
THE UNIVERSITY OF HULL 

Human and Social Aspects of Software Development for Complex 
Organisations. An Online Ethnography of Software Developers 

being a Thesis submitted for the Degree of Doctor of Philosophy in 
the University of Hull 

by 

Cecilia Loureiro-Koechlin (MBA) 

July, 2006 



Table of Contents 

Table of Contents ............................................................................................. 
1 

List of Figures ................................................................................................ .. 5 

List of Tables ................................................................................................. .. 7 

Acknowledgements ........................................................................................ .. 
8 

Abstract .......................................................................................................... .. 9 

PART I: INTRODUCTION .............................................................................. 11 

Chapter 1: Introduction .................................................................................. 12 

1.1 Research Motivation ............................................................................. 15 

1.2 Research Aim and Research Questions .............................................. 22 

1.3 Research Approach .............................................................................. 25 

1.4 Structure of the Thesis ......................................................................... 27 

1.5 Chapter Summary ................................................................................ 30 
PART II: CONTEXT OF THE RESEARCH .................................................... 32 

Chapter 2: Information Systems in the context of complex organisations...... 33 

2.1 Understanding Complex Organisations ................................................ 35 

2.1.1 Defining Organisations ................................................................... 36 

2.1.2 Giddens' Structuration Theory ....................................................... 43 
2.2 The Information Systems field .............................................................. 49 

2.2.1 Information Systems ...................................................................... 
50 

2.2.2 Information Systems Development ................................................ 52 

2.2.3 ISD Approaches ............................................................................. 54 

2.2.4 Structuration theory in the Information Systems field ..................... 56 

2.3 Chapter Summary ................................................................................. 65 
Chapter 3: Business Software and Software Development ........................... 67 

3.1 Software ............................................................................................... 69 
3.1.1 Decision support systems .............................................................. 77 

3.1.2 Software designed to support group work ...................................... 80 

3.1.3 Social Software .............................................................................. 84 

3.2 Software Development ......................................................................... 86 
3.2.1 Software Development Methodologies .......................................... 95 
3.2.2 Software Developers ................................................................... 101 



3.3 Chapter Summary .............................................................................. 
110 

Chapter 4: Research Methodology .............................................................. 
113 

4.1 The Research Paradigm: The Interpretive Approach ......................... 116 

4.1.1 Justification for the selection of approach .................................... 127 

4.1.2 Declaration of Values ................................................................... 128 

4.2 Virtual Communities of Software Developers ..................................... 131 

4.2.1 Selection Criteria for Virtual Communities ................................... 134 

4.2.2 Pragmatic and Linguistic Issues in Virtual Communities: Computer 
Mediated Communication ..................................................................... 137 
4.2.3 Virtual Communities as Communities of Practice ........................ 149 

4.3 The Online Ethnographic Method ....................................................... 152 
4.3.1 Data collection techniques ........................................................... 154 
4.3.2 Justification of the Method ........................................................... 156 
4.3.3 Interpreting phenomena through online media ............................ 157 
4.3.4 Ethical Issues in Online Ethnographic research ........................... 160 

4.4 Data Analysis Methods ....................................................................... 162 

4.4.1 Conversation Analysis ................................................................. 164 
4.4.2 Content Analysis .......................................................................... 165 

4.4.3 The role of NUD*IST in this research ........................................... 168 

4.4.4 The Organising System of Data ................................................... 170 
4.5 Research Aim and Research Questions ............................................ 173 

4.6 Theory Generation Strategy ............................................................... 174 
4.7 Chapter Summary .............................................................................. 177 

PART III: FINDINGS AND CONCLUSIONS ................................................ 179 
Chapter 5: Description of the Fieldwork ....................................................... 180 

5.1 Management of the Online Ethnography ............................................ 181 

5.1.1 Ethnography at the early stages .................................................. 181 

5.1.2 Ethnography at the later stages ................................................... 186 

5.2 Data Analysis Process ....................................................................... 191 

5.2.1 Generation of categories .............................................................. 192 

5.2.2 Refinement of categories ............................................................. 195 

5.2.3 Generation of concepts and propositions ..................................... 197 

5.3 Chapter Summary .............................................................................. 199 

2 



Chapter 6: Research Findings: Software developers views about Software 
Development for complex business organisations ....................................... 200 

6.1 Cl: Software Development ................................................................. 202 
6.2 C2: Software Engineering (SE) .......................................................... 223 

6.3 C3: Software ....................................................................................... 224 
6.4 C4: Developers ................................................................................... 235 
6.5 C5: Methodologies ............................................................................. 243 
6.6 C6: Business Issues ........................................................................... 250 

6.7 C7: Social Software ............................................................................ 253 
6.8 Chapter Summary .............................................................................. 255 

Chapter 7: Model of Social Issues in Software Development ...................... 256 
7.1 Social issues in business organisations: the model of complex 

organisations ............................................................................................ 257 
7.2 Model of enactment of technologies-in-practice ................................. 260 
7.3 The Model of Social Issues in Software Development ....................... 265 
7.4 Social Issues in the Software Development Environment .................. 274 

7.5 Social Issues in current development practices .................................. 279 
7.6 Social Issues in Complex Business Settings ...................................... 283 
7.7 Chapter Summary .............................................................................. 287 

Chapter 8: Conclusions ................................................................................ 289 
8.1 Summary of Findings ......................................................................... 289 
8.2 Research Contributions to Knowledge ............................................... 297 
8.3 Reflections on the research: Evaluation using Klein and Myers' Seven 

principles for assessing interpretive research .......................................... 302 
8.4 Future Research ................................................................................. 303 

8.5 Chapter Summary .............................................................................. 309 
APPENDICES .............................................................................................. 311 

Appendix 1: Summary of a typical day of a software developer ............... 312 
Appendix 2: Tree of Categories, complete version ................................... 314 
Appendix 3: Analysis and Theory Building ............................................... 316 
Appendix 4: Dictionary of Online Codes ................................................... 324 
Appendix 5: Permission Request ............................................................. 329 
Appendix 6: Online Sources used in this thesis ........................................ 333 
Appendix 7: Screenshots of the Organising System of Data .................... 334 

3 



Appendix 8: Thesis Evaluation using Klein and Myers (1999) seven 

principles .................................................................................................. 336 

Appendix 9: Additional organisational definitions ..................................... 340 

Appendix 10: Information Systems Development Approaches ................. 347 

GLOSSARY ................................................................................................. 359 

REFERENCES ............................................................................................ 361 

4 



List of Figures 

Figure 1.1 Model of a Business Intelligence (BI) system for the University of 

Lima ........................................................................................................ 17 

Figure 1.2 Model of Complex Organisations .................................................. 
19 

Figure 2.1 The Context of Software Development ......................................... 34 
Figure 2.2 The Modalities of Structuration ..................................................... 

46 

Figure 2.3 Components of ISD ...................................................................... 53 

Figure 2.4 Structurational Model of IT ............................................................ 58 

Figure 2.5 Enactment of Technologies-in-Practice ........................................ 62 

Figure 2.6 Social Systems around IS ............................................................. 64 
Figure 3.1 The Context of Software Development ......................................... 67 

Figure 3.2 Representation of Models of Software .......................................... 76 

Figure 3.3 Decision-Making process .............................................................. 79 
Figure 3.4. Evolution of the Software Development process ......................... 87 

Figure 3.5 Modes of Communication ............................................................. 92 

Figure 3.6 Multiple Roles of a Business Software Developer ...................... 102 

Figure 3.7 Three perspectives of Software Development ............................ 111 

Figure 4.1 Structure of the Chapter .............................................................. 115 

Figure 4.2 Interpretive Research from the Perspective of Software Developers 

.............................................................................................................. 127 

Figure 4.3 Interpretive Research of Virtual Communities of Software 

Developers ............................................................................................ 134 
Figure 4.4 CMC as a medium through which to carry out interpretive resea rch 

.............................................................................................................. 149 
Figure 4.5 Classification of Online Research ............................................... 153 
Figure 4.6 Levels of involvement in participant observation ......................... 154 

Figure 4.7 Interpreting Software Development with Online Ethnography..... 159 

Figure 4.8 Presentation of Findings ............................................................. 178 

Figure 5.1 Map of Themes from Online Forums at early stages of the 
fieldwork 

............................................................................................... 183 

Figure 5.2 Data Analysis Process ................................................................ 191 

Figure 5.3 Generation of concepts and propositions .................................... 199 

5 



Figure 6.1 Data Categories 
.......................................................................... 201 

Figure 7.1 Model of Complex Organisations ................................................ 
258 

Figure 7.2 Enactment of Technologies-in-Practice 
...................................... 

262 

Figure 7.3 Framework of Software Development ......................................... 263 

Figure 7.4 General Schema of the Model of Social Issues in Software 

Development 
......................................................................................... 266 

Figure 7.5 Model of Social Issues in Software Development ....................... 268 

Figure 7.6 Social Issues in the Software Development Environment........... 275 

Figure 7.7 Social issues in current development practices .......................... 280 

Figure 7.8 Social aspects of Complex Organisations 
................................... 284 

Figure 8.1 Model of Social Issues in Software Development ....................... 294 

Figure 8.2 Framework of Software Development ......................................... 305 

Figure 8.3 Development of the Model of Social Issues in Software 

Development using structuration concepts ........................................... 306 
Figure 8.4 Structuration of Software ............................................................ 307 

6 



List of Tables 

Table 1.1 Research Questions ....................................................................... 
24 

Table 2.1 ISD Approaches ............................................................................. 
55 

Table 3.1 Characteristics of Software ............................................................ 
72 

Table 3.2 Types of Decisions ......................................................................... 
78 

Table 3.3 Skills needed to design human elements of systems ................... 
107 

Table 4.1 Seven principles for Interpretive Field Research .......................... 
126 

Table 4.2 Research Questions ..................................................................... 
174 

Table 7.1 Overall Contexts covered by the Model ....................................... 
267 

Table 8.1 Research Questions ..................................................................... 
291 

7 



I would like to thank 

the people I have worked with, 
colleagues and users, those who 
gave me the inspiration to start 

this PhD 

Wendy Robson who was patient 
with supervision 

my husband, family and friends 

I am in debt with all of them for 
their comments and support at 

different times and on many 
aspects of my research 

8 



Abstract 

Summary of Thesis submitted for the PhD degree 
by Cecilia Loureiro-Koechlin 

on 

Human and Social Aspects of Software Development for Complex 
Organisations. An Online Ethnography of Software Developers 

This thesis addresses the problem of human and social issues that affect 

software development. It is situated within the field of Information 

Systems and focuses on the processes of software production used 

within complex organisational processes: particularly decision-making, 

collaboration and workflow. Human and social issues are problems and 

situations caused by the members of the target organisations, software 
developers, and the dynamics of their working and social interactions. 

The objective of this thesis is to identify these human and social issues 

and see how they affect software developers' work. The methodological 

approach adopted here, is designed from the interpretive point of view. 

This study takes the perspective of software developers as they possess 

practical knowledge of complex business settings and current software 
development practices. Online ethnography is the chosen method that 

allows this investigation access to virtual communities in which software 
developers work and exchange experiences. The design of this thesis is 

as follows: 

1. Online data is collected which reflect software developers' beliefs 

about their work and their target organisations. 
2. Data categories are created which show a picture of the current 

state of affairs in software development. 

3. An interpretive theory building strategy is used to create a model of 
software development based on data categories. 

9 



The final outcome of this thesis is developed as a complement to 

Orlikowski's (2000) structurational model of enactment of technologies-in- 

practice and takes the form of a descriptive, theory based model. This 

model contributes to the deeper understanding of software development 

issues. It presents human and social issues that affect the production of 

software within three different contexts: software development 

environment, software development practices and complex business 

organisations. The model generated in this thesis also suggests that 

software developers' perceptions of human and social issues in complex 

business organisations are influenced by the developers' background 

knowledge and experience. 

10 



Part I 

PART I: INTRODUCTION 

Part I of this thesis introduces the reader to the context of the research 
problem, research questions and research methodology. 

11 



Chapter 1: Introduction 

Chapter 1: Introduction 

This thesis is called "Human and Social Aspects of Software 

Development for Complex Organisations. An Online Ethnography of 
Software Developers. " It looks at how human and social issues in 

business organisational contexts and development environments affect 

software developers' work and the software they produce. The argument 

of this thesis is that human and social aspects play a significant role in 

shaping developers work, beliefs, behaviour, interactions and working 

practices, and that this in turn affects the nature and quality of the 

software they develop. 

This thesis is situated within the field of Information Systems (IS) 

research and focuses on aspects related to software development (an 

activity within Information Systems Development) and its product: 
business software (this thesis is concerned with decision support 

systems, software designed to support group work and social software, 

see section 3.1 of chapter 3). The aim of this thesis is: 

to identify and explain how the social issues within the 
software development environment and the social aspects of 
complex organisations shape software and the process of 
software development. 

Within the context of this thesis, human and social aspects entail those 

factors which are normally understood as "people issues" (Cockburn, 

2003). In general, people issues are those kinds of problems or situations 

which are caused by people: their behaviour, their interactions, the way 
they are organised and their beliefs which affect their work and the work 

of others. Because they affect people, these issues need to be 

recognised and addressed in order to improve the quality of work and the 

products or services provided. Specifically, in the context of this thesis 

people issues emerge from the human nature of software developers and 

members of business organisations, users of business software (human 

aspects), and their working and social interactions (social aspects) which 

12 



Chapter 1: Introduction 

affect software development (software developers and business software 

as a product). The social motive in organisations is groups of people 

working (Coakes et al., 2000,9) using technologies such as e-mail, the 

telephone and business software. This applies to both the organisational 

and the software development environments. Thus the contexts of 

concern for this thesis are the software development environments, 
including developers using software development methodologies and 

software tools and the business settings (with people using business 

software to work). Following the above, I designed three research 

questions, which address each context separately: 

Q1: What are the human and social aspects of business 
environments that make software development complex and 
difficult? 

Q2: What are the social aspects in the development 
environment that allow or hinder the identification of social 
issues in business settings during the development of software? 

Q3: What aspects of current software development methods 
address or neglect social issues in business settings? What is 
social software and does it have a role to play in improving 
these practices? 

The above research questions are concerned with the non-technical 

aspects of the process of software development. Although it is regarded 

as a technical activity, software development by its very nature is a 
human and social activity (Weinberg, 1971) that involves the design, 

creation, implementation and maintenance of software. However, at work, 

software developers focus more on exercising their technical skills rather 
than their interpersonal skills (fieldwork data, see category C4-5 in 

section 6.4 of chapter 6). The development of technologies to support 

ongoing and dynamic interactions in organisations (i. e. that consider 
human and social issues) requires an approach which is very different 

from engineering (Coakes et al., 2000,9), the prevailing, technically 

oriented software development paradigm. One of the main weaknesses 

of software developers is their lack of sensitivity to the human and social 

aspects within the business organisations they develop the software for 

13 



Chapter 1: Introduction 

and the environments they work in. Lack of sensitivity here means either 

a lack of awareness of human and social issues by developers or if 

aware, the inability to interpret as to what extent those issues should be 

considered in the design of the software and/or the development 

practices they perform. Also this lack of sensibility is extended to the 

software they develop which do not address the human and social 

aspects of the human systems they are going to serve. This is claimed to 

be one of the causes for the high rates of software failure (Cooper and 

Reimann, 2003,25). From the above it may be argued that software 

should ideally be designed to fit the human and social characteristics of 

the organisations, users of software, and the needs of their members. 

The "fitness" of business software for a particular purpose (which includes 

consideration of human and social issues) varies from generic software, 

which fit many kinds of business settings, to personalised or customised 

software which need only fit one particular organisation. Though in the 

case of generic business software, customisation work is usually required 

to adapt the software to the needs of their users. The range of software 

considered in this thesis is limited to: 

" either generic or customised business software (does not include 

office tools); 

" designed for business organisations or information systems whose 
human and social aspects are difficult to understand and address 
by software developers. 

Similarly, the range of business organisations considered in this thesis 

are the ones that contain decision-making, workflow, collaborative work 

and similar processes, the behaviour of which is unpredictable and 

adaptable, and in which work is performed by individuals and multi- 

groups with intricate social interactions. This thesis identifies these types 

of organisations as complex organisations. As a consequence of this 

exploration, a model of human and social issues in software development 

14 



Chapter 1: Introduction 

has been developed that reflects the different areas that software 

developers should focus on to improve their awareness of human and 

social issues that affect their work and the quality of the software they 

develop. The objective of the model is to build a picture of software 

development for complex business situations that: describes and explains 

the process that software developers go through when they make sense 

of social aspects of the target organisation, the information system and 

the users that the software has to serve and when they assess and 

compare the technical aspects of software with the social issues within 
business settings. 

As shown in this initial section of the thesis, I will use the term "thesis" 

throughout this document to refer to the argument of this PhD research 

project, its aim and research questions, its outcome and the document 

itself. The term "study" will be used to refer to research papers and in 

conjunction with description of activities performed in this research project 
for example as in data collection for this study. 

1.1 Research Motivation 

This thesis was initially motivated by my personal interest in 

understanding the human and social aspects of software and information 

systems development. This interest emerged from my previous working 

experience as a software developer and systems analyst at the computer 

centre of the University of Lima-Peru. The initial idea for this study 
developed as a result of my participation as a systems analyst in a 

software development project during the years of 1999 and 2000. The 

aim of this project was to design and implement a Business Intelligence 

system for the University General Assembly and the University Board of 
the University of Lima. The University Assembly is the highest 

hierarchical unit of the University of Lima and meets twice a year to 

decide on the University's annual plan of operation and development. The 

University Board is the second highest hierarchical unit of the University. 

15 



Chapter 1: Introduction 

The board meets monthly to discuss issues such as the control of the 

University's budget, and to supervise and evaluate the academic 

processes of the University, and to create, modify or remove academic 
departments and career programs. To support these activities, the 

University's unit of Information and Systems (where I worked) was asked 
to design and implement a Business Intelligence system and I was the 

leader of that project. Business Intelligence is a commercial term 

commonly used to refer to database and reporting applications that aid 
decision making in organisations. With Business Intelligence tools, data 

from operational applications (internal and external to the organisation), 

such as marketing, payroll, accounting, and academic records, are 

consolidated for management use. Thus Business Intelligence allows for 

internal and external integration of data (i. e. integrating data from internal 

processes and outside organisations respectively). Business Intelligence 

tools usually comprise data warehouse, data mining and reporting tools 

such as OLAP (see glossary for a description of these tools). 

At the beginning of the project the project team was taught a 

methodology for designing the data warehouse (known as the star and 

snowflake schemas) and reports. These methodologies relied on the 

availability and nature of the operational data (in the case of the 

University of Lima, this data came from the academic record and financial 

systems). Additionally the team members had knowledge of structured 
(Yourdon, 1989) and object oriented methodologies (Rosenberg and 
Scott, 1999) for designing information systems and software. Initially the 

team had a preliminary idea about how the decision-making system could 
be designed. This idea was based very much on our knowledge of the 

nature of the Business Intelligence tools and the data available, and not 

on the University's activities. Figure 1.1 shows a schema of the 

technology architecture as understood at the beginning of the project. 
This schema shows how the team planned to design a data warehouse 

and a set of reporting tools to be used by the members of the University 

assembly and board. 

16 



Chapter 1: Introduction 

Information for decision-making 

Data Warehouse 
(University's consolidated data) 

University's Operational Data 

Figure 1.1 Model of a Business Intelligence (BI) system for the University 
of Lima 

Source: Business Intelligence Project - University of Lima (1999) 

The specifics of the design of the data warehouse and reports depended 

on the needs of the members of the University assembly and board. The 

team decided (myself included) to carry out interviews with them to see 

what their data needs were. During the interviews the project team 

realised that the project had to be extended in scope to account for 

activities and needs of University staff whose work was related to the 

university Assembly and Board but did not belong to them. In addition to 

the provision of data the team found that the needs of the decision- 

makers involved support for their workflow and collaborations. This made 

us reconsider our perception of the system's architecture as it assumed 
that the decision-making processes were static. We then tried to 

incorporate the features of workflow and collaboration into our model. 
However there were issues which made this difficult. The dynamic and 

shapeless nature of the ongoing work of decision-makers did not match 

our structured vision of an information system. The following outcomes 
from the project interviews reveal the nature of the university's 

organisational processes as related to decision making: 

" There were a big variety of activities which needed to be 

considered; 

17 



Chapter 1: Introduction 

" Much of the hard work (decision-making and other related work) 

was done before the Assembly and Board met; 

" "Background" (preparation) work was performed in addition to the 

decision-making work. This work was usually performed informally 

and not recognised (or unknown) by members of the Assembly or 

Board; 

9 Most processes changed continuously (were adaptable) and were 

not standardised; 

" The duration and shape of the decision-making (and related) 

processes were unpredictable; 

" Different people performed the same tasks in different ways; 

" Some people's styles dominated the others; 

" There was individual as well as multi-group work. 

In addition to these findings listed above which are related to the nature 

of the processes, I also personally realised that the following issues made 

the design and implementation of software more difficult: 

" The information given by the decision-makers was ambiguous 
(contradictory); 

" Users had different views of their jobs and other people jobs; 

" Few people (if any) had an understanding of the whole situation; 

" Most people were only concerned with the issues for which they 

themselves were responsible. 

Although I did not continue to participate directly in the project, it did 

change my perspective of information systems and software 

development. Instead of focusing on the technological aspects of 

software development I came to appreciate the effects that different and 

changing demands of people had in software requirements. 

The issues presented above, though emerging from a particular project, 

represent a wider variety of situations. These issues are not technical in 

nature but come from the human character and social interactions 

18 



Chapter 1: Introduction 

between people and make organisations complex in terms of IS 

development, something that is not adequately understood by IS 

developers and methodologists. (A discussion of software failure due to 

this reason is presented in "Is software only a technical concept? " which 

is part of section 3.1 of chapter 3. ) I have extracted these issues to 

elaborate a model that shows how these human and social aspects 

shape decision-making, workflow and collaborative processes in such 

complex organisations. The purpose for creating this model is first to 

present an initial ontology of complex organisations at the beginning of 

this study and second to contrast this view with the picture first presented 
in figure 1.1. This model, though, does portray only complex 

organisational environments and does not include the software 
development environment which is considered later in this section and in 

the rest of the thesis. For me working arrangements and practices in the 

software development environment depend partially on the characteristics 

of complex organisations as developers have to adjust their beliefs and 

practices to develop the software for them. 

" Circles are actors 
Single Individual, groups of Individuals or " Actors can be 
organ anonsworkingondecision-making 

individuals, group of 

people or organisations Jl 
.. f lý Group and 
ýý 1t`,: f organisational 

ft_; I1 boundaries are defined 
f 

ýl 
by people's 

- -' , perceptions (dotted 
- -' lines) 

^-" Continuous lines 

I Flows of Information represent Flow of 

t ý`ý 
,ýf 

Information 

" Processes can be 
f started and ended by 

ý177, 
- J# any actor 

" Processes can take 
any shape 

" Processes can split in two or more processes; and two or more processes can 
merge in one 

" Extraction, creation and use of information is implicit in the model 

Figure 1.2 Model of Complex Organisations 

19 



Chapter 1: Introduction 

Figure 1.2 shows a picture of decision-making processes in complex 

organisations. In this model circles represent actors. Actors could be 

individuals, group of individuals or entire organisations. Groups of people 

and organisational boundaries are represented by the dotted lines 

meaning that they are only defined by the people who belong to the group 

or organisations or by the outsiders who interact with them. The lines 

stand for the flow of information between the actors, representing 

workflow or collaborative processes. The model also represents 
interaction of people within any level of the organisation(s) as well as 

through different levels; i. e. interaction of people within and between the 

units of an organisation, interaction within and between groups (or units) 
in an organisation; or the interaction between organisations. There are no 

standard procedures about how to interact or with whom. In fact every 

actor has the power of determining the activities to be performed by being 

a decision maker. As a consequence the processes may take any shape 

and number of steps. A decision-making situation might start or end at 

any point of the organisation and different number of people or groups 

may be involved. 

The model of complex organisations contrasts very much with the 

structured vision of organisations and information systems I had at the 

beginning of the project. Structured perspectives of organisations are 
based on positivist ontologies. They seek "to explain and predict what 
happens in the social world [(e. g. organisations)] by searching for 

regularities and causal relationships between its constituent elements" 
(Burrell and Morgan, 1979,5). The model of a Business Intelligence 

system presented in figure 1.1 shows a preconception of organisations 

which have formally, standardised procedures (Laudon and Laudon, 

2005,6), and rationally coordinated activities with the aim of achieving a 

goal (Lucas, 1994,78). This perspective assumes that organisations 
have "hard" boundaries and little if no social interactions, tensions or 

conflicts between their members. However, the outcomes of the Business 

Intelligence project interviews show a different view of the organisation. 
This second picture identifies a more unstructured and unpredictable view 

20 



Chapter 1: Introduction 

of organisations in which the human and social factors prevail. Checkland 

and Holwell (1997) state that organisations are reified social collectivities 
(Checkland and Holwell, 1997,80). According to them, the existence of 

an organisation depends on the recognition of its members and outsiders. 
Therefore informal organisations could exist alongside formal ones as 
long as their members recognise their existence. Organisations do not 
have physical location or shape but the one given by people. People 

within the organisations make sense of their purposes and decide on the 

activities that are needed to pursue their goals. People outside the 

organisations will also identify the organisation's boundaries and have a 

perception of the purposes and activities performed within the 

organisation. More perspectives of organisations that consider their 

human and social aspects exist. An in depth discussion of human and 

social aspects of organisations and information systems is presented in 

section 2.1 of chapter 2. 

The perspectives of organisations and information systems presented in 

figures 1.1 and figure 1.2 are not compatible with each other neither are 
they compatible with software development needs. The project team 

perceived the organisation as an entity which fitted the structured and 

predictable characteristics of the software and data available; and which 

matched their also structured and predictable views of the process of 

software development. However, the organisation presented different 

characteristics. Thus there was a mismatch between the unstructured, 

changing, and unpredictable nature of the organisation and the structured 

and unambiguous nature of the software. In the case of this Business 

Intelligence project software developers struggled to connect both 

perspectives and make sense of the human and social issues 

surrounding the organisation. Therefore, in addition to the presented 
human and social issues emerging from business organisations, there 

are some aspects of software developers, and the software development 

methodologies that they use, which affect developers' work. From this 

professional experience I identify the following issues: 

21 



Chapter 1: Introduction 

9 Developers seemed to lack understanding of the human and social 

nature of decision-making and similar processes; 

" For developers, the information from the interviews with users of 

complex organisations seemed difficult (if not impossible) to 

interpret and transform into software requirements and software 

within the available frameworks; 

" It was apparent that developers lacked understanding of the nature 

and potential of software (in this case Business Intelligent tools) to 

aid decision-making and similar processes. 

In summary, the University developers (myself included) showed a lack of 

understanding and awareness of human and social issues in 

organisations and did not know or were not able to get help from the 

development practices they knew. This thesis follows this concern and 

tries to investigate how developers make sense of the human and social 

aspects of complex organisations to develop software for them; and to 

identify the issues that affect developers' work (not necessarily 

acknowledged as problems by developers). This thesis considers that 

there are human and social factors that affect developers' work which are 

within their development environment and the organisation's users of 

software. Both human and social factors affect the work of developers 

and the (quality of the) software they produce. Thus the stand point of this 

thesis is that within the process of software development, the answer to 

the concern of making sense of complex organisations relies on an 

understanding of the human and social issues that surround software 
development. Hence the overarching issue is to build a model of software 
development which shows what and in which ways human and social 
issues affect developers. 

1.2 Research Aim and Research Questions 

Having presented the motivation and research problem for this thesis I 

will present the aim and research questions. In situations like those 
described in the previous section, the work of software developers is 

22 



Chapter 1: Introduction 

affected by their lack of understanding of the human and social aspects of 

the organisations they develop the software for. These aspects, as shown 

in the model of complex organisations in figure 1.2, make organisations 

unpredictable, adaptable and multi-group work entities which do not 

match the mechanical and structured perspectives provided by traditional 

IS and software development methodologies. Although there are various 

attempts by IS researchers to incorporate human and social issues in 

Information Systems Development (ISD) methodologies, these only 

consider the aspects in the "system to be served" (Checkland and 

Holwell, 1997,114) and do not consider the nature of the development 

environment at all . Examples of such ISD approaches are The Ethics 

Method by Mumford (1993), Soft Systems Methodology by Checkland 

and Holwell (1997), and Multiview by Avison and Wood-Harper (1990; 

2003). (Section 2.2.3 of chapter 2, provides an exploration of ISD 

approaches. ) Another attempt at considering human and social issues in 

organisations, specifically conflicts and competing views, is the Multiple 

Data Values method by Coakes and Coakes (2000). This method allows 

formal logic and data modelling to deal with the "mushiness" of 

organisations (or human and social issues). Though a very useful method 

for modelling organisations needs it does not consider the information 

systems or software developers' own perspectives and the human and 

social aspects within the software development environment. Other 

attempts to consider human and social issues within the development 

environment by software development methodologists do not seem to 

consider the human and social nature of the organisations which are 

going to use the software. For example the Agile Methodologies such as 

the Crystal Family pf methodologies by Cockburn (2000a) and Extreme 

Programming by Beck (1999) are people-centred (Fowler, 2004b). These 

methodologies are concerned with development practices which build 

upon the skills of developers and emphasise human and social issues 

resulting from the interaction between developers at work (more on Agile 

Methodologies in section 3.2.1 of chapter 3). Thus this thesis tries to 

bring both sides of software development, the development and the 

organisational environment, together and aims: 

23 



Chapter 1: Introduction 

To identify and explain how the social issues within the 
software development environment and the social aspects of 
complex organisations shape software and the process of 
software development. 

As mentioned, this thesis considers that there are three aspects or 

contexts of software development in which social aspects need to be 

taken into account: the development and the organisational environment. 
Therefore I have designed the research questions to address each of 

them individually. The first context is concerned with the issues emerging 

from complex business organisations. The second and the third contexts 

are concerned with aspects of the development environment. In these 

latter two I have separated the aspects of individual developers and team 

groups, and the aspects of the development methods that they use. The 

reason is that the development methods in addition to providing 

guidelines that determine the way developers work (in the development 

environment), they also influence the way developers think of their target 

organisations and hence the human and social issues they might be 

aware of (which relates to the first context). The specific research 

questions are presented in table 1.1. 

Context Question 
Social Issues in Q1: What are the human and social aspects of business 
Complex environments that make software development complex 
Business and difficult? 
Settings 
Social Issues in Q2: What are the social aspects in the development 
Development environment that allow or hinder the identification of 
Environment social issues in business settings during the 

development of software? 
Social Issues Q3: What aspects of current software development 
considered in methods address or neglect social issues in business 
Development settings? What is social software and does it have a role 
Practices to play in improving these practices? 

Table 1.1 Research Questions 

Research Question 1 focuses on those human and social organisational 

aspects that are relevant to the information system and its software and 
thus need to be addressed by developers but which are difficult to 

understand. Research Question 2 focuses on the human and social 

24 



Chapter 1: Introduction 

aspects within the development environment which shape the way 

developers work. This question is also concerned with how development 

practices deal with these human and social aspects within the 

development environment. Finally Research Question 3 is concerned with 

how the development practices (methodologies, techniques, etc) currently 

known and used by developers deal with human and social issues in 

organisations. A discussion of the research aim and research questions is 

presented in section 4.5 of chapter 5, which connects them with the 

research approach and design. 

1.3 Research Approach 

In order to address the above research questions, this thesis follows an 

interpretive approach to understand software development from the 

perspective of information systems software developers. This strategy is 

useful to understand how practitioners see and deal with complex 

situations and to give emphasis to their practical points of view. During 

the development of software, software developers build their own pictures 

of complex environments, through interviews with users, by referring to 

written documentation, and by implementing the software and testing it. 

In turn they themselves work also in complex organisations and are 

affected by their human and social issues. Software developers' vision of 

the human and social factors that affect their work is relevant and central 

to complement the theoretical and managerial perspectives in the 

information systems field. 

Some groups of developers work online in virtual communities where they 

exchange working tips and socialise. In this instance virtual communities 

of software developers are real working environments in which public 
discussions are held (Rheingold, 1994,5) and working experiences are 

shared. These online "communities of practice" are based around 

occupational communities whose contexts are "related to the subject 

matter around which they are formed" (Coakes and Clarke, 2006b, 92). 

UrJv c 14 
towy 25 

Hu'! 



Chapter 1: Introduction 

Software developers, members of online communities share "similar 

goals, work practices, beliefs, interests, and value systems" (Elliott and 
Scacchi, 2003,22). Virtual communities assume different forms such as 

online forums, weblogs (online personal journals) and wikis 
(collaboratively-edited websites). In addition, developers also use more 

private channels like e-mails and instant messaging to enhance their 

communication effectiveness. Virtual communities of software 
developers are further explored in section 4.2 of chapter 4 of this thesis. 

That exploration includes linguistic and pragmatic issues which are 

relevant to the data collection and data analysis of this study. 

Data for this study was gathered following an online ethnographic method 
(i. e. an ethnography of virtual communities of software developers, see 

section 4.3 of chapter 4). Ethnography is not a new practice in the field of 
information systems research. It has proved useful at providing insights 

into the human and social aspects of information systems and 

organisations (Harvey and Myers, 1995,22). The online nature of the 

ethnography helps to engage a wide variety of developers from different 

countries, with different professional backgrounds and working on 
different projects. It can do this since online ethnography does not have 

financial and time constraints and geographical boundaries (Folkman 

Curasi, 2001,367; Parrish, 2002,3; Sweet, 2001,2). 

The data analysis (presented in section 4.4 of chapter 4) used two 
techniques: content analysis and conversation analysis. Content analysis 

was used to classify data in categories or segments of text that "reflect 

the purposes of the research" (Holsti, 1969,95) and to look for 

associations between them. Conversation analysis helped to make sense 

of the structure of online conversations as they follow different rules from 

written and oral speech. The aim of the data analysis process was theory 

building (explained in section 4.6 of chapter 4). Concepts and 

propositions were extracted from data categories and abstracted from 

their original contexts (e. g. the online conversations). As these concepts 

were at a higher level of abstraction than the original developers' 

26 



Chapter 1: Introduction 

statements, they may stand for other similar pieces of data (Tesch, 1990, 

138), i. e. they "may be valuable in the future to explain other 

organizations and contexts" (Walsham, 1995,79). It was a process of 
interpretive generalisation whose validity depended on "the plausibility 

and cogency of the logical reasoning used in describing the results from 

the cases and drawing the conclusions from them" (Walsham, 1993,15). 

(See chapters 5 to 7 for a description of this thesis' results. ) Concepts 

and propositions were related to one or more research questions and 
further refined in the contexts of those questions. By relating them to the 

research questions, the abstracted concepts and propositions were 

transformed in the research answers. Thus they show what the nature of 

the human and social issues within the different aspects of software 
development is. An example of this process is shown in Appendix 3: 

Analysis and Theory Building. In the final stage of the theory building 

process the research answers are shaped into a theory based model of 

social issues in software development. The model connects the concepts 

and propositions (i. e. the research answers), in a way in which, they 

explain how these issues affect software developers' work. The model 

presents this in the form of a "flow" which shows the order in which 

human and social issues are identified. The process of creation of the 

model of social issues in software development is discussed in detail 

throughout chapters 5 to 7. Having presented the research problem and 
design, in the next section the structure of the whole thesis is explained. 

1.4 Structure of the Thesis 

This thesis comprises 8 chapters organised in 3 parts. Part I presents an 

overview of a software development project which triggered my interest in 

human and social issues. From this experience I extract a set of problems 

which at that time hindered the work of developers. I then generalise 
these issues and create a model which summarises the nature of this 

software development situation. From this model I draw the research 
problem, aim and questions which in the rest of this thesis I intend to 

27 



Chapter 1: Introduction 

develop further. Part II presents a literature review that focuses on 

concepts that appear to be relevant for this thesis such as soft definitions 

of organisations and information systems, human and social issues in 

software, software development and the software development 

environment. Additionally, this part presents the outline of the interpretive, 

online ethnographic approach of this thesis. Finally part III presents the 

findings of this thesis in the form of a theory based model which identifies 

the human and social issues that surround software development and 

shows how these aspects affect developers' work. This part of the thesis 

explains the whole process of data analysis and generalisation from data 

collection to theory generation. 

A brief summary of the content of each chapter is provided below: 

Part I Introduction 

Chapter 1 provides the reader with a context of the research 

problem, questions and methodology of this thesis. 

Part II Context of the research contains the literature review and 

research design which explain what and how this study is done. 

Chapter 2 discusses the literature on organisations and 
information systems. As organisations "are the context in which IS 

work is done" (Checkland and Holwell, 1997,75) the IS field is 

very deeply grounded in organisational theories. This chapter 

outlines a theoretical background for software development which 
is discussed in chapter 3. 

Chapter 3 discusses the human and social aspects of software 

and software development and explores the nature of software 
developers and development teams. The discussion focuses on 
the human and social aspects such as adaptability and the 

28 



Chapter 1: Introduction 

unpredictability of organisations and information systems 

examined in chapter 2. 

Chapter 4 describes the research method. It starts by introducing 

and justifying the interpretive approach and the online 

ethnographic method. It also reviews the literature of virtual 

communities and describes the characteristics of online 

communities of software developers in which this study was done. 

This chapter also describes the data analysis and theory building 

strategies used to mould the findings into a theory based model. 

Part III Findings and Conclusions describes and explains the process 

of data analysis and theory building, and presents the conclusions of this 

thesis. 

Chapter 5 describes the practicalities of the online ethnographic 
fieldwork. It first explains my interactions with online members and 
how I started to create themes from those interactions. It then 

explains the analysis phase of the ethnography, focusing on how I 

created categories of data and abstracted concepts from those 

categories. 

Chapter 6 presents the findings from the online ethnography 

organised by data categories. This chapter connects the data 

categorisation process explained in chapter 5 with the theory 

based model developed in chapter 7. The findings presented here 

correspond to my interpretations of software developers' 

interpretations of human and social issues in their work. 

Chapter 7 presents a model of social issues in software 
development developed from the data presented in chapter 6. This 

model is the result of the interpretive theory building strategy of 
data analysis. This chapter introduces with a theoretical framework 

of information systems and software development which helps to 

29 



Chapter 1: Introduction 

situate this model. It then discusses the human and social issues 

covered by the model. 

Chapter 8 presents the conclusions of this thesis. It first presents 

a summary of the findings of this thesis. It then provides a 

discussion of the research contributions to knowledge. This is 

followed by a reflection on the research based on Klein and Myers 

(1999) principles for evaluating interpretive research. This chapter 

concludes with a discussion of opportunities for future research. 

1.5 Chapter Summary 

This chapter has introduced the research problem and design of this 

thesis. This thesis studies the human and social issues of software 

development environments and complex business organisations whose 

inadequate identification or treatment can affect the work of software 

developers. This chapter presented a professional experience which is 

the motivation of this thesis. I related a situation in which the developers 

failed to understand the human and social complexities of an 

organisation. The source of the problem was the disagreement between 

the structured preconception of organisations that the developers had 

and the reality of the unpredictable, adaptable and multi-group business 

organisations. I then connect this problem to the developers' lack of 

sensitivity to human and social issues within their own development 

environment and the software development methodologies they use. This 

thesis believes that in order to make sense of complex organisations it is 

necessary for developers to be aware of and understand the human and 

complex issues within their environment and the organisations they 

develop the software for. Thus the aim of this thesis is to investigate 

which these issues are and how they affect developers' work. This 

investigation is carried out using an online ethnographic method of virtual 

communities of software developers. The data collected is analysed by 

using the content and conversation analysis techniques. Data is 

30 



Chapter 1: Introduction 

categorised, abstracted and generalised into concepts and propositions. 
The outcome of the data analysis, and of this thesis, is a theory based 

model which addresses human and social issues that surrounds software 

and software development and explains how these issues affect 
developers' work. The name of the model is "social issues in software 
development" and is presented in figure 7.5 of chapter 7 of this thesis. 

To start this thesis chapter 2 will describe in detail some organisational 

and information systems perspectives which emphasise their human and 

social aspects. This chapter sets the basis for the discussion about 

software and software development in chapter 3. 

31 



Part II 

PART II: CONTEXT OF THE RESEARCH 

Part II of this thesis presents a review of the human and social aspects of 
organisations and information systems - the context in which software 
development is done - and then centres its attention to human and social 
issues in Software Development and related topics such as software and 
software developers. Also a description and justification of the research 
methodology presented at the end of this part. 

32 



Chapter 2: Information Systems in the context of Complex Organisations 

Chapter 2: Information Systems in the context of 
complex organisations 

Having explained the research problem and motivations in part I of this 

thesis, the first two chapters of part II will explore the literature on 

organisations, information systems and software development. As the 

main concern of this thesis is the study the human and social aspects of 

software development for complex organisations, the first part of this 

chapter will explore the nature and complexities of (business) 

organisations. Complex organisations are places where decision-makers 

and users of software work and interact; they also provide a context for 

the existence of information systems. Information systems are groups of 

processes that manage information and which can be supported by 

business software. As business software are designed to fit the needs of 

particular information systems, the second part of this chapter will explore 

some definitions of information systems and approaches to information 

systems development (ISD). Information systems development is an 

activity that designs and implements organisational information systems 

which (usually but not necessarily) include the development of software. 
Chapter 3 of this thesis continues the literature review by exploring how 

human and social aspects are reflected in software and in the processes 

of software development. 

Figure 2.1 shows a context of software development as understood by 

this thesis. This context helps to explain the relationship between 

software and information systems development. Figure 2.1 shows that 
business software are used to support information systems processes 

within business organisations. Information systems development (the big 

white arrow in figure 2.1) are carried out to design and implement 

organisational information systems. Information systems development 
focuses on organisational and people's objectives at performing their 

activities. In addition, information systems development is usually 

concerned with analysing the organisational environment, its processes, 

33 



Chapter 2: Information Systems in the context of Complex Organisations 

its people and their interactions. Hence the white arrow pointing at an 
information system within an organisation. 

Organisation 

Information System 

Business 
Software 

9 

Figure 2.1 The Context of Software Development 

Information systems development usually (but not necessarily) involves 

the development of software. The grey arrow in figure 2.1 shows 
Software Development as an activity which is part of ISD but which pays 

special attention to software to support information systems processes. 
Because this thesis sees software development as a part of information 

systems development, the literature review discussed in this chapter 
includes organisations, information systems and information systems 
development and sets them as the context in which software 
development happens. 

Following the contexts shown in figure 2.1, chapter 2 will review literature 

on organisations and information systems and chapter 3 will cover 
literature on software and software development. The reason for this 

division is the different focus of these fields. While chapter 2 concentrates 

on the nature of organisations, the people that work there and the 

processes that run through organisations, chapter 3 will concentrate on 
the more technical subjects of software and software development. The 

aim of chapter 2 is to explore different views on organisations which 

consider human and social issues. This will help to develop the concept 

of Complex Organisations further. The focus of this chapter is on 

34 



Chapter 2: Information Systems in the context of Complex Organisations 

concepts that appear to be relevant to the context of this thesis (as 

explained in section 1.1 of chapter 1: research motivations). This chapter 
is not an exploration of research in information systems or software 
development. The literature that covers human and social issues in both 

topics (IS and software development) together is scarce. Rather this 

chapter will connect these views on organisations with different 

perspectives on information systems (IS) and information systems 
development (ISD). As organisations "are the context in which IS work is 

done" (Checkland and Holwell, 1997,75) the IS field is very deeply 

grounded on theories about organisations. Additionally, this chapter will 

outline a theoretical background for software and software development 

which will be covered in the next chapter. Similarly, because business 

organisations and their information systems are the context in which 
business software is used and in which business software development 

happens, software and software development are also deeply grounded 

on organisations and IS theories. 

This chapter is divided in two sections. The first one explores various 

perspectives which address organisational issues such as adaptability, 

multi-group work and unpredictability in organisations such as the ones 

mentioned in the previous chapter. The second section defines and 
discusses different views of information systems and information systems 
development. This second section situates information systems 
development within the context of complex organisations and builds the 

grounds for the discussion in the next chapter. 

2.1 Understanding Complex Organisations 

In chapter 1, I presented a problematic situation in which I had to design 

and develop a decision support application for the University of Lima. 
One of the problems I identified was the lack of understanding that my 

colleagues and I had about organisational human and social issues. 

Human and social issues are problems or situations which are caused by 

35 



Chapter 2: Information Systems in the context of Complex Organisations 

people, their behaviour, their interactions and beliefs, and which affect 

their work and the work of others. My colleagues and I shared a 

mechanistic view of the organisation and followed development 

methodologies based on this view which ignored these human and social 

issues. The organisation was expected by us to demonstrate stable and 

predictable behaviour; however, it appeared chaotic to us. We found 

social issues such as unpredictability and adaptability of human action, 
free social interactions between software users, and complicated 
interactions between workgroups difficult to understand and model into 

software. In an attempt to understand these problems and comprehend 

the essence of organisations, this chapter section will examine social 

views of organisations in the literature. In the next subsection 2.1.1 I will 

explore some perspectives about organisations which explain how the 

human and social aspects of organisations define their behaviour. Each 

perspective presented here explains one or more characteristics of 

complex organisations as presented in chapter 1 of this thesis. 

Subsection 2.1.2 will then explore some concepts from Giddens' 

structuration theory. Structuration is a social theory which connects 
human agency with social structures. For Giddens, human agency, which 
is situated at a micro level, explains the macro level phenomena. It is thus 

suitable to explain how human agency within organisations and the 

software development environment create social structures which then 

are (should be) reflected in software. 

2.1.1 Defining Organisations 

In this section I will present various definitions of organisations which 

emphasise their adaptable, unpredictable and multi-group aspects as 

opposite to structured and mechanical organisational views. For the 

purpose of this discussion I will classify the organisational definitions into 

two groups: the hard and the soft perspectives. These two approaches 
have different views of organisations and as a consequence they have 

contributed to the development of the also sometimes conflicting 

36 



Chapter 2: Information Systems in the context of Complex Organisations 

standpoints of IS. Hard perspectives of organisations are based on 

positivist epistemologies. They have characterised the natural sciences 

for many centuries, and have influenced and continue to influence the 

social sciences in a similar way. Hard approaches to social sciences 

seek "to explain and predict what happens in the social world [(e. g. 

organisations)] by searching for regularities and causal relationships 

between its constituent elements" (Burrell and Morgan, 1979,5). Hard 

perspectives define organisations in a very mechanistic fashion. For 

example Lucas (1994) describes an organisation as "a rational 

coordination of activities of a group of people for the purpose of achieving 

some goal" (Lucas, 1994,78). Laudon and Laudon (2005) state that 

traditional organisations are "a hierarchical, centralized, structured 

arrangement of specialists" (Laudon and Laudon, 2005,6) whose work is 

based on "standard operating procedures" (Laudon and Laudon, 2005, 

7). Perspectives like these portray organisations as stable entities in 

which people work in a predictable way, according to predefined 

structures, to achieve a goal. These perspectives differ very much from 

the model of complex organisations shown in chapter 1, which present 

organisations as unpredictable and adaptable entities. Unfortunately 

these hard perspectives guide most of the content of IS. However these 

descriptions do not consider the complexities of human action and social 

interactions which are not predictable and predefined. 

On the other hand, the soft approaches to organisations are influenced by 

anti-positivistic epistemologies which are concerned with human 

behaviour and the "meanings that people give to their environment" (May, 

1997,13). One of the most interesting definitions of an organisation is this 

one of Checkland and Hoiwell (1997): an organisation is a "reified social 

collectivity" (Checkland and Holwell, 1997,80). According to them, the 

existence of an organisation depends on the awareness and recognition 

of its members and non-members. Therefore informal organisations could 

exist alongside formal ones as long as their members recognise their 

existence. Organisations do not have physical location or shape but the 

one given by people. People within the organisations make sense of their 

37 



Chapter 2: Information Systems in the context of Complex Organisations 

purposes and decide on the activities that are needed to pursue their 

goals. People outside the organisations can identify the organisational 
boundaries and have a perception of the purposes and activities 
performed within the organisation. This means that only individuals are 
the ones who make sense of the different purposes and activities within 
the organisations. Checkland and Holwell (1997) state that 

"all real world management problem situations have at least 
one thing in common: they contain people interested in trying 
to take purposeful action" (Checkland and Holwell, 1997,13). 

Every action that is performed in an organisation has a purpose. However 

not all people's purposes necessarily concur with the official goals of the 

organisation but perhaps with different personal or group objectives. 
Within a social collectivity more than one purpose could exist. In fact, 

organisation members would interact in pursuit of a range of interests 

(Dunford (1992); Martin et al (1991) quoted in Warne (2003,107)). 

People working in organisations could have their own hidden agendas, 

such as making more money, improvements of particular skills and 

making contacts, etc. This perspective contrasts with the mechanistic 

ones which restrict organisation's activities merely to the ones that are 

performed to achieve one goal. They neglect the idea of having more 
kinds of activities and multiple purposes within the organisation. The 

concept of social collectivity can be used to describe some aspects of the 

model of complex organisations. Each group of people who is part of a 
decision-making process can be described as a social collectivity which 

existence lasts as long as the purpose of the decision-making process. 
The members of each collectivity can recognise who is in and out of their 

groups and can reconfigure their working arrangements according to the 

needs of their jobs. 

Charles Handy offers three interesting descriptions of modern 

organisations which also present them as "social collectivities" (as 

defined by Checkland and Holwell (1997)). The first account is the 

Shamrock Organisation. Resembling the three leaves of a shamrock, 

38 



Chapter 2: Information Systems in the context of Complex Organisations 

organisations, according to Handy, comprise three groups of workers. 

The first group or leaf is the "professional core". The professional core is 

comprised by qualified professionals, managers and technicians "who are 

essential to the organisation" (Handy, 1989,72). The core decides on the 

goals of the organisation and guides the activities of the other two groups. 

Workers in the professional core are indispensable to the organisation 

and cannot be replaced easily. The second leaf of the shamrock is made 

up of people who are "contracted out" because they "are not crucial to the 

organisation" (Handy, 1989,73). These people are the ones who actually 

do the work which is designed by the professional core. The third leaf is 

"the flexible labour force, all those part-time workers and temporary 

workers who are the fastest growing part of the employment scene" 
(Handy, 1989,74). This description of organisations emphasises that 

each group should be managed, paid and organised differently (Handy, 

1989,72). However, according to my experience, and as shown in the 

model of complex organisations (see chapter 1), work, e. g., information 

systems and business processes, could cross the different leaves of the 

shamrock in the form of (working or social) interactions between groups 

of people. The Shamrock Organisation is a useful concept to identify the 

different groups of people that are part of an organisation but does not 

emphasise the connections that could exist between them. 

Handy's second complementary perspective of organisation is the 

federation or federal organisation. A federation is "a variety of individual 

groups allied together under a common flag with some shared identity" 

(Handy, 1989,93). A federal organisation encourages autonomy of its 

members but within bound. It combines "variety and shared purpose, 
individuality and partnership" (Handy, 1995,33). Different groups of 

people within the organisation are "bonded to themselves as well as to 

the centre" (Handy, 1995,11) This is a decentralised system in which the 

centre does not direct but co-ordinates the activities and makes sure that 

the work is being done. Every entity within the federation, individual or 

group, has the power and ability to decide on how to perform its tasks. 

Flow of information between groups of people and between groups of 

39 



Chapter 2: Information Systems in the context of Complex Organisations 

people and the centre are needed for coordination and keep the 

organisation working. Contrary to the Shamrock Organisation, the 

concept of the Federal Organisation emphasises the working connections 
between the groups and the groups and the centre; and the freedom of 

action within the groups and among them. These are aspects that are 

reflected in the model of complex organisations. 

A third complementary perspective of Handy on organisations is the 

Intelligent Organisation. An intelligent organisation is comprised by 

brains, information and ideas. Brains are clever people but "on their own 

are not enough" to add value to the organisation (Handy, 1985,112). 

Brains need good information and ideas to be able to add value to the 

organisation. "Intelligent organisations have to be run by persuasion and 
by consent" (Handy, 1985,131). This is because their members have the 

information and the expertise to fight for their ideas at the same level as 

their managers do. Drucker (1998) refers to them as knowledge workers 

and like volunteers they have to be motivated by challenges. The only 

way to maximise their performance is "by capitalizing on their strengths 

and their knowledge rather than trying to force them into molds" (Drucker, 

1998). Brains or Knowledge Workers are useful concepts to explain the 

freedom, unpredictability and adaptability of action in the model of 

complex organisations. As (groups of) decision-makers can discern what 
to do in particular circumstances, the actions they undertake dictate the 

shape of the processes they are working in. Therefore the start, shape, 

or end of a decision-making process is uncertain. Similarly, as decision- 

makers have the power to alter a decision to accommodate it to new 

circumstances the decision-making processes become highly adaptable. 

Another account of organisations is the organisation as a "nexus of 
decisions". Stohr and Konsynski (1992) define decisions and decision 

making as the true essence of the organisation. For them the 

organisation's purpose is to make decisions within a business 

environment (an aspect in common with the model of complex 

organisations). Organisations are defined by their decision opportunities, 

40 



Chapter 2: Information Systems in the context of Complex Organisations 

authorities and opportunities (Marakas, 2003,88). This perspective is 

independent from the physical manifestation of the members of the 

organisation who could be part of complex networks of individuals made 

up of team groups and computerised decision support systems (Marakas, 

2003,88). This view of organisations emphasises the human and social 

aspects of decision-making processes, group work, and working and 

social interactions within the organisation. All of these aspects are 

sources of unpredictability and adaptability in organisations which are 

also highlighted in the model of complex organisations. 

Other organisational perspectives exist which could explain different 

aspects of the model of complex organisations. In this section I have 

presented the ones I believe are the most relevant as they address the 

main aspects of the model of complex organisations. Three other 
interesting perspectives are discussed in appendix 9 of this thesis which 

contribute at a lesser extend with explaining the nature of complex 

organisations. The first perspective is Knowledge Management which 
focuses on how knowledge is created, stored and utilised in 

organisations, like for example in decision-making processes. The 

second perspective is Complexity Theory which tries to explain the 

(apparently) chaotic nature of human systems like for example business 

organisations. Finally, the third perspective, Actor-Network Theory, tries 

to model social environments, such as organisations, as networks of 

actors which are connected by their interactions. 

The model of complex organisations presented in chapter 1 could be 

explained in terms of the previous accounts of organisations. The concept 

of social collectivity of Checkland and Holwell (1997) refers to groups of 

people involved in decision-making processes. Informal organisations 

are created as the information flows and as the group meetings are being 

run. Their existence could be brief but is meaningful for their members as 
they perform purposeful actions. Similar to the model of complex 

organisations, the concept of social collectivity also does not imply any 
kind of activity or standard procedure. It does not imply either a 

41 



Chapter 2: Information Systems in the context of Complex Organisations 

predefined structure or hierarchy of any type. Social structures are 

created on the run from people's actions. These structures change and 

evolve through time as the need of people and their environment change. 

The shamrock organisation metaphor shows how decision-making 

processes may cross through the leaves of the shamrock regardless of 

the kind of people who is working there. Despite the fact that the 

professional core is the one responsible for the direction of the 

organisation they do not do all the work. Much of the stages in decision- 

making processes that have to deal with gathering information, verifying 

facts, arranging meetings, etc., might be carried out by people in the 

other leaves of the shamrock. The concept of federal organisation adds 

the ideas of independency of individuals and groups at making decisions. 

The core of the federation guides people but does not control them. 

People and groups are free to decide how to act or what to do in a certain 

situation. The views about intelligent organisations and knowledge 

workers show how people in an organisation have their own 

responsibilities and are experts in their field of action, and therefore 

should have the freedom to act as they decide. However, when they are 

committed to a decision-making process (organisation as a nexus of 

decisions) they respond also to a common purpose. Coordination and 

agreement between individuals is done by motivation, challenges and 

peer discussion. The importance of these perspectives of organisations to 

this thesis is that each of them emphasise (though only partially) the 

organisations' human and social aspects which make them behave in an 

unpredictable and adaptable manner. These accounts of organisations 
help to enrich the model of complex organisations, as presented in 

chapter 1, and to highlight the importance of human and social aspects in 

organisations. This is especially important in the fields of information 

systems and software development which are guided by mechanistic 

perspectives. As mentioned in the introduction of this section, having 

mechanistic views of organisations that behave unpredictable and are 

adaptable because of their human and social aspects can hinder the job 

of a software developer. 

42 



Chapter 2: Information Systems in the context of Complex Organisations 

Having presented several views of organisations in the next section a 
discussion of Giddens' Structuration Theory is presented. Structuration 

theory is a social theory which concentrates on how human agency 
(micro level) explains social structures (macro level). Because 

structuration is a social theory it can explain how organisational structures 

emerge from human action in organisations. Structuration theory is a 

useful tool that complements the model of complex organisations by 

providing a connection between the macro and micro level perspectives. 
Being a complex theory situated at an ontological level of knowledge 

whose concepts need deep explanation more space is dedicated to this 

theory. Also structuration theory plays an important role in the moulding 

of the findings of this thesis (see chapter 7). 

2.1.2 Giddens' Structuration Theory 

Giddens' structuration theory "is a general theory of social organisation 

and has a primarily ontological focus. " (Jones et al., 2004,298). It is an 

emergent, process theory (Jones, 1999,130-131; Orlikowski and Robey, 

1991,258) which incorporates the concept of "duality of structure" that 

explains the nature of human action in society. Structuration theory is a 
useful tool to describe and explain the nature of organizations and social 
interactions. In this section I will explore some structurational concepts 
which are tightly related to the concepts of adaptation, change, flexibility 

and multi-group work presented in the model of complex organisations. 
These structurational concepts present a different perspective at a micro 
level which explains the macro level phenomena. 

According to Giddens, social systems and organizations possess 
emergent characteristics. This means that their structures are not 
predetermined or inherent but are a result of a process of evolution 
through time and space as these systems interact and adapt to their 
environments (du Plooy, 2003,45). For Giddens human action and 
structure presuppose one another (Giddens, 1979,53). Thus Giddens 

43 



Chapter 2: Information Systems in the context of Complex Organisations 

defines structure and human agency as a duality in which both are 

mutually dependant and recursively related aspects of social systems 
(Rose and Scheepers, 2001,1,3; Rose and Hackney, 2003,259). By the 

duality of structure Giddens means "that social structures are both 

constituted by human agency, and yet at the same time are the very 

medium of its constitution" (Giddens, 1976,121). The duality of structure 

solves the philosophical dilemma between positivist phenomenological 

views of society. Positivist standpoints see structures as institutional and 

objective properties of society (Rose and Hackney, 2003,258) whereas 
interpretivist perspectives see society as conformed by meaningful 

actions. Before structuration theory appeared, the social sciences field 

was divided by these two apparently mutually exclusive perspectives. 
Giddens has developed structuration theory to accommodate these two 

traditions under one frame so as to offer a more complete explanation of 
the nature of social reality. However, he had to redefine the concepts of 

structures and agency to account for their mutual dependency (Giddens, 

1979,53). 

Structuration is the process whereby the duality of structure evolves and 
is reproduced over time and space (Rose, 1998,4). Structure is both, the 

medium and the outcome of the process of structuration (Brooks, 1997, 

137). For Giddens, structure is the rules and resources implicated in 

social reproduction (Giddens, 1979,64). Structure does not exist on its 

own but comes to life through human activity and interaction (Waisham 

and Han, 1991,3; Rose and Scheepers, 2001). This means that it exists 

only in the memory of people and that it is reified only when people use or 
follow the society's rules and resources to act and interact. Therefore 

structure has only "virtual existence" (Giddens, 1979,63). It is an abstract 

and intangible rather than objective property of social systems. Similarly, 

human agency is social action reproducing existing structures or 

producing new ones (Walsham and Han, 1991,78). Action or agency 
does not refer to a series of discrete acts combined together, but to a 

continuous flow of conduct. The notion of action refers also to the 

characteristics of the actor (Giddens, 1979,55). The nature of agency is 

44 



Chapter 2: Information Systems in the context of Complex Organisations 

also a recursive one as it constitutes and is constituted by structure 
(Orlikowski and Robey, 1991,147). 

Giddens defines three modalities of the process of structuration through 

which the realm of social action is linked to the institutional realm (Jones 

et al., 2004,302; Orlikowski and Robey, 1991,148). All these three 

modalities are not mutually exclusive aspects of structuration but are 
interrelated. A schema showing the relationship between the modalities, 

agency and structure is presented in figure 2.2. The first modality is the 

"Interpretive Scheme" which represents the stock of knowledge drawn on 

people's interpretations of behaviour and events that is used to convey 

and understand meaning; that is to make communication possible. The 

second modality is represented by the "Facilities" (or resources) used by 

people to accomplish their desired outcomes. Facilities are enacted in the 

"wielding of power" (Rose and Scheepers, 2001,4) and produce 

structures of domination showing asymmetrical distribution of resources 
(Walsham and Han, 1991,84). There are two kinds of resources, 
Allocative Facilities which are material resources derived from human 

dominance over nature, and Authoritative Resources, which are the non- 

material capacities of harnessing human action (Rose and Scheepers, 

2001,3). Finally, the last modality is the "Norms" which dictate whether 

conduct is appropriate or not according to moral codes within a social 

collectivity (Checkland and Holwell, 1997). Conducts are legitimized (i. e. 

made appropriate) by the use of sanctions during interaction. These three 

modalities explain how people make sense of the social structures and 

act according to them, and how social structures emerge from these 

actions. 

45 



Chapter 2: Information Systems in the context of Complex Organisations 

Social Signification Domination egitimation Institutional 
Structure realm 

odality Interpretative Facility Norm Modalities of 
scheme structuration 

Human Realm of human 
Interaction Communication Power Sanction action 

Figure 2.2 The Modalities of Structuration 
Adapted from Giddens (1979,82) 

Giddens' theory also provides an in-depth explanation of how people act. 

He says that within the realm of action, people's actions are guided by 

their knowledge of norms and facilities that are available to them. Every 

person accumulates knowledge from their past experiences which 

possess aspects represented by the modalities of structuration. People 

learn how to communicate with people, how to exercise power and how 

to act according to the norms of the social system they are in. According 

to Giddens there are two levels in which people can use the knowledge 

they possess. First, people can use their knowledge at the level of 

practical consciousness which reflects the things that people "know how 

to do" (Giddens, 1979,73). Thus practical consciousness is the actor's 

ability to act according to his stock of personal knowledge (Orlikowski, 

1992,8) but which the actor is not able to formulate discursively 

(Giddens, 1979,57). The second level, discursive consciousness, is the 

actor's ability to explicitly articulate his actions and motivations in terms of 
his knowledge (Giddens, 1979,73; Walsham and Han, 1991,78). 

Discursive consciousness is a more advanced form of consciousness 

which also implies practical consciousness. To achieve a level of 
discursive consciousness people have to reflect on their actions and act 
in a reflexive way. Reflexivity is the capacity of routinely observing, 

analysing and understanding one's actions. When knowledgeable and 

reflexive actors improve their interactions and get the results they expect 
they perform these actions more consistently and they become more 

stable. Giddens calls this phenomenon routinization of human actions. 
Routines are "habitual, taken-for-granted" activities (Giddens, 1984,376). 

46 



Chapter 2: Information Systems in the context of Complex Organisations 

They form patterns of interactions which become institutionalized, that is 

they become part of the structure of the social system in which they are 

interacting (Orlikowski, 1992,9). This is the process of structuration of 

social practices which constitute both individuals and society. 

Routinisation of social practices is only a temporal event as social 

structures continue to change and evolve due to changes in their 

environments. Therefore "social change" happens when new practices 

replace others. As mentioned, structuration is a process of evolution. 

When the knowledgeable and reflexive human consciously adapts to new 

situations, social practices evolve into new ones which are then spread 

through mechanisms of social and system integration. Structuration 

processes could therefore give rise to seemingly complex and chaotic 

situations. 

For Giddens, social practices and hence social structures are spread 

through two different channels. Social practices can be spread through 

social integration and system integration. Social integration happens in 

situations of co-presence when actors interact face-to-face and has a 

cohesive effect at determining social practice. System integration 

happens through distant interactions and have wider effects at replicating 

social practices (Rose and Scheepers, 2001,4). One example of system 

integration is human interactions and the spreading of rules and 

resources through the internet. Another example of this is the use of 

telephones and mobile phones and the creation of rules which guide 

communication through these media. When the mechanisms of social 

and system integration stretch to spread social practices geographically 

and over time a phenomenon called "time space distanciation" occurs. 
Time space distanciation refers to the separation of time and space which 
in traditional societies are linked through place (Walsham, 1998,1085). 

Time space distanciation is a phenomenon that occurs in modern 

societies and shapes modern life. Giddens explains this with an example 

about the invention of the clock. In pre-modern societies, people 

associated "when" (time) with "where" (space), for example people knew 

what time it was from the position of the sun and the size of the shadow. 

47 



Chapter 2: Information Systems in the context of Complex Organisations 

With the invention of the clock and its diffusion the dimensions of time 

and space were separated. The clock expressed "a uniform dimension of 
"empty" time" (Giddens, 1990,17) and therefore time did not depend of 

space. Also, in modern societies, the dimensions of place and space 
have been disconnected. Place is associated with the idea of locale: 

geographically situated, physical settings of social activity. In pre-modern 

societies place was always associated with space since they both implied 

physical presence. However, the invention of the internet now has turned 

"place" a "phantasmagoric" (Giddens, 1990,18) concept, different from 

space as for example virtual communication is available. 

Structuration theory provides a perspective that could inform information 

systems and software developers to understand complex organisations. 
The structurational concepts explored in this section are connected to the 

concepts mentioned in the model of complex organisations and play an 
important role at explaining complex organisational situations. The 

concept of structuration implies adaptation of social structures as social 

systems interact and adapt to their environment. Although social 

practices can become routinized this is only a temporal state as practices 

will always change to adapt to changes in their environments. At a macro 
level, structuration explains how social structures emerge within 

organisations from human action. These social structures are then 

observed by software developers who will then transform them into code. 
At a micro level structuration explains how individuals act reflexively 
based on their knowledge. Finally, the issue of multi-group work is related 
to the concepts of social and systems integration. Social practices are 

spread through different groups of people which then share similar social 

structures and are able to communicate and work together. 

As it has been presented, Giddens' structuration theory does not pay 

attention to information systems or technology. Many authors had argued 
though that structuration has the potential to explain social phenomena in 

the use of technology (Waisham and Han, 1991). Although Giddens' 

himself neglected this particular area, there are other researchers who 

48 



Chapter 2: Information Systems in the context of Complex Organisations 

have followed the structuration path and studied information systems and 
technology (DeSanctis and Poole, 1994; Orlikowski, 1992; Orlikowski, 

2000; Rose and Hackney, 2003). The presented section had the purpose 
to introduce structuration concepts in this thesis which help to enrich the 

model of complex organisations but which are also the bases to the work 

on information systems and technology presented in section 2.2.4 of this 

chapter. 

In the next section I will explore some topics within the field of information 

systems and information systems development. Section 2.2 will narrow 
the scope that section 2.1 had. Rather than seeing organisations as a 

whole, section 2.2 will only address the organisational processes known 

as information systems. This will lead the reader to the discussion of 

software and software development presented in chapter 3. 

2.2 The Information Systems field 

Information Systems (IS) is a relatively new field (less than one century 

old) which emerged after the construction of the first computers. At that 

time, when computers were first coming out in the 1940s and 1950s and 

until very recently, practitioners and researchers have tended "to focus on 
the technical aspects" (Warne, 2003,107), such as technology, 

computer sciences and software programming. However, changes in 

business environments posed new challenges to information systems 

specialists. The recognition of information as an asset with a "critical role 
in contemporary organisations" (Laudon and Laudon, 2000,14) has 

made IS grow into a "multidisciplinary field" in which "no single theory or 
perspective dominates" (Laudon and Laudon, 2005,17). Disciplines such 
as "management and organisation theory, sociology, systems thinking, 

political science, social psychology, etc" (Checkland and Hoiwell, 1997,9) 
in addition to information technology contribute to the study of IS. 
Although the multi-perspective approach to IS helps to enhance and 
enrich the field it also contributes to make it complicated (researchers and 

49 



Chapter 2: ' Information Systems in the context of Complex Organisations 

practitioners need to deal with the increasing diverse information). Thus 

there is a need in this thesis to clarify my perspective in this field. In the 

next sections I will first explore some definitions of Information Systems 

and then concentrate on Information Systems Development as this is the 

context in which software development for complex organisations (the 

topic of this thesis) happens. 

2.2.1 Information Systems 

The field of IS addresses the management of information, the creation 

and implementation of information systems, and their utilization to benefit 

the organisations. Many definitions exist of information systems 
(Fitzgerald et al., 2002,4). The introduction of different approaches to 

the field has contributed to enrich the definitions of IS, though they have 

also brought more confusion. Different definitions of IS generate 
dissimilar conceptualisations of the field. As there are lots of definitions of 
information systems it is important to cite the ones which reflect the 

interpretive, phenomenological ontology of this thesis. I start by 

mentioning some conventional definitions of information systems, such as 
the following, which emphasise a technical perspective and then continue 

with more interpretive definitions: 

"systems involved in the gathering processing, distribution 
and use of information. " (Beynon-Davies, 2002,4) 

The next definition shows a functionalist perspective: 

"An information system provides procedures to record and 
make available information, concerning part of an 
organisation, to assist organisation-related activities. " (Flynn, 
1998,3) 

However, following the soft approaches to organisations presented in the 

previous section, the next definitions emphasise their social aspects. 
These definitions outline the field of action and give an idea of the 

50 



Chapter 2: Information Systems in the context of Complex Organisations 

perspective that will be used in this thesis. The following definition is a bit 

technical but takes into account the participation of people: 

"A system which assembles, stores, processes and delivers 
information relevant to an organisation (or to society), in 
such a way that the information is accessible and useful to 
those who wish to use it, including managers, staff, clients 
and citizens" (Buckingham et al (1987) quoted in Avison and 
Fitzgerald (2003,19)). 

The next definition does not even consider computers and software: 

"... the nature of an information system is that it is a function 
supporting people taking purposeful action... " (Checkland 
and Holwell, 1997,110). 

And finally this definition from Handy sets out the role of information 

systems within an organisation: 

"The nerves of the organisation without which none of the 
systems would function; serves the three above [adaptive, 
operating and maintenance systems], running through them 
and around them" (Handy, 1985,337). 

Having presented various definitions of information systems it is important 

now to state the approach of this thesis. These four definitions show three 

important aspects of information systems. First, the role of people and 
their objectives at using organisation's information, second the role of the 

information systems at serving people purposes and supporting 

organisations' existence and finally the computer software which 

represents the technical face of information systems. As a factor that 

influences organisation's members, it is thought that information systems 
"often institutionalise a certain way of work" and "enforce standardised 

procedures" (du Plooy, 2003,43) especially if the use of inflexible 

software is involved. In modern Information Systems software is the 

actual means through which information is stored, distributed and made 

available to users. Therefore the development of software is very much 

connected with the development of information systems. In fact, 

nowadays, in most cases, the development of information systems is 

thought of as the development of software and vice versa. 

51 



Chapter 2: Information Systems in the context of Complex Organisations 

2.2.2 Information Systems Development 

Information Systems Development (ISD) is at the core of the IS field 
(Fitzgerald et at., 2002). This topic is also addressed from different 

perspectives. As shown in the previous section, this thesis' standpoint 

emphasises social aspects rather than the technical ones. However this 
thesis' focus is on software development. Thus I subscribe to the 
following definition that relates organisation needs with software: 

"ISD is often conceptualised as two mutually dependent 
processes: analysing an organizational (social) situation, 
and designing and implementing computerized 
information support for it" (Rose and Scheepers, 2001,2). 

Complementing the above definition, Rose and Scheepers (2001) state 
that information systems developers have to be aware of the human and 

social issues within organisations. Human and social issues are those 

kinds of problems or situations caused by people, by their behaviour, their 

interactions, by the way they are organised and by their beliefs which 

affect their work and the work of others. In the context of software 
development human and social aspects are the characteristics of people 
developing or using software, the interactions between them and the 

effect these aspects have on software. Because they affect people, these 

issues need to be recognised and addressed in order to improve the 

quality of work and the products or services provided. Software will 
therefore be built to support social interactions between users. Handy 
(1985) thinks developing information systems is a complex task. For him 

the designer has to consider four elements: "the purpose of the 
information, the person for whom it is intended, the nature of the 

technology and the type of operation" (Handy, 1985,384). 

Checkland (1985) adds to all the mentioned definitions by stating that ISD 
is a "form of enquiry" with three components: "an intellectual framework, a 
methodology, and an application area" (quoted in Avison and Fitzgerald 
(1995,420)). The intellectual framework is the "philosophy that guides 

52 



Chapter 2: Information Systems in the context of Complex Organisations 

and constrains the enquiry" (Avison and Fitzgerald, 1995,420). Here we 

have concepts and beliefs about the nature of organisations and 

information systems and how information systems development should 
be done. The methodology arises from the transformation of the 

framework into tangible plans and instructions which then are applied in 

the real world or application area. The three components of ISO are 

shown in figure 2.3. Figure 2.3 is useful to explain the area of concern of 

this thesis. The present thesis is focused on investigating how software 

developers perceive their jobs, in particular the human and social 

aspects. That is, this thesis explores the software developers' beliefs 

about human and social issues in their jobs: the organisations they 

develop the software for (the application area) and the methodologies 

they use to develop software. Thus this thesis looks at the intellectual 

framework that software developers possess and it does so by exploring 

the developers' perspectives on the other two components of ISD. 

ISD Approach: 
Intellectual framework 

ISD 
Methodology 

0 

R 

C 

f 

Application area: Complex Organisations 

Figure 2.3 Components of ISD 

53 



Chapter 2: Information Systems in the context of Complex Organisations 

The following section will look at ISO intellectual frameworks or ISO 

approaches as explained in the model in figure 2.3. The purpose of this 

exposition is to present the current perspectives that exist in the IS 

literature some of which are reflected in the data collected in this thesis 
(shown all through chapter 6, but especially in categories C1-8 and C6). 

This exposition will help the reader to compare what is said in the IS 

research field (as presented in the following section) with what is actually 

believed and done by software development practitioners (as presented 
in chapter 6). ISD methodologies, the second component of ISD, will be 

explored in the next chapter after a discussion of software and software 

types. As the concern of this thesis is software development I will 

concentrate only on software oriented ISO methodologies guided by ISD 

Software approaches (as opposed to methodologies that focus only on 

the analysis stages of the development process and do not address the 

development of software at all). 

2.2.3 ISD Approaches 

The intellectual framework for information systems development 

represents the philosophical assumptions that guide the process of 
development. In this thesis I refer to those intellectual frameworks as ISD 

approaches or ideas or actions intended to deal with an information 

system development situation. To present the variety of approaches that 

exist I have classified them according to themes or schools of thought (I 

followed Avison and Fitzgerald (2003) classification of approaches to ISO 

which are inclusive enough to accommodate a huge range of 

perspectives and themes). This classification contains seven groups of 

approaches which are not necessarily mutually exclusive. Each group 
has different views of organisations and information systems which guide 
differently the development of information systems. Each approach that I 

have included in this classification has been chosen either because of its 

past or present influence in software development practice or because of 
its awareness of human and social issues as it is the case of the people 

54 



Chapter 2: Information Systems in the context of Complex Organisations 

approaches or because of its potential for the future development as they 

account for new trends in the technology such as the web approaches. 

The groups of approaches are presented in table 2.1. A more detailed 
discussion of ISD approaches belonging to each group is presented in 

appendix 10. 

Approaches Relevant issues for the Model of complex 
or anisations. 

Organisational Offers a holistic view of the organisation or group of 
organisations and focus on aligning the ISD 
process and the IS with other organisational 
processes. 

Modelling Concerned with creating models of the problem 
situation. These models are intermediate steps 
between the intangible ideas of the problem and 
concrete design specifications. 

People/Participative Seek the involvement of designers alongside users 
from different areas of the organisation to bring 
more insight into a problem situation. 

Engineering See organisations and information systems as 
stable and predictable. Emphasise the use of 
methods which are measured for their performance 
and productivity. 

External The development effort is taken away from the 
development organisation either by buying software or hiring a 

third party to develop the software for them. 

Software Focused on the development of computer software. 
Look for the improvement of quality software. 

Web approaches Do not predefine their activities. Responsive to 
every day situations. 

Table 2.1 ISD Approaches 

The above list of approaches is by no means an exhaustive compilation 
of approaches but an overview at the spectrum of perspectives that exist. 
These cover four important issues in ISD: the understanding of the 

55 



Chapter 2: Information Systems in the context of Complex Organisations 

organisation and the problem situation, the modelling of the situation and 

the information system to be built, the development of software and the 

participation of users and designers within the process. These 

perspectives are not mutually exclusive. In fact some approaches 

overlap others. In section 3.2.1 of chapter 3I present a discussion of 

some software development methodologies which are not necessarily 

fully connected to any of these approaches (except prototyping). That is, 

these methodologies do not totally represent the principles presented in 

the above sections. The methodologies shown in chapter 3 are the ones 

more used or commented on by software developers during the fieldwork. 

It is important to note here that the disconnection between the ISO 

approaches, popular in the IS literature, and the software development 

methodologies used in practice represent a gap between research (or 

theory) and practice which this thesis also wants to highlight. 

In the next section I will explore technology, information systems and 

information systems development from a structurational perspective. 

Structuration is used here to explain how social structures emerge from 

the use of technology and especially software. The concepts explored in 

the next section will be then referred to in chapter 7 to help mould the 

findings of this thesis and to provide a theoretical framework for the final 

result. 

2.2.4 Structuration theory In the Information Systems field 

In this section I will present two applications of the structurational 

perspective in the IT and IS fields. The first one is the model of 

structuration of IT by Orlikowsky (1992; 2000) and the second one is a 

structurational interpretation of the Information Systems and Information 

Systems Development fields by Rose and Scheepers (2001) and Rose 

and Hackney (2003). While there are a few more attempts to use 

structuration theory in IS research, Orlikowski and Rose's attempts are 
the more relevant to this thesis. Orlikowski's perspective is useful to 

56 



Chapter 2: Information Systems in the context of Complex Organisations 

understand the nature of complex organisations that use technology tools 

and Rose's perspective presents information systems (and software) 
development as a structuration phenomenon and situates it within a 

structurational organisational setting. Two other interesting attempts to 

use the structurational perspective in IS research are the use of 

structurational concepts in the evolution of Multiview 2, a framework for 

information systems development, by Avison et al. (1998) and the use of 

structuration theory to understand the social and organisational issues 

that surround the use of collaborative tools by Evans and Brooks (2005). 

These two attempts however are focused on specific instances of 

information systems: an IS methodology and collaborative tools. As this 

thesis possesses a wider focus these studies will not be explored more in 

depth. 

a. Structuration theory of Information Technology 

Structuration theory can provide insights into the nature of technology 

and information systems. Orlikowski's (1992) "duality of information and 

technology" is one of the best known attempts to use structuration theory 

to explain the relationship between organizations and technology. 

Orlikowski (1992) uses Giddens' structuration theory to build a theoretical 

framework that "explores how technology is created, used and becomes 

institutionalized within an organization" (Brooks, 1997,137). Figure 2.4 

shows Orlikowski's model of structuration of IT. According to Orlikowski 

(1992) information technology constitutes and is constituted by human 

agency. That is, IT is "shaped by and shapes human action" (Jones et al., 
2004,318). On the one hand information technology is an objective set of 

rules enabling or constraining human action and contributing to the 

creation of social practices involved with the use of IT (arrow b, Figure 

2.4). On the other hand information technology is the social product of 
human action within specific structural and cultural contexts (arrow a, 
figure 2.4) (Orlikowski and Robey, 1991,151). Once the use of 
technology is stable it becomes routinized and appears as part of the 

social structures of the organization (or institutional properties of the 

57 



Chapter 2: Information Systems in the context of Complex Organisations 

organisation) that influence human action (arrow c, figure 2.4). However 

when technology is changed to the extent that it does not become 

institutionalized, the consequences of interaction with technology will 

influence the organizational context (arrow d, figure 2.4) (Brooks, 1997, 

138). 

Institutional d. Consequences 
properties of interaction 

c. Conditions for a. IT is the Information 
interactions product of technology 

agency- 

-----b. IT is the 
Human actors medium of 

agency 

Figure 2.4 Structurational Model of IT 
Source: Orlikowski and Robey (1991,17) 

The role of IT as a medium of agency (arrow b, figure 2.4) is further 

developed by Rose and Hackney (2003). According to Rose and 

Hackney information technology can enable and stabilize interactions or 

constrain them. The role of enabling and stabilizing interactions is the aim 

of technology designers. However the idea that IT constrains interactions 

may be caused by the difficulties in effecting changes to it. The nature of 

the constraint could also be an inherent characteristic of technologies. 

These inherent characteristics may be seen as a result of wider social 

processes or absolute features of technology (Rose and Hackney, 2003, 

264). 

Orlikowski also explores the temporal dimension of structuration. She 

sees technology as having two iterative modes (Orlikowski, 1992,408). 

First she identifies the "Design Mode" which represents human action 

affecting technology, that is, the realm of human action of structuration. 
Second, she recognises the "Use Mode" representing technology 

affecting human action, that is, the institutional realm. As information 

technology is developed in a different setting and at a different time from 

the one in which it is used, one of the modes of the duality usually 

58 



Chapter 2: Information Systems in the context of Complex Organisations 

becomes obscured (Brooks, 1997,138) to the people involved with the 

other mode. For example, researchers who investigate ISO may see 

technology as a subjective phenomenon conformed by the actions and 
interactions of developers which at the same time are shaped by the 

organizational goals. These researchers may also neglect the factors 

affecting technology use in the future. Researchers who investigate use 

of technology may see technology as artefacts influencing users' 
behaviour and may not consider the factors affecting its development. 

For Orlikowski (1992) this is a misleading disjuncture (Orlikowski, 1992, 

409). Rather than treating design and use as disconnected modes of IT, 

Orlikowski's structurational model suggests that artefacts could be 

modified through their existence, that is, technology can be changed by 

users through their interactions with it. Orlikowski calls this the 

interpretive flexibility of technology. However, despite the opportunities 
for change, routinized views of technology and interactions often develop. 

These routinized views are caused by the interactions between 

organizations and technology and are not inherent in the nature of 

technology (Brooks, 1997,139). In the case of software development, as 
I see it, this means that software developers use a static snapshot of the 

organisation to do their job, neglecting the possibility of change. Although 

developers know that a big deal of their time is devoted to maintenance 

work (to account for changes) they do not consider this as part of the 

development job. Maintenance is usually disliked by developers and 
taken as a second class job (fieldwork data, see Maintainability in C3-2 in 

section 6.3 of chapter 6). This thesis' standpoint concurs with Orlikowski's 

position. Both modes of technology should be connected. This thesis 

studies the "design mode" but it is the observation of the "use mode" 
through time by developers which this thesis pays especial attention. I 

refer to this as "developers being aware of human and social issues in the 

organisational environment". 

According to Jones (1997), the weakness of Orlikowski's structurational 
model of IT is that her conceptualization of technology as a material 
product of human action does not concord with Giddens account of 

59 



Chapter 2: Information Systems in the context of Complex Organisations 

technology (Rose and Hackney, 2003,258). For Giddens "technology in 

so much as it exists, casts it as a resource to be employed by human 

action" (Rose and Hackney, 2003,258). Structure only exists in the 

memory of people (Jones, 1999,109) and agency is a human attribute, 

therefore there is no place for a materialistic account of technology like 

the one proposed by Orlikowski. 

In a later work Orlikowski (2000) proposed an extension of her 

structurational perspective which overcame (as she states) the criticisms 

mentioned above. Orlikowski (2000) separates two aspects of 
technology: technology as "artefact" and "technology use"; and further 

defines the latter as technology-in-practice. She then proposes a practice 
lens to understand the recursive interaction between people, technology 

and social action. 

Orlikowski (2000) states that, seen through practice lens, structures are 

not embodied in technology-in-practice but emerge from them 

(Orlikowski, 2000,407). Rather than examining technology and its 

properties, the practice lens looks at human action and examines how it 

enacts structures through interaction with technology. Orlikowski 

develops the concepts of emergent structures and enactment of 

structures which define technology-use as a social structure. For 

Orlikowski emergent structures are structures that come to life from 

human action. This view contradicts the old perspective which saw 

structures as embodied or inscribed in technology. Also by seeing social 

structures as enacted, Orlikowski rejects the idea of technology or 

structure appropriation. Appropriation of technology is a concept brought 

up by DeSanctis and Poole (1994) which shows how a given rule or 

resource within technology is brought into action (DeSanctis and Poole, 

1994,129). Thus technology appropriation sees people as always using 
technology as it was designed. However this is not always the case. 
Users of technology can translate into action social structures not 

predicted by technology designers. For example, users can invent new 

ways of using technology, they can ignore certain properties of 

60 



Chapter 2: Information Systems in the context of Complex Organisations 

technology, or they can make mistakes and use technology wrongly (e. g. 

select the wrong options to get wrong results). Therefore, different social 

structures emerge from technology use which can correspond or not with 
the intentions of technology designers. This point is relevant to this 

thesis. Software developers should be aware that the software that they 

develop may be used in different ways (e. g. users subverting the system) 

and that the users may want the software to be adapted to other uses 
different than the ones originally planned. The changes in requirements 
and attitudes by the users may be explained by the concepts of emerging 

structures and translation into action explained above (see fieldwork data, 

category C3-2 adaptability in chapter 6). 

The second model of Orlikowski's is called "Enactment of Technologies- 
in-Practice" and is shown in figure 2.5. It is based on Gidden's duality of 

structure. Orlikowski explains that users of technology are situated "within 

a number of nested and overlapping social systems" (Orlikowski, 2000, 

411). Therefore the use of technology will recreate other social structures 

apart from technology-in-practice. Similarly, users will draw on many 

varied social structures when they use technology. These factors make 
the use of technology an adaptable and unpredictable phenomenon 

which influences the way information systems professional see 

organisations. 

61 



Chapter 2: Information Systems in the context of Complex Organisations 

------------------------------ 

t1------------------------------ 

-----------------------------mai 
Technologies-in-practice 

I (rules and resources instantiated in use of technology) 
'---- 

------ --------- 

Other structures 
enacted in the 

................................................................. use of 
technology 

Facilities Norms Interpretive 
e. g.. e. g., Schemes 

hardware protocolos e. g., 
software etiquette assumptions 

knowledge 
C 

Ongoing, Situated Use of Technology 

Figure 2.5 Enactment of Technologies-in-Practice 
Source: Orlikowski (2000,410) 

Over time, constant use of technology may become routinized and may 

be seen as predetermined (by users and information systems designers). 

Routinized use of technology may impede change as people would think 

of technology as a fixed and stable object. However, this view is only 

provisional (Orlikowski, 2000,411) as technology can be modified by its 

designers (e. g. new versions of a software could be released) or users 

can innovate their use of technology. Thus, technologies are never fully 

stabilised or "complete" even when people choose to treat them as fixed 

objects for a period of time (Orlikowski, 2000,411). 

In addition to explaining the relationship between technology and use of 
technology, Orlikowski's practice lens can be used to analyse 

organisational situations where people work and interact with IT tools. For 

example, Schultze and Orlikowski (2004) use a practice lens perspective 
to study the use of technology mediated network relations. The practice 
lens help them to "highlight how macrolevel phenomena such as interfirm 

62 



Chapter 2: Information Systems in the context of Complex Organisations 

relations are created and recreated through the microlevel actions taken 
by firm members" (Schultze and Orlikowski, 2004,87). 

The structurational perspective of IT of Orlikowski (1992; 2000) presents 

a view of IT which can also be applied to business software and software 
development. We can separate the software artefact from software use. 
Software use can also be seen as a recursive phenomenon. The use of 

software creates and recreates social structures within organisations 

which are (hopefully) perceived by software developers. Users draw on 
diverse social structures to use software and social structures emerge 
from that use. Use of software changes and evolves over time. Thus 

change of software can happen during design time (realm of human 

action) and during software use (institutional realm). This perspective 

corresponds to the one shown in the model of complex organisations 

where people, and especially software users, present adaptable and 

unpredictable behaviour. Because of this, Orlikowski's model of 

enactment of technologies-in-practice is used in chapter 7. Orlikowski's 

model forms part of a theoretical framework (which I designed) in which 
the findings of this thesis are situated. The enactment of technologies-in- 

practice provides a view of software use that is continuous in time and 
that generates social structures which are relevant for the development 

and/or maintenance of software. 

In the next section I will present another structurational perspective which 

adapts structuration theory to ISD in an attempt to bridge the gap left by 
Giddens because of his disinterest in practical applications of his work. 

b. Structuration theory and Information Systems 

Rose (2000) and Rose and Scheepers (2001) describe Information 
Systems (IS) and the process of Information Systems Development (ISD) 
in terms of structurational concepts in an attempt to influence IS research 
and practice. For them Information systems are subsets of social 
practices that are determined by a task (Rose and Scheepers, 2001,9). 

63 



Chapter 2: Information Systems in the context of Complex Organisations 

Information systems development is a "specialized social practice, 

subject to its own evolving interactions and structures, and highly partial 

and fallible. " (Rose and Hackney, 2003,265) Figure 2.6 presents a 
diagram showing the relevant sets of social systems (organisation, 

business system, information system, software and information systems 
development) that surround IS. For Rose and Scheepers (2001) 

Information systems have three components: 

1. A social system devoted to collecting, storing and disseminating 

relevant information (could be the organisation, the business 

system or the information system) 
2. Computer and communication technologies where information 

practice may be heavily enmeshed with use of the technologies. 

As technology is composed of material artefacts it cannot be 

described as social systems. 

3. A social system devoted to the development maintenance and 

management of the technology (ISD). 

/-911\ -Is 
business system 

inbrmation system 

computerized cllmputeriasä 
intbrmation Information 

em system, ' development ý`ýý 

mediated by 

ilapar 
information technologies- 

camp tier and communications 

Figure 2.6 Social Systems around IS 
Source: Rose (2000,150) and Rose and Scheepers (2001,10) 

Within the context in figure 2.6, Rose and Scheepers (2001) refer to the 

role of discourse to explain the relationship between structure and agency 

64 



Chapter 2: Information Systems in the context of Complex Organisations 

in IS. Discourse is characterised as information and is the medium of 

structuration of information systems (Rose and Scheepers, 2001,9) as it 

is used by knowledgeable and reflexive actors to institutionalize their 

practices. In the institutional realm, information systems represent the 

structure of the social system which designs and uses it. In the realm of 

human action information systems also routinize many practices through 

the mechanisms of system integration and time-space distanciation 

(Rose and Scheepers, 2001,10). Translating this into the software 

development field, Rose and Scheepers portray information systems as 

social systems which are supported by material resources such as 

software, which are designed by another social system (software 

developers). Software designed by developers reflects the structures of 

the social system that built it and that one that uses it. Following this idea 

this thesis tries to bring together both sides of software development: the 

development and the organisational environments (this is stated in 

section 1.2 of chapter 1). Also software may routinize social practices 

through the mechanisms of system integration and time-space 

distanciation. Finally, a point worth noting here is that Rose and 

Scheepers suggest the use of IT to leverage social practices which are 

already well stabilized or institutionalized. 

2.3 Chapter Summary 

In this chapter I have discussed several views of organisations and 
information systems, especially those ones which emphasise their 

adaptable, unpredictable, and multi-group work aspects (as shown in the 

model of complex organisations presented in ' chapter 1). I have paid 

especial attention to structurational perspectives of organisations and 
information systems which focus on the social phenomena at a micro 
level but which can also be extrapolated to a macro level by 

demonstrating the relationship between human agency and institutional 

properties (Orlikowski and Robey, 1991,154). The reason for choosing 

structuration is because it can explain how organisational structures 

65 



Chapter 2: Information Systems in the context of Complex Organisations 

emerge from human action in organisations especially through the use of 

software. This is important to this thesis as it is concerned with the 

developers' awareness of human and social issues in organisations users 

of software and their ability to translate those issues into software. 
Additionally, this chapter has described modern organisations and their 

information systems as unpredictable and ever changing. Business 

processes can cross organisational boundaries and involve different 

stakeholders. In doing their jobs, people may have their own personal 

purposes apart from the organisational ones. These and other human 

and social aspects of organisations shape the context in which business 

software is used and software development happens. Thus this chapter 
has set a background for the discussion about software and software 
development in the next chapter. In the next chapter I will explore 

software in the context of information systems, software development and 

some issues concerning software developers. 

66 



Chapter 3: Business Software and Software Development 

Chapter 3: Business Software and Software 
Development 

Having discussed complex organisations and information systems in 

chapter 2, in this chapter I will review the concepts of software, software 
development and explore the characteristics of software developers. In 

chapter 2I noted that business organisations and their information 

systems are the context in which business software is used and software 
development is carried out. Figure 3.1 (repeated from figure 2.1 in 

chapter 2) positions software development as an activity within 
information systems development (shown by grey arrow). Information 

systems development focuses on analysing the organisational 

environment and designing their processes by fulfilling their 

organisational and people's objectives. Within information systems 
development, software development is aligned with the same 

organisational aims but through the implementation of a software tool. 

Organisation 

Information System 

Business PIMP Software 

Figure 3.1 The Context of Software Development 

In this chapter I will introduce the software development environment as 
another context which influences software development work. 
Development practices, working arrangements and software developers' 

67 



Chapter 3: Business Software and Software Development 

beliefs affect the way they see organisations, their users and the software 
they need to develop. This chapter will also deal with the concept of 

software as it is the product of the software development process and the 

one that business organisations will use. I will explore how human and 

social issues, from both the organisational and the software development 

environments shape software. Although software and software 
development are more technical topics than the ones discussed in the 

previous chapter, I will focus on the human and social aspects 

surrounding these concepts so as to complement the views presented in 

chapter 2. 

The objective of this chapter is to compare the nature of (business) 

software and software development with the human systems they are 

serving (the organisation and its information systems). The purpose of 

this is to see how social issues within business organisations are 

reflected in software development and hence in the software that results, 

and to explore any other social issues emerging from the development 

environment. Human systems were discussed in chapter 2 as complex 

organisations which contain adaptable, unpredictable, multi-group 

processes. However, the software that organisations' members use is 

seen as predictable pieces of code by software developers. Though code 
is capable of being changed (adapted), it usually does so at a slower 

pace than the human systems they serve. At the same time, the 

environments in which software is developed resemble the ones of 

organisations in the sense that they contain unpredictable, adaptable and 

multi-group processes. The human and social factors in software 
development, though usually neglected in the past, are gaining more 
importance as new human-oriented development methodologies are 
being created (see section 1.2 of chapter 1). Thus I will explore how the 

increase in awareness of the human and social factors within the 

development environment could help developers to be more aware of the 

human and social factors within the business setting they are developing 

the software for. 

68 



Chapter 3: Business Software and Software Development 

This chapter is divided in two sections. The first section defines software, 

and business software in particular, and their characteristics and presents 

a classification of software which is relevant to the kinds of business 

processes within complex organisations as presented in chapter 1. The 

second section explores the characteristics of software development and 
discusses some of the most well known (and most used in practice) 

software development methodologies and explores the characteristics of 

software developers focusing on their role in the development process as 
individuals and as team members. 

3.1 Software 

Software was introduced in chapter 2 (section 2.2.1) as the technical face 

of information systems, which supports people working and sustains 

organisations' existence. In practice software is the visible outcome of the 

implementation of an information system. New rules and improved 

processes are learnt and applied or executed through computer tools. 

Thus, for software developers and users, software is a more tangible (and 

hence comprehensible) concept than information systems. Before 

deepening the discussion on software for information systems (or 

business software) I will provide an opening definition and classification. 
This will help the reader to appreciate the particular features of the type of 

software (and therefore software development processes) that this thesis 

is focused on. 

From a technical or engineering perspective software is the set of 

commands or instructions used to control a computer to accomplish 

particular tasks. Software is a unique kind of product, it cannot be 

compared to other engineering products (Mann, 2002,36). Software is 

an intangible product made up of bits and bytes. Only when one uses it 

does one understand the value (usefulness, look and feel) of its features 

(Fowler, 2004b). Likewise, Spolsky (2002b) compares software with an 
iceberg in which only 10% of it is visible to the users (e. g. the graphical 

69 



Chapter 3: Business Software and Software Development 

interface) and the 90% is under the water (e. g. formulas, algorithms, and 

connections with database). 

Software is a broad concept as understood by software developers. 

Software could be games, or word processors or payroll systems. 
Software can be embedded in hardware, (e. g. calculators), exist online on 
the web, or sold on CDs. In fact, within the software field there are 
different software perspectives which differ in their views depending on 
the purpose and technical characteristics of software they deal with. 
Technically speaking, Spolsky (2002a) identifies five "worlds" within the 

software field which are not necessarily mutually exclusive. 
Spolsky's classification is done from a "business of software" perspective 

and is based on the technical aspects of software and its development. 

He classifies software as: 

1. Shrinkwrap: or off-the-shelf software which is designed to be used 
by a large number of people. Software developed in this way is not 
made to measure but contains generic features which can be used 
in more than one setting. Difficulties with shrinkwrap are that it has 
to reach very high levels of usability to achieve success among 
thousands of users. Also, development of this type of software 
becomes complicated because this software may be run in many 
different kinds of computers. Developers have to make sure their 
shrinkwrap software has similar behaviour among all those 

platforms. An example of a shrinkwrap software is a word 
processor. 

2. Internal: is software designed to work for only one kind of situation 
in only one setting. Because internal software is going to be used 
by a limited number of people and be run in a fixed and known 

technology platform its development may be seen as less 

complicated. However, according to Cockburn (1995), 

customisation of software to particular tastes of users and settings 
makes its complexity grow exponentially (Cockburn, 1995). 

70 



Chapter 3: Business Software and Software Development 

3. Embedded: is software that is installed in a piece of hardware (not 

normally identified as a computer) and usually cannot be updated. 
For instance software for digital cameras. Complications for 

embedded software are the limited amount of memory available 

and that there are no second chances for improvements as no 

changes can be done once installed. 

4. Games: are software developed to hit one particular kind of 

market. Market analysis is done to discover the preferences of 

people and the features they are willing to see in games. A 

problem with many games is that once users play it to the end, 
they will not want to play it again. Developers are therefore forced 

to be faster at creating, developing and releasing new games. 
Games have the same quality requirements as embedded 

software and a huge "financial imperative to get it right the first 

time" (Spolsky, 2002a). 
5. Throwaway: is software created temporarily, exclusively for 

internal development purposes. This software acts as a bridge to 

obtain a further objective. For example, a routine to change the 

format of data from one database standard to another. 

This classification, though technical, provides a view of where software 
for business organisations could be situated. In business organisations, 

the context in which this thesis is located, software is also known by other 

names such as business software, business application or business 

solution. Business software is any computer application that helps to run 
the organisations and which is aligned with their information systems, 

objectives and strategies. Typical examples are accounting and payroll 

systems. From the above classification, business software can be 

internal, and be designed to fit one specific organisation. Business 

software can also be shrinkwrapped. Good examples of shringwrapped 
business software are business solutions such as PeopleSoft Enterprise 

(owned by Oracle ®) or mySAP ERP (owned by SAP), though most of 

these applications require further development to be adjusted to the 

71 



Chapter 3: Business Software and Software Development 

particular needs of the organisations. This thesis is particularly interested 
in the development of business applications which are customised to fit 
the unpredictable, adaptable, flexible and multi-organisational nature of 
business settings (as shown in the model of complex organisations) 
either if software are shrinkwrapped or internal. Therefore, in either 
situations (shrinkwrapped or internal) attention to the (kind of) 
organisational settings in which the software is intended to work is 

needed. 

McConnell (1993) identifies some external and internal characteristics of 

software, which I am featuring in table 3.1. For McConnell, external 

characteristics are the ones users and developers care about; and 
internal characteristics are the ones (mostly only) developers are aware 

of. 

Correctness: the extent to which the Maintainability: the ease with which 
software is designed and programme code [instructions in a 
implemented according to what users computer programme or software] can 
and developers have in mind be modified (corrections or 
(Cockburn, 1995) rt<° improvements) 
Usability: the ease with which users Flexibility: the ease with which 
can learn and use a software programme code can be modified to 
Efficiency: minimal use of technical -, ' other uses other than the originally ; -; - 
resources. Software takes advantage : specified, .; 3 ; 
of the problem and machine in which Portabili : the ease with which software 
it is to be run (Weinberg, "1971,21) can be moved to'a different platform 
Reliability: having few failures' and Reusability: the extent to which a 
performing as required , ". . _:. - programmer can use a piece of 
Integrity: the degree to which the, ' programme code in another programme 
software present data accurately Readability: the'ease with which .:, Accuracy: how well a system does the programme code can be read and; 
job it is supposed to do (regardless of understood at the technical level ; 

" its correctness) 
Adaptability: the degree to which the 

Testability: the degree to which the . '.:: .g software can be assed to find out if it 
software can be used in different meets the requirements 
ways than the originally specified. Understandability: the ease with which 

the software can be comprehended at 
the system-organisational and 

; y.. _ statement levels: 

Table 3.1 Characteristics of Software 
Adapted from McConnell (1993,557-558) 

72 



Chapter 3: Business Software and Software Development 

Another characteristic of business software, explored by Cooper and 
Reimann (2003) is "fudgeability". Fudgeability is the ability of software to 

let users "perform actions out of sequence or before requisites are 

satisfied" (Cooper and Reimann, 2003,189), that is, the software does 

not compel humans to endure inflexible business processes. For Cooper 

and Reimann (2003) fudgeability is a success factor because fudgeable 

software allows flexible human processes to flow naturally. For example, 

good software is one that lets users perform a transaction that will allow a 

million pound deal to be signed even if the deadline has expired. 

There are further external factors that affect software's development and 
behaviour. Business Software is usually developed under pressure. If it is 

shrinkwrapped, the pressure comes from the market; if it is internal, the 

pressure comes from the stakeholders or users. Cockburn (2001) states 

that "business and technology worlds have become turbulent, high speed, 

and uncertain, requiring a process to both create, change and respond 

rapidly to change. " (Cockburn, 2001) For this reason, in the software 

business, a "just acceptable product developed quickly will be preferred 

to an excellent product produced slowly. " (Chisholm et al., 1996,232) 

Is software only a technical concept? 

The nature of software, or what it involves, is not only a technical set of 
aspects. Software also contains human and social aspects resulting from 

its development and use. By human and social aspects I mean the 

characteristics of people developing or using software, the interactions 

between them and the effect these aspects have on software. For 

example: the goals of the users of software, their preferences for 

communicating among themselves and how developers communicate 

with users. Unfortunately, "software creation is limited by the ability of 

people to express their thoughts" (Cockburn, 1995). This is also reflected 
in the available software modelling languages which do not posses all the 

nuances of the spoken language. For example, ideas expressed in 

English will have to be adapted to the UML (Unified Modelling Language, 

73 



Chapter 3: Business Software and Software Development 

one standard for modelling software. ) standards for software to be 

developed. Valuable information could be lost in the process of 
translation between one language to the other. Similarly, software 

programming is also limited by human's ability to think about the problem 

and the solution (Cockburn, 1995). Software is a result of people's 
thoughts and depends on whether developers are able to devise a good 

solution for their users. On the same line, the evolution of software is 

limited by the capacity of humans and human social systems to deal with 

change (Constantine, 2001,128). For example, the acceptance of new 

and improved software is always dependent on the capacity of their users 
to adapt to it and to the new processes its use will be involved with. 
According to Perry (2004) three are three sources of evolution. The first 

source is the domain or the real world which evolves in two ways: 
independently of the software and as a consequence of the software 
being operational in the real world. The second source is the experience 

of users of software and developers who accumulate knowledge about 
the software and the domain (the organisational and software 
development contexts respectively). This knowledge is used then as 
feedback to change or improve the software. The third source of 

evolution is the processes in the form of methods, technology and 

organisation which provide the contextual culture and structure for 

software systems to evolve. 

Because it is affected by market pressures and depends on humans' 

ability to create it, software is predisposed to failure. Wrong conceptions 
of its nature make people overlook what is important for it to be 

successful. Constantine (2001) states that while hardware has become 

more reliable through the years, "software has become far less so" 
(Constantine, 2001,128). Good software should be "usable, reliable, 
defect free, cost effective and maintainable" however it is none of those 
things (Mann, 2002,34). According to Warne (2003), many authors have 

studied the degree of failure in the software industry, and have found, 

though through different measures, high rates of software projects failure 
(Warne, 2003,106). The reasons for software failures have been 

74 



Chapter 3: Business Software and Software Development 

associated with the mechanistic approach to software development and 

not to the inability of technology to perform satisfactorily (DeMarco and 
Lister, 1999,4). Mechanistic approaches are the ones focused on the 

characteristics of the technology and not on the characteristics of the 

human systems which will use it. So far the prevailing software 
development approaches have been the technical, engineering, software 

centred ones (Cooper and Reimann, 2003,6; Clegg, 2000) which define 

quality in a technical way (Pfleeger, 1991,5) but which neglect the human 

and social aspects of the organisations (Wastell and Newman, 1996, 

quoted in du Plooy (2003,43), Clarke and Lehaney (2000,10)). A narrow, 

mechanistic focus is the cause of faulty software, where inefficiency, poor 
designs cause discontent in users who find the applications difficult to 

understand (Mann, 2002). Cooper and Reimann (2003) state that failing 

to imbue software with humanity and not taking into account users' goals 

causes software failure (Cooper and Reimann, 2003,5). Also, Winograd 

and Flores (1986) state that software failure is caused by not designing 

software appropriately for the context (the social and political situation) in 

which they will be operated (Winograd and Flores, 1986,84). 

Additionally, Cooper and Reimann (2003) also state that not having 

reliable development processes contributes to that failure (Cooper and 
Reimann, 2003,25). Lyytinen and Hirschheim (1987) define software 
failure as "expectation failure". That is when a software project does not 

meet the stakeholders' expectations. For them there are three types of 
failure. The first one is correspondence failure, and happens when the 

objectives of a project are not met. The second is process failure, when 
the project cannot produce a functional system. The last one is interaction 

failure, when the users reject the software totally, by not using it at all, or 
by partial use (Lyytinen and Hirschheim (1987) quoted in Warne (2003, 

106)). So, in their different terms all these authors lay the problem of 
software failure at a narrow focus on technology and hence to improve 

the rate of successes of software it is very important, to encourage a 
closer look at human and social issues when developing software. 

75 



Chapter 3: Business Software and Software Development 

A good example of considering humans when developing software is 

Cooper and Reimann's (2003) approach to modelling software. Cooper 

and Reimann (2003) define two kinds of models relevant for software 
development. First is the users' mental model of the problem situation 

and how they do their jobs, and second is the implementation model 

which reflects how software works. In between these models there could 
be a spectrum of "represented models" which developers use to 

represent the system and show to their users. The relationship between 

these models is shown in figure 3.2. Cooper and Reimann state that for 

the software to be successful, developers need to use a model which is 

closer to their users' mental model and far from the technological model. 
A good explanation for this, in the context of groupware software, is given 
by Orlikowski (1997). She says that when users' mental models differ 

from the software implementation model, the technology will be unlikely to 

facilitate their work (Orlikowski, 1997,231). Users may try to use the 

technology differently in a way that concurs with their mental model but 

which does not concur with the developers' intentions at developing the 

software. 

C 

Implementation 
Model 

cc 0 

Worse Better 

Closer to Closer to mental 
implementation model model 

Represented Models 

Figure 3.2 Representation of Models of Software 
Source: Cooper and Reimann (2003,22) 

0 Users' Mental 
Model 

Cooper and Reimann's model is aimed at software developers. It 

explains, in a very simple way, how different models can emerge from the 

same situation, depending on the perspective of the viewer. It also 
emphasises the importance of the users' ideas of how their job is (or 

76 



Chapter 3: Business Software and Software Development 

should be) done and, how at the end, it is them who will decide on 

whether the software is good or not for them. 

A classification of software systems relevant to the model of 

complex organisations 

In chapter 1 and chapter 2I described the contexts within which the kind 

of software that interests this thesis is used. The kind of software used in 

the contexts I am referring to is one that serves business decision making 

processes in which groups of individuals are involved and which could 

cross organisational boundaries. These processes are highly adaptable 

and unpredictable due to the human and social factors involved. At this 

point, I will provide a classification of software that takes into account the 

above circumstances and issues and which are relevant to the model of 

complex organisations. In the next sections I will discuss the following 

kinds of software. 

9 Decision support systems 

" Software designed to support group work 

9 Social Software 

The above classification describes how human and social issues within 

complex environments are inscribed in the software and how these 

issues affect the development process. This classification is also ordered 

chronologically and could be considered as a historical account of the 

evolution of social software. This chronology shows how the interest in 

human and social issues evolves through time. 

3.1.1 Decision support systems 

Generally, decision support system (DSS) software is built upon 
mechanistic models of organisation and decision making processes. 
These models of decision making are based on typologies of decisions 

77 



Chapter 3: Business Software and Software Development 

and decision processes. One of the most well known classifications of 
decisions is the one created by Simons (1977). According to him there 

are different kinds of decisions for different kinds of problems. Table 3.2 

shows this. 

Structured Repetitive problems for which standard solution methods. 
exist. 

Semi- Problems that have some structured elements and some 
structured unstructured elements. 

Unstructured Fuzzy, complex problems for which there are no cut-and- 
dried solution methods. 

Table 3.2 Types of Decisions 
Source: Turban and Aronson (2001,11) 

Similarly the process that decision making support software follows in 

general resembles very much the one shown in figure 3.3. In the 

intelligence phase decision makers need all information available to 

simplify and understand a problem situation. During the design phase, 
decision makers design possible solutions by, for example, using 

mathematical algorithms. Each solution is then contrasted to the real 

problem situation to assess its validity. The best solution is selected and 
tested in the choice phase and finally implemented. This framework for 

decision process could represent a complete process or just part of it as a 
decision making process could involve many decision making sub- 

processes. For example, people resolve at a certain point within the 

wider decision making process to look for more information, to summon 

other people, to postpone decisions or to cancel the process. These are 

also smaller decision making processes within the wider one. 

78 



Chapter 3: Business Software and Software Development 

Intelligence Phase: 
Reality Simplification searching for conditions 

that call for decisions 

Design Phase: inventing, 
Validation of the model 

developing, and 
analyzing possible 
courses of action 

"s 
V 

Veriflca11on & testing mice Phase: selecting 
of proposed aoiutlaa a course from those 

available 

Implementation 
at solution 

Figure 3.3 Decision-Making process 
Source: Turban and Aronson (2001,42) 

Following this framework, different kinds of applications will be created to 

deal with different kinds of decisions. Similarly there are applications built 

to support one or more of the stages in the process of decision making. 
These applications could also be developed and sold separately. It is 

usually the collection of support tools which are known as DSS. Generally 

a DSS is a computer based system that supports complex decision- 

making and problem solving (Gachet, 2001,214; Shim et al., 2002,111). 

Similarly, a Group Decision Support System (GDSS) facilitates the 

solution of problems by a set of decision makers working together as a 

group (Wilson, 1991,10). DSS and GDSS contain tools that are used for 

data analysis, such as OLAP, data mining tools (see glossary for a 
description of these tools), and mathematical and analytical models 
(Laudon and Laudon, 2005,420). Usually, DSS and GDSS are used at 
the higher levels of the hierarchy of organisations as they aid in the 

development of their strategies. 

79 



Chapter 3: Business Software and Software Development 

Holtham (1992) states that DSS and GDSS should be designed to fit the 

culture and style of managers and to summarise critical organisational 
and environmental data that help them to make decisions. According to 
Holtham (1992) there are three factors that need to be considered when 
designing DSS: organisation competencies which give the comparative 
advantage, culture and management style, and business environment 
(opportunities and threats) (Holtham, 1992,37). However, in practice, 

efforts to improve DSS and GDS tools are made in the area of efficiency 

at utilising storage space and speed at responding to users' queries. 
Unfortunately, one of the consequences of this narrow focus, as 
explained before, is software failure. 

3.1.2 Software designed to support group work 

In this section I will explore the characteristics of software used to support 

groups at doing different business activities and hence seem to be very 

closely relevant to this thesis. These activities include, communication 
(e. g. sharing information among team members), collaboration (group 

members performing tasks together) and decision making (GDSS 

classifies as well under this topic). Chronologically these kinds of 

software were conceived after the DSS and generally involve also the 

support of decision making. The kinds of software included in this 
discussion are Groupware, CSCW (Computer Supported Cooperative 

Work), Collaboration tools and Workflow. 

"Groupware is software that supports and augments group 
work. " (Greenberg, 1991) 

"CSCW is understood to be a generic term which combines 
the understanding of the way people work in groups with 
the enabling technologies of computer networking and 
associated hardware, software, services and techniques. " 
(Wilson, 1991,6) 

80 



Chapter 3: Business Software and Software Development 

Groupware and CSCW are basically the same thing. They are two 

different names to describe the same kind of software. Whereas 

groupware is a term mostly used by practitioners, CSCW is a more 

academic term which describes the "scientific discipline that motivates 

and validates groupware design" (Greenberg, 1991,1). Groupware 

applications focus on facilitating communication between people. 

Groupware supports events like group meetings or conferences. It offers 

tools for brainstorming, classification of ideas, prioritisation and voting. 

These activities can be performed in one room, with all the members 

present or can be carried out in distributed environments, with members 

in different parts of the world. These meetings and conferences can be 

synchronous or asynchronous. This means that either people are 

communicating at the same time or at different times and the groupware 

tools help them to keep track of the conversations. 

Collaborative tools are similar applications to groupware but their 

emphasis is on supporting people who are working together to produce or 

create something. Although they are used in social contexts this does not 

mean that the elements of those social aspects are included as features 

of the collaborative tools. In fact the methodologies used to develop 

collaborative tools are predominantly technology oriented (focused on 

efficient use of space and improving speed). In fact, the aim of 

collaborative tools is to make collaboration faster, better, and effective. 
Schrage (1997) uses a conversation metaphor to explain how 

collaborative tools work. For Schrage (1997), collaborative tools "embody 

the visual and verbal languages that people need when they have to do 

more than just transmit information" (Schrage, 1997,170). Schrage 

(1997) uses a "collaborative model" to explain how collaborative tools 

enhance conversations. In normal conversations, people take turns to 

explain their ideas following the model below 

Sender/Receiver - Conversation ----- Receiver/Sender 

81 



Chapter 3: Business Software and Software Development 

In conversations ideas are exchanged from sender to receiver but not 
shared. Thus according to Schrage (1997) conversations lack of memory. 
The collaborative model includes a new dimension to conversations in the 
form of shared space which participants can use to enhance their 

communication. This shared space resembles a whiteboard in which 
track of conversations is kept. 

Shares ---- Space 

Sender/Receiver ----- Conversation ----- Receiver/Sender 

A different kind of tool but which is also used to support group work is the 

workflow system. Workflow tools are designed to help people on routine, 

repetitive tasks usually required at low levels within the organisations 
(Aldred, 1994,68). This is different from groupware and collaborative 
tools which are designed to support more unstructured tasks. Workflow 

systems are built to make work "controllable" (Van der Aalst and Van 

Hee, 2002,3) by providing predictable and inflexible processes. Some 

tasks within the workflow system can be performed without the 

participation of people, and some others require human intelligence, for a 
judgement or a decision. Although workflow and groupware (or CSCW) 

are usually used at different organisational levels (workflow at the 

operational and groupware at the strategic) they may overlap at the 

tactical level. For example, a workflow procedure may trigger a 

groupware application and vice versa (Aldred, 1994,68). 

Despite being built with different purposes all these kinds of technologies 

share a similar characteristic: they all have all the design challenges of 
individual user applications supplemented by the requirements emerging 
from the involvement of working groups (Grudin, 1994,95). This makes 
group work software a very difficult field to work in. Kim (2004) argues 
that collaborative tools "are nowhere close to fulfilling their potential" 
(Kim, 2004). King (1991) also states that "crucial aspects of work are 
poorly understood" by systems developers who design software for group 
work (King (1991) quoted in Walsham (1993,192)). As a consequence 

82 



Chapter 3: Business Software and Software Development 

severe difficulties arise when those systems are introduced. King 

therefore argues for collaborative design in which systems designers 
learn from their users and users learn from designers (King (1991) quoted 
in Walsham (1993,192)). Also Grudin (1994) calls for an improvement of 

groupware development practices by considering the nuances of the 

working places in which the software is going to be used and the changes 
its introduction into those working places the groupware will bring 

(Grudin, 1994,95). Kim also argues for a consideration of human aspects 

at building applications by being "people-centric" (Kim, 2004). 

In addition to the inclusion of human and social aspects in group work 

software design practitioners and academics bring up some other issues 

that need special attention. For example, groupware and collaborative 
tools may not be that good at aiding communication. Tang (1991,11), in 

his study of collaborative drawing, found that there was information that 

was generated in the process of drawing that the computer did not grasp 

and therefore was missed by participants. Lea and Spears (1991) found 

that "groups communicating via computer produce more polarized 
decisions than face-to-face groups" (Lea and Spears, 1991,155). This is 

because computerised environments enhance disinhibition and therefore 

provokes the emergence of extreme arguments. Tatar et al (1991) found 

that the collaborative tool that they were studying was supporting a 
"parcel-post" model (Tatar et al., 1991,62) of communication in which the 

interactive nature of communication was lost. On a different level, Van 

der Aalst and Van Hee (2002) state that workflow systems do not provide 
flexibility to their users and are difficult to adapt. For Van der Aalst and 
Van Hee workflow systems and workflow development need to go under 

structural modifications to deal with the new changing market 

requirements (Van der Aalst and Van Hee, 2002,192). 

The availability and use of software tools that support group work can be 

considered a step forward towards including human and social aspects. 
However, as it has been shown in this section, there still are problems at 
understanding human and social issues and applying that knowledge in 

83 



Chapter 3: Business Software and Software Development 

the development of software. In the next section I will discuss social 

software, which is a type of software that pays explicit attention to social 

interactions between users of software. Social software represents the 

latest step in the software development field in the consideration of 

human and social issues in software. However, social software is not 

necessarily aimed at organisational contexts but the much larger World 

Wide Web. 

3.1.3 Social Software 

Social software is both an old and a new concept. It has been around the 

software development field for decades but known by different names. 

According to Allen (2004) social software is a term that has evolved from 

office automation, groupware, CSCW (computer supported cooperative 

work) and CMC (computer mediated communication) (Allen, 2004); and 

hence social software flows from the discussion in the previous section. 

However there are some differences from the type of software mentioned 

above. Social software is software that allows, encourages or facilitates 

social interaction within groups (Shirky, 2003) and facilitates the control of 

the information created through those interactions (Arnold, 2003). 

Modern forms of social software include weblogs (online personal 

journals, for example www. blogger. com), Wikis (collaborative-edited 

websites, for example www. wikipedia. org), IM (Instant Messaging, for 

example MSN Messenger) and online forums. Although social software in 

general is not considered as "business software", it is relevant to this 

discussion because it is the category of software which pays explicit 

attention to human and social aspects of groups using software and 

which addresses those problems noted in the previous section. 

Boyd (2004) identifies the potential of social software at providing means 

of self-disclosed communication to people, though through limited social 
life models. Unfortunately, she says, current social software is based on 

84 



Chapter 3: Business Software and Software Development 

unreal social models which force people to behave unnaturally. The 

characteristics of social software according to Boyd (2004) are: 

" It allows users to have "parallel lives" and "multiple selves" freeing 

them from their physical bodies 

" It encourages pseudonymous participation. By using nicknames users 

can hide their true identity 

Social software attempts to formalize how people should construct 

and manage their relationships 

" Users of social software act as autists when they are forced to engage 
into abnormal social interactions 

(Boyd, 2004) 

Despite its drawbacks social software is being improved to fulfil users' 

goals. Basically, the goals of users of social software are to communicate 

and to get information. Therefore social software has to provide reliable 

means for communication and information storage, searching and sharing 
(Sedelnikov, 2004b). However, there is more to social software design 

than providing means for communication. Other human and social 

aspects of users are considered. Social software takes into account 

user's interactions with computers but also interactions between users 
through the computer. Ideally social software is designed considering the 

individual and social characteristics of their users. That is to acknowledge 
the user of social software as a group and not as an individual (Shirky, 

2004a; Shirky, 2004b; Shirky, 2003). Additionally, designers identify the 

kind of community they are designing the software for to know which 
kinds of behaviours should or not be encouraged by the software. This 

means that the emergence of social software expands the application of 

usability guidelines to "group-usability" guidelines which consider social 
interactions. Spolsky (2004) names this characteristic of social software 

as "social interface" (Spolsky, 2004). According to Spolsky, the success 

of social software is dependent on how the social interface of an 

85 



Chapter 3: Business Software and Software Development 

application fits the characteristics of the group of users and how it helps 

the whole community succeed at using it. Additionally Spolsky (2003) 

states that "in software, as in architecture, design decisions are just as 
important to the type of community that develops or fails to develop. " 

Sedelnikov (2004a) emphasises the importance of considering user-to- 

user interaction at developing social software and proposes the 

participation of social psychologists in the development process. (Spolsky 

and Sedelnikov's statements are also true for software that support group 

work as there is also a (smaller) community and user-to-user interaction 

that need to be served). 

Consideration of social issues is not an easy task. "Social interactions are 
far more complex and unpredictable than human/computer interaction 

and that unpredictability defeats the classic user-centric design" (Shirky, 

2004a). However some guidelines are provided by some authors. For 

example, Spolsky (2004) states that for social software design one has to 

look at sociology and anthropology. Whereas Boyd (2004) says that 

designers have to think about what social practices they are aiming to 

address and what values we are inserting while trying to address them. 

Additionally, she recommends that developers should make social 
software fit into people's lives and practices rather than creating artificial 

needs. Yet social software has created many artificial needs which are 
now part of our lives. In relation to this, in the next section I will explore 
how current software development practices address these and other 
issues. 

3.2 Software Development 

Software development involves the design, creation, implementation and 

maintenance of software. In the broader sense, the term software 
development can be applied to describe the development of any kind of 
software, as described in the previous section. However, in this section I 

will focus on the development of business software. Software 

86 



Chapter 3: Business Software and Software Development 

development involves - but is not limited to - programming computer 

code. Software development comprises a variety of activities such as 

planning, design and testing. Although it involves the use of technologies, 
it has long been recognised as a human activity (Weinberg, 1971,3). 

Cooper and Reinmann (2003) provide an interesting account of the 

evolution of software development, which describes and explains how it 

changed from being a mere programming task to a more elaborated job. 

The evolution of software development is shown in figure 3.4. 

1. Originally, programmers did it all: in the early days of the software industry, 
smart programmers dreamed up useful software, wrote it, and even tested it on 
their own. But as their businesses grew, the software business and software 
products became more complicated. 

Programmers 
Code/Test Ship 

2. Managers brought order: inevitably, professional managers were brought in. 
Good product managers understand the market and competitors. They define 
software products by creating requirements documents. Often, however, 
requirements are little more than a list of features and managers find 
themselves having to give up features In order to meet schedules. 

Managers Programmers 
Initiate 01 Code/Test Ship 

3. Testing and design became separate steps: As the industry matured, testing 
became a separate discipline and a separate step in the process. In the move 
from command-line to graphical user interface, design and usability also 
became involved In the process, though often only at the end, and often only 
visual presentation. Today, common practice Includes simultaneous coding and 
design followed by a bug and user testing and then revision. 

Managers Programmers Q. A. Desginers 
Initiate º Code º Testº Look & Feel º Ship 

Usability 
Practitioners 

4. Design must precede the programming effort: a goal-directed approach to 
software development means that all decisions proceed from a formal definition 
of the user and his or her goals. Definition of the user and user goal is the 
responsibility of the designer - thus design must precede programming. 

f'ý\ 
Managers Designers Programmers. Q. A. 
Initiate º Design Code °ug Test º Ship 

ýsability 

, Practitioners 

Figure 3.4. Evolution of the Software Development process 
Source: Cooper and Reinmann (2003,6) 

87 



Chapter 3: Business Software and Software Development 

As the above exhibit shows, the activity of design has gained (theoretical) 

importance and with this has developed a social side (software designers 

collaborating with users) within the development process. However, in 

practice not all software development is produced as shown in stage 4 of 

evolution. Much of the most successful commercial software is done 

without the benefit of analysis and design (Constantine, 2001). For 

example, Bill Gates declares that he does not want his programmers to 

do design (Constantine, 2001). Constantine (2001) also states that even 

the vendors of modelling tools do not use their own tools. One way of 

explaining this phenomenon is that for developers the task of 

programming itself is a design activity. This means that coding and 
design cannot be done separately (Reeves (1992) quoted in Fowler 

(2004b); fieldwork notes). However, this does not mean that developers 

should work without an underlying plan. Fowler (2004b) states that not 
having plans leads software projects into chaotic states and argues for 

development methodologies to impose disciplined processes. Along the 

same line, Fowler (2004a) states that new development methodologies 

(like XP, Extreme Programming) are abandoning "big up front design" in 

favour of design along coding. This new way of doing things improves the 

productivity of developers as it allows them to respond to changes faster. 

Fowler (2004b) also identifies four characteristics of software 
development which describe it as a complex activity. These 

characteristics portray software development environments as complex 

organisations where adaptable, unpredictable and multi-group work is 

done. The characteristics of software development are: 

" In software: construction is so cheap as to be free 

" In software all the effort is design, and thus requires creative and 
talented people' 

" Creative processes are not easily planned, and so predictability 

may well be an impossible target. 

1 Possibly what Bill Gates means by not wanting his programmers to do design is that he 
does not want design as a separate activity but one which is part of the programming 
task 

88 



Chapter 3: Business Software and Software Development 

" We should be very wary of the traditional engineering metaphor for 

building software. It's a different kind of activity and requires a 
different process 

Source: Fowler (2004b) 

Fowler (2004b) also states that because software development is mostly 

a design activity (meaning design + coding), it is difficult to plan and cost. 

This is especially true in development of business software. Business 

software is subject to changing and unpredictable requirements (Fowler, 

2004b) maybe more than other kinds of software. The reason is the 

human and social factors within business organisations and the nature of 

their jobs which dynamism is difficult to design. For example, in software 
development for mobile phones it is more feasible to come up with a plan 

and a design relatively fixed (after market research), and work onwards 

with no significant change. The requirements for business software 
(particularly for internal software) on the other hand are more variable as 

they are more dependable on the unpredictability of humans. This topic 

was also discussed in chapter 2, where unpredictability, adaptability and 

multi-group work where explored as human and social issues in complex 

organisations. 

From the discussion above, software development is affected by human 

and social issues emerging from the organisations that develop the 

software and the organisations that will use it. In the following paragraphs 
I will expand on this idea. 

Weinberg (1971) states that the development environment is a "rich and 

complex environment, full of human involvement, change and misleading 

appearances (Weinberg, 1971,64). This is probably one of the reasons 

why Cockburn (1995; 1998; 2000b; 2003) argues that people 
(developers) are the "first-order" factors in the success of software 
development and relegates process factors as second-order issues. 

Cockburn studied several software development projects in a quest for 

89 



Chapter 3: Business Software and Software Development 

the perfect methodology which would lead any software project to 

success. He designed many methodologies and tools and implemented 

them in real projects. However, these methodologies and tools did not 

work as expected or were not accepted by developers. In fact, the 

methodologies had little effect on the outcomes of projects (Cockburn, 

2003,10). On his many interventions, Cockburn found out that: 

" The people on the projects were not interested in learning his 

system (tool or methodology) 

" They were successfully able to ignore him, and were still delivering 

software, anyway. 

Source: Cockburn (2000b) 

Cockburn then deduced that there was something that he was missing 

that was at the core of software development. This something was the 

determinant factor of the success or failure of any software development 

endeavour. As he explains, he examined his fieldwork notes and found 

that the following sentence 

"A few good people stepped in and did whatever was needed 
at the time. " (Cockburn, 2003,53) 

was uttered consistently by team members of successful projects. This 

plus the assertion made by many project managers of projects he 

studied: 

"Just give me a few good people and let us work in the same 
room, and we'll deliver you software. " (Cockburn, 2003,10) 

led Cockburn to the answer he was looking for: people, their expertise, 
strengths and weaknesses. Therefore Cockburn (2000b) decided that 
human factors were the determinants of success. As developers should 

work in the same room the role of communication (and hence its social 

aspects) becomes significant. This however, is not the first time that 

90 



Chapter 3: Business Software and Software Development 

human factors have been regarded as important in the software 
development field. There have been other writers, though very few, who 
have also emphasised human and social factors in software 
development. For example, Weinberg (1971) discusses the 

characteristics of programmers and teams of programmers from a 

cognitive perspective. Also, DeMarco and Lister (1999) examine the 

sociology of software development teams and propose some guidelines 

to avoid failure. 

Following his breakthrough Cockburn continued to study developers to 

identify their characteristics and determine how they affect positively or 

negatively software development projects. Cockburn (1995) found out 
that in general methodologists had been neglecting the fact that people 

work in a non-linear way. This means that "they do not follow any 

predictable sequence in going from problem to solution" (Cockburn, 

1995). This characteristic contrasts with the way methodologies enforce 

work on developers in a predictable way. Cockburn (2000b) identifies 

four main characteristics of people (in general and developers in 

particular) that explain their non-linearity: 

1. Developers are communicating beings: developers need to 

communicate to do their jobs, share ideas, collaborate and 

socialize. For Cockburn, the best and richest way for developers to 

communicate is face-to-face. Face-to-face communication allows 

people to engage in real-time, like in a question and answer 
interaction. Face-to-face communication also allows developers to 

communicate through different means like vocal inflection, 

gestures and other visual cues. For Cockburn, if developers are 
impeded from communicating face-to-face or communicating in 

general the effectiveness of their jobs will be affected negatively. 
See figure 3.5. 

91 



Chapter 3: Business Software and Software Development 

2tiýrl 
6ebesra 

2 People 
on plum sr wwle 

mm at*I vsdeahpe 
Affige p 

onn ofCommuntation 

Figure 3.5 Modes of Communication 
Source Cockburn (2000b) 

* Another form of communication which is not considered in 

Cockburn's diagram is communication through virtual 

communities. If I follow the sequence in the above curve, virtual 

communication would go alongside "2 people on email" (e-mails 

are also tools used in virtual communities though not the most 
important). Then according to that diagram virtual communities 

would offer a not so effective form of communication. However, I 

would argue that virtual communities offer a more effective form of 

communication that the one the diagram would suggest (if virtual 

communities where included). This thesis' standpoint is that virtual 

communities of software developers are "places" where real 
development work can be done and relevant topics are discussed. 

I present a defence of this argument in section 4.2 of chapter 4. 

2. Developers tend to inconsistency: Cockburn states that people 
can do similar things repeatedly but they will never be exactly the 

same. Ignoring people's inconsistency is what makes high- 

discipline methodologies fail in environments in which developers 

cannot be consistent. 

3. Developers vary: some developers are good at programming 

algorithms; some others are good at programming GUI's 

92 



Chapter 3: Business Software and Software Development 

(Graphical User Interface). Some developers like to work in teams, 

others like to work alone. Cockburn (2000b) states that knowing 

how to combine developers in teams and assign the right jobs to 
take advantage of their abilities are important factors in 
development success. 

4. Developers are interested in being "good citizens"; they take 
initiative and are good at looking around: These characteristics are 
reflected in the expression mentioned before "a few good people 
stepped in and did whatever was needed at the time" (Cockburn, 

2003,53) and are an answer to the problem of inconsistency. 

The characteristics mentioned are concerned with the nature of individual 

developers and their relationships with other developers as they work in a 
development environment. However, there are other human and social 

aspects emerging from the organisations they are working for (e. g. users) 
that affect their jobs. Some of these aspects have been explored in 

chapter 2 as human and social aspects in complex business 

organisations. An example of how these aspects can affect developers is 

changing requirements from organisations whose functional 

specifications are difficult to specify due to their high rate of change, the 
lack of formal procedures, or the inability of users to describe their jobs. 

In this line, one of the most commented human related aspects in the 

software development literature is the relationship between developers 

and users. 

Modern software development practices emphasise the participation of 
users in development teams. In this way users transfer their knowledge of 
the problem situation in a more effective way. The reason for having 

users closer is that neither programmers nor analysts "are best suited for 

stating the requirements" of a system (Cockburn, 1995). Having users as 
part of the team improves user-developer communication and helps 
developers to immerse and understand the business of the users and 
their requirements (du Plooy, 2003,53). Many human and social issues 

93 



Chapter 3: Business Software and Software Development 

arise from this relationship. For example, Warne (2003) reports that 

conflict between users, and between users and developers "can impact 

on the success of the project" (Warne, 2003,129). For Warne it is very 
important to consider these kinds of conflicts and manage them 

effectively to increase the probability of success (Warne, 2003,129). 

Spolsky (2002b) provides some practical examples of how conflict 
between users and developers hinder the development work: 

"We built it exactly the way they wanted. The contract 
specified the whole thing down to the smallest detail. We 
delivered exactly what the contract said. But when we 
delivered it, they were crestfallen. " 

"Our miserable sales person agreed to a fixed price contract 
to build what was basically unspecified, and the customer's 
lawyers were sharp enough to get a clause in the contract 
that they don't have to pay us until 'acceptance by customer, ' 
so we had to put a team of nine developers on their project 
for two years and only got paid $800. " 

Source: Spolsky (2002b) 

Due to these kinds of problems Spolsky's position has become radical. 

He recommends developers to work under the assumption that 

"customers don't know what they want" and recommends fellow 

developers to "stop expecting customers to know what they want" 

(Spolsky, 2002b). This position also corresponds to some software 

approaches such as those in which business analysts are assigned to 

investigate users' work and to deliver a requirements document or 

prototype so developers do not need to interact with their users. The 

effect of human and social issues on developers, such as their 

relationship with users, and the relationships between users, is a decisive 

factor at choosing their methodology. Some developers would prefer to 

work closer with users whereas others would prefer to put some distance 

between them. Then the question that needs to be asked is how well 

methodologies are supporting software development. 

94 



Chapter 3: Business Software and Software Development 

3.2.1 Software Development Methodologies 

In the following sections I will explore some of the software development 

methodologies which are used or referred to in practice. During my 

fieldwork, the online conversations in which I participated helped me to 

identify the kind of issues and software development literature the 

developers are interested in. I found the following methodologies the 

most commented by developers, either because they were using (or had 

used) them or because they had an interest in them. The methodologies 

presented in the next sections are: 

9 The waterfall Lifecycle 

9 Prototyping 

" Agile Methodologies 

In section 2.2.3 of chapter 2I presented a set of ISO approaches which 
focus on concepts and beliefs about the nature of organisations and 
information systems and how information systems development should 
be done. The set of methodologies presented here are not ISD 

approaches or intellectual frameworks but the actual plans and 
instructions that are applied in practice. 

a. The Waterfall Lifecycle 

The waterfall model is also known as the traditional lifecycle. It is been 

influenced mainly by the ISD organisational approaches such as Project 

Management and Business Process Reengineering, and may also follow 

modelling approaches such as the data and process oriented 

approaches. The waterfall lifecycle is a software development 

methodology that emphasises division of labour. In the waterfall model 

the whole process of software development is divided into stages such as 
analysis, design, coding and testing. A stage doesn't start unless the 

previous one has finished. So that one stage's outcome becomes the 

95 



Chapter 3: Business Software and Software Development 

next stage's input. Also, work on the stages is performed by developers 

with different expertise (such as programmers and testers). The Waterfall 

methodology is usually criticised because of its inflexibility and its focus 

on technology (Eason (1998) quoted in Jackson (1985,23)). The waterfall 
lifecycle works under the assumption that requirements never change. 
Software is created based on a snapshot of the organisation known at the 

start of software development. And it is assumed that this snapshot will 

reflect the organisation's nature any time in the future. For this reason, 

projects define in advance the cost, the time and design of the software. 
Work on the waterfall lifecycle is performed under these parameters. If a 
deviation from this plan occurs, it is considered a mistake and corrective 

actions are taken. However, more modern forms of waterfall, like the 

spiral, allow repetition of stages to correct their outcomes. The Waterfall 
life cycle also emphasises the creation of formal documentation. In fact, it 
is this documentation which is passed from one stage to another and is 
built upon in each stage. This is also a source of criticism as it takes time 
for developers to complete documentation and to update it at the same 
time they are programming. Nevertheless, the waterfall lifecycle is still 
used in many projects. It suits large projects in big corporations where 
processes are standardized and requirements are structured and well 
defined (Laudon and Laudon, 2005,464). 

b. Prototyping 

Prototyping is not really a proper software development methodology but 

a popular practice which is used as part of many methodologies. It follows 
the prototyping, engineering approach presented in section d of appendix 
10, (which is an extension of section 2.2.3 of chapter 2). A (software) 

prototype is a "working model" (Allen and Frost, 1998,10) or a 
preliminary version of "all or part of a system before full commitment is 

made to develop it" (Smith, 1990,42). Prototyping consists of building 
that version of the software rapidly and inexpensively for end users to 

evaluate (Laudon and Laudon, 2000,372). Prototyping is an ongoing 
learning process (Bodker and Gronbaek, 1991,331) in which users and 

96 



Chapter 3: Business Software and Software Development 

developers sit together so developers can get first hand knowledge about 

the problem situation from the users and users can get a very accurate 
idea of how the software will look like and behave. Prototyping counters 
the weaknesses of the waterfall lifecycle in which interaction between 

developers and users is not promoted. Other benefits of prototyping are 

that it speeds up the development considerably and that it avoids tons of 
documentation which are replaced by the prototype itself. There are three 

kinds of prototypes: 

" Type one: a software prototype which is created with the same tool 

that the real version is going to be created. The prototype is 

considered by developers and users as the real product. In fact, 

the real version will be completed from the prototype version. 

" Type two: a software prototype which looks like the real version 
but which does not have the functionality. It is used to discuss with 
the users how they want it to look and work. The real version will 
then be started from scratch. 

" Type three: a paper prototype. Paper prototypes contain 

screenshots of the would-be system. They could be hand written 

or designed with specialized tools. 

The advantage of a type one prototype is that the programming work is 

done from the start and that if the job is done well then it will save time for 

the product to be delivered. Type two prototypes are faster to develop as 

the developers use specialized tools and because no work on the 

functionality is done. A plus of types one and two prototypes is that being 

hi-tech techniques they help to show off the latest technology (Cockburn, 

1995). The disadvantage of type one and two prototypes is the advantage 

of type three prototypes: showing users a working prototype (type one or 
two) would make them think that most of the job is already done (Spolsky, 

2002b). By using prototypes that do not look like the real version 
(prototype type three), but show sufficiently enough how it will work, 

users, will not get the wrong idea and developers will not be put under 

97 



Chapter 3: Business Software and Software Development 

pressure. Also being a lo-tech task it helps to maximize the cognitive 

effects in design (Cockburn, 1995). 

c. Agile Methodologies 

Agile methodologies are a set of software methodologies that follow the 
People or Participative approaches presented in section 2.2.3 of chapter 
2 (and presented more in detail in section c of appendix 10). The agile 

methodologies emerged as a reaction to the bureaucracy of the 

monumental methodologies (Fowler, 2004b) such as the traditional 
lifecycle. Cockburn (2001) defines an agile methodology as: 

"a development approach that primarily addresses the 
problems of rapid change: changes in market forces, systems 
requirements, implementation technology and project staff 
occurring within a single project's development period. " 
(Cockburn, 2001) 

Although there are many agile methodologies they all share common 
goals as specified in the "agile manifesto" (see glossary for a definition). 

The goals are: 

" Individuals and interactions over processes and tools 

" Working software over comprehensive documentation 

" Customer collaboration over contract negotiation 

" Responding to change over following a plan 

Source Cockburn (2000a, 178,179) 

Agile methodologies aim to achieve user or customer satisfaction. 
Whereas the traditional methodologies conceive success as finishing 

projects on time and on budget, agile methodologies believe that the 

question should be whether the software has business value to their 

customers (Fowler, 2004b). Thus their relevance to this thesis as they are 
concerned with what the customers want. 

98 



Chapter 3: Business Software and Software Development 

The philosophy of agile methodologies is that as modern organizations 

evolve and adapt to their environments rapidly so should software 
development. Following this, agile methodologies are adaptive rather 
than predictive (Fowler, 2004b). Contrary to engineering centred methods 
(like the waterfall lifecycle) which try to plan and predict everything in 

advance, agile methodologies work on the assumption that organisations, 

users, and their requirements change. Agile methods are also people- 

oriented rather than process-oriented (Fowler, 2004b). Agile methods 
build on the skills and experience of the developers, like for example 

making sure that experts are part of the team (Cockburn, 2001) to 

guarantee the success of the project and to allow new developers to learn 
from them. Other requirement from agile methodologies is that 
developers should have a common focus, mutual trust and respect, the 

ability to collaborate and deal with ambiguity (Cockburn, 2001). These 

characteristics represent a strong explicit recognition of the social aspects 
in ISD. 

Other characteristics of Agile Methodologies are that they de-emphasize 

up-front analysis and design and minimize the documentation effort 
(Rising, 2001). This does not mean that no analysis or design is done but 

that analysis, design and programming are done concurrently in 
increments. Incremental development is that kind of development in 

which the software is divided in parts which are delivered in iterations or 
increments. An increment involves an iteration of analysis, design, 

programming and delivering of software with new (improved or corrected) 
functionality. It is called increment because, with every iteration, the 

software gets closer to completion and is improved in quality. With 
incremental development the most important functionality is delivered first 
to the users to give them time to use the system and give valuable 
feedback to the developers. This allows developers more time to continue 
developing the rest of the system. Incremental development is the source 
of adaptability of the agile methodologies. Developers account for 

changes in the requirements between each increment and are given the 

99 



Chapter 3: Business Software and Software Development 

time to implement them. Users also work knowing that the software they 

are using will be modified according to their feedback until they are totally 

satisfied with it. 

One of the most commented upon agile methodologies (in online forums) 

is Extreme Programming (XP). Although XP is very programming oriented 
it also shares the agile philosophy. One of the most popular practices 

promoted by XP is Pair Programming. In pair programming developers 

share a computer, while one developer is programming the other one is 

looking for errors. The pair switches roles from time to time. Although it 

may be slower, pair programming reduces the overall risk of a project 
(Beck, 1999) as the quality of the programming code is improved. Pair 

programming also increases communication among the development 

team (a social aspect of software development). Knowledge about the 

system and about programming is spread rapidly. 

Another popular agile methodology is the Crystal Family, which in reality 
is a set of methodologies designed for different kinds of projects. 
Cockburn (2000a), the author of the Crystal Family, states that his 

methodologies are people and communication centric (Cockburn, 2000a, 

166). Cockburn emphasises that project managers should take 

advantage of the particular abilities of their team members to draw on 
their "success modes" and overcome their "failure modes". Cockburn 

states that it is good to have a variety of people in a project team as 
"mixed teams often outperform homogeneous teams (Scully (1998) 

quoted in Cockburn (2000a, 46)). Heterogeneous teams allow individuals 

to work on the areas they are specialized in. However, communication 

and personality issues arise in these kinds of environments. Within his 

methodologies, Cockburn addresses some of these issues and suggests 

some strategies to overcome them. These strategies are based on the 
following principle: 

"Software development is a (resource-limited) cooperative 
game of invention and communication. The primary goal of 

100 



Chapter 3: Business Software and Software Development 

the game is to deliver useful, working software. The 
secondary goal, the residue of the game, is to set up for the 
next game. The next game may be to alter or replace the 
system or to create a neighbouring system. " (Cockburn, 
2000a, 35) 

Cockburn defines software development as a cooperative game to stress 
the human factors and the difference with engineering perspectives which 
put emphasis on the process rather than in people. In fact it is people 
who need to be paid more attention as software development is about 
working with people, working in teams, dealing with emotions, striving for 

accurate and honest communications (Chisholm et al., 1996,233). 
Following this, in the next section I will explore in more depth the human 

side of software development by discussing some of the characteristics of 
software developers and the social issues emerging from the 
development environment. 

3.2.2 Software Developers 

Developer is a term used to define people who perform a varied set of 
activities within the software development process. As mentioned in the 

previous section (figure 3.4), at its first stages of evolution, software 
development was thought as a programming activity but now it has 

evolved to include planning, design, testing and other tasks. In a similar 
way, the term developer has gone from meaning programmer to meaning 
designer, tester or all of them at the same time. Figure 3.6 shows some of 
the roles a developer in the area of business software can play. Apart 
from programming the software, and depending on the arrangements at 
work, some developers would have to perform other tasks designed to 
either prepare or implement the software. Roughly, if working at a small 
ISV (Independent Software Vendor) for example, developers will have to 
be multi-tasking and perform various roles. However, if working at large 
firms, they will be able to specialise in only one role (Cockburn, 1995; 
Sink, 2004). From figure 3.6, in some development environments 

101 



Chapter 3: Business Software and Software Development 

developers have to either visit their users' organisations or work with 
them in-house to gather information and understand the situation. With 

this information they would design the software specification and the 

technological architecture needed. Developers would also have to plan 
the cost and time of the project. This is particularly important if they are 
being paid by their customers (as opposite to working in-house). In most 

cases the introduction of software involves some changes within the 

users' organisation(s). In these cases, software developers act as 
designers or re-designers of organisational processes. Once developers 

have programmed the software, it has to be tested for bugs or errors 

within the code, either by programmers themselves or by dedicated 

testers. Additionally, depending on the methodology followed, developers 

will have to document all or some of their activities, at different levels of 
detail. The most common documentations are analysis and design 
documentation, also known as functional and technical specifications. 

drm-im 

Hub 

Architecture 

Software Specifications 

/dý 0Sg 

. 

$F,.:. 

ft esi na processes] r rams 
\57- 

W 

Software Developer Software 
Organization 

mý es N 

Users Software 

Documentation 

Figure 3.6 Multiple Roles of a Business Software Developer 

102 



Chapter 3: Business Software and Software Development 

Having surfaced the varied set of roles for developers a working definition 

of developers is needed. In the broader sense a developer is someone 

who will "contribute in multiple ways to make the product successful" 
(Sink, 2004). However, there is no agreement yet among practitioners 

about how to call each kind of specialist and to decide on his 

responsibilities (fieldwork data, see category C4-6 in section 6.4 of 

chapter 6). In fact, developers in the software business have their own 

terms. In some environments the name coder is preferred to developer; in 

others the name programmer is better liked. Likewise, some particular 
development activities are regarded as mundane in some environments. 

For example, some developers would call themselves architects to mean 

that they are not doing programming anymore and that they are at a 
higher status now (Fowler, 2004a). In other cases developers are 

encouraged to do more than just programming. For example, Spolsky 

(2002b) argues that developers (programmers) should also do the 

analysis and design of software as, for him, users or customers are not of 

much help at specifying their own requirements. In other cases, 
developers regard themselves as programming machines and are not 

concerned about writing specifications or meeting with their users. 
Preferences or skills may also influence these discrepancies of 

meanings. For example, some developers (e. g. architects) like to think in 

abstractions and imagine what they can do with their ideas in hypothetical 

situations and others (e. g. programmers or coders) like to focus on 

specific problems and code the solution for those problems (Spolsky, 

2001). Architects will therefore be able to see the bigger picture and 
design solutions while programmers will be better suited for working on 
parts of those solutions. Yet both, architects and programmers, will share 

a view of themselves as developers. 

Needs for different specializations or skills vary from project to project. 
Factors like size of development team, kind of software to be developed, 

platform and tools, and availability of users call for different expertise. In 

general, it is very difficult to decide whether a developer is the right 
person for a project. Sink (2004) lists some tips which in his experience 

103 



Chapter 3: Business Software and Software Development 

have helped him to evaluate developers. For him one has to look at 

experience, educational background and references. This provides a 

sharp picture of the developer's technical abilities. Also, for Sink, if the 

candidate has a university degree there will be a big chance of success. 
However, as Sink states this does not provide any certainty about the 

personality and communication skills of the individual. Second is to look 

for "self-awareness". A good developer is someone who never stops 
learning, who knows what he knows and what he does not know and who 
is always focused on his future (and not on his past). Good developers 

are always keen on learning new technologies, new programming 
languages, etc. However it does not end there. Because programmers 

are practical people, they would be discontented if they are not able to 

apply their knowledge (Weinberg, 1971,99). Third, in the case of small 

projects, Sink recommends looking for someone who can be versatile, 
that is someone that can do more than programming software. However, 

in the case of large projects and larger environments pure coders would 
fit in well. Finally, although Sink does not put much emphasis on coding 

abilities he also states that it is important to look at developers' code 
(samples of programmes) to assess their quality. Even if the post is not 
for a programmer position, for example: designer or tester, a developer 

would require good knowledge of programming to perform those jobs. 

Having said that, software development has not only been conceived as a 
technical activity. For example Weinberg (1971) saw that programming is 

both an individual and a social activity (Weinberg, 1971,45,52). 

Programming is an individual activity because it depends on the individual 

technical ability of the programmer. When Weinberg did his study, in the 

1960's, he found that most programmers preferred to work alone in a 

place were they could concentrate and not be disturbed. Things have not 

changed much and Weinberg's study has proved to be still accurate 
(Cockburn (2000b) and fieldwork data, see category C4-7 in section 6.4 

of chapter 6). On the other hand, programming is also social. 
Programmers need to work with peers to ask for help and compare notes. 
Others may be turning to them too. Recently, modern agile 

104 



Chapter 3: Business Software and Software Development 

methodologies have been emphasising the need to work in teams and to 

improve communication among developers, recognising the social aspect 

of software development. Developers therefore need to improve their 

person and communication skills apart from their technical ones to be 

able to work in teams and deliver software. 

As professionals, developers form their own opinions about their jobs. 

They learn to like some things and dislike others. As a consequence of 
this, developers experiment some emotions which can affect their work. 
These emotions are triggered by social interactions between them and by 

the use of methodologies or tools. Some of these emotions are: 

" Fear of incompetence 

" Longing for the old way 

" Frustration over not knowing how to proceed 

" Anger at the methodologists, the authors, tool vendors who claim 
transitions are easier than they are 

" Distrust over methodologies that change every year or so 

" Trapped in a way that does not make sense and an observation 
that the "experts" have no responsibility for the success of the 

project - it is the responsibility of self. 

Source: Chisholm et al. (1996,234) 

The consequences of these emotions could be, for example, developers 

who reject a methodology, developers who apply shortcuts (for 

methodologies) and increase in project turnover. These consequences 
also would affect the job developers are doing and the quality of the 

software they develop. 

Most studies of developers portray them as technical people. However, 

as human and social aspects are being recognised as relevant, the 

question of how to develop developers' skills to identify and deal with 

105 



Chapter 3: Business Software and Software Development 

them arises. Du Plooy (2003) states that the role of an information 

systems developer (which I translate to a business software developer), 

is, apart from building the software, to introduce it "in a manner that takes 

cognisance of the notion of the social context" of the information systems 
it is going to serve (du Plooy, 2003,42). To understand the social context 

of their users, developers should establish a closer relationship with 

them. In some cases (e. g. agile methodologies) the participation of users 

in project teams is encouraged. Also some researchers and practitioners 

(Bentley et al. (1992) and Spolsky (2004)) propose the use of 

ethnographic techniques to grasp the nuances of their users' working 

environments. Fisher (2003) identifies other characteristics needed by 

developers to be able to establish rapport with users and among 
developers, and deliver usable information systems (i. e.: business 

software). Table 3.3 shows a classification of roles that could be 

performed by a developer and the related skills needed. Although 

Fisher's approach is technical, she raises important points that should aid 
the development of information systems and software that considers the 

human and social aspects of their users. Technical communicators are 
developers in charge of the design and dissemination of technical 

information to users. Interface and graphic designers are in charge of 
designing the graphical user interfaces of the software. Ergonomics 

studies the relationship between people and their working environments, 

and in this case, it studies how software fits within. 

106 



Chapter 3: Business Software and Software Development 

Profession Skills 
Technical communicators Written and oral communication 

Understanding of users 
Understanding of text layout and design 

Interface designer Understanding screen layouts 
Design of icons 
Understanding users' workflow 
Use of colours 

Graphic Designer Understanding how to colour 
Design of graphics, charts, illustrations 

Ergonomics Understanding how people should work 

Table 3.3 Skills needed to design human elements of systems 
Source: Fisher (2003,206) 

Working in Teams 

As mentioned before, software development is a social activity. 

Developers need to be able to relate to other developers and work in 

teams. DeMarco and Lister (1999) define the ideal software development 

team as a "jelled team". A jelled team is "a group of people so strongly 

knit that the whole is greater than the sum of the parts" (DeMarco and 

Lister, 1999,123). Characteristics of a jelled team are: 

" Low turnover during projects: team members are committed to 

their tasks and do not leave the team until the work is finished 

" Commitment to teams is not gained by status of their positions or 

money but by enjoyment of their job. As Cockburn (2000b) states, 

good and committed developers are "good citizens", they will stick 

around until their job is done and the user is satisfied 

"A strong sense of identity: team members recognize that they are 

part of a team and not individuals working alone 

" Joint ownership of the product: individuals recognize that the 

software they are creating is not a product of their individual work 
but a product of the work of the team 

Source: DeMarco and Lister (1999,127) 

107 



Chapter 3: Business Software and Software Development 

One of the most important factors that aids the creation and maintenance 

of jelled teams is strong channels of communication. Having development 

working environments which allow physical proximity, and that allow 

developers to talk to each other easily, e. g. by talking face-to-face, by 

using white boards, by having meeting areas, etc. improve the 

effectiveness of their work (Cockburn, 2000a). However with the increase 

in popularity of global or "geographically distributed software 

development" (Herbsleb et al., 2005,524) some issues emerge. 

Problems experienced by distributed teams are the reduction in 

frequency of communication, especially informal communication (Handel 

and Herbsleb, 2002,1; Herbsleb et al., 2005,524), a lack of shared 

context, lack of cues regarding availability and lack of trust for sharing 

information (Shami et al., 2004,3). In this context the role of online, 

virtual environments as working and communication tools gains 

relevancy. (See section 4.2.3 of chapter 4 for a detailed discussion of 

virtual communities as communities of practice). In the literature, there 

are differing views as to whether multi-site software development can be 

done using software tools to communicate. Herbsleb et al. (2005) in a 

study of distributed software development report that most people 

preferred face-to-face contact because it allowed them to understand 

each other's worlds (Herbsleb et al., 2005,530). Likewise, Shami et al. 

(2004) on a similar study report that developers who where located in the 

same place communicated and engaged better than developers who 

needed cross-site collaboration (Shami et al., 2004,1). On the other 
hand, Handel and Herbsleb (2002) emphasise the potential value of 

synchronous messaging in the software development workplace as it is 

used "overwhelmingly for discussion or for articulation work to coordinate 

projects and meetings, and to negotiate availability" (Handel and 
Herbsleb, 2002,8). Also Herbsleb et al. (2005) state that collaboration 

tools like chat and IM provide a faster pace of interaction as well as 

asynchronous multi-party conversations which help projects to overcome 

time zone differences (Herbsleb et al., 2005,532). (See a discussion 

108 



Chapter 3: Business Software and Software Development 

about the linguistic and pragmatic characteristics of virtual communities of 

software developers in section 4.2 of chapter 4). 

Other factor important for team work is amicability. Cockburn (2000a) 

states that "amicability is the weaker cousin to trust" (Cockburn, 2000a, 

89) but an easier target to achieve. Amicability within a group reduces the 

chances of conflicts. On the other hand, factors affecting negatively the 

formation of teams are mentioned by DeMarco and Lister (1999). These 

are: 

" Defensive Management: managers who do not trust on their 

developers and hinder their job. 

" Bureaucracy: or paperwork. According to DeMarco and Lister 

(1999) paper work is a waste of developers' time. Bureaucracy will 
blur the real goals of a team. 

" Physical separation: as mentioned before, development is a social 

activity in which communication is important. For DeMarco and 
Lister communication between developers is improved by physical 

proximity. However, in cases where distributed work is necessary 

or unavoidable communication software tools prove useful to 

counter distance (Handel and Herbsleb, 2002). 

" Fragmentation of Time: when a developer is assigned to more 
than one team, it makes difficult for him to commit entirely to all the 

projects he is working in. 

" The quality-reduced product: usually projects are reduced in 
budget. The practical consequence of this is a reduction in product 
quality which can detriment the morale of developers. 

" Phony deadlines: similarly to the previous point. Making 

developers work impossible deadlines will lower their commitment. 

Source: DeMarco and Lister (1999,133-138) 

109 



Chapter 3: Business Software and Software Development 

Individual and group characteristics of developers influence the way they 

work and therefore the quality of the software they develop. 

Unfortunately, most of the focus in the study of software development is 

on its technical aspect and reject the human and social aspects. Where it 

considers human and social issues it tends to be of the user domain 

rather than the developers' domain. Considering developers' human and 

social aspects in methodologies and team formation may improve their 

performance. Making developers work in teams may help them to accept 

users working with them as well. This in the end will facilitate the 

recognition of social and human factors relevant to the software they are 

developing, an issue this thesis is concerned with. 

3.3 Chapter Summary 

In this chapter I have explored human and social issues surrounding 

software development. I have focused on issues emerging from software 

as a product and from the development environment. Business software, 

though a technical concept, resembles at different levels, some of the 

human and social characteristics of the organisation which is using it. For 

example, issues such as considering software to support more flexible 

processes needed by organisations (fudgeability), or making software to 

adapt to the style of managers and decision makers or considering the 

group (as opposed to individuals) as the user of software were discussed 

in this chapter. Other external factors also influence software and the way 
it is developed. Factors such as pressures from the market and limited 

perception of developers would affect the quality of the software. Other 

human and social issues within the development environment will also 
influence software. I have stated that software development is shaped by 

the characteristics of the development environment and the people who 

are going to develop it, in addition to the characteristics of the target 

organisation which is going to use it. For example, adaptability in 

software may depend on how developers are able to foresee future 

changes and how they are able to write code which can be changed 

110 



Chapter 3: Business Software and Software Development 

easily. Software development methodologies are evolving to take into 

account these characteristics. For example, the agile methodologies are 

designed to account for adaptation in business organisations by providing 

means for adaptation within the development environment. Thus I have 

presented three perspectives of software development which are shown 

in figure 3.7. Software development has long been seen as an 

engineering discipline which puts emphasis on processes and 

productivity. However, at considering more the human and social aspects 

of developers and the development environment, software development 

could be seen more as a craft that cannot be as structured as 

engineering. Finally, software development can also be seen as a 

cooperative game which puts emphasis on people rather than on 

processes. 

\ 
fin9inýerýn 

\...... 9 

Figure 3.7 Three perspectives of Software Development 

I have also explored some of the individual and team characteristics of 
developers, which affect how their work is organised. I have also implied 

that the development environment presents characteristics comparable to 

the ones in the model of complex organisations presented in section 1.1 

of chapter 1. These characteristics are for example, that development 

environments are unpredictable environments due to the nuances of 
human nature (developers) and the mixture of different specialists. 
Development environments are also adaptable, as they have to change 

111 



Chapter 3: Business Software and Software Development 

according to the project in hand and the kind of software they are 
designing. Finally, group work is done within development environments. 
As explained software development is also a social activity and 
developers are organised in groups according to their expertise. These 

groups at the end have to be coordinated and commanded, possibly, as 

groups are coordinated in business organisations. The conclusion I would 
like to make here is that in addition to the nature of business 

organisations and the needs of their members, software could also be 

shaped by the characteristics of the people who are developing it. Thus 

this thesis wants to explore also how the human and social aspects of the 

software development environments affect software development, 

particularly in the cases in which the target organisation contains 
unpredictable, adaptable, and multi-group work processes like those ones 
contained in decision making processes, workflow and collaborative work. 

In the next chapter I will continue part II with a discussion about the 

methodology and design of this thesis. As I am focusing on software (and 

software development) for complex business organisations I will explore 
this phenomenon from the perspective of software developers. This will 

give me an insight into what practitioners perceive about the 

organisations they develop the software for and how the software they 
develop fits in there. 

112 



Chapter 4: Research Methodology 

Chapter 4: Research Methodology 

In chapter 1I exposed an information systems and software development 

problem. Human and social issues, such as unpredictability and 

adaptability, emerge from organisations where decision making, 

collaborative work and similar abound. These issues are difficult to 

understand by developers using their available frameworks and thus are 

not considered when developing software. In chapter 2I explored a 

series of views on organisations and information systems which try to 

explain their unpredictable and adaptable nature. Chapter 2 showed how 

human and social aspects within business organisations shape the 

context where business software is used and software development 

happens. In chapter 3I examined some literature on software and 

software development to see how human and social aspects of 

organisations are dealt with. In this examination I came across some 
human and social issues within the software development environment 
that also affect developers work. The concern of this research is to 

connect the issues discussed in chapters 2 and 3, and to see how 

software developers perceive human and social issues in complex 

organisations and how these perceptions are affected by their own 

environment and their way of working. To carry out an investigation of this 
issue I designed a research methodology which I will explain and justify in 

this final chapter of part II. 

The research design is guided by a qualitative, interpretive paradigm, 

specifically by the phenomenological and hermeneutical perspectives. 
The proposed method is online ethnography of virtual communities of 

software developers. The interpretive approach allows me to access 

software developers' beliefs or interpretations about software 
development, the software they produce and the organisations they 

develop the software for. By using an interpretive paradigm I can then 

build up my own interpretations based on software developers' 

interpretations. Software developers' views about their jobs provide an 

113 



Chapter 4: Research Methodology 

original and practical perspective on software development to this thesis. 

Software developers are the people who do the job. They are involved in 

the software development process; they possess knowledge about 

complex organisations, their users and their problems. Software 

developers experience first hand how their software is used and are able 

to assess its quality and the extent to which it is helpful to their users. 
Software developers possess the practical know-how of software 

development methodologies and know which techniques are successful 
in practice. The online ethnographic method allows me to contact 

software developers in their virtual communities. Virtual communities are 
"places" where real work happens, which are familiar to software 
developers and where I can easily approach them. Virtual communities 

of software developers are social gatherings where members conduct 

and exchange their working experiences in the software development 

field. In this thesis, the concept of communities of practice (CofP) is also 

used to explain how virtual communities are formed by the interactions 

and relationships their members are engaged in when they "practice their 

skills through tools, frameworks, idea sharing artefacts or documents" 

(Coakes and Clarke, 2006a, 92) (see section 4.2.3 of this chapter). 
Ethnographic interviews in the form of conversations within online forums, 

weblogs, instant messaging and e-mail, and archival research in online 

sources are used to observe developers and gain insight into their current 

practices, problems and personal opinions. Data collected from the online 

ethnography are analysed according to the interpretive paradigm. Two 

data analysis methods are combined to account for the nature of the 

online data and to guide their interpretation. The first method is content 

analysis which guides the classification of data in segments of text that 

represent the purposes of the research. The second method is 

conversation analysis which I use to make sense of the structure of online 

conversations as they follow different rules from written and oral speech. 
To give the data a comprehensive shape, an interpretive and inductive 

theory building strategy follows data analysis. The result of the theory 

building stage is a model that describes and explains human and social 
issues in software development for complex business organisations. This 

114 



Chapter 4: Research Methodology 

model corresponds to the aim of the research and answers the research 
questions which are also presented in section 4.5 of this chapter. 

The structure of this chapter is shown in figure 4.1. This chapter is divided 
into seven sections. The first, second and third sections introduce the 

interpretive approach as the paradigm for this thesis, virtual communities 

as the field in which this study is conducted and ethnography as the 

method to collect data. The fourth section describes the data analysis 
technique. The fifth section re-introduces the research aim and research 

questions which the theory building strategy, explained in section six, 

answers. Finally the chapter is summarised in section seven. 

tu ö 
v -a 
mc 

CLI L 

0C0 

Qdý 

°a 

C 

CC 

Ü 12 
a 

MN 
M Iv 

O1 

4.1 Interpretive 0 4.2 The Field: Virtual Communities 
Perspective of Software Developers 

4.3 The Method: Online Ethnography 

Content Analysis 

4.4 Data Analysis 

Conversation Analysis A 

4.5 Research Aim and 
Research Questions '-'" 4.6 Theory Generation 

4.7 Chapter Summary 

Figure 4.1 Structure of the Chapter 

115 



Chapter 4: Research Methodology 

4.1 The Research Paradigm: The Interpretive Approach 

What is a research paradigm? 

Research is a "voyage of discovery during which the researcher learns 

much about research methodologies as well as about the subject being 

researched" (Remenyi et al., 1998,27). A researcher chooses a variety of 

methods, techniques and tools to dig into a problem, collect data, analyse 

and interpret them and develop conclusions. These methods let the 

researcher approach the subject of study in such a way that its relevant 

features are uncovered and the credibility of the outcomes is assured 

(Williams and May, 1996,7). The selection depends on the personal 

inclination of the researcher, the philosophical assumptions and the 

nature of the research problem (Yin (1981) quoted in Remenyi et 

al. (1998,107)). Whatever the approach chosen is, the philosophical 

assumptions should be "clearly spelt out" (Remenyi et at., 1998,30) to 

prove that "the approach to the research has been sound" (Remenyi et 

al., 1998,27). 

Philosophical assumptions comprise a set of concepts, such as ontology, 

epistemology and methodology, which explain how the researcher sees 

the subject of study and how he intends to study it. Ontology is the 

branch of philosophy which studies the being (Dictionary of theories, 

1993,835). Ontology "differentiates between 'real existence' and 
'appearance' and investigates the different ways in which entities 
belonging to various logical categories (physical, objects, numbers, 

universal abstractions, etc. ) may be said to exist" (A dictionary of 

philosophy, 1984,255). Roughly, there are two opposite perspectives 

within ontology. The first one is realism, which states that "things in the 

world have a real existence independent of our thoughts about it" 

(Williams and May, 1996,42). The other perspective is idealism which 

views the external world as a "product of the mind" (Williams and May, 

1996,42). 

116 



Chapter 4: Research Methodology 

Epistemology studies the nature of knowledge (The Cambridge dictionary 

of philosophy, 1999). Epistemology raises questions about "who can be a 

knower" (Stanley and Wise, 1990,26) and "how and when reliable 
knowledge is attainable" (Tice and Slavens, 1983,313). Research 

epistemology could be classified within a spectrum of beliefs which goes 

from the positivist on one extreme to the interpretive or anti-positivist 

perspectives on the other. (This thesis' epistemology and ontology is 

explained in the next section called "The orientation of this research"). 
Positivist scientists seek to "explain and predict what happens in the 

world by searching for regularities and causal relationships between its 

constituent elements" (Burrell and Morgan, 1979,5). For them the world 
is external and objective and the observers (i. e. the researchers) are 
independent (Carson et al., 2001,1). From this point of view, observation 

of phenomena "must be neutral and uncorrupted by theory, if the 

verification principle is to hold" (Williams and May, 1996,28). This point of 

view has been disputed within the social sciences. As for example, 

positivists "may argue that people react to their environment much as 

molecules which become 'excited' when heat is applied to a liquid" (May, 

1997,9). According to anti-positivist social scientists, human beings 

behave according not to causal relationships but socially constructed 

values. Also anti-positivists believe that "each situation is seen as unique 

and its meaning is a function of the circumstances and the individuals 

involved" (Remenyi et al., 1998,33). Meanings and values need not to be 

described but understood in their contexts. In order to gain this 

understanding, researchers immerse themselves in the social world they 

are studying so as to "hear, see and begin to experience reality as the 

participant" (Marshall and Rossman, 1989,106). This gives researchers 
first hand data which is then interpreted to comprehend social 

phenomena. 

Methodology "refers to the procedural framework within which the 

research is conducted" (Remenyi et al., 1998,30). A research 
methodology provides the researcher with guidelines to select methods 

117 



Chapter 4: Research Methodology 

and tools and to justify this selection. A research paradigm is comprised 
by an epistemology and ontology which are the assumptions about the 

nature of the object of study and which ground the chosen methodology 

and back the outcomes of the research. 

Postivist and anti-positivist perspectives can be and are used in 

Information Systems research. However the views on organisations and 

information systems, and the methods applied differ. For positivist IS 

researchers "organisations are understood to have a structure and reality 
beyond the actions of their members" and the research has to "discover" 

this reality by applying precise measures that will uncover the dimensions 

of reality that interest the researcher (Orlikowski and Baroudi, 1991,9). 

An example of a positivist research in the field of IS is the one by Eom et 

al. (1998) which studies the tendency in Decision Support Systems (DSS) 

implementation and use within 1988 and 1994. For their study, a DSS is 

an objective, computer-based interactive system that supports decision- 

makers (Eom et al., 1998,109). Eom et al. (1998) research uses 

quantitative surveys and statistical tools to conclude that creative 

applications of optimisation and suggestion model-based DSS are 

growing in popularity against simulation-based applications. On the other 
hand, the anti-positivist perspective assumes that the social world is not 

given. "The social world is produced and reinforced by humans through 

their action and interaction" and organisations do not exist apart from 

humans (Orlikowski and Baroudi, 1991,14). The anti-positivist 

researcher cannot measure reality but only understand it by getting inside 

the world he is studying. An example of an anti-positivist research in IS is 

the one by Bandow (1998) which studies trust within dispersed groups of 

systems developers. For Bandow's study, systems development 

organisations are integrated work teams which are constrained by 

people. Tension, conflict and trust are components of the working 

relationships among the developers. The present research uses 

qualitative interviews to collect information. It then generates categories 

and themes from data which reflect the experiences of systems 
developers who work in dispersed groups and how trust develops and 

118 



Chapter 4: Research Methodology 

shows up among them. Another example of an interpretive research 

stance is the study of CASE tools by Orlikowski (1993). For Orlikowski 

CASE tools are a form of "technology-based organisational change" 

(Orlikowski, 1993,310). Orlikowski uses qualitative unstructured and 

semi-structured interviews to collect data from the staff of two 

organisations which have implemented CASE tools. Following an 

inductive theory building strategy, Orlikowski creates a theoretical 

framework that addresses the organisational issues that emerge from the 

adoption and use of CASE tools. 

According to Mingers and Willlcocks (2004) most IS research stems from 

a positivist paradigm (Mingers and Willlcocks, 2004, XIV). This concurs 

with a study made by Orlikowski and Baroudi (1991) thirteen years 
before, which found that most IS research articles that they examined 

shared the same positivist philosophical background. (The articles were 

published between the period of 1983 and 1988 in four major information 

systems journals. ) Thus the tendency of IS research towards positivism 

seems very slow and hard to change. Mingers and Willlcocks (2004) and 
Orlikowski and Baroudi (1991) agree in that this "narrow focus" (Mingers 

and Willlcocks, 2004, XIV) is "unnecessarily restrictive" (Orlikowski and 
Baroudi, 1991,1) and argue for a wider range of philosophical 

assumptions to inform IS research. This thesis follows the 

recommendation of these authors and chooses an anti-positivist stand 

which is explained in the following sections. 

The orientation of this research 

The present thesis is located within the social sciences. This thesis 

believes that information systems are, "fundamentally, social rather than 

technical systems" (Hirschheim, 1985,13). Similarly, the activity of 

software development is thought of as a social activity (Weinberg, 1971, 

45) which is interpreted by the software developers who also interpret the 

reality of the information systems they are working with. Also, this thesis 

sees every single social setting (such as an information system or a 

119 



Chapter 4: Research Methodology 

software development environment) as unique because of the changing 

nature of humans and their social interactions and the different 

interpretations that people give to it. Similarly, the ontology of this thesis 

is Idealist. That is that this thesis believes that reality is subjective in 

nature and that it is created by the interpretations of people. Following 

this, the present thesis' epistemology is Interpretive as I believe that 

phenomena can be known through the interpretations of people involved 

with those phenomena. This thesis is "devoted to developing an 

understanding of human systems" (Savenye and Robinson, 2001,1172) 

and is done in "natural settings" with the researcher as the "main data 

gathering instrument" (Savenye and Robinson, 2001,1175). Thus the 

outcome of this thesis will be a result of my interpretations of the 

interpretations that the subjects of study have of the problem of software 

development for complex business organisations. This strategy is aligned 

with the tendency within research in the Information Systems field which 

is switching from a focus on technological issues to a focus on human 

and social aspects in organisational settings, such as managerial and 

organisational issues (Myers, 2003,1). 

The interpretive epistemology addresses the world from "the point of view 

of the people studied" (Hammersley, 1992,165). Beliefs about the 

external world being a "product of the mind" (Williams and May, 1996,42) 

play an important role. Since the world is constructed in peoples' 

consciousness, including researchers' minds, the concern is on the 

"meanings that people give to their environment, not the environment 
itself (May, 1997,13). This is one of the most important distinctive 

aspects in social research. The interpretive approach is also concerned 

with gaining an in-depth understanding of the social world and with 
interpreting "the meaningful character of social action" (Travers, 2001,8). 

In-depth understanding requires the researcher to immerse himself in the 

phenomena to be studied (Carson et al., 2001,65). Instead of drawing a 
line between researcher and phenomena, interpretive researchers 

promote engagement between them and their subjects of study (May, 

1997,20). The engagement must be reported transparently so as to 

120 



Chapter 4: Research Methodology 

describe the conditions in which the results were found. This adds a 
touch of subjectivity to the research which in the interpretive circle is 

welcome and appreciated. In the case of this thesis full immersion and 

engagement with subjects of study were achieved via participation in 

online communities of software developers and hence becoming part of 

their communities of practice. 

According to Denzin and Lincoln (1998) "every researcher speaks from 

within a distinct interpretive community, which configures, in its special 

way, the multicultural, gendered components of the research act" (Denzin 

and Lincoln, 1998,23). The interpretive perspective recognises that 

researchers carry with them a set of values which will guide their work. 
For May (1997) values "are a fundamental part of human condition" and 

cannot be eliminated (May, 1997,44,45). Thus bias in interpretive 

research is not hidden but acknowledged. Researchers "seek to be 

aware of their own personal and cultural prejudices" so as to "become 

conscious of those things that are influencing them" (Spradley and 

McCurdy, 1972,15). 

Criteria for guiding and assessing the quality of Interpretive 

Research 

Interpretive research is assessed via a variety of constructs from which 

the most important (and most used) are reliability, validity and credibility. 
For Perakyla (1997) "checking the reliability is closely related to assuring 
the quality of field notes and guaranteeing the public access to the 

process of their production" (Perakyla, 1997,203). This study's data was 

collected from online public forums and weblogs where software 
development is discussed by software developers (see section 4.2 of this 

chapter for a discussion of virtual communities of software developers). 

Online data were collected when they exposed human and social aspects 

surrounding software developers' work (as opposed to pure technical 

discussions) which is the concern of this thesis as reflected by this thesis' 

research aim and questions (presented in chapter 1). The web addresses 

121 



Chapter 4: Research Methodology 

for those online sources are provided in appendix 6. Some of the 

discussions in which I participated and which I collected may no longer 

exist online (probably due to storage limitations) at the time the reader is 

reading this thesis. Most online forums show their most recent 

contributions on top of their lists and a number of previous posts for some 

time available online. For this reason I kept an electronic copy of every 

online document I used for this study. However due to space limitations of 

this document this material is not included completely. Instead, segments 

of relevant data are presented in chapters 5 and 6 to explain the data 

collection and data analysis processes, and to provide an exposition of 

this study's findings. Wherever a segment of text is given the name of the 

online source, the title of conversation and the date in which the 

conversation took place is shown. This information can be used in an 

internet search engine (such as Google) or the online forum's search 

engine (web addresses of online sources are given in appendix 6) to find 

the complete discussion (if still available online). 

Perakyla also states that "the validity of research concerns the 

interpretation of observations" (Perakyla, 1997,207), in other words, it 

concerns "whether the researcher has gained full access to knowledge 

and meanings of respondents" (Remenyi et al., 1998,115). Additionally, 

Mason (1996) states that judgements of validity are "judgements about 

whether you are 'measuring', or explaining what you claim to be 

measuring or explaining" (Mason, 1996,146). This study collected data 

from virtual communities of software developers, i. e., online sources 

where software development issues are discussed. Virtual communities 

of software developers are places where actual software development 

work is done and discussed and thus are places to access valid data and 
knowledge about software development (see section 4.2 of this chapter 
for a discussion of virtual communities of software developers). The way 
in which software development work is shown is by the online interactions 

between participants. Human and social aspects of software development 

are expressed through online texts showing participants' thoughts, 

experiences, problems and successes at work. Although there are some 

122 



Chapter 4: Research Methodology 

issues regarding the anonymity of participants and the lack of visual and 

social cues of the online media, virtual communities are places in which 

communication is possible and where people can convey and infer 

meaning (section 4.2.2 of this chapter discusses these and other issues 

in virtual communities). Also, the process of interpretation of the online 

meanings that I carried out is explained throughout chapter 5,6 and 7. 

Chapter 5 explains how I did categorisation of data arriving at interpretive 

generalisation. My interpretations are shown in chapter 6 as a descriptive 

picture showing the current state of affairs (as it was during the fieldwork) 

in software development and in chapter 7 as a model of social issues of 

software development. In addition, section 5.1.2 of chapter 5 discusses 

my use of probe questions to establish the relevance of some of my 

interpretations. Probe questions are asked to different people to see if 

there is consistency with their understanding of a particular issue and with 

my interpretation of that understanding. Probe questions provide validity 

and reliability to this study's data. 

The credibility of a research is measured by the extent to which it was 

designed in a manner that identifies and describes the phenomenon 

(Remenyi et al., 1998,115). Credibility is gained when the researcher 

manages to prove that he has identified and thoroughly described the 

subject matter e. g. human and social aspects of software development 

for complex organisations. It indicates the level of immersion and 

involvement of the researcher in the fieldwork. Therefore, researchers 

have to prove their credibility by ensuring "that the subject was accurately 
identified and described" (Marshall and Rossman, 1989,145). The online 

ethnographic method (discussed in section 4.3 of this chapter) provided 
full immersion and involvement in virtual communities' interactions. The 

topics of the discussions were all related to software development and 

reflected their human and social aspects, as shown in part III of this 

thesis. 

There are more constructs that are used to measure qualitative research 

and which inform this thesis. These are transferability, dependability and 

123 



Chapter 4: Research Methodology 

confirmability (Lincoln and Gubas (1985) quoted in (Marshall and 
Rossman, 1989,145)). The transferability of a research indicates how 

one investigator can make use of results from previous inquiries. This is 

a difficult task, as the changing character of the social world makes it 

almost impossible to have two similar settings from which to collect data. 

Nevertheless, this can be done, under the responsibility of the 

researcher, who has to be able to justify the decisions satisfactorily. 
Transferability can be also understood as the ability to generalise the 
findings in a small setting of population to a bigger one. However, in the 
interpretive perspective, generalization is achieved not by the statistical 

representativeness of the data collected but by the logical reasoning used 
to relate the results. A theoretical discussion of the interpretive process of 
generalisation is provided in section 4.6 of this chapter. The actual 
process of generalisation is shown throughout chapter 5, by explaining 
the way I carried out the data collection and analysis and by providing 

examples showing how fieldwork data were transformed into abstract 
concepts and propositions. This study's final outcome is a result of this 

process of interpretive generalisation and therefore this thesis claims that 

the Model of Social Issues in Software Development (see chapter 7 for a 
discussion of the model) could be transferable to other software 
development situations different from decision-making and collaborative 
software. 

Dependability is established when the researcher accounts for "changing 

conditions in the phenomenon chosen for study as well as changes in the 
design ... of the setting" (Marshall and Rossman, 1989,147). As every 
setting is unique and as the engagement and the values of the researcher 

contribute to make it different from any other, a detailed and methodical 

account of every event has to be provided. This thesis' setting - virtual 

communities of software developers - is described in section 4.1 of this 

chapter. Section 4.1 also discusses the peculiarities of the online media 

and stresses the advantages and limitations of CMC (computer mediated 

communication) for this study so as to justify the design of the data 

analysis strategy. 

124 



Chapter 4: Research Methodology 

Confirmability, stresses whether the findings of the study could be 

confirmed by another. This again is a very tricky issue as "each situation 
is seemed as unique and its meaning is a function of the circumstances 

and the individuals involved" (Williams and May, 1996,34). Therefore a 
different kind of assessment is needed. The examination of the 

philosophical foundations, the selection of methodologies, the accuracy of 
the interpretations and transparency of the whole process are vital. In 

section 8.4-b of chapter 8I propose directions for future research by 

transferring and confirming the results of this thesis. 

In addition to these constructs Klein and Myers (1999) have designed a 

set of seven principles which can be used to guide and assess the 

conduct of interpretive researches, especially those guided by the 

phenomenological and hermeneutic perspectives and those which use 

ethnography as the method for enquiry. For Klein and Myers (1999) these 

principles are "fundamental ideas" because they are derived from 

philosophical writings considered as classical contributions to the 

interpretive perspective (Klein and Myers, 1999,70,71). The purpose for 

creating these principles is to respond to the call to discuss explicitly the 

criteria for judging interpretive research (Klein and Myers, 1999,68). As 

opposite to positive research in which there are long accepted guidelines 
for conducting and assessing research (Klein and Myers, 1999,68) 

interpretive researchers have lacked of this kind of guidance. Klein and 
Myers' (1999) seven principles are designed to guide interpretive 

researchers in IS and to assess the quality of their research (Klein and 
Myers, 1999,67). Klein and Myers (1999) created these principles for the 

phenomenological and hermeneutical branches of the interpretive 

approach and to target field studies such as ethnography. These 

principles are suitable to assess this thesis as it follows an interpretive, 

phenomenological, and hermeneutical paradigm (in section 4.3.3 of this 

chapter I explain the process of interpretation of social issues for this 

thesis which is consistent with the phenomenological and hermeneutical 

perspectives), and uses an ethnographic method to collect data. Also 

125 



Chapter 4: Research Methodology 

according to Klein and Myers (1999) the fulfilment of these principles 

helps the researcher to justify the implementation and outcomes of the 

researchers' thesis (Klein and Myers, 1999,87). Also Klein and Myers 

(1999) state that their principles should not be followed blindly to the line 

but that the researcher should select from these principles the ones that 

suit his research. The principles are shown in table 4.1. 

1. The Fundamental Principle of the Hermeneutic Circle 
This principle suggests that all human understanding is achieved by iterating 
between considering the interdependent meaning of parts and the whole that 
they form. This principle of human understanding is fundamental to all the 
other principles. 

2. The Principle of Contextualization 
Requires critical reflection of the social and historical background of the 
research setting, so that the intended audience can see how the current 
situation under investigation emerged. 

3. The Principle of Interaction Between the Researchers and the 
Subjects 
Requires critical reflection on how the research materials (or "data") were 
socially constructed through the interaction between the researchers and 
participants. 

4. The Principle of Abstraction and Generalization 
Requires relating the idiographic details revealed by the data interpretation 
through the application of principles one and two to theoretical, general 
concepts that describe the nature of human understanding and social action. 

5. The Principle of Dialogical Reasoning 
Requires sensitivity to possible contradictions between the theoretical 
preconceptions guiding the research design and actual findings ("the story 
which the data tell") with subsequent cycles of revision. 

6. The Principle of Multiple Interpretations 
Requires sensitivity to possible differences in interpretations among the 
participants as are typically expressed in multiple narratives or stories of the 
same sequence of events under study. Similar to multiple witness accounts 
even if all tell it as they saw it. 

7. The Principle of Suspicion 
Requires sensitivity to possible "biases" and systematic "distortions" in the 
narratives collected from the participants. 

Table 4.1 Seven principles for Interpretive Field Research 
Source: Klein and Myers (1999,72) 

An evaluation of this research using these principles is shown in section 
8.3 of chapter 8 of this thesis. 

126 



Chapter 4: Research Methodology 

4.1.1 Justification for the selection of approach 

Having briefly exposed the philosophical assumptions of this thesis, and 
therefore set the scene of how it will be performed and then evaluated, in 

this section, I will summarise and justify the reasons for choosing the 
interpretive approach. The following list is complementary to the 

ontological assumptions presented earlier in this chapter (sub-section 

entitled "the orientation of this research"). 

" The ontology of this thesis (and hence mine) is idealist. For this 

research, business organisations, information systems, software 
development and software are products of people's interpretations 

and are investigated through in-depth fieldwork, such as 
ethnography, in the places where the people involved with them 
interact like for example virtual communities. 

" Interpretive research allows the researcher to investigate a 

phenomenon from the point of view of a (group of) stakeholder(s). 
From the many perspectives available (in this case, for example, 

managers in business organisations, staff in business 

organisations, software project managers, etc. ) I have chosen to 

investigate software development for complex organisations from 

the perspective of software developers. They are part of complex 

environments and as I am studying software development I believe 

that their practical perspectives give original insights to my 
investigation. Figure 4.2 illustrates this. 

"00 

Cedlla Lowelro-KoadiMn So/Iwan develops 

Posse" experience at 
dewºbppng software for 
complex anvkonment. 

Figure 4.2 Interpretive Research from the Perspective of Software 
Developers 

127 



Chapter 4: Research Methodology 

" Hence an interpretive perspective allows the researcher to explore 
how developers see and deal with complex situations (i. e. what 
they actually do and why) and how they perceive their work in 

relation to the complexity in the organisations they develop the 

software for. 

" An interpretive approach accounts for a subjective perspective. 
The outcome of the interpretive research is a result of my views of 
the views of software developers about software development for 

complex situations. 

" The interpretive approach lets (and requires) the researcher 

expose his intuitive, religious, political and philosophical views so 

as to justify and clarify design decisions and the outcome of the 

research. Thus a declaration of values is presented in the next 

section. 

4.1.2 Declaration of Values 

"If the sociologist manages to produce any truth, he does so 
not despite the interest he has in producing that truth but 
because he has an interest in doing so - which is the exact 
opposite of the usual somewhat factous discourse about 
neutrality" 

Pierre Bourdieu quoted in May (1997,45). 

An interpretive approach requires the researcher to immerse himself and 
be conscious of his own values. This is summarised in section 4.1.1. The 

above quotation suggests that in every research undertaking (not only in 

the social sciences) value judgements are embedded. This is also valid 
in situations where researchers declare themselves neutral. Neutrality is 

also a value judgement. The interpretive approach recognises the value 

content of research. It encourages researchers to expose their values 

and to be aware of them during the process so as to be more conscious 

of their own biases. In the light of this I am now presenting my values 

and views of the research presented in this thesis. 

128 



Chapter 4: Research Methodology 

In chapter 1I presented the motivations that led me to this thesis. These 

are professional and academic interests and delineate my research. My 

background is in industrial engineering. I also studied a master in 

systems engineering as I was interested in the industry of software 
development. I enjoyed very much modelling and working with 
databases. As my career developed, I became responsible for managing 

projects of information systems development. My interests broadened 

into understanding the organisational aspects that surrounded the 

implementation of these projects. I then went to do a MBA in Information 

Management which complemented my views of information systems 

projects and shifted my perception from being concerned with the 

technical aspects of information systems towards an interest in the 

human aspects of the organisations for which the information systems are 
designed. After some further professional experience in Information 

Systems Development I decided to study a PhD in order to address the 

following interests: 

9 To learn and understand development of information systems and 
in particular software from the human and social perspectives 

9 To contribute to the body of knowledge of the IS field by providing 
insights into the work of software developers 

" To establish the foundations for future professional career as a 

consultant and researcher in software for information systems 

As a researcher, I consider that my role was to explore and participate to 

a certain extent in discussions about software development for 

information systems. My intention was to not become engaged in altering 
the course of any software development endeavour by influencing those 

who are responsible for projects. Neither did I want to assume some 

responsibility for the delivery of any product. Thus the focus of my 
research was on enquiring about how people make sense of their work as 
it currently is. However, the hope of this thesis is that the results of this 

129 



Chapter 4: Research Methodology 

research will lead to improvements in future software development 

projects. To guide this process of enquiry I came across two possible 

strategies. First to make sense myself of the complexity of environments 

with which systems designers have to deal with; second, by 

understanding such complexities through the perceptions of designers. I 

have chosen the second one because of the following reasons: 

" Software designers are part of these complex situations and 

therefore their views are highly valuable 

"I can appreciate the strengths and weaknesses of these views in 

achieving success or failure 

" My own perspective is closely related to the practice of Software 

and IS development 

" This would make an original contribution to my work 

Additionally, during the last few years of my professional experience, I 

used online tools as part of my work to communicate with peers. I was 

part of a network of systems analysts and developers within and outside 

the organisation. We were always connected by e-mail and instant 

messaging. Although some of us were not physically far away from each 

other, in some situations we preferred to talk online. The reason is that 

most of the topics we talked about were related to the things we were 
doing in our computers. Online tools allowed us to share programme 

codes, error messages and programme outcomes; and work at the same 
time. We also used to contact users and software providers through this 

media. This was a fast and efficient way to approaching them, at least for 

most of the everyday-activities. Of course, sometimes we met with 

people in person for more formal conversations. 

Having discussed that online environments are places where IS and 

software work is done (i. e.: online environments correspond to online 

communities of practice) I considered this and decided to carry out my 
interpretive research within virtual communities of software developers. 

130 



Chapter 4: Research Methodology 

The method for this inquiry was online ethnography which shares some 

similarities with traditional ethnographies but possesses some special 
features which are addressed in section 4.3. Both virtual communities of 

software developers and online ethnography are discussed further in the 

next sections. 

4.2 Virtual Communities of Software Developers 

Having laid out the main interpretive tenets of my research approach, I 

now proceed to explore the concept of virtual communities since it is 

essential for my methodology. This section explores the characteristics of 
the online computer environments (the hard side) and stresses the 

motivations and social interactions among information systems 
developers (the soft side). There are two definitions which reflect both 

sides of the virtual communities in which I did my fieldwork. The first 
definition is by Lee et al. (2003) and emphasises the use of computers: 

"a cyberspace supported by computer-based information 
technology, centered upon communication and interaction 
of participants to generate member-driven contents, 
resulting in a relationship being built up" (Lee et al., 2003, 
51) 

The second definition is by Rheingold (1994) and focuses on the 

emotions and relationships of the participants: 

"Virtual communities are social aggregations that emerge 
from the Net when enough people carry on those public 
discussions long enough with sufficient human feeling, to 
form webs of personal relationships in cyberspace. " 
(Rheingold, 1994,5) 

From the above definitions, the "virtual" component in virtual community 
represents the use of networked computers and software tools used to 

communicate. The second part, "community" represents people with 
similar interests, who gather for entertainment, to discuss or ask for help. 

131 



Chapter 4: Research Methodology 

However, the mere act of gathering online does not imply that a 

community exists. There are more factors that are needed for a 

community to be created. There needs to be a "desire and need to share 

problems, experiences, insights, templates, tools and best practices" 
(APQC (2004) quoted in Coakes and Clarke (2006b, 92)). Also time is 

needed to allow people to know each other. Because online participants 
do not meet face-to-face it takes longer to develop relationships. 

Nevertheless, relationships are built and thought as genuine by online 

members (Parks, 1996,2). As in real societies norms are created to 

show the members of virtual communities how things are done there 

(Elliott and Scacchi, 2003,21). Social evolution speeds when these 

norms are challenged and changed as new people join the group 
(Rheingold, 1994,2). 

There are two main elements that keep virtual communities alive. The 

first one is a shared interest or common purpose, such as talking about 

computer games. Virtual communities of information systems or software 
developers are grounded on their "occupational communities" as they 

share "similar goals, work practices, beliefs interests, and value systems" 
(Elliott and Scacchi, 2003,24). The purposes of these communities 

would be to provide or ask for technical support or to discuss practices. 
The second element is a sense of membership shown by people's 

commitment to participation, solidarity of the group and a unique identity. 

For example, the number of replies that an enquiry receives would give 
an idea of the level of commitment and solidarity of the group with its 

members. The way outsiders are treated and the differences between 

them and insiders reveal the identity of the group. 

Despite the scepticism of some scholars who think that online gatherings 
are a "socially-impoverished domain" (Baym, 1995,26) people are using 
the net more to engage in virtual relationships. There is evidence to 

prove this. In her study about humour Baym (1995) shows how people 
create a virtual community to talk about soap operas. Rheingold (1994) 

provides too a rich picture of a virtual community devoted to share 

132 



Chapter 4: Research Methodology 

medical and family problems. There is also evidence of communities 

created for work purposes. A virtual community of journalists is studied 
by Millen and Dray (2000) and a group of public relations professionals is 

researched by Thomsen (1996). Communities of information systems 
developers have also been investigated. Elliott and Scacchi (2003) study 

a virtual organization of Free Software developers that successfully 

collaborate and resolve conflicts online. The members of this community 

share the same values about the use of free software and freedom of 

choice which are manifested in their online conversations and influence 

their practices. Since virtual communities are places where actual work is 

done (as opposite to leisure or personal interests) the concept of 

communities of practice can be applied. Communities of practice are 
defined by the practices their members are engaged in. More on 

communities of practices is discussed in section 4.2.3 of this chapter. 

I have classified virtual communities of software developers in a) open 

and b) close communities. Open communities are created upon 

personal, work or professional interests (Millen and Dray, 2000,167). 

Members are geographically dispersed and sometimes never meet each 

other. To communicate, these communities use free, public online 

settings such as bulletin boards, online forums or mailing lists which are 

sponsored by public or private organisations and which usually run in a 
browser (see glossary). The motivations of these people to take part are 

often centred on technical support and theoretical discussions about 
technologies, software tools, programming languages, etc. The access to 

these environments is not difficult as they welcome new members who 

share their interests. The difficulties however arise at looking for the 

appropriate communities for the fieldwork. Once found, the challenge is to 

get known and establish rapport with the other members. Closed virtual 
communities possess members who only interact with people they 

already know (in person). Although members could be geographically 
dispersed, these communities are grounded mostly on physical 

organisations (Millen and Dray, 2000,166) like for example software 
development houses, and their membership is restricted to its members. 

133 



Chapter 4: Research Methodology 

Access to these environments could be difficult as permission will be 

needed by the organisation or a member of the community. 
Communication is done by e-mail, instant messaging or systems provided 
by the organisation. The purposes of these communities can be divided 

in three: 1) to perform or coordinate task related activities, 2) to 

broadcast information and 3) to socialise (Kettinger and Grover, 1997, 

517). 

4.2.1 Selection Criteria for Virtual Communities 

For this research I opted for open communities as their public nature 
facilitates access to a wider cross organisational and culturally varied 

people (software developers with different professional backgrounds who 

work at different organisations and who practice under different 

paradigms). See figure 4.3. Also information obtained through these 

types of communities was not only technical but provided insights into the 

human and social aspects of software development within different 

contexts such as the software development environment and the 

organisational settings. 

wmmuumr. 

Internet 

Cecilia Louroiro-Koechhn Software developers 

Virtual Community 
Possess experience at 

A working environment developing software for 
complex environments 

Figure 4.3 Interpretive Research of Virtual Communities of Software 
Developers 

134 



Chapter 4: Research Methodology 

To search for open, virtual communities I designed a system which 

comprised two search criteria. The first criterion was the kind of web site 

which supports online conversations. Some of the keywords I used were 
Newsgroups, Discussion Forums, Mailing Lists, Blogs/Weblogs and 
Wikis. The second search criterion was the topic of discussion. Topics 

had to be related to the topic of this thesis: the development of software 
for adaptable, unpredictable, multi-group environments. As I was 
targeting software developers I chose to use technical terms (most of 

which I refer to in chapter 2) like for example: 

" Software /Systems development 

" Software /Systems programming 

" Decision support systems (DSS) 

" Group decision support systems (GDSS) 

" Collaborative systems 

" Collaborative work 

" Workflow 

I also looked for specific brands of products that develop these kinds of 
technologies such as Microsoft. In addition to this, I also used some 
filtering criteria. After finding the online communities I evaluated the sites 
for the following conditions: 

" The site had to be "alive". This means that the "message activity" 
(Millen and Dray, 2000,168) and level of commitment should be 

high. The message activity can be measured by the density of 
postings per day, week or month. A good number of members 
(possible several dozens) posting regularly would show their 

engagement with the community. Additionally, questions being 

replied by different members will show the solidarity of the group. 

" The content of the postings should be related to software 
development and its human and social aspects. Site with 
members who only post job or conference advertisements or are 

135 



Chapter 4: Research Methodology 

looking for jobs were discarded (mostly because there were no 

follow ups to those kinds of posts). In extract 4.1 an anonymous 

online participant of the JoS2 forum using the name "Bugs Bunny" 

talks about the kind of topics he thinks attract most of the online 
interaction. For him it is the human and social related aspects of 

software development which keep the JoS forum alive. 

" The members of the communities must be practitioners. As stated 

before, the approach of this thesis is from the point of view of the 

software developers (see section 4.1.1 of this chapter). 

Extract 4.1 
Thread title: Moding this board Date: 16"' July 2004 Source: JoS 
must be `a lot of work' 
The things that motivate people to speak don't really seem all that software 

related. Instead they're related more to the 'human' side of things: 

Why does HR treat me this way? 
What about that Google billboard ad? 
How do the old/young people differ? 
How did my interview go? 
Should I work at this place? 
Why do software engineers have such a mentality? 
What makes a good hire? 
Why is my manager treating me like this? 

... and so on and so forth. Most of the technical questions get short answers 
quickly but the questions dealing with human feelings and human relationships 
tend to get many times more responses that the pure technical questions. Even 
technical questions with a 'human' spin get more responses than pure technical 
questions. " 

Bugs Bunny 

The reason for using the above filters was that I needed a "place" where 

developers were working and discussing software development topics so 

I could collect data from there. There are many advantages of using 

online communities to gather information. The online nature of these 

communities makes them accessible from any part of the world. I did not 

need to physically move to meet other people. The public nature of the 

communities chosen facilitated my introduction to other people as another 

peer. As there are hundreds of online communities around the world I 

2 JoS: Joel on Software one of the online forums where I carried out the fieldwork. The 
text segment provided corresponds to data category [Virtual Communities/Motivations] 
which is not part of the analysis results of this thesis but helped me to make sense of the 
nature of virtual communities. This is explained further in section 5.2.1 of chapter 5. 

136 



Chapter 4: Research Methodology 

was able to select discussions from a wide variety of topics. I also met 

people with different professional backgrounds, i. e., practitioners that 

work in different companies and that use different tools and development 

methodologies. Finally, no special software was required as most of 
these communities can be accessed through a browser. Thus the access 

was relatively easy to gain. 

The complete list of collected online sources (i. e. elements of virtual 

communities such as forums and weblogs), 13 communities in total, used 
in this study is shown in appendix 6. This list includes the online 
interviews I carried out in MSN messenger. From these 13 online 

sources, I gathered 107 online conversations whose length varied from 

only two contributions (1 question and 1 answer) to 60 contributions (see 

section 5.2.1 of chapter 5 for a discussion about the volume of data 

collected). The data collected is only a small fraction of the several 
hundreds of online conversations I read during my fieldwork. 

4.2.2 Pragmatic and Linguistic Issues in Virtual Communities: 

Computer Mediated Communication 

Online communication is different from oral and written communication. 

The online media is also known as "computer mediated communication" 

(CMC) and possesses linguistic and pragmatic peculiarities which are 

addressed in this section. A linguistic and pragmatic analysis of the online 

medium is relevant at this point to emphasise its potential as a medium in 

which communication is possible and where people can convey and infer 

meaning. Also it is important to stress the advantages and limitations of 
CMC for this study so as to justify the design of the data analysis strategy 

which will be presented later in section 4.4 of this chapter. 

Linguistics studies the structure and systems of language. Pragmatics is 

the branch of linguistics which is concerned with "the study of meaning as 

communicated by the speaker and interpreted by the listener" (Yule, 

137 



Chapter 4: Research Methodology 

1996,3). Pragmatics studies the relationship between linguistic forms 

and the users of those forms. This includes people's intentions, people's 
assumptions, the kind of speech acts that people perform and the 
knowledge that sender and receiver of messages have about the physical 
and social world. A speech act is an action performed via an utterance. 
(For example the sentence "I fire you" represents the action of firing 

someone. Speech act is a concept introduced by J. L. Austin (1962) in his 

book "How to do things with words". ) Both linguistics and pragmatics are 

relevant to this study as they address the different ways in which people 

who communicate manage to understand each other. 

CMC can be defined from different perspectives. From a technical point 

of view, CMC is "communication patterns mediated through the 

computer" (Metz, 1994,32). From an organizational point of view CIVIC is 

a tool that is used for "distributing information", "increasing organizational 

efficiency", "creating electronic democracy" and "challenging traditional 

hierarchies" (Baym, 1995,2). However, as I am using CMC as a medium 
through which I want to interpret other people's interpretations, a more 

relevant, linguistic and pragmatic definition of CMC is "an hybrid form of 
interaction" or "written conversation" (Marcoccia, 2004,2). According to 

this, CMC could be understood as a new kind of register (a variation of 
language used in a specific kind of situation or in other words "a 

description of the linguistic forms which generally occur in a particular 

situation" (Thomas, 1995,154)), which possesses characteristics of both 

written and spoken speech. These characteristics appear in different 

degrees depending on the online setting that is being used. In order to 

explore better these characteristics I have divided these online settings 

as three CMC-using situations. The term CMC-using situation has been 

adapted from Crystal's (2001) Internet-using situations. Crystal has 

identified five internet-using situations: e-mail, synchronous and 

asynchronous chatgroups, the World Wide Web (WWW) and virtual 

worlds (imaginary worlds created by the online participants), which "are 

sufficiently different to mean that the language they contain is likely to be 

significantly distinctive" (Crystal, 2001,10). In this study the term CMC is 

138 



Chapter 4: Research Methodology 

used instead of Internet to not limit the scope of the analysis to the 

internet but to any other network through which online communication is 

done. Additionally, I have discarded virtual worlds from this analysis 
because their imaginary nature make them not appropriate settings for 

real IS and software work. Finally, I have combined synchronous and 

asynchronous chatgroups as one category, but I address their 

differences, when relevant. Following, I will explore the linguistic and 

pragmatic characteristics, first of CMC and then for each CMC-using 

situation. 

Linguistic Characteristics of CMC 

From the linguistic point of view, CMC is seen as a having some 

characteristics of oral speech and writing. E-mail is closer to writing and 

chatgroups are closer to spoken conversation (McDaniel et al., 1996,39). 

Oral speech is "time-bound" and "spontaneous" (Crystal, 2001,26), CMC 

allows more time to the speaker to think what he is saying, hence it is 

less spontaneous (Folkman Curasi, 2001,6). Oral speech is prosodically 

rich (see glossary for a definition of prosody), CMC lacks visual, audio 

and social cues. Additionally, there are also some differences with 

written speech. Writing is "contrived" (Crystal, 2001,26), CMC is less 

formal. Writing is more structured and linear; CMC allows more 
dimensions (e. g. many conversations at the same time, links and 
bookmarks) so texts do not have to be read in sequence but in the order 
the reader prefers. 

CMC's lack of visual and social cues, often present in face-to-face 

conversations, could limit the interpretation of texts to the written 

statements (Sweet, 2001,40). "Cues signal the nature of the context", 
they give the participants an idea of who and where are the others, their 

characteristics and the relationships between them (Jacobson, 1996, 
463). In CMC indications about the participants' physical appearance, 
age, gender, position and the physical appearance of the setting are lost 
(Sproull and Kiesler, 1986,1497). Furthermore, visual signals like nods 

139 



Chapter 4: Research Methodology 

from an addressee to indicate understanding, agreement or disagreement 

are missing. There are three perspectives that address the 

consequences of this. The first one states that without visual and social 

cues CMC becomes an "impersonal medium" (Parks, 1996,2) and a 
"socially-impoverished domain" (Baym, 1995,26). The second 

perspective proposes that the lack of cues enhances social dimensions 

such as "cultural beliefs, values and norms" (Elliott and Scacchi, 2003, 

28). According to this perspective, CMC "liberates interpersonal relations 
from the confines of physical locality" (Parks, 1996,1). Thus relationships 
that arise through CMC have more quality as people get to know each 

other more. The third perspective states that alternatives to visual cues 

are created and used in CMC. These are conventions that allow people to 

understand each other and the context in which conversations are carried 

out. 

CMC allows the creation of "conventions of communication" (Jacobson, 

1996,465) or "chat codes" (Greenfield and Subrahmanyam, 2003,732) 

which are limited to the written medium. These are rules that people 

have to follow to make communication possible. Some conventions are 

well spread through the cyberspace whereas others are kept within the 

virtual communities that created it. Some conventions mimic existent 

conventions from oral or written speech, but others are created especially 

for CMC. For example, to stress an utterance it can be highlighted by 

using a different colour. To call the attention of a specific person (in a 

group conversation) his name can be indicated within brackets, as in 

"Cecilia: [Jose] what is your age? " People can raise their voices by using 

CAPS. Feelings can be expressed by emoticons (e. g. (0) or other 

signals (e. g. <<Cecilia is happy»). Common expressions can be 

abbreviated (e. g. YMMV, which means Your Mileage May Vary (or your 

experience could be different)). Newcomers in virtual communities need 
to acquire pragmatic competence i. e., learn these codes and learn when 

and how to use them, to become members and to be accepted by the 

others. For example, I created a dictionary of online codes which helped 

140 



Chapter 4: Research Methodology 

me to familiarise with the conventions used in some of the forums. The 

dictionary is shown in appendix 4. 

CMC allows different kinds of speech. First, it is said that CMC fosters 

direct speech (Parrish, 2002,2). The anonymity of the medium causes 

the participants to speak baldy without redressive action (i. e., they do not 

pay attention to other people's feelings). A negative consequence would 

be violent behaviour like verbal aggression or "flaming" (Parks, 1996,2). 

On the other hand, a more positive consequence would be the ease of 

communication by reducing ambiguities and misunderstandings. 

However, there will always exist a potential for misinterpretation, 

misinformation and misunderstanding in the written world (Willis and 

Coakes, 2000,122). Second, CMC also allows indirect speech. People 

can "communicate meaning via implicatures" (Yule, 1996,40). 

Implicatures contain additional conveyed meaning. For example, the 

utterance "C++ is difficult" apart from its semantic meaning can also imply 

that the speaker is asking for help. Hearers have to infer the meaning 

from what is said and from the visual context of the conversation. As 

CMC lacks visual cues the strategies for interpretation have to be 

different from the ones used in writing and oral speech. It is possible 

therefore, that different interpretations can arise from one single utterance 
(which is not that bad as it could encourage richer conversations 

searching for clarification. ) 

Conversations in CMC follow different ordering rules than in normal 
conversations. In face-to-face conversation, people negotiate their turns 

with cues showing the others when they can have control of the floor (i. e., 
the right to speak). Turns are also organised by adjacency pairs which 
are logical sequences that people expect to be followed (e. g. a question 
followed by an answer). In some instances of CMC many people can be 
typing at the same time and without seeing the new messages that are 
arriving. Their messages are posted in the order in which the server 
receives the messages (this depends on speed and broadband (Smith et 
al., 2000,98)). Additionally, there could be several parallel conversations 

141 



Chapter 4: Research Methodology 

taking place at the same time (Parrish, 2002,10). The result is several 

threads of conversations overlapping each other. The overlap causes a 

turn that should have followed another one to appear several lines after. 
In between there can be turns from other people participating in the same 

conversation or in others. It is difficult then for the inexperienced, to 

deduce to which conversation a particular turn belongs and what is its 

place (order) in that conversation. Although this phenomenon appears 

more often in synchronous conversations it is also true for asynchronous 

conversations. For example, replies of e-mails can carry copies of the 

previous turns which are not necessarily in order. 

The lack of visual cues, ambiguity in texts, conventions of communication 

and a messy conversation structure carried some implications for this 

study. The nature and structure of online conversations was considered 

at the time of analysing the texts for the study. For example, the 
interpretation of turns in long threads of conversation was done 

methodically to identify the relevant sub-threads to which the turn was 
related. The implications of the nature and structure of online 
conversations to this thesis' methodology is discussed in section 4.4.1 of 
this chapter where I justify my selection of conversation analysis as part 
of the data analysis approach. 

Pragmatic characteristics of CMC 

The CMC characteristics that stand out from other types of 

communication are the reduction of time and financial constraints and the 

loss of geographical boundaries (Folkman Curasi (2001,367); Parrish 
(2002,3); Sweet (2001,2)). CMC allows people to communicate 
regardless of the time zone in which they reside and in the case of 
asynchronous settings at the time most convenient for them. CMC is less 

expensive than for example, flying to another part of the world to meet 
with people. There are no geographical boundaries as one can meet with 
people in any part of the world. 

142 



Chapter 4: Research Methodology 

As it is yet a new channel of communication, CMC has been compared 

with other more conventional channels, such as telephone calls and face- 

to-face conversations. Some studies have addressed CMC from the 

point of view of these other channels of communication assuming that the 

differences are in fact deficiencies of CMC. There are other studies, 
however, that see CMC as a different phenomenon which deserves a 
different framework of analysis. Taking into account both perspectives 

we can identify some advantages and disadvantages in using CMC. 

Participation in some types of CMC is anonymous (Parrish, 2002,2). In 

most types people can use false names or nicknames to participate in 

virtual communities. Consequently, people in CMC are likely to be more 

self-disclosed than in face-to-face conversation as "there is very little 

chance of anyone ever linking them with their statements" (Parrish, 2002, 

2). Self-disclosure is also enhanced in other types of CMC which are not 

always anonymous. In e-mails, for example, people tend to focus on 
themselves in message salutations and closings (Sproul) and Kiesler, 

1986,1509). This is an advantage for this study as it was possible, 

through CMC, to "stimulate [... ] disclosure from informants" (Folkman 

Curasi, 2001,368) although the lack of face-to-face contact made it 

difficult to establish rapport. CMC mitigates influencing factors in 

communication such as status differences, gender, ethnicity and others 
(Sweet, 2001,6). Hence, the field is even for all the participants. In 

organizational environments, for example, everyone regardless of their 

position sees e-mails and bulletin boards. Messages are sent by 

subordinates and superiors equally. Anyone within the organisation has 

access to information "that formerly would have been difficult if not 
impossible for them to get" (Sproull and Kiesler, 1986,1510). Through 

CMC, gender, ethnicity, accents and physical appearance do not play a 

role (or play a different one that is mitigated), this eliminates 

predisposition against the others. The focus is then only on the content 

of the messages. 

143 



Chapter 4: Research Methodology 

Although CMC provides an even and democratic field for members of 

online communities, not all of them participate in the same way. 
Members can be classified according to their role and level of 

participation. Based on Millen and Dray (2000) and McDaniel et al (1996) 

typologies of participants I am proposing the following Types of 
Participants: 

1. Frequent contributors, they usually dominate (McDaniel et al., 
1996,46) the conversations by initiating more conversations and 
by sending more replies than the others. 

2. Sporadic contributors, participate when "a topic of personal interest 

is discussed" (Millen and Dray, 2000,170). 

3. Marginal contributors, they have low levels of participation. 
4. Lurkers, they read without responding (Parks, 1996,15). 

Additionally, members play different roles in the communication process. 
According to Marcoccia (2004) participants can be senders and/or 

readers (Marcoccia, 2004,17). A type of sender, the host, possesses 

more attributions than the rest. They act as the moderators of 

conversations and have power over the other members (e. g., they can 
ban members). The consequences of these differences in online 
behaviour are that very few members, the more influential ones, dominate 

topics of conversations. Similarly, it could be said that an opinion or 

perspective about a topic cannot be associated to all the virtual 

community but only to the few members that participate in conversations. 
Unfortunately, due to their lack of participation, lurker's perspective and 
behaviour cannot be observed. However, their role could be thought as 

supportive of the community as no one forces them to remain listening in 

the background. 

The ability of participants to read and reread texts before sending them 
influences the quality and nature of the messages. For example e-mails 
contain better grammatical use than oral speech (Folkman Curasi, 2001, 
7). Warschauer (1997) confirms this when stating that CMC "promotes 

144 



Chapter 4: Research Methodology 

more complex sentence structures" (Biesenbach-Lucas and Weasenforth, 

2002,149). CMC also allows more reflectivity (McDaniel et al., 1996,40) 

as people have more time to think about their messages. 

More characteristics of linguistic and pragmatic characteristics of CMC 

can be identified by focusing on the individual characteristics of the CMC- 

using situations: 

a. E-mail 

E-mail is "a computer system for exchange of messages and other 
information" (Kettinger and Grover, 1997,514). E-mails are fast and 
asynchronous (Sproull and Kiesler, 1986,1493). Although a message 
can arrive in seconds to its destination, senders and receivers do not 
have to be present at the same time. E-mails can be reviewed whenever 
is convenient for people. As mentioned before, e-mails share some 
characteristics with written and oral speech. McDaniel et al (1996) 
believes that e-mails are more like writing (McDaniel et al., 1996,39), 
Willis and Coakes (2000) state that e-mails resemble speech patterns 
(Willis and Coakes, 2000,121), whereas Biesenbach-Lucas and 
Weasenforth (2001) state that this depends on the situation (Biesenbach- 
Lucas and Weasenforth, 2001,11). For example, a quick note to a 
relative would look more like oral speech and a notification to a superior 
would look more like writing. 

Despite the lack of visual cues, in e-mails textual identity cues can be 
included in the form of message headers and signatures, and other 
message features (Baym, 1995,2) thus breaking the anonymity of the 

medium. Other contextual cues might not be found though. Biesenbach- 
Lucas and Weasenforth (2001) found that unlike word-processed 
documents, e-mailed documents lacked background or contextual 
information as senders assume that this information is "being shared with 
the audience" (Biesenbach-Lucas and Weasenforth, 2001,16). 

145 



Chapter 4: Research Methodology 

E-mails usually contain multiple messages addressing multiple topics. 

The reason is that because a reply might not come in the near future (e- 

mails are asynchronous), senders feel the need to anticipate some 

movements and save some time. Unlike this, in face-to-face 

conversations, topics are addressed one by one. Additionally, 

improvement in technology facilitates this as mailboxes and individual e- 

mails can contain big amounts of information. Consequences for the 

study could be that sometimes an e-mail will contain turns belonging to 

more than one conversation and that e-mail files could not be catalogued 

only under one topic but many. However, as access to e-mail becomes 

more pervasive and continuous, one could assume that e-mail will move 

closer to one topic exchanges as it gets closer in style to chatgroups. 
During the fieldwork I exchanged a few e-mails with some of the online 

participants. As the e-mails were about topics already discussed in the 

online forums they remained short and focused. 

b. Chatgroups 

Chatgroups are "continuous discussions on a particular topic, organised 

in rooms" (Crystal, 2001,11). Popular forms of chatgroups are online 
forums, mailing lists, weblogs and instant messaging. Chatgroups allow 

multiple users to engage in synchronous or asynchronous conversations. 
In synchronous situations, users interact in real-time in conversations that 

have a short life. In asynchronous situations, there are longer gaps 
between messages and conversations tend to be considerable longer. 

For both types of chatgroups, logs of conversations can be recorded and 

reviewed as well as resumed later. This characteristic of CMC is called 
"persistent conversation" (Erickson (1999) quoted in Marcoccia (2004, 

3)). 

In addition to the characteristics mentioned before about the different type 

of organization in online conversations (differences in turn-taking, floor 

control and adjacency pairs are more evident in chatgroups), and lack of 

visual and contextual cues, there are other features that need to be 

146 



Chapter 4: Research Methodology 

considered. The first one is that having multiple threads of conversations 

and members participating in more than one conversation results in lack 

of "collective focusing" (Marcoccia, 2004,4). That is, in chatgroups, not 

all the members are discussing the same topic nor are aware of all the 

topics that are being discussed by others. Instead, sub-groups with 

"varied focuses" are created. Second, not all the conversations are long 

in length. A great percentage of initiated conversations are truncated, 

i. e., are not followed by responses, or are short as the topic of discussion 

is not of interest for participants. Members of virtual communities would 

"not feel obliged to answer a message which remains unanswered for a 

long time" (Marcoccia, 2004,7). Hence the levels of interests of online 

members in particular topics are displayed very explicitly. 

Implications for the study were, first, that in order to understand some 

conversations, a reading and segmenting strategy had to be developed. 

Relevant threads of conversations were picked from the whole body of 
data. Most truncated exchanges had to be discarded because they did 

not provide valuable information to the study. From those relevant 
threads, turns had to be linked to their adjacency pairs so as to give 

coherence and context to an idea or topic. Individual turns had to be 

analysed thoroughly to find contributions to more than one conversation 

and hence more than one topic. 

c. The World Wide Web 

The World Wide Web or WWW is "the full collection of all the computers 
linked to the internet which hold documents that are mutually accessible 

through the use of a standard protocol (the hypertext transfer protocol, or 
http)" (Crystal, 2001,13). The WWW is also a device for delivering 

chatgroups which have been already mentioned in section (b). However, 

under the classification of WWW I am only considering information or 
documents in which no interaction between users happens. From the 

three CMC-using situations, the WWW is the medium which shows more 

characteristics of writing than of speaking. The WWW is also different 

147 



Chapter 4: Research Methodology 

from the other two situations in the sense that communication interaction 

is unidirectional. The author of the Web pages does not know his 

audience who can be indeed massive. 

With regard to this thesis, two issues are worth mentioning. The first one 
is the nature of the texts in web pages. As opposite to normal, written 
texts which follow a linear structure or "unidimensional flow of speech" 
(Crystal, 2001,196), texts on the WWW are non-linear and can be read in 

a "multidimensional way". Hyperlinks are used to jump to other pages. 
Web pages can be divided into sections; texts can be grouped in boxes 

or tables. The order in which a user reads a web page depends on his 

need and on the ability of the designer to attract the attention to some 
parts of the page. The second issue is the validity of the information 

posted on the web. As there are no moderators, there is no control over 
what is published. In searching for a keyword, one can find enormous 
loads of outdated information. Along with this there is also a large 

amount of information that might be plagiarised from other sources 
(Crystal, 2001,206). It is important therefore to exercise caution when 
accessing online sources. In this study, part of this work was done by the 

subjects of study revealing the self-disclosing nature of the CMC media. 
The web sites analysed were the ones proposed by participants as they 
had read or written them and were able to recommend them. 

148 



Chapter 4: Research Methodology 

e-mud Chutgtoups WWW 

1 

inlrract in otirn virtual 
rommunitivs 

Internet 

LanguagelTexts 

Cecilia Loureiro-Koechlin Software developers 

Virtual Community Possess experience at 
A working environment developing software for 

complex environments 

Figure 4.4 CMC as a medium through which to carry out interpretive 
research 

Figure 4.4 summarises the exposition of CMC as the medium through 

which I carried out the fieldwork. After presenting the characteristics of 
CMC it is evident that this is a very different medium from more 

conventional ones like written and oral speech. However, there is 

evidence that more people are participating in online communities to 

communicate or look for information (Parks, 1996,2). It becomes unclear 

though, how people learn to communicate and perform activities online. 

As a result some questions arise: how do online participants understand 

each other? How do online conversations convey meaning? How are 

goals achieved and how are relationships built in online environments? 

4.2.3 Virtual Communities as Communities of Practice 

The answers to the above questions are not restricted to linguistic terms. 

There are other factors playing a role in the construction of linguistic 

forms within online environments, as for example, the personal interests 

of each individual, personal backgrounds, IT literacy, age, etc. Eckert and 
McConnell-Ginet (2000) in their paper on language, gender and power 

propose the use the concept of Communities of Practice (CofP) as a 

149 



Chapter 4: Research Methodology 

theoretical framework to analysing language and communication. I am 
using the same framework in this thesis to expand the use of language 

and communication within virtual communities. According to Eckert and 
McConnell-Ginet (2000) CofP allows the connection of different 

theoretical abstractions, such as social and linguistic (e. g. gender and 
language) that provide a wider perspective of virtual communities. 

Communities of Practice (CofP) is a concept developed by Lave and 
Wegner (1991) as part of a "Social Theory of Learning" (Holmes and 
Meyerhoff, 1999,174). A CofP is defined by membership and by the 

practice in which members are engaged (Eckert and McConnell-Ginet, 

2000,490). The purpose of its introduction to a theory of learning was to 

explore the concept of learning as a social process. Members of a CofP 

learn while they perform community activities and while they negotiate the 

way those activities are to be performed. As language is also a "social 

practice" (Bucholtz, 1999,210) we can presume that online members 

also acquire "sociolinguistic competence" (Holmes and Meyerhoff, 1999, 

174) as they participate in online activities. Ahmad and AI-Sayed (2006) 

state that special language in CofPs is consciously created to foster a 

sense of common purpose amongst a group of people and some times 

use to exclude" (Ahmad and AI-Sayed, 2006,77) non members from the 
CofPs. CofP connects language use with other social practices. In the 

case of online communities these social practices could be engaging in 

software development, helping or asking for help, solving conflicts, etc. 

Conceptualising virtual communities as CofP allows us to understand 
how online members perform activities through the use of language. The 

following characteristics of CofP give us a light in this regard: 

a. Diversity and conflict among CofP members: there are core 

members who are totally engaged with community's practices and 

peripheral members who are in the process of becoming full 

members 

150 



Chapter 4: Research Methodology 

b. Ambiguity as a condition of negotiability: members do not always 
interpret meanings in the same way. Social practices become 

"dynamic, always open-ended and generative of new meaning" 
c. Mutual engagement: quantity and quality of interaction, it is the 

"basis for the relationships that make the CofP possible" 

d. Joint Enterprise: a process of negotiating practices and goals 

e. Shared Repertoire: of resources for negotiating meaning, this 
includes linguistic resources 

Source: Adapted from Holmes and Meyerhoff (1999,174-176) and 
Wenger (2003,84) 

As CofP acknowledge differences within communities it is a useful tool to 

explain how the linguistic styles of the online members blend to create a 

style for a whole virtual community. Mutual engagement allows members 
to learn the linguistic repertoire and to participate in the negotiation of 

new ways of expressing themselves. CofPs ambiguity and diversity is 

dealt with by negotiation. The concept of joint negotiation helps to 

understand how such new ways of chatting with multiple, parallel, 

overlapping and slow conversations and a lack of visual cues, is not 

wrong but different, as it was negotiated by online members. Despite the 

lack of visual cues, senders can convey meaning in a message that can 
be inferred by the receivers. Personal and working relationships can be 

built up through virtual communities. In fact, work can be done through 

this medium. However, due to the different nature of CMC, especial 
strategies have to be designed which might be different from a strategy 

prepared for face-to-face interviews for example. Having said this, in the 

next section I will explain how this study was carried out by using CMC - 
Virtual Communities as the source of data. 

151 



Chapter 4: Research Methodology 

4.3 The Online Ethnographic Method 

Online ethnography is the selected method for this research. It is 

grounded in the interpretive paradigm and "demands first hand 

involvement in the social world chosen for study" (Marshall and Rossman, 

1989,106), i. e., virtual communities of practice. An ethnographer has to 

live or work with the people he is studying. These experiences give him a 

perspective of the phenomenon that is closer to the one that the subjects 

of study have. The researcher then, is able to interpret the phenomenon 

the way the others do (Gill and Johnson, 1991,97). The result is in-depth 

understanding of the phenomenon or verstehen (Gill and Johnson, 1991, 

133). This immersion into the field, however, does not imply that the 

researcher becomes a full member of that community. On the contrary, 

as the researcher is doing fieldwork he has an additional role and 
different intentions which distinguishes him from the rest. This is the 

"essence of the fieldwork" (Wolcott, 1995,66). 

"Ethnography has recently been adopted by the information systems field 

as a valid means of interpretive inquiry and research methodology" 
(Walsham (1995) quoted in Coakes and Coakes (2000,104)). Online 

ethnography is not a common practice in IS research yet but it is growing 
in popularity. There are many researches that use online tools (CMC) to 

communicate with subjects of study; however, not all of them can be 

catalogued as ethnography. Ethnographies require full immersion into the 

field. For example, a study by Chou (2001) about internet addiction that 

uses chat rooms to carry out interviews is not an online ethnography as 
the researchers are not involved with the subjects in their activities on the 
internet. Also Madge and O'Connor (2004) do not claim having done an 

online ethnography although they used web based questionnaires and 

online synchronous interviews to research new expectant parents. 
Research that uses online tools can also study the characteristics of 

virtual communities and not be online ethnographies. For example 
Greenfield and Subrahmanyam (2003) study online discourse 

152 



Chapter 4: Research Methodology 

(conversation) by obtaining "transcripts" from an online "chatroom". 

Researchers doing real ethnographies claim deep insight into subject's 

experiences; for instance Browne (2003) who studies online learning 

using "cyber-ethnography". Online ethnographies can be classified 

according to their purpose. Some online ethnographies study virtual 

communities. These researches focus mostly in the sociological and 
linguistic characteristics of these communities. For example Baym (1995) 

explores the development of solidarity and identity of online groups 
through the exploration of humour. Figure 4.5 summarises the 

classification of online research and locates this research within this 
framework. My thesis focuses on software development but is also 

concerned with the characteristics of virtual communities, particularly with 
their linguistic and pragmatic aspects, as they are relevant to this thesis' 

methodology. 

Research 
that uses 

online tools 

Research 
Approach Online 

Ethnography 

*Greenfield and *Chou (2001) 
Subrahmanyam (2003) *Madge and O'Connor 

(2004) 

*Browne (2003) 
My 

Research 

Research concerned with Research concerned 
the characteristics of with different topics. 
online communities. 

Research Purpose 

Figure 4.5 Classification of Online Research 

Participant observation is the "central ethnographic data collection 
technique" (Punch, 1998,188) that allows observation and participation in 

people's daily activities. The kind of participant observation chosen 
determines the level of immersion of the researcher in the field. There are 
four levels of involvement as shown in figure 4.6. The researcher can 
choose to participate in the activities or only observe as a simple 
spectator. He can also decide whether it is convenient to let the others 

153 



Chapter 4: Research Methodology 

know what his real intentions are. From this classification I find that my 

role in this study was as "participant as observer" in virtual communities. 

I participated as a member of virtual communities but my aims were not 

entirely work related or directly problem solving as theirs. My objectives 

were to look for information about software development for my research. 

The level of intrusiveness was low as the purpose of these communities 

is to discuss and share opinions and software development problems and 

because most of them are open to new participants to collaborate with 

them. 

Participant observation 

Participant as observer I Complete participant Overt research Observer as participant Complete observer 
Covert research 

Spectator 

Figure 4.6 Levels of involvement in participant observation 
Source: Gill and Johnson (1991,117) 

The role of complete participant in participant observation can be 

regarded as a reflective practitioner and not as a researcher. In fact, I 

was part of that segment when I was working as a systems analyst and 

moved across to participant as observer when I entered the PhD. 

4.3.1 Data collection techniques 

Data was collected through participant observation in online communities. 

Environments like discussion forums, chat rooms, weblogs and e-mails 

were the main settings for the fieldwork. During online participant 

observation, there were two main activities that I performed: participating 
in conversations and reviewing information. These activities correspond 

to two ethnographic techniques: ethnographic interviews and archival 

research. 

154 



Chapter 4: Research Methodology 

a. Ethnographic Interviews 

Ethnographic interviews are open-ended, in-depth interviews (Punch, 

1998,178). They are a combination of unstructured interviews and 

standard conversations. On the one hand they are like unstructured 

interviews because the researcher may have to explicitly request to hold 

the interview (Flick, 1998,93), follow an outline of questions to ask and 

guide the respondents to a certain area of interest. On the other hand 

they are like conversations because of their friendly nature (the 

researcher has been accepted in the community and is known by its 

members) and because they can occur at any time during participant 

observation, for example, when a good topic is proposed by someone. 
There are three kinds of questions that can be asked in these kinds of 

interviews (Flick, 1998,93): 

" Descriptive questions: informants can describe the tools they use 
to work or describe the activities they perform. (See an example in 

extract 6.23 in section 6.3 of chapter 6. ) 

" Structural questions: "answering them should show how 

informants organise their knowledge about the issue" (Flick, 1998, 

93). (See an example in extract 6.8 of section 6.1 of chapter 6. ) 

" Contrast questions: "provide information about the meaning 
dimensions used by informants to differentiate objects and events 
in their world" (Flick, 1998,93). (See an example in extract 5.4 of 
section 5.12 of chapter 5. ) 

Ethnographic interviews through conversations by e-mails and 

chatgroups, were important sources of information of this study. Other 

conversations in which I participated, but which I did not initiated are also 

considered under this category. Although the term interview implies that 
the researcher has the control of the interaction, the online ethnographic 
nature of my study allows the researcher to participate in other people's 
conversations and obtain valuable information from them. 

155 



Chapter 4: Research Methodology 

b. Archival research 

Another activity that was performed within the framework of online 

participant observation was searching information in the WWW. For the 

purpose of this study the sources of information were classified in two: 

logs of past conversations in a specific community in which I did not 

participate or web-sites with relevant information. Both forms of 
information had one thing in common; they were pointed to by a member 

of the virtual community as an important piece of information that was 

related to a specific conversation (an aspect of online participants that 

reveals their self-disclosure). For example, if a particular respondent 

referred to a previous conversation in the same group or if he referred to 

a technology or software development methodology published in a 

particular web-site. 

4.3.2 Justification of the Method 

In addition to those in the discussion about virtual communities, I can add 

more reasons for choosing online ethnography as the method for this 

research. First, in my experience the internet and other networks are 
familiar environments to information systems and software developers, 

especially for discussing work related tasks. Online tools, such as e-mail 

or chat rooms, are sometimes compulsory within working environments. 
Therefore as I wanted to study software development from the point of 

view of developers I needed to approach them in an environment that is 

familiar to them: the internet. Second, doing online ethnography placed 

me in the "same critical plane" (Harding, 1987,9) as the information 

systems developers I wanted to approach. I shared the same 

epistemological grounds as them (Parrish, 2002,8). My participation in 

online conversations was as theirs. I received the same information 

simultaneously and exactly as other members did I was able to review 

previous conversations and post new messages. A drawback of online 

156 



Chapter 4: Research Methodology 

ethnography though emerges from its written nature (as explained in the 

Linguistic and pragmatic characteristics of CMC section). Online 

ethnography does not provide enough tools to judge the validity or 

veracity of the online participants' statements and to obtain background 

information to capture the "social world behind the words of the actors" 

(Klein and Myers, 1999,78). For example, in online ethnography it is not 

possible to verify whether the depiction of developer's users is accurate 

or if his description of a work problem is not biased due to problems with 
his colleagues. However, in the case of the present thesis, what is 

important is the perception and point of view of the participants, so the 

drawback becomes a secondary issue. 

4.3.3 Interpreting phenomena through online media 

Doing online ethnography with an interpretive perspective involves a 

process of interpreting and understanding social phenomena through the 

texts that are generated by human interactions. Texts in this sense mean 

language, the media through which In philosophy phenomena and texts 

are studied by phenomenology and hermeneutics respectively. Both are 

the most important foundations of the interpretive paradigm (Klein and 

Myers, 1999,70; Myers, 2003). "Phenomenology is the intuition of 

essences" (Boland, 1985,193). "An essence is defined as that which is 

necessary for something to be recognized as that thing" (Hirschheim, 

1985,25). We grasp the essences of things and experiences 

subjectively. As these essences are not physical entities, they can only 
be perceived by intuitions. Through scrupulous inspections of their own 

conscious (A dictionary of philosophy, 1984,266) researchers are able to 

uncover the essence of the objects of study from their assumptions and 

prejudices. It is in this process in which meaning is provided to the 

experience (Hirschheim, 1985,25). "Phenomena bear their meaning with 
themselves" (Gadamer and Linge, 1976,131). Hence phenomenology is 

concerned with the search for meanings of experiences. We find these 

meanings by entering into a dialogue among the researchers and the 

157 



Chapter 4: Research Methodology 

subjects (Boland, 1985,195,200). This is an hermeneutic problem, "the 

problem of translation and interpretation of texts" (Boland, 1985,194) or 
"text-analogues" (Myers, 2003) in which language plays an important role. 
("An example of a text-analogue is an organization which the researcher 

comes to understand through oral or written text". (Myers, 2003). ) In fact 

qualitative, interpretive research "is generally language intense" 

(Campbell, 1997,125). Gadamer, an advocate of hermeneutics, sees 
language as the "transmitter between actual experiences, traditions, etc. 

and the process of understanding" (Hirschheim, 1985,131). 

Understanding is a "dialectic process" (Boland, 1985,195) "between the 

understanding of the text as a whole and the interpretation of its parts" 
(Myers, 2003). This is a circular relationship called the hermeneutic 

circle. 

These concepts are put together in figure 4.7 to explain the process of 
interpretation of Software Development for Complex Environments 

through the perspective of software developers. Once asked subjects in 

a virtual community consciously explore their subjective experiences and 

communicated them to the online community of practice. Additionally, I 

was able to grasp more ideas by watching the interactions of others. 
Language was the media through which experiences were communicated 

and were transmitted as texts by electronic tools. Although there was no 
face-to-face contact, other kind of expressions like feelings or facial 

expressions were also transmitted as emoticons or text-analogues. 
Being online texts the only medium through which I collected data, 
hermeneutics played an important role. During the online ethnography, I 

grasped the subjects' messages in a subjective experience. Then I 
inspected my conscious and uncovered the essence of my experience so 
as to provide my own meaning to it. This understanding was gained by 
interpreting the texts sent by the subject while we, the subjects and I, 

were immersed in a virtual community. 

158 



Chapter 4: Research Methodology 

Intuition of essences 
cep 

Cf 

ýJy 
" 

___,. 
G-- ._ 

Internet 

Language/Texts 

i0 
Phenomenology 

wgsýA 
Sf 

Hermeneutics 

Cecilia Loureiro-Koechlin Software developers 

Virtual Community 
A working environment 

Possess experience at 
developing software for 
complex environments 

Figure 4.7 Interpreting Software Development with Online Ethnography 

Boland (1985) defends the use of phenomenology and hermeneutics in 

information systems research. For Boland the understanding of the 
hermeneutic problem enables the researcher to see the importance of 

phenomenology in information systems. He argues that "the design and 

use of information systems is the text that we must try to understand. It is 
through a hermeneutic process that we can approach this task and 
develop an interpretive description of information systems" (Boland, 1985, 

194). According to Boland (1985) there are three hermeneutic tasks in 
information systems which justify the use of hermeneutics in IS research. 
The tasks are: 

159 



Chapter 4: Research Methodology 

" In using an information system, the available output is a text that 

must be read and interpreted by people other than its author. 

" In designing an information system, the designer reads the 

organisation and its intended users as a text in order to make an 
interpretation that will provide the basis for a system design. 

" In studying information systems, social scientists read the 

interaction during system design and use in order to interpret the 

significance and potential meanings they hold. 

Source: Boland (1985,196) 

These three points are relevant to this thesis. The first two represent the 

area of application of this thesis and the third one reflects the process of 

researching. In seeing IS practices and research as a hermeneutic task I 

was able to give meaning to the texts and text-analogues generated by 

the accounts of the people studied. Also within the process of 

understanding I was able to answer the research questions and generate 

knowledge by consciously interpreting my experiences in the fieldwork. 

4.3.4 Ethical Issues in Online Ethnographic research 

Researching in virtual communities brings with it some ethical issues that 

might affect the process of investigation. These issues arise from the 

relationship between the researcher and the subjects of study (Gill and 
Johnson, 1991,126). They have to be considered before, during and 

after the research is finished because they provide credibility, reliability 

and validity to the research. Brownlow and O'Dell (2002) discuss some 

ethical issues which should be addressed in any online research. For 

them there are three issues that should be considered. The first issue is 

privacy and confidentiality which raise the question about the "privacy" of 
messages posted on online forums or any web site. A researcher could 
be a outsider who interferes in the communication between the sender of 
the message and the intended receiver. In online forums, the answer 

160 



Chapter 4: Research Methodology 

relies very much on who the intended audience is. For example, in open 
public forums messages are read by anyone who can access the site. 
However in self-advocatory groups, messages are intended only to the 

members of the forums. In these cases the researcher should introduce 

himself and state his purposes at participating in the online group (a 

critical step as it would facilitate access to the online community). In the 

case of the WWW in most of the cases the audience is anyone who reads 
the content. 

The second issue concerns the ownership of the data. Is the data from 

online forums public or private property? Again this depends on who the 
intended audience is. If the researcher is dealing with private data, he 

should ask for permission to use and publish quotes from posts in online 
forums or web sites. 

The third issue is informed consent. It is the condition whereby a person 

gives consent to participate in an investigation based upon an 

understanding of the research objectives and implications. In the case of 
interviews, for example, informed consent is given by people who make a 

conscious decision to participate in them. However, if the researcher is 

doing online ethnography, online participants would not have the same 

control over consent. This is especially true in the cases of covert 

research. The principle of informed consent states that in order to get 

access to virtual communities I have to present my project and aims to 
the other online members in an open and transparent way. Norris (1993) 

states two conditions to achieve informed consent: the awareness of the 

subjects of study and their freedom to decide whether to participate or 
not. 

Due to the nature of my study, I needed access to public online 
information for most of my data collection. My initial perception was that I 

could use public information available on the internet freely. However I 

sent a message to one of the main forums where I did my fieldwork to 

confirm this. In this message I used my real name and I stated my 

161 



Chapter 4: Research Methodology 

intentions as PhD researcher within the community. I also asked for 

permission to quote some of the participations in the thesis. The whole 

thread resulting from this message is shown in appendix 5. The outcome 

of this online conversation was very positive. Most of the respondents 

agreed in that due to the public nature of that forum there was no need to 

ask for permission to quote any post and that I should carry on with my 

study. Also where I conducted online interviews via MSN messenger I 

had to explain the topic of my thesis and the purpose of those interviews. 

However, in other forums and weblogs where I collected data I did not 

reveal my identity as a PhD researcher. I participated as any other online 

member. The reason I had for doing this was to explore the differences 

between researching covertly and overtly. The results did not differ much 

as the content and quality of the conversations were concerned. 

However, there was a difference at a personal level. Where people did 

not know my real identity I felt more relaxed in participating. Where I 

revealed my identity I always felt I was being examined and subject to 

criticisms. As my subjects of study were practitioners, my position as an 

academic was not a familiar one for them (at least that is how I saw it). I 

was in a dilemma. On the one hand I needed to conduct the online 

ethnography as a PhD researcher. On the other hand I felt identified with 

the online participants who did not have the need to analyse the data and 

write a thesis but just participate in the online forums for software 

development work reasons. 

4.4 Data Analysis Methods 

Analysis is the "detailed examination of anything complex made in order 
to understand its nature or to determine its essential features" (Webster's, 

(1964) quoted in Tesch (1990,113)). In qualitative research, data about 

a certain phenomena is collected in the form of texts (e. g. written data, 

audio and video tapes). The objective of qualitative analysis therefore, is 

a thorough examination of those texts. Depending on the intentions of 
the researcher, interpretive analysis can be descriptive or theory building. 

162 



Chapter 4: Research Methodology 

In descriptive data analysis, the objective is to describe the elements and 

characteristics of a phenomenon. Theory Building data analysis goes 

one step beyond description and aims at developing abstract concepts 

that explain the nature and behaviour of the phenomenon studied, and 

that can be applied to other similar cases (Tesch, 1990,114). As the 

topic of my research is not of concern only to a single organisation, but 

something that may be applied to a variety of them, I aimed at theory 

building, specifically a theory based model of social issues in software 

development. Thus the answer to the research questions is a model 

grounded on the understanding of software developers about their work 

with complex processes. This is explained more in section 4.6. 

The data analysis strategy developed for this research is aligned with the 

methodological guidelines mentioned above. As I explained, online 

ethnography guides the data collection and phenomenology and 

hermeneutics guide the interpretation of the data. According to these 

philosophical perspectives, the data collected through online 

conversations and other sources contain information about the essences 

of the phenomena studied as seen by software developers. My job as a 

researcher was to thoroughly read the texts. Following the hermeneutic 

perspective, I segmented the texts in parts, and each part was 

considered in relationship to the whole (Tesch, 1990,94). A better 

understanding of the whole was gained when every segment was 

analysed. According to the phenomenological perspective, this is a 

subjective process. The experience of reading the texts and recalling the 

conversations repeatedly was equivalent to moving the information about 
the essence of the phenomena from the minds of the members of the 

online communities to mine. At the end I had to uncover the essence of 
the phenomenon studied by a scrupulous inspection of my own 

consciousness (A dictionary of philosophy, 1984,266). 

Unlike quantitative data analysis, there are no formal or "cookbook" 

(Hycner, 1999,143) procedures to follow for analysing qualitative data 

(Marshall and Rossman, 1989,200). There are however different 

163 



Chapter 4: Research Methodology 

approaches which give some orientation to the researcher. These 

approaches are differentiated by their perceptions about data, by how 

they organise data and by their aims (e. g., description or theory). For this 

study, I decided to combine two approaches to data analysis: 

conversation and content analysis, which I will describe and justify in the 

following sections. 

4.4.1 Conversation Analysis 

Conversation analysis (also known as discourse analysis) is interested in 

the formal procedures through which conversations are mediated and 

certain situations are produced (Flick, 1998,200). Discourse in this 

context "usually means instances of communication in the medium of 

language" (Johnstone, 2002,2). Examples are an essay, a letter, an oral 

conversation, a transcript of a conversation, and an online conversation. 

"Conversation analysis holds that talk is an orderly affair" (Parrish, 2002, 

6). Utterances in a conversation are indexed according to their order of 

mention. The interpretation of an utterance depends on the previous 

statements i. e. its context. According to conversation analysts, the 

participants create indexes interactively during their participations to 

create a coherent conversation. This means that their contribution is 

relevant to the previous ones and because of this, makes sense to the 

others. To do this participants follow rules such as turn-taking and 
adjacency pairs. 

In online research, conversation analysis is concerned with features of 
online conversations like turn-taking, adjacency pairs, visual and 
contextual cues and conversation structuring (multiple conversations, 
truncated exchanges, etc. ), which are different to the ones from face-to- 
face conversations. Conversation analysis tries to establish whether 
online conversations convey meaning as face-to-face conversations do. 
In this research, conversation analysis was used with content analysis for 

the analysis of online conversations and web sites. Conversation 

164 



Chapter 4: Research Methodology 

analysis also gives light to the strategies of big contributors for controlling 

the topics of conversations. For example, it may be that the others 

members respect and are identified with what a popular member says; or 

it may be that the others are not interested at all and therefore do not 

intervene. Summarising, conversation analysis was used in this 

research: 

" To guide the segmentation of data in content analysis. 

Conversation analysis helps to identify threads of conversations 

and turns. This is not an easy task as turns may come in many 

lines and juxtaposed by the participation of other people in 

between. The identification of threads depends on the 

identification of turns with contributions to a single topic. 

" To guide the interpretation of data in content analysis as for 

example the analysis of textual cues that might convey more 
information than their semantic meaning. The thread of 

conversations that are identified also might give context to some 

assertions and might clarify ambiguities due to indirect speech. 

4.4.2 Content Analysis 

Content analysis is "a procedure for analysing textual material, no matter 

where this material comes from" (Flick, 1998,193). It "facilitates the 

production of constructs from textual data through a systematic method of 

reduction and analysis" (Priest et at., 2002,36). Unlike conversation 

analysis content analysis does not deal with structure but with subject 

matter. Content analysis can be done in two ways (Tesch, 1990,79,80). 

The first way is by carrying out an inventory of words and by arriving at 

conclusions from the number of times a word is mentioned. The second 

way is by classifying segments of texts in categories which "should reflect 

the purposes of the research" (Holsti, 1969,95). As my aim is to interpret 

texts and build theory (and not quantify words in a statistical sense), I 

165 



Chapter 4: Research Methodology 

chose to develop categories, which are refined into abstract concepts that 

shape the final theory. 

The first stage in content analysis is to define the type of segments of 
data to be analysed. These segments are called recording units or units 

of general meaning (Hycner, 1999,145) and can be words, sentences, 

paragraphs, etc. which "express a unique and coherent meaning [... ] 

clearly differentiated from that which precedes and follows". Recording 

units can be classified in coding units and contextual units (Flick, 1998, 

193). Coding units are the "minimal part of the text which may fall under 

a category" and contextual units are the "largest element [... ] which may 
fall under a category". For the purpose of this study these were the units 

selected: 

For online conversations (i. e. chatgroups, e-mails) 

9 Recording unit: a contribution (or turn) 

9 Contextual unit: a thread of conversation (a thread of conversation 

as a discussion about one topic) 

For the analysis of other sources of information such as web sites: 

" Recording unit: themes: "a single assertion about some subject" 
(Holsti, 1969,116). 

" Contextual unit: a web-site. 

The next stage in content analysis is to classify the segments of data into 

categories and then assigning codes to categories. Miles and Huberman 

(1994) suggest three approaches to creating categories: 

" Creating a "start list" of codes prior to fieldwork. That list comes 
from the conceptual framework, list of research questions, 
hypotheses, problem areas, and key variables that the researcher 
brings into the study. 

166 



Chapter 4: Research Methodology 

"A more inductive... do not precode any datum until data collection, 

see how it functions or nests in its context, and determined how 

many varieties of it there are. 

" ... between the two approaches... creating a general accounting 

scheme for codes that is not content-specific but that points to the 

general domains in which codes will have to be inductively 

developed. 

Source: Miles and Huberman (1994,57) 

The approach for this study is the third one. Based on the research 

questions and some relevant themes from within the literature review, I 
delineated certain areas of enquiry which were the basis for starting 

conversations (see chapter 5 for a discussion about how the data 

categories were developed). The creation of the real categories though 

was done inductively from data which were relevant to the topic of the 

research. The creation of codes was an aid to retrieve categories and the 
texts belonging to them. 

The final stages in content analysis include the grouping of material 
belonging to the same categories and making sense of them as wholes. 
The researcher then describes the parts and characteristics of each 

category separately. Finally, all the material belonging to all the 

categories is collected. From this material, the researcher writes 

summaries in the form of memos containing descriptions and 
explanations of all the categories and the associations among them, as 
they explain the nature of the phenomenon studied. The final stage of 
data analysis of the present research is discussed in section 5.2 poof 
chapter 5. 

167 



Chapter 4: Research Methodology 

The overall approach 

In summary, the approach to data analysis was content analysis with help 
from conversation analysis. As the aim of this thesis is theory building 

the extraction of relevant concepts from the data is needed. In content 

analysis, these concepts are classified in categories and then 

associations between them are identified. Conversation analysis is used 
to address some problems with the form or structure of conversations and 
to aid interpretation of data. The overall approach is complemented by 

the use of a computer application NUDIST which aids the management 

of data. 

4.4.3 The role of NUD*IST in this research 

NUD*IST is a computer application that works with non-numerical, 
unstructured data. It provides data management but does not do data 

analysis. Unlike quantitative data analysis, which can be automated, 
qualitative data analysis requires the intervention of a human mind. 
Qualitative data is full of meaning which needs to be uncovered, inferred 

and interpreted within a context. This is a job that cannot (not yet) be 

performed by a machine. NUD*IST is suitable for data analysis 
techniques such as, content analysis, grounded theory, or narrative 
analysis which aim to extract themes from data. Texts can come in the 
form of field notes, transcripts, minutes or pictures. As a data 

management application, NUDIST helped me to perform the following 
tasks: 

" Group all the files containing conversations and web-sites in one 
research file project. 

" Create codes representing categories or sub-categories, and link 
those codes to segment(s) of texts. (The complete tree of data 

categories is presented in appendix 2. ) 

168 



Chapter 4: Research Methodology 

" Create annotations and link those to codes or segments in texts. 

(See an example in extract 5.6 in section 5.2.2 of chapter 5. ) 

" Search for: 

" Keywords within the documents in the project 

" Texts linked to a particular code 

" Codes linked to a particular segment of text. 

There are some risks in using software tools for data analysis. It is said 
that it "may cause distancing between researchers and data" (Beck, 

2003,232) a risk that has a big impact in qualitative analysis. However, 

this risk is minimised in NUD*IST as the creation of codes and 

annotations, and their association to segments of the texts is always done 

by the researcher. Also this risk is overtaken by the following advantages 

of using software tools: 

" Decreasing the time required to perform tedious manual tasks. 

" Enabling researchers to handle large amounts of qualitative data. 

" Enhancing the flexibility and comprehensiveness of data handling 

" Permitting more rigorous data analysis 

" Allowing for a more visible audit trial 

Source Beck (2003,232) 

Using a software package does not always save the researcher from 

some manual work. As I was using NUD*IST v4.0, a rather old version, I 

needed to adapt the online conversations to a "text" format as it does not 
accept word or html documents (see glossary for a definition of html). The 
following are the steps that were necessary to convert online data into a 
format suitable for NUD*IST v4.0: 

169 



Chapter 4: Research Methodology 

" Create Text Files with the text content of web pages. 

" Mark a header for the document (title that explains the content for 

Nudist). The lines that belong to the header have to be marked 

with asterisks * at the beginning. 

" Divide the document in sections. Each section starts with an 

asterisk at the beginning of the first line. Sections are: 

" Turns in conversations 

" Subsections or paragraphs in readings 

" When converting to text files some graphics get lost. To maintain 
the closeness to data, a description of those graphics should be 

added. This helps the researcher to not distance himself from his 
data. Graphics are: 

9 Emoticons in some forums 

9 Diagrams in readings 

4.4.4 The Organising System of Data 

Based on the discussion of the approaches for data analysis I designed a 
data organising system. The organising system of data is a strategy for 

data management and data analysis. The concept of an organising 

system is employed by Tesch (1990) to describe in detail plans for data 

segmentation, data categorisation, data coding and analysis. An 

organising system has to be guided by the methodological approach to 

the research and the data analysis technique. My organising system 

comprises six steps. In step one to five texts are analysed one after the 

other in an iterative and cumulative process, where categories are 

extracted, described and added to the developing theory. Step six is the 

final step and summarises the previous ones. 

170 



Chapter 4: Research Methodology 

Step One: The storing system 

This step is carried out immediately after data collection. It involves the 

naming and storage of texts according to their natural properties. Files 

were named according to the following criteria: 

" Date of Collection: (dd-mm-yy) 

" Sender or Source: Name of sender or name of chatgroup or name 

of web site. 

And were stored in folders whose names followed this criterion: 

9 Name of the: Chatgroup/E-mail/Web Site/(Month-Year) 

I included the files in the NUD*IST Project created for this research. As 

NUDIST also allows me to add comments to files I included brief 

descriptions of the content of each document. Figures (a) and (b) in 

Appendix 7 show screenshots of the data files stored in my computer and 

as part of the NUDIST project. 

Step Two: Segmenting Data 

This step is concerned with the identification of recording or coding units 

which are relevant to the research question and their classification within 

a system of categories. In NUD*IST this task is performed by selecting 
the segments of text and assigning codes to them. Figure (c) in Appendix 

7 shows how a segment of text was assigned to a code (i. e.: data 

category). The names for the codes and their definition are tentative at 
the beginning and are refined later. Chapter 5 explains how the process 

of category creation evolved. 

171 



Chapter 4: Research Methodology 

Step Three: Defining categories 

After coding each document, the texts belonging to each category are 
reread to look for the elements and characteristics of each category. 
Descriptions and comments on each category are written as annotations 
and linked to the codes. (See an example in extract 5.6 in section 5.2.2 of 
chapter 5). If necessary, the categories are divided in sub-categories and 
the texts re-linked to them. This process is shown in more detail in 

section 5.1 of chapter 5. NUD*IST creates categories within a tree 

structure so categories can contain several levels of meanings. Each 

subcategory therefore was assigned a code within NUD*IST. The 

complete tree of categories for this study can be seen in Appendix 2. 

Step Four: Refining Categories 

As the reading of documents advanced, the number of categories 
increased. It was then worth analysing the themes covered by each 
category and ensuring that the category was relevant to the research 
questions. In this process, some categories were found to be redundant. 
For example, if two different names (codes) for the same concept were 
assigned, these categories had to be merged and the description had to 
be adjusted to explain the material covered. Other categories were 
clustered into other themes. This means that some categories became 

subcategories of another category. Also some categories were split 
because they covered many themes. Since this was the heart of the data 
analysis this step is further explained in section 5.2 of chapter 5. 

Step Five: Developing abstract concepts 

This step corresponds to the theory building strategy where categories 
are transformed into abstract concepts. The process started by looking at 
the elements or dimensions of the themes covered by each category. 
When these were identified, they were described in more general terms, 

172 



Chapter 4: Research Methodology 

i. e. not describing them in relation to the data collected but as a concept 

on their own. This was a task of interpreting the appropriate descriptions 

and interactions of the fieldwork respondents (Halfpenny, 1979,807). 

Again this is furthered explained in section 5.2 of chapter 5. 

Step Six: Shaping of the Model 

I stopped adding new data when I got to the point of "theoretical 

saturation" (Carroll and Swatman, 2000,240). I then refined categories 

and the concepts and identified the relationships between them. Then the 

final step was to put all the material together and give it a more 

comprehensible shape. This and the previous stage are described more 
in-depth in section 4.6 of this chapter. As it is the aim of the research the 

result of the theory building process is presented in chapter 7. 

4.5 Research Aim and Research Questions 

Having presented the paradigm and method for this thesis, it is pertinent 

at this point to re-present the research aim and questions as a way to link 

the approach with the theory building strategy and contribution of this 

thesis. In the exposition of the research problem in chapter 1, I describe a 

situation in which software developers have to develop software for 

adaptable, unpredictable and multi-group settings. These kinds of 
situations are the ones that arise in decision-making and collaborative 
environments. The human and social aspects emerging from such 
environments should be considered along with the technical implications 

of IS and software development, installing data warehouse databases for 

example. Similarly the human and social aspects occurring in the 
development environment should be considered as they affect the 

perceptions of developers of the complex organisational settings and the 
development of the software. Thus the research aim is: 

173 



Chapter 4: Research Methodology 

To identify and explain how the social issues within the 
software development environment and the social aspects of 
complex organisations shape software and the process of 
software development. 
(Repeated from section 1.2 of chapter 1) 

In the light of this aim I designed the following research questions (see 

table 4.2, repeated from table 1.1 of chapter 1) each of which addresses 

human and social aspects from within a different context: 

Context Question 
Social Issues in 01: What are the human and social aspects of business 
Complex environments that make software development complex 
Business and difficult? 
Settings 
Social Issues in Q2: What are the social aspects in the development 
Development environment that allow or hinder the identification of 
Environment social issues in business settings during the 

development of software? 
Social Issues Q3: What aspects of current software development 
considered in methods address or neglect social issues in business 
Development settings? What is social software and does it have a role 
Practices to play in improving these practices? 

Table 4.2 Research Questions 

The nature of research aim and research questions presented above 
determined the overall research paradigm of this thesis, the data 

collection method and the theory generation strategy which will be 

presented in the next section. 

4.6 Theory Generation Strategy 

Carroll and Swatman (2000) state that theory building is a "poorly 

understood path of moving from broadly ill-defined research themes, 

collecting masses of data, analysing and interpreting them to build theory" 

(Carroll and Swatman, 2000,236). In this thesis theory building is part of 
the analysis stage and follows the category generation. Concepts and 

propositions emerge from categories by de-contextualising the data from 

the original online conversations and thus making them more abstract. 

174 



Chapter 4: Research Methodology 

Concepts are "abstract ideas generalized from empirical facts" (Taylor 

and Bogolan, 1984,133) and include refined, abstract versions of the 

descriptions of the categories and of the comments from the fieldwork 

data under each category. As these concepts are a higher level of 

abstraction, they may stand for other similar pieces of data (Tesch, 1990, 

138). This means that they "may be valuable in the future to explain other 

organizations and contexts" (Walsham, 1995,79). Propositions about the 

abstract concepts are "general statements grounded in the data" (Taylor 

and Bogolan, 1984,134). Propositions explain or theorize the 

relationships between concepts (Tesch, 1990,85) and are the 

foundations for theory building. 

The set of abstract concepts and propositions comprise a theory. Theory 

is a "coherent description or explanation of observed or experienced 

phenomena" (Gioia and Pitre, 1990,587). The phenomenon is, in this 

case, the development of software for complex business settings. By 

adopting an interpretive perspective, that defends that social phenomena 

can only be understood from the point of view of the people involved in 

the development activities (Burrell and Morgan, 1979,5), the software 
development phenomena have been observed in this thesis through the 

views of software developers in virtual communities. 

The process of creating concepts and propositions and thus a theory is 

called generalization. The notion of generalization in the interpretive 

perspective is different from the one understood by quantitative 
researchers. Generalization, as perceived by the positivist paradigm, 
relies on the representativeness of the sample with regard to a particular 
population. However, the validity of generalization in the interpretive 

paradigm depends on "the plausibility and cogency of the logical 

reasoning used in describing the results from the cases and drawing the 

conclusions from them" (Walsham, 1993,15). Although my thesis is 
documenting a limited number of cases, i. e. the views of a number of 
software developers about software development, as they have 

175 



Chapter 4: Research Methodology 

experienced it, the interpretive paradigm (as mentioned above) provides 

a philosophical grounding for generalization and abstraction. 

Having developed a set of concepts and propositions from the online data 

in the data analysis stage, the next step is to present these concepts and 

propositions in a comprehensible shape. This final shape would represent 
the generalisation of the findings from the online communities. According 

to Walsham (1995) there are four ways in which one can generalize 
interpretive, qualitative data: 

" The development of concepts 

" The generation of theory (like the model of social issues in 

software development developed in this thesis, (my addition)) 

" The drawing of specific implications 

" The contribution of rich insight into developers' work 

Source: Walsham (1995,79-80) 

Following the aim and research questions of this thesis, the objective of 
the process of data analysis and theory building was a theory based 

model which showed how developers perceive and are affected by the 
human and social issues that surround them when they develop software 
for complex, adaptive, unpredictable and multi-group settings. As the 

concern of this thesis can be applied in many organisational settings the 
theory building approach was the more suitable to generalise the findings. 
The process of creation of this model is shown in chapters 5 to 7 of this 
thesis. Also an analysis of the theoretical and methodological 
contributions of this thesis (the model and the process of its creation) is 

provided in section 8.2 of chapter 8. This analysis follows Phillips and 
Pugh (2000) ideas about original contributions to knowledge. 

176 



Chapter 4: Research Methodology 

4.7 Chapter Summary 

In this chapter I have described and justified the selection of the research 

approach. The research approach is qualitative and interpretive chosen 
because it provides access to insights to developers' perceptions about 
the human and social issues within the software development 

environment. The method for this research is online ethnography of 

virtual communities of software developers, and the methods for data 

analysis are conversation and content analysis. The aim of the data 

analysis stage is theory building valid because the phenomena studied 

could represent more than one situation. Theory building is part of the 

process of analysis of the data collected from these online communities. 
Theory building is performed iteratively until the representation of the 

phenomenon, i. e., the model, is tested and refined (Gioia and Pitre, 1990, 

587). Abstract concepts are generated from the categories generated in 

step 4 of the organising system of data and connect to the research aim 

and research questions. To do this, I chose a theory building strategy 
that corresponds to the research approach and the nature of the 

phenomena studied (Gioia and Pitre, 1990,587). This strategy is 

inductive in nature. Having collected fieldwork data, I let the model 

emerge from the data with few a priori ideas. The theory based model 

emerged in the form of general propositions and relationships describing 

and explaining my view of the interpretations (Walsham, 1995,78) of 
software developers about the nature of the process of software 
development. Because the subjective nature of interpretive research, the 
fieldwork data show, not the phenomenon itself, but the interpretations of 
the phenomenon by software developer or as Lee (1991) puts it, the 

phenomenon is shown "in terms of what it means to the observed people" 
(Lee, 1991,347). Similarly, the subjective nature of the analysis and 
theory building processes generates concepts based on my 
interpretations of the interpretations of the subjects of study. 

177 



Chapter 4: Research Methodology 

Next, in part III of the thesis, I will discus the process and results of data 

collection, data analysis and theory building which follow the strategy 

explained in this chapter. Figure 4.8 explains the purposes and 

relationships between these three chapters. Chapter 5 discusses the 

practicalities of the process of data management during the online 

ethnography. It also explains the process of data categorisation. Chapter 

6 contains a description and discussion of the findings organised by 

categories. ' Finally chapter 7 shows the moulding of those categories into 

a theory based model. 

Chapter 5 
Practicalities of the fieldwork 

Categorisation 

Chapter 6 Chapter 7 
Discussion of Shaping of Findings 

Research Findings 

Categories Theory Based Model 

Figure 4.8 Presentation of Findings 

178 



Part III 

PART III: FINDINGS AND CONCLUSIONS 

Part III of this thesis focuses on describing and explaining the fieldwork, 
data analysis and theory generation as described and justified in part II. It 
presents the results of this thesis in the form of a descriptive, theory 
based model, which complements Orlikowski's model of enactment of 
technologies-in-practice. It finally presents the conclusions of this thesis. 

179 



Chapter 5: Description of the Fieldwork 

Chapter 5: Description of the Fieldwork 

In this chapter I discuss the process of data collection and analysis and 
focus on the practicalities of the online ethnography. As in qualitative 

research "there are no clearly agreed rules" (Spencer et al., 2003,200) 

the researcher needs to design her own method for collecting data that 

provides reliability and validity to the research. Therefore here I explain 
how I designed and carried out the fieldwork for this study. I have divided 

this chapter in two sections; each one corresponding to one of the two 

interrelated aspects I found in online ethnography: participation in online 

communities and analysis of data. I conceive online ethnography as one 

endeavour consisting of two parallel activities which follow the 

phenomenological and hermeneutical approaches to interpretive 

research. The first activity is my participation in the virtual communities of 

software developers, my interactions with online members and collecting 
data relevant to the study. These data are the thoughts or interpretations 

of software developers about complex business situations and software 
development. I concentrate on the adaptive nature of online ethnography 
(Hine, 2000,65), that is, the way I decided to do the ethnography on a 
daily basis, the kind of topics in vogue, how I decided on the relevancy of 
these topics, what additional reading I had to do to catch up with current 
topics, etc. Thus this section 5.1 is called the management of the online 

ethnography. 

The second activity is analysing the data and developing concepts and 

propositions that respond to the aims of the research. That is, 

interpreting the phenomenon: software development for complex 
business situations in terms of the meanings developers bring to it 

(Denzin and Lincoln, 1998,3). As the data analysis progressed the 

online interactions became more focused. Having started with an open- 

ended perspective, themes emerging from the data helped me to refine 
the research questions and to concentrate on the online interactions that 

were more relevant to them. I explain in section 5.2 how I developed 

180 



Chapter 5: Description of the Fieldwork 

categories and descriptions out of these themes from the data collected. 
These two activities are mutually dependant as progress in the analysis 

of data guides further online interactions and data collection; and the 

continuous interactions in the field provide more material for analysis and 

give the researcher a sense of attachment not only to the virtual field but 

to the topics being discussed. The cycle ended when I reached 
theoretical saturation, that is, when new additions of data contributed little 

or nothing to the understanding of the topic (Carroll and Swatman, 2000, 
240). 

5.1 Management of the Online Ethnography 

The online ethnography was a long endeavour with a variety of activities 
needing frequent management. Depending on the particularities of the 
day-to-day experiences - the kind and number of interactions happening 

online -I had to arrange my activities for the day or week ahead. Some 
days interactions were numerous 7 and interesting and I could hardly 

read all the conversations and participate in them. Some other days there 

were very few of them if not any. In this section I give an account of the 

adaptive routine I undertook at different stages of the fieldwork. In the 

early stages I had a more exploratory routine, in which I was open to any 
topic that could rise in a forum. In later stages my routine depended on 
the analysis and themes arising from data. 

5.1.1 Ethnography at the early stages. 

I started the ethnography with data collection concentrated on four online 
forums: Joel on Software (JoS), Codeguru, VB Forums and Microsoft 
discussion groups (see chapter 4 for a discussion of virtual communities 
and selection criteria). In these 4 forums I found a wide variety of themes 

or "recurring ideas" (Marshall and Rossman, 1989,116) being discussed, 

from the very technical ones (e. g. programming code) to the social ones, 

181 



Chapter 5: Description of the Fieldwork 

and from the software development related ones to the leisure ones. I 

read hundreds of online documents; however, I only collected the 

relevant ones for this research, as I will explain in this chapter. The actual 
volume of data collected is discussed in section 5.2.1. From this richness 
of data, I began to organise the themes and to relate them to the 

characteristics of the problem situation that motivated this research. This 
is a combined approach suggested by Miles and Huberman (1994,57). 

Themes are created inductively from the data but the process is informed 
by the description of the problem situation presented in the introduction of 
this thesis. The result of this was a map which helped me to build a 
picture of the kind of material I had in hand as well as the kind of topics I 

would find being discussed elsewhere on the web. In this way I had an 
initial criteria to assess the relevance of the conversations and did not 
lose track of the aim of this research: 

to identify and explain how the social issues within the 
software development environment and the social aspects of 
complex organisations shape software and the process of 
software development. 

Later I used this map to develop the categories for the analysis phase 
(discussed in section 5.2 of this chapter) as it provided a natural flow from 
the initial stages of data collection to the development of ideas to answer 
the research questions. The map of themes is shown in figure 5.1. (This 

map acted as the original tree of categories in NUD*IST). 

182 



Chapter 5: Description of the Fieldwork 

Development II Developer responsibilities: 
Working Archhects, designers, PM. 

environment programmers, Coders 

Development 14 
_ý 00M 

Distituted Systems For III-defined, Complex Environments Ague Methodologies 

For Mu18-organisations Gangarena 
Centralized Systems 

evoivin Abstraction 
; ontain ng Decision Making Layers 
Workflow 

of information 

Databases I 

Backward 

Improved I E. mall. Chat Room, 
Commun cation 

ý 
Instant Messealm 

Figure 5.1 Map of Themes from Online Forums at early stages of the 
fieldwork 

In the centre of the map, the most important characteristics of the Model 

of Complex Organisations (see figure 1.2 in chapter 1), as presented in 

the introduction of this thesis, are connected to the themes that emerged 
from the online conversations. To understand the data it may be helpful 

to give a brief examination of these initial themes as they were found: 

Software Development: topics discussed in this area were about 
how developers feel at work, how they deal with project managers 
and colleagues, how they improve their IT skills, what they think 

about themselves and what they think are their responsibilities 
(designing, documenting, coding, etc. ) 

Ill-defined, complex environments: discussions here flowed 
around development methodologies which support better 
specifications, better coding, and hence better products. "Agile 

methodologies" was a burning topic in this area. Such 
methodologies are designed for rapid, incremental development 
which can adapt rapidly to changes. 

Multi-organisations: As this thesis concerns multiple locations for 
information systems (multi-organisation, multi-group) I also 

183 



Chapter 5: Description of the Fieldwork 

considered discussions about centralised and distributed systems. 
My preliminary thought was that distributed systems resemble 

multi-participant processes and can propagate information and 

support functionalities to the edges of the network, where the 

users reside. Distributed systems have their functions dispersed 

across many servers and are not dependent on one source. 

Centralised systems concentrate functions in one location. For 

example applications and databases are stored in one server. 

Adaptation to changes: discussions in this area flow around two 

areas: software maintenance and user customizable software. 

Most developers think of adaptation and evolution of software as 

consecutive updates of software or software maintenance. There 

was little interest in allowing users to customize their software to fit 

changes, perhaps because developers are more interested in 

programming activities (either because it they think it is the core of 
their work). Developers compare the programming languages with 

high and low levels of abstraction in terms of how difficult it is to 

develop and maintain software. Level of abstraction is the extent to 

which a programming language provides pre-coded low-level 

functionalities allowing developers to focus on high level functional 

specifications. The higher the level of abstraction the more pre- 
built functionality (code, components) that is available to the 

developer. However at lower levels of abstraction developers can 

customise more the code to fit clients' needs. 

Workflow and decision making: themes focused on the 

characteristics and use of web technologies, such as chat rooms, 
instant messaging, and some Microsoft products like SharePoint, 
Exchange and Outlook for collaboration. There was very little 

about design techniques for these kinds of software. 

Creation, storage and exploitation of information: very little. 

Themes are knowledge management tools and relational 

184 



Chapter 5: Description of the Fieldwork 

databases. In both cases attention is paid to the technical issues 

such as platform compatibility and performance. 

This map of themes grew and gained consistency when my interactions 

in online forums led me to additional communications. These were 

matenals that the online members conversed about but which were not 

published in the forums but elsewhere in the web or books. Developers 

recommended other forums, weblogs, or web sites that they found 

interesting and that were related to the topic of conversation. Some 

others would recommend books that they liked at university or that they 

found useful for their jobs. This horizontal integration inherent in online 

ethnography did help me to make more sense of the field. Below there 

are two examples of additional material being recommended to me. 
Extract of data 5.1 (extracts are presented in their original form, spelling 

and grammatical constructions have not been altered. ) belongs to a 

conversation in JoS in which I asked the online members about hiring 

consultants to develop customised development methodologies. One 

member sent me a link to an entry in a weblog with a funny story about a 
developer having to design an optical scanning system for a clerk who 

needed to file a dozen pages every month or two3 
. 

This was a sarcastic 

way of saying that developers' skills are wasted when organisations do 

not know what they have and what they need. 

Extract 5.1 
Thread title: Five Worlds Oab: 18u October 2004 Source: JoS 

º. ta, I r: far*mmerc ? wood blo:; spo! corn 'D He has some interesting 
s':: ' es to teel a'-c�! 1,1 e rea! . orla Some cf his stories eerily mirror some of my 
experiences, 

Peter 

'Peter. thanks for the link- that story about the optical scanning system is 
fantastic. it reminded me some of my own experiences. ' 

Cecilia Loureiro 

Peter recommended the whole weblog to me as it contained interesting stones. 
However. at the time of the conversation. I read only the story that was on the top of the 
web site and made reference to It when I thanked him for the link. The link in the extract 
Is a link to the weblog s amain page which always shows the last entry and to which I 
care back some times to read other stones As a different home page may be shown at 
the time of writing this theses I am providing here the permanent link to that entry 
!i thdr! wood_bioaspot com 2004 10ýcaptain-ahab-xvii- -pot-assignment html 

185 



Chapter 5: Description of the Fieldwork 

The second text extract is from a thread in Microsoft discussion groups in 

which I asked members about their experiences at dealing with users and 

management One of the members recommended some books to me, 

one of which, he thought, provides a useful methodology to gather 

requirements and hence deal with users. The original text is in Spanish 

(left) and I have translated it into English (right). 

Extract 5.2 
Thread We: Factores Date: 9th Source: Microsoft 
humanos quo atectan nuestro Feb ruary 2005 discussion groups 
trabajo (Human factors that (in Spanish) 
affect our work) 

Perhaps yc, rla. e 
:e re,. ou enio que leas EL through UP. I don t know, I 

PROCESO UNIFICADO DE recommend you to read THE 
DESARROLLO DE SOFTWARE de UNIFIED PROCESS OF SOFTWARE 
Jacobson. Booth y Rumbauch DEVELOPMENT' by Booch and 
ISBN84-7829-036-2. Rumbauch. ISBN84-7829-036-2 
Es un kbro pars leer lentamente, it is a book to read slowly, rereading 
repasando y reconfkmando b leido. and confirming all what you've read. (It 
(Es un poco tedioso. ) Te recomiendo is a bit tedious. ) I recommend you 
at caprtulo 6 Captura de requisdos: de chapter 6. Capturing requisites: from 
to vision a los reqursdos ' the vision to the requisites. ' 

Daniel A. Calvin Daniel A. Calvin 
MCP MCP 

'Daniel, muchas gracias por las 'Daniel, thanks very much for the 
referenaas. No. no he leido los libros. references. No. I have not read the 
Pero si son como dices creo que books. But, if they are as you say I 
tendril que echarles una mwadita. ; )' think I will have a look at them ; )' 

5.1.2 Ethnography at the later stages 

After five months of concentration on data gathering I began analysis 

alongside further data collection. I entered my data into NUDIST v4.0 

and started the segmentation of texts and generation of categories. Both 

segmentation of texts and category segmentation were informed by 

conversation and content analysis. Segments of data correspond to 

recording units, discussed in section 4.4.2 of chapter 4. Record units 

were identified by using both data analysis approaches. For instance, a 

186 



Chapter 5: Description of the Fieldwork 

segment of data from an online conversation is a turn or contribution in 

that conversation whose content describes a theme. However, according 

to conversation analysis a turn may not make sense if the context of the 

conversation is not given, for example by a previous turn. In extract 5.2, 

there are two turns belonging to the same conversation. The second turn 

(my answer) would not make sense if I have not provided the first 

segment. 

As mentioned in section 5.1.1, the map of themes was used as a starting 

point. However the final result is different from it (see findings in chapter 

6). Data collection ended when I reached data saturation, that is, when 
data analysis told me that no new themes were adding to the 

understanding of the topic. My strategy during the later stages of data 

collection was to be more selective with topics of conversation and to 

search for probe topics or to ask probe questions (Goode and Hatt, 1952, 

201) about themes I was not sure about. As categories were developing 

sometimes I needed more material to better understand and describe 

them. Probe questions were a good tool to establish the relevance of 

some categories to the concern of software development for complex 

organisations and to increase the validity of this study's data (see section 
4.1 of chapter 4 for a discussion of validity of data). By using probe 

questions, I discarded some themes and confirmed others. In NUD*IST 

this was done by removing the node (i. e., category) from the list of nodes 
in the coding facility (see a snapshot in figure (c) of appendix 7). The 

resulting categories and descriptions represented a consensus view 
(among the online participants) on human and social aspects of software 
development. 

The following example shows how I discarded the themes "centralised 

and distributed systems" which were in the initial map of themes. The 

extract of data shows part of a conversation that I started in which I 

compared distributed technologies with adaptive, multi-organisation 

configurations and asked for feedback. This online conversation took part 

at the beginning of the fieldwork but the decision for withdrawing 

187 



Chapter 5: Description of the Fieldwork 

"distributed systems" as a theme was made months later during analysis. 
While the conversation was longer, I am showing only the comments 

made by "bah humbug" and "Just me (Sir to you)" as they summarise 

most of the replies. Although at the beginning I believed that distributed 

technologies as opposed to centralised ones could resemble multi- 

participant processes, this turned out not to be necessarily true. 

"Distributed systems", as used by software developers, is a very technical 

term. It does not represent or emulate multi-organisation business 

processes but the processing of objects in different computers. The 

reason for choosing a distributed technology is not only the physical 
distribution of localities but the availability of technical resources and 

architecture (as in web servers). Even centralised technology solutions 

are often preferred for multi-group kinds of organisational configurations. 
So my focus on people being distributed was not represented by 

processing being distributed. The assertion made by bah humbug in 

extract 5.2: "Just because you _can_ 
do something (or might be able to) 

doesn't mean you 
_should_" 

is the one which made me realise that 

technology is not and should not mimic human systems (i. e. 

organisations) if there are other simpler, cheaper alternatives. The words 
"can" and "should" were emphasised by the poster (by using the 

symbol) making it a stronger argument (conversation analysis). 

188 



Chapter 5: Description of the Fieldwork 

Extract 5.3 

"... 1 am thinking about a software framework of decision components that can 
be chosen on-the-fly by users as they are dealing with a situation. There 
would be components for communication, to access data, documents, models, 
to do calculations, to build reports, etc.... 

I am thinking more about a federation of pc's connected by the system, each of 
them containing a component of the decision system.... 

Is that possible? Are distributed technologies going in that direction?... " 
Cecilia Loureiro 

"I'm stuck with the question of 'why bother? ' I can't see that this would actually 
do anything useful in a significantly better fashion than existing systems, and 
would add lots of bizarre complexities. 

Just because you 
_can_ 

do something (or might be able to) doesn't mean you 

_should_. 
The PC itself was an example of this: 'let's break away from 

centralised management and control and put anarchy on the desktops'. Now 
there is a definite trend back to centralised management and control. " 

bah humbug 

"Now the need for distribution can be a non-technical requirement. There might 
be operational restrictions, aquisition-control issues, policies, autonomy ... many 
things that force one into a "distributed" scenario where technically a central 
sytem would suffice. There can also be technical factors: offline scenarios, 
unique infrastructure demands, scalability ... that would necessitate distribution. 
But distribution is often a costly thing. You add a whole extra layer of complexity 
to your system that does not come cheap. Simply guessing "it might emulate 
multi-organisations better" does not in itself seem to support a good ROI for 
this. " 

Just me (Sir to you) 

The next example shows how I used probe questions to confirm the 

relevancy of the developers and developers' responsibilities themes. The 

text extract shows my question and some of the responses I got when I 

asked the other developers to define themselves. These replies showed 

me that there are different levels of responsibilities (coders, analysts, 

architects, etc. ) for developers, and that in some instances only analysts 

would know the target organisations and information systems for which 
they are designing the software. Programmers or coders will only 
dedicate their time to code, and will be unaware of the particular 

complexities happening in organisations. Sometimes analysts would not 
talk to coders or there will not be analysts at all and only coders will be in 

charge of software design and programming. This and similar 

conversations led me to think that having situations in which no 

consistent analysis and design of software in line with organisational 

189 



Chapter 5: Description of the Fieldwork 

needs is done may be a cause for faulty software in the industry. 

Additionally, these kinds of conversations also showed me that there are 

other social issues within the development environment that may have 

some impact on how software development is carried out. 

Extract 5.4 

ueveiupur r 
"Hi, 
I am a bit confused about what a developer does and doesn't do. I've heard of 
analysis of requirements, technical spec. and programming. I've also heard 
about types of applications as for example, ERP, Business Intelligence, 
intranets, operating systems, finally I've heard about project managers, 
analysts, programmers, etc.... what is a software developer? What should a 
developer know to develop software?... " 

Cecilia Loureiro 

"I've been in the computer programming field for 25 years. I started as just a 
coder. I took direction from the CTO of the company, on what his vision was and 
then delivered just that. 
After a few years, the company grew and I became the "R &D Group Leader". 
That meant I had 6 programmers working for me and I pretty much was an 
"analyst" - but giving me that title probably would have rubbed the CTO wrong... 
Beside the 6 programmers I even had a librarian - very helpful in the group - 
kept our code in libraries - did our backups. 
I've been on my own now for 15+ years. That means I'm both the analyst and 
the coder. I have some high school kids working for me - they code for me as 
well - since we have so much code to deliver. 
I've worked on larges teams at insurance companies where the structure was 
very strict. 
Analysts met to decide what the coders were going to do. 
Coders did some work. 
Coders met weekly to "peer review" each others work 
After a routine/program was deamed to be done, it was "peer reviewed" for 
release and then delivered to the "production team" 
We never even met the "production team" - they were on a different floor. 
If they found a problem - you were toast, and the whole cycle started again. 
But that paid $150/hr - so I would jump through hoops for that. " 

Szlamany 

"Yes! Exactly. 
Once you get down to the developer level. You are pretty much working either 
in a mop closet or stinky horse stable. 
They feed you every other day and you must meet a daily coding quota. Mine is 
600 lines of code a day. Or else I am trampled by the owners stallion in the next 
stall. 
Occasionally, they let us outside for some exercise, but it ususally consists of 
running in circles with a rope tied to around our throats. 
It isn't a bad existence. It could be worse. I could be a database 
adminstrator!.... arrggghhhh... I get chills just thinking about their job... It's just too 
gruesome to discuss. 
Anyway, my master... err... boss is coming and I must leave, before he whips me 
again... " 

Memnoch1207 

190 



Chapter 5: Description of the Fieldwork 

5.2 Data Analysis Process 

In this section I will describe the process I followed to analyse the data 

from the online forums. My approach to data analysis was exploratory. I 

thoroughly examined the texts from online conversations, weblogs and 

web sites. I looked for recurring themes that could lead me to the 

generation of insights into the interpretations of software developers on 

software development for complex settings. The results from this analysis 

are presented in section 5.2. Data analysis throughout during all the 

ethnographic intervention either as a background process (at the early 

stages) or as a main activity (at the later stages). However, for 

explanatory purposes I am defining the data analysis stage as starting 
with data coding in NUD*IST and ending with the development of 
concepts and propositions for each category and research question. 
Further developments of these concepts and propositions into a 
descriptive and explanatory theory are presented in chapter 6. Following 

the strategy defined in chapter 4, the process of analysis was carried out 
in an iterative and incremental fashion (see figure 5.2). Texts were 

examined repeatedly in the search for themes. The context of analysis 

changed with every interaction as the focus switched from the online 
conversations to the research questions. 

Category generation Refinement of Categories 
4 
-7 Text segments 

grouped by categories 
I 

Refine definitions of 
Categories 

Write memos with 
summaries and 

comments about text 
under each category 

Generation of Concepts 
and Propositions 

Online documents 

Text segmentation 
and codin 

Categories 

Figure 5.2 Data Analysis Process 

Category definitions 
and Memos 

a memo entre 
concepts and 

191 



Chapter 5: Description of the Fieldwork 

5.2.1 Generation of categories 

I entered 107 online documents into NUD*IST, the shortest one being an 
online conversation with two contributions (1 question and 1 answer) and 
the longest one a conversation with 60 contributions. The data collected 
is only a small fraction of the several hundreds of online conversations I 

read during my fieldwork. The number of people involved in those 

conversations is difficult to calculate as sometimes some online 
participants can contribute more than one time in one conversation. Also 

participants in virtual communities can use different names every time 

they contribute with a post (see section 4.2.2 of chapter 2 for a discussion 

of linguistic and pragmatic issues including the anonymity of the online 
media). However, setting this aside, I would say that 500 is a good 
estimate of the number of people who participated in the online 
conversations I collected in this study. 

From the 107 documents, I "isolated certain themes and expressions" 
(Miles and Huberman, 1994,6) that were relevant to the research 

purpose (Tesch, 1990,79). Segments of texts corresponding to these 
themes were coded in NUD*IST under 72 categories (see category tree 
in appendix 2). Categorisation in NUD*IST was done by selecting one 
document at a time from the Document Explorer facility (see a screenshot 
of the Document Explorer in figure (b) in Appendix 7). Once selected, I 

opened the document in the Document Browser (see a screenshot of the 
Document Browser in figure (c) in Appendix 7) and read their content. 
Whenever I found a segment of text which was relevant to the concern of 
this thesis, (see recording unit in section 4.4.2 of chapter 4), I selected 
that segment and accessed the coding facility (as shown in figure (c) in 
Appendix 7). If the category already existed I selected it from the list of 
nodes (i. e., categories) provided. If the category was not in the list, 
NUD*IST allowed me to create a new one from the same coding facility. 

192 



Chapter 5: Description of the Fieldwork 

Some segments were coded in more than one category. The next extract 
of data shows two segments of text taken from one online conversation 
about documentation. Both segments were coded at two categories: [SW- 
development/ Process/ Communication] and [SW-development/ Stages/ 
Documentation]. The online participant expresses his opinion about oral 

or verbal documentation. In the context of this conversation, oral or verbal 
documentation mean oral or verbal communication (conversation analysis 
states that in order to understand a term or an utterance within a 
conversation the context of the whole conversation must be considered). 
According to him oral documentation does not guarantee good 
communication especially in the long term when maintenance work needs 
to be done, probably by a developer who was not in the original team. By 

connecting this matter to the concern of complex organisations I find that 
documentation of processes and information, and communication 
between developers and users are relevant themes to the aim of the 

research. They involve the establishment of a relationship between 
developers and users, the understanding and modelling of business 

processes and the transmission of that knowledge to other members of 
the development team. 

Extract 5.5 
reä%ititle C"3rä1'b©`menýaon""-i"°ot"7,, -Datý"ý""'e 1Qtuýný"' ou e: e 20Öý ýý Sc 

wnrtb tbe_P_iARý. rJt'S.! ßs1. t}.. ýgi-ý..,.. ýýtý;,... _. ý.. ý. '.. Lý 
' "Forgive me for questioning a holy proclamation, but isn't it rather well 
. established that verbal communication is often incomplete and ambiguous, and 
that human memory Is Inaccurate and prone to confabulation? The plethora of 
psychological research in such areas as false memories, the veracity of 
eyewitness testimony, "and the effect of predisposition on the interpretation of, sensory data has surely given us a big hint that our perceptual and 
communicative capabilities are erratic and dubitable? 

So where comes the apparently wide spread acceptance of (or at least, lack of 
challenge to ) such outrageous Agile sophistry? For my part, it is'difficult 
ignore the manifest problems associated with a 'development team's reliance 
upon face-to-face communication. Over the last 3 or 4 months, as the inheritor "'of 

a code base whose authors preferred the "verbal tradition" style of ; 
documentation, ̀ I suffer daily from the flow-on effects of this laziness. °ý Let me 
illustrate by providing you with a summary [the summary Is in appendix 1] of ä ''y , typical day for me in recent months, so you too can marvel at the feel-good, "" 
richness and super-duper efficiency of face to face communication amongst 
software developers. " 

ý.... , _:,.. ý. ý <..., e.. _. ... .. a. ýý.. «ýý: Mr Ed 

193 



Chapter 5: Description of the Fieldwork 

As the example above shows, categories were defined in the context of 

the online conversations from which the segments were extracted. Every 

new addition of texts to the system of categories involved a revision of the 

definition of current categories or the creation of a new one. Categories 

were arranged in branches some of which had more sub-levels of 

branches. This tree of categories went through several changes during 

the analysis process, starting from the map of themes (see figure 5.1) to 

the final version which is shown and discussed in chapter 6. The top level 

categories and their definitions are shown below: 

1. Software Development: creating and maintaining software 

applications. (This research concentrates on the software 

applications that serve information systems. ) 

2. Software Engineering: the application of a systematic, disciplined, 

quantifiable approach to the development of software. 
3. Software: Computer program designed to support people at 

organisations. 
4. Developers: anyone involved in any of the stages of software 

development (architect, business and system analyst, coder, etc. ) 

5. Methodologies: set of practices that are carried out to produce 
software. 

6. Business Issues: aspects of organisations that software 
developers should learn about before or during software 
development. 

7. Social Software: software that allows or encourages social 
interactions. 

8. Virtual communities: online places where software developers 

share working experiences. 

Note: the data from the category [Virtual Communities] are not part of the 

analysis results. I organised this category to help me make sense of the 

nature of the virtual communities that I was exploring. I also use this data 
in chapter 4 to describe virtual communities of software developers. 

194 



Chapter 5: Description of the Fieldwork 

5.2.2 Refinement of categories 

The outcome of the previous stage was a set of categories with 
provisional definitions. The definitions were created in line with the 

contexts of the online conversations from which the segments were 

extracted. During the refinement of categories, the context of analysis 

changed from the online documents to the categories themselves. 
Therefore, from here, content analysis began to play a relatively major 
role over conversation analysis. I read again all coded texts grouped by 

categories and refined the definition of those categories at a more 
abstract level. NUD*IST provides a Node Browser which shows all the 

segments of text coded under a category. I concentrated on the meaning 
of the categories and their relationship to the concern of this thesis, 

regardless of the original context of the online documents. Additionally, I 

summarised the category texts and commented on the implications to the 

research in the Memo facility of NUD*IST. (In NUD*IST both, documents 

and nodes can have memos attached, however I found writing memos for 

nodes more useful to refine categories than commenting on the 
documents. ) Below I present an example of this. The text extract contains 
the definition of the category [Software Development/ Process/ 
Improvement], one of the ten comments from its memo and two of the 

segments of text that correspond to that entry. 

195 



Chapter 5: Description of the Fieldwork 

Extract 5.6 
Category [Software Development/Process/Improvement] 
Definition: Tips on how to improve practices in software development. 
Comment from memo: Improvements in software development practices, like 
with new methodologies, need to consider the actual practices to make change 
effective. 

Thread title: UI Prototyping vs. Use Date: 3rd Sept 2004 Source: JoS 
Case Mode 
"But to address your situation... it sounds like you're in a situation where things 
are done a certain way "because. " Because they always have been done that 
way; because someone decided they would be done that way; because nobody 
knows any other way; because they read a book by Booch and went nuts. The 
only thing they're NOT doing is thinking about why they're doing what they're 
doing. 

What can be done? It depends on your position. If you're well respected in that 
group and it's not highly political, you can get things done by advocating them. 
In a political organization or one in which you're less senior or have less clout, 
the more you suggest change, the more frustrated you'll get! " 

Joel Spolsky 

Thread title: What design Date: 2nd March 2004 Source: JoS 
methodology(TM) do you use? 
"This being said, the first thing you should do is understand your current process 
(yes, even if informal and undocumented you 

_are_ 
following a process)! Once 

you know how you are currently doing your business (probably software 
development), you can start looking at how the practices described in the RUP 
can help improve your process. 
Too many people go the other way and try to simply look at RUP and define 
what their process 

_should_ 
be. This is a recipe for disaster. It is difficult to get 

somewhere when you do not know where you are! " 
Selrahc 

The category [Software Development/Process/Improvement] addresses 
the actual issues that concern developers and the measures they take to 
deal with them. I defined this category as "tips" because in my opinion 
this is the most common way of giving advice online. One developer will 
give informal advices to the others mainly in the form of: "this worked for 

me in these circumstances. " In the case of the example above (extract 
5.6) as I see it, both developers have learned from bad experiences with 
people who wanted to change their practices. The problem according to 
them was that before attempting to change or improve their practices 
developers should be able to articulate how and why things are being 
done in the present. Only in this way they would know the problems that 

need to be addressed and how the new practices may cope with them. 
(This is an explicit example that shows how the present research is a 
result of my interpretations of software developers' interpretations). 

196 



Chapter 5: Description of the Fieldwork 

5.2.3 Generation of concepts and propositions 

Having defined and written memos for all the categories I went through all 

of them again to compare them with the three research questions. The 

purpose of this cycle was to refine the comments into more abstract and 

generalisable statements that could be used to build a model of software 
development (shown in chapter 7). I classified the comments in the 

memos by the research question(s) they were related to. This part of the 

analysis process is not supported by NUDIST 4, (memos cannot be 

coded or classified) and I had to do it manually. I went through all the 

memos in NUD*IST one by one and wrote next to each comment the 

research question numbers to which the comment was related. Then I 

copied and pasted the memos in a word document and organised them 

by research question. I reviewed all the comments, this time in the 

context of the research questions and research aim. As the comments 

originated from the online conversations, the purpose of this stage was to 

accommodate and focus the comments on the research aim. This made 
them less specific to the particular contexts of the online conversations 

and more applicable to explain more situations. The outcome of this 

stage was a more refined set of comments under each research question 

containing "propositions" about "concepts" related to software 
development for complex situations. The propositions are "general 

statements grounded in the data" (Taylor and Bogolan, 1984,134). They 

explain or theorize the relationships between concepts (Tesch, 1990,85) 

and are the foundations for theory building. Concepts are "abstract ideas 

generalized from empirical facts" (Taylor and Bogolan, 1984,133) and 
include abstract versions of the descriptions of the categories 
themselves, and of the comments from the fieldwork data under each 
category. As these concepts are at a higher level of abstraction, they 

may stand for other similar pieces of data (Tesch, 1990,138), i. e. they 
"may be valuable in the future to explain other organizations and 
contexts" (Walsham, 1995,79). 

197 



Chapter 5: Description of the Fieldwork 

Below there is an example of concept and proposition generation. The 

extract contains data about the concept "free social interactions among 

users" from the analysis stage. Freedom of interaction and power of 

decision within complex organisations are matters mentioned in the 

introduction of this thesis. The model of complex organisations shows 

that processes can take any shape or number of stages depending on 

how users of software decide to act. Processes might be started or ended 

by any actor in the organisation(s) and any number of people or groups 

may be involved. Data from virtual communities explain this concern from 

six different points of view. As freedom of interactions is a characteristic 

of complex organisations, this concept was connected to the first 

research question. 

Extract 5.7 
Research What are the human an d social aspects of business 
Question environments that make software development complex and 

difficult? 

Concept Free (social) Category of Origin 
interactions among 
users 

Informal, covert practices [SW-Dev/Characteristics/Complexity] 
Users who do not follow standard [SW- 
procedures Dev/Characteristics/Standardability] 
Users cannot be controlled as [SW-Dev/Characteristics/Controllability] 
computers [Software/Characteristics/Flexibility] 
Different people doing the same jobs [SW-Dev/Characteristics/Complexity] 
but in different ways 
Difficulty of knowing key users, [SW-Dev/Characteristics/Controllability] 
people who control the information, 
people who possess the domain 
knowledge, and their relationships. 
Help users to adapt to any software [SW-Dev/Characteristics/Complexity] 
and make a good use of it even if it's [Software/Characteristics/Complexity] 
not 100% fit to their needs. [Software/Characteristics/Flexibility] 

[Software/Characteristics/Adaptability] 
[Software/Characteristics/Social 
interface] 
[Social Software/Design] 

The complete set of concepts and propositions under each research 

question is presented in appendix 3. 

198 



Chapter 5: Description of the Fieldwork 

5.3 Chapter Summary 

In this chapter I have described the practicalities of the online 

ethnography I carried out. I have explained the data collection and data 

analysis processes, as informed by content and conversation analysis, 

and described how abstract and general concepts and propositions were 

created from data. Figure 5.3 summarises the process of evolution of the 

findings of this research. I used a mixed approach to creating categories 
(Miles and Huberman, 1994,57). Categories were created inductively 

from data. However, the process was also informed by the issues 

presented as part of the model of complex organisations and in the 

literature review. These issues informed also the research aim and 

questions. Category comments were created from the category 
definitions and their data and had the online conversations as their 

contexts. The final set of concepts and propositions (question comments) 

emerged from the category comments by considering the research 

questions as a new context for refinement. 

Problem Situation 

Literature Review 

Research Aim 1º Research Questions 

and 

Data (segments) 11 Categories ---. 
ý Category Comments 

Figure 5.3 Generation of concepts and propositions 

Further developments of these concepts and propositions into a 
descriptive and explanatory theory are presented in chapter 7. Chapter 6 

will present a descriptive account of the findings organised by categories. 
The aim of this account is to show my interpretations of the 
interpretations that software developers have about software 
development. This descriptive account will connect data categorisation 
presented in this chapter and the theory based model presented in 

chapter 7. 

199 



Chapter 6: Research Findings 

Chapter 6: Research Findings: Software 
developers views about Software Development for 
complex business organisations 

In this chapter I will present the findings from the online ethnography of 

software developers. As the approach of this thesis is qualitative 
interpretive, the findings presented here show my interpretations of 

software developers' interpretations of the field of software development. 

The account in this chapter tells the "story" of the online ethnography I 

carried out. A more detailed analysis of these findings comes in chapter 7 

where a descriptive, theory based model built up from this chapter's data 

is presented. The descriptive material of this chapter (chapter 6) forms a 
bridge from data categorisation explained in chapter 5 into the 

explanatory model developed in chapter 7. The material collected is vast 
(107 online documents organised in 72 categories, approximately 1000 

A4 pages in total) so I am arranging the results in 7 groups by the top- 
level categories defined in the data analysis phase. Therefore this 

account does not follow a chronological order (i. e. does not relate the 

ethnography as it happened day by day). Instead, by following the 

structure of the tree of categories, this chapter provides the reader with a 
picture of the current state of affairs (as it was during the fieldwork) in 

software development as I interpreted it from the online participations. 
Figure 6.1 summarises the tree of categories up to the second level of 
branches (36 categories). The complete tree of categories containing the 
three levels of branches and 72 categories is shown in appendix 2. This 

chapter follows the structure of figure 6.1. Starting from the category Cl: 
Software Development, each of the top-level categories will be briefly 
described in the light of the online data and its relevance to the model of 
complex organisations. The order in which these categories are 
presented corresponds roughly to the order in which they emerged from 
data. In the next chapter, these results are discussed in line with each 
research question and shaped into a model of social issues in software 
development for complex organisations. 

200 



Chapter 6: Research Find 

C4: Developers 
1 Training 
2. Edu cation 

C3: Software 3. Experience 
1. Kinds of Sw 4. Responsibilities 
2. Characteristics 5. Mentality 

6. Definition 
7. Working Habits 
8. Remote Work C5: Methodologies 

C2: Software 1. Traditional 
Engineering 2. OOD 

3. Agile 
/ 4. Patterns 

Data S. Prototyping 

Cl: Software / 6. Free Will 

Development Categories 7. Modelling 

ms 
2. Goals oals 
3. Process C6: Business 

4. Management Issues 
5. Stages 1. Knowledge 
6. Characteristics about business 

2. Business side 
of development 

C7: Social Software 
1. Usability 
2. Design 
3. Communication 

Figure 6.1 Data Categories 

This first exposition of the findings is intended to provide a picture of 

software development (which includes views on the organisations and 

users they develop the software for) from the perspective of developers. 

This will lead to the development of the descriptive and explanatory 
theory in chapter 7. Seven aspects of software development are 

presented as relevant to complex business situations and discussed in 

the context of the online conversations that I collected. 

201 



Chapter 6: Research Findings 

6.1 CI: Software Development 

Software development itself was the first category that emerged from the 

data and contains the richest content. Software developers see software 
development as creating and maintaining software applications. 
According to them, it is still a primitive practice and they are yet to find the 

right ways to do things. The fact that every software application is unique 

makes things more complicated. Software vary depending on their 

purpose, platform and the particular needs of the organisation which will 

use it (definitions of software and types were discussed in chapter 3). For 

developers, there are no two identical software development projects 
because software, users and development teams are always different. 
Because of this, it is difficult for developers to agree in one particular 

approach. Data from this category reflects 6 aspects of software 
development that are relevant to the concern of complex organisations. 
The aspects are: 

C1-1: Problems in a software development project: are the aspects in 
the software development practices and environment that negatively 

affect software development. Problems as reported by developers are 

repetitive work, redundant work, lack of stability and lack of rest. 
Repetitive work comprises the kinds of activities that are repeated 
frequently in the same manner and which do not require innovative 

additions or modifications. Repetitive work requires low level skills and is 

something that could be automated by class libraries. Repetitive work is 

described by developers as "grunt work". For developers, development 

should be creative and challenging so they can apply and build better 

programming skills. Redundant work is work repeated or duplicated 

unnecessarily. Redundant work is usually the result of bad planning due 

to management error or user's pressure. Extract 6.1 (extracts are 

presented in their original form. Spelling and grammatical constructions 
have not been altered) provides an example of this. The online participant 

relates a story in which a developer was assigned a task which was not 

202 



Chapter 6: Research Findings 

planned or thought through by management. As it happens in these 

kinds of situations the developer had his software specifications changed 

many times and as a consequence he ended working more than was 

necessary. 

Extract 6.1 
Thread title: Worse problems Date: 16` February 2004 Source: VB 
with people Forums 
"Meeting, discuss what they want. 
Go away develop a nice MS Access DB to their specs, do around 4 days work 
on it (four or five screens with validation etc). 
They have a meeting on the fifth day and decide they don't want that section 
you've been working on. 
So you sigh, comply with their wishes. 
Next week another meeting, and they decide that actually they do want that 
section after all, but with some more information which wasn't in the original 
spec. 

This came from a team that just had to have a database. They didn't really care 
at first what it held or what it did, just that all the other teams appeared to have a 
db of their own and in most cases it helped get the data in/reports etc. " 

Ecniv 

The lack of stability in their jobs also affects developers' performance 

negatively. Many developers, especially in the United States, complain of 

unfair competition from off shore outsourcing. Outsourcing is growing 
faster and many American and European businesses are hiring Asian 

(mostly Indians) developers to programme their software. Western 

developers believe that Indian software development is cheaper but of a 
lower quality. For them software houses should not trust off shore skills 

as they do not comply with the higher western standards. In some cases 
these worries are transformed into a fear of outsourcing which drives the 

software projects. Some developers would do extra hours to keep their 
jobs but probably at the cost of a lower performance in the long term. 
Finally, developers also complain of lack of rest and working extra hours, 

which they also associate either with bad management or low 
development skills (in addition to external factors like outsourcing). 
Development is a much specialised job which needs lots of concentration 
and needs rested developers. 

203 



Chapter 6: Research Findings 

C1-2: Goals of a software development project: the objectives within a 

software development team vary. According to developers, it is unlikely 
that all stake holders will coincide in one set of objectives. There are 

always different agendas, among developers, users and management. 
However, after being directly asked about legitimate goals of a project, 
developers stated they perceived the following as legitimate goals (in 

alphabetical order): 

To develop software: 

" on time and budget 

" that adds value to the business (value helps the flow of the 

business) 

" that fits the business rule mission of organisation 

" that is bug free 

" that is maintainable 

" that is user friendly 

" that meets the customer's priorities (i. e., the person who is paying 
the bill) 

9 that works 

This list shows that software developers work to satisfy many objectives. 
The overt objectives like the ones listed are not always the only ones that 

have to be accounted as there could also be hidden agendas. Hidden 

agendas could include making more money for management, making 

some users indispensable (so they cannot be fired), lengthen the project 

so developers can charge more billable hours, etc. This diversity of goals 

would influence software development in different ways. Developers 

would have to build the skill to recognise these different agendas and 

consider them when they design and programme the software. In a 

complex organisation, where many users or groups of users can put 

pressure on developers to favour their particular perspective the ability to 

discern how to deal with multi-objectives is invaluable. 

204 



Chapter 6: Research Findings 

It seems that developers perceive the issues of time and money as 

primary goals in the field (see extract 6.2). These issues when compared 

with any other one usually get favoured and technology solutions are 

adjusted to these constraints. 

C1-3: Division of labour, coordination, communication and 

improvement of the development process: this category comprises 

four aspects of the development process which are interconnected. From 

the online data I can identify two general approaches to dealing with 

software development projects. The first approach emphasises division of 

labour. The development process is divided into tasks and each task is 

allocated to different people. Division of labour is often preferred by big, 

traditional methodologies which are usually used in big software houses 

and bureaucratic organisations. Developers specialise in some tasks of 
development and become experts in that area. However, this division, 

developers say, is an extra burden to their jobs. It causes problems of 

coordination and poor communication between team members. 
Developers tend to focus on the function they are involved with and lose 

track of the big picture. The second approach is to treat development as 

one big task and to assign the same group of developers to do the 

planning, design and coding as well as the testing. The advantage of this 

strategy is that communication and coordination of activities become 

easier and most importantly, it provides all the developers with exposure 
to the target organisation and user needs and allows them to make 
informed decisions at coding time. The disadvantage of this strategy is 

that it requires developers to have proficiency in many areas of 
development, something which is difficult to get. In line with this, modern 

205 

Extract 6.2 



Chapter 6: Research Findi 

agile development methodologies focus on the improvement of 

coordination and communication in software development and emphasise 
the transmission of expertise between software development team 

members. Agile methodologies promote oral communication between 

developers and users and encourage pair programming between 

developers to speed up development and reduce errors. Data extract 6.3 

shows the opinion of an online member who is in favour of improving 

development by improving communication. 

Extract 6.3 

"I think that we can further increase the quality of software by increasing 
communication between programmers and hence make it more cost effective. 
With increased communication, you will be better at exchanging ideas and 
reduce errors (assuming that there is more peer code evaluation with increased 
communication). " 

YourSurrogateGod 

C1-4: Management of a software development project: in general 
developers relate more their problems with management than their good 

experiences. Developers think of managers as ignorant of the nuances of 
development work. Managers urge them to finish software on time and 
budget and ignore other kinds of problems they have. For developers, 

problems like ambiguous information obtained from users, disagreements 

among the development team, or technical constraints also affect their 

performance and need to be addressed accordingly. 

As noted earlier an important source of problems is redundant work which 
is forced by management (redundant work is the result of bad planning). 
Some developers albeit a small minority say they have a proactive 
attitude. They prefer to plan in advance some of their activities (not 

necessarily following a formal methodology) to avoid working on things 
that will not be needed. However, for these developers, management 
usually shows a "fire fighter" or reactive attitude. For example, they would 
force developers to start programming software that is not well specified 
yet. When the specifications are complete managers will urge developers 

206 



Chapter 6: Research Findings 

to do the pertinent modifications, even if it means to reprogram most of 
the application. Developers think that it is wasted time and resources. 
They would like managers to know how to prevent problems instead of 
being caught by surprise by them. 

In connection with the previous ideas, managers' limited view of software 
development makes them see only the final product and the actual 
process of production. Managers frequently ignore the work developers 
have to do to obtain information, design and assess the quality of 
software. According to developers, managers do not really know the kind 

of tasks they perform probably because they haven't experienced or 
practiced software development themselves. 

From my readings of online conversations I find that these problems 

could also be caused by the developers themselves, who do not 

acknowledge or understand the kinds of pressures and responsibilities 
the managers have. I noted this in many online discussions between 

developers and managers. It seems that the root of some of the problems 

could be the difference between managers' and developers' working 

styles and opinions (probably obtained from previous jobs). Extract 6.4 

shows an example of this. An online member explains to the original 

poster that the cause of his problems at work was probably the 

mismatched views him and his manager have. Joe's text suggests to me 
that there is a need for managers to be more informed about developers' 

practices and to acknowledge different kinds of problems that could 
happen apart from time and budget problems. The opposite is also true, 
developers should be aware that managers' views would not necessarily 
concur with theirs. 

207 



Chapter 6: Research Findings 

Extract 6.4 

"In this case, it's going both ways. You and your PM have mismatched views of 
the world. To you, it's common sense that he should provide you with all the 
details. To him, it's common sense that you should be able to figure out the 
details. 

The answer here lies in finding a middle ground. If you try to make him 
responsible for telling you every little parameter of a project up front, he'll feel 
like he's babysitting you, which won't put you on his good side. But if you don't 
get enough info, you'll inevitabely do something "wrong" because you weren't 
aware of how it should be done. " 

Joe 

C1-5: Stages of a project: this category shows, following the division of 

labour perspective, the different stages developers have to go through to 

develop software. Although the great majority of developers describe 

themselves as programmers or as concerned only with programming, 

there is consent that there is more work to software development than 

just programming. From the data in forums I have divided software 
development in 5 stages, however, this division does not necessarily 

match all developers' views: 

" Planning: for developers a plan is a scheme, programme or 

method worked out beforehand for the accomplishment of a 
development project. Developers think that planning is a delicate 

business. In general developers who have to plan have to be on 
the safe side. That is, they believe they should never offer any 

estimate before they gather all the requirements and spend some 
time with them. 

" Analysis: is the examination and study of the existing state of 

affairs in an organisational area. The analysis stage is usually 

used to clarify ambiguities between users and developers and to 

make sure that everybody is speaking the same language. 

Analysis includes gathering requirements from users and other 

stakeholders and developing the functional specification, which is 

a blueprint of the functionality that the software should have. In 

some cases the analysis stage is driven by the customers as they 

208 



Chapter 6: Research Findings 

know more about the problem situation. Generally developers feel 

uncomfortable with analysis when they do not speak the business 

language. In some projects these responsibilities are assigned to 

systems or business analysts and coding is done by programmers. 
However, some developers stated that it was useful for them to do 

analysis and to "be in the users' shoes". That would give them a 

more global vision of the business. Being only on the technical 

side will limit their ability to develop the final product. 

" Design: is preparing a prescriptive statement about a software 

application. I found that there are two perspectives about design. 

The first one sees design as an activity that needs to be done 

before coding the software. Developers following this perspective 

would advocate a particular design methodology or the use of a 

modelling language. According to this perspective the outcome of 
the design stage is a detailed document specifying how 

programmers should code the software. Programmers will then 

use these specifications to programme. A problem with this 

perspective is that the documentation usually gets outdated as 

requirements from users change. The second perspective sees 

design as part of the coding process (see data extract 6.5). 

Developers who follow this perspective consider the source code 

as the detailed design of the software. Developers who advocate 

this approach would start programming the software with just a few 

functional specifications. They will make design decisions during 

the coding and then seek confirmation from analysts and users. 
One of the most popular ways of doing this is with prototypes. 
Prototypes are good to show the users how the system will look 

and behave. However the danger is that some of the users would 
think that the prototype is the final product and will therefore 

expect their software will be ready before the developers think it 

will. 

209 



Chapter 6: Research Fi 

Extract 6.5 
Thread title: Coding vs. Date: 30th November 2002 Source: JoS 
design 
"I am one of those rogues that doesn't really believe in "software design" as a 
separate activity, or as a document, or whatever. I believe the design of a piece 
of software is implicit from the very first line of code. Coding can't go without 
design, and design can't go without coding. Successful designers are those 
who can code, and successful coders are those who can design. The phrase 
"coding vs. design" is a contradiction in terms, at least in my philosophy. " 

Beka Pantone 

" Coding: is the writing of a software programme. The 

transformation of the user's requirements and functional 

specification into a tangible solution. This job is preferred to the 

other stages of software development by most developers and 

unfortunately it is the centre of attention of most development 

projects. Unfortunately because (I think that) the other stages of 

software development deserve equal attention. Many developers 

start coding without having any written specification by users. 
These developers believe that the software will take a shape as 
they progress with the programming and ask users to test it. Other 

developers prefer to be given detailed design specifications so 
they do not make mistakes. The original poster to whom Joe in 

Extract 6.4 replies seems to be one of these. He did something 

wrong because his manager did not give him all the information he 

needed. However his manager thought he had more initiative and 

would find all the information on his own. 

Testing: is the process by which developers verify the 

correctness, completeness and quality of software. Unit testing 

and usability tests are the methods most mentioned by developers. 

Unit testing is focused on the technical aspect of software. It testes 

the correctness of algorithms and results thrown by the 

applications. In usability tests users are asked to use the 

application and testers assess the users' ability to learn how to use 
the graphic user interface. Testing is not concerned with verifying 
the correctness of the requirements gathering and functional 

210 



Chapter 6: Research Findings 

specifications. Problems in these areas are expected to be found 

in previous stages or by the users when it is too late. 

In addition to these five stages I found another aspect of software 

development which is treated by some as process that runs in parallel 

with the previous stages: 

9 Documentation describes the use, analysis, design and coding of 

software. It is an agreement, between customer and developers, 

that confirms that they all share the same understanding (see 

extract 6.6). In traditional methodologies documentation is 

frequently done in a written format. However, in some modern 

development methodologies (like the Agile) documentation is 

replaced by other practices. Oral communication is preferred over 

written documentation between developers and between 

developers and users to speed up development. Unit tests written 

by developers and functional tests written by customers replace 

documentation in the testing phase. Generally, all kinds of 

documentations are needed. Oral documentation is needed in the 

development stage to improve communication and coordination 

among users and the development team. Written documentation is 

needed at maintenance stage, especially if the developer who is 

doing the changes did not participate in the original development 

team. Finally unit and functional testing are important for the 

technical testing at the last stages of development to assess the 

quality of the product. Although most developers agree that 

documentation is essential in all stages of development, very few 

of them are happy with writing it. 

Extract 6.6 

Ar documentation is simply a memo of understanding between developer, 
yst and customer/sales manager. Just put whatever in it so that all 3 can 
"Yes, this is what we are doing". Is it enough to make it clear to the client 
t you are doing? Is it enough for a developer to get on with it? " 

Patrick FitzGerald 

211 



Chapter 6: Research Findings 

C1-6: Characteristics of Software Development: aspects of the 

process of software development which address some of the 

characteristics of the model organisations as explained in chapter 1. 

" Controllability of software development. There are two aspects 

of control explored in this category which are interconnected. The 

first one is how developers perceive control is exercised in target 

organisations and the second one is the extent to which 
developers can control the development process. Data from this 

study shows that there are two opposite views regarding 
developers' views of control in organisations. On the one hand, 

some developers believe that excessive or unnecessary control of 
information hinders software development. Extract 6.7 shows an 
example. An online participant explains how including more control 

over a website in the form of authentication makes his job more 
complicated. The way I understand this is that when developers 
design software they build a mental picture of the business 

processes the software is going to serve. This picture is often 
different from the one they are asked to model by users who like to 

control information. Developers think that control of information is 

not part of the real process but only a device to gain power and 
gain. As a consequence unnecessary complexities are forced into 
the software if the wrong picture of business processes is taken 
into account. 

On the other hand other developers think that a system that 

controls information (excessively or not) offers simpler grounds to 
develop software as work in organising and formalising procedures 
has been done. According to them, clearer and formal procedures 
are easier to transform into software. The level of control the users 
have over their processes affects the control developers have over 
theirs. According to the first perspective of control, the level of 
control that developers have over the development process is 

212 



Chapter 6: Research Findings 

indirectly dependent on the level of control the users have over the 

information. The more control the users have the less control 
developers will have on their jobs. However, the situation is 

different from the other perspective. As developers will feel they 

are more in control of the process if the user has organised and 

formalised (and controlled) the relevant business processes. 

Extract 6.7 
Thread title: Are people Date: 12"' January 2005 Source: JoS 
complex? 
"I would contend that a business is a totalitarian social structure where 
information is controlled for power and gain. It is therefor this need to control 
information that makes the design of software more complicated as the number 
of interaction paths increases. 

For example, the www & Internet is used for very complex social interaction but 
due to the lack of information control it is relatively simple. If I had to get 
authorisation to view a page from my manager, obtain a view reciept, store my 
history for billing purposes, fill in a timesheet of activity for cross reference etc it 
would get very complicated. And that assumes all countries had the same rules. 
As soon as an individual web site requires authentication is complexity rises. 
Adding pages doesn't make it more complicated in itself. " 

Kim 

" Standardability of software development: in this category 

gathered developers' opinions about the extent to which processes 

I 

and practices in organisations and in software development could 
be standardized. Standards in organisations are procedures or 

rules about how to perform business processes. Standards in 

development are agreed rules on how to model, document or code 

software. I found two opposite views in this regard. One view 

states that standards (in both, organisations and development) 

help modelling and maintainability of software. Additionally, as 
standards help to create a common language (business and 
technical language) they also facilitate communication especially 

within big groups. Therefore it is more likely that developers and 
users will be able to understand each other. The other view states 
that standards stifle creativity. Solutions worked out with strict 
standards would probably restrict users' freedom. Also, strict 

programming standards would not allow developers to design 

213 



Chapter 6: Research Findings 

improved algorithms that could perform better than the 

standardised ones. In the case of software development for 

complex organisations balance is needed between standards and 

creativity. Creativity to allow free interactions of users and 

standards to allow developers to model complex processes and 

code software for them. Extract 6.8 shows an example of 

standardisation of processes helping developers to design an 

information system. The original text is in Spanish (left) and I have 

translated it into English (right). Erich explains how a situation 

which was perceived as complex by developers was simplified by 

standardising (or formalising) the processes. 

Extract 6.8 

Cecilia: como afrontarias un problema Cecilia: how would you face a 
d desarrollo de software para una software development problem with a 
situaciön recontra-super-archi super complicated situation 
complicada Cecilia: imagine that your user is many 
Cecilia: imaginate q trabajas para organisations 
varias empresas a la vez Cecilia: and that you have to see 
Cecilia: yq tienes q ver procesos de processes like decision making, 
decision, workflow y administraciön workflow and knowledge management 
del conocimiento Cecilia: tell me what comes first to you 
Cecilia: dime lo 1 ero qct ocurra mind 
Erich: algo asi me paso Erich: something like that happened to 
Erich: le echaban la culpa de que el me 
sistema no arrojaba info a tiempo Erich: they blamed the system 
Cecilia: aja because it did not provide the 
Erich: asi que lo primero que se me information in time 
ocurriö es realizar una reunion con Cecilia: aha 
todas las personas cabezas Erich: so the first thing that occurred to 
involucradas en el proceso me was to organise a meeting with all 
Erich: y de ahi salio que el proceso the heads involved in the process 
actual era una caca Erich: from that we concluded that the 
Erich: recien se enteraron de los process was [colloquialism that 
problemas expresses the intensity of 
Erich: entonces se decidiö cambiar el disappointment] 
proceso y ademäs los sistemas Erich: they just knew about the 
Erich: simplificando algunas etapas problems 
del proceso Erich: then it was decided to change 
Erich: tratando de hacerlas lo mas the process and the systems (meaning 
autombticas software) 
Erich: ademäs ya no se daban tantas Erich: by simplifying some of the 
excepciones stages of the process 
Erich: como anteriormente se daban Erich: trying to make them more 
Erich: luego se le pidiö documentar el automatic 
proceso y con actas se comunico a Erich: so there were no many 
todo mundo involucrado y se formalizo exceptions 
el asunto Erich: than before 

214 



Chapter 6: Research Findings 

Cecilia: entonces me dices, q en parte 
la soluci6n fue simplificar los procesos 
de negocio para q el software sea mas 
sencillo, ademäs de estandarizar 
procesos para q todos los 
involucrados hagan "lo mismo" 
Erich: no tanto simplificar el proceso 
lino formalizar el proceso es como un 
mix claro que tambien se mejoro 

Erich: then we documented the 
process and with minutes we 
communicated everyone involved and 
the process was formalised. 
Cecilia: then you say that part of the 
solution was to simplify the business 
processes so the software becomes 
simpler, additionally you have to 
standardise the processes so 
everyone does the "same" 
Erich: not only simplify the process but 
formalise it, this combination improved 
it. 

" Incrementability: incremental development is a strategy in which 

software is developed and delivered in pieces according to 

priorities set by the customers. Most agile methodologies advocate 
incremental strategies and aim at keeping the customer happy. 

With an incremental approach, developers are able to aim at small 

achievable targets and to show to the customers that some 

progress is being made. While the customers receive and use the 

first release of a software application, developers continue to work 

on the functionalities that were left. At the same time, developers 

are able to receive and process feedback from customers and to 

do pertinent modifications in the code when they release the next 
increments. Incremental approaches are strategies designed to 

cope with flexible and adaptable business settings. By using an 
incremental strategy developers would be able to respond quickly 

and accurately and modify software according to the new 

conditions in the organisation (see this idea reflected in extract 
6.9). A problem for developers following incremental development 

is perhaps the inability of seeing the big picture. Being focused 

only on little achievable short-term tasks can hide the long term 

objectives. 

215 



Chapter 6: Research Find 

Extract 6.9 

"There are two types of actions, planned and situated actions. Planned actions 
involve conscious thought ahead of time, and these are easily captured in 
requirements meetings. Unfortunately, most of the work an "expert" does is 
situated: it is in response to some situation, where the exact conditions present 
will determine the response. These are the types of requirements that typically 
lead to the later "You didn't tell us about that!!! " "Any idiot knows that/Well you 
didn't ask!!! " exchanges. The iterative/ incremental helps to address these by 
allowing for a planned evolution (it wasn't a missing requirement, we just hadn't 
gotten there yet). As the user works with the (partially completed) system, they 
will get to experience the situations and feel that something is not quite right: 
this will lead them to bring their unconsious knowledge to the front of their mind, 
where they can communicate it as written requirements the programmer can 
add to the code (or expert system engine, or whatever). " 
David Lathrop 

" Adaptability: I defined this category as the extent to which the 

software development team can adapt to changes in its target 

organisation. Data in this category reflects the practices 

developers undertake to follow changes in users' requirements. 

Three important points are worth to mention here. The first one is 

that for most developers constant contact with clients or users 
during the development period will help them to evolve the process 

according to how target organisations change. This is only the 

opinion of developers, as in practice, they state that it is very 
difficult to do this, especially in projects for big organisations where 

many perspectives should be considered. This view contradicts 

other accounts in which developers express their discomfort at 

working with other people and talking non-technical language 

(these aspects are explored in categories C4-5: 

[Developers/Mentality] and [Developers/Working Habits]) The 

second point is that very often developers do not accept changes 
in requirements as they think these are a consequence of bad 

planning or users not knowing what they need. Some developers 

think that what is needed is a change in attitude by developers. If 

they thought of software as a service and instead of only a 

product, adaptation would be easier to understand. A service is 

continuous in time and is not inflexible in the sense that it is not as 
tangible as software and therefore can be changed (or adapted) 

216 



Chapter 6: Research Findings 

easier. Another aspect of this point is that usually people who have 

experienced change before are more receptive to new change. 
This applies to both developers and users (see extract 6.10). The 

last point is that incremental and iterative strategies as opposed to 

the waterfall cycle, traditional approaches, are more appropriate to 

deal with the adaptation of complex organisations. As mentioned in 

the incrementability category section, by delivering achievable 

pieces of software, developers can work at a reasonable pace and 

users get to know the software and are able to provide feedback to 

developers sooner. 

Extract 6.10 
Online Conversation with Date: 07th October Source: MSN 
Jackeline Saavedra 2004 Messenger 
Jackeline: me he dado cuenta del Jackeline: I have realised the change 
cambio actual de los usuarios in users now 
Jackeline: por ejemplo Jackeline: for instance 
Jackeline: antes, cuando iniciamos Jackeline: before, when we initiated 
toda la revolucibn acä, intentando the transformation here, trying to put 
colocar cosas en web por ejemplo new things on the web for example 
Cecilia: aja Cecilia: aha 
Jackeline: la gente era mas reacia al Jackeline: people were more reluctant 
cambio, ahora nos estän Ilevando la to change, now they are taking the 
delantera, piden y piden y tienen lead, they ask for things and have 
vision vision 
Jackeline: ya ves a tias hablando de Jackeline: you see old ladies talking 
mp3 about mp3 
Jackeline: pero antes no era asi Jackeline: but it wasn't like this before 
Jackeline: no se si me dejo entender Jackeline: Do you get me? 
Jackeline: la tecnologia ha ido Jackeline: technology has been 
entrando y las personas nos hemos introduced in our lives and people 
adaptado pero sutilmente have been adapting subtlety 
Jackeline: en varios lugares to dicen Jackeline: in many places they tell you 
queno pueden hacer esto o lo otro that they cannot do this or that 
porque "el sistema no lo soporta" because the "system does not support 
Cecilia: aja, trees q despues de un it" 
cambio grande la gente ya esta mas Cecilia: aha, do you think that after a 
receptiva a cambios subsiguientes big change people are more receptive 
Jackeline: si, al menos eso me parece to subsequent changes? 

Jackeline: yes, I think so 

" Predictability: is the extent to which developers and their 

managers can predict time, budget and outcome of a software 
project. In general, it is very difficult for developers to predict these 

variables; the existing techniques do not seem to be accurate. As 
AllanL5 in extract 6.11 suggests, the nature of software 

217 



Chapter 6: Research Findings 

development is different from what these existing techniques 

assume. In software development every project is a different 

venture. Clients, users, developers, tools, platforms, code vary 

from application to application and the outcome of such 

combination is almost impossible to predict. Most software 

developers are not comfortable with a situation like this. According 

to them the reasons for this unpredictability are more social than 

technical. Developers like computers and software because for 

them these are more predictable than people. However, when 

dealing with people developers struggle to understand their 

particularities, ambiguities and indecision. A solution that some 

developers adopt is to not trust formal methods to predict projects 

but to use their common sense. Common sense is developed by 

their experience in previous projects. Developers will take 

shortcuts whenever an unexpected situation arises. Shortcuts are 

anything that they think is appropriate for any new circumstance 

they are trapped in. Although common sense is not 100% 

accurate, developers feel it is safer and more in control of their 

development activities. 

Extract 6.11 
Thread title: Why take shortcuts Date: 28'h July 2004 Source: JoS 
in Software development 
"The problem is that currently creating software is more a craft than an 
engineering discipline. It is conceivable that software will NEVER have 
predictable schedule, it may just be the nature of the beast. Every project is 
different, the tools keep evolving, even ideas of what makes a good design 
(OOD? DFD? Lock down requirements? Let them float? ) keep changing. " 

AllanL5 

" Levels of abstraction: when designing and coding software, 

developers can organise information in hierarchies of knowledge. 

Higher levels in the hierarchies are the more abstract models of 
the information system, showing the functionality that the software 

will have. The lower level of abstraction is the actual code of the 

software. For some developers, modelling and designing at higher 

levels of abstraction may increase the long term productivity (see 

218 



Chapter 6: Research Findings 

extract 6.12) and reduce the complexity of software and will 

provide simpler models of the organisations. For example, some 

complexities could be hidden in black boxes. Once coding is being 

developed then these black boxes are exposed and their 

complexities are modelled one by one. Developers go down 

through the levels of abstraction as they add more detail to their 

models. This process ends with the programming specifications 

and finally the code itself. For other developers there is no value in 

abstract design as it just takes time out of their coding. Design 

would be more realistic when it is done at coding time. The 

developer will then face the real constraints and know what is 

achievable and what not. These kinds of developers state that 

coding is design and design is coding. There is no real difference 

between them both (see extract 6.5). 

Extract 6.12 
Thread title: Innovation, Date: 23"' June 2004 Source: JoS 
productivity and abstraction 
"Abstraction provides greater long-term productivity at a cost of short-term 
productivity. It doesn't affect functionality/innovation, because functional 
requirements come first. " 

Nearly Nameless 

" Complexity of software development: this category comprises 
data about the complexity of the process of software development 

itself and the complexity of the organisation or system which needs 
the software. By complexity I mean how social factors in both 

environments affect developers work. There are two aspects of 
complexity that I found reflected in the online data. The first one is 
how free social interactions between users affect the modelling 

and design of software. There are two opposite perspectives in this 

regard. One perspective sees free social interactions among users 
as making software design more complex. "Free social 
interactions" means that people will not follow standard procedures 
and will use their common sense. Having people acting differently 

in similar situations makes the modelling of their activities almost 

219 



Chapter 6: Research Findings 

impossible. The organisations' complexity will affect the 

complexity of software development. Developers have to come up 

with new ways of developing software that adapts to the 

idiosyncrasies of people. So far methodologies and technology 

need standard and formal procedures resembling mathematical 

formulas. For example, if for input A in a business process the 

outcome is always B ansd the calculation is known, then it is easy 

to reflect it in the software. However in a different process where 

the outcome (or calculation) for input A is not known or could vary 

a lot, methodologies and software are helpless. On the other hand, 

the other perspective sees free social interactions among users as 

making software development easier. Not all the social aspects in 

business processes need to be automated. In extract 6.13 a 
developer states that only the core functionalities of an application 

must be considered. Most users perform their complex tasks 

outside of software; therefore there is no need for developers to 

model these aspects and hence software becomes simpler. The 

second aspect of complexity is related to the first one (overt free 

social interactions). In situations where users are allowed to act 
freely and use their common sense, there is scope for hidden 

agendas and covert channels of information. Users would 

communicate what they are supposed to do but would not tell what 
they actually do at work. These practices would be unknown by 

developers and will not be considered in their designs. As a 

consequence the software will be incomplete and will not serve the 

"real" needs of users. In developers' eyes this is a complex system 
to model because of the difficulties at gathering information and 

understanding it, as well as putting more work at talking and 

watching users work. 

220 



Chapter 6: Research Findings 

Extract 6.13 
Online conversation with Date: 27`h October Source: MSN 
Jackeline Saavedra 2004 Messenger 
Jackeline: creo que to ayuda a Jackeline: I think that it helps you get 
acercarte a la realidad, me refiero al closer to reality, I mean the model, but 
modelo, pero hay detalles que no se there are things that cannot be 
pueden modelar, solo se asumiria modelled, we would assume it as an 
como caso excepcional o especial exceptional or especial thing, the 
algo general model is something general 
Cecilia: 'y cömo hace la gente q usa Cecilia: and how do people that use 
el sistema en esas situaciones? the system in these situations do? 
Jackeline: en el modelo se Jackeline: we implement a special 
implementa un caso especial, esos case in the model, these special cases 
casos especiales podrian entrar sin could not have special rules, but would 
reglas o algo asi, pero deja huella y leave their track 
sangre Cecilia: ? 
Cecilia: ? Jackeline: I mean that we could 
Jackeline: me refiero a que se podria consider exceptional cases, but not in 
contemplar casos excepcionales, pero detail 
sin entrar al detalle Cecilia: while modelling? 
Cecilia: a la hora de modelar Jackeline: I say this because there is 
Jackeline: lo digo porque no hay forma no way we can consider all 
de contemplar todas las excepciones exceptions. 
Jackeline: el de se muriö mi gato, o Jackeline: something like my cat died 
me quede botado or my car is not working 
Cecilia: aja Cecilia: aha 
Jackeline: a menos que el sistema sea Jackeline: unless the system is this 
de ese tipo y sea bäsico saber si la type and it is imperative to know if the 
persona tiene gato y si esta vivo user has a cat and it is alive 
Cecilia: jejejeje.. ya seria control Cecilia: hehehehe.. it will be extreme 
extremo control 

" Productivity in software development: is the efficiency with 

which software is produced. Factors most considered are the 

speed at design and programming, the number of bugs or errors in 

the software, and quality of software in general. Productivity is a 

very important matter for developers. Most of them are assessed 
by their productivity and their jobs depend on their performance 
(some are directly paid in those terms). Online members discuss 

about how to improve their productivity. From the online data it 

seems that the following 5 factors affect productivity positively: 

" Selecting the appropriate platform and tools, for the kind of 

application they are going to develop (see first text segment in 

extract 6.14). 

" Planning and designing what is going to be coded beforehand 

(not all developers would agree with this) 

221 



Chapter 6: Research Findings 

" Using abstract models to understand the system. This would 

yield productivity in the long term at the cost of short term 

productivity. (See extract 6.12. ) 

" Use of development standards 

" Pair programming, a strategy emphasised by agile 

methodologies in which programmers work in pairs. 
However I also found other aspects of software development that 

developers perceive as hindering their jobs: 

" The unpredictable nature of software development. Developers 

do not know exactly how a project will behave and therefore do 

not have the chance to think on improvements in the long term. 

" Having projects with no clear or explicit goals. As many 
individual goals exist within working groups it is more 

productive for developers to have their priorities well stated. 

" Doing overtime work and having not rested developers. 

" Planning and designing what is going to be coded beforehand 

as it takes time from their coding (not all developers would 

agree with this) 

Finally, the human and social side of software development is also seen 

as influencing developers' jobs. The fact that it is performed by humans 

makes it less productive than managers would like. Another factor that 

derives from this one is that the machine metaphor that portrays 
developers as commodities is not uncommon in the development field. I 

saw that most developers although resenting this treatment from 

management also portray themselves as programming machines which 

are assessed by their productivity. 

222 



Chapter 6: Research Findings 

Extract 6.14 
Thread title: Fundamental Laws Date: 10th December Source: JoS 
of Software D. Part 1 2002 
"I know if I have to wait long time to get my code on a test platform; I sometimes 
lose the flow and have to spend time trying get back again. " 

David Nickerson 

developers as commodities 
"75% of the population now works in the service sector, where productivity is 
pathetic simply because its mostly done by human beings. Thus, management 
looks for ways to either lower labor cost (outsourcing to the 3rd world) or 
improve productivity (computers, etc. ), or both, but there's only so much that 
can be done. " 

Fred 

6.2 C2: Software Engineering (SE) 

Software engineering is relevant to the concern of complex organisations 
because it influences the way developers see organisations and users. I 

found that the great majority of developers advocate fully or partially SE's 

methods. The reason for this is probably that most of them come from a 

computer science background where software engineering and similar 

approaches are taught. Developers are also comfortable with computers 

and understand people and organisations via machine metaphors. 
Software development methodologies based on software engineering 

provide scientifically and mathematically proven and hence assumed 

valid practices. This means that for some developers engineering 

practices can guarantee the development of usable and reliable computer 

applications. However, this is not always true. As developers also 
acknowledge, these methods presuppose well defined and stable 
business settings. Human organisations are not like that. Trying to force 
hard methods into situations defined by human and social interactions (as 
in this study context: complex organisations involving people adapting 
and interacting freely) might not work. Software worked out like this would 
not solve the users' problems and would probably be rejected by them. 

My data show that there is an opposing perspective to software 
engineering. This perspective (advocated by fewer developers) sees 

223 



Chapter 6: Research Findings 

software development as an art. As software artists, developers should 
follow their desires, preferences and tastes to design the best quality 

software. Contrary to software engineering, this "artistic" view puts 

emphasis on the human side of software development by acknowledging 

the unpredictable character of software users and puts people 
(developers) to understand people (users) as opposite to putting hard 

engineering methods to tackle soft issues with users. Extract 6.15 shows 

comments from developers who advocate each perspective. 

Extract 6.15 
Thread title: Objection to XP Date: 18"' July 2004 Source: JoS 
(extreme programming) 
"I'm bothered by the statement that software is "creative". Not that I don't think 
creativity is necessary, but in the implicit assumption that it is more like the arts 
than like engineering. To me this indicates a misunderstanding of both art and 
engineering. " 

Jeff Kotula 
Thread title: Monumental Date: 81" June 2004 Source: JoS 
Incompetency- Part TWO 
"Wishing (or demanding) that Software Engineering be a more disciplined 
process misses this key fact. It is always going to be a process of taking a 
customer desire, finding out what is implementable, implementing some of it, 
then educating the customer as to what is possible and desirable, so he can 
change his expression of what he wants. " 

AllanL5 

6.3 C3: Software 

This category was taken into account to look at my views of developers' 

perspectives on software itself and to compare and explore the 

similarities between complex organisations and the software their 

employees use. Data show that developers are able to grasp some 
human and social aspects from their target organisations which they try to 

cast in the software they develop. Two subcategories emerged from the 
data. The first subcategory is about the kinds of software. As most 
developers must have been involved with the development of different 
kinds of software it becomes important to emphasise the differences and 
to state and explain my focus on business software. In the second 

subcategory the characteristics of business software that are connected 

224 



Chapter 6: Research Findings 

to the characteristics of the model of complex organisations are 

mentioned and explained. 

C3-1: Kinds of Software: there are different types of software depending 

on their purpose and technical platform they are developed for. Software 

developers that I met online develop different kinds of software. 
Depending on the platform, audience, and use of the software their 

approaches to development differ, especially in the technical side. Games 

and embedded software (e. g. software for mobile phones) require deep 

knowledge of the hardware in which the software is going to be run and 

aim at effective use of resources like memory. Off-the-shelf software like 

word processors are developed to provide generic features that would 

appeal to the general public. As the software is going to be bought by 

different kinds of people it cannot be customised for any particular taste. 

In fact, it will encompass various elements to suit various tastes and 
hence will be flexible. Market researches are carried out to find the 

characteristics of a standard customer which will represent the whole 
target market. Technically this kind of software is complicated as it is 

released for many platforms (i. e. kinds of computers and operating 

systems). The job of developers is to make the software behave 

consistently in each of the versions. By contrast internal software is 

customised for a particular kind of situation and hardware. Technically it 

is simpler to develop as it does not need to be proved in different 

platforms. However in the case of business applications, it is the social 
aspects of the organisations that are usually found difficult to understand 
and transform into suitable models to code. This topic was been also 
discussed in section 3.1 of chapter 3 though covering a wider spectrum of 
types of software. 

Very few developers define the software that they code as Information 
System or an application for an Information System. More common terms 

are business applications or business software. Most developers think of 
users and management as their target customers. There is little 

acknowledgement of the term Information System as a sub structure 

225 



Chapter 6: Research Findings 

within organisations that organises the provision of information. In general 
Information Systems and Software are thought of as tools to automate 

repeatable processes. The next extract shows one definition of 
Information System found in a forum which describes IS as a 

synonymous with Software. 

Extract 6.16 
Thread title: Lack of Adaptability Date: 10'hJune 2004 Source: JoS 
"Informations systems increase the efficiency of the unchanging repeated tasks 
of an organization thus allowing more time for change and absorption of 
variety. " 

name withheld out of cowardice 

C3-2: Characteristics of Software: Data from this category shows 9 

characteristics of software. Characteristics of software were taken into 

account to explore how software exhibit or reflect the characteristics of 
the information systems and organisations they serve. In line with this 

thesis focus the following discussion concentrates only on business 

applications. 

" Reusability. It is one of the cornerstones of modern programming. 
Reusability is the extent to which developers can use a piece of 

code more than one time. In the search for efficiency at 

programming, developers try to save time by writing code that can 
be used in other programmes. The main assumption here is that 

there are functionalities within an organisation which are needed 
by different areas or departments at different times to perform 
different business processes. Hence code representing that 
functionality could be cloned in different programmes. Reusability 

requires extra effort at the beginning but pays off in the long term 

when developers benefit from code that has already been written 
and tested. In extract 6.17 an online participant states that object 
oriented approaches emphasise reusability of code and that this 

also improves productivity. 

226 



Chapter 6: Research Findings 

Extract 6.17 

e good thing about object oriented programming is that you only have to do 
once. That is to say, once you have obtained an elegant solution to a 

titular problem and you have the right abstractions to work with you will not 
e to do it again. The developers who use your code will have improved 
iuctivity as a result of the object orientation that you have added. " 

Emerson Clarke 

" Complexity is understood in terms of how complex the structure 

of the target organisation and business process are and how 

complex (in technical terms) the software needs to be to fit them. It 

involves knowing what entities are involved and their relationships 

at the functional and technical level. Complexity of software does 

not necessarily correlate to the complexity of the organisation. For 

example, adding more reusability to software adds more 

complexity to it regardless of the kind of organisation it is intended 

for. Additionally, the kind of platform and programming language 

can also add more complexity. Most developers agree that the 

best solution is usually the simplest. More complexity is accepted 

only if it pays off, that is if there is an economic benefit from it. For 

example, in the case of off-the-shelf products a more complex 

solution can be acceptable if it is better than the simpler ones in 

terms of efficiency and appeal to the general market. In general, 
developers think that their job is abstracting complexity from users 

and developing simple solutions that can be understood by their 

users. In extract 6.18, two developers give their opinions about 

software complexity. The first one says that simplicity in software is 
directly related to quality. The second states that the nature of 
software is complex anyway and that platform and programming 
language are part of its complexity. 

227 



Chapter 6: Research Findings 

Extract 6.18 
Thread title: Fundamental laws Date: 6`" December 2002 Source: 
of Software Development part 2 JoS 
"Adding complexity without adding to product quality causes a loss in quality. 
Complexity is difficult to produce and maintain. It is imperative that simplest 
solutions are found to a quality to product. " 

David Nickerson 

Lit yes, there has never been a product made by man which really shares all 
attributes of software. Infinitely modifiable, it supports an incredible amount 

complexity. We're still deciding what language to use to create the beast -- 
d each language, language construct, and application domain changes 
imatically what the final product looks like. " 

AllanL5 

" Controllability: is the extent to which developers and users can 

control software. For developers it is important to be in control of 

all the (formal or informal) methodologies and tools they use to 
design software. Only in this way can they be sure that their 

software will work. Additionally, one of the obvious requirements 
from users is that the software can be controlled by them. That is 

that the software is easy to learn and to use, that is reliable and 

responds to all users needs. Developers' experiences have shown 
them that software that is uncontrollable is rejected by users. 
According to developers, the lack of standards in the industry and 
multiple perspectives about it causes confusion about how to 

create controllable software. 

" Reliability is defined as the probability that the software will not 
cause the failure of a system for a specified time under specified 
conditions. Reliability has two aspects. Reliable software is one 
which possesses the appropriate functionality for a particular 
organisation or process. Reliable software is also one which is 

working fine in the technical sense (i. e. it works but does not 
necessarily have the desired outcome). Developers value more 
reliability of software than the creativity encapsulated in it. 
Software that works but is simple is worth more to them than 

software that possesses more inventive and creative features but 

which fails constantly. 

228 



Chapter 6: Research Findings 

" Flexibility is the extent to which software is capable of change. 

Flexibility is inbuilt in the code within the software. Flexibility 

depends on the vision the programmer has when he codes. A 

good programmer will think about future changes that will probably 

be done by a different person. For example, flexible code can be 

code that has every function clearly separated and explained. 

When a change needs to be done it should be straightforward, few 

functions should be involved and the programmer should find it 

easy to know where to do the changes. Another meaning of 

flexibility in software is its level of configurability (software's 

behaviour can be changed by changing the value of variables). As 

with reusability, flexibility needs to be planned from the beginning. 

Flexible code can be changed easily and this helps developers to 

follow when users change their minds or when business rules are 

modified (see extract 6.20). However there is a limit to flexibility as 

constant changes in code can make it inefficient (code becomes 

big and slow). Leftovers from previous versions of the software can 

make source code heavy to maintain. By definition flexible 

software is needed by Complex Organisations (as noted in 3.1 -A 
classification of software systems relevant to the model of complex 

organisations). The unpredictability of decision makers and the 

great variety of working styles within organisation(s) need software 

capable of being changed every time the needs of their users 

change. 

Extract 6.20 
Thread title: Are people complex? Date: 12"' January 2005 Source: 

JoS 
"I do have to take into account individuals as far as usability goes but all I can 
do is try to design and code for flexibility as they laws and interpretations will 
always change and I will be going back into the code to inforce this new 
constraint on the users of the application. " 

Douglas 

One example of flexible software is open source software. Open 

source software is any computer programme whose source code is 

229 



Chapter 6: Research Findings 

available for modification by other developers. Open source code is 

modified many times during its time span. As the source code is 

available, modifications could be done in series by the creator or any 

other developer. Despite the number of changes in its code, open 

source software is very well valued in the market because it allows 

easy customisation. Detractors of open source argue that it is less 

reliable than closed source as there is no formal entity who can 

guarantee its quality. By buying open source one cannot be sure if 

appropriate technical support will be provided by the creators of the 

code. 

" Adaptability of software, as developers see it, relates to the 

extent to which software can be adjusted to fit different situations 

and to the extent users can adjust to the software. Adaptability, as 

opposed to flexibility, is not an inherent characteristic of the code 
but depends on external forces that make the system change. It 

does not necessarily involve a change in the code of the software 
but a change in the way people use it. Thus adaptability is a 

characteristic that emerges from software use. From the data it 

seems that developers believe that the level of adaptability 
depends on the level of dependence of the organisation on the 

software. When changes are needed it is more likely that software 
that is used in the core of the organisation's processes will be 

adapted. This means that users will adapt to it or that they will 

adapt the software to their needs. Contrary if an application does 

not belong to the core processes of the organisation it will probably 
be rejected by the users. This is part of the evolution of software. 
As users learn how to use software and how to assess it in terms 

of their needs software is adapted to fit the needs of the 

organisation. However, this is not an infinite loop, as according to 
developers software should not last forever. Developers and 

especially users should recognise that software has a relatively 

short lifecycle and that it will need maintenance when conditions in 

the organisations and technology change. The end of this process 

230 



Chapter 6: Research Findings 

is when software reaches a state of incompetence (it stops being 

useful). Also, technology changes and the increased competition 

force organisations to look for better solutions than to adapt their 

current software. 

Extract 6.21 shows how users of an airline management system 

adapted to changes in the regulations. By performing some tasks 

manually they continued to provide the service to the public. As 

this application was part of the core of the organisation (selling 

tickets and checking in passengers) users had no other alternative 

but to subvert the system to make it work as they wanted. 

However, on the other hand, this extract also shows how problems 

of communication between developers and users can cause 

problems of coordination like this. This experience reflects Coakes 

view about the role of technology in organisations: "We see people 

making technology work the way they want it to work, deliberately 

or unconsciously. Right from the first computer system that was 

ever put into place, people changed it if they were unhappy with 

the way in which it worked. Either they didn't use it at all, or they 

used it for a different purpose. " (Coakes et al., 2000,9) 

Extract 6.21 
Thread title: Flexibilidad y Date: 11 
Adaptabilidad (Flexibility 2004 
and adaptability) 
to ideal es que el software evolucione 
paralelamente con la empresa. Pero 
es dificil que esto ocurra. Por una 
parte, y hay que reconocerlo, hay 
mucho software mal diser ado (casi 
me atreveria a decir que TODD el 
software acaba alcanzando su "nivel 
de incompetencia" tarde o temprano). 
Pero tambie n hay mucha 
descoordinaciön interna. Durante 
varios anos trabaje para una pequena 
linea aerea en el desarrollo de su 
sistema de gestiön. En ocasiones, la 
gente de mercadeo decretaba un 
cambio en el metodo de cälculo de las 
tarifas que no era compatible con el 
que teniamos implementado en los 
programas. Normalmente, yo me 

November Source: Microsoft 
Discussion Groups 
(in Spanish) 

"The ideal situation is that software 
evolved in parallel with the 
organisation. But this is difficult. On 
the one hand, we have to recognise, 
that a lot of software is bad designed 
(I would say that EVERY software 
ends reaching a "level of 
incompetence" sooner or later). But 
there are also problems with internal 
coordination. For many years I worked 
for a small airline on the development 
of their management system. 
Sometimes, people from marketing 
ordered a change in the method for 
fees calculation that was not 
compatible with the one we had 
implemented in the programmes. 
Normally, I would find out when I had 

231 



Chapter 6: Research Findings 

nteraba cuando tenia que viajar: to travel: I arrived at the airport and 
egaba al aeropuerto y me encontraba found out that the operators where 
los operadores sacando las tarifas calculating the fees with calculators. 

on calculadoras. Una vez, One time, they bought an airplane that 
corporaron un nuevo aviön que tenia had first class seats and tourist class 
sientos de primera clase y asientos seats, but the airline was working 
e clase turistica, pero la linea estaba under the concept of "selling executive 
asada en el concepto de vender class at the price of the economy 
lase ejecutiva a precio de one". That implies only one class. But 

conömica". Ello implica una clase the airplane comes as it comes, and 
nica. Pero el aviön que hay viene you see how you sort it out. The 
emo viene, ya ver como to las airplane was two months under heavy 
rreglas. El dichoso aviön estuvo dos maintenance, came to the country, 
fieses en un mantenimiento mayor, and spend one month more in 
gö at pals, estuvo un mes mäs en inspection and registration. And only 

ämites de inspecciön y matriculaciön. when I saw people checking in 
sölo cuando descubri a la gente manually in the airport I realised that 

iequeando a mano en el aeropuerto we had many classes. That was 15 
e cuando me entere de que ahora days later. Was it the software's 
niamos varias clases: caso completo fault? " 
arante quince dias'por culpa del 
)ftware? " Leonardo 

Leonardo Mvp vp 
mvp vb 

" Usability relates to the extent to which the software's graphic user 
interface (GUI) is easy to learn and easy to use (i. e., user friendly). 

It is seen as a mantra by some developers (a definition of mantra 
is given in the glossary). Software with poor GUI is useless for 

users and is therefore rejected. From forums' data (see extract 
6.22) I see that usability is the only approach which developers 

use to address social issues in software. For most developers 

software development is a technical job, first in the list comes the 

technical requirements of hardware and software along with the 

requirements of functionality. Then usability comes in third place 
as another technical job. Developments in the usability of software 
have been made in the area of human-to-computer interaction. 
That is, the way one individual operates a computer and its 

software. However, interactions between individuals through 

computers have not been addressed. Even in those kinds of 
applications like groupware or social software, individual usability 
is considered over group usability. From the model of complex 
organisations we see that in addition to providing usable software 
to individual users it is also important to provide them with 

232 



Chapter 6: Research Findings 

interfaces through which they can interact with other people. 
Therefore software should also facilitate social (or business) 

interactions between users, that is, software should provide a 

social interface. 

Extract 6.22 
Thread title: Are people complex? Date: 12`" January 2005 Source: 

JoS 
"The individual person's social impact on what I am asked to produce is 
relatively minimal. I have to be concerned with the individuals as far as usability 
is concerned but not on how they intend to use any particular screen. Part of 
this I believe is the heavy monitoring and regulation of the industry as a whole. 
Any time I am developing new functionality or creating a brand new system I 
have to be primarily concerned with the business rules defined for the process. 
So the managers and directors involved develop and document how and why 
any particular portion of the application will be used so that it will function 
according to their documented business plan and stay inside compliance 
ssues. " 

Douglas 

" Maintainability is a concept related to flexibility and adaptability. 
Maintenance involves the update, correction and bug fixing of 

software. It takes place throughout most of the life span of 

software. The more flexible the software is and the more adaptable 
their users are the easier maintenance becomes. However, as 

many developers argue (see extract 6.23), there should be a good 
business reason to invest in maintenance. Maintenance does not 

offer a good career progression path for developers. If the software 
is good and works they can leave it as it is. If their users have 

adapted a new (manual) system and are happy with it, the 

software can remain as it is. Maintenance is not the preferred 

activity for developers. It usually involves the revision of other 
people's code, the search for missing or outdated documentation 

and puts the developer under pressure due to time and budget 

constraints. (See Appendix 1 for an account of a maintenance job 
by a software developer. ) The problem grows because of the lack 

of standards in the industry. For some developers, standards for 

documentation and coding would smooth the maintenance process 

233 



Chapter 6: Research Find 

as it would be easier for them to understand new code and to find 

the source of errors. 

Extract 6.23 
Thread title: Bridging the gap Date: 15"' June 2004 Source: JoS 
bit high and low level design 
"Do you really need to rewrite it all? Can you refactor piece by piece instead of 
ripping up everything at once? 

I always find it painful to look back on code I wrote a few years back and think 
"Wow, I was such an idiot, I can't believe I did it *that* way"... but from a 
business perspective, if the thing works, I think you should really ask whether a 
rewrite is warranted. Will the benefits you gain in future extensibility, 
maintainability, etc. really make the effort worthwhile? " 

John C 

Social interface emerged as a characteristic of software from the 

discussion of usability of software and is also connected to the 

emergence of social software. Data from forums showed that 

social aspects are considered in software development as far as 
the user as an individual is concerned. Social interface is a new 
topic in the field of software development. It concerns the type and 

structure of social interactions that the software enables. As much 

of software is being developed, for instance to enable people to 

communicate through the internet, new issues of group interaction 

through time and distance arise. A clear link to the model of 

complex organisations can be drawn as it concerns groups, multi- 

groups and multi-organisations using software. Although the topic 

of social interface is starting to be recognised as an important 

issue in software development, no actual development in the 

practices of usability (or any other related area) is being done. 

Extract 6.24 shows one of the few definitions of social interface 

design I found on the web. The writer concentrates on the 
difference between user as an individual and user as a group to 
define it. 

234 



Chapter 6: Research Findings 

Extract: 6.24 

"User interface design = designing software taking into account the users who 
will be using it. 

Social interface design = designing groupware taking into account the social 
situations it creates. " 

Joel Spolski 

6.4 C4: Developers 

This category contains data that describes developers as professionals in 

their working environments. Here the data allows me to show a picture of 
how developers see themselves. This picture is built of 8 sub categories 
that collectively include their backgrounds, education and working habits. 

C4-1: Training: comprises workshops, seminars and short courses a 
developer must attend to get up to date with technology. If developers 

work on their own they will look for training courses themselves. They will 
try to get new skills whenever they find the trend in the market is 

changing towards new technologies or if they find something which 

appeals more to them. If developers are being employed by a company 
they would expect management to provide those courses for them. 

However, this is not always the case. A feeling of resentment from 

developers appears when companies force them to learn something on 
their own. In most cases management force developers to the same time 

constrains, as if they were only producing software, without taking into 

account that they are delivering working software and learning at the 

same time. This strategy is usually not attractive for developers as extract 
6.25 shows. 

235 



Chapter 6: Research Findings 

Extract: 6.25 
Thread Title: What is Date: 24`h July 2004 Source: 
"extereme programming CodeGuru 
exactly? 
"Many companies, will merely tell an employee to learn something on their own 
time, with no instruction or mentoring and expect the person to get it right 
immedialtely. This is (usually) doomed to failure. The result is that the company 
stagnates. " 

TheCPUWizard 

C4-2: Education: this category contains information about formal 

education at universities that the developers receive before or while they 

are working. As software development is relatively a new field formal 

education in this area has not been available until recently. I found that a 
big proportion of developers have been self-taught especially in the area 

of programming. This group of developers differentiate themselves from 

the rest by claiming that they can use their common sense and have 

natural skills for developing software. They think that college education is 

usually outdated. As technologies advance rapidly they prefer to update 
themselves on their own. This group of developers are very technical and 
focus only on the programming and testing parts of development and 

usually neglect planning and design. The other group of developers are 

graduates from university or college. Most of them have a background in 

computer sciences, very few come from information systems or other 

management related backgrounds. However, as a result of having taken 

at least one management related module they acknowledge the value of 

good planning and design in software. Disputes arise between self-taught 
developers and developers with qualifications. The topics of 
discrepancies are the quality of their jobs, the formality of methodologies 

and the importance of planning in advance. Extract 6.26 shows an 
example of two opposite opinions regarding education for developers. 

236 



Chapter 6: Research Findings 

Extract: 6.26 
Thread Title: Monumental Date: 08th June 2004 Source: JoS 
Incompetency- Part TWO 
"this whole thread demonstrates why college educated programmers are 
ALWAYS inferior to self-trained programmers. 

yep" 
muppet is now from madebymonkeys. net 

Thread Title: I am fragile Date: 09"June 2004 Source: JoS 
One regret i have is I never got to graduate with a degree in Computer 

Science. If my parents were informed enough and could afford it, I would have 
gotten one. I hate to be treated like a VB programmer. I hate it when they 
emphasise the qualifier programmer with a double quote just to show you down. 
That is another reason I want to do work for Microsoft and get to do some low- 
level stuff or may be get to be a part of a team that's developing the next best 
development tool. " 

Sathyaish Chakravarthy 

C4-3: Experience: some developers think that when employers need to 

hire new staff they look for experience rather than for a degree. For 

employers, experience in a particular area is the best proof of someone's 

ability. As RobDog88 in the first text segment in extract 6.27 says, 

employers want to make sure that developers can actually do what is 

needed. A related point is made in the second segment of the same 

extract. Because developers dedicate more time to improve their 

technical skills, (i. e. experience with programming languages) than the 

time to obtain experience and knowledge of businesses and systems 
domain, it is the non technical skills which are more difficult to develop. 

Formal methods for estimating price, size of project and time do not work 

accurately and reliably in practice. Developers have to learn these skills 

themselves through experience, previous errors and commonsense. As 

Christopher Hawkins in extract 6.27 says, some development skills are 

more an art than an exact science. Developers believe that the perfect 

combination is to have a good degree and working experience. Degrees 

provide the knowledge foundations which can then be developed by 

experience. 

237 



Chapter 6: Research Findings 

Extract: 6.27 

aegree vtsr-orums 
"Companies are looking for a programmer with proven experience because they 
want to be able to see if you understand and can put into motion good 
programming skills. Then if you have a degree on top of that, you will be in front 
of the other applicants. " 

RobDog888 
Thread Title: Estimating Date: 22"tlJuly 2004 Source: JoS 
Development Time... 
"Learning to give a good estimate takes time and experience. If you're being 
asked to estimate something that you've never done before - look out! You'll at 
least need to take the counsel of someone who has. 

Its pretty scary. It took me about 6 years to learn to produce an accurate 
estimate. There is definitely an art to it. " 

Christopher Hawkins 

C4-4: Responsibilities: in this category I have gathered data about what 
developers think about the kinds of tasks they should be carrying out as 
developers. Here I focused on the tasks that were in the boundaries of 
their responsibilities. Because the coding of the software is in the centre 

of their attention some other tasks are perceived as not important or not 

part of development. One such unimportant task is the analysis and 
design of the software as separate formal activities. While some 
developers think that they should only focus on code and the rest of the 

things will come up in time, another group think that they should learn, 

understand and speak the user's language. According to this second 

point of view, developers should have a wider perspective of their target 

organisation and should not restrict themselves to only one perspective 
(i. e. the user's perspective) which will limit their understanding of the big 

picture of the organisation. It was mentioned that one way of acquiring 
knowledge about the target organisation is to become involved with 
users' tasks. This could be taken as a form of ethnography. However, 

ethnography is not widely known or not acknowledged as a valid practice 
by developers (or at least not by the same name). Another important 

point to note is the trend in the market towards developers who are able 
to perform the complete development process as opposed to developers 

who are specialised in only one part of it (e. g. programming). The skills 
looked for include systems analysis and design. Advocates of this trend in 
the market see software development as an indivisible task which has to 

238 



Chapter 6: Research Findings 

be carried out by the same team or person. The responsibility of a 
developer who participates in the whole development process is over all 
the outcomes of the process (e. g. documentation) as well as the final 

product, i. e. the software. Extract 6.28 shows the opinion of a 

programmer who disagrees with the latter point of view. 

Extract: 6.28 
Thread Title: Software Date: 31"' December 2004 Source: JoS 
developers as commodities 
"I too have seen a real and troublesome trend of employers requiring the 
developers to "do it all" so to speak. In many instances, none of us can be 
experts at everything. Given the complexity of today's computer systems, is it 
reasonable to expect that any one person can be expert at business analysis, 
interviewing users, systems design, database design, interface design, general 
programming in his or her chosen language (or, more likely these days, 
programming languages), testing, implementation, writing documentation, and 
training users? Of course it isn't, and yet the realities of business system 
development (actually just about any type of development) often require that we 
have to take on, if not all, at least several of these roles. " 

One Programmers Opinion 

C4-5: Mentality: this category describes the way developers approach 
their jobs. Most developers think they should be valued for their technical 

skills and levels of productivity rather than for their working habits and 
their social skills. In extract 6.29 a developer praises Microsoft's hiring 

strategy. According to him Microsoft look only for technical skills in new 
developers and do not care about appearances or working habits. This is 

the ideal for many developers. In fact they portray themselves as having 

poor personal and communication skills. One of the most commented 

upon weaknesses of developers, in the online data, is their inability to 

speak non-technical language and their reluctance to talk to non-technical 

people. In relation to this I perceived that a significant number of 
developers underestimate their users because they are not experts in 
technology. As a consequence they do not listen to them and start 
projects using the developers own assumptions. A good number of 
developers stated that they would prefer analysts to do the talking to 

users. These developers differentiate themselves from business or 
systems analysts and want only to focus on the programming phase of 
development. There is however other group of developers who actually 

239 



Chapter 6: Research Findings 

think it is necessary for them to get in contact with users to get first hand 

information that they can transform in code. Regarding technical skills, 

these are valued (by both groups of developers: the ones who do not 

want to talk to users and the ones how think it is necessary) according to 

the level of creativity that the developers are able to exercise. Being able 

to develop their creativity at inventing innovative algorithms is more 

valued by developers than the ability to perform repetitive tasks. 

Extract: 6.29 

"They 
_really_ 

are smart people. My co-worker was telling me, they don't bother 
about anything else except what's in your head. The interviewer eased him with, 
"You can roll on the floor, or pull your hair. No problems! Think it over, take your 
time but give me what you're thinking. " when he was stuck with a question. " 

Sathyaish Chakravarthy 

C4-6: Definition: data in this category shows that the term "developer" 

means different things to different people. As software development is still 

a nascent practice, there is no general agreement on what a software 

developer is. From discussions in forums, the following are the roles that 

a developer plays: architect, systems analyst, business analyst, 

programmer analyst, coder and tester (see extract 6.30). So far coder is 

the most played role by members in online communities. However, I 

found some members doing other jobs as well, for example, database 

administrator, network administrator and project manager. Despite the 

variety of roles that could be accounted developers agree in that coding 

of the software is the central task. My perception is that most developers 

perceive most of their activities as around programming. For example, 

requirements gathering and design are activities that tell the programmer 

what to code, and testing proves the correctness, completeness and 

quality of the code. Another interesting point that data shows in this 

category is that most developers perceive themselves as logical, 

individualistic and non-ambiguous humans. A good number of developers 

manifest their dislike of talking to users or working in teams. They also 
believe that every problem situation should be stated in a non ambiguous 

way. For this reason they usually find it difficult to understand complex 

240 



Chapter 6: Research Findings 

business situations and indecisive users who cannot express their ideas 

clearly. 

Extract 6.30 
Thread title: What is a Date: 23`d June 2004 Source: VB Forums 
developer? 
'Developer - Develops it 
Analyst - Analyses it 
Architect - Reviews the structure of it 
DBA - Guards it. 

how I have generally experienced it. 

The architect determines the over all structure of the application. 
The DBA dictates the design of the back end. 
The Analyst organizes the business logic 
and 
The developer writes the code. 

I have been in all of these positions, except architect. 

I like being a developer though.. .1 
like dirty, smelly horse stables! " 

Memnoch1207 

C4-7: Working Habits: as mentioned in category [Developers/Mentality] 

developers portray themselves as having poor personal and 

communication skills. Their working habits confirm this. Most developers 

state that they would like to work alone in a quiet environment that allows 

concentration. However, the latest tendencies in development practices 

are going towards team work. Apparently this is because this increases 

developers' performance and efficiency at designing, assessing user 

requirements and at coding. New development environments are open 

ones where communication is fluent. New agile methodologies 

emphasise these kinds of environments where pair programming can be 

practiced. Developers who have not tried pair programming before 

usually reject it. The reasons are that working with other people would 
not allow them to concentrate and that other people's work styles might 
disturb them. The field data shows that in most cases when developers 

try pair programming for the first time, they like it and support it. Another 

popular working habit that is worth highlighting is developers' preferences 
for using electronic tools for communicating with peers. This is one of the 

reasons why I chose online ethnography as the method to investigate 

241 



Chapter 6: Research Findings 

software developers (section 4.1.2 of chapter 4). Extract 6.31 shows the 

opinions of two developers who support the use of instant messaging. 
The main reasons for using these electronic tools are first, that it is easier 
to send code electronically than by the phone and that these are faster 

and more effective than face-to-face meetings. Developers dislike 

physical meetings because they perceive them as a waste of time. E- 

mails are preferred for broadcasting news among other developers and 
instant messaging tools are preferred for faster conversations. E-mail 

and instant messaging tools require less time from developers than 

meeting in person and allow them to keep working while they are 

communicating. 

Extract 6.31 
Thread title: Chat and Date: 018` July 2004 Source: JoS 
development 
"I've used IM for development tasks in the past where I was working on a 
geographically distributed team. It wasn't uncommon for us to use IM and phone 
simultaneously, in fact. Much easier to IM some code to somebody than to try to 
spell it out verbally! And more interactive than e-mail. " 

John C. 
"Several times I have had to wait week/weeks because I cant complete 
confirmation on how to move forward on a project, so what do you do, you hold 
a meeting, what has to take place for a meeting, you have to get everybody 
together at the same time, you schedule the meeting 'next-week', point being 
that a week/weeks sometimes has to be wasted, when people could jack into a 
system and converse on a issue instantly. " 

Berlin Brown 

C4-8: Remote Work: is becoming more common nowadays especially as 

outsourcing is growing. Improvements in communication and technology 

allow for international partnerships and teamwork. Remote work is that 
kind of work in which an individual developer receives a job through an 
online web site regardless of his physical location. Contact between 

clients and developers is mostly done online and information and 
software are transmitted through the internet. There are two opposite 
views about remote work. Supporters of remote work say it is more 
convenient for them because it allows them to work on their own time and 
they do not need to travel or commute to work. Detractors say that 

remote work is cheap or school kids' labour and implies poor quality. For 

them no serious work could be done remotely. In extract 6.32 a developer 

242 



Chapter 6: Research Findings 

relates his experience at doing remote work. There is also a growing fear 

in western developers of remote work done in the third world. Developers' 

fees are usually cheaper and developers in the States and Europe cannot 

compete against them. A defensive mechanism that western developers 

adopt is to portray overseas work as having low quality. 

Extract 6.32 
Thread title: Chat and Date: 01s` July 2004 Source: JoS 
development 
"I worked for him at 45$/hr for couple of years and finally he stopped giving work 
to me because he wanted someone right in his office. I never met him nor did I 
ever talked with him on phone! He used to send me mail with list of things to be 
done, I will do those changes, upload code on his server and he would pay me 
once the invoice goes over 1000$. He was wonderful client and I wish I can still 
work with him! " 

JD 

6.5 C5: Methodologies 

This category contains data about practices and techniques performed by 

software developers. These practices are part of either formal software 
development methodologies or informal methodologies created by 

developers. Some developers state that they do not follow any kind of 
methodology. However, others say that as long as one is following a set 
of organised practices one is following a methodology. Advocates of 
formal methodologies have actually seen these methodologies work in 

successful projects. They state that methodologies are useful to ensure 
that one does not forget anything. They also help everyone to talk the 

same language. This is true also for informal methodologies as long as 
the team members agree on a set of practices. According to developers 
it is in big (bureaucratic) organisations where traditional methodologies 
are favoured as more control over the processes is needed and this is 

what those methods provide. Contrary, in small organisations, practices 
tend to be more informal and adapt to the styles of developers or 
customers. 

243 



Chapter 6: Research Find 

Opponents of formal methodologies state that full adherence to them can 
hinder creativity and innovation. Additionally, as Matt H. in extract 6.33 

states, no methodology has the right answer for every situation. Some 

developers would create their own set of practices and some others 

would not have any. Developers who dislike formal methodologies would 
like to be free to make their own decisions and not be trapped by a 

methodology. They say that dozens of methodologies are created just to 

respond to other methodologies' weaknesses. However, these new ones 

always bring with them more flaws. Being free to act and make decisions 

according to their common sense is the right strategy for them. 

Extract 6.33 
Thread title: Development Date: 13`' July 2004 Source: JoS 
Methodologies 
"Sooner or later, you're going to have a problem where your methodology tells 
you to do the wrong thing. So you're forced to follow your methodolgy into 
foolishness, or say "Wait, no ... that's stupid. I'm going to do blah blah instead. " 

Matt H. 

Data from this category shows seven types of methodologies or practices 
discussed in online forums. I will briefly discuss these in the next 

sections. 

C5-1: Traditional: methodologies like the waterfall methodology are 

perceived as big ceremony methodologies. They demand a large amount 

of documentation and are comprised of rigid steps. Every deviation from 

the plan is assumed as a mistake and is corrected. Feedback loops are 
added to the waterfall methodology to account for these deviations. 
However, developers still think it has severe flaws as it is based on faulty 

assumptions. The waterfall method assumes that developers can predict 
every eventuality and that requirements from users do not change (see 

extract 6.34). In most cases this is not true. Another flaw in the waterfall 
methodology, as developers say, is the high risk of misunderstanding 
documentation. As the waterfall method emphasises the division of 
labour, documentation has to be pass through groups of developers in 

charge of different tasks. Developers say that it is unlikely that managers, 

244 



Chapter 6: Research Findings 

analysts, coders, testers, and users will have the same interpretation of 
documentation, especially because they do not work together. These 

misunderstandings can only be identified when the user sees the final 

product. 

Extract 6.34 
Thread title: Objection to Date: 08July 2004 Source: JoS 
XP (extreme programming) 

C5-2: OOD (Object Oriented Design): the most commented feature of 

object oriented practices is that they promote reusability. Reusability is 

very important for developers as it helps them to increase their 

productivity. See Reusability sub category in C3-2: 

[Software/Characteristics of Software/Reusability]. 

C5-3: Agile Methodologies: are the new trends in software 
development. Contrary to traditional methodologies, agile ones 

emphasise rapid response to changes in requirements. The goal is to 

keep the client happy by giving him pieces of software in many releases 

or increments each time with more functionality added. Extract 6.35 

shows a summary of agile methodologies I posted in one of the forums. 

Extract 6.35 
Thread title: This time on Date: 11`" Novemeber Source: VBForums 
Agile Methodologies 2004 
"Hi, 
I've been reading more about SW development methodologies. I found this 
article: The New Methodology 
[http: //martinfowler. com/articles/newMethodology. html] by Martin Fowler and I 
wanted to share it with you. I find it excellent, specially for people who are 
developing business applications, it has openned my eyes. 

To summarise, Fowler says that (and I agree): ... as modern organizations 
evolve and adapt to their environments rapidly so should software development. 

Traditional development methodologies (waterfall lifecycle) were created upon 
the assumption that requirements never change. Software were created based 

245 



Chapter 6: Research Findings 

ipshot of the organization's situation. Projects (price, time and design) 
finned in advance and any deviation from them were considered a 
which had to be corrected. 

Agile methodologies are based on the assumption that organisations, users, and 
their requirements change. Agile methodologies are designed to adapt to 
changes: they are selfadaptive. To achieve that, users and developers work 
together and expect change all the time. Requirements, specs and code are 
reviewed constatly and changed when necessary. For Agile(rs) (is that a word? ) 
things cannot be predicted. They aim for a good quality software that meets the 
needs of the clients and not for meeting the deadlines and not running over the 
budget. 

makes a lot of sense, doesn't it? " 

nt read - thanks :) 
Cecilia Loureiro 

We've been working a large contract for customer for almost 3 years now. It was 
supposed to take 18 months - that proved impossible. Even after we delivered 
the first 2 of 5 sub-systems, the first ones requirements changed dramatically. 
We got extra $$'s for re-working that portion. " 

szlamany 

Agile methodologies require a change of attitude from stakeholders. 
Flexible developers and customers (users) willing to accept uncertainty 

are needed. (See category C1-6 [Software 

Development/Characteristics/Adaptability]). With agile methodologies the 

face of the final product is never visible until the end. However, with 
"Agile" there are more guarantees that the software will fit the users' 

needs because of the incrementalist approach and the constant feedback 

between increments. This is why agile methods are well fitted to ill- 
defined problems. One characteristic of agile methodologies is that they 

work better where access to the users is easy. Constant feedback from 

users using the latest release of the software is always needed before 

releasing the next increment. When developing of off-the-shelf software 
(see definition in section 3.1 of chapter 3) agile methodologies are less 

able to be responsive to change because feedback from users becomes 

more infrequent. 

One of the agile practices most commented in forums is pair 
programming. Pair programming forces developers to work with peers. 
When one of the developers is programming, the other will look at the 

screen to check if any mistake is made. This, "agilers" say, increases 

246 



Chapter 6: Research Findings 

speed of programming, improves the quality of the software developed 

and allows communication between developers. Not everyone agrees 

with this. Pair programming is still a controversial technique as many 
developers prefer to work alone. (See section 3.2.1-C of chapter 3. ) One 

of the pair of developers is forced to see what the other one is coding 

instead of coding himself. Detractors say that pair programming 

unrealistically assumes that developers are social beings and that they 

work well in teams. Nevertheless, evidence from the online ethnography 
data has shown that developers usually change their minds as soon as 

they actually do pair programming. 

C5-4: Patterns: are standard solutions to common problems in software 
development. For developers, patterns save them time as the common 
functionalities of the system to be programmed are already known. 

Developers have to work only on the new, unique parts of the system. 
Patterns are popular among some developers. However, it seems that 

they only account for well defined and stable situations. Where 

adaptability and unpredictability is the rule, patterns would not help much 
the developer. 

C5-5: Prototyping: for developers is the process of putting all 

requirements together in a software model in order to test its design with 

the users. There are two kinds of prototypes. There are paper prototypes 

which are drawn by developers and then shown to users. According to 

developers, paper prototypes are easy to produce and do give a good 

enough impression of how the software will look like. One of developers' 

biggest fears, as the developers in extract 6.36 mention, is having a user 

who thinks that the prototype is the final product. A paper prototype would 

send the right message, that it is just a possible scheme of how the 

software will be. The other kind of prototype is a working prototype. 
Working prototypes are developed using real programming tools and 

contain some of the functionality of the final product. However, as 

prototypes their objective is only to show the users how the software will 

behave. The advantage of a working prototype is that it could speed up 

247 



Chapter 6: Research Find 

the development of the real product if it is well programmed and the users 

participate in its development. The other advantage is that a working 

prototype is a tangible proof that some work is being done. This works for 

users and for project managers who usually work under time and budget 

constrains. However, paper prototypes could also be misleading if the 

prototype simply shows that major changes are needed. 

Extract 6.36 

lanL, you forgot the other danger. If the user sees a mockup that looks real, 
,n they think you're done. " 

Steve Barbour 
'hey'll think you're done... " -- very good point. It is necessary to balance this 
rception with the desire to remove ambiguity. 

th that point, doing a 'paper sketch' version as the original poster suggested 
s even more merit. It's less likely to be confused with the actual product. " 

AllanL5 

C5-6: Free Will: means freedom for the use of developers' common 

sense to decide on what is best for a particular situation. It also means to 

adapt the development process to their needs. Most developers agree in 

that there is no perfect development methodology that matches all 

situations. Some developers claim that they do not use formal 

methodologies but use their "brains" and choose what have worked for 

them before. Developers assess their development environment, the type 

of software they will use, the duration of the project, etc. and select the 

best method(s) that serves their needs. Common sense is developed by 

developers through their working experience, education and training. A 

good place to start, some say, is to learn the formal, textbook 

methodologies and apply them. However, developers should not stop 
there. They should be creative and try new things when the other ones do 

not work. Also a change in attitude towards the nature of developers work 
is also needed. Businesses are not an exact science and do not possess 
laws as in physics. Businesses are unpredictable due to their human 

nature. Developers should be prepared to expect changes and adapt to 

them as well as not trusting any methodology blindly. In extract 6.37, 

both developers advocate the use of common sense in software 

248 



Chapter 6: Research Findings 

development. Their statements coincide with the common saying among 

developers "take what works for you and throw out what you don't need. " 

It is not very wise for developers to use methodologies just because other 

people use them. Developers recommend learning the positive and the 

negative aspects of methodologies to decide whether a methodology or 

part of it is appropriate for a particular situation. 

Extract 6.37 
Thread title: Development Date: 13`" July 2004 Source: JoS 
Methodologies 
"If you walk in with the attitude of "Oh, strict Extreme Programming solves all 
problems, lets implement it within our group! " and you don't allow for the fact 
that no methodology is one-size-fits-all, 99 times out of 100 you're going to crash 
and burn the project you're working on at the time. If you happen to be the 1 out 
of 100 where It Just Works, you're going to be an extremely vocal evangelist of 
whatever process du jour you picked and think It Always Just Works. But you'll 
be wrong. " 

Mr Fancypants 
"My advice: learn a few methodologies, what they are good for, what they are 
not good for. Then, when you are in a situation, you can pick what is best for the 
situation at hand. Yeah, I know its a pain, and a few years from now, only the old 
farts will be doing UML, and the new farts will be doing some new buzzword 
compliant methodology. It is like asking "what is the best screwdriver? " Because 
the answer depends on what sort of screw you are trying to use. " 

Peter 

C5-7: Modelling: is part of the design stage and is the process of 

generating a model of a problem situation and a model of the software 
that will solve the problem. As Michael Moser in extract 6.38 says, a 

model is a communication tool. Models are useful to sort out ambiguities 
between developers and users and between developers and to make 

sure everyone is speaking the same language. Although modelling is part 

of most development methodologies many developers are reluctant to 

use models. Developers who neglect modelling do so because it takes 

time out of their coding (see also category C1-5: [Software 

Development/Stages/Design]). These developers see programming and 
designing as one process which cannot be separated. Some developers 

who do modelling, like Devil's Advocate in extract 6.38, prefer to use the 

spoken language instead of a modelling language like UML. UML is found 

by some as not useful to describe the system which is being modelled. 

249 



Chapter 6: Research Findings 

Developers think UML diagrams are difficult to design and read and see 
them as an extra burden to their jobs. 

Extract 6.38 
Thraael tifla" I IMI DtR' 27"h August 2004 SÖLJrt 

"UML is a communication tool. 
When you want explain something about your code, without going into low level 
details, then the best way to start is a class diagram/sequence diagram. " 

Michael Moser 
"Many people forget the L in UML stands for language. I personally find English 
a better language to communicate design. Unfortunately some people around 
here are happier when they can't understand the design documents. " 

Devil's Advocate 

6.6 C6: Business Issues 

Into this category I gathered data about the soft side of software 
development, mainly being how developers and users see the target 

organisation and its relation to the software. Having developed the model 

of complex organisations (see figure 1.2 in chapter 1) to explain how I 

perceived social and business issues within organisations, I expected this 

category to be very important. However, data in the forums shows that in 

general developers overlook these issues to favour more technical ones. 
Nevertheless I gathered data from four categories: 

C6-1: Domain Knowledge: is the knowledge about the target 

organisation(s), its business rules, users, problem situations, etc., that are 
needed to develop business applications. In big projects, developers' 

domain knowledge is usually incomplete. Individual developers only focus 

on the bits that concern the parts of the application they are developing. 
In general, it seems, it is the manager of the development team who 
needs to have the bigger picture. This is not the case of small or 
individual projects where developers have to work on all parts of the 

software. 

C6-2: Business Rules: the main point in this category is that some 
developers expressed that following the organisation's official, written 

250 



Chapter 6: Research Findin 

documentation (business rules) would lead projects to failure. These 

developers say that they should pay attention to what their users actually 
do. The first text segment in extract 6.39 provides an example of how 

"rules" are not followed by staff. If a developer ignores what users do in 

real life and just follow written documentation the software would not be 

of much help. On the other hand, other developers believe that it is not 

convenient to develop directly for specific users. Instead they advocate 

development for business rules. The second text segment in extract 6.39 

says that as users may rotate and change it is better for the business to 

have software that serves the broader perspective rather than focus on 

particular personal preferences. 

Extract 6.39 

Written docs: 
The TPS report will be generated from sales data in the computer. 

Actual process: 
The TPS report is generated from a spreadsheet that Suzy makes. 

And the interview goes something like: 
Me: why don't you use the numbers in the computer? 
Her: they are wrong. 
Me: why are they wrong? 
Her: well, Bob enters sales for customers to make his numbers look good, and 
they return them after the end of the month/quarter (channel stuffing). Fred 
enters bogus numbers. George doesn't enter anything at all, but since he is the 
"star" then no one can do anything to him. And the VP keeps 4 sets of books, 
and the computer sales system doesn't have the numbers for the real books, 
just the ones that the company thinks are real. " 

Peter 
Thread title: Factores Date: 9th February Source: Microsoft 
humanos que afectan 2005 discussion groups (in 
nuestro trabajo (Human Spanish) 
factors that affect our 
work) 
"Pero creo que se esta dejando de 
[ado un aspecto, que asi como 
sistemas y 
tecnologlas cambian a traves del 
tiempo, los usuarios cambian en las 
instituciones (con esto me refiero a la 
rotacibn de personal), por lo tanto si 
centramos todo nuestro trabajo en 

"But I think that we are leaving aside 
one aspect, as systems and 
technologies change through time, 
users also change in the institutions 
(by this I mean rotation of staff), 
therefore if we concentrate all our work 
in satisfying the needs and "caprices" 
of the user, without having a general 

251 



Chapter 6: Research Findings 

satisfacer las necesidades y 
"caprichos" del usuario, sin tener una 
vision general del negocio 
(independiente del 
usuario), podemos crear un sistema 
cuya eficacia dependa del usuario, y si 
esta persona se va, su sucesor no va 
poder realizar el trabajo 
eficientemente, lo que conllevarä a 
que el nuevo usuario demande 
cambios 
radicales al sistema original. 

Ahora no digo que dejemos al usuario 
de lado, ni que ignoremos sus 
opiniones o necesidades, si no que 
busquemos un balance entre las 
exigencias del usuario y las exigencias 
del negocio al realizar nuestros 
planteamientos. " 

Johany 

perspective of the organisation 
(independent from the user), we can 
create a system whose efficiency 
depends on the user, if this person 
leaves, his successor will not do the 
job as efficiently, this will result in the 
new user asking for radical changes in 
the original system. 

Now, I am not saying that we have to 
ignore the user and his opinions and 
needs, but that we need to look for a 
balance between the demands of the 
user and the demands of the business 
when we evaluate requirements and 
specifications. " 

Johany 

C6-3: Clients and Users: this category contains data about how 

developers deal with the different stakeholders involved in the 

development. Developers have to develop software for the users, the 

managers and the customer. In some organisations, these three roles 

could be played by the same people. However, when they are played by 

different people conflicts arise as they possess different perspectives and 
interests around the software. Users are the people who are going to use 
the software, and developers should focus on them to design user 
friendly applications. Management are the decision makers, the ones who 
know the rules of the organisations and how the software fits there. 

Finally the customers are the ones who pay the bills. According to 
developers these three roles are played by people with incomplete views 
of the problem and trying to make them agree on something is an extra 
burden on their job. 

C6-4: Business side: of software is a category that contains data about 
the commercial side of software. For developers, software is a service 
that contains a piece of developers' intelligence and should be written to 
be sold. Developers' time is also valuable. Some developers state that 
they work under the dilemma of charging or not charging their users for 

every single piece of work they do. Although clients could see these 

252 



Chapter 6: Research Findings 

single pieces of work as small adjustments or add ons, developers think 

that they should discuss if there is a business reason for those. 

Developers are always under pressure from management to productively 

use their time and skills. Therefore every single task a client asks for 

should be fully justified as it costs money and time. 

6.7 C7: Social Software 

Social software is a term that has evolved from office automation, 

groupware, CSCW (computer supported cooperative work) and CMC 

(computer mediated communication) (Allen, 2004). (See a discussion 

about social software in section 3.3. of chapter 3. ) Modern forms of social 

software include weblogs, Wikis, IM, online forums, etc. From the 

fieldwork data, I can see that developers define social software as 

software that allows, encourages or facilitates social interaction (see 

extract 6.40). However, this field is not very well developed yet, and most 

practices to develop social software are still trial and error activities. I 

have classified data about social software in three sub categories: 

Extract 6.40 
Thread title: Tracing the Date: 27`h October 2004 Source: Life with 
evolution of Social Alacrity Weblog 
Software - comments 
"Social software recognizes that people are complex and interactions need to 
allow people to express their full richness as a person, or a human being. 
Groupware focuses on processes, roles and permissions. " 

Chuff 

C7-1: Usability: social software was considered as a category as it pays 

explicit attention to social interactions. Most attention in this area is paid 

to the social interface of software, probably because it is the practical side 

of this field. Concerns here grew around the fact that guidelines for 

usability (human-computer interaction) of software are not sufficient when 

groups of users are using the software to interact. One thing that 

developers interested in social software stated is the difficulty to figure out 

253 



Chapter 6: Research Findings 

the difference between the individual's and group's goals at using 

software and how to find out. 

C7-2: Design: so far the best strategy for social software design has 

been to evolve software with "close eyes on users". Initially, a simple 

product is designed and released in the market. Then developers get 

feedback from their users, usually through the same online application. 

Incremental development is used to fix and amplify the most wanted 

features and reduce the least wanted. Communication with users is 

therefore vital to evolve software to a state in which it serves the needs of 

the group. Another point made here is that the changes in social 

software could affect the culture and behaviour of the group of users. The 

software will succeed or fail depending on the acceptance of that group. 

Finally an interesting question was asked by a developer who thinks that 

the design of social software could be influenced by developers' (geeks') 

preferences in socialisation (see extract 6.41). I think this is very likely 

because no formal methods for developing social software yet exist and 

developers therefore obtain their ideas from personal experience. 

Extract 6.41 
Thread title: Tracing the Date: 27`" October 2004 Source: JoS 
evolution of Social 
Software - comments 
"Would you (the JoS audience) say that the "geekiness" of programmers has 
creeped into the social software they created, with negative consequences? Will 
it do so in the future? " 

Mack 

C7-3: Communication: this category explores social software as a 
facilitator of communication between users. Developers recognise that 

communication is a user's goal and must be considered as a first priority. 
According to social software enthusiasts, there are two characteristics of 

social software that could boost communication. First, software must 

provide different ways for interaction between users, however and 

whenever they like. Second, software must provide a shared space 

where people can gather and leave messages. These two characteristics 

254 



Chapter 6: Research Findings 

will help a community to grow around the software, and hence will make it 

successful. 

6.8 Chapter Summary 

This chapter presented the data collected in my online ethnography as 

organised by categories. The data was presented in the context of the 

online conversations I collected. This exposition provided a descriptive 

picture of software development for complex organisations which was 
built from my interpretations of developers' understandings of their jobs. 

This picture is a useful contribution as it gives an idea about what 
developers think of the current state of software development for 

businesses. However, in its current shape, these findings do not build 

theory (Carroll and Swatman, 2000,239). Wider implications of the 

findings to the research questions need to be considered to create theory. 

In the next chapter I provide a descriptive theory based model which 

explains how software developers make sense of complex situations and 
build mental models of organisations. The aim of the model is to 

introduce to developers relevant social issues that influence and affect 
their work and the software they produce. The model classifies the issues 

in three contexts: the development environment, the development 

practices and complex organisations, and explains how issues happening 

in the first two contexts shape developers perceptions of social aspects in 

the third context. 

255 



Chapter 7: Model of Social Issues in Software Development 

Chapter 7: Model of Social Issues in Software 
Development. 

Having presented my interpretations of developers' views, based on the 

online ethnography, about the current state of software development for 

complex business environments in chapter 6, the aim of this chapter is to 

reshape those findings into a theory based model. Chapter 5 presented 
the data analysis strategy as a process of category generation and 

refinement followed by a stage of concept and proposition generation. 
Chapter 6 presented these concepts and propositions in the form of a 
broad picture of social issues surrounding software development. 

Following that, in this chapter I will build a descriptive model of social 
issues from these data by generalising and organising those findings. The 

model will describe the process that developers go through when they 

make sense of complex business situations and will address social issues 

in three different contexts. Additionally, the model of social issues in 

software development is presented as a complement to Orlikowski's 

model of "enactment of technologies-in-practice". Orlikowski's model 

explains how social structures emerge from people using technology and 
how use may change in time. My model of social issues addresses the 
impact this has on software developers' work. The first section of this 

chapter will re-introduce the social aspects of the model of complex 

organisations. The second section briefly discusses Orlikowski's model of 
"enactment of technologies-in-practice". Sections 3 to 6 introduce the 

model of social issues in software development, and discuss the social 
issues under each aspect of the model. Finally section 7 summarises the 

chapter. Additionally, section 8.4 of chapter 8 will take the ideas 

presented in this chapter and propose directions for future research which 
include further developments of the model of social issues in software 
development by concepts from Orlikowski's and Robey (1991) 

structuration model of technology and Orlikowski's (2000) enactment of 
technologies-in-practice. 

256 



Chapter 7: Model of Social Issues in Software Development 

7.1 Social issues in business organisations: the model of 

complex organisations 

As presented in the introduction of this thesis (section 1.1. of chapter 1), 

the motivation of this research emerged from my working experience. 
Complex human and social issues arose during the design of a decision 

making system. During my participation in that project I found that these 
human and social issues were not addressed by any of the development 

practices we knew, and that our lack of knowledge of social aspects was 
hindering our work. In a process to address this lack of knowledge, in this 

thesis I have built a model of complex organisations that represents and 
generalises the issues I found at work. I developed this model from my 
pre-understanding of social issues and it does not gather other 
developers' views. The purpose of this preliminary model was to state my 
perspective of social issues in business organisations at the beginning of 
this study. I also used this preliminary model to extract a starting list of 
social issues which I used to inform online conversations with other 
developers when engaged in the online ethnography. That initial model of 
complex organisations is shown in figure 7.1 (repeated from figure 1.2 in 

chapter 1), and is a representation of working organisations which are 
interacting through decision making processes. 

257 



Chapter 7: Model of Social Issues in Software Development 

ni. nlnn n....,. a.... 

Single IndMdual, groups of indNkfusia of 
organisations working decision-making 

71 

i 

s 
Flows of Information 

`1ý 
00, 

% 11WVa au a%1w1a 

" Actors can be 
individuals, group of 
people or organisations 

" Group and 
organisational 
boundaries are defined 
by people's 
perceptions (dotted 
lines) 

" Continuous lines 
represent Flow of 
Information 

" Processes can be 
started and ended by 
any actor 

" Processes can take 
airy shape 

" Processes can split in two or more processes; and two or more processes can 
merge in one 

" Extraction, creation and use of information is implicit in the model 

Figure 7.1 Model of Complex Organisations 

This model is discussed in detail in chapter 1. In summary, circles in the 

model represent individuals or groups of individuals interacting with each 
other. The lines represent flows of information and interactions between 

the actors. Complex human and social issues arise in these 

organisations. For example, interactions between actors are 
unpredictable and adaptive. Actors have the ability and power to decide 

and act as they wish depending on the situation. Actors also learn from 

previous experiences and improve their practices to new situations. 
Decisions can be taken individually or in groups. Collaborative group 
work is usually complicated as it involves many interactions which are 
subject to individual working styles and different agendas. Decision 

making processes, represented by flow of information between two or 
more actors, could start and end at any point and take any shape. 
Information is processed at all stages of the process. The needs of 
information vary from actor to actor and from process to process. In brief, 
this model represents highly unpredictable, adaptable multi-group work 
environments which do not correspond to the static, mechanical 
perspectives of business organisations on which the majority of literature 

on software development methodologies and practices are based. 

258 



Chapter 7: Model of Social Issues in Software Development 

However, problems arise when developers are forced to portray 

organisations as predictable and stable in time. These mechanical 

perspectives only hinder their ability to deal with social issues, such as 

unpredictability and adaptability of people, and hence do not help them to 

address these characteristics when they design software. 

This thesis aims to address these human and social issues by providing a 
theory based model that highlights social issues that surround software 
development. This model will acknowledge the impact that adaptive and 

unpredictable use of software has on developers' work, their environment 

and their development practices. The data from the fieldwork shows that 

software developers perceive social issues happening in business 

organisations in different ways, and that these perceptions are partially 
dependant on preconceptions from the developers' environment and 
development practices. Awareness of the nature of social issues in 

organisations will help developers to comprehend users' behaviour. That 

will change developers' attitudes towards software and help them to 

decide which social aspects of organisations need to be addressed and 

moulded in software. 

Also addressing social issues is important for developers' work because it 

will help them to improve the quality of their software and improve the 

rate of acceptance from their users. This is crucial for developers to keep 

their jobs. One of the main concerns stated by developers in online 
forums is the risk of failure or users' rejection of software and developers. 

Failure and rejection happen when software does not satisfy users' 

expectations and/or is not of any help at their work. In addition to 

technical issues, other social issues usually neglected by developers, 

also influence users acceptance. The data shows that according to 

developers their users can and do use their software as they wish 

regardless of the developers' intentions. Users will choose which 

properties of the software they are going to use and will also decide on 
the way they are going to use it. Developers are happy with this as long 

as their users are happy with the software. When users' needs change 

259 



Chapter 7: Model of Social Issues in Software Development 

(they inevitably evolve over time) and the software no longer helps much, 
developers are asked to modify it. Developers make those changes to 

software according to users' requirements and expect these will be 

accepted by users. Problems for developers arise when this maintenance 

work is not paid accordingly or when the software is rejected by users 

and developers lose their jobs. A model that addresses social issues will 

provide developers with a complementary view to the technical one 
(already held, as the data shows) that will help them understand the 

nature of their users and organisations and how to avoid rejection from 

users due to human and social issues. 

The initial model of complex organisations is a model that emerged from 

practical experiences and captures some social issues as I perceived 

them from my working experience. However there is complementary 

theoretical model that focuses on how social issues emerge from human 

action. In the next section I will briefly discuss Orlikowski's model of 
"enactment of technologies-in-practice" which explains why users of 

technology are so unpredictable and changing. Orlikowski's model is 

relevant to the initial model of complex organisations because it 

concentrates on the relationship between social structures and the use of 
technology within organisations. However, this model of "enactment of 
technologies-in-practice" does not address the impacts that changing 

social environments have on developers of technology. Although 

Orlikowski and Robey (1991) suggest different avenues for investigating 

structuration processes during IS development (Jones et al., 2004,318; 

Orlikowski and Robey, 1991,159), Orlikowski has concentrated her 

research on organisational issues rather than in IS development. This is a 

gap that the model of social issues in software development aims to fill. 

7.2 Model of enactment of technologies-in-practice 

A perspective that addresses changing business environments is 

presented in the model of "enactment of technologies-in-practice" by 

260 



Chapter 7: Model of Social Issues in Software Development 

Orlikowski (2000). Orlikowski developed a model based on Giddens' 

model of the "duality of structure". The "duality of structure" states that 

social structures and peoples' actions recreate each other over time and 
space. Social structures are rules and resources which exist only in 

memory traces in humans' minds. Social structures are made manifest 

only in the instances when they are drawn on in action and interaction 
(Walsham and Han, 1991,78; Rose and Hackney, 2003,258). Similarly, 
human action reproduces existing structures, produces new ones and 
brings change (Walsham and Han, 1991,78). Orlikowski (2000) uses 
these recursive concepts to explain how people enact social structures 
when they use technology and how people draw on those structures to 

use technology. Orlikowski proposes a practice lens to look at users of 
technology and at emerging structures from that use as opposed to 
looking at the properties of technologies and how people appropriate 
them. 

The model of "enactment of technologies-in-practice" explains why 

complex organisations are adaptive and unpredictable at using 
technology. Orlikowski says that designers inscribe certain properties in 

the technology which users may decide to use or to not use. Therefore a 
particular technology can be used totally or only partially by users. The 

use of technology depends on users' needs, knowledge of the technology 

and situation, previous interactions with technology and "emotional and 
intellectual" attachments associated to the particular technology 
(Orlikowski, 2000,410). Also, Orlikowski's model, shown in figure 7.2, 

presents "technologies-in-practice" as a kind of social structure which 
emerges from technology use. Orlikowski explains that users of 
technology are situated "within a number of nested and overlapping social 
systems" (Orlikowski, 2000,411). Therefore the use of technology will 
recreate other social structures apart from "technology-in-practice". 
Similarly, users will draw on many varied social structures when they use 
technology. As technology use depends on too many social factors it 

cannot be predicted easily. 

261 



Chapter 7: Model of Social Issues in Software Development 

------------------------------- 

----------------------------- 
Ü t- -----------------------------+ 

Technologies-in-practice 
U) i 

(rules and resources Instantiated In use of technology) 

----------- --------'---- 

Other structures 

. 
enacted in the 

... ............................ ................................................ use of 
technology 

Facilities Norms Interpretive 
e g", e s", Schemes 

hardware protocolos e. g. 
software etiquette assumptions 

knowledge 
C 

Ongoing, Situated Use of Technology 

Figure 7.2 Enactment of Technologies-in-Practice 
Source: Orlikowski (2000,410) 

Use of technology is also adaptive and evolves through time. Continuous 

use of a particular technology may be seen as becoming routinised. This 

could happen for a period of time. People would think of technology and 

social practices surrounding it as stable. Routines, habitual, taken for 

granted day-to-day activities (Rose and Hackney, 2003,260), will develop 

and become institutionalised within the organisation. However, according 
to Orlikowski, this routinised and stable state is only provisional as 
"different elements continue to be developed, existing functions fail and 
are fixed, new materials are invented, new standards are set and users 

modify the artefacts and/or its content for new and different uses. " 

(Orlikowski, 2000,411). Users may choose to adjust their technologies- 

in-practice intentionally in response to changes in their environment; 
improvise to respond to new opportunities or challenges or they may also 
fall into errors at using the technology. 

262 



Chapter 7: Model of Social Issues in Software Development 

As shown, Orlikowski's model presents the use of technology as an 

adaptive and unpredictable process. Software developers have the job of 
creating software that can respond to these characteristics. Orlikowski's 

model presents a face of technology use that could allow social issues in 

business organisations to be explicitly recognised but fails at addressing 
the implications that this adaptive and unpredictable use has on 
developers work. Although Orlikowski's model has such key implications 

for developers it does not directly address them. The data collected 
however addresses these issues and is useful to complement this model. 
In figure 7.3 I present a framework that presents the model of complex 

organisations, Orlikowski's model of "enactment of technologies-in- 

practice" and situates my final model of social issues in software 
development as facing social issues (in complex organisations and the 
development environment) and completing the cycle of software 
development. 

m 
u 

U 
m 
ä 

C 

N 
m 
0 
O 
O 
C 

UO 
m 

f- 

Ö 

C 

m 
E 
U 
m 
C 

W 

Use of Technology Perceptions of Social Issues and Emma, msnt 
DPractioes t 

according to Orlikowskl's model their Inscription in technologies 

sue! i scnoea prsooncaptloneot 
properties in oftware Shy Organisations amarg. 

from development 

P c4 

"b Z 

(an 

vkonmanl and development 

ýi ttf 

ý Social Issues 
® perceived by devel rs 

Users use (totally or 
partially) inscribed i 

poperaes In Software 
enact social Use 

an or 
and 

-tsocial ong from 
ýb 

e, s acceW structures 
re of actions 1.5 
Softwar ,, Developer 

�<__F, 

odel of Social Issues In Software Development 

of COMP nisational 

Use Mode Design Mode 

Figure 7.3 Framework of Software Development 

Starting from the initial model of complex organisations (bottom left and 
reading clockwise) the framework presents social structures emerging 

263 



Chapter 7: Model of Social Issues in Software Development 

from complex organisations that use software. These social structures 

are perceived by developers and engraved into the software that they 

develop. Users of software may use totally or partially the software or 

may reject it. When the needs of users change, and the social structures 

emerging from the use of software change, developers are asked to 

modify the software. The cycle is repeated again, as developers have to 

examine the new social structures and requirements from users to adapt 
the software. The model of social issues in software development 

describes the process developers go through when they make sense of 
the adaptive and unpredictable multi-group organisations represented by 

the model of complex organisations and enactment of technologies-in- 

practice. 

In an earlier work Orlikowski (1992) presented technology as a duality 

which comprises two modes of technology. The first one is the "design 

mode", and presents technology as created and changed by human 

action. The second mode is the "use mode" and sees technology as used 
by humans to accomplish some action (Brooks, 1997,139). Orlikowski 

(1992) acknowledges that there is a misleading and artificial (Orlikowski, 

1992,409) disjuncture between the design and use stages. This means 
that a one-sided view of technology arises because one mode of 
technology is always invisible. Therefore designers of technology will 
adopt an open systems perspective whereas users will treat technology 

as a black box (Orlikowski, 1992,407). For Orlikowski a structurational 
perspective on technology would posit "artefacts as potentially modifiable 
throughout their existence" and hence will portray technology as designed 

and used recursively (Orlikowski, 1992,408). Although using the time- 

space discontinuity is useful for analytical purposes Orlikowski (1992) 

states that both modes are tightly coupled. The framework shown in 
figure 7.3 presents software as a duality with the design mode on the 
right hand side and the use mode on the left hand side. The model of 
social issues in software development presented in the next section 
describes how the design mode of software is influenced and affected by 
the social issues arising in the use mode. In this way I am recognising the 

264 



Chapter 7: Model of Social Issues in Software Development 

tight interrelationship between both modes of software and reconnecting 
them to remove the discontinuity. 

7.3 The Model of Social Issues in Software Development 

Before presenting the theory based model of social issues in software 
development I will remind the reader of the research aim already stated in 

chapters 1 and 4 as it is connected to the objective of the model: 

To identify and explain how the social issues within the 
software development environment and the social aspects of 
complex organisations shape software and the process of 
software development. 

The model of social issues in software development created here 

answers to this aim and reveals "the system of interpretations and 

meaning, and the structuring and organizing processes" (Gioia and Pitre, 

1990,588) that happen during software development for complex 
business situations. This final model presents the social aspects 

surrounding software developers and organises these aspects in a 
sequential fashion which shows the order in which these aspects 
influence developers in their jobs. In other words, the objective of the 
theory is: 

To build a picture of Software Development for Complex 
Business Situations that describes and explains the process 
that software developers go through when they make sense 
of social aspects of the target organisation, the information 
system and the users that the software has to serve and 
when they assess and compare the technical aspects of 
software with the social issues within business settings. 

Figure 7.4 shows a schema of the model of social issues at an earlier 
stage of development. Data from the fieldwork showed me that there 

were human and social issues emerging from the development 

environment and practices, and from within the target organisations that 

265 



Chapter 7: Model of Social Issues in Software Development 

influenced developers' perceptions. I found that the way developers 

perceived social issues in their target organisations depended on or were 
affected by the particular social issues surrounding their environments 
and practices. I noticed this by seeing the difference in perceptions 
between developers' who where working under different circumstances. 

Scheme of 
the 

Descriptive 
and 

Explanatory 
Model of SW 
development 
for complex 
situations 

Research Question 2 

* WSW 
Developers 

Development 
Environment 

Research Question3 

SW Development 
Practices 

Identification of 
Social Issues 

Research Question 1 

ýv ý^ý : Social issues 

Figure 7.4 General Schema of the Model of Social Issues in Software 
Development 

The schema of the model shows a flow (represented by the arrows) 
composed by the research questions (represented by the boxes). This 
flow shows how social issues are identified. Thus this model helps to 
understand the processes through which software developers make 
sense of their software and users. The model shows that the three 

research questions tackle social aspects within three different contexts. 
The first question addresses social issues within the context of complex 
organisations. The second question tackles social aspects in the software 
development context and the third one focuses on formal methodologies 
or informal practices (see table 7.1, repeated from table 1.1 in chapter 1). 

266 



Chapter 7: Model of Social Issues in Software Development 

Within each context the social issues affecting software development are 
listed and thus the research questions are addressed. 

Q1: What are the human and social aspects of business 
environments that make software development complex 
and difficult? 
Q2: What are the social aspects in the development 
environment that allow or hinder the identification of social 
issues in business settings during the development of 
software? 
Q3: What aspects of current software development 
methods address or neglect social issues in business 
settings? What is social software and does it have a role 
to play in improving these practices? 

Social Issues in 
Complex Business 
Settings 
Social Issues in 
Development 
Environment 

Social Issues 
considered in 
Development 
Practices 

Table 7.1 Overall Contexts covered by the Model 

Following the summary outline from figure 7.4, figure 7.5 shows the full 

model that describes and explains the process that software developers 

actually go through when they develop software for complex business 

settings. Each box represents the contexts that influence software 
development and the arrows represent the flow of the process. In each 
box I have included, in bullet points, the relevant social issues within each 

of the three contexts that influence software development. These issues 

were developed from the propositions that emerged from the process of 
data analysis. The process by which these propositions emerged is 

explained in chapter 5, section 5.2.3. 

267 



Chapter 7: Model of Social Issues in Software Development 

mAC 

slit 

air "ý t9 
wö 

°ý' 
ýý 

Nyº ý 
OS il 

p zyYNg0 

230 

z 

U 

aWNo 
C; 

Go .9 äQ ýo 
NMG 

mfj 
q 

Vi 03 

y01 

0GCÖ 
mQy 

haw 'ý.. ý Ow o3ýwtým 

In om 
ämä 

V 
4M 

! 
ate dcm /0 o@N NC 

w 0.0) Lt, 
s 

C 
Ö 

LU 4c, 

L 

ip 

a 
iý -N 

NI 
'R N 

Co 

(D j2 :E0 12 E 9 

7LNNO 
O_I 

" 

,Ö 

Eop 
p7 OC 

NdU 

O 
- fA 

in m 
G) C 

' 
8 Ö. y 

s ý_ o 
E 

3N 0ý O 
cm U 

3N VO (0 

to N0C3ß &ý ON 

0 adEA! Or 

ill 
C m L 

Q° `m cn E me `° 

».... A, mM rnv, }0uC "U) C ; 

M oa 
50 j" 0 

'. d 

O 
j Vý1 aý '0 

T m 
ß O 

,y O dN 

LTl 

U, 0- 

cm C 

A r_ W Co OC 
y (D v Co ib :i f. ' 31 c9 

fA 

0 . UC G) D 
I M5 Ep 

" 
Q1 Td n% 

$ 

.0 
C 5E ANivi 

2 
CC OcOt9.. 02 

C; 
0 

ö 
m 

EaEm 
dmm Edo ro Er c5 m ß 

'C _ ,0 m0 
SFJ o v°, ý» v 

Co m Z ...... 

E $x 
.2 

Ee V $ üý ýn a .Qý3 0. 
E 
0(% ma 

13 °ýý' ö :SNA 

c C` ymci 
9 t7 

O 
N 

C 

m ro 
O2 O 

ö 

12 
C`CcO 

of 

C 
: cý 

7OOL Co Em 
_ y; 

K CLM mn 
42 ä 

Em% 4-- 
U' r- '0 ia " 

Z 
Figure 7.5 Model of Social Issues in Software Development 

The model suggests that the software development process starts from 

previous experiences developers have had: their past or current job 

settings and formal or informal development methodologies that they 

have used or known. The flow is completed when developers are 

exposed to the complex organisation that is using the software and face 

268 



Chapter 7: Model of Social Issues in Software Development 

the social issues there (which then become the "previous experiences" in 

future development processes). 

From the categorisation in chapter 6, data categories show that when 

software developers undertake a new project it is not the aspects of the 

target organisation which are first addressed or acknowledged. 

Preconceptions of the target organisations are built upon developers' 

background knowledge and experience. For example, developers 

working with object oriented languages will think of organisations as a set 

of interrelated objects, with features and methods, which can be 

encapsulated and coded. Also, developers using traditional waterfall 

methodologies will assume that organisations and users' requirements 

are stable and do not change through time. This background knowledge 

and past experiences influence developers' first thoughts and activities, 

and are presented as issues within the two contexts shown in the top of 
the model: software development environment and software development 

practices. Past or current arrangements at their work place dictate how 

they will start. The organisation of project teams and/or specialised 

groups that perform part or the totality of the development process 
influence the way they will start looking at the problem situation and 
finally how they will perceive it. For example, the perspective from a 

software developer who works at a software house where management 
dictates how teams are arranged and labour is divided would be different 

than the one who works remotely, as freelancer and has developed his 

own personal style. 

In extract 7.1 I show a comment from an online participant, Jonathan A. 
He is a freelancer and does work remotely. He rarely, if ever, does have 
face-to-face contact with the final users of his software nor with their 

managers. Nevertheless, Jonathan confesses that this arrangement has 

worked for him and his contractors. In a case like this the developer 
builds a picture of a complex organisation from the picture given to him by 

other developers. For him the target organisation is an idea comprised by 
bits of organised information provided by other developers. Whenever he 

269 



Chapter 7: Model of Social Issues in Software Development 

needs clarification he asks through electronic media. Apparently the level 

of knowledge he gets about the target organisation is good enough to get 
his job done. Therefore, whenever Jonathan starts a new project he will 

use electronic communication because it has worked for him. He will also 
think of the new target organisation as bits of organised information 

provided by a third party because this is the way he is used to think of 

organisations. This, however, would not be the case in other kinds of 

projects, where the working practices assume physical presence is 

required to guarantee full understanding of all important issues. 

Extract 7.1 
Thread Title: Remote software work Date: 30"' June 2004 Source: JoS 
by bidding sites & online ads 
"All 3 of these clients do web development for their own clients so I'm their 
programmer and they typically already have the design talent in-house. " 

"An additional thing is that I'm able to speak the business speak for the most 
part and I communicate with them intensely. Most of this communication is via 
email or IM. I am involved with some conference calls when we need to talk to 
one of their clients. I really like this arrangement because I have people out 
there drumming up work for me (their sales people) to keep me a fairly constant 
flow of work. " 

Jonathan A. 

Additionally, software development methodologies preferred by 

developers or imposed by team leaders will guide developers on what, 

where and how to look for relevant information in the target organisation. 
Depending on the selection of methodology different software could be 

created for the same situation. For example, very technical approaches 
would make developers overlook social aspects that could be significant 
for the software to be successful. Also these kinds of approaches are 
generally not responsive to changing environments and will struggle 
when the context evolves and users change their requirements. Recent 

approaches however have been developed to allow developers to deal 

with changes. The most popular are the agile methodologies like XP: 
Extreme Programming formulated by Kent Beck (1999) and The Crystal 

Family formulated by Alistair Cockburn (2000a). These approaches 

270 



Chapter 7: Model of Social Issues in Software Development 

emphasise close work with users and rapid response to changes. 

Usually software is delivered in pieces to allow time for users to use the 

software and provide feedback, and for developers to continue their jobs 

without the pressure from users but with useful feedback from them. 

These approaches see software development not as a "design - 
implementation - use" sequence but as a continuous evolutionary 

process, closer to a service than a discrete artefact. 

In extract 7.2 I present a different example of methodologies influencing a 

developer's perception. In this case a developer needs diagrams to 

understand organisations. The developer comments on how he struggles 

at getting the big picture of a situation when only verbal communication is 

used. He prefers to draw his ideas using diagrams because this allows 

him to decompose the situation into smaller understandable pieces. If he 

were not to use diagrams at all his perception of the problem situation 

would be incomplete. Whenever "meagain" faces a new assignment he 

perceives the target organisation and problem situation as a diagram 

rather than a set of words. In this particular case the use of a 

methodology that emphasises verbal communication, such as Scrum (an 

agile methodology which encourages daily face-to-face meetings to 

assess progress and upcoming work), would affect negatively the 

developer's perception of a target company and would affect his 

productivity. 

Extract 7.2 
Thread Title: Why Not Use Date: 16`" June 20004 Source: JoS 
Diagrams and Models 
"Ummm this is interesting. I am quite fond of just taking a pencil and paper 
before I do things. When I worked at an ad agency I always whiteboarded 
stuff. I like to take something and organize it at a big level into simple, 
understandable parts ... they can be decomposed until the code level. But ... like the OP [Original Poster] ... that is not the way it's done where I'm at now. 
People prefer talking and all *artifcats* a programmer receives is through imho 
duck soup word docs. They ramble. Once you start to concentrate you are 
forced to ask questions. I had to ask, and ask again to get screen shots. I have 
a feeling that maybe people are just not comfortable enough with the domain to 
put anything on a whiteboard. If they put a lot of words in a template it then 
becomes something when really its just duck soup but if only you recognize it 
for what it isn't, what do you do? " 

271 



Chapter 7: Model of Social Issues in Software Development 

As seen, background knowledge and experience shape the eyes through 

which software developers will see complex organisations. Depending on 
these eyes different pictures of the same organisation could be drawn, 

independently of the particularities of the organisation. Social issues, if 

perceived, would be seen differently and would affect differently the final 

product. Additionally, the particular social issues happening in the target 

complex organisation, as perceived by developers, will shape further their 

perceptions at a later stage. On the one hand, positive feedback from 

users who are happy with the software and find it useful will reinforce 
developers' perceptions of social issues. On the other hand negative 
feedback from users who complain about the software will make them 

reconsider their views on the situation. This reconsideration could lead to 

changes in their current arrangements as project teams and 

methodologies or informal practices, changes which again will reshape 
their perceptions of the target organisation. When these perceptions are 

stabilised, social issues within complex organisations are identified, 

understood and considered for software development. 

Extract 7.3 shows an example of how negative feedback makes one 
developer look for different alternatives whereas positive feedback 

reinforces another developer's views on organisations. In the extract 
Patrick needs help on how to deal with traders and Steve Jones (UK) 

shares his experience in similar environments with him. Patrick has a 
preconception of trading environments. He portrays traders as difficult 

people to work with. Put in the context of my theory, Patrick has received 
negative feedback from his users and needs to reconsider his view on the 

situation. Therefore he is looking for a different methodology that could 
give him better results. Steve Jones (UK) agrees in that traders are tough 

people but also says that there is a better way to see this and 
recommends a new strategy. Steve Jones (UK)'s exposure to traders' 

environment made him shape his perception of traders differently. He 
thinks traders' environments could be fun environments to work in. He 

272 



Chapter 7: Model of Social Issues in Software Development 

has also developed a strategy of under-promising and over-delivering 

which makes him and his users happier. He probably tried different 

alternatives before and this one worked. Thus in terms of my model, the 

positive feedback on his job has reinforced this view of organisations. 

Now he associates the under-promising and over-delivering strategy with 

trading environments. Similarly, as this strategy works and both 

developer and users are happy, his perception of traders became a more 

positive one. 

Extract 7.3 

"i was wondering if anyone had opinions of based methodology for developing 
software on a trading floor environment? 

let's face traders can be jerks. they change there mind, they don't think. has 
anyone tried using XP? Has it really worked? or have you done just code-and- 
fix and solve whatever was thrown at you? " 

Patrick 

"In my experience of working with traders on the trading floor, it can be tough, 
but a lot of fun too. 

As others have mentioned, traders time is for trading, anything else is eating 
into their p&I, which untimately eats into their bonus. 

The best thing to do is to understand everything you can about their job and 
how they and/or their team works. In this way, you can just help them and they 
will be happy. 

Don't be tempted to offer them the "best" solution. They don't give a crap about 
how elegant your shit is, they just want it to work. 

My best advice is to under-promise and over-deliver, as with all projects, but 
with these guys especially. If you do a good job, they'll give you more work and 
you'll be set up. " 

Steve Jones (UK) 

Having explained the flow of the process in the final model of software 
development, I will discuss the three contexts that make up the model 

and will relate them to the three research questions. As the discussion is 

long and for more clarity, I am dividing the discussion of each part of the 

model in different chapter sections. I will start from the software 
development environment (section 7.4) and software development 

273 



Chapter 7: Model of Social Issues in Software Development 

practices (section 7.5) contexts as they come first in the flow of the 

process of development. Then I will discuss the human and social issues 

in complex business settings in section 7.6. 

7.4 Social Issues in the Software Development 

Environment 

Having looked at the process developers go through when they make 

sense of social issues at designing software I will now explore in more 
detail the social issues within the context of the software development 

environment. The software development context comprises the physical 

setting where developers work, the way they are organised as teams and 
the overall atmosphere among developers. Contradictory perspectives 

emerge from development groups: from the managerial ones to the more 
technical ones. Development environments are usually a mixture of 
different (professional) backgrounds, ideologies and working styles that 

have to work together as a unit to be successful. Individual preferences 

shape the styles of the group at different levels and the group as a social 

collectivity (Checkland and Holwell, 1997) with its own identity also 

shapes the styles of its members. Working styles in a development 

environment are a reflection of the perspectives developers have of their 
jobs and their assignments. Additionally, their working styles also shape 
their perceptions of working environments and assignments. 

In the following discussion I will explore how the combination of social 
aspects in the development environment found in the fieldwork influence 
developer's perspectives on complex organisations. These perspectives 
shape the way they perceive their users, how they understand business 

processes and address them at developing software. These aspects are 
shown in figure 7.6 as extracted as subsection from figure 7.5. 

274 



Chapter 7: Model of Social Issues in Software Development 

Software Development Environment 

" Software development driven by " Lack of stability and rest, lack of 
"common sense" and not by formal motivation 
methodologies. " Bad planning ending in reactive 

" Fear of, failure, outsourcing and attitudes like 
becoming obsolete drive projects " redundant work 

" Developers focus on the technical " repetitive work 
side of software " Organisational culture impeding 

" Developers have poor interpersonal adaptation 
and communication skills " Large groups are difficult to 

" Ways of working that do not match coordinate and communicate 
the developer"s style or project " Lack of understanding of why things 

" Impositions or interference from are done the way they are done 

management " Different or contradictory goals and 
" Pressure from users perspectives from different members 

of the team 

Figure 7.6 Social Issues in the Software Development Environment 

Social issues within the development environment emerge from four 

sources. The first source is the developer himself, his ideologies, feelings 

and personal preferences. The second source is the development project 

manager and the relationship between him and the development team. 

The third one is the user (or client) who can play a double role. Users are 

an important source of information for developers as they possess first 

hand knowledge about the target organisation. Users as well can become 

developers' supervisors and put pressure on them. The fourth source is 

the organisational culture in which the developers work. In the case of 

developers who work alone, organisational culture would equate to the 

personal style of the developer. Some of the aspects discussed below 

emerge from more than one source. 

One of the most influential human issues found in the data is the use of 
"common sense" (as developers call it) for developing software. Common 

sense is a set of ideas emerged from experience which not necessarily 
have valid and reliable supporting evidence. Common sense is 

considered as part of the development environment context because it is 

a sign of the attitudes of developers towards their work. At work most 

developers trust more their common sense than formal procedures. A 

275 



Chapter 7: Model of Social Issues in Software Development 

good developer is a developer who can use his common sense and 
discern the best solution for a problem. In some environments developers 

who follow to the line methodologies without questions are seen as 
talentless with a lack of creativity. 

Common sense was also explored in chapter 6 in category 
[Methodologies/Free Will]. The reason for using common sense, it seems, 
is the difference they find between the assumptions that standard 

methodologies have about organisations and what organisations are in 

reality. There is a popular saying among developers that says "there is 

no silver bullet", meaning there is no methodology that works in all 

situations or there is no magic solution in software. Developers 

experience this in practice when the methodologies that they use fail. The 

reason for this failure particularly in the business applications 
development field could be the wrong assumptions these methodologies 

come with. Coming from an engineering origin these methodologies 

emphasise a mechanical perspective of organisations. Such mechanical 

perspective is different from the initial model of complex organisations 

presented in the introduction of this thesis. This model suggests that 

organisations are unpredictable, adaptable and are comprised of groups 

of people working together in different ways. Attempts to mechanise 
these environments usually fail because of the human and social factors 

involved. Another factor that affects developers' perceptions of formal 

methodologies is that they are usually taught in a contextless fashion. It is 

assumed by many developers that the same methodology can be used to 
develop any kind of software. The problem arises when methodologies do 

not work in certain environments and when developers do not understand 

why this happens. 

Contrary to hindering the identification of social aspects within complex 
organisations, common sense would in fact help the developer if used 
appropriately. Common sense shapes developers perspective of 
complex organisations as it gives them an open minded perspective with 
no predefined models. By using their common sense, developers address 

276 



Chapter 7: Model of Social Issues in Software Development 

the unpredictable and adaptive nature of complex organisations. In 

chapter 6, category [Software/ Characteristics of Software] I explored how 

unpredictability, adaptability and other characteristics of complex 

organisations are reflected in the software that developers produce. 

Common sense adds the human factor to software development 

practices that is needed to develop in a more agile way and to be able to 

sense these human factors happening in complex organisations. 

However, this common sense needs to be developed in a 

comprehensible way. Developers should be able to understand why 

things work in some situations and not in others. Data shows that the lack 

of understanding of development practices hinders developers' ability to 

understand their assignments. This is especially true for very technically 

oriented developers who are facing complex social environments. In 

these cases developers with a lack of understanding of the underpinnings 

of a methodology will follow them to the line and would not know what to 

do if a problem arises. As most development methodologies are 

technically oriented and do not account for social issues it is very 

probable that developers using them would face obscured contradictions. 

Understanding why things are done the way they are done is an 

important factor that may open the eyes of developers toward social 

issues in organisations. Additionally it will help developers to develop 

their common sense into proven and more reliable knowledge (closer to 

the reality of complex organisations). 

Fear also shapes developers perspectives of target organisations. Fear is 

a factor that distracts the attention of developers from the social aspects 

to the technical aspects of development. The most commented on kind of 
fear is fear of failure which is caused by pressure from users over 
developers and management. Developers receive twice the burden of 

pressure as mangers themselves transmit their stress to developers. Fear 

would make developers focus on their personal productivity and 

performance to finish "good enough" software and would make them 

neglect important social factors in organisations. As productivity is 

assessed by the speed of their coding and the technical quality of their 

277 



Chapter 7: Model of Social Issues in Software Development 

software, other factors are obscured. When users exercise pressure 

over developers, developers' views of users also changes. It becomes 

difficult for developers to picture their users in their real working 

environments and to focus on the way users actually do things. On the 

contrary users become stressing agents for developers. Developers know 

that the picture users create of themselves is usually incomplete and 

comprised only of their personal goals. However, developers perceive it is 

not in their hands to judge this but only to do as their users and managers 

wish. 

Other important human aspects are those personal characteristics that 

developers share and that shape the developers' stereotype as a group. 

As mentioned in chapter 6, in category [Developers] developers portray 

themselves as having poor social skills but possessing high technical 

proficiency. Coming from a computer science background most 

developers have very mechanised views of organisations. Additionally as 

developers' work is purely technical and is assessed by productivity it 

usually does not give space for extra social concerns. These factors 

combined with the developers' inability to relate with other human beings 

(as they themselves state) make it difficult to talk to and understand 

users. This inability is also reflected within the development working 

environments. Very few developers like to work with other people let 

alone work in open environments. This attraction for isolation limits 

developers from sharing points of view and considering perspectives that 

they have not considered. The consequence is that developers end up 

having incomplete views of the problem situation they are working with. 

Additionally these views of organisations could be different from the ones 

of other developers. Usually this problem of diverse views is solved by 

attending meetings and sharing experiences. Social factors happening in 

complex organisations come to the surface of developers' pictures when 

developers exchange ideas among them and with clients. However, as 

the account in chapter 6 describes, developers, in general, do not like 

meetings finding them a waste of time. 

278 



Chapter 7: Model of Social Issues in Software Development 

Finally, project managers can force views on developers. This could be 

positive when managers understand developers' work and possess a 
wider perspective of target organisations. However, bad management 
could become a factor that hinders the identification of social aspects in 

organisations relevant for software development. Data also shows that 
developers resent very much when managers do not know what 
developers are doing and lead them (developers) to the wrong direction. 
In essence, developers do not take well impositions that do not match 

their points of view and are perceived to not work. According to 
developers good managers should know the nuances of their work and 
the particularities of each individual working under their command. 
Management that imposes the wrong methodology to developers will limit 
them in their jobs. As mentioned before, as managers assess developers 

on productivity, in a way, managers take developers away from social 
concerns and lead them only to technical and financial ones. One 

example is when developers are forced to do repetitive or redundant work 
as a consequence of bad planning. Repetitive and redundant work is a 
result of managers not understanding the complexities of target 

organisations and of playing trial and error games. 

7.5 Social Issues in current development practices 

Current software development practices in the context of this thesis 

means three things: first, the formal, textbook methodologies, second, the 
informal but organised practices carried out by developers and third, the 

conflicts and differences between formal and informal practices. Data 

shows that where formal methodologies are adopted, these are usually 
imposed by management. Developers might or might not agree with 
these practices but at the end will adapt them to the developers' style. 
Where no formal methodology is overtly adopted data shows that 
developers still acknowledge the use of a set of practices which make 
sense to them. These informal practices are a result of combining parts of 
formal methodologies, inventing new techniques and using developers' 

279 



Chapter 7: Model of Social Issues in Software Development 

common sense. From these two kinds of development practices I have 
identified common characteristics that either allow or hinder the 
identification of social issues in complex organisations. These 

characteristics (extracted from the complete model shown in figure 7.5) 

are shown in figure 7.7. 

Software Development Practices 

Address Social Issues 

" Use of common sense 
" Observe users in their natural setting 
" Evolve software with dose eyes on 

users (feedback) 
" Working with users 
" Iterative and incremental strategies 
" Expecting change 
" Clarification of ambiguities 
" Social software 

" recognises the group as the user 
" designed to encourage certain 

kinds of behaviour 

Neglect Social Issues 

" Focus on the technical side of software 
" Lack of knowledge about ethnography 

or reluctance to observe users in their 
natural setting 

" Developers' preference for remote work 
" Focus on usability and not group-sability 
" Intermediaries, who transfer the 

information from the target organization 
to developers. 

" Most practices that address social 
issues are not popular practices among 
developers 

Figure 7.7 Social issues in current development practices 

From figure 7.5 we can see that the issue of common sense appears 
again as playing an important role at helping developers to identify social 
issues in business settings. Common sense helps developers to use their 
human and social sensors when they try to make sense of a complex 
organisation. However common sense in this context should be 

understood as the ability to discern how to deal with and understand a 
social situation and make the most of this knowledge to develop software. 
It also means to be able to see when a methodology (formal or Informal) 
is not working and different measures should be taken. Common sense 
should be educated. The more exposure a developer has with adaptive 
and unpredictable business settings where heterogeneous groups of 
people work and interact the better moulded the developer's common 
sense will be. 

280 



Chapter 7: Model of Social Issues in Software Development 

Some current development practices help developers build their common 

sense. Most of these practices involve close contact with users and the 

users' working environments. Ethnographic related practices like 

observing users in their natural settings give developers first hand 

knowledge about how things are done in reality. Interviews with users let 

developers grasp users' views about their jobs and colleagues. Having 

users as part of the project team helps to strengthen the links between 

users and developers. It also helps to develop more trust and to open 

more channels of communication. This would help to tackle complexities 
in business organisations like discovering hidden agendas or covert 

practices among users. This was discussed in chapter 6, categories 
[Software development/ Characteristics/ Complexity] and [Software/ 
Characteristics/ Complexity]. Another aspect mentioned by some 
developers was that keeping a system of fluent feedback from users 
helped them to improve the quality of their software. User's feedback 

would feed developers with information about the actual use of software 

and would help developers to discover mismatches between developers' 

assumptions and reality. 

Other aspects of development practices encourage developers to change 
their attitudes toward business organisations. For example iterative and 
incremental strategies are designed to allow developers to account for 

changes in requirements and correction of mistakes. These strategies 

were discussed in chapter 6 in category [Software Development/ 

Characteristics/ Incrementability]. My data shows that the source of 
mistakes is usually of human nature. For incrementalists (developers 

following incremental practices) users are ambiguous beings and the 

responsibility of such developers is to unravel the ambiguities in the 

users' requirements. Developers who work under the assumptions of 
traditional development methodologies usually find it difficult to accept 
that business organisations and people cannot be mechanised in 

predictable way and hence inflexible way (see chapter 6 [Methodologies/ 

Traditional]). This attitude leads developers to delays in their work and 

poor quality products. 

281 



Chapter 7: Model of Social Issues in Software Development 

Finally, Social Software is a new concept that has the potential to 

highlight social issues in the software development field. Social software 

was defined and explored in chapter 6, category [Social Software]. Social 

software is the latest step in the evolution of software used for 

communication. Social software is a new term and is not yet very well 
known among the development world. However, this new concept brings 

with it explicit concerns about human and social interactions and how 

they can be reflected in software. So far practices for developing social 

software are a improvised and a result of trial and error strategies. 
However from the data it was possible to extract two basic principles that 

may open the eyes of developers to social issues. The first principle is the 

recognition that the user of social software is a group and not only 
individuals. This acknowledgement of groups would allow developers to 

consider social interactions happening between people and how these 

interactions can be supported by software they develop. The second 

principle is that social software should be designed to encourage but not 
force certain kinds of behaviour. Software should suggest ways of doing 

things and let the user decide on the best way for him. This principle 

addresses the fact that decision makers in organisations act differently 

depending on the situation and that their behaviour is inherently 

unpredictable. 

Aspects of current development practices that hinder the identification of 
social issues are mostly related to the technical orientation of the majority 
of methodologies in the field. A focus on only technical aspects is usually 
a consequence of basing software development methodologies on 
engineering ones. Other factors that encourage a technical focus are 
remote work and the use of intermediaries to transfer knowledge from 
target organisations to developers. Remote work is becoming more 
common nowadays as it saves the developers time and money and as it 
is more practically possible (see chapter 6, category [Developers/Remote 

Work]). Intermediaries are analysts, who are in contact with users and 
prepare functional specifications for programmers. Intermediaries exist 

282 



Chapter 7: Model of Social Issues in Software Development 

only where development tasks are divided and developers specialise in 

different areas. In other kinds of environments developers do analysis 

and programming. Not having direct contact with peers and users limits 

developers' mental models of their target organisations. In programmers' 

minds organisations become a set of technical requirements and 

diagrams that contain little if any indications of human or social issues. 

Where human or social issues are considered they are addressed only 

partially. The fieldwork data shows that human and social factors are 

considered only as far as individual usability is concerned. (See chapter 

6, categories [Software/ Characteristics/ Usability] and [Social Software/ 

Usability]. ) Decision making work is done individually as well as in 

groups. (See the discussion about complex organisations in section 1.1 of 

chapter 1). Demands from modern organisations require that software be 

able to support social interactions among users. Software does not only 

serve individuals but a group who needs to communicate with each other 

to do business. 

7.6 Social Issues in Complex Business Settings 

The concept of complex organisations for this thesis was first explained in 

chapter 1 and further developed in chapter 2. To summarise, complex 

organisations are organisations with high degrees of human and social 
interactions, where decision makers act freely; individually or in groups. 
These characteristics make software development difficult. Working from 
this preunderstanding of complex organisations, I engaged in an online 
ethnography to see what were the perspectives of other developers. I 
found the aspects of complex organisations as shown in figure 7.8 
(extracted from the complete model shown in figure 7.5) reflected in 
developers conversations. As mentioned before these perceptions are 
shaped by other social aspects within the development environment and 
the development methodologies the developers follow. Although 
developers do not acknowledge the aspects mentioned in figure 7.8 as 
social and important for software development they still are able to 

283 



Chapter 7: Model of Social Issues in Software Development 

perceive them. I have classified the aspects in issues emerging from the 

nature of complex organisations as perceived by developers, and issues 

that emerge from the relationship between the organisations (and users) 

and developers (and the software that they develop). 

Complex, adaptable, multi-group Organizations 
Nature of Organizations Nature of Organizations Who is the user? 

" Control of Information for Power gain, " Remote users " Difficult to assess who the key users er, 
politics " Users reluctant to change " Difficult to please all users 

" Free social Interactions among users " Users caring more about the old " Two different stakeholders might be 
" Adaptation or flexibility of users to new system Involved: 

conditions " Organfsationai culture Impeding " The user, who will actually use the 
" Contradiction between official procedures adaptation system 

and what users actually do " Organisations with poor channels of " Management, who influences software 
" Different goals and Interpretations about communication design, but who might not know how 

the system " Difficult access to key users things are done 
" Group interactions are more complex " Lack of sense of community among Software than human-to-computer interactions users that would drive the use of 
" Organisations and users are software 

" The level of dependence of software unpredictable 
" Size of organisation correlates with 

directly Influences adaptability, commitment 

complexity and acceptance of users 
" Faulty software affects trust of users 

Figure 7.8 Social aspects of Complex Organisations 

My data shows that developers experience social complexities in 

organisations through their interactions with users, their reading of 
documentation and the feedback they receive from use of software. 
Issues like unpredictability and adaptability in complex organisations, 

mentioned as part of organisations' nature are perceived and interpreted 

in different ways. Adaptability is the capability to change according to a 
new use or situation. This is perceived as a positive skill by some 

managers and users as they are required to respond quickly at changes 
in organisation and environment. This however is not always perceived 
as a positive skill by developers. The need for adaptability in software 
development (to follow the changes in business organisations) is also 
perceived as a consequence of users not being able to decide what to do 

and stick to one plan. In these kinds of situations users change their 

minds constantly at a pace that software and software development 

cannot follow. One cause of this perception could be hidden agendas 
within the organisation. These hidden agendas are difficult to discover 

and bring with them ambiguities and misunderstandings. Humans are 
able to adapt and work around these issues. However it is not that easy 
with software. Developers say that they need formal, overt procedures to 

284 



Chapter 7: Model of Social Issues in Software Development 

work from to develop and maintain good quality software. This 

contradiction is a consequence of trying to match two different 

"creatures": organisations with their unpredictable and adaptable nature 

and software which is predictable and does not adapt that easily. Some 

developers recognise that there is a contradiction between the needs of 

their users and the way software is designed. In extract 7.4 a developer 

suggests that users' needs should not be put away because of software 

limitations. 

Extract 7.4 
Thread Title: Are people Date: 12th January Source: JoS 
complex? 2005 
"the world doesn't have to accomodate to the simplicity of your software 
development. Your software is not the center of the universe. " 

Daniel Daranas 

Unpredictability is a consequence of organisations' adaptability. Some 

business processes cannot be standardised into predictable procedures 

because this would limit or restrict their adaptability. Free social 

interactions among users, especially decision makers cannot be 

standardised because of the nature of decision making. Users need 

freedom to act as they think, but need all the tools and information offered 

by software available first hand. Unpredictability as with adaptability, is 

most of the time perceived as a negative factor by developers; it is a 

consequence of not following standard procedures. Working with no 

standard procedures is thought by some to be an impossible task. 

Software can only be created for formal and predictable procedures. 
Another factor that increases the unpredictability of decision making 

processes is the need to work in groups. In these situations the number 

of interactions grows exponentially and processes become more 

unpredictable. Additionally, the inability of developers to see beyond 

human-to-computer interactions to group-to-computer interactions makes 
this factor more difficult for them to deal with. 

285 



Chapter 7: Model of Social Issues in Software Development 

Other social and human aspects within the complex organisation 

environment perceived by developers as problematic are the different 

goals and interpretations that management or users have about the 

system (business processes and software). The bigger the size of the 

organisation the bigger the number of goals and interpretations and the 

more problematic for developers to design software. Developers prefer 
dear requirements and specifications from users. Users are usually 

represented by one or more people who are in contact with developers. 

These representatives are in charge of transmitting the requirements from 

the whole group. However a risk this strategy brings is that the 
development could be limited to an incomplete view of the problem 

situation. On the other hand, considering all users' views about the 

problem situations becomes unmanageable sometimes because too 

many ambiguities arise. The clarification of ambiguities usually requires a 

personal or communication skill which developers themselves say they 
do not posses. 

Although adaptability of organisations and users is perceived as making 

software development difficult by developers, the lack of adaptability in 

organisations is also perceived as problematic. Examples of lack of 

adaptability are: users reluctant to change and adapt to new software, 

users caring more about the old software and organisation's culture 
Impeding this adaptation. Lack of adaptability makes the relationship 
between developers and their users difficult. Reluctance to change can 

make users hide their own needs, provide the wrong information or just 

not collaborate with developers. Developers could perceive reluctance to 

change as hostile and sometimes as a product of ignorance. In these 

cases communication is broken between reluctant users and developers 

and developers work on assumptions which will not necessarily fit the real 

needs of users. 

Finally. Issues arising from the relationship between the business 

organisation. developers and software can also affect the way developers 

see organisations. The most commented upon issue is the difficulty of 

286 



Chapter 7: Model of Social Issues in Software Development 

dealing with all stakeholders involved with the software. Developers 

express their concerns about not knowing how to please all stakeholders 

especially because they have different goals and interpretations of the 

system. It is also difficult for developers to establish who the relevant 

users are. Most of the time it is management who establishes the 

functionality of the software. However according to some developers 

most of the time, management, does not know how things are done in 

reality. For these developers the software should be developed for the 

people who actually do things. Another issue mentioned by developers is 

that the quality of the software that users already have influences the way 
the see new developments. Users of faulty software will usually reject 

new one or would not collaborate with the development of a new one. 
Additionally if users depend highly on a particular application it is more 

probable that they will be more collaborative with developers. 

7.7 Chapter Summary 

This chapter has presented a descriptive model of social issues in 

software development as seen by software developers. This is a theory 

based model that emerged from the data I collected in online forums. To 

create this model I used a theory building strategy that corresponds to the 

interpretive approach used through this study and the subjective nature of 
the phenomena studied. Sets of fieldwork data which accounted for 

particular instances of a phenomenon were categorised and generalised 
from their original context. The decontextualised data took the form of 

general concepts and propositions that represent more instances of the 

studied phenomena. These concepts, propositions and their relationships 
describe and explain my interpretations of the interpretations (Walsham, 
1995,78) of software developers about the nature of their jobs. I 

compared these concepts and grouped them according to the contexts 
shown in the model of social issues in software development. These 

contexts surround software development and contain social issues that 

affect it. The contexts are complex organisations; development 

287 



Chapter 7: Model of Social Issues in Software Development 

environments and development practices and each corresponds to one 
research question. In this way the three research questions identify social 
issues that influence software development. 

The theory based model of social issues in software development intends 

to fill a gap in theory by addressing the implications that adaptive and 

unpredictable organisations have for software development. These 

implications are the human and social issues that are sometimes 

obscured to developers' eyes and the methodologies they use. The 

descriptive model suggests that software developers' perceptions of 

social issues in complex business organisations are influenced by the 

developers' background knowledge and experience. This background 

knowledge is built up from social issues within the development 

environment previously experienced and the development methodologies 
the developers use or know. This could be a recursive relationship as 

negative feedback from users of software will make developers 

reconsider their previous beliefs and look for new ones which yield better 

results. The social issues making up each context were extracted from 

the categories explored in chapter 6. From online conversations I 

perceived that these social issues affect developers and the software 
they produce. This model is not a deterministic one. It does not intend to 

predict the exact effects that social issues have on software (as in a 

cause-effect model). The model describes a set of social issues that 

actually affect developers work in different ways, as seen in online data. 
The intention of this descriptive model is to create awareness of social 
issues in the software development world as playing an important role in 

software quality and users' levels of acceptance. 

In the next chapter, the conclusions, I will discuss the implications and 
limitations of this descriptive, theory based model. I will also propose 
further avenues for investigation and practice based on this model. 

288 



Chapter 8: Conclusions 

Chapter 8: Conclusions 

Having presented the final outcome of this thesis in the form of a 
descriptive, theory based model, discussed in chapter 7, this chapter now 

concludes the thesis by providing a critical review of the whole research 

project. First in section 8.1 I summarise the research findings. Then in 

section 8.2 I discuss the contributions of this research. I distinguish 

between contributions to IS theory and contributions to methodology in IS 

research (as against methodology in Information Systems Development). 

Within section 8.2 I highlight the implications and limitations of this thesis' 

contributions. In the third section, 8.3, I provide an evaluation of this study 
by using the seven principles to asses interpretive research by Klein and 
Myers (1999), first introduced in section 4.1 of chapter 4. These principles 

were designed to guide interpretive researchers into understanding and 

following the philosophical and methodological underpinnings of the 

phenomenological and hermeneutical interpretive approaches and since 

those are the approach I have followed they are relevant for this thesis. In 

section 8.4, I suggest some potential opportunities for future research 
based on this thesis results. Finally, section 8.5 summaries this chapter. 

8.1 Summary of Findings 

This section presents a descriptive summary of the outcomes of this 

thesis. A critical analysis follows in the next two sections of this chapter 
(sections 8.2 and 8.3). The findings of this thesis are summarised in 

terms of the research aim and research questions. The research aim and 

questions were initially presented in section 1.2 of chapter 1 emerging 
from the research motivation presented in section 1.1 of the same 

chapter. The research aim and research questions were also presented 
in section 4.5 of chapter 4 as driving the research approach. Finally they 

were answered in chapter 7 with the descriptive, theory based model of 
social issues in software development. 

289 



Chapter 8: Conclusions 

The concern of this thesis was to study the human and social issues that 

surround software development. The initial interest emerged from my 
professional experience in information systems and software 
development (see section 1.1 of chapter 1). This professional 

experience, and afterwards a review of the relevant literature in IS, made 
me realise that there was a gap in software development research and 
practice. There seemed to be a lack of awareness and understanding of 
human and social issues within complex business organisations and 
software development environments by software developers. Although 

some research in IS and software development methodologies address 
human and social issues they do so by considering either business 

organisations or software development environments separately but do 

not connect both contexts together. As a consequence of the lack of 
consideration of human and social factors in either context, the quality of 
software is affected and the levels of software failure are increased 
(Cooper and Reimann, 2003,5). The literature review (chapters 2 and 3) 

shows that there is a mismatch between the hard paradigms that the 

software developers use to work from, and the actual (human and social) 
nature of organisations (business organisations as discussed by 
Checkland and Holwell (1997) and software development environments 
as portrayed by Cockburn (2001)). Thus this thesis standpoint is that 

software development paradigms and practices should consider the 
human and social aspects of software development environments and 
business organisations as these both affect developers work. In order to 
consider human and social issues in software development, first, we have 
to identify these issues and find out the way in which they affect the work 
of developers. Thus the aim of this thesis is: 

To identify and explain how the social issues within the 
software development environment and the social aspects of 
complex organisations shape software and the process of 
software development. 

290 



Chapter 8: Conclusions 

Because the problem situation (explained in section 1.1 of chapter 1) 

exposes more than one area I designed three research questions each of 

which focuses on a different context. The first context is concerned with 
the human and social issues emerging from complex business 

organisations. The second and the third contexts focus on issues from 

the development environment. The issues are separated as aspects of 
individual developers and team groups, and the aspects of the 

development methods that they use. The reason for this separation is that 

apart from providing guidelines that determine the way developers work 
(in the development environment); development methods influence the 

way developers think of their target organisations and hence the human 

and social issues they can be aware of (which is the first context). The 

research questions are presented again in table 8.1 (repeated from table 

1.1 in chapter 1): 

Social Issues in Q1: What are the human and social aspects of business 
Complex environments that make software development complex 
Business and difficult? 

Development environment that allow or hinder the identification of 
Environment social issues in business settings during the 

development of software? 
Social Issues Q3: What aspects of current software development 
considered in methods address or neglect social issues in business 
Development settings? What is social software and does it have a role 
Practices to play in improving these practices? 

Table 8.1 Research Questions 

To answer the overarching aim and the specific research questions, data 

were collected during an online ethnography and classified into 72 

categories and subcategories (the complete tree of categories is 

presented in appendix 2). These data categories provided a picture of 
software development being affected by human and social issues 

emerging from three different contexts: software development 

environment, software development practices and business 

organisations. 

291 



Chapter 8: Conclusions 

Issues under each category were discussed and examples from the 

online conversations were provided in chapter 6. In the next bullet points 

a brief explanation of the top 7 categories (which contain the other 65 

subcategories) is provided: 

" Software development: data under this category show that 

software development is still a practice in its infancy. Due to its 

human and social nature, software development varies from 

project to project. For developers, there are no two identical 

software development projects because software, users and 

development teams are always different. As a consequence, it is 

difficult for developers to agree on one particular approach for all 

situations. 

" Software engineering: is a big influence on software developers' 

beliefs and software development practices. Software engineering 

is a "hard" paradigm which portrays organisations as structured 

and stable entities and software development as a predictable 

endeavour. 

" Software: data under this category reveals the extent to which 

software developers are able to inscribe human and social issues 

within software. The ethnography shows that this is very limited to 

human-to-computer interaction issues which are considered only 

through usability guidelines. 

" Developers: this category shows how software developers see 

themselves as professionals in their working environments. It 

reveals the most important human and social issues of the 

developers as individuals, as members of team projects and 

software development organisations. Broadly, developers usually 

emphasise their technical skills and neglect other aspects of their 

work. Software developers see themselves as having poor 

interpersonal and communication skills and in general, it seems, 

as unwilling to work in teams and interact with users. 

" Methodologies: this category reveals software developers opinions 

of available software development methodologies. Data collected 

292 



Chapter 8: Conclusions 

focus on human and social issues within the different kinds of 

practices (and not on their technical aspects) and how these 

practices affect developers work. The most discussed software 

development methodologies (however not necessarily liked or 

used) were the agile methodologies. Agile methodologies focus on 

human and social aspects of the development environment and 

build on the skills and experience of developers. 

" Business Issues: this shows how developers perceive their target 

organisation and the extent to which, they think, they should know 

it. Opinions about the extent to which software developers need to 

know their target organisations vary. Some developers see 
knowledge of their domain as being indispensable whereas others 

would neglect that aspect and focus only on programming 
(coding). 

" Social software: is a kind of software which addresses their users 

as groups and focus on satisfying their needs for interacting and 

communicating. Although it is a relatively new concept, the data 

shows that software developers who know of it are more aware of 
the human and social issues of their users. 

From the discussion of these categories a descriptive, theory based 

model was created. In section 7.2 of chapter 7a theoretical framework is 

presented (see figure 7.3 of chapter 7) in which the model is situated as a 

complement to Orlikowski's (2000) model of enactment of technologies- 

in-practice. This framework presents software as a duality composed of a 

use and a design mode. The use mode is shown in terms of Orlikowski's 

(2000) structurational model of "enactment of technologies-in-practice". 

The use of software is represented as an ongoing process of 

reproduction between agency and structure. Human and social issues 

emerge from that relationship which have to be addressed in the design 

mode. The design mode of software is represented by the activity of 

software development and it is in this mode where my model of social 
issues in software development is situated. Therefore my model (which 

293 



Chapter 8: Conclusions 

focuses on the design mode) complements Orlikowski's model because 

this last one focuses only on the use mode of software. 

The answer to the research aim takes the form of a descriptive, theory 

based model (presented in chapter 7) that shows the human and social 
issues that affect software developers and that explains how developers 

make sense of these issues. The model is repeated again in figure 8.1 

(repeated from figure 7.5 in chapter 7). This descriptive, theory based 

model suggests that before addressing human and social aspects within 

their target organisations, developers create pictures of those 

organisations built from their preconceptions. These preconceptions are 
based on human and social issues from their past or current job 

experiences. For example, job settings, team arrangements and 
development practices that developers have used or known. Thus 

software developers' understandings of human and social issues within 
their target business organisations are demonstrably and directly 

influenced by their preconceptions of past experiences. 

toftwarn Development Environment 

" Sofran derebpmsnl driven by " lank a YdbWIy and net, 4 Of 
ecmrtmn asrnw" and na by Jamal maNVaeon 

enst-W. Ok- " Bad planning ending in reactive, 
" Fear d' him. outsourcing and INNUtlw Iii 

Eammbp Obsolete drive WQ*U " nduntla n work 
" Demkwen loan an to V WYcd " ngatl-wwk 

oft of koO ra " OugarnYslonr 0JAMw NYq *. g 
" Dawbpva hem poor Intwpw ony Waplion 

and oannunkatlan Pals " Large 9uuaa we ANNCUN to 
" Ways of WW" Nrt Go hot na1U ocmawr and mmninicals 

She dsoabpara " ar paled lack of uMewW WNg of vohy things 
" bofoaNbM of Hlanis, s 1 from at! OOIM M way NNy are denir 

menages ant " DAfeoil erb VIIIJIdory 908% and 
" Pnewn flan ow. 9s burn EAI«est m"mESR 

of M Wes 

Software Development Practices 

Address Social issues 

" U. of can, m sense 
" ObW . users In ms* wMiiI some 
" Evan software WRh do" Oyu on 

users (kednack) 
WmNnp we uwn 

. ft.. " - mc. nwl" O mni" 
+ E1ci. 0 enrpe 
+ C4rdcalon of an tiWYa 
" Bohr aMr. 

" mcognha the group se the war 
. der oned to unaourpe CO"n 

w+nae of bePWA ur 

Neglect Social Maws 

" Focus m IM rcOnlc. J old@ of wllwo 
" tack of M00*1 dqo abuul 40000.00y 

or reluctant, to oowww users in oww 
INAYU Be" 

" ban- gas' pmf nb mo, ON welk 
" Fac, * On unabity and net Yro, i+aboy 
" YnI"mmdIrt1H, who Vent M. 

Ndontiuon kom at. t rge argartir ton 
Is developers 

" Mop prpb. 1.1 adtne roch t 
INaws we not Cowler p. ead. . mono 
e. wmwn 

Complex, adaptable, multi-group Organisations 
Nature of Organizations Nature of Organizations Who Is the user? 

" Control of Information for Power gain. " Remote users " Difficult to assess who the key users are 
politics " Users reluctant to change " Difficult to please all users 

" Free social Interactions among users " Users caring more about the old " Two different stakehoiders might be 
" Adaptation or flexibility of users to new system Involved: 

conditions " Organlsatlonal culture Impeding " The user, who will actually use the 
" Contradiction between official procedures adaptation system 

and what users actually do " Organisations with poor channels of " Management, who Influences software 
" Different goals and interpretations about communication design, but who might not know how 

the system " Difficult access to key users things are done 
" Group Interactions are more complex " Lack of sense of community among 

than human-to-computer Interactions users that would drive the use of Software 

" Organisations and users are software 
. The level of dependence of software 

" 
unpredictable 
Size ze of 

o 
organisation 

ecorrelates 
with of 

directly influences adaptability, commitment 

complexity and acceptance of users 
" Faulty software affects trust of users 

Figure 8.1 Model of Social Issues in Software Development 

294 



Chapter 8: Conclusions 

This model also enumerates human and social issues which were 

commented by software developers (during the ethnography). The human 

and social issues are grouped in three different contexts: software 

development environment, software development practices and complex 

organisations, presented in the following bullet points: 

" Human and Social issues in the software development 

environment: the software development environment is 

usually a mixture of developers with different professional 

backgrounds, ideologies and working styles. From that mixture 

human and social issues emerge that shape the working style 

and arrangements of the group. Recursively, the styles and 

arrangements of the group shape the styles of the individual 

members. Developers might not share the same 

preconceptions of their target organisations. However, the way 

they are organised (in teams for example) forces them to agree 

on a way to do things. Usually it is the vision of the manager or 

the project leader which prevails over the others. This, in some 

cases, provokes resentment from some developers who think 

managers do not know their business and thus adversely affect 

the quality of developers' work. Also the concept of "common 

sense" emerges as a social construct within the development 

environment. Common sense is described by developers as 

the ability to discern what to do in different situations. In most 

cases developers will appreciate common sense as a valuable 

skill for software development (maybe more important than the 

knowledge of a software development methodology). 

" Human and social issues in current development 

practices: the fieldwork data suggests that the knowledge of 

certain development practices provide developers with different 

perspectives of their own and target environments. For 

example, practices that compel developers to resolve 

295 



Chapter 8: Conclusions 

ambiguities in users' requirements propose the idea that their 

users and organisation may be uncertain of some issues 

regarding the software or might possess different (sometimes 

contradicting) points of view. Thus different kinds of practices 

make developers aware of the human nature of their users. 
Also, the concept of social software emerged as relevant. 
Although a new concept, social software definitions and design 

practices allow developers to think about human and social 
issues as emerging from the interactions of users. Social 

software also imposes the idea that these human and social 
issues need to be embedded in the software the developers 

produce. Among all the development methodologies and 
techniques discussed in this community of practice (virtual 

communities of software developers), "common sense" also 

arises as a development practice or as a way of deciding for 

oneself what practices to follow. 

" Human and social issues in complex business settings: 
human and social issues in complex organisations are grouped 
in three areas: according to the nature of the organisations; 
issues regarding the identification of the user or users; and 
issues regarding the use of software in organisations. The 

perception of human and social issues in organisations by 
developers is influenced by the issues in the above two 

contexts. The nature of complex organisations is perceived by 
developers as ambiguous and influenced by politics. Ambiguity 
is a consequence of people having different perspectives and 
goals. Politics is perceived by developers as control of 
information for power gain. The more structured and traditional 
development paradigm the developer possesses the more 
ambiguous and politicised an organisation will be perceived. 
The relation between developers and their users is also a factor 
that affects developers' perception of their target organisations. 
Users are an important source of information. Depending on 
who is chosen by the organisation or the developers as user 

296 



Chapter 8: Conclusions 

representatives (managers or members of staff) and depending 

on how well they (developers and users) get along, developers 

will be able to understand their human and social aspects. This 

also depends on the development paradigm that the 

developers use and the team arrangement they have as the 

development paradigm encourages or not the inclusion of 

users in the development team. Finally, the level of 

dependence and the quality of the current software that the 

users use influences the way the users commit to the 

development project. The more dependent on the software the 

more participative the users will be. However, the lower the 

quality of current or previous instances of software the users 
have used the more sceptical and unwilling to collaborate these 

users will be. 

The model of social issues in software development provides a 
descriptive account of issues that actually surround software 
development and explains in the form of a flow how these issues 

influence the developers' perception of complex organisations. However it 
is not (not yet) a structurational model as it does not uses structurational 

concepts (it is a descriptive model and does not theorise on the 

relationship between agency and structure). Further development in this 

area is proposed as a future research direction in section 8.4 of this 

chapter. In the next section the research strategy and contributions to 
knowledge made by this thesis, their implications and limitations are 
examined. 

8.2 Research Contributions to Knowledge 

Phillips and Pugh (2000) state that the research contributions section of a 
thesis should discuss the significance of the thesis' analysis and point out 
its limitations (Phillips and Pugh, 2000,21). They also state that the 
thesis should provide an "original contribution to knowledge" (Phillips and 

297 



Chapter 8: Conclusions 

Pugh, 2000,63) and offer a list of 15 ways of how a PhD can be original. 
In this section I will discuss the research contributions to theory and to 

research methodology of this thesis emphasising the way in which they 

are original (in the light of Phillips and Pugh (2000) list) and focusing on 

their implications and limitations to the field of IS. 

Contributions to theory: This thesis has developed a theory based 

model whose objective is: 

To build a picture of Software Development for Complex 
Business Situations that describes and explains the process 
that software developers go through when they make sense 
of social aspects of the target organisation, the information 
system and the users that the software has to serve and 
when they assess and compare the technical aspects of 
software with the social issues within business settings. 

From the list of Phillips and Pugh (2000) 1 can identify the following points 

as describing the originality of this thesis contribution to theory: 

" Making a synthesis that hasn't been made before 

The model puts together human and social aspects from software 

development and business environments and suggests a way in which 

these issues affect the thinking process of software developers. A review 

of the literature on information systems development and software 

development reveals that human and social issues are being covered in 

different ways. In the field of information systems development emphasis 
is paid to human and social aspects in business organisations and on 
developing ways to model and understand them (examples of this are 
SSM by Checkland and Holwell (1997) and Ethnographic approaches by 

Bentley et al. (1992)). Very little work is done on the software aspect of 
Information Systems. In the field of software development more work is 

put in its technical aspects than on its social aspects (for example the 

popular software engineering approach (Pfleeger (1991) and Pressman 

(2000))). Where the software development field pays attention to human 

298 



Chapter 8: Conclusions 

and social issues it does so by focusing on the characteristics of 
developers working alone or in teams but neglecting the aspects of the 
target organisations (for example: the agile approaches such as The 
Crystal Family by Cockburn (2000a) and Extreme Programming by Beck 
(1999)); or by concentrating on human-to-computer interaction issues as 
in software usability guidelines. Thus this thesis integrates (synthesises) 

two elements, social issues within business and software development 

environments, which have not been connected before, and creates a 
model of social issues in software development, which is an original 

contribution to theory. 

" Looking at areas that people in the discipline haven't looked at 
before 

This thesis' original contribution to theory is to consider that software 
development (and hence software as a product) is affected by social 
issues coming from the target organisation (complex organisation) and 
from the software development environment contexts. Another original 

contribution of this thesis is to model the thinking process that software 
developers go through when they try to make sense of the software they 

try to develop. The model states that developers' perceptions of their 

target organisations and the software they develop is affected by their 

preconceptions of human and social aspects of previous assignments 

and their knowledge about development practices. The descriptive, 

theory based model developed is an original picture of information 

systems development and software development as it focuses on the 

people who do the software development job. This has the potential to be 

expanded into more practical shapes which can be applied in actual 
software development work (see section 8.4 on future research for some 
ideas on how this could be achieved). 

299 



Chapter 8: Conclusions 

" Providing a single original observation in a competent piece of 

research 

This thesis provides an original observation of the software development 

phenomenon as there is no other piece of research studying human and 

social aspects in software development through an online media (see 

next section for a discussion about contributions to research 

methodology). 

Limitations of this model are, first, from the theoretical point of view, that 

in its current form it is not a structurational model and therefore does not 

complement totally the structuration model of Orlikowski's "enactment of 
technologies-in-practice". It hence needs more development to be 

compatible with the Giddens' original structurational principles. Second, 

the model considers only three contexts: business organisations, 

software development environment and software development practices 

as sources of the issues that affect developers work. There are other 

contexts which could be added to present a fuller picture of software 
development, such as the cultural differences among developers from 

different countries, software market, or new developments in technologies 

(this point is also taken as a future research possibility in section 8.4 of 
this chapter). This was picked up in part by data but not seemingly 
identified by developers as key themes. Third, the model does not entirely 
discriminate between types of environments that the software developers 

are working in. Data was used to build a holistic descriptive model, not 
intended (but could go on to be) a comparative tool. For example, 
developers could be working alone remotely or working in a software 
house as part of a larger team. I believe there may be some differences 
between the human and social issues to consider in either case. For 

example, developers working alone (i. e., one person project) would not 
have to deal with distractions or interruptions from their colleagues but 

will not get the opportunity of sharing ideas with them. This concern was 
also picked up in data but did not seem to be a "top" issue. Also, the 

model does not focus on structured processes like production processes 

300 



Chapter 8: Conclusions 

(more structured than decision-making and collaboration work) where 

people act less freely. Different human and social issues would need to 

be considered in the case of software development for operational 

applications such as the mentioned. Last, the relatively small number of 

people whose opinions I considered (though not an impediment for 

interpretive research, see section 4.6 of chapter 4 for a discussion of this 

approach) would limit the variety of issues I collected. More data 

collection focused on researching on new contexts and human and social 
issues for particular software development situations would enrich the 

present model (see section 8.4 on future research for some ideas on how 

this can be achieved). 

Contributions to Research Methodology: this thesis has followed an 
interpretive, phenomenological and hermeneutical approach. Consistent 

with this an online ethnography of software developers was planned to 

collect relevant data and a theory building strategy was designed to 

analyse that data and create a descriptive, theory based model. From the 

list of ways to have an original contribution by Phillips and Pugh (2000) 

this thesis has contributed in the following ways: 

" Carrying out a work that hasn't been done before: online 

ethnography on software developers (discussed in section 4.3 

of chapter 4 and in chapter 5) 

" Taking a particular technique and applying it in a new area: 
doing ethnography online, not to study the communities of 
developers themselves but to explore in the place where their 

work takes place, their beliefs about complex business 

organisations and the implications to their jobs 

This thesis designed an original strategy to approach software developers 

and the topic of software development. Communities of practice of 

software developers are online and hence are places where actual 

software development work is done and relevant professional 

301 



Chapter 8: Conclusions 

conversations take place (a discussion about virtual communities of 

software developers is presented in section 4.2 of chapter 4). Thus an 

online ethnography is thought as an appropriate method to collect data. 

Also, the theory building strategy, although based on writings by 

Walsham (1993) and Tesch (1990), was carried out in an original 
(unique) way. Because in the interpretive paradigm there are no detailed 

guidelines on how to perform data collection and analysis I designed my 

own way which is explained in sections 4.4 and 4.6 of chapter 4. 

Some limitations of the research strategy would include that the online 

ethnography does not offer the means to know the real identities of the 

participants and to verify the veracity of their statements. This is 

discussed in section 4.2.2, pragmatic characteristics of CMC, of chapter 
4. Also the online ethnography does not allow me to explore background 

information on software developer's lives to be able to "'read' the social 

world behind the words of the actors" (Klein and Myers, 1999,78), that is, 

behind the online media. 

8.3 Reflections on the research: Evaluation using Klein 

and Myers' Seven principles for assessing interpretive 

research 

The concern of this thesis was to study the human and social aspects of 

software development (see section 1.2 of chapter 1 for a discussion of 
the aim and research questions of this thesis, and chapters 2 and 3 for a 
literature review of related aspects). As the understanding of human and 

social issues involves and requires a high level of subjectivity from the 

researcher I considered an interpretive approach to be appropriate (see 

section 4.1 for an in-depth discussion of this thesis' approach). The 

interpretive approach allows the researcher to "understand the 

fundamental nature of the social world at the level of subjective 

experience" (Burrell and Morgan, 1979,28). The interpretive approach is 

302 



Chapter 8: Conclusions 

aligned with this thesis' "idealist" ontological belief that organisations and 
information systems are 'fundamentally, social rather than technical 

systems" (Hirschheim, 1985,13) and that software development is a 
human and social activity (Weinberg, 1971). Following this paradigm I 

designed an online ethnography of software developers (see discussion 

in section 4.3 of chapter 4) through which I collected data about how 

software developers perceive and understand the human and social 
issues that surround their work. Being an immersive method the online 
ethnography allowed me to enquire in-depth into software developers' 

actions and beliefs. Following that ethnography I carried out a data 

analysis aimed at theory building. The outcome of this data analysis was 
a theory based model (presented in chapter 7) which describes the 

process that developers go through when they make sense of complex 
business situations and identifies the human and social issues that affect 
this process. 

To assess the presented research process I chose to use a set of 

principles created by Klein and Myers (1999) (see section 4.1 of chapter 
4 for a discussion of these principles). Appendix 8 of this thesis contains 

a summary of the reflections made using Klein and Myers (1999) 

principles. As seen in this evaluation, the process followed in this thesis 
fulfils the criteria designed for IS interpretive research. For instance, when 
reflecting on the conduct of the fieldwork, data analysis and formulation of 
the final model, it has been found that they satisfy these criteria. The 

accomplishment of these 7 principles and their relationships shows that 
this thesis is valid, reliable and credible effort consistent with interpretive 

research in IS. See also section 4.1 for a discussion of validity, reliability 
and credibility of this thesis. 

8.4 Future Research 

In this penultimate section I present a set of ideas for future research 
directions based on (the gaps left by and the new ideas generated by) the 

303 



Chapter 8: Conclusions 

results of this thesis. The first two proposals are concerned with further 

developing of the model of social issues in software development by 

using structuration theory. The third proposal is concerned with the 

transferability and confirmability of the results of this thesis (these 

concepts were introduced in section 4.1, Criteria for guiding and 

assessing the quality of interpretive research, of chapter 4) and the fourth 

one is concerned with the development of practical guidelines for 

software developers based on this thesis' model. 

a. Further development of the model of social issues in software 

development 

In section 7.2 of chapter 7I introduced a theoretical framework for 

software development in which the descriptive, theory based model of 

social issues developed in this thesis is situated. The framework is shown 

again in figure 8.2. This framework presents software as a duality 

comprised of use and design mode. The use mode is represented by 

Orlikowski's model of "enactment of technologies-in-practice" (Orlikowski, 

2000). The model of enactment of technologies-in-practice explains how 

users of technology (software) enact social structures when they use that 

technology and how they draw on those structures to use technology. 

The framework shows that the enactment of technologies-in-practice 

happens within complex organisations. Complex organisations are those 

organisations whose human and social aspects are difficult to understand 

and address by software developers. These organisations contain 
decision-making, workflow, collaborative work and similar processes 

whose behaviour is inherently unpredictable and adaptable, and in which 

work is performed by individuals and multi-groups with intricate social 
interactions. The design mode of the framework is comprised of issues 

happening within the software development environment and influenced 

by the issues represented by the model of enactment of technologies-in- 

practice (right hand side in figure 8.2). The descriptive model developed 

within this thesis is situated within the design mode of this framework and 

addresses human and social issues that affect software developers. 

304 



Chapter 8: Conclusions 

m 
U 

U 
a 

C 

m 
rn 
0 

ö 
C 

L 
U 
m 
F 
Z 

C 
m 

U 
a 
C 

W 

Working Demlopmsnt 
Use of Technology Perceptions of Social Issues and I en onment Pnakes 

according to Orfikowski's model 
IT' 

their inscription In technologies 

properties in ftware sk" 
kit 

Social issues 
perceived by devel 

Users use (totally or 
parry) wacrlbed 

Properties in Software 
U Social SWCd 

sachO 
ýptan or 

and enact 
e$ emerging from p 

re or actions 
SoRwar 

ý` 2 C/ Model of Social Issues in Software Development 

Modal of Comp r anisaftns 

Use Mode Design Mode 

Figure 8.2 Framework of Software Development 

The model of social issues in software development (shown in chapter 7) 

presents in a descriptive way the different human and social factors within 
three different contexts (software development environment, software 
development methodology and complex business organisations) that 

affect the work of software developers. It also explains how developers 

make sense of complex business situations (section 7.3 of chapter 7 

contains a discussion of each aspect of this model). However, in its 

current shape (a descriptive model) it does not correspond to an 

extension of the structuration model of Orlikowski (2000) and does not 
truly fill the gap left by her model when it focuses only on structuration 

within organisations and users of technology. Thus a future research 
direction is to further develop the model by using structuration concepts 

particularly those corresponding to the enactment of technologies-in- 

practice. Figure 8.3 presents an idea of how this development could be 

carried out. In structuration terms, the model of social issues in software 

development suggests that the development of software (agency in 

structuration terms, presented as (A) in figure 8.3) depends on 

a econcewlons of 
Organisations emerged 

from dovebp ent 
envtronmanl and development 

Practices 

uro 
eo e'e 

Developer 

305 



Chapter 8: Conclusions 

preconceptions present in current structures within the development 

environment (presented as (B) in figure 8.3) and the actual process of 
structuration of technologies-in-practice within business organisations 
((C) in figure 8.3). 

" t Decison-Making Processes 

Organisational CuIkne 

Tachnologies-inixactice 

A 
(C) 

" 
n Usa of software 

v 

Structuration of social structures due 
to the use of software within complex 

organisations 

Use of Software in Business 
Organisations 

Software Development $ 

Preconceptions Metho ies 

(8) of complex Orpanbatbnal Culure 
organisations Software Devebpment" 

j 

In-practice 
" 

(D) 

A 
Use of Technology 10 (A) " 

develop Software 

y 

StructuraUon of social structures 
due to the development of software 

Use of Software to create 
Software 

Figure 8.3 Development of the Model of Social Issues in Software 
Development using structuration concepts 

The theory of structuration and in particular Orlikowski's model of 

enactment of technologies-in-practice could be replicated to explain the 

process of structuration within the development environment (box on the 

right in figure 8.3). However, more research is needed to explore the 

nature of the relationship between structuration in the development 

environment and structuration in business organisations (presented as 
(D) in figure 8.2). Thus the first proposal for future research is: 

1. To use structuration theory and in particular the model of 

enactment of technologies-in-practice to explore the nature of the 

software development activity as it is influenced by structures 

within the development environment and structuration within 
business organisations 

Additionally, it would be valuable to explore the nature and role of 
software as the product of the social process of software development. 
Orlikowski's (1992) Structurational Model of IT (discussed in section 2.2.4 

306 



Chapter 8: Conclusions 

of chapter 2) could be a starting point for this proposal. By applying the 

concepts of structuration of IT developed by Orlikowski (1992) to 

software, software could be thought of as constituting and being 

constituted by human agency. That is, software is "shaped by and shapes 
human action" (Jones et al., 2004,318). Figure 8.4 presents an outline of 
this. As the descriptive, theory based model of social issues in software 
development suggests, software development affects the human and 

social aspects within the software development environment and the 

business organisations. Similarly it could be said that software is shaped 
by the human and social aspects within the same two environments. So 

the current descriptive model appears to be consistent with this proposal, 
but would require further exploration. 

0 Ope 
software and 

are development 

Institutional Institutional 
Properties Properties 

Product: 
Business Business oftware: 
Software ` Software Development Tools 

Human Actors Developers 

Complex Business Organisations Software Development 

Figure 8.4 Structuration of Software 

Figure 8.4 depicts the software development environment (right hand 

side) and the organisational context (left hand side), both of which use 
software, as containing structuration processes as originally conceived by 
Orlikowski (1992) (see figure 2.3 in chapter 2). Orlikowski's original model 
concentrates on the organisational environment (left hand side in figure 
8.4) to explore the nature of technology. However this thesis proposes to 
look at both, software development environment and the business 

organisations, together to explore the nature of software. The descriptive 

307 



Chapter 8: Conclusions 

model has already done so but not by using structuration concepts. Thus 

the second proposal for future research is: 

2. To use structuration theory to explore the nature of software as a 

result of processes of structuration within the development and 
business environments 

b. Confirm and transfer the results of this thesis into other settings 

In section 4.1 of chapter 4I explored a set of criteria to assess the quality 

of interpretive research. Within Myers and Klein's criteria, I want to 

highlight the concepts of transferability and confirmability at this point. 
Confirmability tests the extent to which any research results can be 

confirmed by another similar study (Remenyi et al., 1998,115). 

Transferability is the extent to which the researcher can generalise the 

findings to another context (Marshall and Rossman, 1989,145). 

Confirming and transferring the results of this thesis will therefore enrich 
them and will provide more scope for their application. Thus the third 

proposal for future research is: 

3. Carry out more research to confirm and transfer the results of this 

thesis 

An example of this could be to use a different data collection method than 

online ethnography. For example, by structuring in-depth interviews of 
software developers in software houses and/or in-house internal 
developers the different and comparative aspects of the model of social 
issues in software development could be developed further. Also, by 
broadening the scope of software to not only decision-making, 

collaboration, workflow and similar applications more human and social 
issues could be brought to light. 

308 



Chapter 8: Conclusions 

c. Development of the practical side of the model of social issues in 

Software Development 

A fourth proposal for future research would be to operationalise the 

outcomes of this thesis. That is, to translate these theoretical findings into 

a format that can be understood and put into practice by software 
developers. A theoretical model and a theory have limited use if they 

cannot easily be applied in the field. The practical side of this research's 

model could take any shape, from guidelines to methodologies. The 

fourth future research proposal is: 

4. Use the model of social issues in software development or its 

further development with structuration concepts to create 

guidelines or methodologies for software development 

The purpose of this practical development would be improve the 

awareness of human and social issues among software developers. By 

carrying out practices which are built upon the human and social aspects 
that affect their job, developers would improve the quality of the software 
they produce. 

8.5 Chapter Summary 

This last chapter of the thesis has exposed its contributions to knowledge. 

I have provided a summary of the findings, that is, a short explanation of 
the descriptive, theory based model developed within this thesis. Also 

have discussed the implications and limitations of this model and of the 

research approach used. This thesis' contribution to theory is a 
descriptive, theory based model of social issues in software development. 

Also, this thesis has contributed to IS research methodology by designing 

an online ethnography consistent with the interpretive, phenomenological 

and hermeneutical approach. A short but critical reflection on the 

research strategy was also provided so as to discuss the validity, 

309 



Chapter 8: Conclusions 

reliability and credibility of the thesis. Finally, directions for future 

research where highlighted in the areas of further development of the 
descriptive model of social issues in software development by using 
structuration theory; by providing practical guidelines for software 
developers and by carrying out future research to confirm and transfer the 

results. 

310 



Appendices 

APPENDICES 

311 



ndix 1 

Appendix 1: Summary of a typical day of a software 
developer. 

Thread title: Oral Date: 10th June Source: 
Documentation - Not 2004 Hacknot 
Worth the Paper It's 
Written On 
"Scene 1-a cubicle. Ed is slouched in an office chair staring forlornly at the 
screen in front of him. Except for the occasional insouciant jab at his keyboard 
he gives the appearance of being comatose.. 

The day begins with my desire to extend the functionality of a legacy 
application, approximately 600K lines of code. I need to locate that portion of 
the code responsible for performing function X, so that I can insert function Y 
just after it. I go looking for function X amongst the code. I can't find it. In fact, I 
started looking for it sometime yesterday, and haven't found it yet. I check the 
folder marked "docs", to find it contains only a single READMIT .tr. t file, the sole 
contents of which is the teaser "This directory will contain the docs" - apparently 
the dying message of a long extinct group of developers whose brains exploded 
before being able to make good on their promise. I find a piece of code that 
looks like its in the same ballpark as the code I'm looking for, and examine the 
revision history of the file it is in, to find that it has principally been developed by 
"Bob". I must find Bob. I need to find Bob. Bob will know where function X is. 
Here is my first problem. I cannot contact Bob directly, because I am but a lowly 
contractor. Bob is a valuable and in-demand member of my client's staff, and I 
can't just go up to him and steal his valuable time. There's a chain of command 
to be observed here! I must lodge a request with my manager to see Bob, who 
will forward that request to a liaison officer, who will forward that request to 
Bob's manager, who will then cue it up with Bob. If he's not too busy. 

Scene 2-a meeting room. Ed sits opposite a brown-skinned man wearing a 
turban. 

The next day, I get to meet Bob. He can only spare 15 minutes to talk to me, 
because he's busy preparing for the next release of some whiz-bang new pile of 
crud. It's at this point that I discover that Bob's real name is "Sharmati 
Sanyuktananda", but everyone just calls him "Bob" for short. Bob is Indian. 
Bob's formal exposure to English was limited to the 15 minutes he spent reading 
"Miffy Learns English" while waiting in line at Immigration for his visa to be 
processed. 
I try and talk with Bob, but it is like talking with Dr Seuss. At the end of 15 
minutes, I have learnt almost nothing from him, and he keeps repeating 
something about public transport, which seems to have no relevance. His final 
word is "Sue", who I know is another member of the client's staff. So I contact 
my manager to organize some time with Sue. 

Scene 3-a meeting room. Ed sits opposite a nerdish looking woman wearing 
glasses with a very strong prescription. 

Next day, I discover, to my significant relief, that Sue speaks English quite well. 
Unfortunately, her memory is a little hazy on the bit of code I'm asking her 
about. She remembers dealing with it about a year ago, but there's been a lot of 
water under the bridge since then. AT this point, I am beginning to consider 
tying weights around my feet and jumping off that bridge. She can't tell me 
where functionality X is, but she's pretty sure it isn't where I'm looking. "Have 
you tried asking John? ", she queries. So I contact my manager and request a 

312 



Appendix 1 

meeting with another client staff member, John. 

Scene 4-a meeting room. Ed sits opposite a cool dude with sideburns and 
shoulder length hair. 

Next day, John is disarmingly candid about the code I'm dealing with. "Oh yeah, 
I remember this crap", he begins. "We wrote that it in about a week, sometime 
last year, when we were up against the wall. It's absolute rubbish. " "No kidding", 
I think. John is my guardian angel - he knows that function X got ripped out at 
the last moment, so they could meet their deadline. But then they put it back in 
a bit later, when things slowed down, and it's kept in a different module in the 
version control system. Which one? "You'll have to ask Declan", says John in a 
matter of fact way. I ask my manager to queue up some time with Declan. 

Scene 5-a cubicle. Ed is slouched in an office chair, browsing the 
advertisements on an employment web site. 

My manager replies a few hours later, saying that Declan left the company a few 
months ago - maybe someone else knows. Have I tried asking Bob? " 

Mr. Ed 

313 



Appendix 2 

Appendix 2: Tree of Categories, complete version 

The research question(s) to which the category is related is shown in 
brackets. 

1. SW-Dev (RQI, RQ2, RQ3) 
1.1. Problems (RQ2) 
1.2. Goals (RQ2, 
RQ3) 
1.3. Process 

2. SW-Eng (RQ2) 

3. SW (RQ1, RQ2) 

4. Developers 

1.3.1. Coordination (RQ2) 
1.3.2. Improvement (RQ2) 
1.3.3. Division (RQ2) 
1.3.4. Communication (RQ2) 

1.4. Management (RQ2) 
1.5. Stages 

1.5.1. Planning (RQ2) 
1.5.2. Analysis (RQ2, RQ3) 
1.5.3. Design (RQ2, RQ3) 
1.5.4. Coding (RQ2) 
1.5.5. Testing (RQ2, RQ3) 
1.5.6. Documentation (RQ1, RQ2, RQ3) 

1.6. Characteristics 
1.6.1. Controllability (RQ1, RQ2, RQ3) 
1.6.2. Standardability (RQ1, RQ2, RQ3) 
1.6.3. Incrementability (RQ2, RQ3) 
1.6.4. Adaptability (RQ1, RQ2, RQ3) 
1.6.5. Predictability (RQ2) 
1.6.6. Levels of Abstraction (RQ2) 
1.6.7. Complexity (RQ1, RQ2) 
1.6.8. Productivity (RQ2) 

2.1. Kinds of 
2.1.1. IS (RQ1) 

2.2. Characteristics 
2.2.1. Reusability (RQ2) 
2.2.2. Complexity (RQ1) 
2.2.3. Controllability (RQ2) 
2.2.4. Reliability (RQ1, RQ3) 
2.2.5. Flexibility (RQ1, RQ3) 
2.2.6. Adaptability (RQ1, RQ3) 
2.2.7. Usability (RQ1, RQ3) 
2.2.8. Maintainability (RQ3) 
2.2.9. Social Interface (RQ1, RQ3) 

4.1. Training (RQ2) 
4.2. Education (RQ2) 
4.3. Experience (RQ2) 
4.4. Responsibilities (RQ2) 

314 



Appendix 2 

4.5. Mentality (RQ2) 
4.6. Definition (RQ2) 

4.6.1. Coder (RQ2) 
4.6.2. Analysts (RQ2) 

4.7. Working habits (RQ2) 
4.8. Remote work (RQ2) 

5. Methodologies (RQ2, RQ3) 
5.1. Traditional (RQ3) 
5.2. OOD (RQ3) 
5.3. Agile (RQ3) 
5.4. Patterns (RQ3) 
5.5. Prototyping (RQ3) 
5.6. Free will (RQ2) 
5.7. Modelling (RQ3) 

6. Business Issues 

7. Social SW (RQ3) 

8. Virtual 
Communities 

6.1. Knowledge about 
business 

6.1.1. Domain knowledge (RQ1) 
6.1.2. Business rules (RQ1) 
6.1.3. Clients & Users (RQ1) 

6.2. Business side (RQ1) 

7.1. Usability (RQ3) 
7.2. Design (RQ1, RQ2, RQ3) 
7.3. Communication (RQI, RQ3) 

8.1 Posting Habits 
8.2 Motivations 
8.3 Culture 

Note: Data category [Virtual Communities] is not part of the analysis 
results. This category was created to collect data that describes the 
nature and behaviour of virtual communities of software developers for 
this research. See a discussion about Virtual Communities in section 4.2 
of chapter 4. 

315 



Appendix 
-3 

Appendix 3: Analysis and Theory Building 

This appendix shows part of the analysis and theory building process. 
Comments organised by categories were revised and connected to 
research questions. Propositions from comments were then refined and 
then organised by research question. The first extract shows an example 
of how comments from one category where linked to a research question. 
In this case the whole set of comments labelled as research question 2. 
The second extract shows the complete list of propositions grouped by 
research question. 

1. Comments from [Methodologies-Free Will] connected to Research 
question 

1. There is no one SDLC to rule them all. Different organisations or projects need 
different methodologies. No methodologist can describe what to do in all circumstances. 
2. Developers have to analyse their environment, type of software and duration of 
project and select a method that best serves their needs. "Take what works for you and 
throw out what you don't need". 
3. Free Will= Pragmatic programming, methodologies are a good place to start but no 
place to stop. Developers should be open minded. Methodologies are good for starters 
but senior programmers have already developed common sense and familiarity with 
common practices, have the experience and thoughtfulness to decide what to use in any 
circumstance. 
4. Free Will does not work well in teams if developers do not communicate. Analysts 
should share their ideas with the others to make things work smoothly. 
5. Some developers claim that they do not use a methodology but use their brains and 
choose what have worked for them before. 
6. Free Will practices "recognise that businesses are not a science and that there are 
not elegant laws like in physics whereby observation can be distilled into scientific fact. " 

2. List of Refined Propositions organised by Research Question. Left 
column shows the propositions and right column shows their category 
and the number of the comment of origin. In many cases propositions 
emerged from more than one category. 

Question 1 
What are the human and social aspects of business environments that 
make software development complex and difficult? 

Category and comment 
of Origin 

or unnecessary control of information [SW-dev-controllability 5] 
[SW-dev complexity 8] 
[SW-adaptability 4] 

Free (social) interactions among users 
Informal, covert practices [SW-dev-complexity 6] 

Users who do not follow standard procedures [SW-dev-standard 9] 

316 



Appendix 3 

Propositions 

Users cannot be controlled as computers 

Different people doing the same jobs but in 
different ways 

Category and comment 
of Origin 

[SW-dev-controllability 6] 
[SW flexibility 4] 

[SW-dev-complexity 2,3] 

Difficulty of knowing key users, people who control 
the information, people who possess the domain 
knowledge, and their relationships. 
Help users to adapt to any software and make a 
good use of it even if it's not 100% fit to their 
needs. 

Group interactions are more complex than human-to- 
computer interactions. 

The unpredictable nature of users, organisations and the 
markets. Developers do not know how they will change in 
the future. Their work becomes reactive rather than 
proactive. 
Different (personal or official) goals from users or groups 
from the same organisations. 

[SW-dev-controllability 7] 

[SW-dev-complex 1,4,5] 
[SW-complexity 21 
[SW-flexibility 7] 
[SW-adaptability 6] 
[SW-social interface 1] 
[SocialSW-design 6] 

[SocialSW-design 71 
[SocialSW-communic 5] 

[SW-dev 3] 
[SW-adaptability 7] 

[SW-dev-complexity 7] 
[SocialSW-communic 2] 

The uniqueness of every business situation. [SW-dev 3] 
[SW 2] 

Different interpretations about the same system [Clients 3] 

Users and managers having different ideas about their [Clients 3] 

jobs. 

Users who do not know what they need [Clients 3] 

Users who argue among themselves about the [Clients 3] 
requirements. 

Descriptions of jobs and requirements containing [Clients 3] 
ambiguities 
The impossibility to satisfy all users of software. There is [Clients 9] 
always someone who complains and wants changes. 

Adaptation of users, groups or organisations to new [SW-dev standard 8) 
conditions causes changes in business settings [SW-dev adaptabil 5] 
(Flexibility? ) 

Size of organisation. The bigger the size 
The more control needed [SW-dev-control 8] 

[SW-dev-standard 10] 

The more complex structures maybe... the more [SW-complexity 1] 

covert channels of communication. 

Users reluctant to technology change, users who do not [Clients 6] 

317 



Appendix 3 

Propositions Category and comment 
of Origin 

understand technology. 
Organisational culture impeding adaptation of technology. [SW-dev-adapta 9] 
Organisations with heavy processes. 

Pressure from users over time and budget and because [Business side 8) 
they want to control the project. [Clients 12] 

The level of dependence of users, groups and [SW-adaptab 1] 
organisation on the software may decide on their 
commitment, adaptability and acceptance of it. 

Users caring more about the old system. [SW-adaptab 11] 

Faulty, not suitable software being used by users and [SW-reliability 1] 

affecting their work. [SW-adaptab 2] 
[SW-usability 2] 
[SocialSW design-6] 

Contradiction between business rules (formal procedures) 
and the way the users actually do their jobs. 

Users' and Developers' domain knowledge isn't [DomainKN 1,4] 
business rules [Clients 7] 

Users' feelings about their jobs and software need [Clients 5] 

to be considered. 

Managers who act as key users and maybe are [Domain KN 6] 

part of the project team but who do not know what 
their subordinates do (the people who are going to 
use the software). 

Organisations where channels of communication are poor [SocialSW communic 1] 

(software wouldn't work there) 

Remote users who possess key domain knowledge (multi- [Clients 1,11] 
organisation? ) and who are difficult to access -> poor [Socialsw design 4] 
communication, poor feedback. 
Lack of sense of community in a group or organisation [SocialSW communic 2] 
that would drive the use of software. A community that 
grows around the use of software. 

What is the relationship between complexity of business [SW-dev complexity s] 
setting and complexity of software? 

318 



Appendix 3 

Question 2 
What are the social aspects in the development environment that allow or 
hinder the identification of social issues in business settings during the 
development of software? 

ns 

rent perspectives about the software development 
from different developers who may participate in the 

team. 

minded attitudes toward software development 
the ability to find the best strategy for a given 

Software development being driven by common sense 
and not methodologies or standards. 

Software development methodologies could be a 
constraint of creativity rather than a help. 

Category and comment 
of Origin 

[SW-Dev 1,2,3,4,5] 
[SW-Dev-Process- 
Communication 2] 
[SW-Dev-Management 3] 
[SW-Dev-Stages-Doc 7] 
[SW-Eng 1] 
[SW 1] 
[SW-Controllability 1] 
[SW-Flexibility 3] 
[Dev-Responsibilities 2,5] 
[Dev-Working Habits 8,9] 
[SW-Dev-Standard 1] 
[SW-Dev-lncrement 4] 
[SW-Dev-Adaptab 3,8] 
[SW-Dev-Levels 1,2,3] 
[SW-Reusability 1,2,3,4] 

[SW-Dev-Proc-Imprv 101 

[SW-Dev-Standard 4] 
[SW-Dev-Predict 3] 
[Methodologies 1] 

Developers prefer learning and developing judgement and [SW-Dev-Standard 3] 
common sense which will help them more than following [Dev-Experience 2,3] 

methodologies. [Methodologies-Free Will 
2,5] 

Developers can forget to do activities or processes if [SW-Dev-Control 1] 

these are not controlled by a methodology. [Methodologies 6] 

Different goals from different members of the team. [SW-Dev-Goals 1,3] 

Ways of working that do not match the developers' [Mentality 8] 
working style. 

Developers need to adapt to the standard procedures at [SW-Dev- Proc- 
the software house. Improvements 9] 

Ways of working that do not m, 
users and target organisations. 
There are no silver bullets. 

itch the problem situation, lSW-Dev- Proc- 
Iniprovements 2] 
ISW-Dev-Increment 4] 
INlethodologies-Free Will 
1] 
[SocialSW-Design 3] 

Having a reactive attitude rather than a proactive one. [SW-Dev-Manag 1] 
[SW-Dev-Control 2] 
[SW-Dev-Standard 21 

Repetitive work as opposed to creative work, which is [SW-Dev- Probe 1,2,6] 
considered a waste of time. [Dev-Mentality 9] 

319 



Appendix 3 

Category and comment 
of Origin 

rs underestimating their jobs and getting bad [SW-Dev-Problems 2] 

itions or interference from management or users. [SW-Dev-Problems 4,8] 
[SW-Dev-Manag 2] 

Time and budget pressures 

Sudden change of teams 

Politics [SW-Dev-Proc-Improv 3] 

Assessment based on productivity and not quality. [SW-Dev-Product 1] 
Assessment based on working habits and not 
skills. 
Being treated as commodities. [SW-Dev-Product 5) 

Contradiction between time and budget as goals of [SW-Dev-Predict 2] 
projects and the unpredictable nature of Software 
development. 

Lack of stability causes probably fear of outsourcing. [SW-Dev-Problems 5] 

Lack of rest. Extra hours are considered a consequence [SW-Dev-Problems 5] 
of bad managed projects. [SW-Dev-Productivity 4] 

To do other people's work. It depends on how work was [SW-Dev-Problems 8] 
assigned and on the software procedures in the software 
house. 

Fear of failure drives projects. Sharing culpability with [SW-Dev-Goals 4] 
clients in case something fails. [SW-Dev-Planning 2] 

Fear of outsourcing (Dev-Coder 4] 

Fear of becoming obsolete [Dev-Mentality 5] 

Large groups are difficult to coordinate and communicate. [SW-Dev-Proc- 
Coordination 2] 

Organisational culture or developers impeding adaptation [SW-Dev-Proc-Improv 4] 
of new procedures. [Dev-Working Habits 7] 

Developers or PM's who do not know why things are done JSW-Dev-Proc-Improv 51 
the way they are done, and who probably have distorted [SW-Dev-Manag 5] 

and incomplete views of the project. 

Frustration, lack of motivation and initiative of powerless 
developers, probably caused by 

Not having the power to introduce changes, or to [SW-Dev-Proc-Improv- 
make design decisions. 1,8,91 

Lack of support and reciprocity of PM's. [Dev-Mentality 6] 

Not having the appropriate technology to develop [SW-Dev-Testing 12] 
and test software. [SW-Dev-Productivity 2] 

320 



Appendix 3 

Propositions 

No training 

The nature of developers 
They have poor person and communication skills 
that do not help them to talk to colleagues and 
users and gather correct requirements. 
They do not understand users' language. 

They need and work with non-ambiguous 
information. 

They are individualistic, not particularly fitted for 
working in teams. 

Category and comment 
of Origin 

[Dev-Training 1,2] 

[Methodologies 2] 
[Methodologies-Free Will 
4] 
[SW-Dev-Standard 5,10] 
[Dev-Mentality 71 
[Dev-Analysts 1] 
[Dev-Remote Work 1,2] 
[SW-Dev-Proc-Improv 6) 
[SW-Dev-Proc-Div 4] 
[SW-Dev-Proc-Comm 
3,4,7] 
[SW-Dev-Analysis 41 
[SW-Dev-Design 8] 
[Dev-Responsibilities 31 

[Dev-Definition 11 

[Dev-Definition 1] 

Prefer quick answers and do not like long [SW-Dev-Problems 3] 
meetings as these are considered a waste of time. [SW-Dev-Proc-Comm 1] 

[Dev-Working Habits 
1,2,3,6] 

Some prefer electronic means of communication [SW-Dev-Analysis 1] 
rather than face to face meetings. 

Developers and PM's not giving importance to having 
appropriate documentation 

Reliance on pure oral communication only: maybe [SW-Dev-Proc-Comm 51 
useful for first stages of development. 

Not having written documentation: useful for 
maintenance. 

Having outdated documentation which is believed 
to be the updated one. 

Developers who focus only on the technical side of 
software and forget about or can't see the social side of 
organisations. 
Developers who think of users as computers or software. 

Not having users involved in the development process. 

[SW-Dev-Problems 3] 
[SW-Dev-Proc-Div 1) 
[SW-dev-design 9] 
[SW-dev-document 5] 

[SW-Dev-desigri 7] 

[SW-Dev-Analysis 41 

[SW-Dev-Control 6] 
[SW-Dev-Predict 1] 

[SW-Dev-Analysis 3] 
[SW-Dev-Adaptab 2] 

Improvised developers in the team. Improvisation in the [SW-Dev-Problems 7] 
field. [Dev-Education 5] 

Antagonism between, developers, analysts, PM's and [SW-Dev-Manag 4,6] 
consultants. [Dev-Coder 5] 

Influence of developers' preferences in socialisation on [Dev-Mentality 2] 

321 



Propositions 

the software they build. 

Category and comment 
of Origin 

[SocialSW-Design 2] 

Question 3 
What aspects of current software development methods address or 
neglect social issues in business settings? What is social software and 
does it have a role to play in improving these practices? 

)ositions Category and comment 
of Origin 

bserve users of SW in their natural setting (office? ) [SocialSW-Design 5] 
learn about the social issues happening there. 

)ility - to focus on human to computer interaction 

Not enough [Usability 1] 

Prototyping [Methodologies- 
Prototyping 2] 

Evolve software with close eyes on users 

To consider feedback from users to develop the [SW-Maintain 4] 
next increments. Methodologies-Agile 11 

Maintenance of software, incremental and iterative 
development and coding for flexibility 

to account for changes in organisation, due to 
social issues 

(maintenance) documentation is needed [SW-Dev-Document 4] 

coding standards are needed to ease [SW-Dev-Standard 3] 

maintenance 
Customers driving the requirements? [SW-Dev-Analysis 3] 

Developers acquiring domain knowledge, uncovering [SW-Dev-Increment 3] 
hidden practices and resolving ambiguities 

Getting involved with users [SW-Analysis 4,5] 
Establishing rapport with users 

[SW-Dev-Design 8] 

Learning user's language [' 
[SW-Adaptab 

2] 
7] 

] 
Being in users' shoes [Methodologies 2] 

ISocialSW-Design 4] 

Clarification of ambiguities in requirements and specs. [SW-Standard 1] 

Prototyping [SW-Dev-Analysis 12] 
[SW-Dev-Design 5] 
[Methodologies- 
Prototyping 2] 

Standards for communication with clients [SW-Dev-Document 1] 
[SW-Dev-Standard 5,10] 

Developers and PM's good attitude of expecting change [SW-Dev 3] 

Appendix3 

322 



ix 3 

Propositions Category and comment 
of Origin 

at any time during the development process. [SW-Dev-Increment 
1,4,5] 
[SW-Dev-Adaptab 3,5,10] 

Use of common sense and judgement to adapt methods [SW-Dev-Adaptab 5] 

to problem situation and users. 

Practices that force developers to foresee changes of [SW-adaptability 7] 

organisation and software in the future. 

Goal of software development project -> satisfaction of [Methodologies-Agile 4] 

users. 

The consideration that social software should not force [SocialSW 1] 

but encourage certain kind of behaviour. Users should be [SW-dev-Standard 7,8] 

free to use the software as they wish. [SW-Social Interface 1] 

The acknowledgement of a group as a user and of [SocialSW-Usability 1,2] 

communication as the users' goal. [SocialSW-Communic 2] 
[SocialSW-Design 7] 

Remote work could be a counterproductive strategy to [SW-Dev-Analysis 1] 

learning about social interactions in a business setting. 

Focus on the technical side of software only, neglecting [SW-Dev-Testing 4] 
the social side of organisations. [SW-Dev-Document 3] 

323 



Appendix 4 

Appendix 4: Dictionary of Online Codes 

ý0 n 
. 
NET Microsoft® 

. 
NET is a set of Microsoft software technologies for 

connecting information, people, systems, and devices. It enables a high 
level of software integration through the use of Web services-small, 
discrete, building-block applications that connect to each other as well as 
to other, larger applications over the Internet. 

3G Third generation protocols. In mobile telephony, 3G support much higher 
data rates. 

ADO ActiveX Data Objects. A Microsoft technology that provides data access 
to any kind of data store. 

AFAIK As far as I know 

API Application Program Interface 

Blog online (personal) journal 

BTW By the Way 

Chandler Chandler is the combination personal information manager and platform 
Project that has enormous potential to help re-energize the stagnant PC desktop 

software marketplace 

CMS Content Management System 

COM, COM+ Component Object Model, the MS-paradigm to connect components. MS 
has implemented the base technology for COM on the NT platform. 
Software AG has ported these on MVS and UNIX. A COM-object defines 
its interfaces. Components from different machines can be combined 
using DCOM. 

COM+ isan extension to Microsoft's Component Object Model (COM). 
COM+ builds on COM's integrated services and features, making it 
easier for developers to create and use software components in any 
language, using any tool. Delivered on the Microsoft Windows platform, 
COM+ is designed to preserve and extend current investments in COM. 
Applications currently using COM technology will work in the COM+ 
environment. 

COTS Commercial off-the-shelf, commercially available products that can be 
purchased and integrated with little or no customization, thus facilitating 
customer infrastructure expansion and reducing costs. 

CSS Cascading Style Sheets, style sheets when attached to documents 
describe how the document is displayed or printed, e. g. a CSS sheet is 
attached to an HTML document, to influence its layout when accessed 
via a browser. CSS supports cascading, i. e. a single document may use 
two or more style sheets that are than applied according to specified 
priorities (=cascade). 

CVS The Concurrent Version System, a source-code control system that 

324 



ix 4 

Term 
Project Builder can use to manage changes in source code over time 
and across multiple developers. 

CYA Cover your ass 

DBC Design by Contract 

DEBIAN A 100% Open Source Linux distribution http: //www. debian. org 

DUH Colloquial comment on one's (or someone else's) lack of knowledge or 
brain power. 

FAO For the attention of 

Flaming insulting someone on a message board 

Fork ranching: the act of branching out or dividing into branches 

FWIW Acronym for "For What Its Worth" 

GENTOO Gentoo Linux is a high-performance ports-based Linux metadistribution 
for x86, PowerPC, UltraSparc and Alpha Processor systems. 

GNOME GNU Network Object Model Environment 

GNU GNU stands for GNU's not UNIX and is thus a recursive acronym 

HCI Human Computer Interface 

IDE Integrated Development Environment 

IDEF IDEF (Integrated Definition) is a group of modeling methods that can be 
used to describe operations in an enterprise. Originally developed for the 
manufacturing environment, IDEF methods have been adapted for wider 
use and for software development in general. Sixteen methods, from 
IDEFO to IDEF14 (and including IDEF1X), are each designed to capture 
a particular type of information through modeling processes. IDEF 
methods are used to create graphical representations of various 
systems, analyze the model, create a model of a desired version of the 
system, and to aid in the transition from one to the other. IDEF is used 
along with gap analysis. 

IIRC If I remember correctly 

IIS Internet Information Server. 

IMHO In My Humble Opinion 

IPO (Initial Public Offering) is the first time a company is selling stock to the 
public. 

ISV Independent Software Vendor. 

JDE Java Development Environment 

JFDI Just F***ing Do It 

325 



Appendix 4 

LOL Laughing Out Loud 

Longhorn Next version of Windows, codenamed "Longhorn" 

Mantra Sacred syllables or words. Sacred utterance. 

MMORPG Massively Multiplayer Online Role Playing Game 

MONO The Mono project is an open source effort sponsored by Novell to create 
a free implementation of the . 

Net Development Framework 

MSDE The Microsoft Data Engine (MSDE) makes SQL Server technology 
available in development contexts that were previously restricted to the 
Jet database engine. 

MSDN Microsoft Developer Network 

MSMQ Microsoft Message Queuing (MSMQ) technology enables applications 
running at different times to communicate across heterogeneous 
networks and systems that may be temporarily offline. Applications send 
messages to queues and read messages from queues. 

NNTP Network News Transfer Protocol, the protocol used to send, distribute, 
and retrieve USENET messages. 

OP Original Poster 

OTHO On The Other Hand 

PHP Self-referentially short for PHP: Hypertext Preprocessor, an open source, 
server-side, HTML embedded scripting language used to create dynamic 
Web pages. 

PHPGroupware phpGroupWare is a multi-user web-based suite written in PHP. It 
contains many applications, including a Calendar, email package, 
contact database and project manager. It also includes an extensive API 
for writing new applications. 

Plone An open source Content Management System (CMS). 

Postmortem A phase at the end of a software project during which project team 
members evaluate the project and learn lessons that can be applied to 
the next project. "Postmortem" also refers to the report created during 
the postmortem phase. 

Python Python is an interpreted, interactive, object-oriented programming 
language-comparable to Tcl, Perl, or Java. 

QA Quality Assurance 

RDF Resource Description Framework -a metadata standard 

RSS RDF Site Summary (RSS) is a lightweight multipurpose extensible 
metadata description and syndication format. RSS is an XML application, 
conforms to the W3C's RDF specification and is extensible via XML- 
namespace and/or RDF based modularization. 

326 



Appendix 4 

ßefinon' 
Rutime The period of time during which a program is executing. The 

environment in which a user runs a Panther application. The runtime 
environment is different from the development environment in that the 
editors and repositories cannot be accessed. 

SAMBA Samba is an open-source implementation of Microsoft's SMB/CIFS 
protocol for file and printer sharing. Samba lets Linux computer 
masquerade as Windows NT or 2000 servers, offer better performance 
and stability at a cheaper price. 

SDK Software Development Kit 

SharePoint Microsoft Collaboration Tool. 

SOL SH** Out Of Luck 

Spamming sending e-mail(s) to innapropriate newsgroups 

Spoof To counterfeit a software program in order to get access or information 
on a system illegally. 

SPS SharePoint Portal Server 

SSH Secure Shell (SSH), sometimes known as Secure Socket Shell, is a 
UNIX-based command interface and protocol for securely getting access 
to a remote computer. 

STFU Shorthand for Shut The F*** Up 

STFW Search The Fucking Web 

TCP Transmission Control Protocol. Together with Internet Protocol (IP), TCP 
is one of the core protocols underlying the Internet. The two protocols 
are usually referred to as a group, by the term "TCP/IP. " TCP enables 
two computers to establish a connection and exchange information. TCP 
guarantees delivery of data and also guarantees that information 
packets will be delivered in the same order in which they were sent. 

TDD Test Driven Development 

TrackBack A system implemented by many blogging tools that allows a blogger to 
see who has seen the original post and has written another entry 
concerning it. 

Troll A purposely stupid, inflammatory, or downright wrong article (closely 
related to flamebait). Its purpose is to get people mad and make them 
look stupid and gullible. 

TTFN Ta Ta For Now 

UAT User Acceptance Testing 

UDP User Datagram Protocol, is one of the protocols for data transfer that is 
part of the TCP/IP suite of protocols. UDP is a stateless protocol in that 
UDP makes no provision for acknowledgment of packets received, i. e. it 
will not tell you if data was received at the destination. 

327 



Appendix 4 

VBS Visual Basic Script 

VI Vi is a very simple, yet powerful, editor. Unlike emacs, which is a 
"modeless" editor, vi uses "modes". That is, at any point in an editing 
session, you may be in insert mode, command mode, etc. 

VoIP Voice over Internet Protocol; the practice of packet based networks 
instead of the standard public switched telephone network to send voice 
data. 

WIKI A Wiki is a collaboratively-edited website which many people also view 
as an anarchistic publishing tool. The distinguishing feature of wikis is 
that they typically allow all users to edit any page, with full freedom to 
edit, change and delete the work of previous authors. 

WSDL Web Services Description Language. The standard format for describing 
a web service. Expressed in XML, a WSDL definition describes how to 
access a web service and what operations it will perform. Usually 
pronounced "whizz-dul" (to rhyme with 'whistle'), WSDL is seen (with 
SOAP and UDDI) as one of the three foundation standards of web 
services. 

WSS Windos SharePoint Server 

YAGNI You Aren't Going to Need It. 

YASNS Yet Another Social Network Service 

YMMV Your Mileage May Vary (or your experience could be different) 

ZOPE Zope is an open source web application server written in Python. Plone 
uses Zope 

328 



dix 5 

Appendix 5: Permission Request 

Thread Title: Being Date: 16th July 2004 Source: JoS 
Researched 
"Being Researched 
Yes, the PhD student again... 

I've been reading this forum for 7 weeks now and I am very much engaged with 
it. To summarise, I am doing a PhD in Software Development from the point of 
view of management/business. I started some conversations last month with 
very interesting and helpful replies. 
http: //discuss. foqcreek. com/redirect. asp? http: //discuss. foqcreek. com/ioelonsoftw 
are/default. asp? cmd=show&ixPost=144731 &ixReplies=l2 
http: //d iscuss. fogcreek. com/redirect. asp? http: //discuss. foqcreek. com/ioelonsoftw 
are/default. asp? cmd=show&ixPost=147094&ixReplies=9 
http: //discuss. fogcreek. com/redirect. asp? http: //discuss. foqcreek. com/ioelonsoftw 
are/default. asp? cmd=show&ixPost=150306&ixReplies=21 

I do thank all of you who shared your opinions with me. 

I have been lurking this and other forums to update myself with the current and 
fashionable issues in the development world. I believe that all the material 
posted provides a good opportunity for research. 

As my PhD is within the social sciences I am focusing on people's opinions on 
issues- I. e. software development. From the discussions here, what I am trying 
to do is gathering some information that I would like to reflect on in my thesis. It 
is not only the replies to my posts that I would like to use but maybe information 
from other threads in which I don't participate. 

I would like to ask you all and Joel if there is any impediment to do so, including 
your own opinions. I do not intend to make direct reference to any of you. If so, 
I will ask you first. I do this as I think it is ethical to do so. 
What do you think? 

Cecilia Loureiro-Koechlin 
c. loureiro-koechlin@mgt. hull. ac. uk" 

Cecilia Loureiro 
Tuesday, July 06,2004 

"You want to refer to posts written on this message board but you don't want to 
credit the authors with the posts? Is this actually an academic project? " 

Kalani 
Tuesday, July 06,2004 

"Kalani, 

Yes, it is an academic project. A PhD project to be precise. 

Maybe my post wasn't that clear. 

My thesis will contain the analysis and conclusions of discussions. It will classify 
and summarise topics. However, I would probably need to quote some of you. 

I am happy to credit the authors of the posts provided the authors do not have 
any objections and give me permission to do so. " 

Cecilia Loureiro 

329 



Appendix 5 

Tuesday, July 06,2004 

"Seems to me you should go ahead... if you want to quote someone, and they've 
left an email address to follow, ask them. If they left no email address, treat it as 
an anonymous quote. Done and done. 

Greg Hurlman 
Tuesday, July 06,2004 

"I agree with Greg. As far as I know, there's no legal/ethical reason to have to 
ask either. I've always treated information available on the public Internet just 
like a work you'd find at the library (the MLA even has a 'formal' way to reference 
Internet resources). 

Please let us know about your work when you've finished it too. It'd be 
interesting to read. " 

Kalani 
Tuesday, July 06,2004 

"thank you for your comments and for your support.: )" 

Cecilia 
Cecilia Loureiro 

Tuesday, July 06,2004 

"Cecilia, I'm kinda curious, as you seem to have it backwards - whether or not to 
*quote* someone's post on the 'net without permission may be debatable, but I'm 
curious about an academic institution where a PhD student thinks *citing* a 
quote used is optional? 

Are there really a lot of theses that say "then this other guy said 'Managers 
should follow before they try to lead' and someone else replied 'not 
necessarily'... " ? 

Philo" 
Philo 

Tuesday, July 06,2004 

"Even if the thesis doesn't quote people, if you make some kind of conclusion 
based on data culled from this site then you ought to cite the site (so that others 
can validate your conclusions). But I'm sure you're aware of that kind of thing. 
Its obvious even for trivial undergrad papers. " 

Tuesday, July 06,2004 

"Ceclia, have you contacted your University ethics officer on this one? 

I ask merely because in Australia you would need ethics clearance before going 
into the wild" and there would be guidelines in place on these sorts of things. 

(OTOH, you might have already done this, and if so, I apologise) " 
Les C 

Tuesday, July 06,2004 

"What was the hypothesis of the work? Did you get any 
observational/experimental results and which conclusions have you drawn? " 

Just me (Sir to you) 
Wednesday, July 07,2004 

"Thanks very much for your comments. 

330 



Appendix 
-5 

Mr. Philo, yes, citing is a common practice, especially in the social sciences. You 
may cite someone to support or justify a conclusion. 

Mr. Blank, yes I am going to acknowledge JoS... as the source of the quotes and 
the articles posted (which I think are excellent quality) 

Mr. Les C., in social sciences ethical issues are sometimes as important as the 
outcomes of research. If the research is not conducted ethically it may be 
subject to criticism by supervisors and examiners and may be invalidated. For 
this reasons PhD students take some modules on philosophy and ethics. 

In my case, I think I am taking a risk as online research is a new practice... 
methodologically as well as ethically, so I have to do it carefully... however this 
will also give my work more originality and in my opinion more reliability... as I 
believe online forums and the internet in general are valid places to approach 
software developers. (Instead of, for example, going to a software house and 
interviewing IT people, don't you agree? )... I think the internet gives me the 
opportunity to talk to more people from different backgrounds and levels of 
experience. 

Mr. Just Me (Sir to you) ... I don't have a hypothesis. That works more for 
quantitative research (where for example you can test assumptions in a lab). I 
have chosen to do qualitative research based on online observations.., that is, 
online discussions with software developers.., what I have defined is a problem 
situation (based on work experience) and a theoretical framework which at the 
moment is a bit wide but I will narrow it down with my participation in your forum. 
am not trying to validate my framework but refine it with your discussions. 

I am really glad you welcome my participation in this forum 
thanks again 

Cecilia " 
Cecilia Loureiro 

Wednesday, July 07,2004 

"What makes you think there are any real software developers here? : -) " 
Just me (Sir to you) 

Wednesday, July 07,2004 

"maybe it is the name of the forum: Joel on SOFTWARE that might appeal to 
developers... 
or the content, there is very interesting stuff discussed here" 

Cecilia Loureiro 
Wednesday, July 07,2004 

"What aspect of software development are you most interested in for this 
project? Maybe we could point you to the most applicable web-log, if this one 
isn't it. " 

Kalani 
Wednesday, July 07,2004 

"Generally you do not need to ask permission to quote published work (under 
guidelines of fair use, of course). In fact, there is the concept that you 'should 
not* ask permission, because doing so weakens the concept of fair use. 

And a board like this might well be considered published work, in a public forum. " 
mb 

Wednesday, July 07,2004 

331 



ndix 5 

"There is a lot of debate on this issue. Some people like you would say that 
information on the web might be considered as published material whereas 
others would consider the same material as private (especially information in 
discussion forums... especially those where you have to sign in... ). I am just 
trying be on the safe side by asking for permission. " 
Cecilia Loureiro 
Thursday, July 08,2004 

"Those who can't do, teach. Those who can't teach, write theories. " 

Thursday, July 08,2004 

"Kalani, 

I am studying software development for difficult, complex and ill-defined 
business environments. For example... situations where it is difficult to specify 
requirements..., situations where you have a big number of potential users who 
need to be consulted and who will use the system, but who have very different 
opinions about it... or situations that change rapidly (nowadays this is getting 
more common)... As organisations and their processes change and adapt to 
their environments so must the software (so how do we deal better with 
changes? during development and after). At the moment my hypothetical 
scenario is that of multi-organisations containing processes that need decision 
making, workflow, knowledge management, etc. I am also assuming that the 
software must adapt (or evolve) to changes in those processes; this doesn't 
mean changes in requirements but conditions for flexibility in applications so 
users are not trapped in them. I would probably have to change these 
assumptions (If they are not realistic (who would buy a system like that??!! )) but 
that will depend on the feedback from online discussions. 

Reading this forum I have found some topics which would be helpful... like: 
development methodologies: waterfall, agile methodologies (XP, Scrum, etc), 
components, UML, distributed/centralised systems, abstraction layers, 
abstration/productivity/innovation, remote software work, but also discussions 
about how's your everyday life as developers, what you believe will be the future 
of development (btw I enjoyed a lot the API war related threads)... and stuff like 
that. : ))) " 

Cecilia Loureiro 
Friday, July 09,2004 

332 



ix 6 

Appendix 6: Online Sources used in this thesis 

Name URI. 
BookBlog http: //alevin. com/weblog/ 

Code Guru Forums www. codequru. com/forum 

Eric Sink Web Log http: //software. ericsink. com/index. html 

Hacknot www. hacknot. info 

JoS Discussion Old version: http: //discuss. fogcreek. com/ threads up to September 
Groups 2004 

New version: http: //discuss. ioelonsoftware. com/ threads from 
September 2004 

Life With Alacrity www. lifewithalacrity. com/ 

Online interviews MSN Messenger 
Microsoft http: //communities2. microsoft. com/communities/newsqroups/en- 
NewsGroups us/default. aspx 

Select Spanish-Desarrollo-Desarrollo 

Rands in Repose www. randsinrepose. com/ 

Visual Basic www. vbforums. com 
Forums 
Wikipedia www. wikipedia. org/ 

used to look for information on technical topics 

WikiWikiWeb http: //c2. com/cgi/wiki? WikiWikiWeb 
used to look for information on technical topics 

333 



pendix 7 

Appendix 7: Screenshots of the Organising System of 
Data 

a) The following screenshot shows the fieldwork data files names and the 
folders they were organised in. These files are copies of the online 
conversation I stored in my computer. Each file was then entered in a 
NUD*IST project as shown in the second screenshot. 

s1 IýI# 0C LL 6000 
LL LL LL LL LL LL LL LL 

L 
LL LL LL LL LL LL 

U- _LL SSX LE 
U- 

SS 
iZ 

S 
LL 

S 
LL 

QQQQQQQQQQ 
2mR It ým t2 ýR Ir ý 

i 

C 

X 

H 

r1 

U- 
SN 

Ö 

k Fes' 
-g 

cu 

V 

wN 

lL 
Q 

ýI vt I 
ýL N 

ýI 

Oýý 
ry 

ý 

71 gy+ý `l 
ýNýFýA 

b b 
ýtb 

bA 
Iýý 

ý1 ýýÄýýLL 

TN 
pr 

CLN 6ý 
UTÜOjO2T 

£1tnm1fl! IHIIui! 1f 

Urrrrrrrrrrrrrrrrrrrrrr 

Tý 7 rt 4P7V V' VV Vý T7fVY Ö' 7VVVV ýY C 
QQQQQQQQQQQQQQQQQQQQQQQQ 

4999R49Q4Q444Q 4pp 444444R944 
. 
ý. 

' 

OD O' N-. "1-. OOmmONNNNNOOOON 
-'v 

Xý 

334 



Appendix 7 

b) The next screenshot shows the NUDIST project created for my thesis 
and the documents that it contained: 

c) The following screenshot shows how a segment of text (encircled) is 
assigned to the [Developers/Responsibilities] data category coded as 
(4,4) in NUDIST: 

Gre of Ine things that has changed since then is that while the mindset 
of management nasnl changed all that much the hierarcy that once existed Add Coding 
(i e the number of people involved on just about any type of a project) 

x nding is much smaller today than it once was The h1 adenl shock for me when I 
transdioned off the mainframe was NOT toe diRerere in software tools or Free Nodes (1) ý] It und 
programming languages I wanted to know roter en the hen the rest ofthr Index Tree Root (73) ] 

at und 
computing slag wall rýý II SW-Dev 

Like Patrick ha y mentioned, I lo., n,. Types no ý 
troubles trend of employers requmng t ýr 
to sk In many instances, none of us L11 
Gn the complexity of todays computer sr 

xpect that any one person can be expert at f- Free Node 
intervievnng users, systems design, dataoas, 

eneral programming in his or her chosen an 
s, programming languages), testing, imp " 

Cancel 

do entaoon and training users? Of warst 
___. realNe business system deýrelopmenl (actually tust about ary type sat 

dereloprnen require that we have to take on, it not all et L: estý 
several of these roles 
One Programmers Opinion 
Friday, December 31,2004 

'what is even more troubling is that it comes from management, who usni 
to be developers When did they lose common sense? 

I understand that a lot of times that Managers are just the messengers 
But. at some point they were working people. 
Patch 
FrJ I, ecer, bu'? i 214 

J 
}ýuM 

_" 
MJ0 1ST - PM 

21 SW. Eng 
3! SW t unit 

Developers 
1I Twining 

2I Education ad 
31 Ewpenence 

cad! ng 
5! Manta! ny 
6! Defmmon 
7I Working Habits 
81 Remote Work 

5! Mothodu! ogies 
6 sljsmosq Issues 

s7I Social SW 
8 Virtual Communities 

not Searches 17 I 
1d.. Soan ho[ !nj 

Cancel J OK 

J 
J 

CQVN? 04! 04LI IS , o; oz 

335 

.I- ýJ x1 
FM Project D currents lnder5ystem Wndows Help 



Appendix 8 

Appendix 8: Thesis Evaluation using Klein and Myers 
(1999) seven principles 

1. The Fundamental Principle of the Hermeneutic Circle 
This principle suggests that all human understanding is achieved by 
iterating between considering the interdependent meaning of parts and 
the whole that they form. This principle of human understanding is 
fundamental to all the other principles. 

This thesis has followed an interpretive ethnographic approach which has 
given it a unique shape; by using a different approach the results would have 
been different. Therefore this thesis provides (only) one of the unlimited 
possible perspectives (a part) of software development (the whole). In 
section 8.4 of this chapter I propose a set of directions for future research. 
One of the proposals suggests a confirmation of this thesis results by 
carrying out more research by using different approaches which could 
complement the model of social issues in software development. Thus 
further research would provide with more different perspectives (parts) 
concerned with the process of software development (the whole). 

In section 4.3.3 of chapter 4I discussed the process of interpretation of data 
used in this thesis. This process follows a phenomenological and 
hermeneutical perspective. The hermeneutical circle is presented as the 
"dialectic process" (Boland, 1985,195) "between the understanding of the 
text as a whole and the interpretation of its parts" (Myers, 2003). I follow this 
approach during the data collection and analysis because it allows me to 
explore in-depth the beliefs of software developers about their jobs and 
complex business organisations. 

In chapter 5I explained the practicalities of the ethnographic and data 
analysis process. This process is comprised of several iterations through 
which I gained insight into software developers' interpretations. I analysed 
the individual turns in online conversations as parts and the context of the 
complete conversations as the whole. Once coded each text segment was 
analysed as parts and the context of the data category as the whole. Each 
data category was analysed as parts and transformed into the final theory 
based model as the whole. During this process the relationship between 
each aspect and the whole model is drawn in. 

In chapter 6I discussed the set of categories being the subcategories and 
the issues covered by each category the parts. I then put all the categories 
together in chapter 7 and develop a model which contains all the issues 
highlighted by the data categories (the whole). 

Additionally, my perception of this thesis' results is that the model of social 
issues in software development is a part of (an interpretation of) the process 
of software development as a whole. The mentioned descriptive, theory 
based model focuses only on human and social issues in software 
development and is not concerned with its technical aspects (unless those 
technical aspects affect or involve human and social issues). 

Requires critical reflection of the social and historical background 
the research setting, so that the intended audience can see how I 
current situation under investigation emerged. 

This thesis started from a personal experience and interest. The social and 

336 



ix 8 

historical background of this thesis is initially based on a personal venture. In 
fact this thesis is about me discovering my role as an IS and software 
developer and now as a PhD researcher. One of my principal aims was to 
understand my job (software development), the people I worked for (the 
users), and my role as a software developer (and any software developer). 
The literature review in chapters 2 and 3 document the social and historical 
background from the academic point of view (therefore is not only me having 
a background), which helped me to learn what other authors have said about 
related topics in IS and software development, and to develop a competent 
research proposal. Also, being an ethnography its data emerges from an 
openly declared social and historical context, that of actual software 
developers and the developed descriptive, theory based model draws upon 
this. 

Chapter 1 of this thesis presented the motivation of this thesis in the form of 
a professional experience in information systems and software development. 
This chapter set the context of this research as being devoted to software 
development as experienced phenomena within the field of information 
systems and focused on complex business processes in which human and 
social issues complicate the work of software developers. 

Chapters 2 and 3 provided a general understanding of human and social 
issues in organisations, information systems, software and software 
development. I focused on concepts that appeared to be relevant in the 
context of this research rather than on generic information systems or 
software development research. I did so because I found very little research 
on social issues in software development particularly ones covering both 
social issues in organisations and the development environment. In chapter 
2I was more interested in setting a theoretical background for software 
development that focuses on "soft" definitions of organisations and 
information systems. The concepts reviewed included those which address 
human and social issues within those contexts. In chapter 3 my aim was to 
provide a broad view of software and software development by exposing 
their human and social aspects which correspond to the view of 
organisations and information systems presented in chapter 2. 

3. The Principle of Interaction Between the Researchers and the 
Subjects 
Requires critical reflection on how the research materials (or "data") 
were socially constructed through the interaction between the 
researchers and participants. 

As this is an interpretive study the findings are recognised to be the result of 
my interpretations of the interpretations of software developers about the 
human and social nature of their jobs. This is shown in chapter 4 where I 
present this thesis' research paradigm and in chapters 6 and 7 where I 
present the research findings and final outcome. 

The online ethnography was a learning process for me. From the beginning 
of the fieldwork, when I looked for online forums of software developers, I 
learned how these communities where structured and the kinds of topics that 
where discussed. I also learned that in general, discussions about software 
development were mainly technical. However from the texts discussing 
technical issues, software developers revealed aspects of their working 
environment and their users' that expose the human and social issues that 
make their work complicated. This happened especially when discussions 
grew long enough to allow online participants to develop meaningful 
interactions and relationships. By witnessing and participating (and 
encouraging discussions to explicitly expose human and social aspects) in 
these interactions I was able to explore the human and social aspects of 

337 



Appendix 
-8 

their work. 

Section 4.2 of chapter 4 describes virtual communities of software 
developers which is the field where I carried out the online ethnography. 
Virtual communities of software developers were chosen because they are 
"places" in which actual software development work is done and were 
relevant discussions take place. I defined virtual communities and created a 
classification of types of members and their online behaviour. I also 
discussed the linguistic and pragmatic characteristics of the online 
conversations and the implications for the data collection and analysis in this 
thesis. Additionally online communities were discussed in terms of the 
concept of communities of practice. "Communities of Practice" helps to 
explain how social practices, including language (and communication), are 
developed by online members when they participate in online activities. 

In section 4.3 of chapter 4I established my role in the online ethnography as 
"participant as observer" thus placing the participants and the researcher in 
context. 

4. The Principle of Abstraction and Generalization 
Requires relating the idiographic details revealed by the data 
interpretation through the application of principles one and two to 
theoretical, general concepts that describe the nature of human 
understanding and social action. 

The data interpretation involved the discovery of themes which were initially 
defined in the context of the online conversations from which the data was 
extracted. Further analysis disconnected these themes from their original 
contexts converting them to the generic concepts and propositions. In 
section 4.4 of chapter 4I presented the data analysis strategy carried out in 
this study which focuses on coding segments of data, connecting segments 
to common themes and then generalising and abstracting the themes from 
their original contexts. 

Abstraction and generalization from the interpretive point of view does not 
rely on the representativeness of the sample with regard to a particular 
population, but on "the plausibility and cogency of the logical reasoning used 
in describing the results from the cases and drawing the conclusions from 
them" (Walsham, 1993,15). In section 4.6 of chapter 4I discussed this 
research's theory building strategy that follows the principles of abstraction 
and generalization. 

In chapter 5I presented the actual fieldwork I did which follows the above 
strategies. I displayed the process of abstraction and generalisation of data 
by providing examples of data categorisation and concept generation. By 
openly displaying this process the reader understands and verifies how raw 
data were transformed into a theory based model thus providing reliability to 
this thesis. 

5. The Principle of Dialogical Reasoning 
Requires sensitivity to possible contradictions between the theoretical 
preconceptions guiding the research design and actual findings ("the 
story which the data tell") with subsequent cycles of revision. 

Doing this study has made me learn more about and reflect on the human 
and social nature of organisations, information systems and software 
development. The data I collected contain rich accounts of software 
developers' experiences, some of which are familiar to me. Having done a 
meticulous analysis of the data I was able to contrast the theoretical 
structured and predictable preconceptions present in some IS literature (in 

338 



ndix 8 

which I believed) and the "facts" in the software development world as seen 
by software developers (shown throughout chapter 6). 

In chapter 1I presented a professional experience of software development 
in which I exposed my preconceptions of organisations, information systems 
and software development. At that time organisations and information 
systems for me presented similar characteristics as software. That is, in my 
mind they were structured, standardised and unambiguous. 

The literature review, presented in chapters 2 and 3 and this thesis' findings 
presented in chapters 6 and 7 show a different picture of organisations, 
information systems and software development. This picture emphasises 
aspects such as ambiguity, adaptability and unpredictability which are 
consequences of their human and social aspects. 

Also in section 4.1.2 of chapter 4I exposed my personal values to inform the 
reader of some possible biases during the study. 

u. i ne Principle of multiple interpretations 
Requires sensitivity to possible differences in interpretations among 
the participants as are typically expressed in multiple narratives or 
stories of the same sequence of events under study. Similar to multiple 
witness accounts even if all tell it as they saw it. 

In chapter 6I presented the findings of this thesis organised by categories. 
The findings provided a picture of software development as understood by 
software developers. In this picture I exposed different interpretations of 
human and social issues by software developers, some of which were 
completely opposed. This was not a conflict between the subjects of study's 
interpretations and my interpretations but a confrontation (as I interpreted it) 
of conflicting viewpoints between the online participants. This does not mean 
that I did not play a role in the process, quite the opposite. I played a role by 
initiating and leading some online conversations. 
Also I was the one who interpreted the online posts and decided which ones 
where relevant to the subject of study (as explained in chapter 5 of this 
thesis). 

7. The Principle of Suspicion 
Requires sensitivity to possible "biases" and systematic "distortions" 
in the narratives collected from the participants. 

Although that I did not follow this principle exhaustively - Klein and Myers 
(1999) leave open the possibility that interpretive researchers may not follow 
this principle as there is "considerable disagreement about the extent to 
which social research can (or should) be critical (Deetz, 1996)" - in chapter 6 
(research findings) I contrasted different and conflicting points of view by 
software developers. I did so not with the aim of discovering "false 
preconceptions" (Klein and Myers, 1999,77) but to expose the legitimate 
different perspectives I found in the fieldwork. 

The online ethnography I performed, though being an immersive method, 
allowed me only to explore in-depth software developers' views on their 
work. However it did not provide me with enough tools to judge the validity or 
veracity of their statements nor did it give me background information on 
software developer's lives to be able to "'read' the social world behind the 
words of the actors" (Klein and Myers, 1999,78). (this is discussed in section 
4.3.2 of chapter 4) 

339 



Appendix 9 

Appendix 9: Additional organisational definitions 

a. Knowledge Management 

This section explores some ideas within the field of Knowledge 

Management (KM). Although KM does not cover all the aspects of 

complex organisations it is useful to connect the concepts of information, 

knowledge and learning within organisations to the model of complex 

organisations, Handy's intelligent organisations and Drucker's knowledge 

workers. 

Workers in complex organisations are involved in processes through 

which information flows. In these processes information is created, used 

and recorded. People use the knowledge generated from previous 

experiences to perform new tasks. This utilisation of knowledge creates 

even more knowledge which is used and recorded. In relation to this 

Coakes et al. (2004) define "process knowledge" as the "knowledge of 

how organisational processes are performed within their own task 

environment and also within the overall organisational internal and 

external environment. " (Coakes et al., 2004,119). Coakes et al. (2004) 

also note that process knowledge is comprised of fluid and sticky 

knowledge. Fluid knowledge is that knowledge that flows around the 

organisation by word of mouth or other ways of interpersonal 

communication (as in for example decision-making processes in complex 

organisations). Sticky knowledge is built from (knowledge workers) 

personal past experiences, training, skills and competences developed 

through interaction with the processes. 

The concept of knowledge management can be related to the concepts of 

adaptation and evolution in organisations. Information and knowledge are 
the means through which organisations adapt to their environments and 
innovate their practices. Nonaka (1998) defines these kinds of 

organisations as "knowledge-creating". These organisations "consistently 

create new knowledge, disseminate it widely throughout the organisation, 

340 



Appendix 9 

and quickly embody it in new technologies and products" (Nonaka, 1998, 
22). A complementary definition is given by Garvin (1998). Gavin uses 
the term "Learning Organisations" which are "skilled at creating, 
acquiring, and transferring knowledge, and at modifying its behaviour to 

reflect new knowledge and insights" (Garvin, 1998,51). Both definitions 

coincide in affirming that organisations create and transmit knowledge 

continuously. The model of complex organisations could be described 

partially as a "learning organisation" as the extraction, creation and use of 
information is implicit in the model (see figure 1.2 of chapter 1). However 
the utilisation of knowledge is only one aspect reflected in the model of 
complex organisations. The activities performed by knowledge workers 
resulting in intricate working and social interactions which make 
organisations look in an unpredictable manner are not considered by the 
knowledge management field. 

b. Complexity Theory 

In section 1.1 of chapter 11 mentioned that my colleagues and I found our 
target organisation seemingly chaotic. Contrary to what we were 

expecting, standardised procedures and predictable behaviour, the 

organisation kept on changing and was unpredictable. To understand 

more about (apparent) chaotic situations, in this section I am exploring 

complexity theory. Complexity theory is based on the theory of chaos 

which deals with complex natural phenomena. Chaos theory studies the 

patterns of behaviour with irregular characters and tries to classify them 
in infinite categories. Chaos is defined by this field as "an intricate mixture 
of order and disorder, regularity and irregularity" (Parker and Stacey, 
1994,11). Chaos provides a better explanation of how the world works 
than a more orderly perspective which used to prevail (Parker and 
Stacey, 1994,7). Using ideas from chaos theory, complexity theorists 
define organisations as living systems interacting with each other in a 
nonlinear fashion and characterised by irregular patterns of behaviour 

that cannot be reduced in a simple way (Stacey et al., 2000,17). In other 

words, complex systems are: 

341 



Appendix 9 

" Systems comprising a large numbers of individual agents. 

" These agents interact with each other according to rules that 

organise the interaction between them at a local level. 

" Agents endlessly repeat their interaction referring back to their 

rules, that is, interaction is nonlinear and this nonlinearity is 

expressed in the variety of rules across the large numbers of 

agents. 

" Ongoing variety in the rules is generated by random mutation and 

cross-over replication. 

Source: Stacey (2001,71) 

According to Parker and Stacey (1994) The characteristics of complex 
systems are: 

" Non-linearity. Linear systems are the ones in which one action 

causes only one (predictable) effect. Non-linear systems are 

characterised by the uncertainty of the outcomes given a specific 

cause. Here one action can result in multiple effects. 

" Negative and positive feedback. Feedback is a way of learning in 

organisations. In planned systems, negative feedback changes the 

output of a system so as to diminish the discrepancies between 

the intended and the actual outcomes. However, in nonlinear, 

complex systems, positive feedback instead of nullifying the 
deviations reinforces them in order to amplify the discrepancies 

and destabilising the system. 
" Bounded instability: is an intermediate state caused by continuous 

change between stability and instability. 

" Self-organisation. It is the process in which organisations evolve 
into chaos. During this process they produce unpredictable and 

complex forms of behaviour. 

Source: (Parker and Stacey, 1994,36). 

342 



Appendix 9 

Complexity theorists state that due to the mentioned characteristics, it is 

very difficult to predict and control the behaviour of chaotic organisations 
in the long future (Parker and Stacey, 1994,41). However, in the short 
term complex systems are more predictable as "it takes time for small 

changes to escalate into major consequences" (Parker and Stacey, 1994, 

15). Complex organisations need to live in a state of chaos or bounded 
instability to survive to the continuous change in their environment. 
Therefore they are far from being designed, controlled or managed in old 
fashioned manners (which seek to standardise predictable processes). 

The relevance of complexity theory to this thesis is that it describes 

several aspects of the model of complex organisations. Similarly to 

complex systems, the model of complex organisations presented in 

chapter 1, contains processes appearing and disappearing, people 
performing a variety of tasks in different styles and information which is 

flowing through the entire organisation with no apparent patterns. 
Nevertheless, within this seeming disorder the organisation is working 
and surviving. The model of complex organisations is therefore a non- 
linear system that self-organises itself in a continuous change within 
bounded instability. Information systems and software designed for such 
organisations should be embedded in their continuous change and their 
bounded instability. In this way both the complex system and its 
information system will adapt and self-organise together. Therefore, in 
this context an information system is not a static piece of software but a 
living part of the organisation. The mentioned complexity theory concepts 
are useful devices to build and enrich the model of complex 
organisations. Unfortunately, they cannot be easily translated into 

practice and does not seem mature enough to be applied in the software 
development field. 

c. Actor-network theory 

Actor-network theory (ANT) was created by Michel Callon and Bruno 
Latour. It 'draws on the sociology of science and technology" and is 

343 



Appendix 9 

"applied to the analysis of socio-technical innovation" (Harrison and 
Laberge, 2002,497). ANT has proved to be a helpful tool to research 

situations which involve the use of information systems in a social context 
(Tatnall, 2003,274) because it focuses on the interaction between 

humans and non-humans in socio-technical situations (Tatnall, 2003, 

279). ANT sees the world as a network of actors. It reduces the 

complexities of the world by limiting analysis to a series of well defined, 

discrete entities (Callon, 1986,28). An actor is "an entity able to associate 
texts, human, non-humans and money" (Selman and Wragg, 1999,330) 

that builds a world with other entities like it. An actor-network is an 
interrelated set of entities that form part of the actor's world. A network is 

composed of "social and natural contexts" (Callon, 1986,20) as human 

and non-human entities are enrolled as part of the network. Actors are 
themselves simplifications of other networks. Every point in an actor- 

network is the "intersection of two networks: one that it simplifies and 

another which simplifies it" (Callon, 1986,32). Actors form networks by 

enrolling other entities in a process called translation. This process does 

not involve any definitive rules (Callon, 1986,33). Translation involves: 

" The definition of roles, their distribution, and the delineation of a 

scenario, 

" The strategies in which an actor-world renders itself indispensable 

to others by creating a geography of obligatory passage points and 

" The displacement imposed upon others as they are forced to 
follow the itinerary that has been imposed. 

Source: Callon (1986, XVI) 

Thus processes like decision-making may be formed by the enrolment of 
people by other people. Each process might be represented by a network 
of actors who are involved by other actors, to the convenience of the 
formers and because of the expertise and knowledge of the latter. As the 

needs of decision makers develop, they may ask others for more 

344 



Appendix 9 

information, may go through a workflow which can cross organisational 
boundaries, etc. Roles are not fixed or pre-established and their 
distribution may not be necessarily successful (Callon et al., 1986, XVI). 

Therefore organisations' behaviour is unpredictable and may change 
through time. ANT's perspective of the social world and in particular 

organisations shows them as unpredictable because the processes of 

enrolment and translation through which networks are built are not pre- 

established. Networks of actors could take any shape and size. Also, 

ANT emphasises the formation of multi-networks as different actors could 

enrol different people and form different networks which can then be 

enrolled by other networks. This resembles the multi-group aspect of the 

model of complex organisations. Business processes like decision- 

making and workflow can cross organisational boundaries, and at doing 

so different actor-networks are created. Additionally, ANT is a very useful 
framework to analyse organisations, especially to study interactions 

between actors such as social interactions between people and human- 

to-computer interactions. Social issues emerging from these interactions 

affect the way processes are carried out and consequently the 

information systems that are serving them. 

In the model of complex organisations (see chapter 1) I defined actors as 

individuals or group of individuals involved in processes of decision- 

making. Actors participate in decision-making processes as their skills are 

needed and as other actors enrol them. Thus the concept of enrolment 

applies is useful to explain how the decision-making processes are 
formed. Each decision-making process in the model of complex 

organisations might be represented by a network of actors who are 
involved (or enrolled) by other actors, to the convenience of the latter and 
because of the expertise and knowledge of the former. However, the 

actor-network theory does not help to identify and explore the specific 

aspects that influence interactions. Besides, it focuses on the connections 
between humans and non-humans, and little is said about aspects that 

influence these connections. It could also offer a static perspective of 

organisations which is taken for granted. Interactions are represented as 

345 



Appendix 9 

constant in time, rejecting adaptability and the possibility of unpredictable 
behaviour is not considered. 

346 



Appendix 10 

Appendix 10: Information Systems Development 
Approaches 

a. ISD Organisational Approaches 

This group of approaches address "organisations as a whole: their inter- 

connection, strategic use, re-engineering and planning" (Avison and 
Fitzgerald, 2003,43). The information systems arise from processes of 
discovering the organisations needs. 

Systems approaches they consider an information system as a 
whole which has human, technical and organisational elements 
into it. Systems approaches are very popular in the teaching of 
information systems but unfortunately they are not reflected in the 

practices of software development. Software developers use a 
different set of methodologies based on different paradigms 
(fieldwork data, see category C5 in chapter 6). The following are 
the most popular systems approaches: 

" The general systems theory is based in the principle that 

"systems can only be understood when viewed as a whole" 
(Ford and Woodroffe, 1994,23). For the systemic a system 

can be described by identifying its elements, the relationships 
between the elements and the system's boundaries (Pfleeger, 

1991,11). People within organisations act purposefully, that is 
that all actions have an objective and the job of an IS developer 

is to undercover these purposes and capture them in the 
information systems. Additionally, organisational systems are 
less predictable than computer programs as they involve 

humans. People would follow instructions, make mistakes or 
interpret the system in different ways. There are two branches 

in the systems approach. The hard branch views systems "as 

though they exist and they can be engineered" and the soft 
branch sees systems as concepts not existing but representing 

347 



Appendix 10 

"a way of viewing, and therefore understanding, complex real- 

world activities" (Avison and Fitzgerald, 2003,47). 

" Soft Systems Methodology (SSM) "aims to bring about 
improvements in areas of social concern by activating in the 

people involved in the situation a learning cycle which is ideally 

never-ending" (Checkland and Holwell, 1997,14). In the field of 
Information Systems SSM is concerned with understanding and 
dealing with problem situations in which there is a high human 

and social component. SSM is used at the beginning of IS 

projects to draw a rich picture of the problem domain. Root 

definitions are developed out of that picture and then a 

conceptual model is generated. By a comparison between the 

conceptual model and the real world a systems analyst is then 

able to identify the required changes to improve the situation. 

" Multiview is a framework which sees ISD as a hybrid process 
involving the technologists (information systems developers) 

and the users for whom the system will be built (Avison et al., 
1998,127). Multiview comprises 5 stages each of which 

provides a different view of the system to be built. 

  analysis of human activity 

  analysis of information 

  analysis and design of socio-technical aspects 

  design of the human-computer interface 

  design of technical aspects 

Effective Technical and Human Implementation of Computer- 
Based Systems (ETHICS) is an ISD approach that pays equal 

attention to the technological, social and organisational factors of 
an information system. Apart from designing computer applications 
ETHICS is also concerned with redesigning the working 

environment so users can improve their quality of live with the 

348 



Appendix 10 

work they do. Another aspect of ETHICS is its participative 
orientation. Those affected by the system such as users, 
managers, suppliers, customers, etc. may take part in its design 

and operation (Avison and Fitzgerald, 2003,450). ETHICS sees 
ISO as a process of change and focuses on solving conflicts that 

arise between participants during that process. ETHICS however 
does not consider IS developers as an affected party as it only 
focuses on the organisation in which the information system is 
located. Also ETHICS does not pay especial attention to the 
development of software or the software environment at all. 

IS Planning approach involves the strategic levels of the 

organisation. This approach sees information systems as a way of 

achieving the objectives of an organisation. In this approach 
Information Systems are planned alongside other areas of the 

organisation. Plans are built considering that information systems 

should be aligned with the overall strategic direction of the 

organisation. The concern of planning approaches is the definition 

of "optimal informatics architecture" (Beynon-Davies, 2002,400) 

which is thought as reflecting the structure of the organisation 
(Beynon-Davies, 2002,267). The process of planning comprises 
the analysis of information of the current activities of the 

organisation, the analysis of the current and future trends in the 

environment and the analysis of the trends in information 

technology. As with the previous mentioned approaches (and the 
following ones in this group) the planning approach lacks focus on 
the practicalities of the development of software. 

IS Strategic approach is closely linked with the planning 
approach and involves top management levels too. According to 
Avison and Fitzgerald the strategic approach sees information 

systems as tools for "obtaining competitive advantage" (Avison 

and Fitzgerald, 2003,49). The objectives are to "identify better 

ways of doing things" (ibid) which will lead the organisation to 

349 



Appendix 10 

Increased revenues, greater functionality, better products and 

service, improved presentation or image" and "an improvement to 

the organisation's competitive positioning" (ibid). 

Business process reengineering is concerned with the re- 
definition of old and outdated rules and assumptions (Avison and 
Fitzgerald, 2003,56). The redefinition of business processes 
involves also the creation or maintenance of the information 

systems that serve those processes. The aim of this redefinition is 

the improvement of organisational performance measures such as 
reduction of costs, increase productivity and quality. Differently to 
the three previous approaches, business process re-engineering 
does not hold holistic perspectives of the organisations. BPR'S 

focus is at a more micro level of the business processes. 

Project Management focuses on particular endeavours of 
Information Systems Development. Its aim is to deliver information 

systems (and software) on time, within budget and with acceptable 

quality to satisfy users' needs. Project Management does not 

necessarily addresses the organisation as a whole, although there 

could be projects which involve information systems across the 

entire organisation. In general big projects are divided in smaller 

achievable projects which can be run and controlled easily. 

b. ISD Modelling Approaches 

Modelling approaches are centred on the task of modelling the system to 
be served and/or the system to be designed. For example, the system to 
be served could be a business process and the system to be designed 

could be a computer application to automate some steps of the process. 
Modelling is the ability to describe the situation confronting the analyst" 
(Wilson, 1990,10). The description of the problem situation is called a 

model and is used to help the developer to identify problematic areas 

within organisations which need to be addressed. An advantage of the 

350 



Appendix 10 

modelling approaches as seen by this thesis is that the resulting models 
could be a step towards the design and development of software. 
Different methodologies propose different kinds of models and focus on 
different aspects of organisations. Wilson (1990) defines four kinds of 

models. The first three were previously defined by Ackoff (1962) and are 

quantitative representation of the situation and the fourth was added by 

Wilson and is more qualitative. The kinds of models are: 

" Iconic: a replica of the situation with similar properties and 

expected behaviour. 

" Analogic: a model that reproduces a similar behaviour that that of 
the problem situation, though it is physically different. 

" Analytic: mathematical or logical representation of the physical 
laws that govern the behaviour of the object of study. 

" Conceptual: pictorial/symbolic models which cover the qualitative 

aspects of the situation and usually precedes the others. 

There are three broad subgroups of approaches under the modelling 
approach: 

Data oriented approaches which are "derived from database 

methodologies" (Olle et al., 1991,12) and are concentrated on 

classifying data and identifying their relationships in an 

organisation (Avison and Fitzgerald, 1995,38). Data models are 
not necessarily built as part of a database project. A data model 

could be an end on itself (Avison and Fitzgerald, 2003,76) that 
helps the developer to understand an organisation. 

Process oriented approaches are based on specifying the 

"functions of an information system" (Olle et at., 1991,12). 

"Process modelling describes the logical (real-world) analysis of 

the processes" (Avison and Fitzgerald, 2003,75). Generally, 

structured ISD methodologies follow process oriented approaches. 

351 



Appendix 10 

Their aim is to break down processes into smaller manageable 
pieces which can be transformed into computer programs. 

Object oriented approaches unifies the two previous 

perspectives by modelling data and processes, as well as people 
and software (Avison and Fitzgerald, 1995,38). Objects could 
represent anything in the real world. Objects have information 

about them, in the form of data fields, and can also perform 
activities in the form of methods. Relationships can be established 
between objects to represent how these objects interact in the real 
world. For example, the object "client" holds information about 
clients such as name and address and can "buy" (method) 

products. "Client" is related to "bill". The object "bill" contains 
information about bills issued to the organisation's clients. A "bill" 

can be "issued" (method) for any purchase that is made. Every 

organisation process or activity can be represented in this way. 
The advantage of this approach is that objects can be easily 
transformed into computer code which speeds up the process of 
development. 

c. ISD People or Participative Approaches 

These approaches emphasise "the role of people in developing and using 
an information system" (Avison and Fitzgerald, 1995,38). Thus they 
refer to human and social issues within the organisations which is the 
concern of this thesis. Also, they go as far as accounting for the 
practicalities of the development and use of software. The approaches 
mentioned in the previous sections may work as they have proven their 
viability. However, in some situations, human or social issues may arise 
which affect the (use of the) information system developed. For example, 
users can reject software because they could fear that will make their job 
less secure. People approaches are designed so that people, especially 
end-users, can participate in the development process and understand 

352 



Appendix 10 

how an information system and/or software may benefit them. 
Participative approaches comprise: 

Joint Application Development (JAD) is an approach for 
determining systems requirements. It is a participant process in 

which the stakeholders and a facilitator contribute with their views 
of the problem. The requirements agreed are then used for the 
"initial prototyping" (Turban et al., 2002,493) of the information 

system. 

End-user computing (EUC) emphasises users' capability of 
serving their own needs. With end-user computing users are able 
to develop and maintain their own software applications. EUC is 
ideal for user satisfaction and takes some pressure out of 
information systems departments. Usually EUC is used for 

standalone, simple applications leaving more complicated and 
bigger application for IS professionals. 

Co-operative development is concerned with aiding analysts in 
the process of developing information systems. This approach 
uses groupware technologies and sees the process of 
development as a workgroup. "User involvement in development 
is especially important for groupware" (Grudin, 1991,314) as it 
facilitates the process of understanding of group dynamics. 

Ethnography is a well known practice in sociological and 
anthropological undertakings (Hammersley and Atkinson, 1995,2; 
Geertz, 1993,5). It comprises a variety of techniques which the 

ethnographer uses to immerse himself into others people problems 
so as to "hear, see and begin to experience reality as the 

participants do" (Marshall and Rossman, 1989). "Ethnographic 

studies are helpful in informing the systems design process" 
(Bentley et al., 1992,1). It provides "information systems 
researchers with rich insights into the human, social and 

353 



Appendix 10 

organizational aspects of information systems development and 

application' (Harvey and Myers, 1995,22). A weakness of this 

approach is that it does not account for the technological aspect of 

software development. So it would have to be used in conjunction 

with other approaches or methodologies which guide the 

development of software (for example a modelling approach). 

d. ISD Engineering and Construction Approaches 

As the name says these approaches see the development of information 

systems as engineering endeavours. Information systems are seen as 
tangible products which can be planned and developed accurately. 
Criticisms of these approaches are concerned with the lack of 
consideration of human and social factors. A well known example of an 
engineering approach is prototyping. Prototyping is the process of 
building software prototypes. A software prototype is a preliminary 
version or a model of all or part of a system before full commitment is 

made to develop it (Smith, 1990,42). Prototyping is a very popular 
practice (fieldwork data, see category C5-5 in chapter 6) and is largely 

used for tackling ill-defined problem situations (like complex 
organisations) as they "serve as the formal statement of needs" (Smith, 
1990,45). There are two more motivations for using prototyping: 

" Speeding up the process of development by presenting workable 

versions of the software in the early stages of the process. This 

perspective is also known as Rapid Application Development 

(RAD) which chooses effective practices that are oriented toward 

achieving your schedule objectives (McConnell, 1996,3). 

" Involving users by letting them participate in the process of 
development so as to build a better picture of their needs and the 

problem situation. This is also called co-operative prototyping in 

which users and designers are involved in an "ongoing learning 

process" (Bodker and Gronbaek, 1991,331). 

354 



Appendix 10 

e. External Development 

External development refers to the acquisition of off-the-shelf or 
shrinkwrap software packages or to the outsourcing of the development 

of IS. Off-the-shelf software is designed to fit the needs of a wide variety 
of customers. Although that to develop this kind of software one need to 
focus on generalities and commonalities among certain kinds of 
organisations and business processes, certainly, some of the already 
mentioned ISD approaches can be used in their design. However, in most 
cases customisation is needed to fit the particular needs of an 
organisation. External development is also subject to human and social 
issues in their target organisations in both, initial and customisation 
development work. Therefore it is relevant to this thesis. External 
development can also be done by outsourcing. Outsourcing is the 

commission of ISD to a third party. This could include the analysis, the 

gathering of requirements and the development of software as well. In 

this case the software product will be developed specifically to the 
(human and social) needs of the client organisation. Any ISO approach 
mentioned before could apply here. 

f. ISD Software Approaches 

These set of approaches assume that the solution for a problematic 
situation involves the development of software. As they focus on software 
development (they are technology oriented) they usually neglect the 
human and social aspects of target organisations. 

Software engineering (SE) is one of the pioneer formal 

approaches to ISD. It is a "strategy of producing quality software" 
(Pfleeger, 1991,5). It is mostly based on reductionist approaches 
in which the analysis of problem situation is done by "breaking that 

problem into pieces" and then building the solution by synthesising 

the solution components found for each piece of the problem 

355 



Appendix 10 

situation. SE is concerned with the construction of software. 
However, this is one of its main criticisms as it does not consider 
the human and social aspects of information systems such as 
people's interactions. Nevertheless, it was welcome at its time as 
it set the principles for a more "disciplined approach" (Avison and 
Fitzgerald, 2003,140) to software development. Software 

engineering is usually associated with Information Systems Life 
Cycle. The life cycle represents the process of information 

systems development from the beginning to the very end. This 

process is divided into steps each of which is concentrated on 
different tasks that have to be accomplished before undertaking 
the next one. Many variations of the information systems life cycle 
have been developed most of them permit the revision of previous 
stages. 

Automated or CASE tools provide leverage at any point of the 
development cycle (Fisher, 1994,4). As the process of developing 

software is a human activity system, it also needs support from 

information systems (Beynon-Davies, 2002,325). CASE tools are 
designed to support a particular methodology or a group of them. 

CASE tools are focused on the design and implementation of the 

software in different stages of the development life cycle. Front- 

end CASE tools are oriented to the analysis and design stages of 
the ISD cycle. Back-end CASE tools focus on programming, 
implementation and maintenance stages of the ISD process. 

Component development consists of the production of software 

components which then can be assembled to create software 

applications rather than constructing them from scratch (Turban et 

al., 2002,493). Components are reusable pieces of software and 
have their origins in objects. However components are bigger 

pieces of code which can contain more than one function. "Each 

component is designed to work in a variety of contexts and work In 

conjunction with a variety of others" (Wills, 1999,61). Components 

356 



Appendix 10 

allow information systems and software to adapt to changes in 

business as they can be replaced easily by new components with 
different functionality (Allen and Frost, 1998,3). 

g. Web approaches 

As web development is relative a new kind of development. I have 

included this category to emphasise issues that have emerged in this 

area. Baskerville and Pries-Heje (2001) published a study on web 
development practices that suggest that the concept of methodology is 

changing. What they say is not that they have created a new 
development methodology but that in the minds of (web) developers a 
development methodology (in general) has now a different meaning that it 

used to have. Web approaches are relevant to this thesis because they 

address current issues in the development world that are affecting 
developers and that need to be considered to keep track of the changes 
in technology. The new internet or web kind of methodology is 

constrained by time and ambiguities. Some differences with the previous 
development approaches can be highlighted: 

" Release orientation (or incremental approach), the application is 

released in bits starting with the pieces of software containing the 

core functionalities. 

" Parallel development -a number of activities take place at the 

same time 

" Coding your way out - developers hack their applications to meet 
time pressures 

" Quality is negotiable - quality is based on expectations of 
customers and not on fulfilment of requirements or the quality of 
the development process. 

" Need for new working or team structures - because traditional 

structures fail 

357 



Appendix 10 

Baskerville and Pries-Heje's study suggests that the practice of 
information systems development is becoming more pragmatic. Decisions 

about the development practices are made on a daily basis depending on 
the situation. "The procedures, stages, and tools cannot be predefined, 

only the logical relation between the properties of the setting. " 

(Baskerville and Pries-Heje, 2001,65) 

358 



Glossary 

GLOSSARY 

The Agile Manifesto was written by The Agile Alliance, a group made up 
by software development practitioners who have created development 

methodologies with a focus on human factors and adaptability. The Agile 

Manifesto defined the term Agile as the label for all methodologies 
designed to respond to change and determined four values common to all 

of them. The Agile Alliance includes: Kent Beck, Mike Beedle, Arie van 
Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James 

Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian 
Marick, Robert C. Martin, Stephen J. Mellor, Ken Schwaber, Jeff 
Sutherland, and Dave "Pragmatic" Thomas. (Cockburn, 2000a, 177) 

Browser: Software application used to view different types of Internet 

resources from the World Wide Web 

Data Mining tools find hidden information that is "unlikely to be 

uncovered by users with query tools, regardless of their degree of 
knowledge, creativity and intuition" (Kelly, 1997,228) 

Data Warehouse: "A database with reporting and query tools, that stores 

current and historical data extracted from various operational systems 
and consolidated for management reporting and analysis. " (Laudon and 
Laudon, 2000,247) 

HTML: Hypertext Markup Language, is the language used in the WWW 

Mantra: sacred syllables, words or utterance. In software development it 
is a characteristic of software or a technique that should be always 
religiously incorporated in (the development of) any software. 

359 



Glossary 

OLAP: Online Analytic Processing tools are specially designed for 

managers and analysts to gain insight into data through different 
dimensions each of them representing different views of the organisation. 

Prosody: Phonological term "which capture the notion of 'it ain't what you 

say but the way you say it' - as expressed through vocal variations in 

pitch (intonation), loudness (stress), speed, rhythm, pause, and tone of 
voice" (Crystal, 2001,32). 

360 



References 

REFERENCES 

A dictionary of philosophy, (1984). 2nd edn., London, Macmillan. 

Ahmad, K. and Al-Sayed, R., (2006), 'Community of Practice and the Special 

Language "Ground"', in Coakes, E. and Clarke, S. (eds. ), Encyclopedia 

of Communities of Practice in Information and Knowledge 

Management, Hersey Pa., Idea Group Reference. 
Aldred, C., (1994), '"Workflow" automation of the desktop', in Spurr, K. e. a. 

(ed. ), Computer support for co-operative work, Chichester, John Wiley 

& Sons. 
Allen, C., (2004), 'Tracing the Evolution of Social Software' < 

http: //www. lifewithalacrity. com/2004/10/tracing the evo. html >, 

accessed 25/10/04. 
Allen, P. R. and Frost, S., (1998), Component-based development for 

enterprise systems : applying the select perspective, Cambridge, 

Cambridge University Press. 
Arnold, S. E., (2003), 'Social Software', Searcher, 11, no. 9: 30-31 

Avison, D. E. and Fitzgerald, G., (1995), Information systems development: 

methodologies, techniques, and tools, New York, McGraw-Hill. 
Avison, D. E. and Fitzgerald, G., (2003), Information systems development : 

methodologies, techniques, and tools, New York, McGraw-Hill. 

Avison, D. E. and Wood-Harper, A. T., (1990), Multiview: An Exploration in 

Information Systems Development, Oxford, Alfred Waller. 
Avison, D. E., Wood-Harper, A. T., Vidgen, R. T. and Wood, J. R. G., (1998), 

'A further exploration into information systems development: the 

evolution of Multiview2', Information Technology and People, 11, no. 2: 
124-139 

Bandow, D., (1998), Working with the borg: trust, system development and 
dispersed work groups', Proceedings of the 1998 ACM SIGGROUP 

conference on computer personnel research, 163-169. 
Baskerville, R. and Pries-Heje, J., (2001), 'Racing the e-bomb: how the 

internet is redefining information systems development methodology', 
Realingning Research and Practice in Information Systems 

361 



References 

Development - IFIP TC8/WG8.2 Working Conference, Russo, L., 
Fitzgerald, B. and De Gross, J. (eds), 49-68. 

Baym, N. K., (1995), The Performance of humor in computer-mediated 

communication', Journal of Computer-Mediated communication, 1, 

no. 2, <www. ascusc. orgrcmc/voll/issue2/baym. html>. 

Beck, C. T., (2003), 'Initiation into qualitative data analysis', Journal of Nursing 

Education, 42, no. 5: 231-234 
Beck, K., (1999), Extreme Programming Explained: Embrace Change, 

Reading Massachusetts, Adison Wesley Longman Inc. 
Bentley, R., Hughes, J. A., Randall, D., Rodden, T., Sawyer, P., Shapiro, D. 

and Sommerville, I., (1992), 'Ethnographically-informed systems design 

for air traffic control', CSCW Research Centre Computing and 
Sociology Departments, Lancaster University, < 

www. informatics. ed. ac. uk/teaching/modules/hci/atc. pdf >, accessed 
02/01/2003. 

Beynon-Davies, P., (2002), Information systems : an introduction to 
informatics in organisations, Basingstoke : Palgrave. 

Biesenbach-Lucas, S. and Weasenforth, D., (2001), 'E-Mail and Word 

processing in the ESL Classroom: how the medium affects the 

message', Language Learning and Technology, 5, no. 1: 135-165, 

<http: //Ilt. msu. edu/vol5num1/weasenforth/default. htm>. 

Biesenbach-Lucas, S. and Weasenforth, D., (2002), Virtual office hours: 
Negotiation strategies in electronic conferencing', Computer Assisted 
Language Learning, 15, no. 2: 147-165 

Bodker, S. and Gronbaek, K., (1991), 'Cooperative prototyping: users and 
designers in mutual activity', in Greenberg, S. (ed. ), Computer- 

supported cooperative work and groupware, London, Harcourt. 
Boland, R. J. J., (1985), 'Phenomenology: a preferred approach to research 

on information systems', in Mumford, E., Hirschheim, R. J., Fitzgerald, 
G. and Wood-Harper, A. T. (eds. ), Research methods in information 

systems : proceedings of the ! F/P WG 8.2 Colloquium ... 1984, 
Amsterdam, North-Holland. 

362 



References 

Boyd, D., (2004), 'Autistic Social Software' < 
http: //www. danah. orq/papers/Supernova2004. html >, accessed 
21/06/05. 

Brooks, L., (1997), 'Structuration theory and new technology: analysing 

organizationally situated computer-aided design (CAD)', Information 

Systems Journal, 7, no. 2: 133-151 
Browne, E., (2003), 'Conversations in Cyberspace: a study of online learning', 

Open Learning, 18, no. 3: 245-260 
Brownlow, C. and O'dell, L., (2002), 'Ethical Issues for Qualitative Research in 

On-line Communities', Disability and Society, 17, no. 6: 685-694 
Bucholtz, M., (1999), '"Why be normal? ": Language and identity practices in a 

comunity of nerd girls', Language in Society, 28, no. 2: 203-223 
Burrell, G. and Morgan, G., (1979), Sociological paradigms and organisational 

analysis: elements of the sociology of corporate life, London, 

Heinemann. 
Callon, M., (1986), 'The sociology of an actor-network: the case of the electric 

vehicle', in Callon, M., Law, J. and Rip, A. (eds. ), Mapping the 

dynamics of science and technology : sociology of science in the real 

world, Basingstoke, Macmillan. 
Callon, M., Law, J. and Rip, A., (1986), 'Glossary', in Callon, M., Law, J. and 

Rip, A. (eds. ), Mapping the dynamics of science and technology : 

sociology of science in the real world, Basingstoke, Macmillan. 
Campbell, T., (1997), Technology, multimedia, and qualitative research In 

education', Journal of Research on Computing in Education, 30, no. 2: 
122-133, 

<http: //search. eanet. com/direct. asp? an=390335&db=buh&ta=AN>. 
Carroll, J. M. and Swatman, P. A., (2000), 'Structured-case: a methodological 

framework for building theory in information systems research', 
European Journal of Information Systems, 9, no. 4: 235-242 

Carson, D., Gilmore, A., Perry, C. and Gronhaug, K., (2001), Qualitative 

marketing research, London, Sage. 
Checkland, P. B. and Holwell, S., (1997), Information, systems and 

information systems: making sense of the field, Chichester, Wiley. 

363 



References 

Chisholm, P. S. R., Constantine, L., Cunningham, W., Hohmann, L. and 
Kerth, N., (1996), 'Soft Issues and Hard Problems in Software 
Development', Conference on Object Oriented Programming Systems 
Languages and Applications - Proceedings of the 11th ACM SIGPLAN 

conference on Object-oriented programming, systems, languages, and 
applications 

Chou, C., (2001), 'Internet Heavy Use and Addiction among Taiwanese 
College Students: An Online Interview Study', CyberPsychology & 
Behavior, 4, no. 5: 573-586, 

<http: //search. epnet. com/direct. asi)? an=5513110&db=buh&tg=AN>. 
Clarke, S. and Lehaney, B., (2000), 'Introduction: Information Systems as 

Constrained Variety - Issues and Scope', in Clarke, S. and Lehaney, B. 
(eds. ), Human Centered Methods in Information Systems: Current 
Research and Practice, Hershey PA, Idea Group Publishing. 

Clegg, C. W., (2000), 'Sociotechnical principles for system design', Applied 
Ergonomics, 31, no. 5: 463-477 

Coakes, E. and Clarke, S., (2006a), 'The Concept of Communities of 
Practice', in Coakes, E. and Clarke, S. (eds. ), Encyclopedia of 
Communities of Practice in Information and Knowledge Management, 
Hersey Pa., Idea Group Reference. 

Coakes, E. and Clarke, S., (2006b), 'The Concept of Communities of 
Practice', in Coakes, E. and Clarke, S. (eds. ), Encyclopedia of 
Communities of Practice in Information and Knowledge Management, 
Hersey Pa., Idea Group Reference. 

Coakes, E., Willis, D. and Lloyd-Jones, R., (2000), 'Grafitti on the Long Wall: 
A Socio Technical Conversation', in Coakes, E., Willis, D. and Lloyd- 
Jones, R. (eds. ), The New SocioTech: Graffiti on the Long Wall, 

London, Springer. 
Coakes, E. W., Bradburn, A. and Sugden, G., (2004), 'Managing and 

leveraging knowledge for organisational advantage', Knowledge 
Management Research & Practice, 2, no. 2: 118-128 

Coakes, J. M. and Coakes, E. W., (2000), 'Specifications in Context: 
Stakeholders, Systems and Modelling of Conflict', Requirements 

Engineering, 5, no. 2: 103-113 

364 



References 

Cockburn, A., (1995), 'Growth of Human Factors in Application Development', 
Cockburn, Alistair, < 
htta: //alistair. cockburn. us/crystal/articles/ oq hfiad/growthofhumanfactors 

insd. htm >, accessed 11-05-2005. 

Cockburn, A., (1998), 'Software Development and Process (ECOOP 98 

panle)', Cockburn. Alistair, < 
http: //aIistair. cockburn. us/crystal/articles/sdap/swdevandprocess. htm >, 

accessed 11-05-2005. 
Cockburn, A., (2000a), Agile Software Development, Cockburn * Highsmith 

Series Editors. 
Cockburn, A., (2000b), 'Characterizing People as Non-Linear, First-Order 

Components in Software Development', Alistair Cockburn, < 
ht tp: //alistair. cockburn. us/crvstal/articles/cpanfocisd/characterizingpeor) 
Ieasnonlinear. html >, accessed 05-07-04. 

Cockburn, A., (2001), 'Agile Software Development 2: The People Factor, 
Cockburn, Alistair, < 
http: //alistair. cockburn. us/crvstal/articles/asdpf/asd21)eoplefactor. htm >, 

accessed 11-05-2005. 
Cockburn, A., (2003), People and Methodologies in Software Development, 

Ph. D Thesis, University of Oslo. 
Constantine, L., (2001), 'Back to the Future', Communications of the ACM, 44, 

no. 3: 126-129 
Cooper, A. and Reimann, R., (2003), About face 2.0: the essentials of 

interaction design, New York, Wiley. 
Crystal, D., (2001), Language and the Internet, Cambridge, Cambridge 

University Press. 
DeMarco, T. and Lister, T., (1999), Peopleware: Productive Projects and 

Teams, New York, Dorset House. 
Denzin, N. K. and Lincoln, Y. S., (1998), 'Introduction: Entering the Field of 

Qualitative Research', in Denzin, N. K. and Lincoln, Y. S. (eds. ), 
Collecting and interpreting qualitative materials, Thousand Oaks, Calif., 
Sage Publications. 

365 



References 

DeSanctis, G. and Poole, M. S., (1994), 'Capturing the Complexity in 
Advanced Technology Use: Adaptive Structuration Theory', 
Organisation Science, 5, no. 2: 121-147 

Dictionary of theories, (1993), London, Gale Research International. 
Drucker, P. F., (1998), 'Management's New Paradigms', Forbes Magazine, < 

www. forbes. com/forbes/1998/1005/6207152a. html >, accessed 
20/06/2003. 

du Plooy, N. F., (2003), The Social Responsibility of Information Systems 

Developers', in Clarke, S., Coakes, E. W., Hunter, G. M. and Wenn, A. 

(eds. ), Soclo-technical and human cognition elements of information 

systems, Hershey, Pa., Idea Group. 
Eckert, P. and McConnell-Ginet, S., (2000), 'Communities of practice: where 

language, gender and power all live', in Coates, J. (ed. ), Language and 

gender A reader, Oxford, Blackwell. 
Elliott, M. S. and Scacchi, W., (2003), 'Free software developers as an 

occupational community: resolving conflicts and fostering 

collaboration', Proceedings of the 2003 acm SIGGROUP conference 

on supporting groupwork, 21-30. 
Eom, S. B., Lee, S. M., Kim, E. B. and Somarajan, C., (1998), 'A survey of 

decision support system applications (1988-1994)', Journal of the 
Operational Research Society, 49, no. 2: 109-120 

Evans, J. and Brooks, L., (2005), 'Understanding Collaboration Using New 

Technologies: A Structurational Perspective', The Information Society, 
20: 215-220 

Fisher, J., (2003), 'Human Factors and the Systems Development Process', in 
Clarke, S., Coakes, E. W., Hunter, G. M. and Wenn, A. (eds. ), Soclo- 
technical and human cognition elements of information systems, 
Hershey, Pa., Idea Group. 

Fisher, S., (1994), Stress in academic life : the mental assembly line, 
Buckingham, Society for Research into Higher Education & Open 
University Press. 

Fitzgerald, B., Russo, N. L. and Stolterman, E., (2002), Information Systems 

Development: Methods in Action, Berkshire, McGraw-Hill. 
Flick, U., (1998), An introduction to qualitative research, London, Sage. 

366 



References 

Flynn, D. J., (1998), Information Systems Requirements: Determination and 
Analysis, Berkshire, McGraw-Hill. 

Folkman Curasi, C., (2001), 'A critical exploration of face-to-face interviewing 

vs. computer-mediated interviewing', International Journal of Market 
Research, 4, no. 43: 361-376, 

<httD: //search. eonet. com/direct. asp? an=5540844&db=buh&ty=AN>. 
Ford, N. J. and Woodroffe, M., (1994), Introducing software engineering, New 

York, Prentice Hall. 
Fowler, M., (2004a), 'Is design dead? ' Fowler, Martin, < 

http: //www. martinfowler. com/articles/designDead. html >, accessed 
10/11/2004. 

Fowler, M., (2004b), The New Methodology', Fowler, Martin, < 
http: //www. martinfowler. com/articles/newMethodoloay. html >, 

accessed 03/11/2004. 
Gachet, A., (2001), 'A Framework for Developing Distributed Cooperative 

Decision Support Systems - Inception Phase', 4th Informing Science 
Conference, June 19-22,214-221. 

Gadamer, H. G. and Linge, D. E., (1976), Philosophical hermeneutics, 

Berkeley, Calif., University of California P. 
Garvin, D. A., (1998), 'Building a learning organization', in Review, H. B. (ed. ), 

Harvard Business Review on knowledge management, Boston, Mass., 
Harvard Business School. 

Geertz, C., (1993), The interpretation of Cultures, London, Fontana Press. 

Giddens, A., (1976), New Rules of Sociological Method: A positive critique of 
interpretive sociologies, London, Hutchinson. 

Giddens, A., (1979), Central problems in social theory : action, structure and 
contradiction in social analysis, Basingstoke, Macmillan. 

Giddens, A., (1984), The Constitution of Society, Cambridge, Polity Press. 
Giddens, A., (1990), The Consequences of Modernity, Cambridge, Polity 

press. 
Gill, J. and Johnson, P., (1991), Research methods for managers, London, 

Paul Chapman. 
Gioia, D. A. and Pitre, E., (1990), 'Multiparadigm Perspectives on Theory 

Building', Academy of Management Review, 15, no. 4: 584-602 

367 



References 

Goode, W. J. and Hatt, P. K., (1952), Methods in social research, New York, 

McGraw-Hill. 
Greenberg, S., (1991), 'Introduction', in Greenberg, S. (ed. ), Computer- 

supported cooperative work and groupware, London, Harcourt. 

Greenfield, P. M. and Subrahmanyam, K., (2003), 'Online discourse in a teen 

chatroom: New codes and new modes of coherence in a visual 

medium', Applied Developmental Psychology, 24: 713-738 

Grudin, J., (1991), 'Obstacles to user involvement in software product 
development with implications for CSCW', in Greenberg, S. (ed. ), 

Computer-supported cooperative work and groupware, London, 

Harcourt. 
Grudin, J., (1994), 'Groupware and social dynamics: Eight Challenges for 

Developers', Communications of the ACM, 37, no. 1: 93-105 

Halfpenny, P., (1979), The analysis of qualitative data', The sociological 

review, 27, no. 4: 799-827 

Hammersley, M., (1992), What is womg with ethnography?, London, 

Routledge. 
Hammersley, M. and Atkinson, P., (1995), Ethnography. Principles in 

Practice. 2nd edn., London, Routledge. 
Handel, M. and Herbsleb, J. D., (2002), What is Chat Doing in the 

Workplace? ' Proceedings of the 2002 ACM conference on Computer 

supported cooperative work, 1-10. 
Handy, C. B., (1985), Understanding organizations. 3rd edn., Harmondsworth, 

Penguin. 
Handy, C. B., (1989), The age of unreason. 2nd edn., London, Arrow. 
Handy, C. B., (1995), Beyond certainty : the changing worlds of organisations, 

London, Hutchinson. 
Harding, S., (1987), Feminism and methodology: social science issues, 

Bloomington, Ind., Indiana University Press. 
Harrison, D. and Laberge, M., (2002), 'Innovation, Identities and Resistance: 

The social construction of an innovation network', Journal of 
Management Studies, 39, no. 4 

368 



References 

Harvey, L. J. and Myers, M. D., (1995), 'Scholarship and practice: the 

contribution of ethnographic research methods to bridging the gap' < 

www. Qual. auckland. ac. nz/Harvey-Myers. odf >, accessed 02/01/2003. 
Herbsleb, J. D., Paulish, D. J. and Bass, M., (2005), 'Global Software 

Development at Siemens: Experience from Nine Projects', Proceedings 

of the 27th international conference on Software engineering, 524-533. 
Hine, C., (2000), Virtual Ethnography, London, Sage. 
Hirschheim, R. J., (1985), 'Information systems epistemology: an historical 

perspective', in Mumford, E., Hirschheim, R. J., Fitzgerald, G. and 
Wood-Harper, A. T. (eds. ), Research methods in information systems : 

proceedings of the IFIP WG 8.2 Colloquium... 1984, Amsterdam, 
North-Holland. 

Holmes, J. and Meyerhoff, M., (1999), 'The community of practice: Theories 

and methodologies in language and gender research', Language in 

Society, 28, no. 2: 173-183 
Holsti, 0. R., (1969), Content analysis in the social sciences and humanities, 

Reading, Mass., Addison-Wesley. 
Holtham, C., (1992), Executive information systems and decision support, 

London, Chapman & Hall. 
Hycner, R. H., (1999), 'Some guidelines for the phenomenological analysis of 

interview data', in Bryman, A. and Burgess, R. G. (eds. ), Qualitative 

Research, Vol. III, London, Sage. 
Jackson, M. C., (1985), Systems methodology for organisational analysis, 

Hull, Department of Management Systems and Sciences, University of 
Hull. 

Jacobson, D., (1996), 'Contexts and Cues in Cyberspace: The Pragmatics of 
Naming in Text-Based Virtual Realities', Journal of Anthropological 

Research, 52: 461-479, 

<http: //oeoole. brandeis. edu/-riacobson/context and cues. adf>. 
Johnstone, B., (2002), Discourse Analysis, Malden, Mass., Blackwell. 
Jones, M., (1999), 'Structuration Theory', in Currie, W. L. and Galliers, B. 

(eds. ), Rethinking management information systems : an 
interdisciplinary perspective, Oxford, Oxford University Press. 

369 



References 

Jones, M., Oriikowski, W. J. and Munir, K., (2004), 'Structuration Theory and 
Information Systems: A Critical Reappraissal', in Mingers, J. and 
Willicocks, L. (eds. ), Social Theory and Philosophy for Information 
Systems, Chichester, England, John Wiley & Sons Ltd. 

Kelly, S., (1997), Data warehousing in action, Chichester, John Wiley. 
Kettinger, W. J. and Grover, V., (1997), 'The use of Computer-mediated 

Communication in an Interorganizational Context', Decision Sciences, 
28, no. 3: 513-555 

Kim, E. E., (2004), 'A Manifesto for Collaborative Tools', Blue Oxen 
Associates, < http: //www. blueoxen. org/papers/0000D/ >, accessed 
29/11/2004. 

Klein, H. K. and Myers, M. D., (1999), 'A set of principles for conducting and 
evaluating interpretive field studies in information systems', MIS 
Quarterly, 23, no. 1: 67-94, 

<http: //search. epnet. com/direct. asp? an=l852786&db=buh&tg=AN>. 
Laudon, K. C. and Laudon, J. P., (2000), Management Information Systems. 

Organization and technology in the networked enterprise. 6th edn., 
Upper Saddle River, NJ., Pretince Hall International Inc. 

Laudon, K. C. and Laudon, J. P., (2005), Essentials of Management 
Information Systems, New Jersey, Pretince Hall. 

Lea, M. and Spears, R., (1991), 'Computer-mediated communication, de- 
individuation and group decision-making', in Greenberg, S. (ed. ), 
Computer-supported cooperative work and groupware, London, 
Harcourt. 

Lee, A. S., (1991), 'Integrating positivist and interpretive approaches to 
organizational research', Organisation Science, 2, no. 4: 342-365 

Lee, F. S. L., Vogel, D. and Limayem, M., (2003), 'Virtual community 
informatics: A review and research agenda', Journal of Information 
Technology Theory and Application, 5, no. 1: 47-61 

Lucas, H. C., (1994), Information Systems concepts for management. 5th 

edn., New York, McGraw-Hill. 
Madge, C. and O'Connor, H., (2004), 'Exploring the internet as a medium for 

research: web-based questionnaires and synchronous virtual 
interviews', Research Methods Festival 

370 



References 

Mann, C. C., (2002), Why Software is so Bad', Technology Review, 
July/August, 

<http: //sern. cpsc. ucalgary. ca/courses/SENG/513/F2003/papers/WhySo 
ftwarelsSoBad. pdf>. 

Marakas, G. M., (2003), Decision support systems in the 21st century, Upper 
Saddle River, N. J., Prentice Hall. 

Marcoccia, M., (2004), 'On-line polylogues: conversation structure and 
participation framework in internet newsgroups', Journal of Pragmatics, 
36, no. 1: 115-145 

Marshall, C. and Rossman, G. B., (1989), Designing Qualitative Research, 
Newbury Park, Calif., Sage Publications. 

Mason, J., (1996), Qualitative Researching, London, Sage. 
May, T., (1997), Social research : issues, methods and process, Buckingham, 

Open University Press. 
McConnell, S., (1993), Code complete :a practical handbook of software 

construction, Redmond, Wash, Microsoft Press. 
McConnell, S., (1996), Rapid development : taming wild software schedules, 

Redmond, Wash., Microsoft Press. 
McDaniel, S. E., Olson, G. M. and Magee, J. C., (1996), 'Identifying and 

Analyzing multiple threads in computer-mediated and face-to-face 

conversations', Proceedings of the 1996 ACM conference on computer 
supported cooperative work, 39-47. 

Metz, J. M., (1994), 'Computer-mediated communication: Literature Review of 
a new context', Interpersonal Computing and Technology: An 
Electronic Journal for the 21st century, 2, no. 2: 31-49, 

<www. helsinki. fi/science/oatek/1994/n2/metz. txt>. 
Miles, M. B. and Huberman, A. M., (1994), Qualitative data analysis : an 

expanded sourcebook. 2nd edn., Thousand Oaks, Calif., Sage. 
Millen, D. R. and Dray, S. M., (2000), 'Information sharing in an online 

community of journalists', Aslib Proceedings, 166-173. 
Mingers, J. and Willlcocks, L., (2004), 'Preface', in Mingers, J. and Willlcocks, 

L. (eds. ), Social Theory and Philosophy for Information Systems, 
Chichester, England, John Wiley & Sons Ltd. 

371 



References 

Mumford, E., (1993), Designing human systems for health care : the ethics 

method, Cheshire, Eight Associates. 
Myers, M. D., (2003), 'Qualitative Research in information systems', MISQ 

Discovery, < www. Qual. auckland. ac. nz >, accessed 25/05/2003. 
Nonaka, I., (1998), The knowledge creating company', in Review, H. B. (ed. ), 

Harvard Business Review on knowledge management, Boston, Mass., 

Harvard Business School. 
Norris, C., (1993), 'Some Ethical considerations on Field-Work with the 

Police', in Hobbs, D. and May, T. (eds. ), Interpreting the Field: 

accounts of ethnography, Oxford, Clarendon Press. 
Olle, W. T., Hagelstein, J., MacDonald, I. G., Rolland, C., Sol, H. G., Van 

Assche, F. J. M. and Verrijn-Stuart, A. A., (1991), Information systems 

methodologies :a framework for understanding, Woking ham, Addison- 

Wesley. 
Orlikowski, W. J., (1992), 'The duality of technology: Rethinking the concept of 

technology in organizations', Organisation Science, 3, no. 3: 398-427 

Orlikowski, W. J., (1993), 'CASE Tools as Organizational Change: 

Investigating Incremental and Radical Changes in Systems 

Development', MIS Quarterly, 17, no. 3: 309-340 
Orlikowski, W. J., (1997), 'Learning from Notes: organizational issues in 

groupware implementation. ' in III, R. L. R. (ed. ), Knowledge 

management tools, Boston, Mass., Butterworth-Heinemann. 
Orlikowski, W. J., (2000), 'Using Technology and Constituting Structures: A 

practice Lens for Studying Technology in Organizations', Organisation 
Science, 11, no. 4: 404-428 

Orlikowski, W. J. and Baroudi, J. J., (1991), 'Studying Information Technology 
in Organizations: Research Approaches and Assumptions', Information 

Systems Research, 2, no. 1: 1-28 
Orlikowski, W. J. and Robey, D., (1991), 'Information Technology and the 

Structuring of Organizations', Information Systems Research, 2, no. 2: 

143-169 
Parker, D. and Stacey, R. D., (1994), Chaos, management and economics : 

the implications of non-linear thinking, London, Institute of Economic 

Affairs. 

372 



References 

Parks, M. R., (1996), 'Making friends in cyberspace', Journal of Computer- 

Mediated communication, 1, no. 4, 

<www. ascusc. orci/icmc/voll /ssue4/parks. htm I>. 

Parrish, R., (2002), 'Conversation analysis of internet chat rooms' < 
http: //www. r)oliscl. wisc. edu/-rdparrish/Chat%20Rooms%20for%20Web 
%20Site. htm >, accessed 16/02/2004. 

Perakyla, A., (1997), 'Reliabilityand Validity in Research based on Tapes and 
Transcripts', in Silverman, D. (ed. ), Qualitative research: theory, 

method and practice, London, Sage. 
Perry, D. E., (2004), 'Dimensions of Software Evolution', in Madhavji, N., 

Lehmann, M. M., Ramil, J. and Perry, D. (eds. ), Software Evolution and 
Feedback, John Wiley & Sons. 

Pfleeger, S. L., (1991), Software engineering : the production of quality 

software. 2nd edn., New York, Macmillan Pub. Co. 
Phillips, E. M. and Pugh, D. S., (2000), How to get a PhD: a handbook for 

students and their supervisors, Buckingham, Open University Press. 

Pressman, R. S., (2000), Software engineering :a practitioner's approach. 5th 

edn., London, McGraw Hill. 
Priest, H., Roberts, P. and Woods, L., (2002), 'An overview of three different 

approaches to the interpretation of qualitative data. Part 1: theoretical 

issues', Nurse Researcher, 10, no. 1: 30-41 
Punch, K. F., (1998), Introduction to social research: quantitative and 

qualitative approaches, London, SAGE. 
Remenyi, D., Williams, B., Money, A. and Swartz, E., (1998), Doing research 

in business and management: an introduction to process and method, 
London, SAGE. 

Rheingold, H., (1994), The virtual community: finding connection in a 
computerized world, London, Secker & Warburg. 

Rising, L., (2001), 'Agile Methods: What's it All About? ' DDC-I Online News 

vol 2(9), < http: //www. ddci. com/news vol2num9. shtml >, accessed 09- 
7-2004. 

Rose, J., (1998), 'Evaluating the contribution of structuration theory to the 
information systems discipline', Proceedings of the European 

Conference of Information Systems, BAETS, W. R. J. (ed), 1-22. 

373 



References 

Rose, J., (2000), Information Systems Development as Action Research - 
Soft Systems Methodology and Structuration Theory, Lancaster, 
Lancaster University. 

Rose, J. and Hackney, R., (2003), 'Towards a structurational theory of 
information systems: a substantive case analysis', 36th Hawaii 

International Conference on Systems Sciences, 258-266. 
Rose, J. and Scheepers, R., (2001), 'Structuration theory and information 

systems development; frameworks for practice', European Conference 

on Information Systems, Smithson, S. and Avgerinou, S. (eds), 217- 

231. 
Rosenberg, D. and Scott, K., (1999), Use case driven object modeling with 

UML :a practical approach, Reading, Mass., Addison-Wesley. 
Savenye, W. C. and Robinson, R. S., (2001), 'Qualitative Research Issues 

and Methods: An Introduction for Educational Technologists', The 
handbook of research for Educational Communications and 
Technology, < >, accessed 04/08/2003. 

Schrage, M., (1997), 'Collaborative tools: A first look. ' in III, R. L. R. (ed. ), 

Knowledge management tools, Boston, Mass., Butterworth- 
Heinemann. 

Schultze, U. and Orlikowski, W. J., (2004), 'A Practice Perspective on 
Technology-Mediated Network Relations: The Use of Internet-Based 

Self-Serve Technologies', Information Systems Research, 15, no. 1: 87- 

106 

Sedelnikov, A., (2004a), 'Internet Forums: The Return', Seeking Usability, < 
http: //usabilist. de/seekinq/issue. php? article=40719&lanq=EN >, 

accessed 20/09/2004. 
Sedelnikov, A., (2004b), 'A usability of the Internet discussion forums', 

Seeking usability, < 
http: //usabilist. de/seeking/issue. phr)? article=10705&lanci=EN >, 

accessed 20/09/2004. 

Selman, P. and Wragg, A., (1999), 'Local Sustainability'Planning: From 
Interest-driven Networks to Vision-driven Super-Networks', Planning 

Practice & Research, 14, no. 3: 329-340 

374 



References 

Shami, N. S., Bos, N., Wrigth, Z., Hoch, S., Kuan, K. Y., Olson, J. and Olson, 

G., (2004), 'An experimental simulation of multi-site software 
development', Proceedings of the 2004 conference of the Centre for 

Advanced Studies on Collaborative research, 1-12. 
Shim, J. P., Warketin, M., Courtney, J. F., Power, D. J., Sharda, R. and 

Carlsson, C., (2002), 'Past, present, and future of decision support 
technology', Decision Support Systems, 33: 111-126 

Shirky, C., (2003), 'A Group is its own worst enemy', Shirky. com, < 
http: //shirkv. com/writinqs/group enemy. html >, accessed 20/07/2004. 

Shirky, C., (2004a), 'Group as User: Flaming and the Design of Social 
Software'. Shirky. com, < http: //shirky. com/writings/group user. html >, 

accessed 30-11-04. 
Shirky, C., (2004b), 'Situated Software', Shirky. com, < 

http: //www. shirkv. com/writinqs/situated software. html >, accessed 
21/02/2005. 

Sink, E., (2004), 'Hazards of Hiring', MSDN, < 
http: //msdn. microsoft. com/library/defauft. asp? url=/library/en- 
us/dnsoftware/html/software07O72004. asp >, accessed 13/07/2004. 

Smith, M., Cadiz, J. and Burkhalter, B., (2000), 'Conversation trees and 
threaded chats', Proceedings of the 2000 ACM Conference on 
Computer Supported Cooperative Work, 97-105. 

Smith, M. F., (1990), Software prototyping : adoption, practice and 
management, London, McGraw-Hill. 

Spencer, L., Ritchie, J. and O'Connor, W., (2003), 'Analysis: Practices, 

principles and processes', in Ritchie, J. and Lewis, J. (eds. ); Qualitative 

research practice :a guide for social science students and researchers, 
London, SAGE. 

Spolsky, J., (2001), 'Don't Let Architecture Astronauts Scare You', Joel on 
Software, < 
httr): //www. loelonsoftware. com/articles/fog0000000018. html >, 

accessed 21/09/2004. 
Spolsky, J., (2002a), 'Five Worlds', Joel on Software, < 

http: //www. ioelonsoftware. com/articles/FiveWorlds. html >, accessed 
30-06-04. 

375 



References 

Spoisky, J., (2002b), The Iceberg Secret, Revealed', Joel on Software, < 
http: //www. loelonsoftware. com/articles/fog0000000356. html >, 
accessed 30-06-04. 

Spolsky, J., (2003), 'Building Communities with Software', Joel on Software, < 
httP: //www. ioelonsoftware. com/articles/BuildinqCommunitieswithSo. ht 

ml >, accessed 05-07-2004. 
Spolsky, J., (2004), 'It's Not Just Usability', Joel on Software, < 

http: //www. loelonsoftware. com/articles/NotJustUsabilitv. html >, 
accessed 07/09/2004. 

Spradley, J. P. and McCurdy, D. W., (1972), The cultural experience: 
ethnography in complex society, Chicago Ill., Henley on Thames. 

Sproull, L. and Kiesler, S., (1986), 'Reducing Social Context Cues: Electronic 
mail in organizational communication', Management Science, 32, 
no. 11: 1492-1512 

Stacey, R. D., (2001), Complex responsive processes in organizations : 
learning and knowledge creation, London, Routledge. 

Stacey, R. D., Griffin, D. and Shaw, P., (2000), Complexity and management : 
fad or radical challenge to systems thinking?, London, Routledge. 

Stanley, L. and Wise, S., (1990), 'Method, methodology and epistemology in 
feminist research processes', in Stanley, L. (ed. ), Feminist Praxis: 
Research, theory and epistemology in feminist scholarship, London, 
Routedge. 

Sweet, C., (2001), 'Designing and conducting virtual focus groups', Qualitative 
Market Research: An International Journal, 4, no. 3: 130-136, 

<http: //search epnet com/direct asa'. an=9801730&db=buh&ta=AN>. 
Tang, J. C., (1991), 'Findings from observational studies of collaborative 

work', in Greenberg, S. (ed. ), Computer-supported cooperative work 
and groupware, London, Harcourt. 

Tatar, D. G., Foster, G. and Bobrow, D. G., (1991), 'Design for conversation: 
lessons from cognoter', in Greenberg, S. (ed. ), Computer-supported 

cooperative work and groupware, London, Harcourt. 
Tatnall, A., (2003), 'Actor-network theory as a socio-technical approach to 

information systems research', Hershey, PA, Idea Group. 

376 



References 

Taylor, S. J. and Bogolan, R., (1984), Introduction to qualitative research 

methods, New York, John Wiley. 
Tesch, R., (1990), Qualitative Research: analysis types and software tools, 

New York, The Farmer Press. 
The Cambridge dictionary of philosophy, (1999). 2nd edn., Cambridge, 

Cambridge University Press. 
Thomas, J., (1995), Meaning in interaction : an introduction to pragmatics, 

London, Longman. 
Thomsen, S. R., (1996), '"@ work in cyberspace: Exploring practitioner use of 

the PRForum"', Public Relations Review, 22, no. 2: 115-131 
Tice, T. N. and Slavens, T. P., (1983), Research guide to philosophy, 

Chicago, American Library Association. 
Travers, M., (2001), Qualitative research through case studies, London, 

SAGE. 
Turban, E. and Aronson, J. E., (2001), Decision support systems and 

intelligent systems, Upper Saddle River, N. J., Pearson Higher 

Education. 
Turban, E., King, D., Lee, J., Warketin, M. and Chung, H. M., (2002), 

Electronic commerce 2002: a managerial perspective. International ed. 

edn., Upper Saddle River, Prentice Hall. 
Van der Aalst, W. and Van Hee, K., (2002), Workflow management : models, 

methods, and systems, Cambridge, Mass, MIT Press. 
Walsham, G., (1993), Interpreting Information Systems in Organizations, 

Chichester, Wiley. 
Walsham, G., (1995), 'Interpretive case studies in IS research: nature and 

method', European Journal of Information Systems, 4, no. 2 
Walsham, G., (1998), 'IT and Changing Professional Identity: Micro-Studies 

and Macro-Theory', Journal of the American Society for Information 

Science, 49, no. 12: 1081-1089 
Walsham, G. and Han, C. -K., (1991), 'Structuration theory and information 

systems research', Journal of Applied Systems Analysis, 17: 77-85 
Warne, L., (2003), 'Conflict and Politics and Information Systems Failure: A 

challenge for Information Systems Professionals and Researchers', In 

Clarke, S., Coakes, E. W., Hunter, G. M. and Wenn, A. (eds. ), Soclo- 

377 



References 

technical and human cognition elements of information systems, 
Hershey, Pa., Idea Group. 

Weinberg, G. M., (1971), The Psychology of Computer Programming, New 

York, Van Nostrand Reinhold. 
Wenger, E., (2003), Communities of Practice: Learning, meaning, and 

identity, Cambridge, Cambridge University Press. 
Williams, M. and May, T., (1996), Introduction to the philosophy of social 

research, London, UCL Press. 
Willis, D. and Coakes, E. W., (2000), 'Enabling Technology for Collaborative 

Woking: A Socio-Technical Experience', in Clarke, S. and Lehaney, B. 
(eds. ), Human Centered Methods in Information Systems: Current 
Research and Practice, Hershey PA, Idea Group Publishing. 

Wills, A. C., (1999), 'Designing Component Kits and Architectures', in Barroca, 
L. (ed. ), Software Architectures: advances and applications, Springer. 

Wilson, B., (1990), Systems : concepts, methodologies, and applications, 
Chichester, Wiley. 

Wilson, P., (1991), Computer supported cooperative work : an introduction, 

Oxford, Intellect. 
Winograd, T. and Flores, F., (1986), Understanding computers and cognition : 

a new foundation for design, Norwood, N. J., Ablex. 
Wolcott, H., (1995), The Art of Fieldwork, Walnut Creek, AltaMira Press. 
Yourdon, E., (1989), Modern structured analysis, Englewood Cliffs, N. J., 

Prentice-Hall International. 
Yule, G., (1996), Pragmatics, Oxford, Oxford University Press. 

378 


