where Q/ is a (1 x k) vector of zeros. Hence Cl 

is a (1 xk+ 1) vector. 
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0 
0 

CI where 0 is a (k x 1) vector of zeros. 
0 
1 

IQ22 
... 2 1 

ýý122 
0/ 

D2 

0 

0 

3 
10 

... 01 111, . So our matrix A=P, say is 
Ill [0,01 ... 1011] 2 
0.0' 

0 1022 
... 

(5.405) 2 

0 
0 -111" 
1[0... 

01 
3 

LL2J 

So by Proposition (5.3.11) we get 

B-1(I - CIE-ICB-1) = 4. 

(5.406) -B-'CIE-1 = [0,0...., 0,6] = [al, 6]. 

0. 
0 

(5.407) -E-'CB-1 6 
0 
6 

1022 
... 

0' 

2 

(5.408) E-1 0 
0 ... 

0 JIL21 
j 

Finally we get the matrix A-1 (or P-' say), given by 

4 0/ 
1 -6 1. 

0 (5.409) 0 29222 

-6 0/ 12 
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As in the proof of Theorem (5.4.6) our final asymptotic normality result 

comes from using the Slutsky Theorem applied to our equation 

IvFN-T(&DOLS2 -a) 
" 

(5.410) VfN-TODOLS2 - 0) :: * 

NIN-T3 
(SDOLS2 - 6) 

N W1 (r)drAl AQ 
i22 2 

Ai22fo wi2(r)dr Ai22ffo[wi2(r)][Wi2(r)]/dr}Ail22 Ai22folrWi2(r)dr 

I fol rWi/2(r)drAl 1 
2 i22 3 

N AillTVjl(1) 
ol 

[Tv; 
2 (r)] [dlVil (r)] 7N 

Ai22 If }Ail, 
AillWjl(1) - Ail, fo1TVjl(r)dr 

Which has asymptotic distribution 

VrNT(&DOLS2 - a, 
(5.411) ý, 

fNVTODOLS2 
- 0) 

vfN--T3 
(SDOLS2 

4 0 
-6 Oil 4 -6 

N0 ffiý21 22 

1 

q 
-0 

1922011 
2 

1 

2 2Q-l/ 2 22 

1) 

0 
-6 0/ 0/ 12 - 2 

1 
- 5011 3 -6 -Q/ 

12 
The asymptotic covariance matrix is 

4 0/ -6 f2ii 2/ 'oil 2 4 2/ -6 1 
(5.412) 20-1 0 f! 22 - 

0 51022011 

1 
20-11 0 22 - 

1 

-6 0/ 12 inil 
-Q/ 

4211 23 -6 a/ 12 

401,2/ -011 (5.413) 02 22011 

-601,0/ 1201, 
So 

VN-T(&DOLS2 
- a) 0 4Q1, 

vIrNTODOLS2 0) 
-N2, 2 

1 1 

2Q22 

, V-N- T3 (SDOLS2 
- 5) 0 

-6Q, l 12Q, l 
(5.414) 
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QED 

Lemma (5.4.17) 

Proof 

(a) This follows from Lemma (5.4.15) (d) since it is the same for FMOLS 

except for the change in notation. 

(b) This follows from Lemma (5.4.15) (f) with zit substituted by fii't , 

Theorem (5.4.18) 

Proof 

We have from equation (5.117) the panel FMOLS estimator 

NT xit tN (T 9, +t 

xitpil - TA+ tFMOLS2 
Xit Xitxit Xitt EE-t 

it 
i=l t=l t txl t2 iýl t=l tp+ 

it 
(5.415) 

Substituting for qj+t we have 

NT xit 

('ýFMOLS2-y) E Xit Xitxit 
t=l t txit 

(5.416) 

tN it 
1: 

(T IM 

Xitt xitfitt - Tý+ it 
t2 t=l tfii+t 

Again rescale (tFMOLS2 
- 7) to obtain a non-degenerate limiting distribu- 

tion. Here ýFMOLS2 is superconsistent as before and converges at rate T 
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across the time-series dimension. Define 

�IN-T -0/ 
0 1. 

(5.417) DT 2 %IN--TIk 0 
0 2/ -, 1N---T3 

So that 
N-2T-2 0/ 0 

1 

(5.418) DT(tFMOLS2 - T) 0 N-«iT-'Ik 0 
i .4 0 N-2T-2 

NT 

EE Xit i=l t=l t 
N-2T-2 

x0 

-0 

1-II 
X/ t N-IT-2 it 

Xitxit Xitt 0 
tx / t2 0 

it .) 

0 
1 0 

i1 N-2T-2 

0/ N 
(T 

it 
I- 

1ý+ 

N-'iT-'Ik xitfii+t -TA+ 
0/ N-12T-1 iý--' týl t fL i+t it 

So 

'VNT*MOLS2 - a) 
(5.419) VNNT(ýFMOLS2 

- 

AIN-T3 
(SFMOLS2 - 

i -2EEt N-'T-2EEXit N-lT 
-2F , EX, tX, t N-'T-2EExit N-'T N-'T-15 EEtxit 

-2EEt A -3EEt2 N-'T N-lT-2EEtXilt N-lT 

N-IE(T-iEfii+t) 
x NAE(T-lExjtfij+t-ý+) 

NA E(T-12 Etfii+t) 

We now apply the sequential limit theory first holding N fixed and letting 

T -+ oo. To do this write the above more conveniently as 

vfN-T(aFMOLS2 - a) ' 
(5.420) VNT(ýFMOLS2 

'\INT3(SFMOLS2 
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3T2T 

N T- 1 Et= I xit T- Et=l t 
T-12 ET -2 ET ET t=l xit TI xitx/ T- 12 

t= it t=l txit 
T -2 ET ET -3 ET 

1 
t2 

t=l t 
T-2 

t=l 
txilt T t= 

1 ET N 
T-2 

t=l 
fLi+t 

j: T 
1 X, tfi+ x( 7N= T-l it 1 ET T-2 

t=l 
tfi+ 

it 

By Lemma (5.4.17) and the FCLT of Proposition (5.3.1) and the CMT of 

Lemma (5.3.3) as T -+ oo, and N is held fixed we have by applying the 

FCLT to each element of the (3 x 3) block matrix and (3 x 1) block vector 

the following. 

By Lemma (5.4.12) and Lemma (5.4.17) 

AvINT(&FMOLS2 - a) 
(5.421) NINTOFMOLS2 

NI"N-T3 (SFMOLS2 - J) 

N 
fO Ivi2 (r)dr, '. i22 2 

A+ fol Wj+2 (r)dr 3+ Aj+2 fo' rl7Vi+2(r)dr 421ANIVU (r)][Wj+2(r)]/drj, &+/ i22 Q i22 i22 
fol r Wj+2 / (r) dr, &i+2/2 3 

A, + 
11 

17V, + 

xN+1 

(1) 
+ 

ýTE 
Ai+221fo[wi2(r)][dT7Vi+l(r)]}, &il1 

N i=1 &+ I 
jjjTVj+j (1) - Ai+11 fol TVj+j (r)dr 

The rest of the proof of Theorem (5.4.18) follows along the same lines as 

the proof of Theorem (5.4.13). The only difference is to replace Q1, and 

022 by f2+11 and 
n2+2, 

respectively in the final computations. Again the ex- 

actly analagous FMOLS case (to DOLS) is depicted with a bar and plus, eg 

Wi+2(r), over the Wiener processes and covariance matrices A+ M. As stated 

earlier 922 = 
0212 

and AMAIý. i2/2 i22 = 
Ai+22Ai22- 
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QED 

Theorem (5.4.19) 

Proof 

From equation (5.124) we have the OLS estimator of T as 

NT1x/t- 
-1 

it NT Yitt 
(5.422) ^ýOLS2 Xit xitxilt Xitt 

EE Xityi 
i=l t=l t tx /P i=l t=l tyit 

it 

Substituting for yit we obtain 

NT-1 X/ t, -1 
it NT Uit 

OCOLS2 

xit xitxit Xitt EE Xitui i=l t=l t2 i=l t=l tuit 

(-t 

txit 

(5.423) 

Rescale the equation as before using 

, rN-T 01 01 
(5.424) DT Q VN-TIk 0 

0 -*rN-T3 

So that 
N-2T-2 0 

(5.425) DT(t - T) N-iT-'Ik 

0 N-2T-2 

NT1 xit t N-2T-2 0 

EE Xit Xitx / Xitt 0 N-iT-lIk it a 
i=l t=l t txl 00 a/ N-IT-'21 it .)I 

N- 12 T- 21 0NT Uit 
xt Q N-2T-lIk Xitui 0 Q/ N-IT-121 týl tuit 

272 



So 

'ýlN--T(ii0LS2 - Ci) 

(5.426) -, 
INNTOOLS2 

- 0) 

VN-T3 (äOLS2 
- 5) 

N-'T- 2 EEXit 
N-'T-2EEt 

N-'T- 2 EEXit 

-2 N-'T EFxitxit 
N-'T-2EEtxit 

-2F N-IT Et 
A N-'T- 2 FFtXit 

N-'T-3EEt2 

N-2T- 2 EEUit 

1 
X N-2T-IEExjtujt 

iA N-2T- 2 EFtUit 

We now apply the sequential limit theory first holding N fixed and letting 

T -+ oo. To do this write the above in the more convenient form as 

NINT(&OLS2 - a)' 
(5.427) VN--T(40LS2 

- 

VfN-T-3(SOLS2 - 

2 ET -2 ET . -1 
1N1 

T-2 
I Xil, T1t t= it t= 

T ET -2 ET I X, tX1 
A ET 

(- 
EA 

t=l xit T t= it 
T-2 

t=l 
txit 

N i=l -2 ET A ET -3 ET T t=, t 
T-2 

t=l 
txjlt T t=l 

t2 

ET I Ut 
x1N 

T-1 t=x. 
tu T-1 ET 7N= , t=l, I it ET T-1 t=l tuit 

On substituting A! for Aj, etc we have an exactly analagous case for OLS to S 

ET I X, tU, t. So the proofs of Theorems (5.4.6) and (5.4.13) except for T-1 t= 
VrN-T(61OLS2 - a) " 

(5.428) VfN-TOOLS2 - 0) `ý* 

'VfNT3(SOLS2 - J) 

N foj I Vi2 (r)drAi22 2 
[I Vj*2 (rI Vi*2(r)]/dr}A*/ A Ai*22fOlWi*2(r)dr Ai*22ffO 

i22 i22 
fol rlVi*2(r)dr 

fol rlVi*2/(r)drA*/ 1 i22 3 
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NA j*j I Wi*l (1) 
0 1+r x 

Aj*22 IV [Wi*2 (r)] [dWi*l (r)) )Ai*l i*2 

(7N= 

Ai*lllVi*1(1)-Ai*llfollVi*, (r)dr 

Asymptotic Consistency 

Using (e) and also (c) and (g) above which are the same for OLS case since 

they only involve Wj*j (1) and Wj*j (r) then 

i2(r)][dWi*, (r)]}A* I (5.429) A* 
21f 

1 

i2 
[W* 

il + "i2l as N -+ oo. 2 

N 
(5.430) E Ai*l 1 Wi*l 0 as N -+ oo. N i=l 

(5.431) 1N (A* 
- Ai*l If1 Wi*l (r) dr) #0 as N -+ oo. N 

Using Kornolgorov's SLLN we have now shown that as N -+ oo by (a)-(g) 

NIN-T (6 0LS2- a) 2 
-1 0 

r* (5.432) ýNINWOLS2 922 0 

jX 

21 

OLS2 
00 

2-3j 

Thus 
VN-T-(62OLS2 - a) 0 

(5.433) VNVT(ýOLS2 
- 0) =t. 2r2,, 

0 
22 

1- 

NINTWOLS2 

P Hence 61OLS2 2+ a and 
SOLS2 2+ J as (N, T -+ OO)seq but POLS2 

-/+ P as 

(N, T -+ C)O),,, q. Hence we have shown that &OLS2 and 
6S2 

are asymptoti- 

cally consistent estimators as (N, T -+00)seqbut 
ýOLS2 

is not an asymptot- 

ically consistent estimator as (N, T -+00)49eq- 

Asymptotic Normality 

Again we apply the Lindeberg-Levy CLT to each element of the (3 x 1) vector 
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and use the results of the proofs of Theorems (5.4.16) and (5.4.18) for the 

limiting distribution of the (3 x 3) block matrix. The desired result follows 

after an application of Slutsky's Theorem. Also from the proofs of Theorems 

(5-4.16) and (5.4.18) we have the following Lindeberg-Levy CLT results. 

From (a)/ and (d) / on substituting for Ai*11, Wj*j (r) and Wj*j (1) and also from 

(c) I we have 

N 

(5.434) E(Aj*jjTvj*j(1))-Y+N(0, Q*jj) as N-4oo. : 7N== 
i=1 

N11 

[Wi'*2(r)][dWi"', (r)]IA'i'll)-4N(Q, ýQ*lQ2*1) as N-ýoo. 
(Ai22 

21 7N 
i=l 

(5.435) 

1N 
7= 

(A Wi*, (l) - Ai*ll f W* ii il(r)dr) -4 N (0, 
as N -+ oo. 3 Na 

(5.436) 

Now for the covariance matrix of the (3 X 1) block vector we have in the 

OLS case exactly the same result for the covariance matrix as in equation 

(5-391) in the proofs of Theorem (5.4.16) (with the slight change of notation 

for OLS) except for E*. Hence using the Lindeberg-Levy CLT we have now 

shown that as N -+ oo by (a)l - (d)l 

1NA j*1 1 TVj*j (1) 
(5.437) A* i*, (r)]}Ai*ll +r 77 i22 

f fOl 1wi*2 (r)] [dW i*21 
A j*1 1 Wj*j (1) -A j*1 1 fol I Vj*j (r) dr 

21 
N 00 1102 *10 

21 
ý22 

- 0 10*1 42* 
213 

As in the proofs of Theorems (5.4.16) and (5.4.18) our final asymptotic nor- 
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mality result comes from using the Slutsky Theorem applied to our equation 
VN--T(&OLS2 

- 0) 
. 

(5.438) vIrNT(ýOLS2 - fl) ": * 

-, 
IN-T3(SOLS2 

- 6) 
. 

N 
fO Tvi2 (r)drA %*2ý 22 

A TVj*2 (r) dr i22 
fO Ai*22 fol [Wi*2 (r) I [Wi*2(r)]/dr}A*/ A* 

2 
fol rlVi*2(r)dr 

fo' rWi*2/(r)drA*/ 
i22 i2 

I 
i22 3 

NA j*j 1 Wj*j (1) 
A [lVi*2(r)] [dlVi*l (r)]}Ai*l Q 7Y i221fO + r* 

Ai*l 1 lVi*l (1) - Ai*l 1 fol lVi*l (r) dr 

Which has asymptotic distribution 
VN--T(&OLS2 

- a, 
(5.439) VIN'TOOLS2 - 0) 

VrN-T3(SOLS2 - 6) 

0 4 0/ -6 f2*11 a/ I - 
1 is, 1 21 4 21 -6 

N _1 
1 

2r* 
21022 , 

1 

-1 22* */ 2Q22 51112ln2i 

1 
202-1/ 

2 
0 -6 2/ 12 ! Q*l 

21 ý30*11 -6 2/ 12 
The asymptotic covariance matrix is 

4 0/ -6 111, fi/ j, 111* 14 12 Q/ -6 
(5.440) Q-1 Q2 22 

1 
0 
- 

1 Q2 
21 Q 12 *10; /l 

1 

20-1/ 22 

1 

-6 0/ 12 10*1 
2 ýQj*j -6 3 Q/ 12 

4Q, *, 1 6 
(5.441) Q*/Q-1/ 22 21 21 22 

12Q*ll 
So 

VN-T(&OLS2 
- a) 0 42*11 0/ 

VN--T(, 80LS2 N 2F2"1022 2f2221112. 
lQ*/Q 

VN---T3 (SOLS2 0 
21 22 Q 

(5.442) 
120*11 
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QED 

Lemma (5.5.1) 

Proof 

See White (1984), p. 71. 

Proposition (5.5.2) 

Proof 

See White (1984), p. 71. 

Theorem (5.5.3) 

Proof 

Under the null hypothesis Ho : RP =r then 

(5.443) RADOLS1 
-r=R 

(ADOLS1 
- 

ß) 
- 

So 

n2- r) = e-i-, ýfN-TR -0). (5.444) e- 1 
ý%1N--T 

(RýDOLS (ADOLS1 

Now we know by Theorem (5.4.6) that 

(5.445) ýVNYT 
(ýDOLS1 N(a, 2Q-1 22011) 

as (N, T --* 00) seq - 

Let R be an 0(1) sequence of nonstochastic (q x k) matrices with full rank 

277 



Then VN--TR (4DOLSI 
- 0) is such that 

(5.446) VN--TR (ADOLSI 
- ß) => N(Q, 2R9121911R/) 22 

as (N, T --+ ()O),, q- 

So 

i -- (5.447) 2 
NINT 

(R&LS1 
- r) =ý- N(Q, Ik) 

as (N, T -+ OO)seq 

where 1),, = 2RQ-'Q,, R/ and (D,, and are 0(l), which is the desired 22 n 

result for (a). Next, given the result in (a), (b) follows from applying Lemma 

(5.5.1). 

QED 
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DATABASE MANAGEMENT 

This appendix is divided into three main sections: 

1) A description of the panel datasets used in the thesis. 

2) A brief introduction to the Ox and PcGive software programmes. 

3) An explanation of the Library Information Systems used. 

The Panel Datasets 

We give here a brief description of the source and characteristics of the 

three panel datasets used in the thesis. The datasets are from the three 

largest worldwide economic organisations, the OECD, the IMF and the World 

Bank. The Organisation for Economic Co-operation and Development con- 

sists of 30 member countries mainly from the developed nations of Europe 

and North America who share a commitment to democratic government and 

the market economy. Information about the OECD can be obtained from 

http: //www. oecd. org/. The International Monetary Fund is an international 

organisation of 184 member countries from all parts of the world both rich 

and poor. Its aim is to promote international monetary co-operation. In- 

formation about the IMF can be obtained from http: //www. imf. org/. The 

World Bank consists of five closely linked international institutions owned 

by member countries. Its mission is to fight poverty. Information about the 
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World Bank can be obtained from http: //www. worldbank. org/. 

All three panel datasets consist of a balanced panel of time-series cross-section 

data. The data all from the post war period reflects a good variety of data 

observations at the monthly, quarterly and annual frequencies. Apart from 

the main data collecting agencies and publishers mentioned above the emer- 

gence of new data sources such as the Penn World Tables has made large 

panel datasets much more easily availabile. 

Panel Dataset 1 

Obtained from the OECD Main Economic Indicators dataset at the MIMAS 

Data Archive, of Manchester University. 488 Monthly observations for 20 

OECD countries on the Consumer Price Index. Details: 

Countries: Austria, Belgium, Canada, Denmark, Finland, France, Germany, 

Greece, Iceland, Ireland, Italy, Japan, Luxembourg, Norway, Portugal, Spain, 

Sweden, Switzerland, U. K., U. S. 

First Observation: 1960ql, 

Last Observation: 2000q8, 

CPI All Items: Index with Base Year 1995 

All seasonally Unadjusted. 

Panel Dataset 2 

Obtained from the IMF International Financial Statistics dataset at the MI- 

281 



MAS Data Archive of Manchester University. 138 Quarterly observations 

for 25 OECD countries on the Nominal Exchange Rate and Consumer Price 

Index. Details: 

Countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, 

Germany, Greece, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, Nether- 

lands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, 

U. K., U. S. 

First Observation: 1957ql, 

Last Observation: 199lq2, 

Exchange Rate: Market Rate F-AE 

End of Period National Currency per U. S. Dollar. 

CPI All Items: Consumer Prices F64 

Index with Base Year 1985. 

All seasonally Unadjusted. 

Panel Dataset 3 

Obtained from the World Bank World Development Indicators 2002 CD- 

Rom at Hull University. 39 Annual observations for 20 OECD countries on 

Consumption, Gross Domestic Product, Population, the GDP deflator and 

the CPI. Data on Interest Rates and Liquid Assets obtained from IMF IFS 

Yearbooks 1991 and 2000. Data on Savings Rates obtained from the Penn 
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World Tables. Details: 

Countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, 

Greece, Ireland, Italy, Japan, Korea, Netherlands, Norway, Portugal, Spain, 

Sweden, Switzerland, U. K., U. S. 

First Observation: 1961, 

Last Observation: 1999, 

Final Consumption Expenditure 

Data are in current U. S. dollars (2002). 

Gross Domestic Product 

Data are in current U. S. dollars (2002). 

Total Population: (Total population of country) 

GDP deflator: (Base year varies by country) 

Consumer Price Index 

Index with base year 1995=100. 

Savings Rates 

Annual % of GDP. 

Interest Rates: Annual % Rate of 3 types (24 hour Discount Rate, 

30 Day Treasury Bill Rate or Long-Term 10 Year Government Bond Yield ) 

All seasonally adjusted. 

The Datasets are provided on an accompanying CD-ROM. The CD-ROM 
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contains only the transformed and estimated datasets for each panel. Note 

that the Liquid Assets variable in panel dataset 3, is a composite variable 

calculated as the Wealth of the Personal Sector comprising of Real National 

Savings plus Real Time, Savings and Demand Deposits at commercial banks 

and, when available, the Real Stock of Bonds at commercial banks. These 

data were obtained from the IMF IFS Yearbooks 1991 and 2000. These were 

in national currencies and had to be transformed into US$ and deflated by 

the GDP deflator. 

An Outline of Ox 

Ox is a high level programming language for use by econometricians, statis- 

ticians and other quantitative researchers. It is a programming language 

equivalent to Gauss. It exists within the PcGive suite of software programs 

and uses GiveWin software as a front end (ie for printing results to screen, 

etc). The PcGive Professional software is used for all the non-programmable 

regressions and other computations in the thesis. Ox and the PcGive soft- 

ware are distributed under the OxMetrics brandname by Timberlake Consul- 

tants. One way of using Ox is through its Object Orientated programming 

structure. The other alternative is the more flexible freestyle programming 

method used in this thesis for brevity. The OxMetrics development team has 
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its base at Oxford University. The OxMetrics development team host their 

own annual international conference and participate in numerous research 

and training activitives. The web address is http: //www. oxmetrics. net/ 

All the important Ox programs used in the thesis and some of their datasets 

are stored on the accompanying CD-ROM with the three main panel datasets. 

A description of these is given in the list of Ox programs at the introduction. 

These have been written solely by the author. 

The Library Information Systems 

Most document examinations and searches have been carried out using the 

Athens Library Information System. The Athens system and Science Direct 

provided the basis of most online library information access. Information 

about these library infornation services can be found at http: //www. athens. ac. uk/ 

and http: //www. sciencedirect. com/. Other database archives such as the MI- 

MAS archive of Manchester University, the Data Archive of Essex University 

and the new ESDS International, of the University of Manchester and Es- 

sex University, were the source of macroeconomic databases and econometric 

information. The web addresses of these are http: //www. mimas. ac. uk and 

http: //www. data-archive. ac. uk and http: //www. esds. ac. uk . 
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TABLES 

Table 3.34 Individual Country DOLS Regression Estimates 
CO constant YINt LA/yt 
Ausl 28.396 0.77049 -1.2153 0.85683 0.99995 

5.3937[0.000] 38.684[0.000] -9.1158[0.000] 26750.0 
Aus -13.000 0.79677 0.23765 0.96391 0.99992 

-2.1589[0.042] 82.262[0.000] 1.5554[0.1341 17325.0 
Bel 35.213 0.73303 -1.0759 1.0614 0.99996 

15.353 [0.000] 183.89[0.000] -14.927[0.000] 31064.0 
Can -19.963 0.73155 1.1002 0.26516 0.99951 

-1.1606[0.258] 4.2325[0.000] 0.77062[0.449] 2831.5 
Den 57.886 0.70907 -1.6085 0.87062 0.99994 

10.094[o. 6oo] 87.652[ 0.000] -8.9733[0.000] 23159.0 
Fin 61-658 0.68145 -1.6511 1.0659 0.99981 

2.0805[0.049] 13.255[0.000] -2.5919[0.016] 7155.3 
Fra 53.212 0.78421 -2.1154 0.83703 0.99991 

4.4273[ 0.000] 39.393[0.000] -6.2496[0.000] 15533.0 
Gre 92-568 0.67723 -1.5569 0.95548 0.99934 

5.0363[0.000] 41.092[0.000] -4.4249[0.000] 2091.1 
Ire 45.603 0.54975 -0.59585 0.69237 0.99951 

12.468[0.000] 10.299[0.000] -2.4800[0.021] 2799.3 
Ita 27.714 0.74506 -0.89479 1.3751 0.99998 

19.798 [0.000] 115.44[0.000] -13.366[0.000] 66230.0 
Jap 28.039 0.70662 -0.82793 0.86716 0.99993 

3.7549[0.001] 157.68[0.000] -4.1117[0.000] 18406.0 
Kor 13.305 0.66891 -0.31390 0.86623 0.99877 

6.6312[0.000] 16.868[0.000] -10.513[0.000] 1114.3 
Net 34.206 0.70205 -0.99784 0.81307 0.99993 

8.9719[ 0.000] 142.68[0.000] -8.5826[0.000] 19670.0 
Nor 104.92 0.64818 -2.6346 1.4276 0.99992 

8.8052[0.000] 72.021[0.000] -9.5058 [0.0001 17994.0 
Por 15-302 0.80298 -0.80638 1.5102 0.99955 

1.7184[0.099] 110.95[0.000] -1.5645[0.131] 3024.0 
Spa 33.162 0.72808 -1.1032 0.67120 0.99994 

12.356[0.000] 46.826[0.000] -8.3734[0.000] 24073.0 
Swe 85.772 0.72169 -2.8075 1.6634 0.99999 

13.960[0.000] 79.017[0.000] -18.775[0.000] 127390.0 
Swi 13.411 0.73012 -0.24756 0.87447 0.99987 

2.3047[0.030] 84.394[0.000] -2.2920[0.031] 10453.0 
UK 10.286 0.88654 -1.1641 1.0220 0.99997 

3.4942[0.002] 72.785[0.000] -10.852[0.000] 47140.0 
us -72.952 0.88556 1.0812 0.67149 0.99988 

-1.7354[0.096] 56.755[0.000] 1.4561[0.159] 11206.0 
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Table 3.35 Individual Countrv DOLS Regression Estimates 
CO L constant I trend I y1Nt LA/yt DW/F-s R2ý 
Ausl 20.370 0.062648 0.77485 -0.98240 0.93147 0.99995 

2.3336[0.029] 1.1076[0.279] 41.153[0.000] -4.0313[0.000] 25667.0 
Aus -16.852 0.17795 0.77743 0.33388 0.97156 0.99992 

-2.3790[0.026] 0.96088[0.347] 35.007[0.000] 1.8668[0.075] 16068.0 
Bel 34.186 -0.10763 0.75291 -1.0692 1.1268 0.99996 

14.076 [0.000] -1.0502[0.3051 38.964[0.000] -15.238[0.000] 29159.0 
Can 69.872 0.77103 0.61986 -2.2875 0.40810 0.99982 

3.2678[0.003] 4.6425[0.000] 6.5584[0.000] -2.1786[0.040] 6959.2 
Den 50.631 -0.34624 0.78041 -1.6761 1.1888 0.99997 

12.961[0.000] -4.6002[0.000] 47.858[0.000] -14.875[0.000] 36379.0 
Fin 39.105 -0.32439 0.80031 -1.4730 1.2908 0.99984 

1.3289[0.197] -1.9089[0.069] 10.278[0.000] -2.5102[0.019] 7630.9 
Fra 49.202 0.33645 0.70331 -1.6461 1.4341 0.99997 

12.264[0.000] 9.6807[0.000] 66.009[0.000] -13.449[0.000] 42938.0 
Gre 91.288 -0.62327 0.66274 -1.0035 1.0178 0.99935 

5.1831[0.000] -0.58616[0.563] 22.638[0.000] -1.0020[0.327] 1905.1 
Ire 44.826 -0.16524 0.55291 -0.38711 0.80596 0.99954 

13.214[0.000] -1.2151[0.237] 11.356[0.000] -1.3914[ 0.178] 2685.1 
Ita 24.750 0.030062 0.74475 -0.80613 1.4038 0.99998 

6.4652[0.000] 0.82383[0.418] 123.32[0.000] -6.4770[0.000] 60569.0 
Jap 18.349 0.28412 0.68722 -0.62325 1.1143 0.99994 

2.8280[0.009] 2.9301[0.007] 92.598[0.0001 -3.7556[0.0011 21350.0 
Kor 12.755 -0.17664 0.68301 -0.23414 0.84920 0.99877 

4.1501[0.000] -0.23716[0.814] 9.5429[0.000] -0.69346[0.495] 1003.4 
Net 38.624 -0.53974 0.78930 -1.1923 1.2934 0.99997 

23.458[0.000] -8.7773[0.000] 77.809[0.000] -22.628[0.000] 46271.0 
Nor 124.31 -0.21745 0.66890 -3.1679 1.5996 0.99993 

6.5301[0.000] -1.2553[0.222] 36.105[0.000] -6.3672[0.000] 16965.0 
Por 5.7427 0.11163 0.81687 -0.53417 1.5669 0.99955 

0.42706[0.673] 0.89308[0.381] 48.312[0.000] -0.95199[0.351] 2749.5 
Spa 48.924 -0.12030 0.72891 -1.6234 0.79577 0.99996 

8.3677[0.000] -2.9121[0.008] 56.899[0.000] -7.7666[0.000] 30878.0 
Swe 86.777 -0.0042110 0.72061 -2.8314 1.6643 0.99999 

12.180[0.000] -0.28397[0.779] 72.428[0.000] -16.427[0.000] 114680 
Swi 12.749 0.17062 0.71428 -0.22914 0.86202 0.99987 

2.1117[0.046] 0.40562[0.688] 17.866[0.000] -1.9574[0.063] 9463.4 
UK 10.780 -0-0077880 0.88869 -1.2011 1.0168 0.99997 

2.2465[0.035] -0.13083[0.897] 43.341[0.000] -3.9747[0.000] 42384.0 
us -72.191 0.38722 0.79772 1.2657 0.66455 0.99988 

-1.7137[0.1001 1 0.45233[0.6551 1 4.0943[0.000]l 1.4926[0.149] 1 10212.0 
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Table 3.36 Individual Countrv FMOLS Regression Estimates 
CO constant y1Nt LA/yt DW/F-stat R2 
Ausl 41.060 0.74016 -1.4754 0.95974 0.99982 

8.9320[0.000] 50.611[0.000] -11.688[0.000] 98956.0 
Aus -61.485 0.85824 1.4670 0.99721 0.99852 

-5.9878 [0.000] 51.619[0.000] 5.7540[0.000] 12185.0 
Bel 22.926 0.74087 -0.66613 1.3149 0.99930 

6.7659[0.000] 128.22[0.000] -6.6547[0.000] 25686.0 
Can -23.338 0.72752 1.7002 1.8943 0.99079 

-1.4609[0.152] 12.816[0.000] 1.9534[0.058] 1937.0 
Den 20.190 0.74568 -0.52477 1.0973 0.99945 

2.0609 [0.046] 51.889[ 0.000] -1.7938[0.081] 32613. 
Fin 149.53 0.58075 -3.8426 1.0035 0.99885 

10.803[0.000] 25.450[0.000] -11.305[0.000] 15617.0 
Fra 56.991 0.77399 -2.1770 0.89948 0.99985 

7.5957 [0-000] 68.750 [0-000] -9.2163[0.000] 122370 
Gre 75.613 0.69413 -1.2607 1.0532 0.99913 

5.0676 [0-000] 61.184[0.000] -3.6577[0.000] 20670.0 
Ire 32.287 0.79234 -1.8316 2.0585 0.98510 

11.653[0.000] 27.895[0.000] -15.470[0.000] 1190.1 
Ita 23.349 0.74155 -0.73589 0.67561 0.99986 

6.4422[0.000] 64.940 [0.000] -6.0401[0.000] 126730 
Jap 34.407 0.70144 -1.0498 0.73500 0.99963 

3.7547[0.001] 142.76[0.000] -4.1493[0.000) 48212.0 
Kor 17.551 0.63078 -0.22197 0.89415 0.98826 

5.1717[0.0001 12.048 [0.000] -5.3941[0.000] 1515.4 
Net 24.758 0.70951 -0.70785 1.0511 0.99979 

5.2258[0.000] 105.96 [0.000] -5.1435[0.000] 85201.0 
Nor 94.189 0.65403 -2.3800 1.5212 0.99988 

14.444[0.000] 121.22[0.000] -15.066[0.000] 154750 
Por 33.647 0.79922 -1.8320 1.0802 0.99904 

7.3144[0.000] 80-680[0.000] -8.2632[0.000] 18694.0 
Spa 34.222 0.73881 -1.2123 0.72570 0.99993 

13.138[0.000] 108.13[0.000] -11.989[0.000] 245520 
Swe 107.52 0.70872 -3.5078 1.0315 0.99987 

19.349 [0.0001 84.567[0.000] -23-085[0.000] 138820 
Swi -15.200 0.77235 0.18723 1.1949 0.99910 

-2.3839[0.022] 71.256 [0.000] 1.7615[0.086] 20072.0 
UK 23-702 0.84586 -1.4832 1.0583 0.99981 

4.4017[0.000] 42.402[0.000] -7.9041[0.000] 94106.0 
us -57.221 0.85879 0.91174 1.3333 0.99943 

-1-9362 [0.060] 56.705 [0.000] 1.7295[0.092] 1 31633.0 
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Table 3.37 Individual Country FMOLS Regression Estimates 
CO constant trend y1Nt LA/yt DW/F-s RI ] 

Ausl 48-192 -0.10633 0.74326 -1.6915 0.75449 0.99985 
6.1030[0.000] -1.3363[0.190] 49.397[0.000] -7-0838[0.000] 76133.0 

Aus -112.36 1.0213 0.79534 2.7312 0.97808 0.99795 
-8.2314[0.000] 4.8149[0.000] 38.535[0.000] 8.0720[0.000] 5668.8 

Bel 20.582 -0.025371 0.74794 -0.60209 1.3121 0.99921 
5.7621[0.000] -0.35278[0.727] 63.028[0.000] -5.4998[0.000] 14784.0 

Can 88.066 1.1435 0.46274 -2.2177 2.0597 0.99215 
5.0394 [0.000] 8.4790[0.000] 9.2130[0.000] -3.6373[0.000] 1474.4 

Den 24.392 -0.25760 0.79039 -0.86714 1.0963 0.99968 
4.6053 [0.000] -3.6285[0.001] 65.549[0.000] -5.0596[0.000] 36163.0 

Fin 181.09 -0.66091 0.67251 -5.0203 1.1939 0.99897 
12.198[0.197] -5.1285[0.069] 27.188[0.000] -12.236[0.0191 11261.0 

Fra 28.713 0.30359 0.72992 -1.0186 1.2457 0.99978 
5.3793[0.000] 6.0355[0.000] 80.836[0.000] -5.4839[0.000] 54195.0 

Gre 77.802 0.072478 0.69459 -1.3704 1.0564 0.99914 
5.2488 [0.000] 0.22328[0.825] 52.971 [0-000] -3.1149[0.005] 13528.0 

Ire 36.571 0.48489 0.72653 -2.0510 1.7243 0.99292 
11.853[0.000] 3.9899 [0.000] 23.095[0.000] -11.476[ 0.000] 1635.9 

Ita -7.8285 0.35049 0.74956 0.067266 0.76757 0.99978 

-0.67962[0.501] 2.8542[0.007] 63.697 (0.000] 0.21908[0.827] 52379.0 
Jap 36.198 0.19059 0.68373 -1.1270 0.79670 0.99964 

3.9799[0.000] 1.2831[0.207) 49.632 [0.000] -4.4545[0.000] 32749.0 
Kor 6.2030 -1.9002 0.86497 0.55047 0.79233 0.99606 

2.5471[0.0151 -8.0177 [0.0001 20.765[0.000] 5.4650[0.000] 2948.8 
Net 28.857 -0.29992 0.75524 -0.86459 1.3975 0.99987 

12.058 [0.000] -6.7077 [0.000] 109.61[0.000] -12.156[0.000] 92713.0 
Nor 93.427 0.021505 0.65143 -2.3548 1.5187 0.99989 

14.550[0.000] 0.30951 [0.759] 61.016[0.000] -14.968[0.000] 102190 
Por 37.317 -0.12822 0.79014 -1.7979 1.0813 0.99915 

4.9576[0.000] -1.1182 [0.2711 60.557[0.000] -7.1893[0.000] 13686.0 
Spa 22.678 0.037401 0.73290 -0.75340 1.0914 0.99984 

5.7618 [0.000] 1.3091[0.199] 117.75[0.000] -5.4137[0.000] 71409.0 
Swe 117.65 -0.11051 0.70619 -3.7843 1.0747 0.99985 

17.470 [0.000] -2.6591 [0.0111 83.731[0.000] -20.560[0.000] 76151.0 
Swi -16.415 0.14428 0.76016 0.21217 1.1731 0.99911 

-2.4132 [0.021] 0.58400 [0.565] 35.059 [0.000] 1.8416[0.079] 13036.0 
UK 28.033 -0.057755 0.85057 -1.6885 1.0153 0.99980 

3.9053 [0.000] -0.95668[0.345] 41.649[0.000] -5.8590[0.000] 57930.0 
us -47.209 0.059340 0.84326 0.76344 1.2840 0.99949 

-1-5290 [0.1351 1 0.10934[0.913) 1 6.8208 [0.000] 1.3936[0.172] 1 22946.0 1 
-j 
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Table 3.38 Individual Country DOLS Regression Estimates 
CO constant y1Nt Inft DW/F-stat R' 
Ausl 1.2068 0.77175 -0.58818 1.0950 0.99966 

0.18191[0.857] 21.203[0.000] -1.7557[0.0931 4064.5 
Aus 2.4955 0.76296 -1.1715 1.0486 0.99995 

2.9432[0.007] 242.46[0.000] -8.3265[0.000] 26669.0 
Bel 2.3034 0.76443 -0.27870 0.24338 0.99933 

0.35782 [0.723] 30.198[0.000] -0.25304[0.802] 2043.9 
Can -10.731 0.85408 -0.96987 0.98624 0.99979 

-2.0131[0.056] 30.231[0.000] -5.2306[0.000] 6418.9 
Den -5.3748 0.76872 1.0077 1.1616 0.99982 

-1.7944[0.086] 80.044[ 0.000] 5.2774[0.000] 7644.4 
Fin 5.4382 0.72950 -0.84686 0.83142 0.99952 

1.0140[0.321] 31.445[0.000] -3.3967[0.002] 2850.3 
Fra -3.8609 0.80697 -0.61141 1.2022 0.99989 

-2.3433[0.0281 112.14[0.000] -5.7153[0.000] 12298.0 
Gre 27-655 0.72507 -0.85631 0.61496 0.99906 

1.8891[0.072] 26.823[0.0001 -0.84840[0.405] 1466.3 
Ire 43.085 0.45876 0.36993 0.48027 0.99871 

6.0728[0.000] 13.356[0.000] 0.87508[0.390] 1063.8 
Ita 6.6799 0.74420 -0.53677 0.47775 0.99974 

0.68911 [0.497] 15.985[0.000] -1.7751[0.089] 5309.8 
Jap 4.0883 0.69842 -0.71923 0.89127 0.99988 

2.9745[0.006] 153.12[0.000] -4.2931[0.000] 11912.0 
Kor 33.319 0.31046 -0.78052 0.80190 0.99635 

8.6560[0.000] 6.6372[0.000] -4.3092[0.000] 375.85 
Net 2.8018 0.72080 -0.16498 0.92246 0.99983 

1.9321[0.066] 118-78[0.0001 -0.91424[0.370] 7876.5 
Nor -3.5840 0.71676 -0.78586 1.4604 0.99965 

-1.2805[0.213] 75.658[0.000] -3.7038[0.001] 3900.3 
Por -1.3432 0.82485 -0.20590 1.2430 0.99945 

-0.34597[0.732] 32.645[0.000] -0.78592[0.440] 2476.2 
Spa 1.9775 0.76665 -0.38422 1.2628 0.99987 

0.91750[0.368] 49.057[0.000] -3.9599[0.000] 10485.0 
Swe -6.7276 0.78005 0.64011 0.96968 0.99972 

-1.0852[0.289] 31.636[0.000] 1.5944[0.125] 4825.7 
Swi -0.66310 0.75107 -0.55090 0.50125 0.99985 

-0.16956[0.866] 87.576[0.000] -0.69874[0.4921 9017.4 
UK -6.4419 0.86926 -0.43315 0.87875 0.99980 

-0.77253[0.4481 21.655[0.000] -1.9093[0.069] 6839.5 
us -5.7636 0.85318 -0.54307 0.52825 0.99985 

-0.96953[0.3421 1 48.840[0.000] 1 -1.2852[0.212] 9455.5 
-j 
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Table 3.39 Individual Countrv DOLS Reuession Estimates 
CO constant trend YINt Inft DW/F-s R2 

Ausl 2.0221 0.23477 0.72147 0.11050 1.2557 0.99975 
0.38324[0.705] 2.8585[0.009] 21.320[0.000] 0.30586[0.762] 4914.9 

Aus 2.5403 0.035270 0.75780 -1.1802 1.0572 0.99995 
2.9319[0.007] 0.27554[0.785] 39.950[0.000] -8.1558[0.000] 24025.0 

Bel 5.9415 1.0128 0.57821 0.98279 0.45629 0.99945 
1.0153[0.320] 1.6086[0.121] 4.9130[0.000] 0.81123[0.4251 2258.9 

Can -24.292 -0.27232 0.96983 -1.4527 1.3214 0.99982 

-3-9695[0.000] -2.8316[0.009] 21.272[0.000] -6.7268[0.000] 6898.4 
Den -3.8794 0.26904 0.72951 1.3364 1.1580 0.99983 

-1.3226[0.1991 1.5187[0.143] 26.730[0.000] 4.7890[0.000] 7339.1 
Fin -6.5278 -0.55146 0.86416 -1.4153 1.0681 0.99961 

-0.93759[0.358] -2.3003[0.0311 13.967[0.000] -4.3198[0.000] 3176.5 
Fra -0.50317 0.28947 0.74840 -0.27153 1.1514 0.99990 

-0.23750[0.814] 2.3558[0.027] 29.020[0.000] -1.5379[0.138] 12981.0 
Gre 70.079 -1.3601 0.67727 -0.71232 1.1850 0.99961 

7.3326[0.0001 -6.1841[0.000] 46.657[0.000] -1.5507[0.135] 3157.4 
Ire 37.126 -0.25439 0.53930 0.43812 0.49247 0.99877 

3.8392[0.000] -0.88197[0.387] 5.5442[0.000] 1.0445[0.307] 999.80 
Ita -16.417 0.35308 0.80016 -0.16404 0.86586 0.99988 

-2.4823[0.021] 5.1058[0.000] 31.216[0.000] -0.98072[0.337] 10446.0 
Jap 3.5532 0.13697 0.68592 -0.75113 0.94858 0.99989 

2.6011[0.016] 1.1553[0.260] 58.981[0.000] -4.7222[0.000] 11313.0 
Kor 19.192 -0.56615 0.66611 -0.38734 0.76792 0.99809 

4.8045[0.000] -4.5762[0.0001 7.9678[0.000] -2.6349[0.015] 644.16 
Net 2.7997 0.068610 0.70977 -0.12838 0.92918 0.99983 

1.9508[0.063] 0.30926[0.760) 19.616[0.000] -0.59923[0.555] 7100.0 
Nor -4.1500 -0.16575 0.73975 -0.97693 1.4469 0.99965 

-1.3546[0.189] -0.46022[0.649] 14.546[0.000] -2.0943[0.047] 3524.2 
Por -8.2874 0.20013 0.83347 -0.077357 1.5054 0.99951 

-1.8772[0.073] 2.1985[0.038] 40.751[0.000] -0.35783[0.723] 2531.5 
Spa 1.6046 0.10958 0.73835 -0.11275 1.2263 0.99990 

0.91158[0.371] 2.9544[0.007] 46.344[0.000] -0.93022[0.362] 12224.0 
Swe -2.9929 0.31392 0.72484 1.5420 1.0006 0.99977 

-0.52103[0.607] 2.3260[0.029] 22.425[0.000] 2.9251[0.007] 5315.7 
Swi -0.055827 0.22841 0.72819 -0.63087 0.50944 0.99985 

-0-013682[0.989] 0.43511[0.667] 13.675[0.000] -0.79400[0.435] 8223.7 
UK 0.63316 0.23072 0.79313 -0.17929 1.0859 0.99989 

0.10936[0.913] 4.1975[0.000] 24.596[0.000] -1.1042[0.281] 11109.0 
us 121.80 4.2029 -0-085553 -1.5536 0.78930 0.99995 

5.3934[0.0001 5.6994[0.0001 -0.51868[0.609] -5.5935[0.000] 1 23641.0 1 1 
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Table 3.40 Individual Countrv FMOLS Regression Estimates 
CO constant y1Nt Inft DW/F-stat R2 
Ausl 4.9931 0.74617 -0.41896 1.0404 0.99879 

0.51445[0.610] 13-508 [0-000] -0.92089[0.363] 14823.0 
Aus 2.5195 0.76295 -1.2292 1.3670 0.99988 

2.5814 [0.0140] 206.31 [0.000] -8.2771[0.000] 146450 
Bel 2.4707 0.76201 -0.48279 0.48901 0.99909 

0.59119[0.558] 39.459 [0.000] -0.86663[0.391] 19867.0 
Can -11.097 0.85804 -1.0855 1.1501 0.99968 

-2.4125 [0.021] 35.441[0.000] -6.0275[0.000] 56072.0 
Den 16.916 0.73717 -1.9166 1.5175 0.98889 

6.9891 (0.000] 85.757 [0.000] -12.136[0.000] 1602.3 
Fin 5.2171 0.73514 -0.92698 0.91327 0.99929 

1.2326 [0.225] 38.294 [0.000] -4.5405[0.0001 25292.0 
Fra -2.7312 0.81052 -0.86491 0.38531 0.99925 

-0.56842 [0.573] 34.705 [0.000] -2.8510[0.007] 24051.0 
Gre 27.512 0.71953 -0.52553 0.82275 0.99855 

3.7274 [0.001] 49.092[0.000] -1.1769[0.246] 12405.0 
Ire 33.648 0.49877 0.89159 0.44252 0.99682 

4.7969 [0.000] 10.686[0.000] 2.9775[0.006] 5650.3 
Ita 9.1253 0.72853 -0.38319 1.0374 0.99944 

1.6962 [0-098] 28.016 [0.000] -1.6118[0.115] 32321.0 
Jap 2.6219 0.69178 -0.71840 0.92611 0.99919 

1.1243[0.263] 81.636 [0.000] -2.8041[0.0081 22204.0 
Kor 26.979 0.37228 -0.40674 0.58594 0.97450 

3.0805 [0-0031 3.3267 [0.002] -1.2633[0.219] 688.02 
Net 0.93943 0.73445 -0.097199 0.43771 0.99953 

0.35748[0.722] 61.814 [0.000] -0-31189[0.756] 38548.0 
Nor -1.3378 0.70932 -0.59945 1.4102 0.99938 

-0.46397[0.645] 70.576[0.000] -2.4462[0.019] 28809.0 
Por 0.87233 0.80607 -0.037987 1.0682 0.99784 

0.27285[0.7861 49.491[0.000] -0.18102[0.857] 8313.4 
Spa 8.3900 0.72040 -0.27067 0.93052 0.99929 

2.3103 [0.026] 25.768[0.000] -1.3529[0.184] 25285.0 
Swe -8.3041 0.80633 -0.26235 1.2238 0.99898 

-0.94973[0.348] 22.008 [0.000] -0.45893[0.649) 17681.0 
Swi 0.19999 0.75177 -1.1823 0.62459 0.99976 

0.072393[0.942] 97.473 [0.000] -2.8621[0.006] 73770.0 
UK -2.9592 0.84996 -0.44231 0.49495 0.99954 

-0.44070 [0.662] 23.292 [0.0001 -2.6065[0.013] 39004.0 
us -6.4745 0.85810 -0.50954 0.66271 0.99984 

-2.1568[0.037] 69.052 [0.000] 1 -2.3262[0.025] 110570 
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Tablp. 3.41 Tndividiial Colintrv FMOLS Rearession Estimates 
CO constant trend F y1Nt Inft DW/F-s 

Ausl 5.4936 0.34201 0.68824 0.26876 0.88171 0.99941 
0.91792 [0.3641 4.6860[0.000] 19.309 [0.000] 0.91897[0.364] 19843.0 

Aus 2.5183 0.091958 0.74976 -1.2169 1.5009 0.99988 
2.5643[0.0141 1.1092 [0.2741 65.215[0.000] -8.1490[0.000] 93399.0 

Bel 2.7786 0.17949 0.73281 -0.31315 0.50747 0.99910 
0.68588[0.4971 0.70584[0.484] 17.116[0.000] -0.53745[0.595] 12951.0 

Can -7.1635 0.059235 0.82778 -0.98330 0.89029 0.99968 

-1.3924 [0.172] 0.93065[0.358] 26.596[0.000] -5.0134[0.000] 36094.0 
Den 8.0041 0.64123 0.66675 0.30299 1.5414 0.99679 

2.3871 [0.022] 4.9163[0.000] 31.290 [0.000] 1.1142[0.272] 3627.7 
Fin 4.7478 -0.075026 0.74730 -1.0095 0.92029 0.99929 

1.0260[0.311] -0.53471 [0.596] 22.631 [0-000] -3.9271[0.000] 16368.0 
Fra 2.2411 0.58494 0.69665 -0.021414 0.62050 0.99963 

0.71124 [0.481] 5.0739 [0.000] 27.146[0.000] -0.090520[0.928] 31361.0 
Gre 54.183 -0-96722 0.68280 0.047211 1.0447 0.99871 

4.3318 [0.000] -2.4309[0.020] 34.513[0.000] 0.10276[0.919] 9053.5 
Ire 30-950 -0.46536 0.61071 0.57751 0.61954 0.99846 

6.9131[0.000] -3.9789[0.000] 16.031 [0.000] 2.9517[0.005] 7558.2 
Ita -5.0725 0.31307 0.75342 -0.12808 0.83166 0.99980 

-1.4473[0.156] 5.8866 [0-000] 52.764 [0.000] -1.0385[0.306] 57544.0 
Jap 2.9023 -0.035691 0.69474 -0.72764 0.91142 0.99920 

0.99982[0.324] -0.16619[0.868] 35.821[0.000] -2.7925[0.008] 14547.0 
Kor 15.487 -0-63404 0.72383 -0.24798 0.51237 0.99596 

4.9289[0.000] -8-1849 [0.000] 15.176 [0-000] -2.0974[0.043] 2873.6 
Net 0.88552 0.027406 0.73058 -0.080310 0.45482 0.99953 

0.33234[0.742] 0.12941 [0.898] 21.842[0.000] -0.23105[0.819] 24676.0 
Nor -2.5328 -0.15903 0.73175 -0.70073 1.4278 0.99935 

-0.80636 [0.425] -0.81773[0.419] 25.776 [0.000] -2.4194[0.020] 17977.0 
Por -2.1087 0.082496 0.81176 -0.013984 1.06876 0.99783 

-0.38141[0.706] 0.54933[0.588] 41.503[0.000] -0.068270[0.946] 5373.8 
Spa 4.8635 0.17187 0.69970 0.079404 0.68169 0.99957 

1.6751[0.102] 3.0085 [0.004] 33.578[0.000] 0.49928[0.620] 27051.0 
Swe -5.6056 0.39936 0.74011 0.99468 0.94803 0.99934 

-0.82284[0.4161 3.0492 [0.0041 22.097[0.000] 1.8718[0.069] 17548.0 
Swi 0.069797 0.26580 0.72700 -1-0820 0.68349 0.99976 

0.025907 [0.979] 1.0552 [0.298] 30.914 [0.000] -2.6214[0.012] 47931.0 
UK -1.9066 0.18678 0.81382 -0.19707 0.89450 0.99971 

-0.45234[0.653] 4.0014 [0.000] 34.775 [0.000] -1.7930[0.081] 40701.0 
us 16.323 0.76753 0.68079 -0.54715 0.61238 0.99971 

L 1.2741 [0.2111 1.7808 [0.083] 1 6.8631 [0.000] 1 -2.6281[0.012] 1 81279.0 1 1 
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Table 3.42 Individual Countrv DOLS Regression Estimates 
[CO constant YINt I. R. t DW/F-stat R2 

Ausl 11.937 0.69173 0.27948 0.88427 0.99969 
1.5150[0.144] 21.099[0.0001 0.67387[0.507] 4449.8 

Aus 4.8392 0.77485 -2.0354 0.61860 0.99992 
2.4084[0.0241 153.56[0.000] -4.5913[0.000] 17568.0 

Bel -3.6686 0.74965 1.0032 0.68094 0.99968 

-1.2808[0.213] 43.618[0.000] 3.7248[0.001] 4240.2 
Can -6.8568 0.82906 -0.46647 0.85975 0.99970 

-0-90954[0.372] 18.583[0.000] -1.6362[0.1161 4580.9 
Den -6.6423 0.76124 1.3430 0.92290 0.99976 

-1.3733[0.183] 42.960[0.000] 3.3738[ 0.0021 5730.7 
Fin 9.7500 0.71179 -0.850256 0.75744 0.99944 

1.1397[0.266] 15-543[0.000] -1.40115[0.175] 2455.7 
Fra 1.1073 0.75351 0.32729 0.70462 0.99973 

0.25638[0.800] 33.421[0.000] 1.0596[0.300] 5037.9 
Gre 83.764 0.63812 -2.7446 1.0726 0.99924 

4.3253[0.000] 29.092[0.000] -2.7503[0.011] 1816.9 
Ire 25.396 0.57164 0.49351 0.45923 0.99852 

2.2778[0.032] 11.077[0.000] 0.88177[0.387] 925.83 
Ita -6.5151 0.76984 0.36413 1.3524 0.99990 

-2.6098 (0-0151 80.054[0.000] 4.6264[0.000] 14112.0 
Jap 15.984 0.66955 -2.5760 0.72553 0.99988 

3.4785[0.002] 55.182[0.000] -3.8152[0.000] 11405.0 
Kor 4.9317 0.53944 0.67757 1.5441 0.99755 

1.1728[0.2531 12.050[0.000] 4.6247[0.000] 560.84 
Net -5.5686 0.72657 1.3898 0.57040 0.99974 

-1.6226[0.118] 64.640[0.000] 2.2202[0.037] 5224.8 
Nor -4.1103 0.70445 -0.00033863 1.0885 0.99979 

-1.9486[0.0641 47.278[0.000] -0.00089796[0.999] 6396.7 
Por 5.2551 0.79041 -0.24178 1.5744 0.99878 

1.0986[0.283] 43.417[0.0001 -0.98836[0.333] 1128.7 
Spa 7.1879 0.69142 0.36459 1.2401 0.99984 

3.3970[0.002] 55.694[0.000] 3.7343[0.001] 8368.1 
Swe -0.84014 0.75351 0.93255 0.88805 0.99967 

-0.12134[0.904] 27.971[0.000] 1.4610[0.158] 4153.5 
Swi -3.1627 0.76285 -0.64197 0.47857 0.99985 

-1.2810[0.213] 88.098[0.000] -0.69856[0.492] 9043.6 
UK -10.599 0.86541 0.20665 0.99857 0.99984 

-1.4906[0.150] 27.311[0.000] 0.80990[0.426] 8729.5 
us -4.9910 0.84936 -0.41591 1.1503 0.99991 

1 -1.6298[0.117] 1 88.699[0.000] -1-6989[0.103] 15529.0 
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Table 3.43 Individual Country DOLS Regression Estimates 
CO constant trend y1Nt I. R. t DW/F-s R2 
Ausl 8.8133 0.38403 0.67505 0.029622 0.98332 0.99981 

1.4575[0.159] 3.3205[0.003] 26.623[0.000] 0.091630[0.927] 6442.7 
Aus 3.9280 -0.30777 0.82064 -1.8385 0.58610 0.99993 

1.8505[0.077] -1.1422[0.265] 20.317[0.000] -3.9371[0.000] 17244.0 
Bel -1.3377 0.50379 0.66600 1.0200 1.0156 0.99975 

-0.53370[0.598] 2.2033[0.038] 16.508[0.000] 4.7704[0.000] 4902.5 
Can -2.6053 0.086993 0.79309 -0.39141 0.79085 0.99971 

-0.26103[0.796] 0.65855[0.517] 11.202[0.000] -1.2642[0.219] 4205.0 
Den -5.3085 0.19293 0.73250 1.5193 0.99781 0.99978 

-1.1741[0.252] 1.2294[0.231] 25.820[0.000] 3.9092[0.000] 5493.3 
Fin 4.7968 -0.24270 0.78267 -1.4080 0.77061 0.99945 

0.41660[0.681] -0.64588[0.525] 6.5784[0.000] -1.3323[0.196] 2258.5 
Fra, 4.7984 0.56063 0.67112 0.33054 1.3300 0.99991 

2.4846[0.021] 7.2640[0.000] 44.916[0.0001 2.4804[0.0211 13392.0 
Gre 86.639 -0.40248 0.63636 -2.2537 1.0944 0.99926 

4.5135[0.000] -0.77178[0.4481 29.668[0.000] -1.9425[0.065] 1667.3 
Ire -19.0616 -1.7443 0.94275 3.7590 1.0551 0.99946 

-2.4159[0.024] -7.2535[0.000] 16.807[0.000] 7.3038[0.000] 2265.4 
Ita -10.142 0.14164 0.77420 0.31787 1.3428 0.99992 

-4.1887[0.000] 2.9492[0.007] 94.768[0.000] 4.7019[0.000] 14578.0 
Jap 19.521 0.46786 0.61437 -3.5555 1.2258 0.99994 

8.7549[0.000] 5.9058[0.000] 56.212[0.000] -9.9727[0.000] 20688.0 
Kor 30.842 -1.2329 0.83563 -1.0771 0.94874 0.99918 

7.0432[0.000] -7.2280[0.000] 17.071[0.000] -4.1733[0.000] 1506.1 
Net -4.5586 0.30219 0.67410 1.4167 0.69794 0.99976 

-1.4138[0.171] 1.0575[0.301] 13.312[0.000] 2.5195[0.019] 5054.4 
Nor -3.2404 0.10015 0.69063 0.0053295 1.1160 0.99979 

-1.2922[0.209] 0.59820[0.555] 25.357[0.000] 0.014587[0.988] 5812.2 
Por 4.1125 0.056402 0.79104 -0.25559 1.6007 0.99879 

0.72373[0.476] 0.35459[0.726] 44.188[0.000] -1.0540[0.303] 1016.7 
Spa 6.1389 0.083895 0.69216 0.26490 1.1661 0.99985 

2.8429[0.009] 1.5122[0.144] 57.643[0.000] 2.3013[0.031] 8203.4 
Swe -5.5112 0.42499 0.75932 0.10662 1.0307 0.99974 

-0.94596[0.3541 2.6515[0.014] 34.96[0.000] 0.17792[0.860] 4837.6 
Swi -3.4412 -0.49218 0.81001 -0.64892 0.47659 0.99986 

-1.4107[0.172] -0.84389[0.407] 14.331[0.000] -0.72133[0.478] 8612.6 
UK 6.3998 0.25278 0.77212 -0.42148 0.96887 0.99991 

0.88159[0.387] 3.6433[0.001] 21.667[0.000] -1.5982[0.124] 13488.0 
us 44.491 1.5753 0.49572 -0.90836 1.1313 0.99994 

L_j 3.0079[0.006] 1 3.3884[0.002] 4.7380[0.0001 1 -3-8245[0.000] 20734.0 1 
-1 
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Table 3.44 Individual Country FMOLS Rejuession Estimates 
CO constant T- y1Nt I. R. t DW/F-stat 
Ausl 0.69357 0.72033 0.73944 0.43322 0.99927 

0.089451[0.929] 19-334 [0.000] 2.0293[0.049] 24748.0 
Aus 2.8641 0.77481 -1.4600 0.89370 0.99983 

1.7224 [0.093] 153.40 [0.000] -5.0017[0.0001 102920 
Bel -5.5041 0.76834 0.75392 0.80215 0.99941 

-2.0021 [0.052] 61.231 [0.000] 2.8634[0.006] 30522.0 
Can -13.678 0.87509 -0.74472 0.56297 0.99923 

-1.7185 [0.094] 20.158 [0.000] -2.5090[0.016] 23378.0 
Den -7.3114 0.77008 1.0361 0.97043 0.99946 

-1.2536 [0.218] 44.816 [ 0.000] 2.1399[0.039] 33437.0 
Fin 10.241 0.74611 -1.7088 0.73287 0.99885 

1.2766 [0.209] 26.598 [0-000] -2.4346[0.019] 15601.0 
Fra -8.9566 0.82278 -0.11043 0.31523 0.99906 

-1.3887 [0.173] 27.445 [0-000] -0.25229[0.802] 19213.0 
Gre 25.589 0.71953 -0.23736 0.77059 0.99825 

1.9751 [0-055] 41.944[0.000] -0.39867[0.692] 10279.0 
Ire 46.208 0.44062 0.22094 0.61412 0.99376 

4.2925 [0.000] 7.4422[0.000] 0.39554[0.696] 2867.2 
Ita 7.3428 0.71609 0.16435 0.76778 0.99944 

1.1956 [0.239] 30.453 [0.000] 0.74918[0.458] 32009.0 
Jap 15.501 0.66617 -2.6108 1.2046 0.99929 

3.7367[0.000] 63.962 [0.000] -4.6229[0.000] 25183.0 
Kor -8.1859 0.66892 1.1220 0.67877 0.96586 

-1.0485 [0.3011 7.4692 [0.000] 4.5010[0.000] 509.28 
Net -2.7498 0.73212 0.65117 0.78042 0.99954 

-1.0553[0.298] 70.996 [0.000] 1.4430[0.157] 39520.0 
Nor -5.7164 0.70836 0.18266 1.2054 0.99920 

-1.5409[0.132] 36.181[0.000] 0.39827[0.692] 22430.0 
Por 0.75668 0.80542 -0.013188 1.1168 0.99787 

0.17052[0.866] 49.796[0.000] -0.062945[0.950] 8443.8 
Spa 6.4343 0.70619 0.19655 0.65881 0.99942 

1.6789 [0.101] 33.172[0.000] 1.1271[0.267] 30761.0 
Swe -8.8781 0.79046 0.48647 1.0585 0.99914 

-1.1579[0.254] 27.767 [0.000] 0.81190[0.422] 20863.0 
Swi -1.8190 0.76312 -1.3857 0.52478 0.99975 

-0.75051[0.457] 108.25 [0.000] -2.6777[0.011] 71666.0 
UK -6.4191 0.85599 -0.081353 0.60614 0.99938 

-0-78373 [0.438] 20.704 [0.000] -0.27053[0.788] 28855.0 
us -7.7100 0.86637 -0.49555 0.66169 0.99980 

_ 
L_-2-5629[0.014] 1 70.570 [0.000] 1 -2-0097[0.051] 1 90929.0 
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Table 3.45 Individual Countrv FMOLS Regression Estimates 
CO constant trend y1Nt I. R. t DW IF-s R2 ýj 

Ausl -0-55998 0.27927 0.71759 0.31180 0.86262 0.99957 

-0.11355 [0.910] 3.7224[0.001] 30.263[0.000] 1.2022[0.237] 26857.0 
Aus 3.1356 -0.032925 0.77856 -1.4970 0.91581 0.99982 

1.7513[0.088] -0.24476[0.808] 41.500[0.000] -4.7517[0.000] 64824.0 
Bel -3.9735 0.23362 0.72754 0.76236 0.86826 0.99943 

-1.4717[0.150] 1.5071 [0.140] 26.440 [0.000] 3.1063[0.003] 20439.0 
Can -0.85904 0.23919 0.77639 -0.64265 0.52198 0.99937 

-0.11215 [0.911] 2.6427 [0.012] 16.979 [0.000] -2.4317[0.020] 18361.0 
Den -6.1595 0.11480 0.74986 1.1833 0.91693 0.99947 

-1.0416[0.3041 0.71753[0.477] 25.689[0.0001 2.3532[0.024] 22141.0 
Fin 12.126 0.14736 0.70337 -1.2327 0.66974 0.99889 

1.4894[0.1451 0.80106[0.428] 15.509[0.0001 -1.5568[0.128] 10499.0 
Fra 1.6218 0.56984 0.70016 0.016750 0.62577 0.99966 

0.46122[0.649] 6.0668 [0.000] 31.143 [0.000] 0.076897[0.939] 33836.0 
Gre 40.590 -1.1220 0.69518 0.94988 0.99284 0.99879 

3.5105[0.001] -2.7894 [0-008] 44.260[0.000] 1.5148[0.138] 9622.8 
Ire 16.434 -0.79592 0.71437 1.2877 1.2798 0.99848 

2.9877 [0-005] -7.2679[0.000] 18.367 (0.000] 4.6045[0.000] 7646.8 
Ita -6.5894 0.32498 0.75144 0.076739 0.89356 0.99977 

-1.7747[0.084] 5.5808 [0.000] 56.778 [0-000] 0.61819[0.540] 50436.0 
Jap, 15.286 0.071989 0.65936 -2.6411 1.2390 0.99927 

3.5867[0.001] 0.39358[0.697] 34.753 [0.000] -4.7009[0.000] 15901.0 
Kor 18.415 -0.87663 0.78166 -0.32346 1.3118 0.99549 

4.8156[0.000] -10.393 [0.000] 19.919 [0.000] -2.3980[0.021] 2576.4 
Net -2.6745 0.086865 0.71778 0.69210 0.84009 0.99953 

-1-0317 [0-309] 0.48847 [0.628] 23.390 [0.000] 1.5178[0.1381 25012.0 
Nor -3.7072 0.15209 0.68895 0.074389 1.2825 0.99923 

-0.79438 [0.435] 0.59922 [0.555] 18.842 [0.000] 0.16364[0.8711 15238.0 
Por 1.1558 0.12648 0.80186 -0.24851 1.1160 0.99777 

0.19613[0.846] 0.81092[0.422] 44.797 [0.000] -1.1745[0.248] 5223.6 
Spa 3.6277 0.13134 0.70986 0.14272 0.74250 0.99960 

1.1879 [0.242) 2.4054 [0.021] 42.774[0.000] 0.97370[0.336] 28816.0 
Swe -12.703 0.24146 0.77626 0.86074 0.94533 0.99943 

-2.0455[0.048] 2.3293[0.025] 33.110[0.000] 1.7811[0.083) 20400.0 
Swi -1.7124 0.30834 0.73285 -1.2563 0.52739 0.99977 

-0.73715 [0.465] 1.2931 (0.204] 32.117 (0.000) -2.5404[0.015] 50300.0 
UK 2.6681 0.24396 0.79261 -0.38075 0.90767 0.99970 

0.60950 [0-546] 5.4114 [0.000] 35-095 [0.000] -2.2850[0.028] 39229.0 
us 33.930 1.3607 0.55352 -0.79339 0.51828 0.99988 

2.7569[0.009] 3.3661 [0.001] 1 5.9631 [0.000] 1 -3.5827[0.001] 1 100260 
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Table 3.46 Individual Country DOLS Regressions (con) 
CO y1Nt LA/yt DW/F-stat I 

Ausl 0.76366 -1.0957 0.61773 0.99993 
27.730[0.000] -8.1160[0.000] 20901.0 

Aus 0.79851 0.21941 0.58052 0.99987 
41.114[0.000] 0.73387[0.470 10790.0 

Bel 0.72943 -1.1306 0.86416 0.99995 
128.15[0.000] -10.021[0.000] 26980.0 

Can 0.86435 0.94062 0.40129 0.99977 
8.9822[0.000] 1.0934[0.2851 6281.7 

Den 0.71490 -1.4901 1.0056 0.99996 
107.44[0.000] -11.066[0.000] 31994.0 

Fin 0.67180 -1.7301 0.89835 0.99977 
9.8506[0.000] -1.9336[0.065] 6198.1 

Fra 0.76720 -2.5590 1.1462 0.99997 
74.712[0.000] -14.302[0.000] 43018.0 

Gre 0.68799 -1.1885 0.78076 0.99943 
41.483[0.000] -2.1891[0.039] 2536.7 

Ire 0.56173 -0.75671 0.71276 0.99954 
13.852[0.000] -4.1902[0.000] 3116.7 

Ita 0.72404 -0.73014 0.89862 0.99994 
52.243[0.000] -5.9282[0.000] 24947.0 

Jap 0.69679 -1.3150 0.35167 0.99977 
60-522[0.002] -1.6214[0.118] 6133.8 

Kor 0.65027 -0.19511 0.87767 0.99765 
11.300[0.000] -4.2738[0.000] 609.56 

Net 0.70892 -0.82414 0.86948 0.99992 
103.98[0.000] -6.0606[0.000] 18709.0 

Nor 0.64141 -2.9413 1.5097 0.99992 
82.583[0.000] -10.336[0.000] 17621.0 

Por 0.81491 -2.0353 1.5131 0.99971 
109.90[0.000] -3.8584[0.000] 5039.0 

Spa 0.73026 -1.1260 0.73483 0.99994 
42.959[0.000] -7.2378[0.000] 22346.0 

Swe 0.73672 -2.4656 1.4925 0.99998 
64.840 [0.000] -15.720[0.000] 76074.0 

Swi 0.74343 -0.25440 0.54976 0.99981 
54.923[0.000] -1.5682[0.130] 7477.9 

UK 0.89970 -1.0862 1.2873 0.99997 
70.906[0.000] -12.851[0.000] 57228.0 

us 0.90101 2.3231 0.64414 0.99990 
54.213[0.0001 1 2.3010[0.030] 13903.0 
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Table 3.47 Individual Country DOLS Regressions (con & trend) 
CO y1Nt LA/yt DW/F-s R' 

Ausl 0.76029 -0.83393 0.62340 0.99993 
27.473[0.000] -1.7540[0.093] 19307.0 

Aus 0.78673 0.33782 0.58669 0.99987 
30.921[0.000] 0.99705[0.329] 10032.0 

Bel 0.76389 -1.1887 1.0769 0.99996 
62.459[0.000] -13.448[0.000] 34312.0 

Can 0.69456 -0.43786 0.70280 0.99987 
8.7296[0.000] -0.63822[0.529] 9637.4 

Den 0.73320 -1.6155 0.91796 0.99996 
39.987[0.000] -8.9346[0.000] 30282.0 

Fin 0.76780 -2.4303 1.3858 0.99986 
13.741[0.000] -3.6581[0.001] 8932.1 

Fra 0.76153 -2.4669 1.1124 0.99997 
42.815[0.000] -8.3270[0.000] 38988.0 

Gre 0.68800 -1.1897 0.78068 0.99943 
38.278[0.000] -1.4629[0.157] 2283.7 

Ire 0.57198 -0.65805 0.69321 0.99957 
14.403[0.000] -3.4165[0.002] 2995.4 

Ita 0.72400 -0.85891 0.89458 0.99994 
51.966[0.000] -2.6452[0.014] 22705.0 

Jap 0.67575 -1.1863 0.35849 0.99981 
40.160[0.000] -1.5566[0.133] 6739.7 

Kor 0.78562 0.38838 0.95924 0.99843 
25.268[0.000] 5.5886[0.0001 874.67 

Net 0.76039 -1.0684 0.94656 0.99997 
86.229[0.000] -12.940[0.0001 39124.0 

Nor 0.65046 -3.0116 1.5008 0.99992 
41.074[0.000] -9.8162[0.000] 16071.0 

Por 0.83502 -1.3608 1.5391 0.99973 
58.165[0.000] -2.0856[0.048] 4781.2 

Spa 0.73350 -1.2397 0.72732 0.99994 
37.269[0.000] -3.3000[0.003] 20231.0 

Swe 0.74039 -2.3701 1.5069 0.99998 
54.029[0.000] -9.1714[0.000] 68838.0 

Swi 0.72389 -0.23889 0.54723 0.99981 
16.253[0.000] -1.4356[0.1651 6832.8 

UK 0.90578 -1.2736 1.2780 0.99998 
44.140[0.000] -5.6530[0.000] 53029.0 

us 0.79416 2.3848 0.54075 0.99991 
7.8840[0.000] 1 2.3285[0.029] 1 13667.0 
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Table 3.48 Individual Country FMOLS Regressions (con) 
I CO -1 y1Nt I LA/ /F-stat I 

Ausl 0.74016 -1.4754 0.61576 0.99356 
50.611[0.000] -11.688[0.0001 2853.0 

Aus 0.85824 1.4670 0.54134 0.99531 
51.619[0.000] 5.7540[0.000] 3930.3 

Bel 0.74087 -0.66613 0.31154 0.99806 
128.22[0.000] -6.6547[0.000] 9495.4 

Can 0.72752 1.17002 0.58461 0.91700 
12.816[0.000] 1.9534[0.058] 204.39 

Den 0.74568 -0.52477 0.27382 0.99291 
51.889[ 0.000] -1.7938[0.081] 2591.7 

Fin 0.58075 -3.8426 0.96149 0.97174 
25.450[0.000] -11.305[0.000] 636.23 

Fra 0.77399 -2.1770 0.76538 0.99785 
68.750 [0.000] -9.2163[0.000) 8581.1 

Gre 0.69413 -1.2607 1.0514 0.99624 
61.184[0.000] -3-6577[0.000] 4908.0 

Ire 0.79234 -1.8316 0.17487 0.90689 
27.895[0.000] -15.470[0.000] 180.20 

Ita 0.74155 -0.73589 0.74544 0.99614 
64.940 [0.0001 -6.0401[0.0001 4776.2 

Jap 0.70144 -1.0498 0.26233 0.99921 
142.76[0.000] -4.1493[0.000] 23265.0 

Kor 0.63078 -0.22197 0.43656 0.89679 
12.048 [0.0001 -5.3941[0.000] 160.75 

Net 0.70951 -0.70785 0.58605 0.99916 
105.96 [0.000] -5.1435[0.000] 21925.0 

Nor 0.65403 -2.3800 1.5024 0.99889 
121.22[0.000] -15.066[0.000] 16594.0 

Por 0.79922 -1.8320 0.90109 0.99602 
80.680[0.000] -8.2632[0.000) 4632.8 

Spa 0.73881 -1.2123 0.66772 0.99830 
108.13[0.000] -11.989[0.000] 10874.0 

Swe 0.70872 -3.5078 1.0880 0.99599 
84-567[0.000] -23-085[0.0001 4595.4 

Swi 0.77235 0.18723 0.41571 0.99752 
71.256 [0.000] 1.7615[0.086] 7437.7 

UK 0.84586 -1.4832 0.44805 0.99088 
42.402[0.000] -7.9041[0.000] 2009.2 

us 0.85879 0.91174 0.80542 0.99498 
56.705 [0.000] 1.7295[0.092] 3664.7 
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Table 3.49 Individual Country FMOLS Regressions (con & trend) 
CO y1Nt LA/yt DW/F-s R' 
Ausl 0.74326 -1.6915 0.53287 0.99437 

49.397[0.000] -7.0838[0.000] 3265.1 
Aus 0.79534 2.7312 0.58047 0.99429 

38.535[0.000] 8.0720[0.000] 3222.4 
Bel 0.74794 -0.60209 0.32626 0.99800 

63.028[0.000] -5.4998[0.000] 9224.6 
Can 0.46274 -2.2177 0.69216 0.89869 

9.2130[0.000] -3.6373[0.000] 164.11 
Den 0.79039 -0.86714 0.34769 0.99563 

65.549[0.000] -5.0596[0.000] 4210.8 
Fin 0.67251 -5.0203 1.2171 0.97370 

27.188[0.000] -12.236[0.000] 684.96 
Fra 0.72992 -1.0186 0.76411 0.99820 

80.836[0.000] -5.4839[0.000] 10278.0 
Gre 0.69459 -1.3704 1.0526 0.99630 

52.971 [0.000] -3.1149[0.003] 4980.8 
Ire 0.72653 -2.0510 0.24371 0.89820 

23.095 [0.000] -11.476[0.000] 163.23 
Ita 0.74956 0.067266 0.81141 0.99432 

63.697[0.000] 0.21908[0.827] 3236.1 
Jap 0.68373 -1.1270 0.29522 0.99925 

49.632 [0.000] -4.4545[0.000] 24652.0 
Kor 0.86497 0.55047 1.1042 0.93989 

20.765[0.000] 5.4650[0.061] 289.26 
Net 0.75524 -0.86459 0.76279 0.99958 

109.61[0.000] -12.156[0.000] 44329.0 
Nor 0.65143 -2.3548 1.5041 0.99889 

61.016[0.000] -14.968[0.000] 16694.0 
Por 0.79014 -1.7979 0.99067 0.99648 

60.557[0.000] -7.1893[0.000] 5230.7 
Spa 0.73290 -0.75340 0.53759 0.99686 

117.75[0.000] -5.4137[0.000] 5864.6 
Swe 0.70619 -3.7843 1.1293 0.99550 

83.731[0.000] -20.560[0.000] 4096.8 
Swi 0.76016 0.21217 0.39302 0.99769 

35.059[0.0001 1.8416[0.073] 7989.9 
UK 0.85057 -1.6885 0.46851 0.99079 

41.649[0.000] -5.8590[0.000] 1990.0 
us 0.84326 0.76344 0.83178 0.99558 

6.8208[0.0001 1.3936[0.1711 1 4163.6 1 
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Table 3.50 Individual Country DOLS Regressions (con) 
[CO I y1Nt I Inft I DW/F-stat I 

Ausl 0.91022 -1.1665 0.93608 0.99967 
14.202[0.000] -2.3294[0.028] 4329.3 

Aus 0.76826 -0.95551 1.0763 0.99994 
151.12[0.000] -4.1424[0.000] 24971.0 

Bel 0.77973 0.16246 0.19686 0.99925 
17.712[0.000] 0.086945[0.9311 1921.6 

Can 0.88623 -0.98451 0.81939 0.99981 
23.373[0.000] -4.6753[0.000] 7737.8 

Den 0.79689 1.3900 1.0682 0.99985 
68.955[0.000] 7.4575[0.0001 9849.5 

Fin 0.76242 -0.59338 0.87056 0.99952 
25.696[0.0001 -2.0691[0.049] 3017.2 

Fra 0.82776 -0.39594 0.79895 0.99990 
70.230[0.000] -2.9408[0.007] 14239.0 

Gre 0.73728 -0.91272 0.62875 0.99922 
34.412[0.000] -1.0482[0.305] 1850.2 

Ire 0.41819 0.060389 0.44026 0.99857 
7.9171[0.000] 0.15980[0.874] 1005.4 

Ita 0.63839 0.053013 0.75181 0.99969 
9.7269[0.000] 0.15195[0.880) 4562.9 

Jap 0.70367 -0.31190 0.38732 0.99968 
59.195[0.0001 -0.73800[0.467] 4455.5 

Kor 0.29865 -0.95095 0.94098 0.99333 
6.1396[0.0011 -3.7043[0.001] 214.23 

Net 0.72069 -0.16826 0.92848 0.99982 
83.440[0.000] -0.71311[0.482] 7944.0 

Nor 0.69136 -1.1325 1.1744 0.99956 
51.115[0.000] -3.8248[0.000] 3298.9 

Por 0.79089 0.094894 1.7479 0.99979 
69.989[0.000] 0.78833[0.438] 6981.2 

Spa 0.78203 -0.39320 0.71476 0.99986 
24.039[0.000] -2.7775[0.010] 10403.0 

Swe 0.88818 0.000068268 0.89734 0.99981 
28.577[0.000] 0.00016969[0.999] 7456.9 

Swi 0.74724 -1.2777 0.52784 0.99979 
46.139[0.000] -0.86143[0.397] 6715.0 

UK 0.88755 -0.41093 0.84612 0.99980 
17.723[0.000] -1.7176[0.099] 7103.6 

us 0.86262 -0.34962 0.53711 0.99986 
43-958[0.000] 1 -0.92224[0.3651 10219.0 
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Table 3.51 Individual Country DOLS Regressions (con & trend) 
CO y1Nt Inft DW/F-s R' 

Ausl 0.81991 -0.42955 1.7555 0.99989 
34.331[0.000] -2.2842[0.032] 11401.0 

Aus 0.74815 -0.98877 1.0925 0.99995 
66.154[0.000] -4.6986[0.000] 25978.0 

Bel 0.68329 1.0204 0.27571 0.99937 
8.5241[0.0001 0.57617[0.570] 2059.3 

Can 0.97130 -1.1712 0.85002 0.99983 
11.657[0.000] -4.4814[0.000] 7430.0 

Den 0.74679 1.5929 1.0676 0.99988 
34.840[0.000] 9.3201[0.000] 10508.0 

Fin 0.84823 -0.75126 1.0573 0.99957 
14.481[0.000] -2.8753[0.008] 2974.4 

Fra 0.77395 -0.22927 0.93898 0.99993 
46.424[0.000] -2.3366[0.028] 17962.0 

Gre 0.67981 -0.33970 0.83175 0.99946 
26.589[0.0001 -0.51038[0.614] 2375.1 

Ire 0.56119 0.39991 0.51577 0.99908 
9.2136[0.000] 1.3465[0.1911 1411.8 

Ita 0.76467 -0.033831 1.2671 0.99989 
23.529 [0.000] -0.23086 [0.819] 11692.0 

Jap 0.68838 -0.30290 0.40807 0.99970 
32-931[0.000] -0.72600[0.475] 4250.2 

Kor 0.80881 -0.073393 0.85165 0.99873 
14.350[0.000] -0.57865[0.568] 1021.3 

Net 0.72873 -0.20547 0.94373 0.99982 
36-973[0.000] -0.83187[0.414] 7203.9 

Nor 0.76446 -1.4928 1.1893 0.99962 
19.364[0.000] -4.4016[0.000] 3382.5 

Por 0.81434 0.028689 1.6935 0.99981 
44.267[0.000] 0.22549[0.823] 6719.3 

Spa 0.75317 -0.16649 1.0132 0.99991 
34.996[0.0001 -1.5623[0.132] 14941.0 

Swe 0.80428 1.0454 1.1080 0.99989 
32.129[0.000] 3.2846[0.003] 11834.0 

Swi 0.70182 -0.93440 0.58160 0.99983 
24.912[0.000] -0.72867[0.473] 7544.1 

UK 0.85373 -0.36461 0.96695 0.99987 
23.147[0.000] -2.1459[0.043] 9672.4 

us 0.43717 -0.97053 0.61205 0.99991 
2.8483[0.009] 1 -2.5931[0.016] 14562.0 1 
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Table 3.52 Individual Country FMOLS Regressions (con) 
CO y1Nt Inft DW/F-stat 1 7ýý 

Ausl 0.74617 -0.41896 0.36352 0.95531 
13.508 [0.000] -0.92089[0.363] 395.42 

Aus 0.76295 -1.2292 1.2523 0.99940 
206.31 [0.000] -8.2771[0.000] 30859.0 

Bel 0.76201 -0.48279 0.20155 0.99419 
39.459 [0.000] -0.86663[0.391] 3167.8 

Can 0.85804 -1.0855 0.95935 0.97889 
35.441[0.000] -6.0275[0.0001 857.83 

Den 0.73717 -1.9166 0.23005 0.95800 
85.757 [0.000] -12.136[0.000] 421.98 

Fin 0.73514 -0.92698 0.96585 0.98082 
38.294 [0.000] -4.5405[0.000] 945.89 

Fra 0.81052 -0.86491 0.18212 0.98886 
34.705 [0.000] -2.8510[0.0071 1642.5 

Gre 0.71953 -0.52553 0.68208 0.99354 
49.092[0.000] -1.1769[0.246] 2845.8 

Ire 0.49877 0.89159 0.43621 0.88928 
10.686[0.0001 2.9775[0.006] 148.58 

Ita 0.72853 -0.38319 0.50357 0.98362 
28.016 [0.000] -1.6118[0.115] 1110.8 

Jap 0.69178 -0.71840 0.41715 0.99809 
81.636 [0.000] -2.8041[0.008] 9685.5 

Kor 0.37228 -0.40674 0.51851 0.66267 
3.3267 [0.002] -1.2633[0.219] 36.342 

Net 0.73445 -0.097199 0.41250 0.99747 
61.814 [0.000] -0.31189[0.756] 7298.0 

Nor 0.70932 -0.59945 0.98548 0.99325 
70.576[0.000] -2.4462[0.019] 2724.1 

Por 0.80607 -0.037987 0.85140 0.98755 
49.491[0.000] -0.18102[0.857] 1467.1 

Spa 0.72040 -0.27067 0.32983 0.98313 
25.768[0.000] -1.3529[0.184] 1077.8 

Swe 0.80633 -0.26235 0.32385 0.97603 
22.008 [0.000] -0.45893[0.649] 753.26 

Swi 0.75177 -1.1823 0.55628 0.99882 
97.473 [0.000] -2.8621[0.006] 15604.0 

UK 0.84996 -0.44231 0.61605 0.97206 
23.292 [0.000] -2.6065[0.013] 643.60 

us 0.85810 -0.50954 0.65166 0.99705 
L___j 69-052 [0.000] 1 -2.3262[0.025] 6255.5 
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Table 3.53 Individual Country FMOLS Regressions (con & trend) 
CO y1Nt Inft DW/F-s 

Ausl 0.68824 0.26876 0.72944 0.97887 
19.309[0.000] 0.91897[0.364] 856.88 

Aus 0.74976 -1.2169 1.3208 0.99944 
65.215[0.000] -8.1490[0.0001 32780.0 

Bel 0.73281 -0.31315 0.23742 0.99439 
17.116 [0.000] -0.53745[0.594) 3277.4 

Can 0.82778 -0.98330 0.84984 0.98023 
26-596[0.0001 -5.0134[0.000] 917.05 

Den 0.66675 0.30299 0.31214 0.98596 
31.290[0.0001 1.1142[0.272] 1298.9 

Fin 0.74730 -1.0095 0.99033 0.98046 
22.631[0.000] -3.9271[0.000] 928.30 

Fra 0.69665 -0.021414 0.54344 0.99463 
27.146[0.000] -0.090520[0.928] 3428.1 

Gre 0.68280 0.047211 0.84293 0.99390 
34.513 [0.000] 0.102763[0.918] 3012.5 

Ire 0.61071 0.57751 0.57227 0.94670 
16.031 [0.0001 2.9517[0.005] 328.60 

Ita 0.75342 -0.12808 0.83928 0.99478 
52.764[0.000] -1.0385[0.305] 3528.8 

Jap 0.69474 -0.72764 0.41809 0.99811 
35.821 [0.000] -2.7925[0.008] 9748.5 

Kor 0.72383 -0.24798 0.53073 0.94158 
15.176[0.0001 -2.0974[0.042] 298.19 

Net 0.73058 -0.080310 0.41545 0.99746 
21.842[0.000] -0.23105[0.818] 7271.9 

Nor 0.73175 -0.70073 1.0237 0.99337 
25.776[0.000] -2.4194[0.020) 2773.9 

Por 0.81176 -0.013984 0.92264 0.98820 
41.503 [0.000] -0.068270[0.945) 1548.9 

Spa 0.69970 0.079404 0.52244 0.99065 
33-578[0.000] 0.49928[0.620] 1960.3 

Swe 0.74011 0.99468 0.67123 0.98366 
22.097[0.000] 1.8718[0.069] 1113.8 

Swi 0.72700 -1.0820 0.57702 0.99891 
30.914 [0.000] -2.6214[0.0121 16921.0 

UK 0.81382 -0.19707 0.77735 0.98388 
34.775 [0.000] -1.7930[0.081] 1128.9 

us 0.68079 -0.54715 0.58152 0.99752 
L___J 6.8631 [0.000] 1 -2.6281[0.012] 1 7433.6 1 
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Table 3.54 Individual Country DOLS Regressions (con) 
CO YINt I. R. t DW/F-stat R: 1 
Ausl 0.83214 0.78445 0.94550 0.99976 

18.990[0.000] 2.3922[0.0251 5894.8 
Aus 0.78099 -0.74526 0.70970 0.99993 

156.89[0.000] -1.2356[0.229] 20918.0 
Bel 0.76922 1.4410 1.0229 0.99984 

77.104[0.0001 8.3324[0.002] 8769.9 
Can 0.92091 -0.58997 0.82552 0.99979 

20.829[0.000] -2.2420[0.034] 6733.0 
Den 0.79230 2.5666 0.85614 0.99979 

41.886[0.000] 5.7039[0.000] 6802.2 
Fin 0.74117 0.22495 0.92105 0.99956 

20.696[0.000] 0.32568[0.747] 3237.3 
Fra 0.80596 0.67731 0.68459 0.99975 

29.539[0.000] 2.2052[0.037) 5719.7 
Gre 0.63614 -3.4168 0.79813 0.99908 

14.396[0.0001 -2.2295[0.035] 1562.6 
Ire 0.41885 -0.66083 0.41959 0.99837 

6.9601[0.000] -1.3088[0.203] 877.88 
Ita 0.74919 0.48780 1.0043 0.99977 

20.817[0.000] 2.5336[0.018] 6158.2 
Jap 0.65455 -3.2786 0.64859 0.99982 

32.851[0.000] -2.6853[0.013] 8056.8 
Kor 0.63296 0.91391 1.9153 0.99631 

10.598[0.000] 5.5311[0.0001 388.17 
Net 0.73101 2.8734 0.84559 0.99980 

83.903[0.000] 3.8955[0.000] 7191.5 
Nor 0.71193 -0.28033 1.0031 0.99977 

46-083[0.000] -0.78337[0.4411 6145.8 
Por 0.80746 -0.0080864 1.5621 0.99951 

75.252[0.000] -0.071393[0.943] 2904.0 
Spa 0.71201 0.50643 1.1983 0.99985 

41.127[0.000] 5.1547[0.000] 9339.7 
Swe 0.85487 1.5132 0.92901 0.99979 

33.715[0.000] 3.0271[0.005] 6696.8 
Swi 0.76822 -2.4459 0.56230 0.99981 

88.069[0.000] -2.0286[0.054] 7577.6 
UK 0.92175 0.51987 1.1630 0.99984 

18.595[0.000] 1.8209[0.081] 8953.5 
us 0.85497 -0.29649 1.1741 0.99991 

88.395[0.000] 1 -1.3459[0.191] 16743.0 
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Table 3.55 Individual Country DOLS Regressions (con & trend) 
CO I y1Nt I I. R. t I DW/F-s I 

Ausl 0.76096 0.20341 1.3209 0.99989 
26.254[0.000] 0.91824[0.368] 11416.0 

Aus 0.78739 -0.85489 0.74442 0.99993 
46.677[0.000] -1.3135[0.202] 19024.0 

Bel 0.73067 1.4019 1.0678 0.99986 
30.211 [0.000] 8.6811[0.000] 8990.2 

Can 0.98603 -0.68085 0.91900 0.99979 
9.4818[0.000] -2.4015[0.025] 6207.5 

Den 0.74772 2.5271 0.86925 0.99982 
26.004[0.000] 6.2404[0.000] 7132.3 

Fin 0.77653 0.018296 0.97229 0.99956 
10.052[0.000] 0.023328[0.9811 2952.5 

Fra 0.70490 0.40867 0.86785 0.99990 
29.829[0.000] 2.3777[0.026] 13062.0 

Gre, 0.60027 -2.1430 1.0031 0.99931 
16.274[0.000] -1.6703[0.109] 1866.2 

Ire 0.74473 1.9369 0.56516 0.99919 
8.7005[0.000] 2.8070[0.010] 1590.4 

Ita 0.75467 0.25593 1.2551 0.99989 
42.273[0.000] 2.5273[0.019] 11944.0 

Jap 0.62787 -3.3207 0.96816 0.99988 
37.796[0.000] -3.8441[0.000] 10382.0 

Kor 0.82296 -0.61855 1.2000 0.99949 
32.412[0.0001 -5.0708[0.0001 2541.9 

Net 0.71731 2.8346 0.86981 0.99980 
28.038[0.000] 3.9401[0.000] 6592.2 

Nor 0.73302 -0.27230 0.99847 0.99977 
24.660[0.000] -0.75721[0.456] 5659.1 

Por 0.81458 -0.036137 1.5568 0.99951 
66.828[0.000] -0.31356[0.756] 2656.9 

Spa 0.70603 0.35384 1.1035 0.99987 
42.295[0.000] 3.0645[0.005] 10167.0 

Swe 0.82842 0.78235 1.1378 0.99987 
43.514[0.000] 1.9717[0.061] 9646.2 

Swi 0.73384 -1.6674 0.51272 0.99982 
20.622[0.000] -1.1746[0.252] 7352.4 

UK 0.80540 -0.24345 1.0024 0.99989 
13.739[0.000] -0.67693[0.505] 11576.0 

us 0.60041 -0.80370 1.1301 0.99994 
6.7851[0.000] 1 -3.0585[0.005] 1 21271.0 1 1 

308 



Table 3.56 Individual Country FMOLS Regressions (con) 
CO YINt I-R-t DW/F-stat R2 

Ausl 0.72033 0.73944 0.41013 0.96943 
19.334 [0.000] 2.0293[0.049] 586.59 

Aus 0.77481 -1.4600 0.95075 0.99920 
153.40 [0.000] -5.0017[0.000] 22982.0 

Bel 0.76834 0.75392 0.59582 0.99629 
61.231 [0.000] 2.8634[0.006] 4966.1 

Can 0.87509 -0.74472 0.62096 0.96040 
20.158 [0.000] -2.5090[0.016] 448.7 

Den 0.77008 1.0361 0.45086 0.99175 
44.816 [ 0.000] 2.1399[0.039] 2223.4 

Fin 0.74611 -1-7088 0.66404 0.96919 
26.598 [0.000] -2.4346[0.019] 581.89 

Fra 0.82278 -0.11043 0.21956 0.98545 
27.445 [0.000] -0.25229[0.802] 1253.3 

Gre 0.71953 -0.23736 0.78839 0.99311 
41.944[0.000] -0.39867[0.692] 2667.8 

Ire 0.44062 0.22094 0.46077 0.83144 
7.4422[0.000] 0.39554[0.696] 91.251 

Ita 0.71609 0.16435 0.55576 0.98610 
30.453 [0.000] 0.74918[0.458] 1312.3 

Jap 0.66617 -2.6108 0.96132 0.99821 
63.962 [0.000] -4.6229[0.000] 10336.0 

Kor 0.66892 1.1220 0.53181 0.65769 
7.4692 [0.000] 4.5010[0.000] 35.545 

Net 0.73212 0.65117 0.70058 0.99756 
70.996 [0.000] 1.4430[0.157] 7560.4 

Nor 0.70836 0.18266 0.68686 0.99145 
36.181[0.000] 0.39827[0.692] 2145.7 

Por 0.80542 -0.013188 0.86954 0.98767 
49.796[0.000] -0-062945[0.950] 1481.4 

Spa 0.70619 0.19655 0.37261 0.98666 
33.172[0.000] 1.1271[0.267] 1367.9 

Swe 0.79046 0.48647 0.38270 0.97788 
27.767 [0.000] 0.81190[0.422] 817.77 

Swi 0.76312 -1.3857 0.66162 0.99862 
108.25 [0.000) -2.6777[0.011] 13342.0 

UK 0.85599 -0.081353 0.39516 0.97081 
20.704 [0.000] -0.27053[0.788] 615.25 

us 0.86637 -0.49555 0.64251 0.99697 
70.570 [0.000] 1 -2.0097[0.051] 1 6082.4 
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Table 3.57 Individual Country FMOLS Regressions (con & trend) 
CO y1Nt I. R. t DW IF-s 1 7ýý 

Ausl 0.71759 0.31180 0.80058 0.98260 
30.263[0.000] 1.2022[0.236] 1044.6 

Aus 0.77856 -1.4970 0.97454 0.99917 
41.500[0.000] -4.7517[0.000] 22392.0 

Bel 0.72754 0.76236 0.70357 0.99652 
26.440 [0.000] 3.1063[0.003] 5292.6 

Can 0.77639 -0.64265 0.53179 0.96787 
16.979 [0.000] -2.4317[0.019] 557.20 

Den 0.74986 1.1833 0.47339 0.99222 
25.689[0.000] 2.3532[0.024] 2359.8 

Fin 0.70337 -1.2327 0.65872 0.97264 
15.509[0.000] '-1.5568[0.128] 657.56 

Fra 0.70016 0.016750 0.54779 0.99482 
31.143 [0.000] 0.076897[ 0.939] 3551.0 

Gre 0.69518 0.94988 1.0218 0.99474 
44.260[0.0001 1.5148[0.138] 3496.5 

Ire 0.71437 1.2877 1.2152 0.94857 
18.367[0.000] 4.6045[0.0001 341.22 

Ita 0.75144 0.076739 0.83253 0.99461 
56.778[0.000] 0.61819[0.540] 3412.4 

Jap 0.65936 -2.6411 0.97975 0.99821 
34.753[0.000] -4.7009[0.000] 10307.0 

Kor 0.78166 -0.32346 0.52955 0.95906 
19.919[0.000] -2.3980[0.0211 433.40 

Net 0.71778 0.69210 0.75595 0.99753 
23.390[0.000] 1.5178[0.137] 7486.4 

Nor 0.68895 0.074389 0.74014 0.99173 
18.842[0.000] 0.16364[0.870] 2218.7 

Por 0.80186 -0.24851 0.84590 0.98725 
44.797[0.000] -1.1745[0.247] 1432.8 

Spa 0.70986 0.14272 0.53146 0.99134 
42.774[0.000] 0.97370[0.336] 2117.9 

Swe 0.77626 0.86074 0.61645 0.98575 
33.110[0.000] 1.7811[0.083] 1279.3 

Swi 0.73285 -1.2563 0.58822 0.99886 
32.117[0.000] -2.5404[0.015] 16143.0 

UK 0.79261 -0.38075 0.73495 0.98398 
35-095 [0.000] -2.2850[0.028] 1136.2 

us 0.55352 -0.79339 0.58871 0.99788 
5.9631[0.000] -3.5827[0.030] 1 8718.3 
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Table 4.18 Individual Country AR(12) Regression Estimates 
Cf Austria Bel 

. 
gium Canada Dený 

a 0.0013101 0.00042382 0.00047174 0.0012451 
2.9819 [0-003] 1.8894 [0.059] 1.8290 [0.068] 2.6299 [0.008] 

ol 0.075730 0.28122 0.016208 0.082917 
1.9229 [0.055] 6.2829 [0.000] 0.37293 [0.709] 1.8303 [0.067] 

02 
-0.056273 -0.065874 0.085250 0.045986 

-1.4313 [0.153] -1.4143 [0.157] 1.9623 [0.050] 1.0123 [0.311] 
03 

-0.0046351 -0.046925 0.10883 -0.016693 
-0.11750[0.906] -1.0053 [0.315] 2.4928 [0.013] -0.36710 [0.7131 

04 
-0.12308 0.11733 0.13776 0.033316 

-3.1187 [0.001] 2.5641 [0.010] 3.1383[0.001] 0.73666 [0.461] 
05 0.056531 0.066050 0.032374 -0.040508 

1.4225 [ 0.155] 1.4336 [0.152] 0.73012 [0.465] -0.89727 (0.370] 
06 

-0-0082101 0.13057 0.029980 0.28552 
-0.20758 [0.835] 2.8283[0.004] 0.67439[0.500] 6.3197 [0.000] 

07 0.091635 -0.029829 0.0045686 -0.021244 
2.3138 [0.021] -0.64613[0.518] 0.10270 [0.918] -0.47019 [0.638] 

08 
-0.067675 -0.004031 0.068106 0.066915 

-1.7005[0.089] -0.087469 [0.930] 1.5307 [0.126] 1.4813 [0-139] 
09 0.0088047 0.20597 0.062862 0.10311 

0.22269 [0.823] 4.5014 [0.000] 1.4237 [0.155] 2.2789 [0.023] 
010 0.021247 0.0012787 -0.020056 -0.014176 

0.53715[0.591] 0.027395 [0.9781 -0.45552[0.6481 -0.31165 [0.755] 
Oil 0.087202 0.0079630 0.031533 0.057273 

2.2074 [0.027] 0.17091 [0.864] 0.71943 [0.472] 1.2607 [0.208] 
012 0.51295 0.21934 0.32448 0.15732 

12.982 [0.000] 4.9040[0.000] 7.4011[0.0001 3.4702 [0.000] 
R2 

= 0.51324 R2=0.67417 R' = 0.65737 R2 = 0.50291 
DW=2.0210 DW=1.9374 DW=2.0274 DW=1.9880 

F-stat=41.73[0.00] F-stat=81.89[0.00] F-stat=75.94[0.00] F-stat=40.04[0.001 

311 



Table 4.19 Individual Country AR(12) Regression Estimates 
Finland France Germany Greece 

a 0.0016 0.00028595 0.0005481 0.0028995 
3.007 [0.002] 1.5054[0.132] 2.3314[0.020] 2.4032 [0.016] 

ol 0.0333 0.28089 0.20648 -0.15713 
0.734 [0.463] 6.3052 [0.000] 4.8669 [0.000] -3.6302 [0.000] 

02 0.0580 0.055225 -0.020167 -0.17466 
1.278 [0.201] 1.1890[0.235] -0.46478[0.642] -3.9779 (0.000] 

03 0.1520 0.19775 0.094449 -0.000946 
3.346 [0.000] 4.2520 [0.000] 2.1806 [0-029] -0.021283 [0.983] 

04 
-0.0522 -0.032288 -0.064920 0.037728 

-1.142 [0.253] -0.68134[0.4961 -1.4902 [0.136] 0.84880 [0.396] 
05 0.0922 0.0052426 -0.027051 0.066585 

2.016 [0.0441 0.11082 [0.911] -0.61964 [0.535] 1.5039 [0.133] 
06 0.0864 0.12674 0.020964 0.37970 

1.882 [0-060] 2.6747[0.007] 0.48004 [0.631] 8.6283[0.000] 
07 0.0202 -0-017319 -0.008019 0.13064 

0.440 [0.659] -0.36544 [0.714] -0.18356 [0-854] 2.9657[0.003] 
08 0.0223 0.076188 0.030215 0.092139 

0.487 [0.625] 1.6068 [0.108] 0.69186 [0.489] 2.0772 [0.038] 
09 0.1115 0.0092281 0.021490 0.039288 

2.440 [0-015] 0.19375[0.846] 0.49291 [0.622] 0.88265 [0.377] 
010 -0.0347 -0-016186 0.080007 -0.079357 

-0.763 [0.445] -0-34546 [0.729] 1.8450 [0-065] -1.7811 [0.075) 
Oil 0.0242 0.014143 0.077158 -0.000283 

0.534 [0.593] 0.30228 [0.762] 1.7723 [0.077] -0.006446 [0.994] 
012 0.1420 0.23734 0.38476 0.32996 

3.129 [001] 
- 

5.2938 [0.0001 9.0218 [0.000] 7.5968 [0.000] 
RI = 0.376 40 R2 = 0.82621 --W = 0.58803 R2=0.51815 
DW=2.0377 DW=1.9699 DW=2.0274 DW=2.0839 L 

F-stat=23.89[0.00] F-stat=188.19[0.001 F-stat=56-49[0.00] F-stat=42.56[0.00] 
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Table 4.20 Individual Country AR(12) Regression Estimates 
Cf Iceland T- Ireland Italy -- T Japan 

a 0.0024855 0.0003658 0.00042501 0.00070825 
1.9610 [0.050] 1.7395 [0.082] 1.6452 [0.100] 1.5645 [0.118] 

ol -0.068512 0.68713 0.45344 -0.010265 
-1.5172 [0.129] 15.369 [0.000] 10.110 (0.000] -0.24502 [0.806] 

02 0.058245 0.085999 0.013848 -0.068337 
1.2873 [0.198] 1.5721 [0.116] 0.28019 [0.779] -1.6405 [0.101] 

03 0.29251 -0.25854 0.039587 0.0010114 
6.4537[0.000] -4.7112 [0.000] 0.80106 [0.423] 0.024214 [0.980] 

04 0.081822 0.15959 0.10939 -0.017453 
1.7313 [0.084] 2.8477 [0.004] 2.2116[0.0271 -0.42064 [0.674] 

05 0.12923 -0.015185 -0.050668 0.019134 
2.7264[0.006] -0.26803 [0.7881 -1.0190 [0.308] 0.46281 [0.643] 

06 0.10079 -0.059700 0.12374 0.15196 
2.1098 [0.035] -1.0551[0.291] 2.4878[0.013] 3.6819 [0.000] 

07 
-0.0008847 0.053811 0.045142 0.057858 

-0.018519[0.985] 0.94815 [0.343] 0.90766[0.364] 1.4011 [0.161] 
08 0.019275 0.037804 0.026214 0.079171 

0.40664[0.684] 0.64674 [0.518] 0.52716 [0.598] 1.9134 [0.056] 
09 0.014619 0.10153 0.0059247 0.10492 

0.30932 [0.757] 1.7186[0.0861 0.11971 [0.9041 2.5258 [0.011] 
010 0.0028229 0.010692 -0.019719 -0.028464 

0.062303[0.950] 0.18518[0.853] -0.39866[0.6901 -0.680346 [0.496] 
Oil 0.029713 -0.092571 -0.020772 0.099273 

0.65698[0.511] -1.5962 [0.1111 -0.41982 [0.674] 2.3785 [0.017] 
012 0.17300 0.23200 0.20693 0.40659 

3.8324 [0.000] 4.9954[0.000] 4.6135[0.000] 9.6842[0.000] 
R2 

= 0. ý2378 R2 = 0.8692§- R' = 0.83522 R2=0.40739 
DW=1.9901 DW=1.9202 DW=1.9387 DW=1.9708 

F-stat=43.53[0.001 F-stat=263.25[0.00] F-stat=200.63[0.00] F-stat=27.21[0.00] 
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Table 4.21 Individual Country AR(12) Regression Estimates 
Cf Luxemb Norway Portugal Spain 

a 0.0005607 0.0010403 0.0025107 0.00098935 
2.0478 [0.041] 2.3743[0.017] 2.3959[0.016] 2.0602[0.039] 

Ol 0.021879 -0.010669 0.079310 0.21524 
0.49855 [0.618] -0.25853 [0.796] 1.7558 0.079] 4.8213 [0.000] 

02 0.056954 0.064540 0.0030414 -0.037548 
1.2855 [0.199] 1.5645[0.118] 0.067297[0.946] -0.82156 [0.411] 

03 0.077862 0.074305 0.089959 0.041336 
1.7543 [0.080] 1.7968 [ 0.073] 1.9927 [0.046] 0.90421[0.366] 

04 0.067771 0.0058013 0.011598 0.059245 
1.5287[0.127] 0.13973[0.888] 0.25645[0.797] 1.2973 [0.195] 

05 -0.032995 -0.045605 0.023484 0.0084617 

-0.74288 [0.457] -1.1014 [0.271] 0.51928 [0.603] 0.18747[0.851] 
06 0.17618 0.13112 0.085748 0.14713 

3.9643[0.000] 3.1608[0.001] 1.8974 [0.0581 3.2605[ 0.001] 
07 

-0.024667 0.010039 0.042689 -0.024915 
-0.54837 [0.583] 0.24240 [0.808] 0.94467 [0.3451 -0.55228[0.581] 08 0.046794 0.061553 0.0072577 0.16119 

1.0335[0.301] 1.4875 [0.137] 0.16051 [0.872] 3.5721[0.000] 
09 0.083428 0.0096054 0.067851 0.060894 

1.8435 [0.065] 0.23154[0.817] 1.5007[0.134] 1.3343 [0.182] 
010 0.030126 -0.017746 0.044742 -0.030117 

0.66639[0.505] -0.42943 [0.667] 0.99146 [0.3211 -0.65926 [0.510] 
Oil 0.017494 0.057277 0.072674 0.031912 

0.38710 [0.698] 1.3900 [0.1651 1.6088[0.108] 0.69838[0.485] 
012 0.31410 0.43775 0.16928 0.22620 

6.9656[0.000] 10.5788 [0.000] 3.7497 (0-000] 5.0705 [0.0001 
- " - R2= 0.54954 Ft2 

= 0.5728ý R2=0.29664 - R T =O. 65528 
DW=1.9750 DW=2.0120 DW=2.0397 DW=1.9819 

F-stat=48.29[0.00] F-stat=53.09[0.001 F-stat=16.69[0.00] F-stat=75.24[0.00] 
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Table 4.22 Individual Country AR(12) Regression Estimates 
Cf Sweden Switzerl UK us 

a 0.00091974 0.00056031 0.00059700 0.00038584 
2.0993 [0.036] 2.1989 [0.028] 1.6917[0.091] 1.9852 [0.047] 

ol 0.094583 0.17902 0.25342 0.24851 
2.1353 [0.033] 4.1961 [0.000] 6.3319 [0.000] 5.4487 [0.000] 

02 0.030643 0.11614 0.080573 0.16149 
0.69360 [0.488] 2.6790[0.007] 1.9348 (0.053] 3.4418 [0.000] 

03 
-0.0054611 -0.029653 0.047072 -0.016108 

-0.12355 [0.901] -0.68237 [0.495] 1.1260 [0.260] -0-33849 [0.735] 
04 

-0-0095873 -0.072427 -0.012858 0.063597 
-0.21709 [0-828] -1.6737 [0.094] -0.30735[0.758] 1.3447 [0.179] 

05 0.012714 0.034079 0.043619 0.041309 
0.29019[0.771] 0.78636 [0.432] 1.0408 [0.298] 0.86995 [0.384] 

06 0.061877 0.18149 0.14403 -0.0031660 
1.4178 [0.156] 4.1898[0.000] 3.4407[0.000] -0.066620 [0.9461 

07 0.082968 -0.055473 -0.062547 0.079197 
1.9001[0.058] -1.2802 [0.201] -1.4931[0.136] 1.6654 [0.096] 

08 0.12397 -0.054824 -0.016052 0.045816 
2.8172[0.0051 -1.2638 [0.206] -0.38208 [0.702] 0.96055[0.337] 

09 0.045143 0.093932 -0.033191 0.12962 
1.0173 [0.309] 2.1680[0.030] -0.78980[0.430] 2.7152 [0.006] 

010 -0-018807 0.10161 0.011014 -0.034190 
-0.42308[0.672] 2.3340[0.020] 0.26236[0.793] -0.71016 [0.477] 

Oil 0.12487 -0.064518 -0.050636 0.059973 
2.8103[0.005] -1.48532[0.138] -1.2105 [0.226] 1.2639[0.206] 

012 0.25863 0.37230 0.48978 0.12447 
5.7995 [0.000] 8.7173 [0.000] 12.185[0.0001 2.6990[0.007] 
R . 51706 7=0 R2 = 0.55296 R' = 0.69757 ---Ry-=- 0.76632 
DW=2.0085 DW=1.8908 DW=1.7906 DW=1.9755 

L- 11 
-F-stat=42.38[0.00] 

F-stat=48.96[0.00] F-stat=91.29[0.00] F-stat=129.81[0.00] 
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