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Abstract

Traditional process monitoring methods of off-line analysis involve removing a sample
from the process and taking it to a centralised analytical laboratory. It takes time for the
analytical result to be achieved and the result is used retrospectively to determine the
yield or quality of a batch, and not to control the process. This leads to batches being
produced that do not meet specifications, so may require re-working, wasting time and
money. The process should be monitored to allow control of the batch to ensure it meets
specifications first time, and every time. The use of at-line or on-line analysis, such as
near infrared spectroscopy, provides quicker process analysis and allows the results to
be used to monitor and control the process. These techniques are usually non-
destructive so less waste is produced, and are safer as they can be located away from the

process environment.

Within the analysis of processes, sampling is a key issue. The sample must be
representative of the process to ensure the analysis gives a true indication of the batch.
This is a problem when the process is heterogeneous as a sample taken from one region
of the process may give a different analytical result from a sample taken from another

region.

Guided microwave spectroscopy (GMS) has been investigated for its use as an on-line
process analyser. The GMS has a sample chamber in which a process can be carried out
and this whole chamber is analysed. This removes the sampling issue. This method 1is
not well understood or used in process analysis due to the complicated MW spectra.
Near infrared (NIR) spectroscopy is a tried and tested method of process analysis and
many examples of applications exist of its use in industry. The spectra are easy to
interpret and relate to the process. The main problem with NIR is that a probe must be
used for on-line analysis. This produces sampling issues, and any process variation,

such as a process upset, must be in the vicinity of the probe to be detected.

In this work, a new process analysis technique, GMS, has been compared to an
established technique, NIR, to determine their effectiveness within process analysis.
NIR is used as a reference method for the GMS to aid interpretation of the spectra, and

relate it to the process.



Various processes have been investigated to determine the effectiveness of NIR and
GMS to monitor them. A drying process has been monitored which has a problem of

sampling due to huge cakes of several tonnes of material that are dried.

The drying process was first simulated by adding solvent to a material to determine if
the process can be monitored and the limits of solvent that can be detected. NIR data
was collected using a diffuse reflectance probe. The spectra were found to be
unrepresentative of the process as it was reliant on the solvent added being in the
vicinity of the probe. GMS was used to monitor the process as it provides a
representative measurement. Three different systems were analysed: the addition of
water to sand, propanol to ascorbic acid and ethanol to salicylic acid. Simple partial
least squares (PLS) models were built to predict the amount of solvent present in the
solid sample from MW spectra. Various pre-processing techniques were examined to
produce the best model. The models were built using auto-scaled followed by Box-Cox
logarithmically transformed data, and allow prediction of the amount of water in sand,
and the amount of propanol in ascorbic acid down to 1% w/w with relative errors below
5%. The calibration models can predict up to 30% solvent, so the technique was shown
to be very useful for monitoring the drying of a solid. The model for the addition of
ethanol to salicylic acid gave relative errors of 32% so seems to be an unsuitable
method. However, models built using above 2% ethanol gave relative errors of only 2%,

suggesting the MW spectra are not sensitive to levels of ethanol below this.

Propanol was then removed from ascorbic acid by drying to prove that the actual drying
method can be monitored. The use of principal component analysis (PCA) scores
plotted against time and the residuals (process spectra minus the reference dry spectra)
show that the drying process has the possibility of being monitored in a representative

way using MW spectroscopy.

An esterification reaction has been monitored and various aspects of this process have
been investigated. Traditionally calibration models are built using reference
concentration spectra. Ideally process samples should be used to build the model which
means a reference method such as GC must be used to give concentration data. These
methods take time to develop and within this work it was found difficult to get
reproducible results. Calibration free techniques have been used to extract the

concentration profiles of the reaction to allow the rate constants of the reaction to be



determined. A calibration free technique has also been used to determine the endpoint
of the process, and also detect process upsets. During these processes, it is desirable to
be able to predict the endpoint of a reaction, instead of waiting for it to be reached,
which may waste time. It is also advantageous to be able to detect process upsets to

allow the batch to be corrected.

Multivariate curve resolution (MCR) was used to extract the concentration profiles from
the MW and NIR spectra, and these profiles used to calculate the rate constants, k of the
reaction. The MW and NIR calculated k£ values do not agree, suggesting the two
techniques do not capture the same process variation. The rate constants have also been
calculated using GC measurements as a comparison. These values also do not agree
with the spectroscopic methods, but it is unknown which method provides the correct
determination of the rate constant. However, it has been found that the use of MW and
NIR spectroscopy provides a much more reproducible method to monitor esterification

reactions than GC.

An adaptive algorithm called caterpillar has been used to determine the endpoint of an
esterification reaction, and also to detect a variety of process upsets. This allows the
reaction to be monitored to ensure it proceeds as expected without the need for building
a calibration model. The endpoint was detected reproducibly for MW spectra taken for
repeat reactions showing the spectra are suitable for monitoring the reaction. The same
endpoint was not detected for corresponding NIR spectra, so this does not appear to be

as reproducible a method.

MW spectroscopy was found to detect process upsets of addition of incorrect catalyst,
addition of water, addition of an interferant and incorrect changing of reactants. The
NIR was found to only pick up the addition of water and incorrect charging of reactants.
It has been found that the MW spectra are more sensitive to small disturbances in the
process variation and it is a better technique for endpoint determination and process
upset detection. The NIR spectra does not appear to be as representative of the process,

possibly due to the limitations of sampling with the probe used.



Glossary of terms

ALS

Box-Cox

EFA

FID

GC

GMS

GUI

HPLC

ICP-MS

Inter-WS

LVs

MCR

MLR

MSPC

MW

NIR

OSC

PCA

PCR

PCs

Alternating Least Squares
Box-Cox transformation
Evolving Factor Analysis

Flame Ionising Detector

Gas Chromatography

Guided Microwave Spectroscopy

Graphical User Interface

High Performance Liquid Chromatography

Inductively Coupled Plasma-Mass Spectroscopy

Inter Window Size

Latent Variables

Multivariate Curve Resolution
Multiple Linear Regression
Multivariate Statistical Process Control
Microwave

Near Infrared

Orthogonal Signal Correction
Principal Component Analysis
Principal Component Regression

Principal Components



PLS

RMSEC

RMSEP

RSD

RSSQ

SIMCA

WS

X-block

Y-block

Partial Least Squares

Root Mean Square Error of Calibration

Root Mean Square Error of Prediction
Relative Standard Deviation

Residual Sum of Squares

Soft Independent Modelling of Class Analogy
Window Size

Spectral data

Concentration data



TABLE OF CONTENTS

1.0 INTRODUCTION ...ttt sttt ssae e e e e e e e e e s s e e e e esn e sesses e s 1
LT AINIS ettt tsase st e se e s sas s e st bese st et smtasa s se s e sesensm s et s ssme e et sesee e seen 1
1.2 Development of Process analysiS........cccvverereernieeeeienreeeriiesesinresistessessessessssssssssssssssssssssassssssesssssns 2
12,1 ProCess @NALYSiS........cccoiriiiiiiiiiii ettt e, 2
1.3 ProCess ANALYSEIS.....ccuiiiinriniiiinisnnensisinsissnesiessesessessesssssnsessissessassssenssssssesssssescssessesensesessasssssssssnssesens 4
1.3.1 Near infrared SPeCtIOSCOPY ....coveveuiriirietiieti ettt ettt e e 6
1.3.2 MICTOWAVE SPECIIOSCOPY -..vveveireerieriereerieseeteereiseeseeseessentessesseseseneeeesneeseeesesaes e s e s s oo e s oo, 8
1.3.3 Comparison of MW and NIR ........ccociiiiiiiiiiiteeeceeeee et 11

1.4 ChemMOMELTICS...uueiiueiieiiriiiiiiritiireissnisissesierenentssesssesssssseessssssessesssesssessessassssessessesssensssssssessanssssssmennes 11
1.4.1 Unsupervised MOAELIINE........coiiiiiiiriiiiiieiere ettt 12
1.4.2 Supervised MOAEIINE .......c.ooiiiiiiiiiiiee et 15
1.4.3 ReaCtiON MOMILOTINEZ .. .evviriuiieriiiiieiesieeie et ete st ete e et et ete et e st ereestesms et s sas e eeeeeeeneeneenenseeens 23
1.4.4 Fault deteCION .....cc.eiiiiiiiiiiiciece ettt e r e erbesbesat et et esreetesbesae e 24
1.5 DIYING PrOCESS.cuueerireeririrrrertnensnneseensiennsetssnieienssssessssesssssessssesssssssssstssosssssssssssssassnsessnsessanssassssessse 29
1.5.1 Current MEtHOAS ......oouiiiiiiiii et e r et reereste e e 29
1.5.2 Advantages of NIR and MW ..ottt sae e re e sas e ene s 30
1.6 ESLErifiCAtiON .....cevviriemieeeiiiiiiriiiieeiiisntnininrinietissanessssstrsssssasnsesssasessosssssssssencesessnessssnsesssassssssssssnnesns 31
1.6.1 BACKZIOUNQ ...ttt ettt st e e s be e st e e et e e reesreenaeseeanseenes 31
1.6.2 Current MEthOAS .. ...oooiiiiii ettt e e e na e 31
2.0 EXPERIMENTAL ...ttt rea s s raa s se s s e s e e a s s e enns 33
2.0 REAGENLS..uneeeiiriiiriiitiinieisttinecinressitrsisessesesnesstesssessassssnessssessssssssesssessnesanesnssssasasssasesasssessnsonnssness 33
2.2 EQUIPMENT .....ceoeiiiiiiirineeiineieicstinnieessnissiessanssesssnisisessasssssssssssssanesssassssesssnssssessnssssnsssnsssssssssnssssennes 33
2.2.1 Near infrared SPeCIIOMELET ........cccoviieiiriiiiniiiie et 33
2.2.2 Guided MiCrOWaVve SPECITOMELET ........ocuiiiiiiiiiiiiiire sttt 34
2.2.3 Other EQUIPIMENT ......eoiiitiriiiieteteiie et st a e 37
2.3 Drying eXPeriMentS .. i iiiieeeienenenennnrennenneseseee s ssssstesseasnessessesstessassessassassessssssansssssnannans 38
2.3 1 WBHHINE ..ttt st 39
2.3 2 DIYINE 1ottt 41
2.3.3 Summary Of @XPEIIMENTS .......iitiitiiertiiteii ittt 43



2.4 Experimental set-up for eSterification..........coveeurereeerieeisseineseeesereressssse s enssseseossssssssssssssssssssas 43

2.4.1 Optimum location of the NIR PrObe.........cococioiivemiiriiieieiieerecee e 43
2.4.2 Effect of temperature on the collected SPECLIa ..........c.covviviiieiiiieeeeeeeeeee et 44
2.4.3 Effect of volume of liquid in the GMS chamber on the recorded spectra..............ccocoeeeveiviannn. 45
2.5 ESterification reactionS......eiiiiniineiicinniinsecinrieeereestessesssesssereerssesssessssssesssssssssessessesssssesseosessessons 45
25T Attt ettt s er e aeeteets et ettt e eteete et et e ete e e e eneas 45
2.5.2 Experimental setup for esterification reactions .............cvevveeiiiiiioiiniiiiieeeeceeee e 46
2.5.3 Characterisation esterification eXperiments .............ccoceivviiiiireiceeieeec et e, 47
2.5.4 Monitoring of reaction progress by GC.......oovviiiiiiiiiieiiic et 47
2.5.5 PIOCESS UPSEES....ueiiiiiiiieiiteeiiee ettt et e ettt e sttt eenbes st e e e ssee e sa b e e sabaeansseeanseessvaessseenneeaeeerneresneenns 50
2.5.6 SUMMATY Of EXPEIIMENLS .......ooiiiiiiiiieiieseereest et esereteesteetbeereeereestreeeteeessessenneerseereereeeesseeneas 53
2.6 Data ANalYSIS....uueeeeriiiirinreiniiiiiiiiiiieiriiieenie e s s b e ssbb e s esab e s s b e s ebe s st nssabesesnesssneen 54
2.6. 1 WEHHIME ettt ettt et st st a et sab et e b e et et e sae s sbeesbe e be e st e b e e eneennen 54
2.0.2 DINYINE «.eeieeeneieeeeitee ettt sttt s e h e et et enna e et e nb e et ettt 56
2.6.3 EStErifICATION ...eeeiiiiiiiiicciee ettt bttt et eneea 57
3.0 RESULTS AND DISCUSSION.....cciiiiritiiiirinr s 62
3.1 MONITORING THE DRYING OF A SOLID......cecurmeurmrrnersersresnesssessensens 62
31,1 WELHINE....coveeneeeerrisineisresienirnsienenereiesiesssssssessessassessessesssssssssensonsssnsstostostossssssssssssnsstesssssssessssssessass 62
3.1.1.1 Addition of water t0 SANd .........ccuevierrieiiiiie i 63
3.1.1.2 Addition of propanol to ascorbic aCid .........covveiiiriiioiiiiii 89
3.1.1.3 Addition of ethanol to salicylic acid............ccccooviiiiiiiiiiii 95
3.1.1.4 CONCIUSIONS <.ttt et eett e ettt ettt et ettt e et et e e e e e s e e e b e s e ae e e nb s e b s ebe e besabs st s s e nt e e nenees 100
3.1.2 DIFYING crererecreninisisiirosesissanenonsssssssns s ssssssssssssssssnetssstsesssssssossssassssssssssnsssnsasssnssssnsnsnssasasssasaseses 102
3.1.2.1 Drying by the heating of the MW chamber ... 102
3.1.2.2 Drying by ROt @iIF c.c.coueeieiiiciiiiiii s 106
3.1.2.3 CONCIUSIONS ...t et ettt et e e ettt eeat e bt e st eeaee e s ae e e e e s an e s aba e bs e e b e e sa e aa g e e e b s b 109
3.1.3 OVErall CONCIUSIONS coeverercreeeerreerissisrscrecsssessrecssanesssntsssansassrsassssanssasstsssassssssesssstssssesssssssssassssssnnens 109
3.2 EXPERIMENTAL SET-UP FOR ESTERIFICATION REACTIONS.......... 111
3.2.1 Optimum location of the NIR transmission probe in the GMS chamber ....c.c..ccovevveeeveccencn. 111
3.2.1.1 Experimental details .........cooooooiiiiiiiiiii 111
3.2.1.2 Results and diSCUSSION.........ccceiiiiiiiiiiiiei e 111
3.2.1.3 CONCIUSIONS 1vveviirertitie ettt s bbbt b s 114

i -



3.2.2 Effect of temperature on the collected S 11 o OSSP 115

3.2.2.1 Experimental details...........ccocoo.ooiooiiiiieeeeeoeoeeeeeeoee 115
3.2.2.2 Results and diSCUSSION........vueviuereiiocos oo 115
3.2.2.3 CONCIUSIONS ...ttt 120
3.2.3 Effect of volume of liquid in the GMS chamber on the recorded ] 1174 1 : DR 120
3.2.3.1 Experimental details...........cocooiimiuiuiveiiioeeeee oo 121
3.2.3.2 Results and diSCUSSION.....eueueueeeeieeitieeeeteeeeeeet oo 121
3.2.3.3 CONCIUSIONS ...t 121
3.3 EXPLORATORY ANALYSIS OF THE ESTERIFICATION REACTION
I 123
33T NIR SPECIIA.ccnicuveeriiueiiicnisireiieieicinnteersessesssssessersessessessessessessrsssssssssesssssonsansasesessessessssesessssssessns 123
3.3.2 MW SPECEIA ceunerniiniiiiiiiicneiniestittssssssiesnssnsssenssstssssessertesssssssessesesasssesssessesssonsessoseenssssesessessesens 126
33,1 CUt-OfT POINL....oiiiiiiii ettt ettt e ettt ea e, 126
R TG o 0 NSO SO 128
3.3.4 CONCIUSIONS .....ueeeeiiirieriiercceriisuennneencnreesseesseesesaessssesssesessseessssessssesssssessnssessesssssssssosrsesssesssssssessaes 129
3.4 MONITORING OF AN ESTERIFICATION REACTION.......ccccccvvmmmmnnnnnnen. 130
3.4.1 GO SEt-UP cererrrererrreiiirvnirecsinnriisseteiesiericsssesssssesssssassiessuessossansssssssrssssssesssssssssssssssssssssossasssnnesssnasenss 130
3.4.1.1 Method develOPmEnt..........cooiuiiiiiiiiieccie et e re e b sbeeebe e sraeesraesaaeenreesbeerreas 130
RT3 BN O 1§ 1) -1 (o) ¢ DSOS POOU SRR 131
3.4.1.3 REACHION MONITOTING ..eveeiiieiieriiitieie sttt ete et ettt st et ees et e e e sbessee e e nbe st eneenesbesnesneeee 134
3.4.2 ReACtION SPECITA ..ccovnneriiirieriereisstneisuniiieeesiseroancsssinessnessseessnesssssssssssessasessssessssssssassssessasssssessassnns 137
3.4.3 Prediction Of K VAIUE .....cccovvvmeeriiniinrvniciiininnneirissiineesetscssssssssesnsescsssssnenesssssssssnssesssssnesssssnssssssnses 139
3.4.3.1 GC PrediCtiOn c.eeveeuieiiierie ettt r e e e ettt e 139
3.4.3.2 Multivariate curve resolution (MCR) ..ot e 142
3.4.4 CONCIUSIONS ....coeeereeerercerrrrrereereisssironersssssssssersessssssessassesssssssssaseersssssssssssassasssssssssnsessesssnssnsssnnesssns 148

3.5 ENDPOINT DETERMINATION OF AN ESTERIFICATION REACTION.. 150

3.5.1 EXperimental SEt-UP ...ttt sttt 150
3.5.2 Results and diSCUSSION ......covvirreviiviritiieinencteente ettt bbb ens 150
3.5.2.1 Esterification reaction at 40°C, 1:2 initial molar ratio, Iml catalyst..............ccccoooereiirvrrennnnne. 151
3.5.2.2 Esterification reaction at 50°C, 1:0.25 initial molar ratio, 1ml catalyst...................c.cocoevrennn. 163

- 111 -



3.5.2.3 Esterification at 40°C, 1:2 initial molar ratio, 4ml catalyst ................cccocccoocoooiioi 168

3.5.3 CONCIUSIONS ....eveeerreereriisrreeteisieesecsseeeseesssessasssesassssnsssssssssesssessssessssssesssesssssssmssmnsemeseeesseseessesssessoes 173

3.6 DETECTION OF PROCESS UPSETS DURING AN ESTERIFICATION
REACTION

..................................................................................................... 174
3.6.1 EXPErimental SEt-UP.....ccoevuereveereniisiniiniississesnerisicninstnssessenresessnesesssesessesssssersossessssssessesssssssssesens 174
3.6.2 ReSUILS ANA AISCUSSION ..cvvvverirrrricurneeereeererersessssenreneereresnessesssssssssssonssssssssssossssssanessssessssssssssosssnsesss 174
3.6.2.1 Determination of window size and number of components ................cocoveveivieniieeeceieeee. 175
3.6.2.2 Addition Of CAtAlYSt ......cooiviiiiiiiie ettt 179
3.6.2.3 Charging of half of the reactants ............coocooeieeiiiiiiie e, 181
3.6.2.4 AAQITION OF WALET ..ovveeieeiieeeeiee ettt e e e e et e e s e e et e e e e e e, 182
3.6.2.5 Addition 0f BENZOIC ACIA .....oooiiiiiieeeeeee e 183
3.6.2.6 DiISTUIDANCE OF STIITEI ...eiviiviiiiirieiiees ettt e e e e e e eeeeeeeeeees et eeseass s e aeaeeeteeeeeeeeee s e oiaeees 183
3.6.3 CONCIUSIONS cecueuereeeeeiieereeneiiereeranerresrereeesresersrssesssssnsssessassasssssassassannassssessssassssssssssssssssssernrnssssnsennnnnns 186
4.0 CONCLUSIONS ... ettt teiecsee s rreerseera e sarsesassasassassassassasransnnse 187
4.1 DIFYINE covrervirineiiiicuiisensseissesssesisentissesssessessesssossssnissnssssostostossnsssiossesssessssstessssssssesssssstssssssssssassnsssisnsne 188
4.2 EStErifiCAtiON FEACLIONS cocevereerereeerereurvrerrrerreensersreresessssesssssssssssnsesssssssssesssssssasssessessssseessssssarsssssnssssssns 189
4.3 OVErAll CONCIUSIONS oeonniveerireuesrerreecsersnssorsrensserseressssssssessasasssssssessasssssessssssstonsssssssrnssssernnnassassssssansvass 192
5.0 FURTHER WORK ...oiiiiiiiieiicrreermstrserererastesassnsasansasassassessssassnssnsnssasssasens 194
6.0 REFERENCES ... oo iiiiiiiiieiiesermurarieraesssessasasmarssssrasestsssnssssarssrassassasrsssans 195

-1V -



Introduction: Chapter 1.0

1.0 Introduction

1.1 Aims

The aim of process analysis and control is to provide continuous monitoring of
industrial chemical processes and provide feedback to enable control and optimisation.
Traditionally the data has been based upon process variables, such as pressures,
temperatures and flow rates, rather then chemical variables, such as reaction
composition. This work is aiming to develop a system of chemical feedback, to monitor
the progress of a batch process. The data from the progression of the reaction is
analysed and can be used to alter the reaction conditions to ensure the reaction is
controlled and conditions optimised to push the reaction to completion. Also the data
can be used to predict endpoints of full scale reactions to ensure the batch is right first

time, and every time.

Two typical processes have been investigated; drying, a solid state process, and
esterification, a liquid state process. These reactions have been monitored in-situ, in real
time using a combination of process analysers; near infrared (NIR) spectroscopy and
guided microwave spectroscopy (GMS). NIR is a proven method for process analysis in
a wide range of industries including food analysis, pharmaceuticals and organic
reactions [1-5]. MW spectroscopy is a technique that has not been widely used, but does
appear to have advantages over NIR [6]. The main advantage of MW spectroscopy is
the whole process sample is analysed so giving a truly representative measurement of

the process.

The aim of the work was to use this collected data along with chemometric techniques
to monitor the processes. Techniques are used which have advantages over current

methods, to improve the monitoring of these processes.

A drying process has been monitored. The aim of this work was to monitor the process
to allow prediction of the amount of solvent in a sample down to very low levels so it

can be determined when the sample is dry. The method needs to be reproducible and

allow representative monitoring of the whole process.

A simple esterification reaction has also been monitored. In this research. the aim was

to find a method of analysis to monitor the reaction on-line. This method must be

-1-



Introduction: Chapter 1.0

reproducible. Traditional methods of monitoring reactions involve tedious model
building. The aim of this work was to investigate methods to monitor the reaction
without the need for reference methods or model building. Also it was aimed to be able

to detect process upsets in real-time to allow correction of the process.

1.2 Development of process analysis

Traditionally in process monitoring a sample is removed from a process and analysed in
a centralised laboratory. The results are used retrospectively to determine the yield
obtained or determine if the batch should be re-worked or discarded [7]. This is deemed
off-line analysis and is time consuming, and leads to waste. This led to at-line analysis

in which a dedicated analyser is located close to the process to provide faster analysis

18].

More recently there has been a move to on-line analysis in which the process is itself
measured without needing to remove a sample [7]. The need for this is to reduce costs

and increase production by providing fast, real-time monitoring.

The use of process analysis to monitor and control chemical processes is becoming
more widespread. In 1984 the Center for Process Analytical Chemistry (CPAC) was
established at the University of Washington [9]. Its British counterpart, the Centre for
Process Analytics and Control Technologies (CPACT) was founded in 1997 [10]. These
are concerned with the devolvement of process analysis techniques for industrial

applications.

The increased use of on-line process analysis has been aided by the increase in power of
microcomputers allowing more data to be collected and analysed. Also there is

increased international competition to produce cheaper products of higher quality [7].

1.2.1 Process analysis

There is increasing pressure to make higher quality products at lower costs and with less
waste. In continuous processes the aim is to keep the process composition steady at
around the optimum physical and chemical conditions [11]. Traditionally, process
samples are sent to a centralised laboratory. The results are obtained after some time.
and are not used to adjust the process, but to identify if a final product is within
specification, and determine if it must be reworked. Analytical chemistry has an

important role in the process control chain. It is more advantageous to use process

.
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analysis immediately for process control. Any abnormalities seen in the process can be
corrected [12]. It is important to take corrective action as early as possible to ensure that
the product meets specification [13]. The quality of analytical results, expressed in

terms of speed, precision and sampling rate, defines the effectiveness of process control
[14].

On-line process analysis allows the monitoring of a process from a remote location. By
keeping personnel away from the process, safety and industrial hygiene concerns are
overcome [13, 15]. Health and safety is a very important aspect in industry, and remote

measurements reduce risks.

Process measurements have traditionally included temperature, pressure and flow rate.
More efficient process control can be achieved by measuring composition or structural
properties, in a way that allows real-time control during the manufacturing process [16].
Chemometrics is used to develop correlations between responses and chemical
composition [12]. Critical process parameters must be first established in relation to

product quality before process analysis can be implemented [13].

Process analytical chemistry is the application of analytical science to the monitoring
and control of industrial chemical processes. Process analysers monitor chemical
processes in real time and use this information to control or optimise the process [17].
Spectroscopic techniques are very useful in process analysis, the most widely used

being vibrational spectroscopy, including near infrared (NIR), and Raman [18].

For true process control rather than simple process monitoring, analytical information
about the process must be in real-time to allow process feedback. It is not always
suitable to follow a recipe in which materials are added, stirred and switched off after a
specific time, as no two batches will behave in exactly the same way. The quality of the
product should be ensured throughout the process instead of just analysing the final
product [12]. The aim is to get products right first time, every time. This also minimises

the amount of waste that is produced from off-grade products, which has an

environmental benefit [15].

The majority of error in process analysis can be attributed to the sampling system [19].
Therefore, a system of on-line, non-invasive monitoring is preferable, to provide the

analyser with a sample representative of the process [16, 20, 21].
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Introduction: Chapter 1.0

Calibration models are needed to correlate the process to any measurements made. to
allow monitoring of future processes. Calibration is only as good as the reference
samples used to build it [21], therefore it is important to choose calibration samples
which truly represent the process, and take into account any variation which may be
encountered. Often calibration models are constructed using multi-component mixtures
of different concentrations which have been prepared in a laboratory. These may not
contain intermediates that are formed in a reaction therefore using actual reaction

samples gives better modelling of the reaction process [22].

1.3 Process analysers

An ideal process analyser would be non-invasive, non-destructive, chemically selective,
robust, cheap and able to monitor a wide range of processes. Many types of process
analyser exist that can be used on-line to monitor a reaction. The analyser chosen

should be suitable for the application.

Optical spectroscopy is widely used for process analysis. The simplest of these methods
is UV-visible spectroscopy. These spectra have absorption peaks which are very broad
and overlap which may lead to problems with selective measurement of one component
in the presence of another [23]. Usually the wavelength of maximum absorption is used
to produce a univariate calibration. The advantages of UV-visible include the fact that
water does not absorb significantly between 200 and 750nm so water interferes less
with the spectra [21]. Another advantage is that fibre optics can be used to allow remote
monitoring of the process. UV-visible spectroscopy is widely used in batch monitoring,
for example, Quinn at al [24] report using UV-visible spectroscopy to monitor the

composition and control of a batch reaction.

Mid-infrared (IR) absorptions are much weaker than those in the UV-visible regions, so
is not useful for trace analysis [17]. The bands are quite narrow and characteristic of
functional groups so measurements offer better selectivity than UV-visible. The main
disadvantage of IR is that the light is highly attenuated by silica fibre optics which
limits its length, so the analyser cannot be located as far away from the process [7].

Mid-IR is widely used in industry [25, 26] as it can be correlated to changes in the

process.
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Raman spectra comprise of vibrational fundamentals so spectra are usually quite simple
[17]. Polarizable bands that produce weak absorptions in the IR, produce strong
absorptions in Raman spectra, so they can be applied to different applications. Raman
has the advantages that it can be used for non-contact analysis of solids and liquids and
it can be used with fibre optics [7]. Raman can be used to analyse aqueous samples
without the water interfering as water is virtually transparent in Raman, unlike in the
NIR and IR where water dominates the absorption [21]. Raman can easily become

dominated by other processes such as fluorescence [23], which may limit its usefulness.

Mass spectrometers (MS) separate molecules of a sample according to their masses and
measures their quantities [17]. Multi-component analysis can be achieved in seconds
making it a useful technique for many environmental monitoring and process control
measurement applications [23]. It has become a standard analyser in several industrial
applications including stee]l manufacturing and fermentation off-gas analysis [21].
However, it is an expensive technique and is mainly useful for gas analysis in the field

of process analysis.

Nuclear magnetic resonance (NMR) spectrometers are non-contact and non-destructive
[7]. Higher resolution Fourier Transform NMR (FT-NMR) is commercially available
and is used in the petroleum industry. The linear dynamic range is from ppm to 100%.
NMR needs to be made more rugged and cheaper to gain increased use for process

analysis. Also precise temperature control is needed for accurate process measurements

[21].

Acoustics is a technique which has been used in process analysis. It is non-invasive as
transducers are attached to the side of the vessel [7] and they are intrinsically safe.
Acoustics provide unique information that can be provided in real-time [27]. Passive
acoustics is commonly used in which the source of the acoustic emission is the process
itself. Expertise is needed to make sense of the collected acoustic emissions.

Applications include monitoring fluidised beds [28] and granulation processes in

pharmaceuticals.

In this work two techniques have been examined: near infrared spectroscopy and guided

microwave spectroscopy. These techniques fulfil the ideal process analyser criteria to

some extent.
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1.3.1 Near infrared spectroscopy

Near infrared (NIR) spectroscopy is the measurement of the wavelength and intensity of
the absorption of near infrared light by a sample. NIR light spans the range of 4000 — 12
500cm’. Spectra are due to transitions between vibrational energy levels that occur in
the near infrared. NIR is the spectroscopy of the overtones and combinations of the
fundamental vibrations seen in the mid-infrared region [29]. NIR spectroscopy is used
for measurement of organic functional groups. In practice vibrations of CH, NH and

OH species cause the only significant NIR bands [30].

In NIR, peaks are broad and overlapping compared to mid-IR spectra [23]. There are a
great number of bands in this region, which cannot always be separated into single
peaks. This hinders the assignment of a signal to certain functional groups. Quantitative

analysis by NIR requires the use of multivariate calibration.

Different functional groups absorb at different wavelengths. The absorption at a specific
wavelength is related to the concentration of the absorbing species according to Beer’s

Law [17]:

A, =¢&,dc Equation 1.1

Where 4, is the absorbance at wavelength 4, &; the molar absorptivity, d the pathlength,
and c¢ the concentration. This allows simultaneous determination of several components

by calibrating the concentrations of the components with the spectral data.

NIR offers non-invasive chemical analysis of complex processes. The advantages of
NIR are its speed, simplicity of sample preparation, the sample is not consumed and the
spectra provide enough information to determine the levels of several constituents
without the need for re-scanning [31]. A disadvantage is the relative insensitivity of
NIR to minor constituents. However, it does mean a complicated matrix can be used

without interference from lots of things present in small quantities.

The major advantage of NIR is that remote measurements can be made with the use of
fibre optics allowing both at-line and on-line analysis [17]. This allows the spectrometer
to be located away from the process being analysed, so improving safety [32] and also
more than one point can be sampled with one spectrometer so cutting costs [33]. Real-

time information can be obtained to monitor and control a process.
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For on-line analysis NIR must be used with a transmission or diffuse reflectance probe
located in the process. This means only a small region of the process is sampled and

probe fouling may be a problem.

1.3.1.1 Applications

There are many varied examples of NIR being used for process analysis. The industries
making use of this technique range from organic synthesis, to food production. Recent
examples include the use of NIR for the measurement of total dietary fibre in
homogenized meals as reported by Kim et al. [1]. A PLS calibration model was built to
calibrate the fibre content to the collected spectra. Errors of below 3% were achieved.
This compares well to traditional reference methods which take 4 days. Other food
examples include the use of NIR for the determination of fatty acid composition and
contents of main constituents in a complex food model system reported by Afseth ef al.
[34]. Kasemsumran ef al. [2] have used NIR for the discrimination and quantification of

adulterated olive oils.

Sohn ef al. [3] have used NIR for determining the linen content in linen/cotton blend
products. This offers a quick non-invasive method of analysis. A validation error of 3%

was achieved for one model, and 6% for another model for a different fabric.

On-line NIR method has been used for the monitoring of chemical reactions. Norris and
Aldride [4] have used NIR for the determination of the steady-state end point of
homogeneous and heterogeneous organic reactions for chemical production. The
method involves monitoring by NIR at specific time intervals during the reaction. The
steady-state point is determined as when the NIR spectra do not change significantly

over time.

NIR is also used in the pharmaceutical industry. One example, reported by El-Hagrasy
and Drennen [35], is the use of process control for pharmaceutical powder blending.
NIR has been used to predict the blending endpoint. Blanco and Alcala [5] have used
NIR to test the content uniformity and tablet hardness of intact pharmaceutical tablets.
The calibration model encompasses the variation in the tablets due to variation in
production, so offering a simpler model. This method has the advantage that intact

tablets are tested, so is fully non-invasive, and all tablets can be tested.
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NIR is being examined for glucose monitoring in human tissue by Liu er al. [36]. A
NIR spectrometer has been developed for the tissue sampling on the left palm to give in
vivo monitoring. This technique offers truly non-invasive glucose monitoring. Currently
this technique needs further research to give a good calibration model. Much research is

being carried out for the use of NIR for glucose monitoring [37-40] showing what a

useful technique this is.

1.3.2 Microwave spectroscopy

The microwave (MW) region lies between 3GHz and 300MHz, which is located
between the infrared and radio frequencies. Traditionally MW spectroscopy is defined
as “the high resolution absorption spectroscopy of molecular rotational transitions in the
gas phase” [41]. MW spectroscopy observes rotational transitions of molecules. Free
rotation of molecules occurs only in the low-pressure gas phase. Liquids and solids are
not free to rotate which leads to poor spectra. Currently there are few applications for

liquid and solid processes.

Small molecules have sharp spectra making it a good fingerprinting technique, and it is
mostly used for qualification of products. Much work has been carried out regarding
species determination in the gaseous phase. The first experiments on gaseous
spectroscopy in the MW region were carried out in 1934 by Cleeton and Williams [42],
in which the absorption of ammonia vapour was investigated. There is high accuracy
available with MW spectroscopy, allowing much more detailed and exact information

to be obtained than with IR spectroscopy [43].

1.3.2.1 Applications

Microwaves have mainly been used for the prediction of moisture content of samples as
the technique is very sensitive to water. Many examples exist for moisture
determination applications, particularly in the food industry. Thompson [44] describes
the different MW methods that can be applied to non-destructive moisture
measurement. Meyer and Schiltz [45] used a MW method for the determination of the
moisture content of solids, and Kent and Meyer [46] reported a method of using a MW
moisture meter for heterogeneous foodstuffs. Trabelsi and Nelson [47] recently reported
the use of microwaves for determining the bulk density and moisture content in shelled
peanuts. This method is based on the direct relationships between the dielectric constant

and dielectric loss, and the moisture content. MW measurements have also been used in
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the building industry to measure the moisture content of building materials, as reported

by Kaariainen et al. [48].

It was predicted as far back as 1990 [23] that MW spectroscopy could be used as a
useful technique for process control. Few papers exist describing the application of MW
spectroscopy for quantification. This technique has largely been ignored for on-line
analysis of liquids and solids as the spectra are often broadband without clear peaks due
to the lack of free rotation of the molecules [49]. Multivariate calibration is necessary to

correlate the spectra to the process changes.

Guided microwave spectroscopy (GMS) has been used in previous process analysis
work. Liang et al. [6] reported the use of GMS for the analysis of water and ethanol
mixtures. Walmsley and Loades [49] reported a similar application for the
determination of acetonitrile in water. Other work includes the determination of
moisture in tobacco [50] reported by Dane e al.. These papers are preliminary studies
and show the possibilities of using microwave spectroscopy for quality control.
Daniewicz [51] discusses the use of GMS as an improved method for the measurement

of water content in mixtures.

1.3.2.2 Guided microwave spectroscopy (GMS)

In this work a guided microwave spectrometer (GMS), (Epsilon, Texas, USA) has been
used. This has been specifically designed for process analysis work. It provides non-
invasive analysis of multiple components in liquid, solid and multiphase materials [52],

and is not sensitive to the colour of a sample.

It has many advantages over other spectroscopic measurements. The entire process
sample fills the GMS chamber and is analysed non-invasively [53] so giving a
representative measurement of the sample or process. Pathlengths of several centimetres

are used so allowing a greater sample to be measured. This also allows measurements to

be made as a material passes through a pipe.

The measurement is made using a single beam which passes through the whole sample.
In the presence of MW energy. the polar molecules in the sample, such as water, rotate
and align with the electromagnetic field. The movement of the molecules cause the MW
signal to be attenuated, and the velocity of the wave decreases as it passes through the

sample. The resulting spectrum has two characteristic features, Figure 1.1, [32]. The

-9.
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cut-off region is the result of the sample attenuating and reducing the velocity of the
energy, which changes its wavelength, the dielectric constant. Different components
have different dielectric constants, so will result in different spectra. The passband
region shows a change in amplitude which is due to the conductivity of the sample and
how much energy is lost by the microwaves as they pass through the sample. the
dielectric loss. The change in these two regions can be correlated to the change in the
concentration of a component of interest. The movement of the frequency of the start of
the cut-off region is sensitive to the moisture content, and can be used to correlate to the

change in moisture content [53].
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Figure 1.1: MW spectrum of sand and water mixture to show the different parts of the spectra. The
cut-off region is due to the sample attenuating and reducing the velocity of the microwaves, the
dielectric constant. The pass-band region shows a change due to the MW energy lost as it passes
through the sample, the dielectric loss.

Temperature affects the electrical properties of the mixture proportional to the
concentration of polar and semi-polar constituents [54], therefore the recorded spectra is

affected. The temperature should be fixed to minimise this effect.
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1.3.3 Comparison of MW and NIR

GMS and NIR are both wide band instruments, and can be used to simultaneously
measure various components of a mixture. The techniques can be used to monitor a
process. Multivariate calibration is needed in both cases to calibrate the recorded

spectra to the process sample.

NIR is a proven method for process analysis in a wide range of industries. MW
spectroscopy is a technique that has not been used much, but does appear to have
advantages over NIR. The main advantage of MW spectroscopy is a sample can be
analysed in a process pipe, and the whole sample is analysed so giving a truly
representative measurement of the sample. NIR relies on the use of a probe to collect
spectra on-line during a process. This means only one small area of the process is

measured, so the true process may not be measured.

In this work, NIR and MW spectroscopy are to be used to monitor a variety of
processes. A variety of chemometric techniques are to be used to relate what is
occurring in the process to the spectral data. NIR spectra are much easier to interpret
and relate to the process than MW spectra. It is hoped that the NIR data can be used as a
reference data to compare to the MW spectra to determine if both sets of data are seeing

the same process changes.

1.4 Chemometrics

Chemometrics is often defined as the use of multivariate data analysis and mathematical
tools to extract information from chemical data [16]. Due to the production of large
amounts of process data, chemometrics is vital to model data for process control. It is
used to make sense of, and extract vital information out of complicated spectra. The

techniques can be split into two main types: supervised and unsupervised modelling.

Unsupervised modelling are those techniques that cover data visualisation and pattern
recognition, including clustering techniques. Only measurements, X-block data, taken
during a process are used to produce a qualitative model. For example, principal
component analysis (PCA) can be used to visualise the progress of a process. and also

for data reduction to maximise the variation included in supervised modelling due to the

constituents of interest.
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Supervised modelling involves calibrating unknown quantitative information, ¥, with
available measurements, X [55]. This is the technique of multivariate calibration in
which a number of constituents of a process are measured simultaneously, often by
spectroscopic techniques such as NIR, and these related to the concentrations of the
constituents to allow process monitoring. A calibration model must be built using
techniques such as partial least squares (PLS) regression. The calibration must cover the
range of variation in both sample composition and process variation, such as

inconsistencies in starting material, to produce a robust model [56].

1.4.1 Unsupervised modelling

In this work PCA has been used to explore trends in the collected spectral data, and
examine the reaction progress as seen in the data. Multivariate curve resolution (MCR)

methods have also been used to monitor a reaction.

1.4.1.1 Principal component analysis (PCA)

The main aim of PCA is to reduce the size of a data set that has a large number of
intercorrelated variables, and to retain as much of the information present as possible.
PCA reduces the spectral data into principal components (PCs). The first PC accounts
for the largest amount of variation in the data, the second the next largest amount of
variation and so on [57]. Only a few of the transformed variables are needed. If the rank
of the data is three, i.e. there are three independent significant components in the system
being measured, then only three PCs should be needed to describe the variation [58].
However, things are never as simple, as noise distorts the picture. It is important to
choose a number of PCs which describes all the important variation in the system, but

does not include noise.

Before carrying out PCA, it should be decided if each variable in the data should be
standardised to zero mean. If it isn’t, and one variable has a much larger variance, then

this variable will dominate the first PC. Standardising avoids this by making all the

variables carry equal weight [57].

Spectral data collected during a reaction can be described as the sum of responses for
each significant compound in the data, which are characterised by a concentration

profile, C, and a spectral profile, S, plus experimental noise or instrumental error, E

[58]. as shown in Figure 1.2.
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Figure 1.2: Diagram to show chemical factors making up spectral data, and how principal
component analysis (PCA) is used to decompose the spectral matrix. X is the original spectral data
matrix comprising of m samples, and n variables. This can be described by; C, a matrix of the
concentration profiles for each component; S, a matrix of spectra for each component; and E, an
error matrix. PCA decomposes the original data matrix, X, into scores, T, and loadings, P. The
scores consist of 4 (the number of components) column vectors, and the loadings 4 row vectors.

Using PCA, the data is decomposed into an abstract mathematical transformation of the
original data matrix, comprising scores, 7, and loadings, P, as shown in Figure 1.2. The
scores show the relationship between the samples, and the loadings the relationship and

importance of the spectral variables.

By examining the scores, it is possible to visualise how the samples relate to each other.
In the case of reaction spectra, in which there is a meaningful sequential order to the
samples as they were collected over time, the scores can be plotted against sample
number or time [58]. This makes it possible to see how the samples relate to each other

over time, and hence visualise the progression of the reaction.

1.4.1.2 Multivariate curve resolution (MCR)
All the spectral matrix data collected during a reaction has one direction relating to the
compositional variation of the system as it evolves over time, and the other direction

refers to the variation in the response collected, the actual spectra [59].
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The spectral data comprises of the addition of the response of all components in the
system. Multivariate curve resolution (MCR) methods decompose the original data
matrix, D, into the concentration profile, C and the pure component spectra, S, from the

original data matrix D, shown in Figure 1.3 .

Figure 1.3: Diagram to explain the basis of multivariate curve resolution techniques (MCR). MCR
attempts to recover the true value of the concentration profiles, C, and the spectral profiles, S from
a data matrix. Each of the resulting matrices contain a pure profile for each independent
component, a.

The solutions are not unique, and constraints and initial estimates are used to improve
the fit. One such method is the use of evolving factor analysis (EFA) to give an initial
estimate of the number of components present in the system. This works by running
PCA on a window of data [59]. The window is enlarged by adding rows in the process
direction, and subsequent PCA run. EFA is performed by building the windows from
the start of the process to the end, the forward direction, and also in the opposite
direction, the backward direction. The eigenvalues from PCA are displayed as the
process evolves to show how the components in the process emerge and disappear
during the process. From this it can be determined how many independent components

change during the process and provide initial estimates of their concentration profiles.

The use of alternating least squares (ALS) can be used with these initial estimates to
narrow the span of feasible solutions [60]. The initial estimates from EFA are optimised

iteratively by ALS until the convergence criteria is reached.

GUIPRO is a graphical user interface (GUI) within MATLAB developed by Paul
Gemperline and is based on a new algorithm for multivariate modelling curve resolution
that gives improved results by incorporating soft constraints [61]. The method offers a
substantial improvement in the ability to resolve time-dependent concentration profiles

from mixture spectra recorded as a function of time.
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In this work the aim was to minimise the amount of pre-processing and analysis of the
data to make the curve resolution techniques as simple and quick as possible. and
minimise user prior knowledge and input (see section 2.4.2 for details on GUIPRO and

the constraints that can be used).

1.4.1.2.1 Examples

Many examples exist for the use of MCR to solve many different types of problems.
Traditionally MCR techniques have been involved in resolving overlapping
chromatographic peaks. Some recent examples include the use of MCR to resolve
overlapping spectra in high performance liquid chromatography (HPLC) of pesticides in
water as reported by Rodriguez-Cuesta et al. [62]. Pere-Trepat et al. [63] have used
MCR to resolve co-eluting peaks of multiple biocide compounds in liquid
chromatography-mass spectrometry (LC-MS). Wasim and Brereton [64] discuss the use
of different types of curve resolution for the analysis of liquid chromatography coupled
with nuclear magnetic resonance (LC-NMR) to resolve the concentration profiles and

spectral profiles of mixtures of eight compounds.

Sequential injection analysis (SIA) has been used to generate second order data by
Pasamontes and Callao [65]. MCR-ALS has been used to treat the data to allow the
determination of several analytes simultaneously both qualitatively and quantitatively

without the need to pre-treat the sample.

Work has been reported for the use of curve resolution techniques with NIR spectra to
monitor reactions. Spectra collected during curing epoxy resins has been subjected to
MCR-ALS by Garrido et al. [66] to resolve the reactants and products, and also the
intermediate spectra and concentration profiles. The concentration profiles were found
to properly represent the system studied. Mercado ef al. [67] have used NIR with MCR

to study the reactivity of silicon-epoxy monomers, and extract the concentration

profiles.

1.4.2 Supervised modelling

The aim of multivariate calibration is to build a model that describes the relationship

between the dependent variables (concentrations), Y-block, and independent variables

(spectra), X-block of a process.
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1.4.2.1 Steps of calibration

To ensure a calibration model is built which suitably relates the X-block data to the Y-
block data various steps should be followed as shown in Figure 1.4. First data must be
collected to build the model. Models are only as good as the data used to construct them
so this step is important to ensure representative data is collected. X-block
measurements (spectra) are taken for a variety of samples that have known Y-block data
(concentrations), either as the samples have been made up to a specific concentration or
the values have determined by analysis. This data should cover the range of variation in
the Y-block expected in real process samples. Experimental design can be used to
ensure the maximum amount of information is collected using the minimum number of
experiments. The sampling method is also important to ensure a representative sample

1s used in the data collection.

2. Building calibration model
1. Collecting data
e Experimental design — Analysis method
e Choosing sampling method e MLR
e PCR
e PLS
|
— Validation Data manipulation —Pre-processing
e RMSEP e Variable selection e Mean centring
e RMSEC e Auto-scaling
e Box-Cox
B transformation
3. Using calibration model e OSC
e Model maintenance T

Figure 1.4: Diagram to show the steps involved in calibration model building. The data must first
be collected to give a representative sample set that covers the range of data expected to be
encountered. The calibration model must then be built, which involves choosing an analysis model,
choosing suitable pre-processing for the data to improve the correlation between the ¥ and X blocks
of data, and finally validating the model to show how well it predicts new samples. Then the model
can be used, and it must be maintained to ensure it is still valid if the reaction conditions change.

The next step is the actual model building. An appropriate analysis method must be
chosen to relate the Y-block to the X-block data. There are three main methods for
multivariate calibration: multiple linear regression (MLR), principal component

regression (PCR) and partial least squares (PLS).
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Before the data analysis method is applied, it must be decided if pre-processing of the
data is necessary. Pre-processing is defined as anything that alters the data used in the
modelling process, and its aim is to improve the correlation between the X and Y data.
Many different types exist, and some knowledge of the data is needed to choose a

suitable method or combination of methods to ensure a detrimental effect isn’t caused.

Parts of the X-block may be uncorrelated to the Y-block or may contain noise. Careful

variable selection of the X data to remove these regions may aid the correlation between
the X and Y block.

Once a model has been built it should be validated to ensure it is suitable for the
application and will predict new samples. The root mean square error of calibration
(RMSEC) can be calculated to show the calibration error. This uses the samples in the
model to calculate the error so is not a true validation error. The root mean square error
of prediction (RMSEP) is calculated based on predictions of independent samples not

used to build the model, therefore shows the true validation error of the model.

1.4.2.2 Types of analysis method

MLR is an extension of simple linear regression. It aims to ascertain a unique aspect of
the variability of the Y (concentration data) to each and every X (spectral variable)
measured. If two or more X variables reflect the same basic trend, this is impossible
[55]. Variables that do not have any unique information must be eliminated to improve

the calibration model.

MLR methods have the disadvantage that all significant components must be known.
PCA based methods, such as PCR and PLS, do not need details about all the
components in a mixture [58]. However, it is necessary to make a reasonable estimate
of how many components are in a mixture to allow the number of components needed
to be included in the model to be determined. This number of components or factors to
be included has to be decided, which may pose a problem. Including too few means not
enough of the variation captured by the original data matrix is included. This leads to
under-fitting, and results in a calibration model that is unable to predict new samples
that have quite different variation from that included in the model. Including too many
may result in information not relating to the concentrations of the components of
interest being included. This results in over-fitting of the model which may cause

interference and instability on the calibration model.
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Principal component regression (PCR) is an extension to PCA. It regresses the Y-block
onto the scores, T, obtained from the PCA of X [68]. The principal components are not
correlated, so the problem of variables in Y being correlated is overcome. PLS aims to
find not only the correlation in the data to the concentration data, but also finds the

variance in the spectra, so it is often considered to be superior to PCR.

1.4.2.2.1 Partial least squares (PLS)

Partial least squares (PLS) is a method for constructing predictive models when the
factors are many and highly co-linear. It is a spectral decomposition technique. which
decomposes the data into a small number of relevant factors (latent variables) which

explain the most variation in the spectra, X and are predictive of the concentration, Y

data sets [69].

In PLS linear combinations of the predictor variables, X, are found. Those that show a
high correlation with the Y data are given greater weighting, because they are more
effective at predicting [57]. This gives linear combinations of X which are highly
correlated with the Y-block and also explain the variation in the X-block. The main idea
of PLS is to get as much concentration information as possible in the first few loading
factors. PLS is taking advantage of the correlation relationship that already exists
between the spectral data and the constituent concentrations. Two types of PLS exist:
PLS1 is used for prediction of a single variable, and PLS2 for prediction of multiple

variables.

During the modeling, the X variables are not modeled exclusively, and two models are
obtained as shown in Figure 1.5. ¢ has analogies to a loadings vector but is not
normalized. The spectral data, X, is decomposed into 7, scores, and P, loadings, and the
concentration data, Y, decomposed into 7 and g. The scores matrix, T, is common to
both the X and Y data. Unique sets of T and P are obtained for each component of

interest, which has corresponding concentration data [58].
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Figure 1.5: Principles of partial least squares (PLS) regression. X is the original spectral data
matrix which is decomposed into scores, 7, and loadings, P, with an associated error matrix, E. 4 is
the number of calculated latent variable (LVs). Y is the original concentration data, which is
decomposed into scores, T, and ¢ which has analogies to a loadings vector, and also an associated
error, f. The common link is the scores, 7.

There are many example of PLS being used successfully for a great variety of
applications. It is widely used as it produces high quality calibration models that are
easy to implement due to the availability of software [70]. A recent example is the use
of PLS modelling for a second order reaction monitored by UV-visible and NIR
spectroscopy as reported by de Carvalho, ef al. [71]. A PLS model was successtully
built to predict the concentrations of the reaction components during the reaction.
Cozzolino and Moron [72] discuss the potential to use a PLS model to predict soil
organic carbon fractions using NIR spectra. Another example is the use of PLS with
NIR spectra as a tool for on-line classification of dry-cured ham samples according to

their sensory characteristics as discussed by Ortiz et al [73].

1.4.2.3 Pre-processing
Within calibration models the reference concentration data, Y, is correlated to the
measurement data, X. To improve this correlation between the X and Y data, pre-

processing techniques can be used, and any noise present removed. A pre-processing
technique can be classed as anything that transforms the data. Within the PLS toolbox
in MATLAB (Mathworks), that has been used in this work for data manipulation.
several types of pre-processing techniques are inbuilt. Knowledge of the data allows
pre-processing techniques to be chosen which will improve the correlation between the

spectral and concentration data, and not have a detrimental effect.
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NIR data is reported to have a problem with baseline drift which can be corrected for

[74]. The collected NIR data in this work is very smooth, with no obvious noise, and no

drift in the baseline.

The MW spectra have no baseline, and appear to be quite noisy. However, this noise

may be correlated to the concentration data, and any smoothing of the data may be

detrimental to the calibration model.

The pre-processing techniques that have been looked at in this work are explained here.
If scaling is performed on the X-block, then the Y-block must be scaled accordingly.

New samples must also be scaled before prediction.

1.4.2.3.1 Mean centring

Mean centring is often seen as essential before any data analysis. This involves

subtracting the mean of each column (or variable) so that:

X =X -X Equation 1.2

mn mn n

to give mean zero variance. This prevents a variable with large variance dominating the

first extracted PC [58].

Seasholtz and Kowalski [75] found that the use of mean centring in data that varies
linearly with concentration, has no baseline and has no closure in the concentrations (for
each sample the concentrations of all components add to a constant) has a detrimental
effect on the predictive ability of the model, therefore should not be used. The NIR data
is expected to vary linearly with concentration, and the MW spectra have no baseline,

therefore it is expected mean centring will not improve the modelling process.

1.4.2.3.2 Auto-scaling

This involves mean centring the data, followed by dividing by the standard deviation:

X, - X
S QL — Equation 1.3

™ StdDev

auto

Auto-scaling puts all variables on approximately the same scale, so all variables have

equal significance [58].
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1.4.2.3.3 Box-Cox transformation

For non-linear data the Box-Cox transformation can be used to transform the data [76].

It is transformed using the following equation [77]:

Z= Equation 1.4

Where Z is the transformed data and X is the original data matrix. A is a parameter set to
zero or higher. If A equals zero the transformation is calculated as Z = log(X). Setting A

to two performs the square root transformation and setting it to three performs the cube

root transformation.

Dieterle et al. [78] have used Box-Cox transformation to deal with the non-linearity’s

present in sensor data.

1.4.2.3.4 Orthogonal signal correction (OSC)

Orthogonal signal correction (OSC) is a filter developed to remove systematic variation
in the spectral data (X) which is not correlated to the concentration data (Y). This should
aid the correlation between X and Y, and should reduce the number of LVs needed in a

PLS model to model all the useful variation.

Wold er al. [79] discuss the use of OSC with NIR spectra. It has been applied to four
different data sets of multivariate calibration, and the results compared to those of
traditional signal correction such as multiplicative scatter correction (MSC) and OSC
was shown to give substantial improvements. Fearn [80] also discusses the use of OSC
with NIR data and compares this to existing algorithms. The aim was to improve the

performance of a PLS model, but little improvement was seen.

1.4.2.4 Experimental design

An experiment is a process by which information is obtained by observing the reaction
under certain conditions [81]. The conditions, or factors, that effect a reaction, must be
optimised to maximise the reaction. A series of experiments are run to determine these
optimum factors, by examining their effect on the reaction, or the response. A well
designed plan of experiments will determine the optimum factors in the minimum
number of experiments [14]. The plan of experiments will cover the factors, and the

levels of these factors that effect the reaction. This is the experimental design.
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It is important to design experiments well to minimise cost and time [58]. By using

experimental design, the aim is to gain the most information from the minimum number

of experiments.

1.4.2.4.1 DoEMan

Within calibration modelling a variety of pre-processing techniques can be used to
improve the correlation between the spectral data and the concentration, as discussed
previously. Other calibration parameters can also be optimised, including different
calibration methods, calibration set selection, and outlier detection. It is possible to
choose some suitable parameters based on knowledge of the data. However, to produce
the best calibration model, ideally a model should be built using every possible

parameter, and combinations, and the errors obtained compared.

DoEMan is a MATLAB graphical user interface (GUI) developed by Andrew Owen of
Strathclyde University, based on an idea by Flaten er al. [77] that attempts to find the

best calibration parameters in a experimental design way. Its use is presented in a paper

by Flaten and Walmsley [82].

In this work, the use of different pre-processing techniques has been examined, along
with type of regression methods and number of components to use, to produce an
optimum calibration model. This method allows a series of calibration models with
different parameters to be built simultaneously. The relative merits of the models can be
compared by the resulting validation error. This method will not give the ultimate best
calibration model to use, but gives an indication of the parameters that will provide the

best calibration models, allowing a smaller subset of the models to be examined in more

detail.

Details of how this GUI has been used in this work to determine the best calibration

model to use are detailed in section 3.1.1.1.2.

1.4.2.5 Validation

Once a calibration model has been built, it should be validated using an independent
data set that has not been used to build the model. This allows calculation of the
prediction error and shows how good the model is at predicting new samples, allowing

comparison of different models. Several types of validation errors can be calculated as

described here.

-0



Introduction: Chapter 1.0

Within the PLS algorithm used in this work, which is inbuilt into the PLS toolbox in
MATLARB, the residual sum of squares (RSSQ) is calculated. This is calculated as:

1
RSSQ = Z (yi - JA/i)Z Equation 1.5
i=1

Where y; is the actual concentration, J; is the predicted concentration. This is a unitless
value and gives an idea of the total error in the model. Its magnitude depends upon the
number of samples predicted, so cannot be used to compare the prediction error of
different models if different numbers of samples are used in the validation. From this

the root mean square error (RMSEP) can be calculated:

RSSO
(N-1)

RMSEP = Equation 1.6

Where N is the number of samples. This error is now the same magnitude as the
concentration values, so can be directly compared to the values. Its magnitude relates to
the magnitude of the concentration values. If the concentration values are scaled, then
this value will be scaled accordingly. Therefore, this number can only be used to
examine the error in a particular model, and cannot be used to compare models that are

built using different scaling methods.

From this the percentage error can be calculated by using the mean predicted value:

RMSEP

A

mean(y;)

% RMSEP = x 100 Equation 1.7

This value relates directly to the predicted values, and can be used to compare the errors

in the model as it gives a true validation error from an independent validation set.

1.4.3 Reaction monitoring

Reaction monitoring is important in the chemical industry to ensure the progress of the
reaction is within the expected limits. Traditionally, a sample is removed from the
reaction or process and analysed using high quality analysis methods. These are
generally time consuming. and the resulting delay between sampling and analytical

result means the reaction can be monitored, but process control is difficult.
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On-line monitoring methods, such as NIR spectroscopy, require a calibration model to
be built, for example a partial least squares (PLS) model [83]. For these traditional
calibration methods, samples are made in the laboratory or a reference method is
needed, such as GC or HPLC analysis, to give concentration data for true process
samples to be correlated to the acquired spectral data. The model will only be as good
as the reference data used to build it. These reference methods are time consuming, and
may be unreliable. Model building is a long process and the model must be built which
encompasses all expected variation in the reaction. The model is only valid for this
reaction whilst occurring within the same process conditions. Any deviation from these
conditions, such as change in raw material quality, will cause incorrect prediction of the

sample. Calibration models are static and must be updated or rebuilt for each process.

Ideally a technique which requires no reference data, and is batch independent, would

be better for process monitoring.

1.4.4 Fault detection

An upset of the reaction can be defined as anything that alters the progress of a batch,
and hence deviates its progress from the norm. A process upset, such as the charging of
incorrect reactants, may cause the batch to fail to meet the required specification. It also
may have to be reacted for longer, which will cost more money. Ideally process upsets

should be identified as they occur to allow correction for or abandonment of the batch.

Traditional calibration methods will give a prediction of the reaction progress even if a
process upset has occurred. This may give misleading information about the reaction
progress. Also the calibration models are only valid for the process whilst it is operating
under the same reaction conditions. Ideally a calibration model should be adaptive to

any change seen to allow correct determination of the endpoint.

Modelling methods include SIMCA (soft independent modelling of class analogy). This
is used as a classification technique with various spectroscopic techniques including
NIR spectroscopy [84]. In SIMCA, a reference state, such as the normal operation state
of a reaction, is modelled using a principal component model. New samples are
compared to this model, and any deviations from it are interpreted as a process change

or upset. Any changes in the reaction conditions are also interpreted as an upset,
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including expected normal process changes. This technique is only suitable for reactions

with a steady state, and not dynamic systems.

MSPC (multivariate statistical process control) can also be used to monitor a process
over time and check it stays within the desired limits [85-87]. These models are based
on examining the relationship between measured process variables such as temperature
and pressure to determine the current performance of the process. Many process
variables can be measured at once, and are dependent on each other, so it is necessary to

examine them all at once. MSPC models are also based on a steady state reference.

A new adaptive algorithm for detecting process change known as caterpillar [28, 88],
has been developed at the University of Hull. This method has been used to track
process changes in a fluidised bed using acoustic sensors and can detect the onset of
agglomeration events. The idea behind the algorithm is to compare the recent variation
to the current variation in order to monitor process change. All abrupt changes are
flagged as possible process upsets. The technique appears to be system and batch
independent so it has been suggested that it could be applied to different spectroscopic

techniques.

Caterpillar is an adaptive algorithm, so for dynamic systems with normal process
variation, only true process upsets which cause a significant disturbance to the reaction
will be detected. The algorithm adapts to different processes, so remodelling is not
necessary if the process alters. It can be used for both endpoint detection and fault

detection.

1.4.4.1 Endpoint detection

Caterpillar can be used to determine the endpoint of a reaction. This is important to
ensure the batch has finished and saves time by preventing over reacting. Caterpillar is
adaptive so will be able to predict the endpoint even if reaction conditions change. It

can also be used on-line so the batch can be stopped as soon as the endpoint is reached.

In the endpoint detection caterpillar, two windows are placed in the data (Figure 1.6),
with an inter-window-distance (inter-WS) between them. A principal component
analysis (PCA) model is calculated for the second, reference window, to describe the
“now” variation of the samples in this window. This is compared to the old variation in

the samples in the detection window. The windows are moved through the data

University
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stepwise, with the model building repeated at each step, until a steady state in the
variation is seen and this determined as the endpoint of the reaction. The windows are

separated by an inter-window distance to ensure that a constant variation is due to the

actual endpoint of the reaction.

Response

StQpSize — Time I S

Figure 1.6: Diagram to show how the caterpillar algorithm works for endpoint determination. Two
windows are placed in the data, separated by an inter-window-distance. A principal component
analysis (PCA) model is calculated for the second, reference window, to describe the “now”
variation of the samples in this window. This is compared to the old variation in the samples in the
detection window. The windows are moved through the data stepwise, with the model building
repeated at each step, until a steady state in the variation is seen and this determined as the end-

point of the reaction.

1.4.4.2 Process upsets

In the caterpillar method for process upset detection, two windows are placed side by
side and moved step-wise through the data (Figure 1.7). The first window, or reference
window, contains “old” samples and a PCA model is built using samples in this window
to describe the process variance, and the critical value, d, is calculated based on the
T? statistics (see Equation 1.11). The second window, the prediction window, contains
the current samples. The samples in this window are compared to the first reference

window. If several samples are significantly different, this is interpreted as a process
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change. The number of atypical samples i.e. larger than d,,;, are counted and this is
shown in an occurrence plot. The occurrence plot allows the operator to clearly see if
the reaction is changing. However, it does not indicate the nature of the process change,

so other parameters must be examined to decide the necessary action.

Response

A :‘..%‘-e‘l"'?m-- -
VIR 2 G

Stepsize > Time /s

Figure 1.7: Diagram to show how the caterpillar algorithm works to detect process upsets during a
reaction. Two windows are placed side by side. A principal component analysis (PCA) model is
built using the reference window containing old samples. The samples in the detection window are
compared to those in the reference window, and if several samples are significantly different, this is

interpreted as a process change.

Within the algorithm, the window size, and number of components, used to describe the
variance in the PCA model must be optimised. Ideal reaction data, i.e. with no upsets
and only normal process variance, is used to optimise these two variables, see section
8.3.1. This ensures that only true upsets are identified and not normal reaction variation.
Once historic data has been examined, and the optimum factors to use determined, it is

hoped that the algorithm can be used in real time to detect the onset of upsets and allow

correction of the process.

For a detailed account of the theory, see references [28, 88]. The m x n data matrix X

contains the spectroscopic data collected for the process. This comprises of m, the

I
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number of measurements made at set time intervals, and », the number of measured
wavenumbers, in the case of NIR, and number of frequencies in the case of MW,
Caterpillar consists of two windows of width w which are w x n matrices. The window
width is determined by the number of samples included. If samples are collected every
60 seconds, and five samples are included in the window, then the window width is 300
seconds. The first window is the reference or model window, X,,,4, and the second is the
prediction window, X,..4, which contains the current samples. The X4 is mean centred,

and X4 1s scaled accordingly.

The PCA model comprising of £ number of components can be written as:

X =T

mod — “mod

P'mod + E Equation 1.8

where T,pq is the w x k scores matriX, P'moq is the k x n loadings matrix, and E the

residual matrix. The scores for the w samples in X4 are calculated by applying the

PCA model:

P

mod

Tred:X

’ Equation 1.9

pred
where Tpreq is the w x k predicted scores matrix and Pmeq is the n x k loadings obtained

from Equation 1.8.

The T? statistics for sample i, d; in either the prediction or modelling window, are

calculated as:

1t _
d = ’ Equation 1.10

(—1_— TmodTllrtlod j
w—1

where t; is the 1 x k scores values for sample i and Tinoq 18 the w x k scores matrix

obtained from (1).

The critical value for the T? statistics, dq., is calculated as:

3 k(w® =1)

it = Equation 1.11
w(w—k)

a .k w—k

where k is the number of components used to build the PCA reference model and ' the

number of samples used. F is the F-statistics at significance level o, which is set to
99%.
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1.5 Drying process

The majority of chemistry carried out in industry is in solution phase. The products
must then be dried to a set specification. It is an important process and is hard to

monitor. Time and money may be wasted by over-drying.

1.5.1 Current methods

Different types of drying processes exist in industry, including the use of a fluid bed
dryer, and pressure filtration. The processes are all the same in that water or solvent is
removed to achieve a dry product. They all have the same problems of monitoring as
huge cakes of wet material are dried in big vessels. The cake must be sampled to ensure
it is dry, but the problem is from where should this sample be taken to give a truly

representative sample.

In filtration drying, the solid/liquid combination is placed in a huge vessel. This is
mixed with an agitator. The agitator is removed, the vessel pressurised and a valve
opened. The liquid and small particles drain through a filter mesh located at the bottom
of the vessel. The remaining solid is further dried using hot gas to form a ‘cake’. The
cake is then removed by agitation [89]. The cake must be sampled to ensure it is dry.
The problem with this is the cake is thick, so it is difficult to remove a representative
sample. Also, as the cake dries it becomes solid, so the agitator has to be used to break

up the material before a sample can be removed.

Presently, visual inspection of the cake is used to determine if the material is dry [90].
This is a poor method of control, as only the outer layer of the cake can be seen. Process
control would ensure increased yield, quality and reduce the use of raw material, such

as gas flow, by accurately predicting the endpoint of the drying process.

York ef al. [91] have used electrical tomography to model the drying process of a
material in a pressure filter dryer. This work has been demonstrated on an industrial
scale. Six sections of the cake are modelled for dryness. A 3D model of the cake can be

constructed in real-time to give a picture of the drying process.

In fluid bed dryers, the material is contained in a vessel, and hot air is supplied to the
bed of material through a specially perforated distributor plate [92]. The air flows
through the bed of solids at a velocity sufficient to support the weight of particles in a

fluidized state. Bubbles form and collapse within the fluidized bed of material,
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promoting intense particle movement. In this state, the solids behave like a free flowing

boiling liquid. The problems of sampling exist with this drying method as a large

amount is dried at once.

Green et al. [93] have investigated the use of in-line NIR monitoring for a fluid bed
dryer. The sampling effects on the method accuracy were considered and it was found
process heterogeneity plays a large role in the prediction accuracy. The main problem
with this work is sampling, as if the process is heterogeneous then the NIR does not

measure a representative sample. Ideally the whole sample should be analysed to

overcome this.

Paul Dallin, of Clairet Scientific Ltd, presented work carried out on monitoring a fluid
bed dryer using NIR [94]. In this work, one wavelength was examined over time. As the
drying process occurred, the absorbance at this peak decreased until a steady state
occurs as dryness is achieved. Also, the drying of a pharmaceutical active in a filter

dryer was monitored using a retractable NIR probe.

1.5.2 Advantages of NIR and MW

The problem with the current drying applications is one of representative sampling. NIR
spectra has been used to monitor a drying process, and this too must be representative of

the batch [95].

The main advantage of GMS is that it analyses the whole sample simultaneously so
removes the need for sampling, and gives a representative picture of the process. As the
dielectric constant for water is high, MW spectroscopy should be suitable for
monitoring the drying process. It can theoretically measure 0 to 100% moisture content,

so is a very useful technique for drying applications.

NIR is a proven technique for monitoring drying processes, and gives easy to interpret
spectra that can be related to the process. MW spectra are much more complicated, and
less is known how the spectra relate to processes. By monitoring the processes with
NIR, alongside the MW, the NIR can be used as a reference method to aid interpretation

and correlation of the MW spectra to the process.

When water is added to a dry material, the water is first adsorbed, due to a single laver

of water molecules adhering to all surfaces of the solid. Depending on the inner area of
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the solid, this adsorbed water can account for the first 2 to 10% of the materials water
content. Adsorbed water has two active hydrogen bonds hence it is also known as
“bound” water. Once the maximum amount of water is adsorbed by the material, any
further water added is free water. The amount of water absorbed by a material is the
total amount of water which goes into the solid, both bound and free water in the
cavities of the solid [54]. If the full drying process is to be modelled, then both bound

and free water must be calibrated for, so a non-linear calibration model may be

necessary.
1.6 Esterification

1.6.1 Background

Esterification is the liquid state reaction of an alcohol with an acid to produce an ester

and water [96]:
ROH + R’COOH <—> ROOCR’ + H,0

The reaction is an equilibrium reaction and is slow under normal conditions. A strong
acid catalyst can be added to speed up the reaction. There are many examples in the

literature of the use of process analysis to monitor esterification reactions.

1.6.2 Current methods

Ampiah-Bonney and Walmsley [18] followed the esterification of ethanol by acetic
acid, using an acid catalyst, by Raman spectroscopy, using an in situ probe. Water is
virtually invisible to Raman so this large component does not interfere with the Raman
spectra. The data was modelled by PCA, after first mean-centring the data. PC1 was
removed from the data as this was found to model the fluorescence spectra. PC2 was
found to be the pure Raman spectra, and this was used to give the reaction profiles of
the three components, by plotting the response at identified wavelengths. The acetic

acid and ethanol are seen to decrease, and the ethyl acetate increase as the reaction

progresses, as is the case.

Blanco and Serrano [83] have used NIR spectroscopy for on-line monitoring and
quantification of the catalysed esterification of butan-1-ol by acetic acid. PLS was used

to construct calibration models based on synthetic mixtures of esterification
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components. This model was used to follow the change in composition of an actual

reaction, with GC analysis used as a comparison. The relative standard error was less
that 3.5%.

McGill et al. [97] compared the use of NIR, Raman and UV-Vis to monitor the
esterification reaction of crotonic acid and butan-2-ol. Univariate models were
constructed for the Raman and UV-Vis and PLS models for the NIR. GC was used as a

reference method with laboratory made samples.

Recently work has been published on using MCR-ALS to monitor the esterification
reaction of a mixture of caprylic and capric acids with glycerol using NIR spectra [98].
This is a calibration free technique so the need for time consuming model building is
removed. The concentration profiles of the components can be extracted from the
spectra to give process monitoring. This can be applied in real-time to allow prediction
and control of batches. In this work, the inadequate rank of the experimental data matrix
was found to restrict the quality of the spectral and quantitative information obtained.
The inclusion of concentration data for the components of the system aids the

resolution.

In this work, MCR has been used to predict the progress of esterification reactions to
provide calibration free modelling using MW and NIR spectra. The spectra collected is
rank deficient as the two reactants decrease and the two products increase concentration
at the same rate, so effectively there are only two independent components. Paul
Gemperlines’ GUIPRO [61] has been used with the known kinetics to break rank
deficiency to allow prediction of all components present, and predict the rate constants

to allow simple comparison of repeat batches.

The reaction of butanol and acetic acid has been examined in this work. This reaction is
a good starting point for development of process analysis, as the reaction can be
controlled to last a few hours so giving sufficient data for modelling, but without it
taking all day to complete. The reaction is well documented, so much is known about

the reaction which can be related to the spectra recorded.

This reaction has been monitored by both NIR and MW to give two-way data. NIR is a
proven technique so should be able to be used as a reference method to ensure the MW

spectra give a representative picture of the process.
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2.0 Experimental

2.1 Reagents

Table 2.1: List of reagents used.

Reagent Grade Manufacturer
Acetic acid Glacial Fischer Chemicals UK
L-(+)-Ascorbic acid 99% Lancaster UK
Benzoic acid AnalaR BDH UK
Butan-1-ol GPR Fischer Chemicals UK
n-Butyl acetate 99+% Acros Organics USA
Aldrich UK
Ethanol GPR Fischer Chemicals UK
Methanol GPR Fischer Chemicals UK
4-Methyl-2-pentanone 99.5%, spectrophotometric Aldrich USA
grade
Pentane 99+%, HPLC grade Aldrich UK
Propan-1-ol GPR Fischer Chemicals UK
Salicylic acid 99% Lancaster UK
Sand, purified by acid GPR BDH UK
0.1-0.3mm M&B Laboratory
Chemicals
Sulphuric acid 97%, AR grade Phillip Harris UK
Water Distilled In-house

2.2 Equipment

2.2.1 Near infrared spectrometer

A Buchi, NIRVIS FT-NIR (Fourier Transform Near Infrared) spectrometer (Germany),
has been used to collect NIR spectra using NIRcal 3.0 software (BUHLER,

Switzerland), run on a PC, with an Intel Pentium III processor, 256MB RAM, running

Windows NT workstation 4.0.

The probes used in this work are a 2mm transmission immersion probe (Helima,

Germany) coupled using fibre optics (3m in length) which has been used for liquid

reactions (Figure 2.1), and a diffuse reflectance NIR probe (Buchi, Germany) for drying

of powder work (Figure 2.2).
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Fibre optic

—_— e Zmm sampling port

Figure 2.1: Near infrared transmission probe with a 2mm sampling port.

Figure 2.2: Near infrared diffuse reflectance probe.

The NIR spectra are collected over the range 4008 to 9996cm™ in step sizes of 12cm™.
The spectra are collected in transmission (T) mode and converted to absorbance (A)

before data analysis using the following equation:

A= loglo(%J Equation 2.1

2.2.2 Guided microwave spectrometer

A guided microwave spectrometer (GMS), (Epsilon Industrial Inc, Austin Texas), has
been used in this work to collect microwave (MW) spectra. The spectra are collected
using Linefit software version 1.43 (Epsilon Industrial, Austin, Texas) run on a laptop,
with an Intel Pentium Processor, with 32MB RAM, running Windows 98. The GMS has
a bandwidth of 0.25-3.2GHZ, and covers a dielectric range of 1-85. The MW spectra
were recorded over 200 to 3192MHz in steps of 8MHz, giving 375 measurement points
in the recorded spectra. The power of the microwave is SmW, and is powered by a
magnetron. The response recorded is the change in power as the signal is attenuated by

the sample.

All experimental is carried out within the GMS sample chamber, with internal
dimensions of 10.0 x 4.7 x 11.5cm, giving a total volume capacity of 540cm’ (Figure
2.3). The chamber has a transmitter antenna at one side of the chamber and a receiver
antenna at the other side. These are connected to the GMS via two coaxial cables
(450cm in length), which transmit microwaves to the transmitter antenna located at one
side of the chamber. These pass through the chamber to the receiver, and the response is

transmitted back to the GMS via the other cable. The two parallel metal surfaces
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between the send and receive antenna act as a waveguide to steer the wave front

towards the receive antenna (Figure 2.4).

a Antenna plates \

e ez S,

Coaxial cables

Figure 2.3: a) Guided microwave spectrometer (GMS) chamber showing the location of the
antenna plates; b) The antenna plates in detail. There are two of these at either side of the chamber.
One acts as a transmitter and the other as a receiver.

Receiver
antenna

Transmitter =
antenna

Figure 2.4: Picture of the guided microwave spectrometer (GMS) chamber. The yellow lines show
the distribution of microwaves though the chamber. They are transmitted by the transmitter
antenna on one side. The two parallel metal plates act as a wave guide and steer the wave front
towards the receive antenna, located on the other side. This enables microwaves to pass through the

entire chamber.

The GMS chamber is sealed with a lid (Figure 2.5). This contains several inlet ports that
serve as an inlet for reagents, a stirrer, a NIR probe and a temperature probe. The NIR
transmission probe can be inserted into the chamber to allow MW and NIR spectra to be
collected simultaneously. The optimum location of the NIR probe was determined, and

the top plate designed accordingly, see section 3.2.1.
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MW lid with various ports

Overhead stirrer
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NIR probe inlet

Digital thermometer
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Figure 2.5: Picture of the guided microwave spectrometer (GMS) chamber, showing the lid that
seals the chamber. The ports in the lid allow various pieces of equipment to be used in the GMS
chamber.

Copper piping (Smm internal diameter) is coiled around the chamber and water pumped
around this using a stirred thermostatic circulator water bath (Grant, England) to allow
control of the temperature within the stainless steel chamber. The chamber is insulated

to minimise heat loss.

PTFE sample chamber

A PTFE insert made in-house can be used within the GMS chamber to reduce the
internal dimensions (Figure 2.6). This has been used in the drying experiments to hold
the sample and allow air to be passed through it. This has internal dimensions of 5.9 x

8.0 x 4.7cm, giving a maximum volume of 33cm’.
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Figure 2.6: PTFE sample chamber for the guided microwave spectrometer (GMS) chamber.

2.2.3 Other equipment

Auto-pipettes
Eppendorf micropipettes, 1-10ul, 10-10ul and 100-1000pul.

Temperature probe
Temperature measurements made using a Kane-May digital thermometer fitted with a
temperature probe, Imm diameter and 10cm length. This covers a range of -50 to

+1300°C.

GC
Shimadzu, GC-17A. Auto injector AOC-20i. This uses a flame ionising detector (FID).
Hydrogen (99.995%, Energas Ltd, Hull, UK) and air are used.

A VF-5ms FactorFour capillary column (Varian, USA) is used for all analysis. This
contains 5% phenyl-methyl low bleed stationary phase, which is equivalent to 5%
phenyl, and 95% dimethylpolysiloxane. The column length is 30m, and width 0.25mm.
Helium (99.99%, Energas Ltd., Hull, UK) is used as a carrier gas.

Stirrer

Janke and Kunkel, IKA-Werk. Variable speed 1-10. Set on 1 for all experiments (60

rpm).

-,



Experimental: Chapter 2.0

Spray chamber

Jacketed cyclonic spray chamber, (Glass Expansion, Australia), used for heating air in

the drying experiments.

Data processing

All spectra collected are transferred into MATLAB versions 6.5 or 7.0 (Mathworks).
Routines from the PLS-Toolbox version 3.0.4, were used along with ones created in-

house.

Caterpillar is a GUI (Graphical User Interface) that operates within MATLAB 7.0,
developed by Geir Rune Flaten (CPACT, Hull University, UK).

DoEMan is a GUI for the determination of the best parameters to use to build a
calibration model. This has been developed by Andrew Owen (CPACT, Strathclyde
University, UK) and uses routines from the PLS-Toolbox. It uses a design of
experiment approach to build a series of calibration models using different types of pre-
processing, and these models can be compared to determine the optimum combination

of pre-processing to use. The idea is based on a paper by Flaten and Walmsley [77].

GUIPRO is a MATLAB program for performing multivariate curve resolution (MCR)
analysis of spectroscopic data, developed by Paul Gemperline of East Carolina
University, USA [61]. Various settings can be used within this GUI to aid the
modelling. Kinetic profiles can be used to break rank deficiency and allow the

calculation of the kinetic profiles of a reaction.

2.3 Drying experiments

Dying a solid material is a widely used step in industry. The main problem with it is
determining when the sample is dry. If a sample is to be removed to determine the
degree of dryness, the main problem is where in the process the sample should be taken
to ensure it is representative of the entire batch. Also there is a problem of how to take a

sample, as physically removing a sample may cause the process to have to be stopped,

so delaying it.

An ideal situation would be if the entire process could be monitored on-line, so

eliminating the need to remove a sample and give a truly representative picture of what

is happening in the process.
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GMS is ideal as a sample can be placed in the chamber, and the whole sample is
analysed at once. The aim of the work is to simulate a drying process within the GMS
chamber, and monitor it by MW spectroscopy. The process is also to be monitored

using a NIR diffuse reflectance probe. This only samples a small region of the material.

This has been split into wetting experiments, in which the drying process is simulated
by adding solvent to a material, and drying in which solvent is removed from the

material.

2.3.1 Wetting

2.3.1.1 Aim

The first experiments involve wetting the material to simulate a drying process. The aim
is to monitor the increasing amount of solvent in a material using MW and NIR
spectroscopy. The feasibility of monitoring a drying process using these techniques can
be determined and also the limits of detection. The two techniques can be compared to

determine if MW is the superior technique for this application as is expected.

2.3.1.2 Experimental setup for wetting experiments

The material to be dried is placed within the PTFE insert which has been made in-
house. The insert is cuboid in shape which fits in the GMS chamber, and rests on the
bottom of the chamber (Figure 2.7). The PTFE insert has an inlet tube at the top and an
outlet at the bottom to allow liquid to flow through. The outlet tube must have filter
paper put over it to keep the material within the insert. The NIR diffuse reflectance
probe can be inserted in one of the ports of the lid of the GMS chamber.
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Solvent inlet

NIR diffuse
reflectance probe

|

GMS chamber

PTFE insert

Filter paper

Sample

Figure 2.7: Basic set-up for the drying experiments. The PTFE insert sits on the bottom of the GMS
chamber.

2.3.1.3 Experimental details for wetting experiments
Each experiment was repeated in triplicate. Repeats of MW and NIR spectra were
collected. These repeats were averaged out to give one spectrum for each addition

before data analysis was performed.

Addition of water to sand

Sand (150g) was placed in the PTFE insert. Distilled water was added in 0.1ml steps
until 1.0ml total volume was reached using an autopippette, and then in 1.0ml steps
until 10ml and 5.0ml steps until 35ml of water had been added in total. This gave full
saturation of the sand. After each addition of water, two minutes were allowed to elapse
to allow the water to soak through the material, and then 20 repeat MW scans and 40

repeat NIR scans were recorded. These repeat spectra were averaged to give one MW

and one NIR spectra for each addition.
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Addition of propanol to ascorbic acid

This experiment was carried out in the same way as the addition of water to sand.
Ascorbic acid (100g) was placed in the PTFE insert, and propanol added to this up to

the saturation point of 30ml.

Addition of ethanol to salicylic acid

This experiment was carried out in the same way as the addition of water to sand.
Salicylic acid (83g) was placed in the PTFE insert, and ethanol added to this up to the

saturation point of 25ml.

2.3.2 Drying

2.3.2.1 Aim

The drying process has been simulated by wetting a material to determine the feasibility
of monitoring the process by MW spectroscopy. The aim of this work is to actually dry
the material of solvent by driving off the solvent. The process is monitored by MW
spectroscopy to determine if the endpoint of the process, defined as when the material is

dry, can be identified.

2.3.2.2 Experimental setup for drying experiments

The experimental set-up was almost the same as for the wetting experiments, except a
system to pass air though the material was used which meant no NIR probe was used
due to lack of space for it in the chamber. The material is placed in the PTFE insert
placed inside the GMS chamber. The experimental setup for the different methods of

drying is described in the following experimental details section.

2.3.2.3 Experimental details for drying experiments

Drying of propanol from ascorbic acid by heating

Ascorbic acid (100g) is placed within the PTFE insert in the GMS chamber. The
chamber is heated to approximately 52°C by the pumping water bath. Propanol (25ml)
is added to the ascorbic acid and the solvent allowed to evaporate off for five hours.

MW spectra are taken at intervals to monitor the progress of drying.
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Drying of propanol from ascorbic acid by hot air

Ascorbic acid (100g) is placed in the PTFE insert within the GMS chamber, and
propanol (10ml) is added. Air is flowed though a gas nebuliser into a jacketed cyclonic
spray chamber used in ICP-MS. The spray chamber is connected to the water bath, and
water is circulated around at 80°C to heat the air as it passes through. The air is then

flowed into PTFE sample held in the GMS chamber (Figure 2.8).

Pressure release Jacketed flow chamber

v
< Air flow
PTFE < Ascorbic acid
insert and propanol

— GMS chamber

!

Air flow

Figure 2.8: Equipment set up for the drying of propanol from ascorbic acid using hot air.

The flow rate was controlled using a gas flow control valve set to approximately
11 min™. The air temperature in the GMS chamber was approximately 23°C. The air
was flowed through the system to allow the ascorbic acid to dry over time. MW spectra
were taken at intervals. The experiment was carried out twice. The first experiment was
left for 5h 30min, the heating stopped and the sample left overnight after which time

further spectra were taken. The second experiment was left for 7h after which time the

material appeared to be dry.
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2.3.3 Summary of experiments

Table 2.2: List of drying experiments.

Experiment name | Description

Wet sand water 1 | Addition of water (35ml) to sand (150g)

Wet sand water 2 | Addition of water (35ml) to sand (150g)

Wet sand water 3 | Addition of water (35ml) to sand (150g)

Wet asc pro 1 Addition of propanol (30ml) to ascorbic acid (100g)

Wet asc pro 2 Addition of propanol (30ml) to ascorbic acid (100g)

Wet asc pro 3 Addition of propanol (30ml) to ascorbic acid (100g)

Wet sali_eth 1 Addition of ethanol (25ml) to salicylic acid (150g)

Wet sali eth 2 Addition of ethanol (25ml) to salicylic acid (150g)

Wet sali eth 3 Addition of ethanol (25ml) to salicylic acid (150g)

Dry asc_pro Drying of propanol (25ml) from ascorbic acid (100g) by heating
GMS chamber

Dry asc_pro air 1 | Drying of propanol (10ml) from ascorbic acid (100g) by hot air

Dry asc pro air 2 | Drying of propanol (10ml) from ascorbic acid (100g) by hot air

2.4 Experimental set-up for esterification
2.4.1 Optimum location of the NIR probe

2.4.1.1 Aim
The reactions carried out in the GMS chamber are analysed by both MW and NIR

spectroscopy. The NIR spectra are collected using the NIR transmission probe located
inside the chamber. The probe is a stainless steel cylinder, 2cm in diameter. This will
cause reflectance of the microwaves when placed in the chamber, so affecting the MW
spectra collected. This reflectance needs to be minimised. The probe must be located in
an optimum position which causes least interference to the MW spectra, whilst giving
representative NIR spectra. An experiment has been carried out to determine this
optimum position. A plate will then be made for the top of the chamber to hold the

probe in position. This location may have to be a compromise for ease of construction

of the plate.

2.4.1.2 Experimental details for location of the NIR probe experiments

The chamber has been split into areas in which the probe could be located. The probe is
Jem in diameter, so the cross section of the chamber is split into regions to
accommodate the probe. The width of the chamber is 4.7cm so some of the positions

overlap. The probe must be inserted into the chamber to a depth of at least 3.5cm to
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ensure the transmission slit is covered by the reaction mixture. Therefore, the depth of

the chamber has been split into 3 sections of 3.5 / 4cm (Figure 2.9).

The chamber is filled with water (500ml) and the chamber heated to 32°C, to give a
constant temperature. Ten repeat MW scans were taken with the NIR probe in each
position (A1-15, B1-15, C1-15), along with ten NIR spectra, ensuring the transmission

slit was facing into the chamber to ensure maximum contact with the liquid.
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Figure 2.9: Possible locations of the NIR transmission probe within the GMS chamber. The red
dashed line indicates the overlap of some of the possible probe positions. X indicates the location of
the transmitter antenna and R the location of the receive antenna.

2.4.2 Effect of temperature on the collected spectra

2.4.2.1 Aim

The temperature of a sample affects both the NIR spectra of the sample, and also the
MW spectra. This experiment was carried out to show the effect the temperature has on
the collected spectra of the components in the esterification reaction. This will show the

importance of keeping the temperature as constant as possible.

2.4.2.2 Experimental details for the effect of temperature experiments

The GMS chamber was heated to a variety of temperatures (25, 35, 40, 50 and 60°C).
The reagents to be used in the esterification reaction (butanol and acetic acid) and the

products formed (water and butyl acetate) were heated to the same temperature as the
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GMS chamber and 450ml placed in the chamber. 20 repeat MW scans were taken for
each reagent at each temperature, along with 40 repeat NIR scans using the transmission

probe placed in the GMS chamber. The spectra were averaged to give one spectrum for

each temperature.

2.4.3 Effect of volume of liquid in the GMS chamber on the recorded

spectra

2.4.3.1 Aim

The esterification reaction is to be carried out inside the chamber of the GMS. The
chamber holds 540ml of liquid. The reagents to be used are expensive to dispose of and
are flammable. Ideally the total volume used should be minimised, whilst still giving
representative MW spectra. The recorded MW spectra respond to the composition of
the sample present. The greater the amount of sample, the greater the response will be
due to the attenuation of the signal. Spectra is required that gives a maximum response
so any change in the spectra due to a change in composition of the sample is easier to
detect. Also the amount of air present in the sample will affect the recorded spectra.

This should be kept constant to ensure reproducible spectra are collected.

2.4.3.2 Experimental details for the effect of the volume of a liquid in the

GMS chamber experiments

The chamber is filled with 50ml of water, and ten repeat MW scans taken of this
volume of water. The water used is at room temperature, the same as the chamber, to
minimise temperature effects. A further 50ml is added, and again spectra are taken. This

is repeated until the chamber is filled to 500ml. The spectra for each volume of water

are averaged before data analysis.

2.5 Esterification reactions

2.5.1 Aim

The aim of this work was to monitor a simple reaction by MW and NIR spectroscopy.
and compare the relative merits of each technique. The reaction studied is the

esterification of butan-1-ol by acetic acid which is catalysed by sulphuric acid:

CH;CH,CH-CH->OH + CH3COOH > CH;COOCH,CH-CH,CH; + H,0
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This reaction was chosen as it is a simple, quick reaction which is relatively safe and

uses cheap, easily obtainable reagents.

It was proposed that the use of different chemometric techniques with the collected
spectra could allow the monitoring of the reaction progress, and determine properties of

the reaction such as the endpoint, and any upsets that may occur during the reaction that

alter its progress.

2.5.2 Experimental setup for esterification reactions

Overhead ;
stirrer

NIR probe

Temperature probe Pumping water bath

Figure 2.10: Equipment setup for the esterification reactions.

All experiments are carried out in the GMS chamber with the NIR probe inserted. The
optimum location of the probe has been determined, see section 3.2.1. The chamber is

thermostated using a pumping water bath. Figure 2.10 shows how the equipment has

been set up.

The base plate of the GMS has a tap attached to allow easy emptying. The top plate has
been made in-house and this contains ports for different pieces of equipment (Figure
2.5). An overhead stirrer is located in the central port. There is also a temperature probe

inserted to monitor the reaction temperature. The NIR probe is located in another port,

and there is a port for the inlet of reagents.
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2.5.3 Characterisation esterification experiments

2.5.3.1 Aim

A set of standard characterisation reactions were monitored by MW and NIR
spectroscopy, to give good data sets which can be used with various chemometric
techniques. The reactions were repeated to determine if reliable and reproducible

spectral data can be collected to monitor the reaction.

2.5.3.2 Experimental details for characterisation reactions

All reactions were carried out within the GMS chamber. The reagents were measured
out in a measuring cylinder, and placed in volumetric flasks. The reagents were heated
up to the reaction temperature before being placed in the GMS chamber via the inlet
port. Butanol was added first, followed by the acetic acid. Spectra were taken at all
stages. The acid catalyst was measured out using an auto-pipette, and added last. t; is

determined as the time at which the catalyst is added.

All reactions were stirred using an overhead stirrer set to a speed of 1 (60rpm).
Reactions were carried out at 40°C, thermostated by the water bath. A molar ratio of

1:2, butanol (200ml) to acetic acid (250ml) was used, with 1ml of catalyst.

For all reactions, MW spectra were taken every minute. The NIR spectrometer was set
to take 1500 single spectra. One spectrum is recorded approximately every seven
seconds. A spectrum relating to every minute is extracted for use in data processing.

The raw spectra are used in the data analysis.

There is a summary of all experiments carried out in section 2.3.7. Reactions that differ

from the standard characterisation reactions are described in the following sections.
2.5.4 Monitoring of reaction progress by GC

2.5.4.1 Aim

The standard data sets can be used with multivariate curve resolution techniques to
predict the concentration profiles of the reactants and products during the reaction. A
reference method is needed to compare the prediction profiles to what is actually
occurring in the reaction. GC has been used to monitor some of the reactions to give

this reference data. The GC method was first developed and calibrated. This was then
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used with real samples taken from reactions to predict the concentrations and hence

monitor the reaction.

2.5.4.2 Experimental details for GC work

GC set-up and calibration

A GC method was developed to resolve the components in the reaction mixture, and

then a calibration built to allow the prediction of the composition of reaction samples.

An internal standard was chosen which has a different retention time from the
components of interest, but is near enough so the analysis time is minimised. This
allows correction of any variation that may occur in the injection volume. 4-Methyl-2-

pentanone was chosen.

Method optimisation

First calibration samples 1, 4 and 8 (see Table 2.3) were made up in 5ml volumetric
flasks, made up to 5ml with pentane. The pentane elutes before the other components so
will not interfere with the analysis. 1.0ml was injected using a split of 1:85 to ensure the
column was not overloaded with sample. The injector temperature was set to 250°C to
ensure the sample is vaporised fully, and the detector also set to 250°C. The column

temperature was set to 100°C to ensure a good separation was achieved.
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Table 2.3: Volumes of components used to make up GC calibration samples. 1ml of internal
standard (4-Methyl-2-pentanone) was added to each mixture.

Butanol Acetic Acid Butyl Acetate Water

Vol./| Moles | Vol./| Moles | Vol./ | Moles | Vol./| Moles
ul ul ul ul
1] 889 | 0.00971 | 1111 | 0.01943 0 0.00000 0 0.00000
2| 777 | 0.00850 | 1041 | 0.01820 | 160 | 0.00121 22 0.00121
31 666 | 0.00728 | 971 | 0.01698 | 319 | 0.00243 44 0.00243
41 555 | 0.00606 | 901 | 0.01576 | 479 | 0.00364 65 0.00364
51 443 | 0.00485 | 831 | 0.01454 | 638 | 0.00485 87 | 0.00485
6| 330 | 0.00361 | 760 | 0.01330 | 800 | 0.00607 | 109 | 0.00607
71 217 | 0.00238 | 689 | 0.01206 | 962 | 0.00730 | 131 | 0.00730
8| 105 | 0.00114 | 619 | 0.01082 | 1123 | 0.00853 | 154 | 0.00853
Calibration

Once a suitable method was obtained, a calibration was constructed to allow prediction
of future, unknown samples. A set of eight calibration samples were made up, covering
the range of concentrations of the components expected to be found in the reaction
samples (see Table 2.3). Auto-pipettes were used to measure out the components. These
were made up to 5.0ml with methanol, as the water dissolves better in methanol then
pentane as used in the method optimisation and still elutes at a different time from the
other components. The samples were made up with the final addition of acetic acid and
stored in the fridge immediately to try to minimise any reaction which may occur. The
calibration samples were run on the GC in a random order, and each sample was run in
triplicate. The samples were made up fresh and the whole calibration repeated twice to

ensure reproducibility of the method.

GC monitored reactions

Reactions were carried out in the same way as the standard reactions. A sample was
removed (~1ml) at 10 minute intervals for GC analysis. The sample was put into a vial
held in ice, to reduce the temperature as quickly as possible to try to stop the reaction.
2ml of the sample was taken using an auto-pipette, and placed in a Sml volumetric flask
(Grade A). 1ml of internal standard was added and this made up to Sml with methanol.

The mixture was kept on ice at all times. A small amount was placed in a GC vial, and

this immediately analysed by GC.
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The reactions were carried out at 40°C. A list of the reactions is shown in Table 2.4. A
molar ratio of 1:2, butanol (200ml) to acetic acid (250ml) was used, with 1ml of

catalyst.

Table 2.4: Esterification reactions followed by GC analysis.

Name Molar ratio | Temp./°C | Catalyst/ ml
Ester GC 40 1 1 1:2 40 1
Ester GC 40 1 2 1:2 40 1
Ester GC 40 1 3 1:2 40 1

2.5.5 Process upsets

2.5.5.1 Aim

The esterification reaction was carried out in which process upsets were stimulated,
monitored by NIR and MW spectroscopy. These are to simulate process upsets that may
occur in industry. The aim was to detect these process upsets from the NIR and MW

spectra using chemometric techniques.

2.5.5.2 Experimental details for process upset reactions

All reactions were carried out in the standard way, with a molar ratio of 2:1, glacial
acetic acid (250ml) to butanol (200ml). 4.0ml concentrated sulphuric acid (97%) was

used as a catalyst in all but the catalyst addition reaction.

Ester_upset_cat: Addition of catalyst

1.0ml of catalyst is added at the start of the reaction. Further additions of catalyst
(1.0ml) were added at 1790, 3590 and 5450s into the reaction, to give a total of 4.0ml of

catalyst.

Ester_upset_charging: Charging of half of the reagents
The reaction chamber was charged with the butanol and approximately half of the acetic

acid. The remaining acetic acid was added 2460s into the reaction.

Ester_upset_water_1: Addition of water

Water was added to the reaction at 1860 (1ml), 3660 (2.5ml). 5460 (5ml) and 6660s
(7.5ml).
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Ester_upset_water_2: Addition of water

Water was added to the reaction at 1800 (5ml), 2990 (7.5ml) and 4790s (10ml).

Ester_upset_benzoic: Addition of benzoic acid

Benzoic acid (2g/0.02mol) was added to the reaction at 3800s to simulate the charging

of incorrect reactants.

Ester_upset_stirrer: Disturbance of stirrer

The following disturbances were made to the stirrer:

Table 2.5: Disturbances made during the process upset reaction (ester_upset stirrer), in which the
stirrer was disturbed.

Time /s Disturbance Time /s Disturbance
2760 stirrer turned down to 1 4440 stirrer switched off
3120 stirrer switched off 6660 stirrer switched on
3720 stirrer switched on 7260 stirrer turned up to 2

Ester_upset_stirrer: Disturbance of stirrer

The following disturbances were made to the stirrer:

Table 2.6: Disturbances made during the process upset reaction (ester_upset stirrer2), in which the
stirrer was disturbed.

Time /s Disturbance
1200 stirrer switched off | stirrer off for 3 min
1380 stirrer switched on

1980 stirrer switched off | stirrer off for 5 min
2280 stirrer switched on
2880 stirrer switched off | stirrer off for 6 min
3240 stirrer switched on
3840 stirrer switched off | stirrer off for 7 min

4260 stirrer switched on
4860 stirrer switched off | stirrer off for 8§ min
5340 stirrer switched on
5940 stirrer switched off | stirrer off for 9 min
6480 stirrer switched on
7260 stirrer switched off | stirrer off for 10 min
7860 stirrer switched on
8460 stirrer switched off | stirrer off for 15 min
9360 stirrer switched on
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Table 2.7 summarises the process upsets stimulated in each of the experiments.

Table 2.7: Table of process upset reactions giving details of the process upsets stimulated.

Name Experiment Time upset
stimulated / s
Ester upset cat Addition of catalyst (Iml) at | 1790 | 3590 | 5450
intervals.

Ester upset charging | Charging of butanol and half | 2460
acetic acid. Remaining acetic
acid added during reaction.
Ester upset water 1 | Addition of water at 1800 | 2990 | 4790
intervals, Sml, 7.5ml, 10ml.
Ester upset benzoic | Addition of benzoic acid (2g | 3800
/ 0.45%w/v) during reaction.
Ester upset_stirrer 1 | Stirrer switched off at
intervals for different time
periods.

Ester upset_stirrer 2 | Stirrer switched off at
intervals for different time
periods.
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2.5.6 Summary of experiments

Table 2.8: Table of esterification reactions carried out.

Name Molar | Temp. | Catalyst
ratio /°C / ml

Ester 40 1:2 1 1 1:2 40 1 Characterisation reaction.

Ester 40 1:2 1 2 1:2 40 1 Characterisation reaction.

Ester 40 1:2 1 3 1:2 40 1 Characterisation reaction.

Ester 40 1:2 4 1 1:2 40 4 Characterisation reaction.

Ester 40 1:2 4 2 1:2 40 4 Characterisation reaction.

Ester 50 1:0.25 1 1 1:0.25 50 1 Characterisation reaction.

Ester 50 1:0.25 1 2 1:0.25 50 1 Characterisation reaction.

Ester 50 1:0.25 1 3 1:0.25 50 1 Characterisation reaction.

Ester GC 40 1 1 1:2 40 1 Reaction followed by GC.

Ester GC 40 1 2 1:2 40 1 Reaction followed by GC.

Ester GC 40 1 3 1:2 40 1 Reaction followed by GC.

Ester upset cat 1:2 40 4 Addition of catalyst (1ml)
at intervals.

Ester upset charging 1:2 40 4 Charging of butanol and
half acetic acid.
Remaining acetic acid
added during reaction.

Ester upset water 1 1:2 40 4 Addition of water at
intervals, Sml, 7.5ml,
10ml.

Ester upset benzoic 1:2 40 4 Addition of benzoic acid
(2g/ 0.45%w/v) during
reaction.

Ester upset stirrer 1 1:2 40 4 Stirrer switched off at
intervals.

Ester upset_stirrer 2 1:2 40 4 Stirrer switched off at
intervals.

The experiments carried out have been given a code to aid identification of the

conditions used. For all standard reactions the code is as follows:
Ester a b ¢ d

Where ester indicates an esterification reaction, a the temperature the reaction was run

at, b the molar ratio of butanol to acetic acid, ¢ the amount of catalyst used and if d is

present it indicates a repeat reaction.
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So Ester_40_1:2 1 2 is an esterification reaction carried out at 40°C, with a molar ratio

of 1:2, butanol:acetic acid, with 1ml of catalyst, and this is the second repeat of the

reaction.
For reactions followed by GC the code is:
Ester GC a c d

The GC indicated that is has been followed by GC, and the molar ratio is not included
as all GC reactions were performed with a molar ratio of 1:2. a, ¢ and d are the same as

in the standard reactions.
For process upset reactions, the following code is used:
Ester upset z

The ester and upset indicate an esterification reaction with an upset stimulated. The type

of upset is indicated by z.

When individual data sets are being referred to, the name of the reaction will be used

with MW or _NIR at the end to indicate if it is the MW or NIR data sets being used.
2.6 Data analysis

2.6.1 Wetting

2.6.1.1 Aim
MW and NIR spectra have been collected during the addition of solvent to a sample.
The percentage mass of solvent present in the sample is known for each spectrum taken.

Therefore, data sets exist with corresponding reference concentration data.

The aim of the data analysis of these data sets is to use simple multivariate calibration
techniques to correlate the collected spectra to the reference concentration data. Once a
model had been built, unknown samples can be predicted against it to predict the

relative “wetness” of the sample. A model is built for each type of solvent and sample.

Various pre-processing techniques exist which can be used on the spectra to improve
the correlation between the spectra and the concentration data to give the best model.

Proper pre-processing of the data can help in the development of better predictive
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DoEMan is a GUI within MATLAB which uses a design of experiment approach to
calculate a series of calibration models using different pre-processing techniques. The
aim of this work is to use DoEMan to determine the optimum model to use for

prediction of the percentage by mass of solvent in the sample.

2.6.1.2 Experimental details

The data sets to be used are:
Wet sand water 1,2 and 3
Wet asc pro 1,2 and 3
Wet sali eth 1,2 and 3

Models are built for each set of solvent and sample, for both MW and NIR spectra.
DoEMan is used to build models using various pre-processing techniques and allow

comparison of the techniques.

The models can be built using different calibration techniques: PCR, PLS1 and PLS?2,
and the prediction abilities of each one compared. In this work, PLS1 and PLS2 have
been used as only one component concentration is to be calibrated, PLS1 should be
sufficient, and it is expected using PLS2 will not improve the predictive ability of the

calibration.

DoEMan uses the pre-processing algorithms in the PLS toolbox. Depending on the type
of spectra to be used, only some of these are useful, and some knowledge of the
techniques is needed. The pre-processing that is to be looked at is mean centring, Box-

Cox transformation, orthogonal signal correction (OSC) and auto-scaling.

The predictive ability is assessed based by the root mean error of prediction (RMSEP)
of the model, and how well the concentrations have been correlated to the spectra by the
root mean square error of calibration (RMSEC). The models are built using two of the

three repeat data sets, the calibration data, and the other data set is used as an

independent validation set.

Global model
DoEMan, a Matlab GUI for determining the optimum calibration model (see section

1.4.2.5 for details) was applied to the calibration data set using the pre-processing
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techniques stated. The calibration models that appeared to be the best were then used

with the validation data to determine the predictive ability of the model.

Local models

The data collected appears to be non-linear, therefore building one large global
calibration model may decrease the predictive ability of the spectra. The data was split
into two linear ranges, 0.1 to 1.0ml, and 2.0ml to the maximum amount added. Again
DoEMan was used to determine the optimum calibration models to use for each linear
range based on the calibration data. The best models were validated and compared to

determine the best overall model.

2.6.2 Drying

2.6.2.1 Aim

The drying of propanol from ascorbic acid has been monitored by MW spectroscopy
(data sets dry_asc_pro, dry asc_pro_air I and 2). The only reference available is the
spectra of the dry ascorbic acid, before any solvent was added to it. The aim of the work
is to analyse the data and see if it is possible to determine when the ascorbic acid is dry

by comparison to the reference spectrum.
2.6.2.2 Experimental details

PCA

Principal components analysis (PCA) is performed on the data sets, after first mean
centring the data. The scores containing the most amount of variance are examined to
see 1f they reach a point at which no more variation is occurring between the samples.
This point would be the point at which the material is dry and no more solvent is being

removed.

Residuals

The reference dry spectrum can be subtracted from the process spectra to give the
residual spectra. When this residual is zero, or very close, then the difference between
the process spectra and the reference spectra of the dry material is negligible. therefore
the material can be determined to be dry. The residuals were calculated for all data sets,

and these examined to determine if it is possible to detect when the material is dry.
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2.6.3 Esterification

2.6.2.1 Reaction progress prediction

Aim

Multivariate curve resolution (MCR) is a technique which is used to extract
concentration profiles and pure component spectra from data with no reference
concentration data. The majority of esterification reaction data collected in this work
had no concentration information. Therefore, MCR has been performed on the reaction
data to extract the concentration profiles and allow the reaction progress to be
monitored. From these profiles the kinetic constant, £, is calculated. This value indicates
the rate of reaction. For reactions run with the same conditions, except at different
temperatures, the k value will be different. The same is true for reactions run with

different molar ratios. This constant can be compared to assess the effectiveness of

predicting the reaction progress.

Experimental details

A variety of the standard esterification reaction data has been used, ester_40 1.2 1 I, 2
and 3. MW and NIR data have both been used. GUIPRO is a GUI within MATLAB
developed by Paul Gemperline [61]. A variety of constraints can be used within this
GUI to aid the resolution of the data. In this work the aim was to minimise the amount
of pre-processing and pre-analysis of the data to make the MCR techniques as simple

and quick as possible, and minimise prior knowledge and user input.

The spectral data is loaded into the GUI, with corresponding time and wavelength data.
A wavelength range can be selected so any regions not relating to the reaction or
containing noise can be excluded. The range 4000 to 9000cm™ was used for the NIR
and the full frequency range for the MW data. The time range is also selected and for all
data this is set so the first spectrum used in the calculation is that relating to the addition

of the catalyst, to. The data is visualised using calculated PCA scores and any obvious

outliers removed.

The first type of pre-processing that can be applied is baseline correction. There are
various types that can be applied depending on the baseline effect that needs to be
corrected for. The MW data does not have a baseline so no correction can be applied.

The NIR data collected is of high quality with no shift in baseline, so no baseline
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correction is needed. The second type is normalization. This corrects for any drift in the
spectra which is seen when a region of the data, which is expected to remain constant,
changes over time. There is no change seen of this kind in the collected spectral data, so

this pre-processing was not used.

The number of components to be searched for in the data using MCR must be selected.
This can be done manually or using an F-test. In either case some knowledge of the
system is needed. In this data there are four components present, acetic acid, butanol,
butyl acetate and water. However, there are only two independent components as the
two reactants are decreasing at the same rate and the two products are increasing at the
same rate, so they contribute the same amount of variance to the system and are not
distinguished between. Therefore the number of components is set to two. This rank
deficiency can be overcome by using kinetic constraints in the curve resolution, which

will be discussed later.

The approximate locations of peaks in the composition profiles are determined. This
can be done using a needle search [99] or EFA [59]. A needle search is performed
automatically by performing a least-squares fit of a very narrow peak function, a needle,
on each spectrum. When the location of the needle peak coincides with a maximum
concentration of a component, a local minimum is often observed in the residual sum of
squares. The results are displayed and some of the local minima selected. This
technique may require some user knowledge as a local minima for each component is
needed. If the correct number is not automatically chosen within the algorithm, then the
user must decide which to use. EFA calculates initial estimates of the concentration
profiles and the pure component spectra, and from this automatically approximates the

location of the peaks. EFA has been used as it requires less user knowledge, so making

the process simpler.

A scaling constraint can be applied to the reaction data. A maximum of one for the total
concentration of the components can be used or a mass balance scaling. The mass
balance scaling has been used as in most cases the reaction is a closed system with
nothing being added or removed during the reaction. In the reactions monitored by GC,
a small volume of sample is removed at intervals; however the mass balance constraint

has still been applied to allow comparison of the results from all types of reactions.
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There are two types of curve fitting that can be applied; constrained P-ALS (penalty
alternating least squares) and non-negative ALS [61]. P-ALS requires user knowledge
and input so complicating the curve resolution. Within this non-negative constraints can
be applied to the concentration profiles and/or the spectral profiles for each component
individually. Spectra of the pure components can also be included to aid resolution.
Non-negative-ALS simply applies non-negative constraints to the pure component
spectra and the concentration profiles for all components. It is expected that the

concentration should be non-negative so this method has been used.

The final option within GUIPRO is the use of a kinetic fit [99]. Non-linear least squares
uses the known reaction equation to aid resolution by breaking the rank deficiency of
the data. The initial concentrations of the components are also used to give a starting
concentration in the extracted concentration profiles. Concentration profiles for all
components are predicted and this allows the calculation of the rate constant, k. This
option has been used in GUIPRO for all the reactions looked at. It is this & value that is

compared to determine the predictability of curve resolution.

The rate constants have also been determined for the GC reactions ester GC_+40_1_1, 2

and 3, run under the same conditions to compare the experiments.

2.6.2.2 Endpoint determination

Caterpillar is an adaptive algorithm which can be used to predict the endpoint of a

reaction, by comparing the now variation to recent variation.

In caterpillar, two windows with a set window width size (WS) are placed in the data
(see section 1.4.4.1 in introduction), with an inter-window-distance (inter-WS) between
them. A principal component analysis (PCA) model is calculated for the second,
reference window, to describe the “now” variation of the samples in this window. This
is compared to the old variation in the samples in the detection window. The windows
are moved through the data stepwise, with the model building repeated at each step,
until a steady state in the variation is seen and this determined as the end-point of the
reaction. The windows are separated by an inter-window distance to ensure that a

constant variation is due to the actual endpoint of the reaction.
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Optimization of variables to use in caterpillar algorithm

Aim

The variables within the algorithm, WS, inter-WS, stepsize, and number of PCs to use
in the model must be defined. The aim of this experiment was to use a reference data set

to optimise these variables. Once these are determined for a reaction with specific

conditions, the same variables can be used for subsequent reactions with the same

conditions.

Experimental details

The step-size of the movement of the windows through the data can be changed, this
was set to one for all analysis due to the data sets being relatively small (~180 samples).
The significance level below which the reaction must fall before it is deemed to have
reached stability and hence the endpoint, can also be altered. This was set to 0.99 for all

analysis to ensure the reaction is truly at its endpoint.

These variables have been optimised using the ester 40 1:2 1 3 MW and NIR data
sets. All the combinations of the different variables to be used can be examined. A
minimum WS of five and a maximum of ten, with a minimum inter-WS of ten and a
maximum of 20 are examined. It is convenient to use an inter-WS double that of the

WS.

Once the optimum variables to use for these reaction conditions were chosen, the
algorithm was applied to the spectra collected for the repeat reactions, using the same

experimental conditions, ester_40_I:2_1_1 and 2. The endpoint should be the same for

all the repeats.

2.6.2.3 Process upset detection

The caterpillar algorithm can also be used to detect process upsets in a reaction. This
works in a similar way to the endpoint determination, but this time the windows are
placed side by side. The first window is used as a reference window and the second as a
detection window. A PCA model is calculated for the reference window to describe the
variation of the samples in this window. The newest samples, contained in the detection
window, are then compared to this model. If several of the samples in the prediction
window are significantly different from the reference PCA model, this is interpreted as

process change. Both windows are moved through the data stepwise allowing the
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reference model to adapt to any process changes. This means the caterpillar algorithm

will detect the onset of new phases in the process data as they occur.
Aim
The variables of WS and number of PCs to use in the PCA model must be optimised to

ensure correct determination of process upsets. It is important, that only true process

upsets are detected and not normal reaction variation as this would lead to false alarms.

Once the optimum variables have been chosen, the algorithm can be performed on
spectra collected from reactions with stimulated process upsets to determine if these

process upsets can be detected.

Experimental Details

The characterisation reaction spectra, data sets ester 40 1:2 4 1 and 2, were used to
determine the WS and the number of PCs to be used in the PCA model within the
caterpillar algorithm. This data is representative of the reactions performed, and

contains only normal process variation.

The reference data was analysed using a range of window sizes and number of PCs and
the number of atypical samples determined for each combination. The number of
atypical samples is counted and displayed in an occurrence plot. The significance level
must also be chosen, but this was set high (0.99) to minimise the number of false

alarms.

Generally it is suggested to use a wide WS to ensure that the best representation of the
variation in all stages of the process is captured. The data examined comprises of only
around 180 samples, therefore, the WS is limited. A range of five to ten samples in the
window was looked at. The smallest WS must always be one greater than the maximum

number of components. One to four components were examined.
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3.0 Results and Discussion

3.1 Monitoring the drying of a solid

Drying processes are widely used in industry, and the process must be carefully
monitored to ensure the desired endpoint is achieved in the shortest time possible. One
method to monitor a drying process is to physically remove a sample and test it. This is
inefficient as the process may need to be stopped to take a sample, and it may be
necessary to take several samples to ensure the analysis is representative of the whole

material being dried, which is difficult if the sample is large.

GMS has the advantage that the whole sample is analysed at once, so a more
representative measurement of the process is taken. It is also very sensitive to water and
solvents as they have relatively large dielectric constants, whereas solid materials have
a low dielectric constant. NIR is used to monitor some drying processes with the use of
a diffuse reflectance probe. These probes are placed in the solid and analyse a certain
depth of the material. This has the disadvantage that only one small area of the process
is sampled, so a representative measurement may not be taken. NIR is to be used in this
work to monitor a drying process to give a direct comparison to MW spectroscopy, and

to determine if either method is suitable for the monitoring of the drying of a solid.

The process of wetting a material with solvent was initially monitored to simulate the
drying process in reverse i.e. the order of the spectra is collected in reverse order, from
dry to wet. This is to ensure a change in the amount of solvent in a material can be
detected by the two techniques and also to give an indication of the limits of detection
that can be achieved. The actual drying process has also been monitored to show the

possibilities of using these techniques for monitoring a true drying process.

3.1.1 Wetting

Three types of wetting experiment have been performed; the addition of water to sand.
propanol to ascorbic acid and ethanol to salicylic acid. Reference data exists in the form
of the quantity of solvent added to the material, quoted as percentage weight for weight.
The aim of the work is to correlate the concentration information to the spectra to
monitor the process, and allow the prediction of the dryness of new samples. A

calibration model is to be built which gives the best prediction of new samples.
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The collected NIR spectra should be linear with respect to the amount of solvent added,
as according to Beers Law, the absorption is directly proportional to the amount of
absorbing species present. This should mean simple linear models will be needed for the

calibration of the NIR spectra to the amount of solvent present.

The collected MW spectra are expected to be non-linear with respect to the amount of
solvent added. When the solvent first comes into contact with the dry material, a single
layer of water is adsorbed. Depending on the inner area of the solid, adsorbed water can
account for the first 2 — 10% of a solids water content. Once the maximum amount of
water has been adsorbed, this amount is constant, and no longer affects the
measurement. The remaining water is absorbed which has a different affect on the
collected MW spectra. For applications that cover a range from low to high water
contents, a non-linear calibration method or local calibration models that cover linear

ranges are needed to handle these two different types of solvent affects.

3.1.1.1 Addition of water to sand

Water was added to sand in 0.1ml steps to 1ml, then 1ml steps to 10ml and 5ml steps
until the saturation point of 40ml was reached. MW (20 replicates) and NIR (40
replicates) spectra were recorded at each step. The spectra were averaged before data
analysis to give one representative spectrum for each step. The process was repeated
three times to give three replicates. The data sets recorded are wet_sand water 1, 2 and

3, for MW and NIR.
3.1.1.1.1 MW spectra for the addition of water to sand

Exploratory analysis of the data

Spectra for one of the process repeats are shown in Figure 3.1.1. These clearly change
over the course of the process. The dry spectra can be distinguished from the other
spectra. The first ten spectra, below 1ml of water added, are very close together. It can
be seen that below 300MHz there appears to be noise in the spectra. It is expected that
using frequencies above 300MHz only will result in a better calibration model as the

noise that appears to be in the spectra will not be included.
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Figure 3.1.1: MW spectra for the addition of water to sand. The spectra go from red (dry sand)
through to blue (40ml water).

PCA has been performed on all three replicates of the process and the scores on PC1 vs.
PC2 are shown in Figure 3.1.2. The scores show the variation between the samples.
There appears to be three clusters in the scores. The water was added in three different
step sizes, 0.1ml, 1ml and 5ml, and these three clusters could be due to these different

step sizes giving different variation.

The second and third data sets were recorded on the same day, and the first on a
subsequent day. The scores for the second and third data set (red and green
respectively) have less variation between them. These two sets are to be used as
calibration data as they should have similar experimental variation as they were
recorded on the same day. The first data set is to be used as a true validation set as it

will have slightly different experimental variation so will test the robustness of the

calibration model to experimental variation.
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Figure 3.1.2: Scores on PC1 vs. PC2 for MW spectra recorded during the addition of water to sand.
The process was monitored three times to give three replicate sets of MW spectra.

Optimisation of calibration method

A variety of pre-processing techniques can be used within a calibration model to
improve the correlation between the spectral and concentration data. Some pre-
processing techniques will have a detrimental effect on the calibration model, therefore
it is important to choose pre-processing techniques carefully. Ideally a model should be
built using each of the techniques and the models compared. DoEMan is a GUI in
MATLAB which allows a range of models to be built with various types of pre-
processing and the predictive ability of the models compared. This gives a reasonable
idea of how the pre-processing techniques will affect the modelling, and is much

quicker than building all possible variations of models manually.

There are several types of pre-processing available to use in the GUI. They are all
inbuilt MATLAB functions within the PLS toolbox. Some techniques are not useful for
the type of data being looked at. It is therefore necessary to choose the techniques most
likely to improve the calibration using knowledge of the data and the techniques. The

techniques chosen to be examined are mean centring, Box-Cox transformation using
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logarithmic, squared, cubed and to the power four transformations, OSC, using 1, 2 and
3 components, and auto-scaling. It was decided these techniques are the most suitable to
pre-process this data. Mean centring is usually performed as standard so this technique
was examined. Box-Cox transformations improve the linearity of data and as the data is
expected to be non-linear this was tried using different transformations. OSC removes
variation in the data that isn’t correlated to the concentration, so this was tried to see if it
improved the model. Auto-scaling puts all the variables on the same scale so it was

expected this might improve the model.

DoEMan uses a design of experiment approach to determine the optimum calibration
model to use. The response, root mean square error of prediction (RMSEP) or root mean
square error of calibration (RMSEC) is examined when going from a low level, no pre-
processing, to a high level, with the use of pre-processing. It is a mixed level design,
with five discreet factors (pre-processing and type of calibration model) varied at two
levels for three of the factors, four levels for one factor, and five levels for one factor,
and one continuous factor, the number of latent variables (LVs) to use in the model,

varied at ten levels.

A calibration model is built using each of the chosen pre-processing techniques
individually, and using a combination of the pre-processing techniques. The error of
calibration (RMSEC) and error of prediction (RMSEP) are calculated to allow
comparison of the models. The RMSEP is calculated by using an independent data set,

so gives the true validation error (see section 1.4.2.5 in introduction).

DoEMan does not give the ultimate best parameters to produce the best calibration
model, but it does give an indication of which pre-processing will improve the model
and which will have a detrimental effect. This then allows the user to build a smaller
series of models using the pre-processing techniques expected to improve the
calibration model. These models can be fully validated using an independent validation

set of data, and the best calibration model determined.

The chosen response of the design of experiment is RMSEC and RMSEP, a matrix of
the response is plotted (Figure 3.1.3 and Figure 3.1.4 respectively) to allow ease of
comparison. The plots along the main diagonal show the main effects of the pre-
processing techniques as labelled on the axis. The other plots show the interaction

offects between the pre-processing variables. The abscissas in the subplots relates to the
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response, either RMSEC or RMSEP. The lower the error in the model, the better the
fitting of the model.

In the subplots the response, RMSEC or RMSEP, for the variables are indicated by
points that are connected with lines. The ordinate of the subplot indicates the level of
the pre-processing used. In the majority of cases, 1 indicates the pre-processing is not
used, and this is termed the low level. 2 indicates the pre-processing has been used, and
this is referred to as the high level. In the cases where there are more levels, the pre-
processing technique has been used with several different parameters. In the case of the
Box-Cox transformation, 1 indicates the pre-processing is not used, 2 indicates it is used
with power = 0, logarithmic transformation; 3 indicates power = 1, square root
transformation, 4 indicates power = 2, cube root transformation and 5 power = 3, root to
the power four transformation. In the case of OSC, 1 indicates OSC isn’t used, 2
indicates 1 OSC component is used, a 3, 2 OSC components are used and 4, 3 OSC

components are used.

The type of pre-processing labels the row. In the subplots with two lines, the interaction
effects are shown. The lines correspond to the level of pre-processing used, blue for off,
low level, and green for on, high level. The pre-processing examined is labelled at the
foot of the column. The rows and columns have also been labelled with letters to aid

identification when describing a plot.

The bottom row of plots (g,a) through to (g,f) show the error for the models built with
different numbers of LVs. It is important to include the correct number of LVs so that
all the relevant variation in the data is modelled, without including noise. The number of

LVs to use is a compromise between low error, and a low number of LVs.
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Figure 3.1.3: Results of DoEMan using the second and third data sets showing the effects of the
different pre-processing used. The error shown is the RMSEC. The plots along the main diagonal
show the main effects of the pre-processing techniques as labelled on the axis. The other plots show
the interaction effects between the pre-processing variables. In the subplots the RMSEC for the
variables are indicated by points that are connected with lines. The ordinate of the subplots
indicate the level of the pre-processing used. The type of pre-processing labels the row. 1 indicates
the pre-processing is not used, and this is termed the low level. 2 indicates the pre-processing has
been used, and this is referred to as the high level. In the subplots with two lines, the interaction
effects are shown. The lines correspond to the level of pre-processing used, blue for low, and green
for high. The pre-processing examined is labelled at the foot of the column. The rows and columns
have also been labelled with letters to aid identification when describing a plot.
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Figure 3.1.4: Results of DoEMan using the second and third data sets showing the effects of the
different pre-processing used. The error shown is the RMSEP. The plots along the main diagonal
show the main effects of the pre-processing techniques as labelled on the axis. The other plots show
the interaction effects between the pre-processing variables. In the subplots the RMSEP for the
variables are indicated by points that are connected with lines. The ordinate of the subplots
indicates the level of the pre-processing used. The type of pre-processing labels the row. 1 indicates
the pre-processing is not used, and this is termed the low level. 2 indicates the pre-processing has
been used, and this is referred to as the high level. In the subplots with two lines, the interaction
effects are shown. The lines correspond to the level of pre-processing used, blue for low, and green
for high. The pre-processing examined is labelled at the foot of the column. The rows and columns
have also been labelled with letters to aid identification when describing a plot.
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Optimisation of the calibration model using the second and third data sets

The second and third data sets for the MW data (wet_sand water 2 and 3_MW) have
been combined to build a calibration model. The first data set is then used as an
independent validation set. The optimum pre-processing methods to use to build a
calibration model with this data is examined using DoEMan. The resulting response
plots for RMSEC and RMSEP are shown in Figure 3.1.3 and Figure 3.1.4 respectively.
These plots are used to give an indication of which pre-processing techniques improve
the model, and then individual models are constructed using the optimum methods and

these models validated independently.

PLS1 and 2 have been used in the DoEMan as possible calibration methods. The
models built using each technique should be identical as only one component is being
modelled. In Figure 3.1.3 (a,a) the PLS1 and PLS2 models are compared. PLSI is
indicated by 1 on the subordinate, and PLS2 by 2. As discussed, the line indicates the
response, RMSEC. There is no difference in RMSEC between the PLS1 and PLS2
models as expected, therefore it is reasonable to assume a PLS1 model will be

sufficient.

Looking at the major effects of the pre-processing, auto-scaling appears to be the only
technique that lowers the RMSEC and improves the model (Figure 3.1.3 (e,e)). This can
be seen in the plot as the error is lower at 2, the high level, with auto-scaling on, than at
1, the low level, with no scaling. The plots for all the other pre-processing techniques
show a larger or the same response when using the pre-processing in the high level.
Therefore the other techniques appear to have a detrimental effect, or have no

improvement on the model.

The minor effects need only be looked at between auto-scaling and the remaining pre-
processing techniques, as it has been shown only auto-scaling improves the model.
These are shown in plot Figure 3.1.3 (e,a) through to (e,d). The blue line indicates the
secondary pre-processing, as shown at the foot of the column, is not used, and the green
line indicates the pre-processing is applied to the data, so for the Figure 3.1.3 (e,b), the
blue line at point 1 had no pre-processing, and the green line at 2 has auto-scaling
applied followed by mean centring, The pre-processing is applied in the order of that of

the row header followed by that of the column label. Looking at the remaining plots
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From these plots it appears that only auto-scaling will improve the fitting of the model,
and the use of PLS1 is sufficient. The RMSEP plots, Figure 3.1.4, are also examined to
identify which pre-processing techniques will improve the prediction error of the model.
The models built are not validated with an independent data set, therefore this prediction
error is only an indication of what can be expected. It is important to test the optimum

calibration models with an independent data set.

Looking at the major effects in the RMSEP plot (Figure 3.1.4), there is no difference in
the models built using either PLS1 or PLS2. From the RMSEP it seems that the use of
OSC will give a better calibration model, and using one, two or three OSC components
will give the same error. However, from the RMSEC the use of auto-scaling looks
promising. From the RMSEP using no Box-Cox transformation gives the lowest error.
Using a power=1 gives the highest error, and this decreases from power=2 onwards.

The data is expected to be non-linear so the use of Box-Cox is to be investigated.

The use of auto-scaling, OSC and Box-Cox transformation as pre-processing techniques
for the calibration of percentage water in sand were investigated. Box-Cox will be
examined using a power of 0 and 1 to see what difference this makes to the model. This
involves building a series of models using the different pre-processing techniques, as
well as a combination of the techniques, using the second and third data sets as the
calibration data (wet sand water 2 and 3 _MW). When applying two pre-processing
techniques, two calibration models must be built with each technique applied first, as
the order in which the pre-processing techniques are applied will affect the resulting
calibration model. The models were validated using the first data set

(wet_sand water 1 _MW), which is an independent data set.

Global Calibration models

No pre-processing

As discussed earlier, only frequencies above 300MHz are to be examined in the data
analysis. A PLS model has been built using the raw MW spectra, which has had no pre-
processing applied to it. This is preformed in MATLAB using the PLS toolbox. The
percentage variance captured in each LV is given in Table 3.1.1 for both the X-block
(spectra) and Y-block (concentration) data. It is important to choose the number of LVs
to use in the model which show a high correlation with the concentration data and also

explain the variation in the spectra. Enough variables must be included to ensure all the
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(spectra) and Y-block (concentration) data. It is important to choose the number of LVs
to use in the model which show a high correlation with the concentration data and also
explain the variation in the spectra. Enough variables must be included to ensure all the
relevant variance is included, but inclusion of too many will cause over-fitting of the
data. The percentage variance captured by each block for each latent variable calculated

can be represented visually (Figure 3.1.5).

With 3 LVs 98.08% of the X-block is captured and 98.36% of the Y-block. With 4 LVs,
only a further 0.37% variance of X is captured and 1.14% of Y. This is reduced to 0.22%
in X and 0.29% in Y for 5 LVs. It is difficult to determine from looking at the
percentage variance captured how many LVs need to be included in the model, so other

methods must also be examined.

Table 3.1.1: Percentage variance captured by PLS model built using raw MW spectra, data sets 2
and 3, collected for the addition of water to sand. The percentage variance captured is shown for
both the X-block (spectra) and Y-block (concentration).

X-Block Y-Block
LV | ThisLV | Total | This LV | Total
1 84.79 84.79 41.40 41.40
2 11.57 96.36 47.56 88.96
3 1.67 98.03 9.40 98.36
4 0.37 98.40 1.14 99.50
5 0.22 98.63 0.29 99.79
6 0.26 98.88 0.04 99.83
7 0.10 98.99 0.08 9991
8 0.20 99.18 0.02 99.93
9 0.14 99.33 0.02 99.95
10 0.07 99.40 0.01 99.96
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Figure 3.1.5: Scree plot for the PLS model built using raw MW data sets 2 and 3, for the addition of
water to sand. The percentage variance captured for the X (spectra) and Y (concentration) blocks
are shown for each latent variable calculated.
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The loadings in the LVs are shown in Figure 3.1.6, which show the variance in the
spectra that is captured. The first LV captures the most variation (Figure 3.1.6a) and
represents the average spectrum. The cut-off frequency is dependent on the dielectric
constant of a sample, and so is different for different components. The cut-off point in
this loading is at around 1110MHz. In LV2 this has moved to 1000MHz, and 700MHz
in LV3. This suggests the LVs are capturing variation due to different components. This
is the main variation seen in the loadings, and can be used to model the process. As
more LVs are added, the variation captured is likely to be noise. LVs 2, 3 and 4 (Figure
3.1.6b, c, d respectively) still seem to have some useful variation, but do seem to be

increasingly noisy.

The scores plotted against sample number are shown in Figure 3.1.7. The first set of
samples contains 25 samples and the second 26 which is why there are two groups of
samples. The scores show the variation between samples. The samples are in order of
increasing concentration so it is expected to see an increase in the scores. Looking at the
scores on LV?2 (Figure 3.1.7b) there appears to be one group from 1 to 11 samples, and
then a group from 12 to 20, and a further group for the last five samples. This is because
for the first 11 samples, the water was added in steps of 0.1ml, after this in steps of Iml,
and then steps of 5ml, so the variation between the first 11 samples is much smaller.
The variation in this LV seems quite regular as the scores increase in a regular manner.
It is quite clear that this LV contains the information for the second and third group of
samples as these are well defined. LV1 (Figure 3.1.7a) contains the information for the

first group of samples, as there is a large amount of variation for the first group of

samples.

It is hard to decide from these plots the optimum number of LVs to use to build a good
calibration model. Therefore, models have been built using the full range of LVs. These
models were then validated using the independent validation set, and a validation error

calculated to allow comparison of the models.

- 74 -



Results and Discussion: Chapter 3.1 Monitoring the drying of a solid

5 5
a 192(,107_,* TR by ST} il e b 15)(_19* SRR E S R i Sl
:\J 18 :\; 1l
D N~
N | it
s 1.7 ‘ =
o / | = 05
. ol j” ! l‘ N 1‘
3 1.6 ;,' | 3 i’
5 / 1 | § 0
o 1.5/ | | | 2 |
o J ! I 2 \
o | J Qo
& 14 | S '0-5#
| | |
g |
13 1 L 1 ! |E _1L — | o s Bt I 1
10 20 30 40 50 10 20 30 40 50
Sample Sample
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The actual vs. predicted concentrations for the three models expected to give the best
predictions, built with different numbers of LVs, are shown in Figure 3.1.8. From these
plots it can be seen that the model built does not predict the new samples very well
(represented by the red triangles), as they do not sit on the line of best fit. It appears that
using 5 LVs in the model gives the best prediction, as the predicted values are closest to
the line of best fit (Figure 3.1.8c). The models themselves do not appear to be very
good, as the samples used to build the model (represented by black circles) do not sit on
the line. Again, using 5 LVs seems to give the best model as the samples fit well:
however there is a possibility that the samples have been over fitted by including noise
in the model. It is hard to decide from these plots which model gives the best prediction.

A calculation of the prediction error allows the models to be compared.

The residual sum of squares (RSSQ) is calculated within the PLS algorithm in the PLS
toolbox and can be used to compare the relative merits of the models built using

different numbers of LVs (see section 1.4.2.5 in introduction).

The RSSQ for the raw data models are shown in Table 3.1.2 for 1 to 10 LVs to ensure
the optimum LV is chosen. From this it can be seen that using 10 LVs gives the lowest
error in the model, but from examination of the other evidence, it was decided using
more than 5 LVs starts to introduce noise into the model. It appears that the use of 10
LVs overfits the data, and so should not be used. A compromise between a low error
and a low number of LVs, to ensure new samples are predicted well and also the data
isn’t overfitted, must be used. Often the error will reach a minimum and then increase
again, before decreasing once more. This is seen with 4 LVs which has a lower error
than 5 LVs, and then the error decreases. 4 LVs are to be used in the model, as this is a
compromise between a low error and a low number of LVs. This model is to be used for

comparison to other models built with different pre-processing techniques.

Table 3.1.2: Residual sum of squares (RSSQ) error for PLS models built using MW spectra, over
300MHz, and using different numbers of LVs, for the addition of water to sand.

No.LVs | RSSQ | No. LVs | RSSQ
1385.7 6 40.898
299.33 7 21.962
82.634 8 17.598

48.872 9 16.441
49.068 10 16.209

NI ]WIN | —
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The final model was also built using all frequencies, and compared to the validation
error, to ensure that no useful information had been removed. The errors are shown in
Table 3.1.3. Using 9 LVs gives the lowest error. However, as discussed before, using
too many LVs introduces noise into the system, and it is likely the data will be
overfitted. Therefore a compromise of 5 or 6 LVs should probably be used, but it is hard
to decide the optimum to use. This shows that including the whole frequency range
gives a different error in the model, and this is slightly lower in this example. For the
rest of the models, the models will be built with the full frequency range and
frequencies above 300MHz to examine the difference.

Table 3.1.3: Residual sum of squares (RSSQ) error for PLS models built using raw MW spectra, all
frequencies and using different numbers of LVs, for the addition of water to sand.

No.LVs | RSSQ | No. LVs | RSSQ

1404.6 6 35.166

299.10 7 20.011

80.764 8 16.416

48.271 9 16.211

N[ |WIN|—

46.393 10 16.450

Auto-scaling

The second set of models was built using MW spectra and concentration data that were
first auto-scaled. The validation set was scaled accordingly. The determination of the
optimum number of LVs to use was carried out in the same way as for the raw data
models, by using the validation set to determine the RSSQ for the model. Models were
built using spectra covering the whole frequency range, and also just above 300MHz. It

was determined to use a model built with 5 LVs for all frequencies. and 8 LVs for

above 300MHz.

Box-Cox transformation

This set of models was built using MW spectra and concentration data pre-processed
using the Box-Cox transformation using a power equal to 0 (logarithmic
transformation) and 1 (square root transformation). The determination of the optimum
number of LVs to use was carried out in the same way. For the model built using power
= 0. it was decided to use 4 LVs for all frequencies. and 3 LVs for models built with

spectra with frequencies above 300MHz. For the model built using power = 1, it was
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5 LVs for both types of model. The use of power = 0 gave the lowest error, so this is

used in the pre-processing for the following models.

Auto-scaling followed by Box-Cox

The spectra were first auto-scaled then transformed using logarithmic Box-Cox. The
optimum number of LV for the model built with all frequencies was found to be 3, and

also for the model built with frequencies over 300Mz.

Box-Cox followed by auto-scaling

The spectra were first subjected to Box-Cox logarithmic transformation, then auto-
scaled. The optimum number of LVs for the model built with all frequencies was found

to be 7, and 2 LVs for the model built with frequencies over 300Mz.

osC
OSC was used in the model to reduce the number of LVs needed to model the data.
Models were built using one and two OSC components. It was decided to use 5 LVs for

both one and two OSC components, for both models built using all frequencies and

above 300MHz.

Conclusions

Table 3.1.4 gives a summary of the errors associated with each model constructed. The
RMSEP can be calculated using the predicted values (see equation 3.1.1). This error is
now in the same magnitude as the concentration values so can be directly compared to
the values. RMSEP allows comparison of the models. From this it can be seen that
using no pre-processing gives a comparatively large RMSEP of 1.2 and 1.4 for the
model built with all frequencies and over 300MHz respectively, therefore pre-

processing should be used to improve the model. It was hoped to get as small an

RMSERP as possible.

The use of Box-Cox logarithmic transformation alone, and Box-Cox (logarithmic)
followed by auto-scaling give a small RMSEP in the region of 0.4 for the models
constructed with all frequencies, and 0.5 for over 300MHz. Using Box-Cox square root
transformation gave much higher errors of 1.1 and 2.1 for all frequencies and above
300MHz respectively. Due to the poor prediction ability of these models, the Box-Cox

logarithmic transformation was used for the remaining model building.
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The lowest error in these models is with the use of auto-scaling followed by Box-Cox
(logarithmic) which gives an RMSEP of only 0.05 when using all frequencies of the

spectra in the model, and 0.06 when using only frequencies over 300MHz.

The use of one and two OSC components gave similar results. The RMSEPs are
relatively poor, 0.7 for all frequencies, and 0.6 using frequencies above 300MHz. Due
to the poor prediction ability of using OSC, this method was not used as a pre-
processing technique for the subsequent model building.

Table 3.1.4: Summary of errors for all the global models built for the MW spectra of the addition
of water to sand.

Preprocessing technique No. LVS | RSSQ | RMSEP
Raw All freq 6 35.17 1.210
over 300 MHZ 4 48.87 1.427
Auto-scaling All freq 5 0.136 0.075
over 300 MHZ 8 0.246 0.101
Box-Cox, logarithmic All freq 4 3.626 0.389
over 300 MHZ 3 6.616 0.525
Box-Cox, square root All freq 5 28.95 1.098
over 300 MHZ 5 101.6 2.057
Auto-scaling and Box-Cox, | All freq 3 0.061 0.050
(logarithmic) over 300 MHZ 3 0.099 0.064
Box-Cox (logarithmic) and | All freq 7 4.479 0.432
auto-scaling over 300 MHZ 2 7.606 0.563
1 OSC component All freq 5 13.42 0.748
over 300 MHZ 5 10.27 0.654
2 OSC components All freq 5 12.62 0.725
over 300 MHZ 5 8.857 0.608

From the errors it appears that using all frequencies gives a better model than using just
frequencies above 300Mz, except when OSC is used in the modelling. This region

below 300MHz may relate to the non-linearity of the data, so would aid the correlation

of the spectra to the concentration data.

The lowest error for the global calibration model was achieved by using auto-scaling
followed by Box-Cox logarithmic transformation as pre-processing techniques, using
the full spectral frequency range. This is a global model that covers a wide range of
concentrations, 0 to 27%. To check the calibration model predicts well over the entire

range, the percentage error, %RMSEP. is calculated for each validation sample (see

section 1.4.2.5 in introduction).
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This is shown against the actual concentration of the sample in Figure 3.1.9. This gives
a clearer indication of the magnitude of the prediction error over the whole calibration
range than simply looking at the RMSEP. The prediction error at the lower end is close
to 7%. This is a reasonable error as the concentration values predicted are very small.
At the higher end the error is near 3%, and is fairly consistent for values over 10%
water in sand. This is a very acceptable level of error. The %RMSEP increases with
decreasing concentration of water, but is still acceptable over the whole range of

concentrations.
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Figure 3.1.9: Plot of the percentage RMSEP for the validation set predicted against the global
model built for the prediction of amount of water in sand (% w/w) using auto-scaling and Box-Cox
logarithmic transformation to pre-process the MW spectra covering the whole frequency range.

These models have been built using the entire concentration range to give a global
model covering the whole range. It was suggested that the whole range may not be
linear, but there may be two linear ranges present, due to the non-linearity expected
from the addition of water. The sample first adsorbs the water, and then absorbs it
giving two different responses, and possibly two different linear ranges. Therefore the
models were built in the same way, but using two local models, one from 0 to 0.7%

(lower level), and the other encompassing the remaining concentrations (higher level).
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Local calibration models

The same types of pre-processing were considered as with the global models. It appears
from the global models that some are detrimental to the model building but this could
be due to the data being non-linear, therefore when the data is split into linear ranges the
pre-processing may have more use. DoEMan has been used with both local data sets,
and only auto-scaling was predicted to have any use in the model building. This was
also suggested for the global model, but the use of auto-scaling followed by Box-Cox
logarithmic transformation proved to give the best model. Therefore the different types

of pre-processing were compared.

Lower level models

The models have been built in exactly the same way as the global models, and cover the
range 0 to 0.7% w/w water in sand. The optimum number of LVs to use was decided by
examination of the percentage variance captured in the LVs and also the calculated

RSSQ. The resulting calculated errors associated with each model built are shown in

Table 3.1.5.

Table 3.1.5: Summary of errors for all the lower level local models built for the MW spectra of the
addition of water to sand.

Pre-processing No. LVS | RSSQ | RMSEP
None All freq 3 0.018 0.045
over 300 MHZ 3 0.018 0.045
Auto-scaling All freq 2 0.232 0.161
over 300 MHZ 2 0.227 0.159
Box-Cox transformation All freq 2 2.946 0.572
(logarithmic) over 300 MHZ 2 2.012 0.473
Auto-scaling and Box-Cox | All freq 2 12.61 1.184
(logarithmic) over 300 MHZ 2 12.62 1.184
Box-Cox (logarithmic) and | All freq 3 1546 41.45
auto-scaling over 300 MHZ 2 322.5 5.986

The use of no pre-processing techniques produced the best model with a RMSEP of
only 0.045 for the use of all frequencies and for over 300MHz. This error is slightly
lower than that achieved for the global model with the use of auto-scaling and Box-Cox
logarithmic transformation for the full spectral frequency range, which gave an RMSEP

of 0.050. These models are built with 3 [.Vs which seems a reasonably low number.

-81 -



Results and Discussion: Chapter 3.1 Monitoring the drying of a solid

The errors for the models built using Box-Cox (logarithmic) followed by auto-scaling
are huge at 41.45 compared to previous low errors seen below 1, for all frequencies, and
65.986 for above 300MHz. The Box-Cox (logarithmic) models give errors similar to
that achieved with the global model. The auto-scaling followed by Box-Cox
(logarithmic) was found to be the best global model, but gives higher errors here with
1.184 for both models compared to 0.05 achieved for the global model.

There is little difference in the errors produced for the majority of models built using
spectra covering the full frequency range and those built using only frequencies over
300MHz. This suggests there is no information below 300MHz which aids the

modelling, but there is also no noise present which would decrease the modelling

ability.

Higher level models

These models have been built in the same way as the lower level models, and
encompass the range 1 to 27% w/w water in sand. The resulting calculated errors
associated with each model built are shown in Table 3.1.6.

Table 3.1.6: Summary of error for all the higher level local models built for the MW spectra of the
addition of water to sand.

Pre-processing No.LVS | RSSQ | RMSEP
None All freq 6 16.54 1.087
over 300 MHZ 6 16.68 1.091
Auto-scaling All freq 2 0.172 0.111
over 300 MHZ 4 0.378 0.164
Box-Cox logarithmic All freq 3 0.262 0.137
transformation over 300 MHZ 3 0.504 0.190
Auto-scaling and Box-Cox All freq 3 0.020 0.037
(logarithmic) over 300 MHZ 3 0.020 0.038
Box-Cox (logarithmic) and All freq 3 0.059 0.065
auto-scaling over 300 MHZ 2 0.138 0.099

The lowest RMSEP in these models is for those built using spectra which is auto-scaled,
then subjected to Box-Cox logarithmic transformation. The same error of 0.020 is
achieved when using the full spectral region and also just frequencies above 300MHz.
These models are built with 3 LVs which seems a reasonably low number. This is a

lower error than the best achieved for the global models, and is equivalent to a 3%
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prediction error in the concentration values. When looking at the error in the global

model for this region, a 3% error was achieved, so is a very similar error.

The models built using Box-Cox (logarithmic) followed by auto-scaling have low errors
of 0.065 and 0.099 for all frequencies and above 300MHz respectively. This is in
contrast to the previous models built for the lower region and the global models using

this pre-processing, which had much larger errors compared to the other pre-processing

techniques.

A lower error has been achieved when using the entire frequency range of the spectra,
instead of just frequencies over 300MHz, to build the models. This is not true for the
models built using raw data, and data which is subjected to auto-scaling followed by
Box-Cox logarithmic transformation, in which the errors achieved were the same in
each case. Generally this suggests there is useful information contained in the spectra
below 300MHz which needs to be included in the modelling process to aid correlation

between the spectra and concentration data.

Conclusions

The MW data sets for the addition of water to sand has been split into two regions
which are expected to be linear. These are 0 to 0.7% w/w water in sand, the lower level,
and 1 to 27% w/w water in sand, the higher level. Local calibration models have been

built for each region using a variety of pre-processing techniques to optimise the model.

The errors for the best models for the two local models and the global model are shown
in Table 3.1.7. The RMSEP is quoted as this allows comparison of the models, and the

percentage error has been calculated to give a clearer indication of how the RMSEP

relates to the actual concentration predicted.
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Table 3.1.7: Summary of errors for the best models built for the MW spectra for the addition of
water to sand, using different ranges of the data.

Model Pre-processin No. LVS | RMSEP | % error
Global Auto-scaling and Box- | All freq 3 0.050 5
Cox (logarithmic)
Local lower | Raw All freq 3 0.045 7
Local higher | Auto-scaling and Box- | All freq 3 0.037 3
Cox (logarithmic)

It has been found that the use of raw data with the entire frequency range gives the
lowest error of 7% for the lower level models. The use of auto-scaling followed by Box-
Cox logarithmic transformation gave the lowest error of 3% for the higher level range.
The same error was produced for both the entire frequency range and above 300Mz.
The higher level has a lower error than the best achieved for the global model, but the
lower level model has a slightly worse error. This suggests that the data for the lower
level is not as well correlated to the concentration data. This could be due to the data
being non-linear or could be due to the MW spectra not being able to detect such a low
water content. However, the lower level model did not require any pre-processing to

achieve the best model, so producing a simpler model.

The best model for the global model and higher level uses Box-Cox logarithmic
transformation in the pre-processing. This is useful to aid calibration of non-linear data.
This suggests that the higher level data range is non-linear and it may be helpful to

break the data into smaller linear regions if possible.

Building one global model is much simpler than several local models. In this example
the global model gave an error of 5% which is very reasonable so would be suitable for
the application. When the error is examined in detail for each local region, an error of 6
- 7% was achieved for the lower level, and 3 - 5% for the higher level, so the models are

very comparable. Therefore, for its simplicity and low error, the global model is a

suitable compromise.

Generally a lower error is achieved when using the entire frequency range of the

spectra, instead of just frequencies over 300MHz, to build the models. Therefore for all

further model building, the entire spectral range was used.
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3.1.1.1.2 NIR spectra for the addition of water to sand

Exploratory analysis of the data

The NIR data collected for the addition of water to sand is shown in F igure 3.1.10, the

experiment was repeated three times, and the spectra for each repeat are shown.
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Figure 3.1.10: Raw NIR spectra for the addition of water to sand. The spectra start in red for the
dry material, and move towards blue as the water is added. The experiment was repeated three
times to give three data sets; a) set 1, wet_sand_water_I_NIR; b) set 2, wet_sand_water_2_NIR; c)

set 3, wet_sand_water_3_NIR.

The NIR is collected using a diffuse reflectance probe. This sits in the sample and is
static; therefore the spectra collected only represent a small area of the total sample. The
water is added in drops, placed on the sample surface, and it takes time for the water to
spread though the sample and to reach the sampling area of the probe. Therefore the
true process may not be captured by the probe. This can be seen in the spectra collected,
as the spectra for each repeat are quite different, so it seems a different process is being
captured. There is a general increase in response seen in all spectra as water is added,

but the baseline also increases. The baseline in NIR spectra should be constant. To
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improve the spectra, the baseline has been corrected by normalisation against a region

where the baseline should be zero, i.e. 9048 to 9996cm™. The corrected spectra are

shown in Figure 3.1.11.
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Figure 3.1.11: Baseline corrected NIR spectra in the region 9048 to 9996 cm™, for the addition of
water to sand. The spectra start in red for the dry material, and move towards blue as the water is
added. The experiment was repeated three times to give three data sets; a) set 1,
wet_sand_water 1_NIR; b) set 2, wet_sand_water_2_NIR; c) set 3, wet_sand_water_3_NIR.

With the baseline corrected spectra the spectra still show a general increase as the water
is added, but are still very different for each repeat. Repeat 1 and 2 (Figure 3.1.11 a and
b) have two distinct clusters of spectra, and the spectra do seem to change in respect to
the water being added. However, it appears the spectra are not in order of increasing
water concentration in the upper cluster of spectra, and there are spectra coloured purple
with a higher absorbance than the blue spectra which represent the highest concentration
of water in the sand. The third data set (Figure 3.1.11c) seem to be much more regular

spectra, with a regular increase in absorbance as the water is added.

PCA was performed on the three sets of spectra and the scores on PCl vs. PC2 are
shown in Figure 3.1.12. From this it can be seen that the three data sets are very

different as can be seen in the spectra. This suggests there is experimental variation,
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possibly due to the way in which the water was added and then how it spread through
the sample for each experiment, which may lead to the spectra collected being different.
The first set is the most different. The second and third data sets are similar, and the
variation between the samples does seem to change in the same way. However, for the
second set there appears to be a cluster of samples in which there is little variation. This
may be a problem when modelling the data, as the spectra for the samples may not be
different enough to correlate them to the concentration data. The second and third data
sets were collected on the same day and the first on a subsequent day, so it is expected
the data sets will have some variation between them due to possible different

experimental conditions on the different days.
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Figure 3.1.12: PCA scores, PC1 vs. PC2, for all three NIR data sets recorded for the addition of
water to sand.

Calibration models
A calibration model was built using the second and third data sets as the calibration data

and the third set as the validation, although it was not expected that this would produce

a good model as the data sets appear to be so different. Models have also been built
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using the third data set as the calibration data and the second data set as the validation

set, as these data sets are more similar so it was expected this will give a better model.

DoEMan was used on the data sets to give an indication as to which pre-processing
techniques may improve the modelling. The same pre-processing techniques were
looked at as with the MW data. The Box-Cox logarithmic transformation is used. All
NIR wavenumber have been included in the calibration models, as from the spectra

there does not appear to be noise in the data in any wavelength region.

The calibration models were built, the optimum number of LVs to use determined, and
the RSSQ and RMSEP calculated for each model. The results for the models built using
data sets 2 and 3, and validated with set 1 are shown in Table 3.1.8 and those built using

set 3 and validated with set 2 are shown in Table 3.1.9.

Table 3.1.8: Summary of errors for the various models built using the second and third data sets,
and validated using the first data set for the NIR spectra of the addition of water to sand.

Preprocessing technique No. LVS RSSQ RMSEP
Raw 3 4118 13.7
Auto-scaling 9 44.04 1.4
Box-Cox (logarithmic) 2 22.95 1.0
Auto and Box-Cox (logarithmic) 5 2.792 0.36
Box-Cox (logarithmic) and auto-scaling 8 67.71 1.8
OSC 1 component 1 2372 10.4
OSC 2 component 1 2374 10.4
OSC 3 component 1 2374 10.4

As can be seen from the errors for the calibration models built using the second and
third data sets (Table 3.1.8) the RMSEP is over 1 for all models, except with the use of
auto-scaling followed by Box-Cox (logarithmic). These errors are much too high to be
useful, and show that the data has not been modelled well at all. The auto-scaling
followed by Box-Cox (logarithmic) gives a reasonable error of 0.36 but is still much

higher than that achieved with the MW spectra in which the best model gave an
RMSEP of 0.05.

With the use of the third data set as the calibration data, the errors are still very high,
with the majority over 1 (Table 3.1.9). Again, the use of auto-scaling followed by Box-

Cox (logarithmic) gives the lowest error of 0.51. This is higher than that achieved for
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the models using data sets 2 and 3, so no improvement has been made by selecting the

data sets thought to be more similar.

Ta'ble 3.1.9: Summary of errors for the various models built using the third data set, and validated
using the second data set for the NIR spectra of the addition of water to sand

Preprocessing technique No. LVS RSSQ RMSEP
Raw 3 1980 14.1
Auto-scaling 4 30.66 1.8
Box-Cox (logarithmic) 3 11.02 1.05
Auto-scaling and Box-Cox (logarithmic) 2 2.592 0.51
Box-Cox (logarithmic) and auto-scaling 4 10.05 1.00
OSC 1 component 3 1364 7.9
OSC 2 component 2 1666 8.7

Conclusions

The NIR data has been used to build a calibration model to predict the amount of water
contained in sand. All the models built gave very high errors when compared to the
equivalent models built using MW spectra. The spectra collected is not good enough to
build a good calibration model. This is due to the use of a diffuse reflectance probe

which only samples a small area of the material, and so the true process is not captured.

For the remaining experiments the NIR spectra collected is also not very good, and does

not appear to be representative of the process. Therefore, only the MW data is to be

used for calibration.

3.1.1.2 Addition of propanol to ascorbic acid

Propanol was added to ascorbic acid (100g) in steps of 0 to 1ml, as 0.1ml additions. 2 to
10 ml as 1ml additions and 15 to 30ml as 5ml additions, at which point the material was
saturated with solvent. 20 repeat MW spectra, and 40 repeat NIR spectra were taken at
each addition. These spectra were averaged before data analysis. This was repeated
three times. The concentration data is quoted as percentage w/w propanol in ascorbic

acid. The data sets collected are wet_asc_pro_1, 2 and 3.

3.1.1.2.1 MW spectra for the addition of propanol to ascorbic acid

Exploratory analysis of data
The data consists of three repeat data sets. The first one recorded on one day. and the

second and third on a second day. Typical spectra collected are shown in Figure 3.1.15.
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From the spectra it can be seen there is an obvious change in the spectra as propanol is
added. The change is not as large as seen for the addition of water to sand (see Figure
3.1.1). The dielectic constant of water is large, 80.4 at 20°C, compared to that of
propanol, 21.8 at 20°C, so an increase in water will have a larger effect of the spectra

than propanol.
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Figure 3.1.13: Example MW spectra for the addition of propanol to ascorbic acid. The spectra start
red when the material is dry and go to blue as propanol is added.

PCA was performed on all three sets of data and the scores on PC1 vs. PC2 are shown
in Figure 3.1.14. This plot shows how the variation between the samples, in each data

set changes. The scores for each set of data are similar, and follow a similar shape,

therefore the variation within the sets is similar.

There may be three ranges present as there appears to be three groups of samples.
However, this seems to be due to the fact the propanol was added in three different
steps, 0.1ml, 1ml and 5ml additions. This may lead to a difference in variation in the

samples and hence the three regions. This makes it difficult to decide if the data can be

split into smaller linear ranges.
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Figure 3.1.14: Scores on PC1 vs. PC2 for PCA of the MW spectra for the addition of propanol to
ascorbic acid.

The data sets are to be split up as in the addition of water to sand. The first data set is to
be used as a validation set as this was recorded on a different day so has independent

experimental variation, and the second and third sets are to be used to as the calibration

data.

Optimisation of PLS model
DoEMan was used with the calibration data to decide which pre-processing techniques
it was worth examining in the PLS model building. The results were analysed in the

same way as in the water added to sand experiments.

From the RMSEC plots it was found that the use of PLS1 or PLS2 makes no difference
to the model, also mean centring was found to have a negative effect on the model
building. Box-Cox (logarithmic) and auto-scaling were both found to have a positive
effect on the model as seen in the previous example, and the use of auto-scaling
followed by Box-Cox (logarithmic) also improved the model. In this case, OSC was

found to improve the model, as well as the use of OSC and Box-Cox (logarithmic), and

auto-scaling and OSC.
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In the RMSEP plot, Box-Cox (logarithmic) and OSC were found to have a negative
effect on the model, and auto-scaling and mean centring to have no effect. This suggests
no pre-processing should be used. A similar thing was found in the addition of water to
sand optimisation of the models, but when the individual models were built, some of the

pre-processing techniques did improve the model.

The use of auto-scaling, Box-Cox logarithmic transformation and OSC should be
examined, and a combination of the pre-processing, and the results compared to a

model built using the raw data to determine the best model to use.

Global calibration models

Models have been built using the MW spectra for the entire concentration range, using
different pre-processing techniques. Theses models are validated using an independent

data set, and the errors calculated (Table 3.1.10).

Table 3.1.10: Summary of errors calculated for models built using different pre-processing
techniques to calibrate the amount of propanol added to ascorbic acid.

Preprocessing technique No. LVS | RSSQ | RMSEP
Raw 5 2415 | 0.317
Auto-scaling 8 0.002 | 0.010
Box-Cox (logarithmic) 6 0.065 | 0.052
Auto-scaling and Box-Cox (logarithmic) 3 0.011 0.021
Box-Cox (logarithmic) and auto-scaling 8 0.003 0.011
OSC (2 components) 8 1301 7.364

The use of no pre-processing gives a fairly high RMSEP of 0.317. This suggests some

sort of pre-processing is necessary to increase the correlation between the spectral and

concentration data to build a better model.

The lowest RMSEP is achieved for models built using auto-scaling and Box-Cox
(logarithmic) followed by auto-scaling, which both give an error of 0.010. This is a low
error, but both models have been built using 8 LVs, which is a large number to use. This

suggests that noise is included in the model, and it has been over-fitted to produce a

lower error.

The use of OSC gives a very high RMSEP of 7.364, and uses a large number of LV, 8.
The amount of variance in the concentration data captured by this PLS model was much

less. Therefore more LVs were needed to be included in the model to include the
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relevant variation. This defeats the object of OSC as it aims to reduce the number of

LVs needed, therefore this method will not be used in further model building.

The use of auto-scaling followed by Box-Cox (logarithmic) also gives a low RMSEP of
0.021. However, this model only uses 3 LVs so it is more likely to have less noise
included in the model and generally be a better model. To ensure this model predicts
well over the entire concentration range, the percentage error for each validation sample
is calculated and this is shown against the actual concentration in Figure 3.1.15. From
this is can be seen that the model predicts much better at the higher concentration range,
over 10% propanol in ascorbic acid, with around a 1.5% error. At the lower end of the
range, the error is still below 3% which is still very good. The concentrations predicted
cover a large range, down to low level and it is expected it is harder to predict

accurately such low levels.
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Figure 3.1.15: Plot of the percentage error for the validation set predicted against the global model
built for the prediction of amount of propanol in ascorbic acid (%w/w) using auto-scaling followed
by Box-Cox logarithmic transformation to pre-process the MW spectra.

Local calibration models
From the scores plots it seems that the data is not linear, however it is difficult to
determine where linear regions are in the data. Therefore the data is to be split into two

regions as previously. Therefore the lower level covers the range 0 to 0.8% w/w, and the

higher level 1.6 to 24% w/w.
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Lower level models

A series of models were built using the lower concentration range, and a range of pre-
processing techniques. The RMSEP was calculated and these values quoted in Table
3.1.11. From this it can be seen that the lowest error of 0.070 was achieved when the
raw data was used. However this model uses 5 LVs which seems a bit on the high side,
and the model may be over-fitted. The use of Box-Cox logarithmic transformation gives
a low error of 0.097 and this uses only 2 LVs so should have less noise included in the
model and be a better model. This error is considerably larger than that achieved for the
best global model, which gave an RMSEP of 0.021 using auto-scaling and Box-Cox
(logarithmic).

Table 3.1.11: Summary of errors calculated for the lower level local models built using different
pre-processing techniques to calibrate the amount of propanol added to ascorbic acid.

Pre-processing technique No. LVS RSSQ RMSEP
Raw 5 0.049 0.070
Auto-scaling 2 0.656 0.256
Box-Cox (logarithmic) 2 0.095 0.097
Auto-scaling and Box-Cox (logarithmic) 4 32.01 1.789
Box-Cox (logarithmic) and auto-scaling 2 0.379 0.195

The use of auto-scaling followed by Box-Cox (logarithmic) gave the smallest error for

the global model, but here has the largest error here of 1.789.

Higher level models

Models have been built using the higher range of concentrations and different pre-
processing techniques. The calculated errors are shown in Table 3.1.12. The lowest
RMSEP of 0.330 has been achieved when using Box-Cox (logarithmic) transformation
and this uses 3 LVs so seems a reasonable model. This error is much higher than that

achieved for the best global model, 0.021, and also the best lower level local model,

0.097.

Table 3.1.12: Summary of errors calculated for the higher level local models built using different
pre-processing techniques to calibrate the amount of propanol added to ascorbic acid.

Pre-processing techniques No. LVS RSSQ RMSEP
Raw 2 4941 1.879
Auto-scaling 2 17.34 1.113
Box-Cox (logarithmic) 3 1.523 0.330
Auto-scaling and Box-Cox (logarithmic) 2 20.07 1.197
Box-Cox (logarithmic) and auto-scaling 8 8.958 0.800
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The use of Box-Cox logarithmic transformation followed by auto-scaling gives a
reasonable error of 0.800, but this uses 8 LVs suggesting noise is being included. Auto-
scaling and auto-scaling followed by Box-Cox (logarithmic) also give higher errors of

1.113 and 1.197 respectively, and only use 2 LVs so seem to be reasonable models.

Conclusions

The errors for the global and local models which give the lowest validation error are
shown in Table 3.1.13. The RMSEP has been quoted to allow comparison of the
models, and the percentage error calculated based on the mean predicted value to give

the error in real terms.

Table 3.1.13: Summary of errors for the best models built for the MW spectra for the addition of
propanol to ascorbic acid, using different ranges of the data.

Model Pre-processing No. LVS | RMSEP | % error
Global Auto-scaling and Box-Cox 3 0.021 2
(logarithmic)
Local lower | Box-Cox (logarithmic) 2 0.097 11
Local higher | Box-Cox (logarithmic) 3 0.356 16

The best model produced is a global model which has only a 2% error when using auto-
scaling and Box-Cox logarithmic transformation as pre-processing. As seen in Figure
3.1.15 this prediction is good across the whole range of concentrations. This model is

built with 3 LVs so is a very acceptable model.

The two local models give much worse models with prediction errors of 11 and 15%.
This is unusual, as it would be expected to give similar errors as the global model as the
same data is used. It seems that modelling the whole data set together improves the

correlation between the concentration data and the spectra.

3.1.1.3 Addition of ethanol to salicylic acid

Ethanol has been added to salicylic acid (83g) in steps of 0.1ml for 0 to 1ml, 1ml steps
for 2 to 10ml and Sml steps for 15 to 25ml, at which point the material was saturated.
MW spectra (20) were taken at intervals, and these averaged to give one spectrum for
each addition before analysis. The experiment was carried out three times to give three

replicate sets of spectra. The data sets used are wet sali_eth 1_2and 3,
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3.1.1.3.1 MW spectra for the addition of ethanol of salicylic acid

Exploratory analysis of spectra
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Figure 3.1.16: Example MW spectra of the addition of ethanol to salicylic acid. The spectra start
red, dry salicylic acid, to blue, maximum amount of ethanol (24% w/w).

From the MW spectra, Figure 3.1.16, it can be seen that the spectra clearly change as
the propanol is added to the salicylic acid. It is a fairly significant change, so it is
expected that the amount added can be correlated to the spectra. The change in the
process is similar to that seen in the addition of propanol to ascorbic acid (Figure

3.1.13). The dielectric constant of ethanol is 24.3 at 25°C, which is similar to that of

propanol (21.8 at 20°C), so similar spectra are expected.

PCA was preformed on the three replicates of the MW spectra, and the scores on PC1
against PC2 are shown in Figure 3.1.17. From the scores, the three data sets appear to
be somewhat different. The variation between the scores within each data set is similar.
The three different additions of ethanol (0.1, 1 and 5ml steps) seem to give three
clusters of samples in the scores. The second and third replicates were preformed on
one day, and the first on a separate day. Therefore, the first set will be used as an

independent validation set to test calibration models built on the other two sets of data.
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Figure 3.1.17: Scores on PC1 vs. PC2 for PCA of the MW spectra for the addition of ethanol to
salicylic acid.

Global calibration models

PLS models have been built using the second and third data set, and the first used as a
validation set. Different types of pre-processing techniques have been used to build the
best model. DoEMan was used to determine the pre-processing techniques expected to
improve the model. None were shown to improve the calibration models, so the same

pre-processing techniques as examined for the previous examples have been used here.

Table 3.1.14 shows the validation errors for each model built. From this it can be seen
that the lowest RMSEP, 0.330, is achieved using Box-Cox logarithmic transformation
followed by auto-scaling. 4 LVs were needed to build this model, which may be too
many, and the data may be over-fitted. Auto-scaling followed by Box-Cox (logarithmic)
gave a similar error of 0.408 and this was built using 3 LVs so perhaps is a better
model, with less noise included. Box-Cox logarithmic transformation alone also gave a

reasonable error of 0.503, and this was built with 3 LVs.
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Table 3.1.14: Summary of errors for global models built using the MW spectra collected for the
addition of ethanol to salicylic acid.

Pre-processing techniques No. LVS RSSQ RMSEP
Raw 2 61.04 1.666
Auto-scaling 6 11.71 0.730
Box-Cox (logarithmic) 3 5.558 0.503
Auto-scaling and Box-Cox (logarithmic) 3 3.669 0.408
Box-Cox (logarithmic) and auto-scaling 4 2.397 0.330

Local calibration models

The data set has been split into two smaller concentration ranges expected to be more
linear than using all the data. This comprises of the lower level of 0 to 1% w/w ethanol
in salicylic acid, and a higher level of 2 to 24%. Each region has been used to build

calibration models with the same pre-processing techniques.

Lower level models

The errors achieved for the lower level models built with different pre-processing
techniques are shown in Table 3.1.15. The RMSEP for these models are generally lower
than those achieved for the global models. The lowest RMSEP is 0.180, achieved using
Box-Cox logarithmic transformation. This model is based on 2 LVs so is a good model.
Using no data processing also gave a low error of 0.208, but this uses 5 LVs so noise

may have been included in the model. All the other models gave an error, RMSEP, over

1 which is quite high.

Table 3.1.15: Errors achieved for local models built using the lower region of concentration data,
for the MW spectra of the addition of ethanol to salicylic acid.

Pre-processing techniques No. LVS RSSQ RMSEP
Raw 5 0.431 0.208

Auto-scaling 2 15.31 1.237
Box-Cox (logarithmic) 2 0.326 0.180
Auto-scaling and Box-Cox (logarithmic) 4 08.88 3.144
Box-Cox (logarithmic) and auto-scaling 4 163.1 4.039

Higher level models

The errors for the models built are shown in Table 3.1.16. The lowest RMSEP is
achieved with auto-scaling followed by Box-Cox (logarithmic), which gave an error of

0.033. This was built with 3 LVs so is a good model. This is a much lower error than
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the best achieved for the global model, 0.391. The use of Box-Cox (logarithmic)
followed by auto-scaling gave a low error of 0.214 but this was built with 5 LVs.

Table 3.1.16: Errors achieved for local models built using the higher region of concentration data,
for the MW spectra of the addition of ethanol to salicylic acid.

Pre-processing techniques No. LVS RSSQ RMSEP
Raw 2 34.23 1.689
Auto-scaling 6 3.337 0.527
Box-Cox (logarithmic) 3 4.107 0.585
Auto-scaling and Box-Cox (logarithmic) 3 0.013 0.033
Box-Cox (logarithmic) and auto-scaling 5 0.547 0.214

Conclusions

The errors for the models for the global model and the two local model regions, which
gave the lowest prediction error, are shown in Table 3.1.17. The percentage error based
on the mean predicted value is also shown to put the errors into context.

Table 3.1.17: Summary of errors for the best calibration models for the global and local models,
built using MW spectra collected for the addition of ethanol to salicylic acid.

Model Pre-processing No. LVS | RMSEP | % error
Global Auto-scaling and Box-Cox 3 0.391 32
(logarithmic)
Local lower | Box-Cox (logarithmic) 2 0.180 23
Local higher | Auto and Box-Cox (logarithmic) 3 0.033 2

The only reasonable model is the local higher level model which has a percentage error
of 2%. This suggests this region is linear so the spectra are well correlated to the

concentration data. 3 LVs are used to build the model which is a reasonable number,

and system noise should not be built into the model.

The global model and local lower level model give poor prediction of 32 and 23% error
respectively. The poor prediction in the lower level model, below 2% ethanol in
salicylic acid, suggests the MW spectra are not sensitive to such small amount of

ethanol, and the limits of detection of the MW spectra have been reached.
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3.1.1.4 Conclusions

Three processes of the wetting of solids with solvents have been studied with MW and
NIR spectroscopy; the addition of water to sand, propanol to ascorbic acid and ethanol
to salicylic acid. These experiments were carried out to determine the suitability of the

techniques to monitor such a process, and how small an amount of solvent can be

detected.

Calibration models were built to correlate the spectra to the concentration data. A
variety of pre-processing techniques were examined to determine the best model to
build. Models were built, and an independent data set used to validate the models and

test the robustness.

The NIR spectra collected was of poor quality due to the use of a diffuse reflectance
probe which only samples a small area of the sample. The solvent is added to the
surface of the sample and must spread through the sample. If it does not reach the
sampling area of the probe the true process won’t be captured. This was reflected in the
calibration models produced which did not predict very well at all. Therefore, this
method was found not to be suitable for this process. For the true drying process, the
solvent is removed from the sample at a fixed rate. Therefore, NIR would be more

suitable for the true drying process.

The MW spectra captured the process much better, and both global and local models
were built. It was thought the data may be non-linear, therefore smaller local models
were built using regions expected to be linear to try to produce a better model. The
global models gave comparable errors for the addition of water to sand and propanol to
ascorbic acid. These models are much easier to build, as only one model is built, and
also easier to use as there is no choice of which model to use when predicting new

samples. The errors for the best models built are shown in Table 3.1.18. The error for

the model above 2% ethanol in salicylic acid is shown.
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Table 3.1.18: Summary of results for the calibration models built for each process studied. The
results are shown for the global models, and above 2% for the ethanol in salicylic acid, constructed
using all the frequencies in the MW spectra.

Process Pre-processing No. LVs | RMSEP | % Error

Water / sand Auto-scaling and Box- 3 0.050 5
Cox (logarithmic)

Propanol / ascorbic acid | Auto-scaling and Box- 3 0.021 2
Cox (logarithmic)

Ethanol / salicylic acid Auto-scaling and Box- 3 0.033 2
Cox (logarithmic)

The use of auto-scaling followed by Box-Cox logarithmic transformation was found to
be the best pre-processing technique to use with the MW spectra for all examples. Auto-
scaling scales the data to mean zero unit variance. This removes the scale of the
measured values, and so different data sets, scaled in the same way, are now on the
same scale. This aids calibration using different data sets. The MW spectra were
expected to be non-linear. Box-Cox improves the linearity between X and Y, so it was

expected that this transformation of the data would improve the linear fit.

The errors show that very good models have been built for the addition of water to sand
and propanol to ascorbic acid. When the predictions were looked at in detail, it was
found that the models predict well over all concentrations, down to very low levels.
This shows that the use of MW spectroscopy for monitoring the addition of solvent to a
material is very acceptable in most cases. For the addition of ethanol to salicylic acid, a
model built with concentrations above 2% gave only a 2% error using auto-scaled and
Box-Cox logarithmic transformed data. This suggests the limits of detection have been

reached. The use of Box-Cox transformation suggests the data is non-linear.

These models were built with spectra collected for two repeats, and validated with an
independent validation data set. The validation sets show different variation compared
to the calibration sets as they were collected on different days, but low prediction errors

are still achieved. This shows the robustness of the calibration models to experimental

variation.
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3.1.2 Drying

It has been proved in the wetting experiments that the amount of propanol in ascorbic
acid can be determined using MW spectra. In these sets of experiments propanol was
added to ascorbic acid contained in the PTFE insert placed in the GMS chamber. The
propanol was evaporated off by two different methods. The first method involved

heating the chamber and the second passing heated air though the material.

The recorded spectra has been analysed using PCA and visual examination of the

residual spectra, to determine if the end of the drying process can be identified.

3.1.2.1 Drying by the heating of the MW chamber

In this experiment propanol (25ml) was added to ascorbic acid (100g) contained in the
PTFE sample chamber which is placed in the GMS chamber. This was allowed to
evaporate by heating the chamber, with MW spectra recorded at intervals. This was
monitored for five hours, and ten replicate spectra were taken at seven time points
during the process. These were averaged to give data set dry_asc_pro. The ascorbic acid
was not completely dry at the end of the recorded period so the endpoint was not
reached. Therefore, the data analysis can show the possibility of monitoring the
reaction, but the endpoint will not be determined. A spectrum of the dry ascorbic acid
was also recorded as a reference. The results produced provide a qualitative example of

using MW spectra to monitor such a drying process.

The recorded spectra are shown in Figure 3.1.18. The spectrum at the start of the
process is in red, and this moves through to blue for the last spectrum recorded. The
spectrum of the dry ascorbic acid is plotted in pink as a comparison. The last spectrum
recorded is not at all similar to the dry spectra as would be hoped if the end of the
process was achieved. The cut-off frequency is at around 1250MHz for the first
spectrum taken during the process and is at around 1500MHz in the dry spectrum. The
cut-off frequency changes due to the change in dielectric constant. This is due to the
change in composition of the material as the amount of solvent present during the
process changes. The cut-off frequency moves in the direction of that of the dry

spectrum, so showing there is a possibility with this technique to detect the end point of

a drying process just by examination of the spectra.
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Figure 3.1.18: MW spectra of the drying of ascorbic acid by evaporation of propanol. The spectra
go from red as the propanol was added, to blue at the end of the monitoring period. The pink
spectrum is the actual dry ascorbic acid.

PCA was preformed on the spectra, and the scores in the first PC, which contains the
most information, plotted against time are shown in Figure 3.1.19. This shows how the
samples vary over time, and how they relate to each other. When the material is dry and
the process has ended, the samples will no longer change and there will be no variation
between them. Therefore it is expected that the scores will stop changing. For this
process, the scores decrease over the time period and do not stabilise. This shows that
the samples are changing but the end of the process has not been reached, as was clear

from the spectra. Again this shows the possibility of detecting the material once dry.
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Figure 3.1.19: Scores on PC1 against time for the MW spectra of the removal of propanol from
ascorbic acid by evaporation.

The residuals have been calculated by subtracting the dry spectrum from each of the
MW spectra (Figure 3.1.20). When the process has reached the end, and the material is
dry, the recorded spectra will be the same as the dry spectrum, therefore the residual
should be 0. It is clear from the residuals for this reaction that the endpoint is not
reached. The residuals are moving towards 0 during the course of the process so again

showing the possibility of this technique.

The residual response at 1600MHz has been plotted against time, Figure 3.1.21, to give
a clearer indication of how the residual changes as the process proceeds. This shows

that the residual increases at the start of the process, but then moves towards zero as the

process proceeds.
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Figure 3.1.20: The residual spectra of the removal of propanol from ascorbic acid by evaporation.
This is calculated by subtracting the dry ascorbic acid spectrum from each process MW spectra.
The spectra go from red for the first sample, to blue for the final spectrum.
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Figure 3.1.21: Plot of the residual response at 1600MHz against time for the MW spectra collected
during the removal of propanol form ascorbic acid by evaporation.
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3.1.2.2 Drying by hot air

In this experiment propanol was dried from ascorbic acid by blowing heated air through
the sample. The MW spectra were recorded at intervals for five hours, and then the
material left overnight without any air being passed through and another spectrum taken
the next day after 19 hours had passed. The spectra, data set dry asc pro air 1, are
shown in Figure 3.1.22. The first spectrum is in red, and the spectra are plott;d t;rough
to blue for the spectra taken the next day. The spectrum of the dry ascorbic acid is

plotted in pink to give a comparison.
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Figure 3.1.22: MW spectra of the drying of ascorbic acid by evaporating propanol with air. The
spectra go from red as the propanol was added, to blue at the end of the monitoring period. The

pink spectrum is the actual dry ascorbic acid, before propanol was added.

From these spectra it can be seen that the last spectra are very similar to that of the dry

spectrum, but dryness has not been achieved.

The PCA scores were calculated as for the previous experiment, and the scores for PC1
plotted against time are shown in Figure 3.1.23. The final measurement, taken the day
after is not included in this analysis. There is a decrease in the scores value over the

time the process was monitored, and the amount of variation between the samples
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decreases over the time period. Again this experiment does not appear to reach the

endpoint of the material being fully dry, but it does show the possibilities for

monitoring the process.
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Figure 3.1.23: Scores on PC1 against time from the MW spectra of the removal of propanol from

ascorbic acid by evaporation.

The residuals were calculated (Figure 3.1.24) as in the previous example. The residuals

start in red at the start of the process and move through to blue for the end of the

process. The residuals become closer to 0 as is expected as the material is becoming

drier, and so the spectra recorded should become increasing similar to the reference dry

spectrum.
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Figure 3.1.24: The residual MW spectra of the removal of propanol from ascorbic acid by drying
with air. This is calculated by subtracting the dry ascorbic acid spectrum from each process
spectra.

This experiment was to determine if the reaction is reproducible. The spectra, data set
dry asc_pro_air_2, are similar to that of the previous experiment, and show the final
measurement, taken after seven hours, is very similar to the reference dry spectra. This
experiment got closer to the endpoint of the drying process than the previous

experiment.

Again the scores were calculated and these show a general decrease over time as in the
previous experiments. The samples are varying less by the end of the time period

suggesting the process is slowing down.

The residuals were been calculated in the same way. The residual of the final spectrum
is very close to 0 in the region 1500-2000MHz. This shows the spectrum is very similar

to that of the dry spectrum. It shows the possibility of using this technique to detect the

endpoint of a drying process.
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3.1.2.3 Conclusions

Two methods have been used to dry propanol from ascorbic acid and the process has
been monitored by MW spectroscopy. These spectra have been examined to determine
if it is possible to detect when the material is dry. The spectra are compared to reference

spectra taken of the material when it is known to be dry.

The scores from PCA can be plotted against time and when the sample scores no longer
vary, the process is said to be finished as the samples are no longer changing, i.e. the

solvent has been completely removed.

The residuals can be calculated by subtracting the reference dry spectrum from the
process spectra. The residual will be 0 when the material is dry, as the recorded spectra
should be identical to the dry spectrum. It may not be necessary to reach complete
dryness of the product; however a percentage wetness may be acceptable, therefore the
residual value can be set to this specification to detect when the process had reached

this point.

None of the experiments carried out actually reached the endpoint. The experiments
need to be repeated for a longer period to ensure it is possible to detect when the
material is dry. This has not been done due to time and equipment constraints.
However, these experiments do show the possibility of monitoring a drying process.
The MW spectrum of dry material is quite obviously different to the wet material

spectra, so a distinction can be made when the endpoint is reached.

3.1.3 Overall Conclusions

The drying process has been simulated by wetting a material with solvent. Calibration
models have been built using the recorded MW spectra to predict the amount of solvent
present in the material. This shows the possibility of monitoring a drying process with

this technique, and shows how little solvent can be detected.

The MW spectra were successfully used to predict the amount of solvent in a sample
down to very low amounts (below 1% w/w). Global calibration models were built using
the entire spectral range. The use of a variety of pre-processing techniques was
examined. The use of auto-scaling followed by Box-Cox logarithmic transformation
was found to give the best model. This worked well for the prediction of water in sand
and propanol in ascorbic acid. which gave prediction errors of 5 and 2% respectively.
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The global model was not as successful for the prediction of ethanol in salicylic acid
which gave a prediction error of 32%. However a local model for above 2% ethanol in

salicylic acid gave a 2% error, suggesting the limit of detection is at 2%.

The NIR spectra were also collected and these found to not be representative of the
process as a diffuse reflectance probe was used. This only measures a small area of the
sample and is reliant on the solvent spreading through the sample to the area the probe
is measuring. The NIR should be capable of measuring a true drying process as the
solvent is being removed in a more continuous manner. Unfortunately the NIR probe
could not be used to monitor the drying process due to limitations of space in the GMS

chamber.

An actual drying process was also monitored by MW spectroscopy to show that the true
process can be monitored. These experiments lack reference concentration data. so can
only give an indication of the possibility of monitoring the process. The use of the PCA
scores plotted against time and the calculated residual spectra showed the possibility of
monitoring the drying process using MW spectroscopy. These experiments did not

reach completion, but do show the possibility of the technique.

Monitoring of the drying process was found to be very successful. This occurs as a
continuous process. During the wetting process, the solvent is added in steps and it must
then seep through the material. Effectively two processes are occurring and both are
monitored. The wetting experiments have shown the possibility of building calibration
models to predict the amount of solvent present, and the drying has shown the true

drying process can be monitored.
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3.2 Experimental set-up for esterification reactions

For the esterification reactions, certain aspects of experimental set-up need to be
examined to ensure the optimum set-up is used to get the most representative and
reproducible results. NIR and MW spectra were collected simultaneously for the
reactions. The reactions were contained in the GMS chamber as this is the easiest way
to collect the MW spectra. The NIR transmission probe can be placed inside it. It is
important to determine the optimum location of this probe. It is also important to
consider how large a volume of sample should be used in the chamber to give the best
spectra. The last consideration for experimental set-up is the temperature that the

reactions are run at, and if this should be keep constant.

3.2.1 Optimum location of the NIR transmission probe in the
GMS chamber

The NIR probe to be used to collect spectra is placed inside the GMS chamber, and this
will cause reflectance of the microwaves, so affecting the MW spectra collected. This
reflectance needs to be minimised. The probe must be located in an optimum position
which causes least interference to the MW spectra, whilst giving representative NIR

spectra.

3.2.1.1 Experimental details

The chamber has been split into areas in which the probe could be located as detailed in
section 2.3.1 of the experimental chapter. The chamber is filled with water (500ml) and
the chamber heated to 32°C, to give a constant temperature. Ten repeat MW scans were
taken with the probe in each position (A1-15, B1-15, C1-15), along with ten NIR

spectra, ensuring the transmission slit was facing into the chamber to allow maximum

contact with the liquid.

3.2.1.2 Results and discussion

The average NIR spectra for each location are shown in Figure 3.2.1. From this it can
be seen that locating the NIR probe in different places in the GMS chamber does not

significantly alter the collected spectra of water. There is some difference in the spectra

but this is minimal.
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Figure 3.2.1: NIR spectra of water contained within the GMS chamber, with the probe located at
different positions.

The MW spectra collected were examined for each location and any obvious visual
outliers removed. The ten spectra for each location were averaged (Figure 3.2.2). It can
clearly be seen that the NIR probe has a large effect on the MW spectra. The smallest

effect is seen when the probe is located in the A position, Figure 3.2.2a.
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Figure 3.2.2: MW spectra of water with the NIR probe located in different positions; a) locations
A1-15; b) B1-15; ¢) C1-15. The actual positions are not labelled, but this gives an indication of the
effect of the probe of the MW spectra.
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Figure 3.2.3: Residual plots (MW spectra minus the reference w.ater spectra? over the range 1000 to
2500MHz for MW spectra collected with a NIR probe Iocate(.i in the A pOSltIO!I, fo show the effect
the NIR probe has on the MW spectra. The smaller the residual, the more similar the reference
spectra and the collected MW spectra, and hence the smaller the effect the NIR probe has on the

MW spectra.
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The corners are represented by locations 1, 5, 11 and 15. The residuals for these are
shown in Figure 3.2.4. Location 1 and 15 have the smallest residuals, and are similar.

Location 15 has a slightly smaller residual so this is the compromise location that is to

be used.
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Figure 3.2.4: Residual plots (MW spectra minus the reference water spectra) over the range 1000 to
2500MHz for MW spectra collected with a NIR probe located in the corners in the A position, to
show the effect the NIR probe has on the MW spectra. The smaller the residual, the more similar
the reference spectra and the collected MW spectra, and hence the smaller the effect the NIR probe

has on the MW spectra

3.2.1.3 Conclusions

The NIR probe is located in the GMS chamber to allow the collection of both NIR and
MW spectra of reactions carried out in the GMS chamber. The probe has been located
in various locations within the chamber and the spectra of water collected. It was found
that there was no major effect on the collected NIR spectra due to the location of the
probe. However, the MW spectra collected with the probe located in different places are
affected greatly by the NIR probe. The optimum location was determined by
examination of the residuals, calculated by removing reference water spectrum, with no

probe in the chamber, from the collected spectra. The location of the probe has to be a
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compromise between the least interference on the MW spectra, and ease of location
with respect to other equipment in the chamber (overhead stirrer). Therefore, the best
location for the NIR probe within the GMS chamber was determined to be in one
corner, next to the transmitter antenna, with the probe 3.5cm into the chamber. as

indicated by position 15 .

3.2.2 Effect of temperature on the collected spectra

The temperature of a sample affects both the NIR spectra of the sample, and also the
MW spectra. This experiment was carried out to show the effect the temperature has on
the collected spectra of the components in the esterification reaction. This will show the

importance of keeping the temperature as constant as possible.

3.2.2.1 Experimental details

The GMS chamber was heated to a variety of temperatures (25, 35, 40. 50 and 60°C).
The reagents to be used in the esterification reaction (butanol and acetic acid) and the
products formed (water and butyl acetate) were heated to the same temperature as the
GMS chamber, and 450ml placed in the chamber. 20 repeat MW scans were taken for
each sample at each temperature, along with 40 repeat NIR scans using the transmission

probe placed in the GMS chamber. The spectra were averaged to give one spectrum for

each temperature.

3.2.2.2 Results and discussion

The MW spectra for the components at different temperatures are shown in Figure 3.2.5
to Figure 3.2.8. The spectra of acetic acid (Figure 3.2.5) look to have the same shape
but a slightly different response, so the change due to temperature is small. The butanol
spectra (Figure 3.2.6) show a large change in response. The spectra are affected by the
change in temperature suggesting the dielectric constant of butanol varies greatly over
the temperature range used. The spectra of butyl acetate (Figure 3.2.7) have little
variation over the temperatures used. The spectra for the temperatures 25, 35 and 40°C
are very similar, as are the spectra for 50 and 60°C. The spectra for water (Figure 3.2.8)

have a varied response with a change in temperature. The variation in response

increases as the frequency increases.
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Figure 3.2.5: MW spectra of acetic acid, one of the reactants of the esterification reaction between
butanol and acetic acid, at various temperatures.
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Figure 3.2.6: MW spectra of butanol, one of the reactants of the esterification reaction of butanol
and acetic acid, at various temperatures.
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Figure 3.2.7: MW spectra of butyl acetate, one of the products of the esterification reaction of
butanol and acetic acid, at various temperatures.
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Figure 3.2.8: MW spectra of water, one of the products of the esterification reaction between

butanol and acetic acid, at various temperatures.
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The NIR spectra of the components of the esterification reaction are shown in Figure
3.2.9 to Figure 3.2.12. The change in NIR spectra due to temperature is very small, with
only a small increase in absorbance seen with an increase in temperature. The change in
the spectra is mainly seen in the baseline (9000 — 9500cm™) which shifts with
increasing temperature. This baseline shift is at its greatest in the water spectra (Figure

3.2.12). Baseline shift in NIR spectra is a well known phenomenon and can be corrected

for.
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Figure 3.2.9: NIR spectra of acetic acid, one of the reactants of the esterification reaction between
butanol and acetic acid, at various temperatures.
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Figure 3.2.10: NIR spectra of butanol, one of the reactants of the esterification reaction between
butanol and acetic acid, at various temperatures.
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Figure 3.2.11: NIR spectra of butyl acetate, one of the products of the esterification reaction
between butanol and acetic acid, at various temperatures.

-119 -



Results and Discussion: Chapter 3.2 Experimental set-up for esterification reactions

I e ol o] e |

Response / Absorbance

5000 6000 7000 8000 9000
Wavenumber / cm””

Figure 3.2.12: NIR spectra of water, one of the products of the esterification reaction between
butanol and acetic acid, at various temperatures.

3.2.2.3 Conclusions

The temperature has a large effect on the collected MW and NIR spectra for all
components in the esterification reaction. The temperature causes a baseline shift in the
NIR spectra which can be corrected for. The effect in the MW spectra is not as simple,
and a change in response is seen. The best way to minimise this effect is to keep the
temperature as constant as possible during the reactions. This will be achieved by using
a water bath to thermostat the chamber, and using insulation around the chamber.

Control of the temperature of the reaction will allow the reaction to be run at different

temperatures.

3.2.3 Effect of volume of liquid in the GMS chamber on the

recorded spectra

The esterification reaction is to be carried out inside the chamber of the GMS. The
chamber holds 540ml of liquid. The reagents to be used are expensive to dispose of, and
are flammable. Therefore, ideally the total volume used should be minimised, whilst

still giving representative MW spectra. The recorded MW spectra respond to the
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composition of the sample present. The greater the amount of sample, the greater the
response will be due to the attenuation of the signal. Ideally spectra are required that
gives a maximum response so any change in the spectra due to a change in composition

of the sample is easier to detect, particularly if this change is only small.

3.2.3.1 Experimental details

The chamber was filled with 50ml of water, and ten repeat MW scans taken of this
volume of water. The water used was at room temperature, the same as the chamber, to
minimise temperature effects. A further 50ml was added, and again spectra taken. This
is repeated until the chamber was filled to 500ml. The spectra for each volume of water

are averaged before data analysis.

3.2.3.2 Results and discussion

The average spectrum for each volume is shown in Figure 3.2.13. From this it can be
seen that there is a huge difference in the spectra of 50ml and 500ml water (Figure

3.2.14 shows this more clearly).

As the volume of water increases, so does the response in the spectra. The maximum
response is desirable to ensure any small change in the spectra due to a change in
sample composition is detected. The spectra for 450ml of water gives a maximum
response, no further increase is seen. 450ml and 500ml have similar spectra. This
suggests the response is at maximum, so any further change in spectra may be missed.

Therefore, a volume of 450ml should be used to maximise response.

3.2.3.3 Conclusions

Different volumes of sample in the GMS chamber will give different spectra as the
spectra are related to the amount of sample present. A volume should be used that gives
a maximum response so any small changes in the spectra due to composition change

will be detected. 450ml of sample is to be used in the esterification reactions.
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Figure 3.2.13: MW spectra of different volumes of water contained in the GMS chamber. The
spectra are recorded at room temperature.
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Figure 3.2.14: MW spectra of 50 and 500ml of water contained in the GMS chamber.
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3.3 Exploratory analysis of the esterification reaction
data

The reaction under investigation is the esterification of butanol and acetic acid,
catalysed by sulphuric acid. NIR and MW spectra are collected during the reaction. This
reaction was chosen because it is reasonably fast so allowing the reaction to be studied
in a normal working day, uses cheap reagents, is relatively safe and is a well studied and

understood reaction.

3.3.1 NIR spectra

The NIR instrument was set to collect spectra for a set time period, depending on the
experiment, during which spectra are collected approximately every seven seconds.
Single spectra at approximately minute intervals were extracted from these recorded
spectra. This then gives spectra taken at approximately the same intervals as the MW
spectra to allow comparison. This spectra is one-shot, giving a single spectrum for each
sample. Traditionally, several NIR spectra may be recorded over a set time period of a
couple of minutes. These are co-added, and are then averaged to give one spectrum. The
main problem with this technique is that for a reaction process, the process being
monitored will have changed over that time period, so the averaged spectra is not
representative of one time point, but an average of the time period. As the work here
involves monitoring a process to determine how it proceeds, it is important to use raw

spectra related to a specific time point and not co-added spectra.

According to Beers Law, the absorbance at a specific wavelength is a result of the sum
of the absorbances of the individual constituents. The functional groups present in the
reaction mixture and the wavelengths at which they are known to absorb are shown in
Table 3.3.1. The amount of a specific functional group will change during the reaction
as the components are consumed and formed. Therefore, the absorption in the NIR
spectra due to these functional groups will change. It is possible to monitor the reaction

by interpretation of the spectra, by examining at which wavelengths this change in

absorption 1s seen.
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Table 3.3.1: Main absorptions expected to be seen in the NIR s
. ect i
present in the esterification reaction. e e

R-OH RCOOH RCOOR' Water
Combination | 4785 | 4854 | 5236 | 5305 | 5025 | 5181 | 4435 | 4464
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Figure 3.3.1: NIR spectra of the pure components used in the esterification reaction. Butanol and
acetic acid are the reactants and butyl acetate and water are the products. The spectra are

recorded at 40°C.

The spectra of the pure components show the regions in which those functional groups
absorb (Figure 3.3.1). It is clear that the components all have different spectra, so it
should be possible to monitor the formation and consumption of these during a reaction.
These spectra were all recorded at 40°C, using 450ml of the component held in the
GMS chamber, with the NIR transmission probe inserted. From the spectra it can be
seen that the water is the strongest absorbing component, with two strong peaks at 5280
and 6972cm™, so it is expected that the formation of water during the reaction will

dominate the spectra. Acetic acid has two distinct peaks at 5808 and 5952cm’. This

first peak also exists in the butanol and butyl acetate spectra, SO is not unique. Acetic
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acid also has quite a strong absorption at 4620cm™. Butanol, butyl acetate and water all
have a strong absorption at 4344cm™. Butanol has a unique absorption at 4788, and
butyl acetate at 4680cm™. All components have similar absorption between 8000 to

9000cm™, so this region will not be useful to distinguish between them.
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Figure 3.3.2: NIR spectra of the esterification of butanol and acetic acid at 40°C. The spectra go
from red at the start of the reaction, to blue at the end of the reaction. The regions in which the
major functional groups absorb are labelled. The arrows indicate the change in absorption in a
particular region during the reaction.

Typical spectra recorded during a reaction are shown in Figure 3.3.2. The arrows
indicate the change in absorption in that region. The coloured blocks relate to the

typical absorption regions of the functional groups of components present as stated in

Table 3.3.1.

Below 4440cm™ no change in absorption is seen so this area can be ignored. Between
4440 and 5016, and 5316 and 6600cm™', there is a decrease in absorption. It is expected
that these regions correspond to the reactants that are being used during the reaction,
butanol and acetic acid. In the first region, there is an absorption band due to butanol
(4785 - 4854cm™) and a very small one due to water (4435 — 4464 cm™). In the second

region, there is no specific absorption band relating to a functional group. The region
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may correspond to a general change in composition and is clearly useful for monitoring

the change in reaction.

The regions between 5016 to 5316cm™, and 6600 to 10 000cm™, show an increase in
absorption during the reaction. These can be correlated to the increase in the products
over the reaction, butyl acetate and water. The major absorption areas for water (5115 -
5263cm™) and butyl acetate (5181 — 5025cm™) lie in this region. There is also the
absorption peak for acetic acid (5236 — 5305cm™) in this region, but the products absorb
more strongly so mask this component. The second region of increasing absorption
contains the major absorption peak for alcohol (6757 — 7067cm’™"), and also a small peak
for water (7112 — 7067cm'1). Again, the absorption due to the increase in water must

dominate this region as a general increase is seen.

3.3.2 MW spectra

3.3.1 Cut-off point

The cut-off frequency depends on the distance between the two parallel plates in the
GMS chamber, dimension a:

1%
f, =—"= Equation 3.3.1

2a\/—8-'

Where f. = cut-off frequency, a = the distance separating the waveguides parallel

surfaces, and 2a = cut-off wavelength.

The dielectric constant of a mixture depends upon the components present and the
temperature. The dielectric constant for water is 80, giving a cut-off frequency of
360MHz. For most alcohols, €' is between 20 and 40, giving a cut-off frequency
between 715 and 505MHz. Only those wavelengths which are not cut-off should be
used in the data analysis, as any below this point will not contain any information about
the system, but may contain noise. For reactions at different temperatures, and molar
ratios, the cut-off point may change. However, from examination of the spectra, it has

been decided the change will be minimal and it is more important to make it uniform for

all analysis. Therefore, all frequencies below 504MHz are to be discarded before data
analysis. This can be seen in the spectra of the pure components (Figure 3.3.3), in which

the spectra below 500MHz seem more noisy.
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The spectra of the pure components are shown in Figure 3.3.3. These were recorded at
40°C, with 450ml of pure component in the GMS chamber. It can be seen that all the
components give similar spectra above around 1750MHz, but at different intensities.
These are quite distinct features at 2000 and 2500MHz present in all spectra. The
spectra do not have features that are unique to the functional groups, so these cannot be
identified. However, the spectra are all different, and have different levels of response,

so as the reaction proceeds, and the composition changes, it is possible to see a change

in spectra.
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Figure 3.3.3: MW spectra of the pure components in the esterification of butanol by acetic acid.
The spectra are recorded at 40°C.

Typical esterification reaction spectra are shown in Figure 3.3.4. The spectra show a
general increase in response during the reaction. Over around 2750MHz there is a
decrease in response. The spectra change over the whole frequency range. It is not
possible to assign a specific region to a functional group. The spectra change due to the
change in dielectric constant of the reaction mixture, which changes as the composition
changes. MW spectra give much less information regarding the reaction from just

examining them. Chemometric techniques are needed to follow the progress of the

reaction.
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Figure 3.3.4: Typical MW spectra of the esterification of butanol by acetic acid at 40°C. The
spectra go from red, at the start of the reaction, through to blue at the end of the reaction.

3.3.3 PCA

PCA has been applied to a typical data set for an esterification reaction, after first mean
centring the spectra to remove the magnitude. The scores on PC1 contain the most
information about the variation between the samples so this is plotted against time
(Figure 3.3.5). There is a general increase in the scores during the reaction. The rate of
increase is greater at the start of the reaction and slows down at the end of the reaction.
This is a typical reaction profile as the reaction will start fast, and slow down as the end
of the reaction is approached. It shows how the samples change relative to one another
during the reaction, and give a good indication about the progression of the reaction. It
shows that the sample spectra change as the reaction proceeds, so it should be possible

to monitor the progress of the reaction using the spectra.
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Figure 3.3.5: Scores on PC1 against time for a typical esterification reaction; a) scores for MW
spectra; b) scores for NIR spectra.

3.3.4 Conclusions

NIR and MW spectra have been recorded during an esterification reaction. The spectra
clearly change during the reaction due to the change in the composition of the reaction

mixture.

NIR spectra record the change in absorption due to the components. As the relative

amounts of the components change, a change in the recorded spectra is seen.

MW spectra record the change in dielectric constant of the reaction mixture as the
reaction proceeds. Each component has a different dielectric constant, and as the

concentrations of these change so does the relative dielectric constant of the mixture.

From the resulting spectra, it is clear to see the esterification reaction studied can be
monitored by both MW and NIR spectroscopy. With the use of chemometric techniques
combined with the spectra, it should be possible to monitor the reaction progress and

make predictions of the concentrations of the individual components during the reaction

and also the endpoint.
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3.4 Monitoring of an esterification reaction

The main problem with monitoring reactions is finding a suitable reference method that
is reliable, convenient and reproducible. For many reactions, analytical techniques such
as GC and HPLC are used to measure the concentration of the reaction as it proceeds.
These methods take time to develop. A sample must be removed from the reaction,
which may not be completely representative of the reaction and there is a lag time

between the sample being taken and the analytical results.

Spectroscopic techniques offer the advantage of monitoring a reaction without the need
to remove a sample. The aim of this work was to use MW and NIR spectroscopy to
monitor a simple esterification reaction, and determine if these methods are suitable to

monitor the reaction in a reproducible way.

Curve resolution is a set of techniques that can be used with spectral data collected
during a reaction. Concentration profiles and pure component spectra can be extracted
without any reference method. Therefore it is a convenient way of monitoring reactions
without the use of tedious reference methods. Multivariate curve resolution (MCR) has
been used on MW and NIR spectral data collected during a simple esterification

reaction of butanol and acetic acid.

To validate the curve resolution and ensure the extracted concentration profiles are a
good representation of the real concentration profiles, a reference method must be used.
In this work GC analysis has been used as it is a proven technique for measuring the
concentrations of the components of the esterification reaction. Once MCR has been

proved to extract reasonable concentration profiles, the method can be used on further

reactions without the need for a reference method.

3.4.1 GC Set-up

3.4.1.1 Method development
A suitable method for GC analysis was initially developed. The components of the
esterification reaction are acetic acid, butanol, butyl acetate and water. These

components need to be separated during the GC analysis to allow measurement of the

amount of each present. Water is not detected by the FID so only three components are

to be calibrated for.
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The components of the esterification reaction must be separated sufficiently to allow
quantification using the peak area obtained from the GC trace. The temperature of the
column affects the separation, as the higher the temperature the quicker the components
move through the column to the detector. If the components come off the column too
close together, the detected peaks may overlap so preventing accurate quantification of
the individual components. Analysis time should be minimised by using a temperature
that gives sufficient separation, but without too much wasted time between the detected

peaks.

At 70°C it was found the components separated well, with a total analysis time of four
minutes needed for all components to come off the column and be analysed. However,
the chromatogram returned to the baseline for some time between each detected peak so
it was felt a higher temperature could be used. 100°C was used and this gave an analysis

time of three minutes. This was a good separation so was used for the calibrations.

3.4.1.2 Calibration

A range of suitable samples, covering the range of concentrations of each component
expected to be sampled during a reaction, were used for the calibration of the GC (see
section 2.3.5, Table 2.3). The samples were made up in methanol as this elutes at a
different time from all the other components so does not interfere with the analysis, and

is a good solvent for the dissolution of the water present in the samples.

The samples were made up with all four components present during the esterification
reaction, along with 4-Methyl-2-pentanone as an internal standard to correct for any
deviations in the amount of each sample injected. To do this, the peak area for each

component is divided by the peak area of the internal standard to give the corrected

peak area. It is this that is used in the calibration graph.

It is possible that some reaction may occur in these calibration samples due to the
presence of both the reactants, but this should be a small amount as the esterification
reaction requires an acid catalyst. However to minimise any reaction which may occur,

the acetic acid was added last to the samples. The samples were used as quickly as

possible once made, and stored in the fridge between analyses.

The samples were run in a random order in triplicate, to determine if the samples

degrade over time. The analysis was repeated twice using freshly made samples to
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determine the reproducibility of the calibration method. The analysis time was set to

four minutes to ensure all components were resolved fully.

The corrected peak areas for each component have been plotted against the moles of
that component for each sample for each of the replicate runs, to give a calibration
graph, Figure 3.4.1. Samples with a peak area that appeared to be greatly different from
the norm were removed as outliers. All three components show good correlation
between the concentration of the component and the corrected peak areas. The r* values
show how well the points fit on the line of best fit. All values exceed 0.98 showing a

good fit to the linear model.
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Figure 3.4.1: Calibration graph for the measurement of the concentration of the components of the
esterification reaction using GC analysis.

The butanol corrected peak areas have a large variation between them. From closer
inspection of the data, the peak area due to the butanol decreases over the repeat

analysis of each sample. This suggests the actual amount of butanol in the sample

decreases over time. If the butanol is reacting with the acetic acid then a corresponding

decrease in the amount of acetic acid, and an increase in butyl acetate would be

expected to be seen in the recorded peak area, but this is not the case. It is not known

why the measured concentration of butanol decreases in these samples. Including more
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repeats in the calibration will increase the robustness as more variation that may be seen
in the real samples will be modelled. The effect seen in the calibration is minimal. so
the measured concentration of the reaction samples should not be too greatly affected
by this. Due to the nature of the reaction samples, the concentrations measured using the

GC calibration is expected to be approximate as the samples will continue to react.

There is some difference seen in the replicate peak areas of the samples in the
calibrations for the acetic acid and butyl acetate, but this is much less than seen in the
butanol calibration. The relative standard deviation (RSD) has been calculated for each
calibration sample using all three repeats of all three calibrations, after any outliers have
been removed, giving a maximum of nine replicates used in the calculation. This is used
to determine the reproducibility of the calibration, Table 3.4.1. From these values, the
calibrations for both acetic acid and butyl acetate are shown to be reproducible with
RSDs below 3%. The butanol shows lower reproducibility with three samples giving
RSDs of 5.0, 7.9 and 6.1%. This was seen in the calibration graph by the difference in
the corrected peak areas of the samples.

Table 3.4.1: Relative standard deviations (%) for each GC calibration sample. The calculation is
based on three repeat calibrations, each of which comprises of three replicate runs for each sample.

Calibration Sample Relative standard deviation / %
Acetic acid | Butanol | Butyl acetate

1 2.4 2.6 -

2 2.5 2.2 1.9
3 2.4 2.8 2.7
4 2.2 1.6 2.6
5 2.7 1.6 2.6
6 2.1 5.0 2.8
7 1.9 7.9 2.1
8 1.2 6.1 0.4

The average RSD for each component show the overall reproducibility of the
calibrations. The acetic acid and butyl acetate are good reproducible calibrations with

an average RSD of 2.2% for both. The butanol is also a good calibration with an

average RSD of 3.7%.

These calibrations for butanol, acetic acid and butyl acetate have been used to measure

the concentrations of reaction samples, allowing the reaction progress to be monitored.
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3.4.1.3 Reaction monitoring

A series of esterification reactions have been followed by GC. NIR and MW
spectroscopy. Samples were removed at 10 minute intervals and analysed by GC to
measure the concentration of the reaction mixture at that time point. The reaction

samples were put on ice immediately to lower the temperature as quickly as possible in

an attempt to stop any further reaction taking place.

The esterification reactions followed by GC were carried out with a starting molar ratio
of 1:2 butanol (200ml) to acetic acid (250ml). This gives initial starting concentrations
of 4.9M butanol and 9.7M acetic acid. The reaction was carried out at 40°C numerous
times to check reproducibility of using GC to monitor the reaction progress. It was
found to be very difficult to get reproducible measurements. The reaction was
monitored seven times, and only two of the repeats were found to give reproducible GC

analysis.

Figure 3.4.2 shows three typical reactions. The first and second repeats are very
reproducible, whereas the third one is quite different. This shows the difficulties that
arose from using GC as a reference method. The inconsistencies may be due to
problems with sampling, as the sample taken may not be representative of the reaction
mixture, so reproducibility could be a problem. Also, some further reaction may have
occurred in the removed sample. It is expected this would lead to a lower acetic acid
and butanol concentration being determined, and a higher level of butyl acetate. In the

third repeat, the butanol and acetic acid content has been measured lower, but the butyl

acetate level appears to be similar.

The first and second reactions were carried out after several previous attempts to try to
get a reproducible GC monitoring method. It appears that by this point the technique of
removing samples from the reaction and analysing them by GC had been well practised.
This led to much more reproducible results. The determined starting concentration of
the acetic acid in both these reactions was around 10M, which corresponds fairly well to
the known starting concentration of 9.7M. The starting concentration of butanol in both
reactions was determined to be around 4.5M, which again corresponds reasonably well
to the known starting concentration of 4.9M. From this it can be seen that the butanol

concentration is measured at a slightly lower value and the acetic acid concentration
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slightly higher than the actual values. This suggests no further reaction occurs in the

sample, as a lower value of both reactants would be expected.

In the third repeat the initial starting concentrations were determined to be lower at
around 7M acetic acid and 4M butanol. This is much lower than expected and shows the
problems faced with the GC method used for the measurement of the reaction mixture

composition.

There are errors in the initial determined values in the first two repeats when compared
to the known initial concentrations, and this must be due to the calibration of the GC.
The determined concentrations are acceptable as they are within the error of the

calibration.
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Figure 3.4.2: GC prediction of the reaction mixture concentration over time of esterification reactions carried out at 40°C with an initial starting molar ratio of
1:2, butanol (200ml) to acetic acid (250ml). The reaction was replicated three times.
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3.4.2 Reaction spectra

Many problems were encountered with the reproducibility of the GC method, as has
been shown here. Reference methods are often relied upon to allow monitoring of a
reactions progress. MW and NIR spectra were recorded during these reactions. The
spectra collected during these three repeat GC reactions, and also three replicate
reactions run with identical experimental reaction conditions, but with no GC
monitoring, are shown in Figure 3.4.3. The spectra shown were recorded at two time

intervals; at the start of the reaction, ty, and 9720s into the reaction.
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Figure 3.4.3: MW and NIR spectra collected during an esterification reaction at 40°C, with an
initial molar ratio of 2:1, acetic acid:butanol. The spectra were collected during three repeat
reactions (react 1, react 2 and react 3) and also during three repeat reactions monitored by GC
(GC 1, GC 2 and GC 3). The spectra were recorded at two times, at the start of the reaction; ty, and
9720s into the reaction; a) MW spectra at to; b) MW spectra at 9720s; ¢) NIR spectra at to; d) NIR

spectra at 9720s.
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These spectra show the reproducibility of the collected spectra. The NIR spectra (Figure
3.4.3c and d) are very similar for all reactions at both time intervals. There is some drift
seen in the baseline, but this can be corrected for. The MW spectra (Figure 3.4.3a and b)
are not as reproducible as the spectra appear to be slightly different. However, the

spectra are very similar between 1250 and 2250 MHz.

The correlation coefficients, ¥ , have been calculated for the repeat MW spectra (Table
3.4.2) and the repeat NIR spectra (Table 3.4.3). These are calculated by comparing the
response of each spectrum in the data sets. This shows how reproducible the variation

captured in the repeat spectra is. The spectra collected during the three repeats, and also

the three repeats monitored by GC are compared.

The three repeat MW spectra data sets are all very similar with »° values above 0.99.
The three GC repeats less similar with #° values over 0.97, but they are still well
correlated. The correlation between the repeats and the GC monitored repeats is also

very good with r values above 0.97.

Table 3.4.2: Correlation coefficients, r°, to compare the variation of the repeat esterification
reactions carried out at 40°C, with an initial molar ratio of 2:1, butanol:acetic acid and 1ml of
catalyst monitored by MW spectroscopy.

r MW1 MW2 MW3 GC1 GC2 GC3
MW1 - 0.99511 | 0.99688 | 0.97169 | 0.97601 | 0.97804
MW2 | 0.99511 - 0.99603 | 0.98312 | 0.98284 | 0.98303
MW3 | 0.99688 | 0.99603 - 0.97699 | 0.97374 | 0.97799
GC1 | 0.97169 | 0.98312 | 0.97699 - 0.98500 | 0.98520
GC2 | 0.97601 | 0.98284 | 0.97374 | 0.98500 - 0.99130

| GC3 | 0.97804 | 0.98303 | 0.97799 [ 0.98520 | 0.99130 -

All NIR repeat spectra are shown to be very reproducible with the same recorded

variation as the »° values are all above 0.999.

Table 3.4.3: Correlation coefficients, r’, to compare the variation of the repeat. esterification
reactions carried out at 40°C, with an initial molar ratio of 2:1, butanol:acetic acid and Iml of

catalyst monitored by NIR spectroscopy.

r NIR1 NIR2 NIR3 GC1 GC2 GC3
NIR1 - 0.99991 | 0.99963 | 0.99925 | 0.99960 | 0.99988
' NIR2 | 0.99991 - 0.99971 | 0.99921 | 0.99972 | 0.99980
NIR3 | 0.99963 | 0.99971 - 0.99970 | 0.99994 | 0.99959
GC1 | 0.99925 | 0.99921 | 0.99970 - 0.99960 | 0.99931
GC2 | 0.99960 | 0.99972 | 0.99994 | 0.99960 - 0.99953
GC3 | 0.99988 | 0.99980 | 0.99959 | 0.99931 | 0.99953 -
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The GC results show the three GC repeat reactions are not reproducible as different
reaction profiles were produced. The 7 values show that the reactions are in fact
reproducible, as the recorded spectra show the same variation for each of the repeats
shown by the high correlation calculated above 0.999. This is a much more reproducible
and reliable method of monitoring the reaction than the GC method has proved to be.

Spectra can be used with chemometric methods to allowing monitoring of the reactions.

3.4.3 Prediction of k value

3.4.3.1 GC prediction

From the determined reaction profiles, the rate constant, k value, can be calculated. The

esterification reaction studied is a second order reaction. The integrated rate equation is:

1 ln[[A]"[B]’ ) =kt Equation 3.4.1
[B], —[4], \[Ble[4],

Where 4y and By are the initial concentrations of butanol and acetic acid respectively, 4,
and B, the respective concentrations at time ¢, and k is the rate constant. Therefore. a
plot of the left hand side of the equation against time should give a straight line with a

slope equal to £.

The kinetic plot for the three repeats as previously discussed is shown in Figure 3.4.4.
The three repeats give different kinetic plots. Runs 1 and 2 are the most similar. These
kinetic plots should be a straight line if the reaction is truly second order. A straight line
is fitted to the plots and the k value determined as the gradient of this straight line. The
plots are not quite linear, so fitting a line will not give the true k value. Run 3 is the
most non-linear. However, all three give similar gradients of 1.132 x107 , 1.235 x 107

and 1.323 x10™ for runs 1, 2 and 3 respectively.

To overcome the non-linearity, a portion of the kinetic plot that is linear can be used to
determine the & value. The first two more reproducible runs have been examined. The
points below 3000s are discarded as these are furthest from the line of best fit. This can
be seen in the kinetic plot, Figure 3.4.5. The k values determined by the slope are very
similar as seen with the kinetic plot using the whole data set, 1.103 x10” for run 1 and

1.142 x107 for run 2, and are now more reproducible.
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Figure 3.4.4: Kinetic plot of three repeat esterification reactions performed at 40°C, with an initial 2:1 acetic acid: butanol molar ratio, showing the

relationship between the integrated form of a second-order reaction against time.
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Figure 3.4.5: Kinetic plot of two repeat esterification reactions performed at 40°C, with an initial 2:1 acetic acid: butanol molar ratio, showing the relationship

between the integrated form of a second-order reaction against a smaller time range.
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction

3.4.3.2 Multivariate curve resolution (MCR)

The esterification reactions were also monitored by MW and NIR spectroscopy. MW
spectra were recorded immediately prior to GC samples being removed at ten minute
intervals, and NIR spectra were taken constantly, with spectra relating to every ten

minutes used for the data analysis to coincide with the MW spectra collected.

The k value can also be predicted using the spectroscopic data collected along with
multivariate curve resolution (MCR). This extracts the concentration profiles using just
the spectroscopic data, with no reference data needed, and the k value can be calculated.
This has been performed on the reactions monitored by GC so a comparison can be
made between the GC determined k& values and the MCR predicted values. MCR was
applied to both the NIR and MW data, data sets Ester 40 1:2 1 I and 2 to see if there

are any differences in the spectral methods.

GUIPRO 1is a GUI for applying MCR to spectral data developed by Paul Gemperline.
There are different constraints that can be used, and the ones chosen for this data are
detailed in section 2.4.2. A Kkinetic constraint is included to break the rank deficiency of
the data. The known reaction equation and initial starting concentration of the four
components of the esterification reaction are used to aid the extraction of the

concentration profiles.

These constraints and settings are applied to the NIR and MW data and the & value
calculated. Figure 3.4.6 shows the predicted concentrations for the first repeat run at
40°C with an initial molar ratio of 2:1, acetic acid:butanol, data set ester gc 40_1_I.
The concentrations measured using GC, and the concentrations extracted using MCR

with the MW and NIR data are shown.
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Figure 3.4.6: Predicted concentrations over time of the components of the esterification reaction of butanol and acetic acid, using GC measurements made every
ten minutes and also the extraction of the concentration profiles using collected MW and NIR spectra, collected every ten minutes, along with MCR techniques.

The reaction is carried out at 40°C with a 2:1, acetic acid:butanol starting molar ratio.
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction

The prediction of the concentration of acetic acid using MCR techniques is similar to
that predicted using GC. However the predicted concentrations near the end of the
reaction period is starting to decrease. The MW and NIR predicted concentrations are
similar in all cases. This is as expected as the spectra are collected during the same
reaction so contain the same variation, and the same MCR techniques are applied, so the

extracted variation should be the same.

The predicted amount of butanol using the MW and NIR data is also similar to the GC
prediction. The amount predicted starts to decrease at a greater rate compared to the GC
predicted after around 3000s, and the difference is greater than that seen in the predicted

acetic acid concentration.

The predicted butyl acetate concentration shows similar trends to that of the predicted
butanol concentrations. In this case the concentration predicted by the MW and NIR is

higher that that predicted by GC, and the rate of increase in the concentration is greater.

MCR seems to predict a more ideal concentration curve which agrees with the GC
predicted concentrations at the start of the reaction. The rate of increase or decrease of
the concentrations of the components is greater than that of the GC predictions as the

reaction proceeds.

The kinetic plots for this reaction are shown in Figure 3.4.4. The kinetic profiles of the
MW and NIR predicted concentrations are much different from the GC kinetic plot. The
r* values of the MCR kinetic plots are 1, indicating a perfect correlation. This shows
that curve resolution finds a “perfect” fit for the concentration profiles. In reality this is
not the case, and this is shown by the errors in the GC plots. The Slope of these kinetic
plots is equal to the & value, and these values are shown in Table 3.4.4. From this it can
be seen all the predicted & values are in the same magnitude range of x10”, however the
actual values vary quite a lot. The values predicted using MCR and the MW and NIR
spectral data are quite similar at 2.442 and 2.833 x10? respectively. The value
predicted using the GC data is 1.103 %107 which is half that of the values predicted

using MCR.
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction

Table 3.4.4: Predicted k values using GC, and MW and NIR spectra along with MCR, for the
esterification reaction of butanol and acetic acid at 40°C with an initial starting molar rat;O of 2:1
acetic acid: butanol. o

Data Temp./°C | Molar Predicted K value / x10°
ratio GC NIR MW
Ester gc 40 1 1 40 2:1 1.103 2.833 2.442

The differences seen in the predicted & values may be due to the different sampling
methods. The main problem with the GC analysis is a small sample (~1ml) is removed
from the total reaction volume (450ml). The reaction mixture is stirred to attempt to
give a homogeneous mixture, but in reality the mixture may not be homogeneous so the
sample removed for GC analysis may not be truly representative of the reaction. The
“picture” of the reaction the GC samples capture may be different from that which the

MW and NIR capture, so leading to a different & value being determined.

The MCR solution is not unique, and is an approximation of the component
concentration profiles. This again may lead to incorrect k values. It is difficult to

determine which answer is the correct one, if any of them really are.
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Figure 3.4.7: Kinetic plot of an esterification reaction performed at 40°C, with an initial 2:1 acetic acid: butanol molar ratio, showing the relationship between
the integrated form of a second-order reaction against time as predicted by GC, and NIR and MW spectra recorded during the reaction used with MCR.
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction

MCR was applied to the repeat reaction data, ester_GC_40 2. to determine if the
method is reproducible. The predicted & values for both repeats are shown in Table
3.4.5.

Table 3.4.5: .Predicted k values using GC, and MW and NIR spectra along with MCR techniques
for the esterification reaction of butanol and acetic acid at 40°C with an initial starting molar ratic;
of 2:1, acetic acid: butanol.

Data Temp. / °C Molar Predicted K value / x107
ratio [ GC NIR MW
Ester GC 40 1 1 40 2:1 1.103 2.833 2.442
Ester GC 40 1 2 40 2:1 1.142 2.752 2.204

The GC predicted k values for both reactions are very similar at 1.102 and 1.142 x107.
The reproducibility of using this method seems reasonable. The predicted £ values using
NIR data for both reactions are also reproducible at 2.833 and 2.752 x107°. as are those
predicted using the MW data at 2.442 and 2.204 x10™. The methods appear to be
reproducible to predict £ values for repeats of the same reaction, but the values still do

not agree for the different techniques.

The same reaction was carried out in triplicate without GC reference measurements
being taken. These reactions were monitored by MW spectra taken every minute and
NIR spectra taken approximately every 7 seconds. NIR spectra at minute intervals were
extracted for use in data analysis. This gives about ten times as many spectra compared
to with the GC monitored reactions for use with MCR. The same conditions were
applied as with the GC monitored reactions and the & values estimated for both the NIR
and MW data. The k values are shown in Table 3.4.6, along with those calculated from

the GC data as a comparison.

Table 3.4.6: A comparison of predicted k values for replicate esterification reactions run at 40°C
with an initial molar ratio of 2:1, acetic acid:butanol. The & values are predicted using predicted
concentrations from GC data, and using MCR techniques along with MW and NIR spectral data.

-

Data Temp. / °C Molar Predicted & value / x10~ -

ratio GC NIR MW

Ester GC 40 1 | 40 2:1 1.103 0833 | 2442

Ester GC 40 1 2 40 211 1.142 2752 | 2204

Ester 40 1:2 1 | 40 2:1 i 3.080 | 2809

Ester 40 1:2 1 2 40 2:1 i 3219 | LOs1
| Ester 40 1:2 1 3 40 2:1 i 3.038 | 2316
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction

All k values predicted are in the same magnitude range of x10”°. The three reactions
monitored by MW and NIR only, give reproducible predicted % values from the
collected NIR data of 3.089, 3.219 and 3.038 x10°. These are similar to the k values

predicted using the NIR data for the two GC monitored reaction of 2.833 and 2.75
x107.

The k values predicted using the MW data for the three reactions monitored by NIR and
MW only vary quite a lot at 2.809, 1.981 and 2.316 x10”°. These values are very
different from those extracted from the NIR data. It appears that the method is not

reproducible for the prediction of the k value from the predicted concentration profiles.

The MW and NIR data give different results so suggests the variation captured by each
spectral method must vary. This could be due to the different methods, as the MW
analyses the whole reaction volume so captures the true reaction progress, whereas the
NIR spectra are collected using a probe so only a small volume of the total reaction
volume is actually analysed. If the reaction in this region isn’t representative of the

whole batch, then different variation may be captured.

There are not any published literature values for the k value for the same reaction
performed with identical reaction conditions. Blanco and Serrano [83] monitored the
same reaction by NIR and GC analysis to predict the rate constant. The reactions were
run with the same experimental conditions, at 40°C, with a 2:1 molar ratio, acetic
acid:butanol. The integrated form of a second-order reaction was plotted in the same
way as in this work, against time. The resulting plot did not give a straight line as is
expected with a true second order reaction; therefore the k value was calculated based
on the first ten points of the reaction. This results in an estimate of the k value at the
start of the reaction. The k value was found to be 0.058. This is of a completely different
magnitude from the values calculated in this work, but can be explained by the fact that

the published k values are for the start of the reaction, and for this work they have been

calculated for the entire reaction.

3.4.4 Conclusions

It is difficult to find a reference measurement that is suitable and reproducible to

monitor a reaction. GC had been used to measure the concentration of the components

of the esterification reaction studied. This has found to be a hard method to develop and
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Results and Discussion: Chapter 3.4 Monitoring of an esterification reaction

problems were found in the reproducibility of the method to monitor a reaction. There is

a high error in this method.

The rate constants were determined using GC monitoring and also using MCR which
extracts concentration profiles for the components without the need for reference data.
The k values determined do not agree, and it is not known which of the calculated
values is the true one for the reaction studied. There does not appear to be published

rate constants for this reaction using exactly the same conditions.

The rate constant calculated is for a reaction assumed to be far from the equilibrium. In
reality, the reaction studied seems to be reaching equilibrium at the end of the period it
is monitored for, therefore this may be one of the reasons the k values calculated do not

agree with each other.

The collected NIR spectra are affected by the change in hydrogen bonding during the
reaction. This causes a change in the wavenumber at which a specific functional group

absorbs, and may well affect the ability of MCR to extract the concentration profiles.

The values extracted using MCR from MW and NIR spectra collected for repeats of the
reactions show reproducibility and some agreement between the two techniques. This
suggests the reaction can be monitored by these techniques in a reproducible way. The
calculated coefficients show that reproducible MW and NIR spectra can be collected for
repeat reactions. The system has been proved to work and is reproducible. The spectra
can be used with other chemometric techniques to determine other aspects of the

reaction monitoring, such as endpoint determination and process upset detection.
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Results and Discussion: Chapter 3.5 Endpoint determination of an esterification reaction

3.5 Endpoint determination of an esterification reaction

The endpoint of a reaction is subjective. It can be defined as the point at which the
reaction reaches equilibrium, or as it is reaching equilibrium when the formation of
product is at such a slow rate that the reaction is costing more to maintain. than the
value of the product being formed. The endpoint must first be defined before it can be
determined for a process. For this work, an adaptive algorithm called caterpillar is
demonstrated for its use in endpoint determination, and it is shown the parameters used
in the algorithm can be altered to give a different determined endpoint according to

needs.

3.5.1 Experimental set-up

All reactions were carried out within the GMS remote stainless steel cavity with a NIR
transmission probe inserted into the chamber, as described in the experimental section
(chapter 2), to allow MW and NIR spectra to be collected simultaneously. Spectra were

collected at one minute intervals.

The reaction studied is the esterification of butan-1-ol and acetic acid which is catalysed
by sulphuric acid. The reactions were carried out at different temperatures, with
different molar ratios to give different endpoints for the reaction. Repeats of cach

reaction are carried out to examine the repeatability of the endpoint determination.

3.5.2 Results and discussion

All standard characterisation reactions can be used for endpoint determination. Repeats
of the same reaction should have endpoints at the same time. Using different

temperatures, molar ratios and amounts of catalyst will alter the rate of the reaction, and

hence the endpoint.

Caterpillar is an adaptive algorithm which can be used to predict the endpoint of a

reaction, by comparing the now variation to recent variation.

In caterpillar, two windows with a set window width size (WS) are placed in the data

(see section 1.4.4) with an inter-window-distance (inter-WS) between them. A PCA

model is calculated for the second, reference window. to describe the "now  variation

of the samples in this window. This is compared to the old variation in the samples in

the detection window. The windows are moved through the data stepwise. with the
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Results and Discussion: Chapter 3.5 Endpoint determination of an esterification reaction

model building repeated at each step, until a steady state in the variation is seen and this

determined as the endpoint of the reaction. The windows are separated by an inter-

window distance to ensure that a constant variation is due to the actual end-point of the

reaction.

The variables within the algorithm, WS, inter-WS, stepsize, and number of PCs to use
in the model must be defined. Once these are determined for a reaction with specific

conditions, the same variables can be used for subsequent reactions with the same

conditions.

3.5.2.1 Esterification reaction at 40°C, 1:2 initial molar ratio, 1ml

catalyst

The mesh plots of the resulting spectra for these reactions are shown in Figure 3.5.1.
Mesh plots show the spectra, plotted as response versus frequency or wavenumber, over
time. This allows visualisation of the change in the spectra over time, to show the
reaction profile. As can be seen, the spectra for each reaction are very similar as the
reaction conditions were the same. The MW spectra for the second reaction (Figure
3.5.1c) has some differences from the others, particularly in the region below
1500MHZ, where there appears to be a greater response seen compared to the other two
reactions. This spectra also appears to have a greater and more obvious increase in
response over the time of the reaction. The NIR spectra are very similar, and there are
no obvious differences between the spectra. This suggests all three NIR data sets should

give the same determined endpoint.
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Figure 3.5.1: Mesh plots of the collected spectra for esterification reactions run at 40°C, using a
molar ratio of 1:2, butanol to acetic acid, and 1ml of catalyst. The plots are the spectra (NIR or
MW), response (Absorbance or HDb) against variable (wavenumber or fre_quency) plotted agamsf
time so the changes in the spectra over time can be clearly seen. The following data sets are shown:
a) ester 40 1:2 1 1 MW; b) ester 40 1:2 1_1_NIR; «¢) ester_40_1:2 1 1 MW; d)
ester 40 1:2 1 2 NIR; e) ester_40_1:2_1_3 MW; f) ester_40_1:2_1_3_NIR.
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Results and Discussion: Chapter 3.5 Endpoint determination of an esterification reaction

The correlation coefficient, #*, has been calculated to compare the three repeat MW
spectra and the three repeat NIR data sets, as shown in Table 3.5.1. All coefficients are
above 0.995 showing an excellent correlation between the compared spectral data set.

This shows that reproducible NIR and MW data is collected during the repeat reactions.

Table 3.5.1: Table of correlation coefficients, 7, to show the variance between the repeat spectra of
esterification reactions carried out at 40°C, with an initial molar ration of 1:2, butanol:acetic acid
with 1ml of catalyst. The three MW data sets are compared with each other, and the three NIR:
data sets also compared.

r MW1 MW2 | MW3 ¥ NIR1 NIR2 NIR3
MW1 - 0.99511 | 0.99688 | NIR1 - 0.99991 | 0.99963
MW2 | 0.99511 - 0.99603 | NIR2 | 0.99991 - 0.99971
MW3 | 0.99688 | 0.99603 - NIR3 | 0.99963 | 0.99971 ;

PCA was performed on the mean centred spectra, and the resulting scores plots for PC1
are shown in Figure 3.5.2. The scores show the relationship between samples. In this
case, they are plotted against time so the plots show how the variation between samples
changes over time, and hence how the reaction progresses. All the scores plots, for both
the MW and NIR spectra, give typical reaction profiles in which the reaction is
progressing over time. The reaction is expected to reach equilibrium which would
indicate the endpoint of the reaction. It is expected to see this point in the scores by the
levelling of the scores, as the reaction will no longer be proceeding and hence there will
be no variation between samples. However, the scores increase for the entire time the
reaction was monitored suggesting the reaction does not reach equilibrium. As has been
previously mentioned, the endpoint of a reaction is subjective and must be defined.
Once the reaction has slowed to almost equilibrium, this may be an acceptable endpoint.
The rate of increase in the scores does slow down near the end of the time period,

suggesting the reaction is nearing equilibrium. Looking at the scores plots in this way.

gives an indication of the endpoint.
The scores for all three repeats of the reaction, for both MW and NIR. have similar

profiles. This is to be expected as the reactions were carried out with the same reaction

conditions, so should proceed in the same way.

The correlation coefficients, #*, have been calculated. Table 3.5.2, to compare each ot

the scores on PC1 for each spectral data set, as shown in Figure 3.5.2. The 1~ values for

all scores that have been compared are above 0.993. showing excellent correlation. This

- 153 -



Results and Discussion: Chapter 3.5 Endpoint determination of an esterification reaction

shows that the NIR and MW spectra collected during the repeat reactions is
reproducible, and the MW and NIR spectra are comparable. The MW and NIR capture

the same process variation as can be seen on the scores which show the same variance
in both the MW and NIR data.

Table 3.5.2: Correlation coefficients, 7%, to show the correlation between the scores on PC1 for
esterification reactions carried out at 40°C, with an initial molar ration of 1:2, butanol:acetic acid,
with 1ml of catalyst. Each repeat MW and NIR data sets are compared.

r MW1 MW?2 MW3 NIR1 NIR2 NIR3
MW1 - 0.99451 | 0.99633 | 0.99941 | 0.99896 | 0.99926
MW2 | 0.99451 - 0.99822 | 0.99419 | 0.99354 | 0.99485
MWS3 | 0.99633 | 0.99822 - 0.99621 | 0.99563 | 0.99656
NIR1 | 0.99941 | 0.99419 | 0.99621 - 0.99988 | 0.99992
NIR2 | 0.99896 | 0.99354 | 0.99563 | 0.99988 ; 0.99988
NIR3 | 0.99926 | 0.99485 | 0.99656 | 0.99992 | 0.99988 ]
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Results and Discussion: Chapter 3.5 Endpoint determination of an esterification reaction

3.5.2.1.1 Endpoint detection

The spectra are analysed using the endpoint detection function within the caterpillar
algorithm. As part of the function, the number of components to use in the PCA model.
the window (WS) and the inter-window distance (inter-WS) can be altered to assist the
determination of the endpoint of a reaction. Once these are determined for a reaction
with specific conditions, the same variables can be used for subsequent reactions with
the same conditions. The step-size of the movement of the windows through the data
can also be changed. This is set to one for all analysis due to the data sets being
relatively small (~180 samples). The significance level below which the reaction must
fall before it is deemed to have reached stability and hence the endpoint, can also be

altered. This is set to 0.99 for all analysis to ensure the reaction is truly at its endpoint.

The raw spectra are used in the algorithm with no pre-processing. This simplifies the
analysis as choosing a pre-processing technique requires operator skill. The spectra are

mean centred automatically within the algorithm.

These variables have been optimised using the ester 40 12 1 3 MW and NIR data
sets. All the combinations of the different variables to be used can be examined. A
minimum WS of five and a maximum of ten, with a minimum inter-WS of ten and a
maximum of 20 were examined. It is convenient to use an inter-WS double that of the

WS.

MW spectra

The reactions comprise of four components, butanol, acetic acid, butyl acetate and
water. However, two components increase at the same rate and two are consumed at the
same rate, therefore there are effectively only two independent components. It is
expected that only two components will be needed to describe the variation in the
reaction data. Figure 3.5.3 shows the plot to determine the correct number of
components to use. This is shown using a WS of five and inter-WS of ten. The
components show the amount of variation described, and this will be the same for all
combinations of WS and inter-WS, so it is reasonable to examine only one plot. From

the plot, it is clear that almost all the variation in the spectra is described by the first

component. The other components appear to contain a small amount of noise. A

minimum of two components must be used in the algorithm to ensure all useful variance

is captured, so two will be used as expected.
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Results and Discussion: Chapter 3.5 Endpoint determination of an esterification reaction

To choose the WS to use, a plot containing the results for each WS is examined. Ficure
3.5.4. The results are only examined using an inter-WS of ten. Altering this does change
the profiles, but only the relative intensities. For endpoint determination, the plots show
how the reaction changes over time. At the start of the reaction, the variation between
samples is great as the reaction is proceeding, and the reaction composition is altering.
As the reaction proceeds, the variation between samples lessens until such a point at
which the samples become similar as the reaction is reaching equilibrium. Within the
endpoint determination plots, as in Figure 3.5.4, a high variation between samples
should be seen at the start of the reaction as it is for all window sizes used in Figure
3.5.4. This variation should decrease until it reaches below the significance level, or
endpoint level, which is set by the user, in this case at 0.99. Using a WS of five gives
the lowest variation level at the end of the reaction, and this is expected to fall below the
endpoint level. Using a WS of ten, gives quite a high level at the end. and this may not
fall below the set endpoint level. The other window sizes all give similar variation

profiles. Therefore, all window sizes are to be examined more closely.
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Figure 3.5.3: Choosing the number of components to use in the PCA model in the endpoint
detection caterpillar algorithm for MW spectra collected during an esterification reaction run at
40°C with an initial molar ratio of 1:2, butanol:acetic acid, data set ester 40 12 1 3 MW.

2 components, inter window distancew10

TR S
A A

50

2000 _
Window sizes Time/s

Figure 3.5.4: Choosing the window size to use in the endpoint detectiqn cate.rp.il'lar algorithn} for
MW spectra collected during an esterification reaction run at 40°C with an initial molar ratio of
1:2, butanol:acetic acid, data set ester 40_12_1_3_MW.
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Figure 3.5.5 shows the resulting plot for the endpoint determination when using the
different window sizes. This shows that depending on the variables chosen, the endpoint
can be determined at different times. Therefore, it is important to define when the actual
endpoint is, to allow correct identification. In the plots, once the reaction has reached
below the significance level, indicated by the dashed line, the reaction is said to be
stable, and hence at the endpoint. Using WS = 5 (Figure 3.5.5a), the reaction hovers
around the endpoint line briefly, and has fallen below it by 4000s. Using WS = 6
(Figure 3.5.5b), the endpoint is determined at 6000s. For WS = 7 (Figure 3.5.5¢), the
reaction crosses the significance level at 7000s, and is truly below it at 8000s. With a
WS = 8 (Figure 3.5.5d), the endpoint is around at 9000s and WS = 9 (Figure 3.5.5¢) at

10000s. For a WS = 10 (Figure 3.5.5f), the reaction is around the significance level at
around 10000s, but it isn’t clearly below it.

This reaction has been carried out at 40°C, and it is reasonable to assume the reaction
will be over by around 7200s (2 hours). It has been decided to use a WS = 7 in which
the endpoint is between around 7000-8000s. The reaction has clearly slowed down at
this point and is reaching equilibrium as the variation between samples is small. Using
WS = 6, the endpoint is determined at around 6000s, some 20 min earlier. Depending

on how the endpoint is defined by the user, this may be a suitable endpoint.

2 components, window size 7
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Figure 3.5.6: Plot of different inter-window sizes in the endpoint determination using data set
ester 40 12_1_3_MW. 2 PCs are used in the algorithm with a WS=7.
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From the inter-WS plot (Figure 3.5.6) it can be seen that changing this variable does
have an effect on the determined endpoint. However, between time points 7000 to
8000s, there is only a small difference in the plots. Therefore, only a small difference
will be seen in the determined endpoint of the reaction when using different inter-
window sizes. From this, it has been decided to always use twice the size of the chosen

WS for the inter-WS, to simplify the procedure for choosing the variables to use.

The resulting determination of the endpoint using the chosen variables is shown in
Figure 3.5.7. The reaction reaches the significance level at 7000s, and is clearly below it
at 7500s, so this is to be determined as the endpoint. The other reactions, run under the

same conditions, can now be analysed using the same variables to ensure the same

endpoint is achieved.
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Figure 3.5.7: Endpoint detection for ester 40 _12_1_3_MW, using chosen variables within the
caterpillar algorithm: PC=2, ES=7, inter-WS=14. The red dashed line indicates the significance

level.
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Figure 3.5.8: Endpoint determination using PC=2, WS=7, inter-WS=14 for: a)
ester 40 12 1_1_MW and b) ester_40_12_1_2_MW. The red dashed line indicates the significance
level.

The first repeat of the reaction, ester 40 12 1 _1_MW, reaches the significance level at
7000s (Figure 3.5.8a), and clearly is below it at 7500s, so giving an endpoint the same
as in the previous example. The second repeat, ester_40_12 1_2_MW. gives different
results (Figure 3.5.8b). The reaction appears to reach the endpoint at around 6000s, but
then something occurs in the reaction and it proceeds above the significance level once
more. The same thing happens again at around 8000s, so the endpoint is not determined.
This reaction was carried out under the same conditions so should give the same
endpoint. However, some upset must have occurred during the reaction to prevent it
from reaching the endpoint. This shows the limits of the endpoint detection as if the

reaction does not proceed as expected, the true endpoint will be changed, and it may not

be detected with the variables chosen.

NIR spectra

Ester 40 12 1 3 NIR was analysed in the same way as the MW data to determine the
optimum variables to use in the caterpillar endpoint determination algorithm. All
variation is captured in the first two PCs and so two were used. A WS of five gives an

endpoint in the reaction at around the time expected. and so a corresponding inter-\W'S

of ten was used.

Figure 3.5.9 shows the resulting endpoint determination plots for each repcat reaction

using the optimised variables in the caterpillar algorithm. In the first repeat (Figure
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3.5.92) the endpoint is seen just before 8000s, but the reaction still hovers around the
significance level. In repeat 2 (Figure 3.5.9b) the endpoint is also seen just before

8000s, and this stays clearly below the significance level for the remainder of the

reaction. In repeat 3 (Figure 3.5.9¢c) the endpoint is just before 8000s.

The endpoint is reproducible in these three repeats, but it has been determined slightly
later at 8000s, then the 7500s determined with the corresponding MW data. This could
be due to the localised sampling nature of the NIR probe used, which may have a delay

in seeing the reaction progress.
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Figure 3.5.9: Endpoint determination using the caterpillar algorithm with variables PC=2, WS=5,
inter-WS=10. a) ester_40_12_1_1_NIR; b) ester 40_12_1_2 NIR;¢) ester_40_12_1_3_NIR. The red
dashed line indicates the significance level.

3.5.2.2 Esterification reaction at 50°C, 1:0.25 initial molar ratio, 1ml

catalyst
The collected NIR and MW spectra are shown in Figure 3.5.10. From this it can be seen

that the spectra are very smooth and are reproducible over the repeat reactions.
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Figure 3.5.10: Mesh plots of esterification reaction carried out at 50°C with a molar ratio of 1:0.25:
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The correlation coefficients, *, are shown in Table 3.5.3 to show the reproducibility of

the recorded spectra. The values are all above 0.998 showing very reproducible spectra

is recorded.

Table 3.5.3: Correlation coefficients, 7, to show the correlation between the repeat spectra for

esterification reactions carried out at 50°C, with an initial molar ration of 1:0.25. butanol:acetic
acid, with 1ml of catalyst. ’ '

r MW1 MW2 | MW3 r NIR1 NIR2 | NIR3
MW1 - 0.99875 | 0.99893 | NIR1 - 0.99868 | 0.99967
MW2 | 0.99875 - 0.99925 | NIR2 | 0.99868 - 0.99915
MW3 | 0.99893 | 0.99925 - NIR3 | 0.99967 | 0.99915 -

The scores plots for the MW data (Figure 3.5.11a, ¢ and €) have very smooth reaction
profiles and are very reproducible. The NIR scores (Figure 3.5.9b, d and f) are not as

smooth reaction profiles, but they appear reproducible.

The correlation coefficients, 7, have been calculated for each set of data, Table 3.5.4.
The values for the MW data sets are all above 0.998, showing there is little variance
between the scores, so the spectra are reproducible. The NIR repeat spectra have values
above 0.94 so the scores show more variance but are still reproducible. When the scores
of the MW and NIR are compared, 7° values of between 0.0.85 and 0.92 are achieved.
This shows the MW and NIR spectra are much less comparable, suggesting different
process variation is seen by the two techniques, even though they are monitoring the

same reaction. This may be due to the difference in the way the spectra are recorded.

Table 3.5.4: Correlation coefficients, r, to show the correlation between the scores on PCl fqr
esterification reactions carried out at 50°C, with an initial molar ration of 1:0.25, butanol:acetic
acid, with 1ml of catalyst.

r MW1 MW2 MW3 NIR1 NIR2 NIR3
MW1 ; 0.99841 | 0.99809 | 0.87883 | 0.90781 | 0.85952
MW2 | 0.99841 - 099925 | 0.87980 | 0.91735 | 0.86232
MW3 | 0.99809 | 0.99925 a 087543 | 0.91616 | 0.85758
NIR1 | 0.87883 | 0.87980 | 0.87543 ; 0.94482 | 0.99510
NIR2 | 090781 | 0.91735 | 0.91616 | 0.94482 ; 0.95466
NIR3 | 0.85952 | 0.86232 | 0.85758 | 0.99510 | 0.95466 -
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Figure 3.5.11: Scores on PC1 using the mean centred spectra for esterification reactions carried out
at 50°C with an initial molar ratio of 1:0.25, butanol:acetic acid, and 1ml of catal)'.st: a)
ester 50 1:0.25 1 1 MW; b) ester_50_1:0.25_1_1_NIR; ¢) ester_S0_1:0.25_1_1 _MW: d)
ester 50 _1:0.25_1_2 _NIR; e) ester_50_1:0.25_1_3 MW; f) ester_50_lI :0.25_1_3 NIR.
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The spectra has been analysed using the endpoint determination function in the
caterpillar algorithm, using PC = 2, WS =5, and an inter-W§ = 10. The resulting
endpoint determination plots are shown in Figure 3.5.12. The endpoints detected are not
reproducible. In these reactions, a molar ratio of 1:0.25, butanol to acetic acid. has been
used so they will have a different endpoint to the reactions looked at previously. The
molar ratio used does not favour equilibrium, so it is expected the endpoint will be late

in the reaction.

The MW data for the first repeat (Figure 3.5.12a) does not give a clear endpoint. The
reaction appears to reach the endpoint at 5000s, but quickly moves back above the
significance level, suggesting the reaction stopped proceeding for a short while. The
reaction hovers around the endpoint at the end of the reaction, so it is not clear if it has
been reached. For the second repeat (Figure 3.5.12¢) a more obvious endpoint is
determined at about 9250s. With the third repeat (Figure 3.5.12e) there is also a clear
endpoint at 8000s, although the reaction does move back towards the significance level
nearer the end of the reaction. The determined endpoint is not reproducible for these

reactions.

With the NIR data, the endpoint appears to be very early on in the reaction. This is not
expected as the reaction conditions do not favour equilibrium. However, on closer
inspection of the plot for the first repeat (Figure 3.5.12b), the reaction does not actually
reach the endpoint, but hovers around the line for the length of the reaction. With the
second repeat (Figure 3.5.12d), the reaction nears the significance level for some time
and actually only goes below it at 8000s, and the reaction goes back over the line at the

end of the time period. On closer inspection of repeat 3 (Figure 3.5.12f) the reaction

does not actually reach the endpoint.
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Figure 3.5.12: Endpoint determination plots for esterification reactions carried out at 50°C, with an
initial molar ratio of 1:0.25, butanol:acetic acid, and 1ml of catalyst, using PC=2, WS=5, inter-
WS=10 in caterpillar algorithm: a) ester_50_1:0.25_1_1_MW; b) ester_50_1:0.25_1_1_NIR; ¢)
ester 50 1:0.25 1 1 MW; d) ester_50_1:0.25_1_2 NIR; e) ester_50_1:0.25_1 3 MW; )
ester_ 50 1:0.25 1 _3 NIR. The red dashed line indicates the significance level.

3.5.2.3 Esterification at 40°C, 1:2 initial molar ratio, 4ml catalyst

These two reactions were carried out under the same conditions, so it is expected they
will have similar endpoints. The resulting spectra are shown in Figure 3.5.13. From

these it can be seen that the reactions carried out are similar as similar spectra result,

however, there are differences in the spectra.
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Figure 3.5.13: Mesh plot of spectra collected during esterification reactions carried out at 40°C,
with an initial molar ratio of 1:2, butanol:acetic acid, with 4ml of catalyst; a)
ester_ 40 _1:2 4 1 MW; b) ester 40 1:2 4 2 MW; c) ester_40_1:2 4 1 _NIR; d)
ester_40 _1:2 4 2 NIR.

The MW spectra (Figure 3.5.13a,b) are quite similar, but there does appear to be a
difference in the actual shape of the spectra. The calculated correlation coefficients, r,
for the two repeat spectral data sets is 0.95531 showing a high reproducibility of the
repeat spectra. However, this is lower than the values seen for the other repeat reactions

looked at which have been above 0.99.

The NIR spectra (Figure 3.5.13c.d) are quite similar. The spectra change gradually, in a
typical reaction profile manner. Then, between 5000 and 6000s, the spectra change
dramatically. This point could be due to something occurring during the reaction that
results in a sudden increase in absorption of the NIR. However, it is seen in both

reactions, so appears to be a reproducible change. The r value for these two repeats is
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0.99307 showing good reproducibility. This is higher than that calculated for the MW

repeat data, suggesting in this case the NIR data collected is more reproducible.

The resulting spectra were analysed by PCA, the resulting scores on PC1 are shown in
Figure 3.5.14 .
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Figure 3.5.14: Scores on PC1 vs. time for a) ester_40_1:2_4_1_MW; b) ester_40_1:2_4_2_MW: ¢)
ester 40 1:2 4 1 _NIR; d) ester_40_1:2 4 2 NIR.

The scores on PC1 show the greatest variation seen in the spectra during the reaction.
The scores plots show how the samples change over time, and so give a profile of the
reaction as it progresses. The scores plots for the MW spectra for both reactions (Figure
3.5.14a,b) have a very similar reaction profile. This is to be expected as the same
reaction is studied. In a normal reaction profile, it is expected to see the variation
change between the samples to be quite large at the start. and then slow down as the
reaction reaches equilibrium, as the samples are changing less rapidly. This profilc is
not seen here. There is a dip in the scores at around 6000s, which suggests something
occurs in the reaction. This is reproducible in both reactions. Looking at the NIR scores
(Figure 3.5.14c,d) a typical reaction profile is not evident. The scores are fairly level

until around 6000s. suggesting the samples change very little. This would suggest that
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the reaction is not proceeding. The NIR probe only measures a small area of the
reaction mixture, suggesting it does not see the true reaction picture. The samples then
change dramatically after 6000s, and the reaction appears to have slowed down by
9000s. This relates to the large increase seen in the spectra at the same time period
(Figure 3.5.13). The scores plots do not give much useful information about the reaction

progress, and do not help with the prediction of the end point of the reaction.

The r* values have been calculated to compare each of the data sets, Table 3.5.5. The
scores for the two repeat MW data sets show little variance with an # value of 0.99873.
The two NIR data sets are also fairly reproducible with an r value of 0.95335. The NIR
and MW scores show greater variance with ° values of between 0.88 and 0.92,

indicating the two techniques do not capture the same process variation.

Table 3.5.5: Correlation coefficients, 7, for the PCA scores on PC1 for the repeat MW and NIR
spectra recorded during an esterification reaction carried out at 40°C, with an initial molar ratio of
1:2, butanol:acetic acid, with 4ml of catalyst.

r MW1 MW?2 NIR1 NIR2
MW1 - 0.99873 | 0.89352 | 0.92049
MW2 | 0.99873 - 0.88613 | 0.91108
NIR1 | 0.89352 | 0.88613 - 0.95335
NIR2 | 0.92049 | 0.91108 | 0.95335 -

The data was then analysed using the caterpillar algorithm and the optimum variables to
be used determined. It was decided to use PC =2, WS = 5 and inter-WS = 10 for both
the NIR and MW data. However, with all possible combinations, the endpoint is not

determined in the reactions, and so these variables are used to illustrate the example.

Figure 3.5.15 shows the endpoint determination plots for both the MW and NIR data
sets for the ester 40 12 4_I and 2 data sets. Its clear from these plots that an endpoint

is not determined for the reaction and that something abnormal occurs during the

process.
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Figure 3.5.15: Endpoint determination using the caterpillar algorithm with variables PC=2, WS=5,
inter-WS=10. for an esterification reaction carried out at 40°C, with an initial molar ratio of 1:2,
butanol:acetic acid, with 4ml of catalyst; a) ester_40_12_4 1_MW; b) ester_40_12_4 2 MW; ¢)
ester 40 12 4 1 NIR; d) ester_40_12_4_2 NIR. The red dashed line indicates the significance
level.

In the MW data of the first reaction (Figure 3.5.15a) there appears to be an endpoint at
5000s, but then the reaction goes above the significance level again after 6000s, and
slowly moves down towards the endpoint by the end of the reaction. This “dip” below
the endpoint line correlates to the dip seen in the corresponding scores (Figure 3.5.14a)
at around 6000s. A similar thing is seen in the MW data for the second reaction (Figure
3.5.15b) in which the reaction appears to reach the endpoint but moves above the
significance level again. The reaction appears to be very erratic after this point. The
NIR data for the first reaction (Figure 3.5.15¢) does not show anything about the

reaction. The NIR data for the second reaction (Figure 3.5.15d) also shows very little

with no endpoint detected for the reaction.

As the endpoint is not determined for either of the reactions run under the same
conditions, it suggests that the caterpillar algorithm cannot be used in this situation. It
seems unlikely that an occurrence would happen in both reactions to prevent the

determination of the endpoint.
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The point at which the endpoint is first seen in the MW data, 6000s, is at the same time
that the abnormality occurs in the NIR spectra. If this abnormality in the spectra is due
to the equilibrium being reached, then this could be the endpoint. If this is the case, then
the endpoint cannot be determined if the equilibrium has been reached, and the endpoint

must be defined as an earlier time in the reaction when it is reaching equilibrium.

3.5.3 Conclusions

The endpoint of a reaction must first be defined as it is a subjective term. Repeats of
reactions with the same conditions have been examined for both NIR and MW data.

Repeats of the same reaction should have the same endpoint.

This has been shown well with one set of repeats, ester 40 1:2 1 I, 2 and 3, with both
the NIR and MW data sets. The first two repeats gave good agreement with the
endpoint determined at 7500s in the MW and 8000s in the NIR. The NIR and MW do
not give the same endpoint, but the difference is only 500s (8 min). This could be due to

the localised nature of the NIR probe used.

The second example using ester 50 1:0.25 1 1,2 and 3, does not give as good results.
An endpoint is not determined for the first repeat, and the determined endpoints do not
agree for the second and third repeats. The second data set gave an endpoint of 9250s
with the MW and 8000s with the NIR. The third repeat gave an endpoint of 8000s for
the MW, and no endpoint was detected in the NIR. The molar ratio used does not favour

equilibrium, so this shows the limits of the reaction studied which may have not reached

endpoint in the time studied.

The last example uses data set ester 40 1.2 1 and 2. In these reactions a larger amount
of catalyst is used, 4ml compared to 1ml used in the other examples. No endpoint was
determined in either the NIR or MW data. The NIR spectra showed some abnormalities
in the collected spectra. This may be due to the reaction actually reaching equilibrium
within the studied time, as these reactions are expected to proceed at a faster rate. This
shows the limit of using caterpillar to detect the endpoint once the equilibrium has been

reached. The endpoint must be defined as the reaction reaching equilibrium, and not the

actual equilibrium point.
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3.6 Detection of process upsets during an esterification
reaction

A process upset is defined as anything which disturbs the progress of a reaction. It is
important to detect such upsets during a reaction, and if possible identify the nature of

the upset to allow correction of it and ensure the reaction proceeds as expected.

Caterpillar is an adaptive algorithm which can be used to determine the endpoint of a
reaction. It can also be adapted to detect upsets during a reaction. The “now” variation
is compared to the recent variation, and any major change in variation is identified as an

upset as the reaction is no longer proceeding as expected.

In this work, several upsets have been stimulated during an esterification reaction
monitored by MW and NIR spectroscopy. The caterpillar algorithm has been used to
identify these upsets.

3.6.1 Experimental set-up

All reactions were carried out within the GMS remote stainless steel cavity with a NIR
transmission probe inserted into the chamber, as described in the experimental section
(section 2.4), to allow MW and NIR spectra to be collected simultaneously. Spectra

were collected at one minute intervals.

Reactions were carried out with process upsets stimulated, similar to those expected to

be seen in an industrial setting (section 2.5.5).

3.6.2 Results and discussion

The caterpillar algorithm can be used to detect process upsets in a reaction. This works
in a similar way to the endpoint determination, but this time the windows are placed
side by side (section 1.4.4). The first window is used as a reference window and the
second as a detection window. A PCA model is calculated for the reference window to

describe the variation of the samples in this window. The newest samples, contained in

s model. If several of the samples in the

nce PCA model. this is

the detection window, are then compared to thi

prediction window are significantly different from the refere

interpreted as process change. Both windows are moved through the data stepwise

allowing the reference model to adapt to any process changes. This means the caterpillar

algorithm will detect the onset of new phases in the process data as they occur.
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The variables of window size (WS) and number of components (PCs) to use in the PCA
model must be optimised to ensure correct determination of process upsets. It is

important that only true process upsets are detected and not normal reaction variation as

this would lead to false alarms.

Once the optimum variables have been chosen, the algorithm can be performed on

spectra collected from reactions with stimulated process upsets to determine if these

process upsets can be detected.

3.6.2.1 Determination of window size and number of components

The characterisation reaction spectra, data sets ester 40 4 [ and ester 40 4 2. werc
used to determine the WS and the number of PCs to be used in the PCA model within
the caterpillar algorithm. These are set so that upsets are determined and normal process
change is not identified as an upset. This data is representative of the reactions
performed and contains only normal process variation. The reference reaction profiles
can be seen in the mesh plots of the spectra over time (Figure 3.6.1a and b). The MW
spectra changes very little over time. The NIR spectra changes more dramatically,
particularly at around 7000s, when something appears to occur in the reaction. This is a
reproducible change, seen in most of the reactions carried out, and is possibly related to

the endpoint of the reaction and due to the local nature of the NIR measurements.
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Figure 3.6.1: Mesh plots for reference esterification reaction carried out at 40°C, with an initial
molar ration of 1:2, butanol:acetic cid, and no process upsets stimulated. The resulting scores plots,
PC1 vs PC2, from PCA are also shown; a) MW spectra) NIR spectra; ¢) MW scores; d) NIR scores.

PCA has been performed on the mean-centred spectra. The scores plots for the MW
spectra (Figure 3.6.1c) show how PCA can be used to visualise the progression of a
reaction. The scores have a typical reaction profile in which the reaction appears to
progress rapidly at the start, and proceeds towards equilibrium. However, the NIR

scores (Figure 3.6.1d) do not show the progression of the reaction in the same way.

The reference data is analysed using a range of window sizes and number of PCs. The
“now” variation is compared to the recent variation and any atypical samples, i.e. those
which are significantly different, are determined for each combination. The number of
atypical samples is counted and displayed in an occurrence plot. This gives easy
viewing of the state of the reaction. Occurrences greater than zero indicate atypical
samples have been detected in the process, and hence a process upset. The number of

atypical samples should be none for an ideal system with only normal process variance.
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Therefore, a WS and number of PCs is chosen that gives no occurrences. The

significance level must also be chosen, but this is set high (0.99) to minimise the

number of false alarms.

Generally it is suggested to use a wide WS to ensure that the best representation of the
variation in all stages of the process is captured. The data examined comprises of only
around 180 samples, therefore the WS is limited. A range of five to ten samples in the

window was looked at. The smallest WS must always be one greater than the maximum

number of components examined.

It is expected that four components would be needed to model the system as there are
four components reacting. However, as the two products form at the same rate and the
two reactants are consumed at the same rate, only two components are effectively
changing and contributing variation to the system, therefore it is reasonable to assume
that two components will be sufficient to model the system. Hence one to four

components were examined.

A response surface showing the occurrences for different combinations of WS and
number of PCs results from the analysis (Figure 3.6.2). For the MW spectra (Figure
3.6.2a) it can be seen that using two components and a WS of five gives no atypical
samples i.e. no occurrences are detected. Using four components with a WS of five also
gives no occurrences. However, it is considered that two components should suffice to
model all the relevant information, and using four might lead to the inclusion of noise in
the system. Looking at the PCA scores, 99.18% of the variance is captured in the first

two components, and including more is not adding anything to the model.
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Figure 3.6.2: The response surface plot shows the occurrences for different combinations of window
size, WS, and number of components, PCs, for the reference data set. Results for; a) MW spectra;
b) NIR spectra; ¢) NIR spectra using just the first 1.5 hours of reaction data.

The NIR spectra were analysed in the same way. Using the full 3 hour, 10 800s, data set
there are occurrences of greater than one for all combinations, implying atypical
samples are detected (Figure 3.6.2b). Examination of the spectra (Figure 3.6.2b) shows
the process does seem to change dramatically around 7000s into the reaction. This could
be the endpoint of the reaction which may prove to be a problem when trying to identify
process upsets if the end of the reaction is itself seen as an upset. Due to the nature of
the probe, only one small area of the reaction mixture is analysed and so the true
reaction progress may not be seen. When analysing the first half of the reaction, around
1.5 hours, 5400s, (Figure 3.6.2c) a WS of five and two components can be used to give
no atypical samples. This shows the limits of using NIR data for process upset detection

as the endpoint of the reaction seems to be detected as process change.

It was decided to analyse all reactions using two components in the PCA model. with a

WS of five, in the caterpillar algorithm. The WS is equivalent to five minutes as the

spectra are taken at one minute intervals. The window is moved through the data one

spectra at a time. The atypical sample due to a process upset is detected in the next
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spectrum that is recorded giving a lag before the upset is identified. Therefore. the more

frequently spectra are taken, the quicker the upset will be identified.

3.6.2.2 Addition of catalyst

The reaction was carried out in the way described, but with 1.0ml catalvst added at the
start, data set Ester_upset cat. Further additions of catalyst (1.0ml) were added at 1790,
3590 and 5450s into the reaction, to give a total of 4.0ml of catalyst. This reaction is to
simulate problems with charging of catalyst. Figure 3.6.3a and b show the resulting MW
spectra and NIR spectra respectively. The MW spectra show clear changes at the points
the catalyst is added (as indicated by arrows). The NIR spectra show no such change,

but do show a dramatic change near the end of the reaction.

The spectra were analysed with the caterpillar process upset algorithm using a WS of
five, two PCs and significance level of 0.99. The resulting occurrence plots are shown

in Figure 3.6.3¢c, and d.

In the occurrence plot, the “new” samples that are statistically different from the
reference samples are counted and shown as an occurrence. The three additions of
catalyst are clearly identified as occurrences in the MW spectra (Figure 3.6.3c), at 1800,
3600 and 5450s. An occurrence of one is seen at the start of the upset. This indicates
one of the five samples in the window is atypical. This builds up to an occurrence of
five after five minutes, so now all five samples are atypical. This shows a clear process
upset, and not just a false alarm. False alarms are likely to be seen as single events with

a low occurrence, so are clearly identifiable as false alarms.

The only occurrence identified in the NIR spectra (Figure 3.6.3d) is at around 8250s.
This does not relate to the addition of catalyst, but perhaps indicates the endpoint of the
reaction analogous to the observation in the reference data (Figure 3.6.3b). As
mentioned previously, if the endpoint of the reaction is identified as an upset in the NIR

spectra, then this is not a suitable method to detect process upsets.
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Figure 3.6.3: Esterification reaction with addition of catalyst at 1790, 3590 and 5450s to stimulate a
process upset; a) Resulting MW spectra. The arrows indicate the addition of catalyst. It can be
clearly seen the effect this has on the spectra; b) Resulting NIR spectra; ¢) Occurrence plot for MW
spectra; d) Occurrence plot for NIR; e) Scores plot of PC1 vs. PC2 for MW spectra; f) Scores plot
of PC1 vs. PC2 for NIR spectra. The three circles indicate a change in the scores due to the addition

of catalyst.
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PCA was carried out on the mean centred MW and NIR spectra to examine the reaction
progress. The scores plot for the MW spectra (Figure 3.6.3¢) shows four clear staces of
the reaction. These would appear to relate to the addition of the catalyst at the difjferem
stages. The NIR scores (Figure 3.6.3f) are harder to interpret. There does appear to be

three small changes in the vertical plane (circled), but these are masked by the larve

change seen in the horizontal plane.

MW spectra are sensitive to the addition of the catalyst. The actual catalyst is detected
in the spectra due to the resulting change in dielectric constant of the reaction mixture.
The very small volume detected (1ml in 450ml) shows the sensitivity of the method.
The NIR spectra change due to the absorbance properties of the material changing.
Addition of the catalyst does not dramatically affect the composition of the reaction
mixture but will affect the rate of reaction. The NIR is not able to pick up the small

change due the addition of catalyst.

3.6.2.3 Charging of half of the reactants

The reaction chamber was charged with the butanol and approximately half of the acetic
acid, data set Ester upset charging. The remaining acetic acid was added 2460s into
the reaction. This is to mimic insufficient charging of reactants. The occurrence plot of
the MW spectra (Figure 3.6.4a) and NIR spectra (Figure 3.6.4b) show the process upset
is clearly detected at around 2500s in both. The spectra before the second addition of
acetic acid will be greatly different in the MW spectra as the fullness of the chamber
affects the recorded spectra due to the amount of air present. The absorbance seen in the

NIR spectra will also change due to the addition of more acetic acid as the reaction

composition changes.
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Figure 3.6.4: Occurrence plots for an esterification reaction with charging of half the reagents, and
addition of the second half at 2460s to stimulate a process upsets; a) using MW spectra; b) using
NIR spectra.

3.6.2.4 Addition of water

In this reaction, Ester upset water I, water was added to the reaction at 1800 (5ml),
2990 (7.5ml) and 4790s (10ml). This is to simulate a leaking cooling pipe in industry.
All three additions of water are detected as process upsets in the MW spectra (Figure
3.6.5a) at 1900, 2990 and 4800s. The first event appears slightly after the actual addition
of the water, around two minutes later. The MW spectra seem 1o have trouble detecting
such a small amount of water. The addition of the water will change the dielectric
constant of the reaction composition, which affects the resulting MW spectra. The MW

spectra are very sensitive to small amounts of water - 7.5 ml in 450 ml, 1.7% by

volume, is detected.
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There are also three events identified in the NIR spectra (Figure 3.6.5b). however the
first event appears be more like a false alarm as it starts at two and moves to an
occurrence of one. There is no clear build up of the occurrence. The other two additions
of water are clearly detected at 3000 and 4800s. Water strongly absorbs in the NIR

region, so it is expected that the spectra will clearly change due to water.

3.6.2.5 Addition of benzoic acid

Benzoic acid (2g / 0.45%w/v) was added to the reaction at 3800s to simulate the
charging of incorrect reactants. Figure 3.6.6a shows the occurrence plot for the MW
spectra. The addition of benzoic acid is seen as an upset at around 3800s. There is also
an event detected later in the reaction. This was not a stimulated upset, but could
perhaps be due to a secondary effect of the addition of the benzoic acid. The benzoic
acid 1s added as a solid so it may take time to dissolve and have an effect on the
reaction. The addition of the benzoic acid will change the dielectric constant of the

reaction mixture, and hence the MW spectra recorded.
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Figure 3.6.6: Occurrence plot for an esterification reaction with the addition of benzoic acid at
4000s to stimulate a process upset; a) MW spectra; b) NIR spectra.

No occurrences are detected in the NIR spectra (Figure 3.6.6b). NIR spectra is affected

by a change in absorption due to a change in concentration of the components. The
benzoic acid does not seem to change the absorption properties of the mixture. so the

NIR spectra do not change due to its addition.

3.6.2.6 Disturbance of stirrer

Two reactions were carried out in which the stirrer is disturbed. In the first.

Ester upset stirrer_1, the following disturbances occurred:
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Table 3.6.1: Disturbance cause by altering the stirrer during the esterification reaction
ester_upset_stirrer 1.

Time /s Disturbance
1500 | stirrer switched off
1860 stirrer switched on
2460 | stirrer turned up to 2
3180 | stirrer turned down to 1
5400 stirrer switched off
6000 | stirrer switched on

When using a WS of five and two PCs, no occurrences are seen in the MW data. When
looking at the occurrences for the NIR data (Figure 3.6.7), an occurrence is seen at
2550s, but this appears to be a false alarm as it only reaches an occurrence of one. There
is another upset at 6000s, and at 6450s. Neither of these coincide with a stimulated
process upset. It could be that a lag occurs before the effect of switching off the stirrer is

seen, but this seems unlikely.

Occurrences
N

0 2000 4000 6000 8000 10000
Time/s

Figure 3.6.7: Occurrence plot for the esterification reaction with stirrer disturbance as a stimulated

upset for NIR spectra.

The reaction was repeated in which the stirrer was switched off for longer periods to see

: " TR
if it could be identified as a process upset. In the second reaction. Ester_upset_stirrer ..

the following disturbances occurred:
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Table 3.6.2: Disturbance cause by altering the stir i .
; rer during the es i i
ester_upset_stirrer_ 2. g esterification reaction

Time /s Disturbance

600 stirrer switched off | stirrer off for 3 min
780 stirrer switched on

1380 stirrer switched off | stirrer off for 5 min
1680 stirrer switched on

2280 stirrer switched off | stirrer off for 6 min
2640 stirrer switched on

3240 stirrer switched off | stirrer off for 7 min
3660 stirrer switched on

4260 stirrer switched off | stirrer off for 8 min
4740 stirrer switched on

5360 stirrer switched off | stirrer off for 9 min
5880 stirrer switched on

6660 stirrer switched off | stirrer off for 10 min
7260 stirrer switched on ’
7860 stirrer switched off | stirrer off for 15 min
8760 stirrer switched on

This time the stirrer was switched off for increasing lengths of time. The resulting

occurrences are shown in Figure 3.6.8.
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Figure 3.6.8: Occurrence plot for the disturbance of stirrer process upset a) MW spectra, b) NIR

spectra.

From the MW spectra (Figure 3.6.8a) only false alarms are detected as the greatest
the NIR spectra (Figure
t 3900s which

number of atypical samples detected is two out of five. In

3.6.8b) more obvious process upsets are identified. The first is seen a

coincides with the stirrer being switched back on after 9 minutes. The second 1s at

6450s. which does not coincide with any of the stimulated upsets. The third is at 8800s.

ould mean that no

which is just after the stirrer was switched on after 15 minutes. This w
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effect was seen when the stirrer was switched off for 10 minutes. It therefore appears

that the effect of the stirrer being switched on and off is not detected, but some other

interference in the reaction.

It was not expected that the disturbance of the spectra can be identified as a process
upset. For an upset to be determined it must affect the spectra, and cause atypical

variation. The disturbance of the stirrer will not affect the spectra as it does not alter the

composition of the reaction.

3.6.3 Conclusions

In this work, the esterification of butanol by acetic acid has been monitored by NIR and
MW spectroscopy. Various process upsets have been stimulated, and the resulting
spectra analysed using a new algorithm called caterpillar. This is an adaptive algorithm
which can be used to identify such process upsets. This has the advantage of being
suitable for dynamic processes as the algorithm analyses the spectroscopic data directly

and no static model is built.

The use of caterpillar has been demonstrated using MW spectra to identify the incorrect
addition of catalyst, addition of water, insufficient charging of reactants and the addition
of an interferant, benzoic acid, as process upsets during the reaction. Caterpillar has also
been used with NIR spectra of the same process, which only picks up some of thesc
upsets, but not all, so has limited use in this application. Neither technique was able to
detect disturbances to the stirrer. MW spectroscopy has been shown to be much more
sensitive to small variation in the process, and has the advantage that the entire reaction
volume is monitored. The occurrence of an upset can be detected, but not the cause of

the upset. Other techniques are needed to determine the cause of the upset and allow

identification of the remedial action necessary.
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4.0 Conclusions

In this work guided microwave spectroscopy (GMS) and near infrared (NIR)
spectroscopy have been used to monitor two typical industrial processes namely dryving
of a solid material, and the monitoring of an esterification reaction. Both processes have
monitoring issues, but the main issue is that of sampling. The process must be sampled

in such a way as to give a sample that is representative of the entire process.

Traditional techniques may involve removing a sample from the process and analysing
it off-line. This is especially difficult in drying and so methods involving analysis of the
off-gases have been developed. It takes time between sampling and the analytical
results, so these methods are generally used to check the final product is within
specification and not to control the process. Process analytical techniques, such as NIR
and MW spectroscopy produce no waste, are quicker, safer and measurements are made

on-line, in real-time so can be used to monitor and control the process.

NIR spectra record the change in absorption due to the components present. As the
relative amounts of the components change, a change in the recorded spectra is seen.
Microwave (MW) spectra record the change in dielectric constant of the reaction
mixture as the reaction proceeds. Each component has a different dielectric constant.
and as the concentrations of these change so does the relative dielectric constant of the

mixture, therefore these techniques are suitable for monitoring evolving processes.

NIR spectroscopy is a widely used and well understood technique, and many examples
exist of applications of NIR in the field of process analysis. It is relatively easy to relate
the spectra of a process to how the process is proceeding. GMS has only been used for a
couple of process analysis applications, and the technique is less understood. The
process spectra are much harder to interpret and relate to the process. It was hoped
using both techniques to monitor these processes would give a reference method. NIR.

to which the MW spectra could be compared to aid interpretation of the process from

the MW spectra.
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4.1 Drying

The drying process was initially simulated by wetting a material with solvent to show
the possibility of monitoring a drying process. Calibration models were built using the

recorded MW spectra and NIR spectra to predict the amount of solvent present in the

material.

The MW spectra were successfully used to predict the amount of solvent in a sample
down to very low amounts (below 1% w/w) using a global model built with spectra pre-
processed with auto-scaling followed by Box-Cox logarithmic transformation. This
worked well for the prediction of water in sand and propanol in ascorbic acid, which
gave prediction errors of 5% and 2% respectively. The global models were not as
successful for the prediction of ethanol in salicylic acid which gave a prediction error of
32% for the global model. This could be due to problems in reproducibility of the
experiments. This was seen in the PCA scores which show a large variation between the
repeat experiments. It seems more likely that the limits of detection have been reached,
and the method is not sensitive to such a low amount of ethanol. This would appear to
be the case as the use of a local model for above 2% solvent gave much better errors of
only 2% when using the auto-scaling and Box-Cox logarithmically transformed spectra.

Models below 2% gave 23% error using Box-Cox logarithmically scaled data.

The NIR spectra collected were not representative of the process as a diffuse reflectance
probe was used. This only measures a small area of the sample and is reliant on the
solvent spreading through the sample to the area the probe is measuring. The NIR
should be capable of measuring a true drying process as the solvent is being removed in
a more continuous manner. Unfortunately the NIR probe could not be used to monitor

the drying process due to limitations of space within the GMS chamber.

During the wetting process, the solvent is added in steps and it must then seep though
the material. Effectively two processes are occurring and both are monitored
successfully by the GMS. The wetting experiments have shown the possibility of

building calibration models to predict the amount of solvent present.

An actual drying process was also monitored by MW spectroscopy to show that the true

process can be monitored. These experiments lack reference concentration data. so can

only give an indication of the possibility of monitoring the process. The use of the PCA
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scores plotted against time and the calculated residual spectra showed the possibility of
monitoring the drying process using MW spectroscopy. These experiments did not

reach completion, but do show the possibility of the technique. Drying is a continuous

process and has been shown to be monitored successfully.

Industrial drying processes involve either fluid bed dryers or pressure filtration units.
Both have problems of monitoring the process due to huge cakes of material being
dried. Visual inspection of the material may be carried out to determine if it is dry, but
only the top layer of the material can be seen so this is not a good way to determine if it
is dry. A sample may be removed and analysed, but this is unlikely to be representative
of the entire process. York ef al. [91] have used electrical tomography to provide a 3D
model of the drying process. This involves the use of sensors located around the vessel
to monitor the process. Green et al. [93] have used NIR to monitor drying, and found

that sampling is the main issue.

MW spectroscopy has the advantage over these methods as the whole sample is
analysed so a truly representative model is produced of the drying process. MW
provides quick, non-invasive and non-destructive analysis, so is much better than
analysing a sample by wet chemistry as traditionally is done. Also the MW has been
proved to measure very small amounts of solvent in the sample, down to 1% w/W so can
monitor a sample until it is almost completely dry. This process has only been
monitored using small amounts of powder, less than 150g. True industrial drying
processes are on huge scales. Further work is needed to determine how large a sample

can be analysed, and if it is possible to simply attach the microwave antenna to either

side of a process vessel to monitor the process.

4.2 Esterification reactions

The set-up of the equipment was examined to ensure the optimum conditions to collect

reproducible spectra were used. The volume of sample in the GMS chamber was

examined and it was found the GMS chamber should be as full as possible, and the

volume used kept constant as the amount of air present affects the spectra. It is also

important to regulate the temperature to give reproducible spectra.

During this work it was found difficult to find a reference measurement that was

suitable and reproducible to monitor the studied reaction. GC had been used to measure
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the concentration of the components of the esterification reaction of butanol and acetic
acid studied in this work. This was found to be a hard method to develop and problems

were found in the reproducibility of the method to monitor a reaction. There is a hich

error in this method.

The rate constants, k, were determined using GC monitoring and also from MW and
NIR spectra using multivariate curve resolution (MCR). This extracts concentration
profiles for the reaction components without the need for reference data. The & values
determined by the different techniques do not agree, and it is not known which of these
calculated values is the true one for the reaction studied. There does not appear to be
published rate constants for this reaction using exactly the same rate constants. The k
values calculated for repeat reactions are fairly reproducible for each technique. This
indicates the MW and NIR spectra recorded are reproducible as the underlying variation
can be used to extracted reproducible k values using MCR. The system has been proven

to work and very reproducible spectra can be collected.

Traditional monitoring systems involve building a model to calibrate the spectra to
concentration data to allow the process progress to be monitored [83, 97]. Model
building is a long process and the model is only valid whilst the process is operating
under the same conditions. The model is only as good as the samples used to build it.
Samples are often made up in the laboratory which may not be fully representative of
the process. Ideally real process samples should be used but these rely on a reliable,

reproducible reference method. Methods such as GC may be used to provide this

reference concentration data.

MCR methods can extract concentration profiles from spectral reaction data without the
need for reference concentration data so has the advantage over traditional methods in
that no tedious model must be built. This gives a reaction profile to allow monitoring of
the progress of the reaction, and the endpoint can be determined. These mcthods can be
use in real-time and are batch independent as a model is not built, but concentration
profiles are extracted from the underlying spectral variation. Within this work, MCR
has been used to extract the concentration profiles, but due to an unreliable reference
method it is not known which of these are the true profiles. The potential for the use of

MCR has been proved as reproducible profiles can be extracted from repeat spectra.
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Previous work proves that MCR is a reliable method for monitoring reactions by
extraction of reaction profiles. For example, Richards et al [100] used MCR-ALS \\'itil
IR spectra to extract the concentration profiles of a reaction The extracted results
showed good agreement with the reference HPLC data. Blanco ef al. [98] used MCR to
monitor an esterification reaction by NIR, and found the extracted concentration

profiles showed good agreement with the GC reference data.

The endpoint of a reaction must first be defined as it is a subjective term. Repeats of
reactions with the same conditions have been examined for both NIR and MW’ data and
an adaptive algorithm, caterpillar, used to determine the endpoint of the reaction.

Repeats of the same reaction should have the same endpoint.

The endpoint was determined reproducibly from the MW spectra for one set of repeat
spectra. The NIR spectra gave a slightly later endpoint, around 500s later. and it is
thought this could be due to the localised nature of the NIR probe used. The endpoint
was not determined reproducibly for another set of reactions which were carried out
using a molar ratio that doesn’t favour equilibrium. This shows the limits of the

algorithm with the reaction studied, which may have not reached the endpoint.

The calibration free method used is caterpillar which does not require a static model to
be built so can be used to monitor reactions and determine endpoints much quicker. It is
adaptive so it is not necessary to build a new model should the reaction conditions

change. This makes it a much more suitable method for monitoring dynamic processes

than traditional model building.

During the esterification reaction, various process upsets were stimulated, and the
resulting spectra analysed using the caterpillar algorithm. The use of caterpillar has
been demonstrated using MW spectra to identify the incorrect addition of catalyst.
addition of water, insufficient charging of recants and the addition of an interferant.
benzoic acid, as process upsets during the reaction. Caterpillar has also been used with
NIR spectra of the same process, which only picks up some of these upsets, but not all.

so has limited use in this application. Neither technique was able to detect disturbances

to the stirrer. MW spectroscopy has been shown to be much more sensitive to small

variations in the process, and has the advantage that the entire reaction volume 1s

monitored. The occurrence of an upset can be detected, but not the cause of the upsct.
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Other techniques are needed to determine the cause of the upset and allow identification

of the remedial action necessary.

Previous methods for fault detection during processes include the use of SIMCA [84].
This involves building a static model to model the normal operating state of a process.
New samples are compared to this model and any deviations from the model interpreted

as a process change or upset. However, this may interpret normal process variation as

an upset, so is only suitable for steady state reactions.

Caterpillar 1s an adaptive algorithm that is batch independent, so normal process
variation is not identified as process upsets. This is a suitable algorithm for dynamic
processes, and reduces the number of false alarms. Also no static model is needed to be
built, so time is saved in this way. Once the method is optimised on a reaction with only
normal process variation, it can be used in real-time to allow monitoring of the reaction

and upsets can be corrected for.

Previous monitoring for esterification reaction has involved the use of Raman
spectroscopy [18]. The main problem with this technique is that fluorescence interferes
with the spectra, masking the variation due to the process. NIR and MW do not have
these problems so the spectra are easy to relate to the process. Also, water is virtually
invisible to Raman, so cannot be used to monitor the water production during the

esterification reaction unlike NIR and MW [26].

4.3 Overall conclusions

The original aim of the work was to use well understood NIR spectra which can easily
be related to reaction progress as a reference method to aid interpretation and
correlation of MW spectra to the process variation. In fact MW spectroscopy has been

found to provide more information regarding a process, mainly due to it measuring the

entire sample so giving a representative measurement of the process. MW spectroscopy

has been found to be a more sensitive technique for detection of process upsets. It can

measure both chemical and physical properties of a reaction so can provide more

information about a process than NIR, which only provides chemical information.

The main error in calibration is in sampling. Without representative samples, the

sampling error typically amounts to 10-100 times the analytical errors associated with

the chemical analysis [19]. If the need for sampling can be removed, then the cerror will
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be reduced. It has been proved in this work that both MW and NIR can provide

reproducible spectra relating to the variation seen in the process. The quality of the data

collected is not a problem, but sampling is still an issue.

GMS removes the need for sampling as the whole process sample is measured. The
microwaves penetrate into the sample and are reflected by the stainless steel walls of the
sampling chamber. This ensures the entire sample is measured. NIR has low analytical
error and this can be seen in the spectra collected during this research which has been
found to be highly reproducible. However, the main issue with NIR is sampling as a

probe must be used which only sample a small area.

NIR is a limited technique due to its sensitivity to hydrogen bonding which affects the
spectra by changing the wavenumber at which a species absorbs. This appears to make
the spectra harder to relate to the process, and deconvolute into its principal parts of

concentration and spectral profiles.

Both techniques provide quick, non-destructive methods for analysis. Real-time
measurement can be made to allow the process to be monitored and corrected for if
necessary to ensure the batch is right first time. If samples are removed from the
process, time is wasted waiting for the analytical results, and the results are used

retrospectively to provide the quality of the process, and not used to control it.

Traditional model building involves building models using reference data which may be
difficult to obtain and takes time. In this work the use of the calibration free techniques
of MCR and caterpillar have been demonstrated to be useful in the monitoring of a
simple esterification reaction. MCR extracts concentration profiles from reaction data
without the need for reference concentration data. Caterpillar is an adaptive algorithm
which can detect process upsets and the endpoint of a reaction. No model is built so

time is saved, and the algorithm appears to be batch independent.
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5.0 Further work

All processes were monitored in a rectangular chamber. This may present problems for
homogenous mixing, which may be a reason for the NIR probe used not capturing the
same process variation as the MW. The NIR only samples a small area of the process,
so 1f it is not homogenous then it will not capture the true process, whereas the MW
measures the whole sample so homogeneity is not an issue. To ensure the process is
homogenous a round bottom flask should be used which can encompass the NIR probe

and the MW antenna to ensure a homogenous process is measured.

Temperature control was a problem within the GMS sample chamber due to it being
made of stainless steel. Design of a new reaction vessel would include better

temperature control. This would allow the effect of temperate to be more easily studied.

Multivariate curve resolution has been used to extract concentration profiles to allow
monitoring of an esterification reaction using MW and NIR spectra. This was compared
to GC data but due to this method being difficult to develop, the methods are not
comparable. The GC method was not found to be reproducible, so it is unknown which
of the methods, if any, provide the correct reaction profiles. Further work is necessary
to determine the true reaction profiles. This would involve developing a much more
reliable reference method, and also ensuring that the samples removed from the reaction

are representative, and no further reaction occurs once removed.

The processes investigated here have been on small laboratory scales. The drying
process has involved amounts of sample below 150g, and the esterification reactions
were run on a 450ml scale. GMS has been shown to be a useful process analyser for
these processes as it analyses the whole process to give a reproducible model. In
industry these reactions are carried out on much larger scales. Therefore further work is
needed to determine how large a scale of process could be monitored by GMS. The
GMS chamber can be used as a process pipe to allow the monitoring of a process as it is

passed through the pipe. Ideally the GMS antenna should simply be placed at either side

of a vessel to allow monitoring of the process.

The drying process monitored did not reach completion. Further work is needed to

design a better system to mimic a drying process. The process should be monitored to

completion to ensure the full process can be monitored using MW spectroscopy.
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