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Abstract 

 

 
The objective of this dissertation was to characterise the relative contribution 

of genetic influences to individual differences in cross sectional performance and 

decline of semantic-lexical abilities and to investigate whether these linguistic effects 

indicating semantic degradation are sensitive indicators of medial temporal atrophy in 

early Alzheimer‟s disease and in patients with mild cognitive impairment of amnestic 

type (aMCI). 

The effect of ApoE status in the genetic profile of these groups on 

deterioration of semantic abilities was studied to verify whether there was any 

relationship between variation in lexical factors and genetic variability. Oral 

generation of words belonging to two categories (animal and fruits) during a fluency 

tasks was required.  

In AD patients there was an effect of genotype but, although strong, this was 

diluted by the advanced cognitive deterioration and could only be seen as a tendency 

to be stronger in ε4 carriers. The words produced by the aMCI carriers were 

significantly earlier acquired than those of non-carriers and controls. These 

behavioural findings confirmed evidence from other recent studies and showed that a 

significant proportion of phenotype variability in performance on fluency tasks was 

influenced by genetic factors. Impairments in semantic tasks in the ε4 allele carrier 

population might indicate either that individuals who will develop AD never fully 

develop semantic skills, or that the neuroanatomical substrate of semantic abilities is 

selective sensitive to the earliest effects of the AD neuropathology. 

On the basis of this result it seemed reasonable to hypothesise that the 

presence of the “semantic endophenotype” in people carriyng the ApoE vulnerability 
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mutation might be associated with atrophy in areas early affected by neuropathology 

due to AD and involved in semantic memory retrieval. Using lexical semantic 

competency in aMCI carriers as an endophenotype, grey matter volume loss in aMCI 

ε4 carriers/non-carriers and in controls was compared and the residual volume 

correlated with allele burden and with age of acquisition values for words produced in 

a category fluency task.  Direct group comparisons showed that carriers had grey 

matter volume loss which was generally confined to limbic regions and medial 

temporal structures, and non-carriers had greater atrophy in temporal and parieto-

occipital neocortex.  aMCI subjects had significantly impoverished lexical semantic 

output compared to controls, more marked in aMCI carriers. A voxel based 

correlation analysis showed that greater volume loss in parahippocampal gyrus and 

thalamus was associated with a tendency to retrieve earlier acquired words in the 

category fluency task.  The results suggest a relatively specific impact of ApoE 4 

burden and underline the value of linguistic assessment in preclinical diagnosis. The 

detrimental role of this mutation found in aMCI individuals was also assessed at the 

larger stage in the disease process by direct comparisons in minimal to mild AD ε4 

carriers/non-carrier patients. VBM comparison analysis confirmed the observation 

done in the genetically determined aMCI subgroups. AD ε4- carriers showed greater 

atrophy in mediotemporal structures compared to non-carriers whose grey matter 

volume loss was more widespread in more neocortical areas. Finally, an age, gender 

and education based norms for AoA, Typicality and Familiarity was built up in order 

to create a valid psychometric instrument able to detect and monitor subtle semantic 

deficits in ApoE ε4 carriers over time. 
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CHAPTER 1 Alzheimer’s disease 
 

1.1 Epidemiology of neurodegeneration 

 

 

Alzheimer‟s disease, together with Parkinson‟s disease and motor neuron 

disease, represent the group of degenerative brain disorders most common and costly 

to society. Epidemiological research of these degenerative brain diseases has recently 

(the last ten years) changed its focus moving from descriptive studies of the disease to 

the analysis of risk factors. The purpose of this shift has been to understand better the 

association between risk associated with gene variants to increase the identification 

and prevention of these diseases. In this dissertation the focus will be on one of these 

neurodegenerative diseases: Alzheimer‟s disease (AD). 

 

1.2 Alzheimer’s disease 

 

Originally described by Alois Alzheimer in 1907, AD is a progressive 

neurodegenerative disorder, clinically characterised by initial impairment in memory 

but as the disease progresses other cognitive skills also decline. In the later stage of 

the disease abnormal behaviour, delusion and loss of control of physical abilities also 

appear. 

The diagnosis of AD is guided the by the well-established National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer‟s Disease 

and Related Disorders Association (NINCDS-ADRDA) clinical criteria (Mckhann, 

Drachman, Folstein, Katzman, Price, et al., 1984): definitive is only used for disease 

confirmed at post mortem examination; probable is used when clinical symptoms can 
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be detected and all the other causes of dementia have been ruled out; and possible is 

used for subjects meeting criteria associated with other illnesses that may cause 

central nervous system dysfunction, such as cardiovascular problem disease, but still 

show many features of AD. There are not definitive diagnostic tests or biological 

markers of the disease. However, neuropsychological assessment when associated to 

technological advances in neuroimaging or biochemistry reasonably increases the 

accuracy of the diagnosis (Chang & Silverman, 2004). This multidisciplinary 

investigation increases the accuracy level for the diagnosis of “probable AD”. Only 

the detection of the histopathological hallmarks of AD, senile plaques (SPs), 

neurofibrillary tangles (NTs) and progressive loss of synapses and neurons, allow a 

definitive diagnosis of AD to be made (Bacskai, Klunk, Mathis, & Hyman, 2002; 

Chui, Tierney, Zarow, Lewis, Sobel, et al., 1993; Mori, 2000). At the anatomical level 

the hippocampus, entorhinal cortex and nucleus basalis of Meynert, which contain a 

good proportion of the cholinergic neurons of the brain, show substantial cell loss 

early in AD. Furthermore degenerative change in the forebrain reduces the level of 

cholin acetylsferase (ChAT), an enzyme necessary for acetylcholine formation, also 

occurs early in the cause of the disease and has been related to the early symptoms 

(Davies & Maloney, 1976; Mayeux, 2003a). However deficits in other neurotramitter 

systems have also been reported, such as reduced levels of GABA and Dopamine and 

decreased serotonergic and noradrenergic innervations of the cortex (Adolfsson, 

Gottfries, Roos, & Winblad, 1979; Mann, Lincoln, Yates, Stamp, & Toper, 1980). 

These findings suggest that in AD it is not possible to address the changes to only one 

particular neurotransmitter system. Furthermore, these neurochemical deficits might 

be the result and not the cause of cellular damage (Glenner, 1989). 
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1.3 AD frequency 

 

The incidence rate (i.e. the number of new cases among healthy individuals 

over a specific time), increases from 1% annually among people aged 65 to 70 years 

to 6% to 8% for people over 85 years old (Burns & Iliffe, 2009; Chandra, Pandav, 

Dodge, Johnston, Belle, et al., 2001; Del Tredici, Rub, De Vos, Bohl, & Braak, 2002; 

Di Carlo, Baldereschi, Amaducci, Lepore, Bracco, et al., 2002; Fratiglioni, Launer, 

Andersen, Breteler, Copeland, et al., 2000; Hebert, Beckett, Scherr, & Evans, 2001; 

Tang, Cross, Andrews, Jacobs, Small, et al., 2001). The BBC reports that in the UK 

the number of people affected by dementia has arisen from 400, 000 individuals in 

2007 to 820, 000 in 2010 with an estimated 1 milion people affected by 2025 

("Dementia 'losing out' to cancer in funding stakes ", 2010). Demographic variables 

affect the incident rate. Women have a higher probability of developing AD 

(Andersen, Launer, Dewey, Letenneur, Ott, et al., 1999; Miech, Breitner, Zandi, 

Khachaturian, Anthony, et al., 2002; Ruitenberg, van Swieten, Witteman, Mehta, van 

Duijn, et al., 2002) and the rate of the disease seems to be different in different 

populations. The risk rises almost three times in Caucasian population, weaker but 

still significant for African American, Carribbean Hispanich and Latino compared to 

Whites living in the United States (Gurland, Wilder, Lantigua, Stern, Chen, et al., 

1999; Tang, et al., 2001)  but not among Africans in their native countries (Ogunniyi, 

Baiyewu, Gureje, Hall, Unverzagt, et al., 2000). Duration of illness is another factor 

affecting the prevalence of the disease. Under the age of 65 the disease is rare; 

however by the age of 85 about 20% have this disease (Bowirrat, Treves, Friedland, 

& Korczyn, 2001; Stevens, Livingston, Kitchen, Manela, Walker, et al., 2002a; W. 

Wang, Wu, Cheng, Dai, Ross, et al., 2000). The presence of 1 or 2 copies of the 

apolipoprotein ε4 allele is another risk factor. In particular the ε4 type of the gene has 
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been found to carry a higher risk of AD, while the ε2 type is believed to offer 

protection against it (Waring & Rosenberg, 2008). There is evidence that the 

incidence of disease as well as the risk attributable to specific genetic factors such as 

ApoE genotype, may vary among ethnic groups. In particular the ε4 allele increases 

the risk of AD threefold in Caucasian populations, while there is a weak but still 

significant risk factor for AD in Hispanic, Latino or African-American populations 

(Farrer, Cupples, Haines, Hyman, Kukull, et al., 1997; Meyer, Tschanz, Norton, 

Welsh-Bohmer, Steffens, et al., 1998; Tang, Stern, Marder, Bell, Gurland, et al., 

1998). Recently a study showed a lower frequency of ApoE ε2 and higher frequency 

of ApoE ε4 allele in the Mongolian population in China compared to Han Chinese 

one, suggesting an increase susceptibility of that population to AD (Huriletemuer, 

Wang, Wang, Wang, Zhang, et al., 2010).   

Based on these studies, therefore, the risk of developing AD depends on the 

incidence rate and the life expectancy from birth. For example the lifetime risk (i.e. 

the probability of someone of a given age and sex developing a condition during their 

remaining lifespan) for African Americans and some Hispanic ethnic groups may be 

higher than that observed in the Framingham study (Rosamond, Flegal, Furie, Go, 

Greenlund, et al., 2008) whose community-based data were based on a group of 

North Americans of European descent (12% to 19% incidence rate risk for women 

over 65 and 6% to 10% for men) (Green, Cupples, Go, Benke, Edeki, et al., 2002; 

Seshadri & Wolf, 2007; Tang, et al., 2001). 
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1.4 Pathophysiology of AD 

 

Genetic and neuropathological findings of AD have pointed towards aberrant 

processing of two proteins, amyloid precurson protein (APP) and tau, as being central 

molecular events in this disease. The classic neuropathological features of AD 

specific changes in the brain are neuritic plaques composed of β amyloid fibrils and 

neurofibrillary tangles composed of tau protein (Huang & Jiang, 2009). 

 

1.4.1 Senile Plaque 

 

Amyloid plaques are mostly made up of a protein called B-amyloid which is it 

self part of a much larger protein called APP (amyloid precursor protein). APP 

ismade in the cell, transported to the cell membrane and later broken down. Two 

major pathways are involved in the breakdown of APP. One pathway is normal and 

causes no problem. The second results in the changes seen in AD and in some of the 

other dementias (Hardy, 1997; Selkoe, 1994).  The extracellular plaques result from 

endoproteolysis of APP by two enzymes: β-secretase and y-secretase. Some of the 

resulting fragments (called peptides) stick together and form a short chain called 

oligomer. Oligomers are also known as amyloid-beta derived diffusible ligands 

(ADDL). Oligomers of amyloid beta 42 have been shown to cause problems in the 

communication between neurons. Amyloid beta 42 also produces tiny fibres, or 

fibrils. When they stick together they form amyloid plaques. Some of these plaques 

can insert themselves into the membrane of the neuron cell causing substances 

outside the cell to leak into it, resulting in further damage. This damage results in a 

build up of Amyloid beta 42 peptide leading to neuron dysfunction and death. 
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Reduced amiloyd degradation has also been reported as a possible cause of increased 

Aβ42 accumulation (Di Fede, Catania, Morbin, Rossi, Suardi, et al., 2009). 

1.4.2 Neurofibrillary Tangles 

 

Neurofibrillary changes occur in the perikarya of neurons as intracellular 

neurofibrillary tangles (NFTs) of which the principal components are a highly 

phosphorylated form of the microtubule-stabilizing protein tau aggregated to paired 

helical filaments (PHF) (Goedert, Wischik, Crowther, Walker, & Klug, 

1988;Tabaton, Mandybur, Perry, Onorato, Autilio-Gambetti, et al., 1989). The 

presence of PHFs demonstrates the failure of the neuron to properly maintain its 

cytoskeleton. These aggregates are also found in dendritites and axons and appear as 

neuropil threads which have been found to be closely correlated with the distribution 

and severity of neurofibrillary tangles. 

The role of amyloid plaques and neurofibrillary tangles on the functioning of 

the brain is not fully understood. Most people with Alzheimer's disease show 

evidence of both plaques and tangles, but a small number of people with Alzheimer's 

only have plaques and some have only neurofibrillary tangles. People with only 

plaques show a slower rate of deterioration during their lives. People with 

neurofibrillary tangles are more likely to be diagnosed with frontotemporal dementia. 

It is reasonable to postulate that progressive cognitive decline associated to the 

disease is related to a concomitant progressive development of pathological 

alterations in the brain, which is more significant for the NFTs than SPs (Braak & 

Braak, 1991).  

In this regard it is interesting to observe that NFTs are always confined to 

limbic structures such as the transentorhinal cortex, hippocampus, the nucleus basalis 
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of Meynert and the amygdala. These areas are critical for memory function and seem 

to be vulnerable to the distribution of NFTs during ageing. Some authors posit that 

there are two NFT stages (low-high limbic and neocortical stage) in which the initial 

low-high density of NTFs in limbic areas could account for the memory impairment 

associated with ageing (low stage) and as soon as they become more numerous and 

start to cluster (high limbic stage) might provide the anatomical substrate for MCI 

and pre-clinical AD. With the spreading of NFTs all over the neocortical areas the 

corresponding greater cognitive decline could explain the passage from MCI to 

severe AD (Arnold, Hyman, Flory, Damasio, & Van Hoesen, 1991; Arriagada, 

Growdon, Hedley-Whyte, & Hyman, 1992). Assuming this concomitant cognitive-

pathological progression, the interval between the initial formation of NFTs and their 

widespread neocortical distribution in the terminal stages of the dementia may take as 

long as 50 years (Braak & Braak, 1996; Ohm, Muller, Braak, & Bohl, 1995). There is 

no genetic linkage between AD and tau-processing abnormalities which lead to NFT 

formation. Some evidence seems to support a genetic factor in causing abnormal 

amyloid processing (Hardy, 1997; Selkoe, 1994; Yankner, 1996) 

However Aβ plaques tend to have higher density in the association cortex rather 

than in limbic areas. SPs can be seen even in non-demented elderly individuals and 

none of the transgenic animal overexpressing the AD causing mutation of AβPP has 

shown NFT formation (Mesulam, 2000). In summary, the exact role of APP is not yet 

fully elucidated. The latest theoretical trends concerning sporadic Alzheimer‟s disease 

(SAD) implicate the overproduction of APP as an acute response to damage such as 

vascular damage (Hardy, 2009). 
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1.5 AD risk factors 

 

Although AD is one of the most common neurodegenerative diseases among 

the elderly, the aetiology of AD is still not well known. However, there have been 

improvements in the overall knowledge of this disease and improvements in who is 

diagnosed, compared to a statement published in a 1981 issue of Biomedical Journal 

noting that an AD diagnosis was often made “when the patient was older and less 

intelligent than the doctor” (Millard, 1981). 

 

1.5.1 Demographic factors 

 

1.5.1.1 Education 

 

 

It is now well known that for poorly educated individuals the risk of developing AD 

is significantly higher than for well-educated people (Morishima-Kawashima, 

Oshima, Ogata, Yamaguchi, Yoshimura, et al., 2000; Stern, Gurland, Tatemichi, 

Tang, Wilder, et al., 1994). An association has been suggested between greater 

development of “cognitive reserve”, which appears to have a protective effect, and 

increases with more years of formal education (Katzman, 1993). It remains unknown, 

however, if the level of education achieved is a surrogate for other genetic or 

environmental effects. For example from the characteristics of autobiographical 

essays written by Catholic sisters when they were an average 22 years old, it was 

possible to predict the subsequent cognitive impairment and presence of AD (average 

onset mean 80 years old) with an extremely high degree of accuracy (Snowdon, 

Kemper, Mortimer, Greiner, Wekstein, et al., 1996). Moreover Whalley et al., (2000) 

showed that childhood mental ability scores were lower than average among children 

who eventually developed AD after the age of 65. These studies appear to suggest 
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that educational achievement reflects early determinants of the disease. It is worth 

considering the role that differences in the quality of the environment during 

childhood might also have. Indeed individuals from nurturing, supportive households 

had a lower risk of subsequent disease when adults (Hall, Gao, Unverzagt, & 

Hendrie, 2000; Moceri, Kukull, Emanuel, van Belle, & Larson, 2000) 

 

 

1.5.1.2 Age 

 

One of the strongest risk factor for AD is age. After the age of 65 the frequency of 

AD has been shown to double approximately every 5 years, with a rate of 3% in the 

65-74 age range to a rate of 47% in subjects older than 80 (Bachman, Wolf, Linn, 

Knoefel, Cobb, et al., 1993; Henderson, 1992). According to the result of a 

prospective study which used the person-years approach (Breslow & Day, 1987) to 

calculate age-specific incidence of dementia and AD (that is by dividing the number 

of cases by the number of person-years at risk given as 5-year age intervals starting at 

age 65 years and then multiplied by 1000 to get rates per 1000 person-years), AD 

rates of 2.8 per 1000 person-years in the age group 65-69 rises to 56.1 per 1000 

person -years in subjects older than 90 years old. The relative increase is highest in 

the 75-84 year age group (Kukull, Higdon, Bowen, McCormick, Teri, et al., 2002). 

Interestingly, a meta-analysis of nine epidemiological studies including elderly people 

over the age of 80, found that the rate of increase in dementia prevalence fell in the 

age range 80-84. However, at around the age of 95, prevalence was seen to decrease 

to about 40%. This finding supports evidence for an age-related (i.e. occurring within 

a specific age range) rather than ageing related (i.e. caused by the ageing process 

itself) dementia (AD or vascular dementia), which leads researchers to consider it as a 
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pathological process, the aetiological factors of which are in addition to those 

implicated in normal ageing, with consequent implications for providing therapeutic 

intervention (Ritchie & Kildea, 1995). 

1.5.1.3 Gender 

 

Research investigating the relationship between gender and AD has yielded 

inconsistent findings. Some of them posited that women are at higher risk of AD 

(Fratiglioni, Viitanen, von Strauss, Tontodonati, Herlitz, et al., 1997; Rocca, 

Bonaiuto, Lippi, Luciani, Turtu, et al., 1990), but others have failed to obtain a 

significant difference between men and women.  It is interesting to note that women 

who carry the ApoE ε4 allele are at significantly greater risk of developing AD than 

men possessing the same allele (Duara, Barker, Lopez-Alberola, Loewenstein, Grau, 

et al., 1996). 

1.5.2 Genetic 

 

The role of several genetic factors in AD has been well established. Studies of 

AD among twin pairs when they were over the age of 70 provide the strongest 

support for genetic causation. Monozygotic twins show very high concordance rate 

for AD (70-80% range) (Bergem, Engedal, & Kringlen, 1997; Gatz, Pedersen, Berg, 

Johansson, Johansson, et al., 1997). Mutations in three genes, the amyloid precurson 

protein (APP) gene on chromosome 21, the presenil 1 (PS1) gene on chromosome 14 

and the presenile 2 (PS2) gene on chromosome 1, characterise the familial form of 

AD. These forms are autosomial dominant and cause a form of the disease that 

usually starts in the 40s and 50s (early onset). PS1 mutations are the most frequent 

cause of familial early onset AD, occurring in 11% of patients (Rogaeva, Fafel, Song, 
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Medeiros, Sato, et al., 2001). These mutations, however, account only for a small 

proportion (5%) of the disease. The clearest genetic factor that has been associated 

with “non-familial or sporadic” AD is the gene that codes for ApoE (Roses, 1996). 

An allelic variant of apolipoprotein E (ApoE), ε4, increases the risk of the disease 

fivefold in its heterozygous configuration (ε4ε3) and tenfold when both the alleles are 

present (homozygous configuration ε4ε4). The proportion of the disease related to 

ApoE ε4 has been estimated at 20% making it the single most important risk factor 

for this disease (Slooter, Cruts, Kalmijn, Hofman, Breteler, et al., 1998). Mutations in 

the genes elevate the level of the amyloid β peptide (Aβ-40 and Aβ-1-42), a preolytic 

fragment of the amyloid precurson protein, which subsequently aggregate in the brain 

in the form of neuritic plaques. The variants of the ApoE allele may be involved in 

the removal or degradation of amyloid β (St George-Hyslop, 2000).  

In addition to the genes mainly related to familial and non-familial AD, there is 

a variety of other genes that might cause AD. Genetic linkage studies show additional 

genetic loci for AD on chromosome 12p12p and 10p24p (Bertram, Gaut, Barrett, 

Pinney, Whitaker, et al., 2002; Mayeux, Lee, Romas, Mayo, Santana, et al., 2002; 

Mayeux & Small, 2000; Scott, Grubber, Conneally, Small, Hulette, et al., 2000). 

Furthermore Genome-Wide Association analyses Studies (GWAS) of AD show 

highly significant association at the ApoE locus ( Bertram, Lange, Mullin, Parkinson, 

Hsiao, et al., 2008a; Li, Wetten, Li, St Jean, Upmanyu, et al., 2008; Morgan, Turic, 

Jehu, Hamilton, Hollingworth, et al., 2007; Reiman, Webster, Myers, Hardy, 

Dunckley, et al., 2007). However other new susceptibility loci have been identified. 

The CLU gene (encodes for clustering, a major brain lipoprotein known as ApoJ), the 

PICALM gene (phosphatidylinositol-binding clathrin-assembly protein), and the CR1 

gene [rs6656401, odd ratio (OR) =1.21)] (Harold, Abraham, Hollingworth, Sims, 
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Gerrish, et al., 2009; Lambert, Heath, Even, Campion, Sleegers, et al., 2009). 

Recently a GWAS study by Mayo Clinic investigators identified a new susceptibility 

allele that increases the risk for late-onset Alzheimer‟s disease (LOAD). The gene, 

protocadhein 11 X-linked (PCDH11X) is located on the human X chromosome. A 

closely related gene, PCDH11Y, exists on the homologous region of the human Y 

chromosome. The study suggests that a PCDH11X variant increases the risk for 

LOAD, specifically in women (Carrasquillo, Zou, Pankratz, Wilcox, Ma, et al., 2009) 

(see Chapter 2, section 2.2.). 

 

1.5.3 Risk modifiers 

 

1.5.3.1 Alcohol 

 

Although excessive use of alcohol causes dementia due to nutritional 

deficiencies and acute toxicity, there is evidence that moderate daily amounts of wine 

are associated with a lower probability of developing AD in elderly individuals when 

compared to heavy drinkers or non-drinkers (Orgogozo, Dartigues, Lafont, 

Letenneur, Commenges, et al., 1997). Similar findings were obtained in a more recent 

study (Ruitenberg, et al., 2002). The beneficial effect of alcohol consummation might 

be related to its antioxidant properties or its effect on lipid metabolism (Mayeux, 

2003a). 

 

1.5.3.2 Mental activity 

 

A few studies have found that healthy people with complex activity patterns 

(physical and intellectual activity) have a lower risk of developing the disease than 

people who are sedentary and do not keep mentally active (Lindsay, Laurin, 
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Verreault, Hebert, Helliwell, et al., 2002; Scarmeas, Levy, Tang, Manly, & Stern, 

2001). However other explanations could be possible. An involuntary oversight of 

cause effect relationship for example, as people in the early stage of dementia, might 

avoid intellectual stimulation or physical activity. In this case cognitive impairment or 

susceptibility factors may be already present, inducing change in the behaviour of the 

person affected (Launer & Brock, 2004).  

1.5.3.3 Smoking 

 

Prospective studies have suggested higher risk of AD in heavy smokers, 

especially in people not carrying the ApoE ε4 mutation, through a complex 

interaction with disorder of the cerebral vessels (Merchant, Tang, Albert, Manly, 

Stern, et al., 1999; Ott, Slooter, Hofman, van Harskamp, Witteman, et al., 1998). 

However, an 80% reduction in Aβ peptide 1-42 deposition into plaques was observed 

in the brain of nicotine-treated compared to sucrose-treated AD transgenic mice 

(Nordberg, Hellstrom-Lindahl, Lee, Johnson, Mousavi, et al., 2002). It is important to 

underline that administration of nicotine through smoking does not reduce the risk.  

 

1.5.3.4 Down syndrome 

 

The risk of developing AD in people with family history of Down‟s syndrome 

is increased threefold. Schupf et al.,( 2001)found thatmothers who had a child with 

Down‟s syndrome before the age of 35 years were at higher risk of AD than mothers 

who had a child with other kinds of mental retardation. The authors suggested a form 

of accelerated aging in the mothers of child with Down‟s syndrome, predisposing 

them to AD. 
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1.5.3.5 Traumatic head injury 

 

Traumatic head injury increases the risk of AD  

(Guo, Cupples, Kurz, Auerbach, Volicer, et al., 2000; Plassman, Havlik, 

Steffens, Helms, Newman, et al., 2000). A high percentage of AD patients report a 

history of head trauma, coupled with personality and cognitive changes associated 

with the “punch drunk syndrome” found in boxers (Lezak, 2004). The mechanism by 

which trauma increases the risk of AD is unknown, but there is evidence that Aβ 

deposition follows head injury in humans and rodents (Horsburgh, Cole, Yang, 

Savage, Greenberg, et al., 2000; Jellinger, Paulus, Wrocklage, & Litvan, 2001; Uryu, 

Laurer, McIntosh, Pratico, Martinez, et al., 2002) . Mayeux et al., (1993) suggested 

that the increase in risk of AD after head trauma is present only in people carrying the 

ApoE ε4 mutation, positing an interaction between environmental (head injury) and 

genetic factors in causing the phenotypic expression of the disease. 

 

1.5.3.6 Cardiovascular disease 

 

Hyperlipidemia, hypertension, diabetes and other factors associated with stroke 

or heart disease have been identified as putative antecedents to AD (Breteler, 2000). 

The relation between cardiovascular factors and AD is stronger than middle age 

(Kivipelto, Helkala, Hanninen, Laakso, Hallikainen, et al., 2001; Petrovitch, White, 

Izmirilian, Ross, Havlik, et al., 2000). However vascular risk factors maybe strong 

precursor for dementia associated with cerebrovascular disease but do not appear to 

have an independent effect on the risk of AD (Mayeux, 2003a). 
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1.5.3.7 Hormone replacement 

 

Women using hormone replacement therapy show a 50% reduction in disease 

risk (Baldereschi, Di Carlo, Lepore, Bracco, Maggi, et al., 1998; Waring, Rocca, 

Petersen, O'Brien, Tangalos, et al., 1999). Estrogen-deficitent animals showed 

amyloid peptide accumulation, and, when present, estrogen regulates the process of 

the amyloid precurson protein in the gamma secretase pathway (Greenfield, Leung, 

Cai, Kaasik, Gross, et al., 2002; Zheng, Xu, Uljon, Gross, Hardy, et al., 2002). 

 

1.5.3.8 Other environmental factors 

 

 

A diversity of environmental factors has also been connected with AD. 

Increased risk factors include exposure to metals (iron, copper, zinc, mercury and 

aluminium), pesticides,dietary deficiency of vitamin B or folate, and infections 

(Burns & Iliffe, 2009; Lahiri, Farlow, Sambamurti, Greig, Giacobini, et al., 2003; 

Luchsinger & Gustafson, 2009; Modrego, 2009). A decreased risk of AD has mainly 

been connected with dietary factors such as fruit and vegetable, antioxidants, omega-

3 fatty acids, caloric and/or dietary restriction and physical activity (Scarmeas, 

Luchsinger, Schupf, Brickman, Cosentino, et al., 2009). Recently social factors have 

also been linked with the risk of AD. People living alone, being widowed or divorced 

in mid-life had a three times higher risk than people who were married or cohabiting  

(OR = 7.7) (Hakansson, Rovio, Helkala, Vilska, Winblad, et al., 2009). Illiteracy has 

been reported as a risk factor for AD (Kalaria, Maestre, Arizaga, Friedland, Galasko, 

et al., 2008). The most common speculation about how these social factors could 

affect the probability of developing AD seems to be related to 

physiological/psychological distress (Bookheimer & Burggren, 2009). 
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1.6 Interaction between genetic and environmental factors and the 

impact on AD development 

 

 

There have been several studies of environmental factors that might be 

associated with AD. However, the findings have been inconsistent mainly because of 

the misunderstanding of how many variables may affect epidemiologic analyses.  

Investigating the relation between gene and environment might explain some of the 

findings. For example, a genetic factor could influence dietary preference, or level of 

education might be influenced by earlier genetic influences. Two studies have shown 

that individuals who carry one or more ApoE ε4 alleles are more likely to stop their 

education earlier in life (Winnock, Letenneur, Jacqmin-Gadda, Dallongeville, 

Amouyel, et al., 2002; Codemo, Corti, Mazzetto, Varotto, Cortella, et al., 2000). As 

described above, Hakansson et al., (2009) showed a significant interaction between 

lifestyle (living alone, being married etc) and risk of AD in old age. These authors 

also showed that the carriers of ApoE ε4 allele who lost their partner before mid-life 

and were still divorced or widowed at follow up had the highest risk of AD compared 

with non-carriers or with carriers who cohabited in mid-life. Finally hypertension and 

hypercholesterolemia, although associated with AD development, are both 

determined by genetic factors (Ashford & Mortimer, 2002). There are numerous other 

environmental factors that could be associated with AD: infection due to Herpes-

simplex virus type 1 (HSV1) (Itzhaki, Lin, Shang, Wilcock, Faragher, et al., 1997) 

high level of Homocystein (Ho, Collins, Dhitavat, Ortiz, Ashline, et al., 2001) etc. 

However, such environmental factors are more likely to interact with genetic factors 

rather than being the main cause of AD. 

Some authors have given opinions regarding the classic nature-nurture question 

in the genesis of AD (Ashford & Mortimer, 2002).Their position is that even the 
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sporadic non-familial form of AD seems to be mainly due to genetic factors. This 

position is supported by evidence from studies of AD in twins (60% concordance), 

evidence of a role for environmental factors only in people with genetic 

predisposition, and greater increased risk of AD in first-degree relatives of people 

with AD etc. (Ashford & Mortimer, 2002). Although they don‟t dispute the 

possibility that certain environmental stressors may influence the age of onset of 

clinical AD and some environmental measures might reduce the risk of developing 

the disease, they support the theory that these environmental factors modify the 

presentation of a disease that is largely genetic in origin. However, even taking into 

account the very well established genetic risk factor of the ApoE ε4 genotype, the 

majority of AD cases are idiopathic. For this reason a multi factorial model, including 

neuropathological features and multiple environmental factors, has to be considered. 

Environmental factors may impact on either the DNA sequence itself or on epigenetic 

mechanisms.  

Recent evidence has suggested that “gene x environment” interactions may be 

mediated via epigenetic mechanisms. For example epigenetic changes early in life 

may increase the vulnerability to cardiovascular problems such as type 2 diabetes 

(Gluckman, Hanson, Buklijas, Low, & Beedle, 2009) and in turn cardiovascular 

problems might have an association with AD (Hardy, 2009). 
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1.7 Model based theory of Alzheimer’s disease 

 

1.7.1 LEARn model  

 

 

Recently some authors have proposed the “Latent Early life Associated 

Regulation” model positing latent changes in expression of specific genes (Lahiri, 

Maloney, & Zawia, 2009). In this model environmental factors epigenetically 

(through DNA methilation or oxidation) disturb gene regulation in a long-term 

manner. The process starts in early development, but has a pathological effect only 

later in life.  According to this model an early event (first hit) is insufficient to 

produce a disease state. Later in life a second hit (environmental stress) would lead to 

the disease only in those individuals exposed to the first hit (see Figure 1.1). 

 

“Two-Hit” latent disease 

 

 

 

 

Functionality 

 

 

 

 

Age (years) 

 

Figure 1.1. Graph plotting cognitive function across age. An etiological agent affects an 

organism but does not result in a disease state. This alteration is maintained through the 

organism’s lifespan latently until a second hit interacts with the latent effect of the first one to 

produce a disease state. 
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Moreover this model postulates that a gene associated with a disorder may be subjected to an 

environmental “primary trigger”, such as epigenetic regulation, that lead to epigenetically 

marked genes which may undergo a temporary change in the level of expression that returns 

to baseline levels until a secondary trigger further affects the genes resulting in a disease 

state (Lahiri, et al., 2009) [Figure taken from (Lahiri, et al., 2009)]. 

 

Alzheimer’s disease: A “Two-hits” disorder 

 

 

For AD, the LEARn model posits a developmental triggering and latency of the 

APP gene until this is further triggered to a pathological level. According to this 

model possessing “AD associated genes” would create the first condition (hit) which 

triggers the initial mechanism which would then be maintained through DNA 

methilation latently until a second hit (environmental risk factors) would lead to the 

phenotypic expression of the disease. The possibility of a “two-hit” aetiology for AD 

has been previously recognised (Zhu, Raina, Perry, & Smith, 2004) but what the 

LEARn model adds to the previous hypothesis is the concept of a specific gene 

regulation pathway. Environmental stressors do not intentionally regulate AD-genes 

in the brain, but some genes are particular vulnerable to the effects of environmental 

factors via the alteration of DNA methilatyon and oxidation. If this were true it could 

be possible to posit a longitudinal model for AD and thus, individual expression 

profiles could be detected across the life span allowing the specific test of the effects 

of environmental factors in the epigenetic alterations associated with the disease. The 

main concept of the LEARn model is epigenome; the collection of epigenetic markers 

associated with a specific individual organism‟s genome (Whitelaw & Whitelaw, 

2006). It has specific epigenotypes, generated by modification of the DNA 

methilation or oxidation, by change in histone acetylation patterns, or by variation of 
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the physical arrangement of chromosomal material (van Vliet, Oates, & Whitelaw, 

2007) whose expression results in sporadic neurodegenerative disorders (see Chapter 

2). 

Along the same line Mahley et al., (2009b) suggested a main role of the ApoE 

ε4 gene which by acting in concert with altered Aβ metabolism or independently 

might affect cognition and neuropathology (see Figure 1.2). 

 

 

 

 

Figure 1.2. The ApoE ε4 gene may independently and directly cause AD in response to a 

variety of “second hits” [Figure taken from (Mahley & Huang, 2009b)]. 

 

According to these authors ApoE ε4 sets the stage for a “second hit” such as 

age, brain injury from trauma or ischemia, infection etc. These factors lead to 

neuronal injury and loss of synaptic connections, triggering ApoE synthesis. 

However, ApoE synthesis in neurons of ε4 carriers results in pathology. 
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Another interesting theory sharing the same background is the plasticity based 

theory of AD proposed by Mesulam et al., (2000). According to this theory AD 

promoting factors create a setting where neurons must work harder to meet 

neuroplasticity needs at their axonal and dendritic terminals. The appearance of 

neuropsychological features in AD is closely correlated with the distribution of NFTs 

rather than SPs. However, genetic accounts favour a disease process revolving around 

SPs (see paragraph 1.4.2). Advocates of perturbation of neuronal plasticity have 

found a common denominator to reconcile these two aspects of AD by showing 

evidence of a maladaptive and excessive neuroplasticity activity at the cellular level 

in response to initially compensatory mechanisms, as the background for the 

formation of NFTs and SPs (Arendt, Schindler, Bruckner, Eschrich, Bigl, et al., 1997; 

Furukawa, Guo, Schellenberg, & Mattson, 1998; Lanahan, Lyford, Stevenson, 

Worley, & Barnes, 1997; Roher, Ball, Bhave, & Wakade, 1991; Stone, Rozovsky, 

Morgan, Anderson, & Finch, 1998). 

This compensatory pattern is triggered by the presence of AD promoting factors 

(such as age, low estrogen, head trauma, trisomy of chromosome 21, PS1, PS2 ApoE 

ε4 and AβPP  mutation) which increase the burden of neuroplasticity. Over the years 

such compensatory processes would independently lead to chronically high levels of 

plasticity which leads to upregulation of tau (Brion, Octave, & Couck, 1994; Viereck, 

Tucker, & Matus, 1989) and AβPP turnover (Chauvet, Apert, Dumoulin, Epelbaum, 

& Alonso, 1997; Banati, Gehrmann, Czech, Monning, Jones, et al., 1993; Beeson, 

Shelton, Chan, & Gage, 1994)  and thus the formation of NFTs and SPs (see Figure 

1.3.). According to his theory, genetic mutations don‟t really cause AD but simply 

accelerate the temporal course of events that lead to plasticity failure and therefore 

decrease the age of onset at which the pathological process begins.  
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Figure 1.3. Multiple factors increase the neuroplasticity burden that lead to plaque and NFT 

formation. AD is said to exist when the density of both of these histopathological markers 

exceeds a certain thereshold and when accompanied by dementia (Mesulam, 2000)[(Figure 

taken from (Mesulam, 2000]). 
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CHAPTER 2 Genotype-phenotype in AD 
 

2.1 Introduction 

 

 

AD is a heterogeneous disorder in which more than 50 different genes 

distributed across the human genome may be involved (Cacabelos, 2002a ; Giacobini, 

2000; Cacabelos, 1999a)  and whose phenotypic features and current biological 

markers are inconsistent and do not always correlate with a defined genotypic profile 

(Frank, Galasko, & Hampel, 2003; Cacabelos, 2002b). Current knowledge of AD 

genetics doesn‟t explain in full the etiopathogenesis of AD, suggesting that 

environmental factors, cerebrovascular dysfunction and epigenetic phenomena may 

also contribute to AD pathology and the phenotypic expression of dementia 

represented by its neuropathological hallmarks (amyloid deposition in senile plaques 

and brain vessels, neurofibrillary tangle (NFT) formation, synaptic loss, neuronal 

death) and clinical symptoms (memory deficits, behavioural changes, functional 

decline (Cacabelos, 2002a;  Giacobini, 2000; Cacabelos, 1996) (see Chapter 1 section 

1.7).  

 

2.2 Structural and functional genomics 

 

As mentioned in Chapter 1, AD-related genes can be classified into genes with 

demonstrated mutations following a mendelian inheritance patterns (mutational 

genetics, e.g. APP, PS1, PS2), susceptibility genes or polymorphic loci potentially 

contributing to AD predisposition (susceptibility genetics,, e.g. ApoE, A2M, LRP1, 
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IL1A, ACE, NOS3), and defective genes linked to mitochondrial DNA (mtDNA) 

(Cacabelos, 1999a, 2001, 2002a; Giacobini, 2000). 

Primary loci associated with AD include the following: 

 The APP gene (21q21.2-q21) encoding the amyloid precursor protein (APP). 

 The presenil-1 (PS1) and the presenil-2 (PS2) genes located on chromosomes 

14 (14q24.3) and 1 (1q31-q42) respectively, encoding very similar integral 

membrane domains whose mutations can cause familial AD3 and fAD4. 

 Polymorphic variants in the ApoE gene (19q13.2) associated with risk (ApoE 

ε4 allele) or protection (ApoE ε2 allele) for AD. 

Other genetic loci may be involved in AD in combination (or not) with environmental 

factors and/or epigenetic phenomena (Cacabelos, 2002a;  Cacabelos, 1999a, 2002b). 

Some candidate genes with polymorphic loci associated with AD and with other 

forms of dementia include: 

 The macrotubule-associated protein tau gene (MAPT) (17q21.1) whose 

mutations and slicing defect can lead to fronto-temporal and familial 

progressive subcortical gliolisis. 

 A common polymorphism (-15Ala/Thr) is the signal peptide of the α-1-

antichymotrypsin (AACT) gene (14q24.3-q32.1) encoding the plasma 

protease inhibitor AACT. Using several lines of multiply transgenic/knockout 

mice, to create four AD mouse models, Nilsson et al., (2004) show that 

murine ApoE and human α1-anichymotrypsin (ACT)  separately and 

synergistically facilitate both diffuse Aβ immunoreactive and fibrillar amyloid 

deposition and thus also promote cognitive impairment (spatial learning 

ability) in aged mice. The degree of cognitive impairment is highly correlated 
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with ApoE and ACT-dependent hippocampal amyloid burden, with mice 

lacking ApoE and ACT having little amyloid and little learning disability  

(Nilsson, et al., 2004). 

 A polymorphism in the butyrylcholinesterase (BuChE) gene (3q26.1-q26.2) is 

also important. Findings showed that the levels of BuChE activity and protein 

circulating in the CSF of AD patients were different in women and men and in 

carriers and non-carriers of the ApoE ε4 allele. The level of BuChE in CSF 

correlated positively with cognitive performance and the rate of cerebral 

glucose utilization. A low BuChE level in CSF may reflect a higher degree of 

enzyme incorporation into neuritic plaques (Darreh-Shori, Brimijoin, Kadir, 

Almkvist, & Nordberg, 2006). 

 The low density lipoprotein-related protein (LRP1) gene (12q13.1-q13.3). 

 The α-2 macroglobulin (A2M) gene (12p13.3-p12.3). 

 The Type 5 AD-linked chromosome 12 gene. 

 The bleomycin hydrolase (BMH) gene (17q11.1-q11.2). 

 The FOS gene (14q24.3). 

 The interleukin-1(IL1) gene cluster (2q14). 

 The tumor necrosis factor alpha (TNF-α) gene (6q21.3). 

 The β-site amyloid β-44 precursor protein-cleaving enzyme gene (BACE). 

(11q23.3) (BACE1, BACE2, β-secretase, memapsin-2, ASP2, p501). 

 The nitric oxide synthase 3 (NOS3) gene (7q36). 

 Mitochondrial DNA-associated genes. 

 Other AD-related candidate genes. 
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None of these examined genes, however, appear to play such an important role 

in determining AD pathogenesis as that of the ApoE polymorphism. Nevertheless, 

considering that 50% of sporadic AD cases don‟t possess the ε4 allele of the ApoE 

gene, it is very plausible that many of these genes interact with each other to regulate 

specific metabolic pathways either confluent with or different from the amyloid 

cascade (Cacabelos, 2002a; Van Gassen & Annaert, 2003 ;Cacabelos, 2002b;  Price 

& Sisodia, 1998). 

From a genetic epidemiology perspective, it seems clear that the genetic dosage 

effect influences age of onset, as the higher the number of genes involved in AD the 

earlier the disease onset (Cacabelos, Mesa, & Fernandez-Nova, 1999; Mesa MD., 

1999). Other genes may exert a protective effect against AD, such as ApoE ε2 (see 

section 2.6.3.). However, using dynamic allele specific hybridization (DASH) on 

polymorphic genes associated with AD (Prince, Feuk, Sawyer, Gottfries, Ricksten, et 

al., 2001) and other methods, previous findings of genetic associations could not be 

replicated (Prince, et al., 2001; Bertram, Blacker, Crystal, Mullin, Keeney, et al., 

2000). Some of these contradictory results might be due to the small number of 

patients included in some of the studies, deficient recruitment criteria with increased 

sample heterogeneity and statistical dispersion of the influential genes in AD 

pathology. 

In contrast to early-onset autosomal-dominant AD, the risk for late-onset AD is 

probably influenced by an array of common risk alleles distributed across different 

genes affecting a variety of biochemical pathways and influencing both the aetiology 

and pathogenesis of AD. In an attempt to identify AD susceptibility genes, a large 

number of studies have been carried out over the past 3 decades. With the exception 

of ApoE ε4, these efforts found no consistent results (Bertram, McQueen, Mullin, 
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Blacker, & Tanzi, 2007). Recently four genome-wide association analysis studies of 

AD showed highly significant association at the ApoE locus (Li, et al., 2008; 

Bertram, et al., 2008a; Morgan, et al., 2007; Reiman, et al., 2007) , but three new 

susceptibility loci have been identified. The CLU gene (encodes for clustering, a 

major brain lipoprotein protein known as ApoJ) (rs113600, OR = 0.86), the PICALM 

gene (phosphatidylinositol-binding clathrin-assembly protein) (rs3851179, OR = 

0.86), and the CR1 gene (Complement Receptor Type 1) (rs6656401, OR =1.21) 

(Harold, et al., 2009; Lambert, et al., 2009). CLU and PICALM were shown to be 

protective; CLU seems to be involved in Aβ clereance. Moreover, in the area of 

epigenetic-relevant genes, the C677T polymorphism in MTHFR has been 

significantly associated with AD, (OR= 1.13) (Bertram, Hsiao, McQueen, Parkinson, 

Mullin, et al., 2007). Finally, another recent GWAS study identified a Single-

Nucleotide Polimorphism (SNP) (rs5984894) on the human X chromosome (Xq21.3), 

in the protocadhein 11 x-linked (PCDH11X) that is strongly associated with LOAD in 

individuals of European descent from the United States, specifically in women. Of the 

SNPs that demonstrated genomewise significance, 6 were linked to ApoE. rs5984894 

was the only SNP not linked to ApoE. Analysis of rs5984894 by multivariable 

logistic regression adjusted for sex was performed. Odds ratios were 1.75 for female 

homozygotes [p = 2.0 x 10(-7)] and 1.26 for female heterozygotes (p = 0.01) 

compared to female non-carriers. For male homozygotes (p = 0.07) compared to male 

non-carriers, the odds ratio was 1.18. PCDH11X encodes protocadhein 11, one of the 

families of cell surface receptors involved in cell-cell adhesion, process important for 

the neuronal development and formation of functional synapses. Differential 

expression of the PCDH11X gene in individual neurons may alter cell adhesion. 

Interestingly, presenil 1, a protein important in processing of beta-amyloid in AD, 
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forms complex with neuronal-cadherin. Alteration in this interaction may change the 

final result. Because the epsilon 4 allele of the ApoE is known to reduce the brains 

ability to rid itself of amyloid beta and also PS1, PS2 and AAP both influence the 

amyloid beta protein, it could be that this rs5984894 also influences the amyloid beta 

protein (Carrasquillo, et al., 2009). 

 

2.3 Epigenetic regulation 

 

Many neurological and psychiatric disorders are not due to mutations of a single 

gene, rather they involve molecular disturbances entailing multiple genes and signals 

that control their expression. They share a substantial genetic predisposition and a 

contribution of environmental factors. Recent research has raised the issue that 

epigenetic mechanisms, which exert lasting control over gene expression without 

altering the genetic code, could mediate stable changes in brain function. The 

influence of epigenetic phenomena in neurodegeneration is practically unknown and 

most environmental factors of risk of dementia are not well characterised. 

However several characteristics of AD are compatible with an epigenetic 

component. For example, the discordance in monozygotic (MZ) twin pairs indicates 

that non-genetic factors such as environmental and epigenetic factors could play a 

significant role (Brickell, Leverenz, Steinbart, Rumbaugh, Schellenberg, et al., 2007; 

Petronis, 2006). Fraga et al., (2005) showed how MZ twins display an epigenetic 

“code” similarity proportionally to the time they have spent together and to their age. 

Recently some studies have shown how environmental factors can affect 

epigenetically a person‟s phenotype, showing how some environmental exposure can 

induce epigenetic changes in a diversity of tissue sample (Liu, 2008).  
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The idea that the phenotype arises from genotype through programmed change, 

is the original definition of epigenetics by Waddington in 1942 (Van Speybroeck, 

2002) which mainly overlaps with the modern definition of epigenetics information 

which is heritable during cell division other than from the DNA itself. These two 

definitions share basically the same concept of epigenetic regulation on developmental 

processes; different cell types maintain their fate during cell division even though their 

DNA sequences are essentially the same. 

What is an epigenetic disorder? Several defects in the epigenome are known to 

lead to disease, including change in the localised or global density of DNA 

methilation and incorrect histone modification. Studies of epigenetic mechanisms that 

underlie heritable transmission have flourished in the fields of developmental and 

cancer biology, where the continuity of unique patterns of gene expression between 

parent and daughter cell is crucial. These studies have converged on a set of common 

enzymatic modifications to the chromatin structure that can up or down regulate gene 

expression in a manner that is transmissible to daughter cells.  These mechanisms also 

regulate gene expression in neurons but, as most neurons do not divide, chromatin 

modifications are instead sustained within individual cells (Tsankova, Renthal, 

Kumar, & Nestler, 2007). Fundamental neurodevelopmental processes, such as cell 

fate specification and neurogenesis, are highly regulated at the level of chromatin 

remodelling. One of the best-established examples is the transcription Neuron-

Restrictive Silencing Factor (NRSF). It represses neural differentiation by binding to 

conserved NRS Elements (NRSEs) in gene prompters in non-neuronal cells. More 

recently, NRSF has been shown to modulate the expression of NRSE-containing gene 

in mature neurons; inhibition of NRSF leads to neuronal activation and the promotion 

of neurogenesis (Kuwabara, Hsieh, Nakashima, Taira, & Gage, 2004). Chromatin 
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remodelling may also be involved in the regulation of adult neurogenesis, which 

occurs in a highly restricted brain region: the subgranular zone of the hippocampus 

dentate gyrus and the subventricular zone adjacent to the striatum. Although 

chromatin remodelling is best understood for its influence in neural development, 

increasing evidence suggests a role in regulating mature, fully differentiated neurons. 

During synaptic transmission, neurons respond to neurotransmitters by receptor-

mediated intracellular signal transduction events that, among other actions, activate or 

inhibit transcription factors. The regulation of transcriptional activity by transcription 

factors binding to DNA depends on the interactions of the transcription factors with 

many co-activators or co-repressor and the underlying structure of chromatin. 

Chromatin remodelling is thus intimately linked to activation or repression of genes 

by synaptic activity and thus the regulation of complex behaviour (Hsieh & Gage, 

2005). 

 

2.3.1 Overview of epigenetic mechanism 

 

Chromatin is the complex of DNA, histones and non-histones protein in the cell 

nucleus. The fundamental unit of chromatin is the nucleosome, which consists of 

about 147 base pairs of DNA wrapped around a core histone octamer. Each octamer 

contains two copies of the histones H2A, H2B, H3 and H4 (see Figure 2.4a). The 

nucleosomal structure of chromatin allows the DNA to be packaged into the nucleus 

by organized folding (Felsenfeld & Groudine, 2003). Chromatin exists in an activated, 

condensed state called heterocromatine, which does not allow the transcription of 

genes, and in an active open state called eurochromatine, which allows individual 

genes to be transcribed. In reality chromatine can exist in many states in between 
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these two extremes, some portion can be repressed or be in a permissive state. The 

genes, however, are available for derepression or activation in response to 

transcription factors and transcriptional co-activators (see Figure 2.4b). Moreover, this 

change in gene state happens in a high temporal and spatial resolution by permitting 

small groups of nucleosomes to become more or less open allowing the transcriptional 

process in specific regions or not. 

Experiments have yielded detailed information about the molecular mechanisms 

that control chromatin architecture in order to alter gene expression. Several general 

mechanisms have emerged and it is generally believed that their complex interactions 

determine the appropriate expression of specific genes in eukaryotic cells (Choi & 

Friso, 2005; Hake, Xiao, & Allis, 2004; Felsenfeld & Groudine, 2003) (see Figure 

2.4). Changes in chromatin structure are related to epigenetic modifications that 

consist of DNA methylation, histone post-trascriptional modifications (methylation, 

acethylation and phosphorylation) and ATP-mediated chromatin modifications. In 

proliferating cells, the DNA is principally found as euchromatin, in actively 

transcribed loci like the growth regulatory genes. Conversely, it has been proposed 

that reassembly of repressive chromatin domains (heterochromatin) may contribute to 

cellular senescence.  
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Figure  2.4.  General scheme of chromatin remodelling [Figure taken from (Tsankova, et al., 

2007)]. 

 

 

The main tool of epigenetic control in gene expression seems to lie in the CpG 

sequence and whether or not this sequence may contain a methyl group bound on C 

(Razin & Riggs, 1980). Although most studies have been dedicated to DNA, 

methylation processes are also involved with RNA, proteins and lipids (Chiang, 

Gordon, Tal, Zeng, Doctor, et al., 1996). Gene silencing through DNA methylation is 

only the remethylation of the cytosines of CpG sequences eventually present in the 

gene promoters of those genes whose regulation is exerted by the methyl group 

(Razin, 1998). 

There is a basic difference between sequences that are normally unmethylated, 

like CpG islands (Bergman & Mostoslavsky, 1998; Siu, Chan, Wong, Choy, & 

Kwong, 2003; Cross, Meehan, Nan, & Bird, 1997), and the CpG moieties belonging 
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to genes expressed during development that are silenced later by methylation for 

physiologic reasons. CpG islands may become methylated for a pathogenetic 

mechanism. For example, in the inactivation of oncosoppressor genes in cancer, CpG 

moieties may gradually lose their methylation and therefore overexpress genes that 

should be down regulated. A similar mechanism seems to be involved in the outcome 

of AD.  

 

2.3.2 DNA-methylation 

 

 

DNA methylation is another important mechanism of gene regression. The 

functional significance of DNA methylation is best established in X chromosome 

inactivation (such as Fragile X syndrome) and genetic imprinting (such as Angelman 

syndrome). More recently, DNA methylation has been implicated in the regulation of 

gene activity in the adult brain either in normal or pathological conditions.   

Such mechanisms regulate the expression of specific sets of neural genes that 

are important for neural activity, survival, morphology and ultimately the integrated 

regulation of complex behaviour. The study of DNA methylation in aging is 

extremely topical because of its implication in tumorigenesis, since cancer onset 

increases with aging (Neumeister, Albanese, Balent, Greally, & Pestell, 2002). During 

embryonic development, DNA undergoes the establishment of the inherited 

methylation pattern of the adult organism with the formation of stably activated genes 

(mostly demethylated), stably silenced genes (mostly fully methylated) and of genes 

with specific methylation patterns able to be induced by reassessment of methyl 

moieties. With aging of the organism, the general DNA demethylation can lead to 

reactivation of stably silenced genes or to over-actiavtion of methylation-inducible 
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genes (see Figure 2.5). The mechanisms that regulate global hypomethylation of DNA 

with aging and the concomitant increase in de novo methylation at specific sequences 

remain to be better clarified. Several DNA-methyltransferases (DNMTs) exist. 

Maintenance methylation of hemimethylated DNA during replication is guaranteed by 

DNMT1, whereas the sequences-specific increase in de novo methylation depends on 

the increased activity of the other DNMTs (Liu, Wylie, Andrews, & Tollefsbol, 2003). 

Alterations in DNA methylation during aging can depend on alterations in dietary 

status and it is largely accepted that nutritional components have great influence on 

health and lifespan. Among the various mechanisms by which nutritional elements 

could affect the progress of senescence, two pathways involve DNA methylation; the 

first concerns the supply of metabolities of S-adenosylmethionine cycle (SAM, folic 

acid and B vitamins), whereas the second refers to elements able to directly modify 

DNMT activity (selenium, cadmium and nickel). In conclusion, methylation patterns 

established during development are not definitive in adulthood; however there is a 

growing body of evidence linking epigenetic alterations to the development of 

neurologic disorders. Aberrant DNA methylation and histone modification 

mechanisms caused by a mutation in certain genes (i.e., epigenetic gene), can cause 

several neurodevolpmental disorders and are involved in neurodegenerative diseases 

and other neurological pathologies. Clear indications of methylation alterations come 

from studies on Prader-Willi, Angelman‟s and Beckwith-Wiedemann syndromes 

(Kaufman, Heled, Perk, Razin, & Shemer, 2009; Manipalviratn, DeCherney, & 

Segars, 2009) and on various diseases related to ageing (AD, Parkinson‟s and 

Huntington‟s diseases) (Maeda, Guan, Oyama, Higuchi, & Makino, 2009; Urdinguio, 

Sanchez-Mut, & Esteller, 2009).  
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Given these considerations, an epigenetic approach seems necessary to 

understand the mechanisms that regulate ageing and its related disease; hopefully 

providing a better molecular tool for improved diagnosis, prognosis and therapy of 

these pathologies. 

 

 

 

 

 

Figure  2.5.  DNA methilation in development and ageing [Figure taken from (Scarpa, 

Cavallaro, D'Anselmi, & Fuso, 2006)]. 

 

 

2.3.3 Methylation and Alzheimer’s disease 

 

A recent study underlines that AD is among the few diseases that may display 

high homocysteine (HCY) and low B12, B6 and folates in the blood (Scarpa, et al., 

2006). This observation has raised the question of whether amyloid-β overproduction 
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and accumulation, which may be implicated in the genesis of the disease, could be 

due to the loss of epigenetic control in the expression of the genes involved in AβPP 

(amyloid-β protein precursor) processing. The authors showed that, in cell culture, 

two of the genes responsible for amyloid-β production are controlled by methylation 

of their promoters. The process is strictly related to S-adenosylmethionine (SAM) 

metabolism. SAM is a natural compound, mainly produced by the liver. It is 

considered the primary methyl donor present in all living organisms involved in the 

methylation of target molecules such as DNA, proteins, lipids and polyamines 

synthesis (Fontecave, Atta, & Mulliez, 2004; Razin, Szyf, Kafri, Roll, Giloh, et al., 

1986). SAM is probably second only to ATP in the variety of reactions in which is 

involved. Homocysteine is derived from the demethylation of S-

adenosylhomocysteine (SAH) and further hydrolysed into homocysteine and 

adenosine. The remethylation of homocysteine to form methionine, by the 

remethylation pathway, prevents its accumulation. 

Several authors have described what kind of damage can be generated by the 

accumulation of HCY and DNA appears to be one of the most important targets 

(Chiang, et al., 1996). However lack of SAM production and SAH accumulation 

seem to be equally important in causing damage (Scarpa, et al., 2006). Active 

demethylation without DNA replication has been shown to be possible and probably 

frequent in tissue repair mechanism (Jost & Jost, 1995). Aside of the physiological 

function of these epigenetic phenomena, they may be influenced by metabolic 

alterations. The alteration of metabolities and of the enzymes part of the methyl donor 

(SAM) metabolic cycle may be responsible for its reduced production. The 

consequent demethylation and overexpression of genes would not be regulated but 

rather induced by the reduced synthesis of the methyl-donor or by its inhibition. It 
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could be the case of HCY accumulation due to decreased B12, B6 and folate uptake. 

HCY, if not rapidly transformed in methionine, from SAH, a potent inhibitor of 

methyl-transfer reactions. These metabolic alterations may also be responsible for the 

generalised reduction of DNA methylations observed in ageing. In AD, the loss of a 

precise control through gene methylation may alter a delicate equilibrium among the 

three enzymes (alpha, beta and gamma secretases) known to be involved in the 

production of amyloid-β (De Stropper, 2000). 

It has been demonstrated that the two genes responsible for amyloid-β 

production, beta and gamma are regulated by methylations in their promoters (Scarpa, 

Fuso, D'Anselmi, & Cavallaro, 2003). Moreover, authors have shown that the feeding 

of neuroblastoma cells with a culture medium deprived of B12 and folates increased 

amyloid-β production (Fuso, Seminara, Cavallaro, D'Anselmi, & Scarpa, 2005). The 

administration of methyl-donor had the opposite effect; remethylating the genes 

reduced significantly amyloid β levels. As for the HCY/SAM dismetabolism, the 

most critical point is the alteration of the SAM/SAH ratio, also known as methylation 

potential, rather than the increase of homocysteine concentration that may produce 

biological damage (Ulrey, Liu, Andrews, & Tollefsbol, 2005). The alteration of 

methylation patterns could be produced either by lack of methyl-donor or by methyl-

transferases inhibition. SAM synthesis could be lowered by diminished vitamin 

uptake, B12 and folates, as well as by inhibition of the enzymes (MAT) involved in 

the transformation of methionine to S-adenosylmethionine. Inhibition of methyl-

transferases instead is more likely bound to accumulation of Homocysteine and SAH. 

Whether or not these are the primary causes of AD, they may contribute to its 

development. Prevention might pass through the control of methylation metabolism, 

by measuring SAM/SAH ratio and HCY, folates and B12 levels in blood. Further 
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support for this thesis comes from the observation that in the elderly, DNA 

methylations are consistently lower than in young and middle aged people. For 

example, Mastroeni et al., (2008) showed DNA hypomethylation in the enthorhinal 

cortex of AD when compared to controls. Similarly, in the temporal neocortex of 

monozygotic twin pairs discordant for AD there was evidence of different DNA 

methylation (Mastroeni, McKee, Grover, Rogers, & Coleman, 2009). A recent study 

using genome-wide analysis of DNA extracted from prefrontal cortex showed a 

distinct differential pattern of DNA methylation between AD and controls (Zukin, 

2009). Finally, Wang et al., (2008) found that the epigenetic distance from the norm 

(the median methylation of healthy control individuals) was higher in brains of people 

with AD than in healthy controls, and that this “epigenetical distance” increases with 

the age.  

 

2.4 Genotype-phenotype correlation 

 

A practical approach to understanding the potential influence of a particular 

gene or a genomic cluster on a specific phenotype is to study genotype-phenotype 

correlations. The phenotype is the sum of observable physical or biochemical 

characteristics of an organism, as determined by both genetic makeup and 

environmental influences. Genetic influences account for over 50% of the variance in 

adult cognitive abilities, and arise from contributions to the life-long trait of 

intelligence and to any influences specific to old age (Plomin & Spinath, 2002). Each 

genetic influence is referred to as a quantitative trait locus (QTL), but in the absence 

of robust QTL mapping information on cognitive ageing trajectories, the choice of 

candidate genes is frequently unreliable. Due to the low efficiency of candidate-gene 
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selection, large number of negative association studies have been reported and fewer 

than half of QTL associations have been replicated (Deary, Wright, Harris, Whalley, 

& Starr, 2004). However, a well validated approach used combination of mapping or 

positional information and candidate gene selection within a limited region of the 

genome (Linkage approach) ("The Human Gene Mutation Database.," 2008). To 

obtain positional information, a gene mapping in families or in groups of people 

sharing the same trait of interest is needed.  An extension of this method for QTL 

mapping is to carry out whole-genome association scans on individuals of known trait 

value using very large number of single nucleotide polimorphisms (SNP) markers. 

The trait value is correlated with the presence of nearby genetic markers. In this 

regard the effect of the ApoE on cognitive decline was first identified in families with 

late onset Alzheimer‟s disease (Deary, et al

The ApoE ε4 is said to be a “frailty gene, predisposing one to be more 

susceptible to injury and less likely to recover from trauma once it occurs” (Smith, 

2002) (p. 355-356). People who are carriers for the ε4 allele of the ApoE gene are 

more likely to suffer early death, cardiovascular disease, stroke, and Alzheimer‟s 

dementia (Farrer, et al., 1997; Smith, Andersen, Kryscio, Schmitt, Kindy, et al., 

2002). A genetic profile which includes one ApoE ε4 allele is associated with lower 

cognitive performance in non-demented older people (Anstey & Christensen, 2000; 

Pendleton, Payton, van den Boogerd, Holland, Diggle, et al., 2002). Moreover this 

genetic variant benefits by having a relatively well understood mechanism (Smith, et 

al., 2002; Mahley & Rall, 2000). Unlike the genes involved in the familial variant of 

AD (APP, PSE1, PSE2), ApoE ε4 is a better established „genetic-modifier‟ of 

cognitive function. This stands out as an unusually robust QTL finding in human 

psychology, encouraging further steps to be made. After finding an association 
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between genetic variability and phenotype differences, comes the search for a 

mechanism. 

 

2.5 Endophenotype 

 

An important step toward the understanding of the underling mechanisms 

associated with AD is to identify genes which influence brain structure under specific 

physiologic circumstances. Data have showed thatlate-onset Alzheimer‟s disease  

LOAD is characterised by functional and structural brain changes and that 

geneticconditions affect these modifications (Thompson, Cannon, & Toga, 2002; 

Thompson, Cannon, Narr, van Erp, Poutanen, et al., 2001). Genetics appears to 

influence brain modification along the entire human lifespan from childhood to old 

age (Thompson, Hayashi, Dutton, Chiang, Leow, et al., 2007), with the pathologic 

phenotype representing only the last stage of this influence. In this sense, these data 

are useful not only to understand better the relation between genetic variability and 

neuroanatomy in general, but also to clarify the specific role of some genes in this 

neurodegenerative disorder in terms of structural brain changes and cognitive reserve 

(CR), a model on reserve against brain damage created to explain the indirect 

relationship between the severity of the AD and the degree of cognitive impairment 

(Reitz & Mayeux, 2009).The concept of CR comes from the observation of a 

different level of neuropathological and clinical involvement in LOAD. Favourable 

factors such as high education level or genetic predisposition help people to develop 

CR and in turn make them bear greater brain damage before cognitive deficits appear 

(Stern, 2002). This CR concept can be applied to any situation where there is 

variability in brain injury response, suggesting that CR can be applied to healthy 
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individuals but also to people with neurodegeneration. In this regard a conjunction 

analysis of genetic and neuroanatomic factors involved in CR process could help to 

clarify the underling mechanisms leading to the clinical manifestation of LOAD.  

To evaluate putative genetic and non-genetic modifiers of the risk for 

neurological disorders, it would be helpful to identify an “endophenotype”. 

Gottesman (2003) defined it as “measurable components unseen by the unaided eye 

along the pathway between disease and distal genotype” (p. 636). That is, a 

measurable intermediate phenotype, that is generally closer to the action of the gene 

than disease status and thus exhibits a higher genetic signal-to-noise ratio (Gottesman 

& Gould, 2003). For example, a substantial proportion of the genetic influence on 

differences in brain volume and structure is shared with differences in cognitive 

ability (Carmelli, Swan, DeCarli, & Reed, 2002 ; Thompson, et al., 2001). There are 

characteristics that are genetically correlated and can be measured in both affected 

and unaffected individuals. Moreover, endophenotypes often provide much greater 

power to localise and identify disease-related QTLs than disease status alone does, 

providing more informational phenotypes (Blangero, Williams, & Almasy, 2003) (see 

Figure 2.6). Among the most used endophenotypes, plasma amyloid β level, a 

putative risk factor, has not been used as often as age of onset and cognitive test 

performance in genetic studies of LOAD (Farris, Leissring, Hemming, Chang, & 

Selkoe, 2005). Genetic risk factors in LOAD studies which are associated with age of 

onset and cognitive performance show that ApoE ε4 is the most common gene risk 

factor for LOAD, and tends to lower the age of disease onset (Blennow, de Leon, & 

Zetterberg, 2006). Some authors have attempted to correlate the presence of the ApoE 

ε4 allele with phenotypic traits represented by pathogenic hallmarks and clinical 

features of dementia with very variable results (Cacabelos, 2001; Cacabelos, 1999a; 
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Saunders, Trowers, Shimkets, Blakemore, Crowther, et al., 2000). Findings have 

previously demonstrated that the ApoE ε4 genotype influences the phenotypic 

expression of different clinical symptoms (cognitive decline, behavioural changes and 

functional disability), biological parameters (brain atrophy, lymphocyte apoptosis, 

serum ApoE and beta-amyloid protein levels) and therapeutic responses in AD 

(Cacabelos, 2002a; Cacabelos, Fernandez-Novoa, Lombardi, & Takeda, 2003a; 

Cacabelos, 2002b; Cacabelos, 2001; Cacabelos, 1999a; Cacabelos, Alvarez, 

Fenandez-Novoa, & Lombardi, 2000).  In this regard it is worth investigating this 

protein more extensively and the underlying mechanisms associated with this 

increased risk. 

 

 

 

 

Figure  2.6. Endophenotypes in the cascade between variance in a genetic sequence and the 

AD syndrome [Figure taken from (Reitz & Mayeux, 2009)].  
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2.6 Apolipoprotein Epsylon 4 

 

2.6.1 Historical background 

 

 

The clearest genetic factor that has been associated with non-familial or 

sporadic AD is the gene that codes for ApoE (Plassman, et al., 2000). This gene has 

been identified as a major factor in causation of AD in cases that occur predominantly 

over 60 years of age and do not have an apparent autosomial mode of inheritance. 

The epsilon 4 mutation of the ApoE gene is the most consistently replicated gene 

involvement in sporadic AD with an OR of 3.6 (Bertram, Hsiao, et al., 2007). 

Discovered in the 1970s, this 34-kDa, 299-amino acid (aa) protein was 

identified in triglyceride-rich lipoproteins and induced by cholesterol feeding in 

animals and humans (Mahley, 1983, 1988; Mahley & Rall, 2000) . The amino 

terminal domain (1-191) is a stable globular structure containing a receptor binding 

site, while the carboxy-terminal domain (residues 216-299) is helical, less stable, and 

contains the lipoprotein binding functions (Weisgraber, 1994). A polymorphism of 

ApoE in the human serum was first described by Utermann et al., (1979). The ApoE 

gene was firstly localised on chromosome 19 because of its linkage with a locus (C3 

complement component) (Olaisen, Teisberg, & Gedde-Dahl, 1982). Genetic mapping 

was then refined and ApoE assigned to 19q, while the C3 locus was localised in the 

ApoE arm of the chromosome (see Figure 2.7.) (Lusis, Heinzmann, Sparkes, Scott, 

Knott, et al., 1986). 
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Figure  2.7.  ApoE localization on chromosome 19 [(Figure taken from 

http://wiki.medpedia.com / Apolipoprotein_E_(APOE)] 

 

 

Zennis et al., (Zannis, Just, & Breslow, 1981) identified by isolectric focusing 

the three major isoforms of ApoE (ApoE ε2, ApoE ε3, ApoE ε4) and concluded that a 

single locus with three alleles (ε2, ε3 and ε4) is responsible for this pattern. The ApoE 

ε2, ApoE ε3 and ApoE ε4 isoforms differ in amino acid sequence at two sites, residue 

112 and residue 158: 

 

E2: NH2----Cys112----Cys158----COOH 

E3: NH2----Cy112-----Arg158----COOH 

E4: NH2---Arg112----Arg158----COOH 

 

The three alleles differ in their frequencies: ε4 (15-20%) ε3 (65-70%) and ε2 (5-

10%) and give rise to three homozygous and three heterozygous phenotypes. The 

nomenclature arose by consensus among key investigators (Zannis, Breslow, 

Utermann, Mahley, Weisgraber, et al., 1982). Corbo and Scacchi (Corbo & Scacchi, 

1999) analysed the ApoE allele distribution in a variety of populations and found that 

http://wiki.medpedia.com/
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the ε3 allele is the most frequent in all human groups (Payami, Zareparsi, Montee, 

Sexton, Kaye, et al., 1996). Interestingly, projected number estimations of AD in the 

U.S.A. based on the number of AD cases and frequency of the ApoE genotype in 

patients and controls from multi-site studies, show that there would be about half the 

number of AD cases in the U.S.A. if the ApoE ε4 allele did not exist. The ε4 allele by 

itself is, therefore, responsible for about 50% of the non–familial AD cases in that 

country. The two percent of the population with the ε4ε4 genotype has a 15 times 

higher risk than the 60% of the population that has ε3ε3 genotype. By the age of 80 

years, 91.3% of patients with the ε4ε4 genotype, 47.8% of ε3ε4 individuals and only 

20% of those without an ε4 allele have AD (Bagnoli, Nacmias, Tedde, Guarnieri, 

Cellini, et al., 2002; Crawford, Freeman, Schinka, Abdullah, Richards, et al., 2000; 

Citron, Oltersdorf, Haass, McConlogue, Hung, et al., 1992; Corder, Saunders, 

Strittmatter, Schmechel, Gaskell, et al., 1993; Bowen, Allen, Benton, Goodhardt, 

Haan, et al., 1983) . Moreover, the ApoE genotype has an effect on age related 

prevalence of AD, with the ApoE ε4ε4 individuals having as estimated 50% chance 

of AD onset at 68.4 years old, the ApoE ε3ε4 individuals at 75.5 years, and the ApoE 

ε3ε3 individuals at 84.3 years (Arendt, et al., 1997). The ApoE ε4 allele confers its 

maximal effect on risk before the age of 70 (Alvarez-Arcaya, Combarros, Llorca, 

Sanchez-Guerra, Berciano, et al., 2001), partly explaining why studies looking at the 

effect of this gene in older populations have not found a significant effect of this 

allele.  
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2.6.2 Functional role of ApoE 

 

 

ApoE is expressed in several organs. The highest expression of plasma ApoE 

(~40-70 μg/ml) is in the liver (>75%) followed by the brain (Elshourbagy, Liao, 

Mahley, & Taylor, 1985). Although non-neuronal cells, mainly astrocytes, are the 

major cell types that produce a large proportion of cerebrospinal fluid ApoE (~3 to 5 

μg/ml) (Mahley, 1988; Elshourbagy, et al., 1985; Mahley, 1983), neurons synthesize 

ApoE when stressed (Xu, Bernardo, Walker, Kanegawa, Mahley, et al., 2006). ApoE 

functions as a ligand in receptor-mediated endocytosis of lipoprotein particles 

(triglyceride- and cholesterol-rich lipoproteins). In plasma, the ApoE protein is 

present on lipoprotein in association with other apolipoproteins, whereas in the brain 

ApoE and two other apolipoproteins ApoJ and ApoA-1, are present on high-density-

like lipoprotein particles (Fagan, Holtzman, Munson, Mathur, Schneider, et al., 1999; 

Pitas, Boyles, Lee, Foss, & Mahley, 1987). The major component in the plasma is 

ApoA-1 whereas in the Central Nervous System (CNS) there is a predominance of 

ApoE (Pitas, et al., 1987). Initially, ApoE was shown to be involved in lipid transport 

and cardiovascular disease (Mahley, 1983; Mahley & Rall, 2000). After low-density 

lipoprotein receptor (LDL)  was identified (Goldstein & Brown, 1976), ApoE has 

been identified as a major ligand (Mahley & Rall, 2000; Mahley, 1988; Innerarity & 

Mahley, 1978; Innerarity, Pitas, & Mahley, 1979). It is also a ligand for other 

members of the LDL receptor family, including the LDL receptor-related protein, 

which is involved in lipoprotein clearance. Moreover, ApoE also binds to heparin 

sulphate proteoglycans (HSPG), the study of which has shown that ApoE has a role in 

artherosclerosis (Mahley & Rall, 2000; Mahley, Huang, & Rall, 1999), modulates 

susceptibility to infectious disease and immunoregulation (Mahley, 1983; Mahley & 

Rall, 2000), enhances the infectivity of HIV in vitro and accelerates progression to 



57 

 

AIDS and death in HIV-positive subjects (Burt, Agan, Marconi, He, Kulkarni, et al., 

2008). ApoE also plays a key role in the neurobiology of AD (Mahley, Weisgraber, & 

Huang, 2006).  

After the discovery that there is immunoreactivity of ApoE in amyloid plaques 

(Wisniewski & Frangione, 1992; Namba, Tomonaga, Kawasaki, Otomo, & Ikeda, 

1991), the ε4 allele was discovered as a major risk factor for AD, with 60-80% of the 

AD population having at least one ε4 allele (Corder, et al., 1993; Strittmatter, 

Saunders, Schmechel, Pericak-Vance, Enghild, et al., 1993), with a 12 fold increased 

risk for the homozygous type (ε4ε4) (Bertram, 2009). Finally, analysis of the ApoE 

structural domains provided insight into the mechanism by which ApoE has a role in 

cardiovascular, neurological and infectious diseases (Mahley, 1983; Mahley, 

Weisgraber, & Huang, 2009a). Although the three common isoforms differ by only 

one or two aminoacids at the residue 112 or 158, these amino acid differences 

profoundly alter the structure and function of ApoE (Mahley, et al., 2009a). 

 

2.6.3 Evolutionary Theory as an explanation of a nurture-nature interaction 

 

As summarised above, a number of studies showed that the ApoE ε4 allele is 

involved in a variety of pathologies (cardiovascular, neurological and infection 

diseases). Furthermore, some authors have suggested that it might have a role in 

acting as a first necessary, but not sufficient, factor in triggering neurodegenerative 

diseases. Environmental factors have to be added in order to reveal the phenotypic 

expression of the pathology (see section 1.7. Chapter 1). 

To understand the fundamental role of genetic factors in an environmental 

context, an evolutionary perspective should be taken in account. According to this 
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point of view, the physiology of an organism, after the end of the reproductive period, 

could be the manifestation of epigenetic events occurring on the basis of genetic 

development from previous stages of life. Now the evolutionary pathway of the ApoE 

ε4 allele is clear. It seems that this allele was the ancestral gene until 300,000 years 

ago when the ε3 allele appeared, followed by the ε2 allele 200,000 years ago 

(Fullerton, Clark, Weiss, Nickerson, Taylor, et al., 2000). Although the exact cause of 

the additional alleles (ε3 and ε2 allele) is unknown, some authors have suggested that 

they might have some beneficial effects in agrarian societies, especially in those with 

greater longevity (Corbo & Scacchi, 1999), maybe giving them superior cognitive and 

cardiovascular skills in order to guarantee more protection in a more organised social 

environment. In this regard, patriarchs could control their tribes more ably and keep 

procreating and matriarchs could take care of the healthier development of their 

progeny. In this contest, factors promoting brain development and neuroplasticity, like 

cholesterol, play a key role in building up new synapses. ApoE mediates the role of 

cholesterol (Mauch, Nagler, Schumacher, Goritz, Muller, et al., 2001; Poirier, 2000) 

which has been seen to have an important role in AD and the metabolism of β-

amyloid (Fassbender, Simons, Bergmann, Stroick, Lutjohann, et al., 2001; Snowdon, 

et al., 1996). As the human life span increased, greater pressure on cerebral neurons to 

store information could have started in an attempt to cope with the numerous 

physiological stressors associated with aging, including active oxygen species (ROS) 

(Ashford & Mortimer, 2002). This hypothesis could support neuroplasticity based 

theory of AD positing that the formation of NFTs and SPs might be independent 

consequences of excessive plasticity-related cellular activity and the loss of neurons, 

dendrites and synapses would then be the ultimate expression of plasticity failure 

(Mesulam, 2000). In this regard, improved cholesterol management could have been 
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the key development offered by the ApoE ε3 and ε2 allele. Traces of this ApoE-

environment relationship are still evident in modern times, by observing the different 

ApoE frequencies across various populations. ApoE ε4 allele is most common in the 

African pygmies (41%), least common in Sardinians (5%) and intermediate in most 

Western populations (9-19%) (Corbo & Scacchi, 1999). Moreover, the ApoE ε4 allele 

has a rate of 8% in India and China and this fact could account for the lower rate of 

AD found there compared to Western populations, because this allele seems to have 

the same association with AD in these countries as it does in Western countries 

(Ganguli, Chandra, Kamboh, Johnston, Dodge, et al., 2000; Liu, Hong, Wang, Fuh, 

Wang, et al., 1999). In Africa this relationship is less clear maybe because of different 

pressures including short life span. The ApoE ε3 is the most common in the Mayans 

of Central America (91%) and least common in the African pygmies (53%). The 

ApoE ε2 did not exist in the aboriginal Americans (Corbo & Scacchi, 1999; Fullerton, 

et al., 2000). Other authors, however, take a different prospective and claim that it is 

unlikely that the detrimental effects of ApoE ε4 in cardiovascular or neurological 

diseases might be significant enough to provide the necessary evolutionary pressure 

since these effects are post-reproductive. They suspect that there might be other 

reasons, such as an infectious disease selective pressure in selecting ApoE alleles such 

as a cataclysmic event in human history like the Great Plague which killed 30-50% of 

Europeans in the 14
th

 century or smallpox (Mahley & Huang, 2009b). Finally, other 

speculative theories come from the inconsistent data obtained with child carriers of the 

ApoE ε4. 

Turic et al., (2001) failed to observe statistically significant ApoE ε3 related 

differences in children in regard to general cognitive ability scores. Similarly, Deary et 

al., (2003) reported no statistically significant differences as a function of ApoE ε4 
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genotype on a test of general intelligence among 11-years-olds, although the 

magnitude of the group difference was larger than that observed in another study 

(Small, Rosnick, Fratiglioni, & Backman, 2004). However, Raber (2009) showed 

some influence of this allele on cognitive performance also in children, especially in 

those cognitive abilities strongly associated with brain regions more susceptible to AD 

type pathology. Taken together these results seem to indicate that ApoE ε4 is related 

to cognitive performance across the life span. Based on recent findings which have 

shown a different effect of ApoE isoforms across age, some authors suggest that a 

gene may have different functions at different stages of life (Reynolds, Prince, Feuk, 

Brookes, Gatz, et al., 2006; Nilsson, Adolfsson, Backman, Cruts, Nyberg, et al., 2006; 

Riley, Snowdon, Saunders, Roses, Mortimer, et al., 2000). In particular, the ε4 allele 

might have a positive effect on the organism in the early years of life with an 

exhaustive cost to the organism in later years. Williams (1957) called this 

phenomenon „antagonist pleiotropy‟. From an evolutionary point of view, therefore, a 

possible advantageous effect of the ApoE ε4 allele in childhood and adulthood could 

explain its existence and further persistence in humans. Lots of studies support this 

notion. ApoE ε4 has been associated with higher IQ scores (Yu, Lin, Chen, Hong, & 

Tsai, 2000), higher educational level (Hubacek, Pitha, Skodova, Adamkova, Lanska, 

et al., 2001) lower perinatal death (Becher, Keeling, McIntosh, Wyatt, & Bell, 2006), 

and reduced cardiovascular response to experimentally induced stress (Ravaja, 

Raikkonen, Lyytinen, Lehtimaki, & Keltikangas-Jarvinen, 1997).  Hippocampal long-

term potentiation (LTP) was enhanced at a young age in knock-in mice expressing 

human ApoE ε4 (Kitamura, Hamanaka, Watanabe, Wada, Yamazaki, et al., 2004). 

This enhancement was age related and disappeared in adult knock-in mice. On the 

other hand, there is evidence that ApoE ε4 alters intracellular calcium homeostasis, 
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which might ultimately lead to neuronal damage (Qiu, Crutcher, Hyman, & Rebeck, 

2003). Mondadori and colleagues (2007) have also speculated that an ApoE ε4 related 

neuronal calcium increase can be useful early in life but induce age-associated 

neuronal damage. Its association with cognitive impairment and abnormal brain 

activity later in life is likely mediated by AD-related preclinical neuropathology. In 

the past, life expectancy was lower, this effect of the ε4 allele was not observed but as 

life expectancy has increased, it is increasingly devastating to the human mind and 

body ( Nilsson, et al., 2006). Obviously more research is needed to explore this gene-

environment interaction that accounts for allele differences across different 

populations. 

 

2.6.4 Genetics of ApoE in AD 

 

 

2.6.4.1 Effect of ApoE on Aβ aggregation and clearance 

 

Several mechanisms have been proposed to explain the effect of the ApoE ε4 

allele on AD neuropathology. Evidence suggests that the major effect of the ApoE 

isoforms on the risk of developing AD is through its effect on Aβ aggregation and 

clearance, influencing the onset of Aβ deposition (Cole & Ard, 2000; Reiman, Chen, 

Liu, Bandy, Yu, et al., 2009).Other mechanisms, including the effects of the ApoE 

isoforms on synaptic function, neurotoxicity, tau hyperphosphorilation and 

neuroinflammation, may also contribute to the disease process (see Figure 2.8.). 
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Figure 2.8.  ApoE isoform-specific effect on the risk of developing AD (Kim, Basak, & 

Holtzman, 2009)[Figure taken from (Kim, Basak, & Holtzman, 2009)]. 

 

Many studies suggest a strong association between ApoE allele dosage and 

increased neuritic plaques in AD (Tiraboschi, Hansen, Masliah, Alford, Thal, et al., 

2004). Furthermore, the level of Aβ42 in the CSF of healthy people at risk for AD has 

been founded to be ApoE ε4–dose (Sunderland, Mirza, Putnam, Linker, Bhupali, et 

al., 2004). Since people with brain amyloid deposition have low level of CSF Aβ42 

(Fagan, Mintun, Mach, Lee, Dence, et al., 2006), this strongly suggests that amyloid 

deposition starts very early in people who are carriers of this mutation. Recently, 

Reiman (2009) showed that cognitively normal people had an ApoE ε4 dose-

dependent increase in fibrillar Aβ burden in the brain as detected with an amyloid 

imaging agent. In addition to fibrillogenesis, there is evidence that ApoE alters both 

the transport and methabolism of Aβ in the brain. In cultured neuronal cells 

expressing the amyloid precursor protein, exogenous ApoE ε4 enhances Aβ 

production more than ApoE ε3 (Ye, Huang, Mullendorff, Dong, Giedt, et al., 2005). 

Interestingly, ApoE ε4 with Thr-61, which lacks domain interaction, acts like ApoE 

ε4 altering the structural composition of this allele, therefore converting its biological 
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activity to one resembling ApoE ε3 (Mahley, et al., 2009a). ApoE ε4 seems to play a 

role even on the clearance of Aβ either by sequestering Aβ and modulating the 

cellular uptake of the ApoE-Aβ complex or by modulating Aβ removal from the brain 

into circulation by transport across the blood-brain barrier (Kim, et al., 2009). In 

addition to parenchymal deposits, most patients with AD also accumulate Aβ in 

cerebral blood vessels. This phenomenon is termed cerebral amyloid angiopathy 

(CAA). CAA is present in over 90% of patients with AD compared to 30% of the 

normal, aged population. One factor that might influence the relative accumulation of 

Aβ in cerebral blood vessels and in the parenchyma is the ApoE peptide, encoded by 

the ApoE gene. A number of studies suggest that differences in ApoE genotype 

influence both parenchymal and vascular deposition of Aβ. One study examined the 

relationship between the ApoE genotype and the relative extent of accumulation of 

Aβ as plaques within the cerebral parenchyma and in cortical blood vessels in the 

form of cerebral amyloid angiopathy (CAA), in autopsy brain tissue from 125 AD 

cases and from 53 elderly, neurologically normal controls of which 19 had CAA 

without other neuropathological features of AD (Chalmers, Wilcock, & Love, 2003). 

In the AD sample, the authors found that the severity of CAA was strongly associated 

with the number of ε4 alleles, but parenchymal Aβ load was independent of ApoE 

genotype. Cases with severe CAA had a lower parenchymal Aβ load than those with 

moderate CAA. These findings indicate that possession of the ApoE ε4 allele favours 

vascular over parenchymal accumulation of Aβ in AD. This may influence the 

pathogenesis of neurodegeneration in ε4-associated AD. A relationship between the 

ApoE genotype and the area of capillary basement membrane area was also found in 

patients with AD (Salloway, Gur, Berzin, Tavares, Zipser, et al., 2002). The 

quantitative evidence that microvascular changes were associated with ApoE 
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genotype found in this study suggests a possible role for ApoE in the vascular 

changes present in AD. There was a statistically significant reduction in capillary 

basement membrane area (CBMA) in the ApoE ε4ε4 group compared to the ApoE 

ε3ε3 group, while CBMA decreased sequentially from ApoE ε3ε3 to ApoE ε3ε4 and 

to ApoE ε4ε4. The authors suggested that reduction in CBMA in ApoE ε4ε4 

individuals is indicative of impaired blood-brain barrier (BBB) function, which might 

contribute to the pathogenesis of AD.  

 

2.6.4.2 The effect of ApoE on Plasticity 

 

 

A number of studies suggest that ApoE is important for maintenance of 

neuronal plasticity and function. Studies in vitro showed isoform specific differences 

on neurite outgrowth (Nathan, Jiang, Wong, Shen, Brewer, et al., 2002; Teter, Xu, 

Gilbert, Roses, Galasko, et al., 1999). In vivo studies have shown findings consistent 

with those of in vitro studies. Compared with ApoE ε3 transgenic mice, those with 

ApoE ε4 had impaired compensatory sprouting and synaptogenesis after entorhinal 

cortex lesion, and were more severely impaired in learning and cognition (White, 

Nicoll, Roses, & Horsburgh, 2001;  Raber, Wong, Buttini, Orth, Bellosta, et al., 1998; 

Raber, Wong, Yu, Buttini, Mahley, et al., 2000). In the presence of high level of Aβ 

and APP, several studies have also demonstrated that ApoE status affects synaptic 

plasticity and cognition in different ways (Raber, et al., 2000). Some other studies 

support evidence for a neuroprotective function of ApoE ε2 against Aβ-mediated 

toxicity. For example, dentritic spine loss observed in the hippocampus of young 

APP-trasgenic mice was ameliorated by ApoE ε2 overexpression (Lanz, Carter, & 

Merchant, 2003).  
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2.6.4.3 The role of ApoE in neurotoxicity 

 

ApoE synthesis can be induced by various stressor or stimuli (Xu, Walker, 

Bernardo, Brodbeck, Balestra, et al., 2008 Xu, et al., 2006) such as age, ischemia, 

trauma, Aβ deposition etc. Neuronal expression of ApoE is triggered to protect the 

cell and repair damage; however there are differences in how ApoE ε3 and ε4 cope 

with this function. ApoE ε4 synthesised by neurons undergoes proteolytic cleavage to 

a much greater extent than ApoE ε2 (Harris, Brecht, Xu, Tesseur, Kekonius, et al., 

2003). The resulting fragments with C-terminal truncations escape the secretory 

pathway and enter cytosol; most are neurotoxic (Brecht, Harris, Chang, Tesseur, Yu, 

et al., 2004). Similarly, ApoE ε4 fragments are seen in the brains of transgenic mice 

expressing ApoE ε4 in neurons (NSE-ApoE) and in AD brains but not in transgenic 

mice expressing ApoE ε4 in astrocytes. These fragments accumulate with age in NSE 

ApoE ε4 mice, reaching a peak concentration at 6-8 months of age when these mice 

exhibit ApoE ε4 associated neuropathology and impaired learning and memory 

(Harris, et al., 2003). 

 

2.6.4.4 Effect of ApoE isoform on Tau 

 

 

It is well known that hyperphosphorilation of the microtubule binding protein 

tau leads to NFTs which are one of the hallmarks of AD pathology. Although the 

physiological relevance of the direct interaction between ApoE and tau remains 

unclear, more recent data suggest the possibility that a fragment of ApoE ε4 (1-272 

amino acids) escapes the secretory pathway, traslocates to the cytosolic compartment 

and interacts with cytoskeletal components including tau and neurofilament (Chang, 

ran Ma, Miranda, Balestra, Mahley, et al., 2005). 



66 

 

2.6.4.5 ApoE and Nueroinflammation 

 

In vivo human ApoE knock-in mice studies suggest that ApoE ε4 may have a 

proinflammatory or less effective anti-inflammatory function and, therefore, may 

exacerbate or inefficiently prevent the detrimental neuroinflammation in AD, 

compared with the ApoE ε3 isoform, (Colton, Needham, Brown, Cook, Rasheed, et 

al., 2004; Guo, LaDu, & Van Eldik, 2004). 

 

2.6.4.6 The effect of ApoE on Metabolic Alterations in the brain 

 

Although most efforts focused on linking ApoE ε4 with the specific disease 

pathogenesis of AD within the brain, there is still the possibility that this gene 

indirectly affects AD onset and progression by modulating the function of the 

cerebrovascular system. In this regard studies showing the association between ApoE 

ε4 and cardiovascular disease (Song, Stampfer, & Liu, 2004) or arteriosclerosis 

support the possibility of a detrimental effect on brain function through decreased 

blood flow and altered metabolic properties. Positron emission tomography (PET) 

studies have shown that the AD brain exhibits decreased glucose metabolism in 

distinct regions (Alexander, Chen, Pietrini, Rapoport, & Reiman, 2002); this 

abnormal hypometabolism pattern has also been shown in healthy old and young 

carriers of the ApoE ε4 (Reiman, Chen, Alexander, Caselli, Bandy, et al., 2005; 

Reiman, Chen, Alexander, Caselli, Bandy, et al., 2004; Reiman, Caselli, Yun, Chen, 

Bandy, et al., 1996; Small, Ercoli, Silverman, Huang, Komo, et al., 2000). 

 

In summary, prevailing data suggest that the main effect of ApoE isoform on 

the risk for AD is through Aβ metabolism, influencing the time of amyloid plaques 
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onset in both parenchyma and vasculature. Since ApoE modulates not only the 

clearance but also the aggregation of Aβ and the neuropathological changes, it is 

difficult to elucidate the exact mechanisms resulting in Aβ phenotype. A critical issue 

is whether ApoE ε4 influences pathogenesis of AD by a gain of toxic function or a 

loss of protective function or both (Kim, et al., 2009). Due to this unresolved 

question, the two therapeutic strategies considered until now are to decrease the toxic 

effects of the ApoE ε4 in AD and targeting ApoE receptors such as LDLR and LPR. 

 

2.6.5 ApoE related phenotype in AD 

 

2.6.5.1 Magnetic resonance imaging  

 

 

Although no certain diagnosis for AD can be made during life, structural 

imaging techniques can detect early volumetric changes predictive of dementia and 

functional imaging can detect changes in cerebral bloody flow and physiological and 

metabolic activity. In particular, brain imaging allows one to use the brain as a set of 

quantitative traits in genetic association studies (Hariri & Weinberger, 2003) 

.Although various findings suggest the AD process is pathologically and clinically 

heterogeneous (Binetti, Signorini, Squitti, Alberici, Benussi, et al., 2003;Holzer, 

Holzapfel, Zedlick, Bruckner, & Arendt, 1994) with a wide spectrum of cognitive, 

behavioural, biological and prognostic features that can vary between AD individuals, 

ApoE genotype status might contribute to the observed heterogeneity. As described 

above, this gene influences age of onset (Meyer, et al., 1998) and might act by 

modulating the pathological process underlying the disease, increasing cortical and 

cerebrovascular amyloid deposits (Gomez-Isla, Price, McKeel, Morris, Growdon, et 
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al., 1996; Schmechel, Saunders, Strittmatter, Crain, Hulette, et al., 1993), the number 

of neurofibrillary tangles (Beffert & Poirier, 1996; Schmechel, Saunders, Strittmatter, 

Crain, Hulette, et al., 1993) and increasing cholinergic deficits (Beffert & Poirier, 

1996). Moreover ApoE related clinical heterogeneity after AD onset is supported by 

observations reporting that the presence of the ε4 allele is associated with an 

increased risk of psychosis (Scarmeas, Brandt, Albert, Devanand, Marder, et al., 

2002), a lower risk for developing extrapiramidal signs, lower rate of cognitive 

decline and lower mortality (Stern, Tang, Albert, Brandt, Jacobs, et al., 1997).  

There is a controversy regarding the ApoE effects on the atrophy of brain 

tissue. Post mortem studies have reported greater accumulation of AD pathological 

hallmarks in the neocortex of patients carrying the ε4 allele than those without the ε4 

allele (Tiraboschi, et al., 2004). In vivo data, however, seem to agree only partially 

with this result. Recently, Pievani et al., (2009) have shown increased susceptibility 

of the temporal cortex and together with lower vulnerability in the frontal-parietal 

neocortical regions in AD ε4 carriers compared to non-carriers. A recent meta-

analysis computed a mean annual hippocampal atrophy rate of 4.7% for AD 

participants and 1.4% for controls (Barnes, Bartlett, van de Pol, Loy, Scahill, et al., 

2009). Lehtovirta (1995; 1996)  found that normal hippocampal “right bigger than 

left” asymmetry was diminished in non-demented elderly subjects [see also 

(Soininen, Partanen, Pitkanen, Hallikainen, Hanninen, et al., 1995)] and the 

hippocampal and amygdala damage was greater in AD patients carrying the ε4 allele 

despite equal global cognitive severity; they also found larger frontal volume. One 

year later they replicated the study with a bigger sample finding again significantly 

smaller MLT structures in carriers than non-carriers (Soininen & Riekkinen, 1996). 

Juottonen ( 1998) extended the findings of a greater atrophy of the MLT to the 
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entorhinal cortex in AD carriers compared to non-carriers. These results were 

replicated by Geroldi et al., (Geroldi, Pihlajamaki, Laakso, DeCarli, Beltramello, et 

al., 1999) who showed greater hippocampus, entorhinal cortex (ERC) and temporal 

lobe atrophy for AD ε4 carriers and larger frontal volume in the same subgroup of 

patients. More recently, other studies have confirmed these results and found smaller 

hippocampus, amygdala and entorhinal cortex in AD ε4 carriers  (Agosta et al., 2009; 

Filippini, Rao, Wetten, Gibson, Borrie, et al., 2009; Boccardi, Sabattoli, Testa, 

Beltramello, Soininen, et al., 2004; Hashimoto, Yasuda, Tanimukai, Matsui, Hirono, 

et al., 2001). Agosta et al.,(2009) found strongest ε4 effect in neocortical regions 

(parietal region bilaterally, precuneus and dorsolateral prefrontal cortex), maybe due 

to the young AD sample they studied in their experiment and more hippocampal 

atrophy in ε4 AD than non-carriers despite equal cognitive performance. Again, 

Muller et al., (2008) showed a regionally selective effect of the ε4 on cornu ammonis 

sector 3 and dental gyrus (CA3&DG) of the hippocampus fields and smaller 

enthorinal cortex. However, another group of authors showed no significant smaller 

hippocampal volumes in either controls or AD patients carrying the ε4 allele, even 

though there was a trend for smaller volume in the ε4 carriers in both of their groups ( 

Jack, Petersen, Xu, O'Brien, Waring, et al., 1998b). Moreover, Yasuda et al., (1998) 

in a study with 178 AD patients found a larger brain in an ε4–dose dependent manner. 

Finally, the majority of the longitudinal studies have also shown inconsistent data ( 

Jack, et al., 1998b; Tanaka, Kawamata, Shimohama, Akaki, Akiguchi, et al., 1998; 

Yamaguchi, Nakagawa, Arai, Sasaki, Higuchi, et al., 1996).  
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2.6.5.2 White matter change 

 

 

Not many studies have focused on white matter changes detected with MRI in 

relation to ApoE ε4 in prediction of mild cognitive impairment and in AD. However, 

the results have been inconsistent, with no significant association between ApoE and 

white matter changes in some instances and deep white mater lesion in others 

(Changsheng Wang, Stebbins, Medina, Shah, Bammer, et al., 2010; Smith, Egorova, 

Blacker, Killiany, Muzikansky, et al., 2008; Doody, Azher, Haykal, Dunn, Liao, et 

al., 2000; Bronge, Fernaeus, Blomberg, Ingelson, Lannfelt, et al., 1999; Amar, 

MacGowan, Wilcock, Lewis, & Scott, 1998). 

 

2.6.5.3 Cerebral perfusion and metabolism 

 

 

There are other studies that have focused their attention on the relationship 

between regional cerebral blood flow (rCBF) or glucose metabolism (rCMRgl) and 

ApoE genotype. PET studies showed abnormal precuneus, posterior cingulate, 

parietotemporal and frontal low cerebral metabolism rate for glcose (rCMRgl) in AD 

(Alexander, et al., 2002; Minoshima, Frey, Koeppe, Foster, & Kuhl, 1995). However, 

Lehtovirta et al., (1996) using SPECT to study rCBF in AD patients, found a 

tendency toward higher levels of perfusion in the frontal lobe as a function of the 

numbers of alleles. A similar finding was reported by Higushi et al., 1997). Other 

studies found no rCMRgl differences between AD carriers and non-carriers (Corder, 

Jelic, Basun, Lannfelt, Valind, et al., 1997; Hirono, Mori, Yasuda, Ishii, Ikejiri, et al., 

1998). 
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Although all the studies are not in complete agreement, evidence suggests that 

the ApoE genotype in AD exerts a differential effect on regional brain volumes. 

Different theoretical models have been formulated in attempt to explain this 

heterogeneity. As for the regional selective effect of ApoE ε4 in the hippocampus, an 

autopsy study showed increased neurogenesis and new neuron formation in 

hippocampal fields in reaction to the pathological processes in AD (Jin, Peel, Mao, 

Xie, Cottrell, et al., 2004). Since cholesterol metabolism is necessary for 

neurogenesis, it seems plausible that this compensatory process could be differently 

affected by ApoE ε4 status. Levi et al., (2007) showed increased apoptosis and 

reduced neuronal density in response to environmental enrichment in ApoE ε4 

transgenic mice, but neurogenesis in ApoE ε3 transgenic mice. Another issue has 

arisen from these results and concerns the functional consequences of these regional 

differences in brain atrophy. In particular, non-significant, although evident, 

differences in cognitive performance in carriers and non-carriers despite more 

pronounced hippocampal atrophy has been found (Mosconi, Nacmias, Sorbi, De 

Cristofaro, Fayazz, et al., 2004). A possible explanation could be due to the relatively 

preserved frontal lobe shown in carriers in the early stage of the disease. This 

compensatory speculation is consistent with AD neuropsychological studies which 

show poorer temporal function and better frontal cognitive functions in patient 

 (Venneri, Forbes-Mckay, & Shanks, 2005; Lehtovirta, et al., 1996) (see Chapter 3). 
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2.6.6  ApoE related phenotype in MCI 

 

 

To date, a large body of evidence has already showed that cognitive deficits and 

neuropathological hallmarks of the disease can be detected very early in the course of 

AD or even before the stage of clinical onset. In this regard, those with amnestic Mild 

Cognitive Impairment (aMCI), who seems to represent a preclinical stage of AD 

along the continuum between health and established disease, have become the object 

of investigation for most researchers. Comparison of aMCI patients to healthy 

controls and AD have revealed different patterns of atrophy, depending on the type 

and state of cognitive impairment (Chetelat, Desgranges, de la Sayette, Viader, 

Eustache, et al., 2003; Chetelat, Landeau, Eustache, Mezenge, Viader, et al., 2005; 

Whitwell, Petersen, Negash, Weigand, Kantarci, et al., 2007) . Among the 

prodromical symptoms, marked neuronal loss in the medial and anterior temporal 

regions as the presence of neurofibrillary tangles and senile plaques can be observed 

very soon in the course of the disease (Gottesman & Gould, 2003). Similar to the 

findings of volumetric MRI studies which have shown hippocampal atrophy before 

the onset of the dementia ( Jack, Jr., Petersen, Xu, O'Brien, Smith, et al., 1999; 

Visser, Scheltens, Verhey, Schmand, Launer, et al., 1999a; Fox, Warrington, Stevens, 

& Rossor, 1996a) and progressive deterioration along the continuum toward the 

disease (Fox, Warrington, Freeborough, Hartikainen, Kennedy, et al., 1996b), 

Risacher et al., (2009) recently used VBM and automated parcellation and found local 

atrophy (bilateral MLT) in AD and MCI in a large cohort compared to controls. 

Similar findings were obtained in other recent studies which used different techniques 

(TBM, RAVENS) (Misra, Fan, & Davatzikos, 2009; Hua, Leow, Parikshak, Lee, 

Chiang, et al., 2008a) and in other studies carried out with small samples ( Jack, Jr., 

Bernstein, Fox, Thompson, Alexander, et al., 2008; Hamalainen, Grau-Olivares, 
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Tervo, Niskanen, Pennanen, et al., 2008; Pennanen, Testa, Laakso, Hallikainen, 

Helkala, et al., 2005). Interestingly, significantly different atrophy patterns between 

MCI converter and MCI stable patients has been found, with the former showing 

more similar structural brain changes (hippocampal, entorhinal cortex, amygdalae and 

other MTL volume estimates) to AD than the latter. These findings again support 

previous results obtained with smaller samples (Devanand, Liu, Tabert, Pradhaban, 

Cuasay, et al., 2008; Fleisher, Sun, Taylor, Ward, Gamst, et al., 2008; Karas, Sluimer, 

Goekoop, van der Flier, Rombouts, et al., 2008; Tapiola, Pennanen, Tapiola, Tervo, 

Kivipelto, et al., 2008; Whitwell, Shiung, Przybelski, Weigand, Knopman, et al., 

2008; Bozzali, Filippi, Magnani, Cercignani, Franceschi, et al., 2006a; Bell-McGinty, 

Lopez, Meltzer, Scanlon, Whyte, et al., 2005; Chetelat, et al., 2005) . PET studies 

have showed hypometabolism of limbic areas in aMCI and AD with extended 

hypometabolism outside the limbic network for the AD patients (amygdala and lateral 

cortical region) (De Santi, de Leon, Rusinek, Convit, Tarshish, et al., 2001;  

Minoshima, Giordani, Berent, Frey, Foster, et al., 1997). 

This finding provides support for the notion that atrophy in limbic structures is 

the first significant event in the evolution of AD (Anchisi, Borroni, Franceschi, 

Kerrouche, Kalbe, et al., 2005; Nestor, Fryer, Smielewski, & Hodges, 2003; De Santi, 

et al., 2001).  Finally, longitudinal studies have demonstrated that baseline CMRglc 

(cerebral metabolic rate for glucose) reduction is more pronounced in MCI who 

progress to AD than in those who remain stable (Anchisi, et al., 2005; Drzezga, 

Grimmer, Riemenschneider, Lautenschlager, Siebner, et al., 2005; Chetelat, et al., 

2003). 

In summary the most common finding is that of decreased grey matter volume 

in the medial temporal regions, posterior and neocortical part of the temporal lobes, 
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posterior cingulate, precuneus and frontal areas (Stoub, deToledo-Morrell, Stebbins, 

Leurgans, Bennett, et al., 2006; Whitwell, et al., 2008; Chetelat, et al., 2005) with 

smaller grey matter density in medial temporal regions in MCI ε4 carriers compared 

to non-carriers (Thomann, Roth, Dos Santos, Toro, Essig, et al., 2008). Van de Polet 

al., (2007) carried out an MRI study with 323 MCI individuals who were followed up 

for 2 years in a clinical trial and found that MCI carriers showed a more severe rate of 

hippocampal volume loss (-3.6% per year) than non-carriers. These findings are 

consistent with neuroimaging data which show areas of atrophy in MCI ε4 carriers 

compared to non-carriers in medial temporal regions, with greater atrophy in the 

parahippocampal gyrus, amygdala and thalamus (Pennanen, Testa, Boccardi, Laakso, 

Hallikainen, et al., 2006), and abnormal activation in the thalamus and medial 

temporal structures during verbal paired associated learning (Bassett, Yousem, 

Cristinzio, Kusevic, Yassa, et al., 2006). 

 

2.6.7 ApoE related phenotype in healthy subjects 

 

Imaging techniques are an adjunctive screening measure for undetected 

pathology and represent an important expanding field in biological neuropsychiatry 

(Knopman, DeKosky, Cummings, Chui, Corey-Bloom, et al., 2001).  Structural 

imaging techniques can detect early volumetric changes predictive of dementia, and 

functional imaging can detect preclinical changes in cerebral blood flow, metabolic 

activity, and neurotransmitter and receptor function. There has been a variety of brain 

changes associated with the ApoE allele 4 in AD, including structural and functional 

brain changes. Furthermore, studies suggest that the pathological burden of AD might 

begin decades prior to the diagnosis of AD and may be influenced by one‟s ApoE 
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genotype [e.g. (Bondi, Houston, Eyler, & Brown, 2005; Reiman, et al., 2005; 

Scarmeas, Habeck, Stern, & Anderson, 2003)]. 

2.6.7.1 Functional brain imaging.   

 

 

Fluorodeoxyglucose positron-emission tomography (FDG-PET) studies 

examining the effects of the ApoE ε4 allele on CMRglc in non-demented individuals 

(from young age to middle age) have reported that compared to non-carriers, ε4 

carriers have mild but definite CMRglc reductions in the same regions usually 

affected by neuropathology in patients with established AD. 

 

 

ApoE-related brain function during rest      

 

In a study of non-demented middle-age subjects with memory complaints who 

had at least two relatives with AD, 12 participants carring ε4 and 19 non-carriers 

participants were scanned with fluorodeoxyglucose positron-emission tomography 

(FDG-PET) (G. W. Small, Mazziotta, Collins, Baxter, Phelps, et al., 1995). Carriers 

did not differ from non-carriers in mean age or in neuropsychologic performance. 

Parietal metabolism was significantly lower, and left-right parietal asymmetry was 

significantly higher in carriers, as compared with non-carriers. The same investigators 

reported similar results from a FDG-PET study that included 27 ε4 carriers and 27 ε4 

non-carriers who were elderly, dementia-free and who had memory complaints and/or 

family history of dementia (Small, et al., 2000). The analyses (ROI and SPM) showed 

that ε4 carriers had significantly lower metabolism in bilateral inferior parietal 

regions, poster cingulate and left lateral temporal areas, compared with ε4 non-

carriers. After 2 years a significant metabolic decline was noted for ε4 carriers in the 
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same areas but not for the ε4 non-carriers, who showed metabolic decline primarily in 

the frontal cortex, consistent with normal aging. As part of a study of cognitively 

normal late middle-age subjects with family history of probable AD, FDG-PET 

images were acquired in 11 ε4 homozygotes and 22 control subjects without the ε4 

allele who were matched for gender, age, education and level of cognitive 

performance (Reiman, et al., 1996). The ε4 homozygotes had significantly reduced 

rates of glucose metabolism in the same posterior cingulate, parietal temporal and 

prefrontal regions as previously found in studies of patients with probable AD. The 

same investigators observed similar results with a larger dataset of 160 cognitively 

normal late middle-age subjects who had a first-degree relative with AD (Reiman, et 

al., 2005). In another report from the same group, longitudinal PET cerebral glucose 

metabolic data after 2 years were available for 10 cognitively normal ε4 

heterozygotes and 15 non-carriers, 50 to 63 years of age, with a reported family 

history of AD (Reiman, Caselli, Chen, Alexander, Bandy, et al., 2001). The ε4 

heterozygotes had significant cerebral metabolism declines in the vicinity of 

temporal, posterior cingulate, and prefrontal cortex, basal forebrain, parahippocampal 

gyrus, and thalamus, and the declines were significantly greater than those noted for 

ε4 non-carriers. 

The association between ApoE genotype and functional brain imaging changes 

in young subjects has been investigated by a few studies. In one, FDG-PET scans 

were obtained from normal volunteers 20 to 39 years of age (12 ε3ε4 and 

15ε3ε3/ε2ε3) (Reiman, et al., 2004). Similar to previously studied patients with 

probable AD and late middle-aged ε4 carriers, the young ε4 carriers had abnormally 

low rates of glucose metabolism bilaterally in the posterior cingulated, parietal, 

temporal and prefrontal cortex. Another study used H2(15)O PET to measure cerebral 
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blood flow of 18 younger college-age subjects (three were carriers for the ε4 allele 

while the other fifteen did not have the allele) (Scarmeas, et al., 2003). The carriers 

were of similar age (26 versus 23 years, p = .07), education (17.3 versus 16.5 years, p 

= .56) and sex (p=.13) to non-carriers. Neuropsychological performance didn‟t differ 

between the groups measured with the MMSE. Compared with individuals without 

the ε4 allele, ε4 carriers exhibited significantly lower resting cerebral blood flow 

rCBF in the left and right inferior temporal gyri while resting rCBF was higher in the 

left insula, right supramarginal gyrus, and the inferior occipital gyrus. It is interesting 

how the observed significant association in these studies indicates that despite the 

small number of individuals in the ε4 group (which is consistent with the proportions 

of the ApoE polymorphisms in the population), the effects were strong enough to be 

demonstrable. Finally, a recent longitudinal study, comparing changes in rCBF over a 

8 year period between 29 non-demented ApoE ε4 carriers and 65 non-carriers older 

than 55 years showed greater decline in ε4 carriers in the same areas affected by early 

AD neuropathological changes (Thambisetty, Beason-Held, An, Kraut, & Resnick, 

2010). 

Decline in brain function explains these changes resulting from multiple effects 

due to the ApoE ε4 allele. It could be that impaired brain repair mechanisms in 

carriers (Arendt, et al., 1997) make specific regions more vulnerable to the effect of 

environmental risk factors. Thambisetty et al., (2010) observed higher baseline rCBF 

values in ApoE ε4 carriers in those regions exhibiting longitudinal rCBg decline. It 

could be that compensatory mechanisms in carriers are responsible for that and 

explain the equal cognitive performance in both groups despite functional brain 

changes. Findings from other study is consistent with this hypothesis (Scarmeas, et 

al., 2003). Alternatively these changes could also reflect early neuropathological 
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changes (β-amyloid deposition and sNFT) in carriers of the ε4 allele; areas 

particularly vulnerable to the pathological changes very early in the course of the AD. 

 

ApoE-related alteration in brain function  

 

fMRI research investigating the role of the ApoE in different cognitive domains 

in cognitively intact adults suggests that the presence of an ε4 allele is associated with 

up-regulation of brain activity in areas associated with episodic, semantic and 

working memory. Wishard et al., (2006) showed greater brain activation in medial 

and dorsolateral prefrontal cortex and parietal regions bilaterally during a working 

memory task in adults heterozygous for the ApoE ε4 than has seen in ε3ε3 

individuals. Fleisher et al., (2005a) showed up-regulation in neurons in areas 

supporting memory systems in people at risk for AD (10 ε4 carriers) compared to 

non-carriers especially in regions associated with early development of AD pathology 

(medial temporal lobe). Bookheimer et al., (2000) found that during a word recall 

task, non-demented allele ε4 carriers had greater activation than did non-carriers in 

the left prefrontal region and bilateral orbitofrontal, superior temporal, and inferior 

and superior parietal regions. These abnormal patterns of activation may represent a 

compensatory functional response. That is, the use of additional brain resources to 

perform the task. 

The increased activations in the allele ε4 carriers (detected for various levels of 

task difficulty) were specific to memory, and not related to general task difficulty 

(Bookheimer, et al., 2000). In one fMRI study, Smith and colleagues (Smith, 

Andersen, Kryscio, Schmitt, Kindy, et al., 1999) examined cortical activation in two 

groups of cognitively normal middle-aged women who differed only in terms of their 
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AD risk (i.e., family history of AD and ApoE status). The groups performed a visual 

naming and a letter fluency task during scanning. High risk women showed lower 

levels of regional activation in bilateral mid and posterior inferotemporal regions 

during naming and fluency tasks despite identical behavioural performance. In a 

follow-up study of these women participants by the same group of investigators, the 

high-risk group showed significantly decreased activation in the left posterior 

fusiform and bilateral anterolateral occipital areas (Smith, et al., 2002; Smith, 

Kryscio, Schmitt, Lovell, Blonder, et al., 2005).  

The main findings of the fluency fMRI task appear to be that normal individuals 

at high risk for AD demonstrate a significantly increased parietal activation when 

compared with a matched group of low-risk individuals performing the same letter 

fluency task. This increased activation was present many years before the time of 

which clinical symptoms of AD typically appear. The high-risk individuals were 

indistinguishable from their low-risk counterparts in several cognitive measures, 

including verbal fluency. The location of this region was also adjacent to that 

observed by others using a recall task. The combined evidence from both studies 

suggests, therefore, a disruption of functional circuits involving the left parietal lobe 

in asymptomatic individuals at increased risk for AD. Different tasks may reveal this 

disruption by probing specific parietal sub-circuits according to their different 

processing demands. Increased activation in the high-AD-risk group could be due to 

the relatively increased cognitive work needed in individuals possessing brain 

networks compromised by in-situ AD pathology.  

Another study, examined the effect of ApoE genotype on brain activation 

patterns in the MLT during an episodic encoding task in cognitively normal 

individuals with a family history of AD who were on average 15-20 years younger 
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than the age at which AD symptom typically develop (Trivedi, Schmitz, Ries, 

Torgerson, Sager, et al., 2006). The authors found that ε3/ε4 heterozygotes displayed 

reduced fMRI activation compared to allele ε3/ε3 homozygotes in the right 

hippocampus and entorhinal cortex during encoding of novel relative to the encoding 

of familiar pictures. There were also no significant differences between the groups in 

age, education or memory function, and neuropsychological performance was within 

the normal range for both groups. This suggest that reduced MTL activation for novel 

items in allele ε3/ε4 heterozygotes was not caused by impaired cognitive function, 

and that the observed neurobiological changes in MTL function precede the onset of 

measurable decline in cognitive function. These authors also found no evidence for 

differences in regional grey matter volume as measured by voxel based morphometry, 

suggesting that the observed activation differences were not caused by reduced MTL 

GM volume on their cohort of middle-aged subjects, further supporting the notion 

that reduced fMRI activation in ε3/ε4 heterozygotes preceded overt changes in 

hippocampal volume. Lind et al., (2006) found that 30 cognitively intact carriers of 

the ApoE ε4 allele (10 ε4/ε4, 20 ε3/ε4) had reduce functional brain activity in the left 

parietal cortex and bilaterally in the anterior cingulated region during semantic 

categorization task, compared to 30 non-carriers. 

Another study used H2(15)O PET for imaging 26 non-ε4 carriers and six elderly 

ε4 carriers while they did a serial recognition non-verbal memory task with titrated 

task difficulty so that recognition accuracy was similar for all subjects (Scarmeas, 

Habeck, Anderson, Hilton, Devanand, et al., 2004a). Compared with non-ε4 carriers, 

ε4 carriers showed significantly decreased activation in the left precuneus, left 

superior temporal, right superior frontal, left postcentral and posterior cingulate gyri. 

Because recognition accuracy was titrated, the differences in activation were 
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considered not to reflect task difficulty, but to indicate memory-related altered 

cognitive processing in the different ApoE genotypes. 

A recent fMRI study found that non-demented older adult carrying the ApoE ε4 

allele with normal learning and memory capabilities showed greater magnitude and 

extent of BOLD brain response during picture learning relative to their ε3 

counterparts in multiple brain regions (e.g. bilateral fusiform and medial frontal gyri, 

left inferior and middle frontal, right superior parietal, and right hippocampal and 

parahippocampal cortices) (Bondi, et al., 2005). In addition, the ApoE ε4 group 

showed lower brain response in the left hippocampus, relative to the ApoE ε3 group. 

Both groups were performing equally well across many learning and memory 

measures. Both groups demonstrated comparable volumes of grey matter and white 

matter and CSF, all of which were also quite consistent with grey, white and CSF 

segmentation volumes of older adults reported by other (Courchesne, Chisum, 

Townsend, Cowles, Covington, et al., 2000). The absence of volumetric differences 

between the at-risk sample and the control, in the face of functional differences, is in 

keeping with previous reports distinguishing functional and structural differences. For 

example, Remain et al., (1996; 1998b), using both resting PET and MRI, contrasted 

11 individuals with APOE ε4/ε4 with 22 individuals with APOE ε3/ε3 and found that 

while the ε4 allele was associated with decreased metabolism, particulary in the 

cingulum, there were no volumetric differences, demonstrating that functional 

differences occur in the absence of volumetric loss. It appears, therefore, that 

volumetric loss is discernable only in the presence of cognitive decline, which is 

absent in an at-risk sample (Wolf, Grunwald, Kruggel, Riedel-Heller, Angerhofer, et 

al., 2001). Recent imaging work has also suggested that surface deformity of the 

hippocampus, rather than volume of the hippocampus, may be predictive of 
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subsequent cognitive decline and onset of Alzheimer‟s disease (Csernansky, Wang, 

Swank, Miller, Gado, et al., 2005). 

Moreover, fMRI studies also confirm evidence of compensatory hypothesis 

where ApoE ε4 persons appear to require additional cognitive effort to achieve the 

same level of performance. Indeed, several functional neuroimaging studies have 

shown that BOLD brain responses associated with the performance of memory tasks 

is more diffuse in patients with early AD than in normal older individuals, suggesting 

recruitment of areas outside of the usual structures that mediate memory (Grady, 

McIntosh, Beig, Keightley, Burian, et al., 2003; Becker, Mintun, Aleva, Wiseman, 

Nichols, et al., 1996; Sperling, Bates, Chua, Cocchiarella, Rentz, et al., 2003). It may 

be that, after an initial decline in memory proficiency following damage to MTL 

structures, patients in the preclinical stage of AD are able to effectively recruit 

compensatory brain resources (e.g. frontal and temporal cortical regions important for 

executive function and semantic memory) to halt or slow further memory decline for 

a period of time. A similar compensatory response in certain brain-derived 

neurotrophic factors (Egan, Kojima, Callicott, Goldberg, Kolachana, et al., 2003; 

Durany, Michel, Kurt, Cruz-Sanchez, Cervos-Navarro, et al., 2000) or cholinergic 

activity (DeKosky, Ikonomovic, Styren, Beckett, Wisniewski, et al., 2002) may also 

attenuate memory changes for a time. Given that adequate cholinergic activity and 

neurotrophic mechanisms are partly responsible for the maintenance of neuronal 

function and structural integrity, these findings suggest that, under conditions of 

progressive neurodegeneration, the MTL stimulates the overexpression of certain 

cholinergic and neurotrophic factors as possible mechanism of compensation. As the 

disease progresses, however, each of these additional resources becomes 

compromised and patients exhibit a period of rapid decline in episodic memory 
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abilities (Lange, Bondi, Salmon, Galasko, Delis, et al., 2002). Decline in brain 

activity (Sperling, et al., 2003) and cholinergic activity (DeKosky, et al., 2002) in 

brain regions critical for episodic memory function would then be expected in 

clinically evident AD.  

In summary, the cognitive and neuroimaging changes of incipient AD appear to 

remain relatively stable until a few years before clinical diagnosis, when there is a 

more notable decline. The mild course of decline in the early preclinical period may 

reflect the initial involvement of compensatory brain resources to overcome the 

accrual of plaques, tangles, and neuron and synapse losses. A growing body of fMRI 

evidence from at-risk people supports this notion (Han, Houston, Jak, Eyler, Nagel, et 

al., 2007; Bondi, et al., 2005; Dickerson, Salat, Greve, Chua, Rand-Giovannetti, et al., 

2005; S. Y. Bookheimer, et al., 2000; Johnson, Vogt, Kim, Cotman, & Head, 2004), 

and a similar compensatory response in brain-derived neurotrophic factors (Egan, et 

al., 2003; Durany, et al., 2000) or cholinergic activity (DeKosky, et al., 2002) may 

also occur. 

Given these converging lines of evidence for brain compensation, Twamley et 

al., (2006), propose a non-linear model of episodic memory decline and neuroimaging 

changes to characterise this preclinical period of accruing AD pathology. According 

to these authors cognitive and neuroimaging changes of AD remain relatively stable 

because of compensatory mechanisms until a few years before clinical diagnosis 

where it‟s possible to see a decline due to the failure of these resources to compensate 

for the extensive neurodegenerative damage. Consistent with this model, Martins et 

al., (Martins, Oulhaj, de Jager, & Williams, 2005) have demonstrated that possession 

of ApoE ε4 allele is associated with earlier and faster cognitive decline in patients 
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with AD, whereas the ε2 allele is related to slower decline, and that a non-linear 

model best predicts these differential rates of decline. 

In another study, using H2(15)O PET, 20 healthy young adults (age 19-28 ) 

were scanned while they performed a non-verbal memory task (Scarmeas, Habeck, 

Hilton, Anderson, Flynn, et al., 2005a). Compared to subjects without the ε4 allele, ε4 

carriers showed significantly lower activation in right superior temporal and left 

fusiform gyri and significantly higher activation in left middle temporal and right 

transverse temporal gyri.  Mondadori et al., (2007) carried out an fMRI study with 37 

young participants (mean age 22.8) and showed lower levels of brain activity during 

learning and retrieval in the right middle and superior frontal gyri and right precuneus 

during face retrieval and right hippocampus and left fusiform gyrus during associative 

retrieval in ε4 carriers compared to non-carriers (ε3/ε3, ε3/ε2), despite equal 

behavioural performance. These results suggest that ApoE-dependent modulation of 

cerebral flow during cognitive activation may be present even at a very young age 

(see section 2.6.3.). 

Recently some studies have focused their attention on the “resting state 

networks” (RSNs) and how it can be affected by the ApoE ε4 allele. RSNs reflect 

spontaneous low fluctuations (less than 0.1 Hz) in resting brain function. It is also 

called the “default mode network” (DMN) and includes the prefrontal, anterior and 

posterior cingulate, lateral parietal, inferior/middle temporal gyri; cerebellar areas; 

thalamic nuclei and mesial temporal regions (MTL) (Boly, Phillips, Tshibanda, 

Vanhaudenhuyse, Schabus, et al., 2008). The DMN is affected by neurodegenerative 

processes (Bukner 2005), both AD patients (Greicius, Srivastava, Reiss, & Menon, 

2004) and MCI individuals (Sorg, Riedl, Muhlau, Calhoun, Eichele, et al., 2007) are 

reported to show reduced coactivation of hippocampal and posterior cingulate 
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regions. Filippini et al., (2009a) carried out a study with 18 young ApoE ε4 carriers 

and 18 non-carriers (age 20-35) showing increased hippocampal coactivation within 

the DMN during rest and greater hippocampal activation during memory encoding 

task in the absence of any difference in brain volume, resting brain perfusion or 

memory performance. Fleisher et al., (2009), using a similar design, found 

abnormalities in resting-state networks and lower performance in semantic fluency 

task in 17 carriers compared to 12 non-carriers. As described before, greater 

activation in ApoE ε4 carriers has been interpreted as a possible greater cognitive 

effort by ε4 carriers to obtain the same level of performance as non-carriers. However 

it is unlikely that this interpretation may be applicable to explore the patterns 

observed in young ε4 carriers who do not have any manifest cognitive decline. Some 

authors posit the presence of neuronal mechanisms such as reduced synaptic 

plasticity, neuronal growth or altered long-term potentiation (LTP) as the factors that 

may be responsible for those results in people carrying the ApoE ε4 allele (Bellosta, 

Nathan, Orth, Dong, Mahley, et al., 1995; Buttini, Orth, Bellosta, Akeefe, Pitas, et al., 

1999; Trommer, Shah, Yun, Gamkrelidze, Pasternak, et al., 2005). 

 

2.6.7.2 Structural brain imaging  

 

 

The relationship between ApoE genotype and morphometric indices appears to 

be a complex one, with regionally specific alterations for a given allele combination 

and age-dependent effects (Bondi, Houston, Salmon, Corey-Bloom, Katzman, et al., 

2003; Caselli, Osborne, Reiman, Hentz, Barbieri, et al., 2001). A number of studies 

have reported volumetric differences in the hippocampus (which did not reach 

significance however) between cognitively intact ApoE 4 carriers and non-carriers 
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(Jack, Petersen, Xu, O'Brien, Waring, et al., 1998; Reiman, Uecker, Caselli, Lewis, 

Bandy, et al., 1998a). Plassman et al., (1997) found a significantly different 

hippocampal volume in non-demented adult ε4 carriers compared to controls, despite 

no difference in neuropsychological measures.  

Clear ApoE-related changes have been found in difference in brain regions 

measured by computed tomography (CT) imaging scan analysis in a Spanish 

population with dementia. In general, ApoE ε4 carriers show an anticipated age-

dependent brain atrophy reflected by increase in both the interventricular distance and 

the interhippocampal distance which is more significant in AD than in an aged 

population (Etcheverria, Amado, Pichel, & Cacabelos, 2003). 

Ridha at al., (2006) showed that atrophy of the whole brain and the 

hippocampus, as seen with serial MRI scans, predates the clinical diagnosis of 

Alzheimer‟s disease. These authors showed that by the time the disease was 

diagnosed clinically the estimated mean hippocampal volume in patients was 18.1% 

smaller and mean whole-brain volumes were 5.4% smaller than in controls. The 

results suggest an association between clinical stages of AD and volumetric 

measurements. As mutation carriers moved from presymtomatic to MCI and AD 

stages, mean total hippocampal and whole-brain volumes decreased. Additionally, 

rates of whole brain and hippocampal atrophy gradually increased with a mean rate of 

around 0.5% per year and 3% per year, respectively in the transition through the MCI 

stage. This finding lends support to the view that MCI represents an early stage of 

AD.  

Another study show reduced right hippocampal volume in ApoE ε4 carriers that 

ranged in age between 49 and 79 years (Lind, et al., 2006). These authors found that 

the difference in hippocampal volume between carriers and non-carriers was most 
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pronounced before the age of 65. Thereafter, the difference was attenuated, possibly 

as a function of age-related hippocampal atrophy.  

In an MRI study of 113 cognitively normal, late middle-aged adults, the 

presence of the ε4 allele had a dose-related reduction (i.e. more prominent reduction 

for ε4 homozygotes, as compared with ε4 heterozygotes, and for ε4 heterozygotes as 

compared with non-ε4 carriers) of grey matter in regions known to be affected early 

in AD, including the posterior cingulate, bilateral para-hippocampal/lingual gyri, and 

left parietal and anterior cingulate/medial frontal areas (Alexander, Chen, & Reiman, 

2003). In a MRI study of 32 healthy elderly subjects (16 with age-associated memory 

decline, and 16 with normal memory), ε4 homozygotes had significantly smaller right 

(as compared to left) hippocampus (Soininen, et al., 1995). This pattern of 

hippocampus asymmetry was opposite to that observed in non-ε4 carriers (i.e. larger 

right hippocampus). 

These results were interpreted as concordant with studies of established AD, 

indicating a more severe volume loss in the right hippocampus for ε4 homozygotes 

(Lehtovirta, et al., 1995). Another MRI study included 193 subjects (68 ε3ε3, 102 

ε3ε4, 23 ε4ε4) with MCI and compared them with non-ε4 carriers. Women with one 

or two ε4 alleles had significantly reduced hippocampal volume, whereas in men a 

significant reduction in hippocampal volume was found only for those carrying two 

ε4 alleles ( Fleisher, et al., 2005a). When controlled for memory performance on a 

delayed word recall task, the ApoE effect on hippocampal volume was attenuated in 

men, but remained significant in women. These authors concluded that the ApoE 

genotype status seems to have a greater deleterious effect on gross hippocampal 

pathology in women than in men. 
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Lemaitre et al., (2005) showed that healthy ε4 homozygotes had greater 

hippocampal atrophy than heterozygotes and non-carriers with associated risk of 

cognitive impairment (increased by a factor of 6 in homozygotes but didn‟t differ 

between heretozygotes and non-carriers). Whishard et al., (2006a) found reduction in 

the frontotemporal regions and in the right medial temporal lobe (MTL) in healthy ε4 

carriers compared with non-carriers. In a study of 70 healthy paediatric subjects who 

were scanned with brain MRI at the age of 10 years, there was no relation between 

ApoE status and hippocampal volume (Scarmeas & Stern, 2006). For 50 of these 

subjects who were scanned aged 2 years later, there was no association between 

ApoE status and longitudinal changes in hippocampal volume. Chen et al., (2007) 

found a significantly higher rate of whole brain atrophy in cognitively normal carriers 

than in non-carriers. Significant differences in cortical thickness of hippocampal 

subregions (in entorhinal cortex and subiculum but not volumetric difference in the 

hippocampus or perirhinal cortex) have been reported in 14 cognitively normal 4 

carriers (Burggren, Zeineh, Ekstrom, Braskie, Thompson, et al., 2008).  Similarly, 

selective regional effects of the ApoE 4 genotype on the subfield CA3 and the 

dentate gyrus of the hippocampus in normal aging and AD were reported by another 

study (Mueller, et al., 2008). Interestingly, Shaw et al., (2007), when comparing the 

MRI scans of 239 healthy children and teenagers, confirmed thinner entorhinal cortex 

in carriers than in non-carriers, with ε2 carriers showing the thickest enthorhinal 

cortex. Recently, Crivello et al., (2010) in an MRI study with 1186 healthy elderly 

participants found that the rate of hippocampal atrophy is not relevant for 

distinguishing heterozygote subjects from non-carriers and shouldn‟t, therefore, be 

used as a preferred phenotype. Finally, Honea et al., (2010) found a cognitive 

performance reduction associated with atrophy in hippocampus and amygdala and 
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decreased white matter in the left parahippocampal gyrus in non-demented elderly ε4 

carriers compared to non-carriers.  

 

2.6.8 Contradictory findings 

 

While earlier studies reported an association between the presence of the ε4 

allele and the risk for Alzheimer‟s disease in a dose-dependent manner (Corder, et al., 

1993; Rebeck, Reiter, Strickland, & Hyman, 1993; Mullan & Crawford, 1993; 

Saunders, Strittmatter, Schmechel, George-Hyslop, Pericak-Vance, et al., 1993; 

Strittmatter, et al., 1993), more recent reports make it clear that while the ε4 allele 

influences the age of onset for those who develop the disease, it is not predictive of 

caseness nor does it increase lifetime incidence in general (Khachaturian, Corcoran, 

Mayer, Zandi, & Breitner, 2004). Similarly, a longitudinal study of healthy elderly 

did not find the ApoE genotype predictive of cognitive decline (Marquis, Moore, 

Howieson, Sexton, Payami, et al., 2002). 

Bassett et al., (2006) presented an analysis of cross-sectional data for 95 

asymptomatic offspring (50-75 years of age) of autopsy-confirmed late-onset familial 

AD cases and 90 age-matched controls, studied with fMRI to investigate brain 

activation patterns.  Analysis of activation in response to a paired-associates memory 

paradigm found significantly different patterns in these groups. At-risk individuals 

showed more intense and extensive activation in the frontal and temporal lobes 

including the hippocampus during memory encoding, an increase unrelated to the 

ApoE ε4 allele, however, according to these authors. Increasing age and the presence 

of an affected first-degree relative were the only factors consistently associated with 

an elevated risk for developing the disease. In addition, there is further evidence that 

among dementia cases or those with mild cognitive impairment, the ε4 allele has low 
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positive predictive value for the diagnosis of Alzheimer‟s disease (Devanand, Pelton, 

Zamora, Liu, Tabert, et al., 2005; Slooter, Breteler, Ott, Van Broeckhoven, & van 

Duijn, 1996; C. Wang, Wilson, Moore, Mace, Maeda, et al., 2005).  

2.6.9 Possible reasons for discrepancy among studies 

 

Various methodological differences may account for the differences among 

studies.  Examples include differences in subject selection, in levels of cognitive 

performance, in age groups, etc. Differences in cerebral activation studies can be 

accounted for by various other additional factors; differences between imaging 

modalities, different methods of analyses, different applied statistical thresholds etc. 

The proportion of homozygotes and heterozygotes in different studies may also have 

an important impact on statistical power. More importantly, there are differences in 

the underlying cognitive functions being tested (i.e. naming fluency, face naming, 

verbal working memory, verbal episodic memory, nonverbal memory and picture 

learning) (Scarmeas & Stern, 2006; Bondi, et al., 2005; Smith, et al., 2002; 

Bookheimer, et al., 2000). 

 

2.6.10 Biological and functional considerations 

 

Effect of the ApoE genotype on lipid metabolism (Srinivasan, Ehnholm, 

Elkasabany, & Berenson, 2001), blood pressure (Katsuya, Baba, Ishikawa, Mannami, 

Fu, et al., 2002), atherosclerosis (Hixson, 1991), ischemic heart disease (van 

Bockxmeer & Mamotte, 1992), myocardial infarction (Brscic, Bergerone, Gagnor, 

Colajanni, Matullo, et al., 2000), and cognitive performance in type I diabetes 

(Ferguson, Deary, Perros, Evans, Ellard, et al., 2003) have been documented in very 

young subjects and in children (Rask-Nissila, Jokinen, Viikari, Tammi, Ronnemaa, et 
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al., 2002; Tammi, Ronnemaa, Rask-Nissila, Miettinen, Gylling, et al., 2001). Animal 

studies have indicated that ApoE genotype seems to affect stress response and spatial 

memory (Zhou, Elkins, Howell, Ryan, & Harris, 1998) and regulates synaptic 

plasticity and long-term potentiation in the hippocampus (Valastro, Ghribi, Poirier, 

Krzywkowski, & Massicotte, 2001) of young mice. Therefore, it is conceivable that 

ApoE-related alterations in cerebral physiology may exist from a very young age. 

There are known early biochemical changes in neuronal processes and synapsis loss 

before structural pathology is detected (Selkoe, 2002). It is also known that symptoms 

of AD are preceded by a period of unknown duration during which neuropathological 

alterations accumulate in the brain without associated memory loss or other 

detectable cognitive change. The increased risk for AD in subjects carrying the ε4 

allele is thought to be mediated by the ApoE genotype being implicated in β amiloyd 

and/or neurofibrillary tangle biochemical pathways (Polvikoski, Sulkava, Haltia, 

Kainulainen, Vuorio, et al., 1995; Richey, Siedlak, Smith, & Perry, 1995). Increases 

and decreases in activations in ε4 carriers have been observed in imaging studies 

during cognitive tasks [e.g.(Scarmeas, Anderson, Hilton, Park, Habeck, et al., 

2004b)]. Overall, the interpretation of increases and decreases in activation has been 

very controversial. Areas with differential activation in the ε4 carriers may reflect 

malfunctioning (taking the form of either overactivation or deactivation) because of 

more severe AD pathological involvement for ε4 carriers in these regions. 

Alternatively, some of these regions may still be spared by AD pathology and are 

recruited for task performance by ε4 carriers because of more severe pathological 

involvement in other regions. Scarmeas et al., (2006), for example, suggested that 

several other considerations make the possibility of silent AD pathology causing 

ApoE-related differences less plausible. The detection of ApoE-related differences in 
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resting brain blood flow and activation four to five decades before the possible onset 

of dementia weakens the hypothesised link with AD. The presence of the ε4 allele is 

not equivalent to early AD; a significant proportion of ε4 heterozygotes will never 

develop AD. It is proposed that the presence of ε4 facilitates rather than causes AD 

(Meyer, et al., 1998), and ε4 has been implicated in impaired brain repair mechanisms 

that may place subjects at increased risk for AD or other brain diseases. 

Therefore, the imaging patterns observed in ε4 carriers may be the early 

signature of ApoE-dependent alterations in brain physiology, which may result in 

greater vulnerability to environmental effects such as traumatic brain injury or other 

insult later in life. To improve the detection of preclinical markers, 

neuropsychological functioning, brain structure, and brain functioning of at-risk 

individuals who develop AD should ultimately be tested against that of persons who 

remain dementia-free over the same follow-up period. Furthermore, these individuals 

might be compared to those with other conditions i.e. depression or other dementia. In 

addition to documenting the cognitive deficits in preclinical AD, the longitudinal 

course of these deficits is also important (Scarmeas & Stern, 2006). 

There has been a lack of consensus regarding when the preclinical period 

begins and how early preclinical changes may be detected. With longer test-retest 

intervals, cognitive changes are more likely to be detected, but it is more difficult to 

determine when decline begins. Therefore, the question of the age range, which it is 

possible to detect a preclinical AD state and whether such states can be distinguished 

from lower levels of cognitive reserve, should be addressed. 
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2.6.11 Summary of the chapter 

 

Several levels of evidences have underlined the importance of the ApoE ε4 

mutation in predicting AD many years before the clinical onset. Neuroimaging 

techniques, including functional, structural MRI and different varieties of PET 

imaging, all show differences between ApoE ε4 carriers and non-carriers in the 

severity of brain changes in AD, MCI, healthy elderly controls and young individuals. 

However, to date no studies have attempted to combine data across methodologies to 

predict cognitive decline in conjunction with genetic risk status.  
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CHAPTER 3 Neuropsychological changes in 

preclinical AD 
 

3.1 Introduction 

 

 

The study of the earliest cognitive markers of a preclinical phase of 

Alzheimer‟s disease has both scientific and clinical importance. From a scientific 

perspective, research might increase the understanding of the subtle cognitive 

sequelae that accompany the insidious onset of AD over and above the significant 

cognitive decline associated with the normal aging process. Clinically, the 

development of promising pharmacological treatments of AD that may slow or arrest 

the disease process has created a need to diagnose AD in its earliest preclinical phase, 

before significant brain damage has occurred. Neuropsychological studies in this area 

have benefited greatly from the discovery of a genetic risk factor of AD, the allele of 

the Apolipoprotein E (ApoE ε4) (Corder, et al., 1993), which has enabled 

neuropsychologists to focus the search for preclinical cognitive markers of AD on 

samples of normal elderly individuals who are genetically predisposed to develop this 

disease (Bondi, Salmon, Galasko, Thomas, & Thal, 1999; Elias, Beiser, Wolf, Au, 

White, et al., 2000). 

A few studies have shown no effect of the ApoE ε4 in the rate of cognitive 

decline (Welsh-Bohmer, Ostbye, Sanders, Pieper, Hayden, et al., 2009; Salo, 

Ylikoski, Verkkoniemi, Polvikoski, Juva, et al., 2001; G. M. Murphy, Jr., Taylor, 

Kraemer, Yesavage, & Tinklenberg, 1997). However, many other studies exploring 

this association have continually shown a deteriorating effect of the ApoE genotype 

in LOAD with a dose-response manner. In general these studies can be divided into 
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observations including subjects with cognitive impairment or dementia and reports in 

non-demented individuals, to clarify the effect of this mutation on cognition in people 

at the preclinical stage.   

 

3.2 ApoE-related cognitive impairment 

 

3.2.1 Clinicophatological studies 

 

It is already well known that AD is a complex disease with multiple genetic and 

environmental risk factors. To cause cognitive impairment, these risk factors must 

interact with the types, quantities, and distributions of phatological lesions in the 

brain. For example, it is likely that some risk factors cause cognitive impairment by 

enhancing amyloid production or fibrillogenesis, decreasing amyloid clearance, or by 

enhancing tau phosphorilation. Understanding the neurobiology that links biological 

factors to cognitive impairment has important implications for disease treatment and 

prevention. 

As for the ApoE ε4 allele, the neurobiological changes in the brain that account 

for the association of allele status with disease risk remain poorly understood. ApoE 

is synthesised primarily by astrocytes and microglia in the brain and its main function 

is thought to be in the regulation of lipoprotein metabolism (Mahley & Rall, 2000). 

However, preclinical data from a variety of sources suggest that ApoE may also be 

involved in the deposition and/or clearance of amyloid from the brain. This gene 

appears to enhance spontaneous fibrillogenesis of amyloid in vitro (Wisniewski, 

Castano, Golabek, Vogel, & Frangione, 1994), and has been reported to form dimeric 

complexes with soluble amyloid in vivo (Permanne, Perez, Soto, Frangione, & 

Wisniewski, 1997). Transgenic mice studies have been done to better clarify the role 
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of ApoE on the deposition of amyloid (Holtzman, Bales, Tenkova, Fagan, 

Parsadanian, et al., 2000a; Holtzman, et al., 2000b; Bales, Verina, Cummins, Du, 

Dodel, et al., 1999).  Severe neuritic dystrophy was seen in association with amyloid 

in transgenic mice with mice expressing human ApoE ε4 showing a greater effect on 

amyloid plaque formation.  

In this regard several studies have reported a relationship between the ε4 allele 

and amyloid deposition (Thaker, McDonagh, Iwatsubo, Lendon, Pickering-Brown, et 

al., 2003; Ohm, Scharnagl, Marz, & Bohl, 1999), suggesting that amyloid deposition 

accounts for the association of allele status with cognitive function. Some authors 

quantified extracellular deposits of amyloid-β peptide plaque deposits and 

phosphorylated tau immunoreactive neutofibrillary tangles from several regions in 

healthy subjects and AD, and examined a hypothesised sequence of events linking 

ApoE allele status to level of cognition assessed proximate to death (Bennett, 

Schneider, Wilson, Bienias, Berry-Kravis, et al., 2005) (see Figure 3.1.). 

 

 

 

 

Figure 3.1. Hypothesised sequence of events that links ApoE allele status to level of 

cognition proximate to death [Figure taken from (Bennett, et al., 2005)]. 

 

They found that amyloid burden accounted for the association of the ε4 allele to 

the level of cognitive function. Further, they found that amyloid burden accounted for 

the association of allele status to tangles, but tangles did not account for the 

association of the ε4 allele to amyloid burden. Together with data from a prior study 

(Bennett, Schneider, Wilson, Bienias, & Arnold, 2004), these data suggest that the 

APOE ε4 Amyloid Tau tangles 
Cognitive 

function 
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ApoE ε4 allele is the first step in a sequence of events that works through amyloid 

deposition and subsequently tangle formation to cause cognitive impairment.  

Understanding how neuropathological indices account for the association of 

risk factors to cognitive impairment has important implications regarding strategies to 

delay disease onset. Over the past several years, the presence of one or more ApoE ε4 

alleles in the genotypic allele have emerged as the most important genetic 

susceptibility factor for AD among older people. 

Despite intensive investigation, the neurobiological changes responsible for the 

association of allele status with the occurrence of clinical disease remain 

controversial, with some data suggesting that its effect is mediated by an increase in 

the rate of accumulation of AD pathology (Tiraboschi, et al., 2004;Sparks, Scheff, 

Liu, Landers, Danner, et al., 1996) whereas other data suggest that it may be related 

to other less specific mechanisms such as neural repair or survival (Berg, McKeel, 

Miller, Storandt, Rubin, et al., 1998; Pitas, Ji, Weisgraber, & Mahley, 1998). 

Many authors have reported that allele status is related to AD pathology as 

identified with routine histopathology. Further, several studies have found a relation 

between the ε4 allele and amyloid deposition (McNamara, Gomez-Isla, & Hyman, 

1998; Gearing, Mori, & Mirra, 1996) or both amyloid and tau positive tangles 

(Thaker, et al., 2003; Ohm, et al., 1999). By contrast, some studies have found an 

association of the ε4 allele and amyloid deposition but not tau tangles (Mukaetova-

Ladinska, Harrington, Roth, & Wischik, 1997). These data show an association of 

allele status with amyloid deposition and tangles formation, but also provide strong 

evidence that amyloid deposition mediates the association of the ε4 allele with tau 

tangles and ultimately with the level of cognitive function. More specifically, 

accounting for amyloid burden in the analyses remarkably attenuates the association 
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of allele status with cognitive function. This finding does not preclude the possibility 

that the ε4 allele may work through other mechanisms in addition to amyloid, but it 

implies that the effect size of the other variables would be substantially smaller. 

Other interesting studies underline the role of Butyrycholinesterase (BuChE) in 

the CNS and its involvement in the pathology of AD (Darreh-Shori, et al., 2006). 

Their data support a strong link between the levels of BuChE expression and the 

progress of this neurodegenerative disorder. These authors found that a higher level 

of CSF BuChE activity or protein level in the patients was associated with better 

cognitive performance in several neuropsychological tests such as global cognition 

(MMSE and ADAS-cog), episodic memory and attention compared to the AD 

patients with a low CSF BuChE activity. These observations support previous finding 

that BuChE might play an important role in regulating some cognitive functions 

mediated by cholinergic or related neuronal networks in the brain (Darvesh & 

Hopkins, 2003; Mesulam, 2000). These authors also found that CSF BuChE activity 

and protein levels differed in AD patients that were carriers or non-carriers for the 

ApoE ε4 allele (ε4 -/- > ε4+/- > ε4 +/+). The patients with low CSF BuChE activity 

were exclusively carriers of one or two ApoE ε4 alleles. 

These patients in general had 20-26% less BuChE protein and 40-60% less 

activity in the CSF BuChE than did the ε4 non-carriers. In addition, they observed a 

gender-related difference in BuChE levels, i.e. a lower level of CSF BuChE in female 

AD patients than in males. Intriguingly, most epidemiological studies report female 

gender as one of the risk factors for AD (Fratiglioni, et al., 2000). 

Others physiopathological studies describe the relationship between tau markers 

in the cerebrospinal fluid (CSF), the degree of cognitive impairment and the 

predictive value of epigenetic markers such as carrying the ApoE ε4 allele, as part of 
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a longitudinal study. The findings indicate that hyperphosphorylated tau is a good 

indicator of the degree of cognitive disorders in the early stages of AD and that no 

clear correlation exists with the ε4/ε4 and ε4/ε3 genotypes, even though a higher 

proportion of carriers of the ε4 allele was present in the MCI group with a more 

significant level of impairment and in AD patients. 

 

3.2.2 Neuropsychological studies across the life span  

 

 

Recent studies indicate that ApoE ε4 might affect the rate of cognitive decline 

in the early and late stages of AD. In a large sample of 56 year old patients with 

LOAD,  the presence of at least one ε4 allele was associated with faster cognitive 

decline most significantly in the earliest stage of AD (p= 0.01) (Cosentino, Scarmeas, 

Helzner, Glymour, Brandt, et al., 2008). Wehling et al., (2007) in a study with 70 

patients (50-75 age range) found poorer performance in MMSE and California Verbal 

Learning Test (CVLT) in ε4 carriers than non-carriers. Hirono et al., (2003) 

examining the effect of ApoE on cognition using the Alzheimer‟s Disease 

Assessment Scale-Cognitive subscale (ADAS-Cog) in 64 LOAD patients found that 

the presence of the ε4 allele affected memory performance in a dose dependent 

manner.  Compared with older adults who remained non-demented, those who later 

develop AD performed more poorly across a broad range of neuropsychological 

measures. 

One critical review about changes in preclinical AD presents a summary of 73 

studies of neuropsychological changes in the preclinical period (Twamley, et al., 

2006). There were 30 longitudinal case-control studies; 16 longitudinal studies 

examining decline in ApoE ε4 + and ε4– subjects; 26 cross-sectional studies 
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comparing neuropsychological performance in subjects with and without the ApoE ε4 

allele; three retrospective studies using autopsy data and four studies comparing 

neuropsychological performance in subjects with and without a family history of AD. 

The domains most consistently associated with preclinical AD were attention, verbal 

learning and memory, executive functioning, processing speed and language, with 

studies showing either early decline in these abilities or significant differences 

between at-risk subjects and control subjects. This review revealed that attention, 

although not as commonly assessed as learning and memory in studies of preclinical 

AD, is even more consistently associated with later development of AD. Furthermore, 

verbal learning was a somewhat more consistent indicator of preclinical AD than 

verbal delayed recall. These findings suggest that the deficits in verbal delayed recall 

in preclinical AD may partly reflect poor attention at encoding. Baxter et al., (2003) 

also found that verbal learning ability declined over two years in a group of 

cognitively normal individuals who had the ε4 allele, but only in those who were 60 

years of age and older. 

Episodic memory decline is one of the earliest and most prominent features of 

preclinical AD (Bondi, et al., 1999; Bondi, Salmon, Monsch, Galasko, Butters, et al., 

1995). Using the California Verbal Learning Test (CVLT) in 52 non–demented 

elderly (14 carriers and 26 non-carriers), Bondi et al., (1995) found that ApoE epsilon 

4 subjects demonstrated significantly poorer mean performances than non-epsilon 4 

subjects on nine CVLT variables. Six of the carriers who completed an annual follow 

up assessment developed LOAD. None of the 26 non-carriers showed any significant 

cognitive decline. Subtle decline in episodic memory often occurs several years 

before the emergence of the obvious cognitive and behavioural changes required for a 

clinical diagnosis of AD (Albert, Moss, Tanzi, & Jones, 2001; Lange, et al., 2002). 



101 

 

Several longitudinal studies confirmed strong association between the presence of the 

ApoE ε4 allele and poorer episodic semantic performance when compared with non-

carriers over a 8 year follow up period (Mayeux, Small, Tang, Tycko, & Stern, 2001; 

Wilson, Schneider, Barnes, Beckett, Aggarwal, et al., 2002). Further more recent 

studies found similarly strong association in the rate of change in episodic memory 

among ApoE ε4 carriers (Lehmann, Refsum, Nurk, Warden, Tell, et al., 2006). It is 

thought that episodic memory tasks are strong predictors of future AD, because the 

brain structures sub-serving episodic memory, such as medial temporal lobes and the 

hippocampal formation, are amongst the first affected. 

 Studies of association between ApoE ε4 and working memory (WM) have also 

been carried out. WM is a cognitive system which permits temporary storage of the 

information in order to keep it in an active state to be manipulated and protected from 

interference. Several studies investigating Stroop performance in AD patients have 

demonstrated deficits on the traditional interference condition and this impairment 

tends to be present early in the course of the disease (Bondi, Serody, Chan, Eberson-

Shumate, Delis, et al., 2002). Deficits on other tasks of executive functioning have 

also been found in AD patients (Johnstone, Hogg, Schopp, Kapila, & Edwards, 2002).  

Recent evidence suggests that such deficits may also be present in a preclinical 

phase of AD.  Rosen et al., (2002) using the Operation Span task which emphasize 

maintaining information in storage while performing distracting operations found that 

the operation span was more negatively affected in ε4 carriers than in non-carriers in 

healthy normal subjects with a mean age of 62 years. In another study Wishart et al., 

(2006) found greater fronto-temporal activation in ε3ε4 carriers in an N-back task 

than ε3 homozygotes despite equal behavioural performance, indicating that more 

effort reflected in greater activation could underline intact performance.  
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In a retrospective study, Albert et al., (2001) found that tests of set shifting 

[Trail Making Test, Part B; (Reitan, 1955)] and sequencing [Self-Ordering Test; 

(Petrides & Milner, 1982)] were predictive of onset of AD. Chen et al., (2000) carried 

out a retrospective study of individuals who later developed AD and also found that 

deficits on Part B of the Trail Making Test predicted AD onset in this group. In 

addition, these findings suggest that subtle deficits in executive functioning may 

signal a preclinical phase of AD. Although a number of variants of the Stroop Test 

have been developed over the past 70 years, a new version of this task (The D-KEFS 

Color-Word Interference Test; CWIT) includes the three traditional stroop conditions, 

and adds a fourth condition called Inhibition/Switching (Delis, Kaplan, E., & Kramer, 

J.H., 2001). The stimuli in this new condition are the same as in the traditional 

interference condition with the exception that half of the words are printed inside a 

small box. This condition requires the examinee to name the dissonant ink colour for 

a word not in a box, and to switch set and read the printed word (rather than name 

with dissonant ink colour) for items within a box. A prospective study of non-

demented older adults at genetic risk for AD (i.e. ApoE ε4 allele) and other types of 

dementia utilized this new Stroop Task that included a dual executive-function 

condition requiring both response inhibition and cognitive switching (Wetter, Delis, 

Houston, Jacobson, Lansing, et al., 2005). This study found that, relative to the non-

ε4 subjects, the ApoE ε4 subjects made significantly more errors on the CWIT, but 

only on the new Inhibition/Switching condition of the test. Thus, the ε4 group‟s poor 

performance on the Inhibition/Switching condition is likely not due to difficulties 

with reading speed, naming speed or response inhibition per se. As the 

Inhibition/Switching condition requires an individual to simultaneously engage in 

response inhibition and cognitive switching, these findings suggest that the higher 
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demands of this task resulted in a subtle deficit in the ApoE ε4 group. It may be the 

case, therefore, that the traditional Stroop task is sufficiently sensitive to identify 

deficits in individuals who have already received an AD diagnosis, but the new 

Inhibition/Switching condition, which assesses both response inhibition and cognition 

shifting, may be required to identify subtle deficits in healthy individuals at risk for 

AD. Recently, Reinvang et al., (2010) found a negative effect of the ApoE ε4 carriers 

in a dose-related way on working memory measured with different tasks focused on 

goal maintenance, storage capacity and interference control. Although it may not rule 

out the possibility that the increased load of AD pathology (accumulation of β 

amyloid in the brain after age 60) seen in healthy older ε4 carriers (Reiman, et al., 

2009;  Small, Siddarth, Burggren, Kepe, Ercoli, et al., 2009) could explain these 

results, it cannot also rule out an influence of ApoE ε4 on accelerated aging effects on 

working memory. In support of this last hypothesis there is evidence of ApoE ε4 

effects on cognitive and brain function even in young adults (20-40 years old).  It is 

unlikely, at this young age, that this cognitive phenotype could be due to the very 

early Alzheimer‟s disease relates pathological changes (Scarmeas, et al., 2005a; 

Reiman, et al., 2004). 

As described previously, ApoE ε4 is a strong predictor of progression to AD in 

MCI patients (Petersen, Smith, Ivnik, Tangalos, Schaid, et al., 1995). Moreover, 

greater medial temporal lobe atrophy in AD patients carrying the ApoE ε4 allele has 

also been documented (Lehtovirta, Laakso, Frisoni, & Soininen, 2000; C. R. Jack, Jr., 

et al., 1998b). Interestingly, Negash, et al., (2007) investigated effects of the ApoE 

genotype and MCI on implicit learning using two different paradigms sequence, 

learning and contextual cueing, which rely on two different neuronal systems. 

Neuroimaging studies of healthy adults and brain injured patients showed that 
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learning of sequences is mediated by a fronto-striatal-cerebellar system (Willingham, 

Salidis, & Gabrieli, 2002; Gomez Beldarrain, Grafman, Pascual-Leone, & Garcia-

Monco, 1999); whilst contextual cueing learning depends on medial temporal lobe 

structures (Chun & Phelps, 1999; Manns & Squire, 2001). Negash et al., (2007) 

wanted to determine the extent to which these two forms are influenced by ApoE 

genotype in MCI and healthy controls. These authors observed that healthy elderly 

controls carrying the ApoE ε4 allele showed contextual cueing deficits compared to 

those who did not carry the ApoE ε4 allele, while by contrast, sequence learning 

appeared not to be influenced by ApoE genotype. Interestingly, control carriers 

revealed similar performance in contextual learning as the MCI group, while the non-

carriers performed better. These behavioural data support findings of medial temporal 

dysfunction and relative integrity of fronto-striatal system in MCI. Furthermore, this 

study suggests the possible vulnerability of ε4 carrier healthy adults on tasks relying 

on medial temporal structures compare to non-carriers. Moreover Hsiung et al., 

(2004) found an increased risk of conversion from MCI to LOAD and decreased age 

of onset of LOAD in patients carrying at least one ε4 allele. 

In a recent retrospective study, Caselli et al., (2007) showed that ApoE ε4 

homozygotes in their 60s had higher rates of cognitive decline than ApoE ε4 

heterozygotes or non-carriers before the diagnosis of MCI and AD, thus confirming 

and characterising the existence of a pre-MCI state in this genetic subset. Recently 

Boyle et al., (2010) in a longitudinally study (with a 16 year follow up) found that the 

presence of the ApoE ε4 allele was associated with a 1.4 fold increased risk of 

incipient MCI. Moreover this mutation was associated with an increased rate of 

decline in episodic memory, semantic memory, working memory and perceptual 

speed. Tupler et al., (2007), in a longitudinal genetic analysis showed that 
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performance on the CVLT recall after a delay interval was most strongly accounted 

for by the score on the task obtained 5 years early, followed by carrying the ApoE ε4 

alleles, followed by left hippocampal volume.  These findings are supported by 

another study which shows the significance of ApoE ε4 as a predictor of conversion 

to AD in forward regression models examining different variables form the CVLT 

and Wechsler Memory Scale (Lange, et al., 2002). Interesting, there are also 

longitudinal studies from twins showing significant low performance during recall 

memory in ε4 carriers compared to e4 non-carriers (Reynolds, et al., 2006; Schultz, 

Lyons, Franz, Grant, Boake, et al., 2008). 

Another interesting aspect came from an analysis of an ApoE gene-cognitive 

decline interaction. Several studies showed that age and ApoE ε4 allele-dose interact 

contributing to the presence and magnitude of ApoE ε4 related deficits. As for dose-

related deficits, several studies show greater cognitive impairment in ε4 homozygous 

old healthy subjects whilst the opposite pattern seems to characterise performance in 

young individuals. In a prospective cohort study, Nillson et al., (2006) showed that 

among old participants ε4 homozygous performed the worst and non-carriers 

obtained the best in episodic memory and recall performance. However, among 

young subjects, superior performance of ε4 homozygous carriers was found. 

Consistent results were also seen in similar studies (Schultz, et al., 2008; Reynolds, et 

al., 2006; Riley, et al., 2000; B. J. Small, et al., 2004). This pattern of results also 

mirrors the relationship between ApoE ε4 and risk of AD with advanced age 

decreasing the influence of this mutation in predicting AD (Breitner, Wyse, Anthony, 

Welsh-Bohmer, Steffens, et al., 1999; Farrer, et al., 1997). Of interest in this respect 

are the findings of studies which examined the relationship between ApoE genotype 

and cognitive performance among children. Turic et al., (2001) found no significant 
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ApoE ε4 related differences in children when they looked at general cognitive ability 

scores. Similarly, Deary et al., (2003) found no significant interaction between ApoE 

ε4 and general intelligence scores in 11 year olds, although ε4 carriers had lower 

scores. Wright et al., (2003) showed that ε4 carrier infants performed higher than ε3 

or ε2 carriers in the 24 month-Bayles Scale infant Development Score, suggesting an 

advantage for carriers with respect to early-life neuronal/brain development. Finally, 

Oria et al., (2005) showed an advantageous effect of the ApoE ε4 allele in semantic 

fluency in children with heavy burdens diarrhea and instead profoundly impaired 

semantic fluency in ApoE ε4 non-carrier children. These results suggest that maybe a 

gene may have a different function at different stages in life. In particular positive 

effects early in life and deleterious effects in older age, a phenomenon called 

antagonist pleiotropy (Williams, 1957) (see section 2.6.3.). The relative magnitude of 

the findings suggest that premorbid ability or background cognitive reserve, genetic 

contribution of ApoE ε4 load and structural brain characteristics, are the predominant 

factors in predicting performance over time. 

 

3.2.3 Linguistic changes in verbal expression: A preclinical marker of 

Alzheimer’s disease 

 

A few studies have examined the presence of linguistic deficits in the 

preclinical phase of Azheimer‟s disease. This phase is known to be characterised by 

the presence of subtle cognitive impairment, which appears decades before a clinical 

diagnosis of probable AD can be made. Elias and colleagues (2000) reported that 

cognitive changes have even been detected 20 years before clinical diagnosis. As 

described in the previous sections, alterations in various cognitive functions, 

including episodic memory (Lehmann, et al., 2006), executive functions (Reinvang, 
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et al., 2010), attention (Rapp & Reischies, 2005 ;Estevez-Gonzalez, Kulisevsky, 

Boltes, Otermin, & Garcia-Sanchez, 2003), spatial-visual abilities (Small, Herlitz, 

Fratiglioni, Almkvist, & Backman, 1997b) and psychomotor speed (Masur, Sliwinski, 

Lipton, Blau, & Crystal, 1994)  have been reported in the preclinical phase of AD. 

Research examining linguistic changes in patients in the minimal to mild stages 

of AD reports that semantic processes are often found to be affected (e.g. patients 

simplify grammatical structure, ineffectively communicate information, fail to 

identify pictorial themes, and lose vocabulary; ( Forbes-McKay, Shanks, & Venneri, 

2004; Garrard, Maloney, Hodges, & Patterson, 2005;  Forbes-McKay, Venneri, A., & 

Ellis, A.W. , 2003;  Forbes-McKay, Venneri, & Shanks, 2002).  

There is less consensus in the literature regarding the presence of linguistic 

changes in the preclinical phase of AD. The few research studies that have been 

carried out with individuals in the preclinical stage of AD have produced 

contradictory findings. Although four early studies found no changes in linguistic 

abilities in the preclinical stage of AD (e.g. Almkvist, 1995; Farlow, Murrell, Ghetti, 

Unverzagt, Zeldenrust, et al., 1994; Newman, Warrington, Kennedy, & Rossor, 1994; 

Karlinsky, Vaula, Haines, Ridgley, Bergeron, et al., 1992), other more recent findings 

support the hypothesis that linguistic changes are evident before the clinical onset of 

AD. In a case study, a linguistic analysis of Iris Murdoch‟s final novel, published one 

year before the diagnosis of probable AD was made, showed deterioration of 

semantic skills and sophistication of vocabulary (Garrard, et al., 2005). In a sub-

analysis of 93 participants in the Nun study, a longitudinal study of aging and 

Alzheimer‟s disease, Snowdon et al., (1996) reviewed the early-life autobiographies 

in order to investigate the relationship between linguistic abilities in early life and 

cognitive function and neuropathologically confirmed AD in late life. “Low idea 
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density” in the autobiographies was significantly associated with an increased risk of 

poor cognitive function and Alzheimer‟s disease 58 years later. Similar findings were 

obtained from analysis of the public speeches by former U.S. president Ronald 

Reagan, who was diagnosed with probable AD in 1994 (Venneri, Tumbull, O., & 

Della Sala, S. , 1996). These analyses show that word finding difficulties and 

inappropriate phrases were apparent in 1981, 13 years before his diagnosis. 

Other epidemiological studies provide additional evidence for linguistic 

changes in the preclinical stage of AD. Jacobs et al., (1995a) administered a 

comprehensive neuropsychological battery to a group of initially non-demented older 

adults participating in the North Manhattan Aging Project, a prospective 

epidemiological study of dementia. A total of 41 of the 443 participants were 

diagnosed with incident, probable or possible AD at one of the 1-to 4-year follow-

ups. In this study, baseline scores on the Boston naming Test were found to predict 

subsequent AD diagnosis. 

In a research study of naming of famous faces abilities in individuals with and 

without -MCI- who would or would not go on to develop dementia of the 

Alzheimer‟s type (DAT) and a control group, Estevez-Gonzalez et al., (2004) found 

that those individuals with MCI who were diagnosed with DAT two years later 

performed significantly worse on this task in the preclinical phase than did those with 

MCI who did not develop DAT or control participants. 

In a population-based study in Sweden which examined whether cognitive 

variables at baseline could predict incident cases of AD after a 3-year follow-up,  

Small et al., (1997) found that recognition of faces and letter fluency were reliable 

predictors of dementia status, independently of the Mini-Mental State Examination 

(MMSE) score. Using data from a Swedish population-based study, Jones and 
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colleagues (2006) confirmed that letter fluency performance was indeed significantly 

worse 3 years before AD diagnosis, in older adults developing the disease than in 

healthy controls who did not develop AD. Furthermore, these researchers found that 

category fluency performance was significantly worse for those who will develop AD 

than for controls. It is well known that a category fluency task, which requires naming 

words belonging to a particular category, puts strong demands on the hierarchical 

structure of semantic knowledge (Butters, Granholm, Salmon, Grant, & Wolfe, 1987) 

. Letter fluency, which requires naming words that begin with a specific letter, is 

thought to rely on more “frontal control” regions (Delis D, 2001; Bryan, Luszcz, & 

Crawford, 1997). Several studies have shown greater semantic fluency impairments 

in AD patients than a letter fluency tasks (Chan, Butters, Salmon, & McGuire, 1993). 

Investigation of the discriminative value of fluency subtypes in AD showed that 

semantic fluency (100% sensitivity, 92.5% specificity) is superior to letter fluency 

(89% sensitivity, 85% specificity) in predicting group membership (Monsch, Bondi, 

Butters, Salmon, Katzman, et al., 1992). Saxton et al., (2004) showed that the 

category fluency task was one of the best predictors of subsequent conversion to AD 

in older adults. These behavioural findings are also supported by lesion studies and 

brain imaging research in AD (Mungas, Jagust, Reed, Kramer, Weiner, et al., 2001; 

Gourovitch, Kirkby, Goldberg, Weinberger, Gold, et al., 2000; Paulesu, Goldacre, 

Scifo, Cappa, Gilardi, et al., 1997). Henry et al., (2004) examined a focal lesion 

cohort and showed that the letter fluency task is more sensitive to frontal lobe lesion 

whilst the category fluency task is more sensitive to temporal lobe lesions. fMRI with 

young adults whilst doing a category fluency task activated hippocampal complex in 

all subjects (Pihlajamaki, Tanila, Hanninen, Kononen, Laakso, et al., 2000). In 

general, both letter and category fluency tasks depend on a common network of brain 
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areas but the degree of activation appears to be greater in the MTL in the category 

fluency task and in frontal areas in the letter fluency task. Although these studies 

support the idea of an increased difficulty in semantic relative to letter fluency tasks 

in AD and showed a strong association of this task with the MTL, a region which is 

affected at very early stage by AD neuropathological decline, it is unclear if this is the 

case in the early preclinical stage. 

In general it has been observed that verbal fluency discriminates accurately 

between MCI subjects and healthy controls  (Tabert, Manly, Liu, Pelton, Rosenblum, 

et al., 2006; Geslani, Tierney, Herrmann, & Szalai, 2005; Grundman, Petersen, Ferris, 

Thomas, Aisen, Bennett, Foster, Jack, Galasko, Doody, Kaye, Sano, Mohs, Gauthier, 

Kim, Jin, Schultz, Schafer, Mulnard, van Dyck, Mintzer, Zamrini, Cahn-Weiner, & 

Thal, 2004; Bennett, Wilson, Schneider, Evans, Beckett, et al., 2002). One of the 

questions arising from these studies is the utility of using different semantic 

categories to elicit different results. Standish et al., (Standish, Molloy, Cunje, & 

Lewis, 2007)showed no differences in performance on four different categories in 

MCI groups. The overall score discriminated this group from healthy elderly controls. 

Murphy et al.,(2006)found that amnestic MCI and AD produced fewer words in the 

semantic fluency task than controls, with relative preservation of performance of the 

letter fluency task in the amnestic MCI group. Vogel et al., (2005) studied 22 

individuals in the preclinical stage and 58 healthy controls and found significant 

differences on category fluency between individuals with slight cognitive impairment, 

but without dementia, and controls. Jones et al., (2006) studied 66 individuals in the 

preclinical stage of AD and 267 healthy controls and found that category fluency was 

impaired in individuals who developed AD one to three years later. Adlam et al., 

(Adlam, Bozeat, Arnold, Watson, & Hodges, 2006) investigating semantic memory in 
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mild AD and MCI showed a widespread impairment on all the semantic tasks used in 

the study with greater impairments in the MCI group. In contrast, the MCI group did 

not differ significantly from controls except on category fluency. Finally, Murphy and 

colleagues (Murphy, Rich, & Troyer, 2006) showed a similar trend in the pattern of 

performance in the category fluency task among controls, aMCI and AD.  Category 

fluency, therefore, appears to be affected in the preclinical stage of AD. 

However other studies have found that category fluency tasks are not sensitive 

to the decline in MCI, although MCI showed a trend toward that direction (Karrasch, 

Sinerva, Gronholm, Rinne, & Laine, 2005). The reasons for these contradictory 

findings could be ascribed to the difficulty to make a correct diagnosis of MCI or to 

include different MCI typologies. 

In summary, in the preclinical phase of AD, linguistic tasks that rely on 

semantic processes, including naming of line drawings, spontaneous writing, naming 

of famous people, and verbal fluency, appear to be the most vulnerable to the early 

effect of AD neuropathology. In contrast, tasks that use sub-lexical pathways, such as 

reading aloud, lexical decision, and repetition of words, seem to be relatively well 

preserved until the most advanced stages of the disease appear (Arango Lasprilla, 

Iglesias, & Lopera, 2003).  

Interestingly some authors examined finer aspects of verbal fluency tasks. 

Forbes and colleagues (2005) investigated the qualitative lexical characteristics of the 

individual items produced in the category fluency task by controls and minimal to 

moderate AD patients. They found that the age of acquisition (AoA) of items 

produced differentiated healthy controls from AD although this value wasn‟t a good 

predictor of AD severity. Holmes and colleagues (2006) found that AD patients failed 

to classify more late than early acquired objects as real compared to a control group, 
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showing a differential impairment in naming late acquired objects. These findings are 

consistent with other studies which indicate that AoA is an important factor in 

naming performance in AD (Funnell, 2005; Silveri, Cappa, Mariotti, & Puopolo, 

2002;Kremin, Perrier, De Wilde, Dordain, Le Bayon, et al., 2001). The analyses of 

these subtle changes may benefit the preclinical diagnosis of AD and might be useful 

in the development of cognitive interventions to maintain linguistic functioning or in 

the prevention of decline in patients at risk of developing AD.  

The existence of a group of people who are healthy carriers of a genetic 

mutation that has been likely identified at increasing risk of developing AD provides 

a unique opportunity to examine the appearance of symptoms in the preclinical phase 

of the disease, because these individuals will develop AD with a higher possibility 

than non-carriers. By comparing carriers of a genetic mutation for AD who do not yet 

have clinical symptoms of the disease to healthy non-carrier family members, it is 

possible to determine whether linguistic deterioration does indeed occur before the 

clinical phase starts and, if deterioration is found, this finding will provide an 

opportunity to elucidate which aspects of verbal expression are the first to deteriorate. 

A few studies have been published examining linguistic changes in the 

preclinical stage of familial AD. Some were descriptive case studies (Farlow, et al., 

1994; Newman, et al., 1994) which did not evaluate semantic-lexical processes or had 

a small sample sizes (Almkvist, Axelman, Basun, Wahlund, & Lannfelt, 2002). 

Recently a study proposed that semantic changes, as identified by alterations in the 

naming of famous faces task and in a description of the Cookie Theft Picture Card of 

the Boston Diagnostic Aphasia Examination, are present in healthy individual carriers 

of the E280A autosomial dominant mutation in the Presenil-1 gene on chromosome 

14, who in the future will develop Alzheimer‟s disease (Arango-Lasprilla, Cuetos, 



113 

 

Valencia, Uribe, & Lopera, 2007). It is, therefore, possible to detect semantic 

deterioration in individuals several years prior to the clinical diagnosis of probable 

familial AD using semantic measures, and early detection of these changes may also 

be possible in sporadic AD as well. 

It is not clear for these studies why lexical semantic abilities should be so 

vulnerable to the effect of neurodegeneration due to AD. One possibility might be the 

strong association of these abilities with a normal substrate (mediotemporal cortex 

and adjacent regions) which is affected by neuropathological changes very early in 

the course of the disease (Venneri, McGeown, Hietanen, Guerrini, Ellis, et al., 2008). 

It might also be that semantic abilities are refined and perfected over a long period of 

time and are represented across a wide network of normal structures (Vandenberghe, 

Price, Wise, Josephs, & Frackowiak, 1996). It might be, therefore, that development 

of mature semantic representations might depend on the integrity of a number of 

factors (i.e. environment, education, genetic profile). In this regard it might also be 

that ApoE ε4 could act as a stressor (first hit) preventing the development of mature 

semantic representations through the latent dysfunctional upregulation of tau and 

AβPP in areas responsible for development of semantic skills (see LEARn model, 

chapter 1 section 1.7.1.). As a consequence, these data provide a helpful background 

to build up useful endophenotypes which might provide more informative outcome 

for understanding the genetics of Alzheimer‟s disease associated with structural and 

functional brain changes and the cognitive reserve mechanisms preventing 

individuals from developing cognitive impairment. 
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3.3 Aims and Objectives 

 

3.3.1 Introduction 

 

Evidence from studies of language abilities in early AD (Croisile, Ska, Brabant, 

Duchene, Lepage, et al., 1996; K. E. Forbes-McKay, et al., 2005; K. E. Forbes-

McKay, et al., 2004; K. E. Forbes-McKay, et al., 2002; Pestell, Shanks, Warrington, 

& Venneri, 2000), in people at increasing genetic risk of AD (Arango-Lasprilla, et al., 

2007), retrospective language studies (Garrard, et al., 2005; Snowdon, Greiner, & 

Markesbery, 2000; Snowdon, et al., 1996) and prospective reports of preclinical 

semantic deficits in AD (Adlam, et al., 2006; Duong, Whitehead, Hanratty, & 

Chertkow, 2006; Marczinski & Kertesz, 2006) show that deterioration of semantic 

fluency (and semantic ability in general) seems, therefore, not only to distinguish 

normal from pathological age related decline, but may offer a useful prognostic 

indicator in mild cognitive impairment and high risk subjects. 

Impairment in semantic tasks in this population might indicate either that 

individuals who will develop AD never fully developed sophisticated semantic skills, 

or that the neuroanatomical substrate of semantic abilities is selectively sensitive to 

the earliest effects of AD neuropathology. The distributed nature of such semantic 

representations implies that any deficit in development may be so subtle that only 

sophisticated analysis of linguistic abilities in individuals at risk will detect them.  

Taken together, this research indicates that subtle aspects of semantic 

processing may be deficient in non-demented individuals with the ε4 allele and may 

serve as an early marker of AD, in the absence of deficits in more global measures of 

cognition. It is worth emphaising that most research in this area has produced 

inconsistent findings and has not succeeded in identifying cognitive endophenotypes, 
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perhaps because standard neuropsychological tests were used to assess the level of 

cognitive abilities. It is reasonable to hypothesise that those tests might not be 

sensitive enough to detect cognitive differences as a function of ApoE status.  

Only a few studies have been carried out to assess the sensitivity of these 

lexical semantic deficits (age of acquisition, typicality etc) in discriminating AD 

patients from controls (Venneri, et al., 2005) and no specific studies addressing this 

issue have been carried out in the preclinical stage of the disease. Moreover, the 

relationship between the presence of the ε4 allele in the genetic profile and deficits in 

specific semantic skills, investigated through an analysis of lexical semantic attributes 

of words produced in a fluency semantic task, has never been tested previously. 

The aim of this dissertation is to search for markers of language deterioration 

which might flag up the presence of abnormal brain ageing and to look for any 

potential interaction between genetic variation, language deterioration and abnormal 

brain ageing. Thus, it is worthwhile studying the relationship between the presence of 

this genetic mutation in the genotype of different groups (high risk and low risk AD 

and MCI individuals) and the functional spread of cognitive decline, to clarify 

whether and to what extent ApoE ε4 affects brain atrophy in these groups and to 

verify if lexical semantic deficits are also sensitive in discriminating preclinical 

populations at risk for AD. Furthermore, in order to document in the future the 

possible progressive nature of these lexical deficits in healthy people carriers of the 

ApoE ε4 allele, a secondary aim of this study was to  build up a set of  age and 

education based norms for age of acquisition, typicality and familiarity for items 

commonly produced on category fluency tasks. 
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The objectives of this study are: 

 

1. TO INVESTIGATE THE INTERACTION BETWEEN SEMANTIC AND 

GENETIC MEASURES IN AD AND MCI. 

 

Chapter 4 will focus on detecting possible differences in cognitive decline related 

to the presence of the ApoE ε4 allele in two small MCI and AD groups. 

Moreover, a category fluency task (animal and fruit categories) will be 

administrated and lexical semantic values will be calculated to test whether there 

is any statistically useful association or at least a trend in this direction between 

genotypic profile and abnormal lexical-semantic performance. Furthermore, this 

relationship will be further investigated in a bigger MCI sample.  

 

2. TO INVESTIGATE THE NEUROANATOMICAL SUBSTRATE OF 

LEXICAL SEMANTIC DECLINE IN MCI CARRIERS AND NON-

CARRIERS. 

 

In the first part of Chapter 5 a voxel morphometry study in a group of MCI and 

mild AD patients will be carried out to better clarify the relationship between 

ApoE ε4 status and regional grey matter volume. In particular to check if there is 

a similar ApoE ε4 related atrophy pattern across these two groups to confirm 

structural brain changes as a possible preclinical endophenotype, when associated 

with the presence of the ApoE ε4.  

The second study will focus on the interplay between genetic factors, brain 

atrophy and semantic-lexical deficits in MCI subjects. The aim is to investigate 

whether atrophy in medial temporal regions, which correlates strongly with age of 

acquisition and typicality effects and appears to discriminate normal from 
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abnormal cognitive decline, is also associated with the poor lexical semantic 

performance seen in amnestic MCI carriers of the ApoE ε4 mutation. 

 

3. TO GENERATE NORMATIVE DATA FOR LEXICAL SEMANTIC 

ATTRIBUTES (AOA, FAMILIARITY AND TYPICALITY). 

 

In order to generate normative data, age of acquisition, typicality and familiarity 

ratings will be collected from a large sample of healthy individuals between 20 

and 95 years of age, who vary in terms of education and sex. The results of this 

study will be presented in Chapter 6. 



118 

 

CHAPTER 4    Studying the relationship between ApoE 

status and lexical effects in mild Alzheimer’s 

disease and Mild Cognitive Impairment. 
 

 

4.1 Linking a genetic risk factor with cognitive predictors 

 
As reviewed in the earlier chapters, to this day, the aetiology of Alzheimer‟s 

disease (AD) remains broadly unknown and its natural history is heterogeneous 

across patients. At the genetic level, mutations of three genes have been identified as 

linked to early-onset familial AD; amyloid precursor protein (APP), presenilin 1 

(PSEN1) and presenilin 2 (PSEN2), but the inheritance of the disease as a mendelian 

trait arises in only 2% of all cases (Pericak-Vance, Grubber, Bailey, Hedges, West, et 

al., 2000). In sporadic AD genetic factors make a significant contribution to 

aetiology, but are not the main determining factor.  Most forms of AD have a 

complex aetiology and the putative environmental and genetic factors which 

contribute to causation appear to be necessary but not independently sufficient for the 

development of the disease.  The apolipoprotein E (ApoE) 4 gene on chromosome 

19 has been identified as a major risk factor for sporadic late-onset cases of AD. In 

established AD, the ApoE ε4 mutation is present in up to 50% to 60% of patients.  

Compared to those with no copies of the ε4 allele, individuals with one copy of this 

allele have a three to four times higher risk of developing AD.  Two copies of the ε4 

allele mean a tenfold increase in the risk of developing the disease (Corder, et al., 

1993). AD related ApoE variants consistently correlate with neurophysiological 

features, neurocognitive functions and biological markers including serum B-amyloid 

and ApoE level, lymphocyte apoptosis, brain bioelectrical activity, memory function, 
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cerebrovascular hemodynamics, blood pressure, cholesterol level (Cacabelos, et al., 

2003a). 

It seems reasonable, therefore, to look for possible endophenotypes in 

currently asymptomatic individuals whose genetic profiles may indicate a hereditary 

risk for developing AD. The search for cognitive markers has mainly focused on the 

presence of memory changes, a common early complaint of people who later develop 

AD (Backman, Small, & Fratiglioni, 2001). In recent years, however, research has 

shown that language also begins to deteriorate before the disease is manifested and 

diagnosed (Garrard, et al., 2005; Snowdon, et al., 1996). Some of the linguistic 

changes found in the early phase of AD include confrontation naming and verbal 

fluency problems (Alberca, Salas, Perez-Gil, Lozano, & Gil-Neciga, 1999; Appell, 

Kertesz, & Fisman, 1982; Bayles, Kaszniak, & Tomoeda, 1987; Bayles & Tomoeda, 

1983; Huff, Corkin, & Growdon, 1986), loss of vocabulary (Forbes-McKay, et al., 

2004; Forbes-McKay & Venneri, 2003; Forbes-McKay, et al., 2002) and difficulty 

with the naming of famous people (Semenza, Borgo, Mondini, Pasini, & Sgaramella, 

2000). In this regard AD patients seem to show more impairment to name unique 

entities such as famous people rather than objects and this pattern has been seen in 

predementia people and the amnestic subtype of mild cognitive impairment (aMCI) 

(Ahmed, Arnold, Thompson, Graham, & Hodges, 2008;Joubert, Felician, Barbeau, 

Didic, Poncet, et al., 2008), (P. Thompson, et al., 2002).  

Variants of the semantic fluency task have frequently been used to 

characterise the earliest linguistic alterations in AD.  Whilst simple and brief to 

administer, semantic fluency tasks generate potentially rich and salient data.  Apart 

from distinguishing control from patient performance (as controls consistently 

generate significantly more words than patients), category and letter fluency tasks 



120 

 

have also been used to discriminate between patients with semantic dementia, 

primary progressive aphasia and AD (Marczinski & Kertesz, 2006).  More detailed 

analysis of the characteristics of the words produced in a semantic fluency task may 

allow more sophisticated dissociations between patients with AD and healthy controls 

to emerge. For example, the study of spontaneous word retrieval in a semantic 

fluency task has shown that the lexical effect characterising word production in 

patients with AD might be a useful predictor of the disease. A longitudinal study 

carried out by Amieva et al., (2008) showed category fluency impairment about 12 

years before the patients fulfiled AD diagnostic criteria clinically. Naming and 

spontaneous speech experiments have shown that patients with AD have better 

preserved retrieval of words that are acquired earlier in life, that refer to items which 

are easier to imagine and that are more typical exemplars of their category (Kremin, 

Perrier, De Wilde, Dordain, Le Bayon, et al., 2001; Silveri, Cappa, Mariotti, & 

Puopolo, 2002; Silveri, et al., 2002; Kremin, et al., 2001). Similar results were found 

by Forbes-McKay et al., (2005). These authors showed that the words generated by 

AD patients tend to be shorter, earlier acquired, with higher frequency and more 

typical of the semantic category than the words generated by healthy controls. Each 

of these characteristics could be used to predict group membership to some degree, 

but the word attribute that was most successful in distinguishing patients from 

controls was age of acquisition. Used alone, this lexical factor was substantially better 

at discriminating patients from controls than number of words produced. Again it 

could be that age of acquisition task involves a more unique pattern of semantic 

knowledge than the more general one represented by the other semantic lexical 

domains like typicality, frequency or length and that this aspect of semantics might be 

more vulnerable to the early change due to AD. 
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Other studies examining verbal fluency in the preclinical phase of AD have 

found significant deficits in category fluency (Clark, Gatz, Zheng, Chen, McCleary, 

et al., 2009;Jones, et al., 2006; Vogel, et al., 2005). In particular these deficits seem to 

characterise individuals with amnestic mild cognitive impairment who will develop 

AD in later life (Adlam, et al., 2006; K. J. Murphy, et al., 2006), giving support to the 

sensitivity of category fluency for detecting early sign of significant impairment 

(Hodges, Erzinclioglu, & Patterson, 2006). However, because of the heterogeneity of 

the MCI population and the data contamination due to the presence in the sample of 

MCI who will never develop the disease, a better strategy to increase homogeneity in 

the sample might be the identification of a genetic mutation that confers a 

significantly increased risk for developing AD. As previously discussed, carriers of 

genetic mutations which increase the risk of developing AD such as the ApoE ε4 

allele are highly likely to develop AD and by comparing these carriers during the 

asymptomatic stage to healthy non-carriers, it might provide a unique opportunity to 

see if subtle semantic deficits appear before the clinical onset of the dementia 

syndrome and whether there is any parameter reliably altered in ε4 carriers that could 

be used as endophenotypes in the MCI population.   

Several studies have investigated the effects of the ApoE ε4 genotype on brain 

structure and function before and after the clinical onset of AD [e.g. (Bondi, et al., 

2005; Dickerson, et al., 2005;Fleisher, et al., 2005a; Reiman, et al., 2005; Reiman, et 

al., 2004; Scarmeas, et al., 2004a; Scarmeas, et al., 2005a; Drzezga, Lautenschlager, 

Siebner, Riemenschneider, Willoch, et al., 2003; Scarmeas, et al., 2003; Bondi, et al., 

2005; S. Y. Bookheimer, et al., 2000; Burggren, Small, Sabb, & Bookheimer, 2002; 

Corder, et al., 1997; de Leon, Convit, Wolf, Tarshish, DeSanti, et al., 2001; den 

Heijer, Oudkerk, Launer, van Duijn, Hofman, et al., 2002; Dickerson, et al., 2005; 
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Drzezga, et al., 2003; A. Fleisher, Grundman, Jack, Petersen, Taylor, et al., 2005; C. 

R. Jack, Jr., et al., 1998b; Lehtovirta, et al., 1995; Petrella, Lustig, Bucher, Jha, & 

Doraiswamy, 2002; Reiman, et al., 1996; Reiman, et al., 2005; Reiman, et al., 2004; 

Scarmeas, et al., 2004b; Scarmeas, et al., 2004a; Scarmeas, et al., 2005a; Scarmeas, et 

al., 2003; H. Soininen, et al., 1995). Young carriers of the ApoE ε4 mutation showed 

decreased cerebral metabolism in the areas characteristically affected in older patients 

with AD (Reiman, et al., 2004). In addition, despite identical performance to non-

carriers, asymptomatic ApoE ε4 carriers showed decreased fMRI activation in 

bilateral and posterior inferotemporal regions, and increased parietal activation during 

naming and fluency tasks, (Smith, et al., 2002; Smith, et al., 1999) . Carriers of this 

genetic mutation had resting metabolism and brain blood flow abnormalities which 

were detectable several decades before onset of the dementia syndrome. MRI based 

neuroanatomical studies have yielded less clear cut findings.  A number of studies 

have reported volumetric differences in the hippocampus, which did not reach 

significance levels between cognitive intact ApoE ε4 carriers and non-carriers [e.g. 

(Jack, Jr., et al., 1998b; Reiman, et al., 1998b)], while one study found significant 

reductions in hippocampal volume in carriers (Plassman, et al., 1997).  Significant 

differences in cortical thickness of hippocampal subregions (in entorhinal cortex and 

subiculum, but not in the main hippocampus body and in perirhinal cortex) were 

found in cognitively normal carriers (Burggren, et al., 2008).  Similarly, selective 

regional effects of the ApoE ε4 genotype on the subfield CA3 and the dentate gyrus 

of the hippocampus in normal ageing and AD were reported by another study 

(Mueller, et al., 2008).   

In this regard the aim of the studies reported in these chapters is to investigate 

the effect of genotype (ApoE ε4) on deterioration of semantic abilities in AD and 
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MCI patients to verify whether the presence of this mutation might help identify the 

semantic measures which best differentiate normal form abnormal ageing. In 

particular, to check if there are significant associations between poorer semantic-

linguistic ability in AD and MCI and the corresponding chromosome complement.  

As a proof of concept, two small studies were carried out to test whether there 

was any useful association between genotypic profile and abnormal lexical-semantic 

performance. Finally, a larger sample study was carried out to better understand the 

role of this association seen in the first two studies. 

 

4.2 STUDY I: Alzheimer’s disease 

 

4.2.1 Method 

 

4.2.1.1  Participants  

 

Twenty-nine patients with probable Alzheimer‟s disease of mild severity (20 

males and 9 females) and twenty-five age, sex and education matched controls 

participated in this study. The patients underwent neuropsychiatric assessment, 

neurological examination and extensive neuropsychological screening. All selected 

patients met the NINCDS-ADRDA criteria for a diagnosis of probable AD of mild 

severity, (Mckhann, et al., 1984) and none had radiological evidence of ischemic 

brain disease. Other causes of dementia were excluded according to published clinical 

criteria (Brun, Englund, Gustafson, Passant, Mann, et al., 1994; McKeith, Galasko, 

Kosaka, Perry, Dickson, et al., 1996; Roman, Tatemichi, Erkinjuntti, Cummings, 

Masdeu, et al., 1993). The AD patients had a mean Mini Mental State Examination 

(MMSE) score of 23 (SD 2.95). All patients were examined after at least six months 

and had their clinical diagnosis confirmed. None of the patients in this group met the 
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criteria for mild cognitive impairment (MCI) (Petersen, Smith, Waring, Ivnik, 

Tangalos, et al., 1999) as they all had difficulties in activities of daily living and\or 

instrumental activities of daily living at time of first referral. The participants were all 

British and English was their first language. All the patients recruited for this study 

were right-handed. 

 

4.2.1.2  Assessments 

 

Each of the patients completed a comprehensive neuropsychological test battery 

(see Table 4.1.), including Mini Mental State Examination (MMSE), semantic and 

phonemic fluency, Raven‟s coloured matrices, logical memory test, the Alzheimer‟s 

Disease Assessment Scale-Cognitive subscale (ADAS-Cog), the neuropsychiatric 

Inventory (NPI) with caregiver distress scale, the geriatric Depression Scale (GDS) 

and Activities of Daily Living (ADL) scale (completed by patient and caregiver 

independently). A blood sample was also collected in order to determine their ApoE 

status. Two genotype category subgroups were formed:  

- Category 1 (patients homozygous and heterozygous for the ApoE ε4 allele, 

ε4ε4\ ε3ε4) (N= 19, 8 homozygous and 11 heterozygous). 

- Category 2 (patients homozygous and heterozygous for the ApoE ε3 allele, 

ε3ε3\ ε3ε2) (N=10, 8 homozygous and 2 heterozygous). 

 

AD carriers had a mean MMSE score of 22.72 (SD = 2.86), AD non-carriers 

had a mean MMSE of 23.50 (SD = 3.17). The mean age of the carriers was 77.22 

years (SD = 8.48) with a mean education of 9.61 years (SD = 1.14). The AD non-

carriers had a mean age of 76.60 years (SD = 6.7) with a mean education of 13.20 
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years (SD = 3.42). Controls had a MMSE of 29.28 (SD = .98) with a mean education 

of 11.88 years (SD = 3.16) and mean age of 72.12 years (SD = 8.55). 

 

 

Table 4.1. Mean (SD) scores of the ApoE ε4 carrier patients on the neuropsychological testes 

compared to ApoE ε4 non-carrier patients.  
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4.2.1.3 Experimental procedure 

 

 

A semantic fluency task was used. Oral generation of words belonging to two 

categories (animals and fruits) was required. During the test administration, 

participants were asked to generate orally as many words as possible belonging to a 

given category, with the time limit of one minute per category. In order to control for 

order effects, the participants performed the trials in random order. Performance was 

scored in terms of the total number of acceptable words produced in the sixty-second 

trial for each category. Perseverations were not accepted. 

The length, frequency, typicality, imageability and age of acquisition value for 

each acceptable word were determined. The data included in the analyses were the 

mean attributional values for the words produced by each patient. 

 

4.2.1.4 Word attributes  

 

 

Age of acquisition 

Age of acquisition (AoA) values for words were taken from the rating collected 

for another study in a sample of twenty elderly healthy participants (10 males, 10 

females) aged between 73 and 92 years (mean = 76.2, SD = 5.53) with a mean 

education of 12.26 years (SD = 2.88) (Forbes-McKay, et al., 2005). Participants were 

asked to estimate the age (in years) at which they had learned each word. They rated 

the age of acquisition of 200 items (148 animals, 52 fruits) which was the total 

number of items generated in the course of testing by the majority of the participants 

in that study (4 patients and 24 controls). These controls were from a similar 

geographical and socio-cultural background as the patients and controls enrolled in 
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this study. Ratings acquired in this way have been shown to correlate highly with 

objective measures of AoA and therefore have good validity (Morrison, Chappell, & 

Ellis, 1997). 

 

Typicality 

Numerous studies have shown that access to semantic knowledge (e.g. picture 

identification and naming) is influenced by the typicality of category exemplars [(e.g. 

(Holmes, Fitch, et al., 2006)]. Typical exemplars which share similar features to one 

another (e.g. fox and lion) and the category prototype (animal) are named faster than 

atypical examples (e.g. Kangaroo or snake). Raters were given a list of all items split 

into two categories (animal and fruit). They were requested to rate the typicality of 

each item by using a 7-point Likert type rating scale, from 7 (most typical) to 1 (least 

typical). Based on the instructions given by Larochelle, Richard and Souliers (2000), 

they were asked to rate how well each exemplar (e.g. apple) represented its specific 

category (e.g. fruit). To control for order effects, the exemplars were shown in 

random order to raters ( Forbes-McKay, et al., 2005). 

 

Word Frequency 

The CELEX lexical database (Baayen, 1995) was consulted to obtain frequency 

values. This database gives two separate measures of frequency, that in the spoken 

language and that in the combined spoken and written language. Only the spoken 

values were used.  

 

Length 

Length was measured in terms of the number of letters in each word. 
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Imageability 

Research suggests that word retrieval may be influenced by the ease with which 

participants can generate a mental image of a given object. Bird et al., (2000) found 

that objects with a high imageabilty rating were named faster by semantic dementia 

patients than those with lower imageability rating. Imageabilty rating (1 with great 

difficulty to 7 very easily) were obtained from the Oxford Psycholinguistic Database 

(Quinlan, 1992). 

 

4.2.2 Results 

 

 

The patients (carriers and non-carriers) did not differ in age (F (2, 53) = 2.35, ns) 

when compared to controls, but showed a significant higher education, (F (2, 53) = 6.5, 

p < .05)], and, lower MMSE scores (F (2, 53) = 51.82, p < .001) than controls. 

The data from the semantic fluency task were analysed in detail using an 

ANCOVA with education as a covariate followed by post hoc comparison using the 

Sheffe test to compare group means. The analysis compared the control group and the 

two patient groups on the number of words produced and on their lexical 

characteristics. The words generated by the two groups (patients and controls) did not 

differ in length (F (2, 53) = 1.68, ns) or spoken frequency as recorded in the CELEX 

lexical database of spoken language (F (2, 53) = .193, ns). Patients produced fewer 

words than healthy elderly and the difference was significant (F (2, 53) = 51.94, p < 

0.01). Moreover, patients (carriers and non-carriers) produced significantly less 

imageable (F (2, 53) = 4.09, p < 0.50), more typical (F (2, 53) = 8.42, p < .00) and earlier 

acquired words of their category (F (2, 53) = 21.01, p < .00) when compared to controls.  
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Table 4.2. Mean (SD) number of words and mean lexical characteristic values of all words 

produced by AD carriers, non-carriers and controls. 

 

 

 

Post-hoc analyses showed that both carrier and non-carrier patients produced 

words which were more typical of their category, acquired earlier and more 

imageable than those produced by controls. However a more detailed look at the 

results showed that, although not significantly different from each other, the 

difference between the mean typicality value of AD carriers and controls was of 

greater significance than that between AD non-carriers and controls (p < .001 for 

carriers compared to controls; p < .05 for non-carriers compared to controls) (see red 

line in Tables 4.3. and 4.4. and Figure 4.1). 
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Table  4.3.  Mean (SD) number of words and mean characteristics lexical values for all words 

produced by AD ε4 carriers and controls. 

 

  
 

 

 

Table  4.4.  Mean (SD) number of words and mean lexical characteristic values all words produced by 

AD ε4 non-carriers and controls. 
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Figure 4.1. Mean typicality values in the AD (ε4 Carriers/non-Carriers) and controls. 

 

(* * p < .001; * p< .05)  

 

 

4.2.3 Conclusion 

 

Semantic memory impairment in AD is well documented (Chertkow & Bub, 

1990; Hodges & Patterson, 1995; Hodges, Patterson, Graham, & Dawson, 1996; 

Hodges, Salmon, & Butters, 1991, 1992; Lambon Ralph, Patterson, & Hodges, 1997), 

yet much of the research has tended to focus on the underlying cause of the deficit 

rather than trying to discover how early in the disease process are semantic skills 

affected. 

A study of patients with probable early AD, scoring above 23 on the MMSE 

(Folstein, Folstein, & Mchugh, 1975), revealed a subgroup with impairment on a 

range of semantic memory tasks, as well as a subgroup that performed flawlessly on 

these tasks (Hodges & Patterson, 1995). In a more recent study, using the same 

** 

* 
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MMSE score cut-off, Perry et al., (Perry & Hodges, 2000) reported impairments in 

the category fluency task from the Cambridge Semantic Battery and the Picture 

condition of the Pyramid and Palm Trees Test (Howard & Patterson, 1992). The 

development of cholinergic therapies for AD has highlighted the importance of early 

diagnosis and fuelled interest in the so-called MCI state, which is regarded as 

prodromal phase of AD (Grundman, Petersen, Ferris, Thomas, Aisen, Bennett, Foster, 

Jack, Galasko, Doody, Kaye, Sano, Mohs, Gauthier, Kim, Jin, Schultz, Schafer, 

Mulnard, van Dyck, Mintzer, Zamrini, Cahn-Weiner, Thal, et al., 2004; Petersen, 

Stevens, Ganguli, Tangalos, Cummings, et al., 2001). 

In attempting to detect AD pathology at the very early stage, episodic memory 

and attentional deficits have been the focus of most research to date, with few studies 

including any assessment of semantic memory. However, these studies have not 

found any deficit specific to AD mostly because these deficits (episodic memory for 

example), even though sensitivity to the effects of the disease can also be found in 

healthy people who may not develop AD (Celsis, 2000) or may be present in 

individuals with mild cognitive impairment who still maintain other cognitive 

function and have a normal functioning in daily life (Petersen, et al., 1999). In a study 

by Chen et al. (2001) subjects with deficits in the domain of episodic memory, but not 

fulfilling clinical criteria for AD, were found to be impaired on a category fluency 

task. These results concur with previous studies, which found category fluency to be a 

very sensitive assessment of semantic impairment (Hodges & Patterson, 1995; 

Hodges, et al., 1996; Perry & Hodges, 2000). In contrast, Albert et al., (2001) 

reported normal performance on naming and category fluency task in a group of 

patients categorised at the .5 stage in the clinical dementia rating (CDR) scale 

(Hughes, Berg, Danziger, Coben, & Martin, 1982). This evidence highlights the need 
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to use well-defined criteria for MCI and the possibility to discover sensitive indices 

through the semantic assessment. 

Several studies have underlined the usefulness of word lexical attributes such as 

frequency, typicality, age of acquisition, and imageability in the detection of semantic 

impairment in patients with Alzheimer‟s disease (Forbes-McKay, et al., 2005). It has 

been seen that age of acquisition and frequency, for example, affect differentially the 

way in which healthy participants and patients answer during semantic task, with 

early acquired and high frequency words named more accurately by healthy elderly 

people (Hodgson & Ellis, 1998)and with later acquired words being more vulnerable 

to cognitive dysfunction (Cuetos, Aguado, Izura, & Ellis, 2002)It could be, therefore, 

that these lexical parameters might detects changes due to AD at a very early stage of 

the pathology. Some studies showed that these lexical indices effects reliably 

differentiated normal and pathologically ageing groups, including those affected at a 

minimal level, with a high degree of accuracy (Holmes, Fitch, et al., 2006; Forbes-

McKay, et al., 2005; Holmes, Jane Fitch, & Ellis, 2006).  Other evidence is 

increasingly becoming available that such subtle semantic deficits may be detectable 

very early in the course of AD and also in at-risk groups before sindromal diagnostic 

criteria are met. For example, recent studies have detected lexical semantic retrieval 

deficits in patients with mild cognitive impairment (Vandenbulcke, Peeters, Dupont, 

Van Hecke, & Vandenberghe, 2007; Adlam, et al., 2006; Duong, et al., 2006; 

Ostberg, Fernaeus, Hellstrom, Bogdanovic, & Wahlund, 2005),  and in patients with 

heritable traits for early cognitive decline (Arango-Lasprilla, Cuetos, Valencia, Uribe, 

& Lopera, 2007;Miller, Rogers, Siddarth, & Small, 2005; Tirado, Munoz, Aguirre, 

Pineda, & Lopera, 2004).  
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In this regard this study aimed to verify the effectiveness of the lexical attribute 

of the words analyses as good predictors of AD in high risk patients (ε4 carriers) 

compared to non-carriers. This is the first study to have investigated the influence of 

the ApoE genotype mutations on the subtle lexical effects which characterises 

semantic deficits early in the course of AD. The behavioural indices from this study 

confirmed evidence from other studies which have shown that a qualitative 

deterioration of vocabulary characterises linguistic production in early AD. 

The finding shows that of the four lexical semantic indices taken into account in 

this study, typicality appeared to be the one more severely influenced by genotype. 

The effect of genotype, therefore, although strong overall and clearly impacting on 

global cognitive decline was only partially detectable on the semantic indices. A 

possible explanation might be that the effect of genotype was diluted by the advanced 

cognitive deterioration and could only be seen as a tendency to be of a stronger 

magnitude in ε4 carriers. 

To see whether this subtle influence might be more easily detectable at an 

earlier stage, the second study focused on a similar investigation in a group of mild 

cognitive impairment (MCI) subjects (Petersen, et al., 1999) . 

 

 

4.3 STUDY II: Mild Cognitive Impairment 

4.3.1 Method 

 

4.3.1.1 Participants  

 

 

Eighteen subjects with amnestic MCI were recruited from a referral 

neuropsychology centre of the Neurology Clinic at the University of Bologna. There 
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were 11 males and 7 females in the group. Eighteen age, sex and education matched 

controls were also tested. All MCI subjects had a neurological examination and 

extensive neuropsychological screening. They met the criteria for MCI of amnestic 

type (Petersen, et al., 1999)  as they all performed above the cut off score for any 

neuropsychological tests except memory tests and didn‟t have difficulties in activities 

of daily living and/or instrumental activities of daily living at time of referral. The 

MCI subjects had a mean Mini Mental State Examination (MMSE) score of 28.07 

(SD = 2.05). The mean age of MCI subjects was of 69 years (SD = 5.64) with a mean 

education of 8.85 years (SD = 4.89). 

The control group had a mean Mini Mental State Examination (MMSE) score 

of 28.71 (SD = 1.13). The mean age of the controls was 66.42 years (SD = 4.78) with 

a mean education of 11.57 years (SD = 4.75). 

 

4.3.1.2 Assessment 

 

 

Each of the MCI participants completed a comprehensive neuropsychological 

test battery (see table 5.5. below). A blood sample was also collected to determine 

their ApoE status. Two genotype category subgroups were formed:  

- Category 1 (subjects heterozygous for the ApoE ε4 allele, ε3ε4 as no patients 

homozygous for the ApoE ε4 were found in this group) (N = 7). 

- Category 2 (subjects homozygous and heterozygous for the ApoE ε3 allele, 

ε3ε3/ ε3ε2) (N=11, 9 homozygous and 2 heterozygous for the ε3 allele). 
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Table  4.5.  Mean (SD) scores of ε4 carrier MCI on the neuropsychological tests compared 

to ε4 non-carrier MCI.  

 

 

 

4.3.1.3 Experimental Procedure 

 

Materials, measures and procedures as in study I 

N.B. One additional lexical measure was used i.e. familiarity. 
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4.3.1.4 Word attributes  

 

As in study I with the exception of the additional attribute of familiarity. 

 

Familiarity 

Raters were given a list of items split into two categories (animals and fruit). 

They were given a 7-point rating scale, from 7 (very familiar) to (little familiar). They 

were asked to rate how familiar they were with a particular item. To control for order 

effects, the exemplars were shown in random order to raters. 

 

4.3.2 Results 

 

The MCI (carriers and non-carriers) and control groups did not differ in age (F 

(2,27) = -1.14, ns) education (F (2,27) = 2.93, ns) and MMSE scores (F (2,27) =0.83, ns). 

The data from the semantic fluency task were analysed in detail using a one way 

ANOVA followed by post hoc comparisons using the Sheffe test to compare group 

means. The analysis compared the control group and the two MCI subgroups on the 

number of words produced and on their lexical characteristics. Looking at the mean 

lexical characteristics of words produced by the MCI ε4 carriers it seems that this 

group tended to generate more typical, familiar and earlier acquired words of their 

category than those of non-carriers and controls (see Figures 4.2 and 4.3.). The 

differences did not reach statistical significance apart for number of words, where ε4 

non-carrier produced significantly more words than controls. However, where 

supporting the reason for each comparison (that is ε4 carriers vs control and ε4 non-

carriers vs controls for each characteristics) it appeared that the difference between 

the means of the non-carriers and the controls was smaller than that of carriers and 

the controls (see Tables 4.6 and 4.7). Overall, therefore, it seems that ε4 carriers 

produced words which are more typical, familiar and acquired earlier than controls 
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which in turn mirrored the same lexical pattern when compared to ε4 non-carriers 

(typicality and familiarity: ε4 carriers > controls > ε4 non-carriers; Age of 

Acquisition: ε4 carriers < controls < ε4 non-carriers). 

 

Table  4.6.  Mean (SD) number of words and mean lexical characteristic values of all words 

produced by the MCI ε4 carriers and control. 
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Table 4.7. Mean (SD) number of words and mean lexical characteristic values of all words 

produced by the MCI ε4 non-carriers and control. 

 

 
 

 

 

Figure  4.2. Mean values in MCI. No significant differences were found. A strong trend in the 

expected direction was present for Typicality.  
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Figure  4.3. Mean values in MCI. No significant differences were found. A strong trend in the 

expected direction was present for Familiarity (a) and Age of Acquisition (b). 

 

 

 

a) 

 
 
 

   

  b) 
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4.3.3 Conclusion 

 

 

The findings showed an association between lexical attributes of the words and 

the presence of at least one allele of the Apolipoprotein ε4 although group differences 

were not significant. However, it appears to be the rule, rather than the exception, that 

those patients who present with an isolated memory problem in the clinic reveal more 

widespread cognitive dysfunction when tested with more sensitive experimental 

measures.  

Many researchers  [e.g. (Petersen, et al., 1999; Tapiola, et al., 2008)] consider 

the group with a diagnosis of MCI to be in a transitional stage along a continuum 

between normal aging and dementia on the basis of memory performance. Duong and 

colleagues (2006) have reinforced and expanded this notion by describing a 

continuum for lexical-semantic measures in a group of patients clinically diagnosed 

as “amnestic” MCI (Petersen, et al., 1999). This study corroborates recent 

epidemiological observations that subtle cognitive impairments, such as language, 

may co-occur with the readily observed memory impairments (Adlam, et al., 2006; 

Duong, et al., 2006; Petersen, et al., 1999; Ritchie, Artero, & Touchon, 2001). Of 

interest is also the recent evidence from cognitive performance on lexical/semantic 

tasks in healthy individuals who carry genetic mutations for familial AD. Poorer 

semantic performance, when compared to non-carriers, was reported in otherwise 

asymptomatic carriers of a genetic mutation for familial AD (E280A presenilin-1 

gene) (Arango-Lasprilla, et al., 2007).This suggests, for the first time, a possible link 

between language skills and the ApoE genotype mutations to account for these early 

lexical-semantic impairments. The results are encouraging but larger samples of both 

MCI subjects and controls are needed. If confirmed in larger groups, semantic indices 

associated with genetic mutations may offer a useful prognostic indicator in mild 
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cognitive impairment. Moreover, these very preliminaryfindings go in a similar 

direction as larger studies of other cognitive abilities in healthy elderly (Lessov-

Schlaggar, Swan, Reed, Wolf, & Carmelli, 2007; Tupler, et al., 2007).  

 

4.4 STUDY III: Influence of ApoE status on lexical-semantic skills 

in Mild Cognitive Impairment 

 

4.4.1 Introduction 

 

 

 

As already discussed above and in the previous chapters, Alzheimer‟s disease is 

a very complex pathology whose aetiology is still the object of research in many 

studies. Different approaches have been used in order to find a clearer pathway that 

lead to the underlying mechanism of the pathology. The analyses of cognitive 

functions supported by neuroimaging techniques has shown which neuronal 

substrates and cognitive characteristics are mostly associated with this disorder at the 

very early stage (for a review see Chapter 1). Moreover, genetic studies have 

identified the ApoE 4 allele as the major risk factor for sporadic late-onset AD and 

have investigated the effects of this genotype on brain structure and function before 

and after the clinical onset of AD (Bookheimer, et al., 2000; Jack, Jr., et al., 1998). 

The purpose of these studies has been that of finding some specific features that could 

improve accuracy in AD diagnosis.  This evidence encouraged the search for 

preclinical markers in carriers of this mutation, focused mainly on those cognitive 

functions affected in people at the early stage of the disease. Among the possible 

endophenotypes, episodic memory and language deterioration have been the major 

candidates. However, studies of memory changes in AD and in predementia 
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individuals have not brought to light any clear preclinical indicators, probably due to 

the fact there are no unique features of the AD pathological changes. In contrast, 

evidence of lexical-semantic deterioration in AD at the preclinical stage and in people 

at risk have suggested the utility to further investigate the role of these indices in 

predicting abnormal decline. In particular, studies using semantic fluency tasks as 

possible AD discriminatory clinical tools found interesting results. Qualitative 

analyses of category fluency performance highlighted the role of the lexical 

characteristics of the words in the detection of semantic impairment in AD patients 

(Forbes-McKay & Venneri, 2005), in MCI (Vandenbulcke, et al., 2007; Adlam, et al., 

2006)  and in patients with a genetic trait for familial AD (Cuetos, et al., 2007). This 

converging evidence brought us to investigate whether and to with extent subtle 

semantic deficits associated to a high probability of developing AD could be 

considered as a reliable preclinical indicator which might ensure greater diagnostic 

accuracy at this early stage.  

The first study focused on searching for a lexical endophenotype in mild to 

moderate AD, and observed a qualitative deterioration of vocabulary in AD but by 

this stage the effect of genotype was only detectable on the semantic indices as a 

tendency to be greater impact in ε4 carriers (see section 4.2.5.). The impact of the ε4 

mutation is age dependent, and shows its highest peak by the age of 70 to dissipate on 

the way to 80 (Breitner, et al., 1999). The high mean age of our participants (77.22) 

might therefore have influenced the effect of the ApoE ε4 allele on lexical measures. 

Moreover, given the dose-response way in which ε4-related deficits are determined 

(ε4ε4> ε4ε3> ε3ε3), another possible factor masking or attenuating the effect could 

have been the absence of ε4 homozygoutes in our sample, which might have 
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contributed to weakening the lexical difference between the carrier and non-carriers 

AD subgroups.  

The aim of the second study was to ascertain whether any ApoE 4 mutation 

effect on lexical semantic skills could be more clearly identified at the mild cognitive 

impairment stage, when the neuropathological effect of the disease should be more 

limited and confined.  The results showed again a stronger effect of ε4 allele, 

although, lack of statistical power prevented the detection of a significant difference 

between carriers and non-carriers. 

The aim of this third study, therefore, was to characterise the relative 

contribution of genetic influence to individual differences in both cross sectional 

performance and decline of linguistic abilities in a larger amnestic MCI sample. 

Semantic competency was assessed by determining the lexical attributes (i.e. age of 

acquisition, typicality, familiarity) of words produced in a category fluency task, as in 

the earlier studies. 

 

4.4.2 Method 

4.4.2.1 Participants 

 

 

Thirty subjects with amnestic MCI were recruited from a large pool of referrals 

to the specialist referral unit for memory and other cognitive disorders at the 

University of  Parma, Italy.  There were 14 males and 16 females in the group.  

Twenty two age and education matched controls (4 males and 18 females) were also 

tested.  A diagnosis of amnestic MCI was reached based on published criteria.  All 

MCI subjects had a full clinical assessment including neurological examination and 

extensive neuropsychological screening. They met the criteria for MCI of amnestic 
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type (Petersen, et al., 2001)  as they all performed above published cut-off scores on 

all neuropsychological tests except for tests of long term memory. None had any 

difficulties in activities of daily living and/or instrumental activities of daily living at 

time of referral. To exclude the presence of dementia, all individuals had 

comprehensive clinical and neuropsychological examinations (including assessment 

of activities of daily living), and did not meet the international published guidelines 

for the diagnosis of different types of dementia (McKeith, et al., 1996; Roman, et al., 

1993; Brun, et al., 1994; Mckhann, et al., 1984). Individuals were included only if 

there was no neuroimaging evidence of cortical or subcortical vascular lesions on CT 

or MRI scan and if there was no history of hypertension, diabetes mellitus, transient 

ischemic attacks, or cardiovascular problems.  Additional exclusion criteria included 

the presence of significant symptoms of depression, a history of psychiatric disorders 

and treatment with antipsychotic or psychoactive medication at the time of 

investigation.  A blood sample was also collected to determine the APOE status of 

both MCI and control participants.  On the basis of their genetic profile the MCI 

sample was divided in a 4 carrier subgroup including 18 subjects (8 male and 10 

female), all heterozygous for the ApoE 4 allele ( 3 4) and a non-carrier subgroup 

including 12 subjects (6 male and 6 female) homozygous and heterozygous for the 

ApoE 3 allele ( 3 3/ 3 2).  No ApoE 4 carriers were found in the control group. 

MCI carriers had a mean MMSE score of 26.61 (SD = 2.22), a mean age of 70.61 

years (SD = 9.61) and a mean education of 10.94 years (SD = 5.17).  MCI non-

carriers had a mean MMSE score of 27.58 (SD 1.56), a mean age of years 72.50 (SD 

= 9.11) and a mean education of 7.83 years (SD = 4.20).  The control group had a 

mean MMSE score of 28.95 (SD = 0.84), a mean age of 66.59 years (SD = 9.23) and 

a mean education of 10.05 years (SD = 4.41). The same exclusion criteria used in the 
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recruitment of the MCI sample were adopted for the healthy older adult sample.  The 

same international guidelines used to exclude the presence of a dementia syndrome or 

to ascertain the presence of mild cognitive impairment in the MCI sample were also 

used in the recruitment of the healthy older adult sample.  The study received local 

ethics committee approval and all MCI and control participants gave informed 

consent to their participation in the study. 

 

4.4.2.2 Neuropsychological assessment 

 

 

All MCI subjects completed a comprehensive neuropsychological test battery.  

The neuropsychological test battery included the MMSE, category and letter fluency 

tasks; the Rey complex figure task (direct and delayed copy), the Raven standard 

coloured progressive matrices (PM 47), the prose memory task; the visual-spatial 

supra-span learning test; a digit cancellation task and the Stroop test. 

 

4.4.2.3 Experimental Procedure 

 

 

A category fluency task including the categories of fruit and animals was used.  

Performance was evaluated by collating the total number of words produced for these 

two categories and by determining the lexical attributes (length, typicality, familiarity 

and age of acquisition) for each acceptable word.  Patients and controls performed 

two 60 second trials (one for animals and one for fruit) during which they were 

requested to produce orally as many exemplars belonging to the target category as 

possible.  Each of the items produced for this task was then scored in terms of lexical 

attributes (see below).  The data included in the analyses were the mean attributional 

values of the words produced by each person. 
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4.4.2.4 Word lexical semantic attributes  

 

 

Age of acquisition 

 

Age of acquisition (AoA) values for words were obtained by asking a sample of 

46 healthy older adults [25 females, 21 males, mean age 68.87 years (SD = 7.68), 

mean education 9.76 years (SD = 5.09), mean MMSE 28.69 (SD = 1.03)] to rate the 

AoA of 289 words (66 fruit and 223 animal words) produced by all MCI and control 

participants in this study following the procedure reported in the study by Forbes-

McKay et al., (2005).  Each participant was presented with a random list of all 289 

items and asked to estimate the age (in years) at which they had learned a given word 

and its meaning in spoken or written form.  Harmonic mean AoA ratings for each 

item were calculated and used in the analyses.  These raters were from a similar 

geographical and socio-cultural background as the participants enrolled in this study.  

Ratings acquired in this way have been shown to correlate highly with objective 

measures of AoA and therefore have good validity (Morrison, et al., 1997). 

 

Typicality 

See details in study I page 127. 

 

Familiarity 

Raters were given a list of items split in two categories (animals and fruit).  

They were given a 7-point rating scale, from 7 (very familiar) to 1 (little familiar).  

They were asked to rate how familiar they were with a particular item.  To control for 

order effects, the exemplars were shown in random order to raters. 

 

Length 

Length was measured in terms of the number of letters in each word. 
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4.4.3 Results 

 

 

There was no significant difference in age (F (1, 50) = 3.37 ns) nor in education 

(F (1, 50) = 0.07, ns) between the MCI sample and the controls. No significant 

differences were found between the two MCI 4 carriers/non-carriers subgroups and 

the controls for age (F (2, 49) = 1.81, ns) and education (F (2, 49) = 1.65, ns).  

 

4.4.3.1 Neuropsychological assessment  

 

 

The means and standard deviations of each MCI subgroup‟s score on the tests 

included in the standard neuropsychological battery are shown in Table 4.8. (see 

below).  Although the MMSE score in the MCI group remained well above cut-off on 

this screening test, there was a significant difference in mean MMSE scores between 

the MCI group and the controls (F (1, 50) = 18.23, p < .001).  A comparison between 

MMSE scores in MCI 4 carriers, MCI non-carriers and controls revealed that there 

was a significant difference between the MCI subgroups and controls (F (2, 49) = 10.74, 

p < .001), but only the mean MMSE score of the MCI 4 carrier subgroup was 

significantly different from controls (p < 0.001), while that of MCI non-carriers was 

not. When directly compared, the scores of the two MCI subgroups ( 4 carrier/non-

carrier subgroups) did not differ significantly. 

The scores of MCI ε4 carriers and MCI non-carriers on each test in the 

neuropsychological assessment were compared with an ANOVA.  There were no 

significant differences between the two genetically defined subgroups in any of the 

tests included in the battery, except for scores on the category fluency task (F(1,28) = 

10.22, p < 0.01).  Individual scores of MCI ApoE 4 carriers/non-carriers on the prose 
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memory test fell below the established cut-off for the Italian population, while scores 

on all other tests in the neuropsychological battery were in the normal range and 

above the established cut-off for the Italian population. 

 

Table 4.8.  Mean (SD) scores of MCI ApoE ε4 carrier and non-carriers on the screening 

neuropsychological test. 
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4.4.3.2 Lexical-semantic assessment 

 

 

The mean number of words and mean lexical-semantic values for the words 

produced by the two MCI subgroups and by the control group in the category fluency 

task are shown in Table 4.9. 

 

Table 4.9. Mean (SD) number of words and lexical characteristic values of all words 

produced by the MCI ApoE ε4 carriers, non- carriers and controls on the category fluency 

task. 

 
 

 

 

There was a significant difference between the MCI subgroups and the control 

group in the mean number of words produced in the fluency task (F (2, 49) = 25.83, p < 

0.001).  Post-hoc analysis showed that both MCI subgroups were significantly 

different from controls (p < 0.001 for both comparisons), but they did not differ from 

each other. Mean word length of both the MCI subgroups and the controls did not 

differ (F (2, 49) = 2.24, ns), nor did mean word typicality (F ( 2,49) = 2.72, ns).  A 

significant difference between MCI 4 carriers/non-carriers and controls was found 

for word familiarity (F (2, 49) = 4.55, p < 0.02).  Post-hoc analysis showed that the 
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mean word familiarity of MCI 4 carriers differed significantly from that of controls 

(p < 0.02), but there was no significant difference between MCI non-carriers and 

controls nor between the MCI 4 carrier/non-carrier subgroups.  Mean AoA values of 

the MCI subgroups and controls were significantly different (F (2, 49) = 18.56, p < 

0.001). Post-hoc analysis, however, showed that the mean AoA values of words 

produced by MCI 4 carriers were significantly lower than those of both MCI non-

carriers (p < 0.005) and controls (p < 0.001).  No significant differences were found 

between MCI non-carriers and controls.  Multiple analyses of covariance were also 

carried out to rule out any possible spurious influence of age, education, gender or 

MMSE score difference on the number of words and on the lexical parameters of the 

words produced in the category fluency task.  Demographic variables and MMSE 

scores were all included as covariates in the analyses.  Significant group differences 

remained for number of words (F (2,45) = 13.31, p < 0.001), age of acquisition (F (2,45) 

= 9.08, p = 0.001) and for familiarity (F (2,45) = 3.91, p < 0.05), but no significant 

group difference was found for word length (F (2,45) = 0.84, ns) or typicality (F (2,45) = 

2.99, ns), although in this latter case the p value very closely approached significance 

level (p = 0.06). 
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4.5 Discussion 

 

Although a number of studies have separately examined ApoE ε4 in relation to 

the probability of developing AD and the influence that this gene may have on the 

cognitive performance in healthy subjects, no study has evaluated the predictive value 

of this genotypic mutation and the lexical attributes of individuals‟ vocabulary in 

combination. We found that spontaneous language in MCI 4 carriers was very much 

impoverished compared to healthy controls and their verbal output was characterised 

by significant lexical effects. There were a significantly smaller number of words 

produced, and a significant difference in the lexical semantic characteristics of their 

residual word production. The words generated by MCI ApoE 4 carriers were earlier 

acquired, more familiar and more typical of the semantic category than the words 

generated by healthy controls. The age of acquisition value and the number of words 

produced were the parameters showing the strongest effects, even when the effect of 

any difference in MMSE scores and/or demographic variables between the MCI 4 

carriers/non-carriers and controls were partialled out. Words produced by MCI 4 

carriers were significantly earlier acquired than those produced by controls, but also 

significantly earlier acquired than those produced by MCI non-carriers. For all other 

parameters, the performance of the two MCI subgroups was significantly worse than 

that of controls but there was no significant difference between the two genetically 

defined MCI subgroups. Earlier work  (Forbes-McKay, et al., 2005) showed that the 

number of words produced in a category fluency task and their lexical characteristics 

(typicality, length, frequency and age of acquisition) significantly discriminated AD 

patients from controls, with the mean age of acquisition of words generated, correctly 

classifying 95% of controls and 88% of patients. Moreover, the small number of 
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words generated by AD compared to controls did not significantly contribute to 

increasing the discriminatory power of the AoA word attribute. This was shown 

through a further analysis carried out by these authors to determine whether the 

differences in word characteristics between patients and controls remained when the 

mean attributional values were derived from a maximum of 10 words per participant 

(no more than the first five words produced in each of the two categories). It appears, 

therefore, that age of acquisition is a lexical parameter which is very sensitive even at 

a minimal level of neuropathological deficit.   

MCI 4 carriers had significantly poorer performance compared to MCI non-

carriers on the category fluency test, but there was no difference between the groups 

on the letter fluency test. Similar results have been reported by Venneri et al., (2008) 

with mild clinical AD.  This finding suggests that poorer performance in the semantic 

fluency task reflects a semantic (temporal) rather than executive (frontal) deficit. This 

dissociation might reflect the operation of two partly overlapping but dissociable 

neural systems for the two tasks. The left inferior frontal gyrus has been consistently 

associated with both phonologic and semantic operations in functional neuroimaging 

studies, but a recent review supports distinct dorsal-ventral locations for phonological 

and semantic processes within this structure (Costafreda, Fu, Lee, Everitt, Brammer, 

et al., 2006). fMRI studies have also suggested that the medial temporal lobe 

(especially the hippocampal formation and posterior parahippocampal gyrus) is 

required for the process of retrieval by category (Pihlajamaki, et al., 2000).  Letter 

fluency performance in contrast is known to rely on left frontal cortical regions and 

there is evidence that it can be affected by lesions in the white matter in this area 

(Fernaeus, Almkvist, Bronge, Ostberg, Hellstrom, et al., 2001). Morphometric 

evidence from a voxel based correlational study of mild AD has established a role for 
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structures of the anterior medial temporal cortex, the perirhinal cortex in particular, in 

category fluency but not in letter fluency (Venneri, et al., 2008). More severe deficits 

in category than letter fluency in carriers of the ApoE 4 mutation might, in turn, 

mean a more severe neuropathological burden in medial temporal regions. In MCI 

non-carriers the presence of more modest lexical-semantic deficits suggests that, 

despite similar MMSE and episodic memory deficits, there might be sufficient 

residual neural capacity in the perirhinal and anterior temporal cortex which can still 

support relatively efficient retrieval from long term semantic memory. This 

hypothesis is supported by other studies which have highlighted ApoE-related 

differences in cerebral structures, brain blood flow and metabolism, and cerebral 

activation in the medial temporal structures (including hippocampus, cingulate areas 

etc.), even in young healthy carriers [e.g. (Scarmeas & Stern, 2005) ]. Mediotemporal 

limbic structures and especially parts of the hippocampal complex are of course the 

areas which have been found severely atrophic in MRI studies of AD patients, with 

high levels of atrophy detectable years before a formal diagnosis is made (Fox & 

Schott, 2004). There is evidence that grey matter loss in medial temporal structures, 

especially perirhinal and parahippocampal cortex, as well as neocortical regions in the 

anterior temporal pole would result in degraded semantic outputs in patients in the 

early stage of AD. Such outputs are characterised by strong lexical effects (age of 

acquisition and typicality effect especially) Venneri, et al., 2008). It is therefore 

possible that MCI carriers might have more selective damage to the perirhinal cortex 

and other components of the memory retrieval system, and for this reason they show 

a more degraded semantic output with stronger lexical effects (age of acquisition 

especially) than non-carriers. An alternative explanation might be that the 

neuroanatomical substrate supporting retrieval from long term semantic memory is 
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selectively sensitive to the earliest effects of the ApoE 4 burden and its apparent 

interaction with AD pathology during the life course. This latter hypothesis finds 

some support in the evidence of lower metabolic activity in regions of the parietal and 

temporal cortex strongly associated with lexical semantic representations in 

asymptomatic carriers of the ApoE 4 mutation (Reiman, et al., 2004). 

Finally, the significant association between the ApoE 4 mutation and an 

accentuated semantic deficit in MCI subjects might be of some clinical relevance in 

this at risk population. A more sophisticated analysis of cognitive performance using 

tests like the category fluency task may provide clinically relevant early indicators of 

pathological brain ageing in individuals at greater risk of AD and trigger more 

detailed neuropsychological investigations in those subjects with poorer performance. 
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CHAPTER 5 Interplay between genetic factors brain 

atrophy and semantic-lexical deficits 
 

 

5.1 Introduction 

 

Alzheimer‟s disease is a challenging pathology and the reason why it is so 

difficult to make a diagnosis and to plan proper cognitive and pharmacological 

intervention is because of the heterogeneity of its symptoms and the non-peculiarity 

of its preclinical signs which can be seen even in people who will never develop this 

pathology. Multiple genes and environmental factors are believed to be involved in 

the pathogenesis and development of the disease through a complex interplay that is 

still largely unknown. Therefore, intensification of research in this field, focusing on 

the preclinical markers of this pathology, has arisen. To date, a large body of 

evidence has already shown that cognitive deficits and neuropathological hallmarks 

can be detected very early in the course of AD and even before the stage of clinical 

onset. Among the prodromal symptoms, marked neuronal loss in the medial and 

anterior temporal regions, such as the presence of neurofibrillary tangles and senile 

plaques, can be observed very soon in the course of the disease (Gomez-Isla, Irizarry, 

Mariash, Cheung, Soto, et al., 2003). Volumetric MRI studies showed hippocampal 

atrophy before the onset of the dementia (Fox, et al., 1996a; Jack, Jr., et al., 1999; 

Visser, et al., 1999a) with progressive deterioration along the continuum toward the 

disease (Fox, et al., 1996a). Cognitive deficits can also be seen at the preclinical stage 

of AD together with neuropathological changes. Besides the well known memory 

problems which have been the focus of many research studies for decades, language 

represents another useful target of investigation in order to better understand the 
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cognitive differences between healthy people who will never develop AD and those at 

risk of developing the disease. As mentioned in the previous chapters, language 

impairment occurs early in AD, affecting grammatical structure and vocabulary, 

(Forbes-McKay, et al., 2005), verbal ability (Convit, de Asis, de Leon, Tarshish, De 

Santi, et al., 2000; Jacobs, et al., 1995a; B. J. Small, et al., 1997b) and verbal fluency 

(Alberca, et al., 1999). Detailed linguistic analysis shows an abnormal pattern in 

semantic retrieval that characterises the residual linguistic production of these 

patients. Forbes-McKay et al., ( 2005) showed how the lexical characteristics of 

words such as age of acquisition (AoA), imageability and typicality might be affected 

in the residual linguistic skills observed in patients in the early stage of the disease. 

Venneri et al., (, 2008) found that these lexical semantic deficits correlate strongly 

with medial temporal atrophy and discriminate normal from abnormal cognitive 

decline. These language deficits which affect AD very early in the course of the 

pathology seem to be detectable already at the Mild Cognitive Impairment stage. 

Most studies, for example, using a fluency task as a measure of individuals‟ residual 

lexical abilities, showed the diagnostic utility of  this instrument in differentiating  

MCI and healthy people who will develop AD from those who won‟t (Risacher, et al., 

2009; Auriacombe, Lechevallier, Amieva, Harston, Raoux, et al., 2006; Blackwell, 

Sahakian, Vesey, Semple, Robbins, et al., 2004; G. W. Small, La Rue, Komo, 

Kaplan, & Mandelkern, 1997; Vogel, et al., 2005). Moreover evidence from VBM 

studies, which depicted a pattern of atrophy in brain areas typically affected by AD 

neuropathological changes in amnestic MCI (aMCI) who progress to AD, showed the 

importance of using this technique as a necessary tool toward a more vigorous 

approach to the detection of this disease (Baron, Chetelat, Desgranges, Perchey, 

Landeau, et al., 2001; Bell-McGinty, et al., 2005; Bozzali, et al., 2006a; Davatzikos, 
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Fan, Wu, Shen, & Resnick, 2008; Frisoni, Testa, Zorzan, Sabattoli, Beltramello, et 

al., 2002; J. Jack & Myette, 1997; Karas, Scheltens, Rombouts, Visser, van Schijndel, 

et al., 2004; Risacher, et al., 2009; Whitwell, et al., 2008). Unfortunately at this 

preclinical level a specific cognitive assessment linked to neuroimaging results, even 

though increasing the accuracy of diagnosis of AD, is still not enough to make its 

diagnostic value certain mainly due to the small proportion of amnestic MCI who 

progress to AD. A relatively new approach to investigate complex neurological 

disorders consists of linking specific genotypic factors to the behavioural and 

neuropathological expressions of that pathology. Only few studies have investigated 

the relationship between genetic susceptibility to AD (genetic risk factors) and the 

potential presence of the disease (potential markers) (Schoonenboom, Visser, Mulder, 

Lindeboom, Van Elk, et al., 2005). If mediotemporal atrophy already detected in the 

MRI and linguistic semantic deficits can be considered as valid biomarkers for AD, 

the presence of them in people at risk for AD could increase accuracy of diagnosis by 

showing predictable patterns.   

 To date, the ApoE ε4 is one of the major known risk factors for late-onset AD. 

It is present in higher frequency in AD subjects than it is in the normal population 

(Saunders, et al., 2000), lowers the onset of the disease in a dose-dependent 

way(Goldstein, Ashley, Gearing, Hanfelt, Penix, et al., 2001) and several studies have 

shown the importance of this mutation in preclinical diagnosis (Reiman, et al., 2001; 

Reiman, et al., 1996; Reiman, et al., 2005; Reiman, et al., 2004; Scarmeas, et al., 

2002; Scarmeas, et al., 2004a; Scarmeas, et al., 2005a; Scarmeas, et al., 2003; 

Scarmeas & Stern, 2006). PET studies during rest have shown abnormal cerebral 

metabolism for glucose in healthy young carriers in the same areas usually affected 

by AD neuropathology (Reiman, et al., 2004). fMRI studies showed altered patterns 
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of brain activation in the absence of any deficits in performance during a semantic 

memory task in healthy high risk people carrying the ApoE ε4 mutation (Bookheimer, 

et al., 2000; Seidenberg, Guidotti, Nielson, Woodard, Durgerian, et al., 2009; Smith, 

et al., 1999, 2002; Trivedi, et al., 2006; Woodard, Seidenberg, Nielson, Antuono, 

Guidotti, et al., 2009; Bondi, et al., 1995) . Interestingly the presence of this allele 

seems to influence also cognitive performance of healthy subjects since childhood 

(Jacob Raber, 2009). Findings of structural MRI studies are mixed. Some showed no 

significant difference in atrophy patterns between healthy carriers and non-carriers 

(Reiman, et al., 1998b), and only one showed a reduced hippocampal volume 

(Plassman, et al., 1997). Burggren et al. (2008) found reduced cortical thickness in 

hippocampal sub-regions in healthy ApoE ε4 carriers, whilst Muller et al., (Mueller, 

et al., 2008)found a regionally selective effect on CA3 and dental gyrus in normal 

aging and AD. Finally, Filippini et al.(2009a) showed grey matter volume (GMV) 

reduction in MLT structures, including the amygdala, hippocampus, parahippocampal 

gyrus and temporal fusiform cortex. ApoE ε4 is also involved in the cognitive decline 

seen in healthy subjects and Mild Cognitive Impairment. Caselli et al., (2009) showed 

that middle aged healthy subjects homozygotes for ApoE ε4 have higher rates of 

cognitive decline than ApoE ε4 heterozygotes or non-carriers before the diagnosis of 

MCI or AD. As in previous research with established clinical AD (Venneri, et al., 

2008; Forbes-McKay, et al., 2005; Venneri, et al., 2005) in our behavioural study (see 

Chapter 4 section 4.4 ) it was found that MCI ε4 carriers had poorer semantic 

performance than controls, while this was not the case for non-carriers. Another 

example of subtle semantic deficits in healthy carriers comes from the study of people 

carrying a genetic mutation for familiar AD (Arango-Lasprilla, Rogers, Lengenfelder, 

Deluca, Moreno, et al., 2006). Poor semantic performance, when compared to non-
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carriers, was found in asymptomatic carriers. These findings seem to provide in vivo 

evidence of a role of this mutation in AD; less clear, though, is its role in modulating 

the expression of the disease. Data in partial disagreement come from post–mortem 

and in vivo studies with the former reporting greater accumulation of AD 

pathological hallmarks in the neocortex of patients ε4 carriers than those without this 

allele (Tiraboschi, et al., 2004) and the latter reporting greater atrophy in the 

hippocampus, enthorinal cortex and temporal lobe with relatively preserved frontal 

volume in carriers, suggesting a region specific effect of the ε4 allele on brain atrophy 

rather than an overall greater disease severity (Hashimoto, et al., 2001; Pievani, et al., 

2009; Geroldi, et al., 1999) .  

On the basis of these results it seems reasonable to hypothesise that the 

presence of the “semantic endophenotype” in people carrying the ApoE vulnerability 

mutation might be associated with early atrophy in areas affected by neuropathology 

due to AD and involved in semantic memory retrieval (MLT regions including areas 

surrounding the hippocampus). In this section two studies are presented with the first 

aiming to test whether poorer lexical semantic competency in MCI ε4 carriers is 

related to more extensive grey matter volume differences in regions supporting 

semantic retrieval from long term memory, by comparing grey matter volume in MCI 

ε4 carriers/non-carriers and in non-carrier controls. In addition, a second study was 

carried out to better clarify the ApoE related patterns of atrophy over the whole cortex 

by direct volumetric comparisons in mild AD ε4 carrier/non-carrier patients and in 

MCI ε4 carrier/non-carrier subjects. 
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5.2  STUDY I: The relationship between ApoE ε4 genotype, brain 

volume and poorer semantic skills in patients with MCI. 

 

 

 

5.2.1 Aim of the study 

 

 

 The previous study (see Chapter 4 section 4.4) showed that a significant 

proportion of phenotype variability in performance on the fluency task was 

influenced by genetic factors. Individuals with MCI carrying the ApoE ε4 mutation 

seem to produce early acquired words than MCI non-carriers when compared to 

controls. Moreover, these semantic lexical deficits are one of the earliest 

characteristics of residual language in patients with AD (K. E. Forbes-McKay, et al., 

2005) and it seems to correlate with atrophy of the neuronal substrates which are 

affected by neuropathological changes (limbic area) very early in the course of the 

disease (A. Venneri, et al., 2008). In addition, VBM studies have been very 

informative and have detected patterns of atrophy in aMCI who progress to AD in 

brain areas typically affected by AD neuropathological changes (Risacher, et al., 

2009; Whitwell, et al., 2008).  

 Supported by significant results of the previous studies showing that  the 

sensitivity of lexical semantic parameters in detecting sublte deficits is more 

prominent in aMCI carriers and therefore that those parameters might be used as 

possible endophenotype of AD, the investigation was extened to the anatomical level. 

This approach was further supported by neuroimaging evidence showing the impact 

of the ApoE ε4 burden in healthy young people on areas usually affected by AD 

neuropathology (Woodard, et al., 2009; Reiman, et al., 2004; C. D. Smith, et al., 

2002). The aim of this study, therefore, was to investigate whether a differential 
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pattern of grey matter volume loss was detectable in aMCI ε4 carriers/non-carrier and 

to identify the anatomical correlation of the age of acquisition (AoA) effect in these 

genetically determined subgroups of aMCI patients.  

 

5.2.2 Methods 

 

5.2.2.1 Participants  

 

 

 Eighteen subjects with aMCI were recruited from a referral neuropsychology 

centre of the Neurology Clinic at the University of Modena and Reggio Emilia, Italy. 

There were 11 males and 7 females in the group. Twelve education matched controls 

were also tested.  All MCI subjects had a full clinical assessment including 

neurological examination and extensive neuropsychological screening. They met the 

criteria for aMCI(Petersen, et al., 2001) as they all performed within the cut off for all 

neuropsychological tests except memory tests and didn‟t have difficulties in activities 

of daily living and/or instrumental activities of daily living at time of referral.  

Additional exclusion criteria were the presence of depression, claustrophobia, 

psychiatric disorder, hypertension, diabetes mellitus, transient ischemic attacks or 

cardiovascular problems. A blood sample was also collected to determine their ApoE 

status. On the basis of this genetic profile the aMCI subjects were divided in two 

genotype categories: 

- Category 1 (7 subjects heterozygous for the ApoE ε4 allele ε3ε4) 

- Category 2 (11 subjects homozygous and heterozygous for the ApoE ε3 allele, 

ε3ε3/ε3ε2).  

 The aMCI subjects in category 1 had a mean MMSE score of 27.71 (SD = 

2.75). The mean age of aMCI carriers was 67.86 years (SD = 6.0) with a mean 
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education of 11.57 years (SD = 5.06). The aMCI subjects in category 2 had a mean 

Mini Mental State Examination (MMSE) score of 27.45 (SD = 2.38). The mean age 

of aMCI non-carriers was 70.82 years (SD = 4.77) with a mean education of 7.36 

years (SD = 3.52). The control group had a mean MMSE score of 29.16 (SD = 1.04). 

The mean age of the controls was 62.25 years (SD = 5.83) with a mean education of 

10.33 years (SD = 4.57). Local ethical committee approval was obtained and all MCI 

patients and controls gave written informed consent. 

 

5.2.2.2 Neuropsychological Assessment 

 

 

Each of the MCI and control subjects completed a comprehensive 

neuropsychological assessment. The following battery of neuropsychological tests 

was administered; the Mini Mental State Examination (MMSE), verbal paired 

associates, confrontation naming; semantic and letter fluency task, forward and 

backward digit span, visual spatial span, visual-spatial supraspan learning, Raven's 

standard progressive matrices (PM47), token test, Rey complex figure task (direct and 

delayed copy) and the Stroop test (error and time interference effects). Table 5.1 

summarises the neuropsychological profile obtained by the two MCI groups (carriers 

and non-carriers) and healthy controls. 
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Table 5.1. Mean (SD) neuropsychological scores of MCI carriers, MCI non-carriers and 

Controls. 

 

 

 

5.2.2.3 Experimental Procedure 

 

 

Lexical competency assessment 

Each individual performed a semantic fluency task in order to assess their 

lexical competency. Two semantic categories were administered; animal and fruit. All 
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the subjects were asked to produce as many words as possible belonging to these 

categories in two 60 second trials. The total number of words was recorded and the 

age of acquisition (AoA) value for each acceptable word was determined. The data 

included in the analyses were the mean attributional values for the words produced by 

each patient. Age of acquisition (AoA) values for words were taken from the rating 

collected for another study in a sample of normal elderly controls (see study III in 

Chapter 4). These controls were from a similar geographical and socio-cultural 

background as the patients and controls enrolled in this study. Ratings acquired in this 

way have been shown to correlate highly with objective measures of AoA and 

therefore have good validity (Morrison, et al., 1997). 

 

Structural MRI scanning: acquisition and analysis 

 

Three dimensional T1-weighted MRI images were acquired on a 3.0 T Philips 

Intera system with a Turbo Field Echo sequence. Voxel dimensions were 1.00 x 1.00 

x 1.00 mm. Field of view was 256 mm with a matrix size of 256 x 256 x 124, TR 9.9 

msec, TE 4.6 msec and flip angle 8°, total duration 4 minutes 41 seconds. A number 

of preprocessing steps were followed to isolate the grey matter (GM) from the 3D T1-

weighted structural scans before performing the statistical analysis using SPM5 

(Wellcome Department of Imaging Neuroscience, UCL, London, UK).  To correct for 

global differences in brain shape, structural images were warped to standard 

stereotactic space and segmented to extract grey matter, white matter and 

cerebrospinal fluid.  The grey matter segments were then modulated to correct for 

changes in volume induced by nonlinear normalisation and smoothed using a 

Gaussian filter set at 8 mm to reduce possible error from between-subject variability 

in local anatomy and render the data more normally distributed. Smoothed modulated 
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grey matter segments were entered into the analyses. Independent t-tests were used 

for group comparisons. In addition GM segments were entered into a voxel-based 

multiple regression analysis to investigate linear correlations between GM 

concentration and retrieval of later acquired words. Finally, a conjuction analysis was 

carried out to look at the AoA and ApoE ε4 conjunct effect. Age, number of years of 

education, MMSE and gender were also included in all the analyses as covariates. 

The x,y,z coordinates of the areas of significant correlation obtained from the 

analyses were first converted into Talairach coordinates using the Matlab function 

mni2tal (http://imaging.mrc-cbu.cam.ac.uk/downloads/MNI2tal/mni2tal.m) and then 

identified using the Talairach Daemon Client ( http://ric.uthscsa.edu/projects/tdc/ ). 

Unless otherwise specified height threshold was set at p < 0.05 uncorrected and a 

miminum extent threshold of 50 voxels was used for all analyses. An uncorrected 

height threshold was deemed acceptable, given the small sample size and based on a 

priori hypotheses which could be used to guide focus on specific regions of interest. 

A T2-weighted axial scan was also acquired prior to the 3D scan acquisition to better 

highlight the presence of any vascular lesions and to ensure that all participants 

included in the 3D structural imaging study had no significant vascular burden. 

 

5.2.3 Results 

 

 

The three groups did not differ in education (F (2, 28) = 2.67, ns) and MMSE 

scores (F (2, 28) = 1.88, ns) but were not matched for age [aMCI non carriers > aMCI 

carriers > control non carriers, (F (2, 28) = 8.39, p < .05)]. 

 

 

http://imaging.mrc-cbu.cam.ac.uk/downloads/MNI2tal/mni2tal.m
http://ric.uthscsa.edu/projects/tdc/


167 

 

5.2.3.1 Neuropsychological assessment 

 

 

An ANCOVA with age as a covariate was carried out among these groups 

(aMCI carriers, non-carriers and controls). There were no significant differences in 

any of the neuropsychological tests but one; in the verbal paired associates learning 

task the aMCI group (carriers and non-carriers) performed significantly worse than 

controls (p < .001), however no difference was found between aMCI carriers and 

aMCI non-carriers. 

The Age of Acquisition data from the fluency task were analysed in detail (see 

Table 5.1). ANCOVA showed a significant difference among the three groups in 

lexical performance (F (2, 28) = 7.394, p < .05). Post hoc Sheffe‟ analysis showed a 

significant difference (p = .01) in the AoA values of the aMCI carriers and non-

carrier compared to controls. 

 

5.2.3.2 Voxel-based comparison analysis 

 

 

Controls versus MCI carriers 

 

The direct grey matter volume comparison between non-carrier healthy control 

and aMCI ApoE ε4 carriers showed significant areas of atrophy in the left 

parahippocampal gyrus, posterior cingulate, precuneus, in the righ subcallosal gyrus 

and cuneus and in the thalamus, the caudate nucleus, the cerebellum and the lingual 

gyrus bilaterally. Significant areas of lower grey matter values were also found in the 

left middle and right inferior occipital gyrus, in the right middle, inferior and superior 
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frontal gyrus and in the temporal gyrus bilaterally. Table 5.2 shows all the areas of 

significant lower grey matter volume in aMCI carriers. 

 

Table  5.2.  Areas of smaller grey matter volume in carriers compared to controls.  

 

 
 

 

Controls versus aMCI non-carriers 

 

When the comparison was carried out to look for grey matter volume 

differences between non-carriers healthy controls and aMCI non-carriers, areas of 

significant atrophy were detected in the right uncus, in the left parahippocampal 

gyrus, precuneus, caudate nucleus, the hippocampus, thalamus and cuneus, and in the 

lingual gyrus and fusiform gyrus and cerebellum bilaterally. Further areas of lower 
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grey matter volume in aMCI and carriers were found in the middle and inferior 

frontal gyrus, in the middle, superior temporal gyrus bilaterally, in the left middle 

occipital gyrus, in the right rectal gyrus and in the left lentiform nucleus. Table 5.3 

shows a detailed summary of all the areas of significant atrophy in aMCI non-carriers. 

 

Table 5.3.  Areas of smaller grey matter volume in non-carriers compared toControls. 
 

 

 
 

 

 

aMCI non-carriers versus aMCI carriers 

A direct comparison between aMCI carriers and aMCI non-carriers showed 

areas of significant lower grey matter volume in non-carriers in the left cingulate 

gyrus, precuneus and the superior and inferior temporal gyrus; in the cerebellum, 
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middle occipital gyrus and superior, middle frontal gyrus bilaterally and in the right 

inferior frontal gyrus. Table 5.4 and Figure 5.1 show the areas of significantly smaller 

grey matter volume in aMCI non-carriers compared to aMCI carriers. 

 
Table 5.4.  Areas of smaller grey matter volume in non-carriers versus carriers.   

 

 
 

 

 

 

Figure 5.1. Smaller grey matter volume in aMCI non-carriers compared to aMCI carriers 
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aMCI carriers versus aMCI non-carriers 

 

This analysis showed the areas of lower grey matter volume in aMCI carriers 

where compared to aMCI non-carriers. Significantly greater atrophy in carriers was 

detected in the left parahippocampal gyrus and uncus, in the caudate nucleus (head), 

in the cerebellum and superior middle and medial frontal gyrus and lentiform nucleus 

bilaterally, and in the right cuneus, fusiform gyrus and middle temporal gyrus. Table 

5.5 and Figure 5.2 summarise the areas where significantly lower grey matter volume 

in aMCI carriers was found when compared to aMCI non-carriers.  

 

Table  5.5. Areas of smaller grey matter volume in carriers versus non-carriers.   
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Figure 5.2. Smaller grey matter volume in aMCI carriers compared to aMCI non-carriers. 

 

5.2.3.3 Voxel Based correlation analysis 

 

Multiple regression analyses were carried out to identify brain regions whose 

grey matter values significantly correlated with reduced retrieval of later acquired 

words. Age, years of education, MMSE score and gender were included in the model 

as covariates. 

 

AoA effect  

Residual later acquired words was correlated significantly with higher grey 

matter values in the parahippocampal gyrus, the middle temporal gyrus, superior, 

middle and medial frontal gyrus, and cerebellun bilaterally, in the right uncus, 

hippocampus and caudate nucleus, and in the left postcentral and supramarginal gyris. 

Table 5.6 and Figure 5.3 summarise the brain regions whose grey matter values 

significantly correlated with AoA values. 
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Table 5.6. Areas in which GM volume values significantly correlated with age of acquisition 

word values. 

 

 

 

 

 

 

Figure 5.3. Area of significant correlation between grey matter volume and age of 

acquisition values. 
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5.2.3.4 Voxel based conjuction analysis 

 

 

A conjunction analysis was carried out to show regions of significant overlap 

between volume differences in aMCI carriers versus non-carriers healthy controls and 

areas of significant correlation of grey matter volume and AoA values. Regions of 

overlap were found in the left caudate nucleus, right parahippocampal gyrus and in 

the thalamus bilaterally. Table 5.7 and Figure 5.4 show the results of this analysis. 

 

 
Table 5.7. Areas of overlap between volume loss in carrier compared to controls and those 

where correlation with semantic retrieval was found 

 

 
 

 
 

 

 
 

 

Figure  5.4. Areas of overlap between smaller grey matter volume in aMCI carriers 

compared to controls and those areas where a significant correlation with AoA values was 

found. 
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5.2.4 Conclusion 

 

 

 

This study aimed to investigate grey matter differences in aMCI carriers/non-

carriers when compared to healthy non-carrier controls and to clarify the interplay 

between ApoE ε4 burden in regions involved in semantic retrieval skills and the 

subtle lexical deficits seen in MCI patients carrying this mutation.  The behavioural 

data show no differences between the aMCI as a whole group and controls in any of 

the neuropsychological test except for score on the verbal paired associates learning 

task (p < .001). Significant differences in lexical performance (AoA values) were also 

seen between the aMCI group as a whole and controls. However, although only 

detectable as a trend, MCI ε4 carriers showed major impoverishment of semantic 

retrieval abilities in the category fluency task when compared to aMCI non-carriers. 

The VBM analysis identified different atrophy patterns between the genetically 

determined subgroups based on the presence of the ApoE ε4 allele. In aMCI carriers, 

lower grey matter volumes were mainly identified in mediotemporal structures, the 

posterior cingulate and parietal cortex when compared to non-carrier controls. aMCI 

non-carriers, although showing a broadly similar atrophy pattern in mediotemporal 

regions, they also had lower grey matter volume in some areas of the neocortex 

bilaterally. This different atrophy pattern was more evident during the direct aMCI 

carrier/non-carriers comparison which revealed smaller grey matter volume in 

parietal regions and in the temporal lobe for the aMCI non-carriers and smaller grey 

matter volume in the parahippocampal gyrus for the aMCI carriers. Correlation 

analysis showed an association between poorer retrieval skills and atrophy of the left 

parietal, medial temporal and frontal regions and cerebellum bilaterally. Finally, a 

conjunction analysis of regions of significant overlap between volume differences in 
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aMCI carriers versus non-carrier healthy controls and areas of significant correlation 

of grey matter volume and AoA values showed regions of overlap in the left caudate 

nucleus, right parahippocampal gyrus and thalamus bilaterally. 

 

 

5.3 STUDY II: The relationship between ApoE ε4 genotype and 

brain volume in patients with minimal to mild AD 

 

 

5.3.1 Introduction 

 

 

Evidence indicates that brain changes in individuals at genetic risk for 

developing AD begin many years or decades before the onset of the disease.  

Neuroimaging techniques such as MRI, fMRI and several variety of PET imaging, 

show differences at the group level between ApoE ε4 carriers and non-carriers in the 

severity of the brain change in AD, MCI and healthy controls (see Chapter 2 sections 

2.6.5, 2.6.6 and 2.6.7). Athough some studies have shown contradictory findings, 

most of them found greater mediotemporal vulnerability to the ε4 allele mutation 

across the different groups (Filippini, et al., 2009a; Pievani, et al., 2009; Burggren, et 

al., 2008; Mueller, et al., 2008; Reiman, et al., 2004; Thomann, et al., 2008; 

Pennanen, et al., 2006) . Cognitive deficits can also be seen at the preclinical stage of 

AD together with neuropathological changes, but to predict outcomes in those who 

have not yet developed the disease is a challenge mostly because of the lack of 

indicators which can consistently detect the disease. Supported by recent evidence 

which have shown that sophisticated methods of cognitive assessment associated with 

neuroimaging techniques can more accurately detect the distinction between normal 

and abnormanl cognitive decline (Venneri, et al., 2008), in the previous studies 

presented in this dissertation, it was found that lexical semantic deficits linked to 
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greater mediotemporal volume loss might be used as a cognitive endophenotype of 

AD pathology in a group of aMCI individuals carriers of the ApoE ε4. However, to 

better clarify whether the conclusion about the specific deteriorating effect of ApoE 

ε4 burden on the brain structures mainly confined in areas involved in semantic 

retrieval from long term memory is consistent, the next study was carried out to 

investigate wheter the differential pattern of neuropathological spread of neuronal 

loss observed in the two genetically identified MCI subgroups was also detectable at 

a more advanced stage of the disease such that of mild to moderate AD.  

 

5.3.2 Methods 

 

5.3.2.1 Participants 

 

Twenty nine patients with probable Alzheimer‟s disease of minimal to mild 

severity participated in this study.  The patients underwent neuropsychiatric 

assessment, neurological examination and extensive neuropsychological screening. 

None of the patients in this group met the criteria for MCI (Petersen, et al., 1999) as 

they all had difficulties in activities of daily living and\or instrumental activities of 

daily living at the time of first referral. A blood sample was also collected in order to 

determine their ApoE status.   

Two genotype category subgroups were found:  

-  Category 1 (patients homozygous and heterozygous for the ApoEε4 allele, 

ε4ε4\ ε3ε4) (N= 19, 8 homozygous and 11 heterozygous). 

- Category 2 (patients homozygous and heterozygous for the ApoE ε3 allele, 

ε3ε3\ ε3ε2) (N=10, 8 homozygous and 2 heterozygous). 



178 

 

AD carriers had a mean Mini Mental State Examination (MMSE) score of 

22.72 (SD = 2.86), AD non-carriers had a mean MMSE of 23.50 (SD = 3.17). The 

mean age of the carriers was 77.22 years (SD = 8.48) with a mean education of 9.61 

years (SD = 1.14). The AD non-carriers had a mean age of 76.60 years (SD = 6.7) 

with a mean education of 13.20 years (SD = 3.42). All selected patients met the 

NINCDS-ADRDA criteria for a diagnosis of probable AD of mild severity, 

(Mckhann, et al., 1984) and none had radiological evidence of ischemic brain disease. 

Other causes of dementia were excluded according to published clinical criteria 

(McKeith, et al., 1996; Brun, et al., 1994; Roman, et al., 1993). All patients were re-

assessed after at least six months from initial assessment and had their clinical 

diagnosis confirmed. The participants were all British and English was their first 

language. All the patients recruited for this study were right-handed. 

 

5.3.2.2 Structural MRI scanning: acquisition and analysis 

 

Three-dimensional T1-weighted MRI images were acquired on a 1.5T GE NVi 

MRI system with an SPGR sequence. Voxel dimensions were 0.937 mm × 0.937 mm 

× 1.6 mm. Field of view was 240 mm with a matrix size of 256 × 256 × 124. Total 

acquisition time was seven minutes and twenty six seconds. A number of 

preprocessing steps were followed to isolate the grey matter (GM) from the 3D T1-

weighted structural scans before performing the statistical analysis. The method of 

optimized voxel-based morphometry developed by Good et al., ( 2001)  was 

implemented to improve segmentation. This involved the creation of a customised 

template using the structural MRI scans of the patients from the study. The initial T1-

weighted images from the patients were normalised to the Montreal Neurological 
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Institute (MNI) template that was provided with SPM2 (Wellcome Department of 

Imaging Neuroscience, UCL, London, UK). The average of these normalised brains 

was taken to create the customised template. Customised grey matter priors for voxel 

classification were also made by segmenting the grey matter from the normalised 

images and creating an average from all the participants. Priors were also created for 

white matter (WM) and cerebro-spinal fluid (CSF). The initial T1 images were then 

segmented into grey matter, white matter and cerebro-spinal fluid (using the 

customised GM/WM/CSF templates as prior probability maps for tissue 

classification). The segmented grey matter images were then normalised to the 

customised GM templates. The normalisation parameters from this stage of the 

preprocessing were saved. Finally, the initial T1 images were then normalised by 

applying the newly acquired normalisation parameters. These normalised images 

were segmented once again using the customised grey matter templates. The grey 

matter images were smoothed with a 4 mm full width at half-maximum isotropic 

Gaussian kernel. This reduced between participant variability in the anatomy of the 

gyri and improved the normality of the distribution of the imaging data, both of which 

were important for the statistical analysis. Smoothed grey matter segments obtained 

with this procedure were entered into a voxel-based regression test comparison 

analysis using SPM2 along with age, education and MMSE score included as 

covariates. A height threshold of p < 0.005 was used. 
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5.3.3 Result 

 

 

AD ε4 carrier and AD non-carrier groups did not differ for age (t (26) = .19, ns) 

and mean MMSE score (t (26) = .66, ns) but AD carriers showed a significant lower 

education compared to non carriers: 9.61 mean education for AD carriers vs 13.20 

mean education for AD non-carriers (t (26) = 4.10, p < .001). 

 

5.3.3.1 Voxel-based group comparison 

 

AD ε4 carriers vs AD non-carriers 

 

This analysis showed the areas of lower grey matter volume in AD carriers 

where compared to AD non-carriers. Significantly greater atrophy in carriers was 

detected in the left precuneus, cuneus, posterior cingulate and superior frontal gyrus, 

and in the medial frontal gyrus bilaterally when compared to AD non-carriers (see 

Table 5.8and Figure 5.5). 

 
 

Table 5.8. Areas of lower grey matter density in AD carriers vs AD non-carriers. 
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Figure 5.5.  Areas of smaller grey matter volume in AD carriers compared to AD non-

carriers. 
 

 

 

AD non-carriers vs AD ε4 carriers 

 

AD non-carriers had significantly lower grey volume values in extensive 

regions of the temporal, frontal and parietal neocortex bilaterally (see Table 5.9 and 

Figure 5.6). Additional smaller grey matter volume was found in the thalamus 

bilaterally, in the bilateral cerebellum, cuneus and posterior cingulate cortex. 
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Table  5.9. Areas of lower grey matter density in AD ε4 non-carriers vs AD carriers. 

 

 

 

 

Figure 5.6. Areas of smaller grey matter volume in AD ε4 non-carriers compared to AD 

carriers. 
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5.3.4 Conclusion 

 

This study aimed to investigate whether the burden of the ApoE ε4 had an 

effect on the topographical spread of grey matter volume loss in mild to moderate AD 

carriers and non-carrier of the ε4 mutation. The purpose was to verify if the 

detrimental role of this mutation found in aMCI individuals was consistent across 

groups characterised by having impoverished semantic retrieval skills and was 

maintained at a later stage in the disease process. VBM comparison analysis 

confirmed the observations in the genetically determined aMCI subgroups. AD 

carriers showed greater grey volume loss in mediotemporal structures compared to 

AD non-carriers whose atrophy was instead more widespread in more neocortical 

region 

 

5.4 Overall discussion 

 

 

Various studies have already shown the efficacy of the VBM technique to 

evaluate correlations between cognitive performance and local brain morphology in 

aMCI (Schmidt-Wilcke, Poljansky, Hierlmeier, Hausner, & Ibach, 2009; Barbeau, 

Ranjeva, Didic, Confort-Gouny, Felician, et al., 2008; Thomann, et al., 2008; 

Hamalainen, Tervo, Grau-Olivares, Niskanen, Pennanen, et al., 2007a; Chetelat, et 

al., 2003)  and in AD (Di Paola, Macaluso, Carlesimo, Tomaiuolo, Worsley, et al., 

2007; Berlingeri, Bottini, Basilico, Silani, Zanardi, et al., 2006). However, our study 

is the first to have investigated the effect of conjuncting a genetic mutation and 

specific lexical semantic deficits together as a unique endophenotype at the 

preclinical stage of Alzheimer‟s disease. 
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In the first study we examined MRI scans from 30 participants (7 aMCI 

carriers, 11 aMCI non-carriers and 12 non-carrier controls) to a) characterise grey 

matter volume differences between the three groups, b) detect anatomical features 

associated with impaired semantic retrieval and c) identify areas of overlap between 

grey matter volume group (aMCI carriers versus controls) differences and clusters 

associated with poorer semantic retrieval skills. Several interesting conclusions can 

be drawn from the obtained results. There were similar patterns of atrophy in both 

aMCI ε4 non-carrier and aMCI ε4 carrier groups when compared to healthy non-

carriers, with greater involvement of medial temporal structures, precuneus and 

posterior cingulate cortex for the epsilon 4 carriers. The direct aMCI ε4 carriers/non-

carrier comparisons highlighted a more evident and specific atrophy of 

mediotemporal regions (parahippocampal gyrus) in the aMCI ε4 carriers but greater 

presence of smaller neocortical grey matter volume (in particular temporal lobe and 

precuneus) for the aMCI ε4 non-carriers. At the cognitive level aMCI ε4 carriers and 

non-carriers, as a group, performed worse in all the neurospychological tests 

compared to controls including impoverished semantic retrieval abilities in the 

category fluency task. However, ε4 carriers showed the most impoverished output of 

all. It could be that these grey matter volume differences within the two aMCI groups 

could explain the different degree of semantic deficit observed in the aMCI ε4 

carriers and non-carriers when compared to controls. The findings from the 

correlation and conjunction analyses seem to corroborate this hypothesis. Poorer 

retrieval skills resulting in production of earlier acquired words are associated with 

atrophy in the left parietal regions and in the medial temporal and frontal regions, and 

cerebellum bilaterally. The conjunction analysis, however, underlines the role of 

parahippocampal gyrus, caudate nucleus and thalamus as areas highly involved in 
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poor semantic retrieval skills when associated with the presence of the ApoE ε4 

mutation. 

Few VBM studies have assessed brain morphology in MCI patients. The most 

common findings are decreased grey matter volumes in the medial temporal regions, 

posterior and neocortical part of the temporal lobes, posterior cingulated cortex, 

precuneus and frontal areas (Stoub, et al., 2006; Whitwell, et al., 2008; Chetelat, et 

al., 2005) . Smaller grey matter density in medial temporal regions in aMCI ε4 

carriers compared to non-carriers has been found (Thomann, et al., 2008) and 

accelerated atrophy in ε4 carriers mainly in the hippocampus has also been reported 

(Morra, Tu, Apostolova, Green, Avedissian, et al., 2009). Moreover, after 

neuroimaging studies have shown areas of atrophy in aMCI ε4 carriers compared to 

non-carriers in medial temporal regions, with greater atrophy in the parahippocampal 

gyrus, amygdala and thalamus (Pennanen, et al., 2006), and abnormal activation in 

the thalamus and medial temporal structures during verbal paired associates learning 

in asymptomatic individuals with family history of AD (Bassett, et al., 2006). The 

morphometric data, therefore, confirm a selective genetically determined anatomic 

impact of the ε4 mutation on brain atrophy of people at the preclinical stage of AD. 

This observation is also supported by the findings of the second study which shows a 

similar pattern of volume differences in AD ε4 carriers compared to non-carriers. All 

these findings lead to the suggestion of a modulating and specific impact of the є4 

allele on the anatomical expression of the disease.  

Another interesting point that comes from these studies is the relationship 

between the specific ε4 effect on MCI and AD brain volume and the different degree 

of semantic impairment demonstrated across these groups. A large body of evidence 

shows linguistic deficits in mild AD, in mild cognitive impairment subjects of 
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amnestic type who will convert to AD and in people with a genetic mutation for 

familial AD (Risacher, et al., 2009; Adlam, et al., 2006; Arango-Lasprilla, et al., 

2006; Duong, et al., 2006; Holmes, Fitch, et al., 2006;  Forbes-McKay & Venneri, 

2005). Imaging studies with fronto-temporal dementia and Alzheimer‟s disease, 

moreover, reported a relationship between volume value mediotemporal and temporal 

neocortical regions and semantic fluency performance (Birn, Kenworthy, Case, 

Caravella, Jones, et al.; Venneri, et al., 2008). 

The greater atrophy involvement of the mediotemporal regions in ε4 carriers 

could be linked to the greater semantic deficits in subjects carrying this mutation. The 

influence of neocortical atrophy, instead, might be involved in the less severe but still 

present semantic deficit in aMCI non-carriers when compared to controls. It might be, 

that people with this mutation don‟t need extensive neocortical damage to show 

lexical semantic deficits, suggesting the presence of a less structured compensatory 

network compared to aMCI non-carriers whose more extensive neocortical atrophy 

doesn‟t seem to cause cognitive deficits to the same extent seen in aMCI carriers. 

This hypothesis seems to be supported by fMRI findings which showed greater signal 

change during semantic memory task in MCI and high risk groups than controls in 

medial temporal regions, area of the temporo/parietal junction and posterior 

cingulate/precuneus with a greater involvement of medial temporal structures for ε4 

carriers (Woodard, et al., 2009). 

It seems, therefore, that the early and greater semantic deficit observed in MCI 

carriers compared to non-carriers might be due to the greater neuropathological 

burden associated with the presence of the ApoE ε4 allele influencing those structures 

necessary for efficient semantic retrieval from long term memory. The presence of 

semantic deficits in MCI non-carriers is associated with greater neocortical 
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deterioration and highlights the additional role of these structures in performing 

semantic memory tasks.  
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CHAPTER 6 A normative study of lexical semantic parameters 
 

6.1  Introduction 

 

Dementia and associated disorders in the elderly are expected to become one of 

the most public health problems (Ferri, Prince, Brayne, Brodaty, Fratiglioni, et al., 

2005).There is, therefore, a need for reliable and valid neuropsychological 

instruments sensitive to the earliest signs of abnormal cognitive decline which might 

lead to dementia. One of the main issues in research and clinical settings is how to 

detect subtle cognitive deficits in a way that may discriminate normal cognitive 

function from preclinical cognitive markers which may characterise an intermediate 

stage between minimal variation of scores and significant abnormality that might be 

indicative of dementia (Petersen, Stevens, Ganguli, Tangalos, Cummings, et al., 

2001). Detecting cognitive decline is a prerequisite in the diagnosis of dementia and 

mild cognitive impairment in order to plan therapeutic intervention and long-term 

care for patients and caregiver. To be useful measures and be able to track cognitive 

change over time, psychometric instruments or parameters have to be sensitive, 

specific, reliable and valid measures of the cognitive domains they are evaluating 

(Stein, Luppa, Brahler, Konig, & Riedel-Heller, 2010). In particular, the accuracy of 

diagnostic classification to some degree depends on their sensitivity (that is the 

probability in detecting abnormal functioning in an impaired individual) and 

specificity (that is, the probability of individuating a normal individual from another 

clinical population). The percentage of cases classified as accurately by any given 

test, however, will depend on the base rate of the conditions (population, 

demographic variable) used to evaluate its efficacy Most of the neuropsychological 
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measures in the British population have not been standardised, adopting psychometric 

techniques of establishing inferential cut-offs based on large population samples 

(Bizzozero, Costato, Sala, Papagno, Spinnler, et al., 2000). It is well known that 

performance in cognitive tests can be influenced by confound and demographic 

variables including age, education and gender. Past research has provided ample 

evidence that performance on neuropsychological tests is heavily affected by 

demographic variables. Several studies have found, for example, that MMSE scores 

are significantly affected by age and education (Harvan & Cotter, 2006) that the short 

version of Raven‟s progressive matrices 1938 and the Stroop Test were significantly 

affected by age and education (Caffarra, Vezzadini, Dieci, Zonato, & Venneri, 2002; 

Caffarra, Vezzadini, Zonato, Copelli, & Venneri, 2003). Age-associated performance 

decrements and sex biases are seen on the CVLT (Delis, 1991), WMS-III (Ivnik, 

1991), logical memory and paired associate word learning tests (Mitrushina, 1999), 

the recall trials on the complex figure test (Fastenau, Denburg, & Hufford, 1999) and 

on the token test (Spreen, 1998) . Education has been found to affect performance on 

vocabulary much more than age, particularly for older people who tend to have lower 

education levels (Kaufman, McLean, & Reynolds, 1988). The Verbal Fluency task is 

influenced by age (particularly for people over 70) with a positive age effect on 

semantics  (Troyer, 2000), and no age, sex and education differences on letter fluency 

performance (Hughes & Bryan, 2002). In this dissertation and in previous recent 

studies lexical parameters such as Age of acquisition, typicality and familiarity are 

emerging as potentialy useful indicators of abnormal cognitive decline. The indicators 

coming from research studies do not find a ready application in clinical settings since 

there are quite clear indicators that ratings obtained from healthy participants vary 

extremely depending on demographic variables. Although there is evidence that self 
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rating of items for AoA have a good agreement with children‟s real age of acquisition 

(C.M. Morrison, Chappell, & Ellis, 1997) these studies have noted large variation 

across gender, age classes and education levels. Based on these considerations and 

supported by the significant results of the study positing lexical semantic 

characteristics as possible cognitive endophenotype to be used in preclinical dementia 

diagnosis, the following logical step is to create a suitable database instrument of 

these parameters which can provide reliable and valid measures to identify subtle 

semantic deficits with particular interest to age, education and gender effect on age of 

acquisition, typicality and familiarity. 

The age at which words are acquired has been considered an important issue in 

determining word processing efficiency in adulthood. Children start learning words 

around the age of 12 months, with a different rate of learned words per day. This 

process continues up to and through adulthood with an adult having a vocabulary of 

at least 20,000 words and an educated adult may know 70,000 words or more 

(Ingram, 1989;Oldfield, 1966). Earlier acquired words are highly correlated with the 

frequency of words in adult spoken language, with length (shorter words acquired 

earlier) and imageability (more concrete words tend to be learned earlier) (Goodman, 

Dale, & Li, 2008). These characteristics make it possible to speak about a degree of 

commonality in the way children build up their vocabulary and work out an average 

“age of acquisition (AoA)” that can be applied to the speaker belonging to the same 

language. Interestingly, Carroll & White (1973) discovered that adults are quite good 

at estimating the age of acquisition of words, finding a strong correlation between this 

measure and the one based on children‟s reading vocabularies, showing that Age of 

Acquisition is associated with faster naming, higher frequency and faster retrieval. A 

recent study has confirmed the findings of the Carroll and White study (Johnston, 
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2006). In general, faster processing of early words can be seen in comprehension 

(lexical decision task) and in production (speaking, reading and writing task) 

(Menenti & Burani, 2007; Hernandez-Munoz, 2006; Johnston, 2006). These studies 

found that the effect of age of acquisition didn‟t diminish with age; older participants 

were as strongly influenced by the age of acquisition as were the younger 

participants. This is an important point because if AoA was a reflection of the 

cumulative frequency of words these effects should diminish with age, but it doesn‟t, 

supporting the idea of something about early acquisition that makes for superior 

lexical representations in the mind and brain which remain easier to access and use 

during the whole life (De Deyne & Storms, 2007; Barry, 2006). In this regards 

researchers have investigated vocabulary loss in a wide range of neuropsychological 

disorders in an attempt to relate the age of acquisition effect with other cognitive-

linguistic processes that are relatively spared or with the regions of the brain damaged 

in order to clarify and test hypothesis that earlier acquired words might have a 

superior lexical representation and the role of different regions involved in different 

linguistic tasks.  Given its importance as a determinant of normal word retrieval speed 

in normal ageing, lots of studies have investigated if and how age of acquisition also 

affects word use in neuropsychological patients. Several studies showed that aphasic 

patients‟ residual language shows an effect of age of acquisition and probably also 

word frequency in object naming (Kittredge, Dell, Verkuilen, & Schwartz, 2008; 

Cuetos, Aguado, Izura, & Ellis, 2002). Overall, however, findings are confusing and 

contradictory, mainly because of the individual differences between aphasic patients, 

which mean that different kinds of factors affect differently each patient. Wollams et 

al., ( 2008) found less confusing data exploring naming performance in semantic 

dementia. In their study, age of acquisition, frequency and familiarity significantly 
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affected naming accuracy. More consistent evidence comes from studies which have 

investigated the lexical effects in Alzheimer‟s disease patients. As already mentioned 

in previous chapters, progressive word-finding problems are a common feature in 

these patients. The main underliying cause of these problems seems to be related to 

damage to the core semantic representations of the meaning of the words and objects 

(Garrard, Perry, & Hodges, 1997). Some findings come from studies which have 

investigated lexical effects during naming of objects. Age of acquisition was found to 

significantly affect naming accuracy with better performance on early than late 

acquired words despite a non-significant effect of familiarity, word frequency and 

length (Silveri, Cappa, Mariotti, & Puopolo, 2002). Moreover, Holmes et al.,(Holmes, 

Fitch, & Ellis, 2006) suggested that this effect might be due to both a partial failure to 

recognise a depicted object as familiar and to the inability to call to mind the name of 

a recognised object. However, in that study, the authors also found that access to 

semantic knowledge (e.g. picture identification and naming) was influenced by the 

typicality of category exemplars. Typical exemplars which share similar features to 

one another (e.g. fox and lion) and the category prototype (animal) are named faster 

than those atypical examples (e.g. kangaroo and snake).  

Other authors investigated to what extent the naming problems in Alzheimer‟s 

disease are different from the naming problems of normal adults.  They found a 

similar profile of naming problems in healthy controls, albeit with much better overall 

performance, positing that the naming difficulties in Alzheimer‟s disease inherits the 

age of acquisition effect seen in normal adults (Newman & German, 2005;Hodgson 

& Ellis, 1998; C. M. Morrison, Hirsh, & Duggan, 2003). However, the difference in 

the magnitude of the age of acquisition effects in patients and healthy adults may be 

useful in diagnosis (Gale, Irvine, Laws, & Ferrissey, 2009). Other supporting data 
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come from a study carried out by Forbes-McKay et al., 2005) who showed that the 

average age of acquisition of words generated was a good predictor of whether 

someone came from the Alzheimer‟s or control group. In particular, it was possible to 

classify correctly 88% of the Alzheimer patients and 95% of the controls by simply 

looking at the mean age of acquisition of the animals and fruits they generated. None 

of the other lexical characteristic of the words investigated in this study (typicality, 

mean number, length or frequency of the item produced) achieved the same level of 

discrimination. Interesting data also comes from a follow-up study, which 

investigated how lexical factors affect naming accuracy in Spanish-speaking patients 

with probable Alzheimer‟s disease (Cuetos, Rosci, Laiacona, & Capitani, 2008). 

These authors found an effect of age of acquisition but not word frequency or 

semantic category both in the first test and two years later. The items to which 

patients were unable to attempt any response had the latest average age of acquisition. 

In one of the few neuroimaging studies looking at the modulation of brain activity by 

age of acquisition, Ellis et al., (2006), using fMRI with healthy young people, found 

stronger activation for early than late items in the left temporal lobe, apparently 

attributable to the stronger activation of the semantics of early compared with the 

later acquired objects. Furthermore, Venneri et al., (2008) using a voxel based 

morphometry (VBM) identified areas of grey matter volume in the brain of 

Alzheimer‟s patients where loss of cortical tissue was most strongly associated with 

the effect of age of acquisition and other lexical factors. As reported previously they 

found significant correlations between grey matter density value in mediotemporal 

regions and age of acquisition value and typicality of words. Retention of cortical 

tissue in those areas was associated with better preservation of late vocabulary in 

Alzheimer‟s patients. Furthermore other recent studies have detected lexical semantic 
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retrieval deficits in patients with MCI and in patients with heritable traits for early 

cognitive decline (for a review see Chapter 3 section 3.2.3). Finally, the cross-

selectional AD and aMCI studies (see chapter 4 and 5) showed a) semantic deficit in 

people at preclinical stage of AD, with age of acquisition being the most robust 

lexical factor in discriminating MCI carriers from MCI non-carriers and healthy 

controls; b) an effect of the ApoE ε4 mutation revealing different atrophy pattern in 

ε4 carriers and non-carriers; c) substantial overlap between those areas which are 

subject to atrophy early in the course of the disease and those involved in semantic 

abilities (limbic areas) supporting the role of semantic lexical decline and in particular 

the age of acquisition effect, as possible preclinical endophenotype associated with 

brain atrophy in abnormal ageing. 

The previous results, therefore, seem to confirm the efficacy of lexical semantic 

retrieval ability as a cognitive endophenotype at the preclinical stage of AD. 

However, in order to build up a valid and reliable cognitive marker, it is necessary to 

investigate how and whether demographic variables can affect individuals‟ rating 

performance and therefore misguide performance about individual patient‟s word 

retrieval performance.  

The present chapter has three main objectives. Firstly, to present AoA, 

Familiarity and Typicality rating for 476 words (366 animals and 110 fruits) in 

English that might serve to aid future research on language deficits associated to AD. 

Secondly, to present regression analyses with age, gender and education as 

independent variables and age of acquisition, typicality and familiarity as dependent 

ones, to investigate the possible confounding effects of these demographic variables 

already seen to influence the performance during neuropsychological assessment. 
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Thirdly, to present a database of all the dimensions analysed for future use in 

research. 

6.2 Method 

 

6.2.1 Word sample 

 

A total of 476 words (366 animals and 110 fruits) were obtained from an 

animal/fruit category fluency task performed by healthy participants. The sample 

includes both words referred to main categories (bird, dog, fish, apple, etc) and words 

referred to subcategories (robin, Yorkshire terrier; clown fish, bramble, etc).  

 

6.2.2 Participants 

 

 

One-hundred-fifty-one healthy volunteers were recruited for this study. All 

participants were native English speakers. Seven age categories were created to split 

up the sample according to the subject ages. The distribution of subject by age 

categories and education categories is shown in Table 6.1. 

 

Table  6.1. Demographic distribution of the study group. Values are total number of 

subjects (women/men) 
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6.2.3 Ratings procedures 

 

 

For age of acquisition, familiarity and typicality ratings, the following 

procedure was used: the words were printed (font: Times News Roman, size 26), 

presented in a random order at the centre of the page, and alongside each word was a 

blank rating box. The pages were shuffled and assembled into booklets, so that each 

booklet contained the pages in a different random order. Due to the three different 

lexical attributes of the words used, the booklet was divided in three sections, each 

containing 366 animal and 110 fruit words. The order of presentation of each section 

to each participant was randomised using a Latin square procedure. The three section 

booklet was then administered to the subjects, who were asked to rate each word 

according to the instructions appropriate to the attribute considered. Participants were 

tested individually and they were given a consent form to sign and written 

instructions. This study received the approval of the local Regional Ethic Committee.  

 

Age of acquisition 

The instruction for the age of acquisition rating task were taken from another 

study in a sample of normal elderly controls (Forbes-McKay, et al., 2005). People 

were asked to indicate at what age they thought they had acquired a word by writing 

the age in the box next to each word. For example“ If you think you have acquired the 

word “apple” when you were 3, just write 3 in the box on the left of the word “apple”; 

same thing for the animal category. If you don‟t know some animal or fruit names 

just leave the box blank and go ahead and continuing the task.”  
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Typicality 

 

Based on the instructions given by Larochelle, Richard and Souliers (2000), 

participants were asked to rate how well each exemplar (e.g. apple) represented its 

specific category (e.g. fruit). They were requested to rate the typicality of each item 

by using a 7-point Likert type rating scale, from 7 (most typical) to 1 (least typical). 

For example, “If you think Dolphin could be a better example of the animal category 

than Seahorse then you should choose a lower rating number for Seahorse (for 

example 3) and a higher ranting number for Dolphin (for example 6)”. 

 

Familiarity 

 

Familiarity ratings were obtained using instructions similar to those of Marques 

(Marques, Fonseca, Morais, & Pinto, 2007) but using a 7 point scale instead of 5 

point scale. Raters were given a list of items split in two categories (animals and 

fruit). They were given a 7-point rating scale, from 7 (very familiar) to 1 (little 

familiar). They were asked to rate how familiar/unfamiliar they were with a particular 

item. How often they  think about, or come into contact with that particular concept.  

 

6.3 Results  

 

 This study collected norms for the lexical semantic parameters in a sample of 

151 individuals from 18 to 92 years of age, evenly distributed across sex, age and 

education levels. In the analyses only the words rated from more than 80% of the 

individuals were used, respectively 357 out to 476 words for Age of Acquisition; 405 

out 476 for typicality and 418 out to 476 for Familiarity.  
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 Multiple regression analyses were carried out to investigate the effect of the 

demographic variables for each word rated by each individual for each lexical factor. 

Significant different load of the three variables for age of acquisition, typicality and 

familiarity values across the two categories (animal and fruit) were observed.  The 

regression outcome for each word was examined and when the main effect was 

significant, β and t values for gender, age and education examined. The effect of each 

variable (if any) on rating performance is represented with the following symbols; #, 

*, ~, next to each animal and fruit word (see appendices). 

 Results show Age of Acquisition rating for words were the mostly affected by 

the demographic variables as a whole (269 out to 357 words), with gender affecting  

the most as compared to age and education (respectively 179 words vs 34 vs 56). 

Typicality and Familiarity rating were affected to a lesser degree, with gender mostly 

affecting familiarity ratings and age typicality ratings (see Table 6.2 below).  

 

Table  6.2.  Number of words affected by demographic variables across lexical factors. 

 

 

 

Mean AoA, Typicality and Familiarity ratings, their standard deviation and 

their range values are presented in the full database by alphabetic order. Age, Gender 

and Education effect for each word, if any, are also included (see Appendices A, B, 

C).   
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 To evaluate the relation of AoA, typicality and familiarity rating mean values 

with the demographic variables, the whole sample was split up according to gender, 

age and education.  For gender across the three lexical parameters no significant 

effects were found for any of the lexical parameters. t-tests were carried out showing 

no significant differences between males and females in AoA rating scores (t (146) = 

.39, p = ns); typicality rating score (t (147) = .24. p = ns) and familiarity rating score (t 

(147) = .77, p = ns) (see Tables 6.3, 6.4, 6.5 below) 

 

 

Table 6.3. Male and female AoA mean values. 

 

 
 

 

 

 

 

 
Table 6.4.  Male and female Typicality mean values. 
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Table 6.5. Male and female Familiarity mean values. 

 

 

 
 

 

Education was also investigated across the linguistic parameters. A Univariate 

ANOVA was carried out to compare the mean values produced by each subjects 

across the three education categories (≤ 11; 12-16; ≥ 17) for each characteristic of the 

word. The result showed no significant difference for any AoA mean values (F (2,145)   

= 2.44, p = ns), neither for typicality (F (2,146) = .59, p = ns) or familiarity (F (2,146) = 

2.89, p = ns) (see Figures 6.1, 6.2, and 6.3 below). 

 

 
 

Figure  6.1.   AoA mean values for each of the three education levels. 
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Figure  6.2.   Typicality mean values for each of the three education levels. 

 

 

 

 

 

 

 
 

 

 
Figure 6.3.   Familiarity mean values for each of the three education levels. 
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Finally, a Univariate ANOVA was carried out to see whether the age of individuals 

could significantly affect the lexical rating. Descriptive analysis showed that people 

belonging to the 21-30/31- 40 age categories obtained the least AoA mean values 

[respectively 6.13 (SD = .26) and 6.02 (SD = .34)] and people belonging to the 51-

60/61-70 age categories get the highest AoA mean score [(respectively 7.59 (SD = 

.36) and 7.34 (SD = .36)]. Results showed that these age categories differences were 

significant (F (6,141) = 3.106, p = .007). Post hoc analysis, using Bonferroni test, 

showed that people belonging to the 21-30 and 31-40 age categories rated words as 

acquired significantly earlier than people in the 51-60 categories (respectively            

p = . 026 and p = .038). Table 6.6 summarises the finding. 

 

Table  6.6. AoA mean (SD) and range (min-max) values across different age categories. 

 

 

 

 

No significant differences were seen when the same analysis was carried out for 

Typicality and Familiarity rating as dependent variables. 
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Table 6.7.  Mean Typicality values for each age category. 

 

 

Table 6.8.  Mean Familiarity values for each age category. 

 

 

 

6.4 Discussion 

 

 

This study aimed to collect normative data for age of acquisition, typicality and 

familiarity mean values in a large English population sample with an age raging from 

18 to 92 and to evaluate the effect of age, education and gender on individual‟s rating 

performance. The full database of AoA, typicality and familiarity is provided as an 
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appendix where the words (animal and fruit), listed alphabetically, are associated with 

the mean score and to a symbol indicating whether any of the demographic variables 

of interest had a significant influence on people‟s rating. 

Regression models for each word showed a significant effect of the three 

demographic variables on each lexical characteristic of the word, with gender 

representing the strongest effect on AoA and familiarity rating, while age was the 

variable most influencing typicality rating. However, in terms of the number of words 

affected by demographic variables it seems that AoA is the lexical parameter most 

vulnerable to the effect of these variables as a whole (269 words out of 357 for AoA; 

111 out of 405 for typicality and 121 out of 418 for familiarity). 

 Analysis of data across the three lexical parameters revealed no significant 

effects of demographic variables for typicality and familiarity, and only age 

significantly affected AoA ratings. More precisely, it seems that people from the 20 

to 40 age range report having learnt the meaning of the words at a much younger age 

than people belonging to the 51-60 age range who in turn provided the highest scores 

across the age categories. Further investigation has to be done to clarify this pattern in 

the rating data. 

Compared to the other lexical databases used in the literature mainly based on 

the rating collected on a small number of Psychology students, (Sereno, 2009) 

(Gilhooly, 1980) or biased for age or gender (Marques, et al., 2007) this is the only 

study to provide data from a large sample evenly distributed for age and gender, with 

a wide age range including very young adult (18 years old) and very old elderly (92 

years old). Because of its characteristics, this database could therefore offer a more 

valid psychometric instrument in clinical and research environments. This is 

important especially when attention and resources are focused on a heterogeneous 
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disorder like Alzheimer‟s disease, of which the probability of detection at the 

preclinical stage is mainly due to the efficacy of the tools which have to be sensitive 

to minor cognitive changes and able to differentiate, amongst the people with mild 

cognitive impairment, those who have the highest chance of developing dementia. 

Further research is necessary to provide a validation of these rating in a clinical 

population. 
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CHAPTER 7 General discussion 
 

 

To date no studies have attempted to combine data across methodologies to 

predict cognitive decline in conjunction with genetic status. The focus of these 

experiments were to build up useful endophenotypes to better understand the nature 

of genetic late-onset AD associated with structural and functional brain changes and 

cognitive reserve mechanisms acting as prevention to further cognitive impairment. 

In particular the aims of this dissertation were to explore whether the presence of the 

ApoE ε4 allele in individuals with mild cognitive impairment is associated with a 

pattern of more severe lexical-semantic deficit as observed in AD patients (Forbes-

McKay, et al., 2005). A further aim of this dissertation was to investigate if there was 

any interaction between ApoE ε4 related structural loss in areas of the brain 

associated with verbal fluency decline and the presence of lexical effects in 

individuals at the preclinical stage of AD and thus to identify which brain areas are 

responsible for the preclinical lexical effects observed in MCI patients. A final aim 

was to generate a set of age, gender and education based norms for those lexical 

characteristics of the words (AoA, typicality and familiarity) which previous study in 

this field have focused on, in order to build up valid psychometric parameters able to 

detect subtle lexical deficits in healthy people carriers of the ApoE ε4 allele. 

 

7.1 ApoE ε4 related Cognitive impairments 

 

In line with other findings Forbes-McKay, et al., 2005;  Holmes, Fitch, et al., 

2006) the AD group, when tested with a semantic fluency task, performed 
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significantly differently from controls producing a smaller number of words. There 

were also significant differences in the mean lexical characteristic values (see Chapter 

4, section 4.2.5). In particular, patients produced fewer words and those were more 

imageable, more typical of their category and acquired earlier than those produced by 

healthy elderly individuals. When these results were analysed according to the 

presence of the ApoE ε4 across the groups no significant lexical differences were 

found between AD carriers/AD non-carriers and controls. However, the mean mean 

typicality values produced by AD carriers were higher than those of controls and the 

significance level was higher than that observed between AD non-carriers and 

controls (p < .001 and p < .05 respectively), although no significant differences were 

found when the two genetically different subgroups were directly compared. In AD, 

the effect of genotype was strong overall but only partially detectable on the semantic 

indices. Several factors may account for the non-significant difference between 

carriers and non-carriers. One factor has to do with the age range of the participants 

examined in this study. Some studies have reported that the risk of AD development 

associated with ε4 status appears to peak by the age of 70 and to dissipate up to the 

age of 80 (Blacker, Haines, Rodes, Terwedow, Go, et al., 1997; Breitner, et al., 1999). 

The AD carriers‟ mean age was 77.22 years; this high mean age might have 

weakened the influence of the ε4 allele. This emphasises the need to consider age as a 

variable in the analyses when the effect of the ApoE is taken into account on potential 

cognitive phenotypes. Another possible factor that might have affected the study 

concerns a dose-response relationship in exhibiting ε4-related deficits, where ε4 

homozygotes perform the worst and non-ε4carriers perform the best (Caselli, et al., 

2007; L. G. Nilsson, et al., 2006). In the study, homozygosity for ε4 was not 

separated from the heterozygosity on ε4 because of the small sample number for each 
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subgroup, possibly further diluting the behavioral outcome at this already advanced 

stage of cognitive deterioration. Finally, the sample size could have been another key 

factor with only 19 AD ApoE ε4 carriers (8 ε4ε4) and 10 non-carriers compared to 

other studies such as that of Forbes-Mckay et al. (2005) who tested 96 AD. 

To see if it would have been easier to detect subtle semantic deficits in the 

preclinical stage of AD, the same investigation was replicated in a small sample of 

amnestic MCI carriers and non-carriers of the ApoE ε4 allele. A clearer picture could 

be seen from these results although still no significant differences were found. 

However, the results showed that the presence of at least one ε4 (there were no 

homozygous carriers of the ε4 allele in the MCI sample) influenced the way in which 

patients carrying this allele produce animal and fruit words. Ε4 non-carriers 

performed better and their pattern was the most different from that of the carriers 

(typicality and familiarity: ε4 carriers > controls > ε4 non-carriers; age of acquisition: 

ε4 carriers < controls < ε4 non-carriers).  

When the hypothesis of poorer lexical skills retrieval in MCI carriers was tested 

in a bigger sample of amnestic MCI individuals (18 aMCI carriers and 12 non-

carriers) it was finally found that a more severe impoverishment of spontaneous 

language for the aMCI carriers was characterised by significant lexical effects. The 

words generated by aMCI ε4 carriers were earlier acquired, more familiar, and more 

typical of their semantic category than the words generated by healthy controls. 

Interestingly, age of acquisition values were the only values, among all the other 

lexical features examined, to differentiate the performance of carriers and non-

carriers from controls. These findings corroborate the results from Forbes-Mckay 

(2005) which showed that AoA was the best predictor of group membership 

(patient/control).  It seems, therefore, that age of acquisition is the lexical parameter 
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most sensitive to the earliest pathological changes due to AD which can be detected at 

a preclinical stage when the neuropathological impairment is minimal.  

Examination of group differences revealed that aMCI carriers scored 

significantly lower on the category fluency task than aMCI non-carriers. There was 

no significant difference, however, on the phonemic fluency test. This result confirms 

earlier findings which have shown that MCI patients experienced difficulties in 

making semantic associations between exemplars of subcategories rather than having 

more general difficulties searching through lexical representations (Murphy, et al., 

2006; Saxton, et al., 2004). Moreover our results suggest that there is deterioration of 

brain areas beyond that of the hippocampus (i.e. areas supporting semantic memory) 

at this early stage. Similar results have been found by Venneri and colleagues 

(Venneri, et al., 2008) with mild AD. These authors found strong lexical effects 

(typicality and age of acquisition) in patients showing grey matter loss in perirhinal 

and parahippocampal cortex. It seems, therefore, that performance on semantic 

fluency task relies more on temporal than frontal structures. In particular, the 

temporal lobe seems to be used for both tasks (semantic and phonemic), while the 

frontal lobe appears to provide its major contribution only to letter fluency (Julie D. 

Henry, Crawford, & Phillips, 2004).  It could be that during the life course the ApoE 

ε4 allele interacts with AD pathology affecting some areas  more sensitive to its early 

effect and involved in the retrieval from long term semantic memory (such as 

mediotemporal structures). This hypothesis is supported by other studies which have 

shown lower metabolism in areas associated with lexical semantic representations in 

asymptomatic carriers of the ApoE ε4 allele [e.g (Reiman, et al., 2004)]. 
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7.2 ApoE ε4 related neuroanatomical substrates during semantic 

memory task. 

 

The behavioural findings indicated that subtle lexical deficits in aMCI ε4 

carriers could have a role as possible cognitive endophenotype of AD. It remains to 

be tested whether this cognitive endophenotype was associated with an ApoE ε4 

related pattern of atrophy in regions supporting semantic retrieval from long term 

memory in aMCI and mild to minimal AD carriers. Behavioural results showed 

significant impoverishment of lexical semantic abilities in general, with the MCI ε4 

carriers showing the worst cognitive output of all, although this was only detectable 

as a trend. Volumetric analyses identified differences in the pattern of grey matter 

volume loss among the three groups according to the presence of the ApoE ε4 

mutation, and the degree of semantic retrieval competency measured through the 

mean lexical characteristic values produced by each person belonged to each group. 

In the aMCI subgroups there was a pattern characterised by atrophy confined to 

mediotemporal areas and necortical regions bilaterally with greater involvement of 

mediotemporal structures, the posterior cingulate and parietal cortex. Non-carriers 

had more widespread atrophy. These grey matter volume differences within the two 

aMCI groups also became more evident in the direct aMCI ε4 carriers/non-carriers 

comparison (smaller grey matter volume in the parietal regions and in the temporal 

lobe for the aMCI non-carriers and more specific atrophy in the parahippocampal 

gyrus for the aMCI carriers). A correlation analysis was also run which showed an 

association between poorer retrieval skills and atrophy in the left parietal, medial 

temporal and frontal regions and cerebellum bilaterally. Finally, a conjunction 

analysis was carried out to identify regions of significant overlap between volume 

differences in aMCI carrier vs non-carriers  healthy controls and areas of significant 
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correlation of grey matter volume and AoA values. This analysis underlies the role of 

the parahippocampal gyrus, caudate nucleus and thalamus as areas associated with 

retrieval of later acquired words in the category fluency task when associated to the 

ApoE ε4.  Several conclusions can be drawn from these results. Firstly, in line with 

the few other neuroimaging studies investigating brain morphology in MCI carriers 

and non-carriers (Morra, et al., 2009; Thomann, et al., 2008; Pennanen, et al., 2006), 

our morphometric results showed the significant impact of the ApoE ε4 burden on the 

brain atrophy of people at the preclinical stage of AD. Atrophy patterns that we also 

found in the study comparing grey matter volume in AD carriers and non-carriers. It 

seems, therefore, that the ApoE ε4 allele plays a role in modulating the anatomical 

expression of the disease. In addition, this study is the first to examine the interplay 

between the effect of the ApoE ε4 burden on neuropathological substrates and the 

degraded lexical semantic skills in a sample of aMCI. If the focus is on the different 

degree of semantic impairment across the MCI carriers/non-carriers and controls in 

relation to the difference in the pattern of grey matter atrophy it seems that more 

restricted whole brain atrophy (in particular in the parahippocampal structures) seen 

in MCI ε4 carriers might cause poorer semantic retrieval skills. More widespread 

atrophy (neocortical and mediotemporal areas) is seen in MCI non-carriers, although 

despite more extensive anatomical damage still delivered a slightly better semantic 

performance. These findings suggest that more restricted volumetric differences 

(limbic areas) in the MCI ε4 subgroup have greater impact on the lexical semantic 

deficit that ε4 carriers showed. This hypothesis is corroborated by the findings of an 

fMRI study which showed abnormal functioning of limbic structures in a sample of 

individuals at greater risk for AD (Bassett, et al., 2006). However, there are findings 

from previous studies which also show an association between damage in neocortical 
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areas and poorer semantic skills in fronto-temporal dementia and early stage AD 

[e.g.(Venneri, et al., 2008)], corroborating the possible involvement of more 

neocortical atrophy in the less severe but still present semantic deficit in MCI non-

carriers when compared to controls. It might be that people carrying the ε4 mutation 

don‟t possess a fully developed neuronal network which would allow them to 

maintain cognitive competence when areas specific to semantic retrieval skills are 

compromised. MCI non-carriers, instead, could count on a more structured and 

efficient neuronal network which would allow them compensatory processes in 

maintaining cognitive performance. These assumptions are in line with Mesulam‟s 

plasticity-based theory of pathogenesis of AD (Mesulam, 2000). This author posits a 

role for ApoE ε4 as one of the initial factors implicated in AD development creating 

physiological barriers toward the manifestation of the plasticity (increasing the 

neuroplasticity burden), neuronal repairs and cognitive reserve (see Chapter 1, section 

1.7.2). It could be that the dysfunctional role of this mutation is marked 

phenotypically by subtle semantic deficits in the preclinical stage when the 

neuropathological changes due to AD are still confined and thus allow the detection 

of cognitive endophenotypes useful in early diagnosis. Howerer, additional larger 

studies are needed to validate and corroborate these results. 

 

7.3 Lexical semantic parameters: normative data   

 

Based on the convergent results of our previous studies supporting the 

meaningfulness of subtle lexical change as a possible cognitive endophenotype for 

the preclinical detection of AD, our last study was oriented to build a database of 

lexical-semantic rating which could mark the confounding effect of demographic 
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variables and thus be used in future research investigating the reliability of the role of 

linguistic deficits in the preclinical diagnosis of AD. The point was to create a 

clinically and experimentally useful set of psychometric instruments derived from a 

large population sample evenly distributed for age, gender and education. To date 

there are no database available which have these characteristics and have provided 

lexical rating for which the effect of demographic variables have been studied. This 

study presented an age of acquisition, typicality and familiarity database showing the 

mean, standard deviation and range (minimum and maximum) values for 476 items 

(animal and fruit words).The effect of the demographic variables of interest (gender, 

age and education) on the mean rating value provided by healthy individuals was also 

presented. This database, therefore, although it needs to be validated in future 

research could be very useful as a clinical and research tool for the possible detection 

and monitoring of subtle semantic cognitive deficits in the early stage of cognitive 

decline and to monitor progression over time. 

 

7.4 Conclusion 

 

In summary, these studies have investigated the interplay between behavioral 

data, morphological measures and genetic burden in a population of amnestic mild 

cognitive impairment and mild to moderate Alzheimer‟s disease. The focus was on 

testing the sensitivity of lexical semantic parameters as cognitive endophenotypes to 

detect the earliest sign of AD pathology and to better clarify the association between 

the early anatomical changes due to the disorder and poorer lexical-semantic skills 

when increased genetic risk is present. The final aim was to provide a valid and 

reliable set of psychometric parameters to allow the identification of subtle lexical-
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semantic changes at the early stage of cognitive decline. For this purpose, an AoA, 

typicality and familiarity database was created. Additional larger studies are needed 

to better understand the relationship between genetic burden, structural differences 

and early lexical deficits in preclinical AD. This combined interdisciplinary approach, 

however, seems to yield a much clearer picture of the pattern of decline connecting 

normal and abnormal aging and provides evidence in support of the use of lexical-

semantic parameters on cognitive endophenotype of this disease to aid early and 

differential diagnosis between normal and abnormal decline in ageing. 
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APPENDIX A 
 

 
 

Table A.1a. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for animal words in individuals belonging to the 18-20 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark # 

 
7.70 

 
3.25 

 
4 

 
15 

Adder # ~ 6.78 2.94 4 14 

Albatross # ~ 5.74 4.26 1 18 

Alligator # * 6.08 1.48 3 10 

Amoeba 13.21 2.34 8 18 

Angel fish # 9.38 3.61 4 18 

Ant # * 4.25 1.22 3 7 

Anteater # ~ 7.51 2.39 5 13 

Antelope # ~ 7.02 2.13 4 11 

Ape # 5.41 2.03 3 9 

Armadillo # 8.26 2.28 5 12 

Ass # 8.02 3.46 4 18 

Baboon # 7.29 2.08 4 12 

Badger # 5.61 1.86 3 10 

Bald eagle # 8.94 3.87 4 18 

Bat # 5.34 1.69 3 11 

Bear * 4.71 1.74 3 9 

Beaver # * 6.70 2.30 3 14 

Bee # * 4.38 1.39 3 8 

Beetle 5.07 1.87 3 10 

Bird 3.62 0.89 3 6 

Bison ~ 9.65 3.73 5 18 

Blackbird 5.45 2.22 3 12 

Blue bird # 7.46 3.02 4 18 

Blue tit # * 7.72 2.91 4 14 

Boa constrictor # 7.97 2.17 4 12 

Boar 7.73 2.73 4 15 

Brontosaurus #  ~ 6.73 3.84 4 19 

Brown bear # 5.40 2.12 2 10 

Buck 9.28 3.92 4 18 

Budgerigar # 7.63 4.69 3 19 

Buffalo # 7.17 2.75 4 14 
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Range 

min max 
Animal Mean SD 

 

 

 

Bull 6.07 1.90 3 10 

Bullfinch 11.02 3.47 5 18 

Bullock 8.21 3.88 4 18 

Butterfly 4.24 1.53 2 8 

Buzzard 10.10 3.82 7 19 

Calf 5.73 2.36 3 12 

Camel 6.28 2.19 3 11 

Canary 6.77 2.43 4 13 

Caribou 4.94 5.34 1 18 

Carp # ~ 8.41 2.67 5 14 

Cat 3.49 1.06 2 6 

Caterpillar 4.60 1.47 3 8 

Cattle 5.42 2.37 3 10 

Chaffinch 8.85 2.94 5 14 

Chameleon # 7.99 3.05 4 15 

Cheetah # ~ 6.26 1.81 4 10 

Chicken # * 3.99 1.40 2 9 

Chimpanzee 6.23 1.80 4 10 

Chinchilla # 8.38 2.60 5 15 

Chipmunk # ~ * 6.01 2.56 3 16 

Clown fish # 11.31 2.99 7 18 

Cobra # ~ 6.95 2.50 3 14 

Cockatiel # 6.89 3.58 3 18 

Cocker spaniel 6.42 2.56 3 15 

Cockerel 5.84 2.01 3 12 

Cockroach 7.67 2.32 4 13 

Cod 7.14 2.71 3 13 

Condor #  ~ 10.87 3.08 5 18 

Conger eel 10.66 3.28 7 18 

Cougar # ~ 9.64 3.44 5 18 

Cow * 3.48 1.14 1 6 

Coyote # ~ * 8.80 3.44 4 17 

Cray fish # ~ 9.09 4.00 4 18 

Crocodile # 4.89 1.81 3 10 

Crow 6.23 2.33 3 15 

Cuckoo 5.34 3.59 1 18 

Deer # * 5.09 1.79 3 11 

Dingo 9.00 3.46 4 18 

Dog 3.04 0.98 1 5 
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Range 

min max 
Animal Mean SD 

 

 

 

Dolphin # 4.80 1.63 2 8 

Donkey 4.20 1.52 3 8 

Dormouse 6.69 2.48 4 15 

Dove # 6.00 2.38 3 11 

Dragon # 4.90 1.81 3 10 

Dragonfly # * 6.22 2.08 3 11 

Duck # * 3.52 1.60 1 8 

Duckbill platypus # 8.13 3.62 3 18 

Eagle 6.60 2.39 3 14 

Earthworm 5.81 3.35 3 17 

Earwig * 5.63 2.89 2 13 

Eel 7.22 2.65 3 14 

Elk 10.31 4.28 4 18 

Emu # 8.16 3.09 5 19 

Ewe 7.55 3.32 4 14 

Ferret 7.14 2.82 3 12 

Field mouse 6.58 3.02 3 14 

Finch 8.92 3.43 4 14 

Fish 3.79 1.07 3 6 

Flamingo # 6.17 2.07 3 11 

Flea 4.62 2.63 1 13 

Fly * 4.54 1.31 3 8 

Fowl # ~ 8.98 3.50 5 18 

Fox # * 4.46 1.14 3 7 

Frog # * 4.29 1.51 3 9 

Gazelle 8.04 3.40 4 15 

Gecko # 5.64 4.10 1 18 

Gerbil # 5.91 2.09 2 11 

Giant panda # 7.72 3.33 3 16 

Gibbon # 10.87 3.87 4 18 

Giraffe 5.03 1.68 3 9 

Goat 4.74 2.19 3 11 

Goldfish 4.43 1.26 3 8 

Goose # 5.37 1.72 3 9 

Gorilla # 5.23 1.70 3 9 

Greyhound 8.23 2.37 6 15 

Grizzly bear # * 5.18 2.10 2 10 

Groundhog # * 8.76 3.48 4 18 

Guinea fowl 11.49 3.12 8 18 
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Range 

min max 
Animal Mean SD 

 

 

 

Guinea pig # 5.51 1.74 2 9 

Gull 6.50 3.82 3 18 

Haddock 7.28 2.86 3 14 

Hamster # 4.60 1.53 2 8 

Hare 6.08 2.50 4 12 

Hawk # ~ 7.20 2.39 4 14 

Hedgehog 5.09 1.30 3 9 

Hen 4.57 2.77 2 12 

Heron # 7.74 3.16 4 14 

Herring 8.42 2.91 3 15 

Hippopotamus # 5.73 1.45 3 9 

Hornet 5.24 3.99 1 18 

Horse 3.76 1.26 3 7 

Horsefly 8.99 3.48 5 18 

Hyena # 6.52 3.15 4 16 

Iguana # * 8.66 2.85 5 15 

Insect # 4.33 1.04 3 7 

Invertebrate 8.18 2.19 3 13 

Jack rabbit 8.99 4.08 4 18 

Jackal # ~ 8.98 2.82 4 15 

Jackass 10.04 3.95 4 19 

Jackdaw 10.23 3.94 4 19 

Jaguar # 8.01 2.64 4 15 

Kangaroo # 5.70 1.90 3 11 

Kid 7.49 4.58 4 18 

Kitten 3.96 1.4 2 9 

Kiwi 9.40 4.17 5 19 

Koala # 6.27 2.58 3 14 

Koi carp # 9.70 2.98 5 15 

Komodo dragon # ~ 9.28 3.68 5 19 

Lady bird # 4.32 1.46 2 10 

Lamb 4.50 1.85 3 10 

Lemur # 8.93 3.27 4 17 

Leopard # 6.39 1.72 4 10 

Lion # * 4.29 1.27 3 7 

Lizard # 5.46 1.88 3 12 

Llama 8.66 3.52 4 16 

Lobster # ~ 7.76 2.11 5 13 

Long tailed tit 10.01 3.61 4 18 
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Range 

min max 
Animal Mean SD 

 

 

 

Lynx 9.78 3.03 5 16 

Mackerel * 9.27 2.69 4 16 

Mammal # 6.38 1.88 4 10 

Meerkat # 8.05 3.39 4 15 

Midge 9.05 2.95 4 18 

Mink 10.65 3.38 5 18 

Manx 9.03 3.38 4 18 

Mole 5.92 2.28 4 13 

Mongoose ~ 9.18 2.94 5 18 

Monkey 4.31 1.57 3 8 

Moose # * 7.25 2.13 4 13 

Moth 5.89 2.04 3 11 

Mouse 4.20 1.33 2 7 

Mule 7.96 2.46 6 14 

Newt 7.00 3.07 4 14 

Nightingale 9.09 3.14 4 17 

Octopus # 5.35 1.77 3 9 

Orang-utan # 4.81 2.35 1 12 

Ostrich # 6.81 2.00 4 12 

Otter # 7.18 1.85 4 11 

Owl 4.66 1.86 3 9 

Ox 8.19 3.59 4 18 

Panda # 5.60 2.23 3 10 

Panther # ~ 6.97 2.56 4 15 

Parakeet 8.32 3.85 5 18 

Parrot # 5.38 1.34 3 9 

Partridge # 7.09 3.15 4 18 

Peacock # 5.72 2.01 3 10 

Pelican # 6.17 2.36 3 14 

Penguin # 4.58 1.95 3 10 

Perch 9.67 4.01 4 18 

Pheasant 7.83 2.57 4 16 

Pig # * 3.61 1.57 1 8 

Pigeon 5.05 1.80 2 9 

Piglet ~ 4.52 1.55 3 9 

Pike # ~ 8.29 3.02 3 15 

Piranha fish # ~ 8.08 3.19 4 16 

Plaice # 9.50 3.39 4 18 

Platypus # 8.42 2.83 5 14 
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Range 

min max 
Animal Mean SD 

 

 

 

Polar bear 5.91 2.22 3 12 

Pony 4.35 1.76 3 9 

Porcupine 8.28 3.03 5 18 

Porpoise 9.60 3.95 5 18 

Poultry # 7.81 3.62 3 18 

Prairie dog # 9.25 3.85 4 18 

Puffin # 7.27 2.93 3 18 

Puma # 8.27 2.50 4 14 

Rabbit # * 3.61 1.39 1 8 

Racoon # 7.09 2.82 4 14 

Ram 7.53 3.59 3 20 

Rat 4.64 1.55 3 9 

Raven ~ 7.76 2.41 4 13 

Reindeer # 3.82 0.98 2 6 

Rhesus monkey 8.40 3.86 1 19 

Rhinoceros # 5.74 1.34 3 8 

Roach 8.95 3.32 5 18 

Robin 5.13 1.88 3 10 

Rodent 7.40 2.75 3 14 

Rook 6.14 4.74 2 18 

Rooster # * 4.58 2.05 2 9 

Salamander # 9.79 3.54 4 18 

Salmon 7.55 2.54 4 14 

Sardine 7.78 2.89 4 15 

Sea lion # 6.96 2.87 4 14 

Seagull 5.22 1.54 3 9 

Seahorse # 6.39 2.16 4 14 

Seal # 5.61 2.24 3 11 

Shark # 5.29 1.66 3 10 

Sheep # * 3.95 0.90 3 6 

Shrew 9.12 3.56 4 18 

Shrimp 7.90 2.88 3 17 

Siamese cat 7.02 3.16 4 14 

Siberian tiger # 9.28 2.52 5 15 

Skate 11.25 3.13 6 18 

Skunk # 6.45 2.33 3 12 

Skylark # * 10.65 3.73 5 19 

Sloth # 9.65 3.36 6 18 

Slug # 4.51 1.40 3 8 
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Range 

min max 
Animal Mean SD 

 

 

 

Snail 4.58 1.65 3 9 

Snake # * 4.59 1.51 3 9 

Sole 10.64 2.97 5 18 

Sow # 9.34 3.84 4 18 

Sparrow # 6.61 2.54 4 12 

Spider 3.84 1.16 3 7 

Springbok 11.89 3.13 5 18 

Squid # 7.16 2.87 4 14 

Squirrel # * 4.70 1.59 2 9 

Stag 7.94 3.08 4 15 

Star fish # 6.15 3.32 3 18 

Starling # 8.19 2.96 4 14 

Stick insect # 6.59 1.89 4 11 

Stickleback # 8.73 3.64 5 18 

Stoat 9.51 4.12 5 18 

Sturgeon 12.97 2.72 9 19 

Swan 4.96 1.68 3 8 

Swift 8.82 4.44 5 19 

Sword fish 7.84 2.83 4 14 

Tarantula # 6.48 2.27 4 13 

Thrush # * 9.51 3.32 4 16 

Tiger # * 4.58 1.35 3 8 

Toad # * 4.92 1.79 3 9 

Tortoise 5.53 1.38 3 8 

Trout ~ 7.48 3.44 3 16 

Tuna # 6.89 2.95 3 14 

Turkey # * 5.08 2.19 2 10 

Turtle # * 5.38 1.45 3 9 

Tyrannosaurus # ~ * 5.44 1.99 3 10 

Vole 8.00 2.70 4 14 

Vulture # ~ 7.24 2.68 4 13 

Wallaby # 8.05 2.79 5 16 

Walrus 7.90 2.29 5 14 

Warthog # 7.56 2.44 5 14 

Wasp 4.78 1.68 3 10 

Water buffalo # 8.53 2.36 4 15 

Water rat 8.05 3.69 4 18 

Weasel # * 6.81 3.16 4 14 

Whale # 5.01 1.83 3 10 
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Range 

min max 
Animal Mean SD 

 

 

 

White tiger # 8.47 2.60 5 15 

Wild boar # 7.53 2.66 4 14 

Wild cat 7.14 3.12 4 15 

Wild dog # 8.38 2.80 4 15 

Wildebeest # ~ 8.42 3.13 4 15 

Wolf 5.26 1.98 3 11 

Wombat # 8.63 2.74 4 13 

Woodlouse # 5.67 2.02 3 10 

Woodpecker 6.71 2.87 4 13 

Worm 4.02 1.41 2 7 

Wren 8.17 4.12 3 18 

Yak # 9.08 3.69 5 18 

Yellow tit 9.58 3.22 4 18 

Yorkshire terrier * 6.84 3.20 3 15 

Zebra # * 5.12 1.57 3 10 
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Elderberry * 9.31 3.99 4 19 

Fig 7.37 3.44 3 16 

Gala apple # 6.58 4.41 3 19 

Galia melon # 10.59 4.14 4 19 

Gooseberry # * 7.86 3.62 5 19 

Granny smith # 5.96 3.84 3 15 

Grapefruit # 6.58 2.96 3 15 

Grape # 4.51 1.32 3 8 

Green melon # 6.02 4.24 1 16 

Guava # * 12.32 3.86 5 19 

Hazelnut 7.17 2.36 4 13 

 

Table A.1b. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for fruit words in individuals belonging to the 18-20 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 5.74 2.11 3 10 

Almond 8.06 3.48 3 19 

Apple # * 3.32 1.22 1 8 

Apricot # 5.53 3.08 1 14 

Aubergine # 9.47 4.27 4 19 

Avocado # 9.43 3.84 5 18 

Banana # * 3.58 1.32 1 8 

Berries 4.54 1.83 1 10 

Blackberry 5.55 2.46 2 12 

Blackcurrant # * 4.88 2.90 2 15 

Blueberry # ~ 6.34 3.48 3 17 

Bramble ~ * 7.14 4.99 3 18 

Cantaloupe melon # 10.78 4.53 4 19 

Cherry # 5.07 1.63 2 8 

Chestnut 6.91 2.28 4 11 

Clementine # 6.12 3.10 3 17 

Coconut 6.32 2.26 3 12 

Cox apple * 6.13 4.33 3 17 

Crab apple 7.87 4.91 4 18 

Cranberry # 7.67 3.16 3 16 

Cucumber # 4.68 2.23 1 10 

Currant 5.14 3.10 1 16 

Damson # 9.14 4.38 4 19 

Date 7.88 2.65 5 14 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Honeydew melon # 8.96 4.44 4 19 

Horse chestnut * 7.17 2.91 4 13 

Jaffa # * 12.02 4.68 5 19 

Kiwi # 5.96 2.25 2 12 

Kumquat # * 11.76 3.89 6 19 

Lemon # 4.44 1.92 1 10 

Lime # * 6.05 2.43 3 12 

Loganberry 11.32 4.10 5 20 

Lychee # 10.63 4.06 5 19 

Mandarin # ~ 6.84 4.00 2 16 

Mango # 7.24 3.25 4 17 

Melon # 4.75 1.78 1 8 

Nectarine # 5.82 2.49 3 13 

Nut 4.64 2.92 1 13 

Olive # ~ * 7.37 2.98 3 14 

Orange # * 3.66 1.26 1 8 

Papaya # 10.60 3.72 6 20 

Passion fruit # 8.61 3.20 3 17 

Peach # 5.29 1.93 2 10 

Pear # 4.23 1.87 1 10 

Pepper # * 6.41 2.88 3 14 

Pineapple # 5.52 1.79 3 9 

Plum 5.55 2.36 2 13 

Pomegranate 10.08 4.40 6 19 

Prune 7.53 3.01 3 14 

Raisin # ~ * 4.92 1.89 3 10 

Raspberry # 4.77 2.05 1 9 

Red currant 8.11 2.71 4 16 

Redberry 7.62 4.31 4 19 

Red grape # 5.96 2.17 3 12 

Rhubarb 6.26 2.52 4 14 

Satsuma # 6.13 2.46 4 15 

Squash # 8.44 3.99 4 18 

Star fruit # 9.72 4.04 5 18 

Strawberry # 4.57 1.23 3 8 

Sultana * 5.58 2.72 2 14 

Tangerine # 5.98 2.38 3 12 

Tomato # 4.02 1.93 1 11 

Walnut 7.34 2.12 4 14 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Water melon # 5.80 3.14 3 14 

  White grape# ~  5.97  3.83  3  18   
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Table A.2a. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for animal words in individuals belonging to the 21-30 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark # 

 
7.54 

 
2.95 

 
5 

 
16 

Adder # ~ 6.89 2.46 4 14 

Albatross # ~ 7.69 2.74 4 16 

Alligator # * 5.61 1.90 3 10 

Amoeba 10.83 2.38 7 18 

Angel fish # 9.95 5.04 5 26 

Ant # * 4.07 2.13 2 13 

Anteater # ~ 7.13 2.60 3 15 

Antelope # ~ 8.07 2.39 5 13 

Ape # 5.81 2.47 3 12 

Armadillo # 8.18 2.42 5 14 

Ass # 7.72 2.57 4 15 

Baboon # 6.77 2.53 3 14 

Badger # 5.48 2.97 3 20 

Bald eagle # 7.27 1.81 4 11 

Bat # 5.10 1.80 3 10 

Bear * 3.90 1.85 2 8 

Beaver # * 5.79 2.29 4 12 

Bee # * 3.67 1.22 2 6 

Beetle 4.27 2.17 2 12 

Bird 3.26 1.22 2 6 

Bison ~ 8.88 3.69 4 19 

Blackbird 4.99 2.16 3 11 

Blue bird # 5.88 2.52 3 13 

Blue tit # * 6.59 2.40 3 14 

Boa constrictor # 7.49 3.16 3 18 

Boar 7.79 2.64 4 15 

Brontosaurus #  ~ 6.67 2.32 3 14 

Brown bear # 5.42 1.89 2 10 

Buck 9.94 3.34 6 18 

Budgerigar # 6.49 2.73 3 15 

Buffalo # 7.73 2.36 5 15 

Bull 5.29 2.45 3 12 

Bullfinch 8.93 2.84 4 15 

Bullock 7.08 3.29 3 18 
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Range 

min max 
Animal Mean SD 

 

 

 

Butterfly 4.04 2.69 2 18 

Buzzard 8.38 2.92 4 17 

Calf 5.11 1.76 3 10 

Camel 5.56 1.53 4 9 

Canary 6.04 3.03 2 16 

Caribou 11.43 4.97 7 26 

Carp # ~ 7.41 3.03 3 17 

Cat 3.18 1.24 2 6 

Caterpillar 4.22 1.41 2 8 

Cattle 4.98 1.74 2 8 

Chaffinch 8.66 2.98 5 17 

Chameleon # 7.53 2.45 4 17 

Cheetah # ~ 5.96 2.58 3 17 

Chicken # * 3.47 1.33 1 7 

Chimpanzee 5.07 2.20 2 11 

Chinchilla # 8.95 2.06 4 13 

Chipmunk # ~ * 6.24 2.28 3 13 

Clown fish # 11.62 5.24 5 23 

Cobra # ~ 7.26 1.90 5 12 

Cockatiel # 6.58 3.12 2 13 

Cocker spaniel 6.71 2.71 3 12 

Cockerel 4.80 3.51 1 20 

Cockroach 7.02 2.69 4 16 

Cod 6.07 1.80 3 10 

Condor #  ~ 9.43 2.98 5 18 

Conger eel 10.23 4.38 6 21 

Cougar # ~ 8.48 3.77 4 18 

Cow * 3.61 1.37 2 7 

Coyote # ~ * 8.17 2.73 4 15 

Cray fish # ~ 10.76 5.08 4 27 

Crocodile # 4.66 2.11 2 11 

Crow 5.40 1.41 3 8 

Cuckoo 5.86 2.16 3 11 

Deer # * 5.29 2.34 3 15 

Dingo 9.48 3.47 5 18 

Dog 2.72 1.47 1 9 

Dolphin # 4.83 1.79 2 9 

Donkey 4.30 2.20 2 13 

Dormouse 6.70 2.01 4 12 
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Range 

min max 
Animal Mean SD 

 

 

 

Dove # 5.49 2.23 2 12 

Dragon # 4.74 1.58 2 9 

Dragonfly # * 6.44 2.19 4 13 

Duck # * 3.52 1.44 2 8 

Duckbill platypus # 8.94 2.74 3 14 

Eagle 5.36 1.70 2 10 

Earthworm 4.65 2.41 2 13 

Earwig * 5.54 2.13 3 11 

Eel 6.54 2.61 3 12 

Elk 9.61 3.43 4 18 

Emu # 6.95 3.60 4 20 

Ewe 7.09 4.01 3 18 

Ferret 6.85 2.5 3 13 

Field mouse 6.27 1.96 4 12 

Finch 8.14 3.14 4 17 

Fish 3.35 1.99 2 13 

Flamingo # 6.23 2.19 3 12 

Flea 5.83 2.06 3 14 

Fly * 3.83 1.22 2 6 

Fowl # ~ 7.98 3.18 5 16 

Fox # * 4.42 1.28 3 9 

Frog # * 3.82 2.15 2 14 

Gazelle 8.73 3.68 4 22 

Gecko # 8.93 4.36 5 20 

Gerbil # 5.80 2.06 4 11 

Giant panda # 6.31 2.78 3 15 

Gibbon # 9.19 3.31 6 18 

Giraffe 5.02 2.70 2 18 

Goat 4.36 1.68 2 10 

Goldfish 4.15 1.54 2 11 

Goose # 4.77 1.81 2 10 

Gorilla # 5.34 2.97 3 20 

Greyhound 6.07 2.81 2 13 

Grizzly bear # * 5.36 1.67 3 9 

Groundhog # * 10.02 2.50 6 15 

Guinea fowl 9.71 4.50 4 21 

Guinea pig # 4.91 1.53 3 10 

Gull 6.47 2.68 3 13 

Haddock 6.94 2.56 4 14 
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Range 

min max 
Animal Mean SD 

 

 

 

Hamster # 4.83 1.53 3 10 

Hare 5.78 2.27 3 13 

Hawk # ~ 7.34 2.63 4 16 

Hedgehog 4.66 1.76 3 12 

Hen 3.97 1.30 2 7 

Heron # 6.86 2.81 3 18 

Herring 8.44 3.16 5 20 

Hippopotamus # 4.73 1.96 2 11 

Hornet 6.95 3.41 1 18 

Horse 3.58 1.33 2 7 

Horsefly 7.99 3.96 4 20 

Hyena # 7.13 2.69 4 16 

Iguana # * 8.23 2.76 5 16 

Insect # 4.50 2.12 2 12 

Invertebrate 9.44 2.57 5 16 

Jack rabbit 7.04 3.43 3 16 

Jackal # ~ 9.14 3.01 5 18 

Jackass 9.78 3.38 7 20 

Jackdaw 7.73 2.91 4 15 

Jaguar # 7.26 1.79 5 11 

Kangaroo # 4.62 2.25 1 12 

Kid 6.31 2.64 3 15 

Kitten 3.65 1.89 2 12 

Kiwi 9.54 4.44 5 26 

Koala # 5.89 2.25 2 12 

Koi carp # 8.99 4.86 5 23 

Komodo dragon # ~ 9.88 4.38 3 21 

Lady bird # 3.90 1.37 2 7 

Lamb 4.04 1.42 2 8 

Lemur # 8.33 2.62 4 14 

Leopard # 6.15 2.12 4 12 

Lion # * 4.04 1.60 2 8 

Lizard # 5.57 1.83 2 10 

Llama 8.16 3.69 4 19 

Lobster # ~ 6.90 2.43 4 12 

Long tailed tit 6.30 3.93 1 19 

Lynx 9.74 3.35 6 19 

Mackerel * 7.54 3.07 3 17 

Mammal # 6.33 3.17 2 18 
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Range 

min max 
Animal Mean SD 

 

 

 

Meerkat # 9.26 4.94 4 26 

Midge 6.49 2.94 2 14 

Mink 9.46 3.51 4 19 

Manx 9.44 2.83 5 16 

Mole 5.37 2.13 2 12 

Mongoose ~ 9.48 3.37 4 17 

Monkey 3.86 2.31 2 13 

Moose # * 7.00 2.69 3 16 

Moth 5.22 2.40 3 16 

Mouse 3.72 1.61 2 9 

Mule 7.14 2.59 4 15 

Newt 7.04 1.95 4 12 

Nightingale 8.01 3.81 5 26 

Octopus # 5.15 2.09 3 11 

Orang-utan # 6.36 2.59 3 16 

Ostrich # 6.35 1.88 3 11 

Otter # 6.36 2.38 3 16 

Owl 4.76 2.83 3 19 

Ox 6.73 2.33 3 12 

Panda # 5.12 2.11 2 10 

Panther # ~ 6.41 1.89 3 12 

Parakeet 8.71 2.50 5 15 

Parrot # 5.10 1.58 2 9 

Partridge # 6.34 2.32 3 10 

Peacock # 5.00 2.05 2 10 

Pelican # 6.74 2.09 4 14 

Penguin # 5.01 1.87 2 11 

Perch 9.07 2.84 4 14 

Pheasant 7.20 2.67 4 15 

Pig # * 3.57 1.36 2 8 

Pigeon 4.77 1.78 2 10 

Piglet ~ 4.35 2.74 2 18 

Pike # ~ 7.53 4.55 3 26 

Piranha fish # ~ 7.71 2.15 4 13 

Plaice # 8.55 3.00 5 17 

Platypus # 9.44 2.56 5 14 

Polar bear 5.43 2.08 3 13 

Pony 4.38 2.53 2 17 

Porcupine 7.86 2.39 5 14 



Page 17 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

min max 
Animal Mean SD 

 

 

 

Porpoise 9.23 2.99 5 20 

Poultry # 6.74 2.66 2 12 

Prairie dog # 9.59 3.67 6 22 

Puffin # 6.50 1.73 4 10 

Puma # 7.43 2.80 4 15 

Rabbit # * 3.64 1.26 2 6 

Racoon # 6.97 1.62 5 11 

Ram 6.71 2.28 4 13 

Rat 4.12 1.46 1 8 

Raven ~ 7.56 2.54 3 16 

Reindeer # 3.68 2.72 2 18 

Rhesus monkey 12.64 5.47 6 26 

Rhinoceros # 5.78 1.93 3 10 

Roach 8.55 2.44 5 15 

Robin 4.82 2.08 2 12 

Rodent 6.44 2.07 3 12 

Rook 8.41 3.13 5 18 

Rooster # * 5.84 1.92 4 10 

Salamander # 9.32 4.77 5 27 

Salmon 7.40 2.31 3 13 

Sardine 6.87 2.90 3 17 

Sea lion # 6.32 2.72 3 16 

Seagull 4.56 2.02 2 11 

Seahorse # 5.91 2.51 4 12 

Seal # 5.86 1.86 3 11 

Shark # 4.82 1.86 2 10 

Sheep # * 3.46 1.36 2 8 

Shrew 7.72 2.70 4 14 

Shrimp 7.26 2.60 3 14 

Siamese cat 6.40 2.28 3 12 

Siberian tiger # 8.59 3.01 5 16 

Skate 8.91 3.65 4 19 

Skunk # 6.75 2.45 4 16 

Skylark # * 9.32 2.81 4 14 

Sloth # 8.59 2.32 5 14 

Slug # 3.99 1.41 2 9 

Snail 3.82 1.48 2 8 

Snake # * 4.20 2.15 2 14 

Sole 8.84 2.93 5 17 



Page 18 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

min max 
Animal Mean SD 

 

 

 

Sow # 8.09 3.04 4 16 

Sparrow # 5.15 2.07 2 9 

Spider 3.52 1.84 2 12 

Springbok 9.68 4.06 4 18 

Squid # 7.31 2.82 3 15 

Squirrel # * 4.45 1.52 2 8 

Stag 7.55 2.53 4 15 

Star fish # 5.78 2.03 4 13 

Starling # 7.86 3.13 3 20 

Stick insect # 6.56 2.08 4 13 

Stickleback # 7.36 3.58 4 19 

Stoat 8.28 2.19 5 13 

Sturgeon 11.29 4.66 8 23 

Swan 4.31 2.32 2 12 

Swift 7.90 2.82 4 14 

Sword fish 7.81 3.01 4 16 

Tarantula # 6.39 1.84 3 11 

Thrush # * 8.77 2.80 4 16 

Tiger # * 4.52 2.32 2 11 

Toad # * 4.83 1.27 3 8 

Tortoise 4.82 2.34 2 14 

Trout ~ 7.61 2.27 5 13 

Tuna # 5.63 2.96 2 14 

Turkey # * 4.55 1.50 2 9 

Turtle # * 4.98 2.29 3 16 

Tyrannosaurus # ~ * 5.84 2.19 3 11 

Vole 8.36 3.46 5 20 

Vulture # ~ 6.49 2.94 3 17 

Wallaby # 7.90 2.31 4 13 

Walrus 6.94 2.03 4 12 

Warthog # 8.28 2.35 4 13 

Wasp 4.50 1.99 2 14 

Water buffalo # 9.27 3.58 6 23 

Water rat 7.89 2.57 3 13 

Weasel # * 6.42 2.23 3 12 

Whale # 4.57 1.73 1 10 

White tiger # 7.69 3.24 4 19 

Wild boar # 8.58 3.20 4 21 

Wild cat 7.84 2.63 5 14 
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Range 

min max 
Animal Mean SD 

 

 

 

Wild dog # 6.83 3.12 2 14 

Wildebeest # ~ 9.01 2.61 5 15 

Wolf 5.19 1.86 2 10 

Wombat # 8.14 2.46 3 14 

Woodlouse # 5.21 2.70 3 14 

Woodpecker 6.35 1.83 4 11 

Worm 3.41 1.42 2 7 

Wren 8.18 3.32 4 16 

Yak # 8.32 2.79 4 15 

Yellow tit 8.71 2.70 4 15 

Yorkshire terrier * 6.39 2.90 3 14 

  Zebra # *  5.01  1.56  3  9   
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Elderberry * 10.09 4.39 4 25 

Fig 6.62 3.35 3 18 

Gala apple # 6.01 3.14 2 16 

Galia melon # 8.09 3.88 4 19 

Gooseberry # * 6.38 3.03 3 14 

Granny smith # 5.89 1.57 4 9 

Grapefruit # 5.79 2.06 2 10 

Grape # 4.11 1.41 2 7 

Green melon # 6.69 2.07 4 12 

Guava # * 11.34 5.45 4 27 

 

Table A.2b. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for fruit words in individuals belonging to the 21-30 age –category. 
 
 
 
 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 5.31 1.61 2 9 

Almond 6.37 2.18 2 10 

Apple # * 3.22 1.17 2 6 

Apricot # 5.84 1.85 3 12 

Aubergine # 9.25 3.72 5 24 

Avocado # 8.40 3.02 4 15 

Banana # * 3.26 1.17 2 6 

Berries 5.03 1.82 3 10 

Blackberry 5.33 1.75 3 10 

Blackcurrant # * 4.68 1.65 2 9 

Blueberry # ~ 6.58 2.42 4 13 

Bramble ~ * 5.10 2.20 2 12 

Cantaloupe melon # 8.64 3.91 4 19 

Cherry # 4.82 1.78 2 9 

Chestnut 6.48 2.11 4 12 

Clementine # 6.26 2.16 2 12 

Coconut 5.80 1.85 3 12 

Cox apple * 6.31 3.12 2 18 

Crab apple 7.20 4.17 3 19 

Cranberry # 7.88 3.08 4 20 

Cucumber # 4.75 1.91 3 12 

Currant 4.82 1.97 2 9 

Damson # 11.12 5.52 7 26 

Date 7.24 2.34 3 15 



Page 21 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

max 
Fruit Mean SD 

min 

 

 

 

Hazelnut 6.00 2.50 2 13 

Honeydew melon # 7.88 3.75 4 20 

Horse chestnut * 7.34 2.11 5 12 

Jaffa # * 7.77 3.60 4 21 

Kiwi # 6.43 2.46 4 14 

Kumquat # * 10.60 5.07 6 26 

Lemon # 4.30 1.69 2 9 

Lime # * 5.79 2.37 3 11 

Loganberry 12.43 5.88 6 28 

Lychee # 11.74 5.64 7 29 

Mandarin # ~ 6.45 2.46 2 12 

Mango # 7.13 3.46 4 18 

Melon # 4.90 1.58 2 9 

Nectarine # 5.91 2.47 2 15 

Nut 4.20 1.73 2 9 

Olive # ~ * 8.19 2.85 4 15 

Orange # * 3.46 1.08 2 6 

Papaya # 9.83 4.66 4 22 

Passion fruit # 8.71 2.84 5 16 

Peach # 5.17 1.64 2 10 

Pear # 3.90 1.36 2 7 

Pepper # * 7.07 1.82 4 12 

Pineapple # 5.28 1.56 2 9 

Plum 5.24 2.29 2 13 

Pomegranate 8.16 4.07 4 21 

Prune 6.62 2.31 4 12 

Raisin # ~ * 4.49 1.78 2 9 

Raspberry # 4.93 1.45 3 9 

Red currant 6.37 3.25 4 20 

Redberry 6.69 2.61 4 17 

Red grape # 4.93 2.78 2 13 

Rhubarb 5.51 2.22 3 12 

Satsuma # 5.06 1.92 2 10 

Squash # 6.73 5.21 2 21 

Star fruit # 11.11 5.41 6 26 

Strawberry # 4.00 1.20 2 7 

Sultana * 5.27 1.87 3 11 

Tangerine # 5.25 1.97 2 10 

Tomato # 3.92 1.09 2 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Walnut 5.65 1.93 2 10 

Water melon # 6.12 3.11 3 18 

White grape# ~ 4.75 3.42 2 20 
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Table A.3a. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for animal words in individuals belonging to the 31-40 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark # 

 
7.80 

 
3.64 

 
4 

 
20 

Adder # ~ 8.29 2.56 6 14 

Albatross # ~ 9.62 3.69 5 21 

Alligator # * 5.64 1.96 3 10 

Amoeba 11.36 4.32 6 23 

Angel fish # 11.40 6.80 6 28 

Ant # * 3.83 1.45 2 8 

Anteater # ~ 7.28 1.96 5 12 

Antelope # ~ 7.17 2.35 5 12 

Ape # 6.30 1.60 4 9 

Armadillo # 8.83 3.65 5 20 

Ass # 7.38 2.87 3 16 

Baboon # 6.74 2.41 4 12 

Badger # 5.25 2.45 2 12 

Bald eagle # 7.87 3.20 4 18 

Bat # 5.18 1.87 3 9 

Bear * 3.80 1.63 2 8 

Beaver # * 7.33 1.93 5 11 

Bee # * 3.46 1.18 2 6 

Beetle 4.41 2.09 2 9 

Bird 2.05 1.00 1 4 

Bison ~ 7.95 2.97 5 15 

Blackbird 4.73 2.03 2 9 

Blue bird # 6.43 3.26 3 16 

Blue tit # * 4.50 2.66 1 11 

Boa constrictor # 7.55 2.57 5 13 

Boar 6.44 3.53 1 18 

Brontosaurus #  ~ 7.26 2.30 5 12 

Brown bear # 5.11 2.61 3 12 

Buck 9.13 3.28 5 18 

Budgerigar # 5.76 3.00 3 14 

Buffalo # 6.81 2.14 5 12 

Bull 5.03 1.99 2 9 

Bullfinch 8.75 2.99 4 16 

Bullock 9.20 4.79 6 21 
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Range 

min max 
Animal Mean SD 

 

 

 

Butterfly 2.82 1.66 1 7 

Buzzard 7.18 3.24 2 16 

Calf 4.15 1.78 2 8 

Camel 4.32 2.16 1 10 

Canary 5.74 2.54 2 11 

Caribou 10.53 3.52 6 20 

Carp # ~ 10.81 5.59 5 30 

Cat 2.03 1.12 1 5 

Caterpillar 4.06 1.31 2 7 

Cattle 5.38 2.84 2 12 

Chaffinch 7.20 3.36 3 16 

Chameleon # 8.29 3.18 6 20 

Cheetah # ~ 6.58 2.12 4 12 

Chicken # * 2.97 1.58 2 8 

Chimpanzee 4.94 1.71 2 9 

Chinchilla # 11.73 5.89 7 30 

Chipmunk # ~ * 7.66 5.45 4 22 

Clown fish # 14.99 6.89 9 32 

Cobra # ~ 7.04 2.11 4 11 

Cockatiel # 6.98 2.68 4 12 

Cocker spaniel 7.27 2.42 3 12 

Cockerel 5.26 3.45 3 16 

Cockroach 6.48 3.15 2 15 

Cod 6.15 3.26 3 14 

Condor #  ~ 9.28 2.65 6 14 

Conger eel 10.13 4.06 5 21 

Cougar # ~ 9.47 4.25 5 21 

Cow * 2.67 1.28 1 6 

Coyote # ~ * 7.15 2.55 5 13 

Cray fish # ~ 11.56 4.59 7 25 

Crocodile # 4.05 1.35 2 7 

Crow 5.27 1.59 3 8 

Cuckoo 5.69 2.25 4 11 

Deer # * 5.01 1.74 3 9 

Dingo 9.39 4.25 4 21 

Dog 2.21 0.90 1 4 

Dolphin # 4.40 2.67 2 13 

Donkey 3.40 1.52 2 8 

Dormouse 6.39 2.32 3 12 
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Range 

min max 
Animal Mean SD 

 

 

 

Dove # 5.42 1.90 3 10 

Dragon # 4.67 1.87 3 10 

Dragonfly # * 5.40 2.22 2 11 

Duck # * 2.77 1.50 1 7 

Duckbill platypus # 9.50 2.35 7 15 

Eagle 5.56 1.84 3 10 

Earthworm 3.64 2.27 1 11 

Earwig * 5.41 2.01 2 11 

Eel 7.04 2.33 3 12 

Elk 10.32 3.39 7 20 

Emu # 5.97 4.27 3 20 

Ewe 7.09 4.11 4 18 

Ferret 6.82 3.05 4 14 

Field mouse 5.39 1.97 3 10 

Finch 7.68 3.06 4 16 

Fish 2.86 0.85 2 4 

Flamingo # 5.93 2.29 4 11 

Flea 5.97 1.62 4 10 

Fly * 3.05 1.77 1 8 

Fowl # ~ 5.82 4.87 2 19 

Fox # * 4.28 1.76 2 8 

Frog # * 3.53 1.33 2 6 

Gazelle 8.75 2.64 6 16 

Gecko # 11.76 6.51 6 28 

Gerbil # 6.19 2.48 4 14 

Giant panda # 6.44 5.95 4 32 

Gibbon # 8.44 3.22 5 16 

Giraffe 4.08 5.35 2 26 

Goat 4.06 1.95 3 10 

Goldfish 3.61 2.06 2 10 

Goose # 5.32 2.08 3 10 

Gorilla # 5.32 1.95 3 10 

Greyhound 7.14 3.38 3 15 

Grizzly bear # * 5.58 1.86 3 10 

Groundhog # * 10.17 5.31 3 27 

Guinea fowl 11.28 4.87 6 25 

Guinea pig # 5.43 2.12 2 10 

Gull 5.70 2.17 3 10 

Haddock 6.40 3.58 3 16 
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Range 

min max 
Animal Mean SD 

 

 

 

Hamster # 4.92 1.93 3 11 

Hare 5.66 1.73 4 9 

Hawk # ~ 6.90 2.44 3 12 

Hedgehog 4.28 2.17 2 10 

Hen 3.60 1.70 2 8 

Heron # 8.10 3.12 4 14 

Herring 8.41 2.18 6 13 

Hippopotamus # 4.87 1.64 3 8 

Hornet 8.29 3.76 5 20 

Horse 2.85 1.58 1 8 

Horsefly 9.61 3.78 7 19 

Hyena # 7.74 2.43 5 12 

Iguana # * 9.24 3.31 4 16 

Insect # 4.09 1.94 2 8 

Invertebrate 9.20 2.74 6 16 

Jack rabbit 7.68 2.20 5 12 

Jackal # ~ 10.26 3.15 0 18 

Jackass 10.50 5.80 6 25 

Jackdaw 9.09 7.11 5 37 

Jaguar # 7.61 2.43 4 12 

Kangaroo # 3.91 2.11 1 8 

Kid 5.79 2.66 3 12 

Kitten 2.63 1.35 1 6 

Kiwi 10.25 5.38 5 22 

Koala # 6.10 2.40 4 13 

Koi carp # 9.84 4.11 4 19 

Komodo dragon # ~ 12.23 7.65 5 36 

Lady bird # 3.61 1.68 2 8 

Lamb 3.61 1.68 2 8 

Lemur # 11.12 7.77 5 37 

Leopard # 5.78 2.41 3 13 

Lion # * 3.83 1.12 2 6 

Lizard # 5.84 2.52 3 12 

Llama 8.51 3.22 5 18 

Lobster # ~ 6.94 2.60 4 13 

Long tailed tit 11.21 9.02 5 34 

Lynx 9.60 5.25 6 30 

Mackerel * 8.64 2.91 5 16 

Mammal # 6.83 1.57 5 10 
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Range 

min max 
Animal Mean SD 

 

 

 

Meerkat # 12.12 6.00 7 30 

Midge 8.26 4.17 5 18 

Mink 9.27 3.06 5 15 

Manx 9.93 3.72 6 20 

Mole 5.82 2.17 3 12 

Mongoose ~ 8.82 3.11 4 16 

Monkey 2.93 1.69 1 8 

Moose # * 6.99 2.66 4 13 

Moth 5.00 1.71 3 8 

Mouse 3.18 1.49 1 7 

Mule 6.97 1.90 5 10 

Newt 6.56 2.34 4 12 

Nightingale 8.32 3.14 5 16 

Octopus # 5.83 1.66 3 10 

Orang-utan # 6.53 2.15 3 11 

Ostrich # 4.95 2.70 1 14 

Otter # 6.70 2.30 4 12 

Owl 4.41 1.49 2 8 

Ox 6.79 3.20 3 14 

Panda # 5.03 2.96 3 14 

Panther # ~ 6.63 1.76 4 11 

Parakeet 7.62 3.09 2 18 

Parrot # 5.16 1.77 3 10 

Partridge # 6.69 3.17 4 14 

Peacock # 4.89 2.31 3 12 

Pelican # 6.50 2.37 2 12 

Penguin # 4.51 1.30 3 8 

Perch 8.94 3.27 5 16 

Pheasant 6.96 2.60 4 14 

Pig # * 2.83 1.58 1 8 

Pigeon 4.36 1.25 3 7 

Piglet ~ 3.59 1.89 2 10 

Pike # ~ 9.14 2.76 6 16 

Piranha fish # ~ 7.14 2.48 5 13 

Plaice # 9.16 5.01 4 24 

Platypus # 9.01 3.21 6 16 

Polar bear 5.72 2.11 3 11 

Pony 3.84 1.88 2 8 

Porcupine 7.37 1.95 4 12 
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Range 

min max 
Animal Mean SD 

 

 

 

Porpoise 8.29 4.42 4 23 

Poultry # 7.03 3.06 2 15 

Prairie dog # 10.19 3.33 6 18 

Puffin # 6.72 3.41 4 16 

Puma # 8.25 1.92 6 12 

Rabbit # * 3.08 1.24 2 5 

Racoon # 7.50 2.61 3 12 

Ram 6.87 1.65 5 11 

Rat 4.37 1.50 2 8 

Raven ~ 7.57 2.73 4 14 

Reindeer # 3.40 2.11 2 10 

Rhesus monkey 11.82 4.92 6 24 

Rhinoceros # 5.67 2.00 3 10 

Roach 7.61 4.23 3 20 

Robin 4.19 2.05 2 9 

Rodent 8.36 1.90 5 12 

Rook 7.91 2.52 4 15 

Rooster # * 5.46 2.64 3 12 

Salamander # 9.50 3.65 5 16 

Salmon 7.60 3.41 5 15 

Sardine 6.60 2.57 2 12 

Sea lion # 6.06 2.37 3 12 

Seagull 4.51 2.40 3 12 

Seahorse # 6.72 2.31 5 14 

Seal # 5.45 2.21 2 11 

Shark # 4.75 1.77 3 10 

Sheep # * 3.06 1.39 2 7 

Shrew 9.08 2.77 6 15 

Shrimp 7.23 2.37 3 12 

Siamese cat 6.47 1.84 5 10 

Siberian tiger # 9.98 8.00 6 40 

Skate 10.41 4.17 7 22 

Skunk # 6.69 1.80 5 11 

Skylark # * 8.42 3.33 5 16 

Sloth # 9.64 4.47 6 22 

Slug # 4.24 1.39 2 8 

Snail 3.43 1.24 2 6 

Snake # * 4.31 1.21 3 7 

Sole 9.89 3.14 7 16 
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Range 

min max 
Animal Mean SD 

 

 

 

Sow # 7.20 3.16 3 15 

Sparrow # 5.02 2.43 3 12 

Spider 2.72 1.15 1 5 

Springbok 10.08 3.35 8 18 

Squid # 6.87 2.83 4 12 

Squirrel # * 3.61 1.89 1 8 

Stag 7.57 3.31 4 16 

Star fish # 4.69 2.36 2 11 

Starling # 6.76 3.61 3 16 

Stick insect # 6.51 3.20 4 18 

Stickleback # 7.52 4.10 4 20 

Stoat 9.38 2.69 6 15 

Sturgeon 13.18 5.08 8 31 

Swan 4.01 1.54 2 8 

Swift 7.99 3.05 5 16 

Sword fish 8.44 3.18 5 18 

Tarantula # 6.59 2.59 4 14 

Thrush # * 6.39 3.61 2 16 

Tiger # * 4.01 1.64 2 8 

Toad # * 4.81 1.51 3 8 

Tortoise 3.79 1.73 1 8 

Trout ~ 7.73 2.71 4 15 

Tuna # 6.76 2.72 3 14 

Turkey # * 4.33 1.83 2 10 

Turtle # * 5.09 1.84 2 9 

Tyrannosaurus # ~ * 6.42 2.07 4 10 

Vole 8.74 2.83 5 16 

Vulture # ~ 6.59 2.02 4 10 

Wallaby # 7.43 5.49 4 27 

Walrus 7.62 2.45 5 13 

Warthog # 8.64 3.51 5 15 

Wasp 4.08 1.35 3 8 

Water buffalo # 9.43 2.88 5 16 

Water rat 9.29 2.77 5 16 

Weasel # * 6.67 3.14 3 13 

Whale # 4.74 1.62 3 8 

White tiger # 9.02 6.02 6 30 

Wild boar # 9.32 2.56 7 14 

Wild cat 9.19 3.08 6 16 
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Range 

min max 
Animal Mean SD 

 

 

 

Wild dog # 7.94 2.79 5 14 

Wildebeest # ~ 8.44 3.35 5 18 

Wolf 4.27 2.14 2 10 

Wombat # 9.64 5.73 5 30 

Woodlouse # 4.17 2.40 2 10 

Woodpecker 5.80 1.86 3 10 

Worm 3.00 1.64 1 7 

Wren 7.90 3.47 4 16 

Yak # 9.66 2.98 5 17 

Yellow tit 9.31 8.17 5 40 

Yorkshire terrier * 6.38 5.15 3 25 

  Zebra # *  5.13  1.58  3  9   
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Elderberry * 7.72 3.77 4 18 

Fig 7.16 6.39 4 30 

Gala apple # 9.07 7.78 4 33 

Galia melon # 10.62 10.78 5 40 

Gooseberry # * 5.46 3.22 4 17 

Granny smith # 6.96 3.45 4 15 

Grapefruit # 5.78 2.68 3 15 

Grape # 3.62 1.96 2 8 

Green melon # 7.30 10.76 3 40 

Guava # * 10.25 8.27 4 35 

 

Table A.3b. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for fruit words in individuals belonging to the 31-40 age –category. 
 
 
 
 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 5.21 1.96 3 10 

Almond 6.29 2.65 4 14 

Apple # * 2.37 1.46 1 6 

Apricot # 6.69 3.06 4 15 

Aubergine # 10.58 5.33 6 25 

Avocado # 8.27 4.80 4 20 

Banana # * 2.48 1.81 1 8 

Berries 4.47 2.10 2 9 

Blackberry 5.54 2.45 4 12 

Blackcurrant # * 5.30 2.45 0 10 

Blueberry # ~ 8.34 4.13 4 20 

Bramble ~ * 5.15 3.62 3 15 

Cantaloupe melon # 9.46 9.86 4 34 

Cherry # 5.03 1.88 3 10 

Chestnut 6.40 3.32 3 16 

Clementine # 7.31 4.23 4 22 

Coconut 4.46 2.27 2 10 

Cox apple * 7.00 2.97 4 15 

Crab apple 6.78 2.91 5 15 

Cranberry # 10.01 4.99 5 22 

Cucumber # 4.18 2.03 2 10 

Currant 4.77 2.59 2 12 

Damson # 7.97 7.41 3 28 

Date 7.51 2.16 4 12 



Page 32 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

max 
Fruit Mean SD 

min 

 

 

 

Hazelnut 5.96 2.71 3 12 

Honeydew melon # 8.45 9.90 3 40 

Horse chestnut * 6.51 3.91 3 19 

Jaffa # * 5.93 2.33 3 12 

Kiwi # 9.08 5.63 4 25 

Kumquat # * 10.15 10.38 2 40 

Lemon # 4.47 1.74 2 8 

Lime # * 6.71 3.53 3 18 

Loganberry 12.02 7.24 6 30 

Lychee # 12.31 8.95 8 40 

Mandarin # ~ 6.71 2.16 4 12 

Mango # 7.68 5.15 2 25 

Melon # 5.29 3.66 3 16 

Nectarine # 6.94 2.20 4 12 

Nut 3.54 2.21 1 10 

Olive # ~ * 9.99 4.33 5 21 

Orange # * 2.44 1.45 1 6 

Papaya # 8.07 7.31 2 30 

Passion fruit # 11.09 5.85 6 25 

Peach # 4.72 2.72 2 12 

Pear # 3.40 1.83 1 8 

Pepper # * 6.31 3.35 3 14 

Pineapple # 5.22 2.13 3 10 

Plum 4.80 2.04 3 10 

Pomegranate 7.28 5.40 4 25 

Prune 6.23 2.25 3 11 

Raisin # ~ * 4.37 2.02 2 10 

Raspberry # 4.72 2.16 3 10 

Red currant 6.98 3.17 4 15 

Redberry 7.10 4.01 4 18 

Red grape # 5.20 5.47 2 28 

Rhubarb 4.41 3.80 1 18 

Satsuma # 4.57 3.32 3 15 

Squash # 9.28 11.57 3 40 

Star fruit # 12.66 9.14 4 40 

Strawberry # 3.47 2.14 1 8 

Sultana * 5.28 2.38 2 12 

Tangerine # 4.61 2.39 2 10 

Tomato # 2.76 1.75 1 8 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Walnut 6.43 1.49 5 10 

Water melon # 6.14 3.60 3 18 

White grape# ~ 5.55 5.73 3 28 
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Table A.4a. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for animal words in individuals belonging to the 41-50 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark # 

 
9.21 

 
3.18 

 
5 

 
16 

Adder # ~ 7.56 3.50 5 16 

Albatross # ~ 8.33 2.21 5 14 

Alligator # * 5.50 2.01 3 10 

Amoeba 11.09 1.99 8 15 

Angel fish # 8.87 9.47 4 43 

Ant # * 3.84 0.88 3 6 

Anteater # ~ 7.04 2.10 5 13 

Antelope # ~ 8.26 2.56 5 13 

Ape # 5.92 1.78 4 10 

Armadillo # 8.35 3.56 5 20 

Ass # 7.44 2.79 5 13 

Baboon # 6.72 2.59 4 12 

Badger # 6.25 2.91 4 14 

Bald eagle # 9.5 2.7 5 14 

Bat # 5.11 1.89 3 9 

Bear * 3.63 1.54 2 8 

Beaver # * 7.41 2.11 5 13 

Bee # * 3.65 1.66 2 8 

Beetle 5.12 1.78 3 9 

Bird 2.83 1.03 2 5 

Bison ~ 9.35 5.19 6 26 

Blackbird 4.68 3.13 2 15 

Blue bird # 7.23 2.39 5 12 

Blue tit # * 6.84 3.51 4 16 

Boa constrictor # 8.32 1.60 7 12 

Boar 8.36 2.96 5 16 

Brontosaurus #  ~ 8.23 2.99 6 16 

Brown bear # 6.79 3.28 4 14 

Buck 9.13 4.35 5 20 

Budgerigar # 5.66 3.85 3 18 

Buffalo # 7.34 2.50 4 12 

Bull 5.56 1.41 4 8 

Bullfinch 8.91 5.29 6 25 

Bullock 7.53 3.13 5 14 
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Range 

min max 
Animal Mean SD 

 

 

 

Butterfly 3.75 2.06 2 9 

Buzzard 9.01 4.34 6 22 

Calf 5.40 2.18 3 12 

Camel 5.21 1.82 3 10 

Canary 7.33 2.75 4 13 

Caribou 12.20 3.80 8 24 

Carp # ~ 9.59 3.56 6 18 

Cat 2.88 0.83 2 5 

Caterpillar 4.32 1.96 3 9 

Cattle 5.55 3.17 3 14 

Chaffinch 9.15 3.31 6 18 

Chameleon # 9.54 3.09 7 18 

Cheetah # ~ 6.20 2.50 3 14 

Chicken # * 4.03 1.39 3 8 

Chimpanzee 5.79 2.24 3 10 

Chinchilla # 11.29 5.66 7 26 

Chipmunk # ~ * 7.93 2.02 6 12 

Clown fish # 15.30 11.17 8 40 

Cobra # ~ 7.04 2.63 4 13 

Cockatiel # 9.80 2.04 7 13 

Cocker spaniel 7.69 2.98 4 15 

Cockerel 5.94 3.08 4 14 

Cockroach 7.54 2.04 5 12 

Cod 6.65 3.73 4 16 

Condor #  ~ 10.41 3.56 7 19 

Conger eel 10.53 5.70 7 30 

Cougar # ~ 9.76 2.12 6 14 

Cow * 3.44 0.84 2 5 

Coyote # ~ * 9.05 3.21 7 15 

Cray fish # ~ 11.88 4.55 6 24 

Crocodile # 5.17 2.54 3 11 

Crow 5.64 2.56 3 12 

Cuckoo 5.07 2.58 2 11 

Deer # * 5.35 2.06 3 10 

Dingo 9.20 3.05 6 15 

Dog 2.86 1.03 2 5 

Dolphin # 5.35 2.42 4 12 

Donkey 3.82 1.79 2 8 

Dormouse 6.23 2.59 3 13 
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Range 

min max 
Animal Mean SD 

 

 

 

Dove # 6.34 2.08 3 10 

Dragon # 4.68 1.72 3 9 

Dragonfly # * 6.93 3.12 3 12 

Duck # * 3.69 2.50 2 12 

Duckbill platypus # 9.07 3.26 6 15 

Eagle 5.23 2.11 3 10 

Earthworm 3.73 2.74 2 10 

Earwig * 5.35 2.58 3 11 

Eel 6.79 3.85 5 18 

Elk 10.47 5.53 7 28 

Emu # 9.01 2.79 5 16 

Ewe 7.15 1.43 5 10 

Ferret 8.35 3.60 6 20 

Field mouse 6.84 3.11 3 14 

Finch 8.65 3.08 6 14 

Fish 3.51 1.05 2 6 

Flamingo # 8.19 2.02 5 12 

Flea 5.85 2.28 4 12 

Fly * 3.64 1.64 2 9 

Fowl # ~ 8.60 3.38 5 16 

Fox # * 5.35 1.63 3 8 

Frog # * 3.62 1.11 2 5 

Gazelle 8.68 2.93 6 14 

Gecko # 12.53 4.09 8 20 

Gerbil # 6.70 5.11 3 24 

Giant panda # 7.65 3.47 5 16 

Gibbon # 6.58 4.79 2 18 

Giraffe 5.06 1.82 3 9 

Goat 4.09 1.60 2 8 

Goldfish 4.18 1.66 2 8 

Goose # 5.26 2.59 3 12 

Gorilla # 5.73 1.49 4 8 

Greyhound 7.90 2.62 5 14 

Grizzly bear # * 5.99 2.64 2 12 

Groundhog # * 12.85 5.88 8 29 

Guinea fowl 10.41 4.79 6 26 

Guinea pig # 6.51 2.67 4 14 

Gull 5.80 2.94 4 12 

Haddock 6.79 3.29 3 15 
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Range 

min max 
Animal Mean SD 

 

 

 

Hamster # 4.83 1.42 3 8 

Hare 5.79 2.84 4 12 

Hawk # ~ 7.62 2.84 5 16 

Hedgehog 4.86 2.41 3 12 

Hen 4.09 1.82 2 8 

Heron # 8.51 2.37 6 14 

Herring 6.78 4.41 3 18 

Hippopotamus # 5.50 1.64 3 10 

Hornet 7.06 2.03 5 12 

Horse 3.46 1.44 2 7 

Horsefly 9.59 9.59 6 44 

Hyena # 8.34 3.30 5 16 

Iguana # * 10.69 2.55 8 16 

Insect # 4.68 1.66 3 9 

Invertebrate 10.52 8.65 7 40 

Jack rabbit 8.37 4.77 5 22 

Jackal # ~ 9.03 3.19 6 18 

Jackass 11.54 7.86 6 30 

Jackdaw 8.62 3.04 5 16 

Jaguar # 8.15 3.40 5 16 

Kangaroo # 5.29 2.40 3 12 

Kid 7.48 3.91 5 16 

Kitten 3.48 1.46 2 8 

Kiwi 10.33 4.17 6 21 

Koala # 6.42 2.68 3 12 

Koi carp # 12.21 6.08 6 28 

Komodo dragon # ~ 14.22 3.89 11 24 

Lady bird # 4.02 1.74 2 8 

Lamb 3.75 1.65 2 7 

Lemur # 11.04 3.29 7 17 

Leopard # 5.69 2.54 3 12 

Lion # * 3.35 1.57 2 6 

Lizard # 6.22 2.12 4 10 

Llama 9.71 3.06 6 16 

Lobster # ~ 8.82 1.83 7 12 

Long tailed tit 10.01 4.72 4 20 

Lynx 10.52 2.62 8 16 

Mackerel * 8.35 3.41 5 17 

Mammal # 7.97 2.30 5 12 
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Range 

min max 
Animal Mean SD 

 

 

 

Meerkat # 12.37 10.58 7 40 

Midge 7.71 3.88 5 18 

Mink 8.53 4.78 5 20 

Manx 10.47 5.05 6 25 

Mole 4.14 2.14 1 10 

Mongoose ~ 8.70 2.14 6 14 

Monkey 4.05 1.45 2 8 

Moose # * 8.41 2.27 5 14 

Moth 5.48 1.48 4 9 

Mouse 3.50 1.12 2 6 

Mule 7.16 2.57 3 12 

Newt 7.20 3.92 5 16 

Nightingale 7.97 3.79 5 17 

Octopus # 6.07 2.10 4 12 

Orang-utan # 7.86 2.95 5 14 

Ostrich # 6.78 2.71 4 12 

Otter # 6.98 3.08 4 14 

Owl 4.62 2.18 3 12 

Ox 6.68 2.53 3 12 

Panda # 4.91 2.17 3 10 

Panther # ~ 7.26 2.95 3 12 

Parakeet 10.14 3.68 7 21 

Parrot # 4.72 2.59 3 12 

Partridge # 7.42 3.84 4 19 

Peacock # 6.24 3.06 4 16 

Pelican # 7.71 2.93 5 15 

Penguin # 5.32 1.92 3 10 

Perch 9.95 3.18 7 16 

Pheasant 7.89 3.37 4 15 

Pig # * 3.69 1.30 3 7 

Pigeon 5.21 1.45 4 9 

Piglet ~ 4.51 2.05 2 9 

Pike # ~ 9.49 4.05 5 18 

Piranha fish # ~ 8.58 2.25 6 12 

Plaice # 8.18 5.68 4 26 

Platypus # 9.00 2.31 5 14 

Polar bear 5.74 2.73 3 12 

Pony 4.51 1.71 3 9 

Porcupine 7.74 2.71 5 14 
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Range 

min max 
Animal Mean SD 

 

 

 

Porpoise 10.16 2.89 7 15 

Poultry # 8.46 3.05 6 15 

Prairie dog # 11.89 5.56 8 25 

Puffin # 7.03 3.11 4 14 

Puma # 8.87 2.79 6 15 

Rabbit # * 3.46 1.29 2 7 

Racoon # 8.59 2.98 5 16 

Ram 7.05 2.60 4 12 

Rat 4.68 2.05 3 10 

Raven ~ 7.62 3.56 5 16 

Reindeer # 3.50 3.15 2 14 

Rhesus monkey 11.31 4.64 7 25 

Rhinoceros # 6.16 2.68 3 12 

Roach 11.38 4.68 7 24 

Robin 4.74 3.15 3 15 

Rodent 7.55 2.25 5 12 

Rook 5.51 4.27 1 17 

Rooster # * 6.60 2.70 4 15 

Salamander # 11.04 3.86 5 19 

Salmon 7.41 3.30 5 16 

Sardine 6.80 3.63 4 18 

Sea lion # 7.67 2.50 5 12 

Seagull 5.14 1.40 4 8 

Seahorse # 6.24 2.44 4 12 

Seal # 5.66 2.50 3 11 

Shark # 5.82 1.41 4 8 

Sheep # * 3.66 1.36 2 8 

Shrew 7.92 4.87 3 18 

Shrimp 7.99 3.58 5 17 

Siamese cat 7.79 2.09 5 12 

Siberian tiger # 11.57 3.84 8 20 

Skate 9.37 5.61 6 25 

Skunk # 6.28 2.20 4 10 

Skylark # * 9.43 4.72 7 22 

Sloth # 10.92 3.10 7 18 

Slug # 5.21 2.28 3 12 

Snail 3.86 1.23 3 7 

Snake # * 4.43 1.37 3 8 

Sole 9.24 3.56 4 16 
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Range 

min max 
Animal Mean SD 

 

 

 

Sow # 7.67 3.83 5 16 

Sparrow # 5.12 2.02 3 10 

Spider 3.53 1.03 2 5 

Springbok 11.23 7.46 5 30 

Squid # 7.85 2.97 3 12 

Squirrel # * 4.67 1.54 3 8 

Stag 7.28 3.38 3 14 

Star fish # 5.80 2.31 3 12 

Starling # 6.89 3.70 4 16 

Stick insect # 8.69 3.02 6 16 

Stickleback # 7.87 7.11 5 30 

Stoat 9.45 3.57 6 17 

Sturgeon 11.55 3.97 7 20 

Swan 4.55 1.99 3 10 

Swift 7.46 3.74 3 15 

Sword fish 8.67 1.80 6 12 

Tarantula # 8.48 1.81 7 12 

Thrush # * 7.33 3.67 5 16 

Tiger # * 4.30 1.16 3 7 

Toad # * 5.67 2.24 3 11 

Tortoise 4.55 1.98 2 9 

Trout ~ 7.08 5.93 4 26 

Tuna # 7.75 3.99 3 18 

Turkey # * 4.69 2.10 2 10 

Turtle # * 5.83 2.81 4 12 

Tyrannosaurus # ~ * 7.16 2.49 5 12 

Vole 8.16 5.05 5 24 

Vulture # ~ 6.28 2.41 3 10 

Wallaby # 7.69 3.15 5 14 

Walrus 7.26 3.00 5 14 

Warthog # 9.78 3.06 7 16 

Wasp 4.17 1.29 3 7 

Water buffalo # 9.62 4.16 6 22 

Water rat 8.72 3.71 5 16 

Weasel # * 8.16 3.05 6 16 

Whale # 5.10 1.91 3 10 

White tiger # 13.04 5.24 7 28 

Wild boar # 9.00 2.89 6 14 

Wild cat 9.86 3.61 7 18 
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Range 

min max 
Animal Mean SD 

 

 

 

Wild dog # 9.46 3.88 6 20 

Wildebeest # ~ 9.86 3.28 6 16 

Wolf 4.71 1.70 3 8 

Wombat # 8.68 4.14 6 22 

Woodlouse # 8.29 2.54 5 13 

Woodpecker 6.88 2.65 5 12 

Worm 3.44 1.07 2 6 

Wren 7.98 4.14 5 18 

Yak # 10.53 3.75 6 20 

Yellow tit 9.50 3.43 7 17 

Yorkshire terrier * 7.70 3.47 5 15 

  Zebra # *  5.03  2.71  3  12   
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Elderberry * 8.32 4.28 5 19 

Fig 7.47 5.71 5 24 

Gala apple # 12.61 8.51 8 38 

Galia melon # 13.37 6.13 7 30 

Gooseberry # * 6.43 3.57 4 16 

Granny smith # 7.44 2.21 5 12 

Grapefruit # 6.07 2.33 4 12 

Grape # 5.29 1.50 3 9 

Green melon # 8.87 8.31 5 35 

Guava # * 17.11 8.78 8 40 

 

Table A.4b. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for fruit words in individuals belonging to the 41-50 age –category. 
 
 
 
 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 5.84 6.12 3 28 

Almond 6.46 3.08 4 16 

Apple # * 3.61 1.14 2 6 

Apricot # 6.97 5.23 4 24 

Aubergine # 12.07 2.70 8 16 

Avocado # 11.42 4.36 8 23 

Banana # * 3.76 1.48 2 7 

Berries 5.18 3.52 3 14 

Blackberry 5.70 2.77 4 14 

Blackcurrant # * 6.42 3.08 4 14 

Blueberry # ~ 9.27 5.09 5 20 

Bramble ~ * 6.54 8.21 4 32 

Cantaloupe melon # 12.71 3.28 8 21 

Cherry # 5.44 2.18 3 10 

Chestnut 6.90 4.94 4 23 

Clementine # 8.58 3.39 5 16 

Coconut 5.86 4.31 4 21 

Cox apple * 7.33 4.88 4 18 

Crab apple 7.45 4.22 4 20 

Cranberry # 12.79 7.05 7 30 

Cucumber # 5.01 2.48 3 10 

Currant 5.33 2.30 3 10 

Damson # 9.69 5.05 5 20 

Date 6.10 2.38 3 12 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Hazelnut 6.29 3.39 3 14 

Honeydew melon # 9.79 5.99 5 26 

Horse chestnut * 6.63 4.78 4 19 

Jaffa # * 7.21 3.65 4 16 

Kiwi # 14.36 4.63 8 23 

Kumquat # * 19.09 9.52 11 40 

Lemon # 4.80 1.75 3 8 

Lime # * 6.68 2.37 5 12 

Loganberry 11.35 8.95 6 35 

Lychee # 13.29 8.61 7 40 

Mandarin # ~ 7.16 3.12 4 14 

Mango # 11.51 4.22 8 22 

Melon # 7.15 2.78 5 14 

Nectarine # 10.28 2.27 8 15 

Nut 4.34 1.92 3 10 

Olive # ~ * 10.86 5.49 5 22 

Orange # * 3.96 1.22 2 6 

Papaya # 16.55 7.93 9 32 

Passion fruit # 12.86 9.65 5 40 

Peach # 6.07 1.99 4 10 

Pear # 5.00 1.60 3 8 

Pepper # * 9.21 3.96 5 18 

Pineapple # 4.35 3.12 1 12 

Plum 5.66 2.53 4 12 

Pomegranate 6.87 4.58 3 22 

Prune 6.74 2.27 5 12 

Raisin # ~ * 5.34 1.81 4 10 

Raspberry # 5.69 2.12 4 11 

Red currant 9.72 8.40 5 38 

Redberry 6.95 2.70 4 11 

Red grape # 6.56 4.91 4 22 

Rhubarb 5.36 1.96 3 10 

Satsuma # 6.60 2.68 4 13 

Squash # 19.53 10.04 9 40 

Star fruit # 19.78 7.80 12 35 

Strawberry # 4.42 1.69 3 8 

Sultana * 5.87 3.03 4 13 

Tangerine # 5.64 3.20 3 14 

Tomato # 4.56 1.44 3 8 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Walnut 6.82 2.82 5 13 

Water melon # 8.41 4.23 5 20 

White grape# ~ 7.39 6.70 4 24 
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Table A.5a. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for animal words in individuals belonging to the 51-60 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark # 

 

6.61 
 

5.64 
 

1 
 

21 

Adder # ~ 7.95 2.28 5 12 

Albatross # ~ 10.75 2.87 6 15 

Alligator # * 7.47 2.24 5 14 

Amoeba 12.07 12.77 5 60 

Angel fish # 13.64 6.64 7 30 

Ant # * 5.47 1.89 3 9 

Anteater # ~ 9.62 3.83 5 18 

Antelope # ~ 8.89 3.73 6 19 

Ape # 6.72 2.50 4 12 

Armadillo # 6.90 3.43 1 15 

Ass # 7.53 3.03 4 15 

Baboon # 8.70 4.55 5 20 

Badger # 6.87 2.86 4 14 

Bald eagle # 10.61 4.78 4 21 

Bat # 6.80 1.84 4 10 

Bear * 4.66 2.17 2 10 

Beaver # * 7.69 2.50 5 13 

Bee # * 4.70 1.80 3 9 

Beetle 5.18 1.80 3 9 

Bird 3.48 1.75 2 8 

Bison ~ 6.75 4.57 1 20 

Blackbird 5.75 1.99 3 11 

Blue bird # 6.30 4.97 1 20 

Blue tit # * 8.28 3.36 4 18 

Boa constrictor # 9.28 4.60 6 24 

Boar 8.89 4.15 3 20 

Brontosaurus #  ~ 5.86 3.45 1 14 

Brown bear # 7.28 2.78 4 15 

Buck 9.44 7.17 0 30 

Budgerigar # 4.01 2.50 1 10 

Buffalo # 7.98 2.52 5 13 

Bull 5.67 2.09 3 10 

Bullfinch 7.32 6.91 1 30 

Bullock 5.63 3.94 1 17 
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Range 

min max 
Animal Mean SD 

 

 

 
 

Butterfly 4.39 1.55 2 8 

Buzzard 8.82 4.97 2 21 

Calf 5.99 1.95 3 11 

Camel 6.45 2.57 4 14 

Canary 6.78 2.54 3 12 

Caribou 7.47 7.71 1 30 

Carp # ~ 10.20 8.88 6 40 

Cat 3.48 1.50 2 7 

Caterpillar 4.96 1.76 3 10 

Cattle 6.34 2.39 4 12 

Chaffinch 6.83 4.25 1 20 

Chameleon # 10.07 4.45 5 22 

Cheetah # ~ 8.18 3.02 4 14 

Chicken # * 4.78 1.74 3 9 

Chimpanzee 6.40 1.92 4 12 

Chinchilla # 11.13 10.22 4 45 

Chipmunk # ~ * 9.76 6.76 5 30 

Clown fish # 11.30 15.79 3 60 

Cobra # ~ 9.11 3.08 6 15 

Cockatiel # 9.87 5.01 6 25 

Cocker spaniel 7.66 2.22 4 12 

Cockerel 5.81 2.48 3 10 

Cockroach 10.81 5.27 6 24 

Cod 6.23 2.93 4 14 

Condor #  ~ 11.60 8.27 5 40 

Conger eel 11.30 5.39 5 25 

Cougar # ~ 6.64 5.10 1 20 

Cow * 4.19 1.74 3 8 

Coyote # ~ * 7.01 4.65 1 20 

Cray fish # ~ 12.15 9.64 5 40 

Crocodile # 6.40 1.73 5 10 

Crow 6.58 2.17 4 13 

Cuckoo 5.75 2.61 2 12 

Deer # * 6.29 2.53 3 12 

Dingo 9.59 5.01 3 25 

Dog 2.88 1.74 1 7 

Dolphin # 7.45 2.24 5 12 

Donkey 5.03 2.21 3 10 

Dormouse 6.35 2.99 3 14 
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Range 

min max 
Animal Mean SD 

 

 

 
 

Dove # 7.14 2.70 3 13 

Dragon # 6.12 2.69 3 15 

Dragonfly # * 8.22 3.02 5 15 

Duck # * 4.35 1.32 2 8 

Duckbill platypus # 10.64 5.63 6 23 

Eagle 7.31 3.04 5 16 

Earthworm 4.86 3.59 2 14 

Earwig * 4.48 2.98 1 14 

Eel 7.65 3.07 5 16 

Elk 7.44 7.23 1 30 

Emu # 9.17 3.66 5 18 

Ewe 7.43 2.76 5 12 

Ferret 8.19 3.13 5 14 

Field mouse 7.03 4.64 4 20 

Finch 5.99 4.32 1 20 

Fish 3.70 1.75 2 8 

Flamingo # 8.04 3.17 5 15 

Flea 7.56 3.01 4 15 

Fly * 4.00 1.90 2 9 

Fowl # ~ 7.23 3.69 3 16 

Fox # * 5.71 1.59 3 9 

Frog # * 5.11 1.47 3 9 

Gazelle 9.38 4.03 5 20 

Gecko # 12.36 6.85 7 30 

Gerbil # 9.27 4.05 4 19 

Giant panda # 8.18 5.03 4 20 

Gibbon # 8.96 4.40 2 20 

Giraffe 5.92 3.02 3 14 

Goat 5.61 1.91 4 10 

Goldfish 4.38 1.75 3 8 

Goose # 6.05 2.47 4 12 

Gorilla # 6.85 2.43 4 14 

Greyhound 7.72 3.72 5 18 

Grizzly bear # * 6.66 3.97 3 18 

Groundhog # * 14.28 9.90 5 34 

Guinea fowl 10.59 6.55 5 30 

Guinea pig # 6.34 2.63 4 12 

Gull 5.94 2.68 2 12 

Haddock 6.00 2.53 3 12 
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Range 

min max 
Animal Mean SD 

 

 

 
 

Hamster # 6.65 2.07 4 10 

Hare 6.92 2.72 4 14 

Hawk # ~ 8.63 3.16 5 15 

Hedgehog 4.99 1.99 2 10 

Hen 4.69 1.44 2 8 

Heron # 7.83 3.36 2 15 

Herring 8.13 2.99 4 15 

Hippopotamus # 6.53 2.28 4 12 

Hornet 9.27 5.71 6 30 

Horse 4.51 1.57 3 8 

Horsefly 9.04 6.49 5 30 

Hyena # 8.14 2.78 4 14 

Iguana # * 8.82 5.09 2 22 

Insect # 4.73 2.25 2 9 

Invertebrate 9.84 3.82 4 16 

Jack rabbit 9.18 7.30 2 30 

Jackal # ~ 11.12 3.90 7 20 

Jackass 11.36 5.95 5 25 

Jackdaw 6.65 5.70 1 26 

Jaguar # 8.37 3.62 5 18 

Kangaroo # 6.26 2.28 3 12 

Kid 8.31 4.03 5 20 

Kitten 4.04 1.86 2 8 

Kiwi 10.23 4.35 5 20 

Koala # 6.83 3.34 3 14 

Koi carp # 14.38 10.68 7 40 

Komodo dragon # ~ 13.81 9.08 6 35 

Lady bird # 4.65 1.46 3 9 

Lamb 4.32 1.81 2 8 

Lemur # 13.68 7.13 7 30 

Leopard # 7.30 2.24 5 14 

Lion # * 5.39 1.52 3 9 

Lizard # 7.50 2.27 4 13 

Llama 9.50 3.30 5 15 

Lobster # ~ 9.53 4.14 6 20 

Long tailed tit 10.46 6.45 5 30 

Lynx 6.60 4.43 1 20 

Mackerel * 8.58 5.23 4 20 

Mammal # 8.44 2.82 5 15 
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Range 

min max 
Animal Mean SD 

 

 

 
 

Meerkat # 14.20 10.99 5 45 

Midge 5.07 6.58 1 30 

Mink 9.65 3.92 5 19 

Manx 6.03 4.85 1 20 

Mole 6.72 2.38 5 12 

Mongoose ~ 9.75 4.49 5 20 

Monkey 5.29 1.50 3 9 

Moose # * 9.50 2.86 6 15 

Moth 5.91 2.06 3 10 

Mouse 4.88 1.64 3 9 

Mule 7.11 3.17 5 16 

Newt 6.26 3.01 2 16 

Nightingale 7.81 3.25 5 17 

Octopus # 6.16 1.98 3 10 

Orang-utan # 8.67 2.97 4 16 

Ostrich # 7.96 3.11 4 14 

Otter # 8.22 2.65 4 14 

Owl 6.02 1.95 4 11 

Ox 7.55 2.26 5 12 

Panda # 6.10 2.56 2 12 

Panther # ~ 9.02 3.97 4 20 

Parakeet 9.64 4.58 5 18 

Parrot # 6.30 1.72 4 10 

Partridge # 8.86 3.57 6 20 

Peacock # 7.72 2.91 5 15 

Pelican # 5.84 3.89 1 16 

Penguin # 5.84 2.56 3 13 

Perch 6.68 6.68 1 30 

Pheasant 8.21 3.44 5 16 

Pig # * 4.56 1.50 3 8 

Pigeon 6.00 1.72 4 10 

Piglet ~ 5.75 2.03 3 10 

Pike # ~ 9.08 5.57 4 25 

Piranha fish # ~ 11.49 5.91 7 30 

Plaice # 8.25 2.81 5 13 

Platypus # 6.79 6.44 1 25 

Polar bear 6.95 1.71 5 11 

Pony 5.13 2.17 2 10 

Porcupine 8.37 2.97 5 15 
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Range 

min max 
Animal Mean SD 

 

 

 
 

Porpoise 6.87 5.56 1 22 

Poultry # 7.52 3.07 4 14 

Prairie dog # 12.50 10.06 4 40 

Puffin # 8.87 3.99 5 20 

Puma # 9.95 3.01 6 16 

Rabbit # * 3.98 1.72 2 9 

Racoon # 10.04 3.43 5 17 

Ram 7.58 3.60 4 15 

Rat 5.66 1.86 3 9 

Raven ~ 8.96 3.31 5 15 

Reindeer # 4.30 2.24 2 12 

Rhesus monkey 12.76 6.31 5 30 

Rhinoceros # 5.46 3.12 1 14 

Roach 10.91 6.44 5 30 

Robin 5.58 1.53 4 10 

Rodent 8.87 2.93 5 15 

Rook 7.07 3.44 2 15 

Rooster # * 8.10 3.04 5 15 

Salamander # 12.11 5.96 5 30 

Salmon 7.05 3.09 3 15 

Sardine 6.97 3.84 4 17 

Sea lion # 8.61 2.39 5 14 

Seagull 5.71 2.17 3 10 

Seahorse # 7.85 2.93 5 14 

Seal # 7.48 2.26 5 12 

Shark # 6.96 2.76 4 14 

Sheep # * 4.41 1.73 3 8 

Shrew 6.59 4.09 1 20 

Shrimp 7.14 2.78 4 13 

Siamese cat 7.26 3.87 3 15 

Siberian tiger # 10.81 6.56 5 30 

Skate 6.70 5.83 1 25 

Skunk # 6.06 3.84 1 18 

Skylark # * 5.65 4.90 1 20 

Sloth # 10.05 7.46 4 35 

Slug # 5.04 2.04 2 10 

Snail 4.81 2.01 2 10 

Snake # * 5.89 1.28 4 9 

Sole 9.40 2.79 4 16 
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Range 

min max 
Animal Mean SD 

 

 

 
 

Sow # 7.61 4.17 5 20 

Sparrow # 5.89 2.03 4 11 

Spider 4.02 2.09 3 10 

Springbok 7.08 9.14 1 40 

Squid # 10.67 3.72 7 20 

Squirrel # * 5.99 1.79 4 10 

Stag 9.26 3.41 6 20 

Star fish # 7.10 3.32 4 15 

Starling # 6.40 2.79 3 13 

Stick insect # 9.04 4.36 6 24 

Stickleback # 5.54 2.71 1 12 

Stoat 6.41 4.27 1 20 

Sturgeon 7.24 5.50 1 20 

Swan 5.46 2.03 3 10 

Swift 8.18 3.74 4 20 

Sword fish 10.46 6.86 5 30 

Tarantula # 10.97 3.51 6 20 

Thrush # * 7.31 2.48 5 13 

Tiger # * 5.81 1.41 4 9 

Toad # * 6.37 1.63 4 10 

Tortoise 4.97 2.03 3 10 

Trout ~ 8.25 3.59 5 20 

Tuna # 10.92 5.94 5 30 

Turkey # * 5.73 1.76 4 10 

Turtle # * 7.15 2.68 5 12 

Tyrannosaurus # ~ * 8.83 3.12 5 16 

Vole 9.06 5.33 5 25 

Vulture # ~ 8.40 3.19 5 14 

Wallaby # 9.95 3.87 5 20 

Walrus 8.49 3.10 5 15 

Warthog # 8.65 4.92 2 21 

Wasp 4.66 2.33 3 10 

Water buffalo # 11.26 5.34 6 25 

Water rat 9.14 3.86 5 16 

Weasel # * 7.32 2.99 2 13 

Whale # 6.35 2.54 4 12 

White tiger # 14.61 13.54 5 54 

Wild boar # 10.48 4.76 6 22 

Wild cat 9.44 7.29 4 35 
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Range 

min max 
Animal Mean SD 

 

 

 
 

Wild dog # 9.70 3.83 5 19 

Wildebeest # ~ 7.50 5.98 1 23 

Wolf 5.81 1.90 4 10 

Wombat # 10.17 4.82 3 20 

Woodlouse # 7.37 4.10 4 15 

Woodpecker 6.90 2.24 4 11 

Worm 4.15 1.29 3 8 

Wren 6.32 3.84 2 16 

Yak # 6.68 6.13 1 25 

Yellow tit 11.69 12.79 4 60 

Yorkshire terrier * 7.22 3.94 3 20 

Zebra # * 6.25 1.61 4 10 
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Table A.5b. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for fruit words in individuals belonging to the 51-60 age –category. 
 
 
 
 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 6.37 2.58 3 14 

Almond 6.75 2.83 4 12 

Apple # * 4.23 1.81 2 8 

Apricot # 6.89 4.52 3 20 

Aubergine # 15.35 7.90 6 35 

Avocado # 13.97 8.43 5 40 

Banana # * 4.68 2.15 2 10 

Berries 6.05 2.85 3 12 

Blackberry 6.04 2.18 3 10 

Blackcurrant # * 6.45 2.10 4 10 

Blueberry # ~ 9.43 15.15 2 55 

Bramble ~ * 6.56 2.24 4 11 

Cantaloupe melon # 13.85 15.02 4 60 

Cherry # 6.67 2.14 4 11 

Chestnut 6.65 2.19 4 11 

Clementine # 8.34 5.26 5 20 

Coconut 6.38 1.98 4 10 

Cox apple * 7.28 2.89 4 14 

Crab apple 5.23 3.88 1 20 

Cranberry # 12.76 11.69 4 50 

Cucumber # 5.70 1.99 4 10 

Currant 5.60 2.59 4 11 

Damson # 8.73 5.17 5 24 

Date 6.29 3.36 3 14 

Elderberry * 8.03 9.38 2 30 

Fig 7.24 5.06 3 20 

Gala apple # 16.65 15.55 6 60 

Galia melon # 15.43 15.28 5 60 

Gooseberry # * 5.21 3.07 2 12 

Granny smith # 9.25 4.61 6 20 

Grapefruit # 7.82 4.25 5 20 

Grape # 6.81 2.63 4 12 

Green melon # 12.53 7.40 7 30 

Guava # * 16.39 11.70 7 50 
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Range 

max 
Fruit Mean SD 

min 

 

 

 
 

Hazelnut 6.56 3.71 4 20 

Honeydew melon # 12.27 5.92 5 24 

Horse chestnut * 7.05 2.65 4 15 

Jaffa # * 6.12 2.93 3 13 

Kiwi # 14.62 10.09 4 40 

Kumquat # * 15.14 13.83 3 60 

Lemon # 6.54 2.18 4 10 

Lime # * 10.19 5.35 4 25 

Loganberry 11.03 15.40 3 60 

Lychee # 15.04 11.21 4 40 

Mandarin # ~ 6.36 3.29 3 15 

Mango # 13.51 9.25 5 40 

Melon # 8.87 6.24 4 30 

Nectarine # 9.78 11.50 4 50 

Nut 5.43 1.94 3 10 

Olive # ~ * 11.88 9.49 4 40 

Orange # * 4.86 1.75 3 10 

Papaya # 18.92 10.82 6 40 

Passion fruit # 16.85 10.88 6 40 

Peach # 6.93 3.10 4 15 

Pear # 5.45 2.45 4 12 

Pepper # * 13.61 9.06 5 35 

Pineapple # 6.95 2.32 4 12 

Plum 6.53 3.07 3 15 

Pomegranate 6.60 3.07 4 15 

Prune 7.63 3.24 3 15 

Raisin # ~ * 5.59 2.68 3 11 

Raspberry # 7.23 4.12 5 20 

Red currant 9.38 12.06 4 40 

Redberry 9.20 17.46 4 60 

Red grape # 7.93 8.68 4 35 

Rhubarb 5.43 2.91 3 15 

Satsuma # 7.91 5.56 4 20 

Squash # 15.98 13.19 5 45 

Star fruit # 17.16 15.59 4 60 

Strawberry # 5.49 1.98 3 10 

Sultana * 5.75 2.43 3 11 

Tangerine # 6.36 3.20 4 15 

Tomato # 4.86 2.68 2 12 
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Range 

max 
Fruit Mean SD 

min 

 

 

 
 

Walnut 6.48 2.18 4 12 

Water melon # 11.52 7.83 4 30 

White grape# ~ 8.44 5.04 5 20 
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Table A.6a. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for animal words in individuals belonging to the 61-70 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark # 

 
11.34 

 
10.88 

 
6 

 
50 

Adder # ~ 9.20 5.76 6 30 

Albatross # ~ 10.92 3.39 6 16 

Alligator # * 6.90 3.28 2 14 

Amoeba 11.24 1.29 10 14 

Angel fish # 12.27 5.58 7 30 

Ant # * 5.40 2.52 2 12 

Anteater # ~ 9.96 2.61 7 16 

Antelope # ~ 9.49 3.10 6 16 

Ape # 7.38 2.96 4 14 

Armadillo # 11.36 3.20 6 18 

Ass # 7.40 2.75 3 14 

Baboon # 9.79 2.22 7 14 

Badger # 7.40 13.04 3 57 

Bald eagle # 12.32 10.07 6 50 

Bat # 7.33 2.68 4 13 

Bear * 4.74 2.29 2 10 

Beaver # * 8.41 3.27 5 14 

Bee # * 4.24 1.87 2 9 

Beetle 4.90 3.11 3 12 

Bird 3.15 1.25 2 6 

Bison ~ 10.18 2.39 7 15 

Blackbird 5.78 2.98 3 13 

Blue bird # 7.20 3.06 4 14 

Blue tit # * 8.17 3.84 5 20 

Boa constrictor # 10.30 3.68 7 20 

Boar 9.28 2.40 5 13 

Brontosaurus #  ~ 10.48 8.67 5 40 

Brown bear # 7.24 3.43 4 16 

Buck 10.97 2.47 8 15 

Budgerigar # 6.12 2.40 3 12 

Buffalo # 8.35 2.86 5 15 

Bull 6.17 2.60 3 11 

Bullfinch 10.72 3.32 6 20 

Bullock 8.50 2.38 5 12 
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Range 

min max 
Animal Mean SD 

 

 

 

Butterfly 4.35 2.11 2 12 

Buzzard 10.93 2.17 6 16 

Calf 5.91 2.53 3 12 

Camel 6.31 2.98 3 12 

Canary 6.18 2.46 3 12 

Caribou 11.75 2.93 8 17 

Carp # ~ 11.22 5.53 8 30 

Cat 3.21 1.15 2 6 

Caterpillar 4.66 2.15 3 10 

Cattle 6.31 1.99 4 12 

Chaffinch 10.27 3.94 6 20 

Chameleon # 11.67 3.50 8 18 

Cheetah # ~ 8.62 2.83 6 15 

Chicken # * 3.91 2.19 2 10 

Chimpanzee 6.44 2.49 4 12 

Chinchilla # 12.46 4.29 9 25 

Chipmunk # ~ * 9.84 8.48 4 40 

Clown fish # 15.10 14.41 9 50 

Cobra # ~ 8.81 2.57 4 13 

Cockatiel # 10.13 3.50 5 17 

Cocker spaniel 8.01 4.34 5 20 

Cockerel 5.40 2.33 3 12 

Cockroach 8.81 4.30 3 17 

Cod 6.94 2.82 5 15 

Condor #  ~ 12.36 7.12 7 30 

Conger eel 11.03 5.65 6 30 

Cougar # ~ 11.44 4.31 7 23 

Cow * 3.47 1.46 2 6 

Coyote # ~ * 9.58 6.01 4 30 

Cray fish # ~ 15.46 4.99 10 30 

Crocodile # 6.47 2.76 4 12 

Crow 6.45 2.19 4 12 

Cuckoo 6.02 2.04 4 12 

Deer # * 6.05 2.72 3 12 

Dingo 11.04 4.27 7 24 

Dog 3.01 1.34 2 6 

Dolphin # 8.32 2.91 5 15 

Donkey 4.16 2.60 2 12 

Dormouse 6.73 2.62 3 13 
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Range 

min max 
Animal Mean SD 

 

 

 

Dove # 6.85 3.00 4 15 

Dragon # 6.14 2.45 4 12 

Dragonfly # * 7.69 6.40 3 30 

Duck # * 4.10 2.09 2 8 

Duckbill platypus # 11.10 2.31 7 15 

Eagle 7.66 2.22 4 12 

Earthworm 4.14 1.61 2 8 

Earwig * 6.32 4.14 4 20 

Eel 8.63 2.96 5 16 

Elk 9.53 3.71 4 18 

Emu # 9.41 2.94 6 15 

Ewe 8.39 1.76 6 12 

Ferret 8.62 2.90 4 15 

Field mouse 6.70 2.74 3 12 

Finch 10.13 5.49 5 30 

Fish 3.61 1.35 2 6 

Flamingo # 9.07 3.94 5 18 

Flea 6.51 2.89 4 15 

Fly * 3.55 1.89 1 8 

Fowl # ~ 6.96 2.69 4 13 

Fox # * 5.52 3.09 2 14 

Frog # * 4.54 2.18 2 9 

Gazelle 6.05 3.15 1 14 

Gecko # 15.08 7.43 8 30 

Gerbil # 10.06 4.84 5 25 

Giant panda # 9.68 3.76 5 21 

Gibbon # 11.20 2.57 8 16 

Giraffe 5.57 2.83 3 13 

Goat 5.55 2.74 3 13 

Goldfish 4.56 1.75 3 8 

Goose # 6.40 3.37 3 14 

Gorilla # 6.71 3.15 4 14 

Greyhound 7.36 2.09 5 12 

Grizzly bear # * 5.64 3.64 1 16 

Groundhog # * 12.98 11.82 6 52 

Guinea fowl 11.59 3.00 8 20 

Guinea pig # 7.09 3.11 4 14 

Gull 5.95 2.76 3 12 

Haddock 6.78 6.04 4 30 
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Range 

min max 
Animal Mean SD 

 

 

 

Hamster # 7.54 3.04 4 15 

Hare 6.93 3.03 3 15 

Hawk # ~ 8.73 2.50 5 14 

Hedgehog 5.60 2.12 4 10 

Hen 4.37 1.66 2 9 

Heron # 8.96 3.06 6 16 

Herring 9.62 3.15 7 18 

Hippopotamus # 7.25 2.70 4 12 

Hornet 10.95 1.72 8 14 

Horse 3.56 1.83 2 8 

Horsefly 9.70 8.26 7 40 

Hyena # 9.34 3.53 4 16 

Iguana # * 11.84 8.47 9 40 

Insect # 4.70 1.87 2 9 

Invertebrate 11.62 2.67 8 17 

Jack rabbit 9.30 4.73 4 21 

Jackal # ~ 10.14 6.07 6 30 

Jackass 11.15 2.60 9 17 

Jackdaw 8.47 2.80 5 15 

Jaguar # 8.78 3.74 6 17 

Kangaroo # 6.10 2.51 3 11 

Kid 8.21 2.62 5 14 

Kitten 3.58 3.13 2 16 

Kiwi 11.54 6.15 7 30 

Koala # 7.27 3.54 4 14 

Koi carp # 16.51 8.72 8 40 

Komodo dragon # ~ 15.20 5.78 8 30 

Lady bird # 5.02 1.97 3 10 

Lamb 3.84 1.79 2 8 

Lemur # 13.13 5.99 10 30 

Leopard # 7.05 2.77 4 12 

Lion # * 4.91 2.65 3 12 

Lizard # 7.56 4.27 4 20 

Llama 10.66 2.67 7 17 

Lobster # ~ 10.46 5.39 7 30 

Long tailed tit 10.00 3.87 6 20 

Lynx 11.64 3.65 6 20 

Mackerel * 6.50 3.86 1 16 

Mammal # 9.51 1.70 7 12 
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Range 

min max 
Animal Mean SD 

 

 

 

Meerkat # 20.68 17.94 7 60 

Midge 7.36 2.79 4 12 

Mink 10.81 2.60 7 16 

Manx 12.17 3.41 6 18 

Mole 6.33 2.94 3 14 

Mongoose ~ 7.96 4.67 4 18 

Monkey 4.58 2.29 3 10 

Moose # * 8.55 3.10 4 13 

Moth 5.35 2.05 3 10 

Mouse 4.00 1.91 2 9 

Mule 7.56 2.74 3 15 

Newt 7.58 2.65 5 14 

Nightingale 8.79 2.93 5 15 

Octopus # 7.73 6.00 5 30 

Orang-utan # 9.52 4.23 6 24 

Ostrich # 7.28 3.03 4 13 

Otter # 9.06 2.55 5 16 

Owl 5.49 2.96 3 15 

Ox 7.93 2.35 5 12 

Panda # 7.94 3.97 4 17 

Panther # ~ 9.52 6.65 6 35 

Parakeet 8.34 3.71 5 19 

Parrot # 6.16 2.90 3 15 

Partridge # 9.34 5.84 6 30 

Peacock # 7.27 3.98 3 21 

Pelican # 8.32 2.70 5 15 

Penguin # 6.10 3.27 4 14 

Perch 10.81 6.01 7 30 

Pheasant 8.94 5.79 6 30 

Pig # * 4.01 1.61 2 8 

Pigeon 5.86 2.40 3 12 

Piglet ~ 4.63 2.03 2 10 

Pike # ~ 10.13 5.78 6 30 

Piranha fish # ~ 11.08 3.57 7 21 

Plaice # 8.41 2.19 6 12 

Platypus # 10.16 2.79 8 18 

Polar bear 5.77 2.71 4 12 

Pony 4.92 1.53 3 8 

Porcupine 8.69 3.43 6 15 
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Range 

min max 
Animal Mean SD 

 

 

 

Porpoise 7.33 4.15 4 16 

Poultry # 6.06 2.22 2 12 

Prairie dog # 11.91 7.78 6 30 

Puffin # 9.48 3.20 6 15 

Puma # 10.01 2.77 6 16 

Rabbit # * 4.03 1.71 2 8 

Racoon # 10.14 6.16 4 30 

Ram 7.26 2.28 4 12 

Rat 5.48 2.64 3 11 

Raven ~ 9.30 3.28 5 17 

Reindeer # 4.91 2.37 2 10 

Rhesus monkey 13.53 8.06 6 40 

Rhinoceros # 7.12 2.41 4 13 

Roach 10.67 3.36 6 18 

Robin 4.83 1.92 3 8 

Rodent 7.66 2.41 5 15 

Rook 8.64 2.94 5 15 

Rooster # * 6.84 2.64 2 13 

Salamander # 12.84 6.61 9 30 

Salmon 8.48 2.95 5 16 

Sardine 6.75 3.14 4 16 

Sea lion # 8.67 2.78 6 16 

Seagull 5.14 2.82 3 12 

Seahorse # 10.55 3.16 8 18 

Seal # 7.69 2.34 4 12 

Shark # 7.65 2.61 5 12 

Sheep # * 3.97 1.54 2 7 

Shrew 10.48 3.67 7 18 

Shrimp 7.89 3.71 4 18 

Siamese cat 7.83 3.29 5 16 

Siberian tiger # 12.82 8.29 5 40 

Skate 8.67 3.64 4 16 

Skunk # 8.76 2.97 5 14 

Skylark # * 9.72 3.50 6 20 

Sloth # 10.99 3.66 8 20 

Slug # 5.18 2.28 3 12 

Snail 4.75 1.84 2 9 

Snake # * 5.37 2.36 3 12 

Sole 10.64 2.89 6 18 
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Range 

min max 
Animal Mean SD 

 

 

 

Sow # 6.79 2.76 4 16 

Sparrow # 4.52 2.15 3 11 

Spider 3.71 1.79 2 8 

Springbok 10.59 3.40 6 17 

Squid # 10.96 3.01 8 18 

Squirrel # * 5.91 3.22 2 14 

Stag 8.37 2.85 6 14 

Star fish # 6.98 2.60 4 12 

Starling # 7.26 2.92 4 13 

Stick insect # 10.52 6.70 6 30 

Stickleback # 7.02 3.02 4 15 

Stoat 9.56 2.63 5 15 

Sturgeon 13.07 5.85 8 30 

Swan 5.56 2.28 3 10 

Swift 9.25 5.89 6 30 

Sword fish 9.75 4.22 5 20 

Tarantula # 9.85 4.50 7 25 

Thrush # * 7.31 5.00 3 25 

Tiger # * 5.06 2.44 3 11 

Toad # * 5.36 2.18 2 10 

Tortoise 5.26 2.36 3 12 

Trout ~ 7.62 2.53 4 13 

Tuna # 10.47 4.01 4 20 

Turkey # * 6.08 2.85 3 12 

Turtle # * 6.76 2.74 3 14 

Tyrannosaurus # ~ * 10.88 8.56 5 40 

Vole 9.22 2.71 6 16 

Vulture # ~ 9.12 2.66 5 15 

Wallaby # 9.61 2.16 6 15 

Walrus 8.33 2.60 4 14 

Warthog # 11.82 2.31 8 17 

Wasp 4.26 1.76 2 8 

Water buffalo # 10.54 3.87 6 20 

Water rat 7.30 2.96 4 14 

Weasel # * 8.28 3.48 3 16 

Whale # 5.53 3.28 3 14 

White tiger # 12.90 5.05 8 25 

Wild boar # 10.57 2.68 8 16 

Wild cat 8.45 3.04 4 14 
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Range 

min max 
Animal Mean SD 

 

 

 

Wild dog # 9.99 6.10 5 30 

Wildebeest # ~ 11.67 3.56 8 21 

Wolf 5.49 3.36 3 14 

Wombat # 12.99 5.65 9 25 

Woodlouse # 6.41 4.12 2 16 

Woodpecker 7.56 2.91 4 12 

Worm 3.94 1.79 2 8 

Wren 7.81 2.81 5 15 

Yak # 12.35 5.49 7 30 

Yellow tit 9.53 3.68 5 17 

Yorkshire terrier * 7.46 4.88 3 20 

  Zebra # *  5.58  3.00  2  13   
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Elderberry * 6.31 8.36 1 30 

Fig 4.98 10.95 1 50 

Gala apple # 8.85 16.14 2 50 

Galia melon # 11.27 13.78 2 50 

Gooseberry # * 5.78 3.94 2 20 

Granny smith # 7.61 5.41 4 20 

Grapefruit # 5.93 3.70 1 15 

Grape # 6.52 3.28 3 15 

Green melon # 8.48 9.78 2 40 

Guava # * 6.64 18.20 1 50 

 

Table A.6b. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for fruit words in individuals belonging to the 61-70 age –category. 
 
 
 
 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 5.09 3.45 1 14 

Almond 6.43 4.44 2 18 

Apple # * 3.67 1.69 2 9 

Apricot # 8.16 8.37 3 40 

Aubergine # 9.39 13.80 1 55 

Avocado # 11.49 9.78 2 40 

Banana # * 5.68 2.86 2 12 

Berries 4.50 2.20 1 10 

Blackberry 6.07 5.89 3 30 

Blackcurrant # * 5.15 4.08 1 20 

Blueberry # ~ 7.18 17.35 1 57 

Bramble ~ * 4.78 4.67 1 20 

Cantaloupe melon # 7.52 12.04 1 45 

Cherry # 5.87 3.68 2 15 

Chestnut 5.33 3.19 1 14 

Clementine # 6.92 10.59 1 40 

Coconut 4.04 3.68 1 12 

Cox apple * 6.63 4.36 2 18 

Crab apple 5.54 3.19 1 15 

Cranberry # 7.77 13.63 1 55 

Cucumber # 6.90 4.30 4 20 

Currant 6.05 2.54 3 13 

Damson # 5.81 5.77 1 25 

Date 5.63 3.28 1 14 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Hazelnut 6.68 4.67 2 20 

Honeydew melon # 12.72 12.28 3 50 

Horse chestnut * 5.21 5.41 1 25 

Jaffa # * 6.22 6.07 2 25 

Kiwi # 12.50 13.85 2 55 

Kumquat # * 7.72 17.68 1 55 

Lemon # 4.90 3.46 1 14 

Lime # * 6.87 8.91 1 35 

Loganberry 6.53 10.12 1 40 

Lychee # 8.77 15.76 1 55 

Mandarin # ~ 6.04 4.87 1 20 

Mango # 8.35 12.83 1 50 

Melon # 8.85 6.70 3 30 

Nectarine # 8.68 16.03 4 50 

Nut 5.11 1.88 3 10 

Olive # ~ * 7.53 11.88 1 50 

Orange # * 4.34 2.45 2 11 

Papaya # 8.23 13.51 1 50 

Passion fruit # 8.35 13.41 1 46 

Peach # 7.38 3.85 4 15 

Pear # 5.44 3.04 3 12 

Pepper # * 13.81 12.44 5 55 

Pineapple # 5.39 3.29 1 15 

Plum 5.55 2.02 3 10 

Pomegranate 5.42 3.27 1 13 

Prune 5.40 4.36 1 20 

Raisin # ~ * 5.19 2.66 2 12 

Raspberry # 4.62 2.85 1 12 

Red currant 6.50 11.00 1 50 

Redberry 5.30 5.84 1 20 

Red grape # 8.51 7.94 4 40 

Rhubarb 4.81 2.49 2 10 

Satsuma # 8.34 5.86 3 25 

Squash # 7.21 14.54 1 50 

Star fruit # 8.93 17.94 1 60 

Strawberry # 5.68 3.69 3 17 

Sultana * 4.90 3.50 1 13 

Tangerine # 6.42 3.87 2 15 

Tomato # 5.59 2.02 3 10 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Walnut 5.51 2.74 2 12 

Water melon # 8.89 6.13 3 27 

White grape# ~ 6.80 3.85 4 16 
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Table A.7a. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for animal words in individuals belonging to > 70 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark # 

 
12.07 

 
7.31 

 
5 

 
30 

Adder # ~ 7.37 9.59 4 40 

Albatross # ~ 9.66 3.17 6 16 

Alligator # * 6.79 3.11 4 14 

Amoeba 9.85 13.68 5 50 

Angel fish # 10.87 19.84 4 60 

Ant # * 5.81 1.84 4 10 

Anteater # ~ 8.72 5.13 4 20 

Antelope # ~ 8.60 7.05 4 30 

Ape # 7.09 2.59 4 14 

Armadillo # 11.69 6.45 7 30 

Ass # 5.48 1.68 3 8 

Baboon # 9.75 11.83 6 50 

Badger # 7.41 4.23 4 20 

Bald eagle # 14.74 13.84 7 50 

Bat # 5.29 1.49 3 8 

Bear * 4.68 2.43 3 12 

Beaver # * 8.91 7.71 4 30 

Bee # * 4.18 1.54 2 7 

Beetle 4.09 1.54 2 7 

Bird 3.12 1.81 2 7 

Bison ~ 8.50 3.08 4 15 

Blackbird 5.26 1.95 3 10 

Blue bird # 8.88 5.83 5 26 

Blue tit # * 7.30 10.15 4 40 

Boa constrictor # 10.30 6.72 7 30 

Boar 8.40 3.29 4 15 

Brontosaurus #  ~ 9.42 12.24 6 40 

Brown bear # 6.28 2.31 4 10 

Buck 8.07 2.62 6 14 

Budgerigar # 5.32 3.52 2 17 

Buffalo # 7.73 6.75 4 30 

Bull 5.55 2.03 4 10 

Bullfinch 9.15 4.18 5 17 

Bullock 5.98 1.44 4 9 
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Range 

min max 
Animal Mean SD 

 

 

 

Butterfly 3.78 1.59 2 7 

Buzzard 9.86 9.21 6 40 

Calf 4.79 2.27 2 10 

Camel 5.87 3.42 4 17 

Canary 5.21 2.71 3 12 

Caribou 10.89 7.53 5 30 

Carp # ~ 9.49 16.89 4 60 

Cat 3.10 1.73 2 7 

Caterpillar 4.04 1.60 2 7 

Cattle 5.91 1.85 4 10 

Chaffinch 7.02 4.41 4 16 

Chameleon # 11.48 6.43 7 30 

Cheetah # ~ 8.98 13.18 4 50 

Chicken # * 3.88 1.79 2 7 

Chimpanzee 6.81 2.53 4 12 

Chinchilla # 10.08 7.01 7 30 

Chipmunk # ~ * 10.25 6.93 7 30 

Clown fish # 20.11 27.48 6 70 

Cobra # ~ 8.69 7.43 4 30 

Cockatiel # 9.27 11.32 4 40 

Cocker spaniel 6.24 4.01 3 16 

Cockerel 4.72 1.87 2 8 

Cockroach 5.44 2.66 3 10 

Cod 5.75 2.41 2 10 

Condor #  ~ 10.63 9.45 4 30 

Conger eel 9.31 4.29 5 17 

Cougar # ~ 14.85 12.63 7 50 

Cow * 3.64 2.26 2 10 

Coyote # ~ * 8.69 3.70 5 18 

Cray fish # ~ 8.30 10.74 3 30 

Crocodile # 7.26 2.36 5 12 

Crow 5.61 1.70 3 8 

Cuckoo 5.73 2.05 4 11 

Deer # * 5.74 1.91 3 10 

Dingo 9.47 9.63 4 30 

Dog 3.01 1.86 2 7 

Dolphin # 9.43 6.29 4 30 

Donkey 4.13 1.86 3 8 

Dormouse 6.00 2.17 4 11 
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Range 

min max 
Animal Mean SD 

 

 

 

Dove # 6.33 4.57 3 18 

Dragon # 6.63 5.83 4 25 

Dragonfly # * 5.76 1.93 2 10 

Duck # * 4.14 1.55 3 7 

Duckbill platypus # 11.10 5.21 6 20 

Eagle 5.92 5.70 4 25 

Earthworm 3.74 2.11 2 9 

Earwig * 4.33 1.46 2 7 

Eel 6.37 2.14 3 10 

Elk 10.15 7.58 6 30 

Emu # 8.97 7.47 4 30 

Ewe 7.65 3.38 5 16 

Ferret 7.66 9.78 4 41 

Field mouse 5.46 1.36 4 8 

Finch 7.01 4.10 4 15 

Fish 3.91 1.70 2 7 

Flamingo # 9.00 9.58 4 35 

Flea 5.19 2.27 2 12 

Fly * 3.41 1.73 2 7 

Fowl # ~ 5.54 2.28 3 12 

Fox # * 4.21 2.16 2 10 

Frog # * 4.33 1.80 2 8 

Gazelle 10.11 3.51 7 16 

Gecko # 10.89 10.95 4 30 

Gerbil # 8.53 12.37 4 45 

Giant panda # 9.32 7.52 4 30 

Gibbon # 10.79 17.52 4 60 

Giraffe 5.81 2.44 4 11 

Goat 4.64 1.35 3 7 

Goldfish 4.06 1.81 2 8 

Goose # 4.65 1.48 3 8 

Gorilla # 7.35 4.36 4 20 

Greyhound 5.99 2.64 4 12 

Grizzly bear # * 6.35 2.97 4 15 

Groundhog # * 15.13 14.03 7 50 

Guinea fowl 10.25 4.65 6 20 

Guinea pig # 5.96 5.90 4 26 

Gull 4.81 1.71 2 9 

Haddock 5.58 2.19 2 10 
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Range 

min max 
Animal Mean SD 

 

 

 

Hamster # 7.79 11.72 4 40 

Hare 5.68 2.13 3 12 

Hawk # ~ 8.33 7.87 4 34 

Hedgehog 4.89 2.49 3 12 

Hen 3.87 1.95 2 8 

Heron # 7.77 12.92 4 50 

Herring 6.76 4.48 3 18 

Hippopotamus # 7.35 2.91 5 15 

Hornet 8.72 2.84 6 15 

Horse 3.42 1.97 2 7 

Horsefly 7.28 2.75 4 12 

Hyena # 7.56 3.03 4 14 

Iguana # * 12.48 20.71 7 70 

Insect # 5.40 23.73 2 74 

Invertebrate 9.55 3.94 5 18 

Jack rabbit 6.14 3.50 4 14 

Jackal # ~ 8.56 16.51 4 60 

Jackass 8.43 7.14 4 30 

Jackdaw 5.91 2.95 3 12 

Jaguar # 9.02 6.80 4 30 

Kangaroo # 6.16 3.22 4 14 

Kid 5.02 2.98 2 12 

Kitten 3.89 1.37 3 7 

Kiwi 11.92 6.85 7 30 

Koala # 7.38 5.66 3 21 

Koi carp # 14.33 20.59 4 60 

Komodo dragon # ~ 17.63 24.11 7 70 

Lady bird # 4.55 2.44 3 11 

Lamb 4.24 2.53 2 12 

Lemur # 11.83 9.50 7 30 

Leopard # 6.14 3.45 3 14 

Lion # * 4.98 1.79 3 8 

Lizard # 7.31 10.60 4 45 

Llama 8.49 2.94 4 14 

Lobster # ~ 8.87 6.79 4 30 

Long tailed tit 8.07 3.44 5 15 

Lynx 9.93 4.75 5 20 

Mackerel * 7.24 6.80 4 30 

Mammal # 8.17 1.93 7 12 
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Range 

min max 
Animal Mean SD 

 

 

 

Meerkat # 19.60 24.70 7 80 

Midge 6.02 2.43 3 10 

Mink 7.05 4.16 2 16 

Manx 11.86 5.05 6 20 

Mole 5.04 2.21 3 9 

Mongoose ~ 8.44 7.03 4 30 

Monkey 4.76 2.46 2 12 

Moose # * 8.33 4.81 5 20 

Moth 4.85 1.95 3 8 

Mouse 4.20 1.49 2 7 

Mule 7.02 2.02 4 11 

Newt 5.22 2.30 3 11 

Nightingale 6.79 2.75 5 12 

Octopus # 7.73 3.75 5 19 

Orang-utan # 9.36 15.93 4 60 

Ostrich # 6.12 4.89 3 20 

Otter # 7.73 4.33 5 20 

Owl 4.85 1.85 3 8 

Ox 6.92 2.02 4 12 

Panda # 6.72 5.37 3 20 

Panther # ~ 8.26 3.31 4 16 

Parakeet 8.35 4.15 4 18 

Parrot # 5.66 2.40 3 11 

Partridge # 6.42 2.30 4 10 

Peacock # 6.56 2.59 4 11 

Pelican # 7.67 4.78 4 20 

Penguin # 5.55 3.35 3 15 

Perch 9.48 5.80 6 26 

Pheasant 6.01 3.71 4 15 

Pig # * 4.17 1.73 3 7 

Pigeon 5.12 2.02 3 11 

Piglet ~ 4.74 2.02 3 10 

Pike # ~ 8.14 3.89 5 17 

Piranha fish # ~ 12.83 16.63 7 50 

Plaice # 6.48 2.87 2 12 

Platypus # 11.17 8.66 7 30 

Polar bear 6.10 3.31 4 13 

Pony 4.50 2.06 2 8 

Porcupine 8.14 6.07 4 28 
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Range 

min max 
Animal Mean SD 

 

 

 

Porpoise 7.66 3.84 4 15 

Poultry # 5.07 2.22 3 10 

Prairie dog # 10.32 7.61 6 30 

Puffin # 10.50 5.79 6 26 

Puma # 10.77 6.40 6 30 

Rabbit # * 4.04 2.52 2 11 

Racoon # 8.81 3.65 4 15 

Ram 6.37 3.74 3 15 

Rat 4.30 1.42 2 7 

Raven ~ 7.22 2.72 5 12 

Reindeer # 3.88 2.03 1 9 

Rhesus monkey 8.89 9.71 4 30 

Rhinoceros # 6.23 2.99 3 15 

Roach 9.12 1.81 7 12 

Robin 4.63 3.45 3 16 

Rodent 7.57 3.20 4 15 

Rook 6.57 1.97 4 10 

Rooster # * 5.66 2.26 3 10 

Salamander # 12.41 8.95 5 30 

Salmon 5.03 8.51 1 35 

Sardine 6.56 1.98 4 10 

Sea lion # 7.54 2.94 4 14 

Seagull 4.44 2.33 2 11 

Seahorse # 7.49 10.78 4 40 

Seal # 7.01 4.88 4 20 

Shark # 7.56 3.15 4 17 

Sheep # * 3.87 3.32 2 15 

Shrew 8.84 3.41 5 15 

Shrimp 6.77 9.81 4 40 

Siamese cat 8.76 4.34 6 20 

Siberian tiger # 12.40 17.87 5 60 

Skate 8.36 4.13 4 18 

Skunk # 8.73 3.64 5 16 

Skylark # * 5.61 1.92 3 9 

Sloth # 12.51 16.60 7 60 

Slug # 4.75 2.32 2 11 

Snail 4.08 1.90 2 9 

Snake # * 4.90 2.72 2 12 

Sole 7.80 2.77 4 12 
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Range 

min max 
Animal Mean SD 

 

 

 

Sow # 5.61 2.19 3 10 

Sparrow # 4.35 1.64 2 7 

Spider 3.76 1.59 2 7 

Springbok 10.15 8.51 5 30 

Squid # 13.15 5.69 7 30 

Squirrel # * 4.84 1.48 3 8 

Stag 5.80 2.61 2 13 

Star fish # 6.90 21.20 4 70 

Starling # 5.52 1.99 3 9 

Stick insect # 9.13 12.10 3 45 

Stickleback # 5.90 1.40 4 9 

Stoat 5.99 2.72 3 12 

Sturgeon 10.65 9.83 4 40 

Swan 5.21 1.16 4 7 

Swift 7.50 13.02 5 50 

Sword fish 9.20 10.06 5 40 

Tarantula # 8.61 4.52 4 20 

Thrush # * 5.75 1.95 3 10 

Tiger # * 4.96 1.85 3 10 

Toad # * 5.40 2.08 3 11 

Tortoise 4.69 2.40 2 11 

Trout ~ 8.34 4.06 4 20 

Tuna # 9.82 15.04 5 50 

Turkey # * 5.40 1.70 2 9 

Turtle # * 6.71 4.45 4 20 

Tyrannosaurus # ~ * 11.70 11.88 6 40 

Vole 8.21 3.95 6 20 

Vulture # ~ 8.97 2.47 6 13 

Wallaby # 11.46 15.88 7 60 

Walrus 7.46 3.95 5 18 

Warthog # 10.02 15.55 4 60 

Wasp 4.62 1.41 3 7 

Water buffalo # 10.77 15.24 6 50 

Water rat 7.70 2.58 4 14 

Weasel # * 7.38 3.02 5 16 

Whale # 5.78 6.36 3 28 

White tiger # 15.93 19.32 7 60 

Wild boar # 10.81 9.82 7 38 

Wild cat 7.68 8.22 5 32 
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Range 

min max 
Animal Mean SD 

 

 

 

Wild dog # 8.68 3.74 6 17 

Wildebeest # ~ 14.27 20.13 5 60 

Wolf 4.78 1.32 3 8 

Wombat # 12.50 10.48 5 40 

Woodlouse # 6.74 7.57 5 33 

Woodpecker 6.60 2.75 4 12 

Worm 3.70 1.64 2 7 

Wren 7.05 5.90 4 26 

Yak # 11.37 7.27 6 30 

Yellow tit 8.00 29.96 4 81 

Yorkshire terrier * 6.15 4.55 2 20 

  Zebra # *  5.35  2.35  3  12   
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Elderberry * 5.99 1.78 4 10 

Fig 6.85 4.52 4 18 

Gala apple # 18.97 25.33 7 78 

Galia melon # 19.13 25.24 5 71 

Gooseberry # * 5.41 2.27 4 12 

Granny smith # 9.53 13.94 5 40 

Grapefruit # 8.09 3.38 6 17 

Grape # 5.40 2.48 3 12 

Green melon # 10.81 9.42 7 30 

Guava # * 16.73 14.34 7 50 

 

Table A.7b. Mean, standard deviation (SD) and range (min-max) age of acquisition values 

for fruit words in individuals belonging to > 70 age –category. 
 
 
 
 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 5.62 1.03 4 7 

Almond 6.76 1.66 5 10 

Apple # * 4.18 1.64 2 7 

Apricot # 6.62 3.67 4 15 

Aubergine # 16.13 22.87 7 71 

Avocado # 19.28 21.00 7 65 

Banana # * 4.88 4.39 3 20 

Berries 5.20 1.43 3 7 

Blackberry 5.03 2.10 3 10 

Blackcurrant # * 5.68 0.94 4 7 

Blueberry # ~ 12.66 21.47 7 70 

Bramble ~ * 6.26 3.94 4 16 

Cantaloupe melon # 15.88 22.78 6 65 

Cherry # 6.13 7.29 4 30 

Chestnut 6.61 1.64 5 10 

Clementine # 11.91 20.76 7 65 

Coconut 6.73 2.26 4 12 

Cox apple * 8.01 9.41 6 40 

Crab apple 7.17 2.66 4 14 

Cranberry # 18.59 25.00 6 70 

Cucumber # 6.84 4.01 4 17 

Currant 5.82 1.47 4 8 

Damson # 5.64 1.48 4 8 

Date 6.37 2.63 5 14 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Hazelnut 6.06 6.90 2 30 

Honeydew melon # 14.41 19.16 7 64 

Horse chestnut * 6.53 1.47 4 10 

Jaffa # * 7.44 1.92 5 10 

Kiwi # 21.88 19.87 7 60 

Kumquat # * 18.60 26.96 5 80 

Lemon # 5.86 7.55 3 30 

Lime # * 10.73 7.03 7 30 

Loganberry 6.54 8.91 3 30 

Lychee # 18.62 18.22 7 60 

Mandarin # ~ 10.68 12.46 5 47 

Mango # 18.11 12.45 7 50 

Melon # 7.96 6.24 4 20 

Nectarine # 13.68 20.90 7 53 

Nut 5.13 2.06 3 11 

Olive # ~ * 10.21 13.80 5 50 

Orange # * 4.35 1.99 2 8 

Papaya # 16.07 26.40 7 70 

Passion fruit # 18.89 20.68 7 70 

Peach # 6.67 4.41 3 20 

Pear # 4.72 2.18 3 10 

Pepper # * 20.15 17.97 7 60 

Pineapple # 9.15 10.27 4 40 

Plum 5.44 6.65 3 28 

Pomegranate 8.78 7.58 5 30 

Prune 5.71 3.11 4 15 

Raisin # ~ * 6.13 2.78 4 14 

Raspberry # 5.17 1.37 3 7 

Red currant 6.33 2.12 4 10 

Redberry 9.41 53.03 5 80 

Red grape # 7.91 3.02 4 15 

Rhubarb 5.20 1.56 3 8 

Satsuma # 12.35 17.91 5 60 

Squash # 13.13 12.50 7 40 

Star fruit # 22.95 28.41 7 80 

Strawberry # 5.42 3.28 3 16 

Sultana * 5.85 2.01 4 10 

Tangerine # 8.22 6.82 5 30 

Tomato # 4.84 4.11 3 19 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Walnut 7.01 3.55 5 18 

Water melon # 10.26 19.15 5 70 

White grape# ~ 7.61 12.90 4 40 
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APPENDIX B 
 

 
 

Table B.1a. Mean, standard deviation (SD) and range (min-max) familiarity values for 

animal words in individuals belonging to the 18-20 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark 

 
1.70 

 
1.76 

 
1 

 
6 

Adder 2.25 1.99 1 7 

Albatross 1.60 1.84 1 7 

Alligator ~ 3.16 2.02 1 7 

Alpaca 1.51 1.61 1 6 

Amoeba 1.29 1.59 1 7 

Angel fish 1.60 1.65 1 7 

Ant 2.88 2.34 1 7 

Ant bear 1.17 1.26 1 6 

Anteater 1.97 1.98 1 7 

Antelope 2.00 1.97 1 7 

Ape 3.54 2.06 1 7 

Armadillo 1.83 1.48 1 7 

Ass 1.85 1.92 1 7 

Baboon ~ 3.05 2.02 1 7 

Badger 2.94 2.07 1 7 

Bald eagle # 1.98 2.00 1 7 

Bat 3.88 1.75 2 7 

Bear 3.17 2.31 1 7 

Beaver 2.99 1.75 1 7 

Bee 4.97 1.52 2 7 

Beetle 3.36 2.16 1 7 

Bird 4.85 1.56 1 7 

Bison # 1.48 1.60 1 6 

Blackbird ~ 3.41 1.96 1 7 

Blue bird 2.52 1.79 1 7 

Blue tit ~ 2.61 1.53 1 7 

Boa constrictor 2.25 2.01 1 7 

Boar 2.02 2.02 1 7 

Brontosaurus # 1.43 1.87 1 7 

Brown bear 2.81 1.97 1 7 

Buck # ~ * 1.51 1.30 1 5 

Budgerigar ~ 1.87 2.11 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Buffalo 2.22 1.88 1 7 

Bull 3.59 1.83 1 7 

Bullfinch ~ 1.24 1.08 1 5 

Bullock ~ 1.82 1.83 1 7 

Butterfly 4.34 1.72 1 7 

Buzzard # * 1.44 1.75 1 6 

Calf 2.68 2.26 1 7 

Camel 3.15 1.95 1 7 

Canary 2.64 1.79 1 7 

Caribou 1.35 1.11 1 5 

Carp 2.32 1.82 1 7 

Cat 5.98 1.19 3 7 

Caterpillar 3.69 1.84 2 7 

Cattle 4.75 1.72 2 7 

Chaffinch ~ 1.64 1.47 1 6 

Chameleon ~ 2.05 2.09 1 7 

Cheetah ~ 3.68 1.79 1 7 

Chicken 4.87 1.51 1 7 

Chimpanzee 3.10 2.29 1 7 

Chinchilla 2.73 1.82 1 7 

Chipmunk 2.31 2.13 1 7 

Civet 1.06 0.68 1 4 

Clown fish ~ 2.07 1.96 1 7 

Cobra 2.46 2.20 1 7 

Cockatiel 1.84 1.80 1 7 

Cocker spaniel 2.68 2.21 1 7 

Cockerel 2.72 1.98 1 7 

Cockroach 2.61 1.96 1 7 

Cod 3.24 2.04 1 7 

Condor 1.31 1.19 1 5 

Conger eel 1.31 0.88 1 4 

Cougar # 1.83 1.40 1 6 

Cow 4.73 1.68 1 7 

Coyote ~ * 1.78 1.80 1 7 

Cray fish 1.70 1.81 1 7 

Crocodile 3.13 2.04 1 7 

Crow 3.16 1.98 1 7 

Cuckoo 2.28 1.89 1 7 

Curlew ~ 1.13 1.31 1 6 
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Range 

min max 
Animal Mean SD 

 

 

 

Deer 3.80 1.92 1 7 

Dingo 1.66 1.63 1 7 

Dog 6.46 0.84 3 7 

Dolphin ~ 4.45 1.73 1 7 

Donkey 3.82 2.03 1 7 

Dormouse 2.16 1.73 1 7 

Dove 3.84 1.56 2 7 

Dragon ~ 2.09 2.49 1 7 

Dragonfly 2.58 2.13 1 7 

Dromedary ~ 1.08 0.67 1 4 

Duck 4.87 1.56 1 7 

Duckbill platypus 1.43 1.92 1 7 

Dugong 1.23 1.57 1 7 

Duiker 1.12 0.55 1 3 

Eagle 2.79 2.12 1 7 

Earthworm 3.28 1.93 1 7 

Earwig 2.15 1.67 1 7 

Echidna 1.29 1.31 1 5 

Eel 2.25 2.01 1 7 

Elephant 4.15 2.05 1 7 

Elk ~ 1.40 1.51 1 6 

Emu 2.00 2.12 1 7 

Ewe ~ 2.34 2.06 1 7 

Ferret 2.66 2.01 1 7 

Field mouse 2.86 1.98 1 7 

Finch ~ 2.33 1.64 1 7 

Fish ~ 5.92 1.26 2 7 

Flamingo 2.83 1.97 1 7 

Flea 2.44 2.13 1 7 

Fly 4.14 1.80 1 7 

Fowl 1.98 1.96 1 7 

Fox 4.38 1.64 1 7 

Frog 3.71 1.76 1 7 

Gazelle 2.15 1.65 1 6 

Gecko 1.72 1.87 1 7 

Gerbil 3.03 2.01 1 7 

Giant panda 2.25 2.04 1 7 

Gibbon 1.87 2.00 1 7 

Giraffe 3.26 2.18 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Gnu 1.13 0.99 1 5 

Goat 3.62 1.94 1 7 

Goldcrest 1.39 1.48 1 7 

Goldfish 4.56 1.88 2 7 

Goose 3.67 1.63 1 7 

Gorilla 3.75 2.01 1 7 

Greyhound 3.53 1.96 1 7 

Grizzly bear 2.88 1.99 1 7 

Groundhog # 1.51 1.77 1 7 

Guinea fowl 1.87 1.61 1 6 

Guinea pig 3.52 1.92 1 7 

Gull ~ 2.17 2.24 1 7 

Haddock 2.27 2.05 1 7 

Hamster ~ 4.44 1.77 1 7 

Hare 2.56 1.96 1 7 

Hart 1.32 1.12 1 5 

Hawk 3.14 1.78 1 7 

Hedgehog 3.81 1.86 1 7 

Heifer # 1.19 0.99 1 5 

Hen 3.98 1.88 1 7 

Heron 2.28 1.91 1 6 

Herring 2.10 1.74 1 7 

Hippopotamus 3.03 2.24 1 7 

Hornet 2.28 2.11 1 7 

Horse 4.42 1.81 1 7 

Horsefly 1.50 2.01 1 7 

Hyena 2.15 2.13 1 7 

Ibex 1.21 1.18 1 6 

Iguana 1.80 2.30 1 7 

Impala 1.26 1.85 1 7 

Insect 4.87 1.77 2 7 

Invertebrate # ~ * 2.75 2.40 1 7 

Jack rabbit # * 1.83 1.50 1 5 

Jackal 1.67 1.92 1 7 

Jackass 1.37 1.11 1 5 

Jackdaw ~ 1.22 1.19 1 5 

Jaguar 2.56 2.04 1 7 

Jerboa 1.08 0.50 1 3 

Kangaroo 3.22 2.08 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Kid 1.70 2.30 1 7 

Kitten 4.38 1.75 1 7 

Kiwi 1.66 1.86 1 7 

Koala 2.38 2.24 1 7 

Koi carp 1.68 1.81 1 7 

Komodo dragon # * 1.56 2.29 1 7 

Lacewing 1.25 0.97 1 4 

Lady bird 4.27 1.87 2 7 

Lamb 4.08 1.78 1 7 

Lemur 1.78 2.17 1 7 

Leopard 3.15 2.12 1 7 

Lion 4.42 1.93 2 7 

Lizard 2.69 2.11 1 7 

Llama 2.46 2.04 1 7 

Lobster 3.66 2.06 1 7 

Long tailed tit 1.46 1.12 1 5 

Lynx 1.52 1.47 1 6 

Mackerel 2.31 1.93 1 7 

Mammal ~ 3.81 1.93 1 7 

Manatee 1.53 1.83 1 7 

Mandrill ~ * 1.29 1.36 1 6 

Mangust 1.08 0.36 1 2 

Marmoset * 1.26 1.55 1 7 

Marmot 1.17 0.68 1 3 

Marten 1.44 1.44 1 6 

Meerkat 2.36 2.26 1 7 

Midge 1.83 2.05 1 7 

Mink * 1.44 1.45 1 5 

Minnow # * 1.75 1.35 1 5 

Manx 1.99 2.08 1 7 

Mole 2.81 1.79 1 7 

Mongoose # 1.66 1.66 1 7 

Monkey ~ 5.55 1.40 2 7 

Moose ~ 2.61 2.08 1 7 

Moth 3.36 1.91 1 7 

Mouse 4.27 1.85 1 7 

Mule 1.83 2.19 1 7 

Musk ox ~ * 1.15 0.63 1 3 

Newt 1.76 1.83 1 6 
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min max 
Animal Mean SD 

 

 

 

Nightingale 1.57 1.50 1 6 

Ocelot 1.16 1.24 1 6 

Octopus ~ 3.17 2.09 1 7 

Orang-utan 2.60 2.28 1 7 

Oryx 1.14 0.76 1 4 

Ostrich 2.64 2.07 1 7 

Otter 2.44 2.11 1 7 

Owl 3.21 1.95 1 7 

Ox 2.11 1.91 1 7 

Panda 3.22 2.06 1 7 

Panther 3.15 1.93 1 7 

Parakeet 1.75 1.55 1 6 

Parrot 3.81 1.87 1 7 

Partridge 2.11 1.69 1 6 

Peacock 3.00 2.01 1 7 

Peewit ~ 1.14 1.27 1 5 

Pelican 2.17 1.77 1 7 

Penguin 3.82 1.93 1 7 

Perch 1.60 1.47 1 6 

Pheasant 2.97 1.81 1 7 

Pig 4.66 1.75 1 7 

Pigeon 4.87 1.57 1 7 

Piglet 3.15 2.20 1 7 

Pike # 2.18 1.96 1 7 

Pine marten 1.36 1.40 1 5 

Piranha fish # 2.45 1.86 1 7 

Plaice 2.07 1.80 1 7 

Platypus 1.57 2.32 1 7 

Polar bear 3.23 2.05 1 7 

Polar cat 1.48 1.52 1 6 

Pony 4.01 1.95 1 7 

Porcupine 1.95 1.93 1 7 

Porpoise * 1.53 1.71 1 6 

Poultry 3.22 2.03 1 7 

Prairie dog 1.82 1.80 1 7 

Puffin 2.16 1.70 1 7 

Puma 2.65 2.02 1 7 

Rabbit 5.02 1.68 2 7 

Racoon * 2.36 1.95 1 7 
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min max 
Animal Mean SD 

 

 

 

Ram 2.41 2.03 1 7 

Rat 4.53 1.69 1 7 

Ratel 1.12 1.33 1 7 

Raven 2.46 1.97 1 7 

Reindeer 3.67 2.06 1 7 

Rhesus monkey 1.88 2.06 1 7 

Rhinoceros 3.03 2.16 1 7 

Roach 1.90 1.72 1 6 

Robin 4.67 1.56 2 7 

Rodent 3.56 1.90 1 7 

Roe deer ~ 1.19 1.21 1 5 

Rook # ~ 1.68 1.68 1 7 

Rooster 2.88 2.04 1 7 

Salamander 1.52 1.59 1 6 

Salmon 3.81 1.88 1 7 

Sardine 2.67 1.57 1 7 

Sea lion 2.22 2.19 1 7 

Seagull 4.22 1.69 1 7 

Seahorse 2.71 1.88 1 7 

Seal 3.53 1.97 1 7 

Shark ~ 4.07 1.82 1 7 

Sheep 4.69 1.77 1 7 

Short tailed tit 1.59 1.37 1 5 

Shrew 1.88 1.82 1 7 

Shrimp 2.92 1.91 1 7 

Siamese cat 2.67 2.21 1 7 

Siberian tiger ~ 2.15 2.36 1 7 

Skate 1.44 1.07 1 4 

Skunk 2.30 2.25 1 7 

Skylark ~ 1.33 1.31 1 6 

Sloth # ~ 2.40 2.21 1 7 

Slug 3.10 2.17 1 7 

Snail 3.62 1.95 1 7 

Snake ~ 4.08 1.89 1 7 

Sole ~ 1.34 1.65 1 7 

Sow ~ 1.79 1.90 1 6 

Sparrow ~ 2.86 2.18 1 7 

Spider 5.22 1.51 2 7 

Springbok 1.74 1.65 1 6 
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min max 
Animal Mean SD 

 

 

 

Squid 2.58 1.92 1 7 

Squirrel 4.34 1.78 1 7 

Stag 2.61 2.17 1 7 

Star fish 2.30 2.28 1 7 

Starling ~ 1.95 1.96 1 7 

Stick insect 2.64 2.18 1 7 

Stickleback 1.79 1.17 1 5 

Stoat 1.65 1.68 1 7 

Sturgeon 1.43 1.17 1 5 

Swan 3.76 1.88 1 7 

Swift ~ 1.50 1.52 1 6 

Sword fish ~ 2.67 1.86 1 7 

Tapir 1.29 1.04 1 4 

Tarantula ~ * 2.89 2.19 1 7 

Tench 1.26 1.17 1 5 

Thrush ~ 2.09 1.88 1 6 

Tiger 3.47 2.18 1 7 

Toad 3.11 1.96 1 7 

Tortoise 3.46 1.76 1 7 

Trout 2.84 1.93 1 7 

Tuna 3.92 1.85 1 7 

Turkey 5.54 1.16 3 7 

Turtle ~ 3.64 1.90 1 7 

Tyrannosaurus ~ 1.96 2.43 1 7 

Vole 1.87 1.83 1 7 

Vulture 2.23 2.11 1 7 

Wallaby 1.57 1.89 1 7 

Walrus 1.92 1.93 1 7 

Warthog 1.86 1.83 1 7 

Wasp 4.21 1.75 1 7 

Water buffalo # 1.94 1.61 1 6 

Water rat # 1.79 1.86 1 7 

Weasel 2.02 1.91 1 7 

Whale ~ 3.30 2.20 1 7 

White tiger 2.14 2.16 1 7 

Wild boar 2.17 1.73 1 7 

Wild cat 2.59 1.84 1 7 

Wild dog 1.91 1.48 1 6 

Wildebeest 1.98 1.46 1 6 



Page 9 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 
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Animal Mean SD 

 

 

 

Wolf ~ 3.16 2.17 1 7 

Wombat 1.76 1.80 1 7 

Woodcock 1.46 1.51 1 7 

Woodlouse 3.49 2.03 1 7 

Woodpecker 2.56 1.90 1 7 

Worm 3.55 2.05 1 7 

Wren ~ 1.71 1.69 1 6 

Yak 1.57 1.33 1 5 

Yellow tit 1.51 1.42 1 5 

Yellowhammer ~ 1.31 1.42 1 5 

Yorkshire terrier 4.47 1.62 1 7 

Zebra 2.85 2.29 1 7 

Zebu 1.10 1.14 1 6 
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Table B.1b. Mean, standard deviation (SD) and range (min-max) familiarity values for 

fruit words in individuals belonging to the 18-20 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 2.78 2.06 1 7 

Almond 3.01 1.85 1 7 

Apple 6.46 0.84 3 7 

Apricot 4.08 1.59 1 7 

Aubergine 2.26 1.85 1 7 

Avocado 2.75 1.90 1 7 

Banana 6.31 0.98 2 7 

Berries 5.09 1.43 2 7 

Bilberry # 1.26 1.32 1 7 

Blackberry 4.10 1.65 1 7 

Blackcurrant 5.13 1.33 1 7 

Blueberry 3.80 1.97 1 7 

Bramble # 1.74 2.05 1 7 

Butternut squash 2.51 2.09 1 7 

Cantaloupe melon 2.30 2.04 1 7 

Cherry 5.09 1.39 2 7 

Chestnut 3.15 1.86 1 7 

Citron 1.81 2.23 1 7 

Clementine # ~ 3.94 1.90 1 7 

Coconut 3.44 2.07 1 7 

Cox apple # 2.97 2.20 1 7 

Crab apple 2.10 2.15 1 7 

Cranberry 3.90 1.71 1 7 

Cucumber 4.52 1.76 1 7 

Currant 2.99 1.94 1 7 

Damson # 1.21 0.91 1 4 

Date # 1.85 2.00 1 7 

Dewberry 1.47 1.57 1 7 

Durian 1.13 0.95 1 5 

Elderberry # 1.77 1.75 1 7 

Fig 2.02 2.03 1 7 

Gala apple 3.35 2.04 1 7 

Galia melon ~ 2.21 2.15 1 7 

Gooseberry 2.51 2.03 1 7 

Granny smith 5.94 1.11 3 7 

Grapefruit 4.07 1.72 1 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grapes 5.32 1.37 1 7 

Green melon 3.01 1.84 1 7 

Guava 1.53 1.55 1 7 

Haw # 1.02 0.22 1 2 

Hazelnut 2.79 1.98 1 7 

Honeydew melon ~ 2.71 2.12 1 7 

Horse chestnut 2.03 1.71 1 6 

Jackfruit 1.17 0.78 1 4 

Jaffa # 1.48 1.79 1 7 

Kiwi ~ 4.30 1.70 1 7 

Kumquat 1.31 1.09 1 5 

Lemon 5.24 1.45 2 7 

Lime # 3.80 1.90 1 7 

Loganberry # 1.35 1.31 1 6 

Lychee 1.84 2.06 1 7 

Mandarin ~ 2.72 2.15 1 7 

Mango # 4.56 1.48 1 7 

Medlar 1.09 0.70 1 4 

Melon 4.31 1.84 1 7 

Nectarine ~ 3.48 1.97 1 7 

Nuts 3.83 1.94 1 7 

Olive 3.53 1.96 1 7 

Orange 6.35 0.93 3 7 

Papaya 1.83 2.06 1 7 

Passion fruit 3.18 1.94 1 7 

Paw paw 1.21 1.64 1 7 

Peach # 5.34 1.33 2 7 

Pear 5.70 1.15 3 7 

Pepper 5.34 1.28 2 7 

Persimmon 1.09 0.52 1 3 

Pineapple 5.43 1.46 2 7 

Plantain 1.32 1.72 1 6 

Plum 4.11 1.79 1 7 

Pomelo 1.15 0.45 1 2 

Pomegranate 2.82 1.84 1 7 

Prune # 2.04 2.06 1 7 

Quince # 1.08 0.37 1 2 

Raisin 5.02 1.50 2 7 

Rambotan 1.07 0.50 1 3 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Raspberry 5.31 1.43 3 7 

Red currant 2.61 2.05 1 7 

Redberry # 2.82 2.00 1 7 

Red grape 3.96 1.88 1 7 

Rhubarb 3.29 1.91 1 7 

Rosehip # 1.19 1.32 1 5 

Sapodilla 1.05 0.32 1 2 

Satsuma ~ 5.06 1.47 2 7 

Sharon fruit 1.20 1.75 1 7 

Sloe berry 1.14 0.44 1 2 

Squash 2.14 2.06 1 7 

Star fruit 1.69 1.83 1 7 

Strawberry 6.04 1.09 2 7 

Sultana 4.25 1.74 1 7 

Tangelo * 1.12 0.93 1 5 

Tangerine 5.28 1.48 2 7 

Tayberry 1.33 1.42 1 6 

Tomato 6.31 0.93 3 7 

Walnut # 2.95 1.84 1 7 

Water melon 4.49 1.76 1 7 

Whinberry 1.38 1.25 1 6 

White currant 1.55 1.79 1 7 

White grape 3.44 2.08 1 7 

  Whortleberry  1.22  1.12  1  6   
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Table B.2a. Mean, standard deviation (SD) and range (min-max) familiarity values for 

animal words in individuals belonging to the 21-30 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark 

 
1.91 

 
2.07 

 
1 

 
7 

Adder 2.55 2.17 1 7 

Albatross 2.23 2.05 1 7 

Alligator ~ 3.68 1.94 1 7 

Alpaca 1.23 1.37 1 5 

Amoeba 1.88 2.28 1 7 

Angel fish 1.72 2.24 1 7 

Ant 3.92 2.08 1 7 

Ant bear 1.50 1.53 1 7 

Anteater 2.12 1.95 1 7 

Antelope 2.22 2.08 1 7 

Ape 4.39 1.77 1 7 

Armadillo 2.30 2.00 1 7 

Ass 2.40 1.98 1 7 

Baboon ~ 3.23 2.00 1 7 

Badger 3.73 1.88 1 7 

Bald eagle # 2.74 1.98 1 7 

Bat 3.10 2.16 1 7 

Bear 4.65 1.65 1 7 

Beaver 2.86 2.12 1 7 

Bee 4.85 1.81 2 7 

Beetle 3.44 2.08 1 7 

Bird 5.32 1.46 1 7 

Bison # 2.06 2.02 1 7 

Blackbird ~ 3.95 2.01 1 7 

Blue bird 2.49 2.26 1 7 

Blue tit ~ 2.58 2.15 1 7 

Boa constrictor 2.78 2.17 1 7 

Boar 3.10 2.08 1 7 

Brontosaurus # 1.97 2.20 1 7 

Brown bear 3.18 2.03 1 7 

Buck # ~ * 1.69 1.99 1 7 

Budgerigar ~ 2.75 2.05 1 7 

Buffalo 3.18 1.97 1 7 

Bull 3.41 2.12 1 7 

Bullfinch ~ 1.60 1.82 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Bullock ~ 2.09 2.31 1 7 

Butterfly 4.09 1.91 1 7 

Buzzard # * 1.98 2.12 1 7 

Calf 4.60 1.71 2 7 

Camel 2.67 2.52 1 7 

Canary 2.68 2.02 1 7 

Caribou 1.53 1.79 1 6 

Carp 2.60 2.04 1 7 

Cat 5.57 1.29 1 7 

Caterpillar 3.38 2.15 1 7 

Cattle 5.44 1.43 2 7 

Chaffinch ~ 2.02 2.13 1 7 

Chameleon ~ 2.75 2.08 1 7 

Cheetah ~ 3.34 2.10 1 7 

Chicken 5.31 1.41 1 7 

Chimpanzee 3.93 1.85 1 7 

Chinchilla 2.33 1.80 1 7 

Chipmunk 2.39 2.02 1 7 

Civet 1.18 1.53 1 6 

Clown fish ~ 2.30 2.29 1 7 

Cobra 2.54 2.20 1 7 

Cockatiel 2.46 2.14 1 7 

Cocker spaniel 4.45 1.68 1 7 

Cockerel 3.59 1.78 1 7 

Cockroach 2.95 2.12 1 7 

Cod 3.81 1.76 1 7 

Condor 1.89 1.88 1 7 

Conger eel 1.59 1.85 1 7 

Cougar # 1.87 2.19 1 7 

Cow 4.74 1.64 1 7 

Coyote ~ * 2.72 1.94 1 7 

Cray fish 1.97 2.11 1 7 

Crocodile 3.89 1.97 1 7 

Crow 3.72 2.08 1 7 

Cuckoo 2.46 2.02 1 7 

Curlew ~ 1.16 1.60 1 7 

Deer 3.99 1.88 1 7 

Dingo 1.78 2.08 1 7 

Dog 5.85 1.07 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Dolphin ~ 3.85 2.10 1 7 

Donkey 4.70 1.65 1 7 

Dormouse 2.42 2.26 1 7 

Dove 3.37 2.09 1 7 

Dragon ~ 2.58 2.45 1 7 

Dragonfly 2.28 2.42 1 7 

Dromedary ~ 1.28 2.33 1 7 

Duck 4.58 1.74 1 7 

Duckbill platypus 1.69 1.94 1 7 

Dugong 1.28 2.06 1 7 

Duiker 1.31 2.31 1 7 

Eagle 2.95 2.25 1 7 

Earthworm 2.91 2.32 1 7 

Earwig 2.81 2.19 1 7 

Echidna 1.27 2.02 1 7 

Eel 2.42 2.21 1 7 

Elephant 4.99 1.71 2 7 

Elk ~ 1.65 2.04 1 7 

Emu 2.27 2.17 1 7 

Ewe ~ 1.84 2.32 1 7 

Ferret 3.25 2.05 1 7 

Field mouse 2.82 2.32 1 7 

Finch ~ 2.11 1.97 1 7 

Fish ~ 6.25 1.00 2 7 

Flamingo 3.28 1.96 1 7 

Flea 3.48 2.08 1 7 

Fly 4.67 1.82 1 7 

Fowl 2.59 2.26 1 7 

Fox 4.09 1.95 1 7 

Frog 4.10 2.06 1 7 

Gazelle 1.96 2.28 1 7 

Gecko 2.27 2.29 1 7 

Gerbil 3.42 1.97 1 7 

Giant panda 2.55 2.42 1 7 

Gibbon 2.10 2.10 1 7 

Giraffe 3.55 2.12 1 7 

Gnu 1.34 1.96 1 7 

Goat 4.01 1.95 1 7 

Goldcrest 1.39 1.64 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Goldfish 5.29 1.53 2 7 

Goose 4.38 1.82 1 7 

Gorilla 4.71 1.73 1 7 

Greyhound 4.64 1.59 2 7 

Grizzly bear 3.11 2.04 1 7 

Groundhog # 1.55 1.55 1 6 

Guinea fowl 1.99 2.21 1 7 

Guinea pig 3.97 1.99 1 7 

Gull ~ 3.25 2.06 1 7 

Haddock 3.91 1.70 1 7 

Hamster ~ 5.08 1.55 2 7 

Hare 3.03 2.06 1 7 

Hart 1.43 1.72 1 7 

Hawk 2.49 2.21 1 7 

Hedgehog 4.31 1.92 1 7 

Heifer # 1.54 2.20 1 7 

Hen 4.43 1.79 1 7 

Heron 2.30 2.11 1 7 

Herring 2.38 2.12 1 7 

Hippopotamus 3.26 2.20 1 7 

Hornet 2.32 2.09 1 7 

Horse 5.58 1.47 2 7 

Horsefly 2.00 2.24 1 7 

Hyena 2.35 2.27 1 7 

Ibex 1.23 1.42 1 7 

Iguana 2.56 1.99 1 7 

Impala 1.35 1.32 1 6 

Insect 5.96 1.17 3 7 

Invertebrate # ~ * 2.66 2.36 1 7 

Jack rabbit # * 1.99 2.00 1 7 

Jackal 1.84 2.00 1 7 

Jackass 1.65 1.87 1 7 

Jackdaw ~ 1.45 1.96 1 7 

Jaguar 2.55 2.12 1 7 

Jerboa 1.26 1.79 1 7 

Kangaroo 3.31 2.20 1 7 

Kid 2.37 2.26 1 7 

Kitten 4.72 1.75 1 7 

Kiwi 1.83 2.29 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Koala 3.07 2.18 1 7 

Koi carp 2.36 2.35 1 7 

Komodo dragon # * 2.23 2.17 1 7 

Lacewing 1.30 1.62 1 7 

Lady bird 4.34 1.87 1 7 

Lamb 4.52 1.78 1 7 

Lemur 1.93 1.58 1 6 

Leopard 4.01 2.01 2 7 

Lion 4.78 1.81 2 7 

Lizard 3.78 1.87 1 7 

Llama 2.61 1.93 1 7 

Lobster 3.35 2.25 1 7 

Long tailed tit 1.65 1.77 1 7 

Lynx 1.83 1.98 1 7 

Mackerel 2.88 1.95 1 7 

Mammal ~ 5.82 1.23 3 7 

Manatee 1.69 2.02 1 7 

Mandrill ~ * 1.40 1.85 1 7 

Mangust 1.15 1.82 1 7 

Marmoset * 1.25 1.67 1 7 

Marmot 1.41 1.67 1 7 

Marten 1.47 1.87 1 7 

Meerkat 2.60 2.17 1 7 

Midge 2.16 2.24 1 7 

Mink * 1.60 1.78 1 6 

Minnow # * 1.58 1.49 1 6 

Manx 2.01 2.22 1 7 

Mole 3.21 1.85 1 7 

Mongoose # 2.04 1.94 1 7 

Monkey ~ 5.01 1.54 1 7 

Moose ~ 2.91 2.03 1 7 

Moth 3.83 1.96 1 7 

Mouse 3.75 2.09 1 7 

Mule 2.32 2.11 1 7 

Musk ox ~ * 1.10 0.78 1 4 

Newt 2.53 2.11 1 7 

Nightingale 1.86 1.81 1 7 

Ocelot 1.38 2.24 1 7 

Octopus ~ 3.47 2.05 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Orang-utan 3.36 2.03 1 7 

Oryx 1.16 1.18 1 5 

Ostrich 2.65 2.23 1 7 

Otter 2.78 2.38 1 7 

Owl 4.17 1.93 1 7 

Ox 2.47 1.95 1 7 

Panda 3.87 1.98 1 7 

Panther 3.18 2.19 1 7 

Parakeet 2.15 1.93 1 7 

Parrot 3.53 2.16 1 7 

Partridge 2.55 2.10 1 7 

Peacock 3.25 2.13 1 7 

Peewit ~ 1.19 1.46 1 6 

Pelican 2.53 1.93 1 7 

Penguin 4.10 1.79 1 7 

Perch 1.86 1.58 1 7 

Pheasant 3.55 2.03 1 7 

Pig 4.95 1.68 1 7 

Pigeon 4.86 1.69 1 7 

Piglet 3.70 2.09 1 7 

Pike # 2.40 1.98 1 7 

Pine marten 1.36 1.48 1 5 

Piranha fish # 2.57 2.06 1 7 

Plaice 2.26 2.08 1 7 

Platypus 1.95 2.13 1 7 

Polar bear 3.69 2.01 1 7 

Polar cat 1.64 2.02 1 7 

Pony 4.39 1.73 1 7 

Porcupine 1.84 2.18 1 7 

Porpoise * 1.70 2.06 1 7 

Poultry 4.33 1.71 1 7 

Prairie dog 1.87 1.86 1 6 

Puffin 2.63 2.25 1 7 

Puma 2.50 2.29 1 7 

Rabbit 5.32 1.55 2 7 

Racoon * 2.32 2.32 1 7 

Ram 2.35 2.07 1 7 

Rat 3.28 2.28 1 7 

Ratel 1.17 1.35 1 5 
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Range 

min max 
Animal Mean SD 

 

 

 

Raven 3.15 1.92 1 7 

Reindeer 3.83 2.02 1 7 

Rhesus monkey 2.19 2.01 1 7 

Rhinoceros 3.49 2.06 1 7 

Roach 2.23 1.93 1 7 

Robin 4.37 1.73 1 7 

Rodent 3.86 2.09 1 7 

Roe deer ~ 1.63 2.08 1 7 

Rook # ~ 1.97 2.10 1 7 

Rooster 2.90 2.17 1 7 

Salamander 1.97 1.85 1 7 

Salmon 4.27 1.63 1 7 

Sardine 2.97 1.93 1 7 

Sea lion 2.91 2.22 1 7 

Seagull 4.65 1.76 2 7 

Seahorse 2.59 2.05 1 7 

Seal 3.82 2.00 1 7 

Shark ~ 4.93 1.72 2 7 

Sheep 4.76 1.79 1 7 

Short tailed tit 1.75 1.63 1 7 

Shrew 2.37 2.08 1 7 

Shrimp 2.95 2.07 1 7 

Siamese cat 3.33 1.97 1 7 

Siberian tiger ~ 2.22 2.38 1 7 

Skate 1.89 1.94 1 7 

Skunk 2.25 2.34 1 7 

Skylark ~ 1.66 1.66 1 7 

Sloth # ~ 2.05 2.36 1 7 

Slug 3.56 2.20 1 7 

Snail 3.64 2.19 1 7 

Snake ~ 3.64 2.23 1 7 

Sole ~ 1.83 1.80 1 7 

Sow ~ 2.54 2.24 1 7 

Sparrow ~ 3.70 1.87 1 7 

Spider 4.50 1.76 1 7 

Springbok 1.71 2.30 1 7 

Squid 3.24 1.87 1 7 

Squirrel 5.03 1.71 2 7 

Stag 2.82 2.13 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Star fish 2.89 2.27 1 7 

Starling ~ 2.16 2.25 1 7 

Stick insect 2.65 2.28 1 7 

Stickleback 1.90 2.10 1 7 

Stoat 2.00 2.08 1 7 

Sturgeon 2.00 2.04 1 7 

Swan 4.27 1.82 1 7 

Swift ~ 1.70 1.89 1 7 

Sword fish ~ 2.71 2.09 1 7 

Tapir 1.26 1.62 1 7 

Tarantula ~ * 2.74 2.29 1 7 

Tench 1.69 1.90 1 7 

Thrush ~ 2.49 2.07 1 7 

Tiger 4.39 1.92 1 7 

Toad 3.36 2.06 1 7 

Tortoise 3.52 2.04 1 7 

Trout 3.26 1.88 1 7 

Tuna 4.27 1.69 1 7 

Turkey 4.38 1.84 1 7 

Turtle ~ 3.92 1.94 1 7 

Tyrannosaurus ~ 2.55 2.43 1 7 

Vole 2.13 2.01 1 7 

Vulture 2.81 2.03 1 7 

Wallaby 1.78 2.24 1 7 

Walrus 2.44 2.32 1 7 

Warthog 2.50 1.99 1 7 

Wasp 3.48 2.19 1 7 

Water buffalo # 2.09 1.97 1 7 

Water rat # 1.93 1.84 1 7 

Weasel 2.71 2.08 1 7 

Whale ~ 3.99 2.01 1 7 

White tiger 2.40 2.41 1 7 

Wild boar 2.28 2.10 1 7 

Wild cat 2.37 2.17 1 7 

Wild dog 2.22 2.23 1 7 

Wildebeest 2.36 2.02 1 7 

Wolf ~ 3.74 2.01 1 7 

Wombat 2.12 2.18 1 7 

Woodcock 1.84 1.90 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Woodlouse 3.53 1.92 1 7 

Woodpecker 2.49 2.20 1 7 

Worm 3.99 1.99 1 7 

Wren ~ 1.82 1.93 1 7 

Yak 1.81 1.80 1 7 

Yellow tit 1.89 1.88 1 7 

Yellowhammer ~ 1.33 1.73 1 7 

Yorkshire terrier 4.91 1.41 2 7 

Zebra 3.45 2.15 1 7 

  Zebu  1.35  1.63  1  7   
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Table B.2b. Mean, standard deviation (SD) and range (min-max) familiarity values for 

fruit words in individuals belonging to the 21-30 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 2.33 2.26 1 7 

Almond 3.49 2.01 1 7 

Apple 5.60 1.27 1 7 

Apricot 4.12 1.79 1 7 

Aubergine 3.15 2.13 1 7 

Avocado 3.44 2.02 1 7 

Banana 5.37 1.43 1 7 

Berries 5.20 1.52 2 7 

Bilberry # 1.45 1.75 1 7 

Blackberry 5.03 1.54 2 7 

Blackcurrant 4.58 1.68 1 7 

Blueberry 3.29 2.13 1 7 

Bramble # 2.80 2.07 1 7 

Butternut squash 3.20 2.15 1 7 

Cantaloupe melon 2.81 2.16 1 7 

Cherry 4.63 1.62 1 7 

Chestnut 3.63 1.79 1 7 

Citron 1.89 2.23 1 7 

Clementine # ~ 4.90 1.48 2 7 

Coconut 4.59 1.70 1 7 

Cox apple # 4.19 1.75 1 7 

Crab apple 3.12 2.06 1 7 

Cranberry 4.26 1.68 1 7 

Cucumber 4.13 1.95 1 7 

Currant 4.27 1.69 1 7 

Damson # 1.50 1.93 1 6 

Date # 3.06 2.18 1 7 

Dewberry 1.56 1.91 1 7 

Durian 1.17 1.54 1 7 

Elderberry # 2.26 2.03 1 7 

Fig 2.71 2.21 1 7 

Gala apple 3.46 2.18 1 7 

Galia melon ~ 2.54 2.10 1 7 

Gooseberry 2.54 2.31 1 7 

Granny smith 4.17 2.00 1 7 

Grapefruit 4.10 1.95 1 7 



Page 23 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

max 
Fruit Mean SD 

min 

 

 

 

Grapes 5.85 1.29 2 7 

Green melon 2.32 2.21 1 7 

Guava 1.96 2.18 1 7 

Haw # 1.17 1.54 1 7 

Hazelnut 4.08 1.80 1 7 

Honeydew melon ~ 3.08 2.28 1 7 

Horse chestnut 2.83 2.17 1 7 

Jackfruit 1.31 1.47 1 7 

Jaffa # 2.09 2.21 1 7 

Kiwi ~ 4.37 1.77 1 7 

Kumquat 1.64 1.71 1 7 

Lemon 5.67 1.34 3 7 

Lime # 4.35 1.75 1 7 

Loganberry # 1.60 1.91 1 7 

Lychee 2.04 2.36 1 7 

Mandarin ~ 4.28 1.67 1 7 

Mango # 4.08 1.99 1 7 

Medlar 1.28 1.66 1 7 

Melon 4.47 1.84 1 7 

Nectarine ~ 3.83 1.93 1 7 

Nuts 4.54 1.70 1 7 

Olive 4.37 1.90 1 7 

Orange 5.19 1.55 1 7 

Papaya 2.18 2.24 1 7 

Passion fruit 3.87 1.67 1 7 

Paw paw 1.81 1.96 1 7 

Peach # 5.30 1.46 2 7 

Pear 5.46 1.47 2 7 

Pepper 5.96 1.12 3 7 

Persimmon 1.37 2.17 1 7 

Pineapple 5.05 1.55 1 7 

Plantain 1.50 2.10 1 7 

Plum 4.44 1.81 1 7 

Pomelo 1.14 1.60 1 6 

Pomegranate 3.39 1.93 1 7 

Prune # 3.25 2.07 1 7 

Quince # 1.36 1.53 1 7 

Raisin 5.07 1.67 2 7 

Rambotan 1.09 0.95 1 4 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Raspberry 4.78 1.65 1 7 

Red currant 2.93 1.87 1 7 

Redberry # 3.13 1.95 1 7 

Red grape 4.48 1.81 1 7 

Rhubarb 3.49 2.18 1 7 

Rosehip # 1.66 1.88 1 7 

Sapodilla 1.11 0.42 1 2 

Satsuma ~ 5.57 1.41 2 7 

Sharon fruit 1.70 2.37 1 7 

Sloe berry 1.96 2.41 1 7 

Squash 2.26 2.22 1 7 

Star fruit 1.92 2.34 1 7 

Strawberry 5.34 1.39 1 7 

Sultana 3.90 1.95 1 7 

Tangelo * 1.12 1.43 1 7 

Tangerine 5.15 1.57 2 7 

Tayberry 1.17 1.76 1 7 

Tomato 4.74 1.61 1 7 

Walnut # 3.86 1.92 1 7 

Water melon 4.07 1.97 1 7 

Whinberry 1.33 1.73 1 7 

White currant 1.55 2.06 1 7 

White grape 3.25 2.21 1 7 

  Whortleberry  1.30  1.66  1  7   
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Table B.3a. Mean, standard deviation (SD) and range (min-max) familiarity values for 

animal words in individuals belonging to the 31-40 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark 

 
2.16 

 
1.87 

 
1 

 
7 

Adder 2.91 1.98 1 7 

Albatross 2.05 2.20 1 7 

Alligator ~ 3.38 1.98 1 7 

Alpaca 1.42 1.67 1 7 

Amoeba 2.22 1.99 1 7 

Angel fish 2.29 1.97 1 7 

Ant 4.45 1.93 2 7 

Ant bear 1.31 1.54 1 6 

Anteater 2.25 2.13 1 7 

Antelope 2.61 2.13 1 7 

Ape 3.84 1.93 1 7 

Armadillo 2.03 2.00 1 7 

Ass 2.23 1.88 1 7 

Baboon ~ 3.31 2.09 1 7 

Badger 3.91 1.80 1 7 

Bald eagle # 2.18 1.77 1 7 

Bat 3.10 2.20 1 7 

Bear 3.66 2.05 1 7 

Beaver 2.45 2.43 1 7 

Bee 3.98 2.01 1 7 

Beetle 4.11 1.87 2 7 

Bird 6.83 0.37 6 7 

Bison # 1.88 2.11 1 6 

Blackbird ~ 3.70 2.04 1 7 

Blue bird 2.05 2.11 1 7 

Blue tit ~ 3.01 1.93 1 7 

Boa constrictor 2.29 1.80 1 6 

Boar 2.22 1.85 1 7 

Brontosaurus # 2.55 2.19 1 7 

Brown bear 3.05 2.21 1 7 

Buck # ~ * 2.00 1.90 1 6 

Budgerigar ~ 3.45 1.68 1 7 

Buffalo 2.37 2.21 1 7 

Bull 3.63 2.02 1 7 

Bullfinch ~ 1.80 2.01 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Bullock ~ 2.31 2.17 1 7 

Butterfly 5.23 1.44 2 7 

Buzzard # * 1.97 1.88 1 6 

Calf 4.61 1.62 1 7 

Camel 2.90 2.26 1 7 

Canary 2.72 1.83 1 7 

Caribou 1.60 1.58 1 5 

Carp 2.12 2.06 1 7 

Cat 6.81 0.49 5 7 

Caterpillar 3.87 1.97 1 7 

Cattle 4.11 1.92 1 7 

Chaffinch ~ 2.10 2.16 1 7 

Chameleon ~ 2.63 2.33 1 7 

Cheetah ~ 3.06 2.19 1 7 

Chicken 6.69 0.70 4 7 

Chimpanzee 3.62 2.11 1 7 

Chinchilla 1.77 1.92 1 7 

Chipmunk 2.58 1.97 1 7 

Civet 1.07 0.34 1 2 

Clown fish ~ 2.27 2.20 1 7 

Cobra 2.26 2.06 1 7 

Cockatiel 2.25 1.83 1 7 

Cocker spaniel 3.33 1.88 1 7 

Cockerel 3.27 2.17 1 7 

Cockroach 2.41 2.25 1 7 

Cod 4.57 1.91 2 7 

Condor 1.75 1.71 1 7 

Conger eel 2.22 2.21 1 7 

Cougar # 1.79 1.94 1 6 

Cow 6.12 1.10 3 7 

Coyote ~ * 2.13 1.92 1 7 

Cray fish 1.88 2.23 1 7 

Crocodile 3.66 2.06 1 7 

Crow 4.00 1.88 1 7 

Cuckoo 2.29 2.06 1 7 

Curlew ~ 1.12 0.43 1 2 

Deer 4.55 1.85 2 7 

Dingo 1.80 1.81 1 6 

Dog 6.83 0.37 6 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Dolphin ~ 4.16 1.90 1 7 

Donkey 5.39 1.54 2 7 

Dormouse 2.10 2.05 1 7 

Dove 3.44 2.15 1 7 

Dragon ~ 2.21 2.44 1 7 

Dragonfly 2.69 2.29 1 7 

Dromedary ~ 1.48 2.17 1 7 

Duck 5.37 1.49 2 7 

Duckbill platypus 1.49 1.47 1 5 

Dugong 1.07 0.90 1 4 

Duiker 1.07 1.39 1 6 

Eagle 3.33 1.94 1 7 

Earthworm 3.46 2.06 1 7 

Earwig 2.18 1.92 1 7 

Echidna 1.09 0.39 1 2 

Eel 2.86 2.11 1 7 

Elephant 5.11 1.59 2 7 

Elk ~ 1.95 1.42 1 5 

Emu 2.40 1.93 1 7 

Ewe ~ 4.29 1.83 2 7 

Ferret 3.81 1.85 2 7 

Field mouse 3.12 1.98 1 7 

Finch ~ 2.30 2.01 1 7 

Fish ~ 6.20 0.99 4 7 

Flamingo 3.62 1.82 2 7 

Flea 2.77 2.20 1 7 

Fly 5.30 1.64 2 7 

Fowl 2.36 2.13 1 7 

Fox 5.01 1.68 2 7 

Frog 5.09 1.54 3 7 

Gazelle 2.57 2.05 1 7 

Gecko 2.32 2.01 1 7 

Gerbil 3.55 1.86 1 7 

Giant panda 2.59 2.15 1 7 

Gibbon 2.50 1.79 1 7 

Giraffe 3.80 2.12 1 7 

Gnu 1.53 1.42 1 5 

Goat 5.08 1.67 2 7 

Goldcrest 1.51 1.86 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Goldfish 4.58 1.85 2 7 

Goose 3.21 2.20 1 7 

Gorilla 5.11 1.56 2 7 

Greyhound 3.27 2.05 1 7 

Grizzly bear 3.15 1.99 1 7 

Groundhog # 1.48 1.37 1 5 

Guinea fowl 1.99 1.92 1 7 

Guinea pig 3.47 1.99 1 7 

Gull ~ 4.59 1.57 2 7 

Haddock 4.36 1.80 2 7 

Hamster ~ 3.64 1.85 1 7 

Hare 4.17 1.81 2 7 

Hart 1.19 1.49 1 5 

Hawk 2.74 1.82 1 7 

Hedgehog 3.98 1.87 1 7 

Heifer # 2.16 2.11 1 7 

Hen 4.85 1.64 2 7 

Heron 2.71 2.01 1 7 

Herring 2.39 1.90 1 7 

Hippopotamus 3.28 2.17 1 7 

Hornet 2.04 1.92 1 6 

Horse 4.96 1.59 1 7 

Horsefly 1.92 1.50 1 6 

Hyena 2.58 2.10 1 7 

Ibex 1.22 1.53 1 6 

Iguana 2.40 1.85 1 7 

Impala 1.98 1.85 1 6 

Insect 5.94 1.19 3 7 

Invertebrate # ~ * 2.66 2.08 1 7 

Jack rabbit # * 1.72 1.58 1 6 

Jackal 2.12 1.98 1 7 

Jackass 1.57 1.82 1 6 

Jackdaw ~ 1.78 1.97 1 7 

Jaguar 2.76 2.04 1 7 

Jerboa 1.08 0.56 1 3 

Kangaroo 3.49 2.13 1 7 

Kid 2.74 1.84 1 7 

Kitten 4.56 1.80 1 7 

Kiwi 1.60 1.86 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Koala 3.29 2.00 1 7 

Koi carp 3.17 1.76 1 7 

Komodo dragon # * 2.24 2.12 1 7 

Lacewing 1.26 0.73 1 3 

Lady bird 4.74 1.60 2 7 

Lamb 5.71 1.24 2 7 

Lemur 1.99 1.63 1 7 

Leopard 3.24 1.98 1 7 

Lion 4.07 1.85 1 7 

Lizard 3.36 2.02 1 7 

Llama 2.81 2.05 1 7 

Lobster 2.24 2.47 1 7 

Long tailed tit 1.30 1.94 1 7 

Lynx 2.10 1.67 1 6 

Mackerel 3.10 2.04 1 7 

Mammal ~ 4.72 1.72 1 7 

Manatee 1.74 2.08 1 7 

Mandrill ~ * 1.12 1.00 1 5 

Mangust 1.00 0.00 1 1 

Marmoset * 1.48 0.75 1 3 

Marmot 1.18 1.10 1 5 

Marten 1.60 1.77 1 7 

Meerkat 2.31 2.30 1 7 

Midge 2.23 2.20 1 7 

Mink * 1.86 1.83 1 6 

Minnow # * 1.40 1.32 1 5 

Manx 1.62 1.66 1 6 

Mole 2.94 1.98 1 7 

Mongoose # 1.62 1.80 1 7 

Monkey ~ 4.65 1.69 1 7 

Moose ~ 2.31 1.95 1 7 

Moth 4.18 1.73 1 7 

Mouse 4.35 1.70 1 7 

Mule 2.92 1.98 1 7 

Musk ox ~ * 1.11 1.12 1 5 

Newt 2.14 2.22 1 7 

Nightingale 1.96 2.01 1 7 

Ocelot 1.23 1.12 1 5 

Octopus ~ 3.30 2.25 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Orang-utan 3.80 1.86 1 7 

Oryx 1.24 0.96 1 4 

Ostrich 3.30 1.77 1 7 

Otter 3.11 2.08 1 7 

Owl 3.82 2.13 1 7 

Ox 2.42 2.09 1 7 

Panda 3.02 2.36 1 7 

Panther 2.77 1.96 1 7 

Parakeet 2.12 1.81 1 7 

Parrot 3.90 2.05 2 7 

Partridge 2.60 1.88 1 7 

Peacock 4.16 1.78 2 7 

Peewit ~ 1.04 0.27 1 2 

Pelican 2.80 1.97 1 7 

Penguin 3.69 2.00 1 7 

Perch 1.73 1.95 1 7 

Pheasant 3.07 2.11 1 7 

Pig 6.19 1.05 3 7 

Pigeon 5.92 1.02 4 7 

Piglet 3.99 1.79 1 7 

Pike # 2.19 1.98 1 7 

Pine marten 1.52 1.93 1 7 

Piranha fish # 2.42 2.25 1 7 

Plaice 3.65 1.61 1 7 

Platypus 1.82 2.12 1 7 

Polar bear 3.74 2.14 1 7 

Polar cat 1.40 0.70 1 3 

Pony 5.45 1.41 2 7 

Porcupine 1.97 2.00 1 7 

Porpoise * 2.07 1.86 1 7 

Poultry 5.35 1.43 2 7 

Prairie dog 1.67 1.50 1 5 

Puffin 2.02 2.28 1 7 

Puma 2.15 2.20 1 7 

Rabbit 6.33 0.83 5 7 

Racoon * 2.28 1.70 1 7 

Ram 2.96 1.86 1 7 

Rat 4.17 1.96 1 7 

Ratel 1.00 0.00 1 1 
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Range 

min max 
Animal Mean SD 

 

 

 

Raven 2.91 1.97 1 7 

Reindeer 3.52 2.18 1 7 

Rhesus monkey 1.84 1.90 1 7 

Rhinoceros 4.58 1.77 2 7 

Roach 1.72 2.09 1 7 

Robin 4.40 1.74 2 7 

Rodent 3.29 2.03 1 7 

Roe deer ~ 1.84 1.91 1 7 

Rook # ~ 2.72 2.01 1 7 

Rooster 3.66 1.81 1 7 

Salamander 2.17 1.47 1 7 

Salmon 4.16 1.90 1 7 

Sardine 2.73 2.02 1 7 

Sea lion 2.67 2.13 1 7 

Seagull 4.35 1.87 1 7 

Seahorse 2.64 2.19 1 7 

Seal 3.16 2.02 1 7 

Shark ~ 3.54 2.05 1 7 

Sheep 5.29 1.55 2 7 

Short tailed tit 1.44 1.74 1 7 

Shrew 1.87 1.75 1 7 

Shrimp 2.89 2.19 1 7 

Siamese cat 2.89 1.93 1 7 

Siberian tiger ~ 2.05 2.21 1 7 

Skate 2.02 1.87 1 7 

Skunk 2.30 2.23 1 7 

Skylark ~ 1.72 1.90 1 7 

Sloth # ~ 1.94 1.68 1 6 

Slug 3.53 2.19 1 7 

Snail 3.42 2.05 1 7 

Snake ~ 3.81 2.03 1 7 

Sole ~ 1.87 1.74 1 6 

Sow ~ 2.44 2.15 1 7 

Sparrow ~ 4.54 1.63 2 7 

Spider 6.42 0.69 5 7 

Springbok 2.12 1.97 1 7 

Squid 2.46 2.13 1 7 

Squirrel 6.14 0.92 4 7 

Stag 2.55 1.90 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Star fish 2.85 2.37 1 7 

Starling ~ 2.38 2.42 1 7 

Stick insect 2.49 2.06 1 7 

Stickleback 1.92 1.89 1 7 

Stoat 1.81 1.80 1 6 

Sturgeon 1.99 1.96 1 7 

Swan 4.01 2.04 1 7 

Swift ~ 1.81 1.92 1 7 

Sword fish ~ 2.72 1.79 1 7 

Tapir 1.54 1.77 1 7 

Tarantula ~ * 3.32 2.06 1 7 

Tench 1.57 1.79 1 7 

Thrush ~ 2.85 1.93 1 7 

Tiger 3.82 2.11 1 7 

Toad 2.75 2.27 1 7 

Tortoise 3.72 1.84 1 7 

Trout 2.59 2.03 1 7 

Tuna 5.48 1.24 3 7 

Turkey 5.25 1.52 3 7 

Turtle ~ 3.39 1.90 1 7 

Tyrannosaurus ~ 2.83 2.32 1 7 

Vole 2.20 1.63 1 6 

Vulture 2.23 2.42 1 7 

Wallaby 2.50 1.84 1 7 

Walrus 3.32 1.78 1 7 

Warthog 2.42 1.87 1 7 

Wasp 4.05 1.98 1 7 

Water buffalo # 1.84 1.92 1 7 

Water rat # 1.70 1.84 1 7 

Weasel 2.17 2.04 1 6 

Whale ~ 4.10 1.80 1 7 

White tiger 1.95 1.70 1 6 

Wild boar 1.99 1.84 1 6 

Wild cat 1.87 1.91 1 7 

Wild dog 1.99 1.86 1 6 

Wildebeest 2.24 2.18 1 7 

Wolf ~ 3.89 1.91 1 7 

Wombat 2.18 1.59 1 7 

Woodcock 1.73 1.76 1 6 
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Range 

min max 
Animal Mean SD 

 

 

 

Woodlouse 2.51 2.13 1 7 

Woodpecker 2.73 1.86 1 7 

Worm 4.75 1.81 2 7 

Wren ~ 2.26 1.89 1 6 

Yak 1.74 1.75 1 5 

Yellow tit 1.56 1.80 1 7 

Yellowhammer ~ 1.36 1.81 1 7 

Yorkshire terrier 4.43 1.77 2 7 

Zebra 4.01 2.01 2 7 

  Zebu  1.05  0.53  1  3   
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Table B.3b. Mean, standard deviation (SD) and range (min-max) familiarity values for 

fruit words in individuals belonging to the 31-40 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 2.64 2.24 1 7 

Almond 3.23 2.28 1 7 

Apple 6.86 0.45 5 7 

Apricot 4.98 1.50 2 7 

Aubergine 3.44 1.89 1 7 

Avocado 3.11 2.32 1 7 

Banana 6.56 0.89 3 7 

Berries 5.11 1.69 2 7 

Bilberry # 1.20 1.12 1 4 

Blackberry 4.27 1.87 1 7 

Blackcurrant 4.37 1.73 1 7 

Blueberry 3.27 2.23 1 7 

Bramble # 3.53 2.02 1 7 

Butternut squash 4.18 1.93 2 7 

Cantaloupe melon 3.40 2.24 1 7 

Cherry 5.57 1.44 2 7 

Chestnut 3.26 2.15 1 7 

Citron 1.69 2.02 1 7 

Clementine # ~ 5.61 1.38 3 7 

Coconut 4.71 1.70 1 7 

Cox apple # 4.27 1.73 1 7 

Crab apple 2.17 2.43 1 7 

Cranberry 4.37 1.89 2 7 

Cucumber 4.67 1.71 1 7 

Currant 4.94 1.64 2 7 

Damson # 1.86 2.22 1 7 

Date # 2.93 2.11 1 7 

Dewberry 1.22 1.82 1 7 

Durian 1.16 0.87 1 4 

Elderberry # 1.94 1.90 1 7 

Fig 3.37 1.87 1 7 

Gala apple 3.27 2.34 1 7 

Galia melon ~ 3.03 2.35 1 7 

Gooseberry 3.48 2.13 1 7 

Granny smith 5.22 1.42 2 7 

Grapefruit 4.92 1.68 2 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grapes 6.72 0.44 6 7 

Green melon 2.29 2.55 1 7 

Guava 1.93 2.32 1 7 

Haw # 1.31 1.53 1 5 

Hazelnut 3.51 2.10 1 7 

Honeydew melon ~ 3.67 2.17 1 7 

Horse chestnut 3.18 1.93 1 7 

Jackfruit 1.25 1.98 1 6 

Jaffa # 3.16 2.21 1 7 

Kiwi ~ 4.14 1.68 1 7 

Kumquat 1.69 1.68 1 7 

Lemon 6.09 1.14 3 7 

Lime # 4.50 1.81 1 7 

Loganberry # 1.51 1.60 1 5 

Lychee 2.36 2.10 1 7 

Mandarin ~ 4.26 1.92 1 7 

Mango # 3.66 2.05 1 7 

Medlar 1.14 0.61 1 3 

Melon 4.71 1.76 1 7 

Nectarine ~ 6.05 1.02 4 7 

Nuts 4.81 1.81 2 7 

Olive 4.36 1.94 1 7 

Orange 6.89 0.31 6 7 

Papaya 2.59 2.05 1 7 

Passion fruit 3.38 1.84 1 7 

Paw paw 1.71 2.21 1 7 

Peach # 6.32 0.83 4 7 

Pear 6.32 0.95 4 7 

Pepper 5.84 1.34 2 7 

Persimmon 1.42 2.10 1 7 

Pineapple 6.40 0.89 4 7 

Plantain 1.44 2.44 1 7 

Plum 5.79 1.21 3 7 

Pomelo 1.18 1.20 1 5 

Pomegranate 3.43 1.99 1 7 

Prune # 3.22 2.04 1 7 

Quince # 1.64 1.59 1 5 

Raisin 5.42 1.55 2 7 

Rambotan 1.07 1.15 1 5 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Raspberry 4.66 1.68 1 7 

Red currant 2.85 1.95 1 7 

Redberry # 2.02 2.18 1 7 

Red grape 6.47 0.70 5 7 

Rhubarb 4.48 1.85 2 7 

Rosehip # 1.87 1.85 1 7 

Sapodilla 1.13 1.51 1 5 

Satsuma ~ 5.84 1.21 3 7 

Sharon fruit 1.50 2.10 1 7 

Sloe berry 1.45 1.56 1 6 

Squash 2.59 2.35 1 7 

Star fruit 2.43 2.00 1 7 

Strawberry 6.50 0.75 5 7 

Sultana 4.95 1.62 2 7 

Tangelo * 1.14 1.51 1 6 

Tangerine 6.32 0.95 4 7 

Tayberry 1.07 1.39 1 6 

Tomato 6.59 0.73 4 7 

Walnut # 3.17 2.24 1 7 

Water melon 4.07 1.93 1 7 

Whinberry 1.04 0.29 1 2 

White currant 1.29 0.92 1 4 

White grape 4.07 2.06 1 7 

  Whortleberry  1.08  0.36  1  2   
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Table B.4a. Mean, standard deviation (SD) and range (min-max) familiarity values for 

animal words in individuals belonging to the 41-50 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark 

 
2.88 

 
2.38 

 
1 

 
7 

Adder 3.40 2.05 1 7 

Albatross 2.53 2.46 1 7 

Alligator ~ 4.19 2.08 1 7 

Alpaca 2.97 2.06 1 7 

Amoeba 3.25 2.36 1 7 

Angel fish 1.98 2.61 1 7 

Ant 4.22 2.21 2 7 

Ant bear 1.34 2.27 1 7 

Anteater 2.49 2.56 1 7 

Antelope 3.72 2.15 1 7 

Ape 4.02 2.14 1 7 

Armadillo 2.48 2.52 1 7 

Ass 2.59 2.47 1 7 

Baboon ~ 3.64 2.31 1 7 

Badger 3.99 2.06 1 7 

Bald eagle # 2.51 2.40 1 7 

Bat 4.11 2.04 1 7 

Bear 3.53 2.30 1 7 

Beaver 3.84 2.21 1 7 

Bee 5.69 1.48 3 7 

Beetle 3.31 2.51 1 7 

Bird 5.97 1.28 3 7 

Bison # 2.36 2.48 1 7 

Blackbird ~ 5.58 1.44 3 7 

Blue bird 2.49 2.59 1 7 

Blue tit ~ 4.54 1.91 2 7 

Boa constrictor 3.04 2.36 1 7 

Boar 2.98 2.53 1 7 

Brontosaurus # 3.15 2.31 1 7 

Brown bear 3.15 2.41 1 7 

Buck # ~ * 2.45 2.44 1 7 

Budgerigar ~ 3.63 2.16 1 7 

Buffalo 3.94 1.93 1 7 

Bull 5.16 1.75 2 7 

Bullfinch ~ 2.46 2.49 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Bullock ~ 3.85 2.02 1 7 

Butterfly 4.06 1.98 1 7 

Buzzard # * 3.07 2.16 1 7 

Calf 4.10 1.95 1 7 

Camel 3.81 2.21 1 7 

Canary 3.73 2.12 1 7 

Caribou 2.19 2.38 1 7 

Carp 2.30 2.27 1 7 

Cat 7.00 0.00 7 7 

Caterpillar 3.76 2.24 1 7 

Cattle 3.90 1.96 1 7 

Chaffinch ~ 3.21 2.24 1 7 

Chameleon ~ 2.55 2.56 1 7 

Cheetah ~ 4.16 1.97 2 7 

Chicken 4.82 1.60 1 7 

Chimpanzee 3.96 2.17 1 7 

Chinchilla 2.62 2.53 1 7 

Chipmunk 2.94 2.31 1 7 

Civet 1.15 1.60 1 7 

Clown fish ~ 1.48 2.31 1 7 

Cobra 2.95 2.31 1 7 

Cockatiel 3.10 2.25 1 7 

Cocker spaniel 3.75 2.12 1 7 

Cockerel 3.23 2.22 1 7 

Cockroach 3.84 2.10 1 7 

Cod 4.84 1.83 3 7 

Condor 2.33 2.13 1 7 

Conger eel 2.22 2.57 1 7 

Cougar # 2.80 2.41 1 7 

Cow 5.88 1.34 2 7 

Coyote ~ * 2.01 2.66 1 7 

Cray fish 2.45 2.44 1 7 

Crocodile 4.56 2.02 2 7 

Crow 4.93 1.65 3 7 

Cuckoo 3.76 2.03 1 7 

Curlew ~ 1.80 2.44 1 7 

Deer 4.47 1.86 1 7 

Dingo 2.42 2.32 1 7 

Dog 6.64 0.80 4 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Dolphin ~ 5.39 1.63 2 7 

Donkey 4.60 1.75 1 7 

Dormouse 2.60 2.59 1 7 

Dove 4.84 1.86 2 7 

Dragon ~ 3.10 2.44 1 7 

Dragonfly 3.84 1.98 1 7 

Dromedary ~ 2.00 2.38 1 7 

Duck 6.65 0.61 5 7 

Duckbill platypus 2.25 2.45 1 7 

Dugong 1.15 0.63 1 3 

Duiker 1.21 1.85 1 7 

Eagle 3.81 2.21 1 7 

Earthworm 3.39 2.29 1 7 

Earwig 2.92 2.38 1 7 

Echidna 1.21 2.24 1 7 

Eel 3.90 1.98 1 7 

Elephant 4.37 1.90 1 7 

Elk ~ 2.29 2.46 1 7 

Emu 3.68 2.16 1 7 

Ewe ~ 3.44 2.23 1 7 

Ferret 3.07 2.26 1 7 

Field mouse 3.31 2.31 1 7 

Finch ~ 3.13 2.26 1 7 

Fish ~ 6.32 1.08 3 7 

Flamingo 3.09 2.42 1 7 

Flea 4.67 1.87 2 7 

Fly 5.91 1.27 3 7 

Fowl 2.90 2.37 1 7 

Fox 4.26 1.97 1 7 

Frog 4.35 1.89 1 7 

Gazelle 4.19 1.67 2 7 

Gecko 2.31 2.06 1 7 

Gerbil 2.72 2.54 1 7 

Giant panda 4.08 2.12 1 7 

Gibbon 3.31 2.22 1 7 

Giraffe 4.91 1.85 2 7 

Gnu 1.99 2.49 1 7 

Goat 3.96 2.17 1 7 

Goldcrest 1.48 1.84 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Goldfish 4.11 2.04 1 7 

Goose 4.11 2.06 1 7 

Gorilla 3.40 2.52 1 7 

Greyhound 3.72 2.24 1 7 

Grizzly bear 3.33 2.33 1 7 

Groundhog # 2.27 2.14 1 7 

Guinea fowl 2.31 2.10 1 7 

Guinea pig 3.05 2.42 1 7 

Gull ~ 4.60 1.75 1 7 

Haddock 3.55 2.16 1 7 

Hamster ~ 3.90 2.14 1 7 

Hare 3.84 2.17 1 7 

Hart 1.21 1.16 1 5 

Hawk 4.05 2.03 1 7 

Hedgehog 5.28 1.64 2 7 

Heifer # 2.80 2.36 1 7 

Hen 4.39 1.86 1 7 

Heron 3.25 2.18 1 7 

Herring 3.65 2.13 1 7 

Hippopotamus 4.22 1.86 1 7 

Hornet 3.09 2.22 1 7 

Horse 5.82 1.34 2 7 

Horsefly 3.18 2.10 1 7 

Hyena 3.23 2.25 1 7 

Ibex 1.96 2.09 1 7 

Iguana 2.39 2.43 1 7 

Impala 1.93 2.44 1 7 

Insect 6.11 1.19 4 7 

Invertebrate # ~ * 2.42 2.31 1 7 

Jack rabbit # * 2.15 2.33 1 7 

Jackal 3.36 2.16 1 7 

Jackass 2.57 2.40 1 7 

Jackdaw ~ 2.19 2.53 1 7 

Jaguar 3.45 2.18 1 7 

Jerboa 1.38 2.10 1 7 

Kangaroo 4.86 1.90 2 7 

Kid 3.49 2.22 1 7 

Kitten 4.32 2.04 1 7 

Kiwi 2.39 2.37 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Koala 3.76 2.24 1 7 

Koi carp 2.41 2.55 1 7 

Komodo dragon # * 2.17 2.56 1 7 

Lacewing 1.34 2.37 1 7 

Lady bird 3.95 2.10 1 7 

Lamb 4.29 1.98 1 7 

Lemur 1.92 2.47 1 7 

Leopard 3.73 2.13 1 7 

Lion 4.62 1.70 1 7 

Lizard 3.62 2.27 1 7 

Llama 2.68 2.44 1 7 

Lobster 3.96 1.92 1 7 

Long tailed tit 2.05 2.21 1 7 

Lynx 2.60 2.20 1 7 

Mackerel 3.25 2.27 1 7 

Mammal ~ 5.03 1.69 2 7 

Manatee 1.93 2.20 1 7 

Mandrill ~ * 1.61 2.87 1 7 

Mangust 1.12 1.66 1 7 

Marmoset * 2.19 2.02 1 7 

Marmot 1.70 1.59 1 7 

Marten 1.56 1.29 1 5 

Meerkat 4.03 1.91 1 7 

Midge 2.78 2.15 1 7 

Mink * 2.47 2.42 1 7 

Minnow # * 2.07 2.62 1 7 

Manx 2.60 2.60 1 7 

Mole 3.81 2.21 1 7 

Mongoose # 2.90 2.34 1 7 

Monkey ~ 4.19 2.06 1 7 

Moose ~ 3.52 2.23 1 7 

Moth 4.19 2.08 1 7 

Mouse 4.69 1.98 2 7 

Mule 3.65 2.13 1 7 

Musk ox ~ * 1.68 2.25 1 7 

Newt 3.50 2.14 1 7 

Nightingale 2.98 2.10 1 7 

Ocelot 1.78 2.23 1 7 

Octopus ~ 3.33 2.30 1 7 
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Animal Mean SD 

 

 

 

Orang-utan 3.33 2.21 1 7 

Oryx 1.41 2.34 1 7 

Ostrich 3.31 2.41 1 7 

Otter 4.70 1.95 2 7 

Owl 3.39 2.27 1 7 

Ox 3.81 2.03 1 7 

Panda 3.61 2.22 1 7 

Panther 2.98 2.50 1 7 

Parakeet 2.44 2.58 1 7 

Parrot 3.83 2.24 1 7 

Partridge 3.75 1.99 1 7 

Peacock 3.92 2.17 1 7 

Peewit ~ 1.22 0.78 1 3 

Pelican 3.40 2.37 1 7 

Penguin 4.16 2.24 2 7 

Perch 1.83 2.58 1 7 

Pheasant 4.19 1.96 1 7 

Pig 4.69 1.63 1 7 

Pigeon 4.78 1.96 2 7 

Piglet 3.76 2.24 1 7 

Pike # 2.99 2.27 1 7 

Pine marten 1.97 1.92 1 7 

Piranha fish # 2.66 2.55 1 7 

Plaice 3.65 1.98 1 7 

Platypus 2.69 2.43 1 7 

Polar bear 3.89 2.27 1 7 

Polar cat 1.51 2.26 1 7 

Pony 4.35 1.88 1 7 

Porcupine 2.79 2.48 1 7 

Porpoise * 3.59 2.26 1 7 

Poultry 4.11 2.04 1 7 

Prairie dog 2.21 2.41 1 7 

Puffin 3.88 2.21 2 7 

Puma 2.85 2.38 1 7 

Rabbit 4.91 1.85 2 7 

Racoon * 3.03 2.27 1 7 

Ram 3.85 2.02 1 7 

Rat 4.25 2.03 1 7 

Ratel 1.26 1.89 1 7 
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Animal Mean SD 

 

 

 

Raven 3.21 2.21 1 7 

Reindeer 5.16 1.75 2 7 

Rhesus monkey 2.25 2.30 1 7 

Rhinoceros 3.55 2.31 1 7 

Roach 3.05 2.16 1 7 

Robin 5.37 1.67 2 7 

Rodent 4.02 2.13 1 7 

Roe deer ~ 1.59 2.67 1 7 

Rook # ~ 3.38 2.28 1 7 

Rooster 3.84 2.05 1 7 

Salamander 2.67 2.27 1 7 

Salmon 5.03 1.67 2 7 

Sardine 3.15 2.15 1 7 

Sea lion 3.16 2.34 1 7 

Seagull 5.66 1.45 2 7 

Seahorse 3.02 2.43 1 7 

Seal 4.16 2.03 1 7 

Shark ~ 4.22 2.01 1 7 

Sheep 4.86 1.61 1 7 

Short tailed tit 1.97 2.04 1 7 

Shrew 2.68 2.27 1 7 

Shrimp 3.23 2.28 1 7 

Siamese cat 3.41 2.21 1 7 

Siberian tiger ~ 2.24 2.48 1 7 

Skate 2.79 2.40 1 7 

Skunk 2.70 2.55 1 7 

Skylark ~ 2.55 2.21 1 7 

Sloth # ~ 3.00 2.17 1 7 

Slug 4.71 1.94 2 7 

Snail 5.28 1.64 2 7 

Snake ~ 4.34 2.10 2 7 

Sole ~ 2.45 2.41 1 7 

Sow ~ 3.91 1.88 1 7 

Sparrow ~ 5.40 1.54 3 7 

Spider 6.26 1.09 4 7 

Springbok 2.76 2.37 1 7 

Squid 3.09 2.45 1 7 

Squirrel 6.03 1.28 3 7 

Stag 4.07 1.95 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Star fish 3.49 2.22 1 7 

Starling ~ 4.73 1.86 2 7 

Stick insect 2.85 2.53 1 7 

Stickleback 2.29 2.73 1 7 

Stoat 3.00 2.30 1 7 

Sturgeon 2.20 2.17 1 7 

Swan 3.84 2.21 1 7 

Swift ~ 3.03 2.27 1 7 

Sword fish ~ 2.98 2.36 1 7 

Tapir 1.84 2.11 1 7 

Tarantula ~ * 3.09 2.37 1 7 

Tench 2.05 2.47 1 7 

Thrush ~ 3.70 1.98 1 7 

Tiger 5.52 1.52 3 7 

Toad 4.97 1.81 2 7 

Tortoise 3.87 2.24 1 7 

Trout 4.29 2.02 1 7 

Tuna 5.39 1.63 2 7 

Turkey 5.50 1.53 2 7 

Turtle ~ 3.78 2.28 1 7 

Tyrannosaurus ~ 2.77 2.46 1 7 

Vole 2.69 2.43 1 7 

Vulture 3.73 2.20 1 7 

Wallaby 3.02 2.43 1 7 

Walrus 3.62 2.22 1 7 

Warthog 2.44 2.40 1 7 

Wasp 5.89 1.33 3 7 

Water buffalo # 3.38 2.19 1 7 

Water rat # 2.50 2.30 1 7 

Weasel 3.45 2.11 1 7 

Whale ~ 4.02 2.13 1 7 

White tiger 2.48 1.91 1 7 

Wild boar 3.62 1.85 1 7 

Wild cat 2.47 2.40 1 7 

Wild dog 3.32 2.06 1 7 

Wildebeest 2.95 2.31 1 7 

Wolf ~ 3.20 2.42 1 7 

Wombat 2.91 2.13 1 7 

Woodcock 2.25 2.14 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Woodlouse 2.42 2.45 1 7 

Woodpecker 4.13 2.09 2 7 

Worm 5.71 1.41 3 7 

Wren ~ 3.21 2.10 1 7 

Yak 2.15 2.49 1 7 

Yellow tit 3.18 1.83 1 7 

Yellowhammer ~ 1.38 1.73 1 7 

Yorkshire terrier 4.16 2.05 1 7 

Zebra 5.28 1.72 2 7 

  Zebu  1.21  0.94  1  4   
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Table B.4b. Mean, standard deviation (SD) and range (min-max) familiarity values for 

fruit words in individuals belonging to the 41-50 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 3.58 2.18 1 7 

Almond 4.65 1.72 1 7 

Apple 7.00 0.00 7 7 

Apricot 4.38 1.79 1 7 

Aubergine 3.93 2.22 2 7 

Avocado 3.44 2.42 1 7 

Banana 7.00 0.00 7 7 

Berries 4.58 1.98 2 7 

Bilberry # 1.77 2.73 1 7 

Blackberry 4.71 1.68 1 7 

Blackcurrant 5.95 1.20 3 7 

Blueberry 3.68 2.31 1 7 

Bramble # 2.65 2.35 1 7 

Butternut squash 2.79 2.56 1 7 

Cantaloupe melon 3.27 2.15 1 7 

Cherry 5.68 1.50 2 7 

Chestnut 4.15 1.79 1 7 

Citron 2.05 2.35 1 7 

Clementine # ~ 3.70 2.21 1 7 

Coconut 4.36 1.94 1 7 

Cox apple # 4.53 1.95 2 7 

Crab apple 3.73 2.04 1 7 

Cranberry 6.36 0.78 5 7 

Cucumber 5.45 1.51 2 7 

Currant 4.64 1.66 1 7 

Damson # 2.30 2.29 1 7 

Date # 3.73 2.21 1 7 

Dewberry 1.85 2.24 1 7 

Durian 1.14 1.80 1 7 

Elderberry # 3.53 2.01 1 7 

Fig 3.21 2.29 1 7 

Gala apple 3.94 1.93 1 7 

Galia melon ~ 2.29 2.64 1 7 

Gooseberry 5.40 1.54 3 7 

Granny smith 5.80 1.29 4 7 

Grapefruit 4.29 1.99 1 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grapes 6.40 0.94 4 7 

Green melon 3.01 2.09 1 7 

Guava 2.06 2.31 1 7 

Haw # 1.31 1.70 1 7 

Hazelnut 5.26 1.69 2 7 

Honeydew melon ~ 4.20 1.96 1 7 

Horse chestnut 3.38 2.03 1 7 

Jackfruit 1.35 1.85 1 7 

Jaffa # 4.71 1.79 2 7 

Kiwi ~ 3.81 2.05 1 7 

Kumquat 2.26 2.43 1 7 

Lemon 6.32 1.08 3 7 

Lime # 5.05 1.83 2 7 

Loganberry # 2.18 2.41 1 7 

Lychee 2.98 2.40 1 7 

Mandarin ~ 3.39 2.25 1 7 

Mango # 4.09 2.03 1 7 

Medlar 1.18 1.70 1 7 

Melon 4.43 1.88 1 7 

Nectarine ~ 4.26 2.21 2 7 

Nuts 6.24 1.02 4 7 

Olive 3.92 2.17 1 7 

Orange 6.73 0.58 5 7 

Papaya 2.56 2.33 1 7 

Passion fruit 3.50 2.18 1 7 

Paw paw 2.13 2.18 1 7 

Peach # 4.74 1.93 2 7 

Pear 4.72 1.74 1 7 

Pepper 4.21 2.02 1 7 

Persimmon 1.59 2.25 1 7 

Pineapple 6.13 1.09 3 7 

Plantain 1.97 2.14 1 7 

Plum 4.34 1.88 1 7 

Pomelo 1.21 1.85 1 7 

Pomegranate 2.72 2.63 1 7 

Prune # 4.06 1.98 1 7 

Quince # 1.99 2.15 1 7 

Raisin 5.56 1.42 2 7 

Rambotan 1.22 1.65 1 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Raspberry 5.63 1.46 3 7 

Red currant 2.72 2.44 1 7 

Redberry # 2.47 2.20 1 7 

Red grape 4.23 1.94 1 7 

Rhubarb 4.32 1.85 1 7 

Rosehip # 1.82 2.37 1 7 

Sapodilla 1.09 0.71 1 3 

Satsuma ~ 5.19 1.56 2 7 

Sharon fruit 1.82 2.22 1 7 

Sloe berry 1.69 2.40 1 7 

Squash 3.97 2.02 2 7 

Star fruit 2.20 2.33 1 7 

Strawberry 6.73 0.58 5 7 

Sultana 4.48 1.73 1 7 

Tangelo * 1.22 1.64 1 7 

Tangerine 4.92 1.81 2 7 

Tayberry 1.13 1.00 1 4 

Tomato 7.00 0.00 7 7 

Walnut # 5.76 1.42 3 7 

Water melon 4.53 1.99 2 7 

Whinberry 1.16 0.87 1 4 

White currant 1.80 2.09 1 7 

White grape 3.03 2.27 1 7 

  Whortleberry  1.09  0.39  1  2   
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Table B.5a. Mean, standard deviation (SD) and range (min-max) familiarity values for 

animal words in individuals belonging to the 51-60 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark 

 
1.53 

 
1.90 

 
1 

 
7 

Adder 2.80 2.15 1 7 

Albatross 2.26 2.27 1 7 

Alligator ~ 2.72 2.39 1 7 

Alpaca 2.00 2.25 1 7 

Amoeba 1.81 1.96 1 7 

Angel fish 1.96 2.09 1 7 

Ant 4.18 1.97 1 7 

Ant bear 1.19 0.92 1 4 

Anteater 2.09 2.06 1 7 

Antelope 2.24 2.46 1 7 

Ape 3.46 2.13 1 7 

Armadillo 2.04 2.32 1 7 

Ass 3.19 1.89 1 7 

Baboon ~ 2.69 2.14 1 7 

Badger 4.17 1.87 2 7 

Bald eagle # 2.06 2.29 1 7 

Bat 3.54 1.93 1 7 

Bear 3.87 2.19 2 7 

Beaver 3.17 2.08 1 7 

Bee 4.91 1.68 2 7 

Beetle 3.76 2.14 1 7 

Bird 4.65 1.75 1 7 

Bison # 2.18 2.38 1 7 

Blackbird ~ 3.80 1.91 1 7 

Blue bird 2.04 2.39 1 7 

Blue tit ~ 3.11 2.22 1 7 

Boa constrictor 2.57 2.18 1 7 

Boar 2.37 2.50 1 7 

Brontosaurus # 1.44 1.95 1 7 

Brown bear 3.25 2.21 1 7 

Buck # ~ * 1.89 2.24 1 7 

Budgerigar ~ 2.63 2.32 1 7 

Buffalo 2.65 2.34 1 7 

Bull 3.58 2.12 1 7 

Bullfinch ~ 2.24 2.36 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Bullock ~ 3.33 1.91 1 7 

Butterfly 4.18 2.12 2 7 

Buzzard # * 1.86 2.20 1 7 

Calf 4.87 1.69 2 7 

Camel 3.59 2.06 1 7 

Canary 2.86 2.29 1 7 

Caribou 1.64 2.32 1 7 

Carp 2.86 2.07 1 7 

Cat 4.98 1.50 1 7 

Caterpillar 3.46 2.07 1 7 

Cattle 5.25 1.57 2 7 

Chaffinch ~ 2.53 2.31 1 7 

Chameleon ~ 2.15 2.12 1 7 

Cheetah ~ 3.30 2.31 1 7 

Chicken 4.89 1.61 1 7 

Chimpanzee 3.44 2.26 1 7 

Chinchilla 2.59 2.37 1 7 

Chipmunk 2.16 2.06 1 6 

Civet 1.27 1.38 1 6 

Clown fish ~ 1.49 2.17 1 7 

Cobra 2.20 2.46 1 7 

Cockatiel 3.63 1.82 1 7 

Cocker spaniel 4.39 1.77 1 7 

Cockerel 4.56 1.65 2 7 

Cockroach 2.72 2.44 1 7 

Cod 4.39 1.78 1 7 

Condor 1.88 2.33 1 7 

Conger eel 1.96 2.05 1 7 

Cougar # 1.87 2.42 1 7 

Cow 4.75 1.70 1 7 

Coyote ~ * 1.78 2.35 1 7 

Cray fish 1.99 2.27 1 7 

Crocodile 3.49 2.14 1 7 

Crow 3.41 2.32 1 7 

Cuckoo 2.62 2.22 1 7 

Curlew ~ 1.86 1.98 1 7 

Deer 4.77 1.70 2 7 

Dingo 2.34 1.87 1 7 

Dog 4.98 1.58 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Dolphin ~ 4.24 1.85 2 7 

Donkey 4.24 1.99 2 7 

Dormouse 3.42 1.83 1 7 

Dove 3.43 2.16 1 7 

Dragon ~ 2.16 2.50 1 7 

Dragonfly 3.04 1.93 1 7 

Dromedary ~ 1.88 2.24 1 7 

Duck 4.23 1.93 1 7 

Duckbill platypus 1.95 1.93 1 7 

Dugong 1.15 1.09 1 5 

Duiker 1.00 0.00 1 1 

Eagle 3.59 2.14 1 7 

Earthworm 4.36 1.90 2 7 

Earwig 2.76 2.47 1 7 

Echidna 1.26 2.00 1 7 

Eel 2.83 2.14 1 7 

Elephant 3.14 2.32 1 7 

Elk ~ 2.44 2.32 1 7 

Emu 2.53 2.15 1 7 

Ewe ~ 3.20 2.27 1 7 

Ferret 4.27 1.73 2 7 

Field mouse 3.72 1.91 1 7 

Finch ~ 3.05 2.12 1 7 

Fish ~ 3.80 2.11 1 7 

Flamingo 3.14 2.05 1 7 

Flea 2.56 2.55 1 7 

Fly 4.11 2.08 1 7 

Fowl 3.26 2.07 1 7 

Fox 5.34 1.39 3 7 

Frog 3.42 2.06 1 7 

Gazelle 2.55 2.19 1 7 

Gecko 1.86 2.09 1 6 

Gerbil 3.44 1.69 1 7 

Giant panda 3.57 2.09 1 7 

Gibbon 2.13 2.12 1 7 

Giraffe 3.18 2.33 1 7 

Gnu 1.69 2.05 1 7 

Goat 4.12 1.99 2 7 

Goldcrest 1.53 2.06 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Goldfish 4.33 2.10 2 7 

Goose 3.66 2.03 1 7 

Gorilla 3.36 2.35 1 7 

Greyhound 4.72 1.70 2 7 

Grizzly bear 3.00 2.25 1 7 

Groundhog # 1.38 1.71 1 7 

Guinea fowl 2.38 1.94 1 7 

Guinea pig 3.72 1.90 1 7 

Gull ~ 4.28 2.03 2 7 

Haddock 4.39 1.78 1 7 

Hamster ~ 3.61 1.85 1 7 

Hare 3.95 1.77 2 7 

Hart 1.57 2.27 1 7 

Hawk 3.35 2.00 1 7 

Hedgehog 4.18 1.94 1 7 

Heifer # 2.73 2.26 1 7 

Hen 4.27 1.90 1 7 

Heron 3.01 2.12 1 7 

Herring 3.34 1.79 1 7 

Hippopotamus 3.40 2.24 2 7 

Hornet 3.17 1.87 1 7 

Horse 4.79 1.67 1 7 

Horsefly 2.24 2.00 1 7 

Hyena 2.67 1.98 1 7 

Ibex 1.57 2.32 1 7 

Iguana 2.19 2.12 1 7 

Impala 1.45 1.96 1 6 

Insect 3.47 2.37 1 7 

Invertebrate # ~ * 1.90 2.63 1 7 

Jack rabbit # * 1.82 2.50 1 7 

Jackal 2.00 2.09 1 7 

Jackass 1.78 2.36 1 7 

Jackdaw ~ 2.63 2.34 1 7 

Jaguar 2.85 2.43 1 7 

Jerboa 1.29 2.15 1 7 

Kangaroo 3.01 2.32 1 7 

Kid 3.26 2.18 1 7 

Kitten 5.68 1.30 2 7 

Kiwi 1.93 2.20 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Koala 2.98 2.15 1 7 

Koi carp 2.69 2.26 1 7 

Komodo dragon # * 1.71 2.52 1 7 

Lacewing 1.49 1.96 1 7 

Lady bird 3.79 1.96 1 7 

Lamb 5.34 1.50 2 7 

Lemur 1.79 1.58 1 5 

Leopard 3.47 2.32 1 7 

Lion 4.20 1.92 2 7 

Lizard 3.29 2.15 1 7 

Llama 2.67 2.25 1 7 

Lobster 3.97 1.84 1 7 

Long tailed tit 1.81 2.31 1 7 

Lynx 1.75 2.51 1 7 

Mackerel 2.92 2.14 1 7 

Mammal ~ 3.51 2.21 1 7 

Manatee 1.33 2.04 1 7 

Mandrill ~ * 1.27 1.59 1 5 

Mangust 1.11 0.75 1 3 

Marmoset * 1.55 1.70 1 6 

Marmot 1.35 1.85 1 7 

Marten 1.65 1.82 1 6 

Meerkat 3.44 2.11 1 7 

Midge 2.75 2.09 1 7 

Mink * 2.41 2.41 1 7 

Minnow # * 2.16 2.25 1 7 

Manx 1.88 2.42 1 7 

Mole 4.02 1.79 1 7 

Mongoose # 2.29 2.24 1 7 

Monkey ~ 3.84 2.11 1 7 

Moose ~ 2.16 2.71 1 7 

Moth 3.21 2.26 1 7 

Mouse 4.37 1.59 1 7 

Mule 2.76 2.12 1 7 

Musk ox ~ * 1.32 2.00 1 7 

Newt 2.79 1.89 1 7 

Nightingale 2.53 2.06 1 7 

Ocelot 1.44 2.00 1 7 

Octopus ~ 3.12 2.20 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Orang-utan 2.87 2.39 1 7 

Oryx 1.37 1.71 1 7 

Ostrich 3.09 2.05 1 7 

Otter 2.92 2.20 1 7 

Owl 3.71 1.94 1 7 

Ox 2.42 2.37 1 7 

Panda 2.93 2.37 1 7 

Panther 2.89 2.35 1 7 

Parakeet 2.49 1.93 1 7 

Parrot 3.57 2.09 1 7 

Partridge 3.37 1.87 1 7 

Peacock 4.06 1.90 2 7 

Peewit ~ 1.74 2.10 1 7 

Pelican 2.17 2.33 1 7 

Penguin 4.27 1.94 2 7 

Perch 1.92 2.08 1 7 

Pheasant 4.86 1.70 2 7 

Pig 4.73 1.65 1 7 

Pigeon 4.21 1.96 1 7 

Piglet 4.17 1.70 1 7 

Pike # 2.22 1.97 1 7 

Pine marten 1.65 1.85 1 6 

Piranha fish # 2.52 2.19 1 7 

Plaice 4.23 1.85 2 7 

Platypus 1.67 1.92 1 6 

Polar bear 3.11 2.31 1 7 

Polar cat 1.28 1.90 1 6 

Pony 5.06 1.57 2 7 

Porcupine 2.08 2.47 1 7 

Porpoise * 2.04 2.27 1 7 

Poultry 5.17 1.59 2 7 

Prairie dog 2.04 2.09 1 7 

Puffin 2.13 2.37 1 7 

Puma 2.79 2.18 1 7 

Rabbit 4.54 1.87 1 7 

Racoon * 2.17 2.36 1 7 

Ram 3.12 2.15 1 7 

Rat 3.37 2.14 1 7 

Ratel 1.07 1.15 1 5 
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Range 

min max 
Animal Mean SD 

 

 

 

Raven 2.80 2.15 1 7 

Reindeer 4.37 1.81 2 7 

Rhesus monkey 2.63 1.84 1 7 

Rhinoceros 2.75 2.23 1 7 

Roach 1.58 2.22 1 7 

Robin 4.28 1.98 1 7 

Rodent 3.84 2.07 1 7 

Roe deer ~ 3.02 2.08 1 7 

Rook # ~ 2.57 2.48 1 7 

Rooster 3.47 2.12 1 7 

Salamander 1.75 1.95 1 7 

Salmon 3.84 2.24 1 7 

Sardine 2.42 2.24 1 7 

Sea lion 3.04 2.10 1 7 

Seagull 4.28 1.90 1 7 

Seahorse 2.44 2.38 1 7 

Seal 4.45 1.87 2 7 

Shark ~ 3.49 2.08 1 7 

Sheep 4.51 1.74 1 7 

Short tailed tit 1.77 1.82 1 7 

Shrew 2.12 2.18 1 7 

Shrimp 4.38 1.87 2 7 

Siamese cat 4.77 1.38 3 7 

Siberian tiger ~ 2.26 2.24 1 7 

Skate 2.48 2.13 1 7 

Skunk 2.19 2.39 1 7 

Skylark ~ 2.46 2.14 1 7 

Sloth # ~ 2.09 2.22 1 7 

Slug 3.57 2.08 1 7 

Snail 3.70 2.17 1 7 

Snake ~ 3.97 1.96 1 7 

Sole ~ 3.02 2.04 1 7 

Sow ~ 2.85 2.24 1 7 

Sparrow ~ 4.68 2.00 2 7 

Spider 4.48 1.89 1 7 

Springbok 1.65 2.14 1 7 

Squid 3.67 1.95 1 7 

Squirrel 4.45 1.81 1 7 

Stag 3.06 2.12 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Star fish 2.47 2.08 1 7 

Starling ~ 4.26 1.97 1 7 

Stick insect 2.18 2.24 1 7 

Stickleback 2.41 2.23 1 7 

Stoat 2.12 2.32 1 7 

Sturgeon 1.85 2.09 1 7 

Swan 3.65 2.06 1 7 

Swift ~ 3.01 2.32 1 7 

Sword fish ~ 2.49 2.02 1 7 

Tapir 1.88 1.91 1 7 

Tarantula ~ * 1.92 2.30 1 7 

Tench 1.58 2.19 1 7 

Thrush ~ 3.79 2.21 1 7 

Tiger 3.85 2.20 2 7 

Toad 3.80 1.73 1 7 

Tortoise 3.45 2.17 1 7 

Trout 4.20 1.62 2 7 

Tuna 3.18 2.22 1 7 

Turkey 5.00 1.58 2 7 

Turtle ~ 3.00 2.29 1 7 

Tyrannosaurus ~ 1.33 2.31 1 7 

Vole 2.48 2.20 1 7 

Vulture 2.53 2.30 1 7 

Wallaby 2.75 2.23 1 7 

Walrus 3.03 2.15 1 7 

Warthog 1.71 2.44 1 7 

Wasp 4.28 1.89 1 7 

Water buffalo # 1.81 2.28 1 7 

Water rat # 2.57 1.98 1 7 

Weasel 2.18 2.21 1 7 

Whale ~ 3.30 2.16 1 7 

White tiger 2.00 2.59 1 7 

Wild boar 2.75 2.27 1 7 

Wild cat 2.18 2.66 1 7 

Wild dog 2.41 2.09 1 7 

Wildebeest 2.35 2.14 1 7 

Wolf ~ 3.05 2.18 1 7 

Wombat 2.12 2.46 1 7 

Woodcock 1.97 2.42 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Woodlouse 3.56 2.08 1 7 

Woodpecker 3.59 1.98 1 7 

Worm 3.39 2.24 1 7 

Wren ~ 3.32 2.03 1 7 

Yak 1.73 2.16 1 7 

Yellow tit 1.76 2.25 1 7 

Yellowhammer ~ 1.70 2.28 1 7 

Yorkshire terrier 4.15 1.87 1 7 

Zebra 3.49 2.22 1 7 

  Zebu  1.40  2.17  1  7   
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Table B.5b. Mean, standard deviation (SD) and range (min-max) familiarity values for 

fruit words in individuals belonging to the 51-60 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 2.27 2.73 1 7 

Almond 4.62 1.62 1 7 

Apple 6.22 1.12 3 7 

Apricot 5.05 1.58 3 7 

Aubergine 3.58 2.06 1 7 

Avocado 4.81 1.66 2 7 

Banana 6.56 0.70 5 7 

Berries 5.42 1.54 2 7 

Bilberry # 2.36 1.79 1 7 

Blackberry 4.72 1.84 2 7 

Blackcurrant 5.04 1.58 2 7 

Blueberry 3.53 2.02 1 7 

Bramble # 4.14 1.97 1 7 

Butternut squash 4.37 1.72 1 7 

Cantaloupe melon 2.70 2.34 1 7 

Cherry 5.55 1.36 2 7 

Chestnut 3.60 2.14 1 7 

Citron 2.06 2.43 1 7 

Clementine # ~ 5.64 1.20 3 7 

Coconut 5.30 1.45 2 7 

Cox apple # 5.70 1.42 3 7 

Crab apple 2.82 2.28 1 7 

Cranberry 4.95 1.58 2 7 

Cucumber 4.51 1.81 1 7 

Currant 4.62 1.62 1 7 

Damson # 3.35 2.06 1 7 

Date # 3.70 1.97 1 7 

Dewberry 1.51 1.69 1 6 

Durian 1.24 0.80 1 3 

Elderberry # 3.17 2.06 1 7 

Fig 3.92 1.91 1 7 

Gala apple 3.40 2.03 1 7 

Galia melon ~ 3.94 1.96 1 7 

Gooseberry 3.55 2.11 1 7 

Granny smith 5.70 1.14 4 7 

Grapefruit 4.76 1.94 2 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grapes 6.44 0.87 4 7 

Green melon 1.88 2.75 1 7 

Guava 2.00 1.55 1 5 

Haw # 1.46 2.47 1 7 

Hazelnut 5.08 1.57 2 7 

Honeydew melon ~ 4.38 1.93 1 7 

Horse chestnut 2.73 2.45 1 7 

Jackfruit 1.10 1.08 1 5 

Jaffa # 5.15 1.59 2 7 

Kiwi ~ 5.44 1.25 3 7 

Kumquat 2.13 2.32 1 7 

Lemon 5.20 1.58 2 7 

Lime # 3.27 2.05 1 7 

Loganberry # 2.11 2.33 1 7 

Lychee 2.73 2.19 1 7 

Mandarin ~ 5.18 1.51 2 7 

Mango # 4.16 2.01 2 7 

Medlar 1.16 0.87 1 4 

Melon 5.79 1.35 3 7 

Nectarine ~ 5.33 1.60 2 7 

Nuts 5.83 1.28 2 7 

Olive 4.48 1.71 1 7 

Orange 6.22 1.12 3 7 

Papaya 2.48 1.92 1 6 

Passion fruit 2.91 2.04 1 7 

Paw paw 2.29 1.85 1 7 

Peach # 4.90 1.71 2 7 

Pear 5.56 1.53 2 7 

Pepper 4.66 1.75 1 7 

Persimmon 1.37 1.51 1 5 

Pineapple 5.68 1.36 3 7 

Plantain 2.02 2.17 1 7 

Plum 4.62 1.64 1 7 

Pomelo 1.25 1.68 1 6 

Pomegranate 4.35 1.99 2 7 

Prune # 4.30 1.74 1 7 

Quince # 1.82 2.05 1 7 

Raisin 5.66 1.35 2 7 

Rambotan 1.12 0.89 1 4 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Raspberry 5.99 1.16 3 7 

Red currant 4.46 1.64 2 7 

Redberry # 2.06 2.09 1 7 

Red grape 4.10 2.03 1 7 

Rhubarb 5.61 1.37 3 7 

Rosehip # 2.48 2.15 1 7 

Sapodilla 1.15 1.63 1 5 

Satsuma ~ 5.72 1.31 2 7 

Sharon fruit 1.68 1.86 1 7 

Sloe berry 2.61 1.86 1 6 

Squash 3.28 2.43 1 7 

Star fruit 2.47 2.30 1 7 

Strawberry 6.44 0.87 4 7 

Sultana 4.60 1.59 1 7 

Tangelo * 1.16 0.94 1 4 

Tangerine 5.35 1.44 2 7 

Tayberry 1.58 1.78 1 7 

Tomato 6.00 1.23 2 7 

Walnut # 4.44 1.72 1 7 

Water melon 5.51 1.39 3 7 

Whinberry 1.16 0.77 1 3 

White currant 1.90 1.79 1 7 

White grape 3.36 2.23 1 7 

  Whortleberry  1.16  0.77  1  3   
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Table B.6a. Mean, standard deviation (SD) and range (min-max) familiarity values for 

animal words in individuals belonging to the 61-70 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark 

 
1.67 

 
2.27 

 
1 

 
7 

Adder 1.76 2.39 1 7 

Albatross 2.18 2.14 1 7 

Alligator ~ 2.37 2.46 1 7 

Alpaca 2.01 1.99 1 7 

Amoeba 1.76 2.37 1 7 

Angel fish 1.84 2.06 1 7 

Ant 2.93 2.52 1 7 

Ant bear 1.40 1.57 1 7 

Anteater 1.76 2.20 1 7 

Antelope 2.25 2.36 1 7 

Ape 2.63 2.48 1 7 

Armadillo 2.10 2.27 1 7 

Ass 2.53 2.17 1 7 

Baboon ~ 2.04 2.62 1 7 

Badger 3.09 2.24 1 7 

Bald eagle # 1.82 2.47 1 7 

Bat 2.34 2.40 1 7 

Bear 3.01 2.37 1 7 

Beaver 2.31 2.39 1 7 

Bee 3.50 2.20 1 7 

Beetle 2.29 2.43 1 7 

Bird 3.83 2.14 1 7 

Bison # 2.39 2.27 1 7 

Blackbird ~ 3.37 2.26 1 7 

Blue bird 2.09 2.24 1 7 

Blue tit ~ 2.43 2.37 1 7 

Boa constrictor 1.89 2.05 1 7 

Boar 1.87 2.48 1 7 

Brontosaurus # 1.61 2.33 1 7 

Brown bear 2.81 2.36 1 7 

Buck # ~ * 1.63 2.77 1 7 

Budgerigar ~ 3.35 2.25 1 7 

Buffalo 2.27 2.63 1 7 

Bull 3.43 2.19 1 7 

Bullfinch ~ 2.03 2.06 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Bullock ~ 3.33 2.21 1 7 

Butterfly 3.72 2.29 1 7 

Buzzard # * 1.99 2.50 1 7 

Calf 3.19 2.54 1 7 

Camel 2.82 2.32 1 7 

Canary 2.92 2.24 1 7 

Caribou 1.75 2.11 1 7 

Carp 2.07 2.16 1 7 

Cat 4.91 1.63 1 7 

Caterpillar 2.65 2.48 1 7 

Cattle 4.62 1.82 1 7 

Chaffinch ~ 2.35 2.25 1 7 

Chameleon ~ 1.80 2.12 1 7 

Cheetah ~ 1.99 2.47 1 7 

Chicken 5.39 1.56 2 7 

Chimpanzee 2.75 2.52 1 7 

Chinchilla 2.31 2.17 1 7 

Chipmunk 1.72 2.34 1 7 

Civet 1.38 2.05 1 7 

Clown fish ~ 1.50 2.00 1 7 

Cobra 1.85 2.24 1 7 

Cockatiel 2.16 2.31 1 7 

Cocker spaniel 4.31 1.94 1 7 

Cockerel 2.53 2.45 1 7 

Cockroach 2.02 2.26 1 7 

Cod 3.49 2.14 1 7 

Condor 1.49 2.06 1 7 

Conger eel 1.80 2.20 1 7 

Cougar # 2.02 2.32 1 7 

Cow 4.41 1.94 1 7 

Coyote ~ * 1.65 2.21 1 7 

Cray fish 1.63 2.16 1 7 

Crocodile 2.57 2.33 1 7 

Crow 2.83 2.27 1 7 

Cuckoo 2.70 2.20 1 7 

Curlew ~ 1.93 2.37 1 7 

Deer 4.01 2.04 1 7 

Dingo 1.85 2.35 1 7 

Dog 5.47 1.57 2 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Dolphin ~ 2.20 2.47 1 7 

Donkey 3.89 2.08 1 7 

Dormouse 2.41 2.46 1 7 

Dove 3.41 2.27 1 7 

Dragon ~ 1.88 2.33 1 7 

Dragonfly 2.43 2.45 1 7 

Dromedary ~ 1.94 2.34 1 7 

Duck 4.08 1.89 1 7 

Duckbill platypus 1.56 1.77 1 6 

Dugong 1.17 1.66 1 7 

Duiker 1.35 2.20 1 7 

Eagle 2.11 2.46 1 7 

Earthworm 2.67 2.54 1 7 

Earwig 2.53 2.52 1 7 

Echidna 1.30 1.81 1 7 

Eel 2.11 2.41 1 7 

Elephant 3.27 2.38 1 7 

Elk ~ 2.11 2.29 1 7 

Emu 2.02 2.48 1 7 

Ewe ~ 3.52 2.21 1 7 

Ferret 2.20 2.14 1 7 

Field mouse 2.72 2.41 1 7 

Finch ~ 2.57 2.15 1 7 

Fish ~ 3.80 2.14 1 7 

Flamingo 2.29 2.49 1 7 

Flea 2.34 2.60 1 7 

Fly 3.68 2.12 1 7 

Fowl 3.15 2.12 1 7 

Fox 3.05 2.38 1 7 

Frog 2.89 2.49 1 7 

Gazelle 2.04 2.54 1 7 

Gecko 1.56 2.09 1 7 

Gerbil 2.10 2.27 1 7 

Giant panda 2.78 2.38 1 7 

Gibbon 1.97 2.48 1 7 

Giraffe 3.51 2.24 1 7 

Gnu 1.56 2.17 1 7 

Goat 3.31 2.26 1 7 

Goldcrest 1.77 1.85 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Goldfish 3.65 2.27 1 7 

Goose 2.91 2.24 1 7 

Gorilla 2.60 2.61 1 7 

Greyhound 3.45 2.20 1 7 

Grizzly bear 2.72 2.27 1 7 

Groundhog # 1.35 1.68 1 7 

Guinea fowl 1.65 2.01 1 7 

Guinea pig 2.98 2.19 1 7 

Gull ~ 2.92 2.42 1 7 

Haddock 3.30 2.25 1 7 

Hamster ~ 3.38 2.17 1 7 

Hare 3.44 2.01 1 7 

Hart 1.60 2.09 1 7 

Hawk 2.57 2.25 1 7 

Hedgehog 3.43 2.27 1 7 

Heifer # 2.76 2.31 1 7 

Hen 4.03 2.04 1 7 

Heron 2.55 2.24 1 7 

Herring 2.15 2.26 1 7 

Hippopotamus 2.60 2.36 1 7 

Hornet 2.23 2.17 1 7 

Horse 4.33 1.91 1 7 

Horsefly 1.90 2.21 1 7 

Hyena 2.02 2.32 1 7 

Ibex 1.73 1.92 1 7 

Iguana 1.82 2.23 1 7 

Impala 1.98 2.30 1 7 

Insect 3.21 2.32 1 7 

Invertebrate # ~ * 1.79 2.40 1 7 

Jack rabbit # * 1.82 2.54 1 7 

Jackal 1.89 2.26 1 7 

Jackass 1.59 2.21 1 7 

Jackdaw ~ 2.20 1.94 1 7 

Jaguar 2.32 2.37 1 7 

Jerboa 1.13 1.71 1 7 

Kangaroo 2.57 2.48 1 7 

Kid 2.51 2.29 1 7 

Kitten 4.19 2.02 1 7 

Kiwi 1.73 2.41 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Koala 2.12 2.55 1 7 

Koi carp 2.15 2.17 1 7 

Komodo dragon # * 1.59 2.44 1 7 

Lacewing 1.34 1.75 1 7 

Lady bird 3.66 2.12 1 7 

Lamb 5.34 1.51 2 7 

Lemur 1.84 2.45 1 7 

Leopard 2.54 2.29 1 7 

Lion 3.06 2.38 1 7 

Lizard 2.30 2.19 1 7 

Llama 2.19 2.44 1 7 

Lobster 2.33 2.39 1 7 

Long tailed tit 1.97 2.04 1 7 

Lynx 1.81 2.46 1 7 

Mackerel 2.68 2.12 1 7 

Mammal ~ 3.25 2.24 1 7 

Manatee 1.66 2.05 1 7 

Mandrill ~ * 1.51 2.32 1 7 

Mangust 1.04 0.29 1 2 

Marmoset * 1.79 2.19 1 7 

Marmot 1.59 2.17 1 7 

Marten 1.71 2.07 1 7 

Meerkat 2.03 2.74 1 7 

Midge 2.26 2.65 1 7 

Mink * 1.81 2.22 1 7 

Minnow # * 1.68 2.17 1 7 

Manx 1.49 1.91 1 7 

Mole 2.22 2.39 1 7 

Mongoose # 2.26 2.40 1 7 

Monkey ~ 3.21 2.22 1 7 

Moose ~ 2.08 2.36 1 7 

Moth 2.61 2.55 1 7 

Mouse 3.47 2.00 1 7 

Mule 2.43 2.30 1 7 

Musk ox ~ * 1.74 2.29 1 7 

Newt 1.81 2.17 1 7 

Nightingale 2.42 1.90 1 7 

Ocelot 1.64 2.41 1 7 

Octopus ~ 2.25 2.35 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Orang-utan 2.68 2.33 1 7 

Oryx 1.33 2.19 1 7 

Ostrich 2.37 2.48 1 7 

Otter 2.18 2.56 1 7 

Owl 2.87 2.39 1 7 

Ox 2.42 2.31 1 7 

Panda 2.34 2.39 1 7 

Panther 2.36 2.55 1 7 

Parakeet 1.97 2.20 1 7 

Parrot 2.60 2.31 1 7 

Partridge 2.49 2.08 1 7 

Peacock 3.65 2.12 1 7 

Peewit ~ 1.74 2.08 1 7 

Pelican 1.90 2.39 1 7 

Penguin 2.51 2.57 1 7 

Perch 2.11 2.11 1 7 

Pheasant 3.25 2.03 1 7 

Pig 3.62 2.17 1 7 

Pigeon 3.75 2.14 1 7 

Piglet 3.22 2.38 1 7 

Pike # 2.14 2.25 1 7 

Pine marten 1.54 2.11 1 7 

Piranha fish # 1.58 1.92 1 7 

Plaice 3.36 2.23 1 7 

Platypus 1.67 2.47 1 7 

Polar bear 2.96 2.40 1 7 

Polar cat 1.42 1.81 1 7 

Pony 4.44 1.95 2 7 

Porcupine 1.83 2.45 1 7 

Porpoise * 2.04 2.10 1 7 

Poultry 4.16 1.95 1 7 

Prairie dog 1.87 2.04 1 7 

Puffin 2.33 2.58 1 7 

Puma 1.96 2.31 1 7 

Rabbit 4.85 1.86 2 7 

Racoon * 1.77 2.54 1 7 

Ram 2.25 2.55 1 7 

Rat 2.65 2.29 1 7 

Ratel 1.04 0.29 1 2 
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Range 

min max 
Animal Mean SD 

 

 

 

Raven 2.26 2.38 1 7 

Reindeer 3.29 2.18 1 7 

Rhesus monkey 2.57 2.39 1 7 

Rhinoceros 2.76 2.34 1 7 

Roach 1.52 2.34 1 7 

Robin 4.03 1.98 1 7 

Rodent 3.41 2.04 1 7 

Roe deer ~ 2.57 2.03 1 7 

Rook # ~ 2.69 2.36 1 7 

Rooster 3.06 2.14 1 7 

Salamander 1.70 1.95 1 7 

Salmon 3.73 2.13 1 7 

Sardine 2.92 2.33 1 7 

Sea lion 2.58 2.30 1 7 

Seagull 3.26 2.40 1 7 

Seahorse 1.90 2.27 1 7 

Seal 3.33 2.24 1 7 

Shark ~ 2.27 2.47 1 7 

Sheep 3.70 2.19 1 7 

Short tailed tit 1.48 1.09 1 4 

Shrew 1.75 1.90 1 7 

Shrimp 2.68 2.25 1 7 

Siamese cat 2.55 2.22 1 7 

Siberian tiger ~ 1.99 2.28 1 7 

Skate 1.97 2.26 1 7 

Skunk 1.81 2.55 1 7 

Skylark ~ 2.27 2.17 1 7 

Sloth # ~ 1.74 2.25 1 7 

Slug 2.43 2.37 1 7 

Snail 2.93 2.33 1 7 

Snake ~ 2.05 2.65 1 7 

Sole ~ 2.06 2.19 1 7 

Sow ~ 3.55 2.24 1 7 

Sparrow ~ 3.80 2.06 1 7 

Spider 2.48 2.65 1 7 

Springbok 2.10 2.14 1 7 

Squid 1.83 2.03 1 7 

Squirrel 4.10 2.01 1 7 

Stag 3.04 2.22 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Star fish 1.81 2.61 1 7 

Starling ~ 3.30 2.12 1 7 

Stick insect 2.02 2.03 1 7 

Stickleback 1.59 2.49 1 7 

Stoat 1.81 2.31 1 7 

Sturgeon 1.62 1.85 1 7 

Swan 3.50 2.08 1 7 

Swift ~ 2.79 2.27 1 7 

Sword fish ~ 1.76 2.42 1 7 

Tapir 1.83 2.24 1 7 

Tarantula ~ * 1.77 2.41 1 7 

Tench 1.76 1.94 1 7 

Thrush ~ 3.51 2.12 1 7 

Tiger 2.77 2.41 1 7 

Toad 2.58 2.43 1 7 

Tortoise 2.56 2.45 1 7 

Trout 2.50 2.32 1 7 

Tuna 2.88 2.31 1 7 

Turkey 4.09 1.82 1 7 

Turtle ~ 2.01 2.60 1 7 

Tyrannosaurus ~ 1.63 2.50 1 7 

Vole 2.13 2.12 1 7 

Vulture 1.91 2.24 1 7 

Wallaby 2.31 2.54 1 7 

Walrus 2.12 2.43 1 7 

Warthog 1.93 2.04 1 7 

Wasp 2.68 2.55 1 7 

Water buffalo # 2.02 2.34 1 7 

Water rat # 1.74 2.35 1 7 

Weasel 2.37 2.20 1 7 

Whale ~ 2.71 2.33 1 7 

White tiger 2.01 2.40 1 7 

Wild boar 2.10 2.31 1 7 

Wild cat 1.87 2.36 1 7 

Wild dog 2.01 2.27 1 7 

Wildebeest 1.84 2.40 1 7 

Wolf ~ 2.21 2.59 1 7 

Wombat 1.74 2.46 1 7 

Woodcock 1.57 2.06 1 7 



Page 69 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

min max 
Animal Mean SD 

 

 

 

Woodlouse 2.17 2.45 1 7 

Woodpecker 2.47 2.30 1 7 

Worm 2.75 2.50 1 7 

Wren ~ 2.83 2.23 1 7 

Yak 1.57 1.93 1 7 

Yellow tit 1.99 1.98 1 7 

Yellowhammer ~ 1.76 1.99 1 7 

Yorkshire terrier 4.02 2.01 1 7 

Zebra 3.03 2.44 1 7 

  Zebu  1.32  2.14  1  7   
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Table B.6b. Mean, standard deviation (SD) and range (min-max) familiarity values for 

fruit words in individuals belonging to the 61-70 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 1.81 2.41 1 7 

Almond 2.73 2.33 1 7 

Apple 4.33 1.93 1 7 

Apricot 3.35 2.15 1 7 

Aubergine 2.24 2.09 1 7 

Avocado 2.76 2.38 1 7 

Banana 4.85 1.63 1 7 

Berries 3.57 2.16 1 7 

Bilberry # 1.79 2.26 1 7 

Blackberry 4.66 1.76 2 7 

Blackcurrant 3.80 2.11 1 7 

Blueberry 2.57 2.30 1 7 

Bramble # 2.90 2.31 1 7 

Butternut squash 2.28 2.15 1 7 

Cantaloupe melon 3.03 2.16 1 7 

Cherry 3.47 2.24 1 7 

Chestnut 3.37 1.95 1 7 

Citron 1.45 2.09 1 7 

Clementine # ~ 2.83 2.43 1 7 

Coconut 2.46 2.41 1 7 

Cox apple # 4.14 1.97 1 7 

Crab apple 1.94 2.30 1 7 

Cranberry 2.32 2.46 1 7 

Cucumber 4.51 1.82 2 7 

Currant 3.11 2.25 1 7 

Damson # 2.74 2.20 1 7 

Date # 3.28 2.15 1 7 

Dewberry 1.23 1.72 1 7 

Durian 1.15 1.78 1 7 

Elderberry # 2.00 2.28 1 7 

Fig 2.61 2.15 1 7 

Gala apple 2.62 2.38 1 7 

Galia melon ~ 2.37 2.38 1 7 

Gooseberry 2.64 2.40 1 7 

Granny smith 3.99 2.00 1 7 

Grapefruit 4.42 1.72 2 7 



Page 71 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

max 
Fruit Mean SD 

min 

 

 

 

Grapes 4.39 1.93 1 7 

Green melon 2.54 2.46 1 7 

Guava 1.58 2.00 1 7 

Haw # 1.40 2.22 1 7 

Hazelnut 4.48 1.78 2 7 

Honeydew melon ~ 4.75 1.72 2 7 

Horse chestnut 2.12 2.20 1 7 

Jackfruit 1.17 0.97 1 4 

Jaffa # 3.93 2.03 1 7 

Kiwi ~ 3.03 2.29 1 7 

Kumquat 1.65 2.33 1 7 

Lemon 4.11 1.92 1 7 

Lime # 2.59 2.16 1 7 

Loganberry # 2.34 2.06 1 7 

Lychee 1.74 2.30 1 7 

Mandarin ~ 4.57 1.60 1 7 

Mango # 2.16 2.51 1 7 

Medlar 1.12 1.66 1 7 

Melon 4.33 1.76 1 7 

Nectarine ~ 3.78 2.13 1 7 

Nuts 4.33 1.78 1 7 

Olive 3.47 1.98 1 7 

Orange 5.93 1.33 3 7 

Papaya 1.70 1.82 1 7 

Passion fruit 2.06 2.02 1 7 

Paw paw 1.52 1.97 1 7 

Peach # 4.29 1.79 1 7 

Pear 4.57 1.78 1 7 

Pepper 3.67 2.00 1 7 

Persimmon 1.37 2.54 1 7 

Pineapple 3.79 2.06 1 7 

Plantain 1.43 1.84 1 7 

Plum 3.86 2.14 1 7 

Pomelo 1.20 1.16 1 4 

Pomegranate 3.10 1.91 1 7 

Prune # 2.66 2.52 1 7 

Quince # 1.48 2.16 1 7 

Raisin 2.93 2.40 1 7 

Rambotan 1.14 1.80 1 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Raspberry 5.06 1.70 2 7 

Red currant 2.93 1.91 1 7 

Redberry # 1.25 0.51 1 2 

Red grape 3.47 2.25 1 7 

Rhubarb 3.88 2.09 1 7 

Rosehip # 1.67 2.12 1 7 

Sapodilla 1.11 1.39 1 6 

Satsuma ~ 4.46 1.98 2 7 

Sharon fruit 1.23 1.83 1 7 

Sloe berry 1.22 1.50 1 7 

Squash 2.00 2.33 1 7 

Star fruit 1.43 1.73 1 7 

Strawberry 4.66 1.75 1 7 

Sultana 3.11 2.36 1 7 

Tangelo * 1.25 1.48 1 5 

Tangerine 3.92 2.06 1 7 

Tayberry 1.35 1.67 1 7 

Tomato 4.69 1.66 1 7 

Walnut # 3.58 2.07 1 7 

Water melon 4.64 1.79 2 7 

Whinberry 1.15 1.86 1 7 

White currant 1.40 1.41 1 5 

White grape 2.77 2.37 1 7 

  Whortleberry  1.32  1.17  1  4   
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Table B.7a. Mean, standard deviation (SD) and range (min-max) familiarity values for 

animal words in individuals belonging to > 70 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 

 
Aardvark 

 
1.20 

 
1.60 

 
1 

 
7 

Adder 1.67 2.28 1 7 

Albatross 1.49 1.86 1 7 

Alligator ~ 2.12 2.37 1 7 

Alpaca 1.18 0.63 1 3 

Amoeba 1.47 2.22 1 7 

Angel fish 1.72 1.99 1 7 

Ant 4.46 1.80 2 7 

Ant bear 1.15 1.60 1 7 

Anteater 1.40 1.59 1 7 

Antelope 1.93 2.50 1 7 

Ape 2.71 2.16 1 7 

Armadillo 1.32 1.69 1 7 

Ass 1.78 2.46 1 7 

Baboon ~ 1.78 2.23 1 7 

Badger 3.28 2.13 2 7 

Bald eagle # 1.45 1.95 1 7 

Bat 1.94 2.33 1 7 

Bear 2.47 2.43 1 7 

Beaver 1.79 2.16 1 7 

Bee 5.36 1.42 3 7 

Beetle 3.70 2.11 1 7 

Bird 4.36 1.94 1 7 

Bison # 1.67 2.02 1 7 

Blackbird ~ 5.82 1.32 3 7 

Blue bird 1.58 2.37 1 7 

Blue tit ~ 4.80 1.68 2 7 

Boa constrictor 1.62 1.91 1 7 

Boar 1.55 1.95 1 7 

Brontosaurus # 1.26 1.82 1 7 

Brown bear 2.14 2.40 1 7 

Buck # ~ * 1.82 2.75 1 7 

Budgerigar ~ 3.75 2.09 2 7 

Buffalo 1.61 2.34 1 7 

Bull 3.58 2.19 1 7 

Bullfinch ~ 2.04 1.82 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Bullock ~ 2.51 2.52 1 7 

Butterfly 5.42 1.49 2 7 

Buzzard # * 1.82 1.78 1 7 

Calf 3.38 2.22 1 7 

Camel 2.03 2.76 1 7 

Canary 2.97 2.21 1 7 

Caribou 1.28 1.27 1 5 

Carp 2.21 2.02 1 7 

Cat 4.87 1.59 1 7 

Caterpillar 4.21 2.00 2 7 

Cattle 3.86 2.00 1 7 

Chaffinch ~ 2.62 2.01 1 7 

Chameleon ~ 1.52 1.95 1 7 

Cheetah ~ 1.84 2.08 1 7 

Chicken 5.08 1.78 3 7 

Chimpanzee 2.85 2.26 1 7 

Chinchilla 1.47 2.26 1 7 

Chipmunk 1.63 1.98 1 6 

Civet 1.24 2.15 1 7 

Clown fish ~ 1.12 1.66 1 7 

Cobra 1.44 2.38 1 7 

Cockatiel 1.88 2.02 1 7 

Cocker spaniel 3.72 1.92 1 7 

Cockerel 3.52 2.20 1 7 

Cockroach 1.97 2.40 1 7 

Cod 2.85 2.37 1 7 

Condor 1.22 1.64 1 7 

Conger eel 1.34 1.61 1 7 

Cougar # 1.68 2.34 1 7 

Cow 5.00 1.63 2 7 

Coyote ~ * 1.31 1.73 1 7 

Cray fish 1.53 2.07 1 7 

Crocodile 2.18 2.39 1 7 

Crow 4.46 1.91 2 7 

Cuckoo 2.27 2.29 1 7 

Curlew ~ 2.03 1.86 1 7 

Deer 3.36 2.22 1 7 

Dingo 1.18 1.85 1 7 

Dog 6.65 0.61 5 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Dolphin ~ 3.49 2.02 2 7 

Donkey 3.27 2.17 1 7 

Dormouse 2.08 2.36 1 7 

Dove 3.97 1.90 1 7 

Dragon ~ 1.19 2.16 1 7 

Dragonfly 2.97 2.18 1 7 

Dromedary ~ 1.50 1.91 1 7 

Duck 5.22 1.58 3 7 

Duckbill platypus 1.30 1.66 1 7 

Dugong 1.04 0.28 1 2 

Duiker 1.07 1.60 1 7 

Eagle 2.27 2.28 1 7 

Earthworm 5.24 1.40 3 7 

Earwig 3.24 2.17 1 7 

Echidna 1.11 2.00 1 7 

Eel 2.24 2.72 1 7 

Elephant 3.86 2.10 2 7 

Elk ~ 1.55 2.13 1 7 

Emu 1.90 2.20 1 7 

Ewe ~ 2.67 2.26 1 7 

Ferret 2.24 2.45 1 7 

Field mouse 4.03 2.05 2 7 

Finch ~ 2.54 2.02 1 7 

Fish ~ 3.43 2.26 1 7 

Flamingo 2.36 2.06 1 7 

Flea 2.28 2.54 1 7 

Fly 4.85 1.80 2 7 

Fowl 3.88 1.94 2 7 

Fox 4.16 2.03 2 7 

Frog 3.66 2.13 1 7 

Gazelle 1.69 2.25 1 7 

Gecko 1.40 1.35 1 6 

Gerbil 1.89 2.50 1 7 

Giant panda 2.37 2.32 1 7 

Gibbon 1.44 2.02 1 7 

Giraffe 2.06 2.47 1 7 

Gnu 1.38 2.24 1 7 

Goat 3.06 2.26 1 7 

Goldcrest 1.76 2.31 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Goldfish 2.80 2.56 1 7 

Goose 2.93 2.29 1 7 

Gorilla 2.90 2.13 1 7 

Greyhound 3.04 2.19 1 7 

Grizzly bear 2.44 2.17 1 7 

Groundhog # 1.40 1.68 1 7 

Guinea fowl 1.46 1.98 1 7 

Guinea pig 3.08 2.25 1 7 

Gull ~ 4.97 1.59 2 7 

Haddock 4.05 1.96 1 7 

Hamster ~ 2.60 2.09 1 7 

Hare 3.00 2.14 1 7 

Hart 1.38 1.82 1 7 

Hawk 3.17 2.06 2 7 

Hedgehog 4.21 2.04 2 7 

Heifer # 3.26 1.66 2 7 

Hen 3.81 2.09 1 7 

Heron 2.57 2.41 1 7 

Herring 2.25 2.42 1 7 

Hippopotamus 2.50 2.53 1 7 

Hornet 1.83 1.82 1 7 

Horse 5.77 1.13 4 7 

Horsefly 1.69 2.21 1 7 

Hyena 1.60 1.83 1 7 

Ibex 1.18 1.70 1 7 

Iguana 1.75 1.70 1 7 

Impala 1.26 1.59 1 7 

Insect 4.36 1.83 1 7 

Invertebrate # ~ * 1.42 1.75 1 7 

Jack rabbit # * 1.39 1.88 1 7 

Jackal 1.48 1.84 1 7 

Jackass 1.12 1.65 1 7 

Jackdaw ~ 2.62 1.69 1 7 

Jaguar 1.88 2.21 1 7 

Jerboa 1.15 1.60 1 7 

Kangaroo 2.08 2.61 1 7 

Kid 1.93 2.32 1 7 

Kitten 5.33 1.44 3 7 

Kiwi 1.64 2.41 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Koala 2.40 2.02 1 7 

Koi carp 2.11 2.28 1 7 

Komodo dragon # * 1.11 0.73 1 3 

Lacewing 1.43 1.77 1 7 

Lady bird 5.03 1.59 2 7 

Lamb 5.34 1.55 3 7 

Lemur 1.29 1.82 1 7 

Leopard 2.04 2.31 1 7 

Lion 3.12 2.19 1 7 

Lizard 2.12 2.14 1 7 

Llama 1.57 2.36 1 7 

Lobster 2.34 2.39 1 7 

Long tailed tit 1.78 1.91 1 6 

Lynx 1.27 0.51 1 2 

Mackerel 2.95 2.04 1 7 

Mammal ~ 2.10 2.66 1 7 

Manatee 1.17 1.66 1 7 

Mandrill ~ * 1.12 1.09 1 4 

Mangust 1.00 0.00 1 1 

Marmoset * 1.24 0.85 1 4 

Marmot 1.20 1.60 1 7 

Marten 1.46 2.02 1 7 

Meerkat 2.16 2.62 1 7 

Midge 2.06 2.61 1 7 

Mink * 1.79 1.95 1 7 

Minnow # * 1.61 2.30 1 7 

Manx 1.38 1.82 1 7 

Mole 2.23 2.31 1 7 

Mongoose # 1.49 1.95 1 7 

Monkey ~ 3.89 1.88 2 7 

Moose ~ 1.41 1.54 1 6 

Moth 3.16 2.13 1 7 

Mouse 3.79 2.00 1 7 

Mule 2.32 2.25 1 7 

Musk ox ~ * 1.23 1.72 1 7 

Newt 2.15 2.43 1 7 

Nightingale 1.70 2.03 1 6 

Ocelot 1.30 1.96 1 7 

Octopus ~ 1.79 2.07 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Orang-utan 2.06 1.77 1 7 

Oryx 1.19 1.79 1 7 

Ostrich 2.28 2.40 1 7 

Otter 2.99 2.25 1 7 

Owl 3.29 2.23 1 7 

Ox 1.92 2.50 1 7 

Panda 2.87 2.20 1 7 

Panther 1.75 2.38 1 7 

Parakeet 1.71 2.40 1 7 

Parrot 3.30 2.29 2 7 

Partridge 2.50 2.19 1 7 

Peacock 2.17 2.09 1 7 

Peewit ~ 1.87 2.40 1 7 

Pelican 1.72 1.91 1 7 

Penguin 2.90 2.20 1 7 

Perch 1.37 1.05 1 4 

Pheasant 3.92 2.00 2 7 

Pig 5.00 1.68 3 7 

Pigeon 5.23 1.62 2 7 

Piglet 2.78 2.35 1 7 

Pike # 2.09 1.98 1 7 

Pine marten 1.42 1.98 1 7 

Piranha fish # 1.73 1.98 1 7 

Plaice 2.26 2.43 1 7 

Platypus 1.37 1.71 1 7 

Polar bear 2.62 2.25 1 7 

Polar cat 1.07 1.60 1 7 

Pony 4.29 2.02 2 7 

Porcupine 1.43 2.38 1 7 

Porpoise * 1.82 2.22 1 7 

Poultry 4.69 1.85 2 7 

Prairie dog 1.42 1.85 1 7 

Puffin 2.11 2.28 1 7 

Puma 1.66 2.38 1 7 

Rabbit 4.64 1.80 2 7 

Racoon * 1.42 1.98 1 7 

Ram 2.32 1.87 1 7 

Rat 3.97 2.09 2 7 

Ratel 1.07 1.11 1 5 
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Range 

min max 
Animal Mean SD 

 

 

 

Raven 2.75 2.02 1 7 

Reindeer 2.10 2.74 1 7 

Rhesus monkey 1.54 2.10 1 7 

Rhinoceros 2.36 1.98 1 7 

Roach 1.80 2.09 1 7 

Robin 5.17 1.67 3 7 

Rodent 2.78 2.06 1 7 

Roe deer ~ 2.13 1.68 1 7 

Rook # ~ 2.54 2.52 1 7 

Rooster 3.10 2.26 1 7 

Salamander 1.31 1.84 1 7 

Salmon 3.80 1.93 2 7 

Sardine 2.59 1.92 1 7 

Sea lion 1.72 2.02 1 7 

Seagull 5.17 1.67 2 7 

Seahorse 2.04 2.09 1 7 

Seal 2.54 2.27 1 7 

Shark ~ 2.75 2.26 1 7 

Sheep 5.31 1.49 2 7 

Short tailed tit 1.98 1.88 1 7 

Shrew 1.80 1.99 1 7 

Shrimp 2.38 2.37 1 7 

Siamese cat 2.34 2.21 1 7 

Siberian tiger ~ 1.38 1.33 1 5 

Skate 1.72 1.87 1 7 

Skunk 1.30 2.34 1 7 

Skylark ~ 2.37 1.95 1 7 

Sloth # ~ 1.40 2.09 1 7 

Slug 3.85 2.09 1 7 

Snail 4.21 2.00 2 7 

Snake ~ 2.49 2.45 1 7 

Sole ~ 2.33 2.10 1 7 

Sow ~ 2.64 2.30 1 7 

Sparrow ~ 5.53 1.47 2 7 

Spider 5.03 1.62 2 7 

Springbok 1.62 1.95 1 7 

Squid 1.76 1.90 1 7 

Squirrel 4.85 1.91 2 7 

Stag 2.48 1.99 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Star fish 1.72 2.29 1 7 

Starling ~ 3.62 2.17 1 7 

Stick insect 1.89 2.06 1 7 

Stickleback 1.83 2.34 1 7 

Stoat 1.60 1.95 1 7 

Sturgeon 1.42 2.17 1 7 

Swan 3.74 1.96 1 7 

Swift ~ 2.10 2.28 1 7 

Sword fish ~ 1.32 1.90 1 7 

Tapir 1.17 1.66 1 7 

Tarantula ~ * 1.35 1.12 1 4 

Tench 1.75 1.51 1 6 

Thrush ~ 3.99 1.86 1 7 

Tiger 2.67 2.38 1 7 

Toad 3.30 2.06 1 7 

Tortoise 2.30 2.66 1 7 

Trout 2.99 2.17 1 7 

Tuna 2.18 2.42 1 7 

Turkey 4.42 1.99 2 7 

Turtle ~ 2.01 2.11 1 7 

Tyrannosaurus ~ 1.32 1.98 1 7 

Vole 1.91 2.18 1 7 

Vulture 1.75 2.30 1 7 

Wallaby 1.80 2.58 1 7 

Walrus 1.72 2.29 1 7 

Warthog 1.50 1.77 1 7 

Wasp 4.93 1.73 3 7 

Water buffalo # 1.61 2.18 1 7 

Water rat # 1.43 2.47 1 7 

Weasel 1.86 2.32 1 7 

Whale ~ 2.34 2.44 1 7 

White tiger 1.39 2.42 1 7 

Wild boar 1.49 1.98 1 7 

Wild cat 1.58 2.10 1 7 

Wild dog 1.34 1.33 1 4 

Wildebeest 1.62 1.95 1 7 

Wolf ~ 1.87 2.25 1 7 

Wombat 1.30 2.34 1 7 

Woodcock 1.61 1.87 1 7 
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Animal Mean SD 

 

 

 

Woodlouse 2.64 2.31 1 7 

Woodpecker 2.55 2.25 1 7 

Worm 4.98 1.74 2 7 

Wren ~ 2.95 1.67 1 7 

Yak 1.35 2.20 1 7 

Yellow tit 1.40 1.69 1 7 

Yellowhammer ~ 1.76 2.55 1 7 

Yorkshire terrier 4.28 1.97 2 7 

Zebra 2.34 2.59 1 7 

  Zebu  1.04  0.29  1  2   
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Table B.7b. Mean, standard deviation (SD) and range (min-max) familiarity values for 

fruit words in individuals belonging to > 70 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 

 

Acorn 2.53 2.58 1 7 

Almond 3.64 2.21 1 7 

Apple 6.16 1.16 3 7 

Apricot 3.81 2.07 1 7 

Aubergine 2.64 2.18 1 7 

Avocado 3.30 2.27 1 7 

Banana 6.15 1.13 3 7 

Berries 3.14 2.18 1 7 

Bilberry # 2.04 2.11 1 7 

Blackberry 3.90 2.02 1 7 

Blackcurrant 3.91 1.92 1 7 

Blueberry 2.87 2.11 1 7 

Bramble # 3.71 2.05 1 7 

Butternut squash 2.14 2.26 1 7 

Cantaloupe melon 2.05 2.38 1 7 

Cherry 4.63 1.72 2 7 

Chestnut 3.36 2.06 2 7 

Citron 1.72 2.40 1 7 

Clementine # ~ 2.97 2.13 1 7 

Coconut 3.31 2.39 1 7 

Cox apple # 5.83 1.39 3 7 

Crab apple 2.66 2.49 1 7 

Cranberry 4.21 1.83 2 7 

Cucumber 4.94 1.79 2 7 

Currant 4.80 1.79 3 7 

Damson # 3.02 2.35 1 7 

Date # 3.30 2.25 1 7 

Dewberry 1.49 1.98 1 7 

Durian 1.20 1.91 1 7 

Elderberry # 3.03 2.17 1 7 

Fig 2.81 2.32 1 7 

Gala apple 4.18 1.76 1 7 

Galia melon ~ 2.09 2.20 1 7 

Gooseberry 3.87 2.06 1 7 

Granny smith 5.79 1.22 4 7 

Grapefruit 4.08 1.99 1 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grapes 4.04 2.13 1 7 

Green melon 2.70 2.32 1 7 

Guava 1.45 1.73 1 6 

Haw # 1.61 1.70 1 6 

Hazelnut 3.62 2.12 1 7 

Honeydew melon ~ 3.44 1.99 1 7 

Horse chestnut 2.65 2.34 1 7 

Jackfruit 1.06 0.83 1 4 

Jaffa # 5.07 1.66 2 7 

Kiwi ~ 2.84 2.14 1 7 

Kumquat 1.42 1.17 1 5 

Lemon 3.99 2.06 1 7 

Lime # 3.02 2.10 1 7 

Loganberry # 2.51 2.45 1 7 

Lychee 1.57 1.91 1 6 

Mandarin ~ 3.44 2.19 1 7 

Mango # 2.43 2.40 1 7 

Medlar 1.30 1.51 1 6 

Melon 3.46 2.17 1 7 

Nectarine ~ 4.37 1.75 2 7 

Nuts 5.63 1.46 3 7 

Olive 2.96 2.48 1 7 

Orange 5.91 1.27 3 7 

Papaya 1.43 1.77 1 7 

Passion fruit 2.41 2.57 1 7 

Paw paw 1.38 2.06 1 7 

Peach # 3.95 1.97 2 7 

Pear 4.15 1.88 1 7 

Pepper 4.81 1.76 2 7 

Persimmon 1.29 1.20 1 5 

Pineapple 3.64 2.21 1 7 

Plantain 1.34 2.37 1 7 

Plum 3.96 2.03 1 7 

Pomelo 1.09 0.58 1 3 

Pomegranate 2.45 2.25 1 7 

Prune # 2.66 2.42 1 7 

Quince # 1.86 1.77 1 7 

Raisin 3.91 1.92 1 7 

Rambotan 1.09 0.58 1 3 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Raspberry 5.19 1.62 3 7 

Red currant 3.43 2.18 1 7 

Redberry # 1.66 2.38 1 7 

Red grape 3.76 2.08 1 7 

Rhubarb 5.08 1.59 3 7 

Rosehip # 2.50 2.48 1 7 

Sapodilla 1.18 1.22 1 5 

Satsuma ~ 4.49 1.83 2 7 

Sharon fruit 1.42 1.93 1 7 

Sloe berry 1.71 2.37 1 7 

Squash 2.03 2.44 1 7 

Star fruit 1.55 1.95 1 7 

Strawberry 5.82 1.04 4 7 

Sultana 4.71 1.77 2 7 

Tangelo * 1.24 1.98 1 7 

Tangerine 4.17 2.05 2 7 

Tayberry 1.47 1.81 1 7 

Tomato 5.89 1.26 4 7 

Walnut # 5.77 1.13 4 7 

Water melon 3.30 2.19 1 7 

Whinberry 1.34 0.99 1 4 

White currant 1.64 2.10 1 7 

White grape 3.21 2.32 1 7 

  Whortleberry  1.28  1.63  1  7   
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APPENDIX C 
 

 
 

Table C.1a. Mean, standard deviation (SD) and range (min-max) typicality values for 

animal words in individuals belonging to the 18-20 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 
 

 

Aardvark 

 

 

2.62 

 

 

1.55 

 

 

1 

 

 

6 

Adder 2.95 1.53 1 6 

Albatross 2.23 1.59 1 6 

Alligator 4.90 1.41 2 7 

Alpaca # 1.88 1.71 1 7 

Amoeba 1.16 1.50 1 7 

Angel fish 1.77 1.01 1 4 

Ant 2.14 2.08 1 7 

Ant bear # 1.63 1.22 1 6 

Anteater 2.61 1.52 1 7 

Antelope # 2.79 1.83 1 7 

Ape 4.98 1.46 1 7 

Armadillo 2.22 1.53 1 6 

Ass # 2.16 1.90 1 7 

Baboon 3.82 1.68 1 7 

Badger 4.49 1.31 2 7 

Bald eagle 2.50 1.99 1 7 

Bat 3.76 1.52 2 7 

Bear 6.17 0.91 4 7 

Beaver 3.44 1.60 1 7 

Bee 2.89 2.00 1 7 

Beetle 3.08 1.83 1 7 

Bird # 4.35 1.86 1 7 

Bison # 2.18 1.55 1 5 

Blackbird 3.30 1.49 1 7 

Blue bird 1.86 1.61 1 6 

Blue tit 2.85 1.59 1 6 

Boa constrictor 2.59 1.47 1 6 

Boar # 3.49 1.39 1 7 

Brontosaurus # 1.51 1.76 1 7 

Brown bear 5.25 1.26 3 7 

Buck # 1.79 1.94 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 
 

Budgerigar 1.82 1.88 1 7 

Buffalo 3.52 1.89 1 7 

Bull 4.53 1.51 2 7 

Bullfinch # * 1.81 1.33 1 6 

Bullock # 2.13 1.69 1 7 

Butterfly 3.04 1.83 1 7 

Buzzard 1.97 1.55 1 6 

Calf ~ 3.99 1.82 1 7 

Camel # 4.09 1.49 1 7 

Canary 2.65 1.61 1 7 

Caribou # 1.58 1.75 1 7 

Carp 2.44 1.39 1 7 

Cat 6.70 0.51 5 7 

Caterpillar 2.59 1.65 1 7 

Cattle 4.85 1.61 2 7 

Chaffinch 1.85 1.40 1 6 

Chameleon 2.31 1.70 1 7 

Cheetah 5.14 1.29 2 7 

Chicken # 5.41 1.37 2 7 

Chimpanzee 5.88 1.17 3 7 

Chinchilla 2.53 1.37 1 5 

Chipmunk 3.09 1.56 1 7 

Clown fish 1.85 1.27 1 5 

Cobra # 3.57 1.61 1 7 

Cockatiel 2.18 1.92 1 7 

Cocker spaniel ~ 4.31 1.63 1 7 

Cockerel 3.24 1.65 1 7 

Cockroach 1.73 1.66 1 6 

Cod 2.68 1.93 1 7 

Condor # 1.60 1.41 1 6 

Conger eel 1.39 1.19 1 5 

Cougar # 2.27 2.08 1 7 

Cow 6.22 0.92 3 7 

Coyote 3.27 1.47 1 7 

Cray fish 1.80 1.43 1 6 

Crocodile 5.53 1.24 3 7 

Crow 2.59 1.73 1 7 

Cuckoo 2.18 1.47 1 6 

Deer 5.25 1.20 2 7 
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Range 
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Animal Mean SD 

 

 

 

Dingo # 2.04 1.50 1 6 

Dog # 6.85 0.34 6 7 

Dolphin 5.25 1.37 2 7 

Donkey 5.55 1.19 3 7 

Dormouse 2.63 1.57 1 7 

Dove 3.78 1.49 2 7 

Dragon 1.83 2.10 1 7 

Dragonfly 2.16 1.64 1 7 

Dromedary # 1.15 1.10 1 5 

Duck 4.80 1.54 2 7 

Duckbill platypus 1.88 1.68 1 7 

Eagle 4.89 1.35 2 7 

Earthworm 1.96 1.97 1 7 

Earwig 1.59 1.20 1 5 

Echidna 1.21 1.14 1 5 

Elephant 6.52 0.62 5 7 

Eel 2.14 1.56 1 7 

Elk # 1.85 1.71 1 7 

Emu 2.53 1.77 1 7 

Ewe # 2.97 1.48 1 6 

Ferret 3.65 1.44 2 7 

Field mouse 2.77 1.46 1 6 

Finch 1.99 1.65 1 6 

Fish # 4.12 1.92 1 7 

Flamingo 3.44 1.39 1 7 

Flea 1.59 1.86 1 7 

Fly 2.19 2.27 1 7 

Fowl 2.56 1.76 1 7 

Fox 5.26 1.23 3 7 

Frog # 4.02 1.74 1 7 

Gazelle # 2.79 1.82 1 7 

Gecko 1.80 1.59 1 7 

Gerbil 3.14 1.85 1 7 

Giant panda 5.00 1.24 3 7 

Gibbon 1.96 2.11 1 7 

Giraffe 6.10 0.84 4 7 

Gnu # 1.13 1.18 1 5 

Goldcrest 1.50 1.22 1 5 

Goat 5.25 1.21 3 7 



Page 4 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 
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Animal Mean SD 

 

 

 

Goldfish 3.41 1.99 1 7 

Gorilla 3.38 1.55 1 7 

Greyhound 5.93 0.96 3 7 

Grizzly bear 4.93 1.41 2 7 

Groundhog 5.65 1.17 2 7 

Guinea fowl 2.32 1.76 1 7 

Guinea pig 1.87 1.45 1 6 

Gull 4.52 1.49 2 7 

Haddock 2.14 1.82 1 7 

Hamster 2.41 1.91 1 7 

Hare 4.70 1.53 2 7 

Hart # 3.45 1.51 1 7 

Hawk 1.55 1.35 1 5 

Hedgehog 3.16 1.85 1 7 

Heifer # 4.31 1.51 2 7 

Hen 1.36 1.63 1 6 

Heron 4.19 1.62 2 7 

Herring 2.55 1.84 1 7 

Hippopotamus 2.08 1.64 1 6 

Hornet 5.61 1.21 3 7 

Horse 1.67 1.76 1 7 

Horsefly 6.51 0.72 4 7 

Hyena 1.57 1.33 1 6 

Ibex # 3.59 1.46 1 7 

Iguana 1.24 1.05 1 4 

Impala # 3.11 1.37 1 6 

Insect 1.38 1.78 1 7 

Invertebrate 2.90 2.32 1 7 

Jack rabbit 1.78 2.34 1 7 

Jackal # 2.00 1.95 1 7 

Jackass # 2.06 1.56 1 6 

Jackdaw # 1.65 1.93 1 7 

Jaguar 1.52 1.30 1 6 

Kangaroo 4.62 1.47 2 7 

Kid # 5.37 1.25 3 7 

Kitten 1.83 1.71 1 7 

Kiwi 5.22 1.29 1 7 

Koala 1.65 1.88 1 7 

Koi carp 4.19 1.36 2 7 
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Animal Mean SD 

 

 

 

Komodo dragon 2.65 1.71 1 6 

Lady bird 1.36 1.31 1 5 

Lamb # 2.27 2.06 1 7 

Lemur 4.92 1.32 3 7 

Leopard 2.71 1.57 1 7 

Lion 5.80 0.98 4 7 

Lizard 6.63 0.64 4 7 

Llama # 3.90 1.76 2 7 

Lobster 3.19 1.57 1 7 

Long tailed tit 2.76 1.88 1 7 

Lynx 1.77 1.31 1 6 

Mackerel 2.22 1.98 1 7 

Mammal 2.21 1.46 1 6 

Manatee 5.55 1.41 3 7 

Mandrill # * 1.76 1.73 1 7 

Marmoset # 1.40 1.37 1 6 

Marmot # 1.30 1.04 1 5 

Marten # 1.46 1.12 1 5 

Meerkat 1.24 0.93 1 4 

Midge 3.47 1.58 1 7 

Mink # 1.38 1.21 1 5 

Manx 1.86 1.43 1 6 

Mole 2.35 1.48 1 6 

Mongoose # 3.68 1.25 2 7 

Monkey # 2.32 1.45 1 6 

Moose 6.42 0.72 4 7 

Moth 3.83 1.36 1 7 

Mouse ~ 1.97 1.72 1 7 

Mule 3.78 1.89 1 7 

Musk ox # 2.98 1.86 1 7 

Newt 1.19 1.06 1 5 

Nightingale 1.86 1.76 1 7 

Ocelot # 1.95 1.61 1 7 

Octopus 1.29 1.54 1 6 

Orang-utan 3.93 1.70 1 7 

Oryx # 3.76 1.80 1 7 

Ostrich 1.36 1.52 1 6 

Otter # 4.12 1.29 2 7 

Owl 3.12 1.63 1 7 
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Ox # 2.88 1.73 1 7 

Panda 5.54 1.21 3 7 

Panther 4.69 1.36 2 7 

Parakeet 1.84 1.61 1 6 

Parrot 4.26 1.62 2 7 

Partridge 1.85 1.28 1 5 

Peacock 3.33 11.77 1 6 

Peewit # 1.13 1.25 1 6 

Pelican 2.80 1.20 1 5 

Penguin ~ 4.78 1.50 2 7 

Perch 1.59 1.35 1 5 

Pheasant 3.30 1.43 1 7 

Pig 5.87 1.12 2 7 

Pigeon 3.76 1.90 2 7 

Piglet ~ 4.56 1.47 1 7 

Pike 2.18 1.63 1 7 

Pine marten # 1.31 1.06 1 4 

Piranha fish 3.03 1.34 1 7 

Plaice 1.98 1.60 1 7 

Platypus 1.99 1.70 1 7 

Polar bear 6.01 0.93 4 7 

Polar cat 2.41 1.85 1 6 

Pony 5.82 1.02 3 7 

Porcupine 2.48 1.53 1 7 

Porpoise # 1.66 1.89 1 7 

Poultry 2.77 2.28 1 7 

Prairie dog 2.67 1.92 1 7 

Puffin 2.94 1.56 1 7 

Puma 3.41 1.88 1 7 

Rabbit 5.86 1.12 3 7 

Racoon 2.92 1.48 1 7 

Ram # 2.91 1.89 1 7 

Rat 3.80 1.77 1 7 

Raven 2.55 1.69 1 7 

Reindeer 4.60 1.38 2 7 

Rhesus monkey # 2.48 2.15 1 7 

Rhinoceros 5.43 1.19 2 7 

Roach 1.77 1.37 1 7 

Robin 3.35 1.68 1 7 
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Rodent 2.96 1.84 1 7 

Roe dear # 1.44 1.68 1 6 

Rook 1.63 1.32 1 5 

Rooster 3.03 1.63 1 7 

Salamander 2.20 1.70 1 7 

Salmon 2.85 1.68 1 7 

Sardine 2.02 1.57 1 6 

Sea lion 3.16 1.60 1 7 

Seagull 3.22 1.87 1 7 

Seahorse 2.39 1.35 1 6 

Seal 4.07 1.49 1 7 

Shark # 5.59 1.28 3 7 

Sheep 5.86 1.08 3 7 

Short tailed tit 1.60 1.13 1 5 

Shrew 2.10 1.59 1 7 

Shrimp 1.98 1.47 1 6 

Siamese cat ~ 3.98 1.61 2 7 

Siberian tiger 3.78 1.85 1 7 

Skate 1.55 1.22 1 5 

Skunk 3.36 1.30 1 6 

Skylark # 1.78 1.24 1 5 

Sloth 2.99 1.71 1 7 

Slug 1.88 1.87 1 7 

Snail 2.42 1.67 1 6 

Snake # 4.87 1.69 2 7 

Sole 1.61 1.33 1 5 

Sow # 1.70 1.78 1 6 

Sparrow 2.94 1.73 1 7 

Spider 3.26 2.04 1 7 

Springbok # 1.71 1.77 1 7 

Squid 2.44 1.62 1 7 

Squirrel 4.73 1.38 3 7 

Stag 3.23 1.93 1 7 

Star fish 1.94 1.42 1 6 

Starling 2.08 1.74 1 7 

Stick insect 1.90 1.79 1 7 

Stickleback 1.91 1.08 1 5 

Stoat # 2.05 1.51 1 6 

Sturgeon 1.45 1.62 1 6 
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Range 

min max 
Animal Mean SD 

 

 

 

Swan 3.81 1.58 1 7 

Swift # 1.55 1.56 1 6 

Sword fish 2.91 1.67 1 7 

Tapir # 1.48 1.83 1 7 

Tarantula # 3.29 1.81 1 7 

Tench 1.40 1.17 1 4 

Thrush 2.17 1.54 1 7 

Tiger 6.56 0.56 5 7 

Toad 3.24 1.66 1 7 

Tortoise 4.78 1.42 3 7 

Trout 2.53 1.90 1 7 

Tuna 2.51 1.65 1 7 

Turkey 4.44 1.52 2 7 

Turtle 4.64 1.44 2 7 

Tyrannosaurus 1.64 2.08 1 7 

Vole 2.45 1.42 1 6 

Vulture 2.42 1.73 1 7 

Wallaby # 2.11 1.73 1 7 

Walrus 3.29 1.71 1 7 

Warthog 2.43 1.76 1 7 

Wasp 2.37 2.21 1 7 

Water buffalo # 2.96 1.49 1 7 

Water rat 2.51 1.33 1 6 

Weasel 3.37 1.38 1 7 

Whale 5.56 1.33 3 7 

White tiger 4.58 1.43 2 7 

Wild boar 2.65 1.72 1 7 

Wild cat 3.56 1.83 1 7 

Wild dog ~ 3.35 1.69 1 7 

Wildebeest # 2.82 2.00 1 7 

Wolf 5.45 1.23 3 7 

Wombat 2.69 1.47 1 7 

Woodcock 1.61 1.31 1 5 

Woodlouse 1.80 1.72 1 5 

Woodpecker 3.14 1.54 1 7 

Worm 2.25 2.14 1 7 

Wren 2.09 1.51 1 6 

Yak # 2.18 1.51 1 7 

Yellow tit 1.83 1.29 1 5 
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Range 

min max 
Animal Mean SD 

 

 

 

Yellowhammer # 1.30 1.68 1 7 

Yorkshire terrier 4.22 1.75 1 7 

Zebra 5.89 0.96 4 7 
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Table C.1b. Mean, standard deviation (SD) and range (min-max) typicality values for fruit 

words in individuals belonging to the 18-20 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 
 

Acorn 1.50 1.54 1 6 

Almond 2.10 1.49 1 6 

Apple 6.89 0.30 6 7 

Apricot 5.06 1.25 2 7 

Aubergine # 2.00 1.64 1 7 

Avocado # 2.64 1.81 1 7 

Banana 6.89 0.30 6 7 

Berries 5.30 1.37 3 7 

Bilberry # 1.27 1.57 1 7 

Blackberry 5.19 1.00 3 7 

Blackcurrant 4.41 1.48 1 7 

Blueberry 4.35 1.46 2 7 

Bramble # 1.88 1.93 1 7 

Butternut squash 1.72 1.36 1 5 

Cantaloupe melon 3.01 1.81 1 7 

Cherry 5.48 1.27 2 7 

Chestnut # 1.97 1.63 1 6 

Citron 2.03 2.16 1 7 

Clementine ~ 4.63 1.45 2 7 

Coconut 3.81 1.83 1 7 

Cox apple # * 3.73 1.70 1 7 

Crab apple 2.34 1.71 1 7 

Cranberry 4.13 1.55 2 7 

Cucumber # 2.00 1.87 1 7 

Currant # 3.19 1.77 1 7 

Damson # 1.45 1.64 1 6 

Date 2.65 1.33 1 6 

Dewberry # 1.93 1.63 1 7 

Elderberry # 2.34 1.77 1 7 

Fig # 2.50 1.49 1 7 

Gala apple * 4.12 1.74 1 7 

Galia melon # ~ 2.46 2.09 1 7 

Gooseberry # 2.94 1.68 1 7 

Granny smith 4.07 1.94 1 7 

Grapefruit 4.97 1.31 2 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grape 6.24 0.96 3 7 

Green melon 3.65 1.88 1 7 

Guava 1.92 1.84 1 7 

Haw 1.11 0.99 1 5 

Hazelnuts 2.30 1.54 1 6 

Honeydew melon # ~ 3.44 1.76 1 7 

Horse chestnut 1.79 1.71 1 6 

Jackfruit 1.47 1.51 1 6 

Jaffa # 1.38 1.91 1 7 

Kiwi 4.72 1.41 2 7 

kumquat 1.71 1.50 1 7 

Lemon 4.58 1.45 1 7 

Lime 4.17 1.64 1 7 

Loganberry # 1.68 1.92 1 7 

Lychee # ~ 1.94 1.58 1 6 

Mandarin # ~ 3.90 1.47 1 7 

Mango 5.22 1.29 3 7 

Melon 5.55 1.34 3 8 

Nashi 1.10 0.92 1 5 

Nectarine 5.27 1.33 3 7 

Nuts # ~ 2.18 2.04 1 7 

Olive # 1.97 1.85 1 7 

Orange 5.73 1.14 1 7 

Papaya 2.37 1.89 1 7 

Passion fruit 4.15 1.33 1 7 

Paw paw # 1.30 1.56 1 6 

Peach ~ 5.92 0.89 4 7 

Pear 5.98 1.05 4 7 

Peppers 2.26 1.96 1 7 

Persimmons 1.18 1.12 1 5 

Pineapple 5.54 1.29 2 7 

Plantain # 1.43 1.40 1 5 

Plum 5.26 1.23 3 7 

Pomelo 1.31 1.26 1 5 

Pomegranate ~ 3.25 1.69 1 7 

Prune # 2.33 1.64 1 6 

Quince 1.14 1.08 1 5 

Raisin # 2.99 1.93 1 7 

Raspberry 5.38 1.22 3 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Red currant # 2.66 1.67 1 7 

Redberry 3.00 1.63 1 7 

Red grape 4.03 1.83 1 7 

Rhubarb # 3.03 1.64 1 7 

Rosehip # * 1.21 0.95 1 5 

Satsuma ~ 5.61 1.01 4 7 

Sharon fruit ~ 1.55 1.69 1 6 

Sloe berry # 1.24 1.55 1 7 

squash 2.09 1.63 1 6 

Star fruit 2.14 1.77 1 7 

Strawberry 6.51 0.72 4 7 

Sultana 3.25 1.51 1 7 

Tangerine 5.60 0.98 3 7 

Tayberry 1.41 1.86 1 8 

Tomato # * 2.96 2.13 1 7 

Walnut # 1.90 1.45 1 6 

Water melon 5.29 1.35 3 7 

Whinberry 1.43 1.41 1 6 

White currant # 1.93 1.61 1 7 

White grape 3.00 2.25 1 7 

Whortleberry 1.34 1.67 1 7 
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Table C.2a. Mean, standard deviation (SD) and range (min-max) typicality values for 

animal words in individuals belonging to the 21-30 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 
 

 

Aardvark 

 

 

2.57 

 

 

2.06 

 

 

1 

 

 

7 

Adder 2.41 2.09 1 7 

Albatross 2.47 1.76 1 7 

Alligator 3.75 1.90 1 7 

Alpaca # 1.65 2.21 1 7 

Amoeba 1.31 1.81 1 7 

Angel fish 1.62 1.51 1 6 

Ant 2.00 2.49 1 7 

Ant bear # 2.00 2.05 1 7 

Anteater 2.92 1.87 1 7 

Antelope # 3.25 2.02 1 7 

Ape 5.32 1.34 1 7 

Armadillo 2.39 2.06 1 7 

Ass # 3.10 2.05 1 7 

Baboon 4.19 1.65 1 7 

Badger 4.79 1.46 1 7 

Bald eagle 2.69 1.81 1 7 

Bat 3.12 2.01 1 7 

Bear 5.52 1.22 1 7 

Beaver 4.26 1.72 2 7 

Bee 2.57 2.14 1 7 

Beetle 2.16 2.14 1 7 

Bird # 3.40 2.11 1 7 

Bison # 2.47 2.09 1 7 

Blackbird 2.52 2.10 1 7 

Blue bird 2.33 1.57 1 6 

Blue tit 2.27 1.63 1 7 

Boa constrictor 2.42 1.94 1 7 

Boar # 3.62 1.88 1 7 

Brontosaurus # 1.63 1.98 1 7 

Brown bear 5.13 1.46 2 7 

Buck # 1.98 2.01 1 7 

Budgerigar 2.07 1.86 1 7 

Buffalo 4.18 1.57 1 7 

Bull 5.82 1.13 3 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Bullfinch # * 
 

1.84 
 

1.43 
 

1 
 

6 

Bullock # 2.91 2.26 1 7 

Butterfly 2.30 2.26 1 7 

Buzzard 2.07 1.94 1 7 

Calf ~ 4.96 1.54 2 7 

Camel # 4.83 1.60 2 7 

Canary 2.51 1.86 1 7 

Caribou # 2.11 2.31 1 7 

Carp 1.90 1.69 1 7 

Cat 5.91 1.27 2 7 

Caterpillar 1.97 2.10 1 7 

Cattle 5.30 1.48 3 7 

Chaffinch 1.78 1.43 1 6 

Chameleon 2.47 1.74 1 7 

Cheetah 5.01 1.40 1 7 

Chicken # 4.56 1.79 1 7 

Chimpanzee 6.01 1.03 3 7 

Chinchilla 3.12 1.91 1 7 

Chipmunk 3.58 1.78 1 7 

Clown fish 1.98 1.58 1 6 

Cobra # 2.85 1.86 1 7 

Cockatiel 2.32 1.82 1 7 

Cocker spaniel ~ 3.85 1.95 1 7 

Cockerel 3.01 1.96 1 7 

Cockroach 1.82 2.21 1 7 

Cod 2.28 2.19 1 7 

Condor # 1.72 1.82 1 7 

Conger eel 1.94 1.74 1 7 

Cougar # 2.86 2.02 1 7 

Cow 6.48 0.79 4 7 

Coyote 2.84 1.90 1 7 

Cray fish 1.69 1.37 1 7 

Crocodile 4.03 1.72 1 7 

Crow 3.18 1.98 1 7 

Cuckoo 2.35 1.80 1 7 

Deer 5.20 1.39 2 7 

Dingo # 2.66 1.93 1 7 

Dog # 6.62 0.72 4 7 

Dolphin 4.16 1.75 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Donkey 
 

5.43 
 

1.42 
 

2 
 

7 

Dormouse 3.38 1.67 1 7 

Dove 2.76 1.89 1 7 

Dragon 1.53 2.12 1 7 

Dragonfly 1.97 1.93 1 7 

Dromedary # 1.23 1.39 1 5 

Duck 3.71 2.02 1 7 

Duckbill platypus 2.38 1.69 1 7 

Eagle 3.23 1.95 1 7 

Earthworm 1.90 2.14 1 7 

Earwig 1.65 1.92 1 7 

Echidna 1.38 1.68 1 6 

Elephant 2.08 1.94 1 7 

Eel 5.45 1.31 1 7 

Elk # 2.36 2.05 1 7 

Emu 2.36 1.48 1 7 

Ewe # 2.68 2.28 1 7 

Ferret 3.83 1.77 1 7 

Field mouse 3.79 1.75 1 7 

Finch 2.16 1.50 1 6 

Fish # 2.79 2.43 1 7 

Flamingo 2.74 1.86 1 7 

Flea 1.66 2.12 1 7 

Fly 1.71 2.53 1 7 

Fowl 2.46 1.79 1 7 

Fox 5.80 1.12 3 7 

Frog # 3.40 1.91 1 7 

Gazelle # 2.44 2.28 1 7 

Gecko 2.15 1.83 1 7 

Gerbil 4.43 1.55 1 7 

Giant panda 4.88 1.43 1 7 

Gibbon 2.45 2.35 1 7 

Giraffe 4.81 1.65 1 7 

Gnu # 1.95 1.92 1 7 

Goldcrest 4.99 1.51 1 7 

Goat 1.52 1.50 1 6 

Goldfish 2.36 2.46 1 7 

Gorilla 3.24 1.91 1 7 

Greyhound 5.98 1.11 2 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Grizzly bear 
 

5.84 
 

1.09 
 

4 
 

7 

Groundhog 2.68 1.66 1 7 

Guinea fowl 2.24 1.74 1 7 

Guinea pig 4.65 1.43 1 7 

Gull 2.26 1.57 1 7 

Haddock 2.25 2.13 1 7 

Hamster 5.23 1.25 2 7 

Hare 4.71 1.41 2 7 

Hart # 1.62 1.97 1 7 

Hawk 2.95 1.96 1 7 

Hedgehog 4.39 1.67 2 7 

Heifer # 1.93 2.23 1 7 

Hen 3.49 1.88 1 7 

Heron 2.44 1.88 1 7 

Herring 2.10 1.96 1 7 

Hippopotamus 5.27 1.36 1 7 

Hornet 1.68 1.56 1 6 

Horse 6.20 1.00 3 7 

Horsefly 1.72 1.34 1 6 

Hyena 4.05 1.75 1 7 

Ibex # 1.25 1.93 1 6 

Iguana 2.17 1.78 1 7 

Impala # 1.67 2.26 1 7 

Insect 2.23 2.42 1 7 

Invertebrate 1.80 2.15 1 7 

Jack rabbit 2.79 2.07 1 7 

Jackal # 1.96 2.12 1 7 

Jackass # 1.72 1.92 1 7 

Jackdaw # 1.80 1.56 1 6 

Jaguar 5.17 1.34 2 7 

Kangaroo 4.88 1.64 2 7 

Kid # 2.74 2.06 1 7 

Kitten 5.88 1.22 3 7 

Kiwi 1.86 1.80 1 7 

Koala 4.08 1.75 1 7 

Koi carp 1.77 1.53 1 7 

Komodo dragon 2.30 1.85 1 7 

Lady bird 1.38 1.41 1 6 

Lamb # 2.28 2.20 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Lemur 2.70 2.00 1 7 

Leopard 5.47 1.28 2 7 

Lion 6.38 0.76 4 7 

Lizard 3.21 1.94 1 7 

Llama # 3.25 1.96 1 7 

Lobster 2.17 2.20 1 7 

Long tailed tit 1.85 1.77 1 7 

Lynx 2.96 1.84 1 7 

Mackerel 2.09 1.78 1 7 

Mammal 5.96 1.20 3 7 

Manatee 2.00 1.77 1 7 

Mandrill # * 1.66 1.76 1 6 

Marmoset # 1.75 1.70 1 6 

Marmot # 1.59 1.57 1 5 

Marten # 1.49 1.11 1 4 

Meerkat 3.10 1.91 1 7 

Midge 1.43 1.98 1 7 

Mink # 2.71 1.80 1 7 

Manx 2.33 2.03 1 7 

Mole 3.30 1.84 1 7 

Mongoose # 2.39 1.68 1 7 

Monkey # 6.31 0.79 4 7 

Moose 4.22 1.87 2 8 

Moth 2.10 2.15 1 7 

Mouse ~ 4.37 1.74 1 7 

Mule 3.75 1.63 1 7 

Musk ox # 1.33 1.43 1 5 

Newt 1.93 1.87 1 7 

Nightingale 2.06 1.69 1 7 

Ocelot # 1.33 1.59 1 7 

Octopus 2.59 2.03 1 7 

Orang-utan 4.82 1.43 1 7 

Oryx # 1.46 1.28 1 5 

Ostrich 3.12 1.80 1 7 

Otter # 3.66 1.76 1 7 

Owl 3.62 1.87 1 7 

Ox # 3.71 1.89 1 7 

Panda 5.79 1.16 3 7 

Panther 5.11 1.30 2 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Parakeet 1.92 1.62 1 6 

Parrot 3.36 1.94 1 7 

Partridge 2.32 1.81 1 7 

Peacock 3.20 1.72 1 7 

Peewit # 1.19 0.85 1 4 

Pelican 2.73 1.85 1 7 

Penguin ~ 4.16 1.80 1 7 

Perch 1.65 1.41 1 6 

Pheasant 3.06 1.83 1 7 

Pig 6.23 0.93 4 7 

Pigeon 3.02 2.09 1 7 

Piglet ~ 4.66 1.54 1 7 

Pike 1.96 1.63 1 7 

Pine marten # 1.72 1.33 1 5 

Piranha fish 2.19 1.79 1 7 

Plaice 1.94 1.68 1 7 

Platypus 2.05 1.97 1 7 

Polar bear 4.99 1.46 1 7 

Polar cat 3.24 1.71 1 7 

Pony 6.20 0.93 3 7 

Porcupine 2.99 1.86 1 7 

Porpoise # 2.20 1.69 1 6 

Poultry 2.98 2.12 1 7 

Prairie dog 2.79 1.98 1 7 

Puffin 2.81 1.91 1 7 

Puma 4.28 1.50 1 7 

Rabbit 6.01 1.12 2 7 

Racoon 3.25 1.92 1 7 

Ram # 3.58 1.77 1 7 

Rat 4.73 1.56 2 7 

Raven 2.48 1.82 1 6 

Reindeer 5.23 1.25 2 7 

Rhesus monkey # 3.25 1.99 1 7 

Rhinoceros 5.60 1.23 3 7 

Roach 1.47 1.60 1 7 

Robin 2.62 2.14 1 7 

Rodent 3.66 1.94 1 7 

Roe dear # 1.86 2.46 1 7 

Rook 2.01 1.90 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Rooster 
 

2.83 
 

1.98 
 

1 
 

7 

Salamander 2.01 1.78 1 7 

Salmon 2.11 1.95 1 7 

Sardine 1.90 2.14 1 7 

Sea lion 3.21 1.80 1 7 

Seagull 2.89 2.08 1 7 

Seahorse 2.28 1.67 1 7 

Seal 4.14 1.58 1 7 

Shark # 3.62 1.84 1 7 

Sheep 5.90 1.22 3 7 

Short tailed tit 1.91 1.83 1 7 

Shrew 2.15 1.78 1 7 

Shrimp 1.96 2.08 1 7 

Siamese cat ~ 4.34 1.72 1 7 

Siberian tiger 4.12 1.93 1 7 

Skate 1.71 1.67 1 6 

Skunk 3.15 1.93 1 7 

Skylark # 1.75 1.34 1 5 

Sloth 2.72 2.02 1 7 

Slug 1.70 2.42 1 7 

Snail 2.31 2.25 1 7 

Snake # 3.56 1.86 1 7 

Sole 1.53 1.43 1 7 

Sow # 2.35 2.34 1 7 

Sparrow 2.70 1.92 1 7 

Spider 2.54 2.42 1 7 

Springbok # 2.06 2.10 1 7 

Squid 1.96 1.99 1 7 

Squirrel 5.21 1.33 2 7 

Stag 3.83 1.79 1 7 

Star fish 1.95 2.00 1 7 

Starling 2.09 2.05 1 7 

Stick insect 1.79 2.04 1 7 

Stickleback 1.85 2.05 1 7 

Stoat # 2.35 2.06 1 7 

Sturgeon 1.56 1.52 1 7 

Swan 3.34 1.90 1 7 

Swift # 1.59 1.51 1 6 

Sword fish 2.05 1.67 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Tapir # 1.58 1.71 1 6 

Tarantula # 2.37 2.31 1 7 

Tench 1.51 1.37 1 5 

Thrush 2.03 1.71 1 6 

Tiger 6.05 1.07 3 7 

Toad 2.95 1.98 1 7 

Tortoise 3.30 1.80 1 7 

Trout 2.13 1.96 1 7 

Tuna 2.08 2.06 1 7 

Turkey 3.59 1.80 1 7 

Turtle 3.35 1.77 1 7 

Tyrannosaurus 1.91 2.45 1 7 

Vole 2.35 2.16 1 7 

Vulture 2.72 1.75 1 7 

Wallaby # 2.74 1.98 1 7 

Walrus 2.92 1.92 1 7 

Warthog 2.60 1.94 1 7 

Wasp 2.30 2.27 1 7 

Water buffalo # 3.02 2.02 1 7 

Water rat 2.44 1.76 1 7 

Weasel 3.05 2.00 1 7 

Whale 4.06 1.91 1 7 

White tiger 4.20 1.78 1 7 

Wild boar 4.19 1.53 1 7 

Wild cat 3.32 1.94 1 7 

Wild dog ~ 3.78 1.71 1 7 

Wildebeest # 3.62 1.84 1 7 

Wolf 5.86 1.11 3 7 

Wombat 2.23 1.77 1 7 

Woodcock 1.95 1.55 1 6 

Woodlouse 1.57 1.98 1 7 

Woodpecker 2.55 1.87 1 7 

Worm 1.95 2.14 1 7 

Wren 1.87 1.68 1 7 

Yak # 2.42 2.25 1 7 

Yellow tit 1.83 1.17 1 5 

Yellowhammer # 1.43 1.50 1 7 

Yorkshire terrier 4.36 1.70 1 7 

Zebra 4.98 1.55 1 7 
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Table C.2b. Mean, standard deviation (SD) and range (min-max) typicality values for fruit 

words in individuals belonging to the 21-30 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 
 

Acorn 1.40 1.82 1 7 

Almond 1.66 1.96 1 7 

Apple 5.85 1.07 1 7 

Apricot 4.89 1.40 1 7 

Aubergine # 2.40 2.00 1 7 

Avocado # 2.51 2.05 1 7 

Banana 6.35 1.03 3 7 

Berries 4.65 1.54 1 7 

Bilberry # 1.53 1.65 1 7 

Blackberry 4.51 1.68 1 7 

Blackcurrant 4.94 1.60 2 7 

Blueberry 4.04 1.76 1 7 

Bramble # 2.86 2.02 1 7 

Butternut squash 1.72 2.06 1 7 

Cantaloupe melon 2.60 2.23 1 7 

Cherry 4.79 1.60 1 7 

Chestnut # 1.69 1.46 1 6 

Citron 2.42 2.18 1 7 

Clementine ~ 4.07 1.76 1 7 

Coconut 3.72 1.96 1 7 

Cox apple # * 4.63 1.74 1 7 

Crab apple 4.17 1.56 1 7 

Cranberry 4.14 1.71 1 7 

Cucumber # 1.97 2.17 1 7 

Currant # 3.47 1.80 1 7 

Damson # 1.90 1.71 1 6 

Date 2.86 1.93 1 7 

Dewberry # 1.90 1.90 1 7 

Elderberry # 2.62 1.82 1 7 

Fig # 2.96 1.72 1 7 

Gala apple * 3.92 1.90 1 7 

Galia melon # ~ 3.68 1.86 1 7 

Gooseberry # 3.34 1.84 1 7 

Granny smith 5.34 1.41 2 7 

Grapefruit 5.10 1.48 2 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grape 
 

6.37 
 

0.94 
 

3 
 

7 

Green melon 3.31 2.08 1 7 

Guava 1.77 2.02 1 7 

Haw 1.24 1.31 1 5 

Hazelnuts 1.59 1.87 1 7 

Honeydew melon # ~ 4.27 1.68 1 7 

Horse chestnut 1.60 1.72 1 7 

Jackfruit 1.57 2.06 1 7 

Jaffa # 2.33 2.13 1 7 

Kiwi 4.70 1.66 2 7 

kumquat 2.05 2.07 1 7 

Lemon 5.30 1.52 2 7 

Lime 4.41 1.70 1 7 

Loganberry # 2.05 1.87 1 7 

Lychee # ~ 2.41 2.03 1 7 

Mandarin # ~ 4.39 1.70 1 7 

Mango 4.01 1.83 1 7 

Melon 5.78 1.25 2 7 

Nashi 1.16 1.00 1 5 

Nectarine 4.88 1.52 1 7 

Nuts # ~ 1.68 2.08 1 7 

Olive # 1.84 2.25 1 7 

Orange 6.86 0.33 6 7 

Papaya 3.27 1.72 1 7 

Passion fruit 4.40 1.48 1 7 

Paw paw # 1.62 2.13 1 7 

Peach ~ 5.54 1.17 1 7 

Pear 6.07 1.09 2 7 

Peppers 1.97 2.46 1 7 

Persimmons 1.36 1.58 1 7 

Pineapple 5.60 1.33 2 7 

Plantain # 1.50 1.84 1 7 

Plum 5.01 1.52 1 7 

Pomelo 1.31 1.31 1 5 

Pomegranate ~ 3.50 1.73 1 7 

Prune # 2.78 1.89 1 7 

Quince 1.36 1.13 1 4 

Raisin # 3.09 2.08 1 7 

Raspberry 5.37 1.39 2 7 



Page 23 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

max 
Fruit Mean SD 

min 

 

 

 

Red currant # 
 

2.95 
 

1.70 
 

1 
 

7 

Redberry 2.55 2.06 1 7 

Red grape 5.13 1.46 2 7 

Rhubarb # 3.15 2.19 1 7 

Rosehip # * 1.47 1.66 1 7 

Satsuma ~ 4.89 1.55 1 7 

Sharon fruit ~ 2.03 2.07 1 7 

Sloe berry # 2.12 1.78 1 7 

squash 1.91 1.92 1 7 

Star fruit 2.25 2.31 1 7 

Strawberry 6.49 0.82 3 7 

Sultana 2.94 1.99 1 7 

Tangerine 5.68 1.23 2 7 

Tayberry 1.44 1.26 1 5 

Tomato # * 2.95 2.32 1 7 

Walnut # 1.64 1.75 1 7 

Water melon 5.73 1.19 2 7 

Whinberry 1.76 1.97 1 7 

White currant # 1.78 1.85 1 7 

White grape 4.86 1.37 1 7 

Whortleberry 1.41 1.79 1 7 
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Table C.3a. Mean, standard deviation (SD) and range (min-max) typicality values for 

animal words in individuals belonging to the 31-40 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 
 

 

Aardvark 

 

 

2.14 

 

 

2.25 

 

 

1 

 

 

7 

Adder 2.74 1.98 1 7 

Albatross 2.93 1.59 1 7 

Alligator 4.21 1.65 2 7 

Alpaca # 1.92 2.05 1 7 

Amoeba 1.38 1.64 1 7 

Angel fish 1.90 1.69 1 6 

Ant 2.03 2.23 1 7 

Ant bear # 2.00 2.15 1 7 

Anteater 3.36 1.72 1 7 

Antelope # 3.98 1.65 1 7 

Ape 4.71 1.68 1 7 

Armadillo 2.65 1.85 1 7 

Ass # 3.72 1.66 1 7 

Baboon 4.09 1.74 1 7 

Badger 5.29 1.29 2 7 

Bald eagle 2.57 2.11 1 7 

Bat 2.79 2.15 1 7 

Bear 3.96 2.02 1 7 

Beaver 4.37 1.61 2 7 

Bee 2.32 2.14 1 7 

Beetle 1.85 1.85 1 6 

Bird # 2.89 2.37 1 7 

Bison # 2.81 2.04 1 7 

Blackbird 3.05 2.05 1 7 

Blue bird 2.47 2.19 1 7 

Blue tit 3.04 2.09 1 7 

Boa constrictor 2.21 1.95 1 6 

Boar # 3.84 1.76 1 7 

Brontosaurus # 2.49 2.05 1 7 

Brown bear 5.30 1.39 2 7 

Buck # 2.48 2.11 1 7 

Budgerigar 2.60 1.92 1 7 

Buffalo 4.50 1.47 1 7 

Bull 4.61 1.62 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Bullfinch # * 
 

2.08 
 

1.93 
 

1 
 

7 

Bullock # 3.49 1.92 1 7 

Butterfly 2.84 2.13 1 7 

Buzzard 2.37 1.88 1 7 

Calf ~ 4.27 1.76 1 7 

Camel # 5.71 1.24 2 7 

Canary 2.45 1.67 1 6 

Caribou # 2.35 2.16 1 7 

Carp 2.11 2.11 1 7 

Cat 5.32 1.35 1 7 

Caterpillar 1.90 1.79 1 7 

Cattle 6.24 0.91 4 7 

Chaffinch 2.09 2.12 1 7 

Chameleon 3.28 1.63 1 7 

Cheetah 5.20 1.51 2 7 

Chicken # 4.35 1.88 1 7 

Chimpanzee 4.90 1.64 1 7 

Chinchilla 2.63 1.95 1 7 

Chipmunk 3.59 2.02 1 7 

Clown fish 1.93 1.88 1 6 

Cobra # 2.91 1.84 1 7 

Cockatiel 2.77 1.84 1 7 

Cocker spaniel ~ 5.63 1.21 4 7 

Cockerel 3.33 1.79 1 7 

Cockroach 2.37 1.75 1 7 

Cod 2.35 2.06 1 7 

Condor # 2.16 1.66 1 7 

Conger eel 1.99 1.69 1 6 

Cougar # 3.32 1.95 1 7 

Cow 6.22 1.12 2 7 

Coyote 4.20 1.64 1 7 

Cray fish 2.06 1.72 1 7 

Crocodile 4.31 1.71 2 7 

Crow 2.94 2.15 1 7 

Cuckoo 2.46 2.09 1 7 

Deer 4.68 1.60 1 7 

Dingo # 2.84 2.11 1 7 

Dog # 5.38 1.34 1 7 

Dolphin 4.76 1.53 2 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Donkey 
 

5.12 
 

1.34 
 

1 
 

7 

Dormouse 2.96 1.88 1 7 

Dove 3.01 1.77 1 7 

Dragon 1.41 1.83 1 7 

Dragonfly 2.28 2.01 1 7 

Dromedary # 2.03 2.14 1 7 

Duck 3.85 1.94 1 7 

Duckbill platypus 2.17 1.70 1 6 

Eagle 2.99 2.14 1 7 

Earthworm 1.90 2.24 1 7 

Earwig 1.52 1.19 1 5 

Echidna 1.47 1.84 1 6 

Elephant 2.37 2.08 1 7 

Eel 5.14 1.47 1 7 

Elk # 2.94 1.92 1 7 

Emu 3.09 1.80 1 7 

Ewe # 5.68 1.03 4 7 

Ferret 4.18 1.48 2 7 

Field mouse 3.27 2.10 1 7 

Finch 2.85 1.99 1 7 

Fish # 2.72 2.35 1 7 

Flamingo 2.37 2.06 1 7 

Flea 1.54 1.63 1 6 

Fly 1.92 2.44 1 7 

Fowl 2.42 1.90 1 7 

Fox 5.04 1.66 2 7 

Frog # 3.64 2.00 1 7 

Gazelle # 4.43 1.73 2 7 

Gecko 2.32 1.49 1 6 

Gerbil 4.16 1.80 2 7 

Giant panda 4.24 1.95 1 7 

Gibbon 4.82 1.40 3 7 

Giraffe 6.10 1.04 3 7 

Gnu # 2.40 1.91 1 7 

Goldcrest 4.56 1.77 1 7 

Goat 1.70 1.76 1 6 

Goldfish 2.45 2.32 1 7 

Gorilla 3.94 1.80 2 7 

Greyhound 5.69 1.33 3 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Grizzly bear 
 

5.23 
 

1.35 
 

3 
 

7 

Groundhog 2.22 1.99 1 7 

Guinea fowl 2.22 1.77 1 6 

Guinea pig 4.54 1.52 2 7 

Gull 2.71 2.07 1 7 

Haddock 2.71 2.16 1 7 

Hamster 5.14 1.50 3 7 

Hare 4.99 1.40 2 7 

Hart # 1.43 1.78 1 6 

Hawk 2.61 1.96 1 7 

Hedgehog 4.76 1.39 3 7 

Heifer # 3.14 1.94 1 7 

Hen 3.52 2.16 1 7 

Heron 2.45 1.90 1 7 

Herring 2.68 1.87 1 7 

Hippopotamus 5.58 1.23 2 7 

Hornet 1.85 1.47 1 6 

Horse 5.38 1.34 1 7 

Horsefly 1.59 1.48 1 6 

Hyena 3.89 1.86 1 7 

Ibex # 1.64 1.95 1 7 

Iguana 3.03 1.80 1 7 

Impala # 2.41 2.09 1 7 

Insect 2.03 2.37 1 7 

Invertebrate 2.04 1.98 1 7 

Jack rabbit 3.72 1.67 2 7 

Jackal # 2.82 2.04 1 7 

Jackass # 2.74 1.67 1 7 

Jackdaw # 2.13 2.19 1 7 

Jaguar 4.45 1.67 1 7 

Kangaroo 5.24 1.39 3 7 

Kid # 3.05 1.98 1 7 

Kitten 5.17 1.39 1 7 

Kiwi 2.26 1.99 1 7 

Koala 5.12 1.31 3 7 

Koi carp 2.23 1.86 1 7 

Komodo dragon 2.17 2.14 1 7 

Lady bird 1.36 1.32 1 6 

Lamb # 2.07 2.16 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Lemur 2.91 1.98 1 7 

Leopard 4.97 1.57 2 7 

Lion 6.13 1.14 2 7 

Lizard 2.35 2.13 1 7 

Llama # 2.99 2.11 1 7 

Lobster 1.97 1.81 1 6 

Long tailed tit 1.86 2.09 1 7 

Lynx 3.77 1.70 1 7 

Mackerel 2.54 1.82 1 7 

Mammal 4.45 1.71 1 7 

Manatee 2.13 2.29 1 7 

Mandrill # * 1.46 1.30 1 5 

Marmoset # 2.02 1.94 1 7 

Marmot # 1.87 1.86 1 7 

Marten # 2.01 1.49 1 6 

Meerkat 4.41 1.34 2 7 

Midge 1.52 1.88 1 7 

Mink # 3.20 1.86 1 7 

Manx 2.95 2.26 1 7 

Mole 3.78 1.82 2 7 

Mongoose # 2.55 2.14 1 7 

Monkey # 4.83 1.65 1 7 

Moose 3.99 1.77 1 7 

Moth 2.18 2.30 1 7 

Mouse ~ 3.79 2.04 1 7 

Mule 3.85 1.85 1 7 

Musk ox # 2.47 2.30 1 7 

Newt 1.87 1.68 1 6 

Nightingale 2.58 2.13 1 7 

Ocelot # 1.41 1.30 1 4 

Octopus 3.73 1.70 2 7 

Orang-utan 5.51 1.39 3 7 

Oryx # 1.53 1.83 1 6 

Ostrich 3.47 1.82 1 7 

Otter # 4.48 1.57 2 7 

Owl 2.95 2.14 1 7 

Ox # 3.98 1.80 1 7 

Panda 5.32 1.57 2 7 

Panther 3.82 1.93 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Parakeet 2.29 1.80 1 6 

Parrot 3.07 2.06 1 7 

Partridge 2.41 1.85 1 7 

Peacock 4.02 1.57 2 7 

Peewit # 1.23 1.87 1 7 

Pelican 2.32 2.11 1 7 

Penguin ~ 4.33 1.76 1 7 

Perch 1.98 1.85 1 7 

Pheasant 2.95 1.98 1 7 

Pig 5.20 1.39 1 7 

Pigeon 2.89 2.28 1 7 

Piglet ~ 5.38 1.26 3 7 

Pike 2.38 1.84 1 6 

Pine marten # 1.92 1.76 1 7 

Piranha fish 2.15 1.77 1 6 

Plaice 2.28 1.78 1 7 

Platypus 2.79 1.81 1 7 

Polar bear 5.43 1.38 2 7 

Polar cat 2.47 2.13 1 7 

Pony 4.86 1.49 1 7 

Porcupine 4.00 1.58 2 7 

Porpoise # 2.30 1.88 1 7 

Poultry 2.78 2.09 1 7 

Prairie dog 3.99 1.71 2 7 

Puffin 3.01 1.73 2 7 

Puma 3.37 2.00 1 7 

Rabbit 4.86 1.59 1 7 

Racoon 3.41 1.87 1 7 

Ram # 3.91 1.73 1 7 

Rat 3.60 2.02 1 7 

Raven 2.98 1.76 1 7 

Reindeer 5.31 1.36 2 7 

Rhesus monkey # 2.48 2.52 1 7 

Rhinoceros 5.55 1.21 3 7 

Roach 1.71 1.46 1 6 

Robin 3.39 1.92 1 7 

Rodent 2.73 2.10 1 7 

Roe dear # 2.48 2.33 1 7 

Rook 2.83 1.80 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Rooster 
 

3.37 
 

1.85 
 

1 
 

7 

Salamander 1.71 1.38 1 6 

Salmon 2.54 1.92 1 7 

Sardine 2.02 1.37 1 6 

Sea lion 3.22 2.01 1 7 

Seagull 3.26 2.05 1 7 

Seahorse 1.88 1.71 1 7 

Seal 3.74 1.89 1 7 

Shark # 3.46 1.76 1 7 

Sheep 5.24 1.40 1 7 

Short tailed tit 1.76 1.82 1 6 

Shrew 2.60 1.69 1 7 

Shrimp 1.83 1.89 1 7 

Siamese cat ~ 3.54 1.99 1 7 

Siberian tiger 3.53 1.95 1 7 

Skate 2.22 1.31 1 5 

Skunk 3.97 1.47 2 7 

Skylark # 2.08 2.02 1 7 

Sloth 3.14 1.96 1 7 

Slug 1.87 2.00 1 7 

Snail 2.02 2.26 1 7 

Snake # 2.87 2.45 1 7 

Sole 2.07 1.26 1 5 

Sow # 3.49 1.94 1 7 

Sparrow 2.60 2.26 1 7 

Spider 2.08 2.48 1 7 

Springbok # 2.89 1.73 1 7 

Squid 2.50 1.95 1 7 

Squirrel 5.53 1.27 3 7 

Stag 4.60 1.69 2 7 

Star fish 1.59 1.44 1 6 

Starling 2.35 1.99 1 7 

Stick insect 1.92 1.39 1 5 

Stickleback 1.90 1.54 1 7 

Stoat # 3.28 1.79 1 7 

Sturgeon 1.77 1.23 1 6 

Swan 3.57 2.08 1 7 

Swift # 2.24 2.01 1 7 

Sword fish 2.31 2.04 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Tapir # 1.94 1.72 1 7 

Tarantula # 2.54 1.65 1 6 

Tench 2.02 1.98 1 7 

Thrush 3.01 1.83 1 7 

Tiger 6.20 0.99 4 7 

Toad 2.81 1.89 1 7 

Tortoise 3.17 1.84 1 7 

Trout 2.32 2.01 1 7 

Tuna 2.60 1.86 1 7 

Turkey 4.06 1.79 2 7 

Turtle 2.96 1.67 1 7 

Tyrannosaurus 2.73 2.14 1 7 

Vole 2.55 1.74 1 7 

Vulture 2.60 1.96 1 7 

Wallaby # 4.17 1.59 2 7 

Walrus 4.02 1.66 2 7 

Warthog 3.23 1.81 1 7 

Wasp 2.25 2.16 1 7 

Water buffalo # 3.05 2.08 1 7 

Water rat 2.48 2.21 1 7 

Weasel 3.41 1.81 1 7 

Whale 3.40 2.06 1 7 

White tiger 2.86 2.26 1 7 

Wild boar 3.33 1.80 1 7 

Wild cat 3.62 1.88 1 7 

Wild dog ~ 2.81 2.18 1 7 

Wildebeest # 3.76 1.79 1 7 

Wolf 5.08 1.56 2 7 

Wombat 2.65 1.79 1 7 

Woodcock 1.92 1.79 1 6 

Woodlouse 1.62 1.54 1 6 

Woodpecker 2.88 1.76 1 7 

Worm 2.06 2.31 1 7 

Wren 2.80 1.77 1 7 

Yak # 2.78 2.12 1 7 

Yellow tit 1.94 2.22 1 7 

Yellowhammer # 1.81 1.65 1 6 

Yorkshire terrier 5.89 1.09 3 7 

Zebra 6.20 1.00 3 7 
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Table C.3b. Mean, standard deviation (SD) and range (min-max) typicality values for fruit 

words in individuals belonging to the 31-40 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 
 

Acorn 1.47 1.88 1 7 

Almond 1.73 1.80 1 7 

Apple 5.25 1.41 1 7 

Apricot 5.61 1.10 4 7 

Aubergine # 1.73 2.11 1 7 

Avocado # 3.56 1.85 1 7 

Banana 6.94 0.24 6 7 

Berries 3.26 2.16 1 7 

Bilberry # 1.71 2.30 1 7 

Blackberry 4.78 1.64 3 7 

Blackcurrant 4.19 1.70 1 7 

Blueberry 4.31 1.81 2 7 

Bramble # 2.78 1.99 1 7 

Butternut squash 1.89 1.30 1 4 

Cantaloupe melon 3.35 3.58 1 16 

Cherry 4.81 1.55 1 7 

Chestnut # 1.63 1.70 1 7 

Citron 1.41 2.47 1 7 

Clementine ~ 4.30 1.69 1 7 

Coconut 2.61 2.31 1 7 

Cox apple # * 5.19 1.54 2 7 

Crab apple 3.48 1.94 1 7 

Cranberry 3.04 1.79 1 7 

Cucumber # 2.30 2.22 1 7 

Currant # 2.46 2.10 1 7 

Damson # 2.47 1.56 1 7 

Date 3.02 1.83 1 7 

Dewberry # 1.57 1.95 1 7 

Elderberry # 3.22 1.96 1 7 

Fig # 2.79 1.76 1 7 

Gala apple * 3.57 2.02 1 7 

Galia melon # ~ 3.18 2.20 1 7 

Gooseberry # 3.89 1.93 1 7 

Granny smith 5.76 1.19 3 7 

Grapefruit 5.41 1.35 2 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grape 
 

5.75 
 

1.33 
 

2 
 

7 

Green melon 3.92 1.73 2 7 

Guava 2.04 1.76 1 6 

Haw 1.39 1.87 1 7 

Hazelnuts 1.73 1.80 1 7 

Honeydew melon # ~ 2.97 2.19 1 7 

Horse chestnut 1.50 2.29 1 7 

Jackfruit 1.31 1.58 1 5 

Jaffa # 3.03 2.00 1 7 

Kiwi 5.43 1.18 3 7 

kumquat 1.89 1.73 1 7 

Lemon 5.56 1.47 3 7 

Lime 4.95 1.54 2 7 

Loganberry # 1.89 1.91 1 6 

Lychee # ~ 2.50 1.90 1 6 

Mandarin # ~ 5.01 1.55 3 7 

Mango 5.14 1.41 2 7 

Melon 5.59 1.43 3 7 

Nashi 1.07 0.35 1 2 

Nectarine 5.57 1.10 3 7 

Nuts # ~ 1.45 1.86 1 7 

Olive # 2.37 1.59 1 7 

Orange 5.21 1.42 1 7 

Papaya 2.53 2.08 1 7 

Passion fruit 3.42 2.09 1 7 

Paw paw # 2.29 2.09 1 7 

Peach ~ 5.96 1.06 3 7 

Pear 6.21 0.98 4 7 

Peppers 1.73 2.42 1 7 

Persimmons 1.57 2.25 1 7 

Pineapple 6.49 0.62 5 7 

Plantain # 1.80 1.06 1 4 

Plum 5.33 1.44 3 7 

Pomelo 1.28 2.13 1 7 

Pomegranate ~ 3.04 1.97 1 7 

Prune # 3.28 1.54 2 7 

Quince 1.85 1.93 1 7 

Raisin # 3.75 1.82 2 7 

Raspberry 5.57 1.23 3 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Red currant # 
 

2.83 
 

1.97 
 

1 
 

7 

Redberry 2.56 1.87 1 7 

Red grape 4.64 1.70 2 7 

Rhubarb # 4.48 1.53 2 7 

Rosehip # * 1.87 2.14 1 7 

Satsuma ~ 6.19 0.93 4 7 

Sharon fruit ~ 1.67 1.93 1 7 

Sloe berry # 1.84 1.67 1 7 

squash 1.88 1.77 1 7 

Star fruit 2.67 1.71 1 7 

Strawberry 6.61 0.59 5 7 

Sultana 3.50 1.75 1 7 

Tangerine 6.24 0.77 5 7 

Tayberry 1.41 2.15 1 7 

Tomato # * 3.43 2.30 1 7 

Walnut # 1.57 1.87 1 7 

Water melon 5.83 1.11 4 7 

Whinberry 1.46 2.00 1 6 

White currant # 1.73 1.71 1 6 

White grape 3.90 1.99 1 7 

Whortleberry 1.50 1.78 1 7 
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Table C.4a. Mean, standard deviation (SD) and range (min-max) typicality values for 

animal words in individuals belonging to the 41-50 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 
 

 

Aardvark 

 

 

3.11 

 

 

2.01 

 

 

1 

 

 

7 

Adder 2.49 2.26 1 7 

Albatross 2.18 1.77 1 7 

Alligator 5.22 1.51 2 7 

Alpaca # 2.68 2.02 1 7 

Amoeba 1.32 2.14 1 7 

Angel fish 2.11 1.96 1 7 

Ant 2.27 2.59 1 7 

Ant bear # 1.51 1.26 1 4 

Anteater 3.82 1.65 2 7 

Antelope # 5.55 1.19 4 7 

Ape 5.98 1.14 3 7 

Armadillo 3.90 1.82 2 7 

Ass # 3.33 1.68 1 7 

Baboon 5.22 1.51 2 7 

Badger 4.83 1.61 2 7 

Bald eagle 3.05 2.20 1 7 

Bat 3.63 2.11 1 7 

Bear 6.16 1.16 3 7 

Beaver 5.18 1.22 4 7 

Bee 2.65 2.55 1 7 

Beetle 2.18 2.67 1 7 

Bird # 3.17 2.41 1 7 

Bison # 3.88 1.71 1 7 

Blackbird 3.04 2.36 1 7 

Blue bird 2.27 2.28 1 7 

Blue tit 3.31 1.83 1 7 

Boa constrictor 2.86 1.74 1 7 

Boar # 4.54 1.29 3 7 

Brontosaurus # 1.48 2.55 1 7 

Brown bear 5.19 1.56 2 7 

Buck # 3.02 1.49 1 7 

Budgerigar 2.97 2.39 1 7 

Buffalo 5.20 1.45 3 7 

Bull 5.69 1.39 2 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Bullfinch # * 
 

2.16 
 

1.77 
 

1 
 

7 

Bullock # 3.62 1.92 1 7 

Butterfly 2.53 2.63 1 7 

Buzzard 2.38 1.49 1 7 

Calf ~ 5.98 0.95 4 7 

Camel # 6.04 1.14 4 7 

Canary 2.40 2.30 1 7 

Caribou # 2.95 1.90 1 7 

Carp 2.07 1.88 1 7 

Cat 6.64 0.80 4 7 

Caterpillar 2.31 2.56 1 7 

Cattle 5.09 1.70 3 7 

Chaffinch 2.25 1.91 1 7 

Chameleon 2.72 1.92 1 7 

Cheetah 5.68 1.24 3 7 

Chicken # 3.91 2.10 1 7 

Chimpanzee 6.65 0.61 5 7 

Chinchilla 3.77 1.70 1 7 

Chipmunk 4.30 1.69 2 7 

Clown fish 1.70 1.79 1 7 

Cobra # 3.57 1.73 2 7 

Cockatiel 2.40 2.05 1 7 

Cocker spaniel ~ 5.40 1.37 3 7 

Cockerel 2.93 2.14 1 7 

Cockroach 2.31 2.17 1 7 

Cod 2.51 2.38 1 7 

Condor # 2.07 1.64 1 7 

Conger eel 2.08 2.02 1 7 

Cougar # 4.16 1.59 2 7 

Cow 6.81 0.53 5 7 

Coyote 4.24 1.38 2 7 

Cray fish 1.86 2.01 1 7 

Crocodile 5.65 1.41 3 7 

Crow 2.66 2.32 1 7 

Cuckoo 3.07 2.12 1 7 

Deer 6.22 0.84 4 7 

Dingo # 3.22 1.86 1 7 

Dog # 6.81 0.53 5 7 

Dolphin 3.29 2.27 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Donkey 
 

6.55 
 

0.74 
 

5 
 

7 

Dormouse 3.68 1.64 2 7 

Dove 3.03 2.17 1 7 

Dragon 1.41 1.26 1 4 

Dragonfly 2.47 2.23 1 7 

Dromedary # 2.89 1.86 1 7 

Duck 3.54 2.20 1 7 

Duckbill platypus 2.46 1.66 1 6 

Eagle 3.09 2.23 1 7 

Earthworm 2.22 2.34 1 7 

Earwig 2.30 2.28 1 7 

Echidna 1.26 1.95 1 7 

Elephant 2.22 2.24 1 7 

Eel 5.69 1.39 2 7 

Elk # 2.93 2.06 1 7 

Emu 3.25 1.86 1 7 

Ewe # 5.37 1.17 4 7 

Ferret 3.54 1.90 1 7 

Field mouse 3.57 1.70 1 7 

Finch 2.45 2.07 1 7 

Fish # 2.86 2.58 1 7 

Flamingo 2.85 2.01 1 7 

Flea 2.10 2.20 1 7 

Fly 2.02 2.73 1 7 

Fowl 2.52 2.28 1 7 

Fox 6.43 0.85 4 7 

Frog # 4.69 1.83 2 7 

Gazelle # 4.12 1.55 2 7 

Gecko 2.01 1.98 1 7 

Gerbil 4.99 1.45 3 7 

Giant panda 5.64 1.30 3 7 

Gibbon 4.58 1.66 3 7 

Giraffe 6.65 0.61 5 7 

Gnu # 2.90 1.66 1 7 

Goldcrest 6.50 0.84 4 7 

Goat 1.66 0.82 1 3 

Goldfish 2.73 2.30 1 7 

Gorilla 2.98 2.23 1 7 

Greyhound 6.55 0.74 5 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Grizzly bear 
 

5.56 
 

1.33 
 

3 
 

7 

Groundhog 3.81 1.49 2 7 

Guinea fowl 1.93 2.08 1 7 

Guinea pig 4.93 1.45 2 7 

Gull 2.84 2.23 1 7 

Haddock 2.63 2.30 1 7 

Hamster 6.14 0.95 4 7 

Hare 4.55 1.52 3 7 

Hart # 1.32 2.18 1 7 

Hawk 2.91 2.21 1 7 

Hedgehog 5.47 1.31 4 7 

Heifer # 3.30 2.06 1 7 

Hen 3.47 2.17 1 7 

Heron 2.64 2.03 1 7 

Herring 2.70 2.08 1 7 

Hippopotamus 5.89 1.19 3 7 

Hornet 1.65 2.22 1 7 

Horse 6.81 0.53 5 7 

Horsefly 1.92 2.02 1 7 

Hyena 4.71 1.38 3 7 

Ibex # 1.77 2.36 1 7 

Iguana 2.94 1.83 1 7 

Impala # 2.35 1.91 1 7 

Insect 2.12 2.50 1 7 

Invertebrate 1.40 2.17 1 7 

Jack rabbit 2.82 1.90 1 7 

Jackal # 4.41 1.62 2 7 

Jackass # 3.01 1.72 1 7 

Jackdaw # 2.18 1.61 1 7 

Jaguar 4.09 1.74 1 7 

Kangaroo 5.69 1.33 3 7 

Kid # 2.89 2.05 1 7 

Kitten 6.41 0.76 5 7 

Kiwi 2.06 1.87 1 7 

Koala 5.70 1.14 4 7 

Koi carp 2.12 1.94 1 7 

Komodo dragon 2.22 1.93 1 7 

Lady bird 1.56 1.79 1 7 

Lamb # 2.57 2.48 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Lemur 2.52 2.09 1 7 

Leopard 5.45 1.41 3 7 

Lion 4.47 1.86 1 7 

Lizard 4.03 2.03 2 7 

Llama # 4.04 1.55 2 7 

Lobster 2.81 2.18 1 7 

Long tailed tit 2.03 1.79 1 7 

Lynx 2.66 1.99 1 7 

Mackerel 2.25 1.98 1 7 

Mammal 2.93 2.41 1 7 

Manatee 2.71 1.39 1 5 

Mandrill # * 1.78 1.99 1 7 

Marmoset # 2.16 2.17 1 7 

Marmot # 2.01 2.03 1 7 

Marten # 1.49 1.38 1 5 

Meerkat 4.73 1.24 3 7 

Midge 1.76 2.21 1 7 

Mink # 2.92 1.83 1 7 

Manx 2.29 1.95 1 7 

Mole 4.70 1.65 2 7 

Mongoose # 2.90 1.88 1 7 

Monkey # 6.65 0.61 5 7 

Moose 5.04 1.28 3 7 

Moth 2.31 2.56 1 7 

Mouse ~ 5.28 1.62 2 7 

Mule 4.70 1.65 2 7 

Musk ox # 1.78 2.04 1 7 

Newt 2.44 2.39 1 7 

Nightingale 2.05 2.50 1 7 

Ocelot # 1.94 1.86 1 7 

Octopus 2.98 2.36 1 7 

Orang-utan 5.68 1.03 4 7 

Oryx # 1.49 2.33 1 7 

Ostrich 2.77 2.18 1 7 

Otter # 5.61 1.05 4 7 

Owl 3.21 2.16 1 7 

Ox # 4.09 1.68 1 7 

Panda 5.43 1.49 3 7 

Panther 4.87 1.65 2 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Parakeet 2.55 1.86 1 7 

Parrot 3.11 2.46 1 7 

Partridge 3.12 1.88 1 7 

Peacock 3.55 1.86 1 7 

Peewit # 1.60 1.64 1 7 

Pelican 3.05 1.82 1 7 

Penguin ~ 3.27 2.15 1 7 

Perch 2.09 2.11 1 7 

Pheasant 3.82 2.02 1 7 

Pig 6.92 0.27 6 7 

Pigeon 2.97 2.40 1 7 

Piglet ~ 5.25 1.44 3 7 

Pike 2.55 2.13 1 7 

Pine marten # 1.91 1.94 1 7 

Piranha fish 2.43 1.99 1 7 

Plaice 2.97 1.94 1 7 

Platypus 2.90 1.96 1 7 

Polar bear 6.26 0.94 4 7 

Polar cat 2.82 1.94 1 7 

Pony 6.65 0.61 5 7 

Porcupine 3.28 1.91 1 7 

Porpoise # 2.76 1.98 1 7 

Poultry 3.13 2.13 1 7 

Prairie dog 4.28 1.56 2 7 

Puffin 3.03 1.95 1 7 

Puma 3.19 1.98 1 7 

Rabbit 6.81 0.53 5 7 

Racoon 4.02 1.61 1 7 

Ram # 5.13 1.34 4 7 

Rat 5.89 1.33 3 7 

Raven 2.76 2.09 1 7 

Reindeer 4.66 1.81 2 7 

Rhesus monkey # 2.80 2.23 1 7 

Rhinoceros 5.83 1.14 4 7 

Roach 1.90 1.72 1 7 

Robin 2.99 2.33 1 7 

Rodent 3.17 2.06 1 7 

Roe dear # 3.27 2.34 1 7 

Rook 2.00 1.94 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Rooster 
 

3.38 
 

2.03 
 

1 
 

7 

Salamander 1.95 1.80 1 7 

Salmon 2.67 2.28 1 7 

Sardine 2.26 2.18 1 7 

Sea lion 2.61 2.37 1 7 

Seagull 2.90 2.58 1 7 

Seahorse 2.13 2.28 1 7 

Seal 3.85 1.94 1 7 

Shark # 3.59 2.26 1 7 

Sheep 6.33 0.94 4 7 

Short tailed tit 1.85 1.88 1 7 

Shrew 4.45 1.54 3 7 

Shrimp 2.99 2.14 1 7 

Siamese cat ~ 3.79 2.09 1 7 

Siberian tiger 3.87 1.86 1 7 

Skate 2.06 1.96 1 7 

Skunk 4.06 1.55 2 7 

Skylark # 2.25 1.72 1 7 

Sloth 2.69 1.98 1 7 

Slug 1.79 2.16 1 7 

Snail 2.80 2.41 1 7 

Snake # 3.65 2.23 1 7 

Sole 1.86 1.77 1 7 

Sow # 3.21 2.24 1 7 

Sparrow 3.04 2.41 1 7 

Spider 3.03 2.48 1 7 

Springbok # 2.45 2.03 1 7 

Squid 2.14 2.24 1 7 

Squirrel 6.26 1.09 3 7 

Stag 4.28 1.70 1 7 

Star fish 2.07 1.94 1 7 

Starling 2.13 2.43 1 7 

Stick insect 1.89 1.70 1 7 

Stickleback 2.05 2.15 1 7 

Stoat # 4.16 1.59 2 7 

Sturgeon 2.02 1.67 1 7 

Swan 3.23 2.40 1 7 

Swift # 2.83 1.96 1 7 

Sword fish 2.54 1.98 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Tapir # 2.07 2.20 1 7 

Tarantula # 3.16 1.89 1 7 

Tench 1.83 1.90 1 7 

Thrush 2.89 2.31 1 7 

Tiger 6.64 0.80 4 7 

Toad 3.47 1.95 1 7 

Tortoise 3.62 2.22 1 7 

Trout 2.70 2.35 1 7 

Tuna 2.59 1.98 1 7 

Turkey 3.00 2.38 1 7 

Turtle 2.74 2.21 1 7 

Tyrannosaurus 1.77 2.14 1 7 

Vole 3.40 1.65 1 7 

Vulture 2.94 1.83 1 7 

Wallaby # 3.59 1.89 1 7 

Walrus 4.06 1.82 1 7 

Warthog 2.84 2.23 1 7 

Wasp 2.55 2.50 1 7 

Water buffalo # 3.82 1.88 1 7 

Water rat 2.70 1.68 1 7 

Weasel 4.26 1.66 2 7 

Whale 4.56 1.73 1 7 

White tiger 3.23 2.01 1 7 

Wild boar 5.14 1.28 4 7 

Wild cat 3.23 1.89 1 7 

Wild dog ~ 3.50 1.91 1 7 

Wildebeest # 3.90 1.86 1 7 

Wolf 6.29 0.85 4 7 

Wombat 3.97 1.70 2 7 

Woodcock 1.94 2.04 1 7 

Woodlouse 2.39 2.39 1 7 

Woodpecker 2.68 2.11 1 7 

Worm 2.35 2.62 1 7 

Wren 2.37 2.06 1 7 

Yak # 4.66 1.49 3 7 

Yellow tit 2.04 1.82 1 7 

Yellowhammer # 1.86 1.70 1 7 

Yorkshire terrier 5.83 1.14 4 7 

Zebra 6.33 0.94 4 7 
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Table C.4b. Mean, standard deviation (SD) and range (min-max) typicality values for fruit 

words in individuals belonging to the 41-50 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 
 

Acorn 1.47 1.78 1 6 

Almond 2.02 2.77 1 7 

Apple 7.00 0.00 7 7 

Apricot 6.24 0.84 5 7 

Aubergine # 2.40 2.19 1 7 

Avocado # 2.66 2.25 1 7 

Banana 7.00 0.00 7 7 

Berries 6.17 1.01 4 7 

Bilberry # 1.72 2.44 1 7 

Blackberry 6.22 0.93 5 7 

Blackcurrant 6.11 0.99 4 7 

Blueberry 5.89 1.19 3 7 

Bramble # 2.92 2.06 1 7 

Butternut squash 1.86 1.66 1 6 

Cantaloupe melon 3.88 1.82 1 7 

Cherry 6.13 1.08 4 7 

Chestnut # 2.15 2.49 1 7 

Citron 1.82 2.39 1 7 

Clementine ~ 4.31 1.82 1 7 

Coconut 2.83 2.13 1 7 

Cox apple # * 5.62 1.36 3 7 

Crab apple 3.59 2.01 1 7 

Cranberry 5.06 1.45 2 7 

Cucumber # 1.88 2.77 1 7 

Currant # 5.28 1.49 3 7 

Damson # 3.04 2.06 1 7 

Date 3.68 1.92 1 7 

Dewberry # 1.87 2.25 1 7 

Elderberry # 3.30 1.99 1 7 

Fig # 3.42 1.83 1 7 

Gala apple * 3.90 2.03 1 7 

Galia melon # ~ 3.70 2.02 1 7 

Gooseberry # 5.24 1.34 3 7 

Granny smith 6.62 0.67 5 7 

Grapefruit 6.58 0.63 5 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grape 
 

6.92 
 

0.27 
 

6 
 

7 

Green melon 2.93 2.14 1 7 

Guava 1.86 2.20 1 7 

Haw 1.13 0.92 1 4 

Hazelnuts 2.15 2.30 1 7 

Honeydew melon # ~ 5.50 1.29 3 7 

Horse chestnut 2.24 2.20 1 7 

Jackfruit 1.25 1.48 1 6 

Jaffa # 4.00 1.96 2 7 

Kiwi 5.13 1.34 4 7 

kumquat 1.85 2.16 1 7 

Lemon 6.92 0.27 6 7 

Lime 6.31 0.85 5 7 

Loganberry # 3.02 2.03 1 7 

Lychee # ~ 2.46 1.87 1 7 

Mandarin # ~ 5.35 1.47 2 7 

Mango 4.85 1.56 2 7 

Melon 6.50 0.65 5 7 

Nashi 1.08 0.95 1 4 

Nectarine 4.22 1.74 1 7 

Nuts # ~ 2.24 2.66 1 7 

Olive # 3.96 2.04 2 7 

Orange 7.00 0.00 7 7 

Papaya 2.38 2.12 1 7 

Passion fruit 5.21 1.22 3 7 

Paw paw # 1.94 2.47 1 7 

Peach ~ 6.50 0.84 4 7 

Pear 6.84 0.36 6 7 

Peppers 2.45 2.27 1 7 

Persimmons 1.25 1.04 1 4 

Pineapple 6.26 1.09 3 7 

Plantain # 1.49 1.72 1 7 

Plum 6.33 0.94 4 7 

Pomelo 1.15 1.38 1 5 

Pomegranate ~ 4.54 1.64 2 7 

Prune # 4.80 1.59 3 7 

Quince 1.63 1.83 1 7 

Raisin # 4.57 1.73 2 7 

Raspberry 6.76 0.43 6 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Red currant # 
 

4.15 
 

1.77 
 

2 
 

7 

Redberry 2.69 2.29 1 7 

Red grape 4.46 1.91 2 7 

Rhubarb # 5.62 1.21 3 7 

Rosehip # * 1.72 2.16 1 7 

Satsuma ~ 5.38 1.54 2 7 

Sharon fruit ~ 1.99 2.02 1 7 

Sloe berry # 2.57 1.48 1 6 

squash 2.10 1.89 1 7 

Star fruit 2.03 2.10 1 7 

Strawberry 6.39 1.07 3 7 

Sultana 3.59 2.07 2 7 

Tangerine 6.45 0.85 5 7 

Tayberry 1.20 1.76 1 7 

Tomato # * 5.57 1.49 2 7 

Walnut # 2.08 2.58 1 7 

Water melon 5.90 1.00 4 7 

Whinberry 1.39 2.09 1 7 

White currant # 1.74 2.30 1 7 

White grape 2.77 2.51 1 7 

Whortleberry 1.14 1.51 1 6 
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Table C.5a. Mean, standard deviation (SD) and range (min-max) typicality values for 

animal words in individuals belonging to the 51-60 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 
 

 

Aardvark 

 

 

1.67 

 

 

2.46 

 

 

1 

 

 

7 

Adder 3.60 1.75 1 7 

Albatross 2.29 2.09 1 7 

Alligator 4.67 1.71 1 7 

Alpaca # 1.98 2.62 1 7 

Amoeba 1.51 2.32 1 7 

Angel fish 1.74 2.01 1 7 

Ant 2.49 2.33 1 7 

Ant bear # 1.83 2.47 1 7 

Anteater 3.25 2.12 1 7 

Antelope # 4.01 1.90 1 7 

Ape 6.34 0.92 4 7 

Armadillo 2.71 2.24 1 7 

Ass # 3.32 1.94 1 7 

Baboon 4.08 1.91 1 7 

Badger 5.53 1.35 3 7 

Bald eagle 1.96 2.08 1 6 

Bat 4.20 2.09 2 7 

Bear 6.64 0.67 5 7 

Beaver 3.82 2.07 1 7 

Bee 2.63 2.41 1 7 

Beetle 2.28 2.34 1 7 

Bird # 3.00 2.38 1 7 

Bison # 3.36 2.20 1 7 

Blackbird 3.39 2.11 1 7 

Blue bird 2.36 1.93 1 7 

Blue tit 2.47 2.15 1 7 

Boa constrictor 2.76 2.14 1 7 

Boar # 3.97 1.82 1 7 

Brontosaurus # 2.28 2.45 1 7 

Brown bear 4.48 1.77 1 7 

Buck # 1.97 2.52 1 7 

Budgerigar 2.82 2.35 1 7 

Buffalo 4.69 1.64 2 7 

Bull 5.71 1.37 3 7 
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Range 

min max 
Animal Mean SD 

 

 

 

 

 

Bullfinch # * 

 

 

1.67 

 

 

1.88 

 

 

1 

 

 

6 

Bullock # 4.87 1.42 2 7 

Butterfly 2.84 2.54 1 7 

Buzzard 2.06 2.23 1 7 

Calf ~ 5.50 1.17 3 7 

Camel # 5.89 1.33 3 7 

Canary 2.63 2.14 1 7 

Caribou # 2.64 2.45 1 7 

Carp 2.25 2.06 1 7 

Cat 6.87 0.32 6 7 

Caterpillar 2.92 2.22 1 7 

Cattle 6.34 0.63 5 7 

Chaffinch 1.94 1.86 1 6 

Chameleon 3.44 1.74 1 7 

Cheetah 5.77 1.23 3 7 

Chicken # 3.73 2.11 1 7 

Chimpanzee 6.44 0.72 5 7 

Chinchilla 3.21 2.21 1 7 

Chipmunk 3.01 2.34 1 7 

Clown fish 1.63 2.36 1 7 

Cobra # 2.77 2.15 1 7 

Cockatiel 2.36 2.08 1 7 

Cocker spaniel ~ 5.12 1.33 2 7 

Cockerel 3.05 2.23 1 7 

Cockroach 2.12 2.43 1 7 

Cod 2.85 2.42 1 7 

Condor # 2.11 2.12 1 6 

Conger eel 1.83 1.86 1 6 

Cougar # 2.52 2.55 1 7 

Cow 6.75 0.43 6 7 

Coyote 2.94 2.31 1 7 

Cray fish 2.01 1.84 1 6 

Crocodile 6.13 1.03 4 7 

Crow 2.77 1.95 1 7 

Cuckoo 3.13 2.06 1 7 

Deer 5.82 1.29 2 7 

Dingo # 3.37 2.04 1 7 

Dog # 6.79 0.51 5 7 

Dolphin 6.40 0.79 5 7 
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Range 

min max 
Animal Mean SD 

 

 

 

 

 

Donkey 

 

 

6.06 

 

 

1.08 

 

 

3 

 

 

7 

Dormouse 3.51 2.13 1 7 

Dove 3.16 2.17 1 7 

Dragon 2.12 2.46 1 7 

Dragonfly 2.28 2.22 1 7 

Dromedary # 2.12 2.32 1 7 

Duck 3.61 2.09 1 7 

Duckbill platypus 1.79 1.98 1 7 

Eagle 3.50 2.05 1 7 

Earthworm 3.05 2.20 1 7 

Earwig 2.26 2.12 1 7 

Echidna 1.27 1.28 1 5 

Elephant 2.51 2.05 1 7 

Eel 6.72 0.71 4 7 

Elk # 2.77 2.38 1 7 

Emu 2.42 2.21 1 7 

Ewe # 3.55 2.06 1 7 

Ferret 4.47 1.65 1 7 

Field mouse 3.75 1.98 1 7 

Finch 2.04 2.44 1 7 

Fish # 3.01 2.43 1 7 

Flamingo 3.37 1.93 1 7 

Flea 2.14 2.30 1 7 

Fly 2.40 2.70 1 7 

Fowl 2.63 2.14 1 7 

Fox 6.00 1.19 3 7 

Frog # 3.13 2.30 1 7 

Gazelle # 4.04 1.84 1 7 

Gecko 1.90 2.13 1 7 

Gerbil 5.76 1.00 4 7 

Giant panda 4.41 1.82 1 7 

Gibbon 3.12 2.04 1 7 

Giraffe 6.00 1.18 4 7 

Gnu # 2.18 2.48 1 7 

Goldcrest 6.11 1.08 4 7 

Goat 1.52 1.69 1 6 

Goldfish 2.84 2.38 1 7 

Gorilla 3.50 1.86 1 7 

Greyhound 5.75 1.40 3 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Grizzly bear 
 

5.28 
 

1.55 
 

2 
 

7 

Groundhog 2.37 2.35 1 7 

Guinea fowl 1.91 1.82 1 7 

Guinea pig 5.66 1.35 3 7 

Gull 2.70 2.03 1 7 

Haddock 2.64 2.43 1 7 

Hamster 5.36 1.51 2 7 

Hare 4.20 1.85 1 7 

Hart # 2.27 2.33 1 7 

Hawk 2.70 2.27 1 7 

Hedgehog 6.38 0.79 4 7 

Heifer # 4.02 1.81 2 7 

Hen 3.03 2.16 1 7 

Heron 2.34 2.23 1 7 

Herring 2.26 1.89 1 6 

Hippopotamus 6.12 1.15 3 7 

Hornet 1.94 1.76 1 7 

Horse 6.41 0.86 4 7 

Horsefly 1.80 1.85 1 7 

Hyena 4.24 1.76 1 7 

Ibex # 1.73 2.33 1 7 

Iguana 3.02 1.90 1 7 

Impala # 2.40 2.34 1 7 

Insect 2.10 2.73 1 7 

Invertebrate 1.86 2.09 1 7 

Jack rabbit 2.00 2.56 1 7 

Jackal # 3.31 2.12 1 7 

Jackass # 2.49 2.27 1 7 

Jackdaw # 2.11 1.80 1 6 

Jaguar 4.58 1.87 2 7 

Kangaroo 6.11 0.96 4 7 

Kid # 3.49 2.12 1 7 

Kitten 6.41 0.86 4 7 

Kiwi 2.07 1.90 1 7 

Koala 5.18 1.45 2 7 

Koi carp 2.39 1.82 1 6 

Komodo dragon 2.05 2.38 1 7 

Lady bird 1.36 1.25 1 5 

Lamb # 2.83 2.38 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Lemur 2.32 2.46 1 7 

Leopard 5.87 1.26 3 7 

Lion 6.75 0.43 6 7 

Lizard 3.26 2.19 1 7 

Llama # 3.61 1.98 1 7 

Lobster 2.63 2.33 1 7 

Long tailed tit 2.17 1.90 1 6 

Lynx 2.76 2.28 1 7 

Mackerel 1.86 2.13 1 7 

Mammal 4.57 1.76 1 7 

Manatee 2.12 2.38 1 7 

Mandrill # * 1.60 2.31 1 7 

Marmoset # 2.28 2.19 1 7 

Marmot # 1.52 2.56 1 7 

Marten # 1.91 2.06 1 7 

Meerkat 3.96 1.98 1 7 

Midge 2.26 2.12 1 7 

Mink # 3.34 2.01 1 7 

Manx 2.42 2.46 1 7 

Mole 4.22 1.92 1 7 

Mongoose # 2.26 2.64 1 8 

Monkey # 6.63 0.49 6 7 

Moose 2.87 2.33 1 7 

Moth 2.66 2.45 1 7 

Mouse ~ 5.54 1.47 2 7 

Mule 3.87 1.96 1 7 

Musk ox # 1.73 2.55 1 7 

Newt 2.40 2.09 1 7 

Nightingale 2.28 1.94 1 7 

Ocelot # 1.97 2.52 1 7 

Octopus 3.21 1.91 1 7 

Orang-utan 5.00 1.65 2 7 

Oryx # 1.48 2.13 1 7 

Ostrich 3.21 2.05 1 7 

Otter # 5.20 1.58 2 7 

Owl 3.65 1.99 1 7 

Ox # 3.60 2.22 1 7 

Panda 5.84 1.31 3 7 

Panther 5.15 1.62 2 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Parakeet 2.27 2.09 1 7 

Parrot 3.50 2.04 1 7 

Partridge 2.58 1.90 1 7 

Peacock 2.96 2.07 1 7 

Peewit # 1.51 1.93 1 6 

Pelican 2.59 2.14 1 7 

Penguin ~ 4.14 1.85 1 7 

Perch 1.86 1.79 1 7 

Pheasant 3.16 2.03 1 7 

Pig 6.49 0.78 4 7 

Pigeon 3.35 2.06 1 7 

Piglet ~ 5.90 1.08 4 7 

Pike 2.25 1.81 1 7 

Pine marten # 1.87 2.36 1 7 

Piranha fish 1.99 2.20 1 7 

Plaice 2.55 2.18 1 7 

Platypus 2.21 2.25 1 7 

Polar bear 6.47 0.70 5 7 

Polar cat 2.13 2.44 1 7 

Pony 6.14 0.73 5 7 

Porcupine 3.77 1.72 1 7 

Porpoise # 2.34 2.26 1 7 

Poultry 3.06 2.28 1 7 

Prairie dog 2.62 2.19 1 7 

Puffin 2.47 1.99 1 7 

Puma 5.06 1.50 2 7 

Rabbit 6.75 0.43 6 7 

Racoon 3.10 2.23 1 7 

Ram # 4.87 1.64 2 7 

Rat 4.77 1.64 1 7 

Raven 2.90 1.81 1 7 

Reindeer 5.74 1.27 2 7 

Rhesus monkey # 3.41 2.06 1 7 

Rhinoceros 4.37 1.83 1 7 

Roach 1.58 1.96 1 7 

Robin 3.31 2.32 1 7 

Rodent 4.66 1.74 2 7 

Roe dear # 3.90 1.87 1 7 

Rook 2.18 2.01 1 6 
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Range 

min max 
Animal Mean SD 

 

 

 

Rooster 
 

2.31 
 

2.35 
 

1 
 

7 

Salamander 1.61 1.97 1 6 

Salmon 2.72 2.50 1 7 

Sardine 2.08 2.03 1 7 

Sea lion 4.05 1.81 1 7 

Seagull 3.13 2.20 1 7 

Seahorse 2.28 2.29 1 7 

Seal 6.23 0.92 4 7 

Shark # 3.73 2.01 1 7 

Sheep 6.59 0.69 5 7 

Short tailed tit 2.19 2.18 1 7 

Shrew 3.23 2.11 1 7 

Shrimp 2.84 2.13 1 7 

Siamese cat ~ 5.43 1.34 3 7 

Siberian tiger 3.00 2.39 1 7 

Skate 1.85 1.82 1 7 

Skunk 2.68 2.40 1 7 

Skylark # 2.72 1.64 1 6 

Sloth 2.59 2.38 1 7 

Slug 2.32 2.51 1 7 

Snail 2.49 2.54 1 7 

Snake # 3.35 2.34 1 7 

Sole 1.99 1.97 1 7 

Sow # 4.72 1.70 2 7 

Sparrow 3.04 2.39 1 7 

Spider 2.85 2.42 1 7 

Springbok # 2.49 2.42 1 7 

Squid 2.56 1.84 1 7 

Squirrel 6.19 0.93 4 7 

Stag 3.50 2.10 1 7 

Star fish 2.39 2.04 1 7 

Starling 2.82 2.31 1 7 

Stick insect 1.77 1.75 1 7 

Stickleback 1.90 1.95 1 6 

Stoat # 2.70 2.29 1 7 

Sturgeon 1.77 1.65 1 7 

Swan 3.49 2.03 1 7 

Swift # 2.65 1.94 1 7 

Sword fish 2.12 2.11 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Tapir # 2.14 2.18 1 7 

Tarantula # 2.06 2.33 1 7 

Tench 1.58 2.15 1 7 

Thrush 2.70 2.35 1 7 

Tiger 6.67 0.57 5 7 

Toad 3.29 2.05 1 7 

Tortoise 4.41 1.78 1 7 

Trout 2.13 2.47 1 7 

Tuna 2.46 2.09 1 7 

Turkey 3.01 2.31 1 7 

Turtle 3.78 1.84 1 7 

Tyrannosaurus 2.50 2.32 1 7 

Vole 3.86 1.98 2 7 

Vulture 2.71 2.01 1 7 

Wallaby # 3.44 2.14 1 7 

Walrus 3.25 2.13 1 7 

Warthog 2.18 2.37 1 7 

Wasp 2.43 2.59 1 7 

Water buffalo # 3.09 2.34 1 7 

Water rat 3.07 2.15 1 7 

Weasel 3.91 2.08 1 7 

Whale 4.80 1.64 1 7 

White tiger 3.07 2.21 1 7 

Wild boar 3.66 2.01 1 7 

Wild cat 2.68 2.38 1 7 

Wild dog ~ 3.81 2.08 1 7 

Wildebeest # 2.83 2.33 1 7 

Wolf 5.46 1.45 2 7 

Wombat 3.06 2.09 1 7 

Woodcock 1.76 2.06 1 7 

Woodlouse 2.31 2.32 1 7 

Woodpecker 2.45 2.14 1 7 

Worm 2.60 2.50 1 7 

Wren 2.52 2.11 1 7 

Yak # 2.15 2.44 1 7 

Yellow tit 1.68 2.01 1 6 

Yellowhammer # 1.96 1.93 1 6 

Yorkshire terrier 4.86 1.39 1 7 

Zebra 5.75 1.38 3 7 
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Table C.5b. Mean, standard deviation (SD) and range (min-max) typicality values for fruit 

words in individuals belonging to the 51-60 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 
 

Acorn 1.91 2.10 1 7 

Almond 3.29 1.88 1 7 

Apple 6.64 0.67 5 7 

Apricot 5.31 1.37 3 7 

Aubergine # 2.39 1.82 1 7 

Avocado # 3.85 1.80 1 7 

Banana 6.79 0.51 5 7 

Berries 5.58 1.48 2 7 

Bilberry # 2.82 2.18 1 7 

Blackberry 5.15 1.52 2 7 

Blackcurrant 5.94 1.11 3 7 

Blueberry 4.24 1.75 1 7 

Bramble # 4.34 1.72 1 7 

Butternut squash 1.98 2.05 1 7 

Cantaloupe melon 4.68 1.69 2 7 

Cherry 6.23 1.04 3 7 

Chestnut # 2.89 1.92 1 7 

Citron 2.38 2.15 1 7 

Clementine ~ 4.46 1.71 1 7 

Coconut 3.73 2.01 1 7 

Cox apple # * 5.80 1.18 3 7 

Crab apple 3.54 1.82 1 7 

Cranberry 3.89 1.93 1 7 

Cucumber # 2.61 2.49 1 7 

Currant # 5.15 1.64 2 7 

Damson # 4.05 1.94 2 7 

Date 4.86 1.58 3 7 

Dewberry # 2.04 2.19 1 7 

Elderberry # 3.88 1.82 1 7 

Fig # 4.86 1.49 3 7 

Gala apple * 3.94 1.96 1 7 

Galia melon # ~ 4.40 1.90 2 7 

Gooseberry # 5.26 1.49 2 7 

Granny smith 6.02 1.01 4 7 

Grapefruit 6.28 0.92 4 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grape 
 

6.67 
 

0.57 
 

5 
 

7 

Green melon 2.59 2.32 1 7 

Guava 2.35 2.29 1 7 

Haw 1.70 2.14 1 7 

Hazelnuts 3.06 2.03 1 7 

Honeydew melon # ~ 5.31 1.44 3 7 

Horse chestnut 2.49 2.05 1 7 

Jackfruit 1.50 1.91 1 7 

Jaffa # 5.47 1.33 2 7 

Kiwi 5.65 1.28 3 7 

kumquat 1.92 2.50 1 7 

Lemon 4.86 1.67 1 7 

Lime 4.22 1.59 1 7 

Loganberry # 2.65 1.97 1 7 

Lychee # ~ 4.28 1.62 2 7 

Mandarin # ~ 5.74 1.21 3 7 

Mango 5.12 1.59 2 7 

Melon 6.36 0.86 4 7 

Nashi 1.13 1.20 1 5 

Nectarine 5.74 1.19 4 7 

Nuts # ~ 3.83 2.03 1 7 

Olive # 2.69 2.28 1 7 

Orange 6.79 0.51 5 7 

Papaya 3.68 2.03 2 7 

Passion fruit 4.88 1.50 2 7 

Paw paw # 2.62 2.11 1 7 

Peach ~ 6.55 0.77 4 7 

Pear 6.67 0.57 5 7 

Peppers 2.70 2.23 1 7 

Persimmons 1.72 2.12 1 7 

Pineapple 6.41 0.86 4 7 

Plantain # 1.74 2.36 1 7 

Plum 6.49 0.78 4 7 

Pomelo 1.43 2.26 1 7 

Pomegranate ~ 5.20 1.29 3 7 

Prune # 4.19 1.82 1 7 

Quince 1.95 2.31 1 7 

Raisin # 5.40 1.38 3 7 

Raspberry 5.60 1.34 2 7 



Page 56 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

max 
Fruit Mean SD 

min 

 

 

 

Red currant # 
 

4.23 
 

1.64 
 

2 
 

7 

Redberry 2.91 2.18 1 7 

Red grape 5.63 1.43 3 7 

Rhubarb # 4.11 1.92 1 7 

Rosehip # * 2.67 1.81 1 7 

Satsuma ~ 5.91 1.17 3 7 

Sharon fruit ~ 1.97 2.68 1 7 

Sloe berry # 2.04 2.16 1 7 

squash 2.39 2.21 1 7 

Star fruit 3.35 1.85 1 7 

Strawberry 6.75 0.43 6 7 

Sultana 4.93 1.58 2 7 

Tangerine 5.47 1.34 3 7 

Tayberry 2.17 2.09 1 7 

Tomato # * 4.45 1.91 1 7 

Walnut # 3.02 1.83 1 7 

Water melon 5.52 1.39 3 7 

Whinberry 1.61 2.31 1 7 

White currant # 1.92 2.16 1 7 

White grape 3.73 2.10 1 7 

Whortleberry 1.68 2.24 1 7 
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Table C.6a. Mean, standard deviation (SD) and range (min-max) typicality values for 

animal words in individuals belonging to the 61-70 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 
 

 

Aardvark 

 

 

2.91 

 

 

2.04 

 

 

1 

 

 

7 

Adder 2.27 1.95 1 7 

Albatross 2.87 1.71 1 7 

Alligator 3.40 2.19 1 7 

Alpaca # 3.37 2.04 1 7 

Amoeba 1.03 0.25 1 2 

Angel fish 1.47 1.63 1 7 

Ant 1.26 1.93 1 7 

Ant bear # 2.71 2.35 1 7 

Anteater 3.33 2.00 1 7 

Antelope # 5.99 1.10 3 7 

Ape 6.43 0.77 5 7 

Armadillo 3.17 2.09 1 7 

Ass # 4.43 1.71 1 7 

Baboon 4.74 1.70 3 7 

Badger 4.52 1.54 1 7 

Bald eagle 2.93 2.00 1 7 

Bat 2.45 2.12 1 7 

Bear 5.57 1.33 2 7 

Beaver 4.08 1.87 1 7 

Bee 1.67 1.92 1 7 

Beetle 1.39 1.99 1 7 

Bird # 2.45 2.14 1 7 

Bison # 4.05 1.98 1 7 

Blackbird 2.66 1.83 1 7 

Blue bird 2.44 1.93 1 7 

Blue tit 2.46 2.09 1 7 

Boa constrictor 2.27 2.04 1 7 

Boar # 5.21 1.42 3 7 

Brontosaurus # 2.69 2.41 1 7 

Brown bear 5.82 1.15 3 7 

Buck # 3.40 2.05 1 7 

Budgerigar 2.68 2.18 1 7 

Buffalo 4.85 1.54 1 7 

Bull 6.39 0.84 4 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Bullfinch # * 
 

2.56 
 

1.89 
 

1 
 

7 

Bullock # 5.64 1.30 2 7 

Butterfly 1.52 2.38 1 7 

Buzzard 2.67 2.05 1 7 

Calf ~ 4.72 1.59 1 7 

Camel # 6.27 0.76 5 7 

Canary 2.50 2.08 1 7 

Caribou # 4.21 1.77 1 7 

Carp 1.68 1.61 1 7 

Cat 5.88 1.26 2 7 

Caterpillar 1.28 1.94 1 7 

Cattle 6.57 0.60 5 7 

Chaffinch 2.14 2.03 1 7 

Chameleon 2.34 1.94 1 7 

Cheetah 6.25 0.83 5 7 

Chicken # 3.22 1.95 1 7 

Chimpanzee 5.27 1.49 2 7 

Chinchilla 3.31 2.09 1 7 

Chipmunk 3.59 2.06 1 7 

Clown fish 1.43 1.35 1 6 

Cobra # 2.40 1.83 1 7 

Cockatiel 2.60 1.98 1 7 

Cocker spaniel ~ 5.70 1.20 3 7 

Cockerel 3.19 1.90 1 7 

Cockroach 1.30 1.87 1 7 

Cod 1.93 2.11 1 7 

Condor # 2.83 1.80 1 7 

Conger eel 2.02 2.01 1 7 

Cougar # 5.10 1.53 2 7 

Cow 6.76 0.42 6 7 

Coyote 3.33 2.16 1 7 

Cray fish 1.93 1.67 1 7 

Crocodile 3.53 2.02 1 7 

Crow 2.53 1.95 1 7 

Cuckoo 2.66 2.02 1 7 

Deer 5.96 1.01 4 7 

Dingo # 3.86 1.89 1 7 

Dog # 4.96 1.60 1 7 

Dolphin 3.76 1.82 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Donkey 
 

5.87 
 

1.12 
 

3 
 

7 

Dormouse 3.57 2.08 1 7 

Dove 2.63 1.90 1 7 

Dragon 2.13 2.56 1 7 

Dragonfly 1.32 1.57 1 7 

Dromedary # 3.27 2.38 1 7 

Duck 3.73 1.77 1 7 

Duckbill platypus 1.47 1.96 1 7 

Eagle 2.91 1.97 1 7 

Earthworm 1.35 2.13 1 7 

Earwig 1.38 2.02 1 7 

Echidna 1.41 1.41 1 5 

Elephant 1.65 1.98 1 7 

Eel 6.82 0.37 6 7 

Elk # 4.45 1.64 1 7 

Emu 3.99 1.90 2 7 

Ewe # 3.55 2.16 1 7 

Ferret 3.63 1.91 1 7 

Field mouse 3.47 2.04 1 7 

Finch 2.57 1.87 1 7 

Fish # 1.99 1.87 1 7 

Flamingo 2.98 1.85 1 7 

Flea 1.20 1.46 1 7 

Fly 1.31 1.99 1 7 

Fowl 2.58 2.31 1 7 

Fox 4.49 1.67 1 7 

Frog # 2.31 1.95 1 7 

Gazelle # 5.60 1.03 4 7 

Gecko 1.94 2.15 1 7 

Gerbil 3.16 2.17 1 7 

Giant panda 6.01 1.05 3 7 

Gibbon 4.52 1.89 2 7 

Giraffe 5.51 1.45 2 7 

Gnu # 2.19 2.62 1 7 

Goldcrest 6.11 0.93 4 7 

Goat 2.08 1.93 1 7 

Goldfish 1.79 2.17 1 7 

Gorilla 2.78 2.03 1 7 

Greyhound 6.17 1.02 3 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Grizzly bear 
 

5.55 
 

1.41 
 

3 
 

7 

Groundhog 2.81 2.37 1 7 

Guinea fowl 2.62 1.98 1 7 

Guinea pig 4.30 1.87 2 7 

Gull 2.31 2.06 1 7 

Haddock 1.97 2.13 1 7 

Hamster 3.49 2.22 1 7 

Hare 5.37 1.25 3 7 

Hart # 2.16 2.56 1 7 

Hawk 2.64 2.04 1 7 

Hedgehog 3.56 2.06 1 7 

Heifer # 4.92 1.54 1 7 

Hen 3.31 2.14 1 7 

Heron 2.94 1.84 1 7 

Herring 2.15 1.86 1 7 

Hippopotamus 5.62 1.35 3 7 

Hornet 1.36 1.67 1 7 

Horse 5.28 1.38 1 7 

Horsefly 1.29 1.85 1 7 

Hyena 3.92 1.97 1 7 

Ibex # 2.84 2.27 1 7 

Iguana 2.79 2.07 1 7 

Impala # 3.32 2.24 1 7 

Insect 1.40 1.84 1 7 

Invertebrate 1.18 1.15 1 5 

Jack rabbit 3.65 1.97 1 7 

Jackal # 3.40 2.16 1 7 

Jackass # 3.77 1.80 1 7 

Jackdaw # 2.76 1.85 1 7 

Jaguar 5.26 1.52 2 7 

Kangaroo 5.49 1.33 3 7 

Kid # 3.12 2.14 1 7 

Kitten 4.88 1.61 2 7 

Kiwi 1.89 1.97 1 7 

Koala 3.94 1.87 1 7 

Koi carp 1.80 1.95 1 7 

Komodo dragon 2.16 2.18 1 7 

Lady bird 1.17 1.46 1 6 

Lamb # 1.50 2.06 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Lemur 3.47 2.09 1 7 

Leopard 6.11 0.93 4 7 

Lion 6.71 0.45 6 7 

Lizard 2.46 1.92 1 7 

Llama # 4.94 1.64 2 7 

Lobster 2.48 1.80 1 7 

Long tailed tit 2.31 1.68 1 7 

Lynx 3.61 1.97 1 7 

Mackerel 2.17 1.93 1 7 

Mammal 5.38 1.43 2 7 

Manatee 1.44 1.83 1 5 

Mandrill # * 2.09 2.50 1 7 

Marmoset # 3.03 2.21 1 7 

Marmot # 2.80 2.21 1 7 

Marten # 1.88 2.40 1 7 

Meerkat 2.93 2.30 1 7 

Midge 1.11 1.39 1 7 

Mink # 3.98 1.71 2 7 

Manx 3.11 2.04 1 7 

Mole 3.82 1.87 1 7 

Mongoose # 3.31 2.17 1 7 

Monkey # 4.95 1.63 2 7 

Moose 6.17 0.89 4 7 

Moth 1.49 2.03 1 7 

Mouse ~ 4.23 1.95 1 7 

Mule 5.49 1.33 3 7 

Musk ox # 3.11 2.32 1 7 

Newt 1.75 2.02 1 7 

Nightingale 2.76 1.89 1 7 

Ocelot # 2.16 2.62 1 7 

Octopus 2.23 1.85 1 7 

Orang-utan 5.68 1.33 3 7 

Oryx # 2.31 2.25 1 7 

Ostrich 3.78 1.67 1 7 

Otter # 4.73 1.64 2 7 

Owl 3.28 1.72 1 7 

Ox # 5.44 1.45 3 7 

Panda 5.52 1.25 2 7 

Panther 5.81 1.15 3 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Parakeet 2.85 1.87 1 7 

Parrot 2.63 2.09 1 7 

Partridge 2.67 1.91 1 7 

Peacock 2.73 2.25 1 7 

Peewit # 2.03 1.72 1 7 

Pelican 2.93 1.97 1 7 

Penguin ~ 4.88 1.58 2 7 

Perch 1.87 1.47 1 7 

Pheasant 2.77 1.86 1 7 

Pig 6.25 0.83 5 7 

Pigeon 2.53 2.00 1 7 

Piglet ~ 5.45 1.31 2 7 

Pike 2.00 1.61 1 7 

Pine marten # 2.20 2.37 1 7 

Piranha fish 1.78 1.80 1 7 

Plaice 1.74 2.12 1 7 

Platypus 2.43 2.04 1 7 

Polar bear 6.13 1.00 4 7 

Polar cat 2.69 2.42 1 7 

Pony 5.83 1.26 2 7 

Porcupine 3.47 2.10 1 7 

Porpoise # 2.94 1.65 2 7 

Poultry 3.05 2.06 1 7 

Prairie dog 3.94 1.85 1 7 

Puffin 2.80 2.13 1 7 

Puma 4.34 1.78 1 7 

Rabbit 5.62 1.33 3 7 

Racoon 3.40 2.04 1 7 

Ram # 4.37 1.71 1 7 

Rat 5.29 1.42 2 7 

Raven 2.57 1.89 1 7 

Reindeer 5.77 1.11 4 7 

Rhesus monkey # 4.05 2.01 1 7 

Rhinoceros 6.17 0.89 4 7 

Roach 1.75 1.80 1 7 

Robin 2.83 1.85 1 7 

Rodent 3.08 2.21 1 7 

Roe dear # 5.25 1.33 2 7 

Rook 2.34 1.80 1 7 



Page 63 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

min max 
Animal Mean SD 

 

 

 

Rooster 
 

2.87 
 

2.09 
 

1 
 

7 

Salamander 1.88 1.83 1 7 

Salmon 2.42 1.90 1 7 

Sardine 1.73 1.77 1 7 

Sea lion 3.22 1.98 1 7 

Seagull 2.45 2.06 1 7 

Seahorse 1.75 1.97 1 7 

Seal 3.32 2.02 1 7 

Shark # 2.48 2.20 1 7 

Sheep 5.10 1.42 1 7 

Short tailed tit 1.87 1.89 1 6 

Shrew 2.70 2.22 1 7 

Shrimp 1.52 1.43 1 7 

Siamese cat ~ 4.24 1.78 1 7 

Siberian tiger 4.85 1.54 1 7 

Skate 1.73 1.54 1 7 

Skunk 2.85 2.22 1 7 

Skylark # 2.27 1.98 1 7 

Sloth 2.51 2.39 1 7 

Slug 1.36 1.61 1 7 

Snail 1.40 1.84 1 7 

Snake # 2.24 2.25 1 7 

Sole 1.90 1.54 1 7 

Sow # 4.30 1.83 1 7 

Sparrow 2.48 2.03 1 7 

Spider 1.55 1.98 1 7 

Springbok # 3.46 2.13 1 7 

Squid 1.86 1.86 1 7 

Squirrel 4.09 1.79 1 7 

Stag 5.55 1.37 2 7 

Star fish 1.75 1.87 1 7 

Starling 2.50 1.92 1 7 

Stick insect 1.26 1.88 1 7 

Stickleback 1.37 1.72 1 7 

Stoat # 3.68 1.97 1 7 

Sturgeon 2.01 1.75 1 7 

Swan 3.29 1.87 1 7 

Swift # 2.48 1.95 1 7 

Sword fish 1.83 1.88 1 7 



Page 64 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

min max 
Animal Mean SD 

 

 

 

Tapir # 2.49 2.45 1 7 

Tarantula # 1.42 2.31 1 7 

Tench 1.62 1.62 1 7 

Thrush 2.71 1.93 1 7 

Tiger 6.57 0.60 5 7 

Toad 2.32 2.04 1 7 

Tortoise 2.89 2.07 1 7 

Trout 2.16 2.02 1 7 

Tuna 2.16 2.02 1 7 

Turkey 3.31 1.86 1 7 

Turtle 3.25 1.83 1 7 

Tyrannosaurus 2.60 2.48 1 7 

Vole 3.53 2.04 1 7 

Vulture 2.54 1.95 1 7 

Wallaby # 4.95 1.46 3 7 

Walrus 3.52 2.12 1 7 

Warthog 3.67 2.00 1 7 

Wasp 1.48 2.06 1 7 

Water buffalo # 5.68 1.25 3 7 

Water rat 3.07 2.09 1 7 

Weasel 3.09 2.34 1 7 

Whale 3.85 1.91 1 7 

White tiger 5.45 1.38 3 7 

Wild boar 4.19 1.86 1 7 

Wild cat 4.57 1.76 2 7 

Wild dog ~ 3.89 1.92 1 7 

Wildebeest # 4.89 1.67 2 7 

Wolf 5.42 1.35 2 7 

Wombat 2.51 2.39 1 7 

Woodcock 2.17 1.84 1 7 

Woodlouse 1.21 1.75 1 7 

Woodpecker 2.83 1.93 1 7 

Worm 1.45 1.87 1 7 

Wren 2.84 1.97 1 7 

Yak # 3.01 2.47 1 7 

Yellow tit 2.08 1.51 1 6 

Yellowhammer # 2.55 1.60 1 7 

Yorkshire terrier 5.74 1.11 3 7 

Zebra 6.07 0.99 4 7 
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Table C.6b. Mean, standard deviation (SD) and range (min-max) typicality values for fruit 

words in individuals belonging to the 61-70 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 
 

Acorn 5.74 2.11 3 10 

Almond 8.06 3.48 3 19 

Apple 3.32 1.22 1 8 

Apricot 5.53 3.08 1 14 

Aubergine # 9.47 4.27 4 19 

Avocado # 9.43 3.84 5 18 

Banana 3.58 1.32 1 8 

Berries 4.54 1.83 1 10 

Bilberry # 5.55 2.46 2 12 

Blackberry 5.55 2.46 2 12 

Blackcurrant 4.88 2.90 2 15 

Blueberry 6.34 3.48 3 17 

Bramble # 7.14 4.99 3 18 

Butternut squash 10.78 4.53 4 19 

Cantaloupe melon 10.78 4.53 4 19 

Cherry 5.07 1.63 2 8 

Chestnut # 6.91 2.28 4 11 

Citron 6.12 3.10 3 17 

Clementine ~ 6.12 3.10 3 17 

Coconut 6.32 2.26 3 12 

Cox apple # * 6.13 4.33 3 17 

Crab apple 7.87 4.91 4 18 

Cranberry 7.67 3.16 3 16 

Cucumber # 4.68 2.23 1 10 

Currant # 5.14 3.10 1 16 

Damson # 9.14 4.38 4 19 

Date 7.88 2.65 5 14 

Dewberry # 9.31 3.99 4 19 

Elderberry # 9.31 3.99 4 19 

Fig # 7.37 3.44 3 16 

Gala apple * 6.58 4.41 3 19 

Galia melon # ~ 10.59 4.14 4 19 

Gooseberry # 7.86 3.62 5 19 

Granny smith 5.96 3.84 3 15 

Grapefruit 6.58 2.96 3 15 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grape 
 

6.26 
 

1.01 
 

3 
 

7 

Green melon 3.03 2.23 1 7 

Guava 2.17 2.66 1 7 

Haw 1.41 1.53 1 6 

Hazelnuts 1.61 2.18 1 7 

Honeydew melon # ~ 4.85 1.69 2 7 

Horse chestnut 1.37 1.75 1 7 

Jackfruit 1.53 2.90 1 7 

Jaffa # 5.71 1.37 3 7 

Kiwi 3.71 2.03 1 7 

kumquat 1.96 2.47 1 7 

Lemon 3.53 2.14 1 7 

Lime 4.04 1.94 1 7 

Loganberry # 3.42 2.05 1 7 

Lychee # ~ 2.89 2.40 1 7 

Mandarin # ~ 5.71 1.24 4 7 

Mango 4.00 1.86 1 7 

Melon 4.44 1.75 1 7 

Nashi 1.14 2.27 1 7 

Nectarine 5.69 1.28 4 7 

Nuts # ~ 1.64 2.33 1 7 

Olive # 2.99 2.29 1 7 

Orange 6.72 0.71 4 7 

Papaya 2.70 2.38 1 7 

Passion fruit 3.13 2.15 1 7 

Paw paw # 2.14 2.57 1 7 

Peach ~ 6.28 1.04 3 7 

Pear 6.05 1.20 2 7 

Peppers 2.24 2.40 1 7 

Persimmons 1.55 2.38 1 7 

Pineapple 4.64 1.70 1 7 

Plantain # 2.04 2.35 1 7 

Plum 4.76 1.67 1 7 

Pomelo 1.52 2.48 1 7 

Pomegranate ~ 3.55 2.03 1 7 

Prune # 3.91 1.92 1 7 

Quince 2.19 2.45 1 7 

Raisin # 3.34 2.15 1 7 

Raspberry 4.44 1.84 1 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Red currant # 
 

3.31 
 

2.21 
 

1 
 

7 

Redberry 2.17 2.34 1 7 

Red grape 4.12 2.08 1 7 

Rhubarb # 3.35 2.05 1 7 

Rosehip # * 2.03 2.26 1 7 

Satsuma ~ 5.25 1.47 2 7 

Sharon fruit ~ 1.86 2.59 1 7 

Sloe berry # 2.21 2.37 1 7 

squash 2.07 2.37 1 7 

Star fruit 2.20 2.39 1 7 

Strawberry 6.33 1.04 3 7 

Sultana 4.01 1.89 1 7 

Tangerine 5.68 1.24 3 7 

Tayberry 1.68 2.32 1 7 

Tomato # * 2.76 2.41 1 7 

Walnut # 1.61 2.18 1 7 

Water melon 4.01 1.94 1 7 

Whinberry 1.75 2.74 1 7 

White currant # 1.94 2.67 1 7 

White grape 4.04 2.10 1 7 

Whortleberry 1.43 2.36 1 7 
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Table C.7a. Mean, standard deviation (SD) and range (min-max) typicality values for 

animal words in individuals belonging to > 70 age –category. 
 

 
 

 
Animal Mean 

 
SD 

 

Range 

min max 
 

 

Aardvark 

 

 

2.47 

 

 

1.98 

 

 

1 

 

 

7 

Adder 1.92 1.75 1 7 

Albatross 1.94 1.87 1 6 

Alligator 2.63 2.16 1 7 

Alpaca # 2.56 2.15 1 7 

Amoeba 1.17 0.97 1 4 

Angel fish 1.58 1.69 1 7 

Ant 1.83 2.54 1 7 

Ant bear # 2.82 1.93 1 7 

Anteater 2.41 2.46 1 7 

Antelope # 3.77 2.04 1 7 

Ape 3.84 2.20 1 7 

Armadillo 2.10 2.31 1 7 

Ass # 3.40 1.99 1 7 

Baboon 3.28 2.31 1 7 

Badger 4.13 1.88 2 7 

Bald eagle 1.78 1.91 1 6 

Bat 2.30 2.02 1 7 

Bear 3.21 2.39 1 7 

Beaver 2.90 2.24 1 7 

Bee 2.06 2.40 1 7 

Beetle 1.81 2.01 1 7 

Bird # 2.18 2.46 1 7 

Bison # 3.35 2.14 1 7 

Blackbird 2.86 1.70 1 7 

Blue bird 2.64 1.21 1 6 

Blue tit 2.57 1.51 1 6 

Boa constrictor 2.03 1.85 1 7 

Boar # 3.44 2.11 1 7 

Brontosaurus # 1.99 2.64 1 7 

Brown bear 3.52 2.31 1 7 

Buck # 3.14 2.27 1 7 

Budgerigar 2.47 1.61 1 6 

Buffalo 3.39 2.28 1 7 

Bull 4.44 1.77 1 7 



Page 69 ~ significant effect of age, # significant effect of gender, *significant effect of education 

Range 

min max 
Animal Mean SD 

 

 

 

Bullfinch # * 
 

2.18 
 

1.83 
 

1 
 

7 

Bullock # 4.05 1.88 1 7 

Butterfly 1.99 2.25 1 7 

Buzzard 2.13 1.75 1 7 

Calf ~ 5.00 1.60 3 7 

Camel # 3.93 2.07 1 7 

Canary 2.82 1.51 1 6 

Caribou # 3.15 2.35 1 7 

Carp 2.20 1.30 1 6 

Cat 5.95 1.29 3 7 

Caterpillar 1.56 2.07 1 7 

Cattle 5.23 1.59 2 7 

Chaffinch 2.14 1.38 1 5 

Chameleon 1.99 1.59 1 6 

Cheetah 3.85 2.16 1 7 

Chicken # 3.33 1.90 1 7 

Chimpanzee 5.05 1.63 2 7 

Chinchilla 2.64 2.30 1 7 

Chipmunk 2.77 2.19 1 7 

Clown fish 1.66 1.35 1 5 

Cobra # 1.84 1.75 1 7 

Cockatiel 1.96 1.56 1 7 

Cocker spaniel ~ 5.08 1.60 3 7 

Cockerel 2.69 1.66 1 7 

Cockroach 1.49 1.72 1 7 

Cod 2.44 1.83 1 7 

Condor # 2.22 1.89 1 7 

Conger eel 1.92 1.20 1 5 

Cougar # 3.02 2.35 1 7 

Cow 5.87 1.33 3 7 

Coyote 2.74 2.20 1 7 

Cray fish 1.65 1.61 1 6 

Crocodile 2.39 2.29 1 7 

Crow 2.64 1.76 1 7 

Cuckoo 2.22 1.50 1 6 

Deer 4.28 1.76 1 7 

Dingo # 2.68 2.30 1 7 

Dog # 6.31 0.74 5 7 

Dolphin 2.85 1.85 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Donkey 
 

5.13 
 

1.61 
 

2 
 

7 

Dormouse 2.75 2.12 1 7 

Dove 2.70 2.02 1 7 

Dragon 1.79 2.17 1 7 

Dragonfly 1.69 1.71 1 6 

Dromedary # 2.81 2.31 1 7 

Duck 3.41 1.83 1 7 

Duckbill platypus 1.98 1.91 1 7 

Eagle 2.57 2.01 1 7 

Earthworm 1.56 2.26 1 7 

Earwig 1.71 1.17 1 4 

Echidna 1.46 1.54 1 5 

Elephant 2.05 1.75 1 7 

Eel 4.29 1.99 1 7 

Elk # 3.28 2.08 1 7 

Emu 1.93 1.54 1 6 

Ewe # 4.26 1.71 1 7 

Ferret 3.78 1.93 1 7 

Field mouse 3.15 1.98 1 7 

Finch 2.41 1.52 1 7 

Fish # 1.94 2.43 1 7 

Flamingo 2.76 1.56 1 7 

Flea 1.43 1.92 1 7 

Fly 1.75 2.27 1 7 

Fowl 2.31 2.10 1 7 

Fox 4.87 1.65 2 7 

Frog # 2.55 1.53 2 7 

Gazelle # 3.21 2.22 1 7 

Gecko 1.97 0.89 1 4 

Gerbil 2.59 2.46 1 7 

Giant panda 3.48 2.22 1 7 

Gibbon 2.60 2.31 1 7 

Giraffe 4.34 2.13 2 7 

Gnu # 2.05 1.96 1 7 

Goldcrest 4.23 1.82 1 7 

Goat 1.76 1.80 1 7 

Goldfish 2.28 1.77 1 7 

Gorilla 2.81 1.67 1 6 

Greyhound 4.60 1.92 2 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Grizzly bear 
 

3.10 
 

2.49 
 

1 
 

7 

Groundhog 2.35 2.20 1 7 

Guinea fowl 2.00 1.80 1 7 

Guinea pig 3.06 2.13 1 7 

Gull 2.52 1.32 1 5 

Haddock 2.03 2.31 1 7 

Hamster 4.12 1.91 2 7 

Hare 3.50 2.13 1 7 

Hart # 2.44 2.20 1 7 

Hawk 2.10 1.73 1 7 

Hedgehog 3.48 2.02 1 7 

Heifer # 3.84 2.17 1 7 

Hen 3.55 1.63 2 7 

Heron 2.28 2.07 1 7 

Herring 1.83 1.96 1 6 

Hippopotamus 3.12 2.33 1 7 

Hornet 1.71 1.44 1 6 

Horse 6.55 0.74 5 7 

Horsefly 1.27 1.12 1 5 

Hyena 2.86 2.24 1 7 

Ibex # 2.07 2.33 1 7 

Iguana 2.01 1.82 1 7 

Impala # 2.50 1.92 1 7 

Insect 1.65 2.41 1 7 

Invertebrate 1.28 1.53 1 5 

Jack rabbit 2.47 2.22 1 7 

Jackal # 2.74 2.27 1 7 

Jackass # 2.86 2.18 1 7 

Jackdaw # 2.14 1.53 1 6 

Jaguar 3.94 2.13 1 7 

Kangaroo 4.30 1.86 2 7 

Kid # 3.19 2.02 1 7 

Kitten 4.44 1.95 2 7 

Kiwi 2.60 1.76 1 7 

Koala 3.50 1.99 1 7 

Koi carp 1.67 1.66 1 6 

Komodo dragon 2.00 2.29 1 7 

Lady bird 1.50 0.73 1 3 

Lamb # 2.10 1.90 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Lemur 2.67 2.33 1 7 

Leopard 3.93 2.16 1 7 

Lion 5.47 1.52 3 7 

Lizard 2.30 1.81 1 7 

Llama # 2.60 2.58 1 7 

Lobster 1.73 1.89 1 7 

Long tailed tit 2.07 1.52 1 6 

Lynx 3.31 1.96 1 7 

Mackerel 2.09 1.44 1 5 

Mammal 3.12 2.44 1 7 

Manatee 1.66 1.75 1 6 

Mandrill # * 2.45 2.24 1 7 

Marmoset # 2.03 1.85 1 7 

Marmot # 2.38 1.72 1 6 

Marten # 2.50 2.02 1 7 

Meerkat 2.46 2.18 1 7 

Midge 1.51 1.84 1 6 

Mink # 2.40 2.19 1 7 

Manx 2.17 2.11 1 7 

Mole 2.84 2.10 1 7 

Mongoose # 2.85 1.99 1 7 

Monkey # 3.14 2.37 1 7 

Moose 3.10 2.25 1 7 

Moth 1.70 1.60 1 7 

Mouse ~ 3.81 1.88 1 7 

Mule 3.44 2.23 1 7 

Musk ox # 2.46 2.61 1 7 

Newt 1.83 1.18 1 5 

Nightingale 1.93 1.32 1 4 

Ocelot # 2.68 2.02 1 7 

Octopus 2.05 1.91 1 7 

Orang-utan 3.64 1.96 1 7 

Oryx # 2.44 1.91 1 6 

Ostrich 2.90 2.13 1 7 

Otter # 3.43 2.13 1 7 

Owl 2.70 1.45 1 6 

Ox # 3.25 2.29 1 7 

Panda 3.73 2.14 1 7 

Panther 3.32 2.28 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Parakeet 1.87 1.60 1 6 

Parrot 2.61 1.65 1 7 

Partridge 2.42 1.70 1 7 

Peacock 2.37 1.57 1 7 

Peewit # 1.64 1.07 1 4 

Pelican 2.46 1.71 1 7 

Penguin ~ 3.44 1.77 2 7 

Perch 1.75 1.45 1 6 

Pheasant 2.93 1.64 1 7 

Pig 5.40 1.41 3 7 

Pigeon 2.07 2.06 1 7 

Piglet ~ 3.94 1.95 1 7 

Pike 1.84 1.75 1 7 

Pine marten # 2.17 2.22 1 7 

Piranha fish 1.50 1.79 1 7 

Plaice 2.08 1.78 1 7 

Platypus 2.04 2.47 1 7 

Polar bear 3.30 2.34 1 7 

Polar cat 2.41 2.52 1 7 

Pony 5.49 1.39 3 7 

Porcupine 2.65 2.16 1 7 

Porpoise # 2.39 1.96 1 6 

Poultry 2.56 2.31 1 7 

Prairie dog 2.43 2.20 1 7 

Puffin 2.55 1.04 1 5 

Puma 3.23 2.12 1 7 

Rabbit 5.08 1.63 3 7 

Racoon 2.63 1.97 1 7 

Ram # 4.13 1.83 1 7 

Rat 3.48 2.08 1 7 

Raven 1.86 1.70 1 7 

Reindeer 4.27 1.80 1 7 

Rhesus monkey # 3.15 2.25 1 7 

Rhinoceros 3.11 2.34 1 7 

Roach 1.97 1.74 1 7 

Robin 3.01 1.98 1 7 

Rodent 2.84 1.96 1 7 

Roe dear # 3.40 2.15 1 7 

Rook 2.21 1.73 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Rooster 
 

2.68 
 

1.91 
 

1 
 

7 

Salamander 1.81 1.84 1 7 

Salmon 2.38 2.11 1 7 

Sardine 1.85 1.83 1 7 

Sea lion 2.14 2.22 1 7 

Seagull 2.44 1.94 1 7 

Seahorse 1.34 1.89 1 7 

Seal 2.57 2.01 1 7 

Shark # 2.46 2.30 1 7 

Sheep 5.75 1.33 4 7 

Short tailed tit 1.68 0.95 1 4 

Shrew 1.86 1.95 1 7 

Shrimp 1.95 1.70 1 7 

Siamese cat ~ 3.45 2.14 2 7 

Siberian tiger 2.65 2.58 1 7 

Skate 1.85 1.33 1 5 

Skunk 2.32 1.83 1 7 

Skylark # 2.14 1.66 1 6 

Sloth 2.31 2.33 1 7 

Slug 1.55 2.11 1 7 

Snail 1.45 2.27 1 7 

Snake # 1.92 2.39 1 7 

Sole 2.02 1.80 1 7 

Sow # 4.73 1.70 2 7 

Sparrow 2.50 2.14 1 7 

Spider 2.18 2.26 1 7 

Springbok # 3.48 1.95 2 7 

Squid 1.49 1.63 1 6 

Squirrel 4.62 1.72 2 7 

Stag 3.83 2.07 1 7 

Star fish 1.37 1.66 1 7 

Starling 2.27 2.15 1 7 

Stick insect 1.64 1.49 1 6 

Stickleback 1.81 1.33 1 5 

Stoat # 2.70 2.18 1 7 

Sturgeon 2.36 1.38 1 5 

Swan 3.19 1.61 1 7 

Swift # 2.34 1.55 1 7 

Sword fish 1.90 1.71 1 7 
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Range 

min max 
Animal Mean SD 

 

 

 

Tapir # 1.78 1.99 1 7 

Tarantula # 1.60 1.65 1 6 

Tench 1.70 1.07 1 4 

Thrush 2.54 1.64 1 7 

Tiger 5.10 1.50 3 7 

Toad 2.48 1.52 1 6 

Tortoise 2.58 1.65 1 7 

Trout 2.05 1.98 1 7 

Tuna 2.72 1.56 1 6 

Turkey 3.31 1.77 1 7 

Turtle 2.58 1.42 1 6 

Tyrannosaurus 2.04 2.91 1 7 

Vole 2.32 1.89 1 7 

Vulture 1.86 1.61 1 7 

Wallaby # 3.10 2.02 1 7 

Walrus 2.77 2.33 1 7 

Warthog 2.45 2.37 1 7 

Wasp 1.92 2.27 1 7 

Water buffalo # 2.81 2.52 1 7 

Water rat 2.72 2.26 1 7 

Weasel 2.91 2.14 1 7 

Whale 2.61 2.24 1 7 

White tiger 2.83 2.43 1 7 

Wild boar 2.82 2.29 1 7 

Wild cat 2.49 2.53 1 7 

Wild dog ~ 2.75 2.38 1 7 

Wildebeest # 3.44 2.08 1 7 

Wolf 3.57 2.13 1 7 

Wombat 1.84 2.16 1 7 

Woodcock 1.89 1.73 1 7 

Woodlouse 1.34 1.89 1 7 

Woodpecker 2.13 1.68 1 7 

Worm 1.89 2.08 1 7 

Wren 2.41 1.69 1 7 

Yak # 2.87 2.41 1 7 

Yellow tit 1.70 1.45 1 6 

Yellowhammer # 1.84 1.66 1 7 

Yorkshire terrier 5.11 1.51 3 7 

Zebra 3.95 2.07 1 7 
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Table C.7b. Mean, standard deviation (SD) and range (min-max) typicality values for fruit 

words in individuals belonging to > 70 age –category. 
 

 
 
 

Fruit Mean SD Range 
min max 

 
 

Acorn 1.47 1.80 1 6 

Almond 3.34 1.64 1 7 

Apple 6.71 0.60 5 7 

Apricot 5.51 1.25 4 7 

Aubergine # 3.68 1.92 1 7 

Avocado # 3.55 2.07 1 7 

Banana 6.55 0.74 5 7 

Berries 4.82 1.66 2 7 

Bilberry # 2.70 2.04 1 7 

Blackberry 5.07 1.70 2 7 

Blackcurrant 5.68 0.99 4 7 

Blueberry 2.88 2.08 1 7 

Bramble # 4.27 1.69 2 7 

Butternut squash 2.91 2.24 1 7 

Cantaloupe melon 3.29 2.15 1 7 

Cherry 5.55 1.17 3 7 

Chestnut # 3.23 1.49 1 6 

Citron 2.87 2.13 1 7 

Clementine ~ 3.96 2.03 1 7 

Coconut 3.30 2.21 1 7 

Cox apple # * 5.83 1.31 3 7 

Crab apple 2.76 2.14 1 7 

Cranberry 3.84 1.86 2 7 

Cucumber # 3.81 1.99 1 7 

Currant # 4.62 1.46 2 7 

Damson # 4.76 1.74 3 7 

Date 3.97 1.77 2 7 

Dewberry # 2.46 1.85 1 7 

Elderberry # 3.48 1.74 1 7 

Fig # 3.54 1.82 1 7 

Gala apple * 3.81 2.05 1 7 

Galia melon # ~ 3.93 1.89 1 7 

Gooseberry # 5.71 1.14 4 7 

Granny smith 5.95 1.19 4 7 

Grapefruit 5.10 1.66 2 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Grape 
 

6.36 
 

0.65 
 

5 
 

7 

Green melon 4.46 1.83 2 7 

Guava 2.43 2.14 1 7 

Haw 1.54 1.34 1 5 

Hazelnuts 3.32 1.73 1 7 

Honeydew melon # ~ 4.29 1.78 1 7 

Horse chestnut 1.91 2.12 1 7 

Jackfruit 2.06 1.85 1 7 

Jaffa # 5.34 1.38 3 7 

Kiwi 4.62 1.50 3 7 

kumquat 2.09 1.81 1 7 

Lemon 4.30 1.74 1 7 

Lime 3.65 1.94 1 7 

Loganberry # 3.47 2.15 1 7 

Lychee # ~ 2.53 1.89 1 7 

Mandarin # ~ 5.22 1.54 3 7 

Mango 4.21 2.05 2 7 

Melon 5.55 1.32 3 7 

Nashi 1.30 1.20 1 4 

Nectarine 4.79 1.70 2 7 

Nuts # ~ 3.13 2.22 1 7 

Olive # 4.28 1.64 2 7 

Orange 6.65 0.61 5 7 

Papaya 1.99 2.57 1 7 

Passion fruit 2.79 2.13 1 7 

Paw paw # 1.92 2.39 1 7 

Peach ~ 5.07 1.70 2 7 

Pear 6.34 0.76 5 7 

Peppers 4.78 1.35 3 7 

Persimmons 1.70 1.23 1 5 

Pineapple 5.53 1.38 3 7 

Plantain # 1.73 2.43 1 7 

Plum 6.11 0.99 4 7 

Pomelo 1.74 1.63 1 6 

Pomegranate ~ 2.62 2.22 1 7 

Prune # 3.59 2.07 2 7 

Quince 2.97 1.75 1 7 

Raisin # 4.95 1.40 2 7 

Raspberry 4.40 1.72 1 7 
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Range 

max 
Fruit Mean SD 

min 

 

 

 

Red currant # 
 

4.02 
 

1.69 
 

2 
 

7 

Redberry 2.24 2.34 1 7 

Red grape 3.08 2.35 1 7 

Rhubarb # 4.90 1.51 2 7 

Rosehip # * 1.94 1.70 1 6 

Satsuma ~ 5.38 1.42 3 7 

Sharon fruit ~ 2.11 2.12 1 7 

Sloe berry # 2.76 1.91 1 7 

squash 2.89 2.18 1 7 

Star fruit 1.96 2.07 1 7 

Strawberry 5.92 0.92 4 7 

Sultana 5.42 1.27 4 7 

Tangerine 4.55 1.56 2 7 

Tayberry 1.94 1.93 1 6 

Tomato # * 5.74 1.21 3 7 

Walnut # 2.98 1.96 1 7 

Water melon 3.55 2.16 1 7 

Whinberry 1.65 1.80 1 5 

White currant # 2.47 2.16 1 7 

White grape 5.55 1.12 4 7 

Whortleberry 1.51 1.40 1 5 
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