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Abstract 
To optimise any medical digital imaging system for chest radiography, it is vital 

that the images used for optimisation contain projected anatomy, or in other 

words, anatomical noise. In this thesis, a method to produce and validate a 

digitally reconstructed radiograph (DRR) computer algorithm that utilises real 

patient computed tomography (CT) data sets is presented. The algorithm uses 

a ray casting DRR calculation method to project X-ray pencil beams through CT 

data and derive the photon energy absorbed in a virtual computed radiography 

(CR) phosphor. Radiation scatter and CR system noise are added post DRR 

calculation. 

Quantitative and qualitative validation has shown the algorithm simulates chest 

CR images of average and obese patients with realistic anatomical and system 

noise. This has allowed images to be generated using various X-ray exposure 

parameters, i.e. tube potential, scatter rejection and receptor dose, which can 

then be used in the optimisation exercise. However, the algorithm is not without 

limitations; the impact of these on the resulting images is discussed. 

Simulated images reconstructed at the various X-ray exposure parameters and 

techniques were scored by experienced image evaluators; optimum tube 

potential, scatter rejection technique and receptor doses for clinical CR chest 

radiography have been derived. At the outset of this work, CR chest exposure 

factors across the Hull & East Yorkshire Hospitals NHS Trust (HEY) were not 

standardised, and therefore not optimised; this thesis concludes with 

recommendations to the HEY Radiology Department for optimum exposure 

factors and technique for chest radiography. These were implemented across 

the Trust as a result of this work. 
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In summary, a DRR computer algorithm has been produced (and validated) that 

adequately simulates anatomical and system noise; image evaluators are able 

to grade simulated chest images presented at different X-ray exposure 

parameters in order to optimise radiographic technique for clinical CR chest 

radiography, without the need for repeat patient exposures. 
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Chapter 1: Introduction 

This chapter provides an introduction to the work that follows. It comprises of a 

discussion of the relevant digital imaging modalities used in medicine, and a 

description of the physics underpinning each modality. Optimisation in medical 

X-ray imaging and its motivation is summarised. Various optimisation 

techniques found in the literature are discussed as well as the relevance of the 

work presented in this thesis.  

1.1 Digital imaging in medicine 

Digital imaging was introduced into healthcare with the development of nuclear 

medicine imaging in the 1950’s, and later expanded with computerised 

tomography (CT) in the 1970’s and magnetic resonance imaging (MRI) in the 

1990’s. However, until the last 10 to 15 years, film has remained the prime 

imaging device for 95% of radiological procedures in the UK. 

With the development of ever larger digital storage facilities and the availability 

of commercial picture archiving and communication systems (PACS), a move 

away from hard copy film towards digitally stored and viewed images has 

become a practical proposition. In the last decade in particular, driven by the UK 

Department of Health’s National Programme for Information Technology 

(NPfIT), there has been a rapid move in UK healthcare away from film to digital 

image acquisition systems such as Computed Radiography (CR). Almost 

overnight the accumulated experience of over a century of work with 

radiographic film has become obsolete, and radiology departments are faced 
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with the need to adapt to cope with the challenges of, and to utilise the 

opportunities presented by, the new digital technologies.  

1.2 Computed Radiography  

1.2.1 Basic physics of Computed Radiography 

Computed radiography (CR), scientifically known as photo-stimulable phosphor 

radiography, is a digital technology for the acquisition of radiographic images [1, 

2]. CR is the most common digital radiography modality in the radiology 

department today, with an estimated 7000 systems in use worldwide in 2001 

[3]. At the time of writing, CR is the only method of image generation for general 

radiography in the Hull and East Yorkshire Hospitals NHS Trust. The 

technology uses conventional radiographic acquisition geometries to deposit X-

ray energy in a photo-stimulable phosphor screen with delayed luminescence 

properties (phosphorescence). The phosphors most frequently used are those 

of the barium fluorohalide family [4], in powder form deposited onto a substrate 

to form the imaging plate. The elemental composition of powder phosphor 

plates used in modern CR systems is of the form BaSrFBrI:Eu. Barium (Ba) and 

Fluorine (F) are the principal absorbing elements, and Strontium (Sr), Bromine 

(Br) and Iodine (I) are halogens used in such a combination that the useful 

signal is not derived from light emitted immediately after the absorption of X-

rays, but rather from the delayed emission of energy from trapped electrons that 

are optically stimulated. The spectrum of useful light emitted by a powder 

phosphor is controlled by the ‘activator’, which is an impurity added to the base 

matrix; in this case Europium (Eu).  
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A key concept of phosphors is the exciton, which is essentially a bound 

electron-hole pair (a hole is a mathematical description of the absence of an 

electron in an electron shell). The exciton is free to move within the crystal 

lattice and is usually neutral, with the electron in the conduction band and the 

hole in the valence band (as shown in Figure 1.1). 

 

Figure 1.1: Bound electron-hole pair (exciton) in a  band structure 
representation. The electron and hole is not allowe d to exist in the 
forbidden energy gap (Eg) that separates the conduc tion and valence 
bands, unless they become ‘trapped’. 

Trapping of an exciton must occur to produce a latent image in the phosphor, 

and for the subsequent release of stored energy. The trap comes in the form of 

the activator (Eu), as demonstrated in Figure 1.2. 
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Figure 1.2: The energy levels at which an electron- hole pair can be 
trapped due to the presence of an activator (Eu) in  the powder phosphor. 

The first step in the creation of electron-hole pairs, in which an electron is 

excited from the valence band to the conduction band leaving behind a hole, is 

through absorption of X-ray energy by the photoelectric effect. The energy of 

the incoming X-ray photons must be at least that of the forbidden gap energy 

(Eg) for this process to occur. Some of the excited electrons become trapped at 

the activator sites (Figure 1.2) in a spatial distribution similar to that of the 

incoming X-ray photons, producing the latent image. An activated 

photostimulated luminescent site is thought to be an arrangement of three 

correlated components: an electron trap, a hole trap, and the activation centre. 

Photo-stimulable phosphors have different absorption (K) edge characteristics 

to the rare-earth screens used in traditional film radiography, owing to their 

different elemental compositions. Whenever the incoming photon energy is 

slightly higher than the energy required to remove an electron from a shell in an 

atom, there is an appreciable increase in photoelectric absorption; this is known 

as an absorption edge, and in the diagnostic energy range this is dominated by 
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K shell absorption. The effect this has on the attenuation properties of a typical 

CR phosphor is shown in Figure 1.3. 

 

Figure 1.3: Attenuation characteristics of a CR pho sphor (thick line). 
There is a sharp increase in attenuation at the K e dge of Barium (37 keV). 
For illustration, the attenuation characteristics o f a rare earth phosphor 
used in traditional film-screen imaging (thin line)  is also shown. 

The CR phosphor elememtal composition, BaSrFBrI:Eu, has K-edges at 

approximately 33 keV for Iodine and 37 keV for Barium, whilst Gd2O2S (used for 

rare-earth screens) has a K-edge at 50 keV, all of which are in the diagnostic 

energy range. Between energies 37 to 50 keV, the sensitivity of the CR 

phosphor is increased relative to the rare-earth screen, suggesting X-ray tube 

potentials lower than that recommended for film-screen would provide improved 

X-ray absorption, as there would be a greater proportion of photons in the 37 to 

50 keV energy range. The properties of photo-stimulable phosphors are 

therefore inherently different to that of film-screen systems, meaning optimised 

radiographic technique for film-screen may not be suitable for CR. There is 

guidance on optimum X-ray radiographic technique with film-screen systems for 

chest radiography [5] (namely a tube potential of 125 kVp using an anti-scatter 

grid), but none for CR. Therefore, research must be carried out to determine 
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optimum radiographic techniques (e.g. tube voltage (kVp), tube current-time 

product (mAs), filtration, scatter rejection methods) for CR imaging modalities. 

1.2.2 Phosphor plate read-out and image production 

After X-ray irradiation, the phosphor is stimulated by a scanning laser beam that 

emits light in the red end of the visible spectrum (typically a solid state diode 

laser controlled electrically with a wavelength of 680 nm) to release the 

deposited energy in the form of visible blue light (i.e. the stimulation spectrum). 

The laser beam is scanned across the CR phosphor plate (denoted the scan 

direction), while the phosphor plate is continuously translated in a direction 

perpendicular to the motion of the laser beam (the sub-scan direction) resulting 

in the phosphor plate being scanned in a raster fashion. The stimulation 

spectrum results from the process of excitation of the trapped electron; the 

energy difference between trapped electrons and the conduction band is 

approximately equal to the energy of the red laser photons contained in the 

scanning laser beam. This process is called photostimulated luminescence and 

results in the release of blue light photons in an amount proportional to the 

intensity of the incident X-ray irradiation. The released photo-stimulated light is 

captured by a light guide (blue light is optically separated from red light by a 

filter), which is located as close as possible to the phosphor plate in order to 

increase its light collection efficiency. Light is channelled down the light guide by 

total internal reflection to a photomultiplier tube (PMT), and then converted to 

digital signals in a series of processing steps, the first being that of logarithmic 

amplification. This reduces the dynamic range of the analogue signal prior to 

digitization to approximately match the dynamic range of the acquisition 

monitor. The second step is to filter the signal to prevent aliasing of noise and 
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eliminate fixed pattern noise from such things as X-ray anti-scatter grids. The 

third step is digitization of the analogue signal by the analogue to digital 

converter. Finally, a shading correction is applied due to the varying light 

collection efficiency of the light guide along its width. This process is shown in 

Figure 1.4. 

 

Figure 1.4: Flying spot CR readout scanner. Individ ual scanner 
components are labelled. The CR phosphor plate trav els in the sub-scan 
direction, while the focused laser spot travels in the scan direction. 

The resultant digital pixel value is calculated and registered with the location on 

the phosphor from which it has been released. The digital data may then be 

post-processed for appropriate presentation and sent to a hard copy printer or 

soft-copy display monitor for medical evaluation.  
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1.3 Computed Tomography 

Computed Tomography (CT) became popular for diagnostic purposes in the UK 

in the early 1980s, and over the last twenty years its use has become 

widespread. The objective of CT scanning is to take many one-dimensional 

sample projections of two-dimensional transverse axial slices (usually within a 

patient) at many different angles. The data is reconstructed to give detail within 

the slice. At each angle (or projection), X-rays emanating from the X-ray tube 

are attenuated in the axial slice and the amount of attenuation is measured by a 

bank of detectors (that is, the total linear attenuation coefficient in the axial slice 

between the X-ray tube and detector is measured by each detector). A basic 

example of one projection is shown in Figure 1.5. The slice through the patient 

has been ‘voxelated’ to show the corresponding pixel positions in the resulting 

image. 
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Figure 1.5: Basic depiction of X-rays traversing th rough a slice in the 
patient. Total linear attenuation ‘encountered’ by ray N is given by µN. 

Most modern CT scanners use the third generation design, in which the X-ray 

tube and detector bank rotate continuously whilst maintaining a fixed 

geometrical relationship, as shown in Figure 1.6. 

 

 

Figure 1.6: Third generation CT scanner design show ing positions of X-
ray tube, patient and detectors. 
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Data reconstruction is usually done by a method called filtered back-projection. 

Back-projection is a process by which total attenuation data measured by each 

individual detector is ‘smeared’ back across the image field of view (FOV). A 

highly simplified version of this is demonstrated in Figure 1.7. 

 

 

Figure 1.7: (a) Total attenuation measured along fo ur projections, (b) 
resulting back-projected data from one projection, (c) back-projected data 
from a second projection summed with the first, and  (d), summed back-
projected data from all four projections. 
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Figure 1.7 is a highly simplified demonstration of back-projection. An array of 

nine pixels is scanned from four successive directions (Figure 1.7(a)). In each 

case the total attenuation data is recorded by the detectors. Back-projected 

data from one direction (Figure 1.7(b)) is then summed with another (Figure 

1.7(c)) and this is done in turn until all projections are summed together (Figure 

1.7(d)) to provide the final image pixel values. The total attenuation data is then 

stored in the memory locations (i.e. pixels in the resulting image) according to 

each voxel encountered by each ray. In reality there are many hundreds of 

projection angles that contribute to the final image, and CT manufacturer 

specific algorithms modify the pixel values even further. 

This method of image reconstruction produces images that are inherently 

blurred. To overcome this, back-projected data is software filtered, i.e. the data 

is 2D Fourier transformed into frequency space which is then multiplied by a 2D 

ramp. The inverse 2D Fourier transform is then performed to give a non-blurred 

image in real space. 

The final image is displayed as an array of pixels called CT numbers, and each 

CT number is represented by a certain shade of grey. The CT number is an 

index that compares the linear attenuation of the displayed tissue with that of 

water, as shown in the following equation; 








 −
×=

W

WT

µ

µµ
1000CTnumber

        (1.1) 

where µT and µW are the linear attenuation coefficients of tissue and water 

respectively. Water is used as a reference material because its attenuation 

coefficient is close to that of soft tissue and it is reproducible for scanner 

calibrations. The multiplier 1000 is used to generate meaningful whole numbers.  
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1.4 Optimisation in Medical Imaging 

The three important principles which are the foundation of radiation protection 

are justification, optimisation and limitation. The principles of justification and 

optimisation apply to all exposed individuals, while dose limitation is applicable 

to radiation workers and the public, but not to patients. The concepts were first 

proposed by the International Commission on Radiological Protection (ICRP) in 

1977 and developed in later recommendations [6]. It is also a requirement in UK 

law under the Ionising Radiation (Medical Exposure) Regulations 2000 

(IR(ME)R2000) to justify and optimise all human medical exposures to ionising 

radiation [7]. 

A brief synopsis of each principle is outlined below: 

Justification of a practice: No practice involving exposures to radiation should 

be adopted unless it produces sufficient benefit to the exposed individuals or 

society to offset the radiation detriment it causes. 

In diagnostic radiology, the individual patient’s X-ray has to be justified. If the 

result of an X-ray procedure will not alter the management of the patient then 

that X-ray is not justified. Justification depends on a number of factors; 

examples include the patient’s age, whether or not they are pregnant, and 

whether other techniques involving non-ionising radiation can be used. 

Optimisation: In relation to any particular source within a practice, the 

magnitude of individual doses, the number of people exposed, and the 

likelihood of incurring exposures should all be kept as low as reasonably 

achievable, economic and social factors being taken into account. This 
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procedure should be constrained by restrictions on the doses to individuals 

(dose constraints). 

Once a practice has been justified efforts must be made to reduce the radiation 

risks to the individual. This means reducing doses and minimizing the possibility 

of accidents and incidents where doses might be raised. This dose reduction 

should be to a level which is ‘as low as reasonably practicable’ (ALARP). 

ALARP is central to the concept of optimisation for both staff and patients. For 

staff, ALARP is usually achieved with the following hierarchy of control 

measures: 

1. Engineering controls (e.g. X-ray beam collimation and local shielding to 

reduce radiation emitted from a source) 

2. Systems of work (e.g. local rules and contingency arrangements) 

3. Personal protective equipment (e.g. lead rubber aprons and gloves) 

For patients, minimising patient radiation dose reduces the chances of the 

patient developing stochastic effects such as cancer. ALARP is achieved by 

optimising the radiographic technique, which usually requires minimising 

radiation dose whilst maintaining adequate image quality. Currently, there is 

much effort in the medical field concentrating on reducing X-ray doses to 

patients while not compromising digital image quality; but ultimately the two are 

intimately linked, as a reduction in dose usually results in noisier (but possibly 

adequate) images.  
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1.4.1 Noise sources with CR imaging systems 

Noise in a digital image is defined as fluctuations in the signal level (pixel 

values) and affects the visibility of low contrast objects. Noise present in clinical 

CR images can be broken down into two parts: 1) system noise and 2) 

anatomical noise. System noise is a combination of [8]; 

• primary quantum noise,  

• secondary quantum noise,  

• Poisson excess noise,  

• structure noise,  

• additive electronic noise.  

Primary quantum noise is related to the random nature of X-ray photon 

absorption in the phosphor and is Poisson distributed, i.e. noise is proportional 

to the square root of the number of photons detected. Secondary quantum 

noise arises at each stage of the imaging chain where quanta are converted 

from one form to another. Poisson excess noise occurs when a given amount of 

primary quanta are absorbed, but differences in the amount of secondary 

quanta produced is observed. Structure noise occurs due to differences in 

sensitivity across the CR phosphor (resulting in non-uniformities in the image), 

and electronic noise is due to the operation of electronic components in the CR 

system (e.g. dark currents). The noise power spectra (NPS) is a measure of the 

total noise (i.e. a combined measure of the sources of noise discussed above) 

in an image at each frequency (of noise), and is the most common metric for 

describing noise in a digital image [9]. For example, the anode heel effect 
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manifests itself in a digital image as a slowly changing gross signal, and 

therefore low frequency noise. Conversely, quantum noise manifests itself as 

random values between adjacent pixels, and therefore high frequency noise.  

Anatomical noise is essentially the influence of the patient’s projected anatomy 

on the detectability of normal chest structures and abnormalities. Many 

publications [10-17] have shown this projected anatomy is the limiting factor in 

diagnosis and detection of lesions in the chest, so the term anatomical noise 

was derived from this collective work. Recently, a European wide study (the 

RADIUS chest trial) examined various aspects of nodule detection in digital 

chest radiology, such as the effects of nodule location, system noise, 

anatomical noise and part of the image background acting as pure noise [18 - 

21]. In the summary paper Hakansson et al. [22] describe how projected 

anatomy in chest radiographs affects pathological detection to a much larger 

extent than system noise, which reinforces the conclusions of earlier published 

work. Therefore, to optimise digital X-ray systems for chest radiography, it is 

vital all images used and evaluated by observers contain the essential projected 

anatomy, otherwise the results obtained would not have been derived from 

images ‘cluttered’ with anatomical noise and therefore be potentially misleading.  

1.4.2 Optimisation of Chest CR Imaging 

There are essentially two types of optimisation techniques used in the literature: 

1) methods that utilise physical phantoms containing little clinical detail 

(anatomical noise) from which optimum X-ray exposure parameters have been 

assessed by measuring indices such as signal-to-noise (SNR) and contrast-to-

noise (CNR) ratios, and 2) simulation of the digital X-ray image at variable 

exposure parameters using Monte Carlo computing methods. 
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1.4.2.1 Optimisation using physical phantoms 

Early studies typically focused on comparing the performance of CR with rare-

earth film-screens. Cook et al. [23] used threshold contrast detail detectability 

phantoms and concluded there was no measurable difference between the two 

modalities. Similarly, Schaefer-Prokop et al. [24] compared CR with film-screen 

and selenium digital systems. An anthropomorphic chest phantom 

superimposed with simulated micro-nodules and normal nodules was imaged 

on each system and the performance compared. No significant difference was 

found between the modalities for normal sized nodules, but the selenium 

system outperformed both CR and film-screen for micro-nodule detection. 

Hufton et al. [25] investigated optimisation of X-ray beam parameters for 

paediatric chest imaging and showed that doses could be lowered using CR 

image receptors and high tube potentials. However, other early published work 

[26-29] contradicted these findings. For example, Dobbins et al. [27] studied 

images of a phantom obtained with CR and standard screen-film and compared 

them to evaluate observer threshold perception performance with a modified 

contrast-detail technique. It was found that CR necessitates about 75%-100% 

more exposure than screen-film radiography to optimally match performance for 

detection of objects 0.05-2.0 cm in diameter. They also found that performance 

with CR images was better at lower kilovoltages. Chotas et al. [29] measured 

SNRs in the lung, spine and diaphragm regions of chest phantom CR images 

and found low tube potentials increased the SNR by about 15%. 

Honey et al. [30] have recently reported an optimum X-ray tube voltage range 

for chest radiography with CR of 75-90 kVp; however the phantom used in their 

study did not mimic the different anatomical regions seen in chest radiography. 
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Generally, clinical chest post-processing algorithms need to identify these 

regions to function correctly. Thus their work focused on X-ray tube voltage 

optimum for the detector (CR phosphor), rather than the complete CR system 

for chest radiography.  

Doyle et al. [31] measured the CNR in various areas of a chest phantom 

developed by Chotas et al. [32], and measured a figure of merit (FOM) that 

factored this in along with effective dose (ED), (FOM = CNR2/ED). This was 

used to assess which tube potential, filtration and scatter rejection method 

provided the highest FOM. The CNR was highest in the lung and heart regions 

at 60-80 kVp, but highest at 90-110 kVp in the abdomen, and an air gap 

technique was the preferred scatter rejection method. It must be borne in mind 

that the phantom used here had non-chest like materials (copper), and no 

anatomical data. This may have influenced the results obtained. 

Other work by Doyle et al. [33] used the same chest phantom to optimize a 

direct digital system. SNR indices in the heart, lung and diaphragm regions of 

the chest were examined with tube potential for three radiographic techniques, 

using a grid, air gap technique, and no scatter rejection. Results showed that 

lower tube potentials and the use of a scatter rejection method were superior for 

a matched ED. However, questions over the credibility of the phantom due to 

lack of anatomical detail remain. 

Our group [34] examined optimum tube voltage and amount of added copper 

filtration for processed chest radiographs obtained with an Agfa 75.0 Computed 

Radiography (CR) system. A CNR ratio was measured in the lung, heart/spine 

and diaphragm compartments of a chest phantom [35] using various tube 

voltages and amounts of Cu filtration. CNR was derived as a function of air 
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kerma at the CR plate and effective dose, and a tissue-to-rib ratio (TRR) was 

measured to investigate which tube voltages suppress the contrast of this 

overlying structure. Although processing algorithms affect the signal and noise 

in a way that is hard to predict, it was found that for a given set of processing 

parameters, CNR was related to the plate air kerma and effective dose in a 

logarithmic manner. For imaging of the lung region, a low voltage (60 kVp) 

produced highest CNR whilst a high voltage (125 kVp) produced highest TRR. 

In the heart/spine region, 80 - 125 kVp produced highest CNR, while in the 

diaphragm region 60 - 90 kVp produced highest CNR. Hence, for chest 

radiography with this CR system, it was concluded that the optimal tube voltage 

was dependent upon the region of clinical interest. Of the filters tested, 0.1 mm 

Cu thickness was found to provide a statistically significant increase in CNR in 

the diaphragm region with tube potentials of 60 and 80 kVp, without affecting 

CNR in the other anatomical compartments. The phantom used in this study 

contained very little anatomical detail, therefore the limitations in representing a 

clinical chest radiograph must be considered. 

1.4.2.2 Optimisation using computer methods 

Various Monte Carlo studies have been performed in order to find optimum 

exposure techniques with images simulating projected patient anatomy. Monte 

Carlo methods are essentially a class of computer algorithms that rely on 

repeated random sampling to compute their results. This makes it useful for 

modelling random events such as photon absorption and scatter. 

Sandborg et al. [36] used a Monte Carlo model of a voxelized phantom and CR 

system to assess appropriate tube voltage and concluded lower kilovoltages 

than that recommended for film-screen radiography (125 kVp) were optimum for 



 37 

a given stochastic radiation risk. Similarly, Ullman et al. [37] used differently 

sized voxelized phantoms in a Monte Carlo model to investigate optimum X-ray 

beam parameters, filtration and anti-scatter grids for chest CR. They measured 

the SNR in different regions of the chest to derive optimum conditions. They 

concluded that the choice of tube voltage depends on whether SNR or contrast 

ratios (ratio of tissue contrast to that of bone: C(tissue)/C(bone)) are the most 

relevant for the diagnostic task. They found that SNR increased with decreasing 

tube voltage, but C(tissue)/C(bone) increased with increasing voltage. However, 

if SNR and contrast indices are to be taken as the gold standard for determining 

optimum X-ray beam conditions, there must be a positive correlation between 

clinical image quality and these indices. 

There is a lack of studies investigating optimum conditions for chest CR using 

clinical observers to score and grade images using images containing the 

essential anatomical noise. Work by Sandborg et al. [36] attempted to answer 

this question, but they used a voxelized phantom containing very little clinical 

anatomical data and only 10 patients were graded by radiologists using a Visual 

Grading Analysis (VGA). Grading was assessed according to European criteria 

[5]. The resulting Monte Carlo chest images were of low resolution, but the work 

concluded that lower tube voltages were optimum for a given effective dose. 

The VGA method has been analysed and validated as an appropriate method to 

assess the image quality of chest radiographs independently by Mansson et al. 

[38,39], Tingberg et al. [40] and Sund et al. [41].  

Other Monte Carlo studies [42-45] have also investigated optimum tube 

voltages for chest imaging, but (and in common with those described above) 

they calculate energy imparted to the CR storage phosphor only; none attempt 

to model the frequency dependent noise of the CR system in any way. Also, the 
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organs of the voxel phantom [46] used in most of the Monte Carlo studies are 

identified with only one of four tissue types, namely soft tissue, bone, bone 

marrow, lung tissue and air, limiting the contribution of anatomical noise. The 

resolution of this voxel phantom is also very coarse (voxels are approx 4mm 

long x 3 mm wide x 3 mm thick). It will therefore produce images of much lower 

spatial resolution than a real CR image (typical pixel pitch 0.17 x 0.17 mm).  

There is very little literature that uses CT data sets to produce the computerised 

voxelated phantom that can be utilised to generate images for optimisation 

studies. Fanti et al. [47] used human CT data to simulate film-screen images of 

patient skulls using pencil X-ray beams, but they did not include radiation 

scatter or system noise. 

1.4.2.3 Optimisation with ALARP in mind 

Projected anatomy is the limiting factor for chest radiographic evaluation, and its 

presence in images used for optimisation studies is essential. However, the 

radiation dose/image quality relationship must not be ignored from a 

governance perspective. Therefore, CR system noise, as well as anatomical 

noise, must be present in any image used for optimisation. For every 

examination, doses to the patient must be kept ALARP whilst obtaining the 

necessary level of image quality. Bath et al. [48] have suggested that clinical 

images should be used to obtain the highest validity for optimisation, and as 

such describes a method to simulate lower exposures by adding frequency 

dependent noise to an original image [49]. However, this methodology only 

works for a given X-ray beam quality so full optimisation would still necessitate 

repeat exposures of the same patient, thus increasing the stochastic risk of 

inducing cancers. 
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1.5 Thesis outline 

It is vital that anatomical noise is present in images used to derive optimum 

radiographic technique. System noise must also be included if dose reduction 

studies are to be performed. This thesis proposes the development and 

validation of a digitally reconstructed radiograph (DRR) computer simulation 

that models conventional 2-dimensional X-ray CR images created from CT 

data. It is proposed that clinical chest CT data sets (i.e. the ‘virtual patient’ or 

‘computerised phantom’) will provide realistic anatomical structures that feature 

as projected anatomy (anatomical noise) in the final DRR. Methods of DRR 

generation in the literature will be reviewed and the most appropriate for this 

work discussed. Each DRR will essentially be a pixelated image of attenuation; 

that is, a 2-dimensional map of X-ray attenuation projected through the virtual 

patient at any tube potential desired; free of radiation scatter and system noise. 

This is vastly more flexible than adapting and utilising existing clinical CR chest 

images that inherently contain scatter and noise acquired at a given beam 

quality, receptor kerma and scatter rejection technique; to simulate different 

exposure factors from the original image would be very difficult. It is proposed 

that clinical values of CR frequency dependent system noise (including 

quantum noise) and radiation scatter can be added to the raw DRR; both of 

which will be examined and discussed. The whole DRR simulation system will 

then be tested and validated using phantom and real patient CR images.  

As there are currently no recommended optimum X-ray exposure parameters 

for chest imaging with CR systems, this research will also focus on using DRR 

generated images to derive optimum parameters by utilising experienced image 

evaluators to grade and score DRRs presented at different X-ray tube 
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potentials, doses and scatter rejection techniques. As the resulting images will 

be computer generated using retrospective CT data sets, no extra exposure risk 

to patients exists. 

Based on the results, radiographic technique for CR chest radiography can then 

be optimised and standardised in the Hull and East Yorkshire Hospitals NHS 

Trust.  

A synopsis of each thesis chapter is as follows: 

Chapter 2 – DRR Simulation Methods 

Introduces the concept of a DRR simulated image, and their current uses. The 

two main methods of generation, ray casting and splatting are discussed and 

critically analysed. The chapter concludes with a justification of the method 

used in this research. 

Chapter 3 – Methods to add scattered X-radiation to  digitally 

reconstructed radiographs 

This chapter critically analyses methods described in the literature for 

measuring and adding scattered X-radiation to digitally reconstructed 

radiographs. The chapter finishes with a justification for the method used in this 

research.  

Chapter 4 – DRR Generation 

Discusses all practical methodologies used in the research, such as X-ray 

spectra generation, scatter and noise addition. The majority of this chapter is 

taken up by development of the DRR simulation software, together with the 

results and discussion. 
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Chapter 5 – Validation of DRR Generated Images 

This chapter discusses how the DRR simulation model generated in Chapter 4 

was validated. Figure of merits (FOMs), such as histogram, signal to noise ratio 

(SNR) and tissue to rib ratio (TRR) analysis were performed on DRR images. 

These were compared with FOMs derived from real CR images of phantoms 

and patients and statistical tests carried out, showing that quantitative validation 

is possible. Expert image evaluator opinion was sought, and it has been shown 

that DRR images contain realistic projected anatomy. Limitations of the 

computer model are also discussed. The chapter concludes that the DRR 

simulator is adequate for optimisation studies. 

Chapter 6 – Optimisation study using average and ob ese patient DRRs 

This chapter discusses the use of DRR generated images to optimise CR chest 

radiographic technique. Expert image evaluators scored and graded the 

images; optimum tube potential, receptor dose and scatter rejection techniques 

are subsequently proposed. Change in clinical practice in the Hull and East 

Yorkshire Hospitals NHS Trust due to the results of this study are discussed. 

Chapter 7 – Conclusion 

This chapter gives a summary of the conclusions of work presented in this 

thesis. Future work and further experiments are also discussed. 
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Chapter 2: Digitally Reconstructed 
Radiograph Computation 
Methods 

2.1 Introduction 

A digitally reconstructed radiograph (DRR) is a simulation of a conventional 2D 

X-ray image, created from CT data. A radiograph, or conventional X-ray image, 

is a single 2D view of total X-ray absorption through the body along a given 

axis. DRRs are created by summing CT attenuation data along a ray from each 

pixel to the simulated x-ray source; in general, DRR computation is a volume 

rendering process and a variety of techniques are available to compute a DRR. 

A relatively intuitive method of DRR computation is that of ray casting, which is 

an image-order volume rendering method that tries to find the intersections of a 

ray with objects in the scene (e.g. voxels in a CT data set). Alternatively, object-

order volume rendering techniques are also used for DRR computation; these 

include Fourier volume rendering [50, 51], splatting and cylindrical harmonics 

[52]. However, by far the most common types of volume rendering are ray 

casting and splatting. This chapter contains a description of current DRR 

applications and a discussion of the two most common DRR computation 

techniques, and their uses in the literature. It concludes with a justification for 

the volume rendering method used in this research. 
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2.2 Current applications of DRRs 

2.2.1 Radiation Therapy 

In radiation therapy, high energy ionising radiation (primarily photons and 

electrons), is used to treat cancer by sterilising tumour cells and precluding 

them from reproducing. It is vital that as little healthy tissue is exposed as 

possible in order to avoid unessessary damage. As such, patient alignment is 

very important during treatment. DRRs play a prominent role in ensuring correct 

patient positioning [53-55], and are computed from CT data of the patient 

(acquired prior to treatment in order to calculate each patient treatment plan). 

The DRR can then be compared with images acquired during treatment [56-59], 

such as portal images captured from the mega-voltage (MV) treatment beam, or 

kilo-voltage (kV) images taken just before treatment, to ensure the correct part 

of the anatomy is being treated.  

2.2.2 Two dimensional – three dimensional registrat ion 

Recently, 2D/3D registration has been gaining in popularity because of the 

increased use of computer-aided surgery (CAS). CAS systems match pre-

operative images to anatomy during the operation. This allows the relative 

position of surgical tools and anatomy to be determined. 

Essentially, the initial position of the patient is taken from a CT scan, and DRRs 

are computed. During the operation, fluoroscopic images are acquired and 

compared with the DRR. The patient can then be moved so that there is 

minimal difference between the DRR and fluoroscopic images.   
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2.3 Ray casting 

The simplest way to project the image is to cast rays through the volume using 

ray casting. In this technique, a ray is generated for each desired image pixel. 

Using a simple camera model, the ray starts at the centre of the projection of 

the camera (usually the eye point) and passes through the image pixel on the 

imaginary image plane floating in between the camera and the volume to be 

rendered. The volumetric data is transformed by an attenuation function so that 

all voxels are converted to an attenuation coefficient. The ray is sampled at 

regular intervals throughout the volume, interpolated at each sample point, and 

the process repeated until the ray exits the volume. The output of each ray is 

deposited in the corresponding image pixel. This process is shown in Figure 

2.1. 

 

Figure 2.1: Graphical depiction of the ray casting technique. The ray is 
sampled at each voxel and the resulting output of t he ray is deposited on 
the ray’s designated pixel in the image. 

Siddon [60] described an exact and efficient algorithm for calculating the 

radiological path through a three dimensional CT array. Voxels were depicted 

as the intersection volumes of orthogonal sets of equally spaced, parallel 

planes, rather than independent elements. To illustrate this in the two 
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dimensional case, pixels were considered as the intersection areas of 

orthogonal sets of equally spaced, parallel lines, as shown in Figure 2.2. 

 

Figure 2.2: (a) Pixels of a CT array (in reality th is would be a 3D voxelated 
array), and (b) pixels as intersection areas of ort hogonal sets of equally 
spaced lines. The interactions of the ray with the pixels can be depicted 
as interactions with the lines. The intersections o f the rays with the lines 
are given by two equally spaced sets: horizontal (o pen circles) and 
vertical (filled circles). 

The intersections of the ray with the lines were calculated, rather than 

intersections of the ray with the individual pixels. As the lines were equally 

spaced, it was only necessary to determine the first intersection and generate 

all others by recursion. The intersections of the ray with the pixels was a subset 

of the intersections with the lines. Identifying that subset allows the radiological 

path to be determined. For an array of N3 voxels, considering the planes rather 

than the voxels allows the algorithm to scale with the number of planes 

(proportional to N), rather than the number of voxels (proportional to N3). 

Sherouse et al. [61] discussed the computation of DRRs for use in radiotherapy 

treatment design. The DRR algorithm was designed with an emphasis on image 

quality, rather than speed. The DRR software had three major distinguishing 

features:  

(a) (b) 
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• When casting rays through the CT volume to form an image, tri-linear 

interpolation was used between slices, and the contribution of every 

intersected voxel was taken into account. 

• A heuristic approach was used to sort the attenuation along the ray path into 

photoelectric and Compton components. 

• The desired resolution and pixel count of the output image can be specified 

in terms of readily understood parameters such as film size. 

The basic ray casting algorithm used by Sherouse et al. was a slightly modified 

version of that developed by Siddon [60]. The algorithm traced rays from the 

source through a 3D model of the patient made up of voxels determined from 

CT scans. Each voxel was characterised by its position in the patient model and 

its dimensions. In contrast to Siddon, the CT numbers were conceptualised as 

point samples in a continuous space (as opposed to voxelised values) whose 

physical positions were taken to be at the eight corners of the voxels rather than 

their centres, and the attenuation coefficient (derived from effective CT number) 

was determined from these corners using tri-linear interpolation, as shown in 

Figure 2.3. 

 



 47 

 

Figure 2.3: Tri-linear interpolation. The ray is in terpolated along each of 
the three axes to the midpoint of the ray segment a nd involves all eight 
corners. 

Tri-linear interpolation involves interpolating along each of the three axes to the 

midpoint of the ray segment and involves all eight corners. Other interpolation 

methods were examined, such as nearest neighbour interpolation where the CT 

number is taken to be the value of the nearest voxel corner (Figure 2.4(a)), 

straight average in which the CT number is taken to be the average of the 

values of all voxel corners (Figure 2.4(b)), and linear interpolation where the 

nearest neighbours are chosen depending on the intersection of the ray and 

corners (Figure 2.4(c)). The resulting CT number is found from linear 

interpolation between the two corners. Figure 2.4 illustrates these interpolation 

methods. 
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Figure 2.4: Nearest neighbour interpolation where ( a) the CT number is 
taken to be the value of the nearest voxel corner, (b) straight average in 
which the CT number is taken to be the average of t he values of all voxel 
corners, and (c) linear interpolation where the nea rest neighbours 
depending on the intersection of the ray and corner s are chosen and CT 
number is found from linear interpolation between t he two corners. 

Tri-linear interpolation was found to provide superior image quality compared to 

the other methods of sampling, but the final image contained aliasing artefacts 

owing to ray divergence and the inaccuracy of this method of interpolation 

(using simple rays is not a realistic situation as real X-rays are not rays). Finally, 

each ray was traced to the centre of each pixel in the DRR. A piecewise 

approximation to the line integral of effective linear attenuation coefficient was 

accumulated along the ray. The length of each segment, computed from the 

coordinates of the entrance and exit points, was multiplied by the voxel 

(a) (b) 

(c) 
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attenuation coefficient. The sum of the products (ray segment x attenuation 

coefficient), for each ray was used in an exponential attenuation expression to 

estimate the beam attenuation. It was concluded that the tri-linear algorithm 

preserved as much spatial resolution as possible, while explicitly including 

contributions from every intersected voxel.  

Dong et al. [62, 63] studied a procedure that used megavoltage (MV) DRRs 

calculated from patient 3D CT data as a reference image for correlation with on-

line electronic portal images to detect patient set-up errors. The DRR 

calculation method used a ray casting algorithm that calculated the primary 

transmission only. Voxel values were not conceptualised at the corner of each 

voxel as per tri-linear interpolation [61], but rather the voxel was considered to 

be a cubic entity with a uniform value throughout. The primary transmission 

fluence was calculated using the total linear attenuation coefficient encountered 

by the ray. The line integration was evaluated along the ray from the virtual 

source, casting through the patient to the position of the imaging panel. 

However, only primary transmission was calculated at megavoltage energies by 

deriving the relationship between CT number and linear attenuation coefficient. 

CT numbers for air, lung, fat, water, muscle and bone were obtained from a CT 

calibration phantom of known composition, scanned at a given CT tube 

potential. Linear attenuation coefficients were then calculated for the tissues 

using data obtained from National Institute of Standards and Technology (NIST) 

publications [64] (for other CT numbers linear interpolation and extrapolation 

was used). 

Generation of DRRs using ray casting has been used by Milickovic et al. [53] for 

applications in Brachytherapy. The methodology involved simulation of 

individual X-rays which were generated from a virtual X-ray source and 
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projected through the patient CT data set. The attenuation data for an individual 

X-ray was accumulated while the ray travelled voxel-by-voxel through the data 

set. The intensity of the outgoing ray was calculated by summing the products 

of the linear attenuation coefficient of each voxel, and the length of the ray 

segment in each voxel (i.e. µ x d), as shown in Figure 2.5. 

 

Figure 2.5: Ray casting method used by Milickovic e t al. Each ray is 
segmented in terms of its length traversed through each voxel. This 
length is then multiplied by the value of the voxel  attenuation coefficient. 
The sum of these products is calculated and used in  the exponential 
function. 

As with Dong et al. [62], tri-linear interpolation was not used. Together with the 

knowledge of the input intensity, the exiting intensity was calculated. Linear 

attenuation coefficients of the various tissue components (i.e. at a given CT 

number) contained within an appropriate phantom were derived using an XCOM 

program [65]. The linear attenuation coefficients of the other CT numbers were 

calculated from linear interpolation and extrapolation. Milickovic et al. also 

generated images using another common DRR volume rendering technique – 

splatting (see next section of this chapter), but this method was not used as the 
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resulting images exhibited inferior image quality; brachytherapy catheters were 

not reconstructed to the relevant degree of resolution. 

Killoran et al. [66] presented work on optimising DRR reconstruction of the 

chest for virtual radiotherapy simulation. One conclusion was that spatial 

resolution in the final DRR image is limited by the underlying CT data set, 

namely the slice thickness, and suggest that if possible, sub millimeter slice 

thicknesses should be used to maximise image quality. The DRR calculation 

method used a virtual simulation by which the ‘model’ was a 3D data set 

derived from the CT scan, which was sampled via interpolation to create a 

contiguous data set of uniform spatial dimensions. A major influence to DRR 

image quality was CT slice thickness, and in their study 3 mm thicknesses were 

used. However, this virtual model had in-built interpolation, so DRR calculations 

were relatively fast (even though 3mm slice thicknesses is relatively low 

resolution). In a sister paper by Giraud et al. [67], it was shown that DRR image 

quality only gradually decreased as the pitch factor of the CT scanner was 

rapidly increased, and that image quality was superior with sub-millimeter 

slices. In the context of this thesis, Giraud et al.’s work in general is 

encouraging, as it is possible to reconstruct slice thicknesses down to 0.8 mm 

with scanners used in Hull and East Yorkshire NHS Trust. 

Bifulco et al. [68] looked at estimating out of plane vertebra rotations on 

radiographic projections using CT data. DRRs from CT data were computed 

using the ray casting method and tri-linear interpolation to estimate the 

absorption coefficients of the voxels between slices within the CT volume. 

Importantly, it was suggested that ray casting techniques produce better quality 

results than other render-based techniques (such as splatting). 



 52 

2.3.1 Sheared object space 

To speed up the ray casting process, the data volume can be sheared [112] so 

that rays can pass through object space in a parallel fashion, rather than a 

computationally expensive diverging manner (i.e. rays entering the volume at 

various angular displacements). Sheared object space shifts the data slices so 

that the rays are perpendicular to the slices. A simplified process using parallel 

rays entering a volume at a given anglular displacement is shown in Figure 2.6. 

 

Figure 2.6: Shearing of volume slices to allow the parallel projection of 

rays. In reality (not shown here), each ray would e nter the volume with a 

different angular displacement (due to divergence) so volume slices 

would require a non-linear shear. 

This technique is relatively fast if the volume is sheared prior to ray casting. It 

also creates the same level of image quality as diverging rays. However, there 

is a requirement for storing multiple copies of the volume, which leads to a 

memory overhead.  

2.4 Splatting 

Splatting is a technique that trades quality for speed. It has been used to 

directly render volumes of various grid structures [69,70] for both scalar [71,72] 

and vector fields [73]. The basic algorithm, first described by Westover [71], 

projects each voxel to the screen and composites it into an accumulating image. 

Sheared slices 

Parallel rays 

Volume slices 

Image plane 
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It visits the voxels in either a back-to-front or front-to-back order, with closer 

voxels overwriting farther voxels. This process is shown in Figure 2.7. 

 

Figure 2.7: Voxels from the data volume ‘splatted’ onto the image plane. 

Splatting is an object-order algorithm: the resulting image is built up voxel by 

voxel. This is in contrast to ray-casting, which is an image-order algorithm that 

builds up the resulting image pixel by pixel. As each voxel is projected onto the 

image plane, the voxel’s energy is spread over the image raster using a 

reconstruction kernel centered at the voxel’s projection point. The 

reconstruction kernel (or kernel footprint) is used for all voxels, and the resulting 

image is generated by the following process: (1) the coordinate of the projected 

voxel in the resulting image is calculated; (2) the kernel footprint is centered 

around the voxel; (3) the footprint is projected to the image screen. This 

projection is known as kernel splatting, or simply, splatting. Individual splats are 

stored on a screen buffer, and composited with splats from other slices within 

the data volume on a composite buffer, as shown in Figure 2.8, to build a 

composite image. 
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Figure 2.8: Object-order volume rendering with spla tting Guassian 

kernels. 

In Figure 2.8, voxels (object points) are traversed in one of two ways; either 

front-to-back, or back-to-front order. Each point is splatted onto the screen 

buffer, and then composited with the image that has already been built. 

However, with this approach, kernels overlap with other slices, which reduces 

image quality, such as loss of depth resolution, and is known as ‘bleeding’. 

An attempt to solve this problem [74] led to what has become known as ‘sheet-

buffered splatting’. In this approach, each slice within the voxelated data is 

separated from its two adjacent ones, and all kernels are sliced and then 

projected. The process is shown in Figure 2.9.  
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Figure 2.9: Sheet buffered splatting. The slab move s across the voxelated 
data separating each slice. All kernels are effecti vely sliced, so that 
kernels in slice 1 do not ‘talk’ to kernels in slic e 2, and so on. 

Sheet-buffered splatting eliminates bleeding between slices, but not blurring 

between resulting pixels in the composited image (this problem common to all 

splatting techniques). Footprint (kernel) projection is usually precomputed and 

represented as a 2D lookup table. The 2D table is centered at the projection 

point and sampled by the pixels which lie within its extent. Each pixel 

composites the value it already contains with the new value from the footprint 

table. Under most conditions the footprint table can be computed once and 

used unmodified for all voxels.  

Recently, Birkfellner et al. [75] have modified the conventional splatting 

algorithm to a so-called ‘wobbled splatting’ algorithm. This reduced aliasing by 

distortion of the voxel positions in the 3D data, without the need to apply anti-

aliasing kernels. 
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2.5 Ray casting and splatting: a comparison 

There are inherent problems with splatting not encountered with ray casting. 

Splatting by its very nature requires each kernel centered over a specific voxel 

to be projected at the image plane. In doing so, image composition is performed 

on a per-splat basis resulting in incorrect image pixel values where they 

overlap. However, to ensure the final image is smooth, splats must overlap, 

resulting in blurred images as well as in-correct pixel values.  

Another disadvantage with splatting is sampling voxelated data. With ray 

casting, each ray is sampled (e.g. tri-liner interpolation) as it projects through 

the data. However, with splatting, this must be done via reconstruction kernels, 

which can be a problem because image quality is affected by the size, shape 

and type of the kernel used. Work has been carried out by various authors to 

derive optimum kernel features, but no standard has been found. Laur and 

Hanrahan [76] changed the size of the splatting kernel based upon the voxel in 

which it is centered, and Mao [69] analysed spherical and ellipsoidal kernels 

with varying sizes. To date most splatting implementations have used Gaussian 

reconstruction kernels, but others can be used that influence final image quality.  

Splatting is advantageous to ray casting in terms of computational speed. In ray 

casting, each ray is sampled along its projection which is very computationally 

expensive. Splatting on the other hand pre-computes each kernel footprint, 

saving a large amount of time in comparison. Splatting is also an object-order 

algorithm, allowing static parallel composition. This is not permitted with ray 

casting, as the ray usually needs to sample many parts of the voxelated data. 

Splatting can also cull voxels that contribute nothing to the final image (such as 

those outside the volume of interest), but ray casting has to take into account all 
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voxels the ray samples, worthless or not. Alakuijala et al. [77] directly compared 

splatting with ray casting and concluded that ray casting performs better in 

terms of resulting image quality for divergent beams. 

In summary, although ray casting is much more computationally expensive, it is 

not as susceptible as splatting to blurring or incorrect pixel value artefacts. 

Splatting also requires kernel reconstruction (the foot-print) of which there is no 

optimum method. This source of error does not exist for ray casting. 

2.6 Aliasing in volume rendering 

Volume ray casting algorithms project rays from a source through the data. This 

process can cause aliased signals in the resulting image [78]. This is illustrated 

in Figure 2.10, where the data volume is shown as a lattice of points. 

 

Figure 2.10: Rays projecting through lattice. 

Figure 2.10 shows the rays diverging through the lattice (voxels) with the source 

looking down the z axis. Aliasing in the reconstructed image results from 

insufficient sampling of the lattice. Notice in Figure 2.10 there is a distance 

along the z axis denoted k, in which lattice resolution and the sampling rates of 
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the lattice by the projected rays are equal. At distances less than k, each ray 

can sample more than one voxel, and so no aliasing artefacts occur. However, 

at distances greater than k, the distance between adjacent rays (in the x-

direction) is greater than one voxel, the data is under-sampled and therefore 

aliasing artefacts can occur. Some ray casting algorithms minimise aliasing by 

using low-pass filtering that reduces the frequency content of the volume by 

employing reconstruction kernels that become larger as the rays diverge 

[79,80]. However, this filtering results in the loss of information from the data 

volume, artificially blurs the reconstructed images and deteriorates image 

quality. All ray casting methods discussed in this chapter are prone to aliasing, 

and therefore must use low-pass filtering. 

Anti-aliasing in splatting is typically accomplished by increasing the area of each 

splat in proportion to the distance the splat originates from the source, so that 

the data volume is not sub-sampled. However, increasing the splat size results 

in increased blurring and less than optimal image quality [75]. 

 

2.7 Conclusions – justification of the volume rende ring method 

used in this research 

Most, if not all of the literature is heavily biased towards speed when calculating 

DRRs. This comes at the expense of image quality. Of the main types of DRR 

calculation methods, ray casting and splatting are by far the most popular. 

Splatting has been developed to increase the speed of calculation, but is prone 

to aliasing, blurring and incorrect pixel values. Anti-aliasing algorithms have 

been introduced but these inherently increase blurring further. Ray casting 
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produces superior images but usually take much longer to compute than 

splatting algorithms. All ray casting techniques in the literature use interpolation 

(mainly tri-linear, but treating each voxel as a uniform cubic structure is also well 

used) between voxels to increase speed, but this introduces aliasing which 

must be reduced with low pass filters that cause blurring.  

For this research, it is postulated that to produce optimum image quality, rather 

than using simple rays to render 3D CT volumes, realistic pencil beams 

projected through the data should be used; this will avoid any confusion of 

which sampling method to use that is inherent with rays. In this work, as each 

pencil beam passes through each CT slice in the posterior-anterior (PA) 

direction, the proportion (area) of each pencil beam (in the centre of a given PA 

slice) in each neighbouring voxel will be calculated, and a resulting linear 

attenuation coefficient will be derived based on the weight of each area. This 

method uses ‘sampling with areas’ rather than ‘sampling with volumes’; as ray 

casting is a perspective projection, this assumption is not entirely accurate, 

since this is a method of mapping three-dimensional (volumetric) points to a 

two-dimensional plane. However, for a given change in beam area in a voxel, 

the volume would approximately increase or decrease proportionally. Also, 

pencil beam area sampling of voxels applies to calculation of weighted linear 

attenuation coefficents only, and as this applies to the whole 3D pencil beam, 

one is not moving away from a volumetric calculation. 

The intention is that image quality will be optimum and there will be very little 

artefacts; using pencil beams will ensure the CT data is sampled in a realistic 

manner with respect to rays. However, because each pencil beam is diverging 

away from one another, aliasing is still expected in the resulting DRR. Low pass 

filters will not be applied to minimise this artefact, unless the algorithm proves 
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difficult to validate. The computationally expensive calculation times can be 

justified by the fact that the research is aimed at producing a computer 

algorithm which produces chest X-rays that contain sufficient projected anatomy 

to allow the optimisation of radiographic technique. Therefore, image evaluators 

only need to see the end point (i.e. the resulting images) rather than have to 

operate the system and reconstruct images themselves. Nevertheless, the 

sheared object space technique will be investigated in order to reduce 

computing time. 

In conclusion, this research will look at validating a ray casting technique using 

realistic pencil beam projection rather than non-realistic rays, as ray casting has 

been shown to produce superior image quality compared to that of splatting. 

However, radiation scattered by Compton processes is not included by any of 

the DRR methods discussed. The next chapter discusses the implications of 

this as well as methods of scatter measurement and addition to DRRs. 
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Chapter 3: Methods to add scattered X-
radiation to digitally 
reconstructed radiographs  

3.1 Introduction 

This chapter introduces the basic physics of scattered radiation at diagnostic X-

ray energies, and analyses methods of scatter measurement in chest imaging. 

Scattered radiation is not added to DRR images produced by ray casting 

techniques, so the chapter concludes with a justification for a method used to 

add scatter to DRR images. 

3.2 Scattered X-rays in diagnostic radiology  

An important effect in diagnostic radiology involves inelastic scattering of X-ray 

photons with unbound electrons; a phenomenon called the Compton effect. This 

process occurs when a photon collides with a loosely bound atomic electron in 

a snooker ball fashion, with both energy and momentum conserved, as shown 

in Figure 3.1. 

 

Figure 3.1: Schematic representation of the Compton  effect. 
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Figure 3.1 shows an incoming photon colliding with an electron and being 

deflected at angles φ and θ, respectively. The proportions of energy and 

momentum transferred from the photon to the electron are determined by these 

angles. The electron rapidly loses its kinetic energy through ionisation and 

excitation within the medium, but the scattered photon, assuming no further 

interaction, emerges from the medium with lower energy than it entered. This 

photon may be absorbed by an image receptor (e.g. a CR phosphor) or 

released into the surrounding environment.  

Scattered photons that reach the image receptor do not contain clinically 

relevant information and degrade the image quality of chest radiographs by 

creating a non-uniform background that reduces image contrast. The scatter 

fraction SF, defined as the ratio of the intensity of scattered radiation to that of 

total (scattered plus primary) radiation recorded on the image, increases with 

increasing field size and thickness of scattering material. Thus, for large-field 

examinations of thick body parts, such as the abdomen, scattered radiation can 

be a serious problem.  

In chest radiography, although the equivalent tissue thickness of the lungs is 

approximately one-half that of the abdomen, scatter is still produced, and is 

even more appreciable in the spine and diaphragm regions. Also, scatter is 

present in real CR images and therefore must be present in images produced 

artificially for optimisation purposes. The DRRs produced from CT data alone 

will have no scatter present and so it must be added post calculation.  
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3.3 Measurement of scatter and scatter fractions in  chest 

radiography 

Various studies in the literature have investigated measurement of scatter and 

scatter fractions in chest radiography. Niklason et al. [81] measured scatter 

fractions (SF) in patients and phantoms in various regions of the chest. A single 

lead beam stop (6 mm thick by 6 mm in diameter) was placed at the surface of 

the phantom/patient to measure SFs in the resulting chest radiograph. This 

thickness of the beam stop was used as it is approximately 20 half value layers 

(HVL) at 150 keV, and therefore sufficient to absorb most of the primary 

radiation incident upon it. As such, the radiation striking the film in the shadow 

of the stop was virtually all scattered radiation, as shown in Figure 3.2. 

 

Figure 3.2: Basic depiction of primary radiation be ing absorbed by the 
beam stop. Only the scattered radiation is recorded  in the shadow of the 
beam stop, depicted by the dashed area (not to scal e). 

Radiation recorded on the film surrounding the shadow included both scattered 

and primary radiation. The optical density (OD) of the film under the beam stop 

and the surrounding area were measured and converted to exposure using the 

sensitometric curve for the particular film. SFs were subsequently calculated. 

This technique for SF measurement has also been used by Bowenkamp et al. 

[82]. 
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Boone [83] describes a method to remove the scatter component from a digital 

image. SFs were measured in the image using 5 lead disks ranging from 10 to 

50 mm diameter. Scatter measurements were extrapolated to 0 mm disk 

diameter to assess scatter in an open field. The results showed that as the 

disks get larger, less scattered radiation reaches the image receptor 

corresponding to the centre of the disk. 

In a second paper by Boone et al. [84], a method to calculate the point spread 

function (PSF), and hence the Modulation Transfer Function (MTF) of scattered 

radiation in a digital imaging system was discussed. Scatter in images was 

measured with uniform Lucite by firstly positioning the Lucite close to the focal 

spot, so detector scatter is negligible resulting in the ‘primary image’, and 

secondly positioning the Lucite near the detector so that the scatter is detected. 

The scatter component was measured by subtracting the primary image from 

the [primary + scatter] image. The PSF and MTF were then derived to analyse 

the spatial distribution of the scatter for various thicknesses of Lucite. The 

scatter MTF changed with thickness of Lucite (and therefore patient thickness). 

Floyd et al. [85] investigated the measurement of quantitative scatter in photo-

stimulable phosphor imaging systems. SFs were measured using the beam 

stop method with five polystyrene phantoms of varying thickness. Similar to 

Niklason’s method, SFs were calculated by measuring pixel values in the 

shadow of the beam stop and adjacent to it. This was then converted to 

exposure. Beam stops of various diameters (10, 5 and 3 mm) were also used to 

give an estimate of SFs at zero diameter (using linear extrapolation). ROI 

analysis was carried out in the beam stop and around the beam stop. The ‘total’ 

value was obtained from the image containing the beam stop. The results show 

that the thicker the phantom the higher the scatter fraction. 
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Floyd et al. [86] later measured scatter fractions in clinical bedside radiography. 

A posterior beam stop (PBS) configuration was used that allows measurement 

of SFs simultaneously with the patient exposure. The PBS is a series of 224 

beam stops positioned in an array so that the SF can be measured 

simultaneously across the entire chest radiograph. It was reported this 

methodology worked sufficiently, as SFs of different regions of the chest could 

be measured simultaneously. Of interest, their study found that SFs in the chest 

were not found to correlate with age, weight or sex. The work described by 

Floyd et al. may be of use in this research as it may allow a ‘scatter image’ to be 

generated, which could then be added to the DRR of the virtual patient. 

Petrone et al. [87] also used a beam stop technique to measure the scatter 

fractions under three regions of a humanoid chest phantom utilising LaOBr and 

GdO2S intensifying screens. Similar to other investigators, measurements in the 

shadow of the beam stop and the surrounding area were made to evaluate the 

SFs. The dependence of the point scatter fraction on beam stop size was also 

estimated by making measurements with 20, 10 and 6 mm diameter beam 

stops and extrapolating to zero. This allowed for an estimate of error associated 

with the potential lack of scatter generated in the shadow of the beam stop. SFs 

decreased only slowly with beam stop size, the largest error being 3.4% in the 

lung area. 

Baydush et al. [88] compared the scatter properties of a geometric phantom 

(consisting of aluminium and copper sheets) versus an anthropomorphic 

phantom. As per other investigators, an array of lead beam stops 6 mm thick 

(14 by 16) was placed in front of each phantom to calculate scatter fractions at 

tube voltages that spanned the diagnostic energy range.  Images of 224 equally 

spaced scatter measurements (25 mm) were obtained and converted from pixel 
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value to incident exposure using the linear system transfer property of the 

system previously measured. SFs were determined at each visible beam stop 

on the chest radiograph using ROI analysis. SFs in each anatomical region 

(abdomen, mediastinum, lung, retrocardiac and the region behind both the heart 

and spine (heart/spine)) were determined by averaging the scatter fraction 

values that were determined for that region.  

3.4 Conclusion – justification for the method of sc atter 

measurement  

As discussed, scattered radiation will have to be added into each DRR image 

retrospectively, as ray casting techniques do not compute any component of 

scatter. To do this an array of beam stops, extensively described in the 

literature, should be used to calculate scatter fractions across the entire chest 

radiograph for a range of diagnostic beam energies. It is important to have a 

realistic chest phantom to carry out this task; that is, either a geometric or 

anthropomorphic phantom. Intuitively, geometric phantoms due to their 

simplistic nature are probably not adequate enough to simulate scatter 

produced by the chest. Therefore, it is proposed that the Alderson RANDO 

anthropomorphic phantom (described in detail in Chapter 4), can be used 

together with a beam stop array to measure scatter and SFs in a chest 

radiographs acquired with different tube qualities. The resulting scatter and SF 

images can then be added to raw DRRs. Although primarily used for radiation 

therapy, RANDO muscle has been shown to attenuate diagnostic energy 

radiation similar to that of water (Shrimpton et al. [89]), which in turn is has very 

similar properties to human muscle. However, this phantom is of fixed size, and 

therefore does not represent obese patients. It is therefore also proposed that 
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the phantom be modified by adding a fat equivalent material to represent the 

obese adult. 
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Chapter 4: Digitally Reconstructed 
Radiograph software production, 
experimental techniques and 
practical data collection 

4.1 Introduction 

This chapter discusses the production and development of software used to 

generate digitally reconstructed radiographs (DRRs), as well as the 

corresponding practical methodologies, measurements and data collection 

required, such that, when integrated into the software, adequate DRR images 

are produced. For purposes of clarity throughout this chapter, it should be noted 

that all software was written in MATLABTM Version 8a (The MathWorks Inc, 

Natick, MA).  

The chapter begins with a discussion of phantom and patient image acquisition, 

X-ray spectra generation and CT data preparation (such as application of 

appropriate filters and transforming CT voxel values into linear attenuation 

coefficients). The ray casting algorithm is then addressed, namely accessing 

and transforming CT data, projecting and sampling of pencil beams, and 

estimating the energy absorbed in a virtual CR phosphor. Practical 

methodologies are then discussed, such as the measurement of X-ray scatter 

and CR system noise. Simulation of lung nodules and fat are addressed, 

followed by an assessment of how CT noise, DRR resizing and resolution 

affects final DRR image quality. Finally, the chapter ends with an overview of 

the entire process. 
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4.2 Methodology 

4.2.1 General practical methodology & phantom/patie nt image 

acquisition 

The DRR algorithm requires data derived from clinical CR, CT and X-ray 

systems to enable adequate functionality. The physical characteristics of the X-

ray and CR systems were measured in a general purpose X-ray room equipped 

with a Philips Optimus Diagnost TH ceiling suspended X-ray system (Philips 

Medical Systems, Surrey, UK) with total inherent filtration equivalent to 3.1 mm 

of aluminium (see Figure 4.1), and an Agfa CR85-X reader (Agfa, Peissenberg, 

Germany) with MD4.0 plates (35 cm x 43 cm, effective pixel pitch of 0.17 mm – 

see Figure 4.2).   

 

Figure 4.1: Typical Philips X-ray room. The X-ray t ube is shown above the 
bed. 

X-ray tube 
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Figure 4.2: Agfa CR85-X digital reader with CR imag e cassettes shown on 
the cassette buffer. 

4.2.1.1 Phantom used for image acquisition  

All phantom acquisitions utilised the chest portion of the Alderson RANDO 

anthropomorphic phantom. The phantom consists of a natural human skeleton 

embedded in a synthetic isocyanate rubber with lung substitute and air cavities, 

simulating the average male, approximately 70 kg. It is constructed from slices 

of rubber allowing different sections to be used. An image of the phantom is 

shown in Figure 4.3. 

CR image cassettes 
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Figure 4.3: Image of the Alderson RANDO phantom. Sl ices of synthetic 
rubber are visible. 

Although primarily used for radiation therapy, RANDO has been shown to 

attenuate diagnostic energy radiation in a similar way to water, which in turn has 

very similar properties to human muscle [89].  

Fat was also added (see Figure 4.4(b)) to the phantom periphery to simulate an 

obese patient. A thickness of 4 cm of fat was added to RANDO on the advice of 

the superintendent radiographer (private communication, Andrew Stephens, 

2009); obese patients typically have approximately this amount of fat around the 

chest area (as determined from CT images). Grocery store lard was used to 

simulate the fat. It should be noted that phantom images described below were 

acquired primarily for validation of the DRR algorithm. 

4.2.1.2 Phantom imaging with the CR system  

Phantom images collected on the CR system were acquired with a focus to 

receptor distance of 180 cm and with the CR receptor placed 5 cm behind the 
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phantom in the cassette holder. A sufficient tube current-time product (mAs) 

was used to produce a lgM value of 2.00 ± 0.05. The lgM value is a receptor 

dose indicator displayed on the CR system for every image acquisition; it is 

recommended by the manufacturer a value of approximately 2.00 should be 

sought for a correctly exposed chest radiograph (although not necessarily 

optimum). The X-ray field was collimated to the edges of the phantom and a 

single CR cassette (digitized in the CR reader with a fixed sensitivity of 400) 

was used throughout the study. The latter restriction was observed recognizing 

that different individual receptors do not have exactly matching sensitivities. The 

cassette chosen demonstrated a median sensitivity (lgM value) of those 

available. No clinical post-processing was applied.  

CR images of the phantom were acquired at tube potentials 50 – 150 kVp in 

approximate steps of 10 kVp (exact steps of 10 kVp were not possible on the 

Philips X-ray system). Half and double mAs values were also used at each tube 

potential to assess the effects of dose reduction and escalation in the resulting 

DRR images. The phantom set up was chosen to simulate the clinical situation, 

although only the chest portion of the phantom was used, as shown in Figure 

4.4.  



 73 

 

Figure 4.4: The RANDO phantom positioned in front o f a CR cassette (a) 
without added fat, and (b) with added fat. The X-ra y tube is out of picture. 
 

4.2.1.3 Phantom imaging with the CT system  

To collect CT phantom and patient data, a Philips Brilliance 16 slice multi-

detector CT scanner was used, an image of which his shown in Figure 4.5. 

 

Figure 4.5: Philips Brilliance 16 slice CT scanner.  

(a) (b) 
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The chest portion of the RANDO phantom, without and with fat was scanned on 

the CT scanner and reconstructed using the scan protocol and reconstruction 

parameters discussed in Section 4.2.4. This experimental set up is shown in 

Figure 4.6. 

 

Figure 4.6: Chest portion of RANDO on the CT scanne r (a) without any 
added fat, (b) with fat added. 

4.2.1.4 Clinical image acquisition 

Further validation was performed by accessing clinical images (local research 

ethics committee approval was obtained) to allow the retrospective use of 

clinical CT and CR images. Image data of suitable patients (average and obese 

patients identified by the expertise of the examining Radiographer) were 

identified on the CR system, and beam quality, mAs and focus to detector 

distance used for their exposures were recorded. Images were transferred to a 

separate computer after Agfa specific post-processing (MUSICA) was removed.  

Average sized patients only were identified on the CT scanner, to compute 

DRRs that simulated average patients. Fat was also added to the images 

artificially prior to DRR calculation to simulate obese patients (see Section 

4.2.13). The CT data were reconstructed as per the parameters discussed in 

Section 4.2.4 prior to transfer to a separate computer.  

(a) (b) 
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4.2.2 Generating X-ray Spectra 

To simulate diagnostic X-ray images using quantitative methods, it is important 

to ensure that the virtual source of X-rays produces spectra that accurately 

reproduce X-ray beam qualities used in practice. The X-ray spectra used in this 

research were generated using the techniques of Birch and Marshall, as 

described in the Institute of Physics and Engineering in Medicine (IPEM) Report 

78 [90-91]. This software has been independently validated by Ay et al. [92].  

The X-ray spectra can be generated at 0.5 keV intervals from 0.5 keV up to the 

X-ray tube accelerating potential chosen by the user. The spectral intensity is 

also determined by user specific variables, namely the target material 

(Tungsten (W) for this Philips X-ray system), the target angle (13°) and the 

amount of voltage ripple (assumed to be zero for high frequency generators). 

The spectral data is specified on a central axis 750 mm from the source. A 

typical continuous (Bremsstrahlung) spectrum with characteristic peaks as 

calculated using the methods detailed in IPEM 78 is shown in Figure 4.7. 
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Figure 4.7: Spectrum processed by IPEM 78 for an 80  kVp beam, Tungsten 
target (angle of 13°) and total filtration of 3.1 m m Al. Intensity is given at 
the central axis 750 mm from the source. 
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As the beam originates from a point source, the intensity is inversely 

proportional to the square of the distance from the source (the inverse square 

law ISL), assuming insignificant attenuation by air. The intensity used in the 

simulation was corrected for distance from the source to the virtual patient, 

using the following equation: 
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=                                                     (4.1) 

where I(pv) is the intensity at the surface of a given voxel on the virtual patient 

surface, pv is the distance from the source to the voxel in millimeters, and I750 is 

the intensity at 750 mm calculated by IPEM 78. 

The calculated X-ray spectra are assumed to be from tubes that are 100% 

efficient. However, this is not the case for real tubes and as such produce 

spectra with outputs lower than that calculated. The intensity used in this model 

was therefore corrected by the efficiency of the real X-ray tube used in this 

study by measuring the air kerma with a calibrated 6 cc ionisation chamber 

(Radcal Corporation, Monrovia, USA) at 750 mm from the source and 

comparing this with the air kerma calculated by IPEM Report 78. The tube was 

found to be approximately 86% efficient. X-ray intensity at the virtual patient 

surface can then be determined using equation 4.2: 
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Spectra for X-ray tube voltages across the diagnostic energy range, i.e. 50 to 

150 kVp in approximate steps of 10 kVp were calculated (exact steps of 10 kVp 

were not available on the clinical X-ray system to which the software was 
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configured and so were not used in the simulation – see Chapter 5, Table 5.1 

for the actual kVps used). Central axis intensity (750 mm from the virtual 

source) at each tube potential, generated with parameters correct for the Philips 

X-ray system (13° Tungsten anode with zero ripple a nd 3.1 mm Al total 

filtration) was converted into a Microsoft Excel file in a format ready for use with 

the DRR software. The raw Excel data was then accessed by the DRR software 

and corrected for inverse square law and tube efficiency (in accordance with 

equation 4.2). Figure 4.8 illustrates the effect inverse square correction has on 

the X-ray beam intensity at the virtual patient surface, from the ‘beams eye 

view’ (BEV) perspective.  

 

Figure 4.8: Beams eye view of X-ray spectra at the virtual patient surface 
with inverse square correction. The scale is normal ised to 1. 

As can be seen from Figure 4.8, the intensity impinging the virtual patient 

decreases by approximately 2% in the corners. This is expected, as X-rays 

have to travel further to the corners relative to the centre, assuming the centre 
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of the beam is normal to the virtual source. It should be noted that the influence 

of the anode heel effect is not included.   

4.2.3 CT Data Preparation 

For DRR calculation, it is important that CT images have as little processing 

applied as possible, so that CT voxel values correspond to the X-ray attenuation 

properties of the particular tissue. However, as back-projected CT data is 

inherently blurred, filtering must be applied. The Philips scanner used in this 

study has a variety of filters, some of which artificially sharpen the image 

(emphasise high spatial frequencies), and others that smooth the image 

(emphasise low frequencies). Typical functions associated with filtered back-

projection are shown in Figure 4.9. 

 

Figure 4.9: (a) Effect filtered back-projection has  on amplitudes of spatial 
frequencies in an image, and (b), those filters use d practically. F N is the 
Nyquist frequency. 

Figure 4.9(a) shows the effect back-projection has on the amplitudes of spatial 

frequencies present in a CT image (curve A). Curve B shows the theoretical 

ideal correction function (but this still amplifies high frequency noise and 

aliasing). Figure 4.9(b) shows typical filters used practically. Filter C will cause 
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loss of resolution due to the drop off at high frequencies, whilst filter D will give 

better resolution than filter C but information will still be lost due to high 

frequency cut off. Filter E gives best resolution but appreciable high frequency 

noise, and can be described as a ‘ramp’ filter [93, 94]. 

After discussion with Philips (Private Communication, Paul Klahr, Philips 

Medical Systems, 2008), filter E (available on our CT scanner) was identified as 

providing minimum processing, and as discussed above, this is the basic ramp 

filter that corrects the effect back-projection has on the amplitudes of different 

spatial frequencies in the image. On the scanner, CT data can be reconstructed 

with filter E by reprocessing the raw non-filtered data. The field of view (FOV) 

and reconstruction matrix can also be altered, although the FOV is somewhat 

dependent on patient size.  

CT images also contain noise which may influence final characteristics of a 

DRR image. However, the impact of this noise can only be investigated once 

DRR images can be produced. The potential issues around this are discussed 

in Section 4.2.16. 

4.2.4 CT Number to linear attenuation coefficient c onversion 

The ray casting DRR method requires each CT voxel value to be converted to 

its linear attenuation coefficient (LAC) in order that one may calculate the exiting 

photon intensity from a knowledge of the incident photon intensity (see Section 

4.2.6). It should be remembered here that CT voxel values are not in Hounsfield 

Units (HU), but ‘raw values’. This is due to the fact that images transferred from 

the CT scanner did not have the manufacturer specific conversion function 

(contained within the DICOM header of each image) applied that converts raw 

voxel values to HUs (i.e. this processing step was ‘bypassed’). This poses a 
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potential problem in that these raw voxel values may ‘drift’ because 

manufacturer calibrations (performed annually) are carried out in terms of HUs; 

a modification to the conversion function is made by the service engineer if the 

HU values are out of the accepted range. However, upon comparing the 

conversion function in the DICOM header of images acquired at the beginning 

of the study to that at the end (spanning approximately three years), there was 

no change in conversion function. This demonstrates the service engineer, 

through the course of this study, never had to recalibrate the HU values, 

suggesting the raw voxel values did not ‘drift’ significantly. 

The Gammex RMI tissue equivalent phantom was used to convert CT voxel 

values to LACs. The phantom (Gammex-RMI, Broadway Business Centre, 

Nottingham, UK) is a tissue equivalent phantom (model no. 467),  consisting of 

a Solid Water® cylinder that contains 17 inserts, the attenuation properties of 

which mimic the different attenuation properties of the various tissues found in 

vivo, as shown in Figure 4.10. The inserts can be placed anywhere in the 

phantom. 
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Figure 4.10: CT image of Gammex RMI tissue substitu te phantom with 

each insert visible. 

The phantom was scanned with the scanning protocol (see Table 4.1) in use for 

chest examinations at our institute. 

CT Scan Parameter Value Used 

Resolution Standard 

Collimation 16 x 0.75 mm 

Pitch 1 

FOV (mm) 350 

Tube Potential (kVp) 120 

Tube Current-time product (mAs) 175 

Table 4.1: Parameters used to scan Gammex RMI phant om. These are 
standard for chest imaging in our Radiology Departm ent. 

Each tissue insert was placed at the centre of the phantom and scanned in turn. 

All other tissue inserts were removed to minimise the effects of scatter.  After 

the scan, raw data were reconstructed with filter E, matrix 1024 and slice 

thickness 0.8 mm (the same reconstruction parameters to be used to prepare 
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clinical images for DRR calculation). The mean of the CT voxel values 

contained within a region of interest (ROI) of each tissue substitute was 

measured, as shown in Figure 4.11 

 

Figure 4.11: Image of an insert against the uniform  background. The ROI 
is shown in blue. 

It has been assumed that beam hardening has minimal impact on the results, 

as the CT scanner utilizes a ‘bow-tie’ filter to conform the intensity of the beam 

to compensate for body shape (the RMI phantom has a circular diameter similar 

in size and shape to the phantom used by the service engineer when testing 

this artefact), and scanner software corrects for any further artefact. However, 

to test this assumption, the conversion function (as discussed in the previous 

section) was used to convert the raw voxel value of solid water to its HU 

counterpart, and compare this to the service engineer’s allowed range of HUs 

for water. The conversion function has a gradient = 1, and an intercept = -1024, 

i.e. the conversion function simply takes 1024 voxel value units from the raw 

voxel values to calculate the corresponding HUs. If one applies this conversion 

to solid water, which has a raw value of 1016 (see Table 4.3), one derives a HU 

values for water of -8. This is within the manufacturer tolerance of 0 ± 10, 

suggesting that beam hardening is indeed minimal on this scanner, and the raw 

voxel values are ‘correct’. 
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Information from the user manual of the RMI phantom provides the elemental 

composition of each tissue substitute by weight (e.g. composition of lung by 

percentage weight is: H=8.33, C=60.32, N=1.67, O=17.38, Cl=0.15, Si=0.61 

and Mg=11.54). This data was entered into the XCOM photon cross sections 

database (developed by the National Institute of Standards and Technology – 

NIST) [64, 65] together with the X-ray spectrum produced by IPEM Report 78. 

The XCOM database calculates photon cross sections for scattering, 

photoelectric absorption and pair production, as well as total attenuation 

coefficient for any element, compound or mixture at energies from 1 keV to 100 

GeV. The database can generate attenuations for user defined photon 

energies, such as those generated by IPEM Report 78. 

The total mass attenuation coefficient (cm2/g) of each tissue substitute, for all 

photon energies used to generate a given DRR image were derived with the 

XCOM database. As the density (g/cm3) of each substitute is readily available, it 

was simple to convert from total mass attenuations to LAC (cm-1). To illustrate 

this point, Table 4.2 shows the first five energies of a 50 kVp spectrum together 

with mass attenuation coefficient and LACs for the lung (LN300) substitute (it 

should be noted that the XCOM database gives a maximum 10% error on the 

attenuation values). 
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Photon Energy (keV) 

Total Mass 
Attenuation 

Coefficient (cm 2/g) of 
LN300 

Linear Attenuation 
Coefficient (cm -1) of 

LN300 

13.0 2.49 0.747 

13.5 2.24 0.672 

14.0 2.03 0.609 

14.5 1.84 0.552 

15.0 1.68 0.504 

Table 4.2: First five photon energies in a virtual 50 kVp spectrum together 
with their respective total mass attenuation and li near attenuation 
coefficient for lung substitute (LN300). 

This process was repeated for all tissue substitutes with all virtual tube 

potentials used in this study (50 kVp to 150 kVp in approximate steps of ten). 

Table 4.3 shows the first three energies of the 50 kVp spectrum with LACs for 

each substitute. 
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Tissue 
Substitute 

Mean CT 
Voxel Value 

13.0 keV LAC 
(cm -1) 

13.5 keV LAC 
(cm -1) 

14.0 keV LAC 
(cm -1) 

Air 21 0.00029 0.00026 0.00024 

LN300 282 0.07470 0.06720 0.06090 

LN450 443 0.11205 0.10080 0.09135 

AP6, adipose 909 0.13708 0.12420 0.11316 

Polyethylene 911 0.09568 0.08749 0.08022 

Breast 970 0.18216 0.16434 0.14949 

Solid Water 1016 0.15300 0.13872 0.12648 

CB3 resin 1027 0.23094 0.20796 0.18810 

Brain 1029 0.15936 0.14413 0.13094 

Liver 1113 0.17135 0.15410 0.14030 

IB1 inner 
bone 

1114 0.29268 0.26244 0.23760 

B200 bone 
mineral 

1143 0.18880 0.17110 0.15576 

CB4 resin 1228 0.37440 0.33813 0.30537 

CB2-10% 1301 0.55440 0.49840 0.45024 

Acrylic 1329 1.06485 0.95837 0.86448 

CB2-30% 1571 0.90852 0.81740 0.73834 

CB2-50% 2034 1.62240 1.45704 1.31508 

SB3 cortical 
bone 

2516 2.48400 2.24480 2.02400 

Table 4.3: First three energies of a virtual 50 kVp  spectrum together with 
the LACs and mean voxel value of each tissue substi tute. Note that the 
voxel values are not in terms of Hounsfield Units. 

The data from Table 4.3 were then used to derive linear relationships between 

mean CT voxel values and LACs for each photon energy (Table 4.3 would in 

reality contain all energies of the 50 kVp spectrum, but for conciseness these 

are not shown here). 
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In Table 4.3, for each photon energy, there is a linear relationship (R2 = 0.9972) 

between CT voxel value and LACs from air (CT = 21) to lung substitute LN450 

(CT = 443). The resulting linear equation was used to convert those voxels in 

the CT data that range from 21 to 443 (all CT voxel values lower than 21 were 

converted to 21) to their respective LACs. Moving down the table the next linear 

relationship that exists with a high degree of correlation (R2 = 1) is LN450 (443) 

to adipose (909). As such, all voxel values that lie in the range 443 to 909 were 

converted to their relevant LACs depending on the linear relationship. Two 

resulting linear equations of two photon energies are shown graphically in 

Figure 4.12. 

Air to Lung 13 keV:
LAC = 0.0003V - 0.004

R2 = 0.9972

Lung to adipose 13 keV:
LAC = 5E-05V + 0.0883

R2 = 1

Air to lung 14 keV:
LAC = 0.0002V - 0.0033

R2 = 0.9972

Lung to adipose 14 keV:
LAC = 5E-05V + 0.0706

R2 = 1
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Figure 4.12: Linear equations derived to convert CT  voxel values into 
LACs. The blue plot is for photon energy 13 keV, th e red relationship is for 
photon energy 14 keV. For clarity, other linear rel ationships are not 
shown. 

The plots in Figure 4.12 clearly show differences in LACs for different photon 

energies. This process was continued until all CT voxel values were 

transformed to their respective LAC. This entailed the derivation of 15 linear 

equations for each photon energy. Very few CT voxel values existed above 

2516 (cortical bone), but those that did were converted using the linear 
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relationship for CB2-30% to cortical bone (i.e. the final linear relationship 

derived from Table 4.3).  

It was not possible to derive a single function to convert CT voxel values to 

LACs because it was not possible to fit a function to the whole data with any 

degree of accuracy, as shown by the example in Figure 4.13. 
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Figure 4.13: All 15 linear equations derived to con vert CT voxel values into 
LACs for photon energy 13 keV. 

Figure 4.13 is an extension of Figure 4.12 in that all 15 linear relationships are 

shown. It is clear that one continuous (accurate) function would be very difficult 

to derive, especially in the voxel value region 900 - 1600. The method described 

here also has the advantage of using all of the RMI phantom data (i.e. lots of 

different tissue surrogates), which is a vast improvement over three to four 

tissue types used in the literature (see Chapter 1). 

An example CT slice with voxel values and corresponding LACs correct for a 

monoenergetic 13 keV beam is shown in Figure 4.14. 
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Figure 4.14: CT image slice with (a) raw pixel valu es, and (b) the same 
slice with pixel values converted into LACs (mm -1), i.e. a LAC map. 

As can be seen in Figure 4.14, the scale on the right hand side of each image 

clearly shows the difference between CT voxel values and LACs. Only bone is 

visible in the LAC map (Figure 4.14(b)) as this has a greater LAC than soft 

tissue, and therefore stands out in the LAC image. 

(a) 

(b) 
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4.2.5 Photon energy bins – a method to speed up DRR  simulation 

During image reconstruction, each CT slice was not transformed to a linear 

attenuation coefficient map (described in Section 4.2.4) for all photon energies 

present in each virtual X-ray spectrum. To do so would result in impossibly long 

computation times. As such, ‘reference photon energies’ in each X-ray 

spectrum were chosen, the DRR calculation executed for these, and the 

number of photons emerging from the CT data derived. However, the number of 

photons of other energies emerging from the CT data in each pencil beam (see 

Section 4.2.6) was estimated purely from one knowing the intensity of photons 

emerging from the CT data of the reference photon energies. Figure 4.15 and 

equations 4.3 to 4.8 illustrate the argument. 

 

Figure 4.15: Monoenergetic photons of energy E1 inc ident on voxels with 
attenuation coefficients µN E1. Each voxel is length d. I E1 is the exiting 
intensity. 

Figure 4.15 shows a monoenergetic intensity of photons (energy E1), IoE1, 

incident on a voxelated structure. The intensity of exiting photons would be: 

( )[ ]E1E1E1E1E1 µ3µ2µ1expIoI ++×−= d              (4.3) 

where d is the length of each voxel. It follows that: 

( )[ ]E1E1E1 µTexpIoI ×−= d                (4.4) 

where µTE1 is the total LAC (i.e. sum of LACs) for energy E1. This is also true 

for incident monoenergetic photon energy E2: 

µ1E1 µ2E1 µ3E1 IE1 

d 

IoE1 
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( )[ ]E2E2E2 µTexpIoI ×−= d                (4.5) 

If the ratio of the two is taken, the following equation is produced: 

( )[ ]E2E1
E1

E2
E1E2 µTµTexp

Io

Io
II −








= d         (4.6) 

So if one knows the total LAC, the incident and exiting intensities of photons for 

a given energy (e.g. E1), it is relatively simple to calculate the exiting intensity 

for photons of a different energy assuming the total LAC and incident intensity is 

known for that energy. This relationship was used in this work. If there is a 

constant ratio between the total LACs, such that: 

R=
E1

E2

µT

µT
                     (4.7) 

then equation 4.6 becomes: 

( )[ ]E1E1
E1

E2
E1E2 µTµTexp

Io

Io
II Rd −








=                  (4.8) 

As discussed in Section 4.2.4, LACs were derived using the XCOM database 

for each of the tissues present in the Gammex RMI phantom, and for all photon 

energies in a given X-ray tube potential. For 150 kVp, this entailed 275 

energies, as the lowest photon energy with more than one photon present in the 

simulated 150 kVp spectrum was 13 keV (energies with less than one photon 

were deleted from the spectrum). One can define a tissue LAC Ratio (TLR – 

equation 4.7) as the ratio of the (Gammex phantom) tissue LAC of one energy 

to that of another. Table 4.4 shows TLRs of 13.5 and 20.0 keV photon energies 

for each of the Gammex tissues compared to that of 13.0 keV. 
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RMI Tissue 
LAC for 
13 keV 
(mm -1) 

LAC for 
13.5 keV 
(mm -1) 

Tissue LAC 
Ratio (TLR) 

13.5/13.0 

LAC for 
20.0 
keV 

(mm -1) 

Tissue LAC 
Ratio (TLR) 

20.0/13.0 

Air 0.00029 0.00026 0.897 0.0001 0.345 

LN-300 0.0747 0.0672 0.900 0.0245 0.328 

LN-450 0.1121 0.1008 0.899 0.0367 0.327 

AP6 0.1371 0.1242 0.906 0.0499 0.364 

Poly 0.0957 0.0875 0.914 0.0397 0.415 

Breast 0.1822 0.1643 0.902 0.0639 0.351 

CB3 resin mix 0.1530 0.1387 0.907 0.0564 0.369 

Brain 0.2309 0.2080 0.901 0.0767 0.332 

Solid water 0.1593 0.1441 0.905 0.0574 0.360 

CB4 resin mix 0.1713 0.1541 0.900 0.0622 0.363 

Liver 0.2927 0.2624 0.896 0.0943 0.322 

Acrylic 0.1888 0.1711 0.906 0.0675 0.358 

CB2 - 10% 
Bone 

0.3744 0.3381 0.903 0.1217 0.325 

IB1 0.5544 0.4984 0.899 0.1702 0.307 

B200 1.0649 0.9584 0.900 0.3206 0.301 

CB2-30% 
Bone 

0.9085 0.8174 0.900 0.2774 0.305 

CP2-50% 
Bone 

1.6224 1.4570 0.898 0.4852 0.299 

SB3 - Cortical 
Bone 

2.4840 2.2448 0.904 0.7379 0.297 

   Mean ratio 
(MR) = 0.902 

 Mean ratio 
(MR) = 0.337 

   St Dev = 
0.004 

 St Dev = 
0.031 

   CoV= 0.471%  CoV= 9.361% 

Table 4.4: Photon Energy Dependent LACs of the RMI elements (13, 13.5 
and 20 keV). Tissue LAC Ratios (TLR) 13.5/13.0 and 20.0/13.0 are given as 
well as the mean ratio (MR), standard deviation of the ratios and 
coefficient of variance (%) for each. The columns o f ratios are highlighted 
in blue. 

As can be seen in Table 4.4, TLRs 13.5/13.0 are very similar to one another, 

but those for 20.0/13.0 are not, which of course is expected. For equation 4.8 to 
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work, it is important TLRs are not too different from one another, so as a first 

approximation, only photon energies with a coefficient of variance (CoV) ≤ 10% 

compared with the ‘reference photon energy’ were ‘binned’ together. For 

example, if photon energy 13 keV acts as a reference photon energy, energies 

13.5 to 20.0 keV may be placed in the same bin. When the DRR is being 

generated, CT voxel values are converted into LACs correct for 13 keV, the 

incident intensity of 13 keV photons is known (Section 4.2.2), and the exiting 

photon intensity is calculated. Rather than doing this again for energies 13.5 to 

20.0 keV (in total 14 separate energies and thus 14 separate DRR calculations), 

equation 4.8 is used by replacing R with the mean tissue LAC ratio (MR in 

Table 4.4) of the particular photon energy. This allows the calculation of exiting 

photon intensities 13.5 to 20.0 keV at the same time as the reference energy 

13.0 keV, without having to run the DRR simulation another 14 times. In other 

words, energies 13.5 to 20.0 keV were binned with the reference energy. As the 

CoV of photon energy 20.5 keV was 10.176% (larger than the 10% limit), this 

energy was deemed the reference energy for the second bin, and the process 

was repeated until enough energy bins were derived for the particular X-ray 

spectrum. For example, to produce a DRR simulation of a 150 kVp image, the 

following reference photon energies were used: 
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1. 13.0 keV 

2. 20.5 keV 

3. 26.0 keV 

4. 31.5 keV 

5. 38.0 keV 

6. 46.0 keV 

7. 59.0 keV 

8. 88.5 keV 

9. 119.0 keV 

This methodology necessitates running the simulation 9 times, rather than 275 

as would have been the case without photon energy binning.  

4.2.6 Ray casting with pencil beams 

As discussed in Chapter 2, rather than using simple rays for DRR generation, 

this work will use realistic pencil beams emanating from the source to the 

surface of the virtual patient. A basic example is depicted in Figure 4.16. 
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Figure 4.16: Simple depiction of a pencil beam eman ating from the source 
impinging a voxel of the virtual patient. This exam ple shows only one 
pencil beam, but in reality the software projects p encil beams to each 
voxel at the patient surface plane. 

The virtual patient here was produced with clinical CT slices accessed in a 

contiguous fashion. However, due to lack of computer memory (MATLABTM 

generates an ‘out of memory’ message whenever it requests a segment of 

memory from the operating system that is larger than what is currently 

available; the amount of memory therefore available is dependent on the 

specification of the computer being used), it was not possible to read in all 

clinical CT slices at the same time and project pencil beams through the entire 

dataset, so they were read in batches of twenty. Also, the clinical CT data was 

only available in an axial orientation, as shown in Figure 4.17. 
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 x-ray source 

Pencil beam 
diverging from 
source to face 

of voxel 
phi 

theta 

 CT slice 
thickness (0.8 

mm) 

CT pixel width 
(0.34 mm) 

Posterior edge of 
patient 

Anterior edge of 
patient 



 95 

 

Figure 4.17: Axial CT slice of the human thorax. 

Clinical CT data in this axial configuration is not in the orientation required for 

ray casting, as rays must project through the data in a posterior-anterior (PA) or 

AP direction (in the configuration shown in Figure 4.17, rays would be projected 

through the patient axis, superior to inferior (SI), rather than PA or AP). As such, 

axial CT data orientation was changed to ensure each patient data set was in 

the correct configuration for pencil beam projection (i.e. in a PA rather than a SI 

orientation). Also, to avoid even more computer memory problems, some of the 

coronal slices (i.e. in the PA direction) of the newly orientated CT data were 

deleted prior to pencil beam projection. The process is described in the flow 

chart below and is also shown diagrammatically in Figure 4.18: 
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Access the first twenty contiguous axial CT patient slices. Batch 
these slices into a 3-dimensional array then flip them into a PA 

orientation. 

The 3-D array now has 1024 slices in the PA direction. To avoid 
computer memory problems, truncate the 3-D array so that only the 

first 8 PA slices remain, i.e. delete PA slices 9 to 1024. 

Access the next set of twenty contiguous axial CT patient slices (i.e. 
axial slices 21 to 40). Batch these slices into a 3-dimensional array 
then flip them into a PA orientation. Delete PA slices 9 to 1024 and 

concatenate with the previous set of truncated PA slices. 

Continue this process until the first 8 PA slices of the patient, from 
waist to shoulders, are produced (i.e. the entire chest). 

Project pencil beams through the PA slices and record the photon 
intensity of each beam exiting the data. Delete the PA slices. 

Repeat the above process for PA slices 9 to 16. The intensity of 
each pencil beam incident on this PA data is that of the exiting 

photon intensities of the previous 8 PA slices. 

Repeat the entire above process until all 1024 PA slices have been 
traversed by each pencil beam. Record the intensity of each exiting 

beam. 
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Figure 4.18: Reading in batched CT slices and trunc ating to minimise 
memory implications. (a) 3-D array of axial CT data , (b) 3-D array of axial 
CT data flipped into a PA orientation (there are 10 24 PA slices as the axial 
CT data is 1024 by 1024 voxels in size), (c) PA CT data truncated in 
coronal direction, (d) second batched CT data flipp ed in PA orientation 
concatenated to the first batch. X-ray pencil beam direction is shown by 
an arrow entering the CT data.  

The process shown in Figure 4.18 was repeated from the first axial CT batch to 

the final axial batch. That is, if there were 700 axial CT slices in the patient 

scan, CT batch 1 would include slices 1 to 20, CT batch 2 would include slices 
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21 to 40 and so on until the last batch which would contain slices 681 to 700. 

When flipped into PA orientation, the resulting concatenated and truncated 

array allows pencil beams to be projected through the CT data in a PA direction 

(i.e. normal to the coronal direction) without any restrictions on memory. Figure 

4.19 shows the first 8 PA slices through the patient, after the process described 

in the above flow chart and Figure 4.18 have been performed. 

 

Figure 4.19: First eight PA slices through the virt ual patient. Axial CT 
slices have been batched, flipped PA, truncated and  concatenated. 

Figure 4.19 shows the first 8 PA slices of a patient in the correct orientation for 

ray casting. If one takes a normal from the centre of the first PA slice, this would 

intersect the X-ray source. Using this 8 PA slice configuration, pencil beams can 

be cast through the data (specific description of how this is done is described 

below) and the intensity of photons per pencil beam exiting the data can be 

saved to disc, and the PA CT data deleted. The next set of 8 PA slices may 

then be accessed (derived using the process described in the flow chart and 

Figure 4.18 for PA slices 9 to 16), and the process repeated using the photon 

PA slice 1 

PA slice 8 CT axial batch 1 
(i.e.  CT slices 1 to 
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CT axial batch 2 
(i.e. CT slices 21 
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Final CT axial 
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intensities per pencil beam saved previously as the input to the new PA data. 

This process was repeated through the entire PA axis of the patient. 

Prior to the above process, pencil beams were projected from the X-ray source 

(shown in Figure 4.16) to the first PA slice. Enough pencil beams were 

projected such that one was incident on each voxel of the first PA slice of the 

patient (i.e. the whole X-ray beam was split into smaller pencil beams), as 

shown in Figure 4.20.  

 

 

 

Figure 4.20: Pencil beam impinging a given voxel (d imensions shown) in 
first PA slice of patient. Pencil beams also imping e neighbouring voxels 
but for clarity these are not shown here. Pencil be am entrance angles are 
also shown: phi is the angle which the pencil beam has travelled in the 
up/down direction from the source, theta is the ang le traversed in the 
left/right direction. Directions are shown for clar ity. 

Each CT voxel is 0.8 mm x 0.34 mm x 0.34 mm in size (height x width x depth), 

as each voxel height, width and depth is the same dimension as the CT slice 

thickness, and CT pixel resolution in x and y respectively (due to flipping the 
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data). Each pencil beam was set to the same dimensions as a flipped voxel with 

no increase in size as it projects through the data. In reality, each pencil beam 

would increase in size (‘fan out’), but by very little; for a virtual patient who is 24 

cm thick, each pencil beam would increase in size by approximately 7% in each 

dimension as it moves through the CT dataset. Therefore no correction was 

applied for this. The projection function uses a 1:1 mapping between pixels on 

the DRR and voxels on the front face (first PA slice) of the dataset, resulting in a 

simulated image with a typical pixel density 700 rows x 1024 columns (i.e. no. of 

CT slices x CT resolution), and resolution of 0.8 mm x 0.34 mm. This results in 

poorer resolution than a CR image (2800 x 2300, pixel pitch 0.17 mm x 0.17 

mm), but is discussed in Section 4.2.14. 

The intensity per photon energy of X-ray photons in each pencil beam impinging 

the face of each voxel in the first PA slice was calculated, as well as the 

entrance angles of elevation (phi) and azimuth (theta). CT voxel values were 

converted to the LAC correct for the reference photon energy. It was assumed 

the central axis of each pencil beam impinges the centre of each voxel in the 

first PA slice (i.e. no portion of the beam enters neighbouring voxels). However, 

this is not the case for subsequent PA slices; for example, Figure 4.21 shows 

the front face of nine voxels together with a pencil beam impinging the central 

voxel.  
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Figure 4.21: Pencil beam impinging on neighbouring voxels in a PA slice 
subsequent to the first. Area of beam in neighbouri ng voxels are 
highlighted by various shades of grey. 

Figure 4.21 demonstrates that the central axis of the beam does not impinge 

the centre of the central voxel. The dark blue square represents the face of the 

pencil beam impinging not only the voxel in which the central axis impinges, but 

also the neighbouring voxels.  

The ray casting technique requires all pencil beams to sample each voxel they 

encounter as they project through each PA slice. Therefore, for each pencil 

beam projected through the PA CT dataset, it is important to know how far its 

central axis has travelled through the data. In other words, having entered a 

given voxel in the first PA slice, one must know which voxels the pencil beam 

samples in all subsequent PA slices. Therefore: (1) the area of pencil beam in 

the centre and neighbouring voxels can be calculated and, (2) the correct 

voxels are sampled in each PA slice. To do this, one must know the physical 

length of the central axis of each pencil beam from the entrance point of PA 

slice 1 to the central plane of a subsequent given PA slice (as sampling areas 

were calculated in the central plane), and how far it has travelled in the left/right 

(and up/down) direction. An example of this process is shown in a plan view 

Front face of voxels 

Central axis of pencil beam is shown by the solid 
arrow 
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(i.e. looking down on the patient) of the PA data in Figure 4.22, and magnified 

front view (i.e. looking through the patient) in Figure 4.23. 

 

 

Figure 4.22: Plan view of a pencil beam (thin dashe d blue lines). The 
central axis of the pencil beam is shown by the red  arrow (the length of 
the central axis within the PA dataset up to centra l plane of PA slice 3 is 
shown by the dashed red arrow). The thick blue dash ed lines are the voxel 
area sampling points through the CT data. The sampl ing point of the 
pencil beam in slice 3 is depicted ‘face on’ in Fig ure 4.23. The pathlength 
of the central axis travelled in each slice is show n by the pink double 
headed arrows (NB: this is the same for all PA slic es). 
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Figure 4.23: ‘Face-on’ view of a sampling point in a pencil beam (shown 
by the dark blue dashed lines in Figure 4.22. The s olid black lined square 
is the entrance voxel, the solid blue square is the  face of the pencil beam, 
and the red solid circle is the centre of the beam.  The beam has been split 
into those areas that impinge on neighbouring voxel s, as depicted by the 
dashed markings. Lengths of each side of each area are shown. 
z_dist_vox is the distance travelled by the central  axis in the ‘up’ 
direction. x_dist_vox is the distance travelled in the ‘right’ direction. 

The plan view of the PA dataset shown in Figure 4.22 depicts the central axis 

(red arrow) entering the CT data. The beam samples each voxel (based on area 

of beam in each voxel) that it encounters along its whole length until it leaves 

the data, these sampling points are shown in Figure 4.22 as the thick dashed 

blue lines, and ‘face on’ in Figure 4.23. 

Pencil beam lengths and distances traversed through the PA data were 

calculated using equations that transform spherical coordinates to Cartesian 

and vice versa, as shown in Figure 4.24. 
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Figure 4.24: The mapping from spherical coordinates  to three dimensional 
Cartesian coordinates. 

 Using the equations shown in Figure 4.24, the total length (TL) of the pencil 

beam if it were to reach the end (the whole PA-axis) of the PA dataset is given 

by: 

( )
theta)sin(pi/2cos(phi)

1024VD
TL

−×
×=                                                         (4.9) 

where VD is the voxel depth (mm), 1024 is the number of voxels in the PA 

direction, and phi and theta are the elevation and azimuth angles in which the 

beam impinges the front surface of the dataset (Figure 4.20). The length of the 

pencil beam (LPB) inside the PA dataset up to the central plane of a given slice 

(e.g. up to slice 3 shown with red dashed arrow in Figure 4.22) is then 

calculated using the following: 

( ) ( )







 ××−






 ××= TL
350

VD0.5
 TL

350

VDslice
LPB                                      (4.10) 

where slice is the number of slices traversed by the pencil beam in the PA-

direction, and 350 is the total PA-axis length (mm). The total distance traversed 

by the pencil beam central axis in the right direction (Dr) after entering the first 

PA slice (shown with a green arrow in Figure 4.22) is given by: 
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theta)cos(pi/2cos(phi)LPBD r −××=                                                    (4.11) 

and the number of voxels in the right direction traversed (VTR) is: 

VW

D
VTR r=                                                                                   (4.12) 

where VW is the voxel width. 

It is now possible to calculate how far the central axis of the pencil beam has 

travelled within the given voxel (left to right) of the given PA slice (i.e. exactly 

where the end of the red dashed arrow is in Figure 4.22 in relation to the left 

edge of the voxel) using the following: 

( ) VWVTRVTRDTV roundr ×−=                         (4.13) 

where VTRround is the total number of voxels travelled by the central axis of the 

pencil beam rounded down to the nearest whole number such that VTR - 

VTRround = fraction of voxel in right direction the central axis has travelled within 

the voxel. Note: the nomenclature used here is for right motion of each pencil 

beam, but it is easily adapted to left and up/down motion so that one can 

calculate exactly where the central axis is, as shown in Figure 4.23. 

The respective sampling areas incident on neighbouring voxels were then 

computed. In the example in Figure 4.23, the centre of the beam is in the top 

right of the voxel. As such, the pencil beam impinges on the above, right and 

above-right voxels (demonstrated with different blue markings). The lengths of 

the sides of each area were calculated by the following equations: 








−=
2

VW
DTVlength_B r                           (4.14) 
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length_BVWlength_A −=                            (4.15) 








−=
2

VL
z_dist_voxlength_C                           (4.16) 

where VL is the voxel length, 

length_CVLlength_D −=                            (4.17) 

It was then a relatively simple matter of using these lengths to calculate the 

area of pencil beam which samples each voxel. Each area was then found as a 

ratio of the total beam area (i.e. the area of the blue square in Figure 4.23), and 

called ratio area (RA). 

All path length and RA indices calculated here are universal and irrespective of 

what patient data is being used. As such, all were pre-calculated and saved to 

disc, and read back in when required. 

During DRR generation, all pencil beams sample each voxel they encounter as 

they project through the data. The effective LAC of each sampling point (thick 

blue dashed horizontal lines in Figure 4.22) was found by weighting the LAC of 

the relevant voxel to the RA in the voxel, and summing them together: 

LACeff =     (RAincident x LACincident) + (RAright x LACright) + (RAabove x LACabove) + 

(RAcorner x LACcorner)                            (4.18) 

The intensity of X-ray photons exiting is calculated with the following formula: 

])LAC...LAC[LACpathlengthexp(II ceNeff_PA_slice2eff_PA_slice1eff_PA_sli0E ++×−=         (4.19) 

where I0 is the intensity of the X-ray photons impinging on the surface voxel of 

the first slice of the PA CT data set, pathlength is the length travelled by the 
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central axis of the beam in each PA slice as shown by double headed pink 

arrows in Figure 4.22 (pathlength is a constant value in each slice for a given 

pencil beam and is irrespective of the number of voxels traversed), and 

LACeff_PA_sliceN is the effective linear attenuation coefficient for PA slice N. 

Equation 4.19 was applied for each pencil beam impinging the first PA CT data 

array. Subsequent PA arrays were subject to pencil beam intensities (i.e. their 

respective I0) calculated by equation 4.19 for the previous PA array. In other 

words, the calculated IE for PA array 1 was the I0 for array 2. This process was 

carried out for all reference photon energies (Section 4.2.5). However, there 

were still considerable computational timing issues due to vast amounts of 

sampling by each pencil beam. Therefore, a simplified method of shear 

transformation (discussed in Chapter 2) was investigated, as described in the 

next section.  

4.2.7 CT voxel shifting prior to pencil beam projec tion 

The DRR calculation process is very computationally intensive as it takes 

approximately 10 hours to compute a single DRR generated image on a 

modern PC (processor: Intel® Core™2 Quad 2.5 GHz, memory: 6 GB of RAM). 

It takes this long because each pencil beam enters a surface voxel with a given 

angular displacement (theta and phi), and as such the software has to perform 

a calculation to ‘inform’ each beam which voxels to sample in a given PA slice. 

In practice this necessitates voxels being shifted into the path of each pencil 

beam on a DRR by DRR basis. 

As already discussed, axial CT data was accessed and re-orientated, so the 

patient was in the PA position. As shown by the plan view in Figure 4.25, each 
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pencil beam enters a specific voxel and travels with an angular displacement, 

sampling voxels it encounters as it projects through the data. 

 

Figure 4.25: Plan view of pencil beam (thin blue da shed lines) sampling 
voxels at the central plane of each PA slice (thick  blue horizontal dashed 
lines) as it moves through the data. In this exampl e, the beam samples 
two voxels in each PA slice, all of which have been  colour coded in the 
Figure. Note: for simplicity, only the entrance vox el is sampled in PA slice 
1. 

Figure 4.25 shows the voxels sampled by the beam as it travels through the 

data (for right hand movement only), and all sampled voxels are highlighted. For 

example, in PA slice 2 the beam samples the voxel directly behind the entrance 

voxel (one may call this ‘column’ [entrance + 0])  as well as the one to its right 

[entrance + 1]. However, the central axis is incident on [entrance +1] at the 

central plane (horizontal blue dashed line) of the PA slice. In PA slice 3, the 

beam samples [entrance + 1] and [entrance + 2], but its central axis is incident 

on [entrance + 1] at the central plane. In PA slice 4, the beam samples 

[entrance + 1] and [entrance + 2] and its central axis is incident on [entrance + 

2] at the central plane. For the beam to sample the voxel in which the central 

axis is indicent at the central plane (in each PA slice), the data can be shifted 

Voxels sampled by 
beam in PA slice 4 PA slice 4 

PA slice 1 

Voxels sampled by 
beam in PA slice 3 

Voxels sampled by 
beam in PA slice 2 

Entrance+0 Entrance+1 Entrance+2 
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such that the beam may travel in a parallel manner through the data, as 

depicted in Figure 4.26. 

 

 

 

 

 

 

Figure 4.26: Voxelated data shifted such that each pencil beam may pass 
through in a parallel manner. Note that the beam sa mples the same voxel 
area as that in Figure 4.25 (shown by the thick das hed blue lines). 

Using this method, the central axis of the beam samples [entrance + 1] in PA 

slice 2, [entrance + 1] in PA slice 3 and [entrance + 2] in PA slice 4 in a single 

parallel projection. It should be noted that this is a simplifed version of sheared 

object space (Section 2.3.1), because the data was sheared linearly, rather than 

in a non-linear fashion, i.e. voxels were shifted into the path of the pencil beam 

and were not in themselves ‘warped’ (it should be remembered here that each 

pencil beam does not itself fan out (for simplification), but stays the same size 

as it projects through the data; each beam does however move away from one 

another). In practice, for each pencil beam (using equations 4.9 to 4.12), the 

number of voxels the central axis (i.e. the red dot in Figure 4.23) had traversed 

by the time it had reached the central plane of a given PA slice was calculated. 

For example, if a pencil beam entered the data and by the time it reached PA 

slice 100 had travelled 10 and 5 voxels in the ‘right’ and ‘up’ directions 

respectively, this voxel was shifted 10 and 5 voxels ‘left’ and ‘down’. However, 

Shifted 2 voxels 

Shifted 1 voxel 

Shifted 1 voxel 
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rather than do this on a voxel by voxel basis, the software was configured such 

that within each PA data set (Figure 4.19) the minimum and maximum amount 

of voxels traversed was calculated for all pencil beams incident on the PA data. 

The central axis of some incident pencil beams did not move out of their 

incident voxel columns (i.e. they stayed in [entrance + 0]), or in other words they 

did not traverse ‘left/right’, ‘up/down’ at all; this was certainly true for beams 

projected from the X-ray source near to the centre of the PA data, i.e. those with 

very small values of theta and phi. Voxels where this was not true were given a 

voxel value of zero (voxels where this was true were held at their voxel value), 

the entire data was then shifted by zero and the data saved to disc; in this way 

more than one voxel at a time with the correct voxel values were shifted. 

However, some pencil beams did traverse voxels in the ‘right/left’ and ‘up/down’ 

direction as they travelled through the PA data, e.g. some beams travelled one 

voxel in the ‘right’ direction within the PA data, and none in the ‘up’ direction. 

Voxels where this was not true were given a voxel value of zero (voxels where 

this was true were held at their voxel value), the entire data was shifted ‘left’ by 

one voxel and none in the ‘down’ direction. This shifted data was added to the 

original shifted data (i.e. that for zero shift discussed above). This process was 

repeated for all possible combinations of the above, saved to disc prior to DRR 

calculation and accessed when required (it was possible to do this because the 

paths of each pencil beam were pre-calculated – see equation 4.9 to 4.17). In 

carrying out this process, the shifts depicted in Figure 4.26 was possible. This 

only needed doing once per patient and took approximately 10 hours. If the data 

was not shifted prior to pencil beam projection and read in when required, every 

DRR image generated would take this long to compute. Therefore, if there are 

11 images per patient (for example, images reconstructed with tube potentials 
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50 kVp to 150 kVp in steps of 10 kVp) the entire process per patient would take 

approximately 110 hours to complete. However, using the method described 

here, shifted data is only accessed when required for parallel DRR computation 

(see below), and each DRR image took approximately 45 - 90 minutes to 

compute. 

When the shifted data was accessed, each pencil beam was projected through 

the data in a parallel manner. This shifted data was only correct for area 

sampling in the incident voxel, so RAincident (also accessed from disc) was 

multipled with the incident voxel LAC, i.e. RAincident x LACincident was calculated. 

For PA slice 2, RAincident x LACincident was calculated, and the array was then 

shifted one voxel to the right (Figure 4.25 shows the voxel to the left of the 

incident one requires sampling, i.e. LACleft), LACleft was accessed and RAleft x 

LACleft performed. This was repeated for the relevant adjacent voxels and 

equation 4.18 used to calculate LACeff for that PA slice. For PA slice 3 RAincident x 

LACincident was calculated then the array was shifted one voxel to the left to 

access LACright (see in Figure 4.25 it is the voxel to the right of the incident one 

that requires sampling). The relevant adjacent calculations were performed and 

LACeff derived. Similarly, RAincident x LACincident was calculated for PA slice 4, the 

data shifted one voxel to the right (see Figure 4.35) and RAleft x LACleft 

performed. This was repeated for all parallel pencil beams incident on the data, 

and effective LACs were calculated (equation 4.18) in each PA slice. The 

process described in this section was repeated for each reference energy until 

the photon intensity (per photon energy; I(E)) emerging from the patient in each 

pencil beam was derived. 
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4.2.8 Absorption of X-ray energy by the CR phosphor  

Having determined the photon intensity exiting the patient, the X-ray energy 

absorbed by the layer of phosphor was calculated [95] with the following 

equation: 

  dE}ρx
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where (µen(E)/ρ)CR is the photon energy dependent mass energy-absorption 

coefficient of the CR phosphor; ρx the mass loading of the phosphor (mass per 

unit area of phosphor; g cm-2); I(E) the photon intensity (per photon energy) in 

each pencil beam incident on the CR phosphor and E the photon energy. The 

value of ρx used was 0.08 g cm-2 (Private Communication, Mark O’Herlihy, 

Agfa, 2009). The respective atomic weight (g/mol) of each element of the CR 

phosphor (BaSrFBrI:Eu) was found as a percentage of the total weight, and 

each value was multiplied with its respective µen/ρ (taken from the National 

Institute of Standards and Technology (NIST) database [64]) to derive the total 

CR phosphor mass energy absorption coefficient at each photon energy, 

(µen(E)/ρ)CR. The results are shown in Table 4.5. 
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Photon Energy (keV) CR Phosphor Mass Energy 
Absorption Coefficient (cm 2/g) 

10 178.6 

15 46.1 

20 24.1 

30 20.6 

40 7.5 

50 4.9 

60 3.3 

80 1.7 

100 0.9 

150 0.3 

Table 4.5: Mass energy absorption coefficients for the CR phosphor used 
in this work (K edges not shown). 

Only the energies shown in Table 4.5 were available from the NIST database (K 

edges not shown). However, as descibed previously, each X-ray spectra used 

in this work contains energies 0.5 keV to keVmax in steps of 0.5 keV. Therefore, 

to calculate the energy absorbed in the CR phosphor, mass energy-absorption 

coefficients matched to the energies present in each X-ray spectra were 

derived. This was done using cubic interpolation (in-built Matlab function) of the 

values in Table 4.5. Figure 4.27 shows the CR phosphor mass energy-

absorption coefficient in graphical form for all photon energies contained within 

a 50 kVp spectrum. 
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Figure 4.27: Continuous CR mass energy-absorption s pectrum used in 
equation 20 for a 50 kVp DRR reconstruction. K abso rption edges are not 
shown. 

Equation 4.20 was used for each photon energy incident on the CR phosphor 

together with the relevant (µen(E)/ρ)CR to calculate the total absorbed energy per 

pencil beam. Although K-edge information are provided by NIST, increased 

photon absorption due to the K-edges of Iodine and Barium (33.2 and 37.4 keV 

respectively) were included in a separate calculation because they were not 

available in steps of 0.5 keV (i.e. as discussed above, the algorithm uses 

spectral data at every 0.5 keV). All subsequent DRR pixel values were 

displayed as energy absorbed by the CR phosphor and were linear with X-ray 

beam air kerma (and tube mAs) at the DRR image plane. As discussed in 

Section 4.2.6 each DRR was projected with a 1:1 mapping between pixels in 

the DRR and voxels on the front face (first PA slice) of the CT dataset. As such, 

there was one DRR pixel for each pencil beam. 

4.2.9 Linearisation of real CR pixel value data 

To measure scatter and scatter fractions (SFs), and add frequency dependent 

noise to a DRR (see Sections 4.2.10 and 4.2.11 respectively), images must be 

collected from the clinical CR system. DRR images are displayed in terms of 

energy absorbed by the CR phosphor, and are linear (i.e. DRR pixel values 
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increase linearly with mAs). Due to this, images collected from the CR system 

must also be linear. However, CR systems are seldom linear, as is the case 

with the Agfa system used in this work. Pixel values of images acquired on the 

CR system were linearised by measuring the system transfer function (detector 

response). This was done by obtaining a series of six uniform open field 

exposures at each tube potential (50 kVp – 150 kVp in approximate steps of 10 

kVp). The exposures covered a range of approximately 1 – 15 µGy air kerma at 

the cassette measured with the cassette removed and replaced with a 

calibrated 6 cc ionization chamber (Radcal Corporation, Monrovia, USA). 

Patient attenuation was approximated using 20 cm of polymethyl methacrylate 

(PMMA) at the tube port with a focus to cassette distance of 180 cm (PMMA 

used due to its similar X-ray absorption properties of water). This experimental 

set-up is shown in Figure 4.28. 

 

Figure 4.28: X-ray tube with 20 cm PMMA attenuating  material at the port. 
The CR cassette is not shown here but is 180 cm fro m the tube focus. 

Mean CR pixel vales were obtained for each uniform image from a central 12.5 

cm square, as shown in Figure 4.29. 
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Figure 4.29: Uniform open field image collected fro m the CR system. The 
mean pixel value is calculated from central ROI (bl ue square). 

For each tube potential used to collect the open field images, the energy 

absorbed in the CR phosphor was calculated using the method described in 

Section 4.2.8 but with X-ray spectra corrected for the extra 20 cm PMMA 

attenuation (measurement of air kerma here was not used for calculation of 

energy absorbed in the phosphor, but to ensure exposure factors used were in 

the correct diagnostic energy range, i.e. 1 – 15 µGy). The relationships between 

mean CR pixel value and energy absorbed in the phosphor for each tube 

potential were used to linearise all images acquired on the CR system (i.e. 

clinical CR pixel values were converted to X-ray energy absorbed by the CR 

phosphor). 

The relationship between energy absorbed by the CR phosphor and CR pixel 

value were all found to be logarithmic (loge, all r2 > 0.9995) and demonstrated 

slight dependence on tube potential, as shown in Figure 4.30. 
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Figure 4.30: Relationship between mean CR pixel val ue and energy 
absorbed in CR phosphor. For clarity, plots for oth er tube potentials are 
not shown. 

The dependence on tube potential of absorbed energy and pixel values is 

probably due to k-edge absorption. To account for the slight dependence, CR 

image data were linearised using the correct tube potential dependent 

logarithmic equations. 

4.2.10 Radiation scatter measurement and addition t o DRR 

As discussed in Chapter 3, scattered photons that reach the image receptor do 

not contain clinically useful information and degrade the image quality of chest 

radiographs by creating a non-uniform background that reduces image contrast. 

The scatter fraction (SF) is defined as the ratio of the intensity of scattered 

radiation to that of total (scattered plus primary) radiation recorded in the image.  

The algorithm that produces the DRR images do not model any scatter 

contributions, and therefore it must be added post calculation. To do this, the 

method discussed in Chapter 3 was utilized. Measurements of scatter (and 

SFs) representative of the whole chest were made using the most common 

method described in the literature; an array of 224 lead beam stops. The lead 

stops were each of 6 mm in thickness and 3 mm diameter, 25 mm apart, 
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suspended on a 1 mm thick PMMA sheet. The array was positioned in front of 

the chest portion of RANDO, as shown in Figure 4.31. 

 

Figure 4.31: RANDO phantom with array of lead stops  positioned just in 
front. (a) RANDO without added fat and (b) with add ed fat. 

Figures 4.31(a) and 4.31(b) show the lead stop array positioned in front of the 

phantom. Images were acquired on the Agfa CR system for a range of 

diagnostic tube potentials (50 – 150 kVp in approximate steps of 10 kVp) initially 

with no scatter rejection (as per local Radiology Department procedure). Images 

across the same range of tube potentials were then acquired with two scatter 

rejection techniques; firstly with an anti-scatter grid (strips per mm = 4, grid ratio 

= 12) focused at 140 cm focus to detector distance (useful range 115 to 180 

cm), then with an air gap between RANDO and the cassette. The anti-scatter 

grid set-up was identical to that described above, except the grid was 

energized, the chest stand removed and the CR cassette placed in the Bucky. 

The air gap set-up differed from local protocol in that RANDO was positioned 20 

cm further away from the cassette (i.e. 20cm closer to the tube) on the advice of 

the expert Radiographer (private communication, Jo Cook, 2010). 

As primary X-radiation is almost entirely absorbed by the lead stops, the 

resulting shadows in the radiograph provide an estimate of scatter (this 

(a) (b) 
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assumes system noise in each shadow is consistent throughout the image, 

which is verified by annual quality assurance tests). An image of the beam 

stops with and without RANDO was acquired at each tube potential with a 

sufficient tube current-time product (mAs), to provide a lgM of 2.00 ± 0.05, as 

depicted in Figure 4.32. 

 

Figure 4.32: (a) An image of the lead stops without  RANDO, and (b) an 
image of the lead stops positioned in front of RAND O. The shadows of the 
lead stops are easily visible in both images. 

The reason for acquiring an image of the lead stops without RANDO (Figure 

4.32(a)) was because it provided a ‘lead stop mask’, which aided the software’s 

application of a boundary tracing algorithm (Matlab in-built function) to find the 

coordinates of the perimeter of each shadow. This was much easier to do in an 

image without the background detail in Figure 4.32(b). The perimeter 

coordinates were then transferred to the image with RANDO, and, because the 

images were taken one after the other without the lead stop array being moved 

(and the CR cassette being carefully repositioned in the same place each time), 

the coordinates approximately fit over the perimeter of each lead stop shadow 

in the RANDO image (Figure 4.32(b)). When any mismatch occurred, the mask 

(a) (b) 
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was shifted up, down, left or right in a trial and error fashion until an adequate fit 

over the shadows was achieved. An image of RANDO and lead stops overlaid 

with the mask is shown in Figure 4.33. 

 

Figure 4.33: (a) RANDO with lead stops overlaid by the mask. The red 
circles enclose the lead stop shadows. (b) RANDO ov erlaid by mask 
without lead stops present. Notice the pixel values  enclosed by the red 
circles are much different to those shown in Figure  4.33(a). 

Each image was linearised in terms of energy absorbed by the CR phosphor, 

and the mean of the pixel values enclosed within each shadow were calculated. 

Each mean pixel value is a measure of scatter in terms of the energy absorbed 

in the phosphor. The total energy absorbed (primary + scatter) was measured in 

exactly the same manner, but with RANDO images acquired without the lead 

stops present (as shown in Figure 4.33(b)). 

Scatter and SFs (all linear in terms of energy absorbed by CR phosphor) were 

measured at the position of each lead stop, and a 2-D interpolation program (bi-

cubic interpolation that fits a bi-cubic surface through existing data points) was 

used to calculate the values of scatter and SFs across the entire image. An 

(a) (b) 
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example of scatter acquired with two tube potentials without scatter rejection is 

illustrated in Figures 4.34(a) and 4.34(b).  

 

Figure 4.34: Images of scatter factors with RANDO a cquired at (a) 60 kVp, 
and (b) 150 kVp. Scatter factor values are shown on  the grey scale bar 
down the right hand side of each Figure. 

Figure 4.34(a) was acquired with a 60 kVp tube potential. Scatter factors in the 

lung and spine/diaphragm regions range from 0.33 to 0.47, and 0.66 to 0.85 

respectively. Figure 4.34(b) was acquired with a tube potential of 150 kVp, and 

scatter factors range from 0.39 to 0.53 in the lung, and 0.69 to 0.88 in the 

spine/diaphragm. These values are in general agreement with SFs measured 

by Floyd et al. [86] in humans. There is little change in SF in the 

spine/diaphragm regions with change in tube potential, but the effect is slightly 

more pronounced in the lung. This is similar to that reported by Bowenkamp et 

al. [82].  

Figure 4.35 shows the difference between scatter factors measured in an image 

without scatter rejection and an image with scatter rejection (i.e. grid), both 

acquired with a tube potential of 60 kVp. It is clear that scatter factors are lower 

in the image derived with a scatter grid (Figure 4.35(b)), which would be 

(a) (b) 

60 kVp 150 kVp 
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expected. The SF range in lung is 0.15 to 0.33 and spine/diaphragm is 0.26 to 

0.54. SFs are therefore, on average, approximately 40% lower in the lung, and 

48% lower in the spine/diaphragm regions, when compared with the image 

acquired with no scatter rejection (Figure 4.35(a)). 

 

Figure 4.35: Scatter factor image of RANDO acquired  at (a) 60 kVp with no 
scatter rejection, and (b) image of RANDO acquired with the use of an 
anti-scatter grid. 
 

Similarly, using an air gap scatter rejection technique, SFs ranged from 0.29 to 

0.39, and 0.65 to 0.68 in the lung and spine/diaphragm regions, respectively. 

Since each DRR is already linear one can define the total energy absorbed by 

the CR phosphor as DRRtotal (as scatter does not exist in the simulation, energy 

absorbed in the CR phosphor from all pencil beams is not simply primary 

absorption, but total). The amount of primary absorption (DRRP) can then be 

calculated by removing a portion of the signal from DRRtotal by applying linear 

SFs measured experimentally using the following equation: 

 ( )SF1DRRDRR totalP −×=                                 (4.21) 

(a) (b) 

scatter  anti-scatter 
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Linear scatter (measured experimentally) can then be added to DRRp. The 

following equation was used: 

scatterDRRDRR PSP +=+                                                               (4.22) 

where DRRP+S is the primary DRR with linear scatter added. Scatter and SF 

masks here have been derived with the RANDO phantom and so easily fit over 

raw DRR images of RANDO. However, although only average and obese sized 

males have been identified in this study (upon which RANDO has modelled), 

anatomy differs slightly from patient to patient, and as such scatter and SF 

masks will not always fit exactly over the raw patient DRR. However, simply 

adding the scatter and SFs from RANDO over raw DRRs from patient CT data, 

as a first approximation, was deemed acceptable because any gross errors 

encountered when validating the model (Chapter 5) could be investigated if 

required.  

It should also be noted that throughout this chapter, SFs were not corrected 

back to ‘zero lead stop diameter’ from 3 mm as it has been shown [81, 82, 85, 

86] this makes less than 3% difference to the resulting SFs. 

4.2.11 Addition of frequency dependent system noise  to DRR 

images 

As discussed in Chapter 1, it is important to simulate CR system frequency 

dependent system noise in the DRR images to allow dose optimisation studies 

to be carried out.  

Frequency dependent system noise was added to each DRRP+S using a slightly 

different method to that described by Bath et al. [49]. Their work demonstrated it 
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was possible to create or collect an image containing only noise, which, when 

added to the original clinical image scaled to a lower dose level, resulted in the 

same noise properties (i.e. same noise power spectrum (NPS)) as an image 

acquired on the clinical CR system at the lower dose level. They argue that 

simulating a clinical image at a lower dose (dose of the simulated image, Dsim < 

original image), Imsim, is given by Im(x,y)sim = Im(x,y)orig scaled down + Im(x,y)noise 

where Im(x,y)orig scaled down is the original clinical linear image scaled down to the 

simulated dose (Dsim), and Im(x,y)noise is an noise image acquired on the CR 

system or produced artificially at the lower simulated dose Dsim, resulting in the 

equality NPS(u,v)Imsim = NPS(u,v)Dsim. However, because Bath et al’s original 

clinical image is not system noise free, the 2D NPS of their noise image is given 

by: 
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The second term in equation 4.23 acts to correct for the noise in the scaled 

clinical image (pixel values are correct in the scaled clinical image, but the noise 

properties are not). 

The work in this thesis differs in that the raw DRR image contains no CR 

system noise (the raw DRR does not need scaling because it can be produced 

at the necessary level of dose), as such the second term in equation 4.23 

becomes zero. This means that NPS(u,v)Imnoise = NPS(u,v)Dsim suggesting a 

noise image acquired on the CR system at a given dose level (effectively Dsim) 

will contain the correct frequency dependence required. Also, because the 

uniform noise image will be acquired directly from the CR system itself, all CR 

system noise sources will be present (see Section 1.4.1). This method assumes 
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that the NPS is a sufficient descriptor of noise and that detective quantum 

efficiency (DQE) is constant over the dose range within the image. However, 

CR systems tend to have a decreasing DQE with dose, but Bath et al. argue 

their method is sufficient for doses used clinically (limitations of the DRR 

simulation model are discussed in Chapter 5).  

A series of uniform noise images were collected from the CR system using the 

same experimental set-up described in Section 4.2.10. Images were acquired at 

tube potentials 50 – 150 kVp in approximate steps of 10 kVp across a range of 

clinically relevant mAs values. Each noise image was linearized and the DC 

signal (mean value) set to zero (the addition of the noise image must not alter 

the mean pixel value of the simulated image). As each DRRP+S is an 

inhomogeneous image, corrections to the uniform noise image must be made 

since the absolute noise in the low dose areas of a CR image would in reality be 

lower than that in the high dose areas. To take these local dose variations into 

account, the following correction is applied to the uniform noise image: 

mean

SP
unifcorr PV

DRR
y),Im_noise(xy),Im_noise(x +=                                           (4.24) 

where Im_noise(x,y)corr is the corrected noise image, Im_noise(x,y)unif  is the 

uniform noise image, DRRP+S is the primary DRR with scatter added and PVmean 

is the mean pixel value of Im_noise(x,y)unif. It is very important to remember 

here that equation 4.24 only holds for images that are dominated by primary 

and secondary quantum noise (i.e. those noise sources governed by Poisson 

statistics – see Section 1.4.1). As images acquired at clinical doses are indeed 

dominated by these noise sources, a simple square-root relationship is an 

appropriate way of correcting local dose variations.  
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A uniform noise image at each tube potential was acquired corresponding to the 

same level of air kerma incident (7.0 ± 0.4 µGy at each tube potential for a lgM 

= 2.00) at the CR cassette through the lung region of each DRRP+S. This air 

kerma value was established using a pixel value to air kerma relationship 

derived previously for this CR system (i.e. the mean pixel value in the lung 

region was measured and converted to air kerma). Each uniform noise image 

was corrected according to equation 4.24 and added to the DRRP+S.  

Figure 4.36 shows an example of an uncorrected and a corrected noise image 

derived using the method described above. 

 

Figure 4.36: (a) Un-corrected and (b) corrected noi se images. 

The noise image in Figure 4.36(b) shows the effect of local dose variations. The 

added noise in the diaphragm and spine regions is lower than that in the lung 

regions. The noise in the lower dose regions would be overestimated (and 

underestimated in the higher dose regions) if no correction was applied. This 

method of noise addition is likely to be one of the largest sources of error, and is 

discussed in more detail in Chapter 5. 

(a)  (b)  

lung 

spine 

diaphragm 
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4.2.12 Lung nodule simulation 

As well as simulating projected normal anatomy, it would be beneficial to 

simulate nodules in the chest radiograph so that optimisation can also be 

carried out for these abnormal structures. After discussion with an expert in our 

Radiology department (Private Communication, Dr Ged Avery, Consultant 

Radiologist, 2009) it was decided to simulate soft tissue nodules only in the 

lung. Lung nodules were chosen as they are indicative of common malignant 

disease such as cancer, and non-malignant diseases such as tuberculosis, 

pneumonia and sarcoidosis. 

The report ICRU 70 [96] also recommends soft tissue lesions in the lung as an 

indication for chest radiography. Lung nodules were simulated based on the 

work described and validated by Li et al. [97]. They simulated 3D lung 

abnormalities with realistic characteristics by modelling multiple 2D masks on 

sequential CT slices. For a given nodule, the peak CT number on contiguous 

CT slices varies depending on its distance from the centre, and on each CT 

slice the 2D mask is defined by a contrast-profile equation proposed by Samei 

et al. [98] and reformulated by Burgess et al. [99]. This equation is as follows: 

n2

R

r
1Cc(r)





















−=                             (4.25) 

where c(r) is the contrast profile dependent on distance from the centre of the 

2D mask, r is the distance from the centre of the 2D mask, R is the radius of the 

2D mask, C is the peak CT number of the 2D mask, and the exponent n is a 

positive number inversely related to the steepness of the contrast profile, 

reflecting edge characteristics. For this study, n = 2.416 was used [97]. The 
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mean CT number (± 1SD) of real lung nodules acquired on the Philips scanner 

used in this study was 1112 ± 6. Therefore, this value was used for C in 

equation 4.25. Recently, Gohagen et al. [100] carried out a lung cancer study 

and found that lung nodule sizes typically range from 4 mm to 16 mm. 

Therefore, in this study we chose to use a diameter of 10 mm (R = 5 mm). 

Hakansson et al. [18] have shown that detectability of lung nodules is 

dependent on location in the lung so it was decided to simulate nodules in the 

lateral pulmonary and hilar regions. 

A magnified portion of lung in a CT slice with and without a simulated nodule is 

shown in Figure 4.37. 

 

Figure 4.37: (a) CT slice without a simulated nodul e, and (b) with a 
simulated nodule. 

The lung nodule is clearly displayed in 4.37(b). A comparison of resulting DRRs 

with and without the simulated nodule present is shown in Figure 4.38. 

(a) (b) 



 129

 

Figure 4.38: Magnified DRR image of the lung (a) wi thout nodule, (b) with 
nodule (centre of red circle).  

Figure 4.38(b) clearly shows the nodule in the resulting DRR, and as such can 

be used in dose reduction studies for the purpose of optimisation, assuming 

qualitative validation provided by image evaluators proves favourable (see 

Chapter 5). Three dimensional lung nodules were added to CT data prior to X-

ray projection rather than in two dimensions to the final DRR image because it 

would have been extremely difficult to generate the correct X-ray contrast of the 

nodule by simply adding the nodule post DRR calculation. 

4.2.13 Fat simulation 

It was necessary to add fat to average patient CT data to simulate obese 

patients as, at the time of this research, there were too few obese patients 

available on the scanner. This potentially proves an advantage, as artificially 

simulating fat would add to the flexibility of the DRR algorithm.  

To add fat to average patient CT slices, the mean (± 1 SD) CT voxel value of 

lard displayed in images of the RANDO phantom with lard added (Section 4.2.1) 

was measured and found to be 940 ± 10. The thickness of the RANDO fat was 

110 voxels (i.e. approximately 4 cm). Secondly, CT voxel values within patient 

CT images were all converted to one, and the voxel values outside of the 

(a) (b) 
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patient were converted to zero (i.e. a binary image was created). Images of an 

average patient CT slice and the corresponding binary image are shown in 

Figure 4.39. 

 

Figure 4.39: CT slice of (a) an average patient and  (b) its binary 

counterpart. 

The binary image (Figure 4.39(b)) was then shifted up by 110 voxels (i.e. 

thickness of fat) and the original non-shifted binary was taken away from this to 

leave voxel values of ones where the fat is to be simulated (and zeros 

everywhere else). This process is shown in Figure 4.40. 

 

Figure 4.40: (a) Binary image of average patient, ( b) shifted binary image 
(c) and the difference image. The difference binary  image is the layer of 
fat. 

(a) (b) 

(a) (b) (c) 
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Figure 4.40(c) shows the difference between the non-shifted and the shifted 

binary images. Each voxel in the difference image was multiplied by 940 (i.e. 

real CT voxel value for fat) and then added to the original patient image, as 

shown in Figure 4.41. 

 

Figure 4.41: Fat added to the top of average patien t. 

The process described above was repeated for the bottom half of the patient 

and applied to each CT image slice in the data set. A comparison of an average 

and obese patient is shown in Figure 4.42. 

 

Figure 4.42: (a) Average patient and (b) patient wi th simulated fat. 

Figure 4.42(b) clearly shows the layer of fat around the patient not present in 

the original image. Fat added artificially here is uniform (i.e. all voxel values are 

940) but real fat would not have a single voxel value, and would appear ‘noisy’.  

Artificially 
added fat 

(a) (b) 
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However, noise in CT images has little to no effect on the final DRR image 

characteristics (see Section 4.2.16) so the uniformity described here is 

expected to have negligible consequences on the final DRR.  

4.2.14 Assessment of DRR image spatial resolution  

CT images are inherently of lower resolution than CR images. The highest 

resolution possible with a DRR is CT slice thickness x CT voxel size, i.e. 0.8 

mm x 0.34 mm. This is worse than that of a CR image, which has a pixel pitch 

of 0.17 mm. Hence, it was deemed necessary to assess the difference in 

resolution by measuring the modulation transfer function (MTF) of a DRR and 

CR image respectively using the technique reported by Samei et al. [101]. The 

MTF is widely used as the metric of choice for measurement of the resolution 

properties of radiographic systems [102]. 

A 50 mm square, 1 mm thick Tungsten edge test tool was placed on a CR 

cassette at a 3° angle with respect to the pixel ma trix, and was exposed with a 

tube potential of 70 kVp and sufficient tube current-time product (mAs) to 

ensure air kerma at the cassette was approximately 100 µGy. The image was 

processed as discussed in Section 4.2.1.2 and the MTF was measured along a 

section of the edge contained within a 60 x 60 pixel ROI, as shown in Figure 

4.43 (blue square). 
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Figure 4.43: CR image of Tungsten edge tool. 

The MTF of a DRR image was then measured in a similar fashion as described 

above, but with a Teflon edge phantom, originally designed to measure MTF of 

CT scanners, as shown in Figure 4.44. 

 

 

Figure 4.44: (a) Teflon edge phantom to measure the  DRR modulation 
transfer function, and (b) in the required orientat ion for scanning. 

The CT MTF phantom was scanned in the orientation shown in Figure 4.44(b) 

using the scan parameters discussed in Section 4.2.4. A DRR was produced of 

the phantom, as shown in Figure 4.45, and the MTF measured from the 

reconstructed edge. 

(b)(a) 
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Figure 4.45: DRR of Teflon phantom. Area of MTF cal culation is shown by 
the blue ROI. 

The resulting CR and DRR MTFs were plotted on the same axes in Figure 4.46. 
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Figure 4.46: MTFs of a DRR image (pink line) and a CR image (blue line). 

As can be seen quite clearly in Figure 4.46, the spatial resolution properties of a 

CR system are superior to that of a DRR. Therefore reconstructed object 

information will always be presented at a lower resolution, and a DRR image 

will never look exactly the same as a CR image of the same object. This may be 

a limiting factor (see Chapter 5). 
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4.2.15 Accuracy of DRR image resizing  

As discussed in Section 4.2.6, each DRR is smaller than a real CR image. As 

such, the final DRR was resized to match the size of a CR image (2800 x 2300 

pixels) using bicubic interpolation (the output pixel value is a weighted average 

of pixels in the nearest 4-by-4 neighborhood).  

The accuracy of image resizing was tested by comparing signal to noise ratios 

(SNRs) and dynamic ranges of 5 random original and resized patient 

reconstructed DRRs. All SNRs measured in the lung, spine and diaphragm 

regions agreed to within 2%, minimum DRR pixel values were always the same, 

and maximum DRR pixel values agreed to within 3%. This is not surprising 

since the bicubic interpolation resizing method is designed to minimise 

differences in output from input. Although this adds a systematic error, it was 

felt that this was small enough to continue and see if it affected the subsequent 

validation results. 

4.2.16 Assessment of noise in DRR images due to noi se 

inherent within CT data 

It is well understood that CT images contain noise due to a number of sources, 

primarily electronic, quantum and reconstruction filter. Quantum noise is a result 

of counting a finite number of random events (photons interacting with the 

detector) and is Poisson distributed [103]. However, noise in a CT image is 

rarely characterised by a Poisson distribution, as the reconstruction filter has a 

more significant influence on the final characteristics of the image [105], and it is 

usually characterized through measurement [104]. It was important to assess 

whether noise present in the CT data used for the computerised phantom in this 
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research had any effect on the final characteristics of the DRR image. As such, 

the type of noise in the CT data was measured using the data from the ROI 

analysis of the Gammex RMI phantom described in Section 4.2.4. A histogram 

of pixel values was obtained from each ROI to determine the noise probability 

density functions (PDF). Analysis of their form illustrates the type of noise in the 

image e.g. uniform, Guassian, or Poisson [105]. ‘Goodness of fit’ to certain 

distributions were analysed, and it was demonstrated that a Gaussian noise 

relationship was dominant in the CT images, as shown in Figure 4.47. 
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Figure 4.47: (a) PDF of lung insert fit with a Gaus sian distribution, (b) PDF 
of adipose insert, (c) PDF of liver insert and (d),  PDF of bone mineral 
insert. The goodness of fit are all r 2 > 0.99. 

The PDFs of each insert clearly demonstrate a Gaussian distribution (all r2 ≥ 

0.99). Although not shown here, all other tissue inserts were also found to be 

well described by a Gaussian noise distribution (all r2 ≥ 0.97), and as such 

indicates CT image noise is independent of voxel value. This is similar to that 

reported by Hilts et al. [104]. To assess whether this noise has any effect on the 

final characteristics of a DRR image, a Gaussian noise removing filter (mean 

adaptive filter) with varying kernel sizes of 0x0 (i.e. no filter applied), 7x7, 14x14 

(a) (b) 

(c) (d) 
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and 21x21 was applied to the CT data prior to DRR calculation (for ten random 

DRRs). Frequency dependent noise was added to the raw DRRs, and signal to 

noise (SNR) and dynamic range comparisons were made. CT images also 

exhibit noise due to scattered radiation to some extent, but the scanner used in 

this study utilises post-patient collimation which minimises scatter detected 

(nominally only 1-2% of the signal is due to scatter), so no correction for this 

was deemed necessary. 

SNRs in the lung, spine and diaphragm regions of DRRs reconstructed without 

a noise removal filter, and with filters of size 7x7, 14x14 and 21x21 

demonstrated less than 0.5% change from one another. There was no 

difference in the dynamic range of the images. This demonstrates that system 

(including quantum) noise added to the resulting DRR images dominates over 

any noise that manifests itself in the DRRs due to the presence of Gaussian 

noise in the CT data. This is probably due to the averaging and summing 

process of X-ray pencil beam ray casting (averaging and summing causes all 

the voxels intersected by each pencil beam to tend to their true value). Due to 

the minimal effect on image quality in the resulting DRRs, it was felt not 

necessary to apply a noise removal filter to the CT data prior to DRR 

calculation. 

4.2.17 Phantom and patient DRR images  

To ensure the DRR system was capable of producing images that represent the 

chest, CT data of RANDO and a random patient were obtained (Section 

4.2.1.3). The processes described in this chapter were used to produce raw 

DRRs (i.e. images with no noise or scatter) reconstructed with tube potentials of 

50 and 150kVp respectively, as shown in Figure 4.48. 
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Figure 4.48: (a and b) DRR of RANDO and (c and d) D RR of a patient 
reconstructed with tube potentials of 50 kVp and 15 0 kVp. No scatter or 
noise has been added to the images. 

The images in Figure 4.48 visually correlate with actual radiographs of RANDO 

and patients, which proves the DRR software is capable of reconstructing 

images that, in the very least, look as they should. However, thorough 

quantitative and qualitative validation of the images will be required, and this is 

discussed in Chapter 5. It is apparent from Figures 4.48 that contrast (especially 

in the lung and ribs) decreases as the tube potential increases. This is because 

there is a decrease in the differences between the linear attenuation coefficients 

of different human tissues with an increase in energy, because the photoelectric 

(d) 

(b) (a) 

(c) 

50 kVp 

50 kVp 

150 kVp 

150 kVp 
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cross-section varies with energy as approximately E-3; this is why the 

photoelectric effect plays a dominant role in producing subject contrast at 

diagnostic energies. This demonstrates that the DRR software is capable of 

producing images that reflect the physics of X-ray attenuation. 

Scatter and noise (Sections 4.2.10 and 4.2.11) were added to the raw DRRs 

shown in Figure 4.48 to ensure these processes worked adequately. The 

resulting images are displayed in Figure 4.49. 

 

Figure 4.49: (a and b) DRR of RANDO and (c and d) D RR of a patient 
reconstructed with tube potentials of 50 kVp and 15 0 kVp. Scatter and 
noise has been added to the images. 

(c) (d) 

50 kVp 

(a) (b) 

50 kVp 150 kVp 

150 kVp 
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Scatter and noise has been added successfully, as demonstrated in Figure 4.49 

and as per Figure 4.48, the images visually correlate with real radiographs.  
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4.3 Overview of DRR calculation methodology 

The following flow charts breaks down the methodology described in this 

chapter: 
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4.4 Conclusions 

DRR simulated chest images with real clinical information will be a useful tool in 

diagnostic radiology for optimising chest radiographs without the need for 

repeat patient exposure. For this technique to become readily used, there must 

be a robust methodology that is reliable and repeatable. The work presented in 

this chapter describes such a method. 

It is important that real X-ray, CR and CT systems are used to derive indices 

that can be utilised by the DRR algorithm to ensure reconstructed images mimic 

real radiographs as far as possible. A pencil beam ray casting method has been 

chosen to do this, and has been shown that images can indeed be produced 

that at the very least visually correlate with real chest radiographs of phantoms 

and patients. However, the spatial resolution properties of the reconstructed 

DRRs are inferior to real CR images due to the limitations of current CT 

systems, which means that some object information will never be faithfully 

reproduced. This may be a limiting factor.   

CT noise is overwhelmingly of a Gaussian nature, but does not require 

removing as it has very little influence in the final image SNR characteristics (< 

0.5% change). This is probably due to the averaging process of voxel sampling 

and the fact that CR frequency dependent noise dominates, once added to the 

raw DRR. Resizing DRR images to match the pixel density of a real CR image 

has little to no effect on DRR image characteristics. 

Significant numbers of human thorax tissues have been modelled using the 

Gammex RMI phantom to enable the dynamic range of the resulting DRR 
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images to be as close as possible to that of real images, but this will require 

numerical validation.  

Somewhat disappointing is the length of time taken for the software to 

reconstruct a single image. The process is very computationally intensive. 

Various methods have been described in this chapter in an attempt to overcome 

this problem, such as pre-calculating ray lengths and pencil beam areas, 

binning photon energies and voxel shifting the CT data prior to DRR calculation. 

These methods speed up the compute time from tens of hours to approximately 

45-90 minutes per image. However, this is still not real time image production 

and one must be cautious about final DRR images due to these simplifications. 

In future, it may be possible to compile the Matlab code which would speed up 

compute time, and this would allow the use of the software on any computer. 

Also, the code may be re-written to allow execution on modern graphics cards 

which would be beneficial and lead to significantly shorter compute times. 

Nevertheless, even without code compilation or the use of graphics cards, it is 

likely computing power and processing speed will increase, and therefore it may 

be possible to generate DRR images in real time using the methods described 

in this chapter.  

Scatter and frequency dependent system noise must not be left out of the 

images, as these influence real CR image characteristics. The methodology 

described in this chapter has measured scatter and noise on a real CR system, 

and has successfully added these to the raw DRR.  

Lung nodules have also been successfully added to the CT data, and these are 

visible in the final DRR. Therefore, assuming adequate validation, these can be 

used for optimising CR chest imaging when nodules are indicated. Fat has been 
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artificially added to average patient CT data to allow DRR reconstruction of 

obese patients. This adds to the flexibility and usefulness of the software. 

Validation of the methodology outlined in this chapter will be vital to ensure this 

DRR computing model adequately simulates real CR chest radiographs. This is 

discussed at length in the next chapter. 
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Chapter 5: Quantitative and qualitative 
validation of the digitally 
reconstructed radiograph 
algorithm 

5.1 Introduction 

This chapter describes the quantitative and qualitative validation of the 

algorithm developed to produce digitally reconstructed radiographs (DRRs). 

Quantitative assessment with the average and obese RANDO phantom is 

addressed initially, followed by validation with average and obese patient 

images acquired on a clinical CR system. It should be noted that most of the 

quantitative validation was done by comparing the arithmetic means of the 

relevant data; although not stated in the results, the geometric means differed 

by ≤ 1% c.f. arithmetic means. Qualitative assessment by expert image 

evaluators is then discussed, as well as the limitations of the DRR algorithm. 

5.2 Validation with the average RANDO phantom 

5.2.1 RANDO images with no scatter rejection 

Initial validation was carried out with real CR and simulated DRR images of the 

RANDO phantom representing the average sized patient. Phantom images 

were acquired on the clinical CR system as described in Chapter 4 Section 

4.2.1.2. Figure 5.1 shows images acquired at tube potentials of 60, 90 and 150 

kVp, as well as their DRR counterparts. 
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Figure 5.1: (a) CR & DRR image of the RANDO phantom , 60 kVp 10 mAs, 
(b), CR & DRR of the RANDO phantom, 90 kVp 2mAs, (c ) CR & DRR image 
of the RANDO phantom, 150 kVp 0.5 mAs. 

As can be seen in Figure 5.1, all DRR images correlate visually with the 

clinically acquired ones. Quantitative validation was carried out by plotting 

histograms of pixel values, and calculation of signal-to-noise ratios (SNR) and 
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DR
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tissue-to-rib ratios (TRR). It is important to compare SNRs, given the level of 

both signal and noise in a digital image affect the visualization of normal 

structures and pathology. The TRR is a metric that compares the mean region 

of interest (ROI) pixel value of soft tissue to that of rib. Ribs cover a large area 

of a chest radiograph and can interfere with the detection of soft tissue lesions 

by distracting the reporting Radiologist. It is therefore important that a good 

agreement should exist between calculated DRR and acquired CR images. 

SNRs were measured in the lung, spine and diaphragm regions of each image 

(both CR and DRR), whilst TRRs were measured in the lateral pulmonary 

region, as shown in Figure 5.2. 

 

Figure 5.2: DRR of RANDO showing ROI positions used  for SNR and TRR 
measurements. Lung, spine and diaphragm ROIs are de picted as blue, red 
and green respectively. The two pink ROIs depict th e position for TRR 
measurement. 

The size of the ROIs used in Figure 5.2 were dictated by the anatomical region 

over which they were positioned. Figures 5.3 and 5.4 compare clinical (CR) and 

simulated (DRR) histograms of pixel values at 60 kVp, 10 mAs and 150 kVp, 

0.5 mAs respectively.  
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Figure 5.3: CR histogram of pixel values of the ave rage RANDO phantom, 
60 kVp & 10 mAs and the corresponding DRR histogram  of pixel values of 
the average RANDO phantom, 60 kVp & 10 mAs. The red  arrows indicate 
the dynamic range of each image. 
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Figure 5.4: CR histogram of pixel values of the ave rage RANDO phantom, 
150 kVp & 0.5 mAs and the corresponding DRR histogr am of pixel values 
of the average RANDO phantom, 150 kVp & 0.5 mAs. 

It can be seen in Figures 5.3 and 5.4 that histograms produced from simulated 

DRR images are similar in shape to those produced from real CR images. 

However, both DRR histograms have a reduced dynamic range (for clarity the 

dynamic ranges of the images in Figure 5.3 are shown by the red arrows) 
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relative to the CR histograms. One can argue this to be expected because the 

Gammex phantom was used to derive equations to convert CT voxel values to 

linear attenuation coefficient (LAC) as discussed in Chapter 4; whilst this 

phantom contains many tissue substitutes, there will be fewer than those 

encountered in the human chest, which results in a coarser LAC transformation 

than desired. The virtual patient is also a voxelated computerised phantom with 

inherent loss of data (Sandborg et al. [43] reported similar findings with their 

Monte Carlo computer model). Finally, the voxel size of the virtual patient (0.34 

x 0.34 x 0.8 mm) is probably larger than some of the smaller structures within 

the body resulting in tissues not being present in the virtual patient that would 

be present in a real one.  

The mean (± 2 SD) of the minimum and maximum histogram values (a measure 

of the dynamic range of an image) for the CR images were 2075 ± 162 and 

3000 ± 164 respectively. For the DRR images, these values were 2133 ± 86 

and 2926 ± 120. This is probably acceptable, given the large fluctuation in 

minimum and maximum pixel value between real patients (see Section 5.5). It 

should be noted that histograms of all other tube potentials tested are not 

shown (for conciseness), but they all follow the same features as Figures 5.3 

and 5.4. Figure 5.5 shows real CR and simulated DRR images together with 

their histograms acquired and reconstructed at 90 kVp using 1 and 4 mAs 

respectively. 
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Figure 5.5: Real CR and simulated DRR images and hi stograms acquired 
and simulated with exposure factors 90 kVp, 1 and 4  mAs respectively. 

Figure 5.5 demonstrates that histograms produced from simulated images are 

similar in shape to those produced from real CR images, and although their 
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dynamic range is slightly smaller (as discussed), they are shifted to the correct 

positions on the pixel value axis. This is encouraging, as it demonstrates the 

algorithm correctly increases and decreases pixel values according to 

increased/decreased exposure to the detector; it can therefore be used for dose 

escalation and reduction studies, assuming levels of noise are also correct. 

Table 5.1 compares signal-to-noise ratios (SNRs) of real CR images to that of 

DRR images in the lung, spine and diaphragm. CR images were acquired at 

each tube potential on the clinical X-ray system with sufficient mAs to produce 

lgM values of 2.00 ± 0.05. DRR images were reconstructed with the same 

exposure parameters. 

SNR (all ± 30) 

Tube 
Potential 

(kVp) 

DRR - 
Lung 

CR - 
Lung 

DRR - 
Spine 

CR - 
Spine 

DRR - 
Diap 

CR -
Diap 

50 133.7 146.7 95.4 88.7 60.5 54.4 

60 155.7 145.9 67.2 68.9 66.8 72.6 

70 156.3 154.6 89.8 86.5 63.4 65.4 

81 137.3 153.0 118.3 111.5 58.0 56.5 

90 155.8 151.5 87.7 83.8 60.7 65.8 

102 163.8 159.1 87.1 87.8 60.2 63.9 

109 171.1 164.7 91.7 85.2 64.6 67.8 

125 172.4 165.5 91.7 88.8 62.7 66.4 

133 166.6 158.6 85.3 85.3 57.7 60.9 

141 180.8 177.6 94.8 102.6 65.0 71.2 

150 186.9 197.8 81.0 89.9 59.0 63.6 

Table 5.1: Comparison of SNRs measured in the lung,  spine and 
diaphragm regions in DRR and real CR images. 
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It is clear from Table 5.1 that all DRR calculated and CR measured SNR values 

are in good agreement (within error), the maximum deviation being 11% (mean 

= 5.4%). It is likely the main source of error during DRR reconstruction is the 

addition of frequency dependant noise, as the method used has its limitations. 

As discussed in Chapter 4, Section 4.2.11, the Noise Power Spectrum (NPS) 

does not give a complete description of the noise properties of the system. 

However, as described by Bath et al. [49] this is not significant at dose levels 

used clinically. Nevertheless, limitations are discussed in depth in Section 5.7. 

The SNR error value of ± 30 shown in Table 5.1 was derived by shifting the ROI 

used to calculate each SNR left/right and up/down a distance equal to half their 

size (at least 30 pixels). In real CR images, there is a movement of ROIs from 

one image to the next, as the phosphor is typically returned to the cassette in a 

slightly different position as previous. This results in a movement of 

approximately 20 pixels in the subsequent image, so the error here will be an 

overestimate. The shifted SNR was compared to the ‘normal’ SNR and the 

maximum difference encountered was 30. 

The effect of dose variation on SNR in the lung, spine and diaphragm at each 

tube potential was investigated by reconstructing and acquiring images at half 

and double the tube current-time product (mAs) of that required for a lgM of 

2.00. The maximum percentage difference in SNR measurements for half mAs 

images (DRR vs CR) was 12.1% in the lung, 12.9% in the spine and 15.4% in 

the diaphragm, and for double mAs images 9.9% in the lung, 13.4% in the spine 

and 10.2% in the diaphragm. The mean SNR (averaged over all tube potentials) 

for half and double mAs images are shown in Table 5.2. 
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Region Mean SNR 
(DRR) 

Mean SNR 
(CR) 

Mean SNR 
(DRR) 

Mean SNR 
(CR) 

 Half mAs images Double mAs images 

Lung 138.8 ± 15.9 135.8 ± 13.2 199.3 ± 12.9 207.5 ± 10.4  

Spine 75.2 ± 9.0 80.0 ± 8.5 114.7 ± 12.9 117.1 ± 17.0 

Diaphragm 57.8 ± 4.1 61.9 ± 7.7 83.9 ± 10.0 86.3 ± 9.4 

Table 5.2: Mean SNR values in each chest region for  half and double mAs 
reconstructed (DRR and acquired (CR) images). All e rrors are 1 standard 
deviation. 

The results in Table 5.2 are in good agreement and demonstrate the algorithm 

can reproduce the level of noise seen in real CR images at clinical dose levels.  

Figure 5.6 demonstrates a visual difference in relative noise levels in the heart 

region for DRR images reconstructed with 60 kVp, 5 and 20 mAs respectively 

(i.e. half and double typical clinical doses); the former (Figure 5.6(a)) clearly 

displays poorer SNR in the heart (area within the red ROI) compared to the 

latter (Figure 5.6(b)).  
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Figure 5.6: DRR images (heart region) reconstructed  with (a) half a typical 
mAs and (b) double typical mAs. The SNR is poorer i n the red ROI of (a) 
compared to that of (b). 

Table 5.3 shows TRRs calculated and measured in DRR and CR images 

respectively, and clearly demonstrates a good level of agreement between the 

two. The maximum difference in measured (CR) and calculated (DRR) is 0.6%. 

It can also be seen that TRR decreases with increasing tube potential; this is 

probably due to the ribs attenuating a higher percentage of incident photons at 

lower potentials than soft tissue, thus increasing the TRR.  

(a) (b) 

half  double  
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Tissue to Rib Ratio (all ± 0.005) 

Tube Potential (kVp) TRR - DRR TRR - CR 

50 1.041 1.042 

60 1.039 1.036 

70 1.039 1.034 

81 1.029 1.033 

90 1.035 1.032 

102 1.033 1.027 

109 1.029 1.029 

125 1.028 1.026 

133 1.029 1.025 

141 1.026 1.026 

150 1.026 1.025 

Table 5.3: Comparison of Tissue to Rib Ratios measu red in DRR and real 
CR images. 

5.2.2 RANDO images reconstructed with an anti-scatt er grid 

Validation of RANDO images that were reconstructed with an anti-scatter grid 

modelled in the algorithm was carried out using the same methods as those 

described above. Figure 5.7(a) shows a DRR image of RANDO without any 

scatter rejection compared with a DRR image of RANDO with scatter rejection 

(Figure 5.7(b)), and with a CR image acquired with the anti-scatter grid in 

operation (Figure 5.7(c)). Figure 5.7(a) was reconstructed at 60 kVp/10 mAs, 

and Figures 5.7(b) and 5.7(c) were reconstructed and acquired with exposure 

factors 60 kVp/40 mAs, respectively. The increase in mAs was required to 
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overcome the effect of X-ray absorption by the grid, and to achieve a lgM value 

of 2.00 ± 0.05. 

 

Figure 5.7: (a) DRR image of RANDO reconstructed wi thout an anti-scatter 
grid, (b) DRR image of RANDO reconstructed with a s catter grid, and (c) 
CR image of RANDO acquired with the scatter grid en ergised (DRR and 
CR images reconstructed and acquired with tube pote ntial 60 kVp 
respectively. 

The DRR image of RANDO reconstructed with an anti-scatter grid (Figure 

5.7(b)) clearly demonstrates improved detail in the spine and diaphragm regions 

when compared to the DRR without scatter rejection (Figure 5.7(a)). This is of 

course expected and matches the appearance of the CR image (Figure 5.7(c)). 

Figure 5.8 compares clinical (CR) and simulated (DRR) histograms of pixel 

values at tube potential 125 kVp. This demonstrates that histogram shapes are 

broadly similar, but the dynamic range of DRR histogram is smaller than that of 

the CR. For all energies (tube potentials), the mean (± 2 SD) of the minimum 

and maximum histogram values for the CR images were 1773 ± 203 and 3230 

± 216 respectively. For the DRR images, these values were 1807 ± 260 and 

3236 ± 252. As per the average RANDO results, although the dynamic range of 

the DRR images is smaller than the CR images, there is little difference, given 

the standard deviations of the means. It should be noted that histograms of all 

(b) (c) (a) 

DRR DRR CR 
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other tube potentials tested are not shown (for conciseness), but they all have 

the same features as Figure 5.8.  

 

Figure 5.8: Histogram of pixel values of a DRR imag e, and the 
corresponding histogram for the CR image. 

The maximum percentage difference in SNR measurements (DRR vs CR) was 

5.7% in the lung, 7.6% in the spine and 8.6% in the diaphragm. The mean SNR 

(averaged over all tube potentials) are shown in Table 5.4. These show 

excellent agreement, demonstrating the DRR algorithm can adequately 

simulate levels of signal and noise across all diagnostic tube potentials. 

Furthermore, the maximum difference in TRRs was 0.50%, with a mean 

difference of 0.24%; again, the results show very good agreement.  
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Region Mean SNR 
(DRR) 

Mean SNR 
(CR) 

Lung 185.6 ± 22.8 187.9 ± 23.3 

Spine 69.5 ± 25.0 67.9 ± 24.7 

Diaphragm 77.4 ± 13.5 77.1 ± 16.0 

Table 5.4: Mean SNR values in each chest region of RANDO. All errors are 
1 standard deviation of the mean. 

All results obtained in this section demonstrate the model can produce images 

reconstructed with scatter rejection using an anti-scatter grid with adequate 

confidence.  

5.2.3 RANDO images reconstructed with an air gap te chnique 

Validation of RANDO images that were reconstructed with an air gap technique 

modelled in the algorithm was carried out using the same methods as those 

described throughout this chapter. Figure 5.9 shows DRR and CR images of 

RANDO reconstructed and acquired with the air gap technique respectively 

(both 50 kVp).  

 

Figure 5.9: (a) DRR image of RANDO reconstructed wi th an air gap 
technique, and (b) a CR image of RANDO acquired wit h the air gap. 

(a) (b) 

DRR CR 
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The DRR image of RANDO reconstructed with an air gap technique (Figure 

5.9(a)) demonstrates improved detail in the spine and diaphragm regions 

(although not as detailed as Figure 5.7(b)). This is expected and matches the 

appearance of the CR image (Figure 5.9(b)). 

Figures 5.10 compares clinical (CR) and simulated (DRR) histograms of pixel 

values at tube potential 50 kVp. This demonstrates that the histogram shapes 

are very similar, and the dynamic ranges are almost identical. The mean (± 2 

SD) of the minimum and maximum histogram values for the CR images were 

2131 ± 150 and 3075 ± 206 respectively. For the DRR images, these values 

were 2115 ± 151 and 3037 ± 165. It should be noted that histograms of all other 

tube potentials tested are not shown (for conciseness), but they all follow the 

same features as Figure 5.10.  
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Figure 5.10: Histogram of pixel values of a DRR ima ge, and the 
corresponding histogram for the CR image. 

The maximum percentage difference in SNR measurements (DRR vs CR) was 

8.6% in the lung, 10.2% in the spine and 13.5% in the diaphragm. The mean 

SNR (averaged over all tube potentials) are shown in Table 5.5. These 

demonstrate very good agreement when one considers the standard deviations 

are the mean values. The maximum difference in TRRs was 0.3%, with a mean 

difference of 0.14%. Again, the results show very good agreement.  
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Region Mean SNR 
(DRR) 

Mean SNR 
(CR) 

Lung 201.0 ± 18.4 211.3 ± 21.1 

Spine 119.8 ± 9.9 124.0 ± 13.9 

Diaphragm 69.9 ± 11.8 67.6 ± 11.5 

Table 5.5: Mean SNR values in each chest region of RANDO. All errors are 
± 1 standard deviation of the mean. 

All results obtained in this section demonstrate the DRR algorithm can produce 

images reconstructed without and with scatter rejection techniques. 

5.3 Validation with the obese RANDO phantom 

5.3.1 Obese RANDO images with no scatter rejection 

Validation was carried out by comparing real CR and simulated DRR images of 

the obese RANDO phantom. Phantom images were acquired on the clinical CR 

system as described in Chapter 4 Section 4.2.1.2. Figure 5.11 shows a CR and 

DRR image of obese RANDO acquired and reconstructed with a tube potential 

of 60 kVp. 
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Figure 5.11:(a) DRR acquired image of RANDO and (b) , CR reconstructed 
image of RANDO . 

As illustrated in Figure 5.11 the images correlate visually, and are of lower 

contrast than those of average RANDO (Figure 5.1). This is expected due to the 

increased amount of scattered radiation produced by the excess fat. 

Figure 5.12 compares clinical (CR) and simulated (DRR) histograms of pixel 

values at tube potential 60 kVp respectively. The reduction in dynamic range of 

the DRR image is much more pronounced than in average RANDO. This is 

probably due to the presence of excess fat; it is thought that in converting CT 

number of fat to its corresponding linear attenuation coefficient (LAC) through 

the use of the Gammex tissue equivalent phantom, the chemical composition of 

the grocery store lard used is not exactly the same as that of the adipose tissue 

substitute. Any errors would lead to a difference in virtual X-ray attenuation 

compared with the real situation. It appears here that lard has a larger LAC than 

that modelled due to the observed reduced dynamic range. This will only prove 

a problem if validation becomes difficult with patient images. 

(a) (b) 

DRR CR 
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Figure 5.12: DRR and CR histograms of obese RANDO. 

Nevertheless, the mean (± 2 SD) of the minimum and maximum histogram 

values for the CR images were 2213 ± 144 and 2970 ± 64 respectively. For the 

DRR images, these values were 2250 ± 180 and 2860 ± 62. It should be noted 

that histograms of all other tube potentials tested are not shown (for 

conciseness), but they all follow the same features as Figure 5.12.  

The maximum percentage difference in SNR measurements (DRR vs CR) was 

9.1% in the lung, 10.8% in the spine and 13.9% in the diaphragm. The mean 

SNR (averaged over all tube potentials) are shown in Table 5.6. These show 

very good agreement demonstrating signal and noise are similar in DRR and 

CR images. 
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Region Mean SNR 
(DRR) 

Mean SNR 
(CR) 

Lung 193.1 ± 15.0 199.2 ± 13.8 

Spine 122.5 ± 26.6 125.1 ± 27.1 

Diaphragm 76.8 ± 7.4 75.5 ± 10.6 

Table 5.6: Mean SNR values in each chest region of RANDO. All errors are 
1 standard deviation of the mean. 

Table 5.7 demonstrates TRRs calculated and measured in DRR and CR 

images respectively. These show good agreement and are typically lower than 

those of average RANDO. This is to be expected, as the increased amount of 

soft tissue (fat) increases the scattered radiation absorbed by the phosphor 

plate, which in turn reduces the contrast of various structures in the chest. With 

smaller differences between rib and the background the TRR will be lower (i.e. 

the TRR approaches unity). 

Tissue to Rib Ratio (all ± 0.005) 

Tube Potential (kVp) TRR - DRR TRR - CR 

50 1.017 1.017 

60 1.014 1.014 

70 1.011 1.013 

81 1.008 1.008 

90 1.005 1.005 

102 1.005 1.005 

109 1.005 1.005 

125 1.004 1.006 

133 1.005 1.005 

141 1.005 1.005 

150 1.005 1.006 

Table 5.7: Comparison of Tissue to Rib Ratios measu red in DRR and real 
CR images. 
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The results obtained here clearly demonstrate DRR images exhibit smaller 

dynamic range with respect to CR images. However, SNR and TRR results are 

very similar, and therefore the impact of DRR reduced dynamic ranges is likely 

to be limited, as the visibility of normal and pathological structures are primarily 

dictated by the level of signal and noise.   

5.3.2 Obese RANDO images reconstructed with an anti -scatter grid 

Images of obese RANDO acquired (CR) and reconstructed (DRR) with an anti-

scatter grid used in the algorithm are shown in Figure 5.13. There is more detail 

in the spine and diaphragm regions of the chest, which, as discussed in Section 

5.2.2, is expected. 

 

Figure 5.13 (a) CR acquired image of obese RANDO an d (b), a DRR 
reconstructed image. 

Figure 5.14 compares clinical (CR) and simulated (DRR) histograms of pixel 

values at tube potential 60 kVp respectively. This clearly demonstrates that the 

histogram shapes are similar, but as expected, the dynamic range of the DRR is 

smaller than for the CR. The mean (± 2 SD) of the minimum and maximum 

(a) (b) 

DRR CR 
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histogram values for the CR images were 1827 ± 212 and 3160 ± 82 

respectively. For the DRR images, these values were 1885 ± 225 and 3105 ± 

85.  

 

Figure 5.14: Histograms of obese RANDO DRR and CR i mages 
respectively . 

The maximum percentage difference in SNR measurements (DRR vs CR) was 

7.5% in the lung, 10.7% in the spine and 9.6% in the diaphragm. The mean 
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SNR (averaged over all tube potentials) are shown in Table 5.8; there is very 

good agreement in the SNR values. 

Region Mean SNR 
(DRR) 

Mean SNR 
(CR) 

Lung 147.6± 23.6 153.6 ± 23.6 

Spine 61.1 ± 15.4 61.1 ± 16.4 

Diaphragm 42.7 ± 9.2 43.1 ± 9.8 

Table 5.8: Mean SNR values in each chest region of RANDO. All errors are 
1 standard deviation of the mean. 

Finally, the maximum difference in TRRs was 0.50%, with a mean difference of 

0.16%. This demonstrates very good agreement.  

5.3.3 Obese RANDO images reconstructed with an air gap 

technique 

Images of obese RANDO acquired (CR) and reconstructed (DRR) with an air 

gap technique are shown in Figure 5.15. The images correlate very well.  

 

Figure 5.15: Obese RANDO (a) acquired and (b) recon structed with an air 
gap technique. 

(a) (b) 

DRR CR 
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Figure 5.16 compares histograms of DRR reconstructed and CR acquired 

obese RANDO. As demonstrated, the shapes are very similar. Maximum 

percentage difference in SNR measurements (DRR vs CR) was 7.2% in the 

lung, 5.6% in the spine and 11.1% in the diaphragm. The mean SNR (averaged 

over all tube potentials) are shown in Table 5.9; there is very good agreement in 

the SNR values. Finally, the maximum difference in TRRs was 0.40%, with a 

mean difference of 0.16%. This demonstrates very good agreement.  

 

Figure 5.16: DRR and CR histograms of obese RANDO i maged with an air 
gap technique. 
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Region Mean SNR 
(DRR) 

Mean SNR 
(CR) 

Lung 238.3 ± 23.3 245.4 ± 26.4 

Spine 145.8 ± 21.6 146.7 ± 22.5 

Diaphragm 116.1 ± 10.9 119.9 ± 10.8 

Table 5.9: Mean SNR values in each chest region of RANDO. All errors are 
1 standard deviation of the mean. 

5.4 RANDO phantom validation – conclusions 

All the results obtained with the RANDO phantom demonstrate very good 

agreement visually and quantitatively. The only concern is with reduced 

dynamic range of DRR images with respect to CR, with this affecting pixel 

values mainly in the diaphragm region; however this is of little significance in 

chest radiography (private communication, Ged Avery, Consultant Radiologist, 

2009). However, the levels of SNR in each region of the chest are in excellent 

agreement, and therefore the visibility of normal and pathological structures is 

expected to be acceptable.  

5.5 Validation with real patient data 

As has been discussed in this chapter, validation of the DRR computer model 

has been performed by comparing various indices derived from DRR and CR 

images of the RANDO phantom. However, to ensure the model was capable of 

simulating real patient images to an acceptable level, DRR images were 

compared to real patient CR images, and quantitative analysis was performed 

in the same manner as for RANDO. 
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5.5.1 Validation with average patient CR images 

As described in Chapter 4, the DRR algorithm has been configured to a specific 

X-ray and CR system. To assess the ‘transferability’ of the model, as well as 

validate it, patient images from different hospital sites in the Hull & East 

Yorkshire Hospitals NHS Trust (HEY) were used. There are three main 

hospitals in HEY Trust, each of which has traditionally used different exposure 

factors for chest radiography. Validation with average patient data was therefore 

carried out with ten average male CR chest images acquired at each site. 

These were acquired with exposure factors 60 kVp/10 mAs, 70 kVp/5 mAs, and 

80 kVp/5 mAs respectively. 

Figure 5.17 compares an image of one of these males to that of a DRR 

simulated image (both typical of their cohort). It is impossible to determine 

which is the real patient and which is the reconstructed one. The DRR model is 

therefore capable of producing images that visually correlate with real ones. 

 

Figure 5.17: (a) Real chest CR image of an average male, (b) DRR 
simulated image of an average male. Images (a) and (b) were 
acquired/reconstructed with exposure factors 70 kVp , 5 mAs. It should be 
noted they are not the same patient. 

(a) (b) 

CR DRR 
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Figure 5.18 show histograms of pixel values for the images (typical for their 

cohort) illustrated in Figure 5.17. The histogram shapes are very similar. There 

is a shift of the histogram peak to lower pixel values for CR images. This is 

probably due to slightly more scatter recorded in the images acquired with real 

patients because of the presence of more fat compared to the RANDO phantom 

(scatter added to the DRR images is based on scatter factors derived from 

RANDO alone). There is also a reduction in the dynamic range of the DRR 

image compared to the CR. This is probably due to those factors discussed in 

Section 5.2.1. Histograms of pixel values were of a similar shape for all other 

patients selected, but are not shown here for conciseness.  

 

Figure 5.18: Real chest CR histogram of an average male and a DRR 
simulated histogram of an average male. 
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The mean (± 2 SD) of the minimum and maximum histogram values for the ten 

60 kVp real CR images were 1503 ± 320 and 3120 ± 220 respectively. For ten 

60 kVp DRR images, these values were 1700 ± 300 and 3110 ± 300.  

Secondly, the mean (± 2 SD) of the minimum and maximum histogram values 

for the ten 70 kVp real CR images were 1500 ± 320 and 3260 ± 80 respectively. 

For ten 70 kVp DRR images, these values were 1800 ± 300 and 3060 ± 310.  

Finally, the mean (± 2 SD) of the minimum and maximum histogram values for 

the ten 80 kVp real CR images were 1770 ± 280 and 3265 ± 160 respectively. 

For ten 80 kVp DRR images, these values were 1860 ± 180 and 3220 ± 150.  

The calculated (DRR) measure of dynamic range is smaller than that measured 

(CR) for all tube potentials and more pronounced at minimum pixel values. As 

discussed previously, these pixel values typically reside in the diaphragm region 

which is of little interest clinically and therefore is probably not a limiting factor. 

Table 5.10 shows SNRs in the lung area of thirty real patient images, compared 

with that of thirty simulated DRR images, acquired and reconstructed at 60, 70 

and 80 kVp respectively. All images were chosen at random, since it was not 

possible to simulate a DRR image of a given patient and obtain a CR image of 

the same patient. The SNRs of the thirty randomly chosen patients (real and 

simulated) correlate very well. Mean values are the same at each tube potential 

given the standard deviations. The differences in SNRs are most likely due to 

differences in patient size (although they are ‘average’, a weight range of 70 ± 

10 kg was chosen) leading to changes in X-ray absorption and scatter. 
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60 kVp 70 kVp 80 kVp 

SNR Real 
Patient 

SNR 
Simulated 

Patient 

SNR Real 
Patient 

SNR 
Simulated 

Patient 

SNR Real 
Patient 

SNR 
Simulated 

Patient 

77.4 78.4 102.9 105.4 76.8 76.7 

109.4 96.5 127.0 107.3 82.2 72.9 

155.8 158.4 144.0 127.4 81.9 86.3 

104.2 120.2 99.0 105.7 108.8 100.1 

135.5 130.2 141.6 142.3 119.1 122.8 

85.6 90.2 124.4 145.1 108.7 107.8 

123.7 109.9 106.6 100.2 107.3 107.9 

109.9 126.0 116.6 113.3 109.2 116.1 

126.2 112.9 152.5 149.7 129.9 130.9 

95.7 92.6 126.6 134.2 116.3 94.5 

Mean = 
112.2 

Mean = 
111.5 

Mean = 
124.1 

Mean = 
123.0 

Mean = 
104.0 

Mean = 
101.6 

St Dev = 
23.9 

St Dev = 
23.5 

St Dev = 
18.2 

St Dev = 
18.8 

St Dev = 
17.7 

St Dev = 
19.2 

Table 5.10: Comparison of SNRs measured in the lung  region in thirty 
random DRR and thirty random CR images.  

Table 5.11 shows SNRs in the spine area of thirty real patient images, 

compared with that of thirty simulated DRR images, acquired and reconstructed 

at 60, 70 and 80 kVp respectively. All images were chosen at random. The 

SNRs of the thirty randomly chosen patients correlate very well. Mean values 

are the same at each tube potential given the standard deviations. 
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60 kVp 70 kVp 80 kVp 

SNR Real 
Patient 

SNR 
Simulated 

Patient 

SNR Real 
Patient 

SNR 
Simulated 

Patient 

SNR Real 
Patient 

SNR 
Simulated 

Patient 

44.7 40.0 68.5 56.8 47.3 45.3 

69.8 63.6 71 68 38.3 48 

75.8 64.9 59.1 57.3 45 48.6 

54.4 49.8 52.3 60.7 39.8 54.8 

76 85 58.9 58.6 32.9 43.8 

59.4 45.3 65.6 60.9 32.3 38.3 

90.7 84.2 55.8 55.1 40.3 35.2 

68.3 61.9 70 59.2 39.7 44.8 

73 79.9 63.2 68.9 42.7 54 

83.1 87.9 57.9 50.3 38.9 34.4 

Mean = 
69.5 

Mean = 
66.3 

Mean = 
62.6 

Mean = 
59.6 

Mean = 
39.7 

Mean = 
44.7 

St Dev = 
13.6 

St Dev = 
17.5 

St Dev = 
6.4 

St Dev = 
5.6 

St Dev = 
4.7 

St Dev = 
7.1 

Table 5.11: Comparison of SNRs measured in the spin e region in thirty 
random DRR and thirty random CR images. 

Table 5.12 shows SNRs in the diaphragm area of thirty real patient images, 

compared with that of thirty simulated DRR images, acquired and reconstructed 

at 60, 70 and 80 kVp respectively. All images were chosen at random. The 

mean SNR value for the diaphragm is typically lower in the real CR images than 

that of the simulated DRR images. This is probably due to more fat surrounding 

the abdomen of the patients relative to that of RANDO. This will increase the 

amount of scatter reaching the CR phosphor and hence noise, thus forcing 

down the SNR. However, as suggested previously in this chapter, image quality 
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in the diaphragm is of little importance in chest radiography, so this difference is 

likely to be of no significance. 

60 kVp 70 kVp 80 kVp 

SNR Real 
Patient 

SNR 
Simulated 

Patient 

SNR Real 
Patient 

SNR 
Simulated 

Patient 

SNR Real 
Patient 

SNR 
Simulated 

Patient 

58.0 31.2 33 21.2 26.6 25.9 

22.8 20.9 33.6 21.2 27.1 27.3 

14.9 9.2 29.7 27.1 22.5 17.6 

9.3 10.8 31.5 26.6 22.1 23.5 

22.2 17.9 29.1 27.7 28.3 19.7 

30.3 29.2 25.2 19.9 24.3 23.9 

26.8 23.1 30.7 22.1 25.1 19.8 

31.2 24.9 28.9 20.5 26.8 24 

20.5 27.9 31.9 27 21.7 20.3 

39.0 29.0 26.7 25.8 23.1 25.7 

Mean = 
27.5 

Mean = 
22.4 

Mean = 
30.0 

Mean = 
23.9 

Mean = 
24.7 

Mean = 
22.8 

St Dev = 
13.6 

St Dev = 
7.7 

St Dev = 
2.7 

St Dev = 
3.2 

St Dev = 
2.4 

St Dev = 
3.2 

Table 5.12: Comparison of SNRs measured in the diap hragm region in 
thirty random DRR and thirty random CR images. 

As per the SNR measurements, thirty random real and simulated patients were 

used to measure the mean Tissue to Rib Ratio (TRR) at each respective tube 

potential (ten per kVp). Mean (± SD) DRR and CR TRR values were 1.043 ± 

0.016 and 1.047 ± 0.018 for 60 kVp, 1.035 ± 0.006 and 1.036 ± 0.005 for 70 

kVp, and 1.034 ± 0.08 and 1.033 ± 0.011 for 80 kVp. Differences are probably 

due to varying patient rib thickness. Nevertheless, there is a satisfactory 
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agreement, and the same trend of higher TRR at lower tube potential as found 

with the RANDO phantom exists. 

All the results shown here demonstrate the DRR algorithm is quantitatively 

capable of simulating real average patients and therefore can be used for 

optimisation studies. DRR dynamic range is typically lower, but SNRs in each 

region compare very well, especially in the lung and spine. DRR diaphragm 

dynamic range and SNR are typically lower than that found in patient images, 

but given the large fluctuation of these indices in real patients (see Tables 5.10 

– 5.12) and limited clinical significance of this chest region, the impact is likely 

to be negligible.  

The results also demonstrate that the DRR algorithm is transferable and can be 

used to simulate CR readers and X-ray systems that it was not originally 

configured to, despite being produced to simulate a specific system. This adds 

to the versatility and usefulness of the model. 

5.5.2 Validation with obese patient CR images 

Validation was carried out using the same methods as that described above, 

except that only one hospital site was used. Ten obese patients selected at 

random were chosen to compare with DRR simulated obese patients. All real 

patients were X-rayed with exposure factors 80 kVp and 8 mAs. Figure 5.19 

compares an image of one of these males to that of a DRR simulated image 

(both typical of their cohort). 
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Figure 5.19:(a) Obese patient DRR reconstructed ima ge and (b), obese 
patient CR acquired image. They are not of the same patient.  

The images in Figure 5.19 represent typical reconstructed (DRR) and acquired 

(CR) obese patients. This Figure shows it is not possible to distinguish between 

the real patient image and the DRR. They are both of lower contrast than the 

images shown in Figure 5.17, which is expected.  

Figure 5.20 shows the histogram of pixel values for both of the above images. 

The histogram shapes are broadly similar (both have two peaks), but the 

dynamic range of the DRR histogram is smaller than the CR acquired one. As 

discussed throughout this chapter, this is a known limitation of the algorithm, 

and is discussed in Section 5.7. Other histograms are not shown, but all follow 

the same trends as those illustrated here.  

 

 

 

(a) (b) 

DRR CR 
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Figure 5.20: Histograms of DRR reconstructed and CR  acquired obese 
patients. 

The mean (± 2 SD) of the minimum and maximum histogram values for the ten 

real CR images were 1790 ± 220 and 3075 ± 280 respectively. For ten DRR 

images, these values were 2000 ± 100 and 3070 ± 200. Minimum pixel values 

are lower in the CR acquired images than in the DRR reconstructed ones 

(maximum pixel values are very similar). These pixels exist in the diaphragm 

region of the images and therefore surrounded by fat; the reasons discussed in 

Section 5.5.1 are therefore relevant here as well. 

Table 5.13 shows SNRs in each chest region of ten real patient images, 

compared with that of ten simulated DRR images, acquired and reconstructed 
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at 81 kVp respectively. All images were chosen at random in the same manner 

as discussed in Section 5.5.1. There is good agreement of SNRs in real and 

simulated images. 

SNR Real 
Patient - 

lung 

SNR 
Simulated 
Patient - 

lung 

SNR Real 
Patient - 

spine 

SNR 
Simulated 
Patient - 

spine 

SNR Real 
Patient - 

diaphragm  

SNR 
Simulated 
Patient - 

diaphragm  

128.5 191.1 128.1 97.9 69.4 36.1 

145.3 121.9 109.6 80.2 55.8 75.4 

107.8 79.5 52.3 71.3 54.4 32.6 

100.1 102.3 81.9 94.2 54.1 51.7 

127.2 109.9 65.2 82.6 47.9 36.4 

133.9 125.6 26.4 64.7 38.6 25.6 

138.6 121.2 34.1 68.8 39.9 42.3 

96.5 115.1 29.7 63.9 42.8 14.7 

117.7 130.1 72.5 42.4 60.2 22.7 

145.8 114.6 51.4 37.5 34.3 28.8 

Mean = 
123.6 

Mean = 
120.6 

Mean = 
65.1 

Mean = 
70.4 

Mean = 
49.7 

Mean = 
36.6 

St Dev = 
17.9 

St Dev = 
28.6 

St Dev = 
33.9 

St Dev = 
19.8 

St Dev = 
11.0 

St Dev = 
17.1 

Table 5.13: SNRs of real and simulated obese patien ts in each region of 
the chest. 

Ten random real and simulated patients were used to measure the mean 

Tissue to Rib Ratio (TRR). Mean (± SD) DRR and CR TRR values were 1.023 ± 

0.011 and 1.026 ± 0.011 respectively. As discussed in Section 5.4.1, any 

differences are probably due to varying rib thickness in real patients. 

Nevertheless, there is a satisfactory agreement. 

These results suggest that the DRR algorithm is capable of simulating obese 

patients to a satisfactory level. SNR and TRR indices are very similar, 
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suggesting normal and pathological features in the chest will be of the same 

appearance. DRR dynamic range is smaller than CR, with pixel values in the 

diaphragm region typically higher. However, as discussed, image quality is of 

limited importance in the diaphragm region in chest radiographs, so this 

limitation is of little consequence.  

5.6 Image Evaluator Interpretation of DRR Images (Q ualitative 

Validation) 

As discussed already in this chapter, the DRR algorithm has been quantitatively 

validated using histograms, signal-to-noise and tissue-to-rib ratios, and dynamic 

range measurements. However, all of this becomes redundant if expert image 

evaluators deem the images inadequate for optimisation studies. To investigate 

this, 50 reconstructed patients (each containing 11 images) were presented to 

four independent, experienced image evaluators (2 Radiologists and 2 reporting 

Radiographers) on calibrated diagnostic reporting monitors (Barco Ltd, 

Brussels, Belgium). The monitors were calibrated to national standards [106] 

and were kept in dedicated viewing rooms with lighting levels maintained at an 

acceptable level. Each image evaluator was asked:  

“Do the images contain sufficient clinical detail, are they definitely 

representative of chest anatomy and are they suitable for optimisation studies 

requiring anatomical noise?” 

Even though all image evaluators knew each image was a DRR and not a real 

clinical CR image, the answer in all cases was yes which was a very 

satisfactory response. As introduced in Chapter 1, this research set out to 

produce a computer tool that adequately simulates CR chest radiographs, and 
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to use these images for optimisation of radiographic techniques. The excellent 

and positive comments from the evaluators, as well as the favourable 

quantitative analysis, has clearly demonstrated the main research objective of 

this thesis has been fulfilled. 

Nevertheless, this qualitative validation was taken a step further by asking each 

evaluator: 

“Do the images adequately mimic real CR images (1 = definitely not, 10 = 

definitely)?” 

The mean (± 1SD) score was 7.5 ± 2.0 demonstrating the algorithm’s capability 

of producing chest radiographs. However, each evaluator did comment that 

DRR image spatial resolution was poorer than CR (as discussed and measured 

in Chapter 4), but they agreed that this was not a limitation, and that 

optimisation studies would be possible using these images. 

The same scoring criterion was applied to the simulated lung nodules 

(discussed in Chapter 4). Although the method of adding lesions has been 

validated by Li et al. [97], it was felt necessary to qualitatively validate the 

appearance of these in the resulting DRRs. Each image evaluator was asked to 

score 50 reconstructed patients, each with lung lesions visible. They were 

asked: 

“Is the nodule realistic in terms of appearance and density (1 = not realistic, 10 

= definitely realistic)?” 

The mean (± 1 SD) was 7.8 ± 1.2, which demonstrates the appearance of 

simulated lung lesions are sufficiently realistic and can be used in the images 

for optimisation. 
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5.7 Limitations of the DRR computer model 

There are numerous limitations with the DRR computer model and they are 

discussed in turn below. 

5.7.1 X-ray spectra 

The accuracy of X-ray spectra produced by IPEM Report 78 is dependent upon 

the variables chosen to produce each spectrum, such as tube potential, 

filtration, target angle and voltage ripple. The maximum quoted error for photon 

intensity is 10%. This will influence the results obtained with the DRR model, 

although they have been minimised as the output of the clinical X-ray system 

was measured and the spectra produced by IPEM 78 were corrected 

accordingly. Also, given that the output of real X-ray tubes can easily fluctuate 

by 10% or more from one annual survey to the next, any error associated with 

this are unlikely to be observed. 

5.7.2 CT number to linear attenuation coefficient ( LAC) conversion 

The Gammex RMI phantom was used to measure the CT number of various 

tissue substitutes, and these were converted to LACs using the XCOM 

program. There is an inherent tolerance of approximately 10% in LAC values 

provided by this program, and this would affect the LAC values, and therefore 

X-ray attenuation and dynamic range of the DRR model.  

5.7.3 DRR dynamic range 

The size of the voxels available in the CT data (0.34 mm width x 0.34 mm depth 

x 0.8 mm height) are typically larger than the smallest structures within the 

human chest; this will reduce the number of tissues available in the virtual 
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patient for X-ray attenuation compared to a real patient (the very small 

structures will be ‘lost’). This would have the effect of reducing the dynamic 

range of the attenuated simulated X-rays. Also, the Gammex phantom was 

used to derive attenuation coefficients for seventeen tissue types; even though 

seventeen is an improvement on the four used by the computerised Monte 

Carlo phantom [46], it is still a finite number of tissue substitutes, subsequently 

affecting the amount of tissues modelled in the virtual patient. The virtual patient 

will therefore have a different ‘attenuation cross section’ compared to a real 

patient, reducing the dynamic range of resulting DRR images. However, given 

the fluctuation of minimum and maximum pixel values in real patient images, 

the effect of reduced dynamic range is not likely to be observable. 

5.7.4 Ray casting voxel interpolation 

The ray casting DRR method used in this research has used pencil beams 

projected through the CT data (virtual patient). In doing so each pencil beam 

impinges many different voxels requiring interpolation to calculate effective 

LACs. This interpolation was done by weighting the LAC of a voxel by the 

amount of area of the front face of the pencil beam impinging the voxel (i.e. 

sampling by area), and summing the respective contributions. This is not 

entirely accurate as the three dimensional pencil beam has been reduced to a 

two dimensional area. A more realistic method would have been to use 

volumetric interpolation (i.e. calculate the volume of pencil beam in each voxel). 

However, the area of pencil beam is broadly in proportion to its volume so the 

effect of this is likely to be minimal. 
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5.7.5 Photon energy binning 

To speed up DRR compute time, reference photon energies were projected 

through LAC converted CT data correct for the reference energies. The intensity 

of exiting photons was calculated from a knowledge of the intensity of the 

incident photons. The subsequent number of photons exiting the virtual patient 

of all other energies was determined using the formulae derived in Chapter 4. 

This will inevitably introduce discrepancies in the intensity of photons exiting the 

virtual patient and those absorbed by the CR phosphor. However, it is 

anticipated any noise introduced in the DRR image due to this will be swamped 

by the addition of scattered radiation and frequency dependent noise.  

5.7.6 Addition of scattered radiation 

The addition of scattered radiation was based on the RANDO phantom alone. 

Although human chests are very similar, there are slight differences, and 

therefore using RANDO to model scatter will introduce a systematic error. Also, 

each scatter map was simply added over the raw DRR without any warping or 

registration, on the assumption average adult chests are so similar this was not 

required. This would again lead to systematic errors. However, the results 

suggest using RANDO to model scatter and adding this over the raw DRR is 

adequate. The limitations of adding scattered radiation in this way is therefore 

minimal.   

5.7.7 Addition of frequency dependent noise 

The method of noise addition used in this thesis assumes that the noise power 

spectrum (NPS) is a sufficient descriptor of the noise and that detective 

quantum efficiency (DQE) is constant over the dose variations that exist within 
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the image. CR systems tend to have a decreasing DQE with dose; however, 

this method (Bath et al. [49]) has been shown to be sufficient for doses used 

clinically, i.e. it is assumed that quantum noise must be the dominant source of 

noise in each image. This method also assumes that noise is ergodic (constant 

over time) but in real CR systems this is not the case. However, good 

agreement with SNR measurements illustrated throughout this chapter 

demonstrate there are no issues at clinical dose levels that result from the 

addition of noise in this way. 

5.7.8 Spatial resolution 

It is a fact that CT data is of poorer inherent resolution compared with that of CR 

images (although still much better than voxelated phantoms used in Monte 

Carlo studies). This has led to DRR images exhibiting lower resolution than 

desired. This problem will not be an issue in future if CT scan resolution 

improves and approaches that of CR. However, the prime objective of this 

research was to develop a simulation system that produces chest images that 

adequately simulate anatomical noise and pathology. Radiologist comments 

and scores are excellent, so it appears the spatial resolution of these DRR 

images is not a limiting factor.  

5.7.9 DRR compute time 

In spite of the methods used to speed up the DRR compute time, image 

reconstruction still takes hours. However, this is not a limitation for the end user 

(i.e. image evaluators), and optimisation of the code is beyond the scope of this 

work. 
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5.7.10 Conclusions: Limitations 

Despite the numerous limitations described here, the DRR computer model has 

stood up to thorough quantitative and qualitative validation. The issues 

described are therefore not limiting factors. 

5.8 Conclusions 

This chapter has addressed how the DRR algorithm has been quantitatively and 

qualitatively validated. The images reconstructed by the method outlined in 

Chapter 4 have been analysed quantitatively in terms of signal to noise ratio 

(SNR), tissue to rib ratio (TRR), dynamic range and histograms of pixel values.  

All DRR simulated images correlate visually with the real CR images. However, 

this is not sufficient alone for validation. Signal and noise must be evaluated, as 

the visibility of normal structures and pathology depends strongly upon these. 

DRR simulated SNR measurements were within 15% of those measured in real 

CR images using the average and obese RANDO phantom, across all tube 

voltages and typical tube currents encountered clinically.  

Histogram analysis with images acquired and simulated with the RANDO 

phantom also demonstrated strong agreement, both in terms of shape and pixel 

value dependence on receptor dose. However, this analysis also showed DRR 

simulated images tend to have reduced dynamic ranges, probably due to voxel 

size and tissue variability relative to the Gammex phantom. In future it would be 

worth addressing this issue, but it is somewhat dependent on CT scan 

resolution (both in spatial and contrast terms) and the availability of phantoms 

that contain more tissue substitutes than the Gammex RMI model. It is, 

however, not an issue for this work as minimum and maximum pixel values 
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were the same as those encountered in CR images, given the standard 

deviations of the means. 

TRR measurements derived from the average and obese RANDO phantom 

also demonstrated good agreement across all tube potentials. This is important, 

as clinical diagnosis of pathology can be disrupted by high contrast rib 

structures. 

SNR, TRR and histogram analysis was also carried out with average and obese 

patient images. Strong agreement was found with SNR and TRR indices (given 

the standard deviations of the means), but the dynamic range of the DRR 

images were smaller. However, this is of little significance since the dynamic 

ranges were smaller due to differences in the minimum pixel values; as 

discussed throughout the chapter, these pixel values reside in the diaphragm 

region of the chest which is of little importance in chest radiography. Also, 

minimum and maximum pixel values tend to fluctuate quite considerably from 

one patient image to the next if one examines the standard deviations of the 

means (probably due to differences in patient sizes, even though they were 

either all average or obese), so the differences between DRR and CR are not 

likely to be observed and are no worse than those seen clinically between 

patients. 

 Analysis was carried out with CR images acquired at different hospital sites 

and different tube potentials/currents. The good agreement between indices 

proves the DRR algorithm is transferable and not restricted to modelling the X-

ray and CR systems it is configured to.   

Qualitative validation was then carried out with expert image evaluators Their 

comments and scores were excellent, indicating all images contain the 
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necessary projected anatomy required for optimisation. They were also satisfied 

simulated lung lesions were adequate.  

Finally, the limitations of the computer model have been discussed and 

although they are numerous, the only one recognised by image evaluators was 

the reduced spatial resolution. However, this artefact was not a limiting factor. 

The main research objective of this work was to develop a computer algorithm 

that simulates real chest CR images with adequate anatomical noise. The 

results illustrated in this chapter, both quantitative and qualitative, demonstrate 

this objective has been achieved. 
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Chapter 6: Use of the digitally reconstructed 
radiograph algorithm for the 
optimisation of chest 
radiographic techniques for the 
Agfa Computed Radiography 
imaging system 

 

6.1 Introduction 

This chapter discusses the use of the DRR algorithm presented in this thesis, to 

optimise radiographic techniques for chest CR imaging. A summary of scores 

from expert image evaluators of reconstructed images produced at various tube 

potentials, receptor air kerma and scatter rejection methods is given.  

At the outset of this work, chest exposure factors across the Radiology 

Department in the Hull & East Yorkshire Hospitals NHS Trust (HEY) were not 

standardised, and therefore not optimised; this chapter concludes with 

recommendations to the HEY Radiology Department for optimum exposure 

factors and technique for chest radiography. These were implemented across 

the Trust as a result of this work. 

6.2 Chest image reconstruction 

The DRR simulator was used to reconstruct images according to the following 

seven steps: 
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1. CT data sets from fifty average sized patients (70 ± 10 kg) were used 

to generate simulated CR images without any scatter rejection and at 11 

different tube potentials; 50 to 150 kVp in approximate steps of 10 kVp. Each 

image was reconstructed with a matched effective dose of 0.013 (± 1%) mSv 

(effective dose of 0.013 mSv was chosen as this was the mean value for chest 

exposures at HEY Trust at the time of the study); this was achieved by deriving, 

in a trial and error manner, the necessary dose area product (DAP) value at 

each tube potential (to provide 0.013 mSv) using the effective dose calculation 

software PCXMC [107]. The required tube current-time product (mAs) at each 

tube potential was subsequently measured on a clinical X-ray system for each 

DAP value derived. The DRR computer model uses the mAs values to calculate 

the intensity of X-ray photons incident on the virtual patient. DAP and 

corresponding mAs values are shown in Table 6.1. Although chest imaging 

exposure factors were not standardised in this Trust at the time of the study, 

scatter rejection was not routinely used. The technique described here was 

therefore consistent with the chest imaging protocol used in our Radiology 

department. 
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Tube 
Potential 

(kVp) 

DAP 
(mGycm 2) 

Tube current-
time product 

(mAs) 

50 179 25 

60 134 10 

70 109 6.4 

81 91 4 

90 81 2.5 

102 72 2 

109 68 1.6 

125 61 1.3 

133 59 1 

141 57 0.8 

150 55 0.7 

Table 6.1: The exposure settings used to reconstruc t each image for a 
matched effective dose of 0.013 mSv. The mAs value is required for image 
reconstruction. 

2. CT data sets from twenty average sized patients were used to 

generate simulated CR images with an oscillating focused anti-scatter grid 

(strips per mm = 4, grid ratio = 12) focused at 140 cm focus to detector distance 

(useful range 115 to 180 cm) incorporated into the algorithm. Each patient DRR 

set contained 5 images each of a different tube voltage; 60, 81, 102, 125, 141 

kVp. Fewer images per patient were used on the advice of the image 

evaluators, following their evaluations of criteria 1; it became time consuming to 

score numerous patients and difficult to differentiate differences in image quality 

in steps of 10 kVp.  Each image was reconstructed with a matched effective 

dose of approximately 0.03 mSv (the increase in dose was required to establish 

a lgM of 2.00 at the reference tube potential of 102 kVp with the use of the grid). 
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It should be noted here that the increase in dose to achieve a lgM of 2.00 was 

done for pragmatic reasons. For film-screen systems the image quality 

improvement through grid use is often described by a contrast improvement 

factor (Kc); this requires a fixed total exposure (primary plus scatter) to ensure 

proper film darkening. Using a constant lgM of 2.00 is akin to maintaining 

constant film darkening. However, digital X-ray imaging devices are not 

restricted to total exposure, and so the image quality improvement factors 

associated with the use of a grid are probably best described by the signal-to-

noise ratio (SNR) [113]. The method used in this work may possibly restrict the 

optimisation, but until a recognised metric for ‘image quality standardisation’ is 

established for grid use with digital imaging, it was felt prudent to use the 

constant lgM method. 

3. CT data sets from twenty average sized patients were used to 

generate simulated CR images with an air gap anti-scatter technique 

incorporated into the algorithm. Each patient DRR set contained 5 images each 

of a different tube voltage – 60, 81, 102, 125, 141 kVp. Each image was 

reconstructed with a matched effective dose of approximately 0.017 mSv 

(increase in dose due to the patient being closer to the X-ray source). 

4. Steps 1 to 3 were repeated but for obese patients, with matched 

effective doses 0.022 mSv, 0.10 mSv and 0.03 mSv respectively; the increase 

in doses being required for imaging of obese patients. 

5. Ten average sized patients each containing images produced with 

varying receptor air kerma values through the lung region; 7.0, 4.0, 3.0, 2.0, 1.5, 

1.0, and 0.5 µGy. 
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6. Ten average sized patients each containing three images; an image 

reconstructed without any scatter rejection, an image reconstructed with an anti-

scatter grid, and an image reconstructed with the air gap technique. The three 

images within each patient were reconstructed with the same tube potential, but 

each patient was reconstructed with a different potential (patient 1 = 50 kVp, 

patient 10 = 150 kVp). Each image was reconstructed with the effective dose 

correct for the method of scatter rejection utilised (as discussed above). 

7. As step 6 with ten obese patients. 

Images of a given patient were attached in series to a single study and given 

the name CR_Patient_N, were N was a sequential image number. For example, 

patient 1 had 11 series (images 50 to 150 kVp – see Table 6.1) and this study 

was called CR_Patient_1. The study was sent to the Picture Archiving and 

Communications System (PACS) network for observer evaluation. All other 

patients were subsequently reconstructed, named and sent to PACS in the 

same manner. Not all studies were sent with the images in numerical order (i.e. 

50, 60, 70…..150 kVp) but in a random manner. 

6.3 Evaluation of clinical image quality 

The Council of European Communities (CEC) Quality Criteria [5] define 

important anatomical and image details for various diagnostic examinations, 

including chest radiography. The image criteria described in the CEC document, 

slightly revised to reflect modern diagnostic requirements and previous 

experiences of other groups [40, 41, 44, 108, 109], were used to define 

anatomical features in each chest image for evaluation. As well as general 
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chest structures, lung nodules were simulated in each image and evaluated, 

and are shown in Table 6.2. 

  

 CEC Guidance 

1 Vessels seen 3 cm from 
the pleural margin 

2 Thoracic vertebrae 
behind the heart 

3 Retrocardiac vessels 

4 Pleural margin 

5 Vessels seen en face in  
the central lung region 

6 Hilar region 

 Other Criteria 

7 Abnormality in the lateral 
pulmonary region 

8 Abnormality in the hilar 
region 

9 Are the ribs a 
distraction? Y/N 

Table 6.2: The chest structures used for visual gra ding analysis. 
Structures 1 to 6 are mentioned in the CEC document . 

Four experienced expert image evaluators (two Radiologists and two reporting 

Radiographers) evaluated and graded the images on a diagnostic reporting 

workstation with a dual monitor configuration (Barco Ltd, Brussels, Belgium). 

The monitors were calibrated to national standards [106] and were kept in 

dedicated viewing rooms with lighting levels maintained at an acceptable level. 

The evaluators were asked to keep the final image in the series of each patient 

on the right hand screen, as this was the reference image for grading (for 

example, assuming 11 images per patient, image 11 was kept on the right hand 
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screen). All other images (the ‘test images’) were displayed in turn on the left 

hand screen and graded against the reference image. For the tube potential 

optimisation studies (i.e. points 1 to 4 in Section 6.2), the reference image was 

reconstructed with a tube potential of 102 kVp; this value was chosen because, 

as exposure factors were not standardised, a neutral tube potential was 

deemed appropriate so not to bias the results (the median diagnostic tube 

potential was therefore used). The evaluators did not have any knowledge of 

what tube potential the test or reference images represented. Test images were 

presented in a random order. Evaluators were allowed to change the window 

and level settings of each image prior to grading to optimise the appearance of 

each, as per clinical practice. For the scatter rejection study (points 6 and 7 in 

Section 6.2) the image derived without any scatter rejection was used as the 

reference image. 

The evaluators graded the images using the visual grading analysis (VGA) 

system used by Tingberg and Sjostrom [44] in a similar study with a physical 

chest phantom. The VGA method has been analysed and validated as an 

appropriate method to assess the image quality of chest radiographs by 

Tingberg et al. [40], Mansson et al. [38,39], and Sund et al. [41]. The image 

quality for six structures mentioned in the CEC document, as well as lung 

nodules in the hilar and lateral lung regions in each of the test images (see 

Table 6.2), was compared with the reference image on a scale incorporating 7 

points, as shown in Table 6.3. 
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Grading Visibility of Structure 

-3 Definitely inferior to the reference 

-2 Reasonably inferior to the reference 

-1 Slightly inferior to the reference 

0 Equal to the reference 

+1 Slightly superior than the reference 

+2 
Reasonably superior than the 

reference 

+3 Definitely superior than the reference 

Table 6.3: The grading system for VGA. 

This work enhances previous VGA studies in that we have also included lung 

nodules as well as general chest structures. 

Ribs have been shown to interfere with the diagnostic interpretation of chest 

images [110] therefore the evaluators were also asked to state ‘yes/no’ whether 

the ribs were an interference.  

For each image, a VGA score (VGAS) was calculated using the equation 

described by Tingberg and Sjostrom [44]: 

OSI

G
VGAS OSI

O
o

S
s

I
i

××
∑∑∑

= === ,,111          (6.1) 

where GI, S, O is the grading (-3, -2, -1, 0, +1, +2, +3) given by observer o for 

image i and structure s, I is the number of images per tube potential (dependent 

on number of patients), S is the number of structures (eight in total – six general 

and two abnormal) and O is the number of evaluators (four in this study). 
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Negative and positive scores indicate inferior and superior image quality 

respectively in the test image compared to the reference image (see Table 6.3). 

Scoring of the dose optimisation study (point 5 in Section 6.2) differed from the 

above as evaluators were simply asked to give ‘yes/no’ answers to whether the 

image quality in the lung, spine and diaphragm regions were diagnostically 

acceptable, and whether lesions in the lateral and hilar regions of the lung were 

visible. 

Also, during the study to determine whether scatter rejection would be beneficial 

(points 6 and 7 in Section 6.2), as well as VGA scores, image evaluators were 

asked to answer ‘yes/no’ to the following question: “Image 1 (test image) is at 

least 1.5 times (up to 4 times) the dose of image 3 (reference image). If image 

quality of image 1 is ‘better’ than image 3, does it still justify the large increase 

in dose?” Only the relative dose increase was presented to the evaluators, 

rather than an absolute measure. 

6.4 Statistical analysis 

The results in this chapter were tested for significance, firstly using the ANOVA 

test (analysis of variance) to examine inter-observer variability, and then using 

the Student’s t-test to examine differences between mean image quality scores 

(VGAS). A p-value of < 5% was considered as a statistically significant 

difference between data sets. Error bars shown in the graphical data of the 

results were calculated by averaging the standard deviations of each VGAS for 

each chest structure (Table 6.2) over all patients. 
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6.5 Phantom experiment to determine minimum possibl e X-ray 

exposure times  

In the event that the results demonstrated superior image quality with low tube 

potentials and anti-scatter techniques, it was felt necessary to determine 

whether a modern X-ray generator (discussed in Chapter 4) could deliver the 

required dose in exposure times of less than 20 ms (as recommended in the 

CEC guidance). To investigate this, average then obese RANDO was set up on 

a Philips X–ray system following the local clinical chest protocol. The phantom 

was exposed using the tube potentials shown in Table 6.1, using mA and 

corresponding ms settings sufficient to produce a lgM =2.00 ± 0.05. After each 

exposure the CR phosphor plate (the same one was used for each exposure) 

was read through the CR reader. It should be noted that exposure times were 

not measured with a survey meter; those displayed on the X-ray system were 

used. 

6.6 Results and Discussion 

For all images evaluated in this study, the ANOVA test demonstrated a p-value 

of ≥ 0.08 and therefore it was deemed there was no significant difference 

between the scores of each image evaluator.  

6.6.1 Image quality of 50 average patients reconstr ucted without 

scatter rejection 

 

The results of the optimisation study for 50 average patients reconstructed 

without scatter rejection, (i.e. in the same manner as the chest radiographic 
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technique currently used in our Radiology department for average adults), are 

shown graphically in Figure 6.1. 
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Figure 6.1: Image quality (VGAS) results for averag e patients 
reconstructed without any scatter rejection. 

It is clear from Figure 6.1 that the VGAS is higher for lower tube potential (kVp) 

settings, demonstrating that image quality improves with lower potentials. VGAS 

ranged from 0.41 for 50 kVp, to 0.03 for 109 kVp, but there is very little 

difference between image quality at tube potentials greater than 102 kVp, as the 

VGAS ranged from 0.03 at 109 kVp, to 0.07 at 150 kVp. Although there is a 

trend to increased image quality at low tube potentials (r2 > 0.71), it was only 

possible to statistically distinguish between 50 and 90 kVp (p-value = 0.033), 80 

and 90 kVp (p-value = 0.033), and 80 and 109 kVp (p-value = 0.034). All other 

combinations demonstrated p-value ≥ 0.102. Nevertheless, these results show 

that for matched effective dose, image quality improves with lower tube 

potentials, which is similar to that reported in the literature [27, 29, 36]. 

However, in lowering tube potential, an increase in mAs would be needed to 

compensate the reduced intensity of X-ray photons. This is likely to necessitate 

increased exposure times. This is discussed in Section 6.7. There are a few 
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reasons why low tube potentials provide superior image quality for CR 

radiography. Firstly, as discussed in Chapter 1, the efficiency of the CR 

phosphor is higher for lower photon energies. A reduction in tube potential leads 

to the production of more low energy photons; one would therefore assume 

more will be detected. Secondly, there will be less Compton interactions and 

more photoelectric absorption in the patient, leading to increased radiation 

contrast and less scatter, both of which result in improved image contrast. 

6.6.2 Image quality of 20 average patients reconstr ucted with an 

anti-scatter grid 

The results are shown in Figure 6.2.  For average patients, reconstructed with 

an anti-scatter grid, the results demonstrate there is a trend (r2 > 0.58) of 

increased image quality to low tube potentials, as per the results in Section 

6.6.1. VGAS results ranged from +0.039 (60 kVp) to -0.279 (141 kVp). 

However, there was no statistically significant differences between any of the 

observations (p-values ≥ 0.07). 
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R2 = 0.5669

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60 80 100 120 140 160

Tube Potential (kVp)

V
G

A
S

 

Figure 6.2: Image quality (VGAS) results for averag e patients 
reconstructed with an anti-scatter grid. 

 

6.6.3 Image quality of 20 average patients reconstr ucted with an air 

gap technique 

The results are illustrated in Figure 6.3. For average patients, reconstructed 

with an air gap, the results demonstrate a trend (r2 > 0.78) of increased image 

quality to higher tube potentials. VGAS results ranged from -0.297 (60 kVp) to 

+0.004 (125 kVp) and were all negative (except 125 kVp), suggesting all of the 

tube potentials were slightly inferior to 102 kVp. However, there was no 

statistically significant differences between any of the observations (p-values ≥ 

0.08). This result is the opposite of that found previously. This may be due to 

the fact that the air gap is just large enough so that at higher tube potentials the 

increased scatter misses the CR phosphor leading to relative improved image 

quality at these higher potentials; as half of the image evaluators were used to 
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working with 80 kVp clinically, perhaps they were giving higher scores to those 

images they were used to. 
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Figure 6.3: Image quality (VGAS) results for averag e patients 
reconstructed with an air gap scatter rejection tec hnique. 

 

6.6.4 Image quality of 20 obese patients reconstruc ted without 

scatter rejection methods 

Figure 6.4 shows the results for obese patients reconstructed without any 

scatter rejection. There is a trend (r2 > 0.73) of increased image quality to higher 

tube potentials (min VGAS = -0.088, max VGAS = +0.02) which is the reverse 

of that found with average patients. There was no statistically significant 

differences between any of the observations (p-values ≥ 0.06). However, it is 

likely that the poor penetration at low tube potentials and increased scatter from 

the obese patients outweighs the benefits of inherent image contrast due to 

photoelectric absorption. It should be remembered that the mean scatter 
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fraction (i.e. the ratio of scatter to total radiation incident at the image receptor) 

in chest radiography changes very little with tube potential [82, 86] and so the 

poorer image quality seen here at lower tube potentials depends more on 

patient size than beam quality. 
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Figure 6.4: Image quality (VGAS) results for obese patients reconstructed 
without any scatter rejection. 

 

6.6.5 Image quality of 20 obese patients reconstruc ted with an anti-

scatter grid 

The results are illustrated in Figure 6.5.  They demonstrate that for obese 

patients reconstructed with an anti-scatter grid there is a strong trend (r2 > 0.95) 

of increased image quality to low tube potentials. VGAS results ranged from 

+0.61 (60 kVp) to -0.330 (141 kVp) and there were clinically significant 

differences between tube potentials 60 and 141 kVp (p < 0.029), 81 and 141 

kVp (p < 0.012), and 125 and 141 kVp (p < 0.017). These results suggest that if 

there is any advantage in using anti-scatter grids for obese patients, the lower 
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the tube potential the better, and those lower than the reference (102 kVp) 

would provide superior image quality. However, low tube potentials will increase 

exposure times, but this is addressed in Section 6.7. 
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Figure 6.5: Image quality (VGAS) results for obese patients reconstructed 
with an anti-scatter grid. 

 

6.6.6 Image quality of 20 obese patients reconstruc ted with an air 

gap technique 

The results are shown in Figure 6.6. They demonstrate that for obese patients 

reconstructed with an air gap anti-scatter rejection method there is a weak trend 

(r2 > 0.55)  of increased image quality to higher tube potentials, but all average 

VGAS scores are negative, ranging from -1.42 (60 kVp) to -0.075 (141 kVp). 

These results suggest image quality is not improved irrespective of the tube 

potential used. Tube potential 60 kVp was significantly different from all the 

others (p ≤ 0.004) but there was no significant difference between any others (p 
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≥ 0.201). Poorer image quality at low kVps is probably due to the factors 

mentioned in Section 6.6.4. 
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Figure 6.6: Image quality (VGAS) results for obese patients reconstructed 
with an air gap technique. 

 

6.6.7 Anti-scatter grid v air gap – average patient s 

Figure 6.7 shows a bar graph of the average VGAS for images reconstructed 

with an anti-scatter grid and air gap technique (point 6 from Section 6.2). 
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Figure 6.7: Image quality (VGAS) results for averag e patients for scatter 
rejection v non-scatter rejection (no scatter rejec tion VGAS = 0). 

It is clear from Figure 6.7 that image quality is superior using scatter rejection 

techniques, and a grid outperforms the air gap method (note that as the image 

reconstructed without any scatter rejection was the reference image, it would 

have a VGAS of zero in Figure 6.7). However, only the use of an anti-scatter 

grid yielded significant improvements (air gap (p-value < 0.006) and no scatter 

rejection (p-value <0.0002)); the air gap method was not significantly different 

from no scatter rejection (p = 0.06). However, image evaluators gave a ‘no’ 

response in 100% of the cases when asked if the increase in dose justified 

using an anti-scatter technique. Therefore, scatter rejection methods are not 

indicated for average patients. As discussed in Section 6.2, the results shown 

here may be restricted in the fact that a contant lgM of 2.00 was used to derive 

the increase in dose necessary. If a constant SNR method is used is may be 

possible to use a grid with lower doses – this is addressed in Chapter 7. 
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6.6.8 Anti-scatter grid v air gap – obese patients 

Figure 6.8 shows the same as Figure 6.7 but for obese patients. 
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Figure 6.8: Image quality (VGAS) results for obese patients for scatter 
rejection v non-scatter rejection (no scatter rejec tion VGAS = 0). 

The results are similar to that for average patients, in that image quality is 

superior using scatter rejection techniques, and a grid outperforms the air gap 

technique (note that as the image reconstructed without any scatter rejection 

was the reference image, it would have a VGAS of zero in Figure 6.8). The grid 

method was significantly different from the air gap method (p-value < 0.0004) 

and no scatter rejection (p-value <0.0002), and the air gap method was 

significantly different from no scatter rejection (p < 0.006). Interestingly, image 

evaluators gave a ‘yes’ response to 100% of the patients reconstructed with an 

anti-scatter grid (presented blindly) when asked if the increase in dose was 

justified, but gave a ‘no’ response to 100% of the air gap patients. Therefore, 

use of an anti-scatter grid is indicated for obese patients, but an air gap 

technique is not, and so the question of exposure times with lower tube 
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potentials (Section 6.6.5 deemed low tube potentials superior for obese patients 

imaged with an anti-scatter grid) becomes important.  

6.7 Phantom experiment to determine minimum X-ray 

exposure times possible 

The results demonstrated that when average RANDO was exposed without 

using a grid, it was possible to use a tube current of 630 mA and exposure 

times < 20 ms to obtain a lgM of 2.00 ± 0.05 with all tube potentials. Therefore it 

is possible to use low tube potentials as indicated in this work for average 

patients. However, for obese RANDO imaged with a grid, it was only possible to 

achieve the 20 ms limit with 109 kVp at 180 cm FDD or 90 kVp at 115 cm FDD 

(the shortest distance permitted for this focused grid). 

6.8 Image quality of 10 patients reconstructed with  different 

receptor air kerma values 

The response of each image evaluator was quite surprising in that all deemed 

image quality acceptable in the lung region down to 1.5 µGy (i.e. all answers 

were ‘yes’). This is approximately one quarter of the air kerma of that used for 

patients exposed with our Radiology department’s current standard exposure 

protocol. However, image quality was not deemed acceptable in the spine and 

diaphragm regions for an air kerma (through the lung region) of 2 µGy for any of 

the structures and nodules mentioned in Table 6.2. This suggests chest imaging 

can be carried out with at least a 50% decrease in receptor dose (and therefore 

patient dose for a given X-ray beam quality), whilst maintaining image quality 

that is diagnostically acceptable. A similar result has recently been reported by 

Veldkamp et al. [111].  
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6.9 Interference of rib contrast 

Ribs interfered in approximately 5% of images reconstructed at 50 kVp, but in 

no other. It is therefore not a limiting factor in chest radiography. 

6.10 Conclusions 

A DRR based computer simulation of CR chest radiographs that contain 

clinically realistic anatomical noise has been used to identify optimum 

radiographic techniques for CR chest radiography with an Agfa CR 85 imaging 

system and MD-4.0 phosphor plates. Simulated images scored by four 

experienced image evaluators have shown that for average adult patients 

scatter rejection is not indicated because the increase in dose is not justified; 

low tube potentials (< 102 kVp) therefore provide superior image quality.  

It has been shown that for obese adult patients an oscillating focused anti-

scatter grid is indicated, and should be used in conjunction with the lowest tube 

potential possible. Measurements with a chest phantom on a clinical X-ray 

system demonstrate any tube potential can be used without a grid for average 

patients to satisfy the 20 ms exposure time limit, but at least 90 kVp must be 

used for obese patients (with a grid). It has also been shown that receptor air 

kerma through the lung region can be reduced to 2 µGy whilst maintaining an 

adequate level of image quality, and the rib contrast interfering with image 

evaluation is minimal.  
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6.11 Recommendations for HEY Radiology Department 

Clinical chest exposure factors within our Trust were not standardised at the 

time of this study; the following factors were typically used at each hospital site 

(it should be noted that the same model of CR system is used at each hospital): 

 Hull Royal Infirmary:    60 kVp/10 mAs 

Princess Royal Hospital:   70 kVp/5 mAs 

Beverley Westwood Hospital:  70 kVp/5 mAs 

Castle Hill Hospital:    80 kVp/5 mAs 

Optimisation of medical exposures given to patients to produce clinical images 

is a legal requirement under the relevant legislation (IR(ME)R2000); this 

includes standardising exposure factors. The results of this work recommend 

the following exposure factors: 

Average Patients: 

• Scatter rejection is not indicated 

• Standardise exposure factors across the Trust using 60 kVp and 10 mAs  

• After a ‘settling in period’ of standardisation, drop from 10 to 8 mAs (it            

should be remembered here that more than 90% of the X-ray tubes in 

HEY Radiology are of the Philips model (see Chapter 4) and are all of 

similar output; on average 25.2 ± 2.0 µGy/mAs at 1m). 

Obese Patients: 

• Standardise exposure factors across the Trust: 
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o Use focused oscillating anti-scatter grid with an FDD of 115 cm 

(lowest permissible for focused grid), 90 kVp, 550 mA and exposure 

time 20ms for lgM = 2.00  

o If magnification is not acceptable with the above factors use focused 

oscillating anti-scatter grid with an FDD of 140 cm (recommended 

distance for focused grid), 102 kVp, 490 mA and exposure time 20ms 

for lgM = 2.00  

o If magnification is still not acceptable with the above factors use 

focused oscillating anti-scatter grid with an FDD of 180 cm (maximum 

allowed distance for grid), 109 kVp, 450 mA and exposure time 20ms 

for lgM = 2.00  

6.12 Change in Radiology practice 

The results of this study were presented at the HEY Radiologist Operational 

Group meeting in March 2011. It was agreed with the Radiologists to change 

current exposure protocol to reflect the recommendations illustrated above. 

Chest imaging exposure factors and radiographic technique have now been 

standardised across the HEY Trust. 

6.13 Implications of patient dose due to change in practice 

The recommendations suggested in this thesis have led to the Radiology 

department in HEY Trust standardising exposure factors. It was therefore felt 

important to quantify the change in patient effective dose due to this change 

(although image quality has been deemed superior at the lower tube potential, 



 214

one could argue that it would not be ethical to change exposure factors if patient 

dose had increased significantly).  

To assess any change in patient dose, the software package PCXMC [107] was 

used. Tube potentials of 60 and 80 kVp, total filtration of 3.1 mm Al and 

measured (in-house) entrance air kerma values of 70 and 67 µGy for 60 and 80 

kVp respectively were entered into the relevant fields of the software (entrance 

air kerma values are correct for 60 kVp & 10 mAs, and 80 kVp & 5 mAs 

respectively). The software calculated the results as shown in Table 6.4. 

Tube Potential (kVp) Tube Current-Time 
Product (mAs) 

Effective Dose (mSv) 

60 10 0.00755 ± 0.00007 

80 5 0.01053 ± 0.00008 

Table 6.4: Effective dose values for exposures with  tube potentials 60 and 
80 kVp respectively. 

As can be seen in Table 6.4, the effective dose and therefore risk decreases 

with decreasing tube potential. The effective dose actually decreases by 

approximately 28%. This is probably due to a more pronounced fall off of depth 

dose in the patient PA direction with 60 kVp with respect to 80 kVp. This result 

is excellent, as at lower tube potentials, not only does image quality increase, 

but patient effective dose decreases. This strengthens the argument for the 

change in HEY Radiology practice at Castle Hill Hospital. Also, once exposure 

factors have been decreased from 60 kVp & 10 mAs to 60 kVp & 8 mAs, as per 

the above recommendations, the effective dose will decrease by a further 20%, 

leading to an overall effective dose reduction of approximately 43%, i.e. the 

dose reduction resulting from changing exposure factors 80 kVp & 5 mAs to 60 

kVp & 8 mAs. 
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Chapter 7: Conclusions and future work 

 

7.1 Conclusions 

The work presented in this thesis has demonstrated that digitally reconstructed 

radiographs (DRRs) of the chest can be produced, validated and used to 

optimise radiographic techniques for chest radiography with Computed 

Radiography (CR) systems. The use of DRRs for optimisation studies has the 

benefit of eliminating the need for multiple X-ray exposures of the same patient, 

thus minimising the risk of developing radiation induced cancers. The 

methodology outlined in this thesis can also be used to produce DRR images of 

digital imaging modalities other than CR, such as direct digital systems (DR), 

assuming the physical characteristics of those systems are measured. 

 At the time of writing, this work has led to the acceptance for publication of two 

full papers in the British Journal of Radiology (BJR), and two peer reviewed 

presentations at UK meetings. Work related to this thesis performed in the 

workup towards this study has also produced three full papers and two 

presentations. 

Initially the work focused on identifying which DRR computation method would 

be most appropriate. Ray casting and splatting are both popular ways of 

reconstructing DRRs, but it was decided to use the ray casting method with 
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pencil X-ray beams as this produces images with superior quality, namely less 

blurring and aliasing. One disadvantage is that of long computation time, but 

this is not anticipated to be a concern for the end user. The use of Matlab, 

which is a developmental prototyping environment, if replaced by computer 

code written in an appropriate language, would reduce this overhead. 

Ray casting DRR methods do not compute any component of radiation scatter 

at the image receptor, so the most appropriate method to add scatter was 

investigated. A method widely used in the literature was adopted to calculate 

scatter and scatter fractions, allowing the addition of this component to the DRR 

images. This was performed for tube potentials across the diagnostic energy 

range with an average and obese phantom. 

A robust and reliable methodology to produce DRRs of the chest has been 

presented in this thesis. CT data of RANDO and real patients have been used 

as computerised voxelated phantoms, and virtual X-ray spectra (produced with 

commercial software) were successfully projected through the data to produce 

raw DRR images of the chest. The raw DRR images were presented in terms of 

energy absorbed (keV) by the CR phosphor material (DRR pixel values linear 

with absorbed energy), by deriving CR photon energy dependent mass energy 

absorption coefficients, available from the NIST database. To speed up this 

calculation, CT pixel value data were converted to linear attenuation coefficient 

(LAC) for reference photon energies only, and the CT voxels were shifted to 

allow parallel X-ray pencil beam projection.  

Experimental methods were used to derive scatter and scatter fractions of the 

chest with the RANDO phantom on the clinical X-ray and CR systems for which 

the DRR algorithm is currently configured. Measured scatter fractions 
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adequately simulated those found in the human thorax across the diagnostic 

tube potential range. Frequency dependent noise was also added post raw 

DRR production based on a slightly modified method described in a recent 

publication [49]. 

Lung nodules were successfully simulated and added to the CT data prior to X-

ray pencil beam projection, and these were visible on the resulting DRR 

images. The visualisation of lung lesions is dependent on location, so two 

lesions were simulated, one in the lateral pulmonary region, and one in the hilar 

region. 

An investigation of noise in the CT data found that it took a Gaussian form. 

However, a Guassian noise smoothing filter was not required prior to pencil 

beam projection as this made < 2% difference to the signal and noise 

characteristics of the DRR image. It is assumed that averaging and sampling of 

CT voxels (during pencil beam projection) and added frequency dependent 

noise almost completely mask the effect of CT noise in the final image. 

Validation of the DRR model was very successful. It was initially carried out by 

visually inspecting DRR images of RANDO and patients, and comparing them 

with real CR images. In all cases on low resolution workstations, it was 

impossible to distinguish the DRR and CR images (although a difference was 

apparent on reporting monitors). 

Measures of signal to noise ratio (SNR), tissue to rib ratio (TRR) and dynamic 

range were then used to quantitatively validate the DRR algorithm. For average 

and obese RANDO, measurements of SNR with RANDO differed from the CR 

image by a maximum of 15%, but the mean values in each chest region were 

always within good agreement. DRR TRR values were within 0.6% of CR 
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measurements. It was found that pixel value histograms were very similar in 

shape, especially for average RANDO, and dose escalation/reduction resulted 

in histograms that shifted correctly along the pixel value axis. It was observed 

for all DRR images that the dynamic range was smaller than CR, probably due 

to limited tissue modelling and voxel size. This effect was more pronounced in 

obese RANDO which is likely to be due to inadequate modelling of the grocery 

store lard (i.e. conversion to its correct LAC). Nevertheless, SNR, TRR, and in 

general, histograms, were very well matched. 

The same methods were used to validate the algorithm by comparing CR and 

DRR images of average and obese patients. Images from other hospital sites 

were also used. Results were similar to that of RANDO, in that SNRs and TRRs 

were very well matched and histograms were of the same shape but reduced 

dynamic range. Nevertheless, minimum and maximum DRR pixel values were 

very similar to CR minima and maxima (all within two standard deviations of the 

mean). As images from other hospital sites were used and shown to be very 

well matched to DRR images, the robustness and transferability of the model 

has been demonstrated. In other words, the DRR model can be used to 

simulate clinical systems other than the one that it was originally configured to, 

without any further work. 

Qualitative validation by expert image evaluators was carried out using simple 

scoring methods. All images were deemed good enough to carry out 

optimisation studies with. This was an excellent outcome, as it demonstrates 

the main research objective of this work has been fulfilled.  

Limitations of the DRR computer model were discussed, the most important 

ones being the addition of frequency dependent noise and the reduced spatial 
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resolution. The addition of noise assumes that DQE is constant with dose (i.e. is 

constant in all regions of the image) and ergodic. Neither of these conditions is 

true. However, it has been demonstrated in the literature that these effects are 

negligible at clinical doses, and the results presented here certainly seem to 

support this, as SNRs are very well matched. The reduction in spatial resolution 

means object information (and noise) will never be as faithfully reproduced in a 

DRR image when compared to CR. This was noticeable when DRR images 

were presented on high resolution diagnostic reporting monitors. However, 

expert image evaluators did not feel this was a limiting factor. A further limitation 

is the computation time. Although methods were introduced to speed up DRR 

image production, each image takes approximately one hour to calculate. 

However, this is not a limiting factor for the end user (image evaluators), and it 

is likely that computing power and speed will increase in future, eventually 

resolving this issue. 

CR chest optimisation studies were subsequently carried out using images 

produced with the validated DRR software. Expert image evaluators scored 

images presented at different tube potentials, receptor air kermas and scatter 

rejection techniques. Scoring criteria were based on slightly modified European 

criteria. For average patients, low tube potential (< 102 kVp) without scatter 

rejection was indicated. Similarly, for obese patients, low tube potentials were 

indicated but with the use of an anti-scatter grid. However, due to the use of a 

grid, the lowest tube potential possible that did not necessitate exposure times 

> 20 ms was 90 kVp.  

These conclusions were presented to the HEY Radiology Operational Group 

and it was agreed that chest exposures across the Trust would be standardised, 

using the exposure factors recommended and discussed in Chapter 6. This 
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work has therefore changed clinical practice within the HEY NHS Trust, 

optimised image quality and lowered the effective dose given to our patients. 

In summary, an environment has been developed to create virtual patient CR 

images from clinical CT data which can be used to perform virtual trials which 

might well be deemed unethical on real patients. It is anticipated that the 

method presented in this thesis can also be expanded to non-CR imaging 

modalities, such as direct digital flat panel detectors. 

7.2 Future work 

The work presented in this thesis has focussed on optimising X-ray beam 

qualities currently used in the HEY Trust, i.e. tubes containing aluminium 

filtration only. However, an interesting area of development would be to produce 

DRR images with added copper filtration to see if it would be possible to lower 

patient dose whilst maintaining image quality. 

It is anticipated that the methodology presented in this thesis can be used to 

produce simulated images of any anatomical region, assuming adequate 

access to patient CT data and scatter maps can be derived. Future work would 

include producing DRRs of the pelvis/abdomen region and subsequently 

optimising radiographic technique for this area. This specific anatomical region 

is worth investigating as it is one of the largest patient dose examinations for 2-

D imaging (approximate effective dose = 1 mSv).  

Other potential areas of research would be to upload DRR images onto a CR 

system and subject the images to clinical post-processing. This would enable 

the optimisation of the entire imaging chain as well as X-ray radiographic 

techniques. 
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Another interesting area of work would to redo the image evaluation with 

average patient images reconstructed with an anti-scatter grid at much lower 

doses. It has been shown by Fetterly and Schueler [113] that approximately 

76% of the primary radiation is transmitted by the grid. Therefore, for digital 

imaging modalities where signal-to-noise (not optical density as per film-screen) 

is the limiting factor one could argue exposures with a grid only need increasing 

by the reciprocal of this amount (i.e. 1.3), assuming only small amounts of 

scatter are recorded by the receptor. The dose increases described in Section 

6.2 followed a ‘constant lgM’ approach, akin to using a constant optical density 

for film-screen. 
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