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Introduction: Implantable defibrillators (ICD's) are currently unable to 
assess the haemodynamic stability of arrhythmias and can occasionally 
deliver intracardiac shocks when patients are conscious. We investigated 
the use of trans-ventricular impedance (across the left ventricle {LV}) as a 
haemodynamic sensor during arrhythmias in man. 
Methodology: Trans-ventricular LV impedance and systemic blood 
pressure (BP) were continuously monitored during clinical VT stimulation 
studies. LV impedance was measured by injecting a biphasic rectangular 
current pulse of 600|uA amplitude at a sampling rate of 128 Hz between 
the distal poles of a standard quadripolar pacing/recording electrode 
positioned at the right ventricular (RV) apex, and the proximal poles of a 
decapolar catheter positioned within the coronary sinus (CS). Current 
was injected using an external pacemaker (INOS, Biotronik) connected to 
the poles of the RV & CS catheters. Haemodynamically unstable 
arrhythmias were defined as those needing urgent DC cardioversion for 
loss of consciousness.
Results: 28 patients were studied. Unstable VT: 5 (18%), Stable VT: 5 
(18%), SVT: 2 (7%). During haemodynamically unstable VT, the stroke 
impedance (SZ) - the difference between the end systolic and end 
diastolic impedance values - dropped to 22% of its original sinus rhythm 
value (standard deviation = 15 - 32%), which was associated with a 
simultaneous drop in mean arterial BP down to 13% of its original sinus 
rhythm value (standard deviation = 3 - 36%), p <0.001. During 
haemodynamically stable VT, SZ dropped to 58% of its original sinus 
rhythm value (standard deviation = 33 - 88%), which was associated with 
a simultaneous drop in mean arterial BP down to 55% of its original sinus 
rhythm value (standard deviation = 24 - 77%), p = 0.008. 
Conclusion: Trans-ventricular impedance was able to assess the 
pumping efficacy of the heart during sinus rhythm, ventricular pacing and 
ventricular arrhythmias, and correlated well with changes in blood 
pressure, but was still unable to discriminate between haemodynamically 
stable and unstable arrhythmias. Further studies are needed to determine 
the long-term stability of trans-ventricular impedance measurement as a 
reliable haemodynamic sensor.
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CHAPTER 1 

INTRODUCTION

1.0 Sudden cardiac death

1.0.1 Definition:

Sudden Cardiac Death (SCO) is defined as: an unexpected death due to 

cardiac causes occurring in a short time period (generally within 1 hour 

of symptoms onset) in a person with or without known cardiac disease in 

whom there is no apparent previously diagnosed fatal non-cardiac 

condition 12 . It continues to represent a major challenge for the whole of 

the medical profession in general, and particularly for those interested in 

cardiology and arrhythmia management. For the families of affected 

individuals, SCO comes as a devastating and shocking experience as it 

often claims the lives of young seemingly previously fit adults. 

Preventing SCO requires identifying people at risk, to which sound 

understanding of the underlying pathologies is crucial.

10.2 Brief historical background:

Understanding the mechanism of death and appreciating the central role 

that the heart plays in blood circulation have hugely occupied the 

thoughts and works of many ancient philosophers. Huang Ti, the Yellow 

Emperor of China (2698-2598 BC), wrote in Nei Ching (Canon of 

Medicine): "The blood current flows continuously in a circle -without a 

beginning or end and never stops " and "all the blood is under control 

of the heart" . Hippocrates (470-410 BC) provided a concise, but 

historically compelling, description of SCO in his Aphorisms II, 41:



"Those \vho are subject to frequent and severe fainting attacks without 

obvious cause die suddenly" . In the second century, Claudius Galen 

(131-201), the Graeco-Roman physician clearly mentioned that sudden 

death is caused by major heart lesions, which he referred to as 

"Dycrasias" . He also suggested that blood diffuses through invisible 

pores in the IVS from the RV to the LV 6 , which remained the belief until 

Ibn al-Nafis (1210-1288) made the first accurate description of the 

pulmonary and coronary circulation a thousand years later in his book

"The Perfect Man" . Avicenna of Persia (Ibn Sina 980-1037) 

mentioned, also very clearly, that: "Fast heart beats cause palpitations, 

faster heart beats cause fainting, and extremely fast heart beats result 

in sudden death". Furthermore, he made a distinction between cardiac 

(arrhythmic) and gastric (vaso-vagal) syncope stating that: "Gastric 

fainting tends to be associated with nausea and dizziness, but 

recurrent and severe fainting without obvious cause is cardiac and

Q

leads to sudden death" . However, the cornerstone for detailed 

understanding of the blood circulation was not laid until, in 1628, William 

Harvey (1578 -1657) - based on work of anatomists such as Leonardo 

da Vinci (1452-1519) and Andreas Vesalius (1514 -1564) - published 

his then new theory that the heart acts as a muscular pump in circulating 

blood around the body 6 . In 1775 Peter Christian Abildgaard (1740 - 

1801), a Danish veterinarian and physician, performed the first 

successful defibrillation through conducting experiments on electrical 

counter-shock on animals. Using direct current derived from a Leyden



jar he succeeded in first rendering fowl lifeless by an electric shock and 

then reviving them by a counter-shock applied to the chest 9 . In 1791, 

Luigi Galvani (1737 - 1798) conducted a series of experiments on 

severed frogs' legs and discovered that when nerve and muscle touch 

two dissimilar metals in contact with each other, a contraction of the 

muscle takes place 10 . This led to the publication of his theory of "animal 

electricity". Although initially strongly supported the theory was later 

disputed in 1793 by Alessandro Volta (1745 - 1827), who suggested 

that the electricity came from the contact of the two metals rather than 

from animals 11 . The scientific debate continued even after Volta - to

prove his theory - invented the Voltaic pile in 1800 . Galvani's 

nephew and assistant, Giovanni Aldini (1762 - 1834), then led the 

defence of his uncle's concept against the incessant attacks of Volta. 

Using Volta's very bimetallic pile he applied electric current to 

decapitated bodies of animals and humans (executed criminals) in 

public, successfully stimulating muscular tremor & contractions for an 

average time of an hour following decapitation. Aldini also treated 

patients with personality disorders and reported complete rehabilitation 

following trans-cranial administration of electric current 14 . In 1820, 

Richard Reece (MD) - in a vision echoing the researches of Aldini - 

described in his published family medical guide the "Re-Animation 

Chair of Doctor De Sanctis" 15 , which recommended cardiac electro- 

stimulation via oesophageal and precordial electrodes as a means of 

getting a stopped heart to start beating again. This is similar in concept 

to defibrillation and external pacing of modern medicine. In 1841, Carlo



Matteucci (1811 - 1868) demonstrated that an electric current 

accompanies each heartbeat. He used a preparation known as a 

'rheoscopic frog' in which the cut nerve of a frog's leg was used as the 

electrical sensor and twitching of the muscle was used as the visual sign 

of electrical activity 16 . In 1850, Carl Ludwig (1816-1895) and his student 

M Hoffa demonstrated that a single electrical pulse could induce bizarre 

unregulated actions of the ventricles (later called ventricular fibrillation) 

during experiments involving the application of strong electrical currents 

across the hearts of dogs and cats 17 . In 1875, Gabriel Lippmann (1845 

- 1921) - a researcher in piezoelectricity and seismology - invented the 

mercury capillary electrometer (Figure 1.0), which measured small 

differences in voltage 18 . The apparatus was then used successfully by 

Augustus Desire Waller (1856 - 1922) in 1887 to make the first ever 

recording of the electric activity of the human heart, the

19
electrocardiogram (EGG) (Figure 1.1). In 1899, Jean-Louis Prevost, 

Professor of Biochemistry, and Frederic Batelli, Professor of Physiology, 

both working at the University of Geneva, discovered that they could 

defibrillate a dog's heart to sinus rhythm by applying an appropriately 

high current counter-shock directly to the surface of the myocardium 20 . 

At the beginning of the twentieth century (1901), William Einthoven 

invented a new galvanometer for producing ECGs using a fine quartz 

string coated in silver 21 . For that, he later won the Nobel Prize in 1924. 

In 1930 Wolff, Parkinson and White reported the EGG syndrome of short 

PR interval, wide QRS and paroxysmal tachycardias 22 . In 1931 Dr 

Albert Hyman invented the first "artificial cardiac pacemaker", which



stimulated the heart by using a transthoracic needle 23 In 1932 

Kouwenhoven, an electrical engineer, contributed three major 

landmarks. He confirmed the earlier work of Prevost and Batelli that an 

electric shock could indeed reverse ventricular fibrillation. He developed 

some of the earliest defibrillation devices initially using 60 Hz AC and 

subsequently DC shocks to defibrillate. He was also involved in the 

introduction of early methods of external cardiac massage 24 .

Figure 1.0:

Figure 1.0: The mercury Capillary Electrometer, invented by Gabriel 
Lippmann in 1875 (Downloaded with permission from: 
htfp: chein.ch.fntji.ac.il -eiizemik history lippmann.html)



Figure 1.1:

Figure 1.1:

The first human ECG, recorded by A D Waller in 1887.

In 1946 two Russian workers, Gurvich and Yuniev reported the 

successful restoration of regular rhythm in the fibrillating mammalian 

heart with capacitor charges applied externally across the closed chest 

25 . In 1947 Claude Beck et al reported the first case of successful 

defibrillation of the human heart during cardiac surgery with full 

recovery. The patient was a 14-year-old boy 26 . Two years later Norman 

Jeff Holter, the Montana physician, developed a 75-pound backpack that 

could record the ECG of the wearer and transmit the signal. The system, 

the Holter Monitor, was later greatly reduced in size and combined with 

digital recording for convenient ambulatory ECG monitoring 27 . In 1956 

Paul Zoll - a cardiologist - managed to perform closed-chest 

defibrillation in a human using a more powerful defibrillator 28 . The "R- 

on-T" phenomenon was first described by Smirk and Palmer in 1960 29 .
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They also accurately described its role in SCO causation by initiating 

ventricular fibrillation. In 1966 Franpois Dessertenne of Paris publishes 

the first case of Torsade de pointes' polymorphic Ventricular 

Tachycardia 30 . Recently, in 1992, Pedro & Josep Brugada of Barcelona 

published a series of 8 cases of sudden death, RBBB pattern and ST 

elevation in V1 - V3 in apparently healthy individuals. This Brugada 

Syndrome is now known to be the commonest cause of SCO in 

individuals aged under 50 years in South Asia 31 .

1.0.3 Epidemiology:

SCO is one of the major causes of adult mortality in the developed 

world. It accounts for an annual incidence of 3,000,000 deaths 

worldwide. Of those, 400,000 deaths occur in Western Europe and 

340,000 occur in the United States 2 . In UK alone, SCO is responsible 

for 75,000 to 100,000 deaths each year 32. The majority of those 

patients have either underlying poor left ventricular function (LVEF < 

35%) with or without coronary disease, or inherited cardiac conditions 

with tendency to generate malignant ventricular arrhythmias 33 . In a 

national epidemiological survey undertaken by the SADS - Sudden 

Arrhythmic Death Syndrome - study investigators, the incidence of 

unexplained sudden cardiac deaths in England, UK, in healthy people 

aged between 16-64 years was estimated at 11 per 100,000 (3500 

deaths per year). This constitutes about 4.1% of the total UK SCO 

annual incidence 34 . Worldwide, less than 1% of those who experience 

sudden cardiac arrest manage to survive 2 . The greatest incidence



occurs in cohorts with identifiable risk factors but most events - in 

absolute numbers - occur in individuals without prior known risk factors 

(Fig: 1.2) 35 . In one study, around 12% of all natural deaths were 

classified as sudden, of which 88% were caused by cardiac disease 36 . 

Furthermore, SCD is the commonest - and often the first - 

manifestation of coronary heart disease and accounts for approximately 

50% of cardiovascular disease mortality in the developed world. In 

developing countries, SCD rates are lower. Several population-based 

studies have documented a 15% to 19% decline in the incidence of SCD 

caused by coronary heart disease since 1980s. However, the increasing 

incidence of congestive cardiac failure may adversely affect this decline

37
in the future .



Figure: 1.2

Figure 1.2: Percentage incidence of SCD in specific populations (left) and 
annual SCD absolute numbers (right)
(Adapted with permission from: Myerburg RJ. Sudden Cardiac Death: 
Exploring the Limits of Our Knowledge. J Cardiovasc Electrophysiol Vol. 12, 
pp. 369-381, March 2001.)



1.0.4 Risk Factors:

Multiple epidemiological studies have shown that the conventional risk 

factors for IHD are also predictive of SCO 38 39 40 41 . In a study that 

looked into independent risk factors for SCO in 24 British towns 42 , 

elevated heart rate, heavy drinking, and arrhythmia emerged as factors 

that appear to be specific to SCO. Those three factors along with age 

and blood cholesterol level have been found to be associated with an 

increased risk of SCO in men both with and without pre-existing IHD. 

Reduced physical activity, elevated systolic blood pressure, and current 

smoking were associated with SCO only in men without pre-existing IHD 

whereas HDL cholesterol level and haematocrit have been found to be 

strong predictors of SCO only in men with pre-existing IHD. Diabetes, 

forced expiratory volume in 1 second, body mass index, white blood cell 

count, and antihypertensive drugs have been found not to be associated 

with SCO. Malignant ventricular arrhythmias - VF & haemodynamically 

unstable VT (HUVT) - are the principal and direct cause of SCO. 

Underlying pre-existing structural, genetic or electrical cardiac pathology 

commonly predisposes to such arrhythmias.

1.1 Aetiology &mechanism of ventricular arrhythmias 

1.1.1 Definition:

Ventricular fibrillation is described as a "turbulent, disorganised electrical 

activity of the heart in such a way that the recorded electrocardiograph^ 

deflections continuously change in shape, magnitude and direction" 43 . 

Ventricular tachycardia is defined as a succession of three or more

10



44
beats of ventricular origin at a rate greater than 100 beats per minute . 

Depending on the QRS morphology of the arrhythmia EGG, VT can be 

classified as either monomorphic (QRS complexes of similar 

morphology) or polymorphic (QRS complexes of variable morphologies, 

axes, and amplitudes). VF is uncommon as a primary arrhythmia and 

tends to be preceded by VT in approximately 80% of cases.

1.1.2 Aetiology:

Ventricular arrhythmias can be induced or precipitated by a number of 

cardiac, and sometimes non-cardiac, disorders. If untreated, sustained 

VT often degenerates into VF and then Asystole 45 . Apart from fascicular 

& RVOT - right ventricular outflow tract - tachycardias, monomorphic 

VT tends to affect damaged myocardium. Causes of monomorphic VT 

include:

  Acute myocardial infarction or ischaemia.

  Previous Ml (Scar-related VT).

  Cardiomyopathies (HCM, DCM).

  Myocarditis.

  Arrhythmogenic Right Ventricular Dysplasia (ARVD)

  Valvular heart disease (e.g. mitral valve prolapse).

  Post-cardiac surgery (e.g. repair of tetralogy of Fallot).

  Severe LV dysfunction (from any cause).

On the other hand, Polymorphic VT tends to result from genetic, 

electrical or even non-cardiac disorders in otherwise structurally normal 

hearts. Causes of polymorphic VT include:

11



  Bradycardia due to Sick Sinus Syndrome or Atrio-Ventricular 

block.

  Congenital Long QT syndrome.

  Brugada Syndrome.

  Catecholaminergic Polymorphic VT (CPVT)

  Electrolyte imbalance (e.g. Hypokalaemia or hypomagnesaemia).

  Most anti-arrhythmic drugs (e.g. Quinidine, Sotalol, Amiodarone, 

Flecainide).

  Other non-cardiac drugs (e.g. Tricyclic antidepressants, 

Erythromycin, Tetrafenadine).

  Anorexia Nervosa. 

1.1.3 Mechanism:

Due to the practical problems involved with mapping large areas of the 

heart simultaneously and the inappropriateness of sustaining VF, 

researchers have confined their interest and work to its induction and 

termination. Therefore, much of the current data on the dynamic 

electrophysiological changes during cardiac arrhythmias comes either 

from computer modeling, electrode studies or the use of high resolution 

optical mapping and Mathematical models. Mechanisms of arrhythmia 

genesis can be divided into disorders of impulse conduction, disorders 

of impulse formation or both 46 .

Disorders of impulse conduction (Re-entry- figure 1.2A): 

This has been first demonstrated separately by Mines and Garrey (1913 

-14) 47 . For re-entry to occur there needs to be an area of non-excitable 

myocardium - ischaemic or scar tissue - surrounded by a ring of

12



excitable tissue that has a short refractory period and a sufficient length 

of ring circumference with different conduction velocities of the two ring 

arms. This allows antegrade conduction through one arm of the ring 

before retrograde propagation of the depolarisation wavelet proceeds 

through the other ring arm, thereby resulting in self-sustaining circus 

movement phenomenon. A slow propagation velocity promotes re-entry. 

Therefore, transient or permanent conduction block forms a substrate 

for VF / VT through re-entry phenomenon.

Figure 1.2A

Figure 1.2A: Mechanism of re-entry tachycardia

For re-entry to occur there needs to be an area of non-excitable myocardium 
(M) such as ischaemic or scar tissue, surrounded by a ring of excitable tissue 
that has a short refractory period and a sufficient length of ring circumference 
with different conduction velocities of the two ring arms. As a cardiac impulse 
travels through conduction tissue (N) onto area (M), the ring arm (A) conducts 
the impulse at a much faster speed compared to ring arm (B) and it therefore 
transmits the impulse around area (M) first. That impulse then travels up via 
ring arm (B) but meets the initial depolarisation wave halfway through and 
can't therefore be transmitted up any further through the already depolarised 
part of ring arm (B). The impulse then finds that ring arm (A) is no longer 
refractory and therefore uses it to travel downwards and completes the circuit 
around area (M), and the cycle continues creating a re-entrant tachycardia.

13



Disorders of impulse formation (Increased automaticity - figure 

1.2B):

Automaticity is a measure of the propensity of an area of tissue to 

initiate an impulse spontaneously. Factors, such as hypoxia, poromote 

automaticity by causing a net gain in the intracellular positive charge 

during diastole. This occurs due to a raised external concentration of 

K+, a decreased intracellular concentration of K+, increased 

permeability to Na+ or a decreased permeability to K+. Therefore, the 

maximum diastolic potential becomes less negative and lies closer to 

the threshold potential.

Figure 1.2B

-60mV
-80mV

Figure 1.2B:

RP

Increased automaticity

In cases of increased automaticity as the mechanism of arrhythmogenesis, the 
maximum diastolic potential - due to factors such as hypoxia - becomes less 
negative and lies closer to the threshold potential. The numbers 1, 2, 3 & 4 in 
the figure represent the different stages of the myocardial cell action 
potentional. RP stands for "Resting Potential".

14



Triggered activity (Figure 1.2C):

Depolarising oscillations in the membrane voltage are induced by 

preceding action potentials and are called "afterdepolarisations". All 

afterdepolarisations may not reach threshold potential but if they do they 

can trigger another afterdepolarisation and thus self perpetuate resulting 

in VT / VF.

Figure 1.2C

EAD

TrifKimdboat

Figure 1.2C: Triggered Activity

Figure A on the left shows an early afterdepolarisation (EAD) that has not 
reached the threshold potential, thus resulting only in a U wave appearing on 
the surface ECG. Figure B on the right demonstrates an EAD that has reached 
the threshold potential, thereby generating a premature ventricular complex 
(PCV).

15



1.2 Management of ventricular arrhythmias

Termination of an arrhythmia and prevention of its recurrence is the 

mainstay of treatment. Termination can be achieved by DC 

cardioversion, transvenous overdrive pacing, or intravenous 

administration of anti-arrhythmic therapy. Prophylactic therapy includes 

oral anti-arrhythmic drugs, radio-frequency ablation, surgery, and 

implantable cardioverter defibrillators (ICDs). An acute episode of VF or 

HUVT is often easily treatable with DC cardioversion; this should 

however be delivered extremely urgently if fatal outcome is to be 

avoided. The chance of a successful resuscitation declines by about 7- 

10% each minute 48 . In the setting of recurrent or persistent 

haemodynamically stable VT (HSVT), intravenous anti-arrhythmic drug 

therapy may be preferred over DC Cardioversion as the latter is neither 

then urgently required nor is it likely to help prevent arrhythmia 

recurrence.

1.2. 1 Anti-arrhvthmic drugs:

Although anti-arrhythmics are useful in terminating and lowering the 

recurrence rate of arrhythmias, there is little evidence to suggest that 

they alter the outcome. A number of randomised controlled clinical trials 

have evaluated whether acute or chronic anti-arrhythmic drug therapy 

can reduce mortality in post-Mi patients. Of those, only the use of acute 

intravenous and long-term beta-blockers, independently and in 

combination, had been shown to reduce mortality.

The Cardiac Arrhythmia Suppression Trial (CAST) studied placebo 

Versus Encainide, Flecainide, or Moricizine. It was stopped early due to

16



excess deaths in the anti arrhythmic arms 49 . Both of the European 

Myocardial Infarct Amiodarone Trial (EMIAT) & Canadian Amiodarone 

Myocardial Infarction Trial (CAMIAT) showed that Amiodarone reduced 

arrhythmic but not overall mortality 50 . Two further trials studied 

Amiodarone in heart failure patients: Grupo de Estudio de la Sobrevida 

en la Insuficiencia Cardiac en Argentina (GESICA) & Amiodarone in 

Patients With Congestive Heart Failure and Asymptomatic Ventricular 

Arrhythmia (CHF-STAT). Amiodarone has been associated with a 

neutral overall survival and a statistically non-significant trend towards 

improved survival in non-ischemic cardiomyopathy patients in 

CHF/STAT and improved survival in GESICA 51 52 . Conventional Versus 

Amiodarone Drug Evaluation (CASCADE) study demonstrated that 

Amiodarone reduced arrhythmia recurrence rates compared to other 

anti-arrhythmic agents (Mexiletine, Procainamide, Propafenone, 

Quinidine & Sotalol) - guided by serial Holter or electrophysiologic 

studies - but nevertheless arrhythmic death rates were still high in both 

treatment arms of the study 53 . On the other hand, beta-blocker therapy 

has been shown in a number of large randomised trials to significantly 

reduce the incidence of SCD as well as all-cause mortality in post-Mi 

patients and in patients with heart failure. Carvedilol was studied by the 

Carvedilol Post-lnfarct Survival Control in Left Ventricular Dysfunction 

(CAPRICORN) trial 54 and has been shown to significantly reduce all 

cause mortality (11.9% versus 15.3% placebo, p = 0.031) but had little 

effect on sudden arrhythmic death. Propranolol was associated with 

26% (p = 0.005) and 28% (p = 0.05) relative reduction in all cause

17



mortality and sudden death respectively in BHAT (Beta-blocker Heart

Attack Trial) 55. Timolol provided 39% (p = 0.0001) and 45% (p = 

0.0005) relative reduction in all cause mortality and sudden death 

respectively in the Norwegian Multi-centre Study group 56. In the post-Mi 

ICD trials, AVID (Antiarrhythmic Versus Implantable Defibrillator) and 

MUSTT (Multicenter Unsustained Tachycardia Trial), beta-blocker 

therapy - with the exception of those treated with I CDs - was 

associated with improved overall 5-year survival (34% mortality) 

compared to the non-beta blocker arm (50% mortality) adjusted p = 

0.0001 57 . Extended-release Metoprolol reduced all-cause mortality and 

sudden death by 34% (p = 0.00009) and 41% (p = 0.0002) respectively 

in MERIT-HF (Metoprolol controlled-release/Extended-Release 

randomized Intervention Trial in Heart Failure) 58 . Bisoprolol was 

associated with a 32% reduction in overall mortality (p = 0.0001) and 

42% reduction in sudden death (p = 0.0011) in CIBIS-II (Cardiac 

Insufficiency Bisoprolol Study II). Furthermore, carvedilol was 

associated with a 35% mortality reduction in the COPERNICUS 

(Carvedilol Prospective Randomised Cumulative Survival) trial (p = 

0.00014) 59 . Intravenous atenolol given early in acute Ml has been 

shown to reduce chest pain, enzyme release and incidence of 

arrhythmias. Data published before the first report of the ISIS-1 group 

(International Studies of Infarct Survival) showed a 12% decrease in the 

probability of death using intravenous beta blockade albeit with large 

confidence limits 60 . Table 1.0 below summarises six of the main beta- 

blocker clinical trials data and outcomes.
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Table 1.0:

Study

Number
of
patients

Mean age
(Years)

Study
arms

Patient
group

Mean
follow up

Mortality
Placebo

Mortality 
treatment

RRR (%)

P value

BHAT

3837

55

Propranolol
versus
Placebo
5-21 days
post MI

24 months

9.8 Total
4.6 SD

7.2 Total 
3.3 SD

26 Total
28 SD

0.005 Total 
0.05 SD

Norwegian

1884

70

Timolol
versus
Placebo
7-28 days
post MI

17 months

17.5 Total
13.9 SD

10.6 Total 
7.7 SD

39 Total
45 SD

0.005 Total 
0.0001 SD

CAPRICORN

1,959

63

Carvedilol
versus Placebo

3- 12 days Post
MI
LVEF < 40%
On ACE
inhibitors
15 months

15.3 Total
7.0 SD

11.9 Total 
5.0 SD

23 Total
28 SD

0.031 Total 
0.098 SD (NS)

cffiisn

2647

61

Bisoprolol
versus
Placebo
NYHA
class III-
IV
LVEF<
35%
1.3 years

17.3 Total
6.0 Total

11.8 Total 
4.0 SD

32 Total
42 SD

0.0001 
Total
0.0011
SD

MERIT-
HF
3991

64

Metoprolol
versus
Placebo
NYHA
class H-IV
LVEF<
40%

1 year

11.0 Total
6.6 SD

7.2 Total 
3.9 SD

34 Total
41 SD

0.00009 
Total
0.0002 SD

COPERNICUS

2289

63

Carvedilol versus
Placebo

NYHA class IV
LVEF < 25%

10.4 months

16.8 Total

11. 2 Total

35 Total

0.00014 Total

Table 1.0:

Summary of the six of the main beta-blocker trials data and outcomes; BHAT: 
Beta-blocker Heart Attack Trial, CIBIS II: Cardiac Insufficiency Bisoprolol 
Study II, MERIT-HF: Metoprolol controlled-release/Extended-Release 
randomized Intervention Trial in Heart Failure, COPERNICUS: Carvedilol 
Prospective Randomized Cumulative Survival trial, MI: myocardial infarction, 
NYHA: New York Heart Association, LVEF: left ventricular ejection fraction, 
RRR: relative risk reduction, SD: Sudden Death.
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Besides the poor efficacy of anti-arrhythmic drugs, their use is further 

limited by a multitude of serious side effects and contraindications. 

Nearly all class-1 anti-arrhythmic agents can cause polymorphic VT as a 

side effect, particularly in patients with underlying LV dysfunction or 

structural heart disease. Amiodarone can cause - or worsen existing - 

liver and thyroid dysfunction besides causing long QT & torsades de 

pointes, lung fibrosis, corneal deposits and skin photosensitivity. Beta- 

blockers are contra-indicated in asthma and severe peripheral vascular 

disease. Class-4 anti-arrhythmics are negatively inotropic and are 

therefore contra-indicated in patients with LV dysfunction. Recently, 

non-pharmacological forms of therapy were sought in order to overcome 

some of the limitations of anti-arrhythmic drugs.

12.2 Interventional treatment:

Various radio-frequency (RF) catheter ablation techniques have been 

developed in the last two decades. They have been shown in some 

small studies to significantly reduce arrhythmia recurrence rate 61 . Initial 

techniques adopted a focal approach based on EGG morphology and 

activation sequence mapping 62 . As the complex nature of VT - 

particularly in scar-related ischaemic re-entrant forms - became better 

understood, more refined techniques were later developed such as 

entrainment mapping (pacing during induced tachycardia) and 

substrate-based mapping (characterisation of the re-entry substrate 

during stable sinus rhythm) 63 . Other forms of RF ablation techniques 

using cooled catheter tips (to prevent overheating of the catheter-tissue

20



interface) and epicardial mapping & ablation devices were further 

developed aiming to ablate deeply-sited foci that are normally difficult to 

reach by conventional endocardial ablation techniques 64 . The epicardial 

technique requires the insertion of a sheath into the pericardial space 

using a needle and guidewire under fluoroscopic control 65 .

Further advances in catheter ablation techniques are still underway 

which will result in further improvements in procedural success rates. 

Despite such advances, technical challenges, complications - 3% 

mortality was observed in a study of 69 patients who underwent cooled 

RF ablation 66 - and arrhythmia recurrence remain a major problem. At 

present, procedures are offered at experienced centres only, with an 

estimated success rate of 80% when substrate-based mapping method 

is used 67 . Recurrence rates have been quoted in some studies to be as 

high 40-50% after 3 years follow-up 68 .

12.3 Surgical treatment:

Many surgically based techniques for VT treatment were developed in 

recent years. This was in response to the increasing complexity of 

endocardial mapping systems, which are generally time consuming and 

require specialised equipment and expertise. Furthermore, the current 

outcome data on RF ablation success and recurrence rates although 

promising are far from being satisfactory. All surgical ablation 

techniques involve destruction of tissue at the border-zone between scar 

and viable muscle. Some techniques such as encircling ventriculotomy 

have largely been abandoned because of their harmful effects on LV 

function. Other techniques such as endocardial excision of visible scar
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tissue and cryoablation were frequently used in the late 1980s, 69 70 7172 

but the latter has been found to cause extensive damage if applied 

under cold cardioplegic conditions. Other surgical ablation techniques 

include direct shock ablation 71 , laser photoablation, or radio-frequency 

ablation 73 . Left ventricular reconstruction is performed following the 

ablation / resection procedures as a complementary part to aid restore 

LV size and geometry towards normality 71 . Surgical ablation results 

achieved with respect to operative mortality, control of VT, and long-term 

survival were variable depending on many factors including patient 

selection, use of mapping data, and type and extent of ablation 

technique employed. Reported series generally included high-risk 

patients with poor LV function (mean EF of 25-30%) 68 69 71 and severe 

underlying coronary disease. Success rates have been quoted in some 

studies to be as high as 90%, with 10-20% recurrence rates for the first 

year, with an overall 5-years survival of only 70% 686971 Post-operative 

mortality remains high at 5-10% 69 71 . Besides these statistical 

limitations, surgical ablation for VT has poor results in patients without 

anterior LV infarcts and aneurysms 74 .

1.3 Imolantable Cardioverter Defibrillators (ICDs)

1.3. 1 Background:

ICDs now constitute the cornerstone in the management of ventricular

arrhythmias. All patients who survive sudden cardiac arrest - not

occurring within the context of acute Ml and without an identifiable

reversible precipitant - and those who are at a significantly increased
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risk of ventricular arrhythmias due to underlying structural, genetic or 

electrical cardiac disorders should be considered for ICD implantation, in 

addition to standard pharmacological therapy +/- interventional or 

surgical ablation whenever appropriate 75 . In the early 1980s, ICD 

devices implantation involved major surgery, general anaesthesia and 

long hospital stays with peri-operative mortality approaching 10% 76 . 

Devices were implanted abdominally and connected to the heart via 

epicardial leads; delivered therapy was in the form of high-energy 

shocks only. Programming facilities were not available and the average 

device half-life was only 1.5 years 77 . At present, devices are much 

smaller in size and are easily implantable using a simple procedure with 

local anaesthesia and transvenous positioning of endocardia! leads. 

Peri-operative mortality has dropped down to < 1% 78 . Device longevity 

has improved (average of 7 years), and individually tailored fine-tuning 

of an extensive range of programmable features has become widely 

available.

13.2 Evidence base:

Implantation of ICDs has been shown in - six out of eight - primary 

prevention randomised controlled ICD trials to be consistently superior 

to pharmacological therapy alone in reducing mortality by preventing 

ventricular arrhythmias and SCO (Table: 1.1).

Two trials: the Coronary Artery Bypass Graft (CABG) Patch Trial 79 - 

1998 - and the Defibrillator in Acute Myocardial Infarction Trial 

(DINAMIT) 80 - 2004 - have found that the prophylactic implantation of 

an ICD did not reduce the risk of death in patients undergoing CABG
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and in those who had sustained acute Ml within 40 days respectively; it 

is therefore now accepted that, in these two cohorts of patients, ICD 

implantation is both more expensive and less effective than control 

therapy.

The other six primary prevention trials - the Multi-centre Automatic 

Defibrillator Implantation Trial (MADIT I - 1996) 81 , MADIT II - 2001 82 , 

the Multi-centre Unsustained Tachycardia Trial (MUSTT - 1997) 83 , the 

Defibrillators in Non-lschemic Cardiomyopathy Treatment Evaluation 

trial (DEFINITE - 2003) 84 , the Comparison of Medical Therapy, Pacing, 

and Defoliation in Heart Failure trial (COMPANION - 2004) 85 , and the 

Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT - 2005) 86 - 

have all demonstrated unequivocal superiority of ICDs over optimal 

pharmacological therapy in reducing overall cardiovascular mortality and 

arrhythmic death in cohorts of heart failure patients whose EF < 35% 

with or without underlying coronary disease.
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Table 1.1
Study

CABG PATCH

N=900
NEJM
337:1569, 1997

MADIT-I

N=196
NEJM
335:1933, 1996

MUSTT

N=704
NEJM
341:1882, 1999

MADIT-II

N=1232
NEJM
346: 877, 2002

COMPANION

N=1604
ACC2003
www. uchsc. edu/cvi

SCD-HeFT

N=2S21
NEJM
352: 225, 2005

DINAMIT

N=674
NEJM
351: 2481, 2004

PtFFJNJTFL/ljl 11 Tj L L^

N=458
NEJM
350: 2151, 2004

Patient
population
CAD
(83% post MI)

> 3 weeks post
MI

95% post Ml

> 1 month post
MI, > 3 months
CABG

CHF
45% DCM
55% CAD

NYHA Class >2
EF <35%
50% DCM

Within 30 days
post MI

DCM patients
with no CAD

Entry
Criteria
EF <35% +
abnormal
signal
averaged
ECG. Follow
up from post
op CABG

EF <35% +
NSVT or
Inducible non
suppressible
VT

EF <40% +
NSVT&
inducible
VT/VF

EF < 30%

CHF Hosp in
yr before
entry
EF < 35%
QRSD> 130
ms
PR> 150ms

Up to 2 yr
post onset
CHF,
50% DCM

EF <35%,
depressed
HRV or mean
24 h heart rate
>80/rmn

EF <36%,
Premature
VE'sor
NSVT

Treatment
Arms

^^^^^^^^^^^^^^^^^^H

ICD versus
conventional
therapy

ICD versus
conventional
medical therapy

EP guided
therapy (46%
ICD) versus
conventional
treatment

ICD versus
conventional
therapy

Conv therapy
Vs

ICD + CRT

Amiodarone/
Placebo versus
ICD

ICD versus
medical therapy

Standard medical
therapy alone
versus standard
medical therapy
+ ICD

Results

  ^ ^^^^^^^^^^^   w 
No difference
in all cause
mortality

Mortality:
15. 7% ICD
versus 38.6%
medical
therapy

5 year
mortality: 42%
EP guided ICD
versus 48%
conventional
therapy

Mortality:
19.8%
conventional
therapy versus
14.2% ICD

35%xU in
Hospitalisation
for HF in both.
40%
 ^mortality
CRT +ICD,
20%^
mortality ICD
only
Mortality: 29%
Placebo," 28%
Amiodarone,
22% ICD

Arrhythmic
death:
ICD 12,
Control 29, p
=0 009. Non
arrhythmic
death: ICD 62,
Control 58, p
=0.66

2 yr arrhythmic
death: Control
14, ICD 3, p
=0.006

Conclusions

EF <35% with
abnormal signal
averaged ECG
undergoing CABG
do not benefit from
prophylactic ICD

Terminated
prematurely
because of large
ICD benefit. RRR
46%

Only in EP guided
therapy (chosen to
be an ICD),
mortality reduction
occurs

Prophylactic ICD
decreases mortality
by 31% post-Mi in
pts with poor LV
function

Terminated
prematurely for
primary endpoint
total mortality + all
cause
Hospitalisation

ICD reduced
overall mortality by
23%, whereas
Armodarone had no
effect.

ICD reduced
arrhythmic death
but was associated
with higher non-
arrhythmic deaths.
No effect on overall
mortality.

ICDs significantly
reduced arrhythmic
death in study
patients

Table 1.1:

Summary of the eight main primary prevention ICD trials; CAD: Coronary artery 
disease, MI: myocardial infarction, EF: ejection fraction, CABG: coronary artery 
bypass grafting, RRR: relative risk reduction, NSVT: non-sustained VT, DCM: dilated 
cardiomyopathy, QRDS: QRD duration, CRT: cardiac resynchronisation therapy, 
HRV: heart rate variability.
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The more recent observational study (ALTITUDE study - May 2009) 87 , 

which followed 85,000 patients with primary-prevention ICDs for up to 

five years, has suggested that survival at three years was 96%. The 

study also found that shocks from ICD devices are common, confirmed 

that many of them are inappropriate (shocks delivered in the absence of 

a life-threatening ventricular arrhythmia), and suggested that any kind of 

shock can point to patients with an increased risk of dying. It also 

suggested that supraventricular arrhythmias, including atrial fibrillation, 

might be the trigger for >80% of such inappropriate shocks.

Furthermore, several secondary prevention trials (Table 1.2), including 

the Antiarrhythmics Versus Implantable Defibrillators Study (AVID), the 

Canadian Implantable Defibrillator Study (CIDS), and the Cardiac Arrest 

Study Hamburg (CASH), have demonstrated the superiority of ICD 

therapy compared to empirical amiodarone in improving overall survival 

88 in cohorts of patients who survived episodes of ventricular 

arrhythmias that neither occurred within the context of acute Ml, nor had 

clear identified reversible causes.
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Table 1.2:

Clinical trial AVID CASH cms

Dates of conducting study

Medical treatment

Eligibility

Mean follow up (years)

Number of patients
(Amiodarone)
Number of patients (ICD)

All Amiodarone deaths (rate) 

All ICD deaths (rate)

Amiodarone arrhythmic deaths 
(rate)

ICD arrhythmic deaths (rate) 

Table 1.2:

Summary of the three main ICD secondary prevention trials; CA: cardiac arrest, VF: 
ventricular fibrillation, VT: symptomatic sustained ventricular tachycardia.

1993-97 1986-97 1990-97

Amiodarone / sotalol Amiodarone Amiodarone

CA, VF, VT CA, VF CA, VF, VT, syncope

4.48

92

99

35 (9.4%)

37 (7.7%)

1.51 

509 

507

122(16.5%) 

80 (10.0%) 

55 (7.4%)

24 (3.0%) 7(1.5%)

2.96

331

328

98 (10.2%)

83 (8.3%)

19(5.1%) 43(4.5%)

30 (3.0%)
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1-3.3 Cost-effectiveness of prophylactic ICD implantation:

In recent years, the number of patients eligible for prophylactic ICD 

implantation has significantly increased. Meeting this increased demand 

on devices presents a huge financial challenge for health authorities. 

Researchers from the Duke Clinical Research Institute (DCRI) - 

Stanford University and the VA Palo Alto Health Care System, 

California, USA - have analysed the above eight secondary prevention 

trials to determine cost-effectiveness of prophylactic ICD therapy. For 

their analysis, the team used a model that accounts for a wide range of 

variables, including patient characteristics, ICD box changes, clinical 

outcomes, actual and potential medical costs, and quality of life 

variables. They concluded that, although ICDs are expensive, in 

appropriate patients they provide value for money. The use of an ICD 

has been calculated to add between 1.01 and 2.99 quality-adjusted life- 

years (QALY) and between $ 68,300 - $101,500 in cost. Using base- 

case assumptions, they found that the cost-effectiveness of the ICD as 

compared with control therapy in the six trial populations that benefited 

from device implantation was between $34,000 and $70,200 per QALY 

gained. Further analyses showed that this cost-effectiveness ratio would 

continue to remain below $100,000 per QALY providing that the ICD 

reduces mortality for >7 years 89 . 

1.3.4 Limitations of ICD therapy:

Although they are better than conventional medical therapy in reducing 

both arrhythmic and non-arrhythmic cardiovascular mortality, ICDs still
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have major limitations. Complications (risk <1%) 90 may occur at times 

of device implantation and subsequent box changes; these include 

system infection, pneumothorax, subcutaneous haematoma, 

haemothorax, early lead displacement or late lead fracture / insulation 

damage, in addition to peri-operative complications such as death and 

stroke. Other problems related to device programming can occur, the 

commonest of which is inappropriate shock delivery affecting 

approximately 12 - 25% of patients 91 ; this is mainly triggered when 

ICDs sense atrial arrhythmias - commonly AF or sinus tachycardia - 

and interpret them as VT and consequently deliver DC-cardioversion 

while patients are fully awake and haemodynamically stable. Other 

causes of inappropriate shocks include over-sensing of T waves, noise 

from electronic devices, and lead damage 92 93 94 95 96 97 . If it becomes 

recurrent, inappropriate shocking can lead to patients adopting major 

lifestyle restrictions and, in some cases, can result in severe 

psychological disturbances 98 . The problem persists even with fourth 

generation ICDs ". The addition of anti-arrhythmic drugs to decrease 

the incidence of inappropriate shocks has only helped slightly, but the 

bulk of the problem remains yet to be solved.

1.4 ICD arrhythmia detection mechanisms 

1.4.1 Sensing and detection:

Sensing is the first step in recognising tachyarrhythmia. It involves 

measurement of the intracardiac electrogram signal from two implanted 

lead electrodes or a bipolar sensing lead 10°. A bipolar sensing lead is
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an electrode catheter that has two different sensing electrical poles 

located in close proximity to each other, close to the catheter tip (Figure 

1.2D). The two poles sense any intrinsic cardiac depolarisation activity - 

occurring within the chamber where the bipolar electrode catheter is 

positioned - and the sensed signal is then transmitted to the device for 

processing. Sensing systems primarily define the time between 

successive R waves produced by ventricular depolarisation, or the time 

between successive P waves produced by atrial depolarisation. In other 

words, it is what the device "sees" using its atrial or ventricular lead 

sensing poles. Over-sensing results in P and T waves being sensed as 

R waves, thereby causing devices to misinterpret sinus rhythm as an 

arrhythmia. External interferences from skeletal muscle myo-potentials 

or electromagnetic interference can also be over-sensed and 

subsequently wrongly interpreted by devices as cardiac depolarisation 

signals. On the other hand, under-sensing can lead to under-detection 

of low-amplitude fragmented R waves that occur during ventricular 

fibrillation, and can also cause inappropriate pacing in the presence of 

intrinsic myocardial activity, which may generate arrhythmias (e.g. VF 

from R on T, AF, ...etc). Modern devices have features such as 

automatic gain control or auto-adjusting threshold, which have 

considerably reduced the occurrence of sensing problems.
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Figure 1.2D: Ring

Figure 1.2D:

A bipolar sensing lead. The distal pole is called the tip and the proximal one is 
called the ring. Through these two poles, an ICD senses intrinsic cardiac 
activity of the chamber in which the sensing lead is positioned, most 
commonly, the right ventricle.
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Detection involves analysis of R-wave cycle length ". Ideally, detection

algorithms should discriminate between sinus rhythm, VT (stable or

unstable) and VF in order for appropriate therapy to be prescribed and

delivered. A series of ICD detection and correction measures are used

to diagnose and treat ventricular arrhythmias occurring in various

circumstances.

1.4.2 ICD rhythm recognition algorithms:

Single chamber ICD devices can detect and treat ventricular tachy- 

arrhythmias besides permitting ventricular pacing and monitoring of 

ventricular rhythm. In these systems, ventricular rhythm detection is 

primarily based on identifying an increase in the ventricular rate by the 

RV electrode through sensing a series of short R-R intervals 101 102 . As 

this technique does not use any form of atrial sensing, it can't 

discriminate between sinus, atrial or ventricular arrhythmias and 

therefore does not protect against inappropriate shock delivery. Other 

rhythm detection algorithms - mainly based on detailed analysis of the 

sensed ventricular electrogram - were later introduced. Features such 

as arrhythmia rate of onset and regularity, QRS morphology, and 

patterns of electrogram interval changes have now been incorporated 

into ICDs rhythm recognition algorithms with some success. QRS 

morphology is analysed using template-matching technique, which 

involves comparison of electrogram configuration during arrhythmias 

with a standard template derived during sinus rhythm. This is achieved 

using various analysis methods such as correlation waveform analysis
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103 , the bin area method 104 , area of difference analysis 105 , and gradient 

pattern detection 106 .

1.4.3 Programming an /CD;

Modern ICDs have three programmable zones for the detection and 

management of ventricular arrhythmias. The sensed heart rate is the 

principal variables that determines which treatment zone the detected 

arrhythmia falls into, while the other rhythm recognition algorithms 

mentioned above aid in discriminating ventricular from supra-ventricular 

arrhythmias. Often the three zones are programmed to detect and treat 

"slow" VT, "fast" monomorphic VT, and VF 107. The slowest zone is 

intended for haemodynamically stable or non-syncopal rhythms; these 

often respond to tiered therapy (anti-tachycardia pacing - ATP), which is 

effctive in up to 80% of cases 108 . The second zone is intended for faster 

VT, which often causes haemodynamic instability resulting in symptoms 

such as pre-syncope; for this, early cardioversion with a rapid charge 

time and a lower energy shock - 5-joule biphasic shock - is successful 

in about 80% of cases 106 . VF causes syncope in all patients due to loss 

of cardiac output and requires a higher-energy DC shock to restore 

sinus rhythm, which is the function of the third programmed zone. When 

prophylaxis from VF alone is all that is needed, as in patients with long 

QT syndrome or CPVT, a single zone programming of the device is 

performed (zone-3) and the two other zones are deactivated. In general, 

a minimum of two-zone programming is usually needed for 

discrimination of monomorphic VT from VF; but often devices are 

programmed to have all three zones activated 106 .
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1-4.4 Inappropriate defibrillation prevention algorithms:

Currently available dual chamber ICDs can provide atrial pacing, rate- 

responsive pacing, and atrial ATP & defibrillation. New algorithms 

provide better but limited discrimination of supraventricular and 

ventricular tachy-arrhythmias. In DDD-ICDs, tachycardia discrimination 

uses rate-based detection algorithms overlaid with pattern analysis of 

atrial and ventricular electrogram relationships, thereby reducing the risk 

of inappropriate delivery of DC shocks. However, the consequences of 

inappropriate shocks remain far less significant than those of under- 

detection of ventricular arrhythmias. Algorithms designed to allow ICDs 

to continue to identify malignant ventricular tachyarrhythmias but at the 

same time protect patients from inappropriate therapy have been 

increasingly adopted in recent years, albeit with limited success. 

Currently used algorithms include:

  Electrogram width criterion (the wider the QRS the more likely the 

arrhythmia is of ventricular origin).

  Probability density function detects the percentage of the 

intracardiac electrogram isoelectric signal; VT has a weaker 

isoelectric signal compared to sinus rhythm and supra-ventricular 

arrhythmias.

  The onset criterion only discriminates between sinus tachycardia, 

which has a gradual onset, and all other forms of arrhythmia, 

which generally tend to have an abrupt onset.

  Rate stability criteria discriminate an irregular rapid ventricular 

rate, such as atrial fibrillation, from more stable rapid VT.
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  The sustained-rate duration algorithm allows delivery of therapy if 

an arrhythmia has exceeded a programmed elapsed time, 

regardless of sudden onset or the stability criteria. In addition, 

when an arrhythmia occurs at an "extended high rate" interval, 

the device can be programmed to provide shock therapy 

regardless of other rhythm recognition criteria.

Devices can also be programmed with the function of "non-committed 

therapy" which merely allows devices to detect treatable arrhythmias 

and to start charging for shock therapy. Further rhythm analysis is 

performed upon completion of charging to confirm the persistence of the 

initial arrhythmia before shocking is finally delivered. Therapy is aborted 

if re-detection reveals that the tachycardia no longer meets the initial 

detection criteria, thereby avoiding shocking of non-sustained VT.

Difficulties still remain when AV relationships are fixed and the rates are 

identical. Clinical studies using dual chamber ICDs showed specificity 

values as high as 80-90% combined with 100% sensitivity 109 11 ° 111 . 

Nevertheless, inappropriate detection and therapy may still happen. In 

spite of some differences due to the algorithms themselves, typical and 

atypical junctional tachycardia, orthodromic atrio-ventricular tachycardia 

and 1:1 atrial flutter represent the most challenging patterns 112 . A 

randomised study compared the incidence of inappropriate shock 

therapies in patients treated with WI-ICDs versus DDD-ICDs and not 

only concluded that the two systems were equally safe and effective to 

treat life-threatening ventricular arrhythmias, but also declared that 

although DDD-ICDs theoretically allow better rhythm classification, the
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applied detection algorithms did not offer any additional benefits in 

avoiding inappropriate therapies during supraventricular 

tachyarrhythmias 113 . In this series, 75% of inappropriate therapies in the 

DDD-ICD group were due to atrial sensing problems, either over- 

sensing or under-sensing. A possible explanation for such frequent 

problems may be the special filter settings in the atrial sensing channels 

of DDD-ICD, which differs substantially from those of ODD pacemakers. 

In fact, most detection algorithms in DDD-ICDs require continuous and 

accurate atrial sensing with only short PVAB / PVARP or even no 

blanking times. This may be difficult when taking into account low 

voltage atrial electrogram during atrial fibrillation and large ventricular far 

fields during ventricular pacing. Multi-sensor ICDs are currently being 

developed to try and enhance devices capacity to differentiate between 

supra-ventricular and ventricular arrhythmias.

1.5 The need for a haemodvnamic sensor

Despite the huge established - and further expected - advances in 

ICDs arrhythmia detection and recognition algorithms, devices are still 

devoid of a direct and reliable sensor capable of assessing patients' 

haemodynamic stability during various types of arrhythmias. The benefit 

of having such a haemodynamic sensor is that future generation ICDs 

can then use tiered therapy (ATP) to treat haemodynamically stable 

arrhythmias, whereas DC cardioversion and high-energy shocks are 

reserved only for arrhythmias that result in haemodynamic instability. If 

developed and applied successfully, such ICDs with haemodynamic

36



sensors will understandably avoid the major problem of delivering 

inappropriate shock therapy. 

What type of sensor?

The ideal haemodynamic sensor should reliably and closely correlate 

with a haemodynamic variable (BP or cardiac output); it should also be 

highly sensitive for malignant ventricular arrhythmias (pulseless VT and 

VF) but still capable of reliably discriminating haemodynamically stable 

from unstable rhythms. The sensitivity and specificity of such a 

haemodynamic sensor should remain unaltered during various 

physiological and metabolic conditions, and should also prove to have 

long-term stability.

A few haemodynamic variables have been identified as potential 

substrates for use as ICD haemodynamic sensors, and their correlation 

with changes in blood pressure during arrhythmias has been extensively 

investigated over the past two decades. 

1.5.1 Maximal systolic right ventricular contractility fdP/dt): 

The variable dP/dt is commonly used as an index of cardiac contractility 

and can be estimated echocardiographically by using a time interval 

between 1 and 2 meters per second on the TR velocity CW spectrum 

(on echocardiography) during isovolumetric contraction m. It represents 

the change in right ventricular pressure as a function of time and is 

determined from the slope of the waveform during systole. Maximum 

dP/dt (dP/dtmax) is used as an index of the initial velocity of myocardial 

contraction. The maximal positive and negative systolic right ventricular 

dP/dt (RV + dP/dtmax, RV - dP/dtmax) have been investigated by
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Kapadia et al 115 as to the feasibility of their inclusion as haemodynamic 

sensors into the detection algorithms of future implantable defibrillators. 

They studied frequency band limited positive and negative RV dP/dtmax 

prior to, during, and after 13 episodes of VT lasting at least 40 beats in 

duration in a total of 9 male patients. RV + dP/dtmax correlated poorly 

with mean arterial pressure, systolic BP and VT cycle length. On the 

other hand, RV - dP/dtmax had an expected opposite waveform pattern 

to that of RV + dP/dtmax but nevertheless exhibited similar poor 

correlation with BP and arrhythmia cycle lengths. 

1.5.2 Mixed venous oxygen saturation (MVQy): 

MVC>2 measures the saturation of oxygen remaining in the blood after

passing through the systemic capillary bed. Using reflective oximetry 

technique and a flow-directed thermo-dilution fibre-optic pulmonary 

artery catheter, Cohen et al 116 investigated the use of mixed venous 

blood oxygen saturation as a haemodynamic sensor for differentiating 

stable from unstable, paced and induced tachycardias. They 

demonstrated that mixed venous oxygen saturation decreased as cycle 

length shortened with rapid RV pacing. Furthermore, for any given cycle 

length, rapid ventricular pacing has been shown to result in greater 

mixed venous oxygen de-saturation compared with atrial pacing. 

Similarly, mixed venous oxygen saturation decreased during induced 

haemodynamically stable ventricular tachycardias (cycle lengths > 230 

ms) but remained unaltered during haemodynamically unstable VT 

(cycle lengths £ 230) ms and with ventricular fibrillation. This is because 

the increased use of peripheral oxygen during unstable
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tachyarrhythmias results in greater desaturation, whereas pulseless VT 

and VF resulted in complete circulatory arrest and no admixture in the 

central veins. On the basis of these findings, they then developed a 

mixed venous oxygen saturation-tiered therapy algorithm and tested it 

retrospectively in 113 paced and induced tachyarrhythmias in 10 

patients. The mixed venous oxygen algorithm had 93% sensitivity and 

96% specificity compared with rate-only detection of 93% sensitivity and 

71% specificity.

However, following the onset of an arrhythmia, changes in MVO2 were 

rather slow to take place (up to 30 seconds to become apparent) and 

were similarly slow to return back to normal following restoration of sinus 

rhythm. This is a shortcoming that may lead to inappropriate shock 

delivery and can possibly limit the potential of using MVO2 as a 

haemodynamic sensor for VT stability recognition. 

15.3 Right ventricular and right atrial pressures: 

Right ventricular (RV) pulse pressure has been shown to possess 

acceptable characteristics as a sensor for incorporation in ICDs. The 

sensing subsystem of the first experimental models of the automatic 

implantable defibrillator was based on monitoring the pulsatile RV 

pressure (Mirowski et al 117), a sudden drop in which triggered the 

capacitor charging cycle as it indicated the onset of a life-threatening 

arrhythmia. However, for reasons of convenience, such sensing 

systems have been replaced by algorithms based on electrical 

variables. In 1990, Ellenbogen et al 118 and Sharma et al 119 have shown 

that changes in RV pulse pressure correlate with and predict well the
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drop in mean and systolic pressure during VT. The decrease in RV 

pulse pressure during episodes of VT at two different times during a 

single electrophysiology study has been found to be highly reproducible, 

suggesting that RV pulse pressure may be a reliable sensor over time. 

However, Wood et al 12° have measured the values of RV pulse 

pressure (RVPP) and maximal systolic right ventricular dP/dt before, 

during and after 91 episodes of HSVT, HUVT, SVT and sinus 

tachycardia (ST) induced in 49 male patients. They concluded that the 

mean percent changes in RVPP (% delta RVPP) from baseline was 

significantly different between groups of patients during all arrhythmias 

indicating good sensitivity but with a large degree of overlap suggesting 

limited overall specificity and therefore poor reliability in separating 

different arrhythmias. Cohen and Liem 121 investigated the responses of 

right atrial (mean) and right ventricular pressures (mean, systolic, 

diastolic, and pulse) to 64 induced and paced supraventricular and 

ventricular tachyarrhythmias studied in 10 patients with the aim of 

developing an algorithm capable of differentiating stable from unstable 

rhythms. A combined detection algorithm has been developed that 

identified a haemodynamically unstable rhythm at a cycle length of 400 

ms or less, a mean right atrial pressure increase of 4 mm Hg or more 

and right ventricular systolic pressure drop of 5 mm Hg or more during 

15 seconds. The rate-only detection algorithm had 100% sensitivity but 

only 68% specificity for detection of unstable tachyarrhythmias, whereas 

the combined rate-mean right atrial pressure-right ventricular systolic 

pressure detection algorithm was claimed to have sensitivity and

40



specificity of 100%. However, the rate of change in right atrial pressure 

at the onset and termination of tachyarrhythmias was too slow - taking 

an average of 15 to 30 seconds to initially rise and then to return to 

baseline after tachycardia termination - to be practically incorporated 

into (CDs' arrhythmia detection algorithms 

1.5.4 Coronary sinus blood temperature:

In an experiment on anaesthetised dog, Miles et al 122 demonstrated the 

occurrence of small, cyclic, thermal variations in the coronary venous 

system as the baseline component of venous blood temperature rose 

during periods of ventricular tachycardia and fibrillation. Although this 

study has substantiated the concept of measuring metabolic activity to 

assess ventricular function and arrhythmia recognition, further studies in 

this field are needed to quantify the safety, specificity, reliability and 

applicability of such metabolic variables in humans before incorporating 

them into ICDs' arrhythmia detection algorithms.

1.6lntracardiac Impedance 

1.6.1 Definition of impedance:

Impedance (Z) is generally defined as the total opposition a device or 

circuit offers to the flow of an alternating current (AC) at a given 

frequency, and is represented as a complex quantity, which can be 

graphically illustrated on a vector plane (Figure: 1.3) 123 124 125 . It is like 

resistance, but it also takes into account the effects of capacitance and 

inductance, which in turn vary with the frequency of the current passing 

through the circuit. Impedance is measured in ohms, (symbol Si) and is
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of the energy source and be received at its positive terminal in the 

circuit. It is normally measured in volts.

Direct current (DC): Is an electric current of fixed magnitude and 

polarity in a circuit where - as a result of a fixed voltage - electrons 

move in one direction only. Various types of devices such as 

electrochemical and photovoltaic cells and batteries produce DC 

(Figures 1.4& 1.5).

Alternating current (AC): Is an electric current that continuously and 

periodically changes its magnitude and polarity as a result of a 

continuously changing voltage in a circuit where, as a consequence, 

electrons change their direction of movement at regular intervals. It is 

the type of electric current used in buildings, including homes (Figures 

1.4&1.5).
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Figure: 1.4
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Figure 1.4:
Top: In circuits with direct current (DC), the voltage remains 
constant throughout (red horizontal line)

Bottom: In circuits with alternating current (AC), the voltage 
changes regularly and periodically (wavy red line) resulting in a 
continuously changing current in both magnitude and polarity.
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Figure: 1.5
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Figure 1.5:
Top: The effect of capacitive reactance results in a phase shift 
that causes AC (blue line) to lead the applied voltage (red) by 
90° ('/4 cycle).

Bottom: The effect of inductive reactance results in a phase shift 
that causes AC (blue line) to lag the applied voltage (red) by 90° 
('/4 cycle).
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Resistance (R): Is the opposition offered by a conductor to the flow of 

direct current (DC) in an electric circuit.

Inductance (L): Is the property of a circuit or circuit element that 

opposes a change in alternating current flow, thus causing current 

changes to lag behind voltage changes.

Capacitance (C): Is a measure of a capacitor's ability to store charge. A 

large capacitance means that more charge can be stored. Capacitance 

is measured in farads.

Frequency (f): Of an alternating current (AC) is the number of cycles or 

completed alternations per second. It is normally measured in Hertz 

(Hz). For example, in Europe, including the UK, the AC power system 

operates at a frequency of 50 Hz whereas in North America it operates 

at a frequency of 60 Hz.

Reactance (X): is a measure of the opposition of capacitance and 

inductance to current. Reactance varies with the frequency of the 

electrical signal. Reactance is measured in ohms (symbol £i).

Conductance: Is the mathematical reciprocal of resistance (R).

Admittance: Is the mathematical reciprocal of impedance (Z).

1.6.3 Measurement of impedance:

Impedance (Z) of a conductor varies directly with its length (Len) and 

inversely with its cross-sectional area (A). It also depends on the 

component material of the conductor (resistivity, symbol: o).
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In DC circuits, Ohm's law applies where: R = V / 1 (where "I" is the 

electric current).

For a pure AC resistor, Z = R, thus preserving Ohm's law: 

2 = y / j _______________________ Q\

The volume (Vol) of a cylindrical AC conductor can therefore be derived 

as follows:

T WM ~~ JT» A -L>\^U ™™™™™™™"""""""™~™™™""""''"™™~""> ™™™™«™™~"''»™™™~— 1^1

Z = rs T j»n2 / Vnl ——————————————— {d\ \J iJV-U / T \Jl —™™—™— ™™™™———™™ ™™™™™ 1 ~ I

V Ol — O J_j6fl / £j —•™»—™™«——™»«™— «••»«"— ——— y^/

However, more commonly in AC systems, the capacitance (X) and 

inductance (L) cause a phase shift between the current and voltage 

(Figure: 1.4.1) which means that the resistance (R) and reactance (X) 

cannot be simply added up to give impedance. Instead they must be 

added as vectors with reactance at a right angle to resistance as shown 

in Figure: 1.3. Therefore, impedance value is derived from the following 

equation:

Z = VX2 + R2 -----———————————— (6)

Where X is the total reactance, which is the difference between 

inductive (XL) and capacitive (XC) forms of reactance in AC systems. 

XC and XL vary inversely and directly with frequency, respectively. DC 

systems have zero frequency and therefore infinite XC and zero XL .
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Capacitive reactance, (XC) is derived from the equation: 

XC = 17 27UfC ___________________ (7)

Where: XC = reactance in ohms (li) 
f = frequency in hertz (Hz) 
C = capacitance in farads (F)

Inductive reactance, (XL), is derived from the equation:

Where: XL = reactance in ohms (li) 
f = frequency in hertz (Hz) 
L = inductance in henrys (H)

From equations (6), (7) and (8):

Z = V( XL - XC)2 + R2 ———--———--——--. (9), and therefore:

Z = V(27tfL - 1 / 27UfC)2 + R2 ———————- (10)

1.6.4 Measurement of intracardiac impedance:

During physiological measurements, the additional resistance caused by 

blood resistivity has been found to be negligibly small at the frequencies 

used to measure physiological activities (<106 Hz). Therefore blood 

impedance can be considered practically equal to its ohmic electrical 

component: Z = R 124125 .

By introducing an alternating current through the ventricular cavity via 

two electrode catheters or via a single multi-electrode catheter, the 

potential difference measured between the electrodes of the two 

catheters, or between the adjacent poles of the multi-electrode catheter, 

can be used to assess the intra-ventricular blood volume by measuring 

intracardiac impedance. Variations in the calculated impedance signal
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reflect changes in the ventricular blood pool volume adjacent to the 

electrodes. The data obtained can be used to construct pressure- 

volume loops allowing the continuous real-time assessment of 

myocardial contractility 144 . Using such impedance measurement to 

calculate the ventricular blood volume assumes a homogeneous blood 

resistivity (a), a negligible total blood reactance (X), a uniform cylindrical 

ventricular volume, and no loss of current by dissipation outside the 

ventricular cavity into the adjacent tissues 124 144 . Accounting for those 

assumptions is vital if accurate calculation of the ventricular volume is to 

be performed. In 1937, Sigman et al studied the effect of motion on the 

electrical conductivity of the blood and found blood resistivity (o) to be 

homogeneous throughout 144 . Total blood reactance (X) has been found 

to be negligibly small for frequencies < 106 , as described by Salo et al 

123 in 1986.

The left ventricular cavity is far from being a uniform cylinder, thereby 

rendering inaccurate any impedance-based volume measurement that 

does not account for such a significant discrepancy. Baan et al (1981) 

largely rectified this problem by inventing the stacked-cylinder model. 

This involves artificially subdividing the left ventricular cavity into multiple 

cross-sectional cylinder-shaped segments. This is achieved by injecting 

an alternating current (AC) of a fixed magnitude and frequency between 

the outer poles of a multi-electrode conductance catheter placed inside 

and along the longitudinal axis of the left ventricle. The inner electrodes 

measured voltages generated by the current and the impedance of the 

blood within the cavity. The boundaries of those segments were defined
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by the inner surface of the cardiac wall and by the equi-potential 

surfaces through the electrodes, thus forming ventricular cylindrical 

cross-sections perpendicular to the current density lines running 

between the electrodes 129 . The volume of each segment can then be 

calculated using equation (6). Summation of those volumes provides a 

near accurate estimation of the total left ventricular volume. 

As the ventricular volume is a time-linked dynamic variable, 

measurement of the volume at any given time only provides information 

about its instantaneous value at that particular point of the cardiac cycle. 

Stroke volume is the value that determines cardiac output and therefore 

correlates well with haemodynamic stability or otherwise. The volume of 

each LV volume segment that contributes to the stroke volume can be 

calculated by the following equation, which merely calculates the volume 

difference between end diastole and end systole for each segment:

A Vol = Lenb2 /a Zed- Len^2 /aZes ————— (11)

Where 2 ed and Z es are the impedance measurements in end diastole 

and end systole respectively. Len^ is the distance between each of the

electrodes in the conductance catheter.

Using equation (11), the stroke volume (SV) is calculated as the

summation of AVol values:

SV=Z J Vol = I {Lenb2 (Zes-Zed) /a (Zes Zed)}-——(\2)

The difference between end-systolic and end-diastolic impedance 

values is the impedance value that correlates with the stroke volume 

and is referred to as the stroke impedance (SZ). Therefore, equation 

(12) can be reformed as:

SV=Z {Lent2 SZ/a (Z es Z ed) }--—-—------(13)
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16.5 Current clinical uses of intracardiac impedance: 

Background

Rushmer et al 126 were the first to describe the relationship between 

intracardiac impedance and stroke volume over half a century ago. 

Experimenting in canines, they attached endo-myocardial clip electrodes 

transmurally to the walls of the right and left ventricles. They 

demonstrated an increase in the measured impedance - across the 

intra-ventricular blood - during systole when the electrodes approached 

each other. As the electrodes were in direct contact with the 

endocardium, it was assumed that some of the current actually 

traversed the myocardium via alternative electrical pathways rather than 

the intra-ventricular blood. This raised doubts about the accuracy of the 

results, and subsequent experiments at the time could not reproduce 

similar findings.

The dynamic geometry of the left ventricle has been assessed by 

Rankin et al 127 and Tyson et al 128 using ultrasonic dimension 

transducers in animals and in post-CABG patients respectively; they 

concluded that directional changes in systolic shortening of the LV 

diameter measured by ultrasonic transducers correlated well with stroke 

volume measured by thermo-dilution techniques and could be used as 

an on-line index of cardiac output. They also concluded that - by using 

chronically implanted pulse-transit ultrasonic dimension transducers - 

the exact pattern of left ventricular contraction was mainly a function of 

the left ventricular volume.
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Measurement of stroke volume and cardiac output

Several previous studies have investigated the relationship between 

intracardiac impedance and stroke volume. In 1981, Baan et al 129 

demonstrated excellent correlation between the measured intracardiac 

impedance on the one hand and the LV stroke volume and cardiac 

output on the other hand both in vitro, using an artificial heart model, 

and in vivo, by experimenting in 12 dogs. The animal study was 

performed using a multi-electrode catheter placed along the long axis of 

the LV. It was concluded that the catheter had great potential for 

application in man as it fulfilled its primary aim of continuously recording 

stroke volume and cardiac output. McKay et al 13° reproduced similar 

results in 1984 after conducting a study in humans during cardiac 

catheterisation using a multi-electrode impedance catheter. They 

compared stroke volumes determined by electrical impedance with 

stroke volumes determined by the thermo-dilution technique in 10 

patients and revealed excellent correlation (r value of 0.95). 

Furthermore, they also compared directional changes in impedance 

recordings throughout the cardiac cycle with volume curves obtained by 

radionuclide ventriculography, and in all instances the agreement 

between the two volume recordings was excellent. Similar directional 

changes in stroke volume were also recorded in both left and right 

ventricles. Subsequently plotted pressure-volume diagrams showed 

characteristic isovolumetric contraction and relaxation phases as well as 

typical ejection and filling periods. In an animal experiment using 

anaesthetised open-chest dogs and pigs (McKay et al 131 ), volume
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changes as measured by the impedance catheter method closely 

paralleled simultaneous changes in the ultrasonic crystal-determined 

segment length, and the impedance end-systolic pressure-volume 

relation slope was reproducible with repeated load-altering manoeuvres. 

1n 1998, AI-Khalidi et al 132 examined the validity of the conductance 

catheter method in vitro under conditions where pump rate, 

conductance, viscosity, and temperature of the fluid inside the heart 

chamber are changed as happens in cardiac surgery. They used the 

conductance catheter to measure the pressure-volume data in a 

physical model of the human left ventricle. The volume, salinity, 

viscosity, and temperature of the fluid inside the model were rigorously 

controlled. The measured pressure-volume data were compared with 

the actual values to assess the accuracy and dependence of the 

conductance-measured volumes on salinity, viscosity, temperature, and 

pump rate. Conductance-measured volumes were not significantly 

different over a range of heart rates extending from 60 to 100 beats per 

minute, and they were not significantly different over a salinity range of 

0.2 - 2 normal saline, a viscosity range of 2.7 - 3.5 Centipoises, or over 

a temperature range of 20 - 39 °C. The investigators therefore 

concluded that there was no dependence of conductance-measured 

volume on heart rate, viscosity, temperature, or salinity, provided the 

correct value of fluid resistivity was used.
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RV contractility & rate responsive pacemakers

When a unipolar pacing system is implanted, the measured impedance 

between the pacemaker can and the electrode tip at the RV apex is 

composed of the electrical impedance of the conductor coil and the 

trans-thoracic impedance 133 . Since the impedance of the conductor 

remains constant, changes in the sensed unipolar ventricular impedance 

are mainly caused by changes of electrical conductance at the bio- 

interface between the electrode tip and myocardial tissue & intra- 

ventricular blood 134 . Slow impedance changes are caused by variations 

in the thoracic air content due to respiration, whereas rapid impedance 

changes occur within the cardiac cycle and are caused by contraction- 

related changes in the contents of blood (low impedance) and tissue 

(high impedance) 135 . Thus, at the end of diastole, there is more blood 

around the electrode tip resulting in lower overall impedance. On the 

other hand, during systole, the ejection of blood leads to higher tissue 

content around the electrode tip resulting in higher overall impedance, 

which progressively increases further until it reaches its peak in late 

systole. This impedance increase correlates with RV contractility and, 

thus, with the inotropic state of the heart 136 . Osswald et al 133 analysed 

the effect of increasing dobutamine challenge on RV contractility and the 

measured impedance signals in patients undergoing implantation of dual 

chamber rate responsive (DDDR) pacemakers. A right ventricular pigtail 

catheter was inserted for continuous measurements of RV-dP/dtmax, 

and unipolar RV intra-cardiac impedance signals were simultaneously 

measured along with RV-dP/dt/nax during intrinsic and ventricular paced
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rhythm. A stress test with a stepwise increase of intravenous 

dobutamine was then performed. There was a highly significant 

correlation between dP/dtmax and impedance for both ventricular paced 

(r2 = 0.93) and intrinsic (r2 = 0.92) rhythms. It was concluded that for 

intrinsic and ventricular paced rhythms, sensor signals derived from RV 

unipolar impedance curves closely correlate with dP/dtmax, and thus, 

with a surrogate of RV contractility during dobutamine stress testing. 

Further derivations of impedance measurement have been incorporated 

into permanent pacing systems, allowing effective heart rate modulation. 

Current commercially available rate-responsive pacing systems use 

intracardiac impedance, according to the Closed-Loop Stimulation (CLS) 

principle, to assess the inotropic state of the heart by assessing RV 

contractility 136 .

Non-fluoroscopic radiofrequency (RF) ablation 

Based on impedance changes related to catheter movements in trans- 

thoracic current fields, non-fluoroscopic navigation - using LocaLisa, 

EnSite or CARTO systems - of intracardiac electrode catheters during 

radiofrequency ablation of arrhythmias has become possible and is 

currently applied in day-to-day clinical practice. This significantly 

reduces fluoroscopy times compared to conventional RF techniques, as 

demonstrated by Schneider et al 13T in a randomised prospective study 

that compared the efficacy of the LocaLisa system with the conventional 

mapping/ablation approach for RF ablation of isthmus-dependent atrial 

flutter. Nsah et al 138 studied changes in impedance during RF ablation 

and concluded that monitoring of the initial impedance and the fall in
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impedance during ablation procedures may provide clinically valuable 

information to assess the efficacy of tissue heating and lesion formation. 

Furthermore, still based on impedance monitoring during RF ablation, 

Eick et al (2002) 139 developed a safety device capable of detecting 

sudden changes in position of the ablation electrode and consequently 

stimulating an electronic switch to interrupt the connection between the 

ablation electrode and the RF generator, thereby minimising the risk of 

incidentally damaging non-arrhythmogenic myocardial tissue during RF 

ablation.

Thoracic bio-impedance

Acute left ventricular failure (LVF) evolves through two phases; the first 

is a pre-clinical stage during which fluid accumulates in the interstitial 

lung tissues, the second phase is clinically overt alveolar pulmonary 

oedema with accompanying typical symptoms and signs of lung 

congestion. Shochat et al 14° developed a new device, based on lung 

bio-impedance measurement, and used it on patients admitted with 

acute coronary syndrome - without clinical evidence of acute LV failure 

- to assess the feasibility and efficacy of detecting pre-clinical LVF. 

Although their conclusion was that the device was sufficiently sensitive 

in detecting pre-clinical LVF, further larger studies need to be conducted 

to ascertain the consistency of such results before any widespread 

clinical application is undertaken. Baralla et al 141 have also shown in a 

small study that measuring the thoracic bio-impedance aids in 

optimising the atrio-ventricular interval (AVI) in patients with dual 

chamber pacemakers programmed to VDD mode.
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1.6.6 Intracardiac impedance; a suitable haemodvnamic sensor?

Intracardiac impedance correlates closely with RV contractility 134135136 

and has been shown to be a reliable tool for assessment of LV stroke 

volume and cardiac output during cardiac catheterisation procedures 129 

130 131 132 ^ has also been demonstrated that cyclical changes in the 

measured intracardiac impedance correlate reliably with phases of the 

cardiac cycle 136 (impedance reaches its peak in late systole and 

decreases to its lowest value in late diastole). Furthermore, the 

measured intracardiac impedance has been shown to be relatively 

resistant to changes in other variables such as salinity, viscosity, 

temperature, and heart rate when tested in vitro 132 . Therefore, an 

interest has developed as to the feasibility of using intracardiac 

impedance as a haemodynamic sensor. Two main measurement 

methods of intracardiac impedance were previously closely examined to 

assess their suitability of being used as haemodynamic sensors for 

tachyarrhythmias.

RV unipolar intracardiac impedance

Previous human and animal studies have demonstrated good 

correlation between impedance-measured RV stroke volume and stroke 

volume directly measured by pulmonary arterial electromagnetic 

flowmeter 124 142 . In 1995, Dickstein et al U3 obtained a series of right 

ventricular pressure-volume loops in open chest pigs during transient 

vena caval occlusion using a 12-electrode conductance catheter. 

Relationships of end systolic pressure-volume, stroke work-end diastolic 

volume, and dP/dt-end diastolic volume were compared at control and
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during infusion of dobutamine and esmolol. Right ventricular pressure- 

volume loops generated with this technique were consistent with 

previously reported findings by other volume measurement methods. 

Furthermore, the response to changes in inotropic state has been found 

to be predictable and appropriate. The feasibility of using RV impedance 

measurement as a sensor for discriminating haemodynamically stable 

from unstable arrhythmias was first investigated in humans by Arthur et 

al in 2000 124 125 144. usjng an externa| !NOs2 pacemaker the stroke 

impedance was measured between the distal electrode of a quadripolar 

catheter positioned at the RV apex and a cutaneous patch electrode 

placed between the patient's scapulae. There was a significant positive 

linear correlation between normalised, mean BP and mean impedance 

wave amplitude (r=0.594). However, compared to impedance, 

tachycardia cycle length was still found to provide superior sensitivity 

and specificity for detection of HUVT. 

Transvalvular intracardiac impedance

In 1996, DiGregorio et al 145 investigated the use of transvalvular 

impedance (TVI) in maintaining atrial-synchronised ventricular pacing in 

VDD pacemakers by means of a tri-polar single pass lead. TVI signal 

has been found to be a sharp periodic wave, with high signal-to-noise 

ratio, that was detected exclusively in the presence of cardiac 

mechanical activity. The minimum and maximum TVI values were 

measured during atrial systole and at the end of ventricular systole, 

respectively. Different variables of TVI waveform were affected by 

changes in the inotropic state of the heart, and could therefore be
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proposed as potential signals for new rate responsive pacing algorithms 

based on the correlation between inotropic and chronotropic regulation. 

Furthermore, the study investigators also suggested that the signal 

might be used for pacing and sensing validation in auto-regulating 

pacemakers and for fibrillation recognition in ICDs. We previously 

conducted a pilot study to determine the feasibility of using TVI as a 

haemodynamic sensor for discrimination of stable from unstable 

arrhythmias in man. 14 patients were studied (10 males, mean age 57 

years and mean EF 45%). During ventricular tachycardia stimulation 

studies, an external INOS2 pacemaker was used to measure TVI 

(across the tricuspid valve) between the distal poles of two quadripolar 

catheters positioned inside the right atrial and right ventricular cavities 

(Figure 1.6). 10 episodes of VT were induced (8 HUVT and 2 HSVT). 

Significant correlation has been demonstrated between TVI and arterial 

blood pressure, with good separation between sinus rhythm, HUVT and 

HSVT in a way that permits the use of such impedance signal as a 

potential haemodynamic sensor (Figures 1.7, 1.8, 1.9 & 1.10). However, 

the TVI waveform morphology was deemed too complex for current ICD 

technology to accommodate and reliably analyse & interpret. We think 

that this may be due to the fact that the TVI impedance had a rather 

complex tri-phasic waveform pattern (TVI waveform consists of atrial, 

valvular and ventricular components) compared to the much simpler 

mono-phasic sine curve shaped waveform pattern of RV unipolar 

impedance. Furthermore, the TVI waveform tends to change its 

morphology depending on the activation sequence of the cardiac
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chambers. Further research into the use of TVI as a haemodynamic 

sensor was therefore subsequently abandoned. Such research work 

may resume in the future as ICD technology advances.

Figure: 1.6

Figure 1.6:
Transvalvular impedance (TVI) was measured across the 
tricuspid valve using two quadripolar catheters placed inside the 
right atrial and ventricular cavities.
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Figure: 1.7

Figure 1.7:
Measurement of transvalvular impedance (TVI) during 
sinus rhythm; with simultaneous recording of the surface 
ECG, arterial BP, and transvalvular impedance waveform.

Top: Surface ECG
Middle: Invasive arterial BP
Bottom: Impedance waveform (Z)
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Figure: 1.8
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Figure 1.8:
Measurement of transvalvular impedance during 
haemodynamically stable VT, with simultaneous recording of 
the surface ECG, arterial BP and transvalvular impedance 
waveform.

Top: Surface ECG
Middle: Invasive arterial BP
Bottom: Impedance waveform (Z)
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Figure: 1.9

Figure 1.9:
Measurement of transvalvular impedance during 
haemodynamically unstable VT; with simultaneous recording 
of the surface ECG, arterial BP and transvalvular impedance 
waveform.

Top: Surface ECG
Middle: Invasive arterial BP
Bottom: Impedance waveform (Z)
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Figure: 1.10
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Figure 1.10:
Transvalvular impedance (TVI) versus blood pressure 
during VT. Note the clear separation between 
haemodynamically stable (top right) and unstable (bottom 
left) VT.

ZVT: TVI during VT
BPVT: Invasive arterial pressure during VT
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1-6.7 Transventricularintracardiac impedance:

In 1980-82, Arredondo and colleagues 146 147 investigated the effect of 

body temperature on transventricular defibrillation threshold. They 

compared the results of two separate animal studies involving mongrel 

dogs under conditions of body hypothermia versus normothermia using 

simple capacitor-discharge defoliations. They concluded that body 

hypothermia significantly reduces transventricular defibrillation 

thresholds, and that current is a better descriptor of what is needed for 

electrical defibrillation. The measured transventricular impedance 

remained rather constant. In 1994, Peters et al 148 examined various 

electrical variables while experimenting on canines undergoing internal 

ventricular defibrillation and concluded that the trans-myocardial 

impedance during defibrillation was primarily resistive, non-linear, 

voltage dependent, and declined with successive shocks. Defibrillation 

success was, however, still not influenced by those phenomena. In 1994 

(same year), in an animal study involving anaesthetised closed chest 

dogs, Geddes et al 149 investigated the effect of high intensity 

transventricular current on cardiac output. The current was injected 

between an internal LV electrode and a left chest cutaneous one. The 

investigators mainly concentrated on analysing the data related to the 

link or otherwise between current intensity and cardiac output. Although 

cardiac output was measured using both thermo-dilution and pressure- 

impedance volume loop methods as part of the required study data, no 

direct comparison results of the data obtained from those two methods 

were made available.
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So far, no human studies have investigated the feasibility of using 

transventricular impedance as a haemodynamic discriminator between 

stable and unstable arrhythmias. This thesis examines the role of 

transventricular impedance measurement as a potential haemodynamic 

sensor for arrhythmias in humans.

1.7Summary & Comments

SCO is one of the major causes of death affecting young adults in the 

developed world. In most cases, SCO is due to malignant ventricular 

arrhythmias that lead to haemodynamic instability and subsequent loss 

of cardiac output. Although - in absolute numbers - the majority of 

those who experience sudden cardiac arrest / death are individuals with 

no previously known cardiac disease or risk factors for SCO, The 

greatest incidence occurs in cohorts with identifiable risk factors for SCO 

(EF < 35% from any cause, and inherited cardiac channelopathies with 

or without structural heart disease). While anti-arrhythmic drug therapy 

may be used to terminate or reduce the risk of recurrence of stable 

arrhythmias, haemodynamically unstable arrhythmias require 

emergency treatment with DC cardioversion via an external (or 

implantable) defibrillator. Successful restoration of sinus rhythm 

depends crucially on the speed with which shock therapy is delivered. 

All patients with clear identifiable risk(s) of SCO should be considered 

for ICD therapy whenever appropriate. ICDs have been shown in many 

randomised clinical trials to be superior to drug therapy in preventing 

SCO. Since the invention of the first ICD in 1980, huge advances have

66



been made in ICD technology. Compared to their first generation 

predecessors, current fourth generation ICDs are much smaller in size 

(<30 cm3), have better longevity with an average half-life of 7 years, use 

transvenous (as opposed to epicardial) leads which greatly facilitated 

and simplified the device implantation process, and are non-invasively 

programmable with many additional features for individual fine-tuning, 

including anti-tachycardia pacing (ATP).

ICDs rely principally on the sensed ventricular rate for arrhythmia 

recognition and therefore have 100% sensitivity for detection and 

treatment of life threatening arrhythmias such as VF or HUVT. Their 

specificity, however, is still nowhere near as good. In consequence, 

occasional shock therapy is sometimes delivered inappropriately to treat 

fast but otherwise stable supraventricular and ventricular arrhythmias. 

Such inappropriate shocks are unpleasant and frightening, and if they 

were to become recurrent may lead to significant life style restrictions 

and not uncommonly cause major psychological disturbances. The 

advent of dual chamber ICDs together with the addition of electrogram 

rhythm recognition criteria such as arrhythmia rate of onset, QRS 

morphology, width, and regularity has partially reduced but not fully 

abolished the occurrence of inappropriate shocks. Many haemodynamic 

variables - such as unipolar RV impedance, maximum RV contractility 

(RV dP/dt-/7?ax), and mixed oxygen venous saturation - have been 

extensively investigated for their possible use by ICDs as 

haemodynamic sensors. Many studies demonstrated good correlation 

between the tested haemodynamic variable and arterial blood pressure
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(as a measure of haemodynamic stability), albeit with significant 

limitations that would preclude practical implementation, e.g. RV 

unipolar impedance measurement revealed significant correlation with 

arterial BP during all rhythms but has been found to be inferior to 

electrogram cycle length in both sensitivity and specificity. Although data 

from our pilot study of the transvalvular impedance measurement 

revealed highly significant correlation with arterial BP during all rhythms, 

practical implementation of TVI as a haemodynamic sensor was 

deemed inappropriate, as the impedance waveform was too complex for 

current ICD technology to properly analyse and interpret. For the 

foreseeable future, researchers will continue to work in this field until a 

suitable haemodynamic sensor for arrhythmias is identified and 

successfully incorporated into ICDs arrhythmia recognition algorithms. 

This thesis examines the feasibility of using intracardiac impedance with 

transventricular configuration as a haemodynamic sensor for cardiac 

arrhythmias in man.
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CHAPTER 2



CHAPTER 2 

METHODOLOGY

2.0 Introduction 

2.0.1 Background:

Intracardiac impedance was first investigated as a means of assessing 

the contractile capacity of the heart more than half a century ago. In 

1953 Rushmer et al 15° demonstrated that changes in impedance related 

predictably to various phases of the cardiac cycle. The strong 

relationship between changes in stroke volume and changes in 

intracardiac impedance is well recognised 133151 . Currently, implantable 

cardioverter defibrillators (ICDs) identify arrhythmias mainly on the basis 

of changes in the heart rate with no direct assessment of the 

haemodynamic situation. Occasionally, inappropriate shock delivery can 

occur for otherwise haemodynamically stable arrhythmias, which can be 

both painful and frightening for the patient. A device capable of 

monitoring the haemodynamic stability of arrhythmias can potentially 

reduce the frequency of inappropriate intracardiac shocks. Also, such a 

form of haemodynamic monitoring could help in assessing the optimal 

pacing mode of bi-ventricular pacing systems.

Many haemodynamic sensors have been used with variable success in 

the past. The ideal might include a lead based pressure sensor in the 

right ventricle and current technology is such that long term pressure 

sensing may now be feasible 152 . In a previous study by Khoury et al 153 , 

impedance amplitude was measured using a multipolar catheter within 

the right ventricle with simultaneous right ventricular pulse pressure
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during stable and unstable arrhythmias. Impedance fell significantly 

during unstable arrhythmias and the study showed 100% specificity at 

detecting haemodynamic instability. This clearly suggested that 

intracardiac impedance could be used as a haemodynamic sensor. 

However, current commercial systems use unipolar impedance, 

measuring changes in impedance between the tip of the pacing lead 

and the generator can. This reflects alterations in RV contractility. (Ions, 

Protos and Cylos - Biotronik GmbH) 154 .

Using temporary pacing leads we have previously investigated the role 

of unipolar intracardiac impedance in discriminating haemodynamically 

stable from unstable arrhythmias 144 but have been unable to reproduce 

the result shown by Khoury using a multipolar catheter. Thus far a 

reliable change in impedance during arrhythmias has proven elusive. 

These investigations have raised the question of "what is the optimal 

impedance configuration capable of acting as a reliable haemodynamic 

sensor?" Unipolar impedance would tend to reflect right ventricular 

dynamics and may not give an accurate reflection of left ventricular 

changes. The effect of predominantly left ventricular function might 

require measuring impedance across the left ventricle (transventricular 

impedance). 

2.0.2 Objective:

The primary aim of this study was to assess the feasibility of using 

intracardiac trans-ventricular impedance measurement - across the left 

ventricle - as a sensor for haemodynamic stability during rapid cardiac 

pacing and arrhythmias. We arbitrarily defined haemodynamic instability
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as a drop in BP that causes loss of consciousness and effective cardiac 

output, necessitating emergency intervention with external DC 

cardioversion. The study also enabled us to directly compare between 

the accuracy & reliability of continuous non-invasive BP monitoring 

(Finger Plethysmography) to that of standard methods of invasive intra- 

arterial BP monitoring.

Approvals of the study protocol (complied with the Declaration of 

Helsinki) from both the local research and ethics committee (LREC) and 

the trust's research and development department (R&D) were obtained 

prior to patients' inclusion in the study. The protocol was thoroughly 

explained to all patients, and written explanatory information sheets 

were made available to them. All patients then signed an informed 

consent form upon enrolment into the study. All procedures were 

performed electively in the cardiac catheter & electrophysiology (EP) 

laboratory at room temperature between 15-20 °C. 

2.0.3 Patients:

A total of 37 patients were initially included. 9 were later excluded due to 

difficulty placing the coronary sinus electrodes. 28 patients had their 

data analysed. We included all patients undergoing routine, clinically 

indicated, intracardiac electrophysiological studies (EPS) for the 

induction and assessment of ventricular arrhythmias. Patients < 18 

years of age and pregnant women were not included in the study. 

Baseline characteristics are detailed in table 2.1 below:
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Table 2.1
Patients Males Females 
N = 28 N = 25 (89%) N = 3 (11 %)

Age in years (mean ± 2SD) 60 + 9 67 + 6

Diabetes Mellitus 5(18%) 0(0%)

Hypertension 6(21%) 1(3.5%)

Dyslipidaemia (TC >5.0 mmol/l on statin) 17 (61 %) 3(11%)

Smoking (current or within 1 year) 19 (68%) 2 (7%)

IHD (Previous Ml, PCI or CABG) 20 (71 %) 3(11 %)

DCM 2 (7%) 0 (0%)

HCM 0 (0%) 0 (0%)

Resting HR <100 bpm 23 (82%) 3(11 %)

Resting HR > 100 bpm 2 (7%) 0 (0%)

Normal LV systolic function (EF > 50%) 3(11%) 0 (0%)

Mild L V systolic dysfunction (EF 45 - 50%) 0 (0%) 0 (0%)

Moderate LV systolic dysfunction (EF 35 - 45%) 7 (25%) 0 (0%)

Severe LV systolic dysfunction (EF<35%) 12 (43%) 3 (11%)

Sinus rhythm on resting ECG 25 (89%) 3(11 %)

Atrial fibrillation on resting ECG 0 (0%) 0 (0%)

QRS width >140 ms 13 (46%) 2 (7%)

FAP resting systolic BP (mean + 2SD mmHg) 105.01+31.76 9885+2510

Portapres resting systolic BP (mean ± 2SD mmHg) 136 28+34 25 128 46+27 31

Potassium level in mmol/l (mean + 2SD) 4.5+1.1 4.4 + 0.8

Calcium level in mmol/l (mean + 2SD) 2.26 + 04 254 + 05

Magnesium level in mmol/l (mean ± 2SD) 0.92 + 0.28 080 + 0.2

Normal renal function (Cr <120 mmol/l) 14 (50%) * 2 (7%)

Moderate renal impairment (Cr 120 - 200 mmol/l) 9 (32%) 1 (3.5%)

Severe renal impairment (Cr > 200 mmol/l) 2 (7%) 0 (0%)

Table 2.1: Patients' baseline characteristics.

Abbreviations:
2SD: Two standard deviations, TC: Total cholesterol, mmol/l: Milli moles per litre, 
IHD: Ischaemic heart disease, PCI: Percutaneous coronary intervention, CABG: 
Coronary artery bypass grafting, DCM: Dilated cardiomyopathy, HCM: Hypertrophic 
cardiomyopathy, HR: Heart rate, LV: Left ventricle, FAP: Femoral arterial pressure, 
BP: Blood pressure, Cr: Creatinine
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Patients' usage of cardiac medications is detailed in table 2.2 below: 

Table 2.2

Patients 
N = 28
ACE inhibitor

Beta blocker

Amiodarone

Digoxin

Furosemide

Males 
N = 25 (89%)
22 (77%)

23 (82%)

18 (64%)

2 (7%)

19(68%)

Females 
N = 3(11%)
3(11%)

2 (7%)

0 (0%)

0 (0%)

2 (7%)

Table 2.2: Usage of cardiac medications by study patients

The clinical indications for conducting the electrophysiological VT 

stimulation studies are listed in table 2.3 below:

Table 2.3

Patients 
N = 28
Recurrent monomorphic primary VT

Recurrent syncope or palpitations plus NSVT shown 
on 24-hour ambulatory ECG monitoring
Recurrent pre-syncope plus poor LVEF of <35% and 
NSVT on 24-hour ambulatory ECG monitoring

Males 
N = 25 (89%1
6(21%)

7 (25%)

12 (43%)

Females 
N = 3(11%)
0 (0%)

1 (3.5%)

2 (7%)

Table 2.3: Clinical indications for VT Stimulation studies

Abbreviations:
Primary VT: Ventricular tachycardia occurring not within the context of

acute myocardial ischaemia, and has no obvious reversible
precipitant.

NSVT: Non-sustained ventricular tachycardia. 
LVEF: Left ventricular ejection fraction (Normal LVEF: 50 - 75%)
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2.1 Methodology

2.1.1 Transventricular impedance:

All 28 patients underwent routine, clinically indicated VT stimulation 

electrophysiological studies as part of assessing their risk of sudden 

cardiac death. Procedures were performed electively in the cardiac 

electrophysiology (EP) laboratory with the patients supine and in the 

non-sedated post absorptive (fasting) state. Under aseptic conditions, 

the right (or left) groin area was locally anaesthetised using 

approximately 10 ml of 1% lidocaine (lignocaine) injectable solution. 

Two Desi-Valve sheaths (6 French & 7 French gauge) were inserted into 

the femoral vein. Through those two sheaths and under direct 

fluoroscopic guidance, a 6 French quadripolar pacing/recording 

electrode (Bard UK) was inserted and then positioned at the right 

ventricular apex (RVA) and a 7 French decapolar deflectable catheter 

(Daig UK) was positioned inside the coronary sinus (CS) as far distally 

as possible (Figure 2.1).
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Figure: 2.1

Figure 2.1: Right ventricular (RV) & coronary sinus (CS) catheter
positions 

Top: Schematic drawing: lead positions of the quadripolar catheter in
the RV apex and of the decapolar catheter in the Coronary Sinus.

Bottom: Radiological confirmation of the catheters in the left anterior 
oblique (LAO) position showing the decapolar coronary sinus and 
the quadripolar right ventricular apical catheters.
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An externally positioned, non-modified, implantable Inos CIS dual 

chamber pacemaker was then directly connected to the proximal and 

distal poles of each of the two catheters (four connections) and was 

used for both current injection and impedance measurement. 

Impedance was measured by first injecting a sub-threshold biphasic 

rectangular pulse of 600uA (micro-Ampere) current between pole 1 

(distal) of the coronary sinus catheter and pole 1 (distal) of the RVA 

catheter, and then measuring the generated voltage between CS 

catheter pole 10 (proximal) and RVA catheter pole 4 (proximal) (Figure 

2.2). The alternating current pulse duration for each polarity was 15 

microseconds (us). Pulses were repeated every 8 milliseconds (ms). 

This measured the impedance value generated across the 

intraventricular blood of both ventricles (but mainly the left ventricle), 

hence the term "Transventricular impedance". The impedance data were 

then transmitted from the external Inos pacemaker via standard magnet 

telemetry to a pacing programmer (Boitronik, PMS1000+ with 

"FlexMeas" customised software - programmer cartridge type 9 B- 

KIF.V.A). The programmer then generated an impedance-proportional 

analogue output signal. Using a compatible cable connector (RK 21-E), 

the analogue output impedance signal was then transmitted from the 

pacing programmer to the electrophysiology (EP) computer system 

where its waveform was transformed into digital format and was 

continuously recorded and also displayed in real-time on the screen of 

the EP computer system throughout the entire VT induction procedure.
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Figure: 2.2

Figure: 2.2
The current (i) & voltage (v) configuration used for 
LV transventricular impedance measurement

The alternating current (i) was injected between the distal poles (poles number 
1 & 1) of the RVA and CS electrode catheters. The proximal poles (pole 4 of 
RVA catheter and pole 10 of CS catheter) were used to measure the voltage (v) 
and the transventricular impedance.
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The size - not the morphology - of the impedance waveforms 

generated by the pacing programmer has been noted to vary 

considerably between individual patients (i.e. although the 

morphological appearances of the impedance waveforms looked 

generally similar to each other for all the patients, some waveforms were 

much larger - or smaller - in size than others). Initial impedance gain 

adjustment was therefore performed for some patients - at the stage of 

the pacing programmer, prior to transmitting the impedance signal onto 

the EP computer system - in order to standardise the size of the 

impedance waveform before transmitting the signal onto the EP 

computer system for recording the measurements. This variable gain of 

the impedance waveform has no effect on the study outcome since we 

are studying the relationship between the change in stroke impedance 

(SZ - see below) and the change in blood pressure at different heart 

rhythms. Since we are not studying the absolute value of impedance, the 

absolute gain of the impedance waveform does not matter. After those 

adjustments, we did not change the final acquired impedance gain 

setting for the rest of the procedure and no further alterations were 

performed.

2.12 Invasive BP (Femoral Arterial Pressure - FAP):

Continuous haemodynamic monitoring of all studied patients was 

conducted invasively using femoral arterial pressure (FAP) lines. A 4- 

French Desi-Valve sheath was inserted into the femoral artery (usually 

on the ipsilateral side of the impedance catheters) under local
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anaesthesia (1% lidocaine) and using aseptic technique. The sheath 

was connected to a fluid-filled transducer (Medex Medical, model No: 

MX9604) for FAR signal detection. The transducer was then connected 

to the EP computer system, to which the FAP analogue signal was 

transmitted for digitalising, recording and display of its pressure 

waveform. Transducer zeroing was achieved by manually positioning its 

line level with the horizontal plane of the femoral artery prior to attaching 

it to the intra-arterial sheath.

2.13 Non-invasive BP (Finger Plethysmographv - Portaores):

In 20 of the above study patients, in addition to invasive femoral arterial 

pressure monitoring, simultaneous finger plethysmography was 

performed using a specially designed continuous non-invasive BP 

measurement and recording system (Portapres model-2, TNO-TPD 

Biomedical Instrumentation / Amsterdam). The Portapres system uses 

the volume-clamp method (developed by J Penaz in 1973) 155 . The 

method is based on the development of the dynamic pulsatile loading 

and unloading of the finger arterial walls. In this method, the 

circumference of the finger artery being monitored is kept constant 

(clamped) at a certain diameter despite the changes in arterial pressure 

during each heart beat. The Portapres device detects changes in arterial 

diameter by means of an infra-red photo-plethysmograph built into the 

finger cuff. During systole, when an increase in finger arterial diameter is 

detected, the cuff pressure is immediately increased by a rapid pressure 

servo-controller system to prevent the diameter change. To fully
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accomplish this without compressing the artery dameter or allowing it to 

increase (i.e. to maintain a constant arterial diameter during both 

systole, diastole and throughout the entire cardiac cycle of each heart 

beat), the cuff pressure needs to be kept equal to the finger intra-arterial 

pressure at all times. As a result, the magnitude of the Portapres- 

produced finger cuff pressure should be equal to that of the finger intra- 

arterial pressure. Since the resting diameter of the finger artery is itself a 

variable that constantly alters in response to changes in stress and tone 

of smooth muscles in the arterial wall, the Portapres system is equipped 

with a dynamic servo set-point adjuster for the purpose of regularly 

defining and then re-setting (calibrating) the diameter at which the finger 

artery should be clamped (Wesseling et a/. 1995) 156 . This results in the 

measurement of blood pressure being temporarily interrupted at times 

when the system is recalibrating itself for setting a new reference vessel 

diameter. During such periods, the Portapres BP waveform remains flat 

for the duration of the calibration process, which usually occurs once 

every two to three minutes and lasts for up to ten seconds at a time.

The Portapres device is contained in a belt that has three compartments 

containing a pump unit, a main unit, and a battery compartment (Figure 

2.3). A small box is placed on the patient's wrist with a strap and is 

connected to the main and pump units with an electric cable and an air 

hose, respectively. A small blood pressure cuff is applied to the middle 

phalanx of the middle finger, and is connected via an air hose to the 

wrist box. Patient's details (age, sex, weight and height) are entered into
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a control panel that is built in the main system unit. This allows the 

system to calibrate its blood pressure measurements for each individual 

patient. Zeroing is automatic. The Portapres system is also equipped 

with a hydrostatic height correction unit that allows for free hand 

movement, which is particularly useful in ambulatory applications but 

was not needed here as our patients were not mobilising during the 

study. Patients' hands were kept warm under a blanket throughout the 

procedures to reduce the chance of losing the Portapres signal from 

cold-induced peripheral vasoconstriction. The Portapres analogue BP 

signal was then transmitted via a connection cable to the same EP 

computer system of the impedance and femoral BP signals, where it 

was digitalised, recorded and its waveform displayed on the monitor 

screen. Waveforms of both BP signals were recorded and displayed 

simultaneously, along with the impedance and surface ECG signals, on 

the EP computer system.
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Figure: 2.3

a: Pump unit
b: Main unit
c: Battery compartment

Figure: 2.3

The three main compartments of the Portapres device (left). A small box is placed on 
the patient's wnst with a strap and is connected to the main and pump units with a 
cable and an air hose, respectively (right).

2.1.4 Study protocol:

Figure 2.4 shows a schematic representation of the different equipments 

used in the study. For all patients, we used "Modified Wellens protocol" 

for programmed VT stimulation. This protocol involves stimulating VT in 

the EP laboratory by delivering pacing train cycles of 8 paced beats at a 

rate of 600 ms (100 beats per minute) via the right ventricular apex 

electrode catheter followed by up to two or three additional paced beats 

(extra-stimuli) with progressively shortening coupling intervals. Following
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each pacing train cycle of 8 beats, the 1 st extra-stimulus is delivered 

closer and closer to the 8th paced beat until it either induces VT or no 

longer captures the ventricle (i.e. reaches the point of refractoriness). If 

no VT is induced despite reaching refractoriness, the 1 st extra-stimulus 

is - thereafter - delivered constantly at the shortest coupling interval 

(between it and the 8th beat of the pacing train) that would produce 

ventricular capture. A 2nd paced extra-stimulus beat is then delivered 

after the 1 st one and is brought progressively closer to it - in consecutive 

pacing train cycles - until either VT is induced or refractoriness is 

reached. The above whole sequence of modified Wellens Protocol is 

repeated with a pacing train of 400 ms (150 beats per minutes). See 

figure 2.5 below.

As detailed above, in this study, during routine clinical VT provocation 

up to 2 or 3 extra-stimuli were delivered during sinus rhythm, and during 

right ventricular apical (RVA) pacing at 600 ms & 400 ms.
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Figure: 2.4

Porlapies Analogue 
Pressure signal

Femora/ Analogue 
pressure signal

EPR1000 
BIOTRONIK 

PROGRAMMER

Portapres

FAR

Figure: 2.4: A schematic representation of the study set up and the various 
equipments used for conducting the procedures in the EP laboratory.

The digital impedance signal was transmitted from the Inos CLS pacemaker via 
telemetry to the pacing programmer, which in turn generated an impedance- 
proportional analogue output signal that was transmitted to the EP system. Both 
invasive and non-invasive BP signals (FAP and Portapres} were transmitted in 
analogue forms to the EP computer system. All signals were then digitalised 
and displayed on the EP system monitor screen along with surface ECG and 
intracardiac electrogram signals.
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Figure: 2.5

Figure: 2.5

Modified Wellens Protocol with programmed right ventricular apical (RVA) 
stimulation (arrow marks the end of the RVA drive pacing train) followed by 
three programmed extra-stimulus beats: 1, 2 & 3. This has still not induced VT 
in this case.
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As an additional part of this study (i.e. in addition to modified Wellens 

protocol), ventricular drive pacing for a period of one minute at a rate of 

400 ms was also performed in patients who had not had VT induced by 

modified Wellens protocol described above.

The arrhythmias were initially induced by using either modified Wellens 

arrhythmia stimulation protocol or by prolonged rapid right ventricular 

pacing. If and when an arrhythmia was induced, we then observed and 

recorded its effect on the continuously monitored stroke impedance and 

blood pressure (both invasive and Portapres). If the patient having the 

arrhythmia remained conscious with stable and sustained perfusion 

pressure, we would class the arrhythmia as haemodynamically stable. 

On the other hand, if the arrhythmia resulted in loss of consciousness & 

cessation of effective cardiac output we would class it as 

haemodynamically unstable, in which case we would intervene by 

external defibrillation to terminate it.

RVA pacing was delivered via an external stimulator (UHS 20) through 

poles 2 and 3 of the RVA electrode catheter, thereby avoiding pacing

through the poles used by the Inos CLS pacemaker for current injection 

and impedance sensing (poles 1 and 4). This is in order to prevent 

recording of artefacts on the recorded impedance signal, as has been 

shown to be the case when we initially attempted to use the pacemaker 

for both impedance measurement and RVA pacing. By using an external 

stimulator, the electrodes for pacing and for impedance sensing were 

kept strictly separated, and impedance measurement was performed 

unsynchronised to the stimuli and could not therefore be blanked during
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stimuli of the UHS 20. Such artefacts would have been recorded on the 

impedance channel, and may have affected the final results if the 

lnos2CLS pacemaker was used for RVA pacing using the same 

impedance recording electrode poles. Data obtained from measurement 

of stroke impedance (SZ), surface EGG, invasive femoral artery blood 

pressure (FAR) and non-invasive finger plethysmographic blood 

pressure (Portapres) were recorded synchronously during the study at a 

sampling rate of 1000 Hertz (Hz) per channel. Figures 2.6, 2.7, 2.8 & 2.9 

represent respective data recordings from individual patients during 

sinus rhythm, right ventricular pacing, stable and unstable VTs. A low- 

pass filter (0-500 Hertz) was used for filtering the impedance and both 

blood pressure channels. All remaining signals were filtered using band­ 

pass filters (the filters were needed in order to reduce the noise 

interference on - and thereby improve the waveform quality of - all the 

recorded channels (impedance, invasive BP and Portapres).
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Figure: 2.6
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Figure: 2.6 Sinus Rhythm

Patient "15" during sinus rhythm. The signals simultaneously displayed on the 
EP system monitor screen from top to bottom are: Surface ECG, Intracardiac 
impedance (Z), femoral arterial BP (Pmi5), and Protrapres signal (Porta).



Figure: 2.7
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Figure: 2.7 Rapid RAY pacing

Patient "15" during rapid RVA pacing at 400 ms. The signals simultaneously 
displayed on the EP system monitor screen from top to bottom are: Surface 
ECG, Intracardiac impedance (Z), femoral arterial BP (Pmi5), and Protrapres 
signal (Porta).
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Figure: 2.8
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Figure: 2.8 Stable VT

Patient "18" during stable VT. The signals simultaneously displayed on the EP 
system monitor screen from top to bottom are: Surface ECG, Intracardiac 
impedance (Z), femoral arterial BP (Pmi5), and Protrapres signal (Porta). Note 
the flat segments in the Portapres waveform. These are times of device auto- 
calibration and were later excluded from the data analysis.
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Figure: 2.9
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Figure: 2.9 Unstable VT

Patient "4" during unstable VT. The signals simultaneously displayed on the EP 
system monitor screen from top to bottom are: Surface ECG, Intracardiac 
impedance (Z), femoral arterial BP (Pmi5), and Protrapres signal (Porta). Note 
the complete flattening of both BP signals indicating haemodynamic instability.
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Figure: 2.10
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Example of simultaneous recordings during ventricular pacing and at the 
onset of Ventricular Fibrillation

Figure: 2.10 Onset of unstable VT and VF

Patient "28". Signals displayed from top to bottom: Surface ECG, invasive 
femoral arterial pressure, and intracardiac impedance. Rapid ventricular pacing 
resulted in unstable polymorphic VT initially, which soon degenerated into 
ventricular fibrillation. Note the almost instantaneous flattening of both the BP 
and impedance signals immediately after the onset of the unstable arrhythmias.

I =
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2.1.5 Data Processing and Analysis: 

Data processing

From each procedure a digital data set was generated. All data sets 

were coded and numbered. Data pre-processing and analysis were 

performed with custom made tools in the MatLab (Mathworks Inc.) 

computing language. During the procedures, digital data of all the tested 

variables (surface EGG, lEGMs, impedance, FAR and Portapres) were 

recorded online onto optical discs in the EP computer system. Data 

were then retrieved (off line) and downloaded in ASCII Format on Re- 

Writable CDs (TDK 700MB-RW). Other data on patients' details such as 

their name, gender, age, LV function, indication for procedure, ...etc 

were manually entered on pre-prepared case report forms (CRFs). 

Printouts of the recorded log file data were also obtained for each 

patient. The digitally recorded data plus the CRFs and the log files 

printouts were then analysed offline using MatLab statistical analysis 

computer programme.

Prior to analysing the data, the following processing steps were 

performed for each data set (patient):

• Data were converted from ASCII into MatLab format. Different 

data channels (surface ECG, impedance, Portapres, and 

invasive BP) were combined and one MatLab file was 

produced per data set (patient).

• Both pressure curves (Portapres and invasive BP) were 

shifted backwards in time for the whole recording by about 10
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ms (0.01 sec), which was all that was required in order to line 

them up with their corresponding cardiac cycles (i.e. the onset 

of QRS complex on the surface EGG was lined up level with 

the onset of the upstroke of both blood pressure curves). For 

invasive BP, this shift compensated for the time delay that the 

pressure signal took between the onset of cardiac contraction 

and the arrival of the pressure waves at the pressure sensor 

plus the transducer time required for signal processing and 

transmission onto the EP system. For Portapres BP, this shift 

compensated for the time delay in the various steps that the 

device took in signal recording, transmission and digitalisation 

prior to waveform display on the EP system screen. The 

compensatory delay was essentially the same for all the data 

sets, and it was determined by simply measuring the time 

difference between the QRS onset and the onset of its 

corresponding pressure signals (usually 10 ms + 0.5 ms). We 

thought that the error value of 0.5 ms (0.0005 seconds) was 

extremely small to affect the study outcome in any significant 

way, and we have therefore ignored it for the purpose of 

reducing the complexity of data analysis. 

For all data channels besides impedance, the scaling factor 

was taken from the printouts of the EP-system (the data log 

files) listing the value range for each channel. The same 

scaling was used for all patients. For the impedance channel 

in particular however, the scaling depended on the
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2programmed impedance gain on the Inos CLS pacemaker, 

which was different for each individual patient as explained 

earlier in page 78. The full measurement range of the

2
Inos CLS was converted to a voltage scale of a range of + 

1.95 Volts by the analogue output of the PMS1000+ 

programmer. Scaling for the impedance channel was adjusted 

for each individual data set according to the Inos CLS sensor 

gain settings for impedance measurement. Therefore, 

although the absolute impedance values may vary by a factor 

in the range of 1/4 - 4 for those patients, the relative 

evaluations remain valid for the purpose of the study as 

explained earlier in this chapter.

Each data set was subdivided into different sections, each of 

which contained one heart rhythm type (i.e. sinus rhythm, right 

ventricular apical (RVA) pacing at different rates, and stable & 

unstable ventricular arrhythmias). This subdivision was 

performed according to the documented procedure findings 

for each patient, obtained from the "EP-log file" printouts. 

Out of all the recorded rhythms for all -the patients, not all 

heart cycles were eventually analysed. For recorded heart 

cycles to be included in the analysis, the following criteria 

were applied:

- For paced rhythms: a stimulation marker must be 

present. Also, the heart rate of the cycle being 

analysed and the subsequent cycles must be equal to
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the programmed stimulation rate. This is to ensure that 

the heart was being captured by the pacing impulses.

- For intrinsic rhythms (sinus rhythm and VT): pacing 

stimulation markers should not be present. Cycles that 

contain intermittent premature ventricular complexes 

(PVCs) were excluded from the analysis.

- For Portapres recorded pressure channels: device 

calibration sequences were excluded (see below for 

details).

- For femoral invasive pressure channels: cycles with 

"spikes" in the pressure curve were excluded (see 

below for details).

- Cycles where the impedance signal showed significant

artefact clipping, were excluded.

Respiration has caused significant noise artefacts affecting 

the impedance channels in particular. This rendered any beat- 

to-beat analysis of the impedance data virtually un- 

interpretable. To minimise the effect of respiration and in order 

to generally reduce noise, the pressure and impedance 

curves were averaged for every 8 consecutive valid heart 

cycles within each rhythm. All further evaluation steps were 

based on these averaged pressure and impedance curves. 

The averaging over 8 cycles was implemented for all heart 

rates, as it appeared to reduce the respiration-induced noise 

signals down to an acceptable level. Slightly less respiratory
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noise was detected on channels with slower heart rates (e.g. 

sinus rhythm and RVA pacing at 600 ms) compared to other 

data channels with faster heart rates (VT and RVA pacing at 

400 ms). However, we felt that this slight difference in the 

acceptable levels of respiratory noise between slower and 

faster heart rate channels was rather insignificant and did not 

necessitate the need for different averaging settings for the 

different heart rate channels. The samples resulting from the 

averaged curves of each heart rhythm were further averaged 

for all patients to form a single data point for that particular 

rhythm. For all heart rhythms, the same number of averaged 

curves was used in order to get equal statistical weight for 

each data set (i.e. the rhythm with the smallest number of 

data points determined the sample size included in each data 

point.

Data analysis

From the pre-processed impedance and pressure curves the target 

quantities were extracted. Those were: stroke impedance (SZ - see 

below), mean arterial BP, and BP amplitude (Pulse Pressure). 

Invasive femoral intra-arterial monitoring (FAP) was used for BP 

assessment for all studied patients. Portapres blood pressure was used 

as an additional non-invasive BP monitoring tool in 20 patients. The 

mean arterial BP (perfusion blood pressure) is normally closely related 

to the haemodynamic status: for a stable SVT the mean BP tends to 

generally show no significant relevant reduction, whereas it tends to
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drop significantly for an unstable VT of sufficient duration. The mean 

arterial BP is calculated by averaging the blood pressure values for each 

cardiac cycle using the physiological equation: MABP = Diastolic BP + 

1/3(Systolic BP - Diastolic BP). (Figure: 2.11).
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Figure: 2.11 Mean Arterial blood pressure

Mean arterial blood pressure (MABP) is calculated by averaging the BP values 
for each cardiac cycle using the following equation:
MABP = Diastolic BP + l/3(Systolic BP - Diastolic BP). "P" in the figure 
stands for "Pressure"

On the other hand, the blood pressure amplitude - pulse pressure - is a 

rather rough estimate for changes in the stroke volume. Non-linear 

relationship, but rather a monotonic one, between BP amplitude and 

stroke volume is expected. BP amplitude is the difference between the 

maximum and the minimum blood pressure values within each cardiac 

cycle {BP amplitude (pulse pressure) = Systolic BP - Diastolic BP}.
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As explained earlier in the thesis, trans-ventricular impedance value 

depends on the blood volume within the ventricular cavities at any given 

point in time. A large impedance value corresponds to a small volume 

(end systole) and a small impedance value corresponds to a large 

volume (end diastole). In order to extract a value that correlates with the 

pumping efficacy of the heart, a stroke volume proportional impedance 

value would be desirable. The impedance value extracted here is called 

the stroke impedance (SZ), which is defined as the difference between 

maximum impedance measured at end systole and the minimum 

impedance measured at end diastole (Figure 2.12).

Figure 2.12:
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Figure 2.12: Stroke impedance (SZ)

Stroke impedance was defined as the difference between the maximum 
impedance at an end systolic time window and the minimum impedance at an 
end diastolic time window.

Extracted values from the respiration-averaged SZ and BP curves (for 

every consecutive 8 heart cycles) were correlated with each other. For 

all the data sets analysed, the stroke impedance and both pressure

99



evaluations were calculated as ratios or percentages relative to their 

respective values in sinus rhythm.

For each individual data set (patient), the following correlations were 

calculated:

BP Amplitude versus heart rate; this investigated the effect of 

rapid pacing and induced tachy-arrhythmias on BP amplitude. 

Mean arterial BP versus heart rate; this investigated the effect 

of rapid pacing and induced tachy-arrhythmias on mean 

arterial BP.

Mean arterial BP versus BP amplitude; this investigated the 

relationship between these two BP variables during different 

heart rhythms.

SZ versus BP amplitude; this examined the relationship 

between SZ and BP amplitude, and checked whether stable 

and unstable arrhythmias could be separated on the 

impedance scale.

SZ versus mean arterial BP; this investigated whether 

arrhythmia-induced changes in mean arterial BP were 

reflected on the impedance scale.

For each patient, the heart cycle sequences to be included in the 

analysis were identified by markers set during the procedure. Those 

markers were entered manually into the computer system along with the 

other data collected in real time. They defined certain time-points of the 

procedure; e.g. the beginning of the whole data recording, the beginning
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and end of each pacing train, and the beginnings of periods of Portapres 

BP recording following periods of automatic device re-calibration. Those 

calibration sequences were recognised by their flat waveform during 

data analysis and were subsequently excluded from the analysis. This 

re-calibration occurred automatically at an average frequency of once 

every two to three minutes, lasting for up to ten seconds at a time. As 

explained earlier, those calibrations were necessary for the Portapres 

system to regularly re-define the continuously changing finger artery 

reference diameter. 

The following variables were measured:

1. Systolic BP: maximum pressure during the complete heart cycle

2. Diastolic BP: minimum pressure during the complete heart cycle

3. Mean Arterial BP (MABP): Average BP value during the entire 

cardiac cycle

4. BP Amplitude (Pulse pressure): Systolic BP - Diastolic BP 

The above values from each heart cycle were evaluated as follows: 

Cardiac cycle sequences for each heart rhythm (i.e. sinus rhythm, RVA 

pacing at varying heart rates, and cardiac arrhythmias) were analysed. 

An average pressure curve of these cycles was calculated for each 

rhythm and the mean, systolic, diastolic and pulse blood pressures were 

calculated from those averaged curves. Bland-Altman plots were 

generated for the comparison of both measurement methods. The bias 

and the 2*SD values were determined for the pooled data of all patients 

to determine the expected systematic and stochastic deviations between 

both measurements. For each patient, the changes in BP during
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different heart rhythms (pacing at different rates, stable and unstable 

VT) were calculated as differences (in mmHg) to their corresponding BP 

values during sinus rhythm (each patient served as their own control).
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CHAPTER 3 

RESULTS

The following statistical methods were used for data analysis: 

Linear regression:

For each patient, data points for each heart rhythm (sinus rhythm, 

pacing and induced tachyarrhythmias) were averaged to form one data 

point per rhythm per patient. These data points were then combined for 

all patients and a regression line was plotted. Correlation coefficient (r), 

statistical significance (p) and the standard error of estimation (sigma) 

were calculated. Linear regressions were calculated with Matlab 

computer statistical software programme.

T-Test:

The data were separately grouped for each of the different heart 

rhythms. The pressure amplitude (pulse pressure) and the stoke 

impedance (SZ) data points were averaged to form one value per 

patient for each heart rhythm applicable for that patient. 

Two-sided paired t-tests were then performed for each of the abnormal 

heart rhythms (pacing and tachyarrhythmias) and their corresponding 

sinus rhythm values (for both pulse pressure and SZ). These t-tests 

were done with Excel computer programme.

Analysis of Variance (ANOVA):

The ANalysis Of VAriance (ANOVA) method is generally used when 

more than two groups need to be compared simultaneously in order to
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determine whether they are statistically different. In this study, we 

compared three main groups (haemodynamically unstable VT, 

haemodynamically stable VT, and rapid RV pacing) using the ANOVA 

method. As variance homogeneity is a precondition for the ANOVA test, 

this has been first tested and confirmed by the Levene test and no 

significant differences have been found between the variances in the 

three groups (Levene test passed). The ANOVA test was performed 

with SPSS (Statistical Package for the Social Sciences) and MatLab 

statistical analysis computer programmes, which both generated the 

same results.

Bland-Altman plots:

The pressure channels (Portapres and invasive BP) were divided into 

short strips, each corresponding to one heart cycle. For each patient, 16 

strips were analysed for each rhythm type (sinus rhythm, rapid RVA 

pacing, in addition to HSVT & HUVT if induced) and then averaged to 

form one average BP curve per rhythm per patient for each of the 

Portapres and invasive BP channels. Averaged BP variable values - for 

systolic, diastolic, mean BP and BP amplitude - were calculated for 

each averaged BP curve.

We generated 4 Bland-Altman plots that contain the absolute values of 

the pressure variables during sinus rhythm and the other three rhythm 

types (rapid RVA pacing, stable ands unstable VT). Each plot contained 

one data point per patient per heart rhythm. We plotted the average of 

Portapres and invasive BP measurements (X-axis) against the
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difference between the two channels (Y-axis), and then calculated the 

bias and the standard deviation values for each plot (see page 122).

3.0 Results

We initially enrolled a total of 37 patients into the study, 9 of whom were 

later excluded from the analysis due to difficulty placing the coronary 

sinus electrodes. Out of the remaining 28 studied patients, 5 unstable 

VT's, 5 stable VT's and 2 stable SVT's were observed.

3.1 Correlation with FAP

3.1.0 Transventricular stroke impedance fSZ) and correlation with

Femoral Arterial Pressure (FAP):

A total of 28 (25 males) patients' data — were analysed. Of these, 5 

patients had inducible, haemodynamically unstable VT (HUSVT), 5 had 

haemodynamically stable VT (HSVT) and 2 had haemodynamically 

stable SVT. To simulate intrinsic VT, right ventricular apical (RVA) 

pacing at a rate of 400 ms (150 beats per minute) for a period of 60 

seconds was performed in 22 patients. The mean age = 61+11 years, 

mean left ventricular ejection fraction (LVEF) = 36%, and median LVEF 

= 28%. The results are shown in Table 3.1, and figures 3.1 to 3.7 below. 

For all patients, all the resulted SZ and BP values were expressed as 

either fractions or percentages of their corresponding sinus rhythm 

values. During HUSVT, SZ dropped to 22% of its original sinus rhythm 

value (standard deviation = 15 - 32%) and this was associated with a 

simultaneous drop in mean arterial BP down to 13% of its original sinus 

rhythm value (standard deviation = 3 - 36%), p < 0.001. During HSVT,
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SZ dropped to 58% of its original sinus rhythm value (standard deviation 

= 33 - 88%) and this was associated with a simultaneous drop in mean 

arterial BP down to 55% of its original sinus rhythm value (standard 

deviation = 24 - 77%), p = 0.008. During SVT, SZ dropped to 50% of its 

original sinus rhythm value (standard deviation = 49 - 51%) and this 

was associated with a simultaneous drop in mean arterial BP down to 

76% of its original sinus rhythm value (standard deviation = 74 - 77%). 

During prolonged RVA pacing at 400 ms, SZ dropped to 25% of its 

original sinus rhythm value and this was associated with a simultaneous 

drop in mean arterial BP down to 30% of its original sinus rhythm value 

(standard deviation = 14 - 52%), p < 0.001.

There was generally good correlation between SZ and BP amplitude: 

correlation coefficient r= 0.907, r 2 = 0.822, p < 0.001 (figure 3.4). Mean 

arterial BP appeared to correlate less well with SZ (figure 3.3). 

Within the first 5 seconds of the onset of HUSVT, SZ dropped by 80% of 

its original sinus rhythm value but did stabilise thereafter. Mean arterial 

BP and BP amplitude exhibited similar patterns of behaviour as - within 

the first 5 seconds of HUSVT onset - they dropped by average 

percentages of 60% and 80% of their original sinus rhythm values 

respectively before reaching a plateau phase thereafter (figure 3.5).
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Table: 3.1

Rhythm

SVT

Stable VT

Unstable 
VT

V. pace 
ISObpm

Mean SZ 
(fraction of 

sinus 
rhythm 
value)
0.50 

(0.49-0.51)
0.58 

(0.33-0.88)
0.22 

(0.15-0.32)

0.25 
(0.05- 1.4)

P
value

N/A

0.010

<0.001

<0.001

Mean BP 
(fraction of 

sinus 
rhythm 
value)
0.76

(0.74-0.77)

0.55
(0.24-0.77)

0.13
(0.03-0.36)

0.30 
(0.14-0.52)

P
value

N/A

0.008

<0.001

<0.001

Heart 
rate* 
(bpm)

162 
(156- 167)

149
(112-228)

225
(177-
272)
150

N

2

5

5

22

Table 3.1

Changes in mean stroke impedance (SZ) and mean arterial pressure (mean BP) 
expressed as fractions of their sinus rhythm values and mean heart rate during 
the studied arrhythmias. Values in parentheses show the range min-max. There 
was a significant fall in SZ during unstable VT and V. pacing at 400ms 
compared with sinus rhythm.
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Figure: 3.1

Figure 3.1

Mean values of stroke impedance (SZ) and invasive arterial pressure, expressed 
as fractions of their corresponding sinus rhythm values during supraventricular 
tachycardia (SVT), stable and unstable ventricular tachycardia (VT) and during 
ventricular (V) pacing at 1 50 beats per minute (400 ms).
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Figure: 3.2

SVT Stable VT Unstable VT Vpace150ppm

Figure: 3.2

Mean values and standard deviations of stroke impedance (SZ - blue bar) and 
mean arterial pressure (perfusion pressure PP - red bar) as fractions of the 
corresponding sinus rhythm values during supraventricular tachycardia (SVT 
n=2), stable (n=5) and unstable ventricular tachycardia (VT n= 5) and during 
ventricular (V) pacing at 400 ms (n=22).

109



Figure: 3.3
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Figure: 3.3 Stroke impedance (SZ - Y-axis) versus mean arterial BP (X-­ 
axis) during induced arrhythmias (SVT, stable and unstable VT).

Each data point represents a patient. For each patient, SZ and BP values are 
expressed as fractions of their corresponding sinus rhythm values. 
Haemodynamically unstable VT appears to be associated with small SZ and 
Mean BP values (bottom left) whereas SVT and stable VT (which are both 
haemodynamically stable arrhythmias) appear to be associated with higher SZ 
and mean BP values (middle and top right).

Abbreviations:
Intr_sinus: Intrinsic sinus rhythm 
Intr_SVTst: Intrinsic stable SVT 
IntrJVTst: Intrinsic stable VT 
Intr VTun: Intrinsic unstable VT
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Figure: 3.4
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: 3.4 Stroke impedance (SZ - Y-axis) versus BP amplitude (X-axis) 
induced arrhythmias (SVT, stable and unstable VT).

Each data point represents a patient. For each patient, SZ and BP values are 
expressed as fractions of their corresponding sinus rhythm values. 
Haemodynamically unstable VT appears to correlate well with small SZ and 
Mean BP values (bottom left) whereas SVT and stable VT (which are both 
haemodynamically stable arrhythmias) appear to correlate with higher SZ and 
mean BP values (middle and top right). Correlation coefficient (r) = 0.907, p 
<0.001

Abbreviations:
Intr_sinus: Intrinsic sinus rhythm 
Intr_SVTst: Intrinsic stable SVT 
Intr_VTst: Intrinsic stable VT 
Intr VTun: Intrinsic unstable VT

111



Figure: 3.5
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Figure: 3.5 Behaviour of stroke impedance (SZ - top diagram), BP 
amplitude (middle diagram) and mean BF (bottom diagram) following the 
onset of haemodynamically unstable VT.

Each data point represents a patient. SZ and BP values are expressed as 
fractions of their corresponding sinus rhythm values. Within the first 5 seconds 
following the arrhythmia onset, both SZ and BP amplitude dropped acutely to 
about 20% of their original sinus rhythm values but sustained no further 
significant reduction thereafter. Mean BP only dropped to about 60% of its 
original sinus rhythm value within the first 5 seconds of arrhythmia onset, and 
sustained no further significant drops thereafter.
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Figure: 3.6
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Figure: 3.6 Behaviour of stroke impedance (SZ - top diagram), BP 
amplitude (middle diagram) and mean BP (bottom diagram) following the 
onset of haemodynamically stable VT.

Each data point represents a patient. SZ and BP values are expressed as fractions of 
their corresponding sinus rhythm values. Within the first 5 seconds following the 
arrhythmia onset, both SZ and BP amplitude dropped comparably for individual 
patients to about 20-80% of their original sinus rhythm values but then reached a 
plateau with subsequent partial recovery thereafter. Mean BP only showed minimal 
change within the first 5 seconds of arrhythmia onset, and continued to remain 
stable thereafter.
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Figure: 3.7
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Figure: 3.7 Behaviour of stroke impedance (SZ - top diagram), BP 
amplitude (middle diagram) and mean BP (bottom diagram) following the 
onset of haemodynamically stable SVT.

Each data point represents a patient. SZ and BP values are expressed as 
fractions of their corresponding sinus rhythm values. Within the first 5 seconds 
following the arrhythmia onset, there was no significant change in SZ, mean BP 
and BP amplitude. Thereafter, both BP variables continued to remain stable 
over time, whereas values of SZ appeared to steadily drop to about 40 -60% of 
their original sinus rhythm values.
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3.1.1 Portaores and correlation with invasive BP:

All 28 patients studied had their BP monitored invasively. In addition, 20

had their BP monitored both invasively (FAP) and non-invasively

(Portapres).

All 20 patients had their invasive and Portapres BP recorded during

sinus rhythm and right ventricular pacing at 400 milliseconds (ms). Out

of those 20 patients, VT was induced in 8 patients, of whom 5 were

haemodynamically unstable. We compared the averaged absolute

values of both BP measurements (table 3.2). We also studied the

correlation between the changes in both BP measurements (figures 3.8

-3.11).

Comparison between the averaged absolute BP values (mmHq) of

Portapres and FAP (table 3.2):

1. Systolic BP: 

Sinus rhythm: 

All paced rhythms: 

Stable VT: 

Unstable VT:

2. BP Amplitude: 

Sinus rhythm: 

All paced rhythms: 

Stable VT: 

Unstable VT:

FAP: 101.93±28.43, Portapres: 132.37±30.78 

FAP: 78.58+19.14, Portapres: 100.01+21.25 

FAP: 86.42±1.15, Portapres: 89.88±10.06 

FAP: 35.00+23.55, Portapres: 55.64±17.39

FAP: 58.40, 

FAP: 31.41, 

FAP: 36.11, 

FAP: 9.43,

Portapres: 69.80 

Portapres: 39.92 

Portapres: 43.10 

Portapres: 14.67
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3. P/asto/ic BP: 

Sinus rhythm: 

All paced rhythms: 

Stable VT: 

Unstable VT:

4. Mean Arterial BP: 

Sinus rhythm: 

All paced rhythms: 

Stable VT: 

Unstable VT:

FAR: 43.53+24.63, Portapres: 62.56±21.03

FAR: 47.17+15.07, Portapres: 60.09±17.15

FAR: 50.31+1.73, Portapres: 46.78±0.53

FAR: 25.57+19.19, Portapres: 40.97±14.99

FAR: 64.36+26.30, Portapres: 87.73±21.93

FAR: 69.99+16.76, Portapres: 72.85±17.36

FAR: 59.73+2.69, Portapres: 64.38±0.19

FAR: 29.50+20.58, Portapres: 47.38+15.03

Correlation between the changes in BP measurements (Portapres 
versus invasive BP):

1. Systolic BP (Figure 3.8):

r= 0.961, r2 = 0.924, p< 0.001, N = 62

2. BP Amplitude (Figure 3.9):

r= 0.964, r2 = 0.929, p < 0.001,N = 72

3. Diastolic BP (Figure 3.10):

r= 0.853, r2 = 0.728, p < 0.001,N = 62

4. Mean Arterial BP (Figure 3.11): 

r= 0.968, r2 = 0.937, p < 0.001,N = 62
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Table: 3.2

Sinus
Rhythm

N = 1571

Right
ventricular
pacing at 400
ms (150
beats per
minute)

N = 2827

Stable VT

N = 123

Unstable VT

N = 295

Portapres

Invasive
BP

Portapres

Invasive
KP

Portapres

Invasive
BP

Portapres 

Invasive
BP

Systolic BP

132.37+30.78

101.93+28.43

100.01+21.25

78.58+19.14

89.88+10.06

86.42+1.15

55.64+17.39 

35.00+23.55

BP
amplitude
69.80+22.83

58.40+18.53

39.92+15.16

31.41 + 11.44

43.10+5.50

36.11+3.76

14.67+13.80 

9.43+18.62

Diastolic BP

62.56+21.04

43.53+24.63

60.09+17.15

47.17+15.07

46.78+0.53

50.31+1.73

40.97+14.99 

25.57+19.19

MABP

84.73+21.93

64.36+26.30

72.85+17.05

58.12+16.76

59.73+2.69

64.38+0.19

47.38+15.03 

29.50+20.58

Table: 3.2 Portapres versus Femoral invasive BP.

Comparison between the averaged absolute values (mmHg) of the different BP 
components (systolic BP, diastolic BP, mean arterial BP {MABP} and BP 
amplitude) for both Portapres and invasive BP. "N" stands for the number of 
averaged heartbeats.

117



Figure: 3.8
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Figure: 3.8

Correlation between changes in systolic BP measurements of Portapres 
(Porta) (Y-axis) versus femoral invasive BP (PmiS) (X-axis)

Each data point represents a patient. Values are expressed as changes (in 
mmHg units) from their original sinus rhythm value (x), which is positioned at 
intercept point of "0 mmHg". For haemodynamically unstable VT, 
haemodynamically stable VT, and for right ventricular paced rhythms, the 
change in systolic BP of Portapres appear to correlate well with that of invasive 
BP (correlation coefficient r = 0.961, N = 62, p < 0.001). "N" stands for the 
averaged heart beats per patient.

Abbreviations
Sinus-sinus:
VplOObpm-sinus:
VpllObpm-sinus:
Vpl20bpm-sinus:
Vpl50bpm-sinus:
VTst-sinus:
VTun-sinus:

Sinus rhythm
right ventricular pacing at 100 beats per minute 
right ventricular pacing at 110 beats per minute 
right ventricular pacing at 120 beats per minute 
right ventricular pacing at 150 beats per minute 
Haemodynamically stable VT 
Haemodynamically unstable VT
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y=1.17+1.14x 
r = 0.964, r2 = 0.929 

p < 0.001, N = 72 
= 6.45

x sinus-sinus 
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Figure: 3.9

Correlation between changes in BP amplitude measurements of Portapres 
(Porta) (Y-axis) versus femoral invasive BP (Pmi5) (X-axis)

Each data point represents a patient. Values are expressed as changes (in 
mmHg units) from their original sinus rhythm value (x), which is positioned at 
intercept point of "0 mmHg". For haemodynamically unstable VT, 
haemodynamically stable VT, and for right ventricular paced rhythms, the 
change in BP amplitude of Portapres appear to correlate well with that of 
invasive BP (correlation coefficient r = 0.964, N = 72, p < 0.001). "N" stands 
for the averaged heart beats per patient.

Abbreviations
Sinus-sinus:
VplOObpm-sinus:
VpllObpm-sinus:
Vpl20bpm-sinus:
Vpl50bpm-sinus:
VTst-sinus:
VTun-sinus:

Sinus rhythm
right ventricular pacing at 100 beats per minute 
right ventricular pacing at 110 beats per minute 
right ventricular pacing at 120 beats per minute 
right ventricular pacing at 150 beats per minute 
Haemodynamically stable VT 
Haemodynamically unstable VT
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Figure: 3.10
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Correlation between changes in diastolic BP measurements of Portapres 
(Porta) (Y-axis) versus femoral invasive BP (PmiS) (X-axis)

Each data point represents a patient. Values are expressed as changes (in 
mmHg units) from their original sinus rhythm value (x), which is positioned at 
intercept point of "0 mmHg". For haemodynamically unstable VT, 
haemodynamically stable VT, and for right ventricular paced rhythms, the 
change in diastolic BP of Portapres appears to correlate well with that of 
invasive BP (correlation coefficient r = 0.853, N = 62, p < 0.001). "N" stands 
for the averaged heart beats per patient.

Abbreviations
Sinus-sinus:
VplOObpm-sinus:
VpllObpm-sinus:
Vpl20bpm-sinus:
VplSObpm-sinus:
VTst-sinus:
VTun-sinus:

Sinus rhythm
right ventricular pacing at 100 beats per minute 
right ventricular pacing at 110 beats per minute 
right ventricular pacing at 120 beats per minute 
right ventricular pacing at 150 beats per minute 
Haemodynamically stable VT 
Haemodynamically unstable VT

120



x sinus-sinus 
V Vp100bpm-sinus 
0 Vp110bpm-sinus 
£ Vp120bpm-sinus 
0 Vp150bpm-sinus
• VTst-sinus
• VTun-sinus

-40 -30 -20 -10 
mean Pmi5(mmHg)

10

Figure: 3.11

Correlation between changes in mean arterial BP (MABP) measurements 
of Portapres (Porta) (Y-axis) versus femoral invasive BP (PmiS) (X-axis)

Each data point represents a patient. Values are expressed as changes (in 
mmHg units) from their original sinus rhythm value (x), which is positioned at 
intercept point of "0 mmHg". For haemodynamically unstable VT, 
haemodynamically stable VT, and for right ventricular paced rhythms, the 
change in mean BP of Portapres appears to correlate well with that of invasive 
BP (correlation coefficient r = 0.968, N = 62, p < 0.001). "N" stands for the 
averaged heart beats per patient.

Abbreviations
Sinus-sinus:
VplOObpm-sinus:
Vpl lObpm-sinus:
Vpl20bpm-sinus:
Vpl50bpm-sinus:
VTst-sinus:
VTun-sinus:

Sinus rhythm
right ventricular pacing at 100 beats per minute 
right ventricular pacing at 110 beats per minute 
right ventricular pacing at 120 beats' per minute 
right ventricular pacing at 150 beats per minute 
Haemodynamically stable VT 
Haemodynamically unstable VT
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Bland-Altman evaluation ofPortaores and invasive BP:

Bland-Altman plots - Figures 3.12 to 3.17 - were used to evaluate the 

average values of Portapres and invasive BP measurements (X-axis) in 

addition to the differences between the two BP measurements (Y-axis) 

for each of the 20 patients. This evaluation was done for each of the BP 

variables (mean BP, BP amplitude, systolic and diastolic BP) during 

sinus rhythm, right ventricular apical pacing at varying rates, and 

induced stable and unstable ventricular arrhythmias. 

During sinus rhythm (figure 3.12), the average absolute value of mean 

Portapres and invasive BP measurements (X-value) was around 80 

mmHg. The difference between the two BP channels (Y-value) ranged 

from about -10 to +50 mmHg. The bias (the mean difference between 

the two BP channels) was 8.26 mmHg, meaning that - on average - the 

mean Portapres BP was 8.26 mmHg higher than the mean invasive BP 

during sinus rhythm. 2*SD (twice the standard deviation of the difference 

between Portapres and invasive BP measurements) was 30 mmHg. 

This means that statistically - for 95% of cases - the difference between 

Portapres and invasive mean BP measurements was not greater than 

30 mmHg.
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Figure: 3.12
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Figure: 3.12 Bland-Altaian plotting of 
invasive BP (Pmi5) during sinus rhythm.

mean Portapres (Porta) and

Each data point represents one absolute value for one patient. On the X-axis is 
the average of Portapres and invasive BP measurements, and on the Y-axis is 
the difference between the two BP channels. The X-axis values cluster around 
80 mmHg. This means, that during sinus rhythm the average of both BP 
channels is around 80 mmHg.

The difference between both channels (Y-axis) ranges from about -10 to +50 
mmHg. The bias, which is the mean difference between the two BP channels, is 
8.26 mmHg, meaning that the Portapres value was 8.26 mmHg higher than the 
invasive value on average. 2*SD, which is defined as: "twice the standard 
deviation of the difference between the two BP channels" was 30 mmHg. This 
means that for 95% of cases, the difference between Portapres and invasive 
measurement was not larger than 30 mmHg.
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For all the other heart rhythms (paced, stable and unstable VT), the 

Portapres and invasive BP values plotted on the Bland-Altman diagrams 

below (Figures: 3.13 to 3.17) were expressed as the "relative 

differences" in BP to their corresponding sinus rhythm values, thus 

highlighting how the pressure has changed from sinus rhythm to the 

new rhythm(s).

During right ventricular pacing (Figure 3.13), the average of Portapres 

and invasive mean BP (X-axis) ranged between -30 and +5 mmHg, 

meaning that - for right ventricular pacing - the mean blood pressure 

has changed in the range of -30 mmHg (i.e. decreased) to +5 mmHg 

(i.e. increased) relative to the sinus rhythm value. Furthermore, the 

pressure reduction measured due to pacing was nearly identical 

between the two BP measurements. The calculated bias was therefore 

very small = 0.58 mmHg. 2*SD = 7.3mmHg, meaning that in 95% of 

cases the change in BP measured during pacing differed between the 

two channels by a maximum of 7.3 mmHg.
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Figure: 3.13
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Figure: 3.13 Bland-Altman plot showing the effect of right ventricular 
pacing on the change of mean Portapres (Porta) and invasive BP (Pmi5) 
measurements relative to their sinus rhythm values.

On the X-axis is the average of Portapres and invasive BP, and on the Y-axis is 
the difference between the two BP channels. The average of Portapres and 
invasive BP ranged between -30 and +5 mmHg, meaning that - for right 
ventricular pacing - the blood pressure has changed in the range of-30 mmHg 
(i.e. decreased) to +5 mmHg (i.e. increased) relative to the sinus rhythm value.

The pressure reduction measured due to pacing was nearly identical between 
the two BP measurements. The calculated bias was therefore very small = 0.58 
mmHg. 2*SD = 7.3mmHg, meaning that in 95% of cases the change in BP 
measured during pacing differed between the two channels by a maximum of 
7.3 mmHg.

Abbreviations:

VplOO-sinus: Right ventricular pacing at 100 beats per minute
Vpl 10-sinus: Right ventricular pacing at 110 beats per minute
VP120-sinus: Right ventricular pacing at 120 beats per minute
VP150-sinus: Right ventricular pacing at 150 beats per minute
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During ventricular arrhythmias (Figure 3.14), the average change in 

Portapres and invasive BP amplitude (X-axis) ranged between -72 and 

-25 mmHg, meaning that - for the combination of stable and unstable 

VT - the blood pressure amplitude has dropped by 72 mmHg to 25 

mmHg from the sinus rhythm value. The bias (mean difference between 

the two BP measurements) = 2.28 mmHg, 2*SD = 17.7 mmHg.

During ventricular arrhythmias (Figure 3.15), the average reduction of 

Portapres and invasive systolic BP relative to sinus rhythm (X-axis) 

ranged between zero and -40 mmHg for stable VT, and between -30 

and -85 mmHg for unstable VT. For the combination of paced rhythm 

and all VT, The bias (mean difference between the two BP 

measurements) = 1.71 mmHg, 2*SD = 17.4 mmHg.

During ventricular arrhythmias (Figure 3.16), the average change of 

Portapres and invasive mean BP relative to sinus rhythm (X-axis) ranged 

between +6 and -17 mmHg for stable VT, and between -12 and -46 

mmHg for unstable VT. For the combination of paced rhythm and all VT, 

The bias (mean difference between the two BP measurements) = 0.256 

mmHg, 2*SD = 6.15 mmHg.

During VTs (Figure 3.17), the average change of Portapres and invasive 

diastolic BP relative to sinus rhythm (X-axis) ranged between +8 and -3 

mmHg for stable VT, and between -2 and - 26 mmHg for unstable VT. 

For the paced rhythms and all VT, The bias (mean difference between 

the two BP measurements) = 0.588 mmHg, 2*SD = 6.99 mmHg.
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Figure: 3.14
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Figure: 3.14 Bland-Altman plot showing the effect of right ventricular pacing and ventricular arrhythmias on the change of Portapres (Porta) and invasive BP (PmiS) amplitude measurements relative to their sinus 
rhythm values.

On the X-axis is the average of Portapres and invasive BP, and on the Y-axis is the difference between the two BP channels. The average of Portapres and invasive BP amplitude ranged between -72 and -25 mmHg, meaning that - for ventricular arrhythmias - the blood pressure amplitude has reduced by 25 to 72 
mmHg relative to the sinus rhythm value.

The pressure reduction measured due to pacing and VT was very similar between the two BP measurements, resulting in a small calculated bias = -2.28 mmHg. 2*SD = 17.7 mmHg, meaning that in 95% of cases the change in BP measured during pacing an VT differed between the two channels by a 
maximum of 17.7 mmHg.

Abbreviations:

Vp 100-sinus: Right ventricular pacing at 100 beats per minute
Vpl 10-sinus: Right ventricular pacing at 110 beats per minute
VP120-sinus: Right ventricular pacing at 120 beats per minute
VP 150-sinus: Right ventricular pacing at 150 beats per minute
VTst-sinus: Haemodynamically stable VT
VTun-sinus: Haemodynamically unstable VT

127



Figure: 3.15
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Figure: 3.15 Bland-Altman plot showing the effect of right ventricular 
pacing and ventricular arrhythmias on the change of Portapres (Porta) 
and invasive systolic BP (PmiS) measurements relative to their sinus 
rhythm values.

On the X-axis is the average of Portapres and invasive systolic BP, and on the 
Y-axis is the difference between the two BP channels. During ventricular 
arrhythmias, the average reduction of Portapres and invasive systolic BP 
relative to sinus rhythm (X-axis) ranged between zero and —40 mmHg for stable 
VT, and between -30 and -85 mmHg for unstable VT.

The pressure reduction measured due to pacing and VT was very similar 
between the two BP measurements, resulting in a small calculated bias = -1.71 
mmHg. 2*SD = 17.4 mmHg, meaning that in 95% of cases the change in BP 
measured during pacing an VT differed between the two channels by a 
maximum of 17.4 mmHg.

Abbreviations:

VplOO-sinus: Right ventricular pacing at 100 beats per minute
Vpl 10-sinus: Right ventricular pacing at 110 beats per minute
VP120-sinus: Right ventricular pacing at 120 beats per minute
VP150-sinus: Right ventricular pacing at 150 beats per minute
VTst-sinus: Haemodynamically stable VT
VTun-sinus: Haemodynamically unstable VT
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Figure: 3.16
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Figure: 3.16 Bland-Altaian plot showing the effect of right ventricular 
pacing and ventricular arrhythmias on the change of Portapres (Porta) 
and invasive mean BP (Pmi5) measurements relative to their sinus rhythm 
values.

On the X-axis is the average of Portapres and invasive mean BP, and on the Y- 
axis is the difference between the two BP channels. During ventricular 
arrhythmias, the average change of Portapres and invasive mean BP relative to 
sinus rhythm (X-axis) ranged between +6 and -17 mmHg for stable VT, and 
between -12 and -46 mmHg for unstable VT.

The pressure reduction measured due to pacing and VT was almost identical 
between the two BP measurements, resulting in a small calculated bias = 0.256 
mmHg. 2*SD = 6.15 mmHg, meaning that in 95% of cases the change in BP 
measured during pacing an VT differed between the two channels by a 
maximum of 6.15 mmHg.

Abbreviations:

Vpl 00-sinus: Right ventricular pacing at 100 beats per minute
Vpl 10-sinus: Right ventricular pacing at 110 beats per minute
VP120-sinus: Right ventricular pacing at 120 beats per minute
VP150-sinus: Right ventricular pacing at 150 beats per minute
VTst-sinus: Haemodynamically stable VT
VTun-sinus: Haemodynamically unstable VT
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Figure: 3.17
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Figure: 3.17 Bland-Altman plot showing the effect of right ventricular 
pacing and ventricular arrhythmias on the change of Portapres (Porta) 
and invasive diastolic BP (Pmi5) measurements relative to their sinus 
rhythm values.

On the X-axis is the average of Portapres and invasive diastolic BP, and on the 
Y-axis is the difference between the two BP channels. During ventricular 
arrhythmias, the average change of Portapres and invasive diastolic BP relative 
to sinus rhythm (X-axis) ranged between +8 and -3 mmHg for stable VT, and 
between -2 and -26 mmHg for unstable VT.

The pressure reduction measured due to pacing and VT was almost identical 
between the two BP measurements, resulting in a small calculated bias = -0.588 
mmHg. 2*SD = 6.99 mmHg, meaning that in 95% of cases the change in BP 
measured during pacing an VT differed between the two channels by a 
maximum of 6.99 mmHg.

Abbreviations:

VplOO-sinus: Right ventricular pacing at 100 beats per minute
Vpl 10-sinus: Right ventricular pacing at 110 beats per minute
VP120-sinus: Right ventricular pacing at 120 beats per minute
VP150-sinus: Right ventricular pacing at 150 beats per minute
VTst-sinus: Haemodynamically stable VT
VTun-sinus: Haemodynamically unstable VT
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CHAPTER 4



CHAPTER 4

LV TRANSVENTRICULAR INTRACARDIAC IMPEDANCE AND 

HAEMODYNAMIC CORRELATION (DISCUSSION)

4.0 Introduction

As discussed earlier in the thesis, during myocardial contraction, the 

impedance continuously increases reaching its maximum in late systole. 

This impedance increase correlates with right ventricular contractility, 

and thus, with the inotropic state of the heart. In current commercially 

available DDDR pacing systems, integrated information from the 

changing ventricular impedance is used for closed-loop regulation of the 

rate response. In 1992, Ruiter et al 157 tested the stability and dynamic 

behaviour of pre-ejection interval (PEI) in patients who have "Precept" 

pacing systems that use right ventricular intracardiac impedance 

waveform for such haemodynamic evaluation of PEI. This was 

conducted under various forms of exercise and also during postural 

changes. Although significant patient-to-patient variability of the sensor 

values was observed, the chronic stability of PEI was excellent in the
•

total device experience of 147 months. In all patients, PEI shortened 

significantly during bicycle ergometry and was associated with an 

increase in pacing rate in all patients. The strong and highly significant 

correlation between dP/dtmax and unipolar RV impedance for both 

ventricular pacing and intrinsic heart rhythm has already been proven as 

discussed in earlier chapters 133 .
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Other previous studies have also shown comparable correlations 

between stroke volume and impedance 158 suggesting that impedance 

could act as a haemodynamic sensor. However, most studies have 

examined impedance changes either at rest or during exercise where 

changes in heart rate were not extreme. To increase the capabilities of 

modern implantable defibrillators any impedance sensor would need to 

be effective across a wide range of heart rate changes. In addition, 

impedance reflects a complex series of changes with the cardiac cycle 

and it is not currently known which electrode configuration gives the 

optimal and most stable impedance signal that accurately reflects 

changes in intracardiac haemodynamics.

As discussed in the first chapter, transvalvular impedance has been 

found in 1996 to be a potential pacing and sensing validation tool in 

auto-regulating pacemakers and also for fibrillation recognition in ICDs. 

In a more recent animal study conducted in 2005 involving male sheep, 

Chirife et al 159 evaluated the efficacy of implanted Sophos DDDR 

pacemakers in detecting the transvalvular intracardiac impedance (TVI) 

waveform in comparison to an external high-resolution impedance 

measurement device and obtained closely comparable results. 

Impedance at end diastole was consistently smaller than that at end 

systole. Furthermore, TVI behaviour during inotropic challenge with 

Isoprenaline infusion has been found to be physiological as TVI rate 

matched closely the animals' sinus rate.

Recently, Zima et al 16° conducted a small experimental animal study to 

assess the feasibility of determining left ventricular volume changes by
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LV conductance measurements with an implantable device in 

anaesthetised dogs. Using the two electrodes of a bipolar right 

ventricular pacing lead for current injection and two LV epicardial leads 

for voltage measurement, stroke conductance was correlated with the 

LV stroke volume computed from the aortic flow and a strong correlation 

was identified (r = 0.97) suggesting that it may be possible in the 

foreseeable future to use LV intracardiac conductance (the 

mathematical reciprocal of ohmic resistance) by implantable devices for 

continuous haemodynamic monitoring.

4.1 Results analyses

4.1.0 Mean stroke impedance (SZ) versus mean arterial BP

During haemodynamically unstable VT, the heart rate rose to an 

average of 225 beats per minute (bpm) and mean BP dropped to only 

13% of its original sinus rhythm value. This was associated with a 

simultaneous significant drop in SZ to only 22% of its original sinus 

rhythm value.

Although both stable VT and RVA pacing at 400 ms had similar average 

heart rates of 149 and 150 bpm respectively, their haemodynamics were 

significantly different to each other. In stable VT, mean BP dropped to 

55% of its sinus rhythm value, and this was associated with a similar 

modest drop in SZ to 58% of its sinus rhythm value. In contrast, mean 

BP exhibited a much more significant drop during RVA pacing at 400 ms 

(down to 30% of its sinus rhythm value), which was associated with a 

similar significant drop in SZ (down to 25% of its original sinus rhythm 

value). This indicates that in those two rhythms (stable VT and RVA
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pacing at 400 ms), stroke impedance was a better assessment tool of 

the haemodynamic situation than the arrhythmia heart rate.

Only two patients had haemodynamically stable SVT, so it was therefore 

difficult to draw any meaningful statistical conclusions from their data. 

However, we could still conclude that in those two SVT cases, both 

impedance and BP signals appeared not to significantly change 

compared to their original sinus rhythm values.

The correlation between SZ and mean arterial BP was, in general, 

statistically significant (Figure 3.3) with clear separation between sinus 

rhythm and haemodynamically unstable VT. However, there was less 

clear separation between stable and unstable VT, suggesting that SZ 

alone may not be able to reliably discriminate between 

haemodynamically stable and unstable VT.

4.1.1 Stroke impedance (SZ) versus BP amplitude (pulse 

pressure):

SZ appeared to have a direct linear correlation with BP amplitude. By 

plotting the two against each other at different heart rhythms, the most 

statistically significant correlation was obtained during unstable VT 

(Figure 3.4). Stable VT and SVT showed a somewhat weaker 

correlation with some overlap between stable and unstable VT data 

points, again making it difficult for SZ alone to be used as a reliable 

haemodynamic discriminator between stable and unstable arrhythmias.
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4.1.5 Change of stroke impedance (SZ) following arrhythmia 

onset:

The maximum haemodynamic effect of an arrhythmia appeared to be 

exerted within the first few seconds after its onset. Figure 3.5 compares 

the effect of time after onset of unstable VT on SZ, BP amplitude and 

mean BP. The first five seconds after arrhythmia onset appear to 

witness most of the haemodynamic deterioration, with subsequent 

relative stability and partial recovery in BP and SZ measurements 

thereafter. There was no further significant drop afterwards in either SZ 

or BP despite the fact that unstable VT remained sustained at the same 

fast heart rate for a further 20 to 30 seconds before termination (usually 

be external DC cardioversion). Five seconds into stable VT (figure 3.6), 

the variables exhibited a similar pattern, albeit with less dramatic 

reduction in BP and SZ values than during unstable VT. After arrhythmia 

onset of both stable and unstable VT, SZ appeared to correlate more 

closely with BP amplitude than with mean BP. Stable SVT (figure 3.9) 

was associated with a minor drop in SZ and BP amplitude during the 

first 5 seconds following arrhythmia onset. Thereafter, a steady decline 

in SZ continued to be observed for another 60 seconds when it dropped 

to 50% of its sinus rhythm value. This decline in SZ did not appear to be 

associated with a similar decline in BP, the maximal drop in which 

occurred during the initial few seconds of the arrhythmia.
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4.2 Discussion

As discussed earlier in the thesis, unipolar intra-cardiac impedance is 

currently used in commercial systems as a rate sensor assessing 

changes in the inotropic state of the myocardium 133 . Previous studies 

using a multipolar electrode catheter placed in the right ventricle have 

shown a fall in impedance amplitude during arrhythmias in man 153 . The 

greatest fall occurred in patients with haemodynamically unstable 

arrhythmias suggesting that impedance could be used as a 

haemodynamic sensor. However, overall, results have been variable. In 

a previous study using unipolar impedance we found that although the 

greatest reduction in impedance occurred during ventricular fibrillation, 

changes during unstable and stable VT and SVT were less predictable 

144 and did not allow reliable haemodynamic differentiation between 

arrhythmias. There may be a number of reasons for this lack of reliability 

such as independent catheter tip movement, which can significantly alter 

impedance measurements. In this study - and also in other previous 

studies - temporary pacing catheters were used and catheter tip 

movement and bending of the body of the catheter may have 

contributed to a variable impedance result, particularly during rapid heart 

rates where catheter movement may be exaggerated compared to 

slower heart rates. In commercial systems with permanent leads, 

fibrosis of the tip will ensure that the lead movement is directly related to 

movement of the heart. It is likely therefore that any impedance signal 

will be more stable under those conditions. In addition, impedance data 

from the right ventricle may be affected by the complex right ventricular
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geometry, producing a false positive indication of sufficient pumping 

activity despite haemodynamic instability. This can originate from strong 

local wall motion around some of the impedance-measuring electrodes 

and can occur even when no blood is effectively being pumped by these 

contractions. Multi-polar impedance with a multi-channel catheter in the 

right ventricle assesses volume and output changes within the right 

ventricle 153 . Although there is evidence that right ventricular changes 

during arrhythmias reflect left ventricular dynamics, RV multi-polar 

impedance can be distorted by atrial activity due to the location of the 

catheter poles close to the tricuspid valve 153 . 151 . ideally, as the left 

ventricle (LV) has a more regular geometry than the right and is less 

deformed during contractions, an impedance sensor that strongly 

reflects LV changes is desirable. Trans-ventricular impedance, 

measuring impedance changes across both the left and right ventricles 

(mainly the left), may be less sensitive to local wall motion artefacts and 

be suitably insensitive to atrial distortion. The development of bi- 

ventricular pacemakers allows the future possibility in man of an 

impedance sensor that uses the coronary sinus pacing lead to measure 

trans-ventricular impedance.

Intracardiac impedance can be measured by different configurations and 

each may relate to a different aspect of cardiac function. We therefore 

investigated configurations other than in the right ventricle that may 

more accurately represent changes within the left ventricle. In the 

present study we originally investigated two trans-ventricular 

configurations. In addition to the main study electrode configuration
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described in the methodology chapter above, another one was initially 

attempted, that of injecting the alternating current between the proximal 

and distal poles of the CS catheter. This produced a very small voltage 

between the RV electrodes with an unacceptable signal to noise ratio 

and as a result could not be used further. That may have been due to 

the nearly perpendicular orientation of the RV and LV electrodes (the LV 

electrode was positioned in the coronary sinus), which tends to minimise 

the measured signal amplitude. If the LV electrode is implanted in a mid 

LV (preferably lateral) position, both electrodes are nearly parallel, which 

should then result in an adequate amplitude. The configuration we finally 

used - the details of which are described in the methodology chapter - 

produced satisfactory signals and showed a good correlation between 

SZ and arterial blood pressure. The results implied that as the 

arrhythmia became "increasingly unstable" there was a corresponding 

reduction in SZ. In particular, during unstable VT the drop in SZ was 

accompanied by a corresponding decrease in both pulse pressure and 

mean BP.

However, the diagnostic window between stable and unstable VT was 

small and may not allow automatic haemodynamic differentiation based 

on impedance measurement alone. The addition of the atrial 

intracardiac electrograms (lEGMs) together with the impedance data 

may help in the discrimination of haemodynamic instability, although we 

can't back up this theoretical assumption by sufficient practical data, as 

there were only 2 patients with SVT in the study. The presence of 

ventriculo-atrial (VA) conduction during tachycardia in addition to the
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impedance data would also aid in the decision as to whether shock 

therapy should be given or not.

During both stable unstable arrhythmias, we have observed that the 

blood pressure exhibited its maximum drop at the onset of arrhythmias 

(or rapid RV pacing) with subsequent significant partial recovery of BP 

signal within the first five seconds. We think that may be due to the 

increased magnitude of sympatho-excitation and arterial baroreflex gain 

that tends to rapidly occur at arrhythmia onset 162 . It was also interesting 

to observe that SZ appeared to follow a similar partial recovery course 

to that of BP after arrhythmia onset (Figures 3.5, 3.6 & 3.7) 

We conclude that there was generally good correlation between the 

stroke impedance SZ and arterial pressure, and that SZ for HUSVT was 

clearly separated from sinus rhythm, which in principle would support 

the use of impedance as a sensor for determining changes in the 

haemodynamic stability of arrhythmias. However, in the present study, 

there was less clear separation in SZ measurement between HUVT and 

HSVT, suggesting that perhaps impedance alone may not allow real 

time discrimination of haemodynamics. The results are encouraging 

however, and further studies are required to determine the optimal 

impedance signal that would act as a reliable haemodynamic sensor. 

Further studies - involving patients undergoing bi-ventricular ICD 

implantation procedures, and thus using permanent pacing electrodes - 

are also needed to look into the long-term sensitivity and reliability of 

impedance measurement before any future commercial clinical 

applications are implemented.
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4.3 Study limitations:

The major limitation was the small patient numbers. During the study 

period the results of MADIT II trial were published and as a result the 

number of patients with evidence-based clinical indications for routine 

programmed VT stimulation studies significantly reduced. The positive 

induction rate for VT stimulation studies is usually low at best and 

therefore high patient numbers were difficult to recruit. 

All patients were studied in the post-absorptive state and in the supine 

position. The effect of factors such as exercise (sympathetic drive), 

changes in posture, and changes in the metabolic state on the 

impedance signal was not assessed and therefore the study findings 

may not necessarily reflect the behaviour of impedance signal in real 

life.

Temporary pacing electrodes were used. Although active fixation 

temporary electrodes are now available these were not available at the 

start of the study. It is possible that changes in the impedance signal 

may have given a more predictable result in the presence of active 

fixation electrodes.

4.4 Summary

Intracardiac impedance, using the right ventricular unipolar 

configuration, has been used in a number of previous studies in both 

animal and human models to investigate its link with myocardial 

contractility and stroke volume and to assess the feasibility of its use as 

a haemodynamic sensor. By and large, the results of those studies were
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encouraging, as they appeared to show consistently good correlation 

between SZ and blood pressure, albeit with some limitations. Although 

impedance is successfully being used as a closed-loop haemodynamic 

sensor for chronotropic response in commercially available pacing 

systems, its use in implantable defibrillators as a haemodynamic sensor 

for cardiac arrhythmias is not yet clinically possible. During arrhythmias 

induced in some of the previous studies, the instability of the temporary 

pacing leads used for impedance measurement together with the 

complex right ventricular geometry may have led to distortion of the 

recorded impedance signal and may consequently have adversely 

affected the outcome of the studies. We investigated the intracardiac 

impedance using configurations other than in the right ventricle in man 

as they may more accurately represent changes within the left ventricle. 

In the present study the configuration used produced satisfactory signals 

and showed a good correlation between SZ and arterial blood pressure. 

The results implied that as the arrhythmia became "increasingly 

unstable" there was a corresponding reduction in SZ. During unstable 

VT and right ventricular apical pacing at 400 ms the drop in SZ was 

accompanied by a corresponding equivalent decrease in pulse 

pressure. During RVA pacing there was a large fall in arterial pressure 

comparable to that seen during unstable VT. It is well recognised that 

pacing the RVA has a deleterious effect on left ventricular output and 

this study emphasises that the fall in output would appear to be similar 

to that seen during ventricular arrhythmias. Overall, however, in the 

current study the diagnostic window between stable and unstable VT
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was small and may not allow automatic haemodynamic differentiation 

based on impedance alone. This effect also may have been partly due 

to small patient numbers in this study.

There was a good linear correlation between the stroke impedance (SZ) 

and arterial pulse pressure and the morphology for SZ waveform for 

HUVT was significantly different from that of sinus rhythm, HSVT & 

stable SVT. This would support the use of impedance as a sensor for 

determining changes in the haemodynamic stability of arrhythmias. 

However, in the present study the changes during arrhythmias were 

variable and impedance alone may not allow real time discrimination of 

haemodynamically stable from unstable arrhythmias. The results are 

encouraging however, and further studies are required to determine the 

optimal impedance signal needed to act as a reliable haemodynamic 

sensor. Although there is no requirement for a sensor as far as VF is 

concerned, as all ICDs are fully sensitive in detecting VF, a 

haemodynamic sensor particularly for biventricular devices could be a 

useful adjunct in patient management. Further studies are needed to 

look into the long-term sensitivity and reliability of impedance 

measurement before any future clinical applications are implemented.
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CHAPTER 5

NON-INVASIVE BLOOD PRESSURE (PORTAPRES) AND

HAEMODYNAMIC CORRELATION

(DISCUSSION)

5.0 Introduction

Continuous haemodynamic monitoring using invasive intra-arterial blood 

pressure measurement is widely applied in clinical practice. It provides 

information about the blood pressure in real time, and - with the aid of 

measurements obtained from the addition of a central venous catheter - 

also assesses the degree of peripheral tissue perfusion and oxygen 

consumption. Patients benefiting from such monitoring include critically 

ill patients in intensive care or high dependency units, and patients 

undergoing invasive diagnostic or therapeutic procedures that are likely 

to affect their haemodynamics. (e.g. coronary angiography and 

angioplasty, etc). The ability to reliably monitor invasive haemodynamic 

variables in such patients greatly influences their management, and has 

led to improved patients care in recent decades 163 . However, securing 

intra-arterial access is not without risks. Complications such as arterial 

dissection, formation of pseudo-aneurysms, haemorrhage, limb 

ischaemia and infections occur in approximately 1% of patients 164 

although some studies have quoted a complication rate as high as 

13.5% 165 . This limits the full potential that invasive haemodynamic 

assessment can offer. Furthermore, sophisticated invasive 

haemodynamic monitoring equipments are only available in specialised 

or intensive care units and may not therefore be usually immediately
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available for acutely sick patients admitted to the accident and 

emergency departments. If a sensitive and reliable continuous non- 

invasive haemodynamic monitoring system was developed, such 

patients would benefit from early non-invasive assessment prior to their 

transfer to intensive therapy units. The ideal method for haemodynamic 

monitoring should be a non-invasive approach that is risk free, but at the 

same time have the same level of efficacy, reliability and sensitivity of 

the current invasive intra-arterial monitoring systems. Previous studies 

have examined different non-invasive haemodynamic monitoring 

methods, such as thoracic electrical bio-impedance and continuous 

finger plethysmography, and performed simultaneous comparison of 

those methods to standard invasive techniques. In 1996, Shoemaker et 

al 166 evaluated the feasibility of multi-component non-invasive 

haemodynamic monitoring in critical emergency patients. Cardiac output 

(CO) values - measured by the standard thermo-dilution pulmonary 

artery catheter technique - were compared with simultaneously 

obtained measurements using a non-invasive bio-impedance method. 

The investigators concluded that non-invasive monitoring had provided 

haemodynamic and perfusion information previously that were 

previously available only by invasive thermo-dilution catheters. In 1998, 

a multi-centre study 167 investigated the accuracy and reliability of non- 

invasive haemodynamic monitoring when used as a front end of 

invasive monitoring in order to supply more complete descriptions of 

circulatory pathophysiology. The investigators compared a combination 

of a then new bio-impedance method for estimating cardiac output,
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standard non-invasive arterial BP, pulse oximetry, and transcutaneous 

PC>2 & PCO2 with simultaneous invasive measurements in acutely ill 

patients shortly after hospital admission. They concluded that non- 

invasive monitoring systems gave continuous displays of physiologic 

data that provided information allowing early recognition of low flow and 

poor tissue perfusion that were more pronounced in the non-survivors 

and that such systems may be acceptable alternatives where invasive 

monitoring is not available. In 1999, Velmahos et al 168 used non- 

invasive monitoring systems (bio-impedance cardiac output monitoring, 

pulse oximetry and transcutaneous oximetry) to evaluate early temporal 

haemodynamic patterns after blunt trauma, and compared those to 

invasive pulmonary artery monitoring. The investigators concluded that 

multi-component non-invasive monitoring systems had provided 

continuous on-line, real-time displays of physiological data that allowed 

early recognition of circulatory dysfunction; and that they also provided 

similar information to the invasive thermo-dilution method but are easier 

and safer to use.

Finger plethysmography provides continuous non-invasive BP 

monitoring but its use as a potential substitute for the invasive method 

has not been fully previously assessed. The goal of this study is to 

compare the reliability and accuracy of non-invasive blood pressure 

measurement with invasive femoral blood pressure during sinus rhythm 

and arrhythmias in man. There have been a number of small studies, 

which compared the two methods, albeit in different clinical settings. 

Finger plethysmography has been found to be a useful complement to

145



current vascular research techniques when compared with forearm 

vascular flow in patients with sleep disorders 169 . It has also been found 

to correlate well with aortic pressure for monitoring of external 

counterpulsation (EECP) 17°. Closing pressures extracted from carotid 

tonometry and finger plethysmography have also shown good linear 

correlation 171 . In cardiac resynchronisation therapy (CRT), finger 

photoplethysmography has been found to have high specificity in 

identifying significant changes in aortic pressure and may prove useful 

in optimisation of AV delay 172 . Many previous studies have also directly 

compared the two blood pressure measurement forms. In 1989, Parati 

et al 173 compared the blood pressure values obtained by continuous 

non-invasive finger blood pressure recording via the FINAPRES device 

with simultaneous intra-arterial monitoring both at rest and during 

performance of tests known to induce fast and often marked changes in 

blood pressure - hand-grip, cold pressor test, diving test, Valsalva 

manoeuvre, intravenous injections of phenylephrine and tri- 

nitroglycerine, application of lower body negative pressure and passive 

leg raising - in normotensive or essential hypertensive subjects. The 

study concluded that beat-to-beat blood pressure recording via 

FINAPRES provided an accurate estimate of means and variability of 

radial blood pressure in groups of subjects, and that it represented in 

most cases an acceptable alternative to invasive blood pressure 

monitoring during laboratory studies. In 1996, Hirschl et al 174 evaluated 

the accuracy and reliability of non-invasive continuous finger blood 

pressure measurement in critically ill patients using continuous non-
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invasive blood pressure measurement with the use of a finger cuff on 

the middle phalanx of the second and third fingers. Invasive mean 

arterial blood pressure measurement was done by cannulation of the 

radial artery. The conclusion was that the non-invasive finger method 

provided reliable measurements that were comparable to those obtained 

invasively, and that it may be useful in most emergency clinical settings. 

However, there were still large discrepancies (> 10 mmHg) in 8% of all 

patients between both measurements with a duration of > 3 minutes. In 

an animal study performed in 1998, Caulkett et al 175 evaluated the 

accuracy of three non-invasive blood pressure monitoring techniques 

(oscillometric technique, Doppler and optical plethysmography) in 

comparison with direct invasive intra-arterial monitoring in anaesthetised 

cats. The investigators concluded that all three techniques were useful 

for detecting trends and that out of all three non-invasive methods; 

oscillometric technique provided the most accurate prediction of direct 

systolic pressure whereas Doppler and optical plethysmography 

techniques provided a good prediction of mean arterial pressure. In 

2000, Gerhardt et al 176 conducted a study in critically ill patients 

comparing cardiac output measurements determined by thermo-dilution 

technique with simultaneous measurements obtained non-invasively 

using Portapres finger plethysmography and an aortic impedance 

model. The investigators concluded that Portapres measurements 

couldn't replace thermo-dilution cardiac output estimations due to 

fluctuations of finger arterial perfusion caused by haemodynamic 

instability in critically ill patients. In 2005, Cua et al compared BP
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measurements obtained from Vasotrac, a device that provides near- 

continuous and non-invasive arterial blood pressure monitoring, to those 

values obtained invasively via an intra-arterial catheter in post-operative 

children and demonstrated a good correlation 177 . However, all those 

previous studies were conducted in the predominant setting of 

underlying sinus rhythm and therefore all the extracted data and results 

merely reflected invasive and non-invasive BP correlation during sinus - 

or intrinsic stable - rhythm only. No previous study has looked into the 

degree of correlation of the two BP measurement methods during 

different heart rhythms and it has not been shown before if finger 

plethysmography maintains its good correlation with invasive intra- 

arterial BP during cardiac tachyarrhythmias.

As explained earlier in the thesis, the Portapres BP measurement 

system is based on the volume-clamp method, which was initially 

invented by J Penaz in 1973, and later developed further by Wesseling 

etal. in 1995.

5.1 Results analyses

As detailed in chapter 2, comparison was performed between 

simultaneously recorded Portapres and FAP values during different 

heart rhythms. Four BP components were analysed and had their 

results correlated.

5.1.0 Mean arterial blood pressure (MABP):

The absolute values of Portapres MABP were, consistently, significantly 

higher than those of FAP throughout all tested heart rhythms but the
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change in the two BP measurement systems from sinus to other rhythms 

still appeared to correlate well with each other. Out of the four blood 

pressure components evaluated, mean arterial BP achieved the most 

significant correlation during all tested heart rhythms. Figure (3.11) 

illustrates the correlation plotting of the change in MABP between the 

two BP monitoring techniques and shows scatter of the data points 

along the regression line with a strong positive linear trend. It further 

shows clear separation between sinus rhythm (top right, associated 

mostly with normal MABP values) and unstable VT (bottom left, 

associated mostly with significantly reduced MABP values) on the 

regression line. The separation between the data points of stable VT, 

pacing at 600 ms, and pacing at 400 ms was less clear, as there were 

some areas of overlap. Bland-Altman plotting of Portapres versus 

femoral invasive MABP (Figure 3.12) illustrates that, in sinus rhythm, the 

measured bias value indicated that the absolute Portapres values were 

generally much higher than those of femoral invasive BP. Despite this 

however, plotting the effect of right ventricular pacing and ventricular 

arrhythmias on the change of Portapres (Porta) and invasive MABP 

measurements relative to their sinus rhythm values (Figure: 3.16) 

appeared to show a much smaller bias value than the one calculated 

during sinus rhythm, suggesting that the change in Portapres MABP 

measured during pacing an VT appeared to closely follow that of 

femoral invasive BP.

149



5. 1.1 Systolic blood pressure:

As was the case with MABP discussed above, the absolute values of 

Portapres systolic BP were, consistently, significantly higher than those 

of their FAP counterparts throughout all tested heart rhythms but the 

change in the two BP measurement systems from sinus to other rhythms 

correlated well with each other (Figures: 3.8 and 3.15).

5.1.2 Diastolic blood pressure:

Again, similar to the mean and systolic BP discussed above, the 

absolute values of Portapres diastolic BP were consistently higher than 

those of their FAP counterparts throughout all tested heart rhythms but 

the change in the two BP measurement systems from sinus to other 

rhythms correlated well with each other (Figures: 3.10 and 3.17).

5.1.3 Pulse pressure (Blood pressure amplitude): 

BP amplitude measurements followed a similar trend to that of the 

above discussed other BP components; with significantly higher 

absolute baseline Portapres values during all tested heart rhythms 

compared to femoral invasive BP but still an overall good correlation 

between the changes in two BP monitoring systems (Figures 3.10 &

3.17).

5.2 Discussion

Although finger plethysmography has been available for some time as a 

continuous BP measurement tool, its use in clinical practice is gradually 

gaining greater acceptance as a means of monitoring blood pressure 

changes. Traditional oscillometric and auscultatory devices allow BP 

assessment only intermittently. This results in lack of detection of a rapid
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BP change, which often occurs in cardiac arrhythmias. Continuous non- 

invasive BP measurement avoids such shortcoming and provides further 

opportunities to examine the pathological role of other characteristics of 

BP such as abnormalities of the diurnal rhythm, short-term BP variability 

and baro-reflex sensitivity. Increasingly patients are anaesthetised 

during defibrillator implantation and non-invasive monitoring will reduced 

the risks of the procedure hopefully without compromising patients' 

safety.

For all the rhythms analysed, when examining the absolute BP results, 

Portapres appears to consistently give significantly higher readings than 

FAP. This is explained by the fact that the peak of the Portapres 

waveform tends to adopt a rather pointed morphological appearance 

compared to a more plateaued FAP peak morphology, but constitutes a 

major study limitation in the face of future practical implementation as 

will be discussed below. Despite this marked discrepancy in the absolute 

BP values however, the changes in Portapres BP appear to very closely 

track those in invasive femoral intra-arterial pressure, which indicates 

that non-invasive BP can potentially be a useful future tool for 

continuous haermodynamic monitoring if the limitations discussed below 

are adequately addressed. 

5.3 Study Limitations

The main limitation was that small patient numbers were studied. 

Despite the positive correlation results obtained, it remains to be proven 

that the findings are reproducible in larger groups of patients. 

Furthermore, patients were studied in the supine posture after having

151



been fasted for a few hours. This indicates that the correlation between 

the two BP forms may not necessarily remain as close in different 

clinical settings; for example, it can't be assumed that the same degree 

of correlation is maintained in ambulant patients or in the post-prandial 

state. Although we used each patient to act as their own control, we 

have not used a separate control group for this study as the setting 

made this practically difficult to implement. This represents another 

limitation in the face of clinically applying the positive results obtained. 

Another major limitation is the marked discrepancy in the absolute BP 

values between Portapres and femoral invasive pressure values 

obtained, indicating that relying on Portapres alone for continuous BP 

measurement may still not be clinically possible, for it is likely to provide 

false high baseline BP readings leading to inaccurate clinical 

assessment and subsequent wrong management of patients. We think 

that this discrepancy may be due to the fact that the two BP 

measurements were taken from two very different locations, and that 

they in fact measure different forms of BP. The femoral invasive BP was 

measured from a large central artery, thereby resulting in a central BP 

waveform, whereas the Portapres was measured from a much smaller 

peripheral finger artery resulting in a different peripheral BP waveform. 

This discrepancy may have been partially avoided if the invasive BP 

was measured from a smaller vessel like the radial artery. We think that 

until Portapres technology is improved so that it provides much closer 

absolute BP values to that of invasive BP, its practical implementation in 

the wider clinical arena will be significantly limited.
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5.4 Summary

There is a significant linear correlation between the changes in 

Portapres and femoral invasive BP values, which was maintained during 

different heart rhythms at almost the same degree of statistical 

significance. Further studies involving different cohorts of patients with 

larger numbers (e.g. the critically ill in intensive care units) are needed 

to confirm such correlation before adopting finger plethysmography as 

an acceptable accurate and indeed safer substitute for invasive BP 

monitoring. Furthermore, the absolute BP values of the two monitoring 

systems were markedly different from each other and this limitation, 

together with other limitations has to be observed before any routine 

clinical application of non-invasive BP monitoring systems.

153



CHAPTER 6



CHAPTER 6 

CONCLUSION

SCO constitutes one of the leading causes of mortality in the developed 

world. Despite the fact that people with underlying LV dysfunction or 

structural and genetic heart disorders appear to be the worst affected 

compared to other cohorts of patients, SCO - in terms of absolute 

numbers - mostly occurs in apparently healthy subjects with no 

previously known cardiac problems. A significant number of incidents of 

SCO is caused by malignant ventricular tachycardia that degenerates 

into VF. Anti-arrhythmic drug therapy can be used either intravenously 

to terminate an acute but otherwise haemodynamically stable 

arrhythmias, or for the long-term - in tablet forms - to reduce the 

recurrence rate of such arrhythmias. However, so for, there is no 

evidence that anti-arrhythmic drug therapy improves mortality and 

therefore patients who survived an arrhythmic cardiac arrest and those 

identified to be at high risk of SCO should not be offered anti-arrhythmic 

drug therapy alone. On the other hand, device therapy in the form of 

ICD implantation has been shown in a number of randomised controlled 

studies to be unequivocally superior to anti-arrhythmic drugs with clear 

mortality benefit. At present, ICD therapy is the treatment of choice in 

patients at risk of life-threatening ventricular arrhythmias. 

In the early 1980s, ICD implantation was a complex major surgical 

operation with over 10% mortality. Devices were large and were 

abdominally implanted under general anaesthesia and connected to the
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heart epicardially. Batteries would only last for 1.5 years and available 

therapy was in the form of high-energy shock only. At present, modern 

ICD systems are much simpler to implant subcutaneously with trans- 

venous endocardia! lead positioning under local anaesthesia. 

Procedural mortality is < 1%. Devices have become much smaller with 

telemetrically programmable therapy options and extended battery 

longevity of an average of seven years. Delivering inappropriate shocks 

for supraventricular or haemodynamically stable ventricular arrhythmias 

remains one of the major limitations of ICD therapy that can lead to 

major life style restrictions and occasionally severe psychological 

disturbances. The advent of dual chamber systems and the 

development of SVT discrimination algorithms such as QRS width & 

morphology, arrhythmia rate of onset, rhythm regularity and probability 

density function have reduced, but not completely abolished, the 

problem of inappropriate shocks, albeit at the expense of increased 

device cost and complexity.

Developing a reliable sensor capable of discriminating 

haemodynamically stable from unstable arrhythmias remains a 

challenging task for cardiac researchers and ICD manufacturers. 

Multiple previous studies have examined this issue exploring a variety of 

haemodynamic variables such as maximal systolic right ventricular 

contractility (dP/dt), mixed venous oxygen saturation (MVO2), right 

ventricular and right atrial pressures and coronary sinus blood 

temperature. Although some of those studies have demonstrated some 

degree of correlation between the variations in the studied variables and
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haemodynamic stability (or instability), there remain concerns about the 

accuracy, sensitivity, practical applicability and long-term effectiveness 

of those variables in discriminating stable from unstable arrhythmias. 

We studied the feasibility of using intracardiac impedance as a 

haemodynamic sensor in patients undergoing clinically indicated 

elective VT provocation studies as part of assessing their need for ICD 

therapy. We demonstrated a good linear correlation between the stroke 

impedance (SZ) and arterial blood pressure that would support, in 

principle, the use of impedance as a sensor for detecting the 

haemodynamic effects of arrhythmias. However, impedance alone may 

not allow real time discrimination of haemodynamically stable from 

unstable arrhythmias as there was some variability in the recorded SZ 

signal. The results are encouraging however, although further studies 

are required to determine the optimal impedance signal needed to act 

as a reliable haemodynamic sensor. If developed and implemented 

successfully as part of ICD arrhythmia recognition algorithms, such an 

impedance haemodynamic sensor would provide a huge step forwards 

in ICD technology. Devices could then be programmed to deliver tiered 

therapy for stable arrhythmias that do not significantly alter the detected 

impedance signal, and reserve DC cardioversion and high-energy 

shocks for more unstable rhythms that result in a significant drop in the 

detected impedance signal. Furthermore, inappropriate shocking with all 

the associated adverse psychological and lifestyle restricting effects will 

significantly diminish or possibly even disappear.
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We also studied the feasibility of using non-invasive finger 

plethysmography (Portapres) as a tool for continuous blood pressure 

monitoring in the same cohort of patients by comparing it with invasive 

intra-arterial blood pressure monitoring. We demonstrated significant 

correlation between the two techniques in monitoring BP changes, which 

was maintained during different heart rhythms at almost the same 

degree of statistical significance but the baseline absolute BP values 

however were significantly different between the two BP measurement 

systems. The findings support the view that, in principle, Portapres can 

potentially replace invasive BP monitoring but many limitations exist and 

further studies involving different cohorts of patients with larger patient 

numbers need to be conducted in order to address those limitations and 

confirm the consistency of our correlation results before finger 

plethysmography is adopted as an acceptable accurate and indeed 

safer substitute for invasive BP monitoring.

We believe that our pilot study, although conducted in a small number of 

patients, has set the foundation for researchers in the field to further 

examine two of the important issues that lie within the heart of improving 

the convenience and safety of patients' management: the use of trans- 

ventricular intracardiac impedance as an ICD haemodynamic sensor for 

arrhythmias, and the use of non-invasive plethysmographic BP 

monitoring devices as a safer alternative to invasive BP systems.
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