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Abstract 

Traditional process monitoring methods of off-line analysis involve removing a sample 

from the process and taking it to a centralised analytical laboratory. It takes time for the 

analytical result to be achieved and the result is used retrospectively to determine the 

yield or quality of a batch, and not to control the process. This leads to batches being 

produced that do not meet specifications, so may require re-working, wasting time and 

money. The process should be monitored to allow control of the batch to ensure it meets 

specifications first time, and every time. The use of at-line or on-line analysis, such as 

near infrared spectroscopy, provides quicker process analysis and allows the results to 

be used to monitor and control the process. These techniques are usually non­

destructive so less waste is produced, and are safer as they can be located away from the 

process environment. 

Within the analysis of processes, sampling is a key issue. The sample must be 

representative of the process to ensure the analysis gives a true indication of the batch. 

This is a problem when the process is heterogeneous as a sample taken from one region 

of the process may give a different analytical result from a sample taken from another 

regIOn. 

Guided microwave spectroscopy (GMS) has been investigated for its use as an on-line 

process analyser. The GMS has a sample chamber in which a process can be carried out 

and this whole chamber is analysed. This removes the sampling issue. This method is 

not well understood or used in process analysis due to the complicated MW spectra. 

Near infrared (NIR) spectroscopy is a tried and tested method of process analysis and 

many examples of applications exist of its use in industry. The spectra are easy to 

interpret and relate to the process. The main problem with NIR is that a probe must be 

used for on-line analysis. This produces sampling issues, and any process variation, 

such as a process upset, must be in the vicinity of the probe to be detected. 

In this work, a new process analysis technique, GMS, has been compared to an 

established technique, NIR, to determine their effectiveness within process analysis. 

NIR is used as a reference method for the GMS to aid interpretation of the spectra, and 

relate it to the process. 



Various processes have been investigated to determine the effectiveness of NIR and 

GMS to monitor them. A drying process has been monitored which has a problem of 

sampling due to huge cakes of several tonnes of material that are dried. 

The drying process was first simulated by adding solvent to a material to determine if 

the process can be monitored and the limits of solvent that can be detected. NIR data 

was collected using a diffuse reflectance probe. The spectra were found to be 

unrepresentative of the process as it was reliant on the solvent added being in the 

vicinity of the probe. GMS was used to monitor the process as it provides a 

representative measurement. Three different systems were analysed: the addition of 

water to sand, propanol to ascorbic acid and ethanol to salicylic acid. Simple partial 

least squares (PLS) models were built to predict the amount of solvent present in the 

solid sample from MW spectra. Various pre-processing techniques were examined to 

produce the best model. The models were built using auto-scaled followed by Box-Cox 

logarithmically transformed data, and allow prediction of the amount of water in sand, 

and the amount of propanol in ascorbic acid down to 1 % w/w with relative errors below 

5%. The calibration models can predict up to 30% solvent, so the technique was shown 

to be very useful for monitoring the drying of a solid. The model for the addition of 

ethanol to salicylic acid gave relative errors of 32% so seems to be an unsuitable 

method. However, models built using above 2% ethanol gave relative errors of only 20/0, 

suggesting the MW spectra are not sensitive to levels of ethanol below this. 

Propanol was then removed from ascorbic acid by drying to prove that the actual drying 

method can be monitored. The use of principal component analysis (PCA) scores 

plotted against time and the residuals (process spectra minus the reference dry spectra) 

show that the drying process has the possibility of being monitored in a representative 

way using MW spectroscopy. 

An esterification reaction has been monitored and various aspects of this process have 

been investigated. Traditionally calibration models are built using reference 

concentration spectra. Ideally process samples should be used to build the model which 

means a reference method such as GC must be used to give concentration data. These 

methods take time to develop and within this work it was found difficult to get 

reproducible results. Calibration free techniques have been used to extract the 

concentration profiles of the reaction to allow the rate constants of the reaction to be 



determined. A calibration free technique has also been used to determine the endpoint 

of the process, and also detect process upsets. During these processes, it is desirable to 

be able to predict the endpoint of a reaction, instead of waiting for it to be reached, 

which may waste time. It is also advantageous to be able to detect process upsets to 

allow the batch to be corrected. 

Multivariate curve resolution (MCR) was used to extract the concentration profiles from 

the MW and NIR spectra, and these profiles used to calculate the rate constants, k of the 

reaction. The MW and NIR calculated k values do not agree, suggesting the two 

techniques do not capture the same process variation. The rate constants have also been 

calculated using GC measurements as a comparison. These values also do not agree 

with the spectroscopic methods, but it is unknown which method provides the correct 

determination of the rate constant. However, it has been found that the use of MW and 

NIR spectroscopy provides a much more reproducible method to monitor esterification 

reactions than GC. 

An adaptive algorithm called caterpillar has been used to determine the endpoint of an 

esterification reaction, and also to detect a variety of process upsets. This allows the 

reaction to be monitored to ensure it proceeds as expected without the need for building 

a calibration model. The endpoint was detected reproducibly for MW spectra taken for 

repeat reactions showing the spectra are suitable for monitoring the reaction. The same 

endpoint was not detected for corresponding NIR spectra, so this does not appear to be 

as reproducible a method. 

MW spectroscopy was found to detect process upsets of addition of incorrect catalyst, 

addition of water, addition of an interferant and incorrect changing of reactants. The 

NIR was found to only pick up the addition of water and incorrect charging of reactants. 

It has been found that the MW spectra are more sensitive to small disturbances in the 

process variation and it is a better technique for endpoint determination and process 

upset detection. The NIR spectra does not appear to be as representative of the process, 

possibly due to the limitations of sampling with the probe used. 



Glossary of terms 

ALS Alternating Least Squares 

Box-Cox Box-Cox transformation 

EFA Evolving Factor Analysis 

FID Flame Ionising Detector 

GC Gas Chromatography 

GMS Guided Microwave Spectroscopy 

GUI Graphical User Interface 

HPLC High Performance Liquid Chromatography 

ICP-MS Inductively Coupled Plasma-Mass Spectroscopy 

Inter-WS Inter Window Size 

LV s Latent Variables 

MCR Multivariate Curve Resolution 

MLR Multiple Linear Regression 

MSPC Multivariate Statistical Process Control 

MW Microwave 

NIR Near Infrared 

OSC Orthogonal Signal Correction 

PCA Principal Component Analysis 

PCR Principal Component Regression 

PCs Principal Components 



PLS 

RMSEC 

RMSEP 

RSD 

RSSQ 

SIMCA 

WS 

X-block 

V-block 

Partial Least Squares 

Root Mean Square Error of Calibration 

Root Mean Square Error of Prediction 

Relative Standard Deviation 

Residual Sum of Squares 

Soft Independent Modelling of Class Analogy 

Window Size 

Spectral data 

Concentration data 



TABLE OF CONTENTS 

1.0 INTRODUCTION .......................................................................................... 1 

1.1 Aims ....................................................................................................................................................... 1 

1.2 Development of process analysis ......................................................................................................... 2 

1.2.1 Process analysis .............................................................................................................................. 2 

1.3 Process analysers .................................................................................................................................. 4 

1.3.1 Near infrared spectroscopy ............................................................................................................. 6 

1.3.2 Microwave spectroscopy ................................................................................................................ 8 

1.3.3 Comparison of MW and NIR ....................................................................................................... 11 

1.4 Chemometrics ..................................................................................................................................... 11 

1.4.1 Unsupervised modeUing ............................................................................................................... 12 

1.4.2 Supervised modelling ................................................................................................................... 15 

1.4.3 Reaction monitoring ..................................................................................................................... 23 

1.4.4 Fault detection .............................................................................................................................. 24 

1.5 Drying process .................................................................................................................................... 29 

1.5.1 Current methods ........................................................................................................................... 29 

1.5.2 Advantages ofNIR and MW ........................................................................................................ 30 

1.6 Esterification ...................................................................................................................................... 31 

1.6.1 Background .................................................................................................................................. 31 

1.6.2 Current methods ........................................................................................................................... 31 

2.0 EXPERIMENTAL ....................................................................................... 33 

2.1 Reagents .............................................................................................................................................. 33 

2.2 Equipment .......................................................................................................................................... 33 

2.2.1 Near infrared spectrometer ........................................................................................................... 33 

2.2.2 Guided microwave spectrometer .................................................................................................. 34 

2.2.3 Other equipment ........................................................................................................................... 37 

2.3 Drying experiments ............................................................................................................................ 38 

2.3.1 Wetting ......................................................................................................................................... 39 

2.3.2 Drying .......................................................................................................................................... 41 

2.3.3 Summary of experiments ............................................................................................................. 43 

- I -



2.4 Experimental set-up for esterification .............................................................................................. 43 

2.4.1 Optimum location of the NIR probe ............................................................................................. 43 

2.4.2 Effect of temperature on the collected spectra ............................................................................. 44 

2.4.3 Effect of volume of liquid in the GMS chamber on the recorded spectra .................................... 45 

2.5 Esterification reactions ...................................................................................................................... 45 

2.5.1 Aim ............................................................................................................................................... 45 

2.5.2 Experimental setup for esterification reactions ............................................................................ 46 

253 Ch " 'fi' . .. aractensatlOn esten IcatlOn expenments ................................................................................. 47 

2.5.4 Monitoring of reaction progress by GC ........................................................................................ 47 

2.5.5 Process upsets ............................................................................................................................... 50 

2.5.6 Summary of experiments ............................................................................................................. 53 

2.6 Data analysis ....................................................................................................................................... 54 

2.6.1 Wetting ......................................................................................................................................... 54 

2.6.2 Drying .......................................................................................................................................... 56 

2.6.3 Esterification ................................................................................................................................ 57 

3.0 RESULTS AND DISCUSSION ................................................................... 62 

3.1 MONITORING THE DRYING OF A SOLID ................................................ 62 

3.1.1 Wetting ............................................................................................................................................. 62 

3.1.1.1 Addition of water to sand .......................................................................................................... 63 

3.1.1.2 Addition of propanol to ascorbic acid ....................................................................................... 89 

3.1.1.3 Addition of ethanol to salicylic acid .......................................................................................... 95 

3.1.1.4 Conclusions ............................................................................................................................. 100 

3.1.2 Drying ............................................................................................................................................ 102 

3.1.2.1 Drying by the heating of the MW chamber.. ........................................................................... 102 

3. 1.2.2 Drying by hot air ............................................................................. · ................. · .. ···· .............. · 106 

3.1.2.3 Conclusions ............................................................................................................................. 109 

3.1.3 Overall Conclusions ...................................................................................................................... 109 

3.2 EXPERIMENTAL SET-UP FOR ESTERIFICATION REACTIONS .......... 111 

3.2.1 Optimum location of the NIR transmission probe in the GMS chamber ................................ 111 

3.2.1.1 Experimental details ................................................................................................................ III 

3.2.1.2 Results and discussion ............................................................................................................. III 

3.2.1.3 Conclusions ............................................................................................................................. Ilel 

- 11 -



3.2.2 Effect of temperature on the collected spectra ........................................................................... 115 

3.2.2.1 Experimental details ................................................................................................................ 115 

3.2.2.2 Results and discussion ............................................................................................................. 115 

3.2.2.3 Conclusions ............................................................................................................................. 120 

3.2.3 Effect of volume of liquid in the GMS chamber on the recorded spectra ................................ 120 

3.2.3.1 Experimental details ................................................................................................................ 121 

3.2.3.2 Results and discussion ............................................................................................................. 121 

3.2.3.3 Conclusions ............................................................................................................................. 121 

3.3 EXPLORATORY ANALYSIS OF THE ESTERIFICATION REACTION 

DATA ............................................................................................................. 123 

3.3.1 NIR spectra .................................................................................................................................... 123 

3.3.2 MW spectra ................................................................................................................................... 126 

3.3.1 Cut-off point ............................................................................................................................... 126 

3.3.3 PCA ................................................................................................................................................ 128 

3.3.4 Conclusions .................................................................................................................................... 129 

3.4 MONITORING OF AN ESTERIFICATION REACTION ............................ 130 

3.4.1 GC Set-up ...................................................................................................................................... 130 

3.4.1.1 Method development ............................................................................................................... 130 

3.4.1.2 Calibration ............................................................................................................................... 131 

3.4.1.3 Reaction monitoring ................................................................................................................ 134 

3.4.2 Reaction spectra ............................................................................................................................ 137 

3.4.3 Prediction of k value ..................................................................................................................... 139 

3.4.3.1 GC prediction .......................................................................................................................... 139 

3.4.3.2 Multivariate curve resolution (MCR) ...................................................................................... 142 

3.4.4 Conclusions .................................................................................................................................... 148 

3.5 ENDPOINT DETERMINATION OF AN ESTERIFICATION REACTION .. 150 

3.5.1 Experimental set-up ...................................................................................................................... 150 

3.5.2 Results and discussion .................................................................................................................. 150 

3.5.2.1 Esterification reaction at 40°C, 1:~ initial molar ratio, 1m! catalyst.. ...................................... 151 

3.5.2.2 Esterification reaction at 50°C, I :0.25 initial molar ratio, 1 ml catalyst.. ................................. 163 

- 111 -



3 5 23 E t 'fi' 40°C 1'2' " I I . 4 I I 68 . .. s en IcatlOn at ,. ImtIa mo ar ratIo, m cata yst ..................................................... 1 

3.5.3 Conclusions .................................................................................................................................... 173 

3.6 DETECTION OF PROCESS UPSETS DURING AN ESTERIFICATION 

REACTION ..................................................................................................... 174 

3.6.1 Experimental set-up ...................................................................................................................... 174 

3.6.2 Results and discussion .................................................................................................................. 17-4 

3.6.2.1 Determination of window size and number of components .................................................... 175 

3.6.2.2 Addition of catalyst ................................................................................................................. 179 

3.6.2.3 Charging of half of the reactants ............................................................................................. 181 

3.6.2.4 Addition of water .................................................................................................................... 182 

3.6.2.5 Addition of benzoic acid ......................................................................................................... 183 

3.6.2.6 Disturbance of stirrer ............................................................................................................... 183 

3.6.3 Conclusions .................................................................................................................................... 186 

4.0 CONCLUSIONS ....................................................................................... 187 

4.1 Drying ............................................................................................................................................... 188 

4.2 Esterification reactions .................................................................................................................... 189 

4.3 Overall conclusions .......................................................................................................................... 192 

5.0 FURTHER WORK .................................................................................... 194 

6.0 REFERENCES ......................................................................................... 195 

- I\'-



Introduction: Chapter 1.0 

1.0 Introduction 

1.1 Aims 

The aim of process analysis and control is to provide continuous monitoring of 

industrial chemical processes and provide feedback to enable control and optimisation. 

Traditionally the data has been based upon process variables, such as pressures, 

temperatures and flow rates, rather then chemical variables, such as reaction 

composition. This work is aiming to develop a system of chemical feedback, to monitor 

the progress of a batch process. The data from the progression of the reaction is 

analysed and can be used to alter the reaction conditions to ensure the reaction is 

controlled and conditions optimised to push the reaction to completion. Also the data 

can be used to predict endpoints of full scale reactions to ensure the batch is right first 

time, and every time. 

Two typical processes have been investigated; drying, a solid state process, and 

esterification, a liquid state process. These reactions have been monitored in-situ, in real 

time using a combination of process analysers; near infrared (NIR) spectroscopy and 

guided microwave spectroscopy (OMS). NIR is a proven method for process analysis in 

a wide range of industries including food analysis, pharmaceuticals and organic 

reactions [1-5]. MW spectroscopy is a technique that has not been widely used, but does 

appear to have advantages over NIR [6]. The main advantage of MW spectroscopy is 

the whole process sample is analysed so giving a truly representative measurement of 

the process. 

The aim of the work was to use this collected data along with chemometric techniques 

to monitor the processes. Techniques are used which have advantages over current 

methods, to improve the monitoring of these processes. 

A drying process has been monitored. The aim of this work was to monitor the process 

to allow prediction of the amount of solvent in a sample down to very low levels so it 

can be determined when the sample is dry. The method needs to be reproducible and 

allow representative monitoring of the whole process. 

A simple esterification reaction has also been monitored. In this research, the aim was 

to find a method of analysis to monitor the reaction on-line. This method must be 
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Introduction: Chapter 1.0 

reproducible. Traditional methods of monitoring reactions involve tedious model 

building. The aim of this work was to investigate methods to monitor the reaction 

without the need for reference methods or model building. Also it was aimed to be able 

to detect process upsets in real-time to allow correction of the process. 

1.2 Development of process analysis 

Traditionally in process monitoring a sample is removed from a process and analysed in 

a centralised laboratory. The results are used retrospectively to determine the yield 

obtained or determine if the batch should be re-worked or discarded [7]. This is deemed 

off-line analysis and is time consuming, and leads to waste. This led to at-line analysis 

in which a dedicated analyser is located close to the process to provide faster analysis 

[8]. 

More recently there has been a move to on-line analysis in which the process is itself 

measured without needing to remove a sample [7]. The need for this is to reduce costs 

and increase production by providing fast, real-time monitoring. 

The use of process analysis to monitor and control chemical processes is becoming 

more widespread. In 1984 the Center for Process Analytical Chemistry (CPA C) was 

established at the University of Washington [9]. Its British counterpart, the Centre for 

Process Analytics and Control Technologies (CPACT) was founded in 1997 [10]. These 

are concerned with the devolvement of process analysis techniques for industrial 

applications. 

The increased use of on-line process analysis has been aided by the increase in power of 

microcomputers allowing more data to be collected and analysed. Also there IS 

increased international competition to produce cheaper products of higher quality [7]. 

1.2.1 Process analysis 

There is increasing pressure to make higher quality products at lower costs and with less 

waste. In continuous processes the aim is to keep the process composition steady at 

around the optimum physical and chemical conditions [11]. Traditionally, process 

samples are sent to a centralised laboratory. The results are obtained after some time. 

and are not used to adjust the process, but to identify if a final product is within 

specification, and determine if it must be reworked. Analytical chemistry has an 

important role in the process control chain. It is more advantageous to use process 
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Introduction: Chapter 1.0 

analysis immediately for process control. Any abnormalities seen in the process can be 

corrected [12]. It is important to take corrective action as early as possible to ensure that 

the product meets specification [13]. The quality of analytical results, expressed in 

terms of speed, precision and sampling rate, defines the effectiveness of process control 

[14]. 

On-line process analysis allows the monitoring of a process from a remote location. By 

keeping personnel away from the process, safety and industrial hygiene concerns are 

overcome [13, 15]. Health and safety is a very important aspect in industry, and remote 

measurements reduce risks. 

Process measurements have traditionally included temperature, pressure and flow rate. 

More efficient process control can be achieved by measuring composition or structural 

properties, in a way that allows real-time control during the manufacturing process [16]. 

Chemometrics is used to develop correlations between responses and chemical 

composition [12]. Critical process parameters must be first established in relation to 

product quality before process analysis can be implemented [13]. 

Process analytical chemistry is the application of analytical science to the monitoring 

and control of industrial chemical processes. Process analysers monitor chemical 

processes in real time and use this information to control or optimise the process [17]. 

Spectroscopic techniques are very useful in process analysis, the most widely used 

being vibrational spectroscopy, including near infrared (NIR), and Raman [18]. 

For true process control rather than simple process monitoring, analytical information 

about the process must be in real-time to allow process feedback. It is not always 

suitable to follow a recipe in which materials are added, stirred and switched off after a 

specific time, as no two batches will behave in exactly the same way. The quality of the 

product should be ensured throughout the process instead of just analysing the final 

product [12]. The aim is to get products right first time, every time. This also minimises 

the amount of waste that is produced from off-grade products, which has an 

environmental benefit [15]. 

The majority of error in process analysis can be attributed to the sampling system [19]. 

Therefore, a system of on-line, non-invasive monitoring is preferable, to provide the 

analyser \\'ith a sample representative of the process [16, 20, 21]. 
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Calibration models are needed to correlate the process to any measurements made. to 

allow monitoring of future processes. Calibration is only as good as the reference 

samples used to build it [21], therefore it is important to choose calibration samples 

which truly represent the process, and take into account any variation which may be 

encountered. Often calibration models are constructed using multi-component mixtures 

of different concentrations which have been prepared in a laboratory. These may not 

contain intermediates that are formed in a reaction therefore using actual reaction 

samples gives better modelling of the reaction process [22]. 

1.3 Process analysers 

An ideal process analyser would be non-invasive, non-destructive, chemically selective, 

robust, cheap and able to monitor a wide range of processes. Many types of process 

analyser exist that can be used on-line to monitor a reaction. The analyser chosen 

should be suitable for the application. 

Optical spectroscopy is widely used for process analysis. The simplest of these methods 

is UV -visible spectroscopy. These spectra have absorption peaks which are very broad 

and overlap which may lead to problems with selective measurement of one component 

in the presence of another [23]. Usually the wavelength of maximum absorption is used 

to produce a univariate calibration. The advantages of UV -visible include the fact that 

water does not absorb significantly between 200 and 750nm so water interferes less 

with the spectra [21]. Another advantage is that fibre optics can be used to allow remote 

monitoring of the process. UV -visible spectroscopy is widely used in batch monitoring, 

for example, Quinn at al [24] report using UV -visible spectroscopy to monitor the 

composition and control of a batch reaction. 

Mid-infrared (IR) absorptions are much weaker than those in the UV -visible regions, so 

is not useful for trace analysis [17]. The bands are quite narrow and characteristic of 

functional groups so measurements offer better selectivity than UV -visible. The main 

disadvantage of IR is that the light is highly attenuated by silica fibre optics which 

limits its length, so the analyser cannot be located as far away from the process [7]. 

Mid-IR is widely used in industry [25, 26] as it can be correlated to changes in the 

process. 
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Raman spectra comprise of vibrational fundamentals so spectra are usually quite simple 

[1 7]. Polarizable bands that produce weak absorptions in the IR, produce strong 

absorptions in Raman spectra, so they can be applied to different applications. Raman 

has the advantages that it can be used for non-contact analysis of solids and liquids and 

it can be used with fibre optics [7]. Raman can be used to analyse aqueous samples 

without the water interfering as water is virtually transparent in Raman, unlike in the 

NIR and IR where water dominates the absorption [21]. Raman can easily become 

dominated by other processes such as fluorescence [23], which may limit its usefulness. 

Mass spectrometers (MS) separate molecules of a sample according to their masses and 

measures their quantities [17]. Multi-component analysis can be achieved in seconds 

making it a useful technique for many environmental monitoring and process control 

measurement applications [23]. It has become a standard analyser in several industrial 

applications including steel manufacturing and fermentation off-gas analysis [21]. 

However, it is an expensive technique and is mainly useful for gas analysis in the field 

of process analysis. 

Nuclear magnetic resonance (NMR) spectrometers are non-contact and non-destructive 

[7]. Higher resolution Fourier Transform NMR (FT-NMR) is commercially available 

and is used in the petroleum industry. The linear dynamic range is from ppm to 100%. 

NMR needs to be made more rugged and cheaper to gain increased use for process 

analysis. Also precise temperature control is needed for accurate process measurements 

[21] . 

Acoustics is a technique which has been used in process analysis. It is non-invasive as 

transducers are attached to the side of the vessel [7] and they are intrinsically safe. 

Acoustics provide unique information that can be provided in real-time [27]. Passive 

acoustics is commonly used in which the source of the acoustic emission is the process 

itself. Expertise is needed to make sense of the collected acoustic emissions. 

Applications include monitoring fluidised beds [28] and granulation processes in 

pharmaceuticals. 

In this work two techniques have been examined: near infrared spectroscopy and guided 

microwave spectroscopy. These techniques fulfil the ideal process analyser criteria to 

some extent. 
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1.3.1 Near infrared spectroscopy 

Near infrared (NIR) spectroscopy is the measurement of the wavelength and intensity of 

the absorption of near infrared light by a sample. NIR light spans the range of 4000 - 12 

500cm-
l
. Spectra are due to transitions between vibrational energy levels that occur in 

the near infrared. NIR is the spectroscopy of the overtones and combinations of the 

fundamental vibrations seen in the mid-infrared region [29]. NIR spectroscopy is used 

for measurement of organic functional groups. In practice vibrations of CH, NH and 

OH species cause the only significant NIR bands [30]. 

In NIR, peaks are broad and overlapping compared to mid-IR spectra [23]. There are a 

great number of bands in this region, which cannot always be separated into single 

peaks. This hinders the assignment of a signal to certain functional groups. Quantitative 

analysis by NIR requires the use of multivariate calibration. 

Different functional groups absorb at different wavelengths. The absorption at a specific 

wavelength is related to the concentration of the absorbing species according to Beer's 

Law [17]: 

Equation 1.1 

Where AA is the absorbance at wavelength A, SA the molar absorptivity, d the pathlength, 

and c the concentration. This allows simultaneous determination of several components 

by calibrating the concentrations of the components with the spectral data. 

NIR offers non-invasive chemical analysis of complex processes. The advantages of 

NIR are its speed, simplicity of sample preparation, the sample is not consumed and the 

spectra provide enough information to determine the levels of several constituents 

without the need for re-scanning [31]. A disadvantage is the relative insensitivity of 

NIR to minor constituents. However, it does mean a complicated matrix can be used 

without interference from lots of things present in small quantities. 

The major advantage of NIR is that remote measurements can be made with the use of 

fibre optics allowing both at-line and on-line analysis [1 7] .. This allows the spectrometer 

to be located away from the process being analysed, so improving safety [32] and also 

more than one point can be sampled with one spectrometer so cutting costs [33]. Real­

time information can be obtained to monitor and control a process. 
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For on-line analysis NIR must be used with a transmission or diffuse reflectance probe 

located in the process. This means only a small region of the process is sampled and 

probe fouling may be a problem. 

1.3.1.1 Applications 

There are many varied examples of NIR being used for process analysis. The industries 

making use of this technique range from organic synthesis, to food production. Recent 

examples include the use of NIR for the measurement of total dietary fibre in 

homogenized meals as reported by Kim et al. [1]. A PLS calibration model was built to 

calibrate the fibre content to the collected spectra. Errors of below 3% were achieved. 

This compares well to traditional reference methods which take 4 days. Other food 

examples include the use of NIR for the determination of fatty acid composition and 

contents of main constituents in a complex food model system reported by Afseth et al. 

[34]. Kasemsumran et al. [2] have used NIR for the discrimination and quantification of 

adulterated olive oils. 

Sohn et al. [3] have used NIR for determining the linen content in linen/cotton blend 

products. This offers a quick non-invasive method of analysis. A validation error of 3% 

was achieved for one model, and 60/0 for another model for a different fabric. 

On-line NIR method has been used for the monitoring of chemical reactions. Norris and 

Aldride [4] have used NIR for the determination of the steady-state end point of 

homogeneous and heterogeneous organic reactions for chemical production. The 

method involves monitoring by NIR at specific time intervals during the reaction. The 

steady-state point is determined as when the NIR spectra do not change significantly 

over time. 

NIR is also used in the pharmaceutical industry. One example, reported by EI-Hagrasy 

and Drennen [35], is the use of process control for pharmaceutical powder blending. 

NIR has been used to predict the blending endpoint. Blanco and Alcala [5] have used 

NIR to test the content uniformity and tablet hardness of intact pharmaceutical tablets. 

The calibration model encompasses the variation in the tablets due to variation in 

production. so offering a simpler model. This method has the advantage that intact 

tablets are tested, so is fully non-invasive, and all tablets can be tested. 
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NIR is being examined for glucose monitoring in human tissue by Liu et af. [36]. A 

NIR spectrometer has been developed for the tissue sampling on the left palm to giYe in 

vivo monitoring. This technique offers truly non-invasive glucose monitoring. Currently 

this technique needs further research to give a good calibration model. Much research is 

being carried out for the use of NIR for glucose monitoring [37-40] showing what a 

useful technique this is. 

1.3.2 Microwave spectroscopy 

The microwave (MW) region lies between 30Hz and 300MHz, which is located 

between the infrared and radio frequencies. Traditionally MW spectroscopy is defined 

as "the high resolution absorption spectroscopy of molecular rotational transitions in the 

gas phase" [41]. MW spectroscopy observes rotational transitions of molecules. Free 

rotation of molecules occurs only in the low-pressure gas phase. Liquids and solids are 

not free to rotate which leads to poor spectra. Currently there are few applications for 

liquid and solid processes. 

Small molecules have sharp spectra making it a good fingerprinting technique, and it is 

mostly used for qualification of products. Much work has been carried out regarding 

species determination in the gaseous phase. The first experiments on gaseous 

spectroscopy in the MW region were carried out in 1934 by Cleeton and Williams [42], 

in which the absorption of ammonia vapour was investigated. There is high accuracy 

available with MW spectroscopy, allowing much more detailed and exact information 

to be obtained than with IR spectroscopy [43]. 

1.3.2.1 Applications 

Microwaves have mainly been used for the prediction of moisture content of samples as 

the technique is very sensitive to water. Many examples exist for moisture 

determination applications, particularly in the food industry. Thompson [44] describes 

the different MW methods that can be applied to non-destructive moisture 

measurement. Meyer and Schiltz [45] used a MW method for the determination of the 

moisture content of solids, and Kent and Meyer [46] reported a method of using a MW 

moisture meter for heterogeneous foodstuffs. Trabelsi and Nelson [47] recently reported 

the use of microwaves for determining the bulk density and moisture content in shelled 

peanuts. This method is based on the direct relationships between the dielectric constant 

and dielectric loss, and the moisture content. MW measurements have also been used in 
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the building industry to measure the moisture content of building materials, as reported 

by Kaariainen et al. [48]. 

It was predicted as far back as 1990 [23] that MW spectroscopy could be used as a 

useful technique for process control. Few papers exist describing the application of MW 

spectroscopy for quantification. This technique has largely been ignored for on-line 

analysis of liquids and solids as the spectra are often broadband without clear peaks due 

to the lack of free rotation of the molecules [49]. Multivariate calibration is necessary to 

correlate the spectra to the process changes. 

Ouided microwave spectroscopy (OMS) has been used in previous process analysis 

work. Liang et al. [6] reported the use of OMS for the analysis of water and ethanol 

mixtures. Walmsley and Loades [49] reported a similar application for the 

determination of acetonitrile in water. Other work includes the determination of 

moisture in tobacco [50] reported by Dane et al.. These papers are preliminary studies 

and show the possibilities of using microwave spectroscopy for quality control. 

Daniewicz [51] discusses the use of OMS as an improved method for the measurement 

of water content in mixtures. 

1.3.2.2 Guided microwave spectroscopy (GMS) 

In this work a guided microwave spectrometer (OMS), (Epsilon, Texas, USA) has been 

used. This has been specifically designed for process analysis work. It provides non­

invasive analysis of multiple components in liquid, solid and multiphase materials [52], 

and is not sensitive to the colour of a sample. 

It has many advantages over other spectroscopic measurements. The entire process 

sample fills the OMS chamber and is analysed non-invasively [53] so giving a 

representative measurement of the sample or process. Path lengths of several centimetres 

are used so allowing a greater sample to be measured. This also allows measurements to 

be made as a material passes through a pipe. 

The measurement is made using a single beam which passes through the whole sample. 

In the presence of MW energy. the polar molecules in the sample, such as water, rotate 

and align with the electromagnetic field. The movement of the molecules cause the M\\' 

signal to be attenuated, and the velocity of the wave decreases as it passes through the 

sample. The resulting spectrum has two characteristic features, Figure 1.1, [52]. The 
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cut-off region is the result of the sample attenuating and reducing the velocity of the 

energy, which changes its wavelength, the dielectric constant. Different components 

have different dielectric constants, so will result in different spectra. The passband 

region shows a change in amplitude which is due to the conductivity of the sample and 

how much energy is lost by the microwaves as they pass through the sample, the 

dielectric loss. The change in these two regions can be correlated to the change in the 

concentration of a component of interest. The movement of the frequency of the start of 

the cut-off region is sensitive to the moisture content, and can be used to correlate to the 

change in moisture content [53]. 
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Figure 1.1: MW spectrum of sand and water mixture to show the different parts of the spectra. The 
cut-off region is due to the sample attenuating and reducing the velocity of the microw~ves, the 
dielectric constant. The pass-band region shows a change due to the MW energy lost as It passes 
through the sample, the dielectric loss. 

Temperature affects the electrical properties of the mixture proportional to the 

concentration of polar and semi-polar constituents [54], therefore the recorded spectra is 

affected. The temperature should be fixed to minimise this effect. 
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1.3.3 Comparison of MW and NIR 

GMS and NIR are both wide band instruments, and can be used to simultaneously 

measure various components of a mixture. The techniques can be used to monitor a 

process. Multivariate calibration is needed in both cases to calibrate the recorded 

spectra to the process sample. 

NIR is a proven method for process analysis in a wide range of industries. MW 

spectroscopy is a technique that has not been used much, but does appear to have 

advantages over NIR. The main advantage of MW spectroscopy is a sample can be 

analysed in a process pipe, and the whole sample is analysed so giving a truly 

representative measurement of the sample. NIR relies on the use of a probe to collect 

spectra on-line during a process. This means only one small area of the process is 

measured, so the true process may not be measured. 

In this work, NIR and MW spectroscopy are to be used to monitor a variety of 

processes. A variety of chemometric techniques are to be used to relate what is 

occurring in the process to the spectral data. NIR spectra are much easier to interpret 

and relate to the process than MW spectra. It is hoped that the NIR data can be used as a 

reference data to compare to the MW spectra to determine if both sets of data are seeing 

the same process changes. 

1.4 Chemometrics 

Chemometrics is often defined as the use of multivariate data analysis and mathematical 

tools to extract information from chemical data [16]. Due to the production of large 

amounts of process data, chemometrics is vital to model data for process control. It is 

used to make sense of, and extract vital information out of complicated spectra. The 

techniques can be split into two main types: supervised and unsupervised modelling. 

Unsupervised modelling are those techniques that cover data visualisation and pattern 

recognition, including clustering techniques. Only measurements, X-block data, taken 

during a process are used to produce a qualitative model. For example, principal 

component analysis (PCA) can be used to visualise the progress of a process. and also 

for data reduction to maximise the variation included in supervised modelling due to the 

constituents of interest. 
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Supervised modelling involves calibrating unknown quantitative information, Y, with 

available measurements, X [55]. This is the technique of multivariate calibration in 

which a number of constituents of a process are measured simultaneously, often by 

spectroscopic techniques such as NIR, and these related to the concentrations of the 

constituents to allow process monitoring. A calibration model must be built using 

techniques such as partial least squares (PLS) regression. The calibration must cover the 

range of variation in both sample composition and process variation, such as 

inconsistencies in starting material, to produce a robust model [56]. 

1.4.1 Unsupervised modelling 

In this work PCA has been used to explore trends in the collected spectral data, and 

examine the reaction progress as seen in the data. Multivariate curve resolution (MCR) 

methods have also been used to monitor a reaction. 

1.4.1.1 Principal component analysis (peA) 

The main aim of PCA is to reduce the size of a data set that has a large number of 

intercorrelated variables, and to retain as much of the information present as possible. 

PCA reduces the spectral data into principal components (PCs). The first PC accounts 

for the largest amount of variation in the data, the second the next largest amount of 

variation and so on [57]. Only a few of the transformed variables are needed. If the rank 

of the data is three, i.e. there are three independent significant components in the system 

being measured, then only three PCs should be needed to describe the variation [58]. 

However, things are never as simple, as noise distorts the picture. It is important to 

choose a number of PCs which describes all the important variation in the system, but 

does not include noise. 

Before carrying out PCA, it should be decided if each variable in the data should be 

standardised to zero mean. If it isn't, and one variable has a much larger variance, then 

this variable will dominate the first PC. Standardising avoids this by making all the 

variables carry equal weight [57]. 

Spectral data collected during a reaction can be described as the sum of responses for 

each significant compound in the data, which are characterised by a concentration 

profile, C, and a spectral profile, S, plus experimental noise or instrumental error, E 

[58], as shown in Figure 1.2. 
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Figure 1.2: Diagram to show chemical factors making up spectral data, and how principal 
component analysis (PCA) is used to decompose the spectral matrix. X is the original spectral data 
matrix comprising of m samples, and n variables. This can be described by; C, a matrix of the 
concentration profiles for each component; S, a matrix of spectra for each component; and E, an 
error matrix. PCA decomposes the original data matrix, X, into scores, T, and loadings, P. The 
scores consist of A (the number of components) column vectors, and the loadings A row vectors. 

Using PCA, the data is decomposed into an abstract mathematical transformation of the 

original data matrix, comprising scores, T, and loadings, P, as shown in Figure 1.2. The 

scores show the relationship between the samples, and the loadings the relationship and 

importance of the spectral variables. 

By examining the scores, it is possible to visualise how the samples relate to each other. 

In the case of reaction spectra, in which there is a meaningful sequential order to the 

samples as they were collected over time, the scores can be plotted against sample 

number or time [58]. This makes it possible to see how the samples relate to each other 

over time, and hence visualise the progression of the reaction. 

1.4.1.2 Multivariate curve resolution (MeR) 

All the spectral matrix data collected during a reaction has one direction relating to the 

compositional variation of the system as it evolves over time, and the other direction 

refers to the variation in the response collected, the actual spectra [59]. 
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The spectral data comprises of the addition of the response of all components in the 

system. Multivariate curve resolution (MCR) methods decompose the original data 

matrix, D, into the concentration profile, C and the pure component spectra, S, from the 

original data matrix D, shown in Figure 1.3 . 

n n 

m D 

Figure 1.3: Diagram to explain the basis of multivariate curve resolution techniques (MCR). MCR 
attempts to recover the true value of the concentration profiles, C, and the spectral profiles, S from 
a data matrix. Each of the resulting matrices contain a pure profile for each independent 
component, a. 

The solutions are not unique, and constraints and initial estimates are used to improve 

the fit. One such method is the use of evolving factor analysis (EF A) to give an initial 

estimate of the number of components present in the system. This works by running 

PCA on a window of data [59]. The window is enlarged by adding rows in the process 

direction, and subsequent PCA run. EF A is performed by building the windows from 

the start of the process to the end, the forward direction, and also in the opposite 

direction, the backward direction. The eigenvalues from PCA are displayed as the 

process evolves to show how the components in the process emerge and disappear 

during the process. From this it can be determined how many independent components 

change during the process and provide initial estimates of their concentration profiles. 

The use of alternating least squares (ALS) can be used with these initial estimates to 

narrow the span of feasible solutions [60]. The initial estimates from EF A are optimised 

iteratively by ALS until the convergence criteria is reached. 

GUIPRO is a graphical user interface (GUI) within MA TLAB developed by Paul 

Gemperline and is based on a new algorithm for multivariate modelling curve resolution 

that gives improved results by incorporating soft constraints [61]. The method offers a 

substantial improvement in the ability to resolve time-dependent concentration profiles 

from mixture spectra recorded as a function of time. 
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In this work the aim was to minimise the amount of pre-processing and analysis of the 

data to make the curve resolution techniques as simple and quick as possible. and 

minimise user prior knowledge and input (see section 2.4.2 for details on GUIPRO and 

the constraints that can be used). 

1.4.1.2.1 Examples 

Many examples exist for the use of MCR to solve many different types of problems. 

Traditionally MCR techniques have been involved in resolving overlapping 

chromatographic peaks. Some recent examples include the use of MCR to resolve 

overlapping spectra in high performance liquid chromatography (HPLC) of pesticides in 

water as reported by Rodriguez-Cuesta et al. [62]. Pere-Trepat et al. [63] have used 

MCR to resolve co-eluting peaks of multiple biocide compounds in liquid 

chromatography-mass spectrometry (LC-MS). Wasim and Brereton [64] discuss the use 

of different types of curve resolution for the analysis of liquid chromatography coupled 

with nuclear magnetic resonance (LC-NMR) to resolve the concentration profiles and 

spectral profiles of mixtures of eight compounds. 

Sequential injection analysis (SIA) has been used to generate second order data by 

Pasamontes and Callao [65]. MCR-ALS has been used to treat the data to allow the 

determination of several analytes simultaneously both qualitatively and quantitatively 

without the need to pre-treat the sample. 

Work has been reported for the use of curve resolution techniques with NIR spectra to 

monitor reactions. Spectra collected during curing epoxy resins has been subjected to 

MCR-ALS by Garrido et al. [66] to resolve the reactants and products, and also the 

intermediate spectra and concentration profiles. The concentration profiles were found 

to properly represent the system studied. Mercado et al. [67] have used NIR with MCR 

to study the reactivity of silicon-epoxy monomers, and extract the concentration 

profiles. 

1.4.2 Supervised modelling 

The aim of multivariate calibration is to build a model that describes the relationship 

between the dependent variables (concentrations), Y-block, and independent variables 

(spectra), X-block of a process. 
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1.4.2.1 Steps of calibration 

To ensure a calibration model is built which suitably relates the X-block data to the Y_ 

block data various steps should be followed as shown in Figure 1.4. First data must be 

collected to build the model. Models are only as good as the data used to construct them 

so this step is important to ensure representative data is collected. X-block 

measurements (spectra) are taken for a variety of samples that have known Y-block data 

(concentrations), either as the samples have been made up to a specific concentration or 

the values have determined by analysis. This data should cover the range of variation in 

the Y-block expected in real process samples. Experimental design can be used to 

ensure the maximum amount of information is collected using the minimum number of 

experiments. The sampling method is also important to ensure a representative sample 

is used in the data collection. 

2. Building calibration model 
1. Collecting data 

• Experimental design 
• Choosing sampling method 

t- Validation n1 · I · ata manlpu atlon 
• RMSEP • Variable selection 
• RMSEC 

~~ 

3. Using calibration model 
• Model maintenance 

I-- Analysis method 
• MLR 
• PCR 
• PLS 

Pre-processing 
• Mean centring 

• Auto-scaling 

• Box-Cox 
transformation 

• osc 
• 

Figure 1.4: Diagram to show the steps involved in calibration model building. The data must first 
be collected to give a representative sample set that covers the range of data expected to be 
encountered. The calibration model must then be built, which involves choosing an analysis model, 
choosing suitable pre-processing for the data to improve the correlation between the Y and X blocks 
of data, and finally validating the model to show how well it predicts new samples. Then the model 
can be used, and it must be maintained to ensure it is stiU valid if the reaction conditions change. 

The next step is the actual model building. An appropriate analysis method must be 

chosen to relate the Y-block to the X-block data. There are three main methods for 

multivariate calibration: multiple linear regression (MLR), principal component 

regression (PCR) and partial least squares (PLS). 
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Before the data analysis method is applied, it must be decided if pre-processing of the 

data is necessary. Pre-processing is defined as anything that alters the data used in the 

modelling process, and its aim is to improve the correlation between the X and Y data. 

Many different types exist, and some knowledge of the data is needed to choose a 

suitable method or combination of methods to ensure a detrimental effect isn't caused. 

Parts of the X-block may be uncorrelated to the Y-block or may contain noise. Careful 

variable selection of the X data to remove these regions may aid the correlation between 

the X and Y block. 

Once a model has been built it should be validated to ensure it is suitable for the 

application and will predict new samples. The root mean square error of calibration 

(RMSEC) can be calculated to show the calibration error. This uses the samples in the 

model to calculate the error so is not a true validation error. The root mean square error 

of prediction (RMSEP) is calculated based on predictions of independent samples not 

used to build the model, therefore shows the true validation error of the model. 

1.4.2.2 Types of analysis method 

MLR is an extension of simple linear regression. It aims to ascertain a unique aspect of 

the variability of the Y (concentration data) to each and every X (spectral variable) 

measured. If two or more X variables reflect the same basic trend, this is impossible 

[55]. Variables that do not have any unique information must be eliminated to improve 

the calibration model. 

MLR methods have the disadvantage that all significant components must be known. 

PCA based methods, such as PCR and PLS, do not need details about all the 

components in a mixture [58]. However, it is necessary to make a reasonable estimate 

of how many components are in a mixture to allow the number of components needed 

to be included in the model to be determined. This number of components or factors to 

be included has to be decided, which may pose a problem. Including too few means not 

enough of the variation captured by the original data matrix is included. This leads to 

under-fitting, and results in a calibration model that is unable to predict new samples 

that have quite different variation from that included in the model. Including too many 

may result in information not relating to the concentrations of the components of 

interest being included. This results in over-fitting of the model which may cause 

interference and instability on the calibration model. 
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Principal component regression (PCR) is an extension to PCA. It regresses the Y-block 

onto the scores, T, obtained from the PCA of X [68]. The principal components are not 

correlated, so the problem of variables in Y being correlated is overcome. PLS aims to 

find not only the correlation in the data to the concentration data, but also finds the 

variance in the spectra, so it is often considered to be superior to PCR. 

1.4.2.2.1 Partial least squares (PLS) 

Partial least squares (PLS) is a method for constructing predictive models when the 

factors are many and highly co-linear. It is a spectral decomposition technique, which 

decomposes the data into a small number of relevant factors (latent variables) which 

explain the most variation in the spectra, X and are predictive of the concentration, Y 

data sets [69]. 

In PLS linear combinations of the predictor variables, X, are found. Those that show a 

high correlation with the Y data are given greater weighting, because they are more 

effective at predicting [57]. This gives linear combinations of X which are highly 

correlated with the Y-block and also explain the variation in the X-block. The main idea 

of PLS is to get as much concentration information as possible in the first few loading 

factors. PLS is taking advantage of the correlation relationship that already exists 

between the spectral data and the constituent concentrations. Two types of PLS exist: 

PLS 1 is used for prediction of a single variable, and PLS2 for prediction of multiple 

variables. 

During the modeling, the X variables are not modeled exclusively, and two models are 

obtained as shown in Figure 1.5. q has analogies to a loadings vector but is not 

normalized. The spectral data, X, is decomposed into T, scores, and P, loadings, and the 

concentration data, Y, decomposed into T and q. The scores matrix, T, is common to 

both the X and Y data. Unique sets of T and P are obtained for each component of 

interest, which has corresponding concentration data [58]. 
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Figure 1.5: Principles of partial least squares (PLS) regression. X is the original spectral data 
matrix which is decomposed into scores, T, and loadings, P, with an associated error matrix, E. A is 
the number of calculated latent variable (LVs). Y is the original concentration data, which is 
decomposed into scores, T, and q which has analogies to a loadings vector, and also an associated 
error,/. The common link is the scores, T. 

There are many example of PLS being used successfully for a great variety of 

applications. It is widely used as it produces high quality calibration models that are 

easy to implement due to the availability of software [70]. A recent example is the use 

of PLS modelling for a second order reaction monitored by UV -visible and NIR 

spectroscopy as reported by de Carvalho, et al. [71]. A PLS model was successfully 

built to predict the concentrations of the reaction components during the reaction. 

Cozzolino and Moron [72] discuss the potential to use a PLS model to predict soil 

organic carbon fractions using NIR spectra. Another example is the use of PLS with 

NIR spectra as a tool for on-line classification of dry-cured ham samples according to 

their sensory characteristics as discussed by Ortiz et al [73]. 

1.4.2.3 Pre-processing 

Within calibration models the reference concentration data, Y, is correlated to the 

measurement data, X. To improve this correlation between the X and Y data, pre­

processing techniques can be used, and any noise present removed. A pre-processing 

technique can be classed as anything that transforms the data. Within the PLS toolbox 

in MATLAB (Mathworks), that has been used in this work for data manipulation. 

several types of pre-processing techniques are inbuilt. Knowledge of the data allows 

pre-processing techniques to be chosen which will improve the correlation between the 

spectral and concentration data, and not have a detrimental effect. 
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NIR data is reported to have a problem with baseline drift which can be corrected for 

[74]. The collected NIR data in this work is very smooth, with no obvious noise, and no 

drift in the baseline. 

The MW spectra have no baseline, and appear to be quite noisy. However, this noise 

may be correlated to the concentration data, and any smoothing of the data may be 

detrimental to the calibration model. 

The pre-processing techniques that have been looked at in this work are explained here. 

If scaling is performed on the X-block, then the Y-block must be scaled accordingly. 

New samples must also be scaled before prediction. 

1.4.2.3.1 Mean centring 

Mean centring is often seen as essential before any data analysis. This involves 

subtracting the mean of each column (or variable) so that: 

cen X mn = X mn - X n Equation 1.2 

to give mean zero variance. This prevents a variable with large variance dominating the 

first extracted PC [58]. 

Seasholtz and Kowalski [75] found that the use of mean centring in data that varies 

linearly with concentration, has no baseline and has no closure in the concentrations (for 

each sample the concentrations of all components add to a constant) has a detrimental 

effect on the predictive ability of the model, therefore should not be used. The NIR data 

is expected to vary linearly with concentration, and the MW spectra have no baseline, 

therefore it is expected mean centring will not improve the modelling process. 

1.4.2.3.2 Auto-scaling 

This involves mean centring the data, followed by dividing by the standard deviation: 

X -X aulo X = mn n 

mn StdDev 
Equation 1.3 

Auto-scaling puts all variables on approximately the same scale, so all variables have 

equal significance [58]. 
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1.4.2.3.3 Box-Cox transformation 

For non-linear data the Box-Cox transformation can be used to transform the data [76]. 

It is transformed using the following equation [77]: 

X A -1 z=--­
A 

Equation 1.4 

Where Z is the transformed data and X is the original data matrix. It is a parameter set to 

zero or higher. If A equals zero the transformation is calculated as Z = 10g(X). Setting It 

to two performs the square root transformation and setting it to three performs the cube 

root transformation. 

Dieterle et al. [78] have used Box-Cox transformation to deal with the non-linearity's 

present in sensor data. 

1.4.2.3.4 Orthogonal signal correction (OSC) 

Orthogonal signal correction (OSC) is a filter developed to remove systematic variation 

in the spectral data (X) which is not correlated to the concentration data (Y). This should 

aid the correlation between X and Y, and should reduce the number of LV s needed in a 

PLS model to model all the useful variation. 

Wold et al. [79] discuss the use of OSC with NIR spectra. It has been applied to four 

different data sets of multivariate calibration, and the results compared to those of 

traditional signal correction such as multiplicative scatter correction (MSC) and OSC 

was shown to give substantial improvements. Fearn [80] also discusses the use of OSC 

with NIR data and compares this to existing algorithms. The aim was to improve the 

performance of a PLS model, but little improvement was seen. 

1.4.2.4 Experimental design 

An experiment is a process by which information is obtained by observing the reaction 

under certain conditions [81]. The conditions, or factors, that effect a reaction, must be 

optimised to maximise the reaction. A series of experiments are run to determine these 

optimum factors, by examining their effect on the reaction, or the response. A well 

designed plan of experiments will determine the optimum factors in the minimum 

number of experiments [14]. The plan of experiments will cover the factors, and the 

levels of these factors that effect the reaction. This is the experimental design. 
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It is important to design experiments well to minimise cost and time [58]. By using 

experimental design, the aim is to gain the most information from the minimum number 

of experiments. 

1.4.2.4.1 DoEMan 

Within calibration modelling a variety of pre-processing techniques can be used to 

improve the correlation between the spectral data and the concentration, as discussed 

previously. Other calibration parameters can also be optimised, including different 

calibration methods, calibration set selection, and outlier detection. It is possible to 

choose some suitable parameters based on knowledge of the data. However, to produce 

the best calibration model, ideally a model should be built using every possible 

parameter, and combinations, and the errors obtained compared. 

DoEMan is a MATLAB graphical user interface (OUI) developed by Andrew Owen of 

Strathclyde University, based on an idea by FlAten et al. [77] that attempts to find the 

best calibration parameters in a experimental design way. Its use is presented in a paper 

by FlAten and Walmsley [82]. 

In this work, the use of different pre-processing techniques has been examined, along 

with type of regression methods and number of components to use, to produce an 

optimum calibration model. This method allows a series of calibration models with 

different parameters to be built simultaneously. The relative merits of the models can be 

compared by the resulting validation error. This method will not give the ultimate best 

calibration model to use, but gives an indication of the parameters that will provide the 

best calibration models, allowing a smaller subset of the models to be examined in more 

detail. 

Details of how this ~UI has been used in this work to determine the best calibration 

model to use are detailed in section 3.1.1.1.2. 

1.4.2.5 Validation 

Once a calibration model has been built, it should be validated using an independent 

data set that has not been used to build the model. This allows calculation of the 

prediction error and shows how good the model is at predicting new samples, allowing 

comparison of different models. Several types of validation errors can be calculated as 

described here. 
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Within the PLS algorithm used in this work, which is inbuilt into the PLS toolbox in 

MATLAB, the residual sum of squares (RSSQ) is calculated. This is calculated as: 

1 

RSSQ = L (Yi - Yi)2 Equation 1.5 
i=l 

Where Yi is the actual concentration, Yi is the predicted concentration. This is a unitless 

value and gives an idea of the total error in the model. Its magnitude depends upon the 

number of samples predicted, so cannot be used to compare the prediction error of 

different models if different numbers of samples are used in the validation. From this 

the root mean square error (RMSEP) can be calculated: 

RMSEP = ~ RSSQ 
(N -1) 

Equation 1.6 

Where N is the number of samples. This error is now the same magnitude as the 

concentration values, so can be directly compared to the values. Its magnitude relates to 

the magnitude of the concentration values. If the concentration values are scaled, then 

this value will be scaled accordingly. Therefore, this number can only be used to 

examine the error in a particular model, and cannot be used to compare models that are 

built using different scaling methods. 

From this the percentage error can be calculated by using the mean predicted value: 

%RMSEP = RMSEP xl 00 
mean(Yi) 

Equation 1.7 

This value relates directly to the predicted values, and can be used to compare the errors 

in the model as it gives a true validation error from an independent validation set. 

1.4.3 Reaction mon itoring 

Reaction monitoring is important in the chemical industry to ensure the progress of the 

reaction is within the expected limits. Traditionally, a sample is removed from the 

reaction or process and analysed using high quality analysis methods. These are 

generally time consuming. and the resulting delay between sampling and analytical 

result means the reaction can be monitored, but process control is difficult. 
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On-line monitoring methods, such as NIR spectroscopy, require a calibration model to 

be built, for example a partial least squares (PLS) model [83]. For these traditional 

calibration methods, samples are made in the laboratory or a reference method is 

needed, such as GC or HPLC analysis, to give concentration data for true process 

samples to be correlated to the acquired spectral data. The model will only be as good 

as the reference data used to build it. These reference methods are time consuming, and 

may be unreliable. Model building is a long process and the model must be built which 

encompasses all expected variation in the reaction. The model is only valid for this 

reaction whilst occurring within the same process conditions. Any deviation from these 

conditions, such as change in raw material quality, will cause incorrect prediction of the 

sample. Calibration models are static and must be updated or rebuilt for each process. 

Ideally a technique which requires no reference data, and is batch independent, would 

be better for process monitoring. 

1.4.4 Fault detection 

An upset of the reaction can be defined as anything that alters the progress of a batch, 

and hence deviates its progress from the norm. A process upset, such as the charging of 

incorrect reactants, may cause the batch to fail to meet the required specification. It also 

may have to be reacted for longer, which will cost more money. Ideally process upsets 

should be identified as they occur to allow correction for or abandonment of the batch. 

Traditional calibration methods will give a prediction of the reaction progress even if a 

process upset has occurred. This may give misleading information about the reaction 

progress. Also the calibration models are only valid for the process whilst it is operating 

under the same reaction conditions. Ideally a calibration model should be adaptive to 

any change seen to allow correct determination of the endpoint. 

Modelling methods include SIMCA (soft independent modelling of class analogy). This 

is used as a classification technique with various spectroscopic techniques including 

NIR spectroscopy [84]. In SIMCA, a reference state, such as the normal operation state 

of a reaction, is modelled using a principal component model. New samples are 

compared to this model, and any deviations from it are interpreted as a process change 

or upset. Any changes in the reaction conditions are also interpreted as an upset. 
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including expected normal process changes. This technique is only suitable for reactions 

with a steady state, and not dynamic systems. 

MSPC (multivariate statistical process control) can also be used to monitor a process 

over time and check it stays within the desired limits [85-87]. These models are based 

on examining the relationship between measured process variables such as temperature 

and pressure to determine the current performance of the process. Many process 

variables can be measured at once, and are dependent on each other, so it is necessary to 

examine them all at once. MSPC models are also based on a steady state reference. 

A new adaptive algorithm for detecting process change known as caterpillar [28, 88], 

has been developed at the University of Hull. This method has been used to track 

process changes in a fluidised bed using acoustic sensors and can detect the onset of 

agglomeration events. The idea behind the algorithm is to compare the recent variation 

to the current variation in order to monitor process change. All abrupt changes are 

flagged as possible process upsets. The technique appears to be system and batch 

independent so it has been suggested that it could be applied to different spectroscopic 

techniques. 

Caterpillar is an adaptive algorithm, so for dynamic systems with normal process 

variation, only true process upsets which cause a significant disturbance to the reaction 

will be detected. The algorithm adapts to different processes, so remodelling is not 

necessary if the process alters. It can be used for both endpoint detection and fault 

detection. 

1.4.4.1 Endpoint detection 

Caterpillar can be used to determine the endpoint of a reaction. This is important to 

ensure the batch has finished and saves time by preventing over reacting. Caterpillar is 

adaptive so will be able to predict the endpoint even if reaction conditions change. It 

can also be used on-line so the batch can be stopped as soon as the endpoint is reached. 

In the endpoint detection caterpillar, two windows are placed in the data (Figure 1.6), 

with an inter-window-distance (inter-WS) between them. A principal component 

analysis (PCA) model is calculated for the second, reference window, to describe the 

"now" variation of the samples in this window. This is compared to the old variation in 

the samples in the detection window. The windows are moved through the data 
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stepwise, with the model building repeated at each step, until a steady state in the 

variation is seen and this determined as the endpoint of the reaction. The windows are 

separated by an inter-window distance to ensure that a constant variation is due to the 

actual endpoint of the reaction. 

(1) 
tn 
s::::: 
o 
C. 
tn 
(1) 

0:= 

Stepsize --------+ Time I s 

Figure 1.6: Diagram to show how the caterpillar algorithm works for endpoint determination. Two 
windows are placed in the data, separated by an inter-window-distance. A principal component 
analysis (peA) model is calculated for the second, reference window, to describe the "now" 
variation of the samples in this window. This is compared to the old variation in the samples in the 
detection window. The windows are moved through the data stepwise, with the model building 
repeated at each step, until a steady state in the variation is seen and this determined as the end­
point of the reaction. 

1.4.4.2 Process upsets 

In the caterpillar method for process upset detection, two windows are placed side by 

side and moved step-wise through the data (Figure 1.7). The fust window, or reference 

window, contains "old" samples and a peA model is built using samples in this window 

to describe the process variance, and the critical value, deri!, is calculated based on the 

T2 statistics (see Equation 1.11). The second window, the prediction window, contains 

the current samples. The samples in this window are compared to the first reference 

window. If several samples are significantly different, this is interpreted as a process 
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change. The number of atypical samples i.e. larger than dcru, are counted and this is 

shown in an occurrence plot. The occurrence plot allows the operator to clearly see if 

the reaction is changing. However, it does not indicate the nature of the process change, 

so other parameters must be examined to decide the necessary action. 

Stepsize --------+ Time I s 

Figure 1.7: Diagram to show how the caterpillar algorithm works to detect process upsets during a 
reaction. Two windows are placed side by side. A principal component analysis (peA) model is 
built using the reference window containing old samples. The samples in the detection window are 
compared to those in the reference window, and if several samples are significantly different, this is 
interpreted as a process change. 

Within the algorithm, the window size, and number of components, used to describe the 

variance in the peA model must be optimised. Ideal reaction data, i.e. with no upsets 

and only nonnal process variance, is used to optimise these two variables, see section 

8.3.1 . This ensures that only true upsets are identified and not nonnal reaction variation. 

Once historic data has been examined, and the optimum factors to use detennined, it is 

hoped that the algorithm can be used in real time to detect the onset of upsets and allow 

correction of the process. 

For a detailed account of the theory, see references [28, 88] . The m x n data matrix X 

contains the spectroscopic data collected for the process. This comprises of m the 
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number of measurements made at set time intervals, and n, the number of measured 

wavenumbers, in the case of NIR, and number of frequencies in the case of MW. 

Caterpillar consists of two windows of width w which are w x n matrices. The window 

width is determined by the number of samples included. If samples are collected every 

60 seconds, and five samples are included in the window, then the window width is 300 

seconds. The first window is the reference or model window, Xmod, and the second is the 

prediction window, Xpred, which contains the current samples. The Xmod is mean centred, 

and Xpred is scaled accordingly. 

The PCA model comprising of k number of components can be written as: 

X mod = TmodPI mod + E Equation 1.8 

where T mod is the w x k scores matrix, pi mod is the k x n loadings matrix, and E the 

residual matrix. The scores for the w samples in Xpred are calculated by applying the 

PCA model: 

Tpred = X pred P.nod Equation 1.9 

where Tpred is the w x k predicted scores matrix and P mod is the n x k loadings obtained 

from Equation 1.8. 

The T2 statistics for sample 1, di, in either the prediction or modelling window, are 

calculated as: 

I 

d = tJi 

I (1 I J 
w -1 T;nodT;nod 

Equation 1.10 

where ti is the 1 x k scores values for sample i and Tmod is the w x k scores matrix 

obtained from (1). 

The critical value for the T2 statistics, dcrit , is calculated as: 

k( w2 -1) 
dcril = ( k) Fa,k,lI'-k 

11' It'-

Equation 1.11 

where k is the number of components used to build the PCA reference model and H' the 

number of samples used. F is the F-statistics at significance level u, which is set to 
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1.5 Drying process 

The majority of chemistry carried out in industry is in solution phase. The products 

must then be dried to a set specification. It is an important process and is hard to 

monitor. Time and money may be wasted by over-drying. 

1.5.1 Current methods 

Different types of drying processes exist in industry, including the use of a fluid bed 

dryer, and pressure filtration. The processes are all the same in that water or solvent is 

removed to achieve a dry product. They all have the same problems of monitoring as 

huge cakes of wet material are dried in big vessels. The cake must be sampled to ensure 

it is dry, but the problem is from where should this sample be taken to give a truly 

representative sample. 

In filtration drying, the solid/liquid combination is placed in a huge vessel. This is 

mixed with an agitator. The agitator is removed, the vessel pressurised and a valve 

opened. The liquid and small particles drain through a filter mesh located at the bottom 

of the vessel. The remaining solid is further dried using hot gas to form a 'cake'. The 

cake is then removed by agitation [89]. The cake must be sampled to ensure it is dry. 

The problem with this is the cake is thick, so it is difficult to remove a representative 

sample. Also, as the cake dries it becomes solid, so the agitator has to be used to break 

up the material before a sample can be removed. 

Presently, visual inspection of the cake is used to determine if the material is dry [90]. 

This is a poor method of control, as only the outer layer of the cake can be seen. Process 

control would ensure increased yield, quality and reduce the use of raw material, such 

as gas flow, by accurately predicting the endpoint of the drying process. 

York et at. [91] have used electrical tomography to model the drying process of a 

material in a pressure filter dryer. This work has been demonstrated on an industrial 

scale. Six sections of the cake are modelled for dryness. A 3D model of the cake can be 

constructed in real-time to give a picture of the drying process. 

In fluid bed dryers, the material is contained in a vessel, and hot air is supplied to the 

bed of material through a specially perforated distributor plate [92]. The air flo\\"s 

through the bed of solids at a velocity sufficient to support the weight of particles in a 

fluidized state. Bubbles form and collapse within the fluidized bed of materiaL 
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promoting intense particle movement. In this state, the solids behave like a free flowing 

boiling liquid. The problems of sampling exist with this drying method as a large 

amount is dried at once. 

Green et al. [93] have investigated the use of in-line NIR monitoring for a fluid bed 

dryer. The sampling effects on the method accuracy were considered and it was found 

process heterogeneity plays a large role in the prediction accuracy. The main problem 

with this work is sampling, as if the process is heterogeneous then the NIR does not 

measure a representative sample. Ideally the whole sample should be analysed to 

overcome this. 

Paul Dallin, of Clairet Scientific Ltd, presented work carried out on monitoring a fluid 

bed dryer using NIR [94]. In this work, one wavelength was examined over time. As the 

drying process occurred, the absorbance at this peak decreased until a steady state 

occurs as dryness is achieved. Also, the drying of a pharmaceutical active in a filter 

dryer was monitored using a retractable NIR probe. 

1.5.2 Advantages of NIR and MW 

The problem with the current drying applications is one of representative sampling. NIR 

spectra has been used to monitor a drying process, and this too must be representative of 

the batch [95]. 

The main advantage of GMS is that it analyses the whole sample simultaneously so 

removes the need for sampling, and gives a representative picture of the process. As the 

dielectric constant for water is high, MW spectroscopy should be suitable for 

monitoring the drying process. It can theoretically measure 0 to 1000/0 moisture content, 

so is a very useful technique for drying applications. 

NIR is a proven technique for monitoring drying processes, and gives easy to interpret 

spectra that can be related to the process. MW spectra are much more complicated, and 

less is known how the spectra relate to processes. By monitoring the processes with 

NIR, alongside the MW, the NIR can be used as a reference method to aid interpretation 

and correlation of the MW spectra to the process. 

When water is added to a dry material, the water is first adsorbed, due to a single layer 

of water molecules adhering to all surfaces of the solid. Depending on the inner area of 
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the solid, this adsorbed water can account for the first 2 to 10% of the materials water 

content. Adsorbed water has two active hydrogen bonds hence it is also known as 

"bound" water. Once the maximum amount of water is adsorbed by the material, any 

further water added is free water. The amount of water absorbed by a material is the 

total amount of water which goes into the solid, both bound and free water in the 

cavities of the solid [54]. If the full drying process is to be modelled, then both bound 

and free water must be calibrated for, so a non-linear calibration model may be 

necessary. 

1.6 Esterification 

1.6.1 Background 

Esterification is the liquid state reaction of an alcohol with an acid to produce an ester 

and water [96]: 

ROH + R'COOH ~ ROOCR' + H20 

The reaction is an equilibrium reaction and is slow under normal conditions. A strong 

acid catalyst can be added to speed up the reaction. There are many examples in the 

literature of the use of process analysis to monitor esterification reactions. 

1.6.2 Current methods 

Ampiah-Bonney and Walmsley [18] followed the esterification of ethanol by acetic 

acid, using an acid catalyst, by Raman spectroscopy, using an in situ probe. Water is 

virtually invisible to Raman so this large component does not interfere with the Raman 

spectra. The data was modelled by PCA, after first mean-centring the data. PC 1 was 

removed from the data as this was found to model the fluorescence spectra. PC2 was 

found to be the pure Raman spectra, and this was used to give the reaction profiles of 

the three components, by plotting the response at identified wavelengths. The acetic 

acid and ethanol are seen to decrease, and the ethyl acetate increase as the reaction 

progresses, as is the case. 

Blanco and Serrano [83] have used NIR spectroscopy for on-line monitoring and 

quantification of the catalysed esterification of butan-1-01 by acetic acid. PLS was used 

to construct calibration models based on synthetic mixtures of esterification 
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components. This model was used to follow the change in composition of an actual 

reaction, with GC analysis used as a comparison. The relative standard error was less 

that 3.50/0. 

McGill et al. [97] compared the use of NIR, Raman and UV -Vis to monitor the 

esterification reaction of crotonic acid and butan-2-01. Univariate models were 

constructed for the Raman and UV -Vis and PLS models for the NIR. GC was used as a 

reference method with laboratory made samples. 

Recently work has been published on using MCR-ALS to monitor the esterification 

reaction of a mixture of caprylic and capric acids with glycerol using NIR spectra [98]. 

This is a calibration free technique so the need for time consuming model building is 

removed. The concentration profiles of the components can be extracted from the 

spectra to give process monitoring. This can be applied in real-time to allow prediction 

and control of batches. In this work, the inadequate rank of the experimental data matrix 

was found to restrict the quality of the spectral and quantitative information obtained. 

The inclusion of concentration data for the components of the system aids the 

resolution. 

In this work, MCR has been used to predict the progress of esterification reactions to 

provide calibration free modelling using MW and NIR spectra. The spectra collected is 

rank deficient as the two reactants decrease and the two products increase concentration 

at the same rate, so effectively there are only two independent components. Paul 

Gemperlines' GUIPRO [61] has been used with the known kinetics to break rank 

deficiency to allow prediction of all components present, and predict the rate constants 

to allow simple comparison of repeat batches. 

The reaction of butanol and acetic acid has been examined in this work. This reaction is 

a good starting point for development of process analysis, as the reaction can be 

controlled to last a few hours so giving sufficient data for modelling, but without it 

taking all day to complete. The reaction is well documented, so much is known about 

the reaction which can be related to the spectra recorded. 

This reaction has been monitored by both NIR and MW to give two-way data. NIR is a 

proven technique so should be able to be used as a reference method to ensure the MW 

spectra give a representative picture of the process. 
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2.0 Experimental 

2.1 Reagents 

Table 2.1: List of reagents used. 

Reagent Grade Manufacturer 
Acetic acid Glacial Fischer Chemicals UK 
L-( + )-Ascorbic acid 99% Lancaster UK 
Benzoic acid AnalaR BDH UK 
Butan-l-01 GPR Fischer Chemicals UK 
n-Butyl acetate 99+% Acros Organics USA 

Aldrich UK 
Ethanol GPR Fischer Chemicals UK 
Methanol GPR Fischer Chemicals UK 

4-Methyl-2-pentanone 99.5%, spectrophotometric Aldrich USA 
grade 

Pentane 99+%, HPLC grade Aldrich UK 
Propan-l-01 GPR Fischer Chemicals UK 
Salicylic acid 99% Lancaster UK 
Sand, purified by acid GPR BDH UK 
0.1-0.3mm M&B Laboratory 

Chemicals 
Sulphuric acid 97%, AR grade Phillip Harris UK 
Water Distilled In-house 

2.2 Equipment 

2.2.1 Near infrared spectrometer 

A Buchi, NIRVIS FT-NIR (Fourier Transform Near Infrared) spectrometer (Germany), 

has been used to collect NIR spectra using NIRcal 3.0 software (BUHLER, 

Switzerland), run on a PC, with an Intel Pentium III processor, 256MB RAM, running 

Windows NT workstation 4.0. 

The probes used in this work are a 2mm transmission immersion probe (Hellma, 

Germany) coupled using fibre optics (3m in length) which has been used for liquid 

reactions (Figure 2.1), and a diffuse reflectance NIR probe (Buchi, Germany) for drying 

of powder work (Figure 2.2). 
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Fibre optic 

Figure 2.1: Near infrared transmission probe with a 2mm sampling port. 

Figure 2.2: Near infrared diffuse reflectance probe. 

The NIR spectra are collected over the range 4008 to 9996cm- l
, in step sizes of 12cm-l

. 

The spectra are collected in transmission (T) mode and converted to absorbance (A) 

before data analysis using the following equation: 

A = lOglOG ) Equation 2.1 

2.2.2 Guided microwave spectrometer 

A guided microwave spectrometer (GMS), (Epsilon Industrial Inc, Austin Texas), has 

been used in this work to collect microwave (MW) spectra. The spectra are collected 

using Linefit software version 1.43 (Epsilon Industrial, Austin, Texas) run on a laptop, 

with an Intel Pentium Processor, with 32MB RAM, running Windows 98. The GMS has 

a bandwidth of 0.25-3.2GHZ, and covers a dielectric range of 1-85. The MW spectra 

were recorded over 200 to 3192MHz in steps of 8MHz, giving 375 measurement points 

in the recorded spectra. The power of the microwave is 5m W, and is powered by a 

magnetron. The response recorded is the change in power as the signal is attenuated by 

the sample. 

All experimental IS carried out within the GMS sample chamber, with internal 

dimensions of 10.0 x 4.7 x 11.5cm, giving a total volume capacity of 540cm
3 

(Figure 

2.3). The chamber has a transmitter antenna at one side of the chamber and a receiver 

antenna at the other side. These are connected to the GMS via two coaxial cables 

(450cm in length), which transmit microwaves to the transmitter antenna located at one 

side of the chamber. These pass through the chamber to the receiver, and the response is 

trahsmitted back to the GMS via the other cable. The two parallel metal surfaces 
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between the send and receIve antenna act as a waveguide to steer the wave front 

towards the receive antenna (Figure 2.4). 

a b 

Figure 2.3: a) Guided microwave spectrometer (GMS) chamber showing the location of the 
antenna plates; b) The antenna plates in detail. There are two of these at either side of the chamber. 
One acts as a transmitter and the other as a receiver. 

Transmitter 
antenna ......... 

Receiver 
antenna 

Figure 2.4: Picture of the guided microwave spectrometer (GMS) chamber. The yellow lines show 
the distribution of microwaves though the chamber. They are transmitted by the transmitter 
antenna on one side. The two parallel metal plates act as a wave guide and steer the wave front 
towards the receive antenna, located on the other side. This enables microwaves to pass through the 
entire chamber. 

The GMS chamber is sealed with a lid (Figure 2.5). This contains several inlet ports that 

serve as an inlet for reagents, a stirrer, a NIR probe and a temperature probe. The NIR 

transmission probe can be inserted into the chamber to allow MW and NIR spectra to be 

collected simultaneously. The optimum location of the NIR probe was determined, and 

the top plate designed accordingly, see section 3.2.1. 
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Overhead stirrer 

Copper piping 
attached to pumping 

water bath 

Figure 2.5: Picture of the guided microwave spectrometer (GMS) chamber, showing the lid that 
seals the chamber. The ports in the lid allow various pieces of equipment to be used in the GMS 
chamber. 

Copper piping (5mm internal diameter) is coiled around the chamber and water pumped 

around this using a stirred thermostatic circulator water bath (Grant, England) to allow 

control of the temperature within the stainless steel chamber. The chamber is insulated 

to minimise heat loss. 

PTFE sample chamber 

A PTFE insert made in-house can be used within the GMS chamber to reduce the 

internal dimensions (Figure 2.6). This has been used in the drying experiments to hold 

the sample and allow air to be passed through it. This has internal dimensions of 5.9 x 

8.0 x 4.7cm, giving a maximum volume of33cm3
• 
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Figure 2.6: PTFE sample chamber for the guided microwave spectrometer (GMS) chamber. 

2.2.3 Other equipment 

Auto-pi pettes 

Eppendorf micropipettes, 1-10J.lI, 10-1 OJ.lI and 100-1 000J.l1. 

Temperature probe 

Temperature measurements made using a Kane-May digital thermometer fitted with a 

temperature probe, Imm diameter and 10cm length. This covers a range of -50 to 

+1300°C. 

GC 

Shimadzu, GC-17 A. Auto injector AOC-20i. This uses a flame ionising detector (FID). 

Hydrogen (99.995%, Energas Ltd, Hull, UK) and air are used. 

A VF-5ms FactorFour capillary column (Varian, USA) is used for all analysis. This 

contains 5% phenyl-methyl low bleed stationary phase, which is equivalent to 50/0 

phenyl, and 95% dimethylpolysiloxane. The column length is 30m, and width 0.25mm. 

Helium (99.99%, Energas Ltd. , Hull, UK) is used as a carrier gas. 

Stirrer 

Janke and Kunkel, lKA-Werk. Variable speed 1-10. Set on 1 for all experiments (60 

rpm). 
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Spray chamber 

Jacketed cyclonic spray chamber, (Glass Expansion, Australia), used for heating air in 

the drying experiments. 

Data processing 

All spectra collected are transferred into MATLAB versions 6.5 or 7.0 (Mathworks). 

Routines from the PLS-Toolbox version 3.0.4, were used along with ones created in­

house. 

Caterpillar is a GUI (Graphical User Interface) that operates within MATLAB 7.0, 

developed by Geir Rune Flaten (CPACT, Hull University, UK). 

DoEMan is a GUI for the determination of the best parameters to use to build a 

calibration model. This has been developed by Andrew Owen (CPACT, Strathclyde 

University, UK) and uses routines from the PLS-Toolbox. It uses a design of 

experiment approach to build a series of calibration models using different types of pre­

processing, and these models can be compared to determine the optimum combination 

of pre-processing to use. The idea is based on a paper by Flaten and Walmsley [77]. 

GUIPRO is a MATLAB program for performing multivariate curve resolution (MCR) 

analysis of spectroscopic data, developed by Paul Gemperline of East Carolina 

University, USA [61]. Various settings can be used within this GUI to aid the 

modelling. Kinetic profiles can be used to break rank deficiency and allow the 

calculation of the kinetic profiles of a reaction. 

2.3 Drying experiments 

Dying a solid material is a widely used step in industry. The main problem with it is 

determining when the sample is dry. If a sample is to be removed to determine the 

degree of dryness, the main problem is where in the process the sample should be taken 

to ensure it is representative of the entire batch. Also there is a problem of how to take a 

sample, as physically removing a sample may cause the process to have to be stopped, 

so delaying it. 

An ideal situation would be if the entire process could be monitored on-line, so 

eliminating the need to remove a sample and give a truly representative picture of what 

is happening in the process. 
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OMS is ideal as a sample can be placed in the chamber, and the whole sample is 

analysed at once. The aim of the work is to simulate a drying process within the OMS 

chamber, and monitor it by MW spectroscopy. The process is also to be monitored 

using a NIR diffuse reflectance probe. This only samples a small region of the material. 

This has been split into wetting experiments, in which the drying process is simulated 

by adding solvent to a material, and drying in which solvent is removed from the 

material. 

2.3.1 Wetting 

2.3.1.1 Aim 

The first experiments involve wetting the material to simulate a drying process. The aim 

is to monitor the increasing amount of solvent in a material using MW and NIR 

spectroscopy. The feasibility of monitoring a drying process using these techniques can 

be determined and also the limits of detection. The two techniques can be compared to 

determine if MW is the superior technique for this application as is expected. 

2.3.1.2 Experimental setup for wetting experiments 

The material to be dried is placed within the PTFE insert which has been made in­

house. The insert is cuboid in shape which fits in the OMS chamber, and rests on the 

bottom of the chamber (Figure 2.7). The PTFE insert has an inlet tube at the top and an 

outlet at the bottom to allow liquid to flow through. The outlet tube must have filter 

paper put over it to keep the material within the insert. The NIR diffuse reflectance 

probe can be inserted in one of the ports of the lid of the OMS chamber. 
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Figure 2.7: Basic set-up for the drying experiments. The PTFE insert sits on the bottom of the GMS 
chamber. 

2.3.1.3 Experimental details for wetting experiments 

Each experiment was repeated in triplicate. Repeats of MW and NIR spectra were 

collected. These repeats were averaged out to give one spectrum for each addition 

before data analysis was performed. 

Addition of water to sand 

Sand (l50g) was placed in the PTFE insert. Distilled water was added in O.1ml steps 

until l.Oml total volume was reached using an autopippette, and then in l.Oml steps 

until 10ml and 5.0ml steps until 35ml of water had been added in total. This gave full 

saturation of the sand. After each addition of water, two minutes were allowed to elapse 

to allow the water to soak through the material, and then 20 repeat MW scans and 40 

repeat NIR scans were recorded. These repeat spectra were averaged to give one MW 

and one NIR spectra for each addition. 
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Addition of propanol to ascorbic acid 

This experiment was carried out in the same way as the addition of water to sand. 

Ascorbic acid (1 OOg) was placed in the PTFE insert, and propanol added to this up to 

the saturation point of 30m!. 

Addition of ethanol to salicylic acid 

This experiment was carried out in the same way as the addition of water to sand. 

Salicylic acid (83 g) was placed in the PTFE insert, and ethanol added to this up to the 

saturation point of 25m!' 

2.3.2 Drying 

2.3.2.1 Aim 

The drying process has been simulated by wetting a material to determine the feasibility 

of monitoring the process by MW spectroscopy. The aim of this work is to actually dry 

the material of solvent by driving off the solvent. The process is monitored by MW 

spectroscopy to determine if the endpoint of the process, defined as when the material is 

dry, can be identified. 

2.3.2.2 Experimental setup for drying experiments 

The experimental set-up was almost the same as for the wetting experiments, except a 

system to pass air though the material was used which meant no NIR probe was used 

due to lack of space for it in the chamber. The material is placed in the PTFE insert 

placed inside the OMS chamber. The experimental setup for the different methods of 

drying is described in the following experimental details section. 

2.3.2.3 Experimental details for drying experiments 

Drying of propanol from ascorbic acid by heating 

Ascorbic acid (lOOg) is placed within the PTFE insert in the OMS chamber. The 

chamber is heated to approximately 52°C by the pumping water bath. Propanol (25ml) 

is added to the ascorbic acid and the solvent allowed to evaporate off for five hours. 

MW spectra are taken at intervals to monitor the progress of drying. 
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Drying of propanol from ascorbic acid by hot air 

Ascorbic acid (100g) is placed in the PTFE insert within the OMS chamber and , 
propanol (10ml) is added. Air is flowed though a gas nebuliser into a jacketed cyclonic 

spray chamber used in rCP-MS. The spray chamber is connected to the water bath, and 

water is circulated around at 80°C to heat the air as it passes through. The air is then 

flowed into PTFE sample held in the OMS chamber (Figure 2.8). 

PTFE 
insert 

Pressure release 

l 
Airflow 

Jacketed flow cham ber 

______ +---+-.... Air flow 

Ascorbic acid 
and propanol 

14-- GMS chamber 

Figure 2.8: Equipment set up for the drying of propanol from ascorbic acid using hot air. 

The flow rate was controlled using a gas flow control valve set to approximately 

11 min-I . The air temperature in the OMS chamber was approximately 23°C. The air 

was flowed through the system to allow the ascorbic acid to dry over time. MW spectra 

were taken at intervals. The experiment was carried out twice. The first experiment was 

left for 5h 30min, the heating stopped and the sample left overnight after which time 

further spectra were taken. The second experiment was left for 7h after which time the 

material appeared to be dry. 
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2.3.3 Summary of experiments 

Table 2.2: List of drying experiments. 

Experiment name Description 
Wet sand water 1 Addition of water (35ml) to sand (l50g) 
Wet sand water 2 Addition of water (35ml) to sand (l50g) 
Wet sand water 3 Addition of water (35ml) to sand (l50g) 
Wet asc~ro 1 Addition of propanol (30ml) to ascorbic acid (lOOg) 
Wet asc~ro 2 Addition of propanol (30ml) to ascorbic acid (lOOg) 
Wet asc~ro 3 Addition of propanol (30ml) to ascorbic acid (lOOg) 
Wet sali eth 1 Addition of ethanol (25ml) to salicylic acid (l50g) 
Wet sali eth 2 Addition of ethanol (25ml) to salicylic acid (l50g) 
Wet sali eth 3 Addition of ethanol (25ml) to salicylic acid (150g) 
Dry_asc~ro Drying of propanol (25ml) from ascorbic acid (lOOg) by heating 

GMS chamber 
Dry asc~ro air 1 Drying of propanol (lOml) from ascorbic acid (lOOg) by hot air 
Dry asc~ro air 2 Drying of propanol (lOml) from ascorbic acid (lOOg) by hot air 

2.4 Experimental set-up for esterification 

2.4.1 Optimum location of the NIR probe 

2.4.1.1 Aim 

The reactions carried out in the GMS chamber are analysed by both MW and NIR 

spectroscopy. The NIR spectra are collected using the NIR transmission probe located 

inside the chamber. The probe is a stainless steel cylinder, 2cm in diameter. This will 

cause reflectance of the microwaves when placed in the chamber, so affecting the MW 

spectra collected. This reflectance needs to be minimised. The probe must be located in 

an optimum position which causes least interference to the MW spectra, whilst giving 

representative NIR spectra. An experiment has been carried out to determine this 

optimum position. A plate will then be made for the top of the chamber to hold the 

probe in position. This location may have to be a compromise for ease of construction 

of the plate. 

2.4.1.2 Experimental details for location of the NIR probe experiments 

The chamber has been split into areas in which the probe could be located. The probe is 

2cm in diameter, so the cross section of the chamber is split into regions to 

accommodate the probe. The width of the chamber is 4.7cm so some of the positions 

overlap. The probe must be inserted into the chamber to a depth of at least 3.5cm to 
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ensure the transmission slit is covered by the reaction mixture. Therefore, the depth of 

the chamber has been split into 3 sections of 3.5 / 4cm (Figure 2.9). 

The chamber is filled with water (500ml) and the chamber heated to 32°C, to give a 

constant temperature. Ten repeat MW scans were taken with the NIR probe in each 

position (A 1-15, B 1-15, C 1-15), along with ten NIR spectra, ensuring the transmission 

slit was facing into the chamber to ensure maximum contact with the liquid. 

A 

R 
3.5 em B 

11.5 em 

X 4em C 

2em 

4em 2em 

. .. • • ... . .. 
2em 2em 2em 2em 2em 

Figure 2.9: Possible locations of the NIR transmission probe within the GMS chamber. The red 
dashed line indicates the overlap of some of the possible probe positions. X indicates the location of 
the transmitter antenna and R the location of the receive antenna. 

2.4.2 Effect of temperature on the collected spectra 

2.4.2.1 Aim 

The temperature of a sample affects both the NIR spectra of the sample, and also the 

MW spectra. This experiment was carried out to show the effect the temperature has on 

the collected spectra of the components in the esterification reaction. This will show the 

importance of keeping the temperature as constant as possible. 

2.4.2.2 Experimental details for the effect of temperature experiments 

The GMS chamber was heated to a variety of temperatures (25, 35, 40, 50 and 60°C). 

The reagents to be used in the esterification reaction (butanol and acetic acid) and the 

products fonned (water and butyl acetate) were heated to the same temperature as the 
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GMS chamber and 450ml placed in the chamber. 20 repeat MW scans were taken for 

each reagent at each temperature, along with 40 repeat NIR scans using the transmission 

probe placed in the GMS chamber. The spectra were averaged to give one spectrum for 

each temperature. 

2.4.3 Effect of volume of liquid in the GMS chamber on the recorded 

spectra 

2.4.3.1 Aim 

The esterification reaction is to be carried out inside the chamber of the GMS. The 

chamber holds 540ml of liquid. The reagents to be used are expensive to dispose of and 

are flammable. Ideally the total volume used should be minimised, whilst still giving 

representative MW spectra. The recorded MW spectra respond to the composition of 

the sample present. The greater the amount of sample, the greater the response will be 

due to the attenuation of the signal. Spectra is required that gives a maximum response 

so any change in the spectra due to a change in composition of the sample is easier to 

detect. Also the amount of air present in the sample will affect the recorded spectra. 

This should be kept constant to ensure reproducible spectra are collected. 

2.4.3.2 Experimental details for the effect of the volume of a liquid in the 

GMS chamber experiments 

The chamber is filled with 50ml of water, and ten repeat MW scans taken of this 

volume of water. The water used is at room temperature, the same as the chamber, to 

minimise temperature effects. A further 50ml is added, and again spectra are taken. This 

is repeated until the chamber is filled to 500ml. The spectra for each volume of water 

are averaged before data analysis. 

2.5 Esterification reactions 

2.5.1 Aim 

The aim of this work was to monitor a simple reaction by MW and NIR spectroscopy. 

and compare the relative merits of each technique. The reaction studied is the 

esterification of butan-I-ol by acetic acid which is catalysed by sulphuric acid: 
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This reaction was chosen as it is a simple, quick reaction which is relatively safe and 

uses cheap, easily obtainable reagents. 

It was proposed that the use of different chemometric techniques with the collected 

spectra could allow the monitoring of the reaction progress, and determine properties of 

the reaction such as the endpoint, and any upsets that may occur during the reaction that 

alter its progress. 

2.5.2 Experimental setup for esterification reactions 

Overhead 
stirrer 

NIR probe -+----.i 

Temperature probe 

Figure 2.10: Equipment setup for the esterification reactions. 

Pumping water bath 

All experiments are carried out in the GMS chamber with the NIR probe inserted. The 

optimum location of the probe has been determined, see section 3.2.1. The chamber is 

thermostated using a pumping water bath. Figure 2.10 shows how the equipment has 

been set up. 

The base plate of the GMS has a tap attached to allow easy emptying. The top plate has 

been made in-house and this contains ports for different pieces of equipment (Figure 

2.5). An overhead stirrer is located in the central port. There is also a temperature probe 

inserted to monitor the reaction temperature. The NIR probe is located in another port 

and there is a port for the inlet of reagents. 
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2.5.3 Characterisation esterification experiments 

2.5.3.1 Aim 

A set of standard characterisation reactions were monitored by MW and NIR 

spectroscopy, to give good data sets which can be used with various chemometric 

techniques. The reactions were repeated to determine if reliable and reproducible 

spectral data can be collected to monitor the reaction. 

2.5.3.2 Experimental details for characterisation reactions 

All reactions were carried out within the OMS chamber. The reagents were measured 

out in a measuring cylinder, and placed in volumetric flasks. The reagents were heated 

up to the reaction temperature before being placed in the OMS chamber via the inlet 

port. Butanol was added first, followed by the acetic acid. Spectra were taken at all 

stages. The acid catalyst was measured out using an auto-pipette, and added last. to is 

determined as the time at which the catalyst is added. 

All reactions were stirred using an overhead stirrer set to a speed of 1 (60rpm). 

Reactions were carried out at 40°C, thermostated by the water bath. A molar ratio of 

1 :2, butanol (200mI) to acetic acid (250mI) was used, with 1 ml of catalyst. 

For all reactions, MW spectra were taken every minute. The NIR spectrometer was set 

to take 1500 single spectra. One spectrum is recorded approximately every seven 

seconds. A spectrum relating to every minute is extracted for use in data processing. 

The raw spectra are used in the data analysis. 

There is a summary of all experiments carried out in section 2.3.7. Reactions that differ 

from the standard characterisation reactions are described in the following sections. 

2.5.4 Monitoring of reaction progress by GC 

2.5.4.1 Aim 

The standard data sets can be used with multivariate curve resolution techniques to 

predict the concentration profiles of the reactants and products during the reaction. A 

reference method is needed to compare the prediction profiles to what is actually 

occurring in the reaction. OC has been used to monitor some of the reactions to giyc 

this reference data. The OC method was first developed and calibrated. This was then 
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used with real samples taken from reactions to predict the concentrations and hence 

monitor the reaction. 

2.5.4.2 Experimental details for GC work 

GC set-up and calibration 

A GC method was developed to resolve the components in the reaction mixture, and 

then a calibration built to allow the prediction of the composition of reaction samples. 

An internal standard was chosen which has a different retention time from the 

components of interest, but is near enough so the analysis time is minimised. This 

allows correction of any variation that may occur in the injection volume. 4-Methyl-2-

pentanone was chosen. 

Method optimisation 

First calibration samples 1, 4 and 8 (see Table 2.3) were made up in 5ml volumetric 

flasks, made up to 5ml with pentane. The pentane elutes before the other components so 

will not interfere with the analysis. 1.0ml was injected using a split of 1 :85 to ensure the 

column was not overloaded with sample. The injector temperature was set to 250°C to 

ensure the sample is vaporised fully, and the detector also set to 250°C. The column 

temperature was set to 100°C to ensure a good separation was achieved. 
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Table 2.3: Volumes of components used to make up GC calibration samples. 1 ml of internal 
standard (4-Methyl-2-pentanone) was added to each mixture. 

Butanol Acetic Acid Butyl Acetate Water 
Vol. / Moles Vol. / Moles Vol. / Moles Vol. / Moles 

Jll J.1l J.1l Jll 
1 889 0.00971 1111 0.01943 0 0.00000 0 0.00000 
2 777 0.00850 1041 0.01820 160 0.00121 22 0.00121 
3 666 0.00728 971 0.01698 319 0.00243 44 0.00243 
4 555 0.00606 901 0.01576 479 0.00364 65 0.00364 
5 443 0.00485 831 0.01454 638 0.00485 87 0.00485 
6 330 0.00361 760 0.01330 800 0.00607 109 0.00607 
7 217 0.00238 689 0.01206 962 0.00730 131 0.00730 
8 105 0.00114 619 0.01082 1123 0.00853 154 0.00853 

Calibration 

Once a suitable method was obtained, a calibration was constructed to allow prediction 

of future, unknown samples. A set of eight calibration samples were made up, covering 

the range of concentrations of the components expected to be found in the reaction 

samples (see Table 2.3). Auto-pipettes were used to measure out the components. These 

were made up to 5.0ml with methanol, as the water dissolves better in methanol then 

pentane as used in the method optimisation and still elutes at a different time from the 

other components. The samples were made up with the final addition of acetic acid and 

stored in the fridge immediately to try to minimise any reaction which may occur. The 

calibration samples were run on the GC in a random order, and each sample was run in 

triplicate. The samples were made up fresh and the whole calibration repeated twice to 

ensure reproducibility of the method. 

GC monitored reactions 

Reactions were carried out in the same way as the standard reactions. A sample was 

removed (~1 ml) at 10 minute intervals for GC analysis. The sample was put into a vial 

held in ice, to reduce the temperature as quickly as possible to try to stop the reaction. 

2ml of the sample was taken using an auto-pipette, and placed in a 5ml volumetric flask 

(Grade A). Iml of internal standard was added and this made up to 5ml with methanol. 

The mixture was kept on ice at all times. A small amount was placed in a GC viaL and 

this immediately analysed by GC. 
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The reactions were carried out at 40°C. A list of the reactions is shown in Table 2.-+. A 

molar ratio of 1 :2, butanol (200ml) to acetic acid (250ml) was used, with 1ml of 

catalyst. 

Table 2.4: Esterification reactions followed by GC analysis. 

Name Molar ratio Temp. /oC Catalyst / ml 
Ester GC 40 1 1 1 :2 40 1 
Ester GC 40 1 2 1:2 40 1 
Ester GC 40 1 3 1 :2 40 1 

2.5.5 Process upsets 

2.5.5.1 Aim 

The esterification reaction was carried out in which process upsets were stimulated, 

monitored by NIR and MW spectroscopy. These are to simulate process upsets that may 

occur in industry. The aim was to detect these process upsets from the NIR and MW 

spectra using chemometric techniques. 

2.5.5.2 Experimental details for process upset reactions 

All reactions were carried out in the standard way, with a molar ratio of 2: 1, glacial 

acetic acid (250ml) to butanol (200ml). 4.0ml concentrated sulphuric acid (970/0) was 

used as a catalyst in all but the catalyst addition reaction. 

Ester_upset_cat: Addition of catalyst 

1.0ml of catalyst is added at the start of the reaction. Further additions of catalyst 

(1.0ml) were added at 1790, 3590 and 5450s into the reaction, to give a total of 4.0ml of 

catalyst. 

Ester_upset_charging: Charging of half of the reagents 

The reaction chamber was charged with the butanol and approximately half of the acetic 

acid. The remaining acetic acid was added 2460s into the reaction. 

Ester_upset_water_1: Addition of water 

Water was added to the reaction at 1860 (lml), 3660 (2.5ml), 5460 (5ml) and 6660s 

(7.5ml). 
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Ester_upset_water_2: Addition of water 

Water was added to the reaction at 1800 (5ml), 2990 (7.5ml) and 4790s (lOml). 

Ester_upset_benzoic: Addition of benzoic acid 

Benzoic acid (2g/0.02mol) was added to the reaction at 3800s to simulate the charging 

of incorrect reactants. 

Ester_upset_stirrer: Disturbance of stirrer 

The following disturbances were made to the stirrer: 

Table 2.5: Disturbances made during the process upset reaction (ester_upset_stirrer), in which the 
stirrer was disturbed. 

Time I s Disturbance Time I s Disturbance 
2760 stirrer turned down to 1 4440 stirrer switched off 
3120 stirrer switched off 6660 stirrer switched on 
3720 stirrer switched on 7260 stirrer turned up to 2 

Ester_upset_stirrer: Disturbance of stirrer 

The following disturbances were made to the stirrer: 

Table 2.6: Disturbances made during the process upset reaction (ester_upset_stirrer2), in which the 
stirrer was disturbed. 

Time I s Disturbance 
1200 stirrer switched off stirrer off for 3 min 
1380 stirrer switched on 
1980 stirrer switched off stirrer off for 5 min 
2280 stirrer switched on 
2880 stirrer switched off stirrer off for 6 min 

3240 stirrer switched on 
3840 stirrer switched off stirrer off for 7 min 
4260 stirrer switched on 
4860 stirrer switched off stirrer off for 8 min 

5340 stirrer switched on 
5940 stirrer switched off stirrer off for 9 min 

6480 stirrer switched on 
7260 stirrer switched off stirrer off for 10 min 

7860 stirrer switched on 
8460 stirrer switched off stirrer off for 15 min 

9360 stirrer switched on 

- 51 -



Experimental: Chapter 2.0 

Table 2.7 summarises the process upsets stimulated in each of the experiments. 

Table 2.7: Table of process upset reactions giving details of the process upsets stimulated. 

Name Experiment Time upset 
stimulated / s 

Ester _ upset_cat Addition of catalyst (lml) at 1790 3590 5450 
intervals. 

Ester _ upset_charging Charging of butanol and half 2460 
acetic acid. Remaining acetic 
acid added during reaction. 

Ester_upset _ water _1 Addition of water at 1800 2990 4790 
intervals, 5ml, 7.5ml, 10mI. 

Ester _ upset_ benzoic Addition of benzoic acid (2g 3800 
/ 0.45%w/v) during reaction. 

Ester_upset _ stirrer _1 Stirrer switched off at 
intervals for different time 
periods. 

Ester _ upset_stirrer _ 2 Stirrer switched off at 
intervals for different time 
periods. 

- 52 -



Experimental: Chapter 2.0 

2.5.6 Summary of experiments 

Table 2.8: Table of esterification reactions carried out. 

Name Molar Temp. Catalyst 
ratio fOC fml 

Ester 40 1:2 1 1 1:2 40 1 Characterisation reaction. 
Ester 40 1:2 1 2 1 :2 40 1 Characterisation reaction. 
Ester 40 1:2 1 3 1 :2 40 1 Characterisation reaction. 
Ester 40 1:2 4 1 1:2 40 4 Characterisation reaction. 
Ester 40 1:2 4 2 1:2 40 4 Characterisation reaction. 
Ester 50 1 :0.25 1 1 1:0.25 50 1 Characterisation reaction. 
Ester 50 1 :0.25 1 2 1:0.25 50 1 Characterisation reaction. 
Ester 50 1 :0.25 1 3 1:0.25 50 1 Characterisation reaction. 
Ester GC 40 1 1 1:2 40 1 Reaction followed by GC. 
Ester GC 40 1 2 1 :2 40 1 Reaction followed by GC. 

- - - -

Ester GC 40 1 3 1 :2 40 1 Reaction followed by GC. 
- - -

Ester _ upset_cat 1:2 40 4 Addition of catalyst (lml) 
at intervals. 

Ester _ up set_ charging 1 :2 40 4 Charging of butanol and 
half acetic acid. 
Remaining acetic acid 
added during reaction. 

Ester _ upset_water_1 1 :2 40 4 Addition of water at 
intervals, 5ml, 7.5ml, 
10ml. 

Ester _ up set_ benzoic 1:2 40 4 Addition of benzoic acid 
(2g / 0.45%w/v) during 
reaction. 

Ester _ upset_stirrer_1 1 :2 40 4 Stirrer switched off at 
intervals. 

Ester _ upset_stirrer_2 1 :2 40 4 Stirrer switched off at 
intervals. 

The experiments carried out have been gIven a code to aid identification of the 

conditions used. For all standard reactions the code is as follows: 

Ester abc d 

Where ester indicates an esterification reaction, a the temperature the reaction was run 

at b the molar ratio of butanol to acetic acid, c the amount of catalyst used and if d is , 

present it indicates a repeat reaction. 
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So Ester _40_1:2_1_2 is an esterification reaction carried out at 40°C, with a molar ratio 

of 1 :2, butanol:acetic acid, with 1 ml of catalyst, and this is the second repeat of the 

reaction. 

For reactions followed by GC the code is: 

Ester GC a c d 

The GC indicated that is has been followed by GC, and the molar ratio is not included 

as all GC reactions were performed with a molar ratio of 1 :2. G, c and d are the same as 

in the standard reactions. 

For process upset reactions, the following code is used: 

Ester _ upset_ z 

The ester and upset indicate an esterification reaction with an upset stimulated. The type 

of upset is indicated by z. 

When individual data sets are being referred to, the name of the reaction will be used 

with _ MW or _ NIR at the end to indicate if it is the MW or NIR data sets being used. 

2.6 Data analysis 

2.6.1 Wetting 

2.6.1.1 Aim 

MW and NIR spectra have been collected during the addition of solvent to a sample. 

The percentage mass of solvent present in the sample is known for each spectrum taken. 

Therefore, data sets exist with corresponding reference concentration data. 

The aim of the data analysis of these data sets is to use simple multivariate calibration 

techniques to correlate the collected spectra to the reference concentration data. Once a 

model had been built, unknown samples can be predicted against it to predict the 

relative "wetness" of the sample. A model is built for each type of solvent and sample. 

Various pre-processing techniques exist which can be used on the spectra to improve 

the correlation between the spectra and the concentration data to give the best model. 

Proper pre-processing of the data can help in the development of better predictive 
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DoEMan is a QUI within MATLAB which uses a design of experiment approach to 

calculate a series of calibration models using different pre-processing techniques. The 

aim of this work is to use DoEMan to determine the optimum model to use for 

prediction of the percentage by mass of solvent in the sample. 

2.6.1.2 Experimental details 

The data sets to be used are: 

Models are built for each set of solvent and sample, for both MW and NIR spectra. 

DoEMan is used to build models using various pre-processing techniques and allow 

comparison of the techniques. 

The models can be built using different calibration techniques: PCR, PLS 1 and PLS2, 

and the prediction abilities of each one compared. In this work, PLS 1 and PLS2 have 

been used as only one component concentration is to be calibrated, PLS 1 should be 

sufficient, and it is expected using PLS2 will not improve the predictive ability of the 

calibration. 

DoEMan uses the pre-processing algorithms in the PLS toolbox. Depending on the type 

of spectra to be used, only some of these are useful, and some knowledge of the 

techniques is needed. The pre-processing that is to be looked at is mean centring, Box­

Cox transformation, orthogonal signal correction (OSC) and auto-scaling. 

The predictive ability is assessed based by the root mean error of prediction (RMSEP) 

of the model, and how well the concentrations have been correlated to the spectra by the 

root mean square error of calibration (RMSEC). The models are built using two of the 

three repeat data sets, the calibration data, and the other data set is used as an 

independent validation set. 

Global model 

DoEMan, a Matlab QUI for determining the optimum calibration model (see section 

lA.2.5 for details) was applied to the calibration data set using the pre-processing 
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techniques stated. The calibration models that appeared to be the best were then used 

with the validation data to determine the predictive ability of the model. 

Local models 

The data collected appears to be non-linear, therefore building one large global 

calibration model may decrease the predictive ability of the spectra. The data was split 

into two linear ranges, 0.1 to 1.0ml, and 2.0ml to the maximum amount added. Again 

DoEMan was used to determine the optimum calibration models to use for each linear 

range based on the calibration data. The best models were validated and compared to 

determine the best overall model. 

2.6.2 Drying 

2.6.2.1 Aim 

The drying of propanol from ascorbic acid has been monitored by MW spectroscopy 

(data sets dry _ asc yro, dry _ asc yro _air _1 and 2). The only reference available is the 

spectra of the dry ascorbic acid, before any solvent was added to it. The aim of the work 

is to analyse the data and see if it is possible to determine when the ascorbic acid is dry 

by comparison to the reference spectrum. 

2.6.2.2 Experimental details 

peA 

Principal components analysis (PCA) is performed on the data sets, after first mean 

centring the data. The scores containing the most amount of variance are examined to 

see if they reach a point at which no more variation is occurring between the samples. 

This point would be the point at which the material is dry and no more solvent is being 

removed. 

Residuals 

The reference dry spectrum can be subtracted from the process spectra to give the 

residual spectra. When this residual is zero, or very close, then the difference between 

the process spectra and the reference spectra of the dry material is negligible. therefore 

the material can be determined to be dry. The residuals were calculated for all data sets, 

and these examined to determine if it is possible to detect when the material is dry. 
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2.6.3 Esterification 

2.6.2.1 Reaction progress prediction 

Aim 

Multivariate curve resolution (MeR) is a technique which is used to extract 

concentration profiles and pure component spectra from data with no reference 

concentration data. The majority of esterification reaction data collected in this work 

had no concentration information. Therefore, MeR has been performed on the reaction 

data to extract the concentration profiles and allow the reaction progress to be 

monitored. From these profiles the kinetic constant, k, is calculated. This value indicates 

the rate of reaction. For reactions run with the same conditions, except at different 

temperatures, the k value will be different. The same is true for reactions run with 

different molar ratios. This constant can be compared to assess the effectiveness of 

predicting the reaction progress. 

Experimental details 

A variety of the standard esterification reaction data has been used, ester _ 40_1: 2 _1_1, 2 

and 3. MW and NIR data have both been used. GUIPRO is a GUI within MA TLAB 

developed by Paul Gemperline [61]. A variety of constraints can be used within this 

GUI to aid the resolution of the data. In this work the aim was to minimise the amount 

of pre-processing and pre-analysis of the data to make the MeR techniques as simple 

and quick as possible, and minimise prior knowledge and user input. 

The spectral data is loaded into the GUI, with corresponding time and wavelength data. 

A wavelength range can be selected so any regions not relating to the reaction or 

containing noise can be excluded. The range 4000 to 9000cm-
1 

was used for the NIR 

and the full frequency range for the MW data. The time range is also selected and for all 

data this is set so the first spectrum used in the calculation is that relating to the addition 

of the catalyst, to. The data is visualised using calculated peA scores and any obvious 

outliers removed. 

The first type of pre-processing that can be applied is baseline correction. There are 

various types that can be applied depending on the baseline effect that needs to be 

corrected for. The MW data does not have a baseline so no correction can be applied. 

The NIR data collected is of high quality with no shift in baseline, so no baseline 
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correction is needed. The second type is normalization. This corrects for any drift in the 

spectra which is seen when a region of the data, which is expected to remain constant, 

changes over time. There is no change seen of this kind in the collected spectral data, so 

this pre-processing was not used. 

The number of components to be searched for in the data using MCR must be selected. 

This can be done manually or using an F -test. In either case some knowledge of the 

system is needed. In this data there are four components present, acetic acid, butanol, 

butyl acetate and water. However, there are only two independent components as the 

two reactants are decreasing at the same rate and the two products are increasing at the 

same rate, so they contribute the same amount of variance to the system and are not 

distinguished between. Therefore the number of components is set to two. This rank 

deficiency can be overcome by using kinetic constraints in the curve resolution, which 

will be discussed later. 

The approximate locations of peaks in the composition profiles are determined. This 

can be done using a needle search [99] or EFA [59]. A needle search is performed 

automatically by performing a least-squares fit of a very narrow peak function, a needle, 

on each spectrum. When the location of the needle peak coincides with a maximum 

concentration of a component, a local minimum is often observed in the residual sum of 

squares. The results are displayed and some of the local minima selected. This 

technique may require some user knowledge as a local minima for each component is 

needed. If the correct number is not automatically chosen within the algorithm, then the 

user must decide which to use. EFA calculates initial estimates of the concentration 

profiles and the pure component spectra, and from this automatically approximates the 

location of the peaks. EF A has been used as it requires less user knowledge, so making 

the process simpler. 

A scaling constraint can be applied to the reaction data. A maximum of one for the total 

concentration of the components can be used or a mass balance scaling. The mass 

balance scaling has been used as in most cases the reaction is a closed system with 

nothing being added or removed during the reaction. In the reactions monitored by GC, 

a small volume of sample is removed at intervals; however the mass balance constraint 

has still been applied to allow comparison of the results from all types of reactions. 

- 58 -



Experimental: Chapter 2.0 

There are two types of curve fitling that can be applied; constrained P-ALS (penalty 

alternating least squares) and non-negative ALS [61]. P-ALS requires user knowledge 

and input so complicating the curve resolution. Within this non-negative constraints can 

be applied to the concentration profiles and/or the spectral profiles for each component 

individually. Spectra of the pure components can also be included to aid resolution. 

Non-negative-ALS simply applies non-negative constraints to the pure component 

spectra and the concentration profiles for all components. It IS expected that the 

concentration should be non-negative so this method has been used. 

The final option within GUIPRO is the use of a kinetic fit [99]. Non-linear least squares 

uses the known reaction equation to aid resolution by breaking the rank deficiency of 

the data. The initial concentrations of the components are also used to give a starting 

concentration in the extracted concentration profiles. Concentration profiles for all 

components are predicted and this allows the calculation of the rate constant, k. This 

option has been used in GUIPRO for all the reactions looked at. It is this k value that is 

compared to determine the predictability of curve resolution. 

The rate constants have also been determined for the GC reactions ester_GC_40_1_1, 2 

and 3, run under the same conditions to compare the experiments. 

2.6.2.2 Endpoint determination 

Caterpillar is an adaptive algorithm which can be used to predict the endpoint of a 

reaction, by comparing the now variation to recent variation. 

In caterpillar, two windows with a set window width size (WS) are placed in the data 

(see section 1.4.4.1 in introduction), with an inter-window-distance (inter-WS) between 

them. A principal component analysis (PCA) model is calculated for the second, 

reference window, to describe the "now" variation of the samples in this window. This 

is compared to the old variation in the samples in the detection window. The windows 

are moved through the data stepwise, with the model building repeated at each step, 

until a steady state in the variation is seen and this determined as the end-point of the 

reaction. The windows are separated by an inter-window distance to ensure that a 

constant variation is due to the actual endpoint of the reaction. 
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Optimization of variables to use in caterpillar algorithm 

Aim 

The variables within the algorithm, WS, inter-WS, stepsize, and number of pes to use 

in the model must be defined. The aim of this experiment was to use a reference data set 

to optimise these variables. Once these are determined for a reaction with specific 

conditions, the same variables can be used for subsequent reactions with the same 

conditions. 

Experimental details 

The step-size of the movement of the windows through the data can be changed, this 

was set to one for all analysis due to the data sets being relatively small (-180 samples). 

The significance level below which the reaction must fall before it is deemed to have 

reached stability and hence the endpoint, can also be altered. This was set to 0.99 for all 

analysis to ensure the reaction is truly at its endpoint. 

These variables have been optimised using the ester _ 40 _1: 2 _1_ 3 MW and NIR data 

sets. All the combinations of the different variables to be used can be examined. A 

minimum WS of five and a maximum of ten, with a minimum inter-WS of ten and a 

maximum of 20 are examined. It is convenient to use an inter-WS double that of the 

WS. 

Once the optimum variables to use for these reaction conditions were chosen, the 

algorithm was applied to the spectra collected for the repeat reactions, using the same 

experimental conditions, ester _40_1:2_1_1 and 2. The endpoint should be the same for 

all the repeats. 

2.S.2.3 Process upset detection 

The caterpillar algorithm can also be used to detect process upsets in a reaction. This 

works in a similar way to the endpoint determination, but this time the windows are 

placed side by side. The first window is used as a reference window and the second as a 

detection window. A peA model is calculated for the reference window to describe the 

variation of the samples in this window. The newest samples, contained in the detection 

window, are then compared to this model. If several of the samples in the prediction 

window are significantly different from the reference peA model, this is interpreted as 

process change. Both windows are moved through the data stepwise allowing the 
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reference model to adapt to any process changes. This means the caterpillar algorithm 

will detect the onset of new phases in the process data as they occur. 

Aim 

The variables of WS and number of pes to use in the peA model must be optimised to 

ensure correct determination of process upsets. It is important, that only true process 

upsets are detected and not normal reaction variation as this would lead to false alarms. 

Once the optimum variables have been chosen, the algorithm can be performed on 

spectra collected from reactions with stimulated process upsets to determine if these 

process upsets can be detected. 

Experimental Details 

The characterisation reaction spectra, data sets ester 40 1: 2 4 1 and 2, were used to - - --

determine the WS and the number of pes to be used in the peA model within the 

caterpillar algorithm. This data is representative of the reactions performed, and 

contains only normal process variation. 

The reference data was analysed using a range of window sizes and number of pes and 

the number of atypical samples determined for each combination. The number of 

atypical samples is counted and displayed in an occurrence plot. The significance level 

must also be chosen, but this was set high (0.99) to minimise the number of false 

alarms. 

Generally it is suggested to use a wide WS to ensure that the best representation of the 

variation in all stages of the process is captured. The data examined comprises of only 

around 180 samples, therefore, the WS is limited. A range of five to ten samples in the 

window was looked at. The smallest WS must always be one greater than the maximum 

number of components. One to four components were examined. 
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3.0 Results and Discussion 

3.1 Monitoring the drying of a solid 

Drying processes are widely used in industry, and the process must be carefully 

monitored to ensure the desired endpoint is achieved in the shortest time possible. One 

method to monitor a drying process is to physically remove a sample and test it. This is 

inefficient as the process may need to be stopped to take a sample, and it may be 

necessary to take several samples to ensure the analysis is representative of the whole 

material being dried, which is difficult if the sample is large. 

OMS has the advantage that the whole sample is analysed at once, so a more 

representative measurement of the process is taken. It is also very sensitive to water and 

solvents as they have relatively large dielectric constants, whereas solid materials have 

a low dielectric constant. NIR is used to monitor some drying processes with the use of 

a diffuse reflectance probe. These probes are placed in the solid and analyse a certain 

depth of the material. This has the disadvantage that only one small area of the process 

is sampled, so a representative measurement may not be taken. NIR is to be used in this 

work to monitor a drying process to give a direct comparison to MW spectroscopy, and 

to determine if either method is suitable for the monitoring of the drying of a solid. 

The process of wetting a material with solvent was initially monitored to simulate the 

drying process in reverse i.e. the order of the spectra is collected in reverse order, from 

dry to wet. This is to ensure a change in the amount of solvent in a material can be 

detected by the two techniques and also to give an indication of the limits of detection 

that can be achieved. The actual drying process has also been monitored to show the 

possibilities of using these techniques for monitoring a true drying process. 

3.1.1 Wetting 

Three types of wetting experiment have been performed; the addition of water to sand. 

propanol to ascorbic acid and ethanol to salicylic acid. Reference data exists in the form 

of the quantity of solvent added to the material, quoted as percentage weight for weight. 

The aim of the work is to correlate the concentration information to the spectra to 

n10nitor the process, and allow the prediction of the dryness of new samples. A 

calibration model is to be built which gives the best prediction of new samples. 
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The collected NIR spectra should be linear with respect to the amount of soh'ent added~ 

as according to Beers Law, the absorption is directly proportional to the amount of 

absorbing species present. This should mean simple linear models will be needed for the 

calibration of the NIR spectra to the amount of solvent present. 

The collected MW spectra are expected to be non-linear with respect to the amount of 

solvent added. When the solvent first comes into contact with the dry material, a single 

layer of water is adsorbed. Depending on the inner area of the solid, adsorbed water can 

account for the first 2 - 10% of a solids water content. Once the maximum amount of 

water has been adsorbed, this amount is constant, and no longer affects the 

measurement. The remaining water is absorbed which has a different affect on the 

collected MW spectra. For applications that cover a range from low to high water 

contents, a non-linear calibration method or local calibration models that cover linear 

ranges are needed to handle these two different types of solvent affects. 

3.1.1.1 Addition of water to sand 

Water was added to sand in O.1ml steps to 1ml, then 1ml steps to 10ml and Sml steps 

until the saturation point of 40ml was reached. MW (20 replicates) and NIR (40 

replicates) spectra were recorded at each step. The spectra were averaged before data 

analysis to give one representative spectrum for each step. The process was repeated 

three times to give three replicates. The data sets recorded are wet_sand _water _1, 2 and 

3, for MW and NIR. 

3.1.1.1.1 MW spectra for the addition of water to sand 

Exploratory analysis of the data 

Spectra for one of the process repeats are shown in Figure 3.1.1. These clearly change 

over the course of the process. The dry spectra can be distinguished from the other 

spectra. The first ten spectra, below 1 ml of water added, are very close together. It can 

be seen that below 300MHz there appears to be noise in the spectra. It is expected that 

using frequencies above 300MHz only will result in a better calibration model as the 

noise that appears to be in the spectra will not be included. 
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Figure 3.1.1: MW spectra for the addition of water to sand. The spectra go from red (dry sand) 
through to blue (40ml water). 

PCA has been performed on all three replicates of the process and the scores on PC 1 vs. 

PC2 are shown in Figure 3.1.2. The scores show the variation between the samples. 

There appears to be three clusters in the scores. The water was added in three different 

step sizes, O.1ml, 1ml and Sml, and these three clusters could be due to these different 

step sizes giving different variation. 

The second and third data sets were recorded on the same day, and the first on a 

subsequent day. The scores for the second and third data set (red and green 

respectively) have less variation between them. These two sets are to be used as 

calibration data as they should have similar experimental variation as they were 

recorded on the same day. The first data set is to be used as a true validation set as it 

will have slightly different experimental variation so will test the robustness of the 

calibration model to experimental variation. 
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Figure 3.1.2: Scores on PCI vs. PC2 for MW spectra recorded during the addition of water to sand. 
The process was monitored three times to give three replicate sets of MW spectra. 

Optimisation of calibration method 

A variety of pre-processing techniques can be used within a calibration model to 

improve the correlation between the spectral and concentration data. Some pre­

processing techniques will have a detrimental effect on the calibration model, therefore 

it is important to choose pre-processing techniques carefully. Ideally a model should be 

built using each of the techniques and the models compared. DoEMan is a GUI in 

MA TLAB which allows a range of models to be built with various types of pre­

processing and the predictive ability of the models compared. This gives a reasonable 

idea of how the pre-processing techniques will affect the modelling, and is much 

quicker than building all possible variations of models manually. 

There are several types of pre-processing available to use in the GUI. They are all 

inbuilt MA TLAB functions within the PLS toolbox. Some techniques are not useful for 

the type of data being looked at. It is therefore necessary to choose the techniques most 

likely to improve the calibration using knowledge of the data and the techniques. The 

techniques chosen to be examined are mean centring, Box-Cox transfonnation using 
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logarithmic, squared, cubed and to the power four transformations, OSC, using 1, 2 and 

3 components, and auto-scaling. It was decided these techniques are the most suitable to 

pre-process this data. Mean centring is usually performed as standard so this technique 

was examined. Box-Cox transformations improve the linearity of data and as the data is 

expected to be non-linear this was tried using different transformations. OSC removes 

variation in the data that isn't correlated to the concentration, so this was tried to see if it 

improved the model. Auto-scaling puts all the variables on the same scale so it was 

expected this might improve the model. 

DoEMan uses a design of experiment approach to determine the optimum calibration 

model to use. The response, root mean square error of prediction (RMSEP) or root mean 

square error of calibration (RMSEC) is examined when going from a low level, no pre­

processing, to a high level, with the use of pre-processing. It is a mixed level design, 

with five discreet factors (pre-processing and type of calibration model) varied at two 

levels for three of the factors, four levels for one factor, and five levels for one factor, 

and one continuous factor, the number of latent variables (LVs) to use in the model, 

varied at ten levels. 

A calibration model 1S built uS1ng each of the chosen pre-process1ng techniques 

individually, and using a combination of the pre-processing techniques. The error of 

calibration (RMSEC) and error of prediction (RMSEP) are calculated to allow 

comparison of the models. The RMSEP is calculated by using an independent data set, 

so gives the true validation error (see section 1.4.2.5 in introduction). 

DoEMan does not give the ultimate best parameters to produce the best calibration 

model, but it does give an indication of which pre-processing will improve the model 

and which will have a detrimental effect. This then allows the user to build a smaller 

series of models using the pre-processing techniques expected to improve the 

calibration model. These models can be fully validated using an independent validation 

set of data, and the best calibration model determined. 

The chosen response of the design of experiment is RMSEC and RMSEP, a matrix of 

the response is plotted (Figure 3.1.3 and Figure 3.1.4 respectively) to allow ease of 

comparison. The plots along the main diagonal show the main effects of the pre­

processing techniques as labelled on the axis. The other plots show the interaction 

effects between the pre-processing variables. The abscissas in the subplots relates to the 
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response, either RMSEC or RMSEP. The lower the error in the model the better the , 

fitting of the model. 

In the subplots the response, RMSEC or RMSEP, for the variables are indicated by 

points that are connected with lines. The ordinate of the subplot indicates the level of 

the pre-processing used. In the majority of cases, 1 indicates the pre-processing is not 

used, and this is termed the low level. 2 indicates the pre-processing has been used, and 

this is referred to as the high level. In the cases where there are more levels, the pre­

processing technique has been used with several different parameters. In the case of the 

Box-Cox transformation, 1 indicates the pre-processing is not used, 2 indicates it is used 

with power = 0, logarithmic transformation; 3 indicates power = 1, square root 

transformation, 4 indicates power = 2, cube root transformation and 5 power = 3, root to 

the power four transformation. In the case of OSC, 1 indicates OSC isn't used, 2 

indicates 1 OSC component is used, a 3, 2 OSC components are used and 4, 3 OSC 

components are used. 

The type of pre-processing labels the row. In the subplots with two lines, the interaction 

effects are shown. The lines correspond to the level of pre-processing used, blue for off, 

low level, and green for on, high level. The pre-processing examined is labelled at the 

foot of the column. The rows and columns have also been labelled with letters to aid 

identification when describing a plot. 

The bottom row of plots (g,a) through to (g,f) show the error for the models built with 

different numbers of LV s. It is important to include the correct number of LV s so that 

all the relevant variation in the data is modelled, without including noise. The number of 

LVs to use is a compromise between low error, and a low number ofLVs. 
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Figure 3.1.3: Results of DoEMan using the second and third data sets showing the effects of the 
different pre-processing used. The error shown is the RMSEC. The plots along the main diagonal 
show the main effects of the pre-processing techniques as labelled on the axis. The other plots show 
the interaction effects between the pre-processing variables. In the subplots the RMSEC for the 
variables are indicated by points that are connected with lines. The ordinate of the subplots 
indicate the level of the pre-processing used. The type of pre-processing labels the row. 1 indicates 
the pre-processing is not used, and this is termed the low level. 2 indicates the pre-processing has 
been used, and this is referred to as the high level. In the subplots with two lines, the interaction 
effects are shown. The lines correspond to the level of pre-processing used, blue for low, and green 
for high. The pre-processing examined is labelled at the foot of the column. The rows and columns 
have also been labelled with letters to aid identification when describing a plot. 
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Figure 3.1.4: Results of DoEMan using the second and third data sets showing the effects of the 
different pre-processing used. The error shown is the RMSEP. The plots along the main diagonal 
show the main effects of the pre-processing techniques as labelled on the axis. The other plots show 
the interaction effects between the pre-processing variables. In the subplots the RMSEP for the 
variables are indicated by points that are connected with lines. The ordinate of the subplots 
indicates the level of the pre-processing used. The type of pre-processing labels the row. 1 indicates 
the pre-processing is not used, and this is termed the low level. 2 indicates the pre-processing has 
been used, and this is referred to as the high level. In the subplots with two lines, the interaction 
effects are shown. The lines correspond to the level of pre-processing used, blue for low, and green 
for high. The pre-processing examined is labelled at the foot of the column. The rows and columns 
have also been labelled with letters to aid identification when describing a plot. 
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Optimisation of the calibration model using the second and third data sets 

The second and third data sets for the MW data (wet_sand _ water _2 and 3 _ MT¥) have 

been combined to build a calibration model. The first data set is then used as an 

independent validation set. The optimum pre-processing methods to use to build a 

calibration model with this data is examined using DoEMan. The resulting response 

plots for RMSEC and RMSEP are shown in Figure 3.1.3 and Figure 3.1.4 respectively. 

These plots are used to give an indication of which pre-processing techniques improve 

the model, and then individual models are constructed using the optimum methods and 

these models validated independently. 

PLS 1 and 2 have been used in the DoEMan as possible calibration methods. The 

models built using each technique should be identical as only one component is being 

modelled. In Figure 3.1.3 (a,a) the PLS 1 and PLS2 models are compared. PLS 1 is 

indicated by 1 on the subordinate, and PLS2 by 2. As discussed, the line indicates the 

response, RMSEC. There is no difference in RMSEC between the PLS 1 and PLS2 

models as expected, therefore it is reasonable to assume a PLS 1 model will be 

sufficient. 

Looking at the major effects of the pre-processing, auto-scaling appears to be the only 

technique that lowers the RMSEC and improves the model (Figure 3.1.3 (e,e)). This can 

be seen in the plot as the error is lower at 2, the high level, with auto-scaling on, than at 

1, the low level, with no scaling. The plots for all the other pre-processing techniques 

show a larger or the same response when using the pre-processing in the high level. 

Therefore the other techniques appear to have a detrimental effect, or have no 

improvement on the model. 

The minor effects need only be looked at between auto-scaling and the remaining pre­

processing techniques, as it has been shown only auto-scaling improves the model. 

These are shown in plot Figure 3.1.3 (e,a) through to (e,d). The blue line indicates the 

secondary pre-processing, as shown at the foot of the column, is not used, and the green 

line indicates the pre-processing is applied to the data, so for the Figure 3.1.3 (e,b), the 

blue line at point 1 had no pre-processing, and the green line at 2 has auto-scaling 

applied followed by mean centring, The pre-processing is applied in the order of that of 

the row header followed by that of the column label. Looking at the remaining plots 
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From these plots it appears that only auto-scaling will improve the fitting of the model, 

and the use of PLS 1 is sufficient. The RMSEP plots, Figure 3.l.4, are also examined to 

identify which pre-processing techniques will improve the prediction error of the model. 

The models built are not validated with an independent data set, therefore this prediction 

error is only an indication of what can be expected. It is important to test the optimum 

calibration models with an independent data set. 

Looking at the major effects in the RMSEP plot (Figure 3.1.4), there is no difference in 

the models built using either PLS 1 or PLS2. From the RMSEP it seems that the use of 

OSC will give a better calibration model, and using one, two or three OSC components 

will give the same error. However, from the RMSEC the use of auto-scaling looks 

promising. From the RMSEP using no Box-Cox transformation gives the lowest error. 

Using a power=l gives the highest error, and this decreases from power=2 onwards. 

The data is expected to be non-linear so the use of Box -Cox is to be investigated. 

The use of auto-scaling, OSC and Box-Cox transformation as pre-processing techniques 

for the calibration of percentage water in sand were investigated. Box-Cox will be 

examined using a power of 0 and 1 to see what difference this makes to the model. This 

involves building a series of models using the different pre-processing techniques, as 

well as a combination of the techniques, using the second and third data sets as the 

calibration data (wet_sand _water _2 and 3_ MW). When applying two pre-processing 

techniques, two calibration models must be built with each technique applied first, as 

the order in which the pre-processing techniques are applied will affect the resulting 

calibration model. The models were validated USIng the first data set 

(wet_sand_water _l_MW), which is an independent data set. 

Global Calibration models 

No pre-processing 

As discussed earlier, only frequencies above 300MHz are to be examined in the data 

analysis. A PLS model has been built using the raw MW spectra, which has had no pre­

processing applied to it. This is preformed in MATLAB using the PLS toolbox. The 

percentage variance captured in each LV is given in Table 3.1.1 for both the X-block 

(spectra) and Y-block (concentration) data. It is important to choose the number of LVs 

to use in the model which show a high correlation with the concentration data and also 

explain the variation in the spectra. Enough variables must be included to ensure all the 
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(spectra) and Y-block (concentration) data. It is important to choose the number of LVs 

to use in the model which show a high correlation with the concentration data and also 

explain the variation in the spectra. Enough variables must be included to ensure all the 

relevant variance is included, but inclusion of too many will cause over-fitting of the 

data. The percentage variance captured by each block for each latent variable calculated 

can be represented visually (Figure 3.1.5). 

With 3 LVs 98.08% of the X-block is captured and 98.36% of the Y-block. With 4 LVs, 

only a further 0.37% variance of X is captured and 1.14% of Y. This is reduced to 0.22% 

in X and 0.29% in Y for 5 LV s. It is difficult to determine from looking at the 

percentage variance captured how many LVs need to be included in the model, so other 

methods must also be examined. 

Table 3.1.1: Percentage variance captured by PLS model built using raw MW spectra, data sets 2 
and 3, collected for the addition of water to sand. The percentage variance captured is shown for 
both the X-block (spectra) and Y-block (concentration). 

X-Block V-Block 
LV This LV Total This LV Total 
1 84.79 84.79 41.40 41.40 

2 11.57 96.36 47.56 88.96 

3 1.67 98.03 9.40 98.36 

4 0.37 98.40 1.14 99.50 

5 0.22 98.63 0.29 99.79 

6 0.26 98.88 0.04 99.83 

7 0.10 98.99 0.08 99.91 

8 0.20 99.18 0.02 99.93 

9 0.14 99.33 0.02 99.95 

10 0.07 99.40 0.01 99.96 
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Figure 3.1.5: Scree plot for the PLS model built using raw MW data sets 2 and 3, for the addition of 
water to sand. The percentage variance captured for the X (spectra) and Y (concentration) blocks 
are shown for each latent variable calculated. 
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Figure 3.1.6: Loadings for the PLS model built using raw MW data sets 2 and 3, for the addition of 
water to sand, in the first four LVs; a) LVI; b) LV2; c) LV3; d) LV4. 
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The loadings in the LV s are shown in Figure 3.1.6, which show the variance in the 

spectra that is captured. The first LV captures the most variation (Figure 3.1.6a) and 

represents the average spectrum. The cut-off frequency is dependent on the dielectric 

constant of a sample, and so is different for different components. The cut-off point in 

this loading is at around III OMHz. In L V2 this has moved to 1000MHz, and 700MHz 

in L V3. This suggests the LV s are capturing variation due to different components. This 

is the main variation seen in the loadings, and can be used to model the process. As 

more LVs are added, the variation captured is likely to be noise. LVs 2, 3 and 4 (Figure 

3.1.6b, c, d respectively) still seem to have some useful variation, but do seem to be 

increasingly noisy. 

The scores plotted against sample number are shown in Figure 3.1.7. The first set of 

samples contains 25 samples and the second 26 which is why there are two groups of 

samples. The scores show the variation between samples. The samples are in order of 

increasing concentration so it is expected to see an increase in the scores. Looking at the 

scores on L V2 (Figure 3.1. 7b) there appears to be one group from 1 to 11 samples, and 

then a group from 12 to 20, and a further group for the last five samples. This is because 

for the first 11 samples, the water was added in steps of O.lml, after this in steps of Iml, 

and then steps of 5ml, so the variation between the first 11 samples is much smaller. 

The variation in this LV seems quite regular as the scores increase in a regular manner. 

It is quite clear that this LV contains the information for the second and third group of 

samples as these are well defined. LVI (Figure 3 .1.7a) contains the information for the 

first group of samples, as there is a large amount of variation for the first group of 

samples. 

It is hard to decide from these plots the optimum number of LV s to use to build a good 

calibration model. Therefore, models have been built using the full range of LV s. These 

models were then validated using the independent validation set, and a validation error 

calculated to allow comparison of the models. 
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Figure 3.1.8: Plots of actual vs. predicted concentration of water in sand, % weight for weight, for 
the models built using different numbers of LVs using raw MW spectra. The black dots represent 
the samples included in the model, and the red triangles are the independent validation data set 
samples; a) model built using 3 LVs; b) model built using 4 LVs; c) model built using 5 LVs. 
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The actual vs. predicted concentrations for the three models expected to give the best 

predictions, built with different numbers of LV s, are shown in Figure 3.1.8. From these 

plots it can be seen that the model built does not predict the new samples very well 

(represented by the red triangles), as they do not sit on the line of best fit. It appears that 

using 5 LV s in the model gives the best prediction, as the predicted values are closest to 

the line of best fit (Figure 3.1.8c). The models themselves do not appear to be yery 

good, as the samples used to build the model (represented by black circles) do not sit on 

the line. Again, using 5 LVs seems to give the best model as the samples fit well: 

however there is a possibility that the samples have been over fitted by including noise 

in the model. It is hard to decide from these plots which model gives the best prediction. 

A calculation of the prediction error allows the models to be compared. 

The residual sum of squares (RSSQ) is calculated within the PLS algorithm in the PLS 

toolbox and can be used to compare the relative merits of the models built using 

different numbers of LV s (see section 1.4.2.5 in introduction). 

The RSSQ for the raw data models are shown in Table 3.1.2 for 1 to 10 LV s to ensure 

the optimum LV is chosen. From this it can be seen that using 10 LV s gives the lowest 

error in the model, but from examination of the other evidence, it was decided using 

more than 5 LV s starts to introduce noise into the model. It appears that the use of 10 

LV s overfits the data, and so should not be used. A compromise between a low error 

and a low number of LV s, to ensure new samples are predicted well and also the data 

isn't overfitted, must be used. Often the error will reach a minimum and then increase 

again, before decreasing once more. This is seen with 4 LV s which has a lower error 

than 5 LV s and then the error decreases. 4 LV s are to be used in the model, as this is a , 

compromise between a low error and a low number of LV s. This model is to be used for 

comparison to other models built with different pre-processing techniques. 

Table 3.1.2: Residual sum of squares (RSSQ) error for PLS models built using MW spectra, over 
300MHz, and using different numbers of LVs, for the addition of water to sand. 

No. LVs RSSQ No. LVs RSSQ 

1 1385.7 6 40.898 

2 299.33 7 21.962 

3 82.634 8 17.598 

4 48.872 9 16.441 

5 49.068 10 16.209 
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The final model was also built using all frequencies, and compared to the validation 

error, to ensure that no useful information had been removed. The errors are shown in 

Table 3.1.3. Using 9 LVs gives the lowest error. However, as discussed before, using 

too many LV s introduces noise into the system, and it is likely the data will be 

overfitted. Therefore a compromise of 5 or 6 LV s should probably be used, but it is hard 

to decide the optimum to use. This shows that including the whole frequency range 

gives a different error in the model, and this is slightly lower in this example. For the 

rest of the models, the models will be built with the full frequency range and 

frequencies above 300MHz to examine the difference. 

Table 3.1.3: Residual sum of squares (RSSQ) error for PLS models built using raw MW spectra, all 
frequencies and using different numbers of LVs, for the addition of water to sand. 

No. LVs RSSQ No. LVs RSSQ 
1 1404.6 6 35.166 
2 299.10 7 20.011 
3 80.764 8 16.416 
4 48.271 9 16.211 
5 46.393 10 16.450 

Auto-scaling 

The second set of models was built using MW spectra and concentration data that were 

first auto-scaled. The validation set was scaled accordingly. The determination of the 

optimum number of LV s to use was carried out in the same way as for the raw data 

models, by using the validation set to determine the RSSQ for the model. Models were 

built using spectra covering the whole frequency range, and also just above 300MHz. It 

was determined to use a model built with 5 LV s for all frequencies, and 8 LV s for 

above 300MHz. 

Box-Cox transformation 

This set of models was built using MW spectra and concentration data pre-processed 

using the Box-Cox transformation using a power equal to 0 (logarithmic 

transformation) and 1 (square root transformation). The determination of the optimum 

number of LVs to use was carried out in the same way. For the model built using po\ver 

= 0, it was decided to use 4 LV s for all frequencies. and 3 LV s for models built with 

spectra with frequencies above 300MHz. For the model built using power = 1, it was 
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5 LVs for both types of model. The use of power = 0 gave the lowest error, so this is 

used in the pre-processing for the following models. 

Auto-scaling followed by Box-Cox 

The spectra were first auto-scaled then transformed using logarithmic Box-Cox. The 

optimum number ofLVs for the model built with all frequencies was found to be 3, and 

also for the model built with frequencies over 300Mz. 

Box-Cox followed by auto-scaling 

The spectra were first subjected to Box-Cox logarithmic transformation, then auto­

scaled. The optimum number of LV s for the model built with all frequencies was found 

to be 7, and 2 LV s for the model built with frequencies over 300Mz. 

OSC 

OSC was used in the model to reduce the number of LV s needed to model the data. 

Models were built using one and two OSC components. It was decided to use 5 LV s for 

both one and two OSC components, for both models built using all frequencies and 

above 300MHz. 

Conclusions 

Table 3.1.4 gives a summary of the errors associated with each model constructed. The 

RMSEP can be calculated using the predicted values (see equation 3.1.1). This error is 

now in the same magnitude as the concentration values so can be directly compared to 

the values. RMSEP allows comparison of the models. From this it can be seen that 

using no pre-processing gives a comparatively large RMSEP of 1.2 and 1.4 for the 

model built with all frequencies and over 300MHz respectively, therefore pre­

processing should be used to improve the model. It was hoped to get as small an 

RMSEP as possible. 

The use of Box-Cox logarithmic transformation alone, and Box-Cox (logarithmic) 

followed by auto-scaling give a small RMSEP in the region of 0.4 for the models 

constructed with all frequencies, and 0.5 for over 300MHz. Using Box-Cox square root 

transformation gave much higher errors of 1.1 and 2.1 for all frequencies and above 

300MHz respectively. Due to the poor prediction ability of these models, the Box-Cox 

logarithmic transformation was used for the remaining model building. 
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The lowest error in these models is with the use of auto-scaling followed by Box-Cox 

(logarithmic) which gives an RMSEP of only 0.05 when using all frequencies of the 

spectra in the model, and 0.06 when using only frequencies over 300MHz. 

The use of one and two OSC components gave similar results. The RMSEPs are 

relatively poor, 0.7 for all frequencies, and 0.6 using frequencies above 300MHz. Due 

to the poor prediction ability of using OSC, this method was not used as a pre­

processing technique for the subsequent model building. 

Table 3.1.4: Summary of errors for all the global models built for the MW spectra of the addition 
of water to sand. 

Preprocessing technique No. LVS RSSQ RMSEP 
Raw All freq 6 35.17 l.210 

over 300 MHZ 4 48.87 1.427 
Auto-scaling All freq 5 0.136 0.075 

over 300 MHZ 8 0.246 0.101 
Box-Cox, logarithmic All freq 4 3.626 0.389 

over 300 MHZ 3 6.616 0.525 
Box -Cox, square root All freq 5 28.95 l.098 

over 300 MHZ 5 10l.6 2.057 
Auto-scaling and Box -Cox, All freq 3 0.061 0.050 
(logarithmic) over 300 MHZ 3 0.099 0.064 
Box-Cox (logarithmic) and All freq 7 4.479 0.432 
auto-scaling over 300 MHZ 2 7.606 0.563 
1 OSC component All freq 5 13.42 0.748 

over 300 MHZ 5 10.27 0.654 
2 OSC components All freq 5 12.62 0.725 

over 300 MHZ 5 8.857 0.608 

From the errors it appears that using all frequencies gives a better model than using just 

frequencies above 300Mz, except when OSC is used in the modelling. This region 

below 300MHz may relate to the non-linearity of the data, so would aid the correlation 

of the spectra to the concentration data. 

The lowest error for the global calibration model was achieved by using auto-scaling 

followed by Box-Cox logarithmic transformation as pre-processing techniques, using 

the full spectral frequency range. This is a global model that covers a \\"ide range of 

concentrations, 0 to 270/0. To check the calibration model predicts well over the entire 

range, the percentage error, %RMSEP, is calculated for each validation sample (see 

section 1.4.2.5 in introduction). 
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This is shown against the actual concentration of the sample in Figure 3.1.9. This gives 

a clearer indication of the magnitude of the prediction error over the whole calibration 

range than simply looking at the RMSEP. The prediction error at the lower end is close 

to 7%. This is a reasonable error as the concentration values predicted are very small. 

At the higher end the error is near 3%, and is fairly consistent for values over 100/0 

water in sand. This is a very acceptable level of error. The %RMSEP increases with 

decreasing concentration of water, but is still acceptable over the whole range of 

concentrations. 

8 ~--------------------------------------------_________________ ~ 

------

'-- - --- ----

o - --

Amount of water in sand I %w/w 

Figure 3.1.9: Plot of the percentage RMSEP for the validation set predicted against the global 
model built for the prediction of amount of water in sand (%w/w) using auto-scaling and Box-Cox 
logarithmic transformation to pre-process the MW spectra covering the whole frequency range. 

These models have been built using the entire concentration range to give a global 

model covering the whole range. It was suggested that the whole range may not be 

linear, but there may be two linear ranges present, due to the non-linearity expected 

from the addition of water. The sample first adsorbs the water, and then absorbs it 

giving two different responses, and possibly two different linear ranges. Therefore the 

models were built in the same way, but using two local models, one from 0 to 0.7% 

(lower level), and the other encompassing the remaining concentrations (higher Ie eI). 
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Local calibration models 

The same types of pre-processing were considered as with the global models. It appears 

from the global models that some are detrimental to the model building but this could 

be due to the data being non-linear, therefore when the data is split into linear ranges the 

pre-processing may have more use. DoEMan has been used with both local data sets , 

and only auto-scaling was predicted to have any use in the model building. This was 

also suggested for the global model, but the use of auto-scaling followed by Box-Cox 

logarithmic transformation proved to give the best model. Therefore the different types 

of pre-processing were compared. 

Lower level models 

The models have been built in exactly the same way as the global models, and cover the 

range 0 to 0.7% w/w water in sand. The optimum number of LV s to use was decided by 

examination of the percentage variance captured in the LV s and also the calculated 

RSSQ. The resulting calculated errors associated with each model built are shown in 

Table 3.1.5. 

Table 3.1.5: Summary of errors for all the lower level local models built for the MW spectra of the 
addition of water to sand. 

Pre-processing No. LVS RSSQ RMSEP 
None All freq 3 0.018 0.045 

over 300 MHZ 3 0.018 0.045 
Auto-scaling All freq 2 0.232 0.161 

over 300 MHZ 2 0.227 0.159 
Box -Cox transformation All freq 2 2.946 0.572 
(logarithmic) over 300 MHZ 2 2.012 0.473 
Auto-scaling and Box-Cox All freq 2 12.61 1.184 
(logarithmic) over 300 MHZ 2 12.62 1.184 
Box-Cox (logarithmic) and All freq 3 1546 41.45 
auto-scaling over 300 MHZ 2 322.5 5.986 

The use of no pre-processing techniques produced the best model with a RMSEP of 

only 0.045 for the use of all frequencies and for over 300MHz. This error is slightly 

lower than that achieved for the global model with the use of auto-scaling and Box-Cox 

logarithmic transformation for the full spectral frequency range, which gave an RMSEP 

of 0.050. These models are built with 3 L Vs which seems a reasonably low number. 
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The errors for the models built using Box -Cox (logarithmic) followed by auto-scaling 

are huge at 41.45 compared to previous low errors seen below 1, for all frequencies, and 

65.986 for above 300MHz. The Box-Cox (logarithmic) models give errors similar to 

that achieved with the global model. The auto-scaling followed by Box-Cox 

(logarithmic) was found to be the best global model, but gives higher errors here with 

1.184 for both models compared to 0.05 achieved for the global model. 

There is little difference in the errors produced for the majority of models built using 

spectra covering the full frequency range and those built using only frequencies over 

300MHz. This suggests there is no information below 300MHz which aids the 

modelling, but there is also no noise present which would decrease the modelling 

ability. 

Higher level models 

These models have been built in the same way as the lower level models, and 

encompass the range 1 to 27% w/w water in sand. The resulting calculated errors 

associated with each model built are shown in Table 3.1.6. 

Table 3.1.6: Summary of error for all the higher level local models built for the MW spectra of the 
addition of water to sand. 

Pre-processing No. LVS RSSQ RMSEP 
None All freq 6 16.54 1.087 

over 300 MHZ 6 16.68 1.091 
Auto-scaling All freq 2 0.172 0.111 

over 300 MHZ 4 0.378 0.164 
Box-Cox logarithmic All freq 3 0.262 0.l37 
transformation over 300 MHZ 3 0.504 0.l90 
Auto-scaling and Box-Cox All freq 3 0.020 0.037 
(logarithmic) over 300 MHZ 3 0.020 0.038 
Box-Cox (logarithmic) and All freq 3 0.059 0.065 
auto-scaling over 300 MHZ 2 0.l38 0.099 

The lowest RMSEP in these models is for those built using spectra which is auto-scaled, 

then subjected to Box-Cox logarithmic transformation. The same error of 0.020 is 

achieved when using the full spectral region and also just frequencies above 300MHz. 

These models are built with 3 LV s which seems a reasonably low number. This is a 

lower error than the best achieved for the global models, and is equivalent to a 3% 
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prediction error in the concentration values. When looking at the error in the global 

model for this region, a 3 % error was achieved, so is a very similar error. 

The models built using Box-Cox (logarithmic) followed by auto-scaling have low errors 

of 0.065 and 0.099 for all frequencies and above 300MHz respectively. This is in 

contrast to the previous models built for the lower region and the global models using 

this pre-processing, which had much larger errors compared to the other pre-processing 

techniques. 

A lower error has been achieved when using the entire frequency range of the spectra, 

instead of just frequencies over 300MHz, to build the models. This is not true for the 

models built using raw data, and data which is subjected to auto-scaling followed by 

Box-Cox logarithmic transformation, in which the errors achieved were the same in 

each case. Generally this suggests there is useful information contained in the spectra 

below 300MHz which needs to be included in the modelling process to aid correlation 

between the spectra and concentration data. 

Conclusions 

The MW data sets for the addition of water to sand has been split into two regions 

which are expected to be linear. These are 0 to 0.7% w/w water in sand, the lower level, 

and 1 to 27% w/w water in sand, the higher level. Local calibration models have been 

built for each region using a variety of pre-processing techniques to optimise the model. 

The errors for the best models for the two local models and the global model are shown 

in Table 3.1.7. The RMSEP is quoted as this allows comparison of the models, and the 

percentage error has been calculated to give a clearer indication of how the RMSEP 

relates to the actual concentration predicted. 
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Table 3.1.7: Summary of errors for the best models built for the MW spectra for the addition of 
water to sand, using different ranges of the data. 

Model Pre-processin ~ No. LVS RMSEP 0/0 error 
Global Auto-scaling and Box- All freq 3 0.050 5 

Cox (logarithmic) 
Local lower Raw All freq 3 0.045 7 
Local higher Auto-scaling and Box- All freq 3 0.037 3 

Cox (logarithmic) 

It has been found that the use of raw data with the entire frequency range gives the 

lowest error of 70/0 for the lower level models. The use of auto-scaling followed by Box­

Cox logarithmic transformation gave the lowest error of 3%> for the higher level range. 

The same error was produced for both the entire frequency range and above 300Mz. 

The higher level has a lower error than the best achieved for the global model, but the 

lower level model has a slightly worse error. This suggests that the data for the lower 

level is not as well correlated to the concentration data. This could be due to the data 

being non-linear or could be due to the MW spectra not being able to detect such a low 

water content. However, the lower level model did not require any pre-processing to 

achieve the best model, so producing a simpler model. 

The best model for the global model and higher level uses Box-Cox logarithmic 

transformation in the pre-processing. This is useful to aid calibration of non-linear data. 

This suggests that the higher level data range is non-linear and it may be helpful to 

break the data into smaller linear regions if possible. 

Building one global model is much simpler than several local models. In this example 

the global model gave an error of 5% which is very reasonable so would be suitable for 

the application. When the error is examined in detail for each local region, an error of 6 

_ 7% was achieved for the lower level, and 3 - 50/0 for the higher level, so the models are 

very comparable. Therefore, for its simplicity and low error, the global model IS a 

suitable compromise. 

Generally a lower error is achieved when using the entire frequency range of the 

spectra, instead of just frequencies over 300MHz, to build the models. Therefore for all 

further model building, the entire spectral range was used. 
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3.1.1.1.2 NIR spectra for the addition of water to sand 

Exploratory analysis of the data 

The NIR data collected for the addition of water to sand is shown in Figure 3.1.10, the 

experiment was repeated three times, and the spectra for each repeat are shown. 
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Figure 3.1.10: Raw NIR spectra for the addition of water to sand. The spectra start in red for the 
dry material, and move towards blue as the water is added. The experiment was repeated three 
times to give three data sets; a) set 1, weCsand_wate,_l_NIR; b) set 2, weCsand_wate,_2_NIR; c) 
set 3, wecsand_wate,_3_NIR. 

The NIR is collected using a diffuse reflectance probe. This sits in the sample and is 

static; therefore the spectra collected only represent a small area of the total sample. The 

water is added in drops, placed on the sample surface, and it takes time for the water to 

spread though the sample and to reach the sampling area of the probe. Therefore the 

true process may not be captured by the probe. This can be seen in the spectra collected, 

as the spectra for each repeat are quite different, so it seems a different process is being 

captured. There is a general increase in response seen in all spectra as water is added 

but the baseline also increases. The baseline in NIR spectra should be constant. To 
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improve the spectra, the baseline has been corrected by normalisation against a region 

where the baseline should be zero, i.e. 9048 to 9996cm-1
• The corrected spectra are 

shown in Figure 3.1.11. 
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Figure 3.1.11: Baseline corrected NIR spectra in the region 9048 to 9996 cm-1
, for the addition of 

water to sand. The spectra start in red for the dry material, and move towards blue as the water is 
added. The experiment was repeated three times to give three data sets; a) set 1, 
weCsand_wate,_l_NIR; b) set 2, wet_sand_wate,_2_NIR; c) set 3, weCsand_wate,_3_NIR. 

With the baseline corrected spectra the spectra still show a general increase as the water 

is added, but are still very different for each repeat. Repeat 1 and 2 (Figure 3.1.11 a and 

b) have two distinct clusters of spectra, and the spectra do seem to change in respect to 

the water being added. However, it appears the spectra are not in order of increasing 

water concentration in the upper cluster of spectra, and there are spectra coloured purple 

with a higher absorbance than the blue spectra which represent the highest concentration 

of water in the sand. The third data set (Figure 3 .1.11 c) seem to be much more regular 

spectra, with a regular increase in absorbance as the water is added. 

PCA was perfonned on the three sets of spectra and the scores on PC 1 vs. PC2 are 

shown in Figure 3.1.12. From this it can be seen that the three data sets are very 

different as can be seen in the spectra. This suggests there is experimental variation, 
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possibly due to the way in which the water was added and then how it spread through 

the sample for each experiment, which may lead to the spectra collected being different. 

The first set is the most different. The second and third data sets are similar, and the 

variation between the samples does seem to change in the same way. However, for the 

second set there appears to be a cluster of samples in which there is little variation. This 

may be a problem when modelling the data, as the spectra for the samples may not be 

different enough to correlate them to the concentration data. The second and third data 

sets were collected on the same day and the first on a subsequent day, so it is expected 

the data sets will have some variation between them due to possible different 

experimental conditions on the different days. 
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Calibration models 

A calibration model was built using the second and third data sets as the calibration data 

and the third set as the validation, although it was not expected that this would produce 

a good model as the data sets appear to be so different. Models have also been built 
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using the third data set as the calibration data and the second data set as the validation 

set, as these data sets are more similar so it was expected this will give a better model. 

DoEMan was used on the data sets to give an indication as to which pre-processing 

techniques may improve the modelling. The same pre-processing techniques were 

looked at as with the MW data. The Box-Cox logarithmic transformation is used. All 

NIR wavenumber have been included in the calibration models, as from the spectra 

there does not appear to be noise in the data in any wavelength region. 

The calibration models were built, the optimum number of LV s to use determined, and 

the RSSQ and RMSEP calculated for each model. The results for the models built using 

data sets 2 and 3, and validated with set 1 are shown in Table 3.1.8 and those built using 

set 3 and validated with set 2 are shown in Table 3.1.9. 

Table 3.1.8: Summary of errors for the various models built using the second and third data sets, 
and validated using the first data set for the NIR spectra of the addition of water to sand. 

Preprocessing technique No. LVS RSSQ RMSEP 
Raw 3 4118 13.7 
Auto-scaling 9 44.04 1.4 
Box-Cox (logarithmic) 2 22.95 1.0 
Auto and Box-Cox (logarithmic) 5 2.792 0.36 
Box-Cox (logarithmic) and auto-scaling 8 67.71 l.8 
OSC 1 component 1 2372 10.4 
OSC 2 component 1 2374 10.4 
OSC 3 component 1 2374 10.4 

As can be seen from the errors for the calibration models built using the second and 

third data sets (Table 3.1.8) the RMSEP is over 1 for all models, except with the use of 

auto-scaling followed by Box-Cox (logarithmic). These errors are much too high to be 

useful and show that the data has not been modelled well at all. The auto-scaling , 

followed by Box-Cox (logarithmic) gives a reasonable error of 0.36 but is still much 

higher than that achieved with the MW spectra in which the best model gave an 

RMSEP of 0.05. 

With the use of the third data set as the calibration data, the errors are still very high, 

with the majority over 1 (Table 3.1.9). Again, the use of auto-scaling followed by Box­

Cox (logarithmic) gives the lowest error of 0.51. This is higher than that achieved for 
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the models using data sets 2 and 3, so no improvement has been made by selecting the 

data sets thought to be more similar. 

Table 3.1.9: Summary of errors for the various models built using the third data set and validated 
using the second data set for the NIR spectra of the addition of water to sand ' 

Preprocessing technique No. LVS RSSQ RMSEP 
Raw 3 1980 14.1 
Auto-scaling 4 30.66 1.8 
Box-Cox (logarithmic) 3 11.02 1.05 
Auto-scaling and Box-Cox (logarithmic) 2 2.592 0.51 
Box-Cox (logarithmic) and auto-scaling 4 10.05 1.00 
OSC 1 component 3 1364 7.9 
OSC 2 component 2 1666 8.7 

Conclusions 

The NIR data has been used to build a calibration model to predict the amount of water 

contained in sand. All the models built gave very high errors when compared to the 

equivalent models built using MW spectra. The spectra collected is not good enough to 

build a good calibration model. This is due to the use of a diffuse reflectance probe 

which only samples a small area of the material, and so the true process is not captured. 

For the remaining experiments the NIR spectra collected is also not very good, and does 

not appear to be representative of the process. Therefore, only the MW data is to be 

used for calibration. 

3.1.1.2 Addition of propanol to ascorbic acid 

Propanol was added to ascorbic acid (lOOg) in steps of 0 to 1 ml, as O.lml additions, 2 to 

10 ml as 1 ml additions and 15 to 30ml as 5ml additions, at which point the material was 

saturated with solvent. 20 repeat MW spectra, and 40 repeat NIR spectra were taken at 

each addition. These spectra were averaged before data analysis. This was repeated 

three times. The concentration data is quoted as percentage w/w propanol in ascorbic 

acid. The data sets collected are 1I'et_ascyro_l, 2 and 3. 

3.1.1.2.1 MW spectra for the addition of propanol to ascorbic acid 

Exploratory analysis of data 

The data consists of three repeat data sets. The first one recorded on one day, and the 

second and third on a second day. Typical spectra collected are shown in Figure ~ .1.1 ~. 
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From the spectra it can be seen there is an obvious change in the spectra as propanol is 

added. The change is not as large as seen for the addition of water to sand (see Figure 

3.1.1). The dielectic constant of water is large, 80.4 at 20°C, compared to that of 

propanol, 21.8 at 20°C, so an increase in water will have a larger effect of the spectra 

than propanol. 
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Figure 3.1.13: Example MW spectra for the addition of propanol to ascorbic acid. The spectra start 
red when the material is dry and go to blue as propanol is added. 

PCA was perfonned on all three sets of data and the scores on PC 1 vs. PC2 are shown 

in Figure 3.1.14. This plot shows how the variation between the samples, in each data 

set changes. The scores for each set of data are similar, and follow a similar shape, 

therefore the variation within the sets is similar. 

There may be three ranges present as there appears to be three groups of samples. 

However, this seems to be due to the fact the propanol was added in three different 

steps, O.1ml, Iml and Sml additions. This may lead to a difference in variation in the 

samples and hence the three regions. This makes it difficult to decide if the data can be 

split into smaller linear ranges. 
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Figure 3.1.14: Scores on PCl vs. PC2 for PCA of the MW spectra for the addition of propanol to 
ascorbic acid. 

The data sets are to be split up as in the addition of water to sand. The first data set is to 

be used as a validation set as this was recorded on a different day so has independent 

experimental variation, and the second and third sets are to be used to as the calibration 

data. 

Optimisation of PLS model 

DoEMan was used with the calibration data to decide which pre-processing techniques 

it was worth examining in the PLS model building. The results were analysed in the 

same way as in the water added to sand experiments. 

From the RMSEC plots it was found that the use of PLS 1 or PLS2 makes no difference 

to the model, also mean centring was found to have a negative effect on the model 

building. Box-Cox (logarithmic) and auto-scaling were both found to have a positive 

effect on the model as seen in the previous example, and the use of auto-scaling 

followed by Box-Cox (logarithmic) also improved the model. In this case, OSC was 

found to improve the model, as well as the use of OSC and Box-Cox (logarithmic), and 

auto-scaling and OSC. 
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In the RMSEP plot, Box-Cox (logarithmic) and OSC were found to have a negative 

effect on the model, and auto-scaling and mean centring to have no effect. This suggests 

no pre-processing should be used. A similar thing was found in the addition of water to 

sand optimisation of the models, but when the individual models were built some of the , 
pre-processing techniques did improve the model. 

The use of auto-scaling, Box-Cox logarithmic transformation and OSC should be 

examined, and a combination of the pre-processing, and the results compared to a 

model built using the raw data to determine the best model to use. 

Global calibration models 

Models have been built using the MW spectra for the entire concentration range, using 

different pre-processing techniques. Theses models are validated using an independent 

data set, and the errors calculated (Table 3.1.10). 

Table 3.1.10: Summary of errors calculated for models built using different pre-processing 
techniques to calibrate the amount of propanol added to ascorbic acid. 

Preprocessing technique No. LVS RSSQ RMSEP 
Raw 5 2.415 0.317 
Auto-scaling 8 0.002 0.010 
Box-Cox (logarithmic) 6 0.065 0.052 
Auto-scaling and Box-Cox (logarithmic) 3 0.011 0.021 
Box-Cox (logarithmic) and auto-scaling 8 0.003 0.011 
OSC (2 components) 8 1301 7.364 

The use of no pre-processing gives a fairly high RMSEP of 0.317. This suggests some 

sort of pre-processing is necessary to increase the correlation between the spectral and 

concentration data to build a better model. 

The lowest RMSEP is achieved for models built USIng auto-scaling and Box-Cox 

(logarithmic) followed by auto-scaling, which both give an error of 0.010. This is a low 

error, but both models have been built using 8 LV s, which is a large number to use. This 

suggests that noise is included in the model, and it has been over-fitted to produce a 

lower error. 

The use of OSC gives a very high RMSEP of 7.364, and uses a large number of LVs, 8. 

The amount of variance in the concentration data captured by this PLS model was much 

less. Therefore more LV s were needed to be included in the model to include the 
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relevant variation. This defeats the object of OSC as it aims to reduce the number of 

LV s needed, therefore this method will not be used in further model building. 

The use of auto-scaling followed by Box-Cox (logarithmic) also gives a low RMSEP of 

0.021. However, this model only uses 3 LV s so it is more likely to have less noise 

included in the model and generally be a better model. To ensure this model predicts 

well over the entire concentration range, the percentage error for each validation sample 

is calculated and this is shown against the actual concentration in Figure 3.1.15. From 

this is can be seen that the model predicts much better at the higher concentration range, 

over 10% propanol in ascorbic acid, with around a 1.5% error. At the lower end of the 

range, the error is still below 3 % which is still very good. The concentrations predicted 

cover a large range, down to low level and it is expected it is harder to predict 

accurately such low levels. 
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Figure 3.1.15: Plot of the percentage error for the validation set predicted .against the ~Iobal model 
built for the prediction of amount of propanol in ascorbic acid (%w/w) usmg auto-scahng followed 
by Box-Cox logarithmic transformation to pre-process the MW spectra. 

Local calibration models 

From the scores plots it seems that the data is not linear, however it is difficult to 

determine where linear regions are in the data. Therefore the data is to be split into two 

regions as previously. Therefore the lower level covers the range 0 to 0.80/0 w/w, and the 

higher level 1.6 to 24% w/w. 
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Lower level models 

A series of models were built using the lower concentration range, and a range of pre­

processing techniques. The RMSEP was calculated and these values quoted in Table 

3.1.11. From this it can be seen that the lowest error of 0.070 was achieved when the 

raw data was used. However this model uses 5 LV s which seems a bit on the high side, 

and the model may be over-fitted. The use of Box-Cox logarithmic transformation gives 

a low error of 0.097 and this uses only 2 LV s so should have less noise included in the 

model and be a better model. This error is considerably larger than that achieved for the 

best global model, which gave an RMSEP of 0.021 using auto-scaling and Box-Cox 

(lo gari thmic ). 

Table 3.1.11: Summary of errors calculated for the lower level local models built using different 
pre-processing techniques to calibrate the amount of propanol added to ascorbic acid. 

Pre-processing technique No. LVS RSSQ RMSEP 
Raw 5 0.049 0.070 
Auto-scaling 2 0.656 0.256 
Box-Cox (logarithmic) 2 0.095 0.097 
Auto-scaling and Box-Cox (logarithmic) 4 32.01 l.789 
Box-Cox (logarithmic) and auto-scaling 2 0.379 0.195 

The use of auto-scaling followed by Box-Cox (logarithmic) gave the smallest error for 

the global model, but here has the largest error here of l.789. 

Higher level models 

Models have been built using the higher range of concentrations and different pre­

processing techniques. The calculated errors are shown in Table 3.1.12. The lowest 

RMSEP of 0.330 has been achieved when using Box-Cox (logarithmic) transformation 

and this uses 3 LV s so seems a reasonable model. This error is much higher than that 

achieved for the best global model, 0.021, and also the best lower level local model, 

0.097. 

Table 3.1.12: Summary of errors calculated for the higher level local models built using different 
pre-processing techniques to calibrate the amount of propanol added to ascorbic acid. 

Pre-processing techniques No. LVS RSSQ RMSEP 

Raw 2 49.41 1.879 

Auto-scaling 2 17.34 l.113 

Box-Cox (logarithmic) 3 l.523 0.330 

Auto-scaling and Box-Cox (logarithmic) 2 20.07 1.197 

Box-Cox (logarithmic) and auto-scaling 8 8.958 0.800 
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The use of Box-Cox logarithmic transformation followed by auto-scaling gives a 

reasonable error of 0.800, but this uses 8 LVs suggesting noise is being included. Auto­

scaling and auto-scaling followed by Box-Cox (logarithmic) also give higher errors of 

1.113 and 1.197 respectively, and only use 2 LV s so seem to be reasonable models. 

Conclusions 

The errors for the global and local models which give the lowest validation error are 

shown in Table 3.1.13. The RMSEP has been quoted to allow comparison of the 

models, and the percentage error calculated based on the mean predicted value to give 

the error in real terms. 

Table 3.1.13: Summary of errors for the best models built for the MW spectra for the addition of 
propanol to ascorbic acid, using different ranges of the data. 

Model Pre-processio2 No. LVS RMSEP 0/0 error 
Global Auto-scaling and Box-Cox 3 0.021 2 

(logarithmic) 
Local lower Box-Cox (logarithmic) 2 0.097 11 
Local higher Box-Cox (logarithmic) 3 0.356 16 

The best model produced is a global model which has only a 2% error when using auto­

scaling and Box-Cox logarithmic transformation as pre-processing. As seen in Figure 

3.1.15 this prediction is good across the whole range of concentrations. This model is 

built with 3 LV s so is a very acceptable model. 

The two local models give much worse models with prediction errors of 11 and 150/0. 

This is unusual, as it would be expected to give similar errors as the global model as the 

same data is used. It seems that modelling the whole data set together improves the 

correlation between the concentration data and the spectra. 

3.1.1.3 Addition of ethanol to salicylic acid 

Ethanol has been added to salicylic acid (83g) in steps of O.1ml for 0 to 1ml, Iml steps 

for 2 to 10ml and 5ml steps for 15 to 25ml, at which point the material was saturated. 

MW spectra (20) were taken at intervals, and these averaged to give one spectrum for 

each addition before analysis. The experiment was carried out three times to giyc three 

replicate sets of spectra. The data sets used are wef_sali_eth_l_2 and 3. 
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3.1.1.3.1 MW spectra for the addition of ethanol of salicylic acid 

Exploratory analysis of spectra 
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Figure 3.1.16: Example MW spectra of the addition of ethanol to salicylic acid. The spectra start 
red, dry salicylic acid, to blue, maximum amount of ethanol (24% w/w). 

From the MW spectra, Figure 3.1.16, it can be seen that the spectra clearly change as 

the propanol is added to the salicylic acid. It is a fairly significant change, so it is 

expected that the amount added can be correlated to the spectra. The change in the 

process is similar to that seen in the addition of propanol to ascorbic acid (Figure 

3.1.13). The dielectric constant of ethanol is 24.3 at 25°C, which is similar to that of 

propanol (21.8 at 20°C), so similar spectra are expected. 

PCA was preformed on the three replicates of the MW spectra, and the scores on PC 1 

against PC2 are shown in Figure 3.1.17. From the scores, the three data sets appear to 

be somewhat different. The variation between the scores within each data set is similar. 

The three different additions of ethanol (0.1, 1 and 5ml steps) seem to give three 

clusters of samples in the scores. The second and third replicates were preformed on 

one day, and the first on a separate day. Therefore, the fust set will be used as an 

independent validation set to test calibration models built on the other two sets of data. 
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Figure 3.1.17: Scores on PC1 vs. PC2 forPCA of the MW spectra for the addition of ethanol to 
salicylic acid. 

Global calibration models 

PLS models have been built using the second and third data set, and the first used as a 

validation set. Different types of pre-processing techniques have been used to build the 

best model. DoEMan was used to determine the pre-processing techniques expected to 

improve the model. None were shown to improve the calibration models, so the same 

pre-processing techniques as examined for the previous examples have been used here. 

Table 3.1.14 shows the validation errors for each model built. From this it can be seen 

that the lowest RMSEP, 0.330, is achieved using Box-Cox logarithmic transformation 

followed by auto-scaling. 4 LV s were needed to build this model, which may be too 

many, and the data may be over-fitted. Auto-scaling followed by Box-Cox (logarithmic) 

gave a similar error of 0.408 and this was built using 3 LVs so perhaps is a better 

model, with less noise included. Box-Cox logarithmic transformation alone also gave a 

reasonable error of 0.503, and this was built with 3 LV s. 
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Tab.l~ 3.1.14: Summary ?f errors for global models built using the MW spectra collected for the 
additIOn of ethanol to salIcylic acid. 

Pre-processin2 techniques No. LVS RSSQ RMSEP 
Raw 2 61.04 l.666 
Auto-scaling 6 1l.71 0.730 
Box-Cox (logarithmic) 3 5.558 0.503 
Auto-scaling and Box-Cox (logarithmic) 3 3.669 0.408 
Box-Cox (logarithmic) and auto-scaling 4 2.397 0.330 

Local calibration models 

The data set has been split into two smaller concentration ranges expected to be more 

linear than using all the data. This comprises of the lower level of 0 to 1 % w/w ethanol 

in salicylic acid, and a higher level of 2 to 24%. Each region has been used to build 

calibration models with the same pre-processing techniques. 

Lower level models 

The errors achieved for the lower level models built with different pre-processing 

techniques are shown in Table 3.l.15. The RMSEP for these models are generally lower 

than those achieved for the global models. The lowest RMSEP is 0.180, achieved using 

Box-Cox logarithmic transformation. This model is based on 2 LV s so is a good model. 

Using no data processing also gave a low error of 0.208, but this uses 5 LVs so noise 

may have been included in the model. All the other models gave an error, RMSEP, over 

1 which is quite high. 

Table 3.1.15: Errors achieved for local models built using the lower region of concentration data, 
for the MW spectra of the addition of ethanol to salicylic acid. 

Pre-processing techniques No. LVS RSSQ RMSEP 

Raw 5 0.431 0.208 

Auto-scaling 2 15.31 l.237 

Box-Cox (logarithmic) 2 0.326 0.180 

Auto-scaling and Box-Cox (logarithmic) 4 98.88 3.144 

Box-Cox (logarithmic) and auto-scaling 4 163.1 4.039 

Higher level models 

The errors for the models built are shown in Table 3.1.16. The lowest RMSEP is 

achieved with auto-scaling followed by Box-Cox (logarithmic), which ga\'e an error of 

0.033. This was built \vith 3 LVs so is a good model. This is a much lower error than 
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the best achieved for the global model, 0.391. The use of Box-Cox (logarithmic) 

followed by auto-scaling gave a low error of 0.214 but this was built with 5 LV s. 

Table 3.1.16: Errors achieved for local models built using the higher region of concentration data, 
for the MW spectra of the addition of ethanol to salicylic acid. 

Pre-processing techniques No. LVS RSSQ RMSEP 
Raw 2 34.23 1.689 
Auto-scaling 6 3.337 0.527 
Box-Cox (logarithmic) 3 4.107 0.585 
Auto-scaling and Box-Cox (logarithmic) 3 0.013 0.033 
Box-Cox (logarithmic) and auto-scaling 5 0.547 0.214 

Conclusions 

The errors for the models for the global model and the two local model regions, which 

gave the lowest prediction error, are shown in Table 3.1.17. The percentage error based 

on the mean predicted value is also shown to put the errors into context. 

Table 3.1.17: Summary of errors for the best calibration models for the global and local models, 
built using MW spectra collected for the addition of ethanol to salicylic acid. 

Model Pre-processin~ No. LVS RMSEP 0/0 error 

Global Auto-scaling and Box -Cox 3 0.391 32 

(logarithmic) 
Local lower Box-Cox (logarithmic) 2 0.180 23 

Local higher Auto and Box-Cox (logarithmic) 3 0.033 2 

The only reasonable model is the local higher level model which has a percentage error 

of 20/0. This suggests this region is linear so the spectra are well correlated to the 

concentration data. 3 LVs are used to build the model which is a reasonable number, 

and system noise should not be built into the model. 

The global model and local lower level model give poor prediction of 32 and 23% error 

respectively. The poor prediction in the lower level model, below 20/0 ethanol III 

salicylic acid, suggests the MW spectra are not sensitive to such small amount of 

ethanol and the limits of detection of the MW spectra have been reached. , 
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3.1.1.4 Conclusions 

Three processes of the wetting of solids with solvents have been studied with MW and 

NIR spectroscopy; the addition of water to sand, propanol to ascorbic acid and ethanol 

to salicylic acid. These experiments were carried out to determine the suitability of the 

techniques to monitor such a process, and how small an amount of solvent can be 

detected. 

Calibration models were built to correlate the spectra to the concentration data. A 

variety of pre-processing techniques were examined to determine the best model to 

build. Models were built, and an independent data set used to validate the models and 

test the robustness. 

The NIR spectra collected was of poor quality due to the use of a diffuse reflectance 

probe which only samples a small area of the sample. The solvent is added to the 

surface of the sample and must spread through the sample. If it does not reach the 

sampling area of the probe the true process won't be captured. This was reflected in the 

calibration models produced which did not predict very well at all. Therefore, this 

method was found not to be suitable for this process. For the true drying process, the 

solvent is removed from the sample at a fixed rate. Therefore, NIR would be more 

suitable for the true drying process. 

The MW spectra captured the process much better, and both global and local models 

were built. It was thought the data may be non-linear, therefore smaller local models 

were built using regions expected to be linear to try to produce a better model. The 

global models gave comparable errors for the addition of water to sand and propanol to 

ascorbic acid. These models are much easier to build, as only one model is built, and 

also easier to use as there is no choice of which model to use when predicting new 

samples. The errors for the best models built are shown in Table 3.1.18. The error for 

the model above 2% ethanol in salicylic acid is shown. 
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Table 3.1.18: Summary of results for the calibration models built for each process studied. The 
results are shown for the global models, and above 2% for the ethanol in salicylic acid, constructed 
using all the frequencies in the MW spectra. 

Process Pre-processing No. LVs RMSEP 0/0 Error 
Water / sand Auto-scaling and Box- 3 0.050 5 

Cox (logarithmic) 
Propanol/ascorbic acid Auto-scaling and Box- 3 0.021 2 

Cox (logarithmic) 
Ethanol/salicylic acid Auto-scaling and Box- 3 0.033 2 

Cox (logarithmic) 

The use of auto-scaling followed by Box-Cox logarithmic transformation was found to 

be the best pre-processing technique to use with the MW spectra for all examples. Auto­

scaling scales the data to mean zero unit variance. This removes the scale of the 

measured values, and so different data sets, scaled in the same way, are now on the 

same scale. This aids calibration using different data sets. The MW spectra were 

expected to be non-linear. Box-Cox improves the linearity between X and Y, so it was 

expected that this transformation of the data would improve the linear fit. 

The errors show that very good models have been built for the addition of water to sand 

and propanol to ascorbic acid. When the predictions were looked at in detail, it was 

found that the models predict well over all concentrations, down to very low levels. 

This shows that the use of MW spectroscopy for monitoring the addition of solvent to a 

material is very acceptable in most cases. For the addition of ethanol to salicylic acid, a 

model built with concentrations above 2% gave only a 2% error using auto-scaled and 

Box-Cox logarithmic transformed data. This suggests the limits of detection have been 

reached. The use of Box-Cox transformation suggests the data is non-linear. 

These models were built with spectra collected for two repeats, and validated with an 

independent validation data set. The validation sets show different variation compared 

to the calibration sets as they were collected on different days, but low prediction errors 

are still achieved. This shows the robustness of the calibration models to experimental 

variation. 
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3.1.2 Drying 

It has been proved in the wetting experiments that the amount of propanol in ascorbic 

acid can be determined using MW spectra. In these sets of experiments propanol was 

added to ascorbic acid contained in the PTFE insert placed in the GMS chamber. The 

propanol was evaporated off by two different methods. The first method involved 

heating the chamber and the second passing heated air though the material. 

The recorded spectra has been analysed using peA and visual examination of the 

residual spectra, to determine if the end of the drying process can be identified. 

3.1.2.1 Drying by the heating of the MW chamber 

In this experiment propanol (25ml) was added to ascorbic acid (1 ~Og) contained in the 

PTFE sample chamber which is placed in the GMS chamber. This was allowed to 

evaporate by heating the chamber, with MW spectra recorded at intervals. This was 

monitored for five hours, and ten replicate spectra were taken at seven time points 

during the process. These were averaged to give data set dry _asc yro. The ascorbic acid 

was not completely dry at the end of the recorded period so the endpoint was not 

reached. Therefore, the data analysis can show the possibility of monitoring the 

reaction, but the endpoint will not be determined. A spectrum of the dry ascorbic acid 

was also recorded as a reference. The results produced provide a qualitative example of 

using MW spectra to monitor such a drying process. 

The recorded spectra are shown in Figure 3.1.18. The spectrum at the start of the 

process is in red, and this moves through to blue for the last spectrum recorded. The 

spectrum of the dry ascorbic acid is plotted in pink as a comparison. The last spectrum 

recorded is not at all similar to the dry spectra as would be hoped if the end of the 

process was achieved. The cut-off frequency is at around 1250MHz for the first 

spectrum taken during the process and is at around 1500MHz in the dry spectrum. The 

cut-off frequency changes due to the change in dielectric constant. This is due to the 

change in composition of the material as the amount of solvent present during the 

process changes. The cut-off frequency moves in the direction of that of the dry 

spectrum, so showing there is a possibility with this technique to detect the end point of 

a drying process just by examination of the spectra. 
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Figure 3.1.18: MW spectra of the drying of ascorbic acid by evaporation of propanol. The spectra 
go from red as the propanol was added, to blue at the end of the monitoring period. The pink 
spectrum is the actual dry ascorbic acid. 

PCA was preformed on the spectra, and the scores in the first PC, which contains the 

most information, plotted against time are shown in Figure 3.1.19. This shows how the 

samples vary over time, and how they relate to each other. When the material is dry and 

the process has ended, the samples will no longer change and there will be no variation 

between them. Therefore it is expected that the scores will stop changing. For this 

process, the scores decrease over the time period and do not stabilise. This shows that 

the samples are changing but the end of the process has not been reached, as was clear 

from the spectra. Again this shows the possibility of detecting the material once dry. 
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Figure 3.1.19: Scores on PCl against time for the MW spectra of the removal of propanol from 
ascorbic acid by evaporation. 

The residuals have been calculated by subtracting the dry spectrum from each of the 

MW spectra (Figure 3.1.20). When the process has reached the end, and the material is 

dry, the recorded spectra will be the same as the dry spectrum, therefore the residual 

should be O. It is clear from the residuals for this reaction that the endpoint is not 

reached. The residuals are moving towards 0 during the course of the process so again 

showing the possibility of this technique. 

The residual response at 1600MHz has been plotted against time, Figure 3.1.21, to give 

a clearer indication of how the residual changes as the process proceeds. This shows 

that the residual increases at the start of the process, but then moves towards zero as the 

process proceeds. 
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Figure 3.1.20: The residual spectra of the removal of propanol from ascorbic acid by evaporation. 
This is calculated by subtracting the dry ascorbic acid spectrum from each process MW spectra. 
The spectra go from red for the first sample, to blue for the final spectrum. 
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3.1.2.2 Drying by hot air 

In this experiment propanol was dried from ascorbic acid by blowing heated air through 

the sample. The MW spectra were recorded at intervals for five hours, and then the 

material left overnight without any air being passed through and another spectrum taken 

the next day after 19 hours had passed. The spectra, data set dry _ asc yro _air _1, are 

shown in Figure 3.1.22. The first spectrum is in red, and the spectra are plotted through 

to blue for the spectra taken the next day. The spectrum of the dry ascorbic acid is 

plotted in pink to give a comparison. 
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Figure 3.1.22: MW spectra of the drying of ascorbic acid by evaporating propanol with air. The 
spectra go from red as the propanol was added, to blue at the end of the monitoring period. The 
pink spectrum is the actual dry ascorbic acid, before propanol was added. 

From these spectra it can be seen that the last spectra are very similar to that of the dry 

spectrum, but dryness has not been achieved. 

The PCA scores were calculated as for the previous experiment, and the scores for PC 1 

plotted against time are shown in Figure 3.1.23. The final measurement taken the day 

after is not included in this analysis. There is a decrease in the scores value over the 

time the process was monitored and the amount of variation between the sample 
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decreases over the time period. Again this experiment does not appear to reach the 

endpoint of the material being fully dry, but it does show the possibilities for 

monitoring the process. 
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Figure 3.1.23: Scores on PCI against time from the MW spectra of the removal of propanol from 
ascorbic acid by evaporation. 

The residuals were calculated (Figure 3.1.24) as in the previous example. The residuals 

start in red at the start of the process and move through to blue for the end of the 

process. The residuals become closer to 0 as is expected as the material is becoming 

drier, and so the spectra recorded should become increasing similar to the reference dry 

spectrum. 
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Figure 3.1.24: The residual MW spectra of the removal of propanol from ascorbic acid by drying 
with air. This is calculated by subtracting the dry ascorbic acid spectrum from eacb process 
spectra. 

This experiment was to detennine if the reaction is reproducible. The spectra, data set 

dry _asc yro _air _2, are similar to that of the previous experiment, and show the final 

measurement, taken after seven hours, is very similar to the reference dry spectra. This 

experiment got closer to the endpoint of the drying process than the previous 

experiment. 

Again the scores were calculated and these show a general decrease over time as in the 

previous experiments. The samples are varying less by the end of the time period 

suggesting the process is slowing down. 

The residuals were been calculated in the same way. The residual of the final spectrum 

is very close to 0 in the region lS00-2000MHz. This shows the spectrum is very similar 

to that of the dry spectrum. It shows the possibility of using this technique to detect the 

endpoint of a drying process. 
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3.1.2.3 Conclusions 

Two methods have been used to dry propanol from ascorbic acid and the process has 

been monitored by MW spectroscopy. These spectra have been examined to determine 

if it is possible to detect when the material is dry. The spectra are compared to reference 

spectra taken of the material when it is known to be dry. 

The scores from peA can be plotted against time and when the sample scores no longer 

vary, the process is said to be finished as the samples are no longer changing, i.e. the 

solvent has been completely removed. 

The residuals can be calculated by subtracting the reference dry spectrum from the 

process spectra. The residual will be 0 when the material is dry, as the recorded spectra 

should be identical to the dry spectrum. It may not be necessary to reach complete 

dryness of the product; however a percentage wetness may be acceptable, therefore the 

residual value can be set to this specification to detect when the process had reached 

this point. 

None of the experiments carried out actually reached the endpoint. The experiments 

need to be repeated for a longer period to ensure it is possible to detect when the 

material is dry. This has not been done due to time and equipment constraints. 

However, these experiments do show the possibility of monitoring a drying process. 

The MW spectrum of dry material is quite obviously different to the wet material 

spectra, so a distinction can be made when the endpoint is reached. 

3.1.3 Overall Conclusions 

The drying process has been simulated by wetting a material with solvent. Calibration 

models have been built using the recorded MW spectra to predict the amount of solvent 

present in the material. This shows the possibility of monitoring a drying process with 

this technique, and shows how little solvent can be detected. 

The MW spectra were successfully used to predict the amount of solvent in a sample 

down to very low amounts (below 1 % w/w). Global calibration models were built using 

the entire spectral range. The use of a variety of pre-processing techniques was 

examined. The use of auto-scaling followed by Box-Cox logarithmic transformation 

was found to give the best model. This worked well for the prediction of water in sand 

and propanol in ascorbic acid. which gave prediction errors of 5 and 2% respecti\t~ly. 
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The global model was not as successful for the prediction of ethanol in salicylic acid 

which gave a prediction error of 32%. However a local model for above 2% ethanol in 

salicylic acid gave a 20/0 error, suggesting the limit of detection is at 20/0. 

The NIR spectra were also collected and these found to not be representative of the 

process as a diffuse reflectance probe was used. This only measures a small area of the 

sample and is reliant on the solvent spreading through the sample to the area the probe 

is measuring. The NIR should be capable of measuring a true drying process as the 

solvent is being removed in a more continuous manner. Unfortunately the NIR probe 

could not be used to monitor the drying process due to limitations of space in the GMS 

chamber. 

An actual drying process was also monitored by MW spectroscopy to show that the true 

process can be monitored. These experiments lack reference concentration data. so can 

only give an indication of the possibility of monitoring the process. The use of the PCA 

scores plotted against time and the calculated residual spectra showed the possibility of 

monitoring the drying process using MW spectroscopy. These experiments did not 

reach completion, but do show the possibility of the technique. 

Monitoring of the drying process was found to be very successful. This occurs as a 

continuous process. During the wetting process, the solvent is added in steps and it must 

then seep through the material. Effectively two processes are occurring and both are 

monitored. The wetting experiments have shown the possibility of building calibration 

models to predict the amount of solvent present, and the drying has shown the true 

drying process can be monitored. 
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3.2 Experimental set-up for esterification reactions 

For the esterification reactions, certain aspects of experimental set-up need to be 

examined to ensure the optimum set-up is used to get the most representative and 

reproducible results. NIR and MW spectra were collected simultaneously for the 

reactions. The reactions were contained in the OMS chamber as this is the easiest way 

to collect the MW spectra. The NIR transmission probe can be placed inside it. It is 

important to determine the optimum location of this probe. It is also important to 

consider how large a volume of sample should be used in the chamber to give the best 

spectra. The last consideration for experimental set-up is the temperature that the 

reactions are run at, and if this should be keep constant. 

3.2.1 Optimum location of the NIR transmission probe in the 

GMS chamber 

The NIR probe to be used to collect spectra is placed inside the OMS chamber, and this 

will cause reflectance of the microwaves, so affecting the MW spectra collected. This 

reflectance needs to be minimised. The probe must be located in an optimum position 

which causes least interference to the MW spectra, whilst giving representative NIR 

spectra. 

3.2.1.1 Experimental details 

The chamber has been split into areas in which the probe could be located as detailed in 

section 2.3.1 of the experimental chapter. The chamber is filled with water (500ml) and 

the chamber heated to 32°C, to give a constant temperature. Ten repeat MW scans were 

taken with the probe in each position (AI-I5, BI-I5, CI-I5), along with ten NIR 

spectra, ensuring the transmission slit was facing into the chamber to allow maximum 

contact with the liquid. 

3.2.1.2 Results and discussion 

The average NIR spectra for each location are shown in Figure 3.2.1. From this it can 

be seen that locating the NIR probe in different places in the OMS chamber does not 

significantly alter the collected spectra of water. There is some difference in the spectra 

but this is minimal. 
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Figure 3.2.1: NIR spectra of water contained within the GMS chamber, with the probe located at 
different positions. 

The MW spectra collected were examined for each location and any obvious visual 

outliers removed. The ten spectra for each location were averaged (Figure 3.2.2). It can 

clearly be seen that the NIR probe has a large effect on the MW spectra. The smallest 

effect is seen when the probe is located in the A position, Figure 3.2.2a. 
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Figure 3.2.2: MW spectra of water with the NIR probe located in different positions; a) locations 
AI-15; b) BI-15; c) CI-15. The actual positions are not labelled, but this gives an indication of the 
effect of the probe of the MW spectra. 
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Figure 3.2.3: Residual plots (MW spectra minus the reference water spectra) over the range 1000 to 
2500MHz for MW spectra collected with a NIR probe located in the A position, to show the effect 
the NIR probe has on the MW spectra. The smaller the residual, the more similar the reference 
spectra and the collected MW spectra, and hence the smaller the effect the NIR probe ha on the 

MW spectra. 
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The corners are represented by locations 1, 5, 11 and 15. The residuals for these are 

shown in Figure 3.2.4. Location 1 and 15 have the smallest residuals, and are similar. 

Location 15 has a slightly smaller residual so this is the compromise location that is to 

be used. 
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Figure 3.2.4: Residual plots (MW spectra minus the reference water spectra) over the range 1000 to 
2500MHz for MW spectra collected with a NIR probe located in the corners in the A position, to 
show the effect the NIR probe has on the MW spectra. The smaller the residual, the more similar 
the reference spectra and the collected MW spectra, and hence the smaller the effect the NIR probe 
has on the MW spectra 

3.2.1.3 Conclusions 

The NIR probe is located in the OMS chamber to allow the collection of both NIR and 

MW spectra of reactions carried out in the OMS chamber. The probe has been located 

in various locations within the chamber and the spectra of water collected. It was found 

that there was no major effect on the collected NIR spectra due to the location of the 

probe. However, the MW spectra collected with the probe located in different places are 

affected greatly by the NIR probe. The optimum location was determined by 

examination of the residuals, calculated by removing reference water spectrum, with no 

probe in the chamber, from the collected spectra. The location of the probe ha to b a 
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compromise between the least interference on the MW spectra, and ease of location 

with respect to other equipment in the chamber (overhead stirrer). Therefore, the best 

location for the NIR probe within the OMS chamber was determined to be in one 

comer, next to the transmitter antenna, with the probe 3.5cm into the chamber. as 

indicated by position 15 . 

3.2.2 Effect of temperature on the collected spectra 

The temperature of a sample affects both the NIR spectra of the sample, and also the 

MW spectra. This experiment was carried out to show the effect the temperature has on 

the collected spectra of the components in the esterification reaction. This will show the 

importance of keeping the temperature as constant as possible. 

3.2.2.1 Experimental details 

The OMS chamber was heated to a variety of temperatures (25, 35, 40. 50 and 60°C). 

The reagents to be used in the esterification reaction (butanol and acetic acid) and the 

products formed (water and butyl acetate) were heated to the same temperature as the 

OMS chamber, and 450ml placed in the chamber. 20 repeat MW scans were taken for 

each sample at each temperature, along with 40 repeat NIR scans using the transmission 

probe placed in the OMS chamber. The spectra were averaged to give one spectrum for 

each temperature. 

3.2.2.2 Results and discussion 

The MW spectra for the components at different temperatures are shown in Figure 3.2.5 

to Figure 3.2.8. The spectra of acetic acid (Figure 3.2.5) look to have the same shape 

but a slightly different response, so the change due to temperature is small. The butanol 

spectra (Figure 3.2.6) show a large change in response. The spectra are affected by the 

change in temperature suggesting the dielectric constant of butanol varies greatly over 

the temperature range used. The spectra of butyl acetate (Figure 3.2.7) have little 

variation over the temperatures used. The spectra for the temperatures 25, 35 and --t-O°C 

are very similar, as are the spectra for 50 and 60°C. The spectra for water (Figure 3.2.8) 

have a varied response with a change in temperature. The variation in response 

increases as the frequency increases. 

- 115 -



Results and Discussion: Chapter 3.2 Experimental set-up for esterification reactions 

14000 

12000 

10000 

8000 
..c 
0 6000 :c -Q) 4000 
(/) 
c: 
0 2000 a. 
(/) 
Q) 

0 a:: 
2SoC 

-2000 3SoC 

4000 40°C 

-6000 
SOoC 

60°C 

SOO 1000 1S00 2000 2S00 3000 
Frequency / MHz 

Figure 3.2.5: MW spectra of acetic acid, one of the reactants of the esterification reaction between 
butanol and acetic acid, at various temperatures. 
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Figure 3.2.7: MW spectra of butyl acetate, one of the products of the esterification reaction of 
butanol and acetic acid, at various temperatures. 
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The NIR spectra of the components of the esterification reaction are shown in Figure 

3.2.9 to Figure 3.2.12. The change in NIR spectra due to temperature is very small, with 

only a small increase in absorbance seen with an increase in temperature. The change in 

the spectra is mainly seen in the baseline (9000 - 9500cm- l
) which shifts with 

increasing temperature. This baseline shift is at its greatest in the water spectra (Figure 

3.2.12). Baseline shift in NIR spectra is a well known phenomenon and can be corrected 

for. 
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Figure 3.2.9: NIR spectra of acetic acid, one of the reactants of the esterification reaction between 
butanol and acetic acid, at various temperatures. 
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Figure 3.2.10: NIR spectra of butanol, one of the reactants of the esterification reaction between 
butanol and acetic acid, at various temperatures. 
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Figure 3.2.11 : NIR spectra of butyl aceta te, one of the products of the esterification reaction 
between butanol and acetic acid, at various temperatures. 
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Figure 3.2.12: Nm spectra of water, one of the products of the esterification reaction between 
butanol and acetic acid, at various temperatures. 

3.2.2.3 Conclusions 

The temperature has a large effect on the collected MW and NIR spectra for all 

components in the esterification reaction. The temperature causes a baseline shift in the 

NIR spectra which can be corrected for. The effect in the MW spectra is not as simple, 

and a change in response is seen. The best way to minimise this effect is to keep the 

temperature as constant as possible during the reactions. This will be achieved by using 

a water bath to thermostat the chamber, and using insulation around the chamber. 

Control of the temperature of the reaction will allow the reaction to be run at different 

temperatures. 

3.2.3 Effect of volume of liquid in the GMS chamber on the 

recorded spectra 

The esterification reaction is to be carried out inside the chamber of the OMS. The 

chamber holds 540ml of liquid. The reagents to be used are expensive to dispose of, and 

are flammable. Therefore, ideally the total volume used should be minimised, whilst 

still giving representative MW spectra. The recorded MW spectra respond to the 
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composition of the sample present. The greater the amount of sample, the greater the 

response will be due to the attenuation of the signal. Ideally spectra are required that 

gives a maximum response so any change in the spectra due to a change in composition 

of the sample is easier to detect, particularly if this change is only small. 

3.2.3.1 Experimental details 

The chamber was filled with 50ml of water, and ten repeat MW scans taken of this 

volume of water. The water used was at room temperature, the same as the chamber, to 

minimise temperature effects. A further 50ml was added, and again spectra taken. This 

is repeated until the chamber was filled to 500ml. The spectra for each volume of water 

are averaged before data analysis. 

3.2.3.2 Results and discussion 

The average spectrum for each volume is shown in Figure 3.2.13. From this it can be 

seen that there is a huge difference in the spectra of 50ml and 500ml water (Figure 

3.2.l4 shows this more clearly). 

As the volume of water increases, so does the response in the spectra. The maximum 

response is desirable to ensure any small change in the spectra due to a change in 

sample composition is detected. The spectra for 450ml of water gives a maximum 

response, no further increase is seen. 450ml and 500ml have similar spectra. This 

suggests the response is at maximum, so any further change in spectra may be missed. 

Therefore, a volume of 450ml should be used to maximise response. 

3.2.3.3 Conclusions 

Different volumes of sample in the GMS chamber will give different spectra as the 

spectra are related to the amount of sample present. A volume should be used that gives 

a maximum response so any small changes in the spectra due to composition change 

will be detected. 450ml of sample is to be used in the esterification reactions. 
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Figure 3.2.13: MW spectra of different volumes of water contained in the GMS chamber. The 
spectra are recorded at room temperature. 
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Figure 3.2.14: MW spectra of 50 and 500ml of water contained in the GMS chamber. 
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3.3 Exploratory analysis of the esterification reaction 

data 

The reaction under investigation is the esterification of butanol and acetic acid , 

catalysed by sulphuric acid. NIR and MW spectra are collected during the reaction. This 

reaction was chosen because it is reasonably fast so allowing the reaction to be studied 

in a normal working day, uses cheap reagents, is relatively safe and is a well studied and 

understood reaction. 

3.3.1 NIR spectra 

The NIR instrument was set to collect spectra for a set time period, depending on the 

experiment, during which spectra are collected approximately every seven seconds. 

Single spectra at approximately minute intervals were extracted from these recorded 

spectra. This then gives spectra taken at approximately the same intervals as the MW 

spectra to allow comparison. This spectra is one-shot, giving a single spectrum for each 

sample. Traditionally, several NIR spectra may be recorded over a set time period of a 

couple of minutes. These are co-added, and are then averaged to give one spectrum. The 

main problem with this technique is that for a reaction process, the process being 

monitored will have changed over that time period, so the averaged spectra is not 

representative of one time point, but an average of the time period. As the work here 

involves monitoring a process to determine how it proceeds, it is important to use raw 

spectra related to a specific time point and not co-added spectra. 

According to Beers Law, the absorbance at a specific wavelength is a result of the sum 

of the absorbances of the individual constituents. The functional groups present in the 

reaction mixture and the wavelengths at which they are known to absorb are shown in 

Table 3.3.1. The amount of a specific functional group will change during the reaction 

as the components are consumed and formed. Therefore, the absorption in the NIR 

spectra due to these functional groups will change. It is possible to monitor the reaction 

by interpretation of the spectra, by examining at which wavelengths this change in 

absorption is seen. 
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Table 3.3.1: Main absorptions expected to be seen in the NIR spectra due to th f f I 
present in the esterification reaction. e unc IOna groups 

Combination 
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Figure 3.3.1: NIR spectra of the pure components used in the esterification reaction. Butanol and 
acetic acid are the reactants and butyl acetate and water are the products. The spectra are 

recorded at 40°C. 

The spectra of the pure components show the regions in which those functional groups 

absorb (Figure 3.3.1). It is clear that the components all have different spectra so it 

should be possible to monitor the formation and consumption of these during a reaction. 

These spectra were all recorded at 40°C, using 450ml of the component held in the 

GMS chamber, with the NIR transmission probe inserted. From the spectra it can be 

seen that the water is the strongest absorbing component, with two strong peaks at 5280 

and 6972cm-1, so it is expected that the formation of water during the reaction will 

dominate the spectra. Acetic acid has two distinct peaks at 5808 and 5952cm-
1
• Thi 

first peak also exists in the butanol and butyl acetate spectra so is not unique. Acetic 
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acid also has quite a strong absorption at 4620cm- l
. Butanol, butyl acetate and water all 

have a strong absorption at 4344cm- l
. Butanol has a unique absorption at 4788, and 

butyl acetate at 4680cm-
1
• All components have similar absorption between 8000 to 

9000cm-
1
, so this region will not be useful to distinguish between them. 
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Figure 3.3.2: NIR spectra of the esterification of butanol and acetic acid at 40°C. The spectra go 
from red at the start of the reaction, to blue at the end of the reaction. The regions in which the 
major functional groups absorb are labelled. The arrows indicate the change in absorption in a 
particular region during the reaction. 

Typical spectra recorded during a reaction are shown in Figure 3.3.2. The arrows 

indicate the change in absorption in that region. The coloured blocks relate to the 

typical absorption regions of the functional groups of components present as stated in 

Table 3.3.1. 

Below 4440cm -1 no change in absorption is seen so this area can be ignored. Between 

4440 and 5016, and 5316 and 6600cm- l
, there is a decrease in absorption. It is expected 

that these regions correspond to the reactants that are being used during the reaction 

butanol and acetic acid. In the first region, there is an absorption band due to butanol 

(4785 - 4854cm- l ) and a very small one due to water (4435 - 4464 cm-
I
). In the second 

region, there is no specific absorption band relating to a functional group. The regi n 
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may correspond to a general change in composition and is clearly useful for monitoring 

the change in reaction. 

The regions between 5016 to 5316cm- l
, and 6600 to 10 OOOcm- l

, show an increase in 

absorption during the reaction. These can be correlated to the increase in the products 

over the reaction, butyl acetate and water. The major absorption areas for water (5115 -

5263cm- l
) and butyl acetate (5181 - 5025cm- l

) lie in this region. There is also the 

absorption peak for acetic acid (5236 - 5305cm- l
) in this region, but the products absorb 

more strongly so mask this component. The second region of increasing absorption 

contains the major absorption peak for alcohol (6757 - 7067cm- I
), and also a small peak 

for water (7112 - 7067cm- I
). Again, the absorption due to the increase in water must 

dominate this region as a general increase is seen. 

3.3.2 MW spectra 

3.3.1 Cut-off point 

The cut-off frequency depends on the distance between the two parallel plates in the 

GMS chamber, dimension a: 

!, = V vacuum 

c 2aJi 
Equation 3.3.1 

Where!c = cut-off frequency, a = the distance separating the waveguides parallel 

surfaces, and 2a = cut-off wavelength. 

The dielectric constant of a mixture depends upon the components present and the 

temperature. The dielectric constant for water is 80, giving a cut-off frequency of 

360MHz. For most alcohols, 8' is between 20 and 40, giving a cut-off frequency 

between 715 and 505MHz. Only those wavelengths which are not cut-off should be 

used in the data analysis, as any below this point will not contain any information about 

the system, but may contain noise. For reactions at different temperatures, and molar 

ratios, the cut-off point may change. However, from examination of the spectra, it has 

been decided the change will be minimal and it is more important to make it uniform for 

all analysis. Therefore, all frequencies below 504MHz are to be discarded before data 

analysis. This can be seen in the spectra of the pure components (Figure 3.3.3), in which 

the spectra below 500MHz seem more noisy. 
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The spectra of the pure components are shown in Figure 3.3.3. These were recorded at 

40°C, with 450ml of pure component in the GMS chamber. It can be seen that all the 

components give similar spectra above around 1750MHz but at dl'ffi t' t " , eren ill enslt1es. 

These are quite distinct features at 2000 and 2500MHz present in all spectra. The 

spectra do not have features that are unique to the functional groups, so these cannot be 

identified. However, the spectra are all different, and have different levels of response, 

so as the reaction proceeds, and the composition changes, it is possible to see a change 

in spectra. 
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Figure 3.3.3: MW spectra of the pure components in the esterification of butanol by acetic acid. 
The spectra are recorded at 40°C. 

Typical esterification reaction spectra are shown in Figure 3.3.4. The spectra show a 

general increase in response during the reaction. Over around 2750MHz there is a 

decrease in response. The spectra change over the whole frequency range. It is not 

possible to assign a specific region to a functional group. The spectra change due to the 

change in dielectric constant of the reaction mixture, which changes as the composition 

changes. MW spectra give much less information regarding the reaction from ju t 

examining them. Chemometric techniques are needed to follow the progre of the 

reaction. 
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Figure 3.3.4: Typical MW spectra of the esterification of butanol by acetic acid at 40°C. The 
spectra go from red, at the start of the reaction, through to blue at the end of the reaction. 

3.3.3 peA 

PCA has been applied to a typical data set for an esterification reaction, after first mean 

centring the spectra to remove the magnitude. The scores on PC 1 contain the most 

infonnation about the variation between the samples so this is plotted against time 

(Figure 3.3.5). There is a general increase in the scores during the reaction. The rate of 

increase is greater at the start of the reaction and slows down at the end of the reaction. 

This is a typical reaction profile as the reaction will start fast, and slow down as the end 

of the reaction is approached. It shows how the samples change relative to one another 

during the reaction, and give a good indication about the progression of the reaction. It 

shows that the sample spectra change as the reaction proceeds, so it should be possible 

to monitor the progress of the reaction using the spectra. 
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Figure 3.3.5: Scores on PCI against time for a typical esterification reaction; a) scores for MW 
spectra; b) scores for NIR spectra. 

3.3.4 Conclusions 

NIR and MW spectra have been recorded during an esterification reaction. The spectra 

clearly change during the reaction due to the change in the composition of the reaction 

mixture. 

NIR spectra record the change in absorption due to the components. As the relative 

amounts of the components change, a change in the recorded spectra is seen. 

MW spectra record the change in dielectric constant of the reaction mixture as the 

reaction proceeds. Each component has a different dielectric constant, and as the 

concentrations of these change so does the relative dielectric constant of the mixture. 

From the resulting spectra, it is clear to see the esterification reaction studied can be 

monitored by both MW and NIR spectroscopy. With the use of chemometric techniques 

combined with the spectra, it should be possible to monitor the reaction progress and 

make predictions of the concentrations of the individual components during the reaction 

and also the endpoint. 
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3.4 Monitoring of an esterification reaction 

The main problem with monitoring reactions is finding a suitable reference method that 

is reliable, convenient and reproducible. For many reactions, analytical techniques such 

as GC and HPLC are used to measure the concentration of the reaction as it proceeds. 

These methods take time to develop. A sample must be removed from the reaction , 

which may not be completely representative of the reaction and there is a lag time 

between the sample being taken and the analytical results. 

Spectroscopic techniques offer the advantage of monitoring a reaction without the need 

to remove a sample. The aim of this work was to use MW and NIR spectroscopy to 

monitor a simple esterification reaction, and determine if these methods are suitable to 

monitor the reaction in a reproducible way. 

Curve resolution is a set of techniques that can be used with spectral data collected 

during a reaction. Concentration profiles and pure component spectra can be extracted 

without any reference method. Therefore it is a convenient way of monitoring reactions 

without the use of tedious reference methods. Multivariate curve resolution (MCR) has 

been used on MW and NIR spectral data collected during a simple esterification 

reaction of butanol and acetic acid. 

To validate the curve resolution and ensure the extracted concentration profiles are a 

good representation of the real concentration profiles, a reference method must be used. 

In this work GC analysis has been used as it is a proven technique for measuring the 

concentrations of the components of the esterification reaction. Once MCR has been 

proved to extract reasonable concentration profiles, the method can be used on further 

reactions without the need for a reference method. 

3.4.1 GC Set-up 

3.4.1.1 Method development 

A suitable method for GC analysis was initially developed. The components of the 

esterification reaction are acetic acid, butanol, butyl acetate and \\'ater. These 

components need to be separated during the GC analysis to allow measurement of the 

amount of each present. Water is not detected by the FlO so only three components are 

to be calibrated for. 
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The components of the esterification reaction must be separated sufficiently to allow 

quantification using the peak area obtained from the GC trace. The temperature of the 

column affects the separation, as the higher the temperature the quicker the components 

move through the column to the detector. If the components come off the column too 

close together, the detected peaks may overlap so preventing accurate quantification of 

the individual components. Analysis time should be minimised by using a temperature 

that gives sufficient separation, but without too much wasted time between the detected 

peaks. 

At 70°C it was found the components separated well, with a total analysis time of four 

minutes needed for all components to come off the column and be analysed. However, 

the chromatogram returned to the baseline for some time between each detected peak so 

it was felt a higher temperature could be used. 100°C was used and this gave an analysis 

time of three minutes. This was a good separation so was used for the calibrations. 

3.4.1.2 Calibration 

A range of suitable samples, covering the range of concentrations of each component 

expected to be sampled during a reaction, were used for the calibration of the GC (see 

section 2.3.5, Table 2.3). The samples were made up in methanol as this elutes at a 

different time from all the other components so does not interfere with the analysis, and 

is a good solvent for the dissolution of the water present in the samples. 

The samples were made up with all four components present during the esterification 

reaction, along with 4-Methyl-2-pentanone as an internal standard to correct for any 

deviations in the amount of each sample injected. To do this, the peak area for each 

component is divided by the peak area of the internal standard to give the corrected 

peak area. It is this that is used in the calibration graph. 

It is possible that some reaction may occur in these calibration samples due to the 

presence of both the reactants, but this should be a small amount as the esterification 

reaction requires an acid catalyst. However to minimise any reaction which may occur, 

the acetic acid was added last to the samples. The samples were used as quickly as 

possible once made, and stored in the fridge between analyses. 

The samples were run in a random order in triplicate, to determine if the samples 

degrade over time. The analysis was repeated twice using freshly made samples to 

- 131 -



Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction 

determine the reproducibility of the calibration method. The analysis time was set to 

four minutes to ensure all components were resolved fully. 

The corrected peak areas for each component have been plotted against the moles of 

that component for each sample for each of the replicate runs, to give a calibration 

graph, Figure 3.4.1. Samples with a peak area that appeared to be greatly different from 

the norm were removed as outliers. All three components show good correlation 

between the concentration of the component and the corrected peak areas. The r2 values 

show how well the points fit on the line of best fit. All values exceed 0.98 showing a 

good fit to the linear model. 
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Figure 3.4.1: Calibration graph for the. measurement of the concentration of the components of the 

esterification reaction using GC analYSIS. 
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repeats in the calibration will increase the robustness as more variation that may be seen 

in the real samples will be modelled. The effect seen in the calibration is minimal. so 

the measured concentration of the reaction samples should not be too greatly affected 

by this. Due to the nature of the reaction samples, the concentrations measured using the 

GC calibration is expected to be approximate as the samples will continue to react. 

There is some difference seen in the replicate peak areas of the samples in the 

calibrations for the acetic acid and butyl acetate, but this is much less than seen in the 

butanol calibration. The relative standard deviation (RSD) has been calculated for each 

calibration sample using all three repeats of all three calibrations, after any outliers have 

been removed, giving a maximum of nine replicates used in the calculation. This is used 

to determine the reproducibility of the calibration, Table 3.4.1. From these values, the 

calibrations for both acetic acid and butyl acetate are shown to be reproducible with 

RSDs below 3%. The butanol shows lower reproducibility with three samples giving 

RSDs of 5.0, 7.9 and 6.1 %. This was seen in the calibration graph by the difference in 

the corrected peak areas of the samples. 

Table 3.4.1: Relative standard deviations (%) for each GC calibration sample. The calculation is 
based on three repeat calibrations, each of which comprises ofthree replicate runs for each sample. 

Calibration Sample Relative standard deviation / 0/0 

Acetic acid Butanol Butyl acetate 
1 2.4 2.6 -
2 2.5 2.2 1.9 
3 2.4 2.8 2.7 
4 2.2 1.6 2.6 
5 2.7 1.6 2.6 
6 2.1 5.0 2.8 
7 1.9 7.9 2.1 
8 1.2 6.1 0.4 

The average RSD for each component show the overall reproducibility of the 

calibrations. The acetic acid and butyl acetate are good reproducible calibrations \yith 

an average RSD of 2.2% for both. The butanol is also a good calibration with an 

average RSD of 3.7%. 

These calibrations for butanol, acetic acid and butyl acetate have been used to measure 

. f tl'on samples allowing the reaction progress to be monitored. the concentratIOns 0 reac, '-
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3.4.1.3 Reaction monitoring 

A series of esterification reactions have been followed by GC. NIR and M\\' 

spectroscopy. Samples were removed at 10 minute intervals and analysed by GC to 

measure the concentration of the reaction mixture at that time point. The reaction 

samples were put on ice immediately to lower the temperature as quickly as possible in 

an attempt to stop any further reaction taking place. 

The esterification reactions followed by GC were carried out with a starting molar ratio 

of 1:2 butanol (200ml) to acetic acid (250ml). This gives initial starting concentrations 

of 4.9M butanol and 9.7M acetic acid. The reaction was carried out at 40°C numerous 

times to check reproducibility of using GC to monitor the reaction progress. It was 

found to be very difficult to get reproducible measurements. The reaction was 

monitored seven times, and only two of the repeats were found to give reproducible GC 

analysis. 

Figure 3.4.2 shows three typical reactions. The first and second repeats are very 

reproducible, whereas the third one is quite different. This shows the difficulties that 

arose from using GC as a reference method. The inconsistencies may be due to 

problems with sampling, as the sample taken may not be representative of the reaction 

mixture, so reproducibility could be a problem. Also, some further reaction may have 

occurred in the removed sample. It is expected this would lead to a lower acetic acid 

and butanol concentration being determined, and a higher level of butyl acetate. In the 

third repeat, the butanol and acetic acid content has been measured lower, but the butyl 

acetate level appears to be similar. 

The first and second reactions were carried out after several previous attempts to try to 

get a reproducible GC monitoring method. It appears that by this point the technique of 

removing samples from the reaction and analysing them by GC had been well practised. 

This led to much more reproducible results. The determined starting concentration of 

the acetic acid in both these reactions was around 10M, which corresponds fairly \\'ell to 

the known starting concentration of 9.7M. The starting concentration of butanol in both 

reactions was determined to be around 4.5M, which again corresponds reasonably \\'ell 

to the known starting concentration of 4.9M. From this it can be seen that the butanol 

concentration is measured at a slightly lower value and the acetic acid concentration 
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slightly higher than the actual values. This suggests no further reaction occurs in the 

sample, as a lower value of both reactants would be expected. 

In the third repeat the initial starting concentrations were determined to be lower at 

around 7M acetic acid and 4M butanol. This is much lower than expected and shows the 

problems faced with the GC method used for the measurement of the reaction mixture 

composition. 

There are errors in the initial determined values in the first two repeats when compared 

to the known initial concentrations, and this must be due to the calibration of the GC. 

The determined concentrations are acceptable as they are within the error of the 

calibration. 
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3.4.2 Reaction spectra 

Many problems were encountered with the reproducibility of the GC method, as has 

been shown here. Reference methods are often relied upon to allow monitoring of a 

reactions progress. MW and NIR spectra were recorded during these reactions. The 

spectra collected during these three repeat GC reactions, and also three replicate 

reactions run with identical experimental reaction conditions, but with no GC 

monitoring, are shown in Figure 3.4.3. The spectra shown were recorded at two time 

intervals; at the start of the reaction, to, and 9720s into the reaction. 
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F' 343' MW and NIR spectra collected during an esterification reaction at 40°C, with an 
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(GC 1 GC 2 and GC 3). The spectra were recorded at two times, at the start of the reactIOn; to, an 
9720s 'into the reaction; a) MW spectra at to; b) MW spectra at 9720s; c) NIR spectra at to; d) NIR 

spectra at 9720s. 
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction 

These spectra show the reproducibility of the collected spectra. The NIR spectra (Figure 

3.4.3c and d) are very similar for all reactions at both time intervals. There is some drift 

seen in the baseline, but this can be corrected for. The MW spectra (Figure 3.4.3a and b) 

are not as reproducible as the spectra appear to be slightly different. However. the 

spectra are very similar between 1250 and 2250 MHz. 

The correlation coefficients, r2, have been calculated for the repeat MW spectra (Table 

3.4.2) and the repeat NIR spectra (Table 3.4.3). These are calculated by comparing the 

response of each spectrum in the data sets. This shows how reproducible the variation 

captured in the repeat spectra is. The spectra collected during the three repeats, and also 

the three repeats monitored by GC are compared. 

The three repeat MW spectra data sets are all very similar with r2 values above 0.99. 

The three GC repeats less similar with r2 values over 0.97, but they are still well 

correlated. The correlation between the repeats and the GC monitored repeats is also 

very good with r values above 0.97. 

Table 3.4.2: Correlation coefficients, r, to compare the variation of the repeat esterification 
reactions carried out at 40°C, with an initial molar ratio of 2: 1, butanol:acetic acid and 1 ml of 
catalyst monitored by MW spectroscopy. 

~ MWI MW2 MW3 GCI GC2 GC3 
MWI - 0.99511 0.99688 0.97169 0.97601 0.97804 
MW2 0.99511 - 0.99603 0.98312 0.98284 0.98303 
MW3 0.99688 0.99603 - 0.97699 0.97374 0.97799 
GCI 0.97169 0.98312 0.97699 - 0.98500 0.98520 
GC2 0.97601 0.98284 0.97374 0.98500 - 0.99130 
GC3 0.97804 0.98303 0.97799 0.98520 0.99130 -

All NIR repeat spectra are shown to be very reproducible with the same recorded 

variation as the / values are all above 0.999. 

Table 3.4.3: Correlation coefficients, r, to compare the variation of the r~peat. esterification 
reactions carried out at 40°C, with an initial molar ratio of 2:1, butanol:acetlc aCid and Iml of 
catalyst monitored by NIR spectroscopy. 

rL NIRI NIR2 NIR3 GCI GC2 GC3 
NIRI - 0.99991 0.99963 0.99925 0.99960 0.99988 
NIR2 0.99991 - 0.99971 0.99921 0.99972 0.99980 
NIR3 0.99963 0.99971 - 0.99970 0.99994 0.99959 
GCI 0.99925 0.99921 0.99970 - 0.99960 0.99931 
GC2 0.99960 0.99972 0.99994 0.99960 - 0.99953 
GC3 0.99988 0.99980 0.99959 0.99931 0.99953 -
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction 

The GC results show the three GC repeat reactions are not reproducible as different 

reaction profiles were produced. The ,J values show that the reactions are in fact 

reproducible, as the recorded spectra show the same variation for each of the repeats 

shown by the high correlation calculated above 0.999. This is a much more reproducible 

and reliable method of monitoring the reaction than the GC method has proved to be. 

Spectra can be used with chemometric methods to allowing monitoring of the reactions. 

3.4.3 Prediction of k value 

3.4.3.1 GC prediction 

From the determined reaction profiles, the rate constant, k value, can be calculated. The 

esterification reaction studied is a second order reaction. The integrated rate equation is: 

Equation 3.4.1 

Where Ao and Bo are the initial concentrations of butanol and acetic acid respectively, AI 

and Bt the respective concentrations at time t, and k is the rate constant. Therefore. a 

plot of the left hand side of the equation against time should give a straight line with a 

slope equal to k. 

The kinetic plot for the three repeats as previously discussed is shown in Figure 3.4.4. 

The three repeats give different kinetic plots. Runs 1 and 2 are the most similar. These 

kinetic plots should be a straight line if the reaction is truly second order. A straight line 

is fitted to the plots and the k value determined as the gradient of this straight line. The 

plots are not quite linear, so fitting a line will not give the true k value. Run 3 is the 

most non-linear. However, all three give similar gradients of 1.132 xl0-
5

, 1.235 x 10-
5 

and 1.323 xl0-5 for runs 1,2 and 3 respectively. 

To overcome the non-linearity, a portion of the kinetic plot that is linear can be used to 

determine the k value. The first two more reproducible runs have been examined. The 

points below 3000s are discarded as these are furthest from the line of best fit. This can 

be seen in the kinetic plot, Figure 3.4.5. The k values determined by the slope are very 

similar as seen with the kinetic plot using the whole data set, 1.103 xl 0-
5 

for run 1 and 

1.142 xl 0-5 for run 2, and are now more reproducible. 
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Figure 3.4.4: Kin etic plot of three repeat esterification reactions performed at 40°C, with an initial 2:1 acetic acid: butanol molar ratio, showing the 
relationship between the integrated form of a second-order reaction against time. 
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction 

3.4.3.2 Multivariate curve resolution (MeR) 

The esterification reactions were also monitored by MW and NIR spectroscopy. \1\\' 

spectra were recorded immediately prior to GC samples being removed at ten minute 

intervals, and NIR spectra were taken constantly, with spectra relating to every ten 

minutes used for the data analysis to coincide with the MW spectra collected. 

The k value can also be predicted using the spectroscopic data collected along with 

multivariate curve resolution (MCR). This extracts the concentration profiles using just 

the spectroscopic data, with no reference data needed, and the k value can be calculated. 

This has been performed on the reactions monitored by GC so a comparison can be 

made between the GC determined k values and the MCR predicted values. MCR was 

applied to both the NIR and MW data, data sets Ester _./0_1:2_1_1 and 2 to see if there 

are any differences in the spectral methods. 

GUIPRO is a GUI for applying MCR to spectral data developed by Paul Gemperline. 

There are different constraints that can be used, and the ones chosen for this data are 

detailed in section 2.4.2. A kinetic constraint is included to break the rank deficiency of 

the data. The known reaction equation and initial starting concentration of the four 

components of the esterification reaction are used to aid the extraction of the 

concentration profiles. 

These constraints and settings are applied to the NIR and MW data and the k value 

calculated. Figure 3.4.6 shows the predicted concentrations for the first repeat run at 

40°C with an initial molar ratio of 2:1, acetic acid:butanol, data set ester_gc_'/O_l_l. 

The concentrations measured using GC, and the concentrations extracted using MCR 

with the MW and NIR data are shown. 
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Figure 3.4.6: Predicted concentrations over time of the components of the esterification reaction of butanol and acetic acid, using GC measurements made every 
ten minutes and also the extraction of the concentration profiles using collected MW and NIR spectra, collected every ten minutes, along with MCR techniques. 
The reaction is carried out at 40°C with a 2: 1, acetic acid:butanol starting molar ratio. 

~ 
~ 

c -~ 
= = Q. 

~ _. 
~ 
n 
C 
~ 
~ 
_. 
o 
= 
n 
g' 

'"0 
.-+ 
(1) 
'"1 

W 

~ 

2: 
o 
2. 
.-+ 
o 
;:l. 

Jg 
o 
'""""'"l 

g 
(1) 
en 
.-+ 
(1) 

::1 . 
i:n 
() 

~ o· 
:::l 
'"1 
(1) 
~ 
() 
.-+ o· 
:::l 



Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction 

The prediction of the concentration of acetic acid using MCR techniques is similar to 

that predicted using GC. However the predicted concentrations near the end of the 

reaction period is starting to decrease. The MW and NIR predicted concentrations are 

similar in all cases. This is as expected as the spectra are collected during the same 

reaction so contain the same variation, and the same MCR techniques are applied, so the 

extracted variation should be the same. 

The predicted amount of butanol using the MW and NIR data is also similar to the GC 

prediction. The amount predicted starts to decrease at a greater rate compared to the GC 

predicted after around 3000s, and the difference is greater than that seen in the predicted 

acetic acid concentration. 

The predicted butyl acetate concentration shows similar trends to that of the predicted 

butanol concentrations. In this case the concentration predicted by the MW and NIR is 

higher that that predicted by GC, and the rate of increase in the concentration is greater. 

MCR seems to predict a more ideal concentration curve which agrees with the GC 

predicted concentrations at the start of the reaction. The rate of increase or decrease of 

the concentrations of the components is greater than that of the GC predictions as the 

reaction proceeds. 

The kinetic plots for this reaction are shown in Figure 3.4.4. The kinetic profiles of the 

MW and NIR predicted concentrations are much different from the GC kinetic plot. The 

r2 values of the MCR kinetic plots are 1, indicating a perfect correlation. This shows 

that curve resolution finds a "perfect" fit for the concentration profiles. In reality this is 

not the case, and this is shown by the errors in the GC plots. The slope of these kinetic 

plots is equal to the k value, and these values are shown in Table 3.4.4. From this it can 

be seen all the predicted k values are in the same magnitude range of xl 0-
5
, however the 

actual values vary quite a lot. The values predicted using MCR and the MW and NIR 

spectral data are quite similar at 2.442 and 2.833 x10-
5 

respectively. The k value 

predicted using the GC data is 1.103 x 1 0-5 which is half that of the values predicted 

using MCR. 
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction 

Table 3.4.4: Predicted k values using GC, and MW and NIR spectra along with MeR, for the 
esterification reaction of butanol and acetic acid at 40°C with an initial starting molar ratio of 2: 1, 
acetic acid: butanol. 

Data Temp. / °c Molar Predicted K value / x10-5 

ratio GC NIR MW 
Ester gc 40 1 1 40 2:1 1.103 2.833 2.442 

The differences seen in the predicted k values may be due to the different sampling 

methods. The main problem with the GC analysis is a small sample (-1 ml) is removed 

from the total reaction volume (450ml). The reaction mixture is stirred to attempt to 

give a homogeneous mixture, but in reality the mixture may not be homogeneous so the 

sample removed for GC analysis may not be truly representative of the reaction. The 

"picture" of the reaction the GC samples capture may be different from that which the 

MW and NIR capture, so leading to a different k value being determined. 

The MCR solution is not unique, and is an approximation of the component 

concentration profiles. This again may lead to incorrect k values. It is difficult to 

determine which answer is the correct one, if any of them really are. 
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the integrated for m of a second-order reaction against time as predicted by GC, and NIR and MW spectra recorded during the reaction used with MC R. 

~ 
~ 
('-l 

= -~ ('-l 

~ 

= Q. 

~ _. 
('-l 
t') 

= ('-l 
('-l -. o 
= 
n 
::r 
.g 
(t 
'"1 

W 

~ 

~ 
o 
2. 
.-+ 
o 
;:::I. 
::l 

C1Q 
o 
H-) 

§ 
(l) 
Vl 
.-+ 
(l) 

;:::I . 
::1l 
(") 
Po) 
.-+ o· 
::l 
'"1 
(l) 

~ 
.-+ o· 
::l 



Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction 

MCR was applied to the repeat reaction data, ester _ GC _-/0_2, to determine if the 

method is reproducible. The predicted k values for both repeats are shown in Table 
3.4.5. 

Table 3.4.5: Predicted k values using GC, and MW and NIR spectra along with MCR t h . 
~ th t'fi' . ec flIq ues, 
lor e es e.n Ic~tlOn reaction of butanol and acetic acid at 40°C with an initial starting molar ratio 
of 2:1, acetic aCid: butanol. 

Data Temp. /oC Molar Predicted K value / xlO-5 

ratio GC NIR MW 
Ester GC 40 1 1 40 2:1 1.103 2.833 2.442 Ester GC 40 1 2 40 2:1 1.142 2.752 2.20-+ 

The GC predicted k values for both reactions are very similar at 1.102 and 1.142 xl 0-5. 

The reproducibility of using this method seems reasonable. The predicted k values using 

NIR data for both reactions are also reproducible at 2.833 and 2.752 xl 0-5, as are those 

predicted using the MW data at 2.442 and 2.204 xl0-5• The methods appear to be 

reproducible to predict k values for repeats of the same reaction, but the values still do 

not agree for the different techniques. 

The same reaction was carried out in triplicate without GC reference measurements 

being taken. These reactions were monitored by MW spectra taken every minute and 

NIR spectra taken approximately every 7 seconds. NIR spectra at minute intervals were 

extracted for use in data analysis. This gives about ten times as many spectra compared 

to with the GC monitored reactions for use with MCR. The same conditions were 

applied as with the GC monitored reactions and the k values estimated for both the NIR 

and MW data. The k values are shown in Table 3.4.6, along with those calculated from 

the GC data as a comparison. 

Table 3.4.6: A comparison of predicted k values for replicate esterification reactions run at 40°C 
with an initial molar ratio of 2:1, acetic acid:butanol. The k values are predicted using predicted 
concentrations from GC data, and using MCR techniques along with MW and NIR spectral data. 

Data Temp. /oC Molar 
ratio 

Predicted k value / xl 0-:-

GC NIR l\1\\' 

Ester GC 40 1 1 40 2: 1 1.103 2.833 2.-+-C ~~~~~~--~--~--~--~~~~~~11~ 
Ester GC 40 1 2 40 2: 1 1.142 2.752 2.204 
E t 40 1 2 1 1 40 2.'1 - ~.089 2.809 s er : --I 

~E~s~te~r~4~0~1~: 2~1 :=:.24_----=4~0~_+_~2::_:_::__1 _+ __ ---t---::3~. 2rvl;o9~1~1. 9 ~l __ 
L!E~s~te~r~4~0~1~:2~1 ".",:3=-.L_----=4~0~_1__----=2=-=-: ~1 _-L __ - _--1-_3_.0_3_8_'----_2 J 1§_ 
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction 

All k values predicted are in the same magnitude range of xl 0-5. The three reactions 

monitored by MW and NIR only, give reproducible predicted k values from the 

collected NIR data of 3.089, 3.219 and 3.038 x10-5
• These are similar to the k values 

predicted using the NIR data for the two GC monitored reaction of 2.833 and 2.75'2 

xl 0-5. 

The k values predicted using the MW data for the three reactions monitored by NIR and 

MW only vary quite a lot at 2.809, l.981 and 2.316 x10-5
. These values are very 

different from those extracted from the NIR data. It appears that the method is not 

reproducible for the prediction of the k value from the predicted concentration profiles. 

The MW and NIR data give different results so suggests the variation captured by each 

spectral method must vary. This could be due to the different methods, as the MW 

analyses the whole reaction volume so captures the true reaction progress, whereas the 

NIR spectra are collected using a probe so only a small volume of the total reaction 

volume is actually analysed. If the reaction in this region isn't representative of the 

whole batch, then different variation may be captured. 

There are not any published literature values for the k value for the same reaction 

performed with identical reaction conditions. Blanco and Serrano [83] monitored the 

same reaction by NIR and GC analysis to predict the rate constant. The reactions were 

run with the same experimental conditions, at 40°C, with a 2: 1 molar ratio, acetic 

acid: butanol. The integrated form of a second-order reaction was plotted in the same 

way as in this work, against time. The resulting plot did not give a straight line as is 

expected with a true second order reaction; therefore the k value was calculated based 

on the first ten points of the reaction. This results in an estimate of the k value at the 

start of the reaction. The k value was found to be 0.058. This is of a completely different 

magnitude from the values calculated in this work, but can be explained by the fact that 

the published k values are for the start of the reaction, and for this work they have been 

calculated for the entire reaction. 

3.4.4 Conclusions 

It is difficult to find a reference measurement that is suitable and reproducible to 

monitor a reaction. GC had been used to measure the concentration of the components 

of the esterification reaction studied. This has found to be a hard method to develop and 
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction 

problems were found in the reproducibility of the method to monitor a reaction. There is 

a high error in this method. 

The rate constants were determined using GC monitoring and also using MeR which 

extracts concentration profiles for the components without the need for reference data. 

The k values determined do not agree, and it is not known which of the calculated 

values is the true one for the reaction studied. There does not appear to be published 

rate constants for this reaction using exactly the same conditions. 

The rate constant calculated is for a reaction assumed to be far from the equilibrium. In 

reality, the reaction studied seems to be reaching equilibrium at the end of the period it 

is monitored for, therefore this may be one of the reasons the k values calculated do not 

agree with each other. 

The collected NIR spectra are affected by the change in hydrogen bonding during the 

reaction. This causes a change in the wavenumber at which a specific functional group 

absorbs, and may well affect the ability of MCR to extract the concentration profiles. 

The values extracted using MCR from MW and NIR spectra collected for repeats of the 

reactions show reproducibility and some agreement between the two techniques. This 

suggests the reaction can be monitored by these techniques in a reproducible way. The 

calculated coefficients show that reproducible MW and NIR spectra can be collected for 

repeat reactions. The system has been proved to work and is reproducible. The spectra 

can be used with other chemometric techniques to determine other aspects of the 

reaction monitoring, such as endpoint determination and process upset detection. 
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Results and Discussion: Chapter 3.5 Endpoint determination of an esterification reaction 

3.5 Endpoint determination of an esterification reaction 

The endpoint of a reaction is subjective. It can be defined as the point at which the 

reaction reaches equilibrium, or as it is reaching equilibrium when the formation of 

product is at such a slow rate that the reaction is costing more to maintain. than the 

value of the product being formed. The endpoint must first be defined before it can be 

determined for a process. For this work, an adaptive algorithm called caterpillar is 

demonstrated for its use in endpoint determination, and it is shown the parameters used 

in the algorithm can be altered to give a different determined endpoint according to 

needs. 

3.5.1 Experimental set-up 

All reactions were carried out within the GMS remote stainless steel cavity with a NIR 

transmission probe inserted into the chamber, as described in the experimental section 

(chapter 2), to allow MW and NIR spectra to be collected simultaneously. Spectra were 

collected at one minute intervals. 

The reaction studied is the esterification of butan-1-01 and acetic acid which is catalysed 

by sulphuric acid. The reactions were carried out at different temperatures. with 

different molar ratios to give different endpoints for the reaction. Repeats of each 

reaction are carried out to examine the repeatability of the endpoint determination. 

3.5.2 Results and discussion 

All standard characterisation reactions can be used for endpoint determination. Repeats 

of the same reaction should have endpoints at the same time. Using different 

temperatures, molar ratios and amounts of catalyst will alter the rate of the reaction, and 

hence the endpoint. 

Caterpillar is an adaptive algorithm which can be used to predict the endpoint of a 

reaction, by comparing the now variation to recent variation. 

In caterpillar, two windows with a set window width size (WS) are placed in the data 

(see section 1.4.4) with an inter-window-distance (inter-WS) between them. :\ PC.\ 

model is calculated for the second, reference window. to describe the "now" yariation 

of the sanlples in this window. This is compared to the old yariation in th~ samples in 

the detection window. The windows are moved through the data step\\·is~, \\ ith th~ 
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Results and Discussion: Chapter 3.5 Endpoint determination of an esterification reaction 

model building repeated at each step, until a steady state in the variation is seen and this 

determined as the endpoint of the reaction. The windows are separated by an inter­

window distance to ensure that a constant variation is due to the actual end-point of the 

reaction. 

The variables within the algorithm, WS, inter-WS, stepsize, and number of pes to use 

in the model must be defined. Once these are determined for a reaction with specific 

conditions, the same variables can be used for subsequent reactions with the same 

conditions. 

3.5.2.1 Esterification reaction at 40°C, 1:2 initial molar ratio, 1 ml 

catalyst 

The mesh plots of the resulting spectra for these reactions are shown in Figure 3.5.1. 

Mesh plots show the spectra, plotted as response versus frequency or wavenumber, over 

time. This allows visualisation of the change in the spectra over time, to show the 

reaction profile. As can be seen, the spectra for each reaction are very similar as the 

reaction conditions were the same. The MW spectra for the second reaction (Figure 

3.5.1c) has some differences from the others, particularly in the region below 

1500MHZ, where there appears to be a greater response seen compared to the other two 

reactions. This spectra also appears to have a greater and more obvious increase in 

response over the time of the reaction. The NIR spectra are very similar, and there are 

no obvious differences between the spectra. This suggests all three NIR data sets should 

give the same determined endpoint. 
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Figure 3.5.1: Mesh plots of the collected spectra for esterification reactions run at 40°C, using a 
molar ratio of 1:2, butanol to acetic acid, and 1ml of catalyst. The plots are the spectra (NIR or 
MW), response (Absorbance or HDb) against variable (wavenumber or freq uency) plotted again t 
time so the changes in the spectra over time can be clea rly seen. The following data sets are shown: 
a) ester_40_1:2_1_1_MW; b) ester_40_1:2_1_1_NIR; c) ester_40_1:2_1_1_MW; d) 
ester_40_1:2_1_2_NIR; e) ester_40_1:2_1_3_MW; t) ester_40_1:2_1_3_NIR. 
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Results and Discussion: Chapter 3.5 Endpoint determination of t'fi' . an es en IcatlOn reactIOn 

The correlation coefficient, ,;, has been calculated to compare the three repeat MW 

spectra and the three repeat NIR data sets as shown in Table 3 5 1 All fn' , . " coe lClents are 

above 0.995 showing an excellent correlation between the compared spectral data set. 

This shows that reproducible NIR and MW data is collected during the repeat reactions. 

Table 3.5.1: Table of correlation coefficients, I, to show the variance between the t t f 
., • • 0 repea spec ra 0 

estenficatlOn reactIOns earned out at 40 C with an initial molar ratl'on of 1'2 btl t' 'd . ' ., u ano :ace IC aCI , 
with Iml of catalyst. The three MW data sets are compared with each other, and the three NIR 
data sets also compared. 

,; MWI MW2 MW3 ,; NIRI NIR2 NIR3 
MWI - 0.99511 0.99688 NIRI - 0.99991 0.99963 
MW2 0.99511 - 0.99603 NIR2 0.99991 - 0.99971 
MW3 0.99688 0.99603 - NIR3 0.99963 0.99971 -

PCA was performed on the mean centred spectra, and the resulting scores plots for PC 1 

are shown in Figure 3.5.2. The scores show the relationship between samples. In this 

case, they are plotted against time so the plots show how the variation between samples 

changes over time, and hence how the reaction progresses. All the scores plots, for both 

the MW and NIR spectra, give typical reaction profiles in which the reaction is 

progressing over time. The reaction is expected to reach equilibrium which would 

indicate the endpoint of the reaction. It is expected to see this point in the scores by the 

levelling of the scores, as the reaction will no longer be proceeding and hence there will 

be no variation between samples. However, the scores increase for the entire time the 

reaction was monitored suggesting the reaction does not reach equilibrium. As has been 

previously mentioned, the endpoint of a reaction is subjective and must be defined. 

Once the reaction has slowed to almost equilibrium, this may be an acceptable endpoint. 

The rate of increase in the scores does slow down near the end of the time period, 

suggesting the reaction is nearing equilibrium. Looking at the scores plots in this way. 

gives an indication of the endpoint. 

The scores for all three repeats of the reaction, for both MW and NIR. have similar 

profiles. This is to be expected as the reactions were carried out with the same reaction 

conditions, so should proceed in the same way. 

The correlation coefficients, ,;, have been calculated. Table 3.5.2, to compare each of 

the scores on PC 1 for each spectral data set, as shown in Figure 3.5.2. The ,.-' yalucs for 

all scores that have been compared are above 0.993, sho\\ing excellent correlation. This 
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Results and Discussion: Chapter 3.5 Endpoint detennination of an esterification reaction 

shows that the NIR and MW spectra collected during the repeat reactions is 

reproducible, and the MW and NIR spectra are comparable. The MW and NIR capture 

the same process variation as can be seen on the scores which show the same variance 

in both the MW and NIR data. 

Table 3.5.2: Correlation coefficients, ,:z, to show the correlation between the scores on PCI for 
esterification reactions carried out at 40°C, with an initial molar ration of 1:2, butanol:acetic acid, 
with 1ml of catalyst. Each repeat MW and NIR data sets are compared. 

,; MWI MW2 MW3 NIRI NIR2 NIR3 
MWI - 0.99451 0.99633 0.99941 0.99896 0.99926 
MW2 0.99451 - 0.99822 0.99419 0.99354 0.99485 
MW3 0.99633 0.99822 - 0.99621 0.99563 0.99656 
NIRI 0.99941 0.99419 0.99621 - 0.99988 0.99992 
NIR2 0.99896 0.99354 0.99563 0.99988 - 0.99988 
NIR3 0.99926 0.99485 0.99656 0.99992 0.99988 -
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Figure 3.5.2: Scores on PC1 using the mean centred spectra for esterification reactions carried out 
at 40°C with an initial molar ratio of 1:2, butanol:acetic acid with Iml catalyst: a) 
ester_ 40_1 :2_1_1_MW; b) ester_ 40_1 :2_1_1_NIR; c) ester_ .to_l :2_1_1_1\1\\; d) 
ester_40_1:2_1_2_NIR; e) ester_40_1:2_1_3_MW; 1) ester_40_1:2_1_3_NIR. 
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Results and Discussion: Chapter 3.5 Endpoint determinatl'on of t'fi' . an es en lcatlOn reactIon 

3.5.2.1.1 Endpoint detection 

The spectra are analysed using the endpoint detection function within the caterpillar 

algorithm. As part of the function, the number of components to use in the PCA d I mo e. 

the window (WS) and the inter-window distance (inter-WS) can be altered to assist the 

determination of the endpoint of a reaction. Once these are determined for a reaction 

with specific conditions, the same variables can be used for subsequent reactions with 

the same conditions. The step-size of the movement of the windows through the data 

can also be changed. This is set to one for all analysis due to the data sets beino 
b 

relatively small (~180 samples). The significance level below which the reaction must 

fall before it is deemed to have reached stability and hence the endpoint, can also be 

altered. This is set to 0.99 for all analysis to ensure the reaction is truly at its endpoint. 

The raw spectra are used in the algorithm with no pre-processing. This simplifies the 

analysis as choosing a pre-processing technique requires operator skill. The spectra are 

mean centred automatically within the algorithm. 

These variables have been optimised using the ester _ 40_12_1_3 MW and NIR data 

sets. All the combinations of the different variables to be used can be examined. A 

minimum WS of five and a maximum of ten, with a minimum inter-WS of ten and a 

maximum of 20 were examined. It is convenient to use an inter-WS double that of the 

WS. 

MW spectra 

The reactions compnse of four components, butanol, acetic acid, butyl acetate and 

water. However, two components increase at the same rate and two are consumed at the 

same rate, therefore there are effectively only two independent components. It is 

expected that only two components will be needed to describe the variation in the 

reaction data. Figure 3.5.3 shows the plot to determine the correct number of 

components to use. This is shown using a WS of five and inter-WS of ten. The 

components show the amount of variation described, and this will be the same for all 

combinations of WS and inter-WS, so it is reasonable to examine only one plot. From 

the plot, it is clear that almost all the variation in the spectra is described hy the first 

component. The other components appear to contain a small amount of noise. A 

minimum of two components must be used in the algorithm to ensure all useful variance 

is captured, so two will be used as expected. 
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Results and Discussion: Chapter 3.5 Endpoint determination of an esterification reaction 

To choose the WS to use, a plot containing the results for each WS is examined. Figure 

3.5.4. The results are only examined using an inter-WS often. Altering this does change 

the profiles, but only the relative intensities. For endpoint determination, the plots show 

how the reaction changes over time. At the start of the reaction, the variation bet\veen 

samples is great as the reaction is proceeding, and the reaction composition is altering. 

As the reaction proceeds, the variation between samples lessens until such a point at 

which the samples become similar as the reaction is reaching equilibrium. \Vithin the 

endpoint determination plots, as in Figure 3.5.4, a high variation between samples 

should be seen at the start of the reaction as it is for all window sizes used in Figure 

3.5.4. This variation should decrease until it reaches below the significance level~ or 

endpoint level, which is set by the user, in this case at 0.99. Using a WS of five gives 

the lowest variation level at the end of the reaction, and this is expected to fall belO\\" the 

endpoint level. Using a WS of ten, gives quite a high level at the end. and this may not 

fall below the set endpoint level. The other window sizes all give similar variation 

profiles. Therefore, all window sizes are to be examined more closely. 
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Figure 3.5.5: Determination of window size (WS) to use in the endpoint determination function in 
caterpillar, using data set este,_ 40_12_1_3_MW data, and an inter-window distance of 10. The 
significance level (0.99), below which the reaction should fall is indicated by the da hed line. a 
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Figure 3.5.5 shows the resulting plot for the endpoint determination when using the 

different window sizes. This shows that depending on the variables chosen the endpoint 

can be determined at different times. Therefore, it is important to defme when the actual 

endpoint is, to allow correct identification. In the plots, once the reaction has reached 

below the significance level, indicated by the dashed line, the reaction is said to be 

stable, and hence at the endpoint. Using WS = 5 (Figure 3.5.5a), the reaction ho ers 

around the endpoint line briefly, and has fallen below it by 4000s. Using WS = 6 

(Figure 3.5.5b), the endpoint is determined at 6000s. For WS = 7 (Figure 3.5.5c), the 

reaction crosses the significance level at 7000s, and is truly below it at 8000s. With a 

WS = 8 (Figure 3.5.5d), the endpoint is around at 9000s and WS = 9 (Figure 3.5.5e) at 

10000s. For a WS = 10 (Figure 3.5.5f), the reaction is around the significance level at 

around 10000s, but it isn't clearly below it. 

This reaction has been carried out at 40°C, and it is reasonable to assume the reaction 

will be over by around 7200s (2 hours). It has been decided to use a WS = 7 in which 

the endpoint is between around 7000-8000s. The reaction has clearly slowed down at 

this point and is reaching equilibrium as the variation between samples is small. Using 

WS = 6, the endpoint is determined at around 6000s, some 20 min earlier. Depending 

on how the endpoint is defined by the user, this may be a suitable endpoint. 
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Results and Discussion: Chapter 3.5 Endpoint detennination of an esterification reaction 

From the inter-WS plot (Figure 3.5.6) it can be seen that changing this variable does 

have an effect on the determined endpoint. However, between time points 7000 to 

8000s, there is only a small difference in the plots. Therefore, only a small difference 

will be seen in the determined endpoint of the reaction when using different inter­

window sizes. From this, it has been decided to always use twice the size of the chosen 

WS for the inter-WS, to simplify the procedure for choosing the variables to use. 

The resulting determination of the endpoint using the chosen variables is shown in 

Figure 3.5.7. The reaction reaches the significance level at 7000s, and is clearly below it 

at 7500s, so this is to be determined as the endpoint. The other reactions, run under the 

same conditions, can now be analysed using the same variables to ensure the same 

endpoint is achieved . 
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Figure 3.5.8: Endpoint determination using PC=2, WS=7, inter-WS=14 for: a) 
ester 40_12_1_1_MW and b) ester_ 40_12_1_2_MW. The red dashed line indicates the significance 
level. 

The first repeat of the reaction, ester _40 _12 _l_l_MW, reaches the significance level at 

7000s (Figure 3.5.Sa), and clearly is below it at 7500s, so giving an endpoint the same 

as in the previous example. The second repeat, ester_40_12_1_2_MW, gives different 

results (Figure 3.5.Sb). The reaction appears to reach the endpoint at around 6000s, but 

then something occurs in the reaction and it proceeds above the significance level once 

more. The same thing happens again at around SOOOs, so the endpoint is not determined. 

This reaction was carried out under the same conditions so should give the same 

endpoint. However, some upset must have occurred during the reaction to prevent it 

from reaching the endpoint. This shows the limits of the endpoint detection as if the 

reaction does not proceed as expected, the true endpoint will be changed, and it may not 

be detected with the variables chosen. 

NIR spectra 

Ester _40_12_1_3 _NIR was analysed in the same way as the MW data to determine the 

optimum variables to use in the caterpillar endpoint determination algorithm. :\11 

variation is captured in the first two pes and so two were used. A WS of fi\"C gin?s an 

endpoint in the reaction at around the time expected, and so a corresponding intcr- \\"S 

of ten was used. 

Figure 3.5.9 shows the resulting endpoint determination plots for each repeat reaction 

using the optimised variables in the caterpillar algorithm. In the first repeat (Figure 
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3.5.9a) the endpoint is seen just before 8000s, but the reaction still hovers around the 

significance level. In repeat 2 (Figure 3.5.9b) the endpoint is also seen just before 

8000s, and this stays clearly below the significance level for the remainder of the 

reaction. In repeat 3 (Figure 3.5.9c) the endpoint is just before 8000s. 

The endpoint is reproducible in these three repeats, but it has been determined slightly 

later at 8000s, then the 7500s determined with the corresponding MW data. This could 

be due to the localised sampling nature of the NIR probe used, which may have a delay 

in seeing the reaction progress. 
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Figure 3.5.10: Mesh plots of esterification reaction carried out at 50°C with a molar ratio of 1:0.25 
butanol:acetic acid, and Iml of catalyst; a) ester_50_1:025_1_I_MW; b) ester_50_1:025_1_1_ IR; 
c) ester_50_1:025_I_l_MW; d) ester_50_1:025_1_2_NIR; e) ester_50_1:025_1_3_MW; f) 
ester_50 _I :025_1_3_ NIR. 

- 164 -
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The correlation coefficients, ,;, are shown in Table 3 5 3 to show th d 'b'l' f . . e repro UCI I Ity 0 

the recorded spectra. The values are all above 0 998 showl'ng very re d 'bl . pro UCl e spectra 

is recorded. 

Table 3.5.3: Correlation coefficients, ,;, to show the correlation between the ttl' ., . . ° repea spec ra lor 
estenficatlOn reactions carned out at 50 C, with an initial molar ration of 1'025 btl' t' . . 1 .. , u ano .ace IC 
aCid, with ml of catalyst. 

,; MWI MW2 MW3 ,; NIRI NIR2 NIR3 
MWI - 0.99875 0.99893 NIRI - 0.99868 0.99967 
MW2 0.99875 - 0.99925 NIR2 0.99868 - 0.99915 
MW3 0.99893 0.99925 - NIR3 0.99967 0.99915 -

The scores plots for the MW data (Figure 3.5.11a, c and e) have very smooth reaction 

profiles and are very reproducible. The NIR scores (Figure 3.5.9b, d and f) are not as 

smooth reaction profiles, but they appear reproducible. 

The correlation coefficients, r2, have been calculated for each set of data, Table 3.5.4. 

The values for the MW data sets are all above 0.998, showing there is little variance 

between the scores, so the spectra are reproducible. The NIR repeat spectra have values 

above 0.94 so the scores show more variance but are still reproducible. When the scores 

of the MW and NIR are compared, r2 values of between 0.0.85 and 0.92 are achieved. 

This shows the MW and NIR spectra are much less comparable, suggesting different 

process variation is seen by the two techniques, even though they are monitoring the 

same reaction. This may be due to the difference in the way the spectra are recorded. 

Table 3.5.4: Correlation coefficients, ,;, to show the correlation between the scores on PCI for 
esterification reactions carried out at 50°C, with an initial molar ration of 1 :0.25, butanol:acetic 

acid, with 1ml of catalyst. 

I MWI MW2 MW3 NIRI NIR2 NIR3 

MWI - 0.99841 0.99809 0.87883 0.90781 0.85952 

MW2 0.99841 - 0.99925 0.87980 0.91735 0.86232 

MW3 0.99809 0.99925 - 0.87543 0.91616 0.85758 

NIRI 0.87883 0.87980 0.87543 - 0.94482 0.99510 

NIR2 0.90781 0.91735 0.91616 0.94482 - 0.95466 

NIR3 0.85952 0.86232 0.85758 0.99510 0.95466 -
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Figure 3.5.11: Scores on PCI using the mean centred spectra for esterification reactions carried out 
at 50°C with an initial molar ratio of 1 :0.25, butanol:acetic acid, and 1 ml of catalyst: a) 
ester_50_1:0.25_1_I_MW; b) ester_50_1:0.25_1_1_NIR; c) ester_50_1:0.25_1_1_i'1\\: d) 
ester _50_I :0.25_1_2_NIR; e) ester_50_1 :0.25_1_3 _MW; t) ester_50_1 :0.25_1_3_NIR. 
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The spectra has been analysed using the endpoint determination function in the 

caterpillar algorithm, using PC = 2, WS = S, and an inter-WS = 10. The resulting 

endpoint determination plots are shown in Figure 3.S.12. The endpoints detected are not 

reproducible. In these reactions, a molar ratio of 1 :0.2S, butanol to acetic acid. has been 

used so they will have a different endpoint to the reactions looked at pre\'iously, Th~ 

molar ratio used does not favour equilibrium, so it is expected the endpoint \\'ill be late 

in the reaction. 

The MW data for the first repeat (Figure 3.S.12a) does not give a clear endpoint. The 

reaction appears to reach the endpoint at SOOOs, but quickly moves back above the 

significance level, suggesting the reaction stopped proceeding for a short \\'hile. The 

reaction hovers around the endpoint at the end of the reaction, so it is not clear if it has 

been reached. For the second repeat (Figure 3.S.12c) a more obvious endpoint is 

determined at about 92S0s. With the third repeat (Figure 3.S.12e) there is also a clear 

endpoint at 8000s, although the reaction does move back towards the significance level 

nearer the end of the reaction. The determined endpoint is not reproducible for these 

reactions. 

With the NIR data, the endpoint appears to be very early on in the reaction. This is not 

expected as the reaction conditions do not favour equilibrium. However, on closer 

inspection of the plot for the first repeat (Figure 3.S .12b), the reaction does not actually 

reach the endpoint, but hovers around the line for the length of the reaction. With the 

second repeat (Figure 3.S.12d), the reaction nears the significance level for some time 

and actually only goes below it at 8000s, and the reaction goes back over the line at the 

end of the time period. On closer inspection of repeat 3 (Figure 3.S.12f) the reaction 

does not actually reach the endpoint. 
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Figure 3.5.12: Endpoint determination plots for esterification reactions carried out at 50°C, with an 
initial molar ratio of 1 :0.25, butanol:acetic acid, and 1 ml of catalyst, using PC=2, WS=5, inter­
WS=10 in caterpillar algorithm: a) ester_50_1:0.25_1_1_MW; b) ester_50_1:0.25_1_I_NIR; c) 
ester_50_1:0.25_1_1_MW; d) ester_50_1:0.25_1_2_NIR; e) ester_50_1:0.25_1_3_MW; f) 
ester_50_1:0.25_1_3_NIR. The red dashed line indicates the significance level. 

3.5.2.3 Esterification at 40°C, 1:2 initial molar ratio, 4ml catalyst 

These two reactions were carried out under the same conditions, so it is expected they 

will have similar endpoints. The resulting spectra are shown in Figure 3.5.13. Fr m 

these it can be seen that the reactions carried out are similar as similar spectra re ult. 

however, there are differences in the spectra. 
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Figure 3.5.13: Mesh plot of spectra collected during esterification reactions carried out at 40°C, 
with an initial molar ratio of 1 :2, butanol:acetic acid, with 4ml of catalyst; a) 
ester_ 40_1:2_ 4_1_MW; b) ester_ 40_1:2_ 4_2_MW; c) ester_ 40_1:2_ 4_I_NIR; d) 
ester_ 40_1 :2_ 4_2_NIR. 

The MW spectra (Figure 3.5.13a,b) are quite similar, but there does appear to be a 

difference in the actual shape of the spectra. The calculated correlation coefficients r 

for the two repeat spectral data sets is 0.95531 showing a high reproducibility of the 

repeat spectra. However, this is lower than the values seen for the other repeat reactions 

looked at which have been above 0.99. 

The NIR spectra (Figure 3.5.13c,d) are quite similar. The spectra change gradually, in a 

typical reaction profile manner. Then, between 5000 and 6000s the spectra change 

dramatically. This point could be due to something occurring during the reaction that 

results in a sudden increase in absorption of the NIR. However it i een in b th 

reactions, so appears to be a reproducible change. The r value for the e tw rep at i 
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0.99307 showing good reproducibility. This is higher than that calculated for the MW 

repeat data, suggesting in this case the NIR data collect d . . e IS more reproducIble. 

The resulting spectra were analysed by PCA the resultI'ng PC 1 . , scores on are shown In 

Figure 3.5.14 . 
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Figure 3.5.14: Scores on PCl vs. time for a) ester_ 40_1 :2_ 4_1_MW; b) ester_ 40_1 :2_ 4_2_MW: c) 
ester_ 40_1:2_ 4_1_NIR; d) ester_ 40_1:2_ 4_2_NIR. 

The scores on PC 1 show the greatest variation seen in the spectra during the reaction. 

The scores plots show how the samples change over time, and so give a profile of the 

reaction as it progresses. The scores plots for the MW spectra for both reactions (Figure 

3.5.14a,b) have a very similar reaction profile. This is to be expected as the same 

reaction is studied. In a normal reaction profile, it is expected to see the variation 

change between the samples to be quite large at the start and then slow down as the 

reaction reaches equilibrium, as the samples are changing less rapidly. This profile is 

not seen here. There is a dip in the scores at around 6000s, which suggests something 

occurs in the reaction. This is reproducible in both reactions. Looking at the NIR scores 

(Figure 3.5.14c,d) a typical reaction profile is not evident. The scores are fairly k\l~1 

until around 6000s, suggesting the samples change very little. This would suggest that 
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the reaction is not proceeding. The NIR probe only measures a small area of the 

reaction mixture, suggesting it does not see the true reaction picture. The samples then 

change dramatically after 6000s, and the reaction appears to have slowed down by 

9000s. This relates to the large increase seen in the spectra at the same time period 

(Figure 3.5.13). The scores plots do not give much useful information about the reaction 

progress, and do not help with the prediction of the end point of the reaction. 

The r2 values have been calculated to compare each of the data sets, Table 3.5.5. The 

scores for the two repeat MW data sets show little variance with an / value of 0.99873. 

The two NIR data sets are also fairly reproducible with an r value of 0.95335. The NIR 

and MW scores show greater variance with r2 values of between 0.88 and 0.92, 

indicating the two techniques do not capture the same process variation. 

Table 3.5.5: Correlation coefficients, I, for the PCA scores on PCI for the repeat MW and NIR 
spectra recorded during an esterification reaction carried out at 40°C, with an initial molar ratio of 
1:2, butanol:acetic acid, with 4ml of catalyst. 

I MWI MW2 NIRI NIR2 
MWI - 0.99873 0.89352 0.92049 
MW2 0.99873 - 0.88613 0.91108 
NIRI 0.89352 0.88613 - 0.95335 
NIR2 0.92049 0.91108 0.95335 -

The data was then analysed using the caterpillar algorithm and the optimum variables to 

be used determined. It was decided to use PC = 2, WS = 5 and inter-WS = 10 for both 

the NIR and MW data. However, with all possible combinations, the endpoint is not 

determined in the reactions, and so these variables are used to illustrate the example. 

Figure 3.5.15 shows the endpoint determination plots for both the MW and NIR data 

sets for the ester 40 12_4_1 and 2 data sets. Its clear from these plots that an endpoint 

is not determined for the reaction and that something abnormal occurs during the 

process. 
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Figure 3.5.15: Endpoint determination using the caterpillar algorithm with variables PC=2, WS=5, 
inter-WS=10. for an esterification reaction carried out at 40°C, with an initial molar ratio of 1:2, 
butanol:acetic acid, with 4ml of catalyst; a) ester_ 40_12_ 4_1_MW; b) ester_ 40_12_ 4_2_MW; c) 
ester_ 40_12_ 4_1_NIR; d) ester_ 40_12_ 4_2_NIR. The red dashed line indicates the significance 
level. 

In the MW data of the first reaction (Figure 3.5.l5a) there appears to be an endpoint at 

5000s, but then the reaction goes above the significance level again after 6000s, and 

slowly moves down towards the endpoint by the end of the reaction. This "dip" below 

the endpoint line correlates to the dip seen in the corresponding scores (Figure 3.5.14a) 

at around 6000s. A similar thing is seen in the MW data for the second reaction (Figure 

3.5 .I5b) in which the reaction appears to reach the endpoint but moves above the 

significance level again. The reaction appears to be very erratic after this point. The 

NIR data for the first reaction (Figure 3.5.I5c) does not show anything about the 

reaction. The NIR data for the second reaction (Figure 3.5.15d) also shows very little 

with no endpoint detected for the reaction. 

As the endpoint is not determined for either of the reactions run under the arne 

conditions, it suggests that the caterpillar algorithm cannot be used in thi ituati n. It 

seems unlikely that an occurrence would happen in both reacti n t pre nt th 

determination of the endpoint. 
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The point at which the endpoint is first seen in the MW data, 6000s, is at the same time 

that the abnormality occurs in the NIR spectra. If this abnormality in the spectra is due 

to the equilibrium being reached, then this could be the endpoint. If this is the case, then 

the endpoint cannot be determined if the equilibrium has been reached, and the endpoint 

must be defined as an earlier time in the reaction when it is reaching equilibrium. 

3.5.3 Conclusions 

The endpoint of a reaction must first be defined as it is a subjective term. Repeats of 

reactions with the same conditions have been examined for both NIR and MW data. 

Repeats of the same reaction should have the same endpoint. 

This has been shown well with one set of repeats, ester ~ -I 0 ~1: 2 ~ 1_1, 2 and 3, with both 

the NIR and MW data sets. The first two repeats gave good agreement with the 

endpoint determined at 7 SOOs in the MW and 8000s in the NIR. The NIR and MW do 

not give the same endpoint, but the difference is only SOOs (8 min). This could be due to 

the localised nature of the NIR probe used. 

The second example using ester~50_1:0.25_1~1,2 and 3, does not give as good results. 

An endpoint is not determined for the first repeat, and the determined endpoints do not 

agree for the second and third repeats. The second data set gave an endpoint of 9250s 

with the MW and 8000s with the NIR. The third repeat gave an endpoint of 8000s for 

the MW, and no endpoint was detected in the NIR. The molar ratio used does not favour 

equilibrium, so this shows the limits of the reaction studied which may have not reached 

endpoint in the time studied. 

The last example uses data set ester _40_1:2_1 and 2. In these reactions a larger amount 

of catalyst is used, 4ml compared to 1ml used in the other examples. No endpoint was 

determined in either the NIR or MW data. The NIR spectra showed some abnormalities 

in the collected spectra. This may be due to the reaction actually reaching equilibrium 

within the studied time, as these reactions are expected to proceed at a faster rate. This 

shows the limit of using caterpillar to detect the endpoint once the equilibrium has been 

reached. The endpoint must be defined as the reaction reaching equilibrium, and not the 

actual equilibrium point. 
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3.6 Detection of process upsets during an esterification 

reaction 

A process upset is defined as anything which disturbs the progress of a reaction. It is 

important to detect such upsets during a reaction, and if possible identify the nature of 

the upset to allow correction of it and ensure the reaction proceeds as expected. 

Caterpillar is an adaptive algorithm which can be used to determine the endpoint of a 

reaction. It can also be adapted to detect upsets during a reaction. The "now" variation 

is compared to the recent variation, and any major change in variation is identified as an 

upset as the reaction is no longer proceeding as expected. 

In this work, several upsets have been stimulated during an esterification reaction 

monitored by MW and NIR spectroscopy. The caterpillar algorithm has been used to 

identify these upsets. 

3.6.1 Experimental set-up 

All reactions were carried out within the OMS remote stainless steel cavity with a NIR 

transmission probe inserted into the chamber, as described in the experimental section 

(section 2.4), to allow MW and NIR spectra to be collected simultaneously. Spectra 

were collected at one minute intervals. 

Reactions were carried out with process upsets stimulated, similar to those expected to 

be seen in an industrial setting (section 2.5.5). 

3.6.2 Results and discussion 

The caterpillar algorithm can be used to detect process upsets in a reaction. This works 

in a similar way to the endpoint determination, but this time the windows are placed 

side by side (section 1.4.4). The first window is used as a reference window and the 

second as a detection window. A peA model is calculated for the reference window to 

describe the variation of the samples in this window. The newest samples, contained in 

the detection window, are then compared to this model. If several of the samples in the 

prediction window are significantly different from the reference PCA model. this is 

interpreted as process change. Both windows are moved through the data stepwise 

allowing the reference model to adapt to any process changes. This means the caterpillar 

algorithm will detect the onset of new phases in the process data as they occur. 
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The variables of window size (WS) and number of components (PCs) to use in the PCA 

model must be optimised to ensure correct determination of process upsets. It is 

important that only true process upsets are detected and not normal reaction variation as 

this would lead to false alarms. 

Once the optimum variables have been chosen, the algorithm can be performed on 

spectra collected from reactions with stimulated process upsets to determine if these 

process upsets can be detected. 

3.6.2.1 Determination of window size and number of components 

The characterisation reaction spectra, data sets ester _ 40 _ 4_1 and ester _ 40 _ -1_ 2. \\erc 

used to determine the WS and the number of PCs to be used in the PCA model within 

the caterpillar algorithm. These are set so that upsets are determined and normal process 

change is not identified as an upset. This data is representative of the reactions 

performed and contains only normal process variation. The reference reaction profiles 

can be seen in the mesh plots of the spectra over time (Figure 3.6.1 a and b). The MW 

spectra changes very little over time. The NIR spectra changes more dramatically, 

particularly at around 7000s, when something appears to occur in the reaction. This is a 

reproducible change, seen in most of the reactions carried out, and is possibly related to 

the endpoint of the reaction and due to the local nature of the NIR measurements. 
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Figure 3.6.1: Mesh plots for reference esterification reaction carried out at 40°C, with an initial 
molar ration of 1:2, butanol:acetic cid, and no process upsets stimulated. The resulting scores plots, 
PCI vs PC2, from PCA are also shown; a) MW spectra) NIR spectra; c) MW scores; d) NIR scores. 

peA has been performed on the mean-centred spectra. The scores plots for the MW 

spectra (Figure 3.6.1 c) show how peA can be used to visualise the progression of a 

reaction. The scores have a typical reaction profile in which the reaction appears to 

progress rapidly at the start, and proceeds towards equilibrium. However the NIR 

scores (Figure 3.6.1d) do not show the progression of the reaction in the same way. 

The reference data is analysed using a range of window sizes and number of pes. The 

"now" variation is compared to the recent variation and any atypical samples i.e. tho e 

which are significantly different, are determined for each combination. The number f 

atypical samples is counted and displayed in an occurrence plot. This give ea 

viewing of the state of the reaction. Occurrences greater than zero indicate atypical 

samples have been detected in the process and hence a process upset. The numb r f 

atypical samples should be none for an ideal system with only nonnal proce anance. 
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Therefore, a WS and number of pes is chosen that gives no occurrences. The 

significance level must also be chosen, but this is set high (0.99) to minimise the 

number of false alarms. 

Generally it is suggested to use a wide WS to ensure that the best representation of the 

variation in all stages of the process is captured. The data examined comprises of only 

around 180 samples, therefore the WS is limited. A range of five to ten samples in the 

window was looked at. The smallest WS must always be one greater than the maximum 

number of components examined. 

It is expected that four components would be needed to model the system as there are 

four components reacting. However, as the two products form at the same rate and the 

two reactants are consumed at the same rate, only two components are effectively 

changing and contributing variation to the system, therefore it is reasonable to assume 

that two components will be sufficient to model the system. Hence one to four 

components were examined. 

A response surface showing the occurrences for different combinations of WS and 

number of pes results from the analysis (Figure 3.6.2). For the MW spectra (Figure 

3.6.2a) it can be seen that using two components and a WS of five gives no atypical 

samples i.e. no occurrences are detected. Using four components with a WS of five also 

gives no occurrences. However, it is considered that two components should suffice to 

model all the relevant information, and using four might lead to the inclusion of noise in 

the system. Looking at the peA scores, 99.18% of the variance is captured in the first 

two components, and including more is not adding anything to the model. 
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Figure 3.6.2: The response surface plot shows the occurrences for different combinations of window 
size, WS, and number of components, pes, for the reference data set. Results for; a) MW spectra; 
b) NIR spectra; c) NIR spectra using just the first 1.5 hours of reaction data. 

The NIR spectra were analysed in the same way. Using the full 3 hour, 10 800s, data set 

there are occurrences of greater than one for all combinations, implying atypical 

samples are detected (Figure 3.6.2b). Examination of the spectra (Figure 3.6.2b) shows 

the process does seem to change dramatically around 7000s into the reaction. This could 

be the endpoint of the reaction which may prove to be a problem when trying to identify 

process upsets if the end of the reaction is itself seen as an upset. Due to the nature of 

the probe, only one small area of the reaction mixture is analysed and so the true 

reaction progress may not be seen. When analysing the first half of the reaction, around 

1.5 hours, 5400s, (Figure 3.6.2c) a WS of five and two components can be used to giH~ 

no atypical samples. This shows the limits of using NIR data for process upset detection 

as the endpoint of the reaction seems to be detected as process change. 

It was decided to analyse all reactions using two components in the PCA model. \\'ith a 

WS of five, in the caterpillar algorithm. The WS is equivalent to fin~ minutes as the 

spectra are taken at one minute intervals. The window is moved through the data one 

spectra at a time. The atypical sample due to a process upset is detected in the next 
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spectrum that is recorded giving a lag before the upset is identified. Therefore, the more 

frequently spectra are taken, the quicker the upset will be identified. 

3.6.2.2 Addition of catalyst 

The reaction was carried out in the way described, but with l.Oml catalyst added at the 

start, data set Ester _upset_cat. Further additions of catalyst (l.Oml) were added at 1790, 

3590 and 5450s into the reaction, to give a total of 4.0ml of catalyst. This reaction is to 

simulate problems with charging of catalyst. Figure 3 .6.3a and b show the resulting M\\' 

spectra and NIR spectra respectively. The MW spectra show clear changes at the points 

the catalyst is added (as indicated by arrows). The NIR spectra show no such change, 

but do show a dramatic change near the end of the reaction. 

The spectra were analysed with the caterpillar process upset algorithm using a WS of 

five, two pes and significance level of 0.99. The resulting occurrence plots are ShO\\'11 

in Figure 3.6.3c, and d. 

In the occurrence plot, the "new" samples that are statistically different from the 

reference samples are counted and shown as an occurrence. The three additions of 

catalyst are clearly identified as occurrences in the MW spectra (Figure 3 .6.3c), at 1800, 

3600 and 5450s. An occurrence of one is seen at the start of the upset. This indicates 

one of the five samples in the window is atypical. This builds up to an occurrence of 

five after five minutes, so now all five samples are atypical. This shows a clear process 

upset, and not just a false alarm. False alarms are likely to be seen as single events with 

a low occurrence, so are clearly identifiable as false alarms. 

The only occurrence identified in the NIR spectra (Figure 3.6.3d) is at around 8250s. 

This does not relate to the addition of catalyst, but perhaps indicates the endpoint of the 

reaction analogous to the observation in the reference data (Figure 3.6.3b). As 

mentioned previously, if the endpoint of the reaction is identified as an upset in the NIR 

spectra, then this is not a suitable method to detect process upsets. 
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Figure 3.6.3: Esterification reaction with addition of catalyst at 1790,3590 and 5450s to stimulate a 
process upset; a) Resulting MW spectra. The arrows indicate the addition of catalyst. It can be 
clearly seen the effect this has on the spectra; b) Resulting NIR spectra; c) Occurrence plot for MW 
spectra; d) Occurrence plot for NIR; e) Scores plot of PCl vs. PC2 for MW spectra; f) core plot 
of PCI vs. PC2 for NIR spectra. The three circles indicate a change in the scores due to the addition 
of catalyst. 
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PCA was carried out on the mean centred MW and NIR spectra to examine the reaction 

progress. The scores plot for the MW spectra (Figure 3.6.3e) shows four clear stages of 

the reaction. These would appear to relate to the addition of the catalyst at the different 

stages. The NIR scores (Figure 3.6.3f) are harder to interpret. There does appear to be 

three small changes in the vertical plane (circled), but these are masked by the large 

change seen in the horizontal plane. 

MW spectra are sensitive to the addition of the catalyst. The actual catalyst is detected 

in the spectra due to the resulting change in dielectric constant of the reaction mixture. 

The very small volume detected (lml in 450ml) shows the sensitivity of the method. 

The NIR spectra change due to the absorbance properties of the material changing. 

Addition of the catalyst does not dramatically affect the composition of the reaction 

mixture but will affect the rate of reaction. The NIR is not able to pick up the small 

change due the addition of catalyst. 

3.6.2.3 Charging of half of the reactants 

The reaction chamber was charged with the butanol and approximately half of the acetic 

acid, data set Ester _upset_charging. The remaining acetic acid was added 2460s into 

the reaction. This is to mimic insufficient charging of reactants. The occurrence plot of 

the MW spectra (Figure 3.6.4a) and NIR spectra (Figure 3.6.4b) show the process upset 

is clearly detected at around 2500s in both. The spectra before the second addition of 

acetic acid will be greatly different in the MW spectra as the fullness of the chamber 

affects the recorded spectra due to the amount of air present. The absorbance seen in the 

NIR spectra will also change due to the addition of more acetic acid as the reaction 

composition changes. 

- 181 -



Results and Discussion: Chapter 3.6 Detection of process upsets d . 'fi' . urlng an esten IcatlOn reaction 

a 5r---~----~--~----~--~ 

4 

1 

1000 2000 3000 4000 5000 
Time/s 

b 5 

4 

I/) 

~3 
c 
Q) .... .... 
::::J 

~2 
0 

1 

0
0 1000 2000 3000 4000 5000 

Time /s 

Figure 3.6.4: Occurrence plots for an esterification reaction with charging of half the reagent, and 
addition of the second half at 2460s to stimulate a process upsets; a) using MW spectra; b) using 
NIR spectra. 

3.6.2.4 Addition of water 

In this reaction, Ester _upset_water _1, water was added to the reaction at 1800 (Sml) 

2990 (7.5ml) and 4790s (lOml). This is to simulate a leaking cooling pipe in industry. 

All three additions of water are detected as process upsets in the MW spectra (Figure 

3.6.5a) at 1900, 2990 and 4800s. The first event appears slightly after the actual addition 

of the water, around two minutes later. The MW spectra seem to have trouble detecting 

such a small amount of water. The addition of the water will change the dielectric 

constant of the reaction composition, which affects the resulting MW spectra. The MW 

spectra are very sensitive to small amounts of water - 7.5 ml in 4S0 ml, 1.7% by 

volume, is detected. 
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Figure 3.6.5: Occurrence plot for an esterification reaction with the .addition f, ater at 1 (Sm I , 
2990 (7.5ml) and 4790s (10m!) to stimulate a process upset; a) u 109 MW pectra; b) u ing IR 

spectra. 
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There are also three events identified in the NIR spectra (Figure 3.6.5b). however the 

first event appears be more like a false alarm as it starts at two and moves to an 

occurrence of one. There is no clear build up of the occurrence. The other two additions 

of water are clearly detected at 3000 and 4800s. Water strongly absorbs in the :":IR 

region, so it is expected that the spectra will clearly change due to water. 

3.6.2.5 Addition of benzoic acid 

Benzoic acid (2g / 0.45%w/v) was added to the reaction at 3800s to simulate the 

charging of incorrect reactants. Figure 3.6.6a shows the occurrence plot for the MW 

spectra. The addition of benzoic acid is seen as an upset at around 3800s. There is also 

an event detected later in the reaction. This was not a stimulated upset, but could 

perhaps be due to a secondary effect of the addition of the benzoic acid. The benzoic 

acid is added as a solid so it may take time to dissolve and have an effect on the 

reaction. The addition of the benzoic acid will change the dielectric constant of the 

reaction mixture, and hence the MW spectra recorded. 

4 

1 

L-

1000 2000 3000 4000 5000 6000 7000 
Time/s 

VI 
Q) 
U 
C 

0.5 ".~ .. ~.~ .. -:- ........ .. 

~ 01------···-·---- ............. ...-.-... ---------------
:;, 
<..) 
u o 

-0.5· ,~ ........... " .. , i.,,, 

-J~~~~~.L-......~-:-:!::':::-----'~-:::-::~-:-:::' o 2000 4000 6000 8000 10000 
Time Is 

Figure 3.6.6: Occurrence plot for an esterification reaction with the addition of benzoic acid at 
4000s to stimulate a process upset; a) MW spectra; b) NIR spectra. 

No occurrences are detected in the NIR spectra (Figure 3.6.6b). NIR spectra is affected 

by a change in absorption due to a change in concentration of the components. The 

benzoic acid does not seem to change the absorption properties of the mixture. so the 

NIR spectra do not change due to its addition. 

3.6.2.6 Disturbance of stirrer 

. which the stirrer IS disturbed. In the first. Two reactions were carried out In 

Ester _upset-stirrer _1, the following disturbances occurred: 
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Table 3.6.1: Disturbance cause by altering the stirrer during the esterification reaction 
ester _ upset_ stirrer _1. 

Time / s Disturbance 
1500 stirrer switched off 
1860 stirrer switched on 
2460 stirrer turned up to 2 
3180 stirrer turned down to 1 
5400 stirrer switched off 
6000 stirrer switched on 

When using a WS of five and two pes, no occurrences are seen in the MW data. \\'hen 

looking at the occurrences for the NIR data (Figure 3.6.7), an occurrence is seen at 

2550s, but this appears to be a false alarm as it only reaches an occurrence of one. There 

is another upset at 6000s, and at 6450s. Neither of these coincide with a stimulated 

process upset. It could be that a lag occurs before the effect of switching off the stirrer is 

seen, but this seems unlikely. 
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Figure 3.6.7: Occurrence plot for the esterification reaction with stirrer disturbance as a stimulated 

upset for NIR spectra. 

The reaction was repeated in which the stirrer was switched off for longer periods to see 

if it could be identified as a process upset. In the second reaction. Ester _upset _stirrer ' 

the following disturbances occurred: 
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Table 3.6.2: Disturbance b 
ester_upset_stirrer_2. cause y altering the stirrer during the esterification reaction 

Time / s Disturbance 
600 stirrer switched off stirrer off for 3 min 
780 stirrer switched on 
1380 stirrer switched off stirrer off for 5 min 
1680 stirrer switched on 
2280 stirrer switched off stirrer off for 6 min 
2640 stirrer switched on 
3240 stirrer switched off stirrer off for 7 min 
3660 stirrer switched on 
4260 stirrer switched off stirrer off for 8 min 
4740 stirrer switched on 
5360 stirrer switched off stirrer off for 9 min 
5880 stirrer switched on 
6660 stirrer switched off stirrer off for 10 min 
7260 stirrer switched on 

, 

7860 stirrer switched off stirrer off for 15 min 
8760 stirrer switched on 

This time the stirrer was switched off for increasing lengths of time. The resulting 

occurrences are shown in Figure 3.6.8. 
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Figure 3.6.8: Occurrence plot for the disturbance of stirrer process upset a) MW spectra, b) l"IR 

spectra. 

From the MW spectra (Figure 3.6.8a) only false alarms are detected as the greatest 

number of atypical samples detected is two out of five. In the NIR spectra (Figure 

3.6.8b) more obvious process upsets are identified. The first is seen at 5900s which 

coincides with the stirrer being switched back on after 9 minutes. The second is at 

6450s, which does not coincide with any of the stimulated upsets. The third is at 8800s. 

which is just after the stirrer was switched on after 15 minutes. This \HHIid mean that n\) 
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effect was seen when the stirrer was switched off for 10 minutes It th ~ . ere lore appears 

that the effect of the stirrer being switched on and off is not detected, but some other 

interference in the reaction. 

It was not expected that the disturbance of the spectra can be identified as a process 

upset. For an upset to be determined it must affect the spectra, and cause atypical 

variation. The disturbance of the stirrer will not affect the spectra as it does not alter the 

composition of the reaction. 

3.6.3 Conclusions 

In this work, the esterification of butanol by acetic acid has been monitored by NIR and 

MW spectroscopy. Various process upsets have been stimulated, and the resulting 

spectra analysed using a new algorithm called caterpillar. This is an adaptive algorithm 

which can be used to identify such process upsets. This has the advantage of being 

suitable for dynamic processes as the algorithm analyses the spectroscopic data directly 

and no static model is built. 

The use of caterpillar has been demonstrated using MW spectra to identify the incorrect 

addition of catalyst, addition of water, insufficient charging of reactants and the addition 

of an interferant, benzoic acid, as process upsets during the reaction. Caterpillar has also 

been used with NIR spectra of the same process, which only picks up some of these 

upsets, but not all, so has limited use in this application. Neither technique was able to 

detect disturbances to the stirrer. MW spectroscopy has been shown to be much more 

sensitive to small variation in the process, and has the advantage that the entire reaction 

volume is monitored. The occurrence of an upset can be detected, but not the cause of 

the upset. Other techniques are needed to determine the cause of the upset and allo\-\' 

identification of the remedial action necessary. 
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4.0 Conclusions 

In this work guided microwave spectroscopy (GMS) and near infrared (NIR) 

spectroscopy have been used to monitor two typical industrial processes namely drying 

of a solid material, and the monitoring of an esterification reaction. Both processes have 

monitoring issues, but the main issue is that of sampling. The process must be sampled 

in such a way as to give a sample that is representative of the entire process. 

Traditional techniques may involve removing a sample from the process and analysing 

it off-line. This is especially difficult in drying and so methods involving analysis of the 

off-gases have been developed. It takes time between sampling and the anal)1ical 

results, so these methods are generally used to check the final product is within 

specification and not to control the process. Process analytical techniques, such as NIR 

and MW spectroscopy produce no waste, are quicker, safer and measurements are made 

on-line, in real-time so can be used to monitor and control the process. 

NIR spectra record the change in absorption due to the components present. As the 

relative amounts of the components change, a change in the recorded spectra is seen. 

Microwave (MW) spectra record the change in dielectric constant of the reaction 

mixture as the reaction proceeds. Each component has a different dielectric constant, 

and as the concentrations of these change so does the relative dielectric constant of the 

mixture, therefore these techniques are suitable for monitoring evolving processes. 

NIR spectroscopy is a widely used and well understood technique, and many examples 

exist of applications of NIR in the field of process analysis. It is relatively easy to relate 

the spectra of a process to how the process is proceeding. GMS has only been used for a 

couple of process analysis applications, and the technique is less understood. The 

process spectra are much harder to interpret and relate to the process. It was hoped 

using both techniques to monitor these processes would give a reference method, NIR, 

to which the MW spectra could be compared to aid interpretation of the process from 

the MW spectra. 
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4.1 Drying 

The drying process was initially simulated by wetting a material with solvent to show 

the possibility of monitoring a drying process. Calibration models \\"ere built using the 

recorded MW spectra and NIR spectra to predict the amount of solvent present in the 

material. 

The MW spectra were successfully used to predict the amount of solvent in a sample 

down to very low amounts (below 1 % w/w) using a global model built with spectra pre­

processed with auto-scaling followed by Box-Cox logarithmic transformation. This 

worked well for the prediction of water in sand and propanol in ascorbic acid, which 

gave prediction errors of 5% and 2% respectively. The global models \\"ere not as 

successful for the prediction of ethanol in salicylic acid which gave a prediction error of 

32% for the global model. This could be due to problems in reproducibility of the 

experiments. This was seen in the PCA scores which show a large variation between the 

repeat experiments. It seems more likely that the limits of detection have been reached, 

and the method is not sensitive to such a low amount of ethanol. This would appear to 

be the case as the use of a local model for above 20/0 solvent gave much better errors of 

only 2% when using the auto-scaling and Box-Cox logarithmically transformed spectra. 

Models below 20/0 gave 23% error using Box-Cox logarithmically scaled data. 

The NIR spectra collected were not representative of the process as a diffuse reflectance 

probe was used. This only measures a small area of the sample and is reliant on the 

solvent spreading through the sample to the area the probe is measuring. The NIR 

should be capable of measuring a true drying process as the solvent is being removed in 

a more continuous manner. Unfortunately the NIR probe could not be used to monitor 

the drying process due to limitations of space within the OMS chamber. 

During the wetting process, the solvent is added in steps and it must then seep though 

the material. Effectively two processes are occurring and both are monitored 

successfully by the OMS. The wetting experiments have sho\\n the possibility of 

building calibration models to predict the amount of solvent present. 

An actual drying process was also monitored by MW spectroscopy to show that the true 

process can be monitored. These experiments lack reference concentration data. so can 

only give an indication of the possibility of monitoring the process. The use of the PC.\ 
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scores plotted against time and the calculated residual spectra showed the possibility of 

monitoring the drying process using MW spectroscopy. These experiments did not 

reach completion, but do show the possibility of the technique. Drying is a continuous 

process and has been shown to be monitored successfully. 

Industrial drying processes involve either fluid bed dryers or pressure filtration units. 

Both have problems of monitoring the process due to huge cakes of material being 

dried. Visual inspection of the material may be carried out to determine if it is dry, but 

only the top layer of the material can be seen so this is not a good way to determine if it 

is dry. A sample may be removed and analysed, but this is unlikely to be representative 

of the entire process. York et al. [91] have used electrical tomography to provide a 3D 

model of the drying process. This involves the use of sensors located around the vessel 

to monitor the process. Green et al. [93] have used NIR to monitor drying, and found 

that sampling is the main issue. 

MW spectroscopy has the advantage over these methods as the whole sample is 

analysed so a truly representative model is produced of the drying process. MW 

provides quick, non-invasive and non-destructive analysis, so is much better than 

analysing a sample by wet chemistry as traditionally is done. Also the MW has been 

proved to measure very small amounts of solvent in the sample, down to 1 % w/w so can 

monitor a sample until it is almost completely dry. This process has only been 

monitored using small amounts of powder, less than 150g. True industrial drying 

processes are on huge scales. Further work is needed to determine how large a sample 

can be analysed, and if it is possible to simply attach the microwave antenna to either 

side of a process vessel to monitor the process. 

4.2 Esterification reactions 

The set-up of the equipment was examined to ensure the optimum conditions to collect 

reproducible spectra were used. The volume of sample in the GMS chamber was 

examined and it was found the GMS chamber should be as full as possible, and the 

volume used kept constant as the amount of air present affects the spectra. It is also 

important to regulate the temperature to give reproducible spectra. 

During this work it was found difficult to find a reference measurement that was 

suitable and reproducible to monitor the studied reaction. GC had been used to measure 
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the concentration of the components of the esterification reaction of butanol and acetic 

acid studied in this work. This was found to be a hard method to develop and problems 

were found in the reproducibility of the method to monitor a reaction. There is a high 

error in this method. 

The rate constants, k, were determined using GC monitoring and also from r.l\\, and 

NIR spectra using multivariate curve resolution (MCR). This extracts concentration 

profiles for the reaction components without the need for reference data. The k values 

determined by the different techniques do not agree, and it is not known which of these 

calculated values is the true one for the reaction studied. There does not appear to be 

published rate constants for this reaction using exactly the same rate constants. The k 

values calculated for repeat reactions are fairly reproducible for each technique. This 

indicates the MW and NIR spectra recorded are reproducible as the underlying variation 

can be used to extracted reproducible k values using MCR. The system has been proven 

to work and very reproducible spectra can be collected. 

Traditional monitoring systems involve building a model to calibrate the spectra to 

concentration data to allow the process progress to be monitored [83, 97]. Model 

building is a long process and the model is only valid whilst the process is operating 

under the same conditions. The model is only as good as the samples used to build it. 

Samples are often made up in the laboratory which may not be fully representative of 

the process. Ideally real process samples should be used but these rely on a reliable, 

reproducible reference method. Methods such as GC may be used to provide this 

reference concentration data. 

MCR methods can extract concentration profiles from spectral reaction data without the 

need for reference concentration data so has the advantage over traditional methods in 

that no tedious model must be built. This gives a reaction profile to allow monitoring of 

the progress of the reaction, and the endpoint can be determined. These methods can be 

use in real-time and are batch independent as a model is not built, but concentration 

profiles are extracted from the underlying spectral variation. Within this work, r.1CR 

has been used to extract the concentration profiles, but due to an unreliable reference 

method it is not known which of these are the true profiles. The potential for the use of 

MeR has been proved as reproducible profiles can be extracted from repeat spectra. 
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Previous work proves that MCR is a reliable method for monitoring reactions by 

extraction of reaction profiles. For example, Richards et al. [100] used \lCR-ALS with 

IR spectra to extract the concentration profiles of a reaction The extracted results 

showed good agreement with the reference HPLC data. Blanco et al. [98] used MCR to 

monitor an esterification reaction by NIR, and found the extracted concentration 

profiles showed good agreement with the GC reference data. 

The endpoint of a reaction must first be defined as it is a subjective term. Repeats of 

reactions with the same conditions have been examined for both NIR and M\\, data and 

an adaptive algorithm, caterpillar, used to determine the endpoint of the reaction. 

Repeats of the same reaction should have the same endpoint. 

The endpoint was determined reproducibly from the MW spectra for one set of repeat 

spectra. The NIR spectra gave a slightly later endpoint, around 500s later. and it is 

thought this could be due to the localised nature of the NIR probe used. The endpoint 

was not determined reproducibly for another set of reactions which were carried out 

using a molar ratio that doesn't favour equilibrium. This shows the limits of the 

algorithm with the reaction studied, which may have not reached the endpoint. 

The calibration free method used is caterpillar which does not require a static model to 

be built so can be used to monitor reactions and determine endpoints much quicker. It is 

adaptive so it is not necessary to build a new model should the reaction conditions 

change. This makes it a much more suitable method for monitoring dynamic processes 

than traditional model building. 

During the esterification reaction, vanous process upsets were stimulated, and the 

resulting spectra analysed using the caterpillar algorithm. The use of caterpillar has 

been demonstrated using MW spectra to identify the incorrect addition of catalyst. 

addition of water, insufficient charging of recants and the addition of an interferant. 

benzoic acid, as process upsets during the reaction. Caterpillar has also been used \\ith 

NIR spectra of the same process, which only picks up some of these upsets, but not all. 

so has limited use in this application. Neither technique was able to detect disturbances 

to the stirrer. MW spectroscopy has been shown to be much more sensitive to small 

variations in the process, and has the advantage that the entire reaction volume is 

monitored. The occurrence of an upset can be detected, but not the cause of the upset. 
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Other techniques are needed to determine the cause of the upset and allo\\' identification 

of the remedial action necessary. 

Previous methods for fault detection during processes include the use of SIMCA [8-+]. 

This involves building a static model to model the normal operating state of a process. 

New samples are compared to this model and any deviations from the model interpreted 

as a process change or upset. However, this may interpret normal process yariation as 

an upset, so is only suitable for steady state reactions. 

Caterpillar is an adaptive algorithm that is batch independent, so normal process 

variation is not identified as process upsets. This is a suitable algorithm for dynamic 

processes, and reduces the number of false alarms. Also no static model is needed to be 

built, so time is saved in this way. Once the method is optimised on a reaction with only 

normal process variation, it can be used in real-time to allow monitoring of the reaction 

and upsets can be corrected for. 

Previous monitoring for esterification reaction has involved the use of Raman 

spectroscopy [18]. The main problem with this technique is that fluorescence interferes 

with the spectra, masking the variation due to the process. NIR and MW do not have 

these problems so the spectra are easy to relate to the process. Also, water is virtually 

invisible to Raman, so cannot be used to monitor the water production during the 

esterification reaction unlike NIR and MW [26]. 

4.3 Overall conclusions 

The original aim of the work was to use well understood NIR spectra which can easily 

be related to reaction progress as a reference method to aid interpretation and 

correlation of MW spectra to the process variation. In fact MW spectroscopy has been 

found to provide more information regarding a process, mainly due to it measuring the 

entire sample so giving a representative measurement of the process. MW spectroscopy 

has been found to be a more sensitive technique for detection of process upsets. It can 

measure both chemical and physical properties of a reaction so can proyide more 

information about a process than NIR, which only proyides chemical information. 

The main error in calibration is in sampling. Without reprcsentatiyc samples. thc 

sampling error typically amounts to 10-100 times the analytical errors associated \\ ith 

I h 
. I I' [19] If the need for samplino can be remo\ed. then the error \\ill 

t 1e c enllca ana YSIS . b 
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be reduced. It has been proved in this work that both MW and NIR can provide 

reproducible spectra relating to the variation seen in the process. The quality of the data 

collected is not a problem, but sampling is still an issue. 

GMS removes the need for sampling as the whole process sample is measured. The 

microwaves penetrate into the sample and are reflected by the stainless steel walls of the 

sampling chamber. This ensures the entire sample is measured. NIR has low analytical 

error and this can be seen in the spectra collected during this research which has been 

found to be highly reproducible. However, the main issue with NIR is sampling as a 

probe must be used which only sample a small area. 

NIR is a limited technique due to its sensitivity to hydrogen bonding which affects the 

spectra by changing the wavenumber at which a species absorbs. This appears to make 

the spectra harder to relate to the process, and deconvolute into its principal parts of 

concentration and spectral profiles. 

Both techniques provide quick, non-destructive methods for analysis. Real-time 

measurement can be made to allow the process to be monitored and corrected for if 

necessary to ensure the batch is right first time. If samples are removed from the 

process, time is wasted waiting for the analytical results, and the results are used 

retrospectively to provide the quality of the process, and not used to control it. 

Traditional model building involves building models using reference data which may be 

difficult to obtain and takes time. In this work the use of the calibration free techniques 

of MCR and caterpillar have been demonstrated to be useful in the monitoring of a 

simple esterification reaction. MCR extracts concentration profiles from reaction data 

without the need for reference concentration data. Caterpillar is an adaptive algorithm 

which can detect process upsets and the endpoint of a reaction. No model is built so 

time is saved, and the algorithm appears to be batch independent. 
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5.0 Further work 

All processes were monitored in a rectangular chamber. This may present problems for 

homogenous mixing, which may be a reason for the NIR probe used not capturing the 

same process variation as the MW. The NIR only samples a small area of the process. 

so if it is not homogenous then it will not capture the true process, whereas the M\\T 

measures the whole sample so homogeneity is not an issue. To ensure the process is 

homogenous a round bottom flask should be used which can encompass the NIR probe 

and the MW antenna to ensure a homogenous process is measured. 

Temperature control was a problem within the OMS sample chamber due to it being 

made of stainless steel. Design of a new reaction vessel would include better 

temperature control. This would allow the effect of temperate to be more easily studied. 

Multivariate curve resolution has been used to extract concentration profiles to alloy\' 

monitoring of an esterification reaction using MW and NIR spectra. This was compared 

to OC data but due to this method being difficult to develop, the methods are not 

comparable. The OC method was not found to be reproducible, so it is unknown which 

of the methods, if any, provide the correct reaction profiles. Further work is necessary 

to determine the true reaction profiles. This would involve developing a much more 

reliable reference method, and also ensuring that the samples removed from the reaction 

are representative, and no further reaction occurs once removed. 

The processes investigated here have been on small laboratory scales. The drying 

process has involved amounts of sample below 150g, and the esterification reactions 

were run on a 450ml scale. OMS has been shown to be a useful process analyser for 

these processes as it analyses the whole process to give a reproducible model. In 

industry these reactions are carried out on much larger scales. Therefore further work is 

needed to determine how large a scale of process could be monitored by OMS. The 

OMS chamber can be used as a process pipe to allow the monitoring of a process as it is 

passed through the pipe. Ideally the OMS antenna should simply be placed at either side 

of a vessel to allow monitoring of the process. 

The drying process monitored did not reach completion. Further \\ork is needeJ to 

design a better system to mimic a drying process. The process should be monitored to 

completion to ensure the full process can be monitored using t\1\\7 spectroscopy. 
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