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157nm F2 laser characterization and application to polymer 
ablation

Abstract

The work in this thesis focuses on applications and characterization studies of the 
vacuum ultra-violet (VUV) 157nm F2 laser. The laser ablation properties of various 
polymeric materials, namely polydimethylsiloxane (PDMS), the photo-resist SU-8, nylon 66, 
ultra-high molecular weight polyethylene (UHMWPE), Lexan polycarbonate and CR-39 
polymer have been investigated. The main priority was given to Lexan polycarbonate and 
CR-39 polymer as new potential materials to explore using this laser.

A considerable component of the work is directed at gaining a better understanding of 
the underlying physics of the laser interaction in relation to surface modification, in particular 
the possible limitations on surface roughness set by mode coherence effects. White light 
interferomety, and optical and scanning electron microscopy (SEM) measurements are 
carried out to identify the processing conditions for micron scale size structures (cones) 
produced on the surface, and the realization of 'smooth' and in some instances intentionally 
'roughened' surfaces after ablation. It is shown that exceptionally well defined conical 
structures can be formed on Lexan polycarbonate and CR-39 polymer with certain laser 
processing conditions. These cones produce a circular interference fringe system with sub- 
micron period adjacent to their base as a result of walls reflections. An ablation model is used 
to analyse these fringes, and from the range of fringe visibility it is shown possible to 
estimate the spatial coherence properties of the p2 laser beam.

A preliminary investigation of ablating CR-39 that had been exposed to an alpha 
particle source is described. This polymer is widely used for detecting ionizing particles by 
use of chemical etching to reveal their damage tracks. 157nm laser ablation of chemically 
etched, radiation exposed samples showed the etched track 'pores' tended to be smoothed by 
ablation and also appeared to act as nucleation sites for cones.

A fluorescence technique using Lumilass G9 glass plate and a CCD camera was 
applied in this work to analyze the VUV laser beam. This required knowledge of using 
optical systems, a CCD camera, and capturing and analyzing bmp images for analysis in 
MathCAD. Measurements made in this way permit divergence to be found for the direct and 
the weakly focussed (asymmetric) laser output beam. Spatial coherence derived in this way is 
shown to be in reasonable agreement with that based on the cone interference result. The 
fluorescence method is also applied to characterizing small-scale beam fluctuations on the 
direct FI laser output beam. These are found to have a magnitude of a few %, a value that 
compares quite well earlier theoretical predictions and a simulation of spatial mode 
fluctuations in the narrow line-width, highly multimode FI laser.
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Introduction

CHAPTER 1

INTRODUCTION

The interaction of ultraviolet (UV) radiation with organic polymers has been the subject 

of investigation for decades, including photodegradation mechanisms, gaseous products of 

UV laser ablation, surface measurements before, during and after ablation and the theory of 

polymer ablation [1-4].

A vast number of studies have used physical and chemical techniques to characterise the 

surface of organic polymers prior to and during the onset of ablation. One of the factors that 

are important is the effects prior to the onset of the ablation. These effects could include 

bond-breaking, radical generation and trapping/recombination and thermal heating [5]. These 

would be expected to produce a surface layer which has physical and chemical properties that 

are modified from the original pristine material.

The work in this thesis was focussed on the interaction of the VUV ¥2 laser emitting at a 

wavelength of 157nm with various organic polymers i.e. Lexan polycarbonate, allyl-diglycol 

carbonate (CR-39), polydimethylsiloxane (PDMS), SU-8, nylon 66, and ultra-high molecular 

weight polyethylene (UHMWPE). The investigation was carried out on the laser ablation 

characteristics and the surface quality of the ablated materials. Typically, UV laser ablation 

was carried out with a succession number of pulses. The etching of the surface is a linear 

function of the number of pulses when the polymer is a strong absorber at the laser 

wavelength. For example; for weak absorbers like polymethylmethacrylate (PMMA) at 

248nm and polyethylene at 193nm [6], A microscopic model for ablative 

photodecomposition using variety of organic polymers at fluence as little as lOmJcm"2 was 

studied [2], where a model based on a process in order to see if a change in specific volume 

will lead to ablation without melting and determine the velocity and angular distributions of 

the ablated material. The value of etch depth per pulse is usually averaged over hundreds of
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pulses in order to minimize the uncertainties in the measurement of the etch depth. The 

average values for the etch depth per pulse are reproducible to within the uncertainties in the 

measurement of the fluence provided the absorption characteristics are well-controlled [6]. At 

the early stage of ablation research, the work was focussed on basic scientific understanding 

of the process but later more works were concentrated on the application of the polymer 

ablation.

Recent developments in cavity design and gas lifetime, together with improved output 

energy and reliability, have brought the VUV F2 lasers [7] to a position where it can be 

considered for industrial applications. The move from ArF lasers (A,=193nm) to shorter 

wavelength F2 lasers (A,=157nm), coupled with high purity VUV CaF2 optics to operate over 

extended time periods, allows the realization of sub lOOnm feature resolution to be produced 

[8]. This high spatial resolution capability obtained at this wavelength makes it an interesting 

source for machining applications, especially for producing micro-optic and micro- 

mechanical devices.

During the course of the research presented in this thesis, the following new and 

important aspects were discovered and are described:

1. Research on the interaction of 157nm F2 laser radiation with Lexan polycarbonate 

discovered cones developed on the surface and these led to interference effects in the 

form of fringe adjacent region of the base of the cones. The ablation threshold can 

be determined from the apex angle of the cones allowing a comparison with the 

value obtained from etch rate measurements. The characteristics of the interference 

fringes are related with the divergence of the laser amongst other things and this as 

will be shown has allowed the spatial coherence be determined.

2. For the first time, the interaction of 157nm laser radiation with allyl-diglycol 

carbonate (CR-39) was investigated from the point of view of its ablation 

characteristics and the quality of the VUV processed surfaces. It was observed that 

exceptionally well defined cones with sharp tips developed on the ablated surface of 

this polymer.
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3. CR-39 is a well known polymer used for recording the tracks of ionizing particles, 

and here the interaction of 157nm laser radiation with the alpha irradiated CR-39 

was studied. Surfaces on which chemically etched damage tracks were formed were 

found to initiate cone formation when ablated with the VUV laser.

4. An ¥2 beam characterisation technique based on converting from the VUV to visible 

radiation through the fluorescence of a glass plate has been developed. Two- 

dimensional beam profiles could then be recorded using a CCD camera and 

subsequently analyzed using MathCAD software allowing indirect measurements of 

spatial coherence, and beam fluctuations to be assessed.

The following outlines the organization of the thesis;

After the introduction in Chapter 1, Chapter 2 goes on to provide a short review of the 

past research on the laser ablation development using 157nm laser with organic polymers. 

Chapter 3 describes the 157nm laser ablation characteristics of the polymers used i.e. 

polydimethylsiloxane (PDMS), SU-8, nylon 66, UHMWPE and Lexan polycarbonate. The 

ablation characterisation focussed more on the Lexan polycarbonate as this found to develop 

micro-scale cones on the ablated surfaces. The etch depth per pulse versus logarithmic 

fluence plots have been used to determine the ablation threshold of the polymers. The linear 

region of the plot can be fitted according to the Beer's Law. This has given rise to the 

suggestion that the absorptivity can be actually measured from the gradient line to give an 

effective absorption coefficient [9]. The ablation threshold obtained using this method has 

been compared to the threshold obtained by calculating the apex angle of the cones [10] 

produced in polycarbonate at 157nm laser. The examples of the capability of 157nm ?2 laser 

in micro-machining organic polymers as nylon 66, polymethylmethacrylate (PMMA), and 

Lexan polycarbonate has been explored.

Chapter 4 describes the interaction of 157nm laser with the polymer CR-39. Here, the 

laser ablation characteristics and the measurements of ablation threshold from etch rate and 

cone apex angles are reported and the methods compared for pristine material. Additional
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work on material that was chemically etched following alpha particle exposure is then 

described, where the 157nm laser was used to ablate these physically modified surfaces.

Chapter 5 describes the surface characterization in terms of roughness of ablated PDMS, 

Lexan polycarbonate and CR-39. An attempt is made to link theoretical estimates of 

fluctuations in the highly multimode F2 laser beam with the experimental roughness results 

for these materials. The experimental results obtained from white light interferometry were 

analyzed on selected cone free regions of the surface of Lexan polycarbonate and CR-39.

¥2 laser beam characterisation is described in Chapter 6, where the beam profile of the 

laser was captured and recorded using a CCD camera. The VUV radiation was converted to 

visible fluorescence using a Tb3+ doped glass (Lumilass G9). The properties of the beam 

profiles captured in this way were then analyzed in MathCAD. This chapter provides 

experimental information on the optical set up, the CCD camera calibration and its capability 

to record the beam image, and fluorescence saturation effects. The fluorescence technique 

used here, will provides the spatial coherence and fluctuations measurements from full-width 

half maximum (FWHM) of the beam.

The final Chapter (Chapter 7) presents a summary of conclusions drawn from the 

research conducted and also outlines some possible avenues for future work that have grown 

out of these activities throughout this work.
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CHAPTER 2

RESEARCH OVERVIEW

2.1 Introduction

Since 1960 when the demonstration of the first laser emission in ruby at 694.3nm was 

reported by Maiman [1], attention rapidly shifted to obtain emission at other wavelengths. 

Much research has been conducted on laser emission at visible, near infrared and infrared, 

and UV (excimer) wavelengths but extension to the vacuum ultraviolet (VUV), at 157nm is 

quiet recent.

Ultraviolet laser emission can be generated from numerous atoms, ions and molecules in 

pulse and CW gaseous discharges. The emission by a short-lived molecule that is bound in an 

upper state but dissociative in its ground state is termed excimer emission. An important class 

of lasers is made up of transient rare gas halide molecules consisting of one rare gas atom 

(e.g. argon, krypton, or xenon) and one halogen atom (e.g. fluorine, chlorine, or bromine). 

These are called rare gas halide excimer lasers. Excimer lasers can be operated with different 

gas mixtures to produce different output wavelengths. The most important excimer lasers are 

listed in Table 2.1 [2]:

Type

H F2

ArF
v>^ : - '• 'L^*.T? '' : ~ ' ' 

^-1*

XeCl

XeF

Wavelength

157nm

193nm

' 248nm g

308nm
- ,. , . '•amnSfitKisfifi. -
351nm

Table 2.1: Excimer lasers with output wavelengths showing the wavelength from 157nm to
351nm.
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Excimer lasers were first demonstrated in the mid-1970's where they became progressively 

important to many applications and the most powerful practical source of ultraviolet laser 

radiation. In the present work, the focus was on the so-called ¥2 'excimer' laser emitting 

principally on the 157nm VUV transition.

Studies of radiative relaxation of excited rare gas atoms and halogen or rare gas halide 

(RGH) molecules started as early as 1975 when Velazco [1] confirmed the electronic states in 

excimer laser emission and led to the suggestion that RGH molecules might be the source of 

efficient laser emission at UV wavelengths. These lasers provided output ranging from near- 

UV through the vacuum ultraviolet (VUV), short duration emission pulses, energy measured 

at tens to hundreds of millijoules per pulse, and pulse repetition rates sufficient enough to 

produce useful average power [3]. Advantages of RGH lasers also include [1]:

i) low density in the cavity medium, which can support high intensities without self-

focussing effects,

ii) that they are scalable to operate in active cavity, 

iii) operation at UV wavelengths, 

iv) low spatial and temporal coherence minimizing laser speckle and fringe formation

on imaging,

v) operation at high repetition rates, 

vi) high pulse energies available from large volume devices (104J).

The earliest work using the F2 laser was published as early as 1977 by Rice et al [4]. 

They reported the observation of two new emission features following electron-beam 

excitation of He/p2 and Ne/F2 gas mixtures. They obtained both a spontaneous and stimulated 

emission band system between 1500 and 1600°A attributed to transitions in molecular 

fluorine. A microdensitometer band of spontaneous -emission spectrum of the 1500-1600°A 

molecular fluorine band observed in the electron-beam-excited Ne/p2 and He/p2 mixtures.

It has now been nearly thirty years since the first publication reported using UV excimer 

lasers to process polymers in the form of conventional resist and as 'self-developing' resist 

[5-7]. Srinivasan and Mayne-Banton [6] have reported ablation of polyethylene terephthalate 

(PET) using a 193nm ArF laser. Self-developing photoresist using a vacuum ultraviolet F2 

excimer laser exposure was reported as early as 1985 by Henderson et al [8], where the 

performance of the self-developing resist nitrocellulose was studied with energy density 

greater than 25mJcm"2 . Scanning electron microscopy (SEM) indicated little or no residue
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was produced on the ablation area and it was possible to produce a clean, fine line 

approximately 200nm wide. This pattern was created by exposing a 180nm thick, 13.25% 

nitrogen content nitrocellulose film on Si substrate with two pulses at fluence of-lOOmJcm"2 .

A number of reviews have appeared over the past decade on the progress of research and 

development on polymer ablation with UV lasers. For example, as first reported during 

1980's by Srinivasan [9], the ablation process is believed to be a volume explosion in which 

small molecules are expelled from the polymer surface. In 1990's era, a review of various 

polymer ablation studies using excimer lasers was reported by Dyer [10]. For example, the 

interaction of ArF excimer laser irradiation with polyethylene was reported by Dyer and 

Karnakis [11] where a phenomenon called incubation was observed [12] on low density 

polyethylene (LDPE) , where the first few pulses were applied to the material gives no 

etching. However, after these first few pulses depending upon the fluence, a constant etch 

depth per pulse can be seen. At this stage of development a broad field of scientific 

applications for laser polymer ablation had evolved and processing, including material 

removal, surface modification and film deposition [3], reported.

2.2 Laser Ablation Studies

Studies of laser ablation of the polymer materials started in the early 1980's with 

Srinivasan's work that used a 193nm ArF excimer laser to etched directly polymeric 

materials. Since then [7, 12, 13], research devoted to understanding the science and 

developing the technology behind UV laser ablation of polymeric materials has grown to be 

surprisingly broad. Emphasis has been placed on the measurement of the ablation rate X as a 

function of fluence. A simple analysis based on Beer-Lambert law then leads to the 

prediction that:

where aeff is the effective absorption coefficient at the laser wavelength. Equation 2.1 

predicts that X should be linearly related to hi F and that the gradient of the line will be aef/'. 
FT is the ablation threshold found from the intercept with the In F axis.
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Among conventional polymers that are often used in laser ablation studies are 

polymethylmethacrylate (PMMA), polyimide (PI), polytetrafluoroethylene (PTFE), 

polyethylene (PE), and polycarbonate (PC). UV photo-ablation of organic polymers has two 

important characteristics that form parts of on-going research; first, the investigation about 

fundamental mechanisms involved in ablation, whether bond breaking proceeds through 

direct photochemical or by highly localized thermal reaction [10]. Secondly, the potential of 

laser-processed polymeric materials for applications in micro-electronics, opto-electronics 

and micromechanical machining [10].

The fundamental characteristics of laser photo-ablation of polymers can be summarized 

as [10];

i) A highly localized spatial interaction;

ii) An ablation threshold for significant removal of material;

iii) Minimum heat-affected zone (HAZ)

The first point describes the contact or projection techniques experiment from the range 

of laser wavelength (A,=193nm-350nm, 157nm for the Fa laser) with appropriate optics to 

produce submicron definition. The third, fourth, and fifth harmonics of the Q-switch 

NdrYAG laser provide potentially alternative wavelength for the same objective. A very 

shallow depth of material removal is possible for UV or VUV ablation of many polymers 

because of their high absorption coefficient (of order 104-105 cm" 1 ). It is possible to modify 

the surface in a highly controllable way, usually with etch rates of <100nm per pulse [10]. 

This spatial localization gives a unique advantage to UV lasers for many polymer 

micromachining applications.

The ablation threshold FT (energy per unit area per pulse) (Figure 2.1) is dependent on 

the polymer involved and the laser wavelength. The ablation threshold FT for many polymers 

is reported to be in a range of a few tens to a few hundred millijoules (mJ) per square 

centimetre (cm2). The absorbed energy density needed to produce ablation can be expressed 

as the product of ablation threshold (FT) and effective absorption (ae/f). For example; ablation 

threshold of polyimide using 157nm laser is found to be 25mJcm"2 , with <xeff= ISum'1 [14].

The surface modification of polymer materials will clearly be restricted to a depth of 

order a,,/1 . There are thus benefits in having a large coefficient aeff since [10];

i) This reduces the thermal loading on the polymer surface (FT a
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ii) The initial depth aeff' heated to a high temperature is small, as is any radiation

modified zone 

iii) Conduction cooling to the bulk polymer is fast, since t a aeff'2 .

•8
I
EL)

F<FT

Finite 
but very 
low etch 
rate

1 . Fx = ——In —

t InF

Threshold fluence, FT

Figure 2.1: Etch depth per pulse x as a function of In (Fluence) for ablation of polymer when Beer's
Law is applicable. FT is the ablation threshold of the polymer and the gradient of the line defines the

inverse of the effective absorption coefficient (aejg)-

2.3 Interaction of UV Lasers with Polymer Materials

It was first reported in 1982 [12], that when a pulsed UV-laser irradiated organic 

polymer, the material spontaneously etched away to a depth of 0.1 um to several microns. 

Where the starting process is to measure the depth of the material removed from the polymer 

surface by each of laser pulse, that is so-called etch rate per pulse. Results are now available 

on the variation of the etch rate (x) with fluence (F) for a wide range of polymers and laser 

wavelengths. The depth of ablation per pulse can be derived by measuring the depth of 

ablation crater d, and dividing this by the number of exposure pulses n, giving x = d/n as the 

average value.

Srinivasan et al [9] analyzed the etching of several polymers by ultraviolet pulse laser 

radiation. Ablation is believed to be a volume explosion, and ablation threshold which is 

expressed in terms of 'useful' photon density in the ablation volume falls within a narrow

10
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range (±50%). Experimental data which relates the etch depth per pulse to the fluence of the 

pulse have been analyzed, where the first attempt to take the temporal width of the laser pulse 

was published by Keyes et al [15].

Short pulses of far-ultraviolet (<200nm) laser radiation are capable of etching organic 

polymer films without melting the remaining sample. When a pulse of laser radiation 

(<200nm) wavelength with a fluence above threshold value irradiates the polymer films, the 

material at the irradiation site is spontaneously etched away to a depth of 1000°A or more, in 

a process termed ablative photodecomposition [13]. The mechanism proposed for this 

ablative photodecomposition occurs in a variety of organic polymers, and attributes ablation 

in volume that accompanies the photolysis of the polymer.

2.4 Surface Modification During and Prior to Ablation

A number of studies have been reported characterizing the physical and chemical 

properties of the surface of polymers prior to and after the onset of ablation at UV laser 

wavelengths. Photoetching can produce a variety of morphological features on the ablation 

surface. These include conical structures that have been seen on a variety of polymers under 

UV laser ablation, and in polyimide, PET, polyethylene and nylon 66 exposed using the 

157nm VUV laser [14]. The ablation threshold can be determined from the formation of the 

cones that develop on the surface. To do so the full apex angle 6m of the cone is related to the 

ablation threshold, (F-f) and applied fluence (F) according to:

0. =2sin (2.2)

where RO is the reflectivity at normal incidence to the polymer surface whereas R(9m) is the 

reflectivity loss on the cone wall at the half cone angle (#m/2).The threshold obtained from 

this method is often less than ablation threshold by up to a factor of two. Table 2.2 shows the 

comparison threshold obtained from measured cone apex angle (Fr) and thermocouple

11
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measurements for polyimide, polyethylene terephthalate (PET), polyethylene, and nylon 66 
using the 157nm laser.

Polymer FT F'r

Polyimide 23±7 36±7
Polyethylene terephthalate (PET) 19±6 29±6
Polyethylene 25±7, 67±14
Nylon 66 33±7

Table 2.2: Comparison of thresholds measured by cone apex angle (FT) and thermocouple
measurements (F'T) [14].

It has been suggested [14] that this discrepancy is due to the difficulty in measuring 
etching depths near threshold compared to the high sensitivity required for thermocouple 
measurements. Figure 2.2 shows the scanning electron microscopy images of the cone 
formation; 300 pulses at 0.1 Ucm"2 for nylon 66 and PET using 157nm laser.

(a)

12
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(b)

Figure 2.2: Cones structures produced in (a) nylon 66 and (b) PET using 300 pulses at 0.1 Ucm 2 with
157nmF2 laser[\4].

The ablation of PET using the 157nm laser produced gaseous products consisting of CO, 
CC>2, CH4, C2H2, C2H4, C4H2, C4tLt, benzene and CKbCHO, similar to those found in the case 
of exposure with the XeCl laser and ArF laser [16]. The ablation threshold can be determined 
by measurements of the thermal loading of thin films and of the apex angles of particulate- 
induced cone structures. The value of threshold obtained by thermal loading measurement 
gives 29±6 mJcm"2 . From this work, it was notably that using p2 laser produces relatively 
higher CO/CO2 and C2H2/C2H4 ratios than other excimer lasers i.e. XeCl (308nm) and ArF ( 

193nm).

Since the work reported earlier [14, 17] on cones and the threshold fluence derived from 
the apex angle of the cone using XeCl and F2 laser, it can be seen that particulate-induced 
surface microstructures arise from small particles that are redeposited on the surface from 
ablation products or deliberately added on the polymer substrates. It has been reported that 
the symmetry of cones can be influence by the polarization dependence of reflection at their 
walls. A change from circular cross-section with unpolarized radiation to an elliptical 
elongation when linearly polarized radiation is used has been reported by Hopp et.al [18] on 
the polycarbonate surfaces ablated using the 193nm ArF excimer laser. Several published 

studies on the cones formed on ablated polycarbonate using the 193nm ArF excimer laser 
have appeared [18, 19]. The optical properties of bisphenol-A polycarbonate at wavelengths

13
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down into the VUV have been reported by Philipp et al [20], so that optical constants 

obtained by applying Kramers-Kronig analysis are available for modelling wall reflections 

effects. Lexan polycarbonate is used in micro-optical applications because of its superior 

resistance to impact and heat and its relatively high refractive index for a commercially 

available thermoplastic. There appear to be no previous reports of cone formation on 

polycarbonate ablated surfaces at the 157nm ¥2 laser wavelength; this phenomenon is 

discussed further in this thesis.

An application using the I57nm ¥2 laser for the fabrication of microstructures in polymer 

substrates has been studied by Stuke et al [21] using silicon membrane contact mask. This 

process allowed the flexible and rapid prototyping of micro-reactors and micro-channel 

system for applications in genome analysis and biotechnology. Polymers used were 

polymethylmethacrylate (PMMA), polycarbonate (PC) and polystyrene; with fluence applied 

-lOOmJcm"2 etch rates were 140nm per pulse for polycarbonate and very smooth surfaces 

with a roughness in the nanometre range was reported on a micrometer lateral scale. Glass 

miroarrays have also been fabricated using 157nm laser ablation [22]. These serve as 

templates for replication using polydimethylsiloxane (PDMS), with possible applications in 

printing arrays of molecules. PDMS itself has also been micromachined using 157nm and 

193nm lasers [23, 24], because of its importance in many microdevice applications. An 

ablation threshold of 115±30 mJcm"2 is reported for this material at 157nm laser [23].

No published data was found on the 157nm laser ablation characteristics of the CR-39 

polymer in a pristine state or when it had been exposed as a track detector. Allyl-diglycol 

carbonate (CR-39) is a useful polymer for etched track detection because of its sensitivity and 

resolution [25]. However, there are a number of studies reporting etching characteristics of 

CR-39 with ultraviolet laser irradiation e.g. by Dwaikat et al [26] using a pulse ultraviolet 

Indium-doped Yttrium Aluminium Garnet (UV-In:YAG) laser (X,=266nm, pulse energy of 

42mJ/pulse at repetition rate of lOHz), Shahid et al [27] using a 10.6um CO2 laser with 

multiple pulses of energy 1-3J, and Tse et al [28] reported the effects of CR-30 irradiated 

with UV at 257nm at atmosphere for lOhours at a distance of 5cm with various the conditions 

of experiments .Studies of the ablation threshold for CR-39 by Kukreja [29] found this to be 

25Jcm"2 when treated with a CW-CO2 laser.
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2.5 Micromachining with Fa Lasers

Microlithography can be described as lithography in manufacturing integrated circuits. 
Microlithography started as optical lithography, using lamps for generating the image of a 
mask pattern in the photo resist on a wafer [30] but progressed to UV laser sources in the 
search for additional resolution. The demands of excimer laser technology are unique for the 
lithography technique and the need for shorter exposure wavelengths spurred important 
developments in ¥2 excimer lasers that have in turn benefited other areas. In particular 
reliable, high repetition rate devices have become available for use not only in scientific 
studies but also in technological applications. As well as the potential advantage in 
conventional resist processing [31], the short wavelength and high photon energy (7.9eV) at 
157nm, make possible high-resolution micromachining of many materials [32], notably 
polymers and glasses, by ablation.

Micromachining can be implemented by patterning using contact-masks or preferably, 
non-contact projection techniques, where a mask containing the required pattern is imaged on 
the surface to be ablated. The choice of the laser wavelength used plays an important role, as 
thermal loading on the surface can be minimised by using a wavelength that is strongly 
absorbed and consequently has a low ablation threshold. This can minimise softening 
(melting) effects that may well act to degrade microstructures [10].

Many published results confirmed the micromachining capability of the 157nm laser in 
various materials such as glasses [33], insulators [34], and in polymers such 
polytetrafluoroethylene (PTFE) [35]. The relatively strong absorption at this wavelength leads 
to low ablation thresholds allowing depth removal at nanometre level and production of sub- 
micron features with no evidence of surface micro-cracking, confirming that with appropriate 
optical systems the VUV F2 laser is suitable for machining applications [36].

Stuke et al [37] demonstrated prototype microstructures using an absorbing liquid as a 
mask in the evacuated chamber at 157nm. The absorbing liquid was applied directly to the 
surface of PMMA in the pattern administered by a micro syringe. The fluence was set to 

0.4mJcm"2 on the image plane.
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In many cases it has been found that 157nm laser micromachining of polymers, ceramics 

and glass that are difficult to process at other laser wavelengths, yields cleaner and better 

defined ablation features. This is so even in tough or high-band-gap materials such as PTFE, 

and fused silica. The choice of laser wavelength use in the micromachining application is 

crucial as appropriate laser will minimize thermal loading on the film reported earlier [10].

The capabilities for machining microstructures on polymethylmethacrylate (PMMA) 

with sub-micron period [33], with 157nm Fa laser, and in other material systems such as 

chrome films on CaF2 and SiC>2 (fused silica) substrates was reported by Herman et al [38]. A 

projection system was used with 30mJcm"2 fluence at image plane. The 157nm p2 laser was 

applied to exploit the strong interaction of 7.9eV photons and it was indicated that there was 

promise for generating high resolution micro-patterns on Cr-on-CaF2 and Cr-on-SiO2 

photomasks.

2.6 Characterisation of UV Beam Profile

To optimize the laser beam characteristics, a measurement of beam profile is 

fundamental to many material interactions processes. Ideally, the measurement of beam 

profile will provide quantitative output throughout the beam at a usefully high sampling rate. 

This is relatively easy for continuous wave (CW) laser outputs with intensity distributions at 

visible, near IR and near UV wavelengths. However, the measurement of beam profile in the 

deep UV offers additional difficulties because of the low UV sensitivity of standard CCD 

cameras. The small aperture of CCD cameras is also incompatible with the large beam size of 

the most of excimer lasers, unless the lens arrangements are used. A more general solution in 

the beam profile measurement of the VUV laser, involves using a fluorescent material to 

convert the VUV radiation into visible radiation, which can be detected with a conventional 

CCD camera. Transparent materials such as MgO or in present work, Lumilass G9 glass, are 

ideal as fluorescent converters because of these materials can be doped with a low level of 

transitions metal ions such as Tb3+ and Ni2+ . In the simple arrangement shown in Figure 2.3 

an image of the aperture is created on a fluorescent glass as a conversion medium, and a CCD 

camera in-line monitors the fluorescence. A video frame grabber with image analysis 

software is used to capture the image.
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Fluorescent 
Plate

Imaging Lens

Figure 2.3: An example of beam profiler using a fluorescent glass to convert UV to visible 
radiation, and use ofCCD camera to record the intensity [39].

Whilst the output power (energy) of the beam can easily be measured accurately with for 
example, a calorimeter or joulemeter, there are often problems pertaining to the absolute 

spatial dimensions of the output beam. In recent years, these problems in measuring spatial 
profile of the output beam has been solved, albeit at considerable expense, using vidicon and 

reticon detectors and also photodiode arrays which can be used to detect and record the two- 
dimensional beam profile at various wavelengths [40].

The simplest approach to profiling and recording the output beam, involves looking 

directly at the laser beam and recording the radiation with a CCD camera. This is often not 

practical at UV laser radiation because of the low UV sensitivity of the CCD cameras itself. 
Hence, use of fluorescent material to convert UV laser radiation into visible emission, which 

practically can be detected with a conventional CCD camera. In 1990, Davis [1] reported, the 

use of a UV sensitive film with a resolution exceeding 103 lines mm" 1 to image the beam 
from excimer lasers, with a range of 0.1-200mJcm"2 . As an alternative, systems consisting of 

a fluorescent crystal which the host is glass with low levels (ppm) of transient metal ions such 

as Tb3+ was used recently [41, 42] for the imaging the output beams at 157nm [42] and 
308nm [42] respectively. Using this technique gives better characterization compared to 

simple conventional methods like burn paper which has limitations, in that it only offers a 

convenient way to view a single shot or aid laser alignment. These papers have small 

dynamic range, non-linear thermal properties and are unable to provide a quantitative 
intensity distribution for the beam.
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CHAPTER 3

SURFACE MODIFICATION OF POLYMER MATERIALS INDUCED BY 

157nm F2 LASER IRRADIATION

This chapter describes the polymer surface modification and ablation induced by 157nm 

p2 laser irradiation, discusses the experimental system arrangement and the analysis of the 

results obtained from optical micrographs and scanning electron microscopy. The results 

were analyzed from the experimental point of view and supported with simulations in 

MathCAD.

3.0 Introduction

There is currently considerable interest in exploiting the unique source properties of the 

157nm VUV ?2 laser in applications such as lithography [1] and in micromachining [2] 

various materials, including glasses [3] and various types of organic polymers [4].

The capabilities of this short wavelength laser for producing high spatial resolution, 

combined with its high average power and good lifetime, make it now a viable tool for use in 

industrial processes.

In this chapter, the surface modification of various organic polymers induced by 157nm 

laser has been investigated and the potential of sub-micron feature definition on the polymer 

materials by ablation is demonstrated. Polymers have potential in many practical applications 

including micro-electronics and micromechanical devices [4] and there are now also many 

biopolymers that find use in medical technologies [5].

Though most previous effort has been concentrated on polyimide and 

polymethylmethacrylate (PMMA) which find use in semiconductor packaging technologies
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and as a resist base respectively, many other organic polymers have been investigated, for 
example; polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polycarbonate 
(PC) and nylon 66 exposed at various laser wavelengths. In the present research, several 
polymers have been exposed to 157nm laser radiation, including polydimethylsiloxane 
(PDMS), the photo-resist SU-8, nylon 66, ultra-high molecular weight polyethylene 
(UHMWPE), Lexan polycarbonate (PC) and allyl diglycol carbonate (CR-39). The CR-39 
polymer will be explained details in Chapter 4.

In this chapter, the basic parameters characteristic of the laser ablation process were 
determined for these materials i.e., the etch rate versus fluence, and hence the ablation 
threshold and the effective absorption coefficient, with the 157nm p2 laser. Additionally, the 
ablation threshold for the polycarbonate (PC) sample was obtained from the apex angle cones 
formed induced at this wavelength. Interference effects arising from reflection off the walls 
of microns sized cones were also studied experimentally and using modelling.

3.1 Polymer Characteristics

The nylon 66 and UHMWPE samples used were obtained through the collaborative 
work with the Engineering Department at the University of Loughborough.

Most of this research concentrated on the interaction of the VUV 157nm FI laser with 
polycarbonate Lexan (PC) and CR-39. These materials have interesting potential in various 
applications, e.g. polycarbonate is used to make microlenses in large and super-large area 
optical films [6] and CR-39 finds optical use as well as being suitable for 'track-etch' 

radiation detectors.

3.1.1 Polydimethylsiloxane (PDMS)

Polydimethylsiloxane (PDMS) is a polymer that has important applications, and in 
particular, is widely used for replication, allowing micro-structures for use in, for example, 
micro-fluidics to be moulded from masters that have surface relief. It has useful properties 
including good thermal stability; resistance to UV radiation and relative chemical inertness,
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low surface energy, a good dielectric strength (making a good insulator), and maintains 
physical properties over a useful wide range of temperatures [7] .There is interest in ablation 
patterning this material using UV and VUV lasers and also in using UV radiation to modify 
its surface properties. The latter may permit the polymer surface to be altered from 
hydrophobic to hydrophilic without etching or physical structuring. PDMS has a specific heat 
of c =1100Jkg" 1 K" 1 , a density of p =1030kgm"3) and refractive index to normal incident of 
light of n (1.445) [8] at ~430nm.

The chemical formula of PDMS is (H3C)3SiO[Si(CH3)2O]nSi(CH3)3, n being the number 

of repeating monomer [SiO(CH3)2] units. The silicon atoms will generally have two carbon 
based pendant groups (R) to complete its octet, R referring to the methyl group (CH3) as 
shown in Figure 3.1.

Figure 3.1: Siloxane repeat unit (R=CH3)

3.1.2 Photo-resist SU-8

Negative photo-resist SU-8 is a very viscous polymer that can be spun or spread over a 
thickness ranging from 1 um up to 2 mm. This resist has been specifically developed for ultra- 
thick, high-aspect-ratio MEMS (Micro-Electro-Mechanical-Systems) type applications using 
standard lithography equipment. A well-known technology for this applications is LIGA 
(Lithographic, Galvano-formung, Abformung), which includes three processes; X-ray 
lithography, micro electroplating, and micro embossing [9]. SU-8 negative type photoresist 
can easily be patterned using UV photolithography. SU-8 has a density of p=1190kgm~3 . 
SU-8 is based on an epoxy; a term is referring to a bridge consisting of an oxygen atom and 
two other atoms, usually carbon. Such a structure is called 1, 2-epoxide. An epoxy resin is 
defined as a molecule containing one or more 1, 2-epoxy groups, as shown in Figure 3.2 

below.
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CH2 

Figure 3.2; 1, 2-epoxy ring.

3.1.3 Nylon 66

Nylons are versatile polymer materials and have been used in various commercial 
products ranging from carpet fibres, ropes and parachutes to gears, casings and even spatulas. 
Nylon 66 is highly crystalline, chemically resistant material with good mechanical strength, 
good abrasion resistant and self-lubricating properties. Nylon has a density of p = 1140kgm~3 
and specific heat of c = l67QJkg~ l K~ l [10]. Nylon 66 is often referred to as 

poly(hexamethylene adipamide) and has the repeat structure shown in Figure 3.3.

H 

H-i—N———(CH 2 )6 ——N——C——(CH2)4——C—hOH

n

Figure 3.3: Poly(hexamethylene adipamide) or Nylon 66.

3.1.4 Ultra-high molecular weigh polyethylene (UHMWPE)

Ultra high molecular weight polyethylene (UHMWPE) has a high degree of both 
linearity and crystallinity, and a molecular weight of the order of 6-7 million atomic mass 
units. Because of its high degree of chain entanglement it has a very high melt viscosity. 

UHMWPE is also insoluble in all organic solvents at room temperature, and even at elevated 
temperature is only sparingly soluble in a limited range of solvents (e.g. decalin). The 

UHMWPE used was pure, and had average molecular weight of 5x106 g/mol and a density of 
930kgm"3 [11]. The UHMWPE used was in sheet form of 200mm2 surface area.

UHMWPE (Figure 3.4) with the repeat monomer unit of-CH2-, is a material employed 

in many scientific fields, such as bio-medicine and the micro-engineering[l 1].
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-4—CH,——CH

\ 'n 

Figure 3.4: Structure of repeat monomer (UHMWPE) with n greater than 100,000.

3.1.5 Lexan Polycarbonate (PC)

Polycarbonates are a particular group of thermoplastic polymers that have attractive 
properties in terms of temperature resistance, impact resistance and optical quality and find 
use because of these and their process ability and reasonable cost. They are the group of 
polymers having functional groups linked together by carbonate groups (-O-(C=O)-O-) in a 
long molecular chain. The functional group of Lexan polycarbonate (PC) polymer is shown 
in Figure 3.5 below.

CH3 

Bisphenol A

Figure 3.5: Functional group of polycarbonate lexan (PC)

The characteristics of polycarbonate are similar to those of polymethylmethacrylate 
(PMMA; acrylic), but polycarbonate is stronger and more highly transparent to visible light 
and has in fact better light transmission characteristics than many kinds of glass. The 
polycarbonate (PC) used in this work was Lexan from Goodfellow Cambridge Limited in the 

form of 3mm thick sheets. It has a density of p =1130 kgnT3 and specific heat of 
c=1170Jkg'1 K- 1 [12].
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3.2 Experimental Arrangement

3.2.1 Sample preparation

In this work, only PDMS bulk samples need a preparation set-up and these were 
prepared by mixing a base of PDMS precursor (Dow Corning Sylgard Elastomer 184 base) 
and a curing agent in proportions of 10:1. The liquid mixture was placed in an evacuated 
chamber to discharge bubbles and to eliminate oxygen in the samples. PDMS siloxane base 
oligomers contain a vinyl group and curing agent that contains a proprietary platinum-based 
catalyst to produce addition of SiH bonds across the vinyl group. Mixing the base and curing 
agent leads to the formation of Si-CH2-CH2-Si polymeric linkages. Raman spectroscopy can 
be used to study bond groups in PDMS and will be discussed further in this chapter. 
Following mixing the base and curing agent it was poured into a master that was to be 
moulded and was then cured at 80°C for 24 hours. The resulting material formed in this way 
was highly transparent, colourless, and homogenous in its bulk and could be peeled away 
from the master leaving a surface replica.

3.2.2 Experimental set-up

A 157nm VUV F2 laser (Lambda Physik LPF 200) which produced output energy of up 
to 35mJ in an llns pulse (full-width at half-maximum) was used to expose the various 
polymer samples. The charging voltage of the laser may could be varied in IkV steps from 
21kV to 26kV and this allowed the laser energy and hence fluence at the target to be varied. 
The full-angle beam divergence of the direct output beam was ~3mrad in its narrow 
dimension and ~8mrad in its long dimension.

The polymer samples were held on a motorized stage, which was capable of movements 
in the x-y-z directions in increments from 1mm to lum under computer control. Due to the 
high absorption of the 157nm wavelength in oxygen in air, the laser output had to be 
delivered either in vacuum or in a rare gas such as Argon. In these experiments the target was 
placed in a chamber that was capable of being evacuated down to 1x10"5 mbar. The chamber 
was evacuated using a dry pump and the pressure was measured using Edwards
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Pirani/Penning 1005 pressure gauges. The chamber could also be purged with He or Ar gas as 
an alternative for beam delivery but in these experiments this was not used. Figure 3.6 shows 
a schematic diagram of the Fa laser experimental set-up.

Evacuable chamber

\ \ \
Lens Mask Laser beam

Motorized SamP le holder 

staee

Figure 3.6: F2 laser experimental set-up

The laser pulse energy was measured using a Molectron pyroelectric joulemeter 
(calibration factor = 34mJ/V) coupled to an oscilloscope (Hewlett Packard Infinium 
SCOP07). Using the joulemeter calibration, the fluence was calculated from

FluencefjnJ I cm 2 ) = Kx34 (3.1)

where V (volts) is the measured voltage and A (cm ) is the irradiated area of the sample. In 
this experiment, the joulemeter was positioned in the evacuated chamber between the lens 
and target area, before and after the experiment in order to determine and average value for 
the energy. A rectangular aperture placed in the beam path was used to select the region of 
quasi-uniform fluence from the laser output. A calcium fluoride lens (CaFa) with a focal 
length f » 90mm was then used to project a de-magnified image of this aperture to increase 

the fluence at the sample. The magnification M and object to lens distance, So, and image to 
lens distance, Sj, are related using (3.2);

(3.2)

and the Gaussian lens equation (3.3);
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(3.3)

M must be chosen with the constraint that distances Si and So should fit within in the 

chamber. An objective aperture of dimensions of 2mm by 4mm was positioned in the most 

uniform part of the output beam of the F2 laser. A magnification of -O.lx to ~0.15x was 

chosen as this gave adequate fluence gain and was consistent with the chamber dimensions. It 

was important to determine the location of the image plane for this optical system. This was 

done by ablating a polyimide film located at various distances from the lens. Polyimide 

(0.125mm thick sheet) was used as the target because it was readily available and has a low 

ablation threshold at 157nm. Following a sequence of exposures the lens was cleaned in order 

to minimize the build up of contaminants on its surface. In this experiment, as the depth-of- 

field for this demagnification was « ±0.05mm, redefining an image plane was important as it 

could change up to 0.5mm when the lens is re-positioned. The best image plane was 

determined by moving the film in increments of 0.01mm over a range of 1 .Omm. Thirty sites 

were irradiated with SOpulses each at a laser charging voltage of 26kV and lOHz repetition 

rate. The ablation sites on the polyimide were then viewed using an optical microscope 

(Leica DMLM) with ±2um depth resolution. The clearest and sharpest image found in this 

way was taken to define the best image plane and the sample surfaces were then positioned in 

this plane. An example of the 'best image' is seen in Figure 3.7. The ablated area was found 

to be 0.18 mm x 0.37 mm (±0.002 mm resolution), and was used in equation 3.1 for fluence 

calculations.
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Figure 3. 7: The best 'ablation' image onpolyimide sample for image plane determination. The 
line in the middle is due to a wire place on the aperture to assist focussing.

A white light interferometer (VEECO-WYKO NTH00) was used to quantitatively 
characterize the ablation sites produced in the samples. This optical profiler gave ablation 
depth information allowing estimates of the threshold and etch rate for samples exposed at 
157nm to be made. It also permitted an examination and quantification of surface roughness 
produced by ablation and the influence that fluence and number of pulses had on this. Raman 

spectroscopy of the PDMS ablation sites was used in an effort to determine to what extent 
vibration peaks of the vinyl group were changed. The investigation of Raman shift used an 
Olympus BH2-UMA microscope coupled to a Renishaw 1000 Ramascope. As the excitation 
source, a diode laser was used at 780nm. The Raman microscope, prior to use, was calibrated 
using silicon, which has a known peak at 521.09cm" 1 . The PC samples were characterized 
further using Scanning Electron Microscopy (SEM) for the morphology of the samples after 
being irradiated using the 157nm laser. SEM images were obtained using a Zeiss Evo 60 

Scanning Electron Microscopy (SEM).
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3.3 Results and Discussion

3.3.1 PDMS

3.3.1.1 UV-VIS spectra
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Figure 3.8: UVabsorption spectrum of PDMS in the range 200 to 1200nm.

UV absorption spectra of PDMS in the wavelength range 200 to 1200nm were found 

using a UNICAM 5625 UV-VIS spectrophotometer. The absorbance versus wavelength for a 

5mm thick sample prepared by moulding is seen in Figure 3.8. PDMS evidently has low 

absorption at wavelengths in the range 300 -HOOnm but significant absorption below 

~300nm as can be seen from Figure 3.8. At ~200nm the absorption coefficient is estimated to 

be 12.7cm" 1 suggesting PDMS is not strongly absorbing even in the deep UV. Although the 

spectrophotometer cuts-off below 200nm it can be conjectured from the spectrum in Figure 

3.8 that it has an absorption coefficient of similar magnitude at a wavelength of 157nm. As 

will be seen later PDMS can be ablated with fluences greater than lOOmJ cm"2 at 157nm. For 

ablation at the longer wavelength of the frequency quadrupled Nd: YAG laser at 266nm,
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where PDMS has weak absorption (estimated at -3.5cm"1 ), incubation effects are involved in 
ablation [13].

3.3.1.2 Etch depth analysis

PDMS was irradiated with the 157nm laser at various fluences between ~ 100mJem" and 
900m Jem "2 . The depth per pulse of PDMS removed from the samples subjected to one 1, 2, 
3, 4 and 5 pulses is seen in Figure 3.9. Each set leads to a reasonably well-defined line and as 
expected the depth increases with increasing numbers of pulses and increasing fluence. It is 
noted that using the white light interferometer it was possible to record very small changes in 
surface height, in this case down to ~2nm with one pulse at -lOOmJcm"2 .
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Figure 3.9: Etch depth per pulse for one, two, three, four and five pulses versus the fluences in 
lOOmJcm 2 and linear regression line for PDMS exposed using the 157nm laser.

A fit to material removal in ablation can be derived by using Beer-Lamberts law. In this 
model the etch rate d(F) versus fluence, F, becomes a function of the threshold fluence, FT 
and the effective absorption coefficient, aeff, and is described as
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(3.4)

This was applied in this experiment to determine the ablation threshold and effective 

absorption coefficient for PDMS. The experimental data used are shown in Figure 3.10 where 

the etch rate-fluence for exposure sets comprising 1, 5, 10 50 and 100 pulses are shown. By 

using linear regression line to cover the data for each group of exposures the ablation 

threshold was found to be approximately constant for 1-100 pulses, falling in the range 100 - 

HOmJcm" . It is noted that the etch rate per pulse is larger for a single pulse exposure than 

the average gained from multiple exposure of a single site. This may be because of the 

surface properties of the PDMS sample differ from the bulk so that the first pulse sees, for 

example, a different threshold and effective absorption coefficient to the subsequent pulses. It 

is also possible that surface modification effects play a role e.g. through roughening, or 
photochemical-induced structural changes.

100 1000 10000

Fluence (mJcrrf2)
Figure 3.10: Etch rate per pulse versus fluence for PDMS exposed at 157nm. Best fit line for 100

pulses is shown.
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The threshold of 105 ± 10 mJcm"2 obtained for the 5mm thick PDMS sample here, 

appears similar to that reported for thin films (694nm thick), where the ablation threshold at 

157nm was 115 ± 30 mJcm"2 [14].

From the slope of the lines used to fit the data in Figure 3.10, the effective absorption 

coefficient («ê ) was calculated to be in the range of 3.5 x lOVm"1 and 6.4 x 104 cm"1 . There 

is some evidence from Figure 3.10 that the effective absorption coefficient slightly increases 

in value when 10 or more pulses are used on each site. This may be indicative of a weak 

incubation effect or possibly differences in properties between the surface and the bulk 

PDMS. At this VUV ablation wavelength PDMS exhibits a relatively high effective 

absorption coefficient and is comparable to the value of aeff -IxlO5 cm"1 reported for 

polymethylmathacrylate (PMMA). We assume now that we can use aeff to determine an 

extinction coefficient k using equation:

4?* a = «dF = -j- (3 - 5)

where A, — 157nm. With «<$•= 3.5 x 104 cm" 1 , this gives a k value is estimated to be 0.044.

Etch depth should become greater as the number of exposure pulses increased, (Figure 

3.10), but apparently the etch rate for single pulse is greater than for larger numbers of pulses 

thus the threshold value cannot be estimated from Figure 3.9. This behaviour possibly could 

be related to the preparation of the sample, where a dense skin layer may be formed. It would 

be of interest to investigate this further.

3.3.1.3 Raman spectroscopy

A Raman microscope system (Renishaw, Laser Diode NIR 780/50) consisting of a light 

microscope (Leica DL-LM) coupled to a Raman spectrometer was used to investigate the 

exposed PDMS surface. The microscope was equipped with four objectives with 5x, 20x, 

50x, and lOOx magnification and an LMPLAN FL 50x.0.5NA eyepiece. The microscope 

optics was used to focus the excitation laser onto the target and collect the backscattered light 

(180°). The excitation source was a diode laser emitting at 780nm and the instrument was 

calibrated against the Stokes Raman signal of pure Si at 521cm" 1 using a (111) silicon wafer.
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The Raman line obtained for silicon is seen in Figure 3.11. The microscope was focused onto 
the sample surface by using a white light source; this was then replaced by the laser beam and 

Raman spectra were recorded at Stokes Raman shifts of 200 to 3000cm" 1 .
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Figure 3.11: Raman spectrum calibration for pure silicon wafer at 521.1cm'1 .

Raman spectroscopy was used to study how the 157nm laser exposure alters the 
conformations of the PDMS polymer. Advantages of the Raman spectroscopy in this 
experiment include direct experimental observation, orientational information and chemical 
bond information from peak position and bandwidth analysis [15], Figures 3.12 and Figure 
3.13 show a spectrum comparison between unirradiated PDMS and PDMS exposed to the 
157nm laser respectively. In Figure 3.12, for unirradiated PDMS, no prominent peaks are 
seen except a weak feature at 488cm" 1 attributable to the Si-O-Si vibration.

In previous studies of PDMS using an Ar+ laser at 488nm, and 514.5nm [16] as the 
Raman excitation source, intense stretching vibrations of methyl groups appear at 2965 and 
2907 cm"1 , methyl bending vibrations appear at 1412 and 1262 cm" 1 , Si-CH3 rocking
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vibrations appear at 862, 787, and 687cm' 1 , and Si-O-Si stretching vibrations appear at 
488 cm'1 [16].

Figure 3.13, shows the vibration peaks identified in the present experiments for PDMS 

ablated using the 157nm laser. The peaks are poorly resolved possibly because the ~700nm 

excitation laser used is less suitable for this than the Ar+ laser. Vibration peaks at 488cm" 1 (Si- 

O-Si symmetric stretching), 687 cm' 1 (Si-CH3 symmetric rocking), 708cm'1 (Si-C symmetric 

stretching), and 1262 cm'1 (CH3 symmetric bending) are tentatively identified. The formation 
of Si-CH3 and Si-C is suggested from the intensity peaks between 600cm"1 to -700cm" 1 and is 

indicative of the formation of the new silicon species. Studies by Lippert et al [17] concluded 

that the oxygen radical transformed the Si-C bond to create a new Si-O-Si which resulted in 

cross-linking. The silicon radical also reacts with the hydroxyl radical when exposed using a 

172nm lamp in air, forming the silanol-group (Si-OH). However, in this experiment, no 

silanol group (Si-OH) was formed after irradiation with the 157nm laser because high 

absorption meant it was not possible to perform irradiation at significant pressures of oxygen 

(or air). Bond breaking of the backbone of the PDMS chain (Si-O) or side groups of the 

polymer (Si-C and C-H) is the more likely contribution to chemical modification of its 

surface with the high photon energy (7.9eV) 157nm laser.
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Figure 3.12: Roman spectrum of unirradiated PDMS surface
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Figure 3.13: Roman spectrum over range of wave numbers to 3000cm'1 for PDMS surface 
ablated at 157nm. Si-O-Si symmetric stretching at 488cm'1, SI-CH3 symmetric rocking at 687cm" 

Si-C symmetric stretching at 708cm'1 and CHS symmetric bending at 1262cm'1 are indicated.

3.3.1.4 Calculation of surface temperature

An estimate of surface temperature, Ts was made by neglecting thermal diffusion during 

ablation pulse and assuming absorbed laser energy on the target material has been 

transformed to heat. The temperature rise on the ablated material can be characterized by 6, 
the ratio of absorption length (I/a) to thermal diffusion length, L, over the laser pulse 

duration, t. D is thermal diffusivity and L can be derived from the equation (3.6):

(3.6)

and the value of S can be calculated by equation (3.7):

(3.7)
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For 6 » 1 negligible heat flow occurs and the temperature rise profile ATs is as shown in 
equation (3.8):

j\ ' I' it u \ E1 ~@X /O o\s=v ~ pc e

The surface temperature (i.e. at x = 0) is then given as

Ts =TR +(l-R)aF/C (3.9)

where C — pc is the volume specific heat, p being the PDMS density and c its specific heat 

and Tff =300K is the initial temperature. F is the fluence and R is the surface reflection 

coefficient at 157nm,

The following properties of PDMS are found from reference [8]: 

Specific heat, c = 1100 Ikg^K" 1 

Density,/) = 1030 kgm"3

By assuming the refractive index n is 1.445 after exposure, the normal incidence 

reflection coefficient of PDMS can be calculated using equation (3.10):

(n + lf + k2
(3.10)

Using n =1.445 and k = 0.044 gives R ~ 0.033. Then using equation 3.9 we get a 

temperature rise for PDMS at the threshold fluence FT = lOOmJcm"2 of 4694K corresponding 

to a surface temperature of- 4994K. This estimate suggests a high surface temperature could 

be reached when PDMS is exposed at 157nm.
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3.3.2 SU-8

3.3.2.1 Etch rate analysis

SU-8 was irradiated at 157nm with various fluences between ~300mJcm~2 and 

-1600 mJcm"2 . The depth of SU-8 removed from the samples subjected to 1, 5, 10, 50 and 

100 pulses was measured. The extrapolation lines give an estimated threshold value of -50- 

100 mJcm"2 as shown in Figure 3.14. Data presented in Figure 3.14 considerably shown 

uncertainty as there is no consistency for the etch depth against fluence for this material. 

From the slope of the 50 pulses line, the effective absorption coefficient calculated was 

oieff =7-4 x 104 cm" 1 and the extinction coefficient estimated as k = 0.092. The ablation 

characteristics of the SU-8 photoresist spun on Si wafers under 248 KrF excimer pulsed laser 

had been studied by Muralidhar et.al [18]. The threshold fluence for ablation of SU-8 was 

measured to be about SOmJcnf2 and reveal very smooth morphology of the etched surfaces; 

they hence concluded that SU-8 is one of the suitable polymer materials for excimer ablation 

lithography.

100 1000 10000

Fluence (mJcm'2 )
Figure 3.14: Etch depth per pulse for 1, 5, 10, 50 and 100 pulses versus the fluence for SU-8 

exposed using the 157nm F2 laser -with best regression line shown.
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3.3.3 Nylon 66

3.3.3.1 Etch rate analysis

Figure 3.15 shows the etch rate per pulse as a function of fluence for Nylon 66 polymer 

at the 157nm laser wavelength. The ablation threshold for this polymer from the data in 

Figure 3.15 is (27±3) mJcm"2 . A previous study by Dyer et al [19] on Nylon 66 at the 157nm 

laser wavelength gave a value of (33±7) mJcm"2 by the calculation based on the apex angle of 

cones formed in the ablation. From the gradient line shown in Figure 3.15, an effective 

absorption coefficient of aeff ~ 1.1 x 105 cm" 1 is calculated.
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Figure 3.15: Etch rate as a function of fluence for Nylon 66 ablated at 157nm laser wavelength 
based on average obtained for differing numbers of pulses.
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3.3.4 UHMWPE

3.3.4.1 Etch rate analysis

Figure 3.16 shows the etch depth per pulse of laser ultra-high molecular weight 

polyethylene (UHMWPE) at the 157nm laser wavelength. The data show considerable scatter 
making a meaningful extraction of useful values for aeff and the threshold fluence difficult. 

Ablation persists at least down to fluences of ~27mJcm~2 for a surface exposed to 50 or more 

pulses. For the 20 pulse series the results fall on a reasonably well defined plot with 
corresponding values of aeff ~ 4x10s cm" 1 and threshold fluence = (28 ± 3) mJcm"2 . Previous 

work on (UHMWPE) has yielded a threshold of (29±6)mJcm"2 [20], with CO, CO2, CH4, 
C2H2, C2H4, C4H2, C4H4, benzene and CHsCHO being detected as the gaseous products of 
ablation.
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Figure 3.16: Etch rate of ultra high molecular -weigh polyethylene (UHMWPE) ablated at the 
157nm laser -wavelength based on average for various numbers of pulses.

39



Surface Modification of Polymer Materials Induced by 157nm p2 Laser Irradiation

3.3.5 Lexan Polycarbonate (PC)

3.3.5.1 Ablation sites after irradiation

Polycarbonate samples exposed to various numbers of ablation pulses at differing 

fluences were viewed using an optical microscope. A series of images obtained for a fluence 

of 55mJcm~2 with 50, 100 and 500 pulses is seen in Figure 3.17. The rectangular ablations 

sites are seen to contain dark spots that become progressively more intense but fewer in 

numbers, as the number of exposure pulses increases. These 'spots' are cones that develop on 

the surface and appear dark because they reflect little light back into the microscope. Also 

evident from Figure 3.17 is a patterning effect outside of the main ablation site that is a result 

of re-deposition of material from the ablation plume. This shows up relatively faintly in the 

50 and 100 pulse exposures but becomes more marked with 500 pulses where this debris 

extends beyond lOOum from the crater margin. In the 100 pulse micrograph (Figure 3.17b) 

the deposited layer has apparently just become thick enough to produce visible fringes as a 

result of interference between light reflected from the film surface and the film-substrate 

interface. In Figure 3.17c the thickness of this layer has grown to a sufficiently large value 

that multiple coloured fringes are seen.

The formation of debris surrounding the ablation sites of polyimide (PI), polyethylene 

terephthalate (PET), polymethylmethacrylate, polystyrene and polyethylene has been studied 

in some detail by Singleton et al [21]. Hydrodynamic models describing the form of the 

patterns produced by re-deposition from polymer ablation plumes have been reported by 

Miotello et al [22]. These are based on a one-dimensional outwards expansion of the plume 

being coupled to a sideways expansion and explain quite well how the shape of re-deposition 

zone is governed by ablation crater on the wider sideways. This is confirmed in Figure 3.17c, 

where re-deposition of debris evidently extends considerably further in the vertical compared 

with the horizontal direction.

In studies of glass ablation using a 266nm laser, Singh et al [23] have used the 

interference fringes produced by the re-deposited layer to determine its thickness and the 

material mass involved. A similar approach can be used here if it is assumed the layer 

decreases monotonically in thickness from the edge of the crater and has a refractive index jo,
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that is lower than bulk polycarbonate so the phase change at the air-layer and layer-substrate 
interfaces is the same. Interference maxima would then appear at a thickness

t = mA/2p (3.11)

where /I is the vacuum wavelength and m an integer [23]. For the upper fringe system in 
Figure 3.17c there are about three red fringes on moving inward to the crater rim, which 
using m = 3 and taking A, = 600nm and n < 1.58 for a polycarbonate-like layer gives t > 
570nm. This would correspond to deposition at a rate of about l.lnm/pulse immediately 
beyond the crater rim.
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(a)

^c

Figure 3.17: Optical microscope images of polycarbonate ablated at ~55mJcm~2 with various
numbers of 157nm pulses (a) 50 pulses (b) 100 pulses and (c) 500 pulses, (a) 50 pulses

showing multiple black 'spots' due to cones in the ablation crater and faint indication of
darkening due debris layer outside of crater (b) With 100 pulses the cones extend in size but
become smaller in number. The extent of debris re-deposition becomes clearer through the

appearance optical interference fringes in the layer (c) With 500 pulses a few large-scale size
cones remain in the crater. The debris layer becomes more pronounced and is clearly

revealed by the interference fringes produced by the polychromatic light source.

42



Surface Modification of Polymer Materials Induced by 157nm F2 Laser Irradiation

3.3.5.2 Etch rate analysis

The etch rate for PC was determined by subjecting samples to various number of pulses 

and fluences and then measuring the depth of the ablation site using the white light 

interferometer. Figure 3.18 shows the average etch rate per pulse as the function of fluence at 

157nm for various numbers of pulses. From the extrapolation of the regression line, a distinct 

threshold for ablation of PC of lOmJcm"2 is obtained. Based on the gradient of the line at 100 

pulses shown in Figure 3.19 below, an effective absorption coefficient a^-of K 3 x 105 cm" 1 is 
calculated.

The value of the effective absorption coefficient indicates PC is a strongly absorbing 

organic polymer at 157nm. Using aeff, a volume specific heat of 1440kJm"3and assumed 

surface reflection loss of 5% [3], the surface temperature rise calculated by using equation 

(3.9) is 1649K at the ablation threshold of lOmJcm"2. This large temperature rise on the 

surface suggests that material removal is driven by thermal degradation and vaporization 

[14].

Over a certain range effluence, the formation of the cones occurred on the PC surface, 

allowing measurement of the cones angle to be used to estimate the ablation threshold. The 

value obtained in this way could then be compared with the etch rate measurements. The 

results obtained from the cones will be explained in the section below.
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Figure 3.18: Etch rate as a function of fluence for polycarbonate (PC) ablated at 157nm.
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Figure 3.19: Etch rate as a function of fluence for polycarbonate (PC) for 100 and 500 pulses
(data extracted from Figure 3.18).
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3.3.5.3 Formation of cones

To determine the ablation threshold of materials, various methods have been used in the 
research previously [20] . The most common method is the measurements of the etch depth 
per pulse or etch rate obtained from the ablation over a range of fluence. These are fitted 
using equation (3.4) to give the value of ablation threshold FT. An alternative method 
employs the measurements of the thermal loading of thin films, and generally gives similar 
results to the etch rate method. Another technique, based on the apex angle of particle- 
induced cone structures, is sensitive to very small levels of etching and often gives 
appreciably lower values of threshold compared to the two methods stated above.

Values of the ablation threshold determined from the apex angle of the stable, well- 
defined conical structures on polyimide, polyethylene terephthalate (PET) and Nylon 66 at 
157nm are reported in [19] as (23±7) mJcm'2, (19±6) mJcm'2, and (33±7) mJcm"2 
respectively.

In the present work the form of particle-induced cone structures was studied on the PC 
after ablation using the 157nm laser over a range of fluence. Previous research reported by 
Stuke et al [24] on the fabrication of microchannel using polymers PMMA, polystyrene and 
polycarbonate using 157nm, gave the result of ablation threshold of-ISmJcm"2 for PC.

Interestingly, the cone structures that developed on the PC surface after ablation give a 
well defined interference pattern surrounding the region around the base of the cones, which 
provides information on the spatial coherence width of the beam.

(a) Unseeded samples

Cone formation on PC was observed on both clean surfaces (unseeded) and on surfaces 
that were deliberately seeded with particles to induce their formation.

Samples of PC without deliberate particulate seeding were exposed over a range of pulse 
number from 10 to 500 pulses and a range effluences from ~ 10m Jem"2 to ~250mJcm"2 at 
lOHz using the 157nm laser. The morphology of the ablated surface was investigated by 
scanning electron microscopy (SEM). Figure 3.20a shows the cones that developed on PC
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subjected to 100 pulses at a fluence of ~55mJem'2 and Figure 3.20b at the higher fluence of 
SlmJcm"2 .

(a)

(b)

Figure 3.20: Conical structures produced using 100 pulses applied to polycarbonate (15 7nm
laser); (a) ~55mJcm~2 (b) SlmJcm 2.
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Using the 'Ruler MB' software, the full apex angle, (2(9,) (see Figure 3.29) became 
smaller at higher fluence, for example at same pulse number (lOOpulses) 20, is 51° at 
55mJcm"2 decreased to 41.7° at -SlrnJcm"2 . The apex angle of the cones decreased at higher 
fluence and this is turn gives smaller base radius. The SEM images shown were for the stage 
tilted at 60°, apex angle will be taking in the account as true half-angle viewing at 90° (0,) 
where a correction factor must be applied.

Figure 3.21 (a) Conical structures at ~55.8mJcm'2 and (b) at -SlmJcrri2, when 500pulses were 
applied to polycarbonate (PC) using the 157nm laser.

The areal density of cones appearing on the ablated PC surface varied with fluence and 
number of exposure pulses. In general, a high fluence and greater numbers of pulses led to 
fewer cones and reduction in apex angle as is illustrated by Figure 3.21 (a and b) where at 
500 pulses, fluence ~56mJcm"2 gives half cone apex angle as 22° and reduced to 21° at 
~81mJcm~2 . Here 500 pulses applied at a fluence of 230mJcm~2, results in a dramatic 
reduction in cones compared to Figure 3.22, the surface is essentially devoid of such 
structures aside from two in the corner of the crater.

In contrast in the near-threshold fluence regime, cones were quite dense over the surface 
and in many cases only partially developed even when a large number of exposure pulses was 
used e.g. Figure 3.23; (a) 25mJem"2 , lOOpulses and (b) 29mJem"2, SOOpulses shows the cone 
structures are small, not straight walls, wider base indicating not define cones formed.
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Figure3.22: Conical structures at~230mJcm~2 with 500 pulses applied to polycarbonate (PC)
using the 157nm laser.

Figure 3.23: Conical structures on polycarbonate at (a) ~25mJcm~2 with 100pulses and (b) 
~29mJcm~2 with 500pulses, 157nm laser exposure.

(b) Seeded samples

This experiment has been done by deliberately seeding fine particles of alumina 

(~0.05um, Gallenkamp Griffin PSR-350-D grade 5/20) on the clean sample of polycarbonate 

(PC). The seeded PC was then etched using various numbers of 157nm pulses at different 

laser fluences. The morphology of the seeded samples were viewed under the SEM. Figure 

3.24 shows comparison images of the conical structures at a fluence of-SlmJcm"2 for 10, 50, 

100 and 500 pulses. Cones are only partially formed with 10 pulses applied but essentially
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fully formed at 100 pulses (Figure 3.24a and c). Figure 3.24d shows the formation of the 
cones covering the ablated surface at 500 pulses.

(a) (b)

Figure 3.24: Evolution of conical structures on the seeded polycarbonate (PC) ablated surface with 
(a) 10 pulses (b) 50 pulses (c) 100 pulses and (d) 500 pulses at -SlmJcm 2.

It can be seen from this experiment that cones develop under impurity particles. The 

density of the cones covering the surface depends on the particles layered on the surface. An 

impurity particle sitting on top of the cone can be clearly seen in Figure 3.25, and this 

produces shielding as shown schematically in Figure 3.26. If the particles on the surface are 

resistant to ablation they act to shield underlying polymer, leading to the development of well 

defined and stable conical structures as etching process proceeds (Figure 3.24a-d).
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Figure 3.25: Top of the conical structure shows the effect of the impurity particle on the ablated
polycarbonate (PC) surface.

if "um laser

Initial Level

Figure 3.26: Illustration of the impurity effects on the polycarbonate (PC) ablated surfaces.
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(c) Areal density of cones

The areal density of the cones on the ablated PC surface using the 157nm laser has 
been studied for the seeded and unseeded condition. Figure 3.27a and b shows the areal 
cone density after deliberately seeding with alumina particles (0.05um) and unseeded PC 
sample at 100 pulses, -SlmJcrn"2 . Figure 3.27b shows a high density of developed cones 
on the seeded sample compared to unseeded sample (Figure 3.27a).

Figure 3.27: Cone formation for (a) unseeded PC, (b) PC with -O.OSftm particle surface seeding,
exposed to ~81mJcm~2at 157nm.

The areal density of cones was estimated by counting the number within a given area of 
the SEM image (typically over a lOOum x 70um field). The results are shown in Figure 3.28 
where logio (areal density) versus fluence is plotted for the seeded and unseeded cases. It is 
evident that seeding significantly increase the areal density (a factor of nearly ten times more 
near to threshold) and that the number of cones per unit area falls as the fluence is raised.

Simple considerations [25] show that the ablation removal of 'particulates' through 
optical undercutting will occur if etch depth per pulse x satisfies x > d where x=aejf'] In F/Fr 
and d is approximate shadowing depth of the particles. The latter is given approximately by:

(3.12)

for r >
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where r is the particle radius. This leads to a condition that ablation removal of the particle 

will occurs if its radius satisfies r < r^ where:

r =max ——In—
2aeff FT (3.13)

rmax is seen to increase as the fluence raised, the effective absorption coefficient is decreased 

or A, increased. The fall in area! density seen in Figure 3.28 can thus tentatively be explained 

if the added particles have a range of sizes and increasing fluence progressively removes the 

larger of these so that they are unavailable for 'shielding'. It is noted that as O.OSum (50nm) 

particles were used and more complicated shadowing model would be required.
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Figure 3.28: Variation of area! cone density for 157nm F2 laser exposed polycarbonate (PC) 
showing results for 100 pulses on unseeded sample and seeded sample.

(d) Correction factor for cone angle

Figure 3.29 shows the view direction of cones when the SEM stage is tilted. Under these 

conditions it is necessary to determine a correction factor to get the true angle value 20, of the
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cone apex angle when 9V * 90°. To this end a series of SEM images was obtained for the 

same group of cones with the viewing angle 9V varying from 0 - 75°. These are shown in 

Figures 3.30. The perceived cone apex angle 6P (see Figure 3.29) was measured for each 

image using the MB-Ruler software and also by calculating it from the measured cone base 
diameter and effective cone height.

The perceived full angle of the cone apex 20P determined in this way is plotted in Figure 

3.31 versus the stage viewing angle 0V . As expected and can be seen from the fit here, the true 

cone apex angle i.e. at 0V = 90° is smaller than when measured on a tilted stage. For 0V = 60° 

the correction factor needed is from Figure 3.31 ~ 0.83.

Straightforward geometrical considerations for a tilted cone lead to a simple theoretical 

expression relating the perceived angle 0P, the viewing angle fy and true half-angle 0, (refer 

Appendix A for a cone profile). This gives

, = tarT1 [tan(0/,)cos{;r/2-0v }] (3.14)

This expression is plotted in Figure 3.31 and shows a good fit with the experimental 

results; hence corrections can be easily applied using this expression.

Effective height h
Apex angle 26P

Base radius b0

Figure 3.29: Showing effective height, h and base radius b. The perceived angle Op= tan'b^h
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(a) 0" view

(c) 30" view

(b) 15" view

(d) 45" view

(e) 60" view (f) 75" view

Figure 3.30: Group of cones viewed with stage angles from the vertical of (a) 6V = 0° (b) 15° (c) 30°
(d) 45° (e) 60° (j) 75°.

54



Surface Modification of Polymer Materials Induced by 157nm F2 Laser Irradiation

140

CDa?
OJ 
0>

CD 
CM

cn
ro 
x <u
Q. 
TO

120 -

100 -

80 -

60

= 40

20 n

^ Measured angle
n Angle measured from base and height
• Calculated using expression (3 14)

—— Theoretical fit using expression (3 14)

20

—i— 

40

—i— 

60 80

SEM stage viewing angle 8 (degree)

Figure 3.31: Perceived cone full apex angle 26pfrom direct angle measurement and that 
determined from measured height and base size of the cone as a function of the stage viewing angle 

9m The theoretical plot is based on equation 3.14 -with a true half-angle of 6, = 19°.

(e) Ablation characterization from the cones

An ablation threshold for Lexan polycarbonate (PC) can be obtained from the half apex 

true angle of cones from the formula [25],

(3.15)

Here FT is the fluence at threshold and F is the incident fluence. Rearranging equation 

(3.15), gives:

(3.16)

This simple model indicates that a plot of sin 6t versus 1/F should be linear passing 

through the origin, in principle allowing the threshold fluence to be derived from the slope of
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the line. Figure 3.32 shows that the results for cones on polycarbonate plotted in this way are 
not in good agreement with the expectations of this simple model.

The expression in equation 3.16 neglects surface reflection loss and that the energy 
density loading at the surface may change with the angle of incidence of the laser beam.

To take account of this the energy loading EL (joules per unit volume) on the surface at 
normal incidence is expressed as:

EL= aeffQ-Ro }FT (31?)

where aeff is the effective absorption coefficient, R0 is reflection loss at normal incidence and 
FT the threshold fluence.

It is now assumed that ablation on an inclined surface occurs when the same energy 
loading is reached. The amplitude reflection loss at the inclined surface is taken to be Rp and 
Rs for s and p polarisation components respectively and for an unpolarized beam the average

R 2 + R 2 
of Rp2 + Rs2 is taken i.e. p —— = Rm . Now due to refraction the transmitted beam is not

normal to the surface but is refracted at an angle r. The effective penetration depth (normal to 
surface) is then smaller by a factor cos r so the effective energy loading is

(31g)

where F is fluence at normal incidence. On the assumption that ablation commences when 
the energy loading EL is attained, the corresponding threshold for the inclined surface is 
found by equating equations (3.17) and (3.18)

cos r

Here F is now the fluence at threshold for the surface when irradiated at an angle of incidence 
/ and Fr that at normal incidence. Now

(32Q) 

where 6t is cone apex half-angle.
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Thus, by taking the cone wall angle to be defined by reaching the (inclined) threshold energy 
loading on the surface, the fluence and cone angle are related by

f 0— JL__L_)sin(9r
z*

The angle of refraction and cone apex angle are linked through the polymer refractive index 

by sin r =

1 "7 7It is noted that if angle dependence of reflection loss is neglected i.e. (Rp +RS )/2 = R0 
and the effective absorption coefficient remains unchanged when refraction occurs i.e. cosr = 
1, then equation 3.21 simplifies to

which is equation 3.16.

Equation 3.21 was evaluated using the Fresnel equations [30] to determine Rs and Rp as 

described in more detail in section 3.4.1 (see equations 3.25 and 3.26) with a value of ju = 
1. 463 for polycarbonate taken from reference [31]. A plot of the cone half-angle versus the 
normalised fluence F/Fr using equation 3.21 is shown in Figure 3.33, along with 
experimental data for cones on polycarbonate. The experimental fluence has been normalised 
using values of FT — 20, 25 and 30mJcm"2 in an attempt to get a fit to the theoretical line. 
Though there is considerable uncertainty, a value of FT = 25mJcm~2 brings the data in 
reasonable accord with the theoretical curve. This is considerably larger than deduced from 
etch rate versus fluence measurements (Figure 3.19), though in that case there is again 
considerable uncertainty in extrapolating the data to determine the threshold.
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Figure 3.32: W(9) as a function ofF1, where W(9)=sin (6,) based on the corrected angle for
polycarbonate using 157nm laser.
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Figure 3.33: Cone half-angle as a function of normalisedfluence. The solid line shows the 
theoretical result for polycarbonate based on energy loading at non-normal laser incidence on the 

cone wall for a refractive index u=l. 463. The experimental results shown are normalised to ablation
thresholds of FT — 20mJcm'2 (green points), 2 SmJcm 2 (black points) and 30mJcm'2 (red points). A 

reasonable fit is obtained for FT = 2 5mJcm~2 though there is evidently considerable uncertainty in this
estimate.
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3.4 Interference Fringes

The cones developed on the ablated surfaces of polycarbonate exhibit a ring-like system 
of interference fringes surrounding the region at the bottom of the cones, which originate 
from the interference of the incident laser light with that reflected from the cone wall. These 
interference fringes can be clearly seen under the observations using Scanning Electron 
Microscopy (SEM). The formation of the cones in polycarbonate has been reported by Hopp 
et al [26] in the range of fluence about 20-60mJcm~2 for 193nm laser exposure and they 
observed the cones symmetry was dependent on the laser polarization. In the present work, 
experimental and modelling studies have been applied for the appropriate cones with apex 
angles that produce a distinct fringe system surrounding the base of the cones. The cones seen 
in the present work are essentially symmetric which is consistent with the ?2 laser beam 
being unpolarized. Development of the conical structures on the PC surface is thought to be 
initiated by the shadowing and diffraction effect of particulate impurities and the interference 
effect then occur because of the reflection from the cone wall.

Figure 3.34: A group of cones on the ablated polycarbonate (PC) showing interference fringes
with fringe period of250nm.

Figure 3.34 shows a group of cones seen at a viewing angle of 60° for polycarbonate 
(PC) subjected to 100 pulses at SlmJcm"2 . The surface of ablated area outside of the region of 
fringes is seen to be smooth and devoid of significant debris, indicating the good quality
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surface that can be produced when ablating this material with the 157nm laser. Figure 3.35 

shows a magnified view near the base of a cone where a set of well-defined circular fringes 

has been produced through interference of the incident beam and that reflected from the cone 

wall. From Figure 3.35 the fringes are seen to have an essentially constant spacing and, based 
on a spacing of 1.67um for six fringes as determined from the SEM, their period is ~278nm.

Figure 3.35: Fringes around the base of a cone in polycarbonate viewed at 0". Six fringes here 
have a spacing ofl. 67jum giving a fringe period ~278nm.

When a further and careful examination of the fringes was made, viewing them from 

above (i.e. at 0°), it was noted that they exhibited a degree of asymmetry around the base of 
the cones. They were seen to be visible over a greater distance along the direction of the 
narrow dimension (T) of the F2 laser output beam than in the orthogonal direction (X). This 

arises because of the difference in the spatial coherence widths in the low and high 

divergence directions of the beam, a finding that is supported by the modelling discussed 

below. This asymmetry is evident in the fringes seen in the group of cones in Figure 3.36, 

which are viewed at normal incidence to the surface. Cones A, B, and C, which 
approximately lie along the high coherence direction of the beam, imprint fringes on the 

walls of their neighbour. In contrast, cone D, lying to the right of cone B, which is displaced 

along the low coherence direction, has no fringes on its wall, neither does it appear to 

produce fringes on B. In Figure 3.36b the SEM micrographs have been enhanced using
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image processing software (convolution filtering) to more clearly reveal the fringes 
surrounding the cones and on their walls.

Figure 3.36: (a) A group of cones with asymmetry in the ranges over which fringes are visible. 
SEM viewing angle = 0° from vertical. The direction of the narrow dimension of the F2 laser which 
has low divergence is as indicated. The arrows designate fringes on the walls of cones (b) Viewing 

angle = (f with convolution bas-relieffllter applied to enhance fringes.
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The cones effectively form a micro-conical mirror that produces circular fringes in a 
fashion similar to the linear fringes with the Lloyds mirror arrangement (Figure 3.37). Here, 

interference is between the light reflected from one long mirror and the light coming directly 
from the source without reflection.

Figure 3.37: Lloyd's mirror arrangement

3.4.1 Model for the cone interference

The beam reflected from the cone wall interferes with direct beam producing a set of 
circular fringes on the flat surface beyond the cone base. Figure 3.38 shows a schematic 

diagram of the reflected beam from the cone wall, which is used in the model of the cone 

interference. From this figure the reflected beam and direct beam intersect at an angle 20, 
producing fringes of period:

(3.22)

along the direction perpendicular to the bisector of the two beams.
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Figure 3.38: Schematic diagram of the light beam reflected from the cone wall 

These fringes when projected onto the horizontal surface lead to a periodicity AS given

by:

COS&, (3.23)

As

Figure 3.39: Fringe projection onto horizontal space.
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Combining equations (3.22) and (3.23);

A =
s 2sin0,cos0, "sin 20, (3 -24)

where A is the laser wavelength and 6t is cone half angle. 6, here refers to the true angle with 

the view angle correction applied.

Basically, to quantify the fringe system, the amplitude reflection coefficients for the cone 

wall were calculated using Fresnel equations [27]:

H cos/ -cosr 
p //cos/ + cosr (3.25)

cos/ -//cosr

(3.26)

where Rp and Rs (p-polarized and s-polarized) denotes the amplitude reflection coefficients 

for the light parallel and perpendicular to the plane of incidence. The angle of incidence is 

i=(90-6,) and sin r = sin i/p. Equations (3.25) and (3.26) were evaluated using a real value for 

the refractive index of Lexan polycarbonate of ft= 1.463 at 157.4nm wavelength [28]. The 

incident laser beam was assumed to be unpolarized i.e. to have equal components of s and p- 

polarised radiation.

From the schematic diagram (Figure 3.40) the sum of incident and reflected fields for s- 

polarized and p-polarized radiation is given by [29]:

t - 8^\ + Azcos[2<9, -_

(3.27)

EP =
' 1 N

vO ,

(3.28)
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The sum of the incident and reflected fields in equations 3.27 and 3.28 is based on a plane 
wave description as in Figure 3.40:

Region of interference

Figure 3.40: Schematic diagram showing region of interference of the incident light with that
reflected from the cone wall.

A correction factor is included in these expressions to account for the irradiance 
reduction at x produced by expansion of the reflected beam from the cone wall. The 
irradiance reduction can be written as:

_
(3.29)

where b is the radius of the cone base. The incident beam is nominally perpendicular to the 
surface with a small but finite spread of angles, 5(p, with respect to z axis (Figure 3.40) to 
allow the beam divergence to be taken in account.

The fluence F is given by the product of irradiance and pulse duration and hence 

proportional to the scalar product [29]:

F x F -Ff ^ ̂  ^ (3.30)
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For finite spatial coherence Fs,p was integrated over Aq>, the full divergence angle of the 
laser, with the simplifying assumptions that the source was spatially incoherent and had a 
uniform irradiance distribution:

V f Z? p — Inr f«ll,s,p ~ J r s,/>
-A#/2 "v (331}

The top view scanning electron microscopy image (Figure 3.36), shows the fringe system 
is limited in its radial extent. The maximum size is defined by reflection from the tip of the 
cone and under multiple pulse exposure the cone height and base radius progressively 
increase and the location of fringe maxima moves. Assuming the cone height increases at 
uniform rate from pulse-to-pulse and that a simple log-linear fluence dependence with 
effective absorption coefficient, aef, and threshold fluence FT, describes the etch rate per 
pulse, the removed depth of surface dm for m pulses is [29]:

Here tot , ^s f̂ p ) -&(«)) for 0<x<xmax

F,0, = 1 for x> xraax

and Xmox = b(n)/cos 26V is the maximum value of jc for which the reflected beam overlaps the 
incident beam on the n'h pulse when the cone has a base radius b(n). j is the ratio of the 
fluence applied to the threshold fluence for etching, F/FT.

Figure 3.41 shows the calculated profile in the vicinity of the base of a cone on ablated 
polycarbonate with m = 100 pulses at an incident fluence of SlmJcm"2 with Fr=15mJcm"2 
(7=5.4) and aeff= 0.024nm"'. The threshold was set at this value as a compromise between the 
etch rate value of-llmJcm"2 and that of 25mJcm~2 estimated from the cone angle. The 
effective absorption coefficient, cone angle (#r=19.3°) and the pulse number were chosen to 
produce a cone base radius of 2.5um to allow comparison with the experimental result shown 
in Figure 3.34 and 3.36. This value of a^ was chosen to provide a cone depth consistent with 
experiment. It is some 20% lower than determined from Figure 3.19, but is essentially within 
the experimental uncertainty.
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The etch depth modelled in Figure 3.41 is carried out for divergences of 3mrad and 
Smrad as estimated for the narrow and wider dimension of the rectangular output beam of the 
157nm laser. In the model, the divergences have been increased by 15x because of the 
demagnification used in the projection imaging system. The calculated fringes show good 
quantitative agreement with the experimental results in Figure 3.36, where the fringes in the 
direction of low spatial coherence extend over a significantly smaller distance than those in 
orthogonal direction.

Figure 3.42 shows etch profiles in the region adjacent to the base of a cone in 
polycarbonate calculated at various stages of growth. Figures 3.42 a-d show 10, 20, 50 and 80 
applied pulses. The fluence-to-threshold fluence ratio is again y = 5.4, effective absorption 

coefficient aeff = 0.024nm~ 1 and cone half angle 0, = 19.3°.

The peak-to-peak depth modulation reaches ~95nm near the base edge for 100 pulses 
and is not significantly different to that for lOpulses (Figure 3.42a). An interference 

minimum is placed at x = 0 as there is a n phase shift for the reflected s-component, and, with 

fj. - \ .463, when Ot < 34.4° for the p-component. This minimum location likely plays a role in 

[30]the cone development that is not being investigated further here. The fringes have a 
period of- 252nm in good agreement with equation (3.22). The etch depth outside of the 
reflected beam zone with 100 pulses is ~7031nm, but is deeper by ~ 150 - 195nm at the edge 
of the cone base (depending on beam divergence) because of the reflected contribution. The 
radial extent of fringes increases as the cone gets deeper (Figure 3.42) but their amplitude is 
limited by the spatial shift they experience as the cone grows from pulse-to-pulse. From the 
modelling results, the maximum fringe amplitude stays approximately constant at ~100nm 
for 10 -100 pulses (Figures 3.41 and 3.42). The fringe modulation (visibility) falls as x 
increases i.e. at greater radial extent, both because of the finite spatial coherence of the beam 

and the reflected beam expansion factor Ix .
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Figure 3.41: Modelled interference fringes produced in the region on the base of the cone in 
polycarbonate with cone half-angle=0.337rad (19.3°), 100pulses at SlrnJcm'2,

FT=15mJcm 2, u=1.463.
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Figure 3.42: Etch profile in region adjacent to the base of a cone in polycarbonate calculated 

taking account of interference due to reflection from cone wall. Fluence-to-thresholdfluence ratio j = 
5.4, effective absorption coefficient k = 0.024nm~1 and cone half-apex angle of 19.3°. Development of

interference as etching proceeds is seen for;
(a) 10 pulses, cone base radius = 246nm, (b) 20 pulses, cone base radius = 492nm (c) 50 pulses, 

cone base radius = 1230nm (d) 80 pulses, cone base radius = 1968nm.
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The etch-depth curves in Figures 3.41 and 3.42 are for intrinsic beam divergences of 
3mrad and Smrad as estimated for the narrow and wider dimension respectively of the 
rectangular output beam of the 157nm laser. In the simulation these divergences have been 

increased by 15x because of the projection image demagnification factor of the system. The 
range over which fringe visibility is maintained is lower for the larger divergence as the 
corresponding spatial coherence width is reduced. This is borne out by the experimental 
results in Figures 3.36a and b, where the fringes in the direction of low spatial coherence are 
seen to extend over a considerably smaller distance than those in the orthogonal direction.

In the low coherence direction an estimate of the spatial coherence width / can be 
made from the observation that fringes in Figure 3.36 persist out to jc,- ~ 800 - 900nm from the 
cone edge. The direct and reflected rays that meet at this limiting point are spaced laterally by 

w = 2xjcos2 0t giving w & 1.43 - 1.6um for a cone half angle 0t = 19.3°. Multiplying this by 
the image reduction factor of 15 the spatial coherence width in the wider dimension of the 

157nm laser beam is / * 21 - 24um. This is consistent with a value of/ = A/A0 « 20(j,m based 

on the full-angle divergence of A^ = Smrad. For the narrow beam dimension a similar 

estimate based on the fringes in Figure 3.36 gives a value for spatial coherence of / « 54um. 
This is considerably larger because of the lower beam divergence in this direction.

3.5 F2 Laser Micromachining on Materials

3.5.1 Introduction and applications

Micromachining of polymers is an important field that has both potential in immediate 
and future applications in diverse areas such as medicine, microelectronic systems and 
photonics. Lasers have been proven as effective tools in micromachining; enabling high- 
resolution structures to be defined in a variety of materials [3, 31]

The high quantum energy of 7.9eV of 157nm photons from the F2 laser makes it a unique 
source for use in areas such as lithography [31] and micromachining [3]. At this wavelength 
most polymeric materials exhibit very strong absorption, implying low ablation threshold 
with the concomitant benefits of reduced thermal loading and minimal thermal damage to the
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machined surface [2]. These advantages, coupled with a sub-micron spatial resolution 
capability (resulting from the short laser wavelength), make the use of the VUV laser 
increasingly attractive as a tool for producing microstructures and modifying material 
surfaces [2].

To illustrate the micromachining capability of the 157nm ?2 laser, work was carried out 

on the following polymers; Nylon 66, PMMA and Lexan polycarbonate.

With low spatial coherence excimer lasers patterning can be conveniently implemented 
by use of contact masks or preferably, non contact projection methods, in which a mask 
containing the desired pattern is imaged on the surface of the polymer sample as shown in 
Figure 3.43. The projection technique allows image reduction (with fluence gain) to be built 
in and avoids mask fouling by the ablation products.

Pattern mask Lens Polymer sample

Figure 3.43: Simple projection etching arrangement for non-contact pattern definition by
ablation

3.6 Material Considerations

3.6.1 Nylon 66

For the micromachining of Nylon 66 using the 157nm FI laser, the projection etching 

technique was used using a SS316 foil. The mask used was (30mm x 30mm) size and 
consisted of an array of five circular apertures with a diameter of 0.5mm in a straight line 
arrangement spaced by 1mm centre to the centre (Figure 3.44). This mask allowed 0.5mm
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spaced trenches to be etched on the polymer surface with the 157nm F2 laser using a 

projection system with a projection system image reduction of lOx.

O.imm

O^O O O O
0.5mm

(b)
Figure 3.44: (a) 0.5mm diameter aperture in SS316foil for the patterning trenches (b) Mask

geometry

The trenches were produced on the Nylon 66 sample by traversing the controllable stage 

by using OWIS software monitored by the computer. Two sets of sample with the trenches of 

approximately lum and lOum deep were produced. In order to obtain these depths, each site 

required 1000 and 10000 pulses respectively before the mask was moved on. By using OWIS 

software, the traverse velocity of the stage can be set based on equation (3.23):

v, =•dR
N (3.23)

Here d is the diameter of one of the apertures; R is repetition rate used which is was 

20Hz and N is number of pulses. From equation (3.23), for the lum and 10u.m deep trenches, 

velocities of 0.01 and O.OOlmms" 1 for the stage were set by the computer.

Optical microscopy image (Figure 3.45) shows the trenches machined on the Nylon 66 

sample. Along the trenches, 'black features' are clearly seen compared to the non-ablated 

surface, these 'black features' are believed to be cones as confirmed in earlier work on VUV 

laser ablation of Nylon [19].
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'Black 
features'

Figure 3.45: Optical microscope image of Nylon 66 after ablation using 157nm laser and 
projection mask. This picture shows the irradiated area as a series of trenches. This sample has 

received 1000pulses at afluence of40mJcm'2.

Figure 3.46a shows the trenches formed in Nylon 66 when imaged using the white light 
interferometer viewed in 3D image; and Figure 3.46b shows profile across X of the trenches 
showing the depth of the ablated trenches of 0.6-0.8um.
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Figure 3.46: (a) White light interferometer image of trenches formed in Nylon 66 after ablation 
using the 157nm laser and projection mask (b) Xprofile result on the ablated Nylon 66 from white 

light interferometer analysis showing the depth of the ablated trenches to be ~0.6fj.rn to 0.8/j.m.

Machining of the Nylon 66 with the 157nm ¥2 laser has been studied in comparison 

with using a 10.6um wavelength from a 10W CC>2 laser [32]. In comparison with CC>2, the 

157nm ?2 laser produces well defined trenches indicating the good potential of using the 

157nm laser as a source to minimize thermal loading on the surface that is crucial in the 

various application. The comparative study of surface modification of the Nylon 66 has been 

conducted in order to vary the parameters driving biocompatibility (surface topography, 

hydrophobic reactions, hydrophilic reactions and surface chemistry).

3.6.2 Polymethylmethacrylate (PMMA)

The capability for patterning micron scale-size features was tested by exposing PMMA 

using a metal proximity mask (copper mesh) with Sum x Sum hexagonal openings. 

Hexagonal cross section structures were machined by using contact mask technique at an 

exposure fluence of ~ 135m Jem"2, and a laser repetition rate of 20Hz.
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Figure 3.47: An image obtained from the white light interferometer ofPMMA ablated at 157nm. 
A contact masks with an array of hexagonal openings andfluence ~135mJcm~2was used.

Figure 3.47 shows hexagonal features machined into PMMA by the 157nm laser using a 
fluence of ~135mJcm~2 and the contact mask technique. The edges of the craters are well 
defined and the bottom surfaces are seen to be smooth and are deep compared to the surface 
indicating using 157nm laser to machine this material leads to very clean results with no 
evidence of debris or thermal damage for example using other material like glass [2] or 
insulators [33]. The ablated hexagonal produced with this mask show clearly resolved 
diffraction sub-structures at the edges of the exposed area. Similar structures effect have been 
observed on N-BK7 glass patterned with the 157nm p2 laser using proximity masks and have 
been exploited for replication and micro-contact printing application [34].

3.6.3 Lexan polycarbonate (PC)

There is a considerable amount of published work on excimer laser ablation of 
polycarbonate [26, 35] as this material has excellent optical properties and has micro-optical 
device applications. The sub-micron resolution ablation behaviour of polycarbonate enables 
so-called Synchronised Image Scanning (SIS) mask design to control the shape and form of 
3D features only a few times bigger than the resolution limit of the laser ablation mask
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projection system [30]. The SIS technique reported by Boehlen et al [30] at Exitech uses a 

248nm KrF with pulse energy of 400mJ and a maximum repetition rate of 200Hz as the 
photon source.

In the present work, contact-mask patterning of polycarbonate (PC) ablation was carried 

out with the F2 laser, at a fluence of-lOOmJcm"2 and the focal length lens (/"=83mm) on the 

manoeuvrable stage in the evacuable chamber. The thickness of the PC used was 3mm. A 

mask of in the form of a nickel mesh with 7.5um x 7.5um square openings was placed in 

contact on the polymer surface. A projection imaging of a rectangular aperture was used for 

illuminated with a reduction of ~15x employed. Here, irradiation in vacuum with 100 laser 

pulses, repetition rate at 20Hz, produced an array of square features. The SEM and white 

light interferometer images below show the good potential of the polycarbonate to be 

machined with the 157nm F2 laser.

Observation of the ablated area with the optical microscope was unable to reveal 

anything about the base of the etched holes due to their depth and shadowing caused by a 

combination of depth and width. The accurate 7.5um square holes produced can be seen from 

the scanning electron microscope (SEM) image shown in Figure 3.48 (a-c). Figure 3.48a 

shows the view at normal incidence; Figure 3.48b shows detail from Figure 3.48a but viewed 

from 60° on the tilted SEM stage and Figure 3.48c shows one magnified single square 

machined in the PC. This has a dark base due to the depth of the crater and a faint diffraction 

pattern can also be seen on the wall of the square. High magnification SEM images of these 

micro-features Figure 3.48b and c, revealed no evidence of crack formation on or adjacent to 

the ablation site, a result that is similar to that found when machining of soda lime glass and 

BK7 by contact and non-contact projection [3] using this laser wavelength.
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(b)

Figure 3.48(a): Scanning electron microscope (SEM) image showing (a) normal incidence view 
of array of square micro-features (b) like (a) but viewed at a tilt angle of 60°from SEM stage and (c) 
magnified view of a single square machined in Lexan polycarbonate. F2 laser ablation through a 

proximity metal contact mask with 7. Sum x 7. Sum apertures, 100 pulses at -lOOmJcm'2.
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CHAPTER 4

157nm F2 LASER INTERACTION WITH CR-39 POLYMER

This chapter describes the interaction of the 157nm FI laser with the polymer CR-39 
allyl-diglycol carbonate (CR-39). It covers studies made of the ablation and surface 
modification of CR-39 under 157nm laser exposure of pristine surfaces. Some preliminary 
work has also been carried out on ablating surfaces of CR-39 that had been exposed to alpha 
particles and subsequently chemically etched to reveal micron-scale size tracks.

4.1 AHyl-diglycol Carbonates (CR-39)

CR-39, or allyl-diglycol carbonate, is a polymer commonly used in the manufacture of 
eyeglass lenses. It has excellent properties that make it suitable for other applications such as 
an excellent recorder for nuclear tracks, possessing as it does a high degree of isotropy and 
uniformity of response. CR-39 will record nuclear tracks with Z/fi > 6 which indicates, for 
example, that it will easily record all natural a particles at Ml energy up to ISMeV [1]. CR- 
39 is transparent in the visible spectrum and almost completely opaque in the ultraviolet 
range. It has high abrasion resistance, half the density of glass and has an index of refraction 
that is slightly lower than that of crown glass, making it the most suitable material for 
eyeglasses and sunglass lenses. CR-39 has a density of p = 1300kgm~3 and a specific heat of 
c — ISOOIkg''^ 1 [2], CR-39 is also resistant to most of the solvents and other chemicals, to 
gamma radiation, to aging and to material fatigue.

In the radiation detection application, pure CR-39 material is exposed to ionizing 
charged particles (e.g. a-particles). These transfer energy to electrons creating tracks of 
damaged polymer which are revealed by an etching process in a caustic solution of sodium 
hydroxide (chemical etching).
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CR-39 is made by polymerization of diethyleneglycol bis allylcarbonate (ADC) in 
presence of diisopropyl peroxydicarbonate (IPP) catalyst. The presence of the allyl groups 
allows the polymer to form cross-links; thus, it is a thermoset resin. The monomer structure 
of CR-39 is shown in Figure 4.1. The CR-39 used was 1mm thick and was purchased from 
Page Mouldings Limited (Pershore, UK).

CH2=CH-CH2 — O—CO—O—CH2—CH2-O—CH2 CH2"~O—CO—Q—CK>—CH=CH2 

Figure 4.1: Functional group of allyl-diglycol carbonate, CR-39

4.2 Ablation Sites

Ablation experiments were carried out on samples of CR-39, and optical microscopy, 
scanning electron microscopy and white light interferometer measurements performed to 
assess its response to the 157nm laser radiation.

A set of optical micrographs obtained for ablation at three fluencies is seen in Figure 4.2. 
A rectangular object aperture and an image de-magnification of xlO was used. Unlike for 
polycarbonate (see Figures 3.17 in Chapter 3), there appears to be little or no visible evidence 
for re-deposited material being present around the ablation site, even when as many as 500 
pulses are applied at relatively high fluence (Figure 4.2c). Debris-free ablation is an attractive 
property especially in applications such as micro-optics or MEMS fabrication where 
contamination by films or particulates is undesirable. Although further work is needed to 
study this in more depth, if confirmed it would point to CR-39 being a useful substrate 
material for 157nm ablation.

Although Figure 4.2a is essentially clean in the ablation site, the exposures made at 
higher fluence and with more pulses exhibit dark spots as a result of cones developing on the 
surface. The cones increase in diameter as the ablation depth increases, Figures 4.2b and c, 
and in Figure 4.2c, where 500 pulses at ISOmJcm"2 have been used for ablation, are seen to 
produce prominent darkened spots on the surface.
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100 urn

100 pm

(b)

100

(c)

Figure 4.2: Optical microscope images of CR-39 ablated at 157nm (a) 100 pulses at SOmJcm'2 
(b) 200pulses at 140mJcm'3 (c) 500pulses atISOmJcm 2
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4.3 Etch Rate Analysis

Figure 4.3 shows a plot of the etch rate per pulse versus fluence for CR-39 as derived 

from the white light interferometer; based on the linear fits for >10 pulse exposure the 

estimated ablation threshold is ~60mJm"2 . However, Figure 4.2 shows there is still a small 

level of etching at a fluence of -SOmJcm"2 , and thus the estimated ablation threshold for CR- 

39 is taken to lie in the range ~50-60mJcm"2 . From Figure 4.3, the etch rate per pulse for a 

single pulse reached -lOOnrn at ~120mJcm"2, higher than for multiple exposure. The data for 

50 pulse exposure gave reasonably consistent values and the gradient of the corresponding 

line in Figure 4.3, gave an effective absorption coefficient of aeff ~ 2.9 x 105 cm" 1 . This is 

similar to polycarbonate and indicates CR-39 is a strongly absorbing organic polymer at 

157nm. No data relating to the optical constants in the VUV spectral region could be found 

for this material.
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Figure 4.3: Etch rate as a function of fluence for CR-39 polymer using the 157nm laser. Results 
for the average etch rate per pulse for various numbers of pulses are shown.
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4.4 Formation of Cones

For this experiment, clean CR-39 samples (unseeded) were irradiated using 157nm laser 

radiation over a range of pulse number from a single pulse to thousands of pulses and over a 

range of fluences from -SOrnJcm"2 to -ISOmJcm"2 . The dark spots that were seen under 

optical microscopy in the previous section were confirmed by scanning electron microscopy 

to be cones on the CR-39 surface. These had very well-defined structures and, in general, 

appeared to have even better definition than those on the irradiated polycarbonate surface. In 

particular, the cones on CR-39 were found to have extremely straight walls and to be 

extremely sharp at their tips as can be seen from the results shown in Figure 4.4. From the 

SEM images of the ablation sites, small particles appeared to be on the surface though it is 

difficult to make out if these reside on the top of the cone as 'initiating' sites.

Figure 4.4a and b show the cones that developed at fluences of 112mJem"2 and 

180mJem"2 with 500 pulses. The cones appear to have a similar size and shape at the same 

fluence. A comparison of Figures 4.4 a and b shows as expected that the cone apex angle is 

larger at the lower fluence i.e. the full apex angle is -70° at 112mJcm"2 and ~55° at 

ISOmJcm"2 when corrected for the 60° viewing angle. It also appears that the cone tips get 

sharper as the fluence is raised. Exposure the CR-39 surface to a higher number of pulses, 

Figures 4.4c and d, led to an increase in the areal density of the cones compared to that at 

lower pulse number, Figures 4.4a and b.

Figure 4.5 shows a group of cones produced with 500 pulses at a fluence of ~80mJcm"2. 

In this case, the cone full apex angle is 83° corrected for the viewing angle of 60° on the 

SEM. At this fluence of ~80mJcm"2, the cones have not fully developed and are not as well 

defined as those seen at higher fluences (Figure 4.5b and c), where the full apex angle is 66° 

and 51° respectively, again illustrating that the angle is reduced at higher fluence. Here they 

are folly developed, with sharp tips and very well defined structure.

hi Figure 4.5a the ablated surface of this polymer well away from the cone bases is seen 

to be relatively smooth and devoid from significant debris indicating the good surface quality 

of this material when ablated with the 157nm laser. The fringes around the bottom of the 

cones can be clearly seen in Figure 4.6a with 100 pulses at ~60mJcm"2 and Figure 4.6b with 

100 pulses at ~180mJcm"2 .
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(b)

(c) (d)

Figure 4.4: Examples of cone formation on the CR-39 surface using the 157nm laser (a) 500 

pulses at 112mJcm~2 (b) 500 pulses at ISOmJcm 2 (c) 1000 pulses at 142mJcm~2 and (d) 1000 pulses at
182mJcm 2.

84



I57nm FI Laser Interaction with CR-39 Polymer

Figure 4.5: Evolution of conical structures developed on CR-39 using the 157nm laser (a) 500 
pulses at ~80mJcm 2 (b) 500 pulses at ~112mJcm~2(c) 500 pulses at ~ 140mJem'2
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Figure 4.6: Fringes seen at the region of the bottom of the cones on CR-39 (a) 100 pulses at 
~60mJcm'2 and(b) 100pulses at ~182mJcm 2.
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4.5 Ablation Characterisation from the Cones

The ablation threshold of CR-39 was calculated from the apex angle of the cones 
developed on the irradiated surface. Using equation 3.15 in Chapter 3, a graph of 
y(6,)~ sin#( versus inverse fluence, FJ, should give a straight line with a slope related to
the threshold FT. The measured cone angle was corrected by a similar method to that applied 
to polycarbonate (expression 3.14) to account for viewing angle, but angle-dependent 
reflection loss on the cone wall was neglected. Figure 4.7 shows the resulting data. At the 
higher fluences the cone angles showed quite a small spread in value. The gradient obtained 
from the slope linearized by fitting a plot of \j/(9) versus F l through the origin in Figure 4.7 
gives a threshold of 5 8mJem"2 which seems broadly consistent with that deduced from the 
etch rate. It is interesting to observe that in previous work on ablating CR-39 using a CC*2 
laser at 10.6um [3], a threshold of 25Jem"2 was found and its was concluded that the ablated 
surface was free from micro-cracks, vents or chips. This threshold is much higher than 
obtained here, the difference principally arising from the greater absorption in the VUV 
spectral region.

o.o
o.ooo 0.005 0.010

F'1 (cm2/mj)
0.015 0.020

Figure 4.7-.Experimental results for y(6)~ sin 9, where 6, is the true cone half-angle as a function 
of inverse fluence (FJ), for CR-39 ablated at 157nm. The line is a fit that gives a threshold fluence of

58mJcm\
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4.6 Track Etching on the CR-39

This section describes preliminary studies of ablating CR-39 that had been pre-exposed 
to ionizing radiation in the form of alpha particles of a few MeV energy. Radiation tracks 

were produced by exposing it to a 226Ra source (1.6xl03 yr half-life) with an activity of 

Smicrocurie. This radium isotope decays principally by alpha emission with energies of 4.87 
and 4.61 MeV. The alpha particles pass through the material, transfer energy to electrons 
resulting in a trail of damaged molecules along the particle track. The track can be made 
visible upon etching with the strong acid or base solution, as the radiation damaged polymer 
along the particle track etches about 10 times faster [4] than the parent polymer surface.

Irradiation of polymeric material with ionizing particles may cause many types of 
changes and produce chemical products in the system. It has been reported earlier that 
irradiation of CR-39 with X-rays produces COa in the polymer [5]. A clearer understanding 
of bond breaking by ionizing particles and, thus, the changes in the track registration 
properties of CR-39, may require further analysis of the kinetics of the bond breaking.

According to Tse et al [6], when CR-39 is exposed to ionizing radiation, two alkyl 
radicals and a polycarbonate-ended radical is dissociated into 2,2-oxydiethanol diradical and 
carbon dioxide during the process of decarboxylation. Irradiation of CR-39 with alpha 
particles in the presence of oxygen in the air prevents the recombination of free radical pairs 
and as a result permanent damage is formed along the alpha-particle trajectory. The damage 
created by the incident particle can be through collision by the particle itself or from the 
ionizing particles created along its track. A qualitative diagram showing how the tracks are 
produced by solution etching is sketched in Figure 4.8(a-c). In this diagram the assumption is 
made [4] that the undamaged surface is eroded away at a velocity VG orthogonal to the 
surface. If the etching velocity along the damaged track is VT, the angle of incidence on the 

surface must exceed a critical angle 6C to avoid the track disappearance due to the progressive 
etching of the normal surface. This critical angle can be express as:

(4.,)
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...---"""V

(b)

(c)

Figure 4.8: (a) Model of track etching in which the normal surface is removed at a velocity VG by
chemical reaction and the damaged track at a velocity Vj, leading to a cone-shaped pit.fb) Track

formed at an angle <p less than critical angle (c) The case is where particle enters at the critical angle
0C, tracks formed at angle greater than 9C with respect to the surface will be visible after etching [4].
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4.6.1 Experimental procedure

Samples of dimensions 25 x 25 mm2 were cut from the 1 mm thick sheet of CR-39 and 
taken to Castle Hill Hospital where they were exposed to the 226Ra alpha source. As ~5MeV 
alpha particles penetrate only about 8mm of air the samples were placed directly on the 
source window and exposed for ~ls, 5s or 10s. One sample remained unexposed in order to 
provide a control measurement.

Following exposure the samples were etched by placing them in a 6.25N sodium 
hydroxide (NaOH) solution in a glass vessel that was held in a stirred water bath that 
maintained the temperature at 70°C. They were held under these conditions for 1.5h and then 
removed, washed with distilled water and dried in air. According to the literature these 
etching conditions typically produce tracks ~7um in diameter and ~150um long for alpha 
particles of 4-5MeV energy [7]. Studies were then carried out using optical microscopy and 
scanning electron microscopy (SEM) on samples that had been subjected to the following 
treatments.

• Chemical etching but unexposed ('control' sample).
• ~ls exposure to alpha particles and chemically etched.
• 5s exposure to alpha particles and chemically etched.
• 10s exposure to alpha particles and chemically etched.
• Unexposed to alpha particles, chemically etched and irradiated using 157nm laser 

radiation.
• 10s exposure to alpha particles, chemically etched and treated with 157nm laser 

radiation.
• 10s exposure to alpha particles, no chemical etching but treated with 157nm laser 

radiation.

Ablation of the samples was carried out in vacuum (10"5mbar) using the ¥2 laser set-up 
described in Chapter 3 (Section 3.2.2) at a laser repetition rate of ~10Hz with an imaged 
aperture demagnification of lOx. Following exposure to a given number of pulses, the effects 
of 157nm laser irradiation were assessed.
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4.6.2 Result and discussion

The etch tracks produced by alpha particles in CR-39 are seen in Figure 4.9 (a-d), as 
revealed by optical microscopy. Figure 4.9a shows the sample unexposed to the alpha 
particles, and Figures 4.9b and c the samples exposed for 1 and 5 seconds respectively. 
Though little change in the sample is evident for the 1 second case, the 5 second exposure is 
seen to produce copious tracks in the chemically etched sample. These are revealed by the 
dark spots in the optical micrograph which are regions where material has been etched away. 
It is evident from Figure 4.9d that the density of tracks increases further when CR-39 is 
exposed to alpha particles for 10 seconds. As noted in the previous section, each sample was 
chemically etched in sodium hydroxide solution under the same conditions.

20 iim i———i
20|jm

(a) (b)
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Figure 4.9: Optical microscope images of CR-39 samples exposed to alpha particles and chemically 
etched with NaOH. (a) unexposed 'control' (b) Is exposure (c) 5s exposure and (d) 10s exposure.

Many etch tracks are seen in (c) and (d).
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Figure 4.10 below shows the areal density of the tracks formed as a function of the 
duration of exposure to the alpha source. The areal density was estimated by counting the 
number of tracks within a given area of the image (typically over a lOOjim x lOOum field). It 
is evident that longer exposure time significantly increases the track density, with the value 
reaching approximately 4xl05 tracks/cm2 for the 10 second exposure.

0 2 4 6 8 10 

Time exposure to alpha particles (seconds)

Figure 4. JO: Variation of the areal density of tracks with time exposure to alpha particles for CR-39.

The CR-39 samples exposed for 5s and 10s to the alpha source were observed under the 
SEM in order to obtain a higher resolution view of the tracks. Figure 4.1 la and b show the 
sample surface that was exposed for 5s. The etched holes are sharply defined and at the 
surface have cross-sections varying from circular to quasi-elliptical. This is because the 
radiation source emits over a wide range of angles and alpha particle damage tracks thus 
make various angles with respect to the surface normal. Those entering at an angle that 
exceeds the critical angle defined by equation 4.1, will be revealed by selective etching. 
Corresponding views for 10 second exposure, where the density of tracks is higher, are seen 
in Figure 4.1 Ic and d. Here there is a higher statistical likelihood of particles overlapping, as 
is borne out by the close clustering of some groups of holes seen in Figure 4. lid. A close
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inspection of the deep tracks in the polymer reveals these have a conical shape, and also a 
step-like ring structure on their walls, possibly related to the etching process. The narrower 
width of the pores in these figures lies in the range 2-5 urn and, as expected, they evidently 
penetrate quite deeply into the surface. An estimate of the maximum hole ellipticity in Figure 

4.1 Ic gives a value ~ 1:4, hence suggesting the critical angle is < 14° and according to 
equation 4.1 that VT >4VG -

(b)

Figure 4.11: SEM images of the tracks etched in CR-39 exposed to the alpha source and chemically 
etched (a) and (b) 5s exposure, (c) and (d) 10s exposure.

A sample that had been exposed to alpha radiation for lOseconds but not chemically 
etched was ablated using the 157nm ?2 laser for different numbers of pulses and then viewed

-2,under the SEM. Figure 4.12 shows areas ablated at -lOOmJcm" with 100 pulses on the right
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hand side of the micrograph and 500 pulses on the left hand side. The two irradiated areas 

overlap slightly, so the somewhat deeper region in the centre of the etch site has received 600 

pulses in total. A careful inspection of the surface revealed no evidence for differential laser 

ablation associated with the alpha particle-induced damage tracks in these non-chemically 

etched surfaces. This is probably not surprising as the diameter of the radiation damaged zone 

along a track in the polymer is ~10nm [4] and hence would be unresolved at the 157nm laser 

wavelength even if there was selective removal. Cones are seen on the surface of the 100 

pulse site and larger sized cones and also mounds with rounded tops in the 500 pulse site, but 

as has been seen earlier, these are also a feature of pristine samples that are neither seeded 

with particles or subject to radiation exposure.

Figure 4.12: SEM images of CR-39 exposed to the alpha source for 1 Os, but not chemically 
etched and then ablated using the 15 7nm laser with 100 and 500 pulses at 1 OOmJcni2.

Several changes have been observed on the CR-39 samples exposed for lOseconds to the 

alpha source, chemically etched in sodium hydroxide (NaOH) and then irradiated with 

157nm FZ laser. Results for fluence of ~130mJcm"2 with different pulse numbers applied to 

the surface are shown in Figure 4.13. With a single pulse (Figure 4.13a), the etch tracks can 

still be seen clearly and appear to have had their edges slightly rounded by the laser exposure. 

With 10 pulses the ablation site deepens and the tracks appear to be reduced in size and 

number and there is substantially more edge-smoothing than with just one pulse (Figure

94



157nm F2 Laser Interaction with CR-39 Polymer

4.13b). In some tracks, cones are starting to develop. In Figure 4.13c where 500 pulses were 
used tracks are no longer visible in the centre of laser region and a high density of cones has 
formed on the surface. As seen below the presence of the track-etch sites appears to provide 
'nucleation' points for cone growth. Figure 4.14 shows normal incidence SEM views of the 
ablation area and the region adjacent to this that was not exposed to the laser. Figure 4.14(a) 
is the result for a single pulse, (b) for 10 pulses and (c) for 500 pulses applied on the CR-39 
samples at ~130mJcm~2 . With a single pulse there is some rounding of the edge of the holes 
that is suggestive of softening of the polymer and melt flow having then occurred. With 10 
pulses (Figure 4.14b), cones begin to form, some appearing to grow from the cone rim. These 
cones become much more pronounced with 500 pulses and nearly completely cover the track 
etch holes leaving only small openings where several cones have begun to coalesce as 
indicated in Figure 4.14c. It appears that the track etch sites provide nucleation points for the 
growth of conical structures and as a result the cone coverage of the surface increases 
significantly. This is seen clearly in on the right hand side of Figure 4.13c where there are 
many cones distributed across the surface. The reason for this is not fully clear but may stem 
from residual chemical deposits associated with the chemical etching or simply be a result of 
the non-uniformity of etching at the step at the rim of the hole. A contribution from radiation 
damaged polymer appears to be ruled out as this extends only over ~10nm diameter, so will 
have been stripped away in the early stage of chemical etching and will no longer remain 
when the surface is ablated.

The capability of producing small chemically etched holes in alpha-exposed CR-39 
offers a simple way to explore basic mechanisms in ¥2 laser polymer ablation such as 
resolution limits set by melt-flow on the heated surface and related surface smoothing effects. 
Though the preliminary work described here has used only one set of chemical etching 
parameters to generate track etch sites of a few microns size at the surface, it should be 
possible to produce sub-micron holes by reducing the etching time. This could form a means 
of studying how surface nano-features evolve under 157nm ablation and how and why cone 
growth is initiated at these sites. It has been reported that long wavelength lasers exposure 
can be used to strip away a surface layer of polymer that is hard to etch, speeding the 
chemical etching process. It would be interesting to see whether 157nm surface ablation prior 
to alpha-particle exposure can influence the subsequent chemical etching rate.
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Ablation site

(a) (b)

(c)

Figure 4.13: SEM images on CR-39 exposed to alpha source for lOseconds, chemically etched and
then ablated using the I57nm laser at ~lSOmJcm 2 (a) 1 pulse (b) 10pulses and (c) 500pulses with

indicating arrow showing the ablation area, circles in (b) shows regions where cones have started to
develop around the holes.
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(a) (b)

Figure 4.14: SEM images at normal incidence showing the tracks in the ablated and non-ablated
region of CR-39. Exposure by 157nm laser with (a) single pulse (b) 10 pulses and (c) 500 pulses, at

fluence of 130mJcm~2. Arrows show the cones growing from around the rim a track etch holes.
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CHAPTER 5

SURFACE QUALITY OF POLYMERS ABLATED WITH THE 157nm F2 

LASER

5.0 Introduction

This chapter will describe theoretical and experimental studies of the surface quality of 

157nm Fa laser ablated polymers. Limitations set by statistical fluctuations in the multimode 

beam, and by stationary beam non-uniformity i.e. that is fixed from pulse-to-pulse, are 

explored together with material issues such as debris formation/re-deposition from ablation 

products where cones appear under FI laser exposure. Experimental work on ablating 

polydimethylsiloxane (PDMS), Lexan polycarbonate (PC) and the polymer CR-39 has been 

carried out by assessing the quality of the ablated surfaces using a white light interferometer 

(WykoNTllOO).

Theoretical consideration is given to the fundamental limitations that coherence effects 

have on the attainable smoothness of an ablated surface [1] i.e. arising from spatially varying 

statistical fluctuations that occur from pulse-to-pulse with the multi-mode beam, as well as 

practical aspects related to stationary beam non-uniformity [2]. The magnitude of statistical 

fluctuations is predicted to be a few percent, with associated roughness increasing as m1/2, 

where m is the number of ablation pulses [1]. Beam characterization through use of VUV 

excited fluorescent from a glass plate recorded using a couple charge device (CCD) camera, 

as has been investigated to support this statistical fluctuation work will be described in the 

next chapter.
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5.1 Theoretical Considerations of Ablation Uniformity

5.1.1 Multimode beam fluctuations

The free-running Fi laser is usually operated with emission linewidths and a resonator 

Fresnel number that supports a vast number of electromagnetic modes (typically ~10 ) [1]. 

Highly multimode emission is attractive for certain applications as the many modes 

superimpose to produce very good spatial uniformity but with a low degree of coherence, 

greatly reducing speckle effects. Generally, the modes will have random relative phases on a 

pulse-to-pulse basis and interference among them can lead to small scale-size fluctuations in 

the local fluence. The presence of many modes makes possible a statistical argument with 

which to assess these fluctuations. When the output is averaged across all such mode groups 

within the lasing linewidth it should approximate to a Gaussian probability distribution for 

the fluence of the form:

dp = la 2 dF (5.1)

Here dp is the probability that the fluence F will lie in the range F to F+dF, <F> is the mean

fluence (i.e. the long term average) and a is the standard deviation of the distribution given by
\_

a =< F > TC . where TP is the laser pulse duration and TC is the laser coherence time. For a
/"UrJ

Lorentzian lineshape, as assumed here, T C = —— where Av is the laser linewidth. If the laser

emits a linearly polarized beam then/=l but if the emission is unpolarised/=2 as twice as 
many independent modes makeup the output. This behaviour is confirmed later in the thesis 
by modelling the incoherent superposition of a large number of Hermite-Gaussian mode 

groups.

The coherence area AC determines the transverse spatial extent over which the output 

beam retains coherence. For a rectangular beam this is given approximately by Ac =

where A^ and A0 are the full-width beam divergence angles in its wider and narrow
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dimensions which are referred to as the x and y directions of the laser beam. The coherence 
fluctuations described by equation 5.1, will thus be uncorrelated and random between 

different coherence 'patches' in the beam. As an example, taking values of At/> =2mrad and 

A9= Smrad for the divergence angles of the ¥2 laser gives Ac « 1.5xlO"9m2 .

The effect of these fluctuations can now be assessed for material that has an assumed 
ablation rate per pulse, x, of the form:

x = • 1
a'eff

(5.2)

Here aeff is the effective absorption coefficient at the laser wavelength and FT the fluence at 
the ablation threshold. Equation 5.2 has been found to be approximately useable for many 
laser material systems over a limited fluence range and has the advantage of analytical 
simplicity.

Suppose ablation of the material surface is a result of exposure to m laser pulses at an 
average fluence of <F>. It arises from the equations 5.1 and 5.2 that the ablation depth D will 
have an uncertainty between different coherence patches that can be determined from:

aeff

<F>±
•Jrn

(5.3)

cr .as —j= is the standard error i.e. standard deviation of the mean. Assuming <F> is large 
-Jm

compared to —j= , equation (5.3) can be expanded as:

D=<D>±-
aeff <F>

(5.4)

/where <D>= —— ln(————) is the mean depth of material removed from the surface by 
a eff <FT>

ablation using m laser pulses. Equation 5.4 shows that the spatially varying fluence leads to
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an uncertainty in the ablation depth. Although the relative uncertainty in the depth, given by

, decreases with number of pulses as-j=, a residual
aeff <F><D> <F>Jmln(F/FT )

roughness is imposed on the surface of magnitude r =
I —

aeff <F>
that increases

Evaluating a in equation 5.1 using an estimate for the line width of -8.8 GHz (0.82 pm) [3] 

for the main 157.63 rim transition of the F2 laser and taking r p = 1 Ins , we obtain estimates of

——— = 5.7% for a polarised beam (/"=!) and 4% for an unpolarised beam (f= 2). For the F2 
< F >
laser these 'mode speckle' fluctuations are predicted to be significantly larger than, for 

example, the free-running ArF or KrF laser because the latter have larger linewidths resulting 

in there being more independent modes involved in the spatial averaging.

If the surface roughness factor, r, is expressed in terms of <Z», we obtain,

(5.5)

This indicates that when it is desirable to minimise roughness on the ablated surface, it is 

advantageous to have a high absorption coefficient, and to work well above the ablation 

threshold. In this respect the F2 laser has an evident benefit for processing polymers, glasses 

and indeed, other insulator materials, as aejy can be large in the VUV with correspondingly 

low thresholds, permitting 'well above threshold' ablation. Even so the roughness induced by 

'mode speckle' can be important.
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5.1.2 Stationary Beam Non-Uniformity

It is of interest to examine how stationary beam non-uniformity effects the ablation depth 
i.e. variations in <F> that remain unchanged from pulse-to-pulse. Consider that the 157nm 
laser beam is nominally flat-topped and has a residual fluence variation of |dF| <« F > 

superimposed on the profile. Then, from equation 5.2, we find that SD, the difference in the 

depth of ablated material when exposed to m pulse at fluence <F> and at <F>+dF, is:

D(

<F>a ff , ,<F>eff ln(~F-) (5.6)

Equation 5.6 shows that the variation in depth or roughness of the ablated surface is now 
linearly dependent on the ablated depth D but is independent of the value aeff, which differs 
from equation 5.5. For low roughness it is still, however, advantageous to work at high 
fluence above the ablation threshold.

Stationary beam non-uniformity even at a level as low as 1% can evidently produce 
significant difference in ablation depth and it is likely that random variation of this magnitude 
could easily be introduced by imperfection in the beam delivery components. As an example, 

an ablation depth of D - 20um produced with <F>/Fr - 3 and stationary non-uniformity of 

dF/<F> = 0.01 (1%) is predicted to lead to 5D = ISOnm. This depth uncertainty could 

present a significant problem if fabricating precision a optical surface by ablation and points 
to the need for good beam homogenisation in applications work. Stationary non uniformity 
may also appear from coherence effects in contact and projection imaging where diffraction 
patterns with significant fluence modulation are produced on the material surface [4], This 
can be particularly problematic for the FI laser because of its relatively narrow line width and 

long coherence length.

In order to make quantitative characterisation of roughness, white light interferometry 
has been used to analyze the surface of ablated polymer samples, in terms of the average 
roughness Ra and the RMS roughness Rq. The surface roughness average is illustrated in 
Figure 5.1 where the parameter contains the variation in height from point to point on the
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surface, where the results can be elaborated further in terms of a statistical distribution that 
characterises the average roughness on the measured surface.

Figure 5.1: Derivation of the average roughness Ra on the measured surface.

The Gaussian distribution can be considered from the height r(x) at a point x and the 
probability density p(r) of a distribution of heights shown in Figure 5.2 below. The 
probability of a height lying in the r and r+dr range is p(r)dr, and the cumulative probability 
that a height will be below some level h defined as [5]:

P(h)= \p(r)dr
(5.7)

0 50% 100%

Figure 5.2: Profile height distribution p(r) and cumulative height distribution P(r)
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The distribution p(r), where the height of the mean line of the profile, can be 

characterised by its central moments of the profile:

00

jun = \r np(r)dr
(5.8)

The variance v is in units of (height) squared; this is related to the square of the standard 
deviation of the distribution i.e. v = a*, and Rq is formally identical to the RMS roughness. 
Many surfaces have more or less symmetrical height distributions which can be represented 

as the Gaussian distribution:

a r 2
"l (

(5.9)

5.2 Experimental Techniques

Experiments on the surface quality of laser ablation were carried out using the Lambda 
Physik LPF 202 F2 laser producing output energy of up to 35mJ at a pulse repetition rate 
<20Hz. Samples of PDMS, PC and CR-39 were used as ablation targets. The target samples 
were mounted on a stepper motor driven stage that allowed precision adjustment of their 
position. Laser interaction took place in the vacuum chamber with the pressure of IxlO"5 
mbar. The chamber was connected to the laser by a 2m long beam delivery tube. The surfaces 
of the ablated samples were investigated using both scanning electron microscopy (SEM) and 
the white light interferometer to provide information on roughness.

5.2.1 White Light Interferometer Analysis of the Ablated Site

The use of the white light interferometer not only allowed for precise depth 
measurements to be made but also the profile of the etched surface could be determined. 
Generally, white light interferometer profilers provide three-dimensional measurements that 
represent undulations on the ablated surfaces. It is possible to use such measurements to
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determine various properties of interest such mean roughness and roughness distributions for 
ablated material surfaces.

The white light interferometer could be used to obtain information on the physical 
smoothness of the ablated polymer surface. It provided, for example, Rq the RMS surface 
roughness and Ra, the average roughness. The latter is defined by:

(5.10) 

The root-mean-square average of the surface measurement, Rq is defined as:

(5.11)

where r(x) is the deviation from the mean surface and L is some length measure along the 
surface.

5.2.2 PDMS

Figure 5.3 shows the image obtained from the white light interferometer crossing 
horizontally and vertically on the ablated area for the case where just 5 pulse exposures is 

used and the average depth removed is 0.6um at ~100mJem"2. The profile in Figure 5.4 
shows the ablated surface is relatively smooth and ablative removal is confined to a shallow 
skin on the surface, as indicated by the height, magnitude and spacing of the peaks and 
valleys.
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Figure 5.3: White light interferometer image of 5 pulses with arrows indicating the X and Yprofile 
across the ablation site. Xand Tare defined in Figure 5.4.

The white light interferometer is seen to provide excellent depth resolution and can be 
used to investigate not only removal but also material 'swelling' or reposition around the 
ablation site. The graph in Figure 5.4 shows the surface profile for 5 pulses at -1000 mJcm"2 
fluence where the depth is 0.6um, where it can be noted that the base relief of the irradiated 
area is not smooth but has significant undulations. These irregularities may well be a product 
from the way the PDMS material ablated, as opposed to the profile of the laser beam. As a 
result of the experiments where 100 pulses (Figure 5.5e) per sites were delivered, the increase 
in depth of the ablated sites also resulted in average roughness increasing. This may possibly 
have occurred due to the modifying of the molecular structure of the material. Figure 5.5 
shows 3D images, produced from the white light interferometer data, where undulations on 
the base of the etch crater can be seen. Figure 5.5a shows the ablation site for a single pulse, 
(b) for 5 pulses, (c) for 10 pulses, (d) for 50 pulses and (e) for 100 pulses. From the images 
shown below, the depth of the ablation holes clearly increases with number of exposure 

pulses at 157nm.
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Figure 5.4: Etch depth profile along x-and y-direction of ablation site obtained using white light 
interferometer for PDMS. The average depth removed is ~0.6pm, after irradiation with 5 pulses from

the 157nm laser affluence of~1000mJcm 2.
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(a) (b)

I (d)

Figure 5.5: 3D images of ablation sites produced in PDMS, obtained using the white light 
interferometer. For (a) single pulse, (b) 5 pulses, (c) 10pulses, (d) 50pulses and (e) 100pulses

157nm laser exposure at lOOOmJcm'2.
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Figure 5.6: Roughness measurements, RMS (Rq) and average roughness (R^) using the 157nm laser 
against (a)m the number of pulses and (b) mm for PDMS at afluence of-lOOQmJcm 2.
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Figures 5.6a shows Rq and Ra as a function of the number of pulses using 157nm 
laser exposure delivered to the PDMS sample at a fluence of lOOOmJcm"2 . These parameters 

were based on averages made using the white light interferometer over a width of L«300um 
in the .X-profile (equations 5.10 and 5.11). This corresponded to approximately the full-width 
of the crater and was acceptable in this case as its average base depth was nearly constant. Rq 
is seen to increase in a nearly linear fashion with increasing number of pulses m, and reaches 
up to Rq - 0,3 um for 100 pulses. Similar results can be seen for the Ra data in Figure 5.6 

where Ra « 0.15um for 100 pulses. The ratio of Ra to Rq, has the mathematical significance

Rq - n ( 2 \2
that — =22 ;r«8.8 for special case of a sinusoid and _£- - \ — \ ~ 0.8 for a Gaussian height 

Ra Rq U;

distribution [5]. For the present results, the ratio of Ra to Rq can be seen in Figure 5.7, for 1, 
5, 10, 50 and 100 pulses. This ratio has a value of ~ 0.7, for 5 and 10 pulses but shows a 
slightly lower value for 1, 50 and 100 pulses. The average value is 0.634, which suggests that 
a Gaussian-like roughness distribution is produced on PDMS with the 157nm laser.
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Figure 5.7: The ratio of the average surface roughness (Rq) to RMS surface roughness (Rq) against 
number of pulses for PDMS when ablated using the 157nm laser at afluence of~1000mJcm~2.

The roughness data seen in Fig 5.6b do not show a particularly close fit to an mm 
dependence which suggest that statistical roughening related to mode fluctuations may not be 
significant and that other material related roughening effects are dominant. This is perhaps 
not unexpected as PDMS is a 'soft' rather than rigid polymer at room temperature and 
transient laser heating may play a role hi deforming its surface.

5.2.3 Polycarbonate (PC)

To assess and evaluate the surface roughness produced using the 157nm p2 laser, most of 
the work here was focussed on the Lexan polycarbonate ablated by exposure for up to 500 
pulses at an average fluence of ~230mJcm"2 . In this case inspection of the SEM images of 
ablation sites such as shown in Figure 3.22 of Chapter 3 reveals several interesting findings. 
Firstly, the ablated PC is predominantly smooth and has a crack free surface. There is, 
nevertheless, a factor-of-two difference in the ablation depth of the near and far sides of the
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crater indicative of a relatively large variation in fluence across the beam. Secondly, at high 
fluence (~230mJcm~2) and high number of pulses, it can be seen that the number of cones in 
the ablated area is reduced.

To correctly characterize roughness of the ablated PC surface at 157nm, it is crucial to 
eliminate cones in measurements. Cones were readily produced at fluences in the range 20- 
200mJcm"2, whereas in general less cones develop at higher fluence. Hopp et al [6] reported 
that above 600mJcm"2 using 193nm laser, no conical structure was found. It believed that 
under these conditions small particulates impurities are removed from the surface, thus no 
cones develop from the shadow of the impurity, as noted in Chapter 3.

Figure 5.8(a-e) shows the white light interferometer surface images and the cross 
sections of X and Y profiles of the unirradiated PC surface and cross-section of X profiles 
after exposure to 1,10, 50 and 100 pulses at a fluence of 230mJcm"2. It is evident that there is 
a distinct growth in roughness with increasing number of pulses. Roughness was determined 
by averaging over regions of width L ~100|im that were selected to minimise contributions of 
low spatial frequency arising from beam non-uniformity (i.e. corresponding to stationary 
fluence variations) and that were free from cones. Figure 5.9 shows the surface of PC after 
irradiation with 1000 pulses, indicating after exposure at higher pulse number, the cones 
disappear resulting in an essentially smooth surface. Along the X profile there is a roughness 
of ~3um for averaging over the full width of the ablation site.
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Unirradiated surface

X Profile Y Profile

Figure 5.8(a): White light interferometer for analysis for PC using 157nm laser at 
• 237mJcm'2 for unirradiated surface. The above profiles shown are for the full width of the crater

and for a restricted range o/L = 100/jm.
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Figure 5.8(b): White light interferometer for analysis for PC using 157nm laser at

• 237mJcm~2 for single pulse. The above profiles shown are for the full width of the crater and for a
restricted range ofL = lOO^an.

115



Surface Quality of Polymers Ablated with the 157nm F2 Laser

C 5C ICC 150 200 250 500 350 400 450 500 550 €OZ

Q Q 4 -

X Profile

Mf-

^'^~**~**iw»j^^ I

100 200 IV! '.'.0 tl»

250 260 270 :aO 290 300 310

X Profile

MO 4«i

50 oulses

200 210 30 270 280 290 300

116



Surface Quality of Polymers Ablated with the 157nm F2 Laser

210 220 2 ;

X Profi e

40} MO

100 pulses

280 290 300 310

(e)

Figure 5.8: White light interferometer for analysis for PC using 157nm laser at
- 237mJcm'2 (c) 10 (d) 50 and (e) lOOpulse. The above profiles shown are for the full width of the

crater and for a restricted range ofL = 100/jm.
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Figure 5.9: White light interferometer analysis for PC using 157nm laser at ~237mJcm~2, 1000 
pulses, The Xprofiles show profiles for the full width of the crater and for a restricted range ofL

=100/jm.
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Roughness measurements obtained for cone-free regions of PC surfaces using the Wyko 
interferometer are shown in Figure S.lOa and b. In Figure 5.10a, (Rtf-Rq02) ia and (Ra2- 
Ra0 ) are plotted versus number of pulses where Rq is the measured RMS roughness and 
Ra is average roughness where Ra0 = Rq0 = 0.01 ̂ m is the corresponding roughness of the 
unirradiated polycarbonate surface. The data shows an increased roughness value with the 
number of pulses applied to the PC surface. For m pulses applied to the ablated surface, the 
modelling based on statistical (pulse-to-pulse) fluctuations predicts that the total depth 

ablated will have uncertainty that is a factor of V»z times larger than a, giving a roughness 

r = ^lma [1] i.e. increasing asV/w. Figure 5.1 Ob shows the roughness plotted versus 4m 
with a straight line fitted to the data. This gives a reasonable fit to the data when account is 
taken of the considerable uncertainty in the measurements.
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Figure 5.10: Average roughness (Ra2-Ra02)1/2 and RMS roughness against (a) number of
pulses m and (b) against m for polycarbonate using 157nm laser exposure at afluence of

~237mJcm'2.

Figure 5.11 shows a magnified SEM image of an essentially cone-free region of the 

surface of polycarbonate at about ~2|am scale-size from which it is evident that a smooth 

surface texture remains after ablation using 157nm laser. This result and the extremely 

smooth walls seen on the micron scale size cones formed in PC (e.g. see Figure 3.30), suggest 

that FI laser processing could achieve roughness hi the nano-meter range on a micrometer 

lateral scale. This gives this polymer laser combination good potential in lab-on-chip device 

development applications, for example, for genome analysis and biotechnology [7], and also 

for machining micro-optical components and other structures.
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Figure 5.11: Magnified SEM image of the surface in the region of essentially cone-free area on 
polycarbonate (PC), at~237mJcm~2, 500pulses.

Figure 5.12 shows the height distribution extracts from the white light interferometer 

analysis on the ablated polycarbonate from which can be deduced that the surfaces can be 

represented by the Gaussian-like distribution. Figure 5.12a is for the pristine surface before 

laser exposure; Figure 5.12b the distribution following of a single pulse on the PC surface, 

and Figures 5.12c and d for 50 pulses and 100 pulses respectively. The results have close to a 

Gaussian-like distribution, with Ra/Rq ~ 0.8 although it can be seen there is a small shift 

toward negative skew with an increasing number of pulses.
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Figure 5.12: Height distributions of the surface of the ablated polycarbonate samples: (a) 
unirradiated (b) single pulse (c) 50 pulses and (d) 100 pulses at a laser fluence of~237mJcm'2.Red

lines show Gaussianfits to distributions.
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5.2.4 CR-39

This section will describe the roughness analysis of CR-39 ablated using the 157nm 
beam. Figure 5.13(a-e) shows the white light interferometer images and the cross section of X 
and 7 profiles of the unirradiated CR-39 surface, and X profiles after exposure to 1, 10, 50 
and 100 pulses at a fluence of 182mJcm"2 . Roughness determination was again restricted to 
averaging over a scale length of I = lOOum to minimise contributions from stationary fluence 
variations and to avoid contributions from cones if present. In Figure 5.13e where 100 pulses 
were applied on the CR-39 polymer, 'dark spots' appear, indicating cone formation, and 
bringing an increasing degree of uncertainty to the roughness measurements. From Figure 
5.13(a-e) there is seen to be a distinct growth in roughness with increasing number of pulses. 
In Figure 5.14a (Rq2-Rq02)i/2 and (Rcf-Ra 2) 1® are shown plotted versus number of pulses, 
where Rq is measured RMS roughness and Ra is average roughness where Ra0 - Rq0 « 
0.01 um for the pristine surface of this polymer. The value of (Rq2-Rq02) I/2 increases to 
~0.04um for exposure to 100 pulses, and average roughness (Rci3-Ra02)1/2 increases up 
-0.03um for the same number of exposure pulses at a fluence of 182mJcm~2 . The roughness 
of ~0.04u.rn for CR-39 is slightly higher than that of ~0.02um obtained on polycarbonate at 
100 pulses exposure. In Figure 5.14b the measured roughness (Rq2-Rq02)1/2and average

roughness (Rc^-Ra02)I/2, plotted againstvwz in order to compare with the statistical roughness 
expression (equation 5.5), shows quite good agreement with a linear dependence over the 
range involved. Figure 5.15 shows the magnified SEM image of CR-39 on a 2um scale for a 
cone-free zone. It is seen to have a relatively smooth surface texture after ablation. Figure 
5.16 shows corresponding histograms of the surface height variation on the CR-39 surface. 
This remains close to a Gaussian-like distribution, with Ra/Rq ~ 0.8, though the plots have 
poorer overall symmetry for this polymer compared to polycarbonate and in this case a small 
positive skew.
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Figure 5.13: White light interferometer analysis ofCR-39 surfaces ablated using the 157nm laser at-
182mJcm'2(a) unirradiated (b) single pulse (c) 50 and (d) 100pulses. Full Xprofiles are shown

together with those over a width range restricted toL- 100fan.
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Figure 5.14: RMS roughness (RJ-RJ) 1/2 and average roughness (Ra2-Rao2) 1/2 against (a) number of 
pulses m and (b) against m1'2 for CR-39 using 157nm laser exposure at afluence of~182mJcm\
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Figure 5.15: Magnified SEM image of the surface in the cone-free area on CR-39, at ablated at
~182mJcm'2 using 500 pulses.
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Figure 5.16: Height distributions for the surfaces ofCR-39 samples ablated at a 157nm laser fluence 
of~182mJcm~2 (a) unirradiated surface (b) single pulse (c) 10 (d) 50 and (d) 100 pulses. Red lines

show Gaussianflts to distributions.
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5.3 Discussion

It is of interest to compare the results obtained for the surface roughness of PDMS, 
polycarbonate (PC) and CR-39 ablated using the 157nm laser with the predictions of the 
roughening model based on laser mode fluctuations. Turning first to the scaling with number 
of pulses m, it is found that a reasonable fit to the results for PC and CR-39 is obtained using 
an m1'2 dependence which is supportive of a statistical roughening model. For PDMS the fit is 
poorer, a result that may relate to the fact that this polymer is significantly different to PC and 
CR-39, both of which are rigid at room temperature, whilst PDMS is 'soft' (non-rigid). This 
could result in there being a degree of distortion associated with transient heating under laser 
exposure that amplifies or modifies induced the surface roughness. Relaxation of residual 
stress in aligned polymers is, for example, known to lead to one or two dimensional 
undulations depending on whether alignment is uniaxial or biaxial [8, 9].

The magnitude of roughening r predicted by the mode fluctuation model can be 
determined from

r =
a« <F> (5.12)

where c^s is the effective absorption coefficient at 157nm, a in the standard deviation of the 
fluence and <F> the mean fluence. Based on the ¥2 laser linewidth a value c/<F> = 4% is 
obtained for the unpolarised beam giving for polycarbonate with (%« « 3 x 105 cm" 1

r=l.3mm (nm) (5.13a) 

and for CR-39 with «bff« 2.9 x lO^an" 1 .

r=l.W/2 (nm) (5.13b)

From Figure 5.10b, the measured roughness for polycarbonate with mm = 10 (100 
pulses) is ~20nm compared with a corresponding predicted value of r = 13nm. Given various 
uncertainties discussed below this is reasonable agreement. For CR-39 experiments give 
~40nm for 100 pulses (Figure 5.14), compared with a predicted roughness of 14nm showing 
that in this case there is a considerably larger difference between these values. Several factors 
may contribute to these differences: Firstly, use of an etch rate of the form in equation 5.2 to
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describe material removal is a simplification and the derived value of aeff used in equations 

13 can have considerable uncertainty. Secondly, in measuring surface roughness it is difficult 
to disentangle low spatial frequency variations arising from beam non-uniformity that is fixed 
from pulse-to-pulse ('stationary') with variations that are random from pulse to pulse. Use of 

a restricted spatial averaging range (here L ~ lOOum) helped minimise this, though low 

frequency depth changes may still remain that contribute to the roughness determination and 
thus result in an overestimate of statistical contributions.

Clear qualitative evidence of the surface quality attainable in 157nm ablation of both PC 
and CR-39 comes from SEMs of restricted regions of surfaces and from the high quality of 
the walls on conical structures that can form under multiple pulse exposure. As an example, 
Figure 5.17 shows a micron scale-size cone in CR-39, where both the cone wall and the 
surface surrounding the cone beyond the interference rings are seen to be very smooth. The 
fringes in Figure 5.17 have a spacing of only ~170nm, showing the excellent potential of 
CR-39 for recording nanometer microstructures by ablation with the 157nm laser. Similar 
conclusions can be drawn for polycarbonate as discussed in Chapter 3.

Figure 5.17: A cone developed on CR-39 atfluence of~60mJcm 2, single pulse using 15 7nm laser.
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For PDMS the predicted statistical roughness is r = 1 \mm using aeff= 3.5 x 104 cm" 1 and 
a/<F> = 4%. For 100 pulses this gives llOnm which can be compared with ~150nm found 
experimentally. Thus, though the scaling with pulse number is not in close agreement with 
the theoretical prediction, the magnitude of roughness is similar to that expected.

By using the optical system reduction of 15x for PC and lOx for CR-39, resulting spatial 
frequency for roughness of ~2um for wider dimension of the beam (for examples Figure 5.8c 
and 5.8e) gives the spatial coherence as ~20um for CR-39 and ~30um for PC for wide 
dimension (X). Thus, this spatial coherence values obtained seems are consistent with the 
interference effects measured from the adjacent cone base reported [10].

Previous work on the surface quality using 157nm laser on the ablated glasses shows 
macroscopically smooth with no signs of cracks on the surface as it was found to have a low 
ablation threshold and relative freedom from spurious microstructures formation, not like the 
materials used induced on polydimethyisiloxane (PDMS), polycarbonate (PC) and CR-39 
polymer is presumably are not as good as other material like glass as it found to be good 
physical and chemical homogeneity, thus minimizing possibly roughening associated with 
non-optical factors [1].
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CHAPTER 6

157nm F2 BEAM CHARACTERIZATION

6.0 Introduction

In industrial applications using excimer lasers, for example in photolithography or 
material processing, the process strongly depends on the stability and the precise control of 
the characteristics of the emitted radiation, such as pulse energy, beam width, divergence, 
pointing stability etc [1]. As such standardized methods for the evaluation of the beam are 
important. Whereas the output energy and power of the beam can be monitored by measuring 
tools such as joulemeter [1] whilst to record the spatial beam profiles, or more exactly the 
energy density distributions, requires specific instrumentation adapted to the output 
characteristics of the laser.

In this chapter, the main objective is to report an investigation of the 157nm FI laser 
beam characteristics using Lumilass G9 fluorescence glass plate as a transform medium from 
the vacuum ultra-violet to visible light spectral region. The plate is viewed and recorded 
using the CCD camera. This experimental work is complemented by modelling of the 
statistical fluctuations in the pulse-to-pulse spatial faiences distribution of the highly 
multimode of 157nm ?2 laser beam in an effort to assess the contribution of the coherence 

effects on ablated surface quality.

In the present work, many aspects have to be considered in recording the 157nm ?2 
beam, especially the capability of the Lumilass G9 glass as a medium for transformation the 
UV radiation to visible, followed by capturing images onto a CCD chip as well as the 
sensitivity of the camera as a image recorder. A computer equipped with frame grabber 
software is used for the profile acquisition, real-time display and evaluation of the 
characteristics of the beam parameters. The other part which plays an important role in this
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experiment is the CCD camera which must be able to capture and record images adequately. 

The capability of the CCD camera has been described in the section below.

6.1 Fluorescent Materials for VUV

The use of a fluorescent material to convert the VUV to visible radiation is attractive for 
beam profiling the 157nm laser as a CCD (charge coupled device) can then be used to record 
the two-dimensional radiation irradiance/fluence distribution. For this application the 
fluorescent material should have good stability i.e. should not decompose rapidly under VUV 
exposure, achieve adequate spatial resolution for the proposed use, and provide a linear 
response over a useful dynamic range. In addition, a high efficiency of conversion (quantum 
efficiency for fluorescence) to a wavelength range where CCD's are sensitive is desirable. 
There is also potential advantage in terms of the spatial resolution if there is localization of 
emission to a shallow surface layer so as to avoid depth of focus effects with the CCD 
imaging (Figure 6.1). A material that is transparent to the fluorescent radiation is 
advantageous for use with the VUV laser as rear viewing could then allow the plate to act as 
a window and the CCD camera to work in air. It is also important that fluorescent species 
within the material are uniformly distributed and at a sufficiently high density so as not to 
compromise the spatial resolution.

CCD CCD

VUV
r

vuv

(a)

Figure 6.1: Fluorescence with (a) strong VUV absorption where emission is confined to a shallow 
layer and (b) weak VUV absorption in the fluorescent sample.
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The capabilities of fluorescent glass under 157nm laser excitation described below were 

investigated first using several standard glasses (fused silica, soda glass, Pyrex glass and lead 

glass) of which fused quartz proved most suitable, though of poor emission efficiency. 

Attention then shifted to Lumilass G9, a special fluorescent glass. The fused silica was a 

standard material (VF-IR clear fused silica) and though no information was available on the 

origin of its fluorescence, this likely arises through impurities in the sample. As fused silica 

remains moderately transparent at 157nm, the emission will occur over a finite depth of 
material which limits resolution (Figure 6.1b).

The Lumilass G9 sample was obtained from Sumita Optical Glass Incorporation, Japan 

and was a plate of 70mm x 50mm and 3mm thick. This glass has a composition 

BaOs.CaO.SiOaLaOaiTb3* and it is the rare earth Terbium ion that is the fluorescent species. 

It is highly transparent in the visible where its refractive index is 1.694; its thermal and 

mechanical properties are summarised in Table 6.1. According to the Sumita Optical Glass 

Incorporation, it has excellent properties for UV use;

• High sensitivity to UV radiation and conversion to visible radiation. A minimum 

sensitivity of 1 uWcm2 is quoted.

• High durability as it does not readily decompose under UV exposure since the light 
emission of the rare earth terbium ion is used which is much more stable than 

organic or other inorganic phosphors.

• A wide UV excitation range that extends into the VUV.

Transformation Point (°C) 660

Thermal Expansion (°C) 73x10"7

Specific Gravity (g/cmj ) 3.76

Vickers Hardness (Kgf/nim2 ) 765

Young's Modulus (xlO9 Pa) 114

Modulus of Rigidity (x 109) 44

Table 6.1: Thermal and mechanical properties of Lumilass G9 glass
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Efficient fluorescence emitters of this type are of interest in a number of areas including 

optical tagging technologies [2] and work on them has also extended into the VUV because 

of potential applications in Hg-free lamps and plasma display devices. For example, previous 

work on a similar glass has included 160nm VUV excitation where it has been concluded by 

Liu et al [3, 4] that absorption is likely due to the host glass, with subsequent energy transfer 

of excitation to terbium which then emits in several narrow visible bands, the strongest being 
around 540nm.

A conference report by Otani et al [5] describes preliminary studies of Lumilass G9 with 

157nm laser excitation where use is made of this for beam profiling and for displaying 

fringes in a VUV Michelson interferometer. The linearity of response is reported, though not 

in terms of laser fluence or irradiance per pulse but 'average UV power'. The authors state 
that terbium is distributed as nanocrystals at a surface density of 1023cm"2 with an average 

ion-ion spacing of Inm, suggesting that spatial resolution will not be limited by the material 

itself. In other work Shivastava et al [6] have reported work on Lumilass G9 for fluorescence 

beam profiling of the 308nm XeCl laser. A good linearity of response was found and though 

their result is not quantified it can be assumed linearity extends at least to lOOmJcm"2 for 

308nm excitation. A measured emission lifetime of 18 us was obtained. They found the 

material was not damaged by ablation at fluencies up to a least lOOmJcm"2 . Exceeding the 

ablation threshold is clearly undesirable in an imaging application as this would irreversibly 

damage the surface. No studies of ablation were carried out in the present work but it can be 

conjectured that the damage threshold will be considerably lower at 157nm than 308nm 

because of stronger absorption. Saturation of the fluorescence emission (i.e. non-linearity) 

will anyway likely occur at fluencies well below the ablation level, so this aspect was not 

pursued further.
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6.1.1 Experimental arrangement for the fluorescence study

The properties of the glass in responds to the emission at 157nm VUV laser were carried 
out using high resolution spectrometer ocean optics (HR2000CG-UV-NIR). The 
experimental set-up, shown in the schematic diagram in Figure 6.2 was used with fibre optic 
cable placed in front of the glass to record the intensity of the fluorescent light emitted by the 
glass.

Glass Sample Glass Tube

I57nm F2 laser

Spectrometer

Fibre optic
Connector to laser

Figure 6.2: Schematic diagram for the emission spectroscopy measurement, with the 
spectrometer placed in front of the fluorescent glass.

Figure 6.3: A Lumilass G9 glass fluoresce using argon flow Fi laser in the dark.
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The schematic diagram in Figure 6.2 shows the glass used was attached to the cylindrical 
glass tube at an angle of 45°. The cylindrical glass tube had a diameter of 4cm and upper 
length of 9cm was connected to the F2 laser beam delivery tube. Flowing Argon gas was 
passed through the delivery tube to permit transmission of the VUV laser radiation shown in 
Figure 6.3 with sampling area fluorescence of 5mm x 10mm.

An optical fibre collected fluorescent emission from the plate and transmitted this to the 
spectrometer. The magnitude of specific emission feature was monitored and its variation 
with incident VUV laser energy was recorded.

6.2 Results and Discussions

6.2.1 Fused silica glass

Fused silica glass is a transparent material that exhibits a blue-violet fluorescence 
emission when irradiated at 157nm. The fluorescence arises because molecules absorb the 
high energy photons and then emit lower energy photons through transitions to different 
levels. The emission spectrum with varies in fluences from 1.7-4.3mJcm"2 is shown in Figure 
6.4.For fused silica glass, no further investigations was carried out because of the quality of 
the glass in respect of the emission spectra results obtained gives low signal noise because of 
week fluorescence.
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200 400 600 800

Wavelength(nm)

1000

Figure 6.4: Emission spectrum of fused silica glass sample as a Junction affluences with 157nm
laser excitation.

Emission spectrum in Figure 6.4 shows the prominent blue-violet fluorescence light at 
about ~300nm to ~500nm wavelength. The spectra give low signal noise at this wavelength. 
The variation of signal strength (counts) of the fused silica glass plate in response to the 
fluence of the fluorescence light was plotted, shown in Figure 6.5, which shows the result 
obtained from the mean emission value from spectroscopy with the change in fluence of the 
laser. In Figure 6.5 the data produced inconsistent results for the mean intensity (counts) 
against the fluence. The data shows slight different with increasing fluences as ~20counts up 
to highest fluence for fused silica glass under 157nm excitation.
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Figure 6.5: Fluorescence intensity of quartz glass as a Junction affluence at 157nm laser with a
red data point as background noise.

6.2.2 Lumilass G9 glass

Figure 6.6 shows the emission spectrum of Lumilass G9 glass under VUV excitation of 
157nm. This glass obviously converts VUV to a predominantly green fluorescence light 
when the light incident on the glass plate. The graph shows how the strength of the bands 
varies with different excitation fluences from l.OmJcm'2 to 5.3mJcm"2 . The prominent band 
of fluorescence is at 544nm, followed by the band peaks at 490nm, 588nm and 622nm.
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Figure 6.6: Fluorescence spectra ofLumilass G9 glass at 157nm excitation, which show main 
fluorescence wavelength at 544nm with varies influences.

Under vacuum ultra violet (VUV) the trivalent excitation rare earth Tb3+ ion clearly has 
the most intense band situated at 544nm, which corresponds to the 5D4—>7p5 transition. The 
configuration of the Tb3+ ion is 4fs5s2p6 [7]. The emission from the Tb3+ ion mainly 
originates from 5D4 to 7Fj where J = 6,5,4,3. From Figure 6.6, at 490nm, they belong to the 
transitions of the ground state 7Fg to 5D4. The most intense band at 544nm is the transition 
from 5D4—»7F5 based on lasing in LiYF4 host emission at 544.5nm, terminal level is 
-2000cm"1 and 5ms lifetime [7].
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The designation hi Figure 6.7 and Table 6.2 show 2S+1 Lj where S is the spin quantum 

number, L is the orbital quantum number and J=S+L. From the upper state level of 

-20365cm"1 , shows the transitions of Tb3+ based on the fluorescence band in Figure 6.6 
respectively.

5D4

544nm

7F5 

7F6

Figure 6.7: Tb3+ transition state from 5D4 to ground state ?F<$

From the excitation state in Figure 6.6, Table 6.2 below shows the transition state of Tb3+ 

ion to the wavelength emission respectively [7].

Upper state
5D4-»'F6

5D4^7 F 5

5D4-^7F4

? D4^7F3

5D4->7F2

20365cm' 1

490nm

544mn

579nm

622nm

650nm

Table 6.2: Transition of electron state and related wavelengths.

Figure 6.8 shows the relation of the intensity of the luminescence on the glass to the 

fluence of the VUV laser. The minimum signal to noise ratio was 200:1: which resulted in the 

counting errors were always being less than 1% in this work. The intensity of luminescence
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increases linearly at lower fluence (-less than ImJcm"2) up to as high as ~ 500 count 
intensity, and shows saturation effects for the fluence higher than ImJcm"2. The details study 
(inset graph) at lower fluence (-less than O.SmJcm"2) confirms the intensity of this glass 
increases linearly at this region agreed with earlier work reported [5] that the fluorescent 
intensity of this glass is ahnost linear. The intensity of background noise recorded as much as 
-12 counts. To obtain lower fluence, up to two attenuators (Shin-Etsu glass) with 
transmission loss as 72% were placed in front of the glass plate. The chemical composition in 
this fluorescent glass is based on optical glass which has high transparency for the visible 
light. However, the Lumilass G9 glass easily absorbs the vacuum ultra violet light used in 
this work, hence limits fluorescent emission to a thin surface layer [5].
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Figure 6.8: The fluorescence intensity of the Lumilass G9 glass as a Junction affluence of the VUV
excitation at 157nm F2 laser.
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6.3 Beam Diagnosis Experimental Arrangement

A photograph of experimental arrangement for the beam characterisation of the F2 laser 
is shown in Figure 6.9 where the glass plate placed on the rail in the vacuum environment and 
schematically shown in Figure 6.10. The irradiance distribution of the output beam was 
measured using a CCD camera (OPHIR BeamStar profiler V-PCI), size aperture of 6.4mm by 

4.8mm corresponding to 320 by 240 pixels at both dimensions respectively. The experimental 
arrangement used consists of the fluorescent glass plate that converts the VUV to visible 
emission when is then imaged using a lens and CCD array detector to obtain the two- 

dimensional profile of the beam. A trigger circuit sent signals to a computer that controlled 
the laser firing sequence, and also the framestore in the CCD profiler software that 
synchronized the capture of a video image to the start of the CCD camera. The CCD images 
using this software provided the information for recording the direct beam profile and also 
profiles of weakly focussed VUV laser spots. Intensity profiles were recorded as bmp format 

images and the images could be read into MathCAD for further characterisation and analysis.

144



157nm F2 Beam Characterization

Figure 6.9: Picture of experimental arrangement for beam profiler using VUVF2 laser.

CCD profiler 
Software

157nmF2 laser

Fluorescence image
on the glass from F2

laser

Computer for 
laser controller

Figure 6.10: Schematic diagram of the experimental arrangement used for the process of 
recording the fluorescence images on the CCD profiler software.
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Beam diagnostics systems for the VUV Fa laser, require reasonably high spatial 

resolution [1] and thus the system must have an adequate detector adapted to the near-field 

cross section and, more importantly, the optics and sensors have long term stability under the 
pulse irradiation.

In the present work, the optical set-up was mounted in the air and the images were 

recorded through the 157nm coated radiation mirror placed on the vacuum tube rail. The far- 

field beam was produced using a CaF2 lens with focal length of 200mm to minimize errors 

caused by spherical aberration. Filters were used to block red lasing emission from fluorine 

before the profiles of the distributions were recorded simultaneously on 6.4mm x 4.8mm size 
aperture of the CCD camera.

6.3.1 CCD camera

Charge couple device (CCD) camera consists of an array, which the element of the array 

is called a photo-detector junction or photosite. CCDs are compact and highly sensitive to 

light. Photosites on a CCD are composed in columns and lines which the size of photosites 

range between 3 to 25 microns depending on the design of the detector [8]. The CCD camera 

used in the system has 320 by 240 pixels on the size aperture of 6.4mm by 4.8mm. It is a 

serious matter to ensure the adequately used of the CCD camera relates to the pixels number. 

In this work, on the x dimension, this has 320 pixels at 6.4mm size of the CCD camera, 

giving 50 pixels per mm or 50 lines per mm. The minimum spacing to distinguishable lines 

or dots referred to the resolution of the image, that 50 lines or dots per mm is appropriate 

condition in obtaining and analyzing results by using this technique [9].

An enlarged image will show good resolution for example in the Figure 6.14, if the 

pixels are resolved to about 10 pixels per mm. Therefore, the analysis obtained from the 

MathCAD for Figure 6.14(a), one full period is 900um in 50 pixels giving 20um per pixels 

resolution which shown the adequate way to gain good resolution results by using CCD 

camera.
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6.3.2 Background assessment for CCD

With the CCD under dark conditions there is a still a voltage level on pixels that can 

essentially be attributed to dark current. An example of the corresponding background (dark) 

image is seen in Figure 6.11, together with sample readout from pixels along a line in the X 

direction. The mean level in this example is 12.9 for the 320 pixels, with a standard deviation 

of 0.43 or uncertainty of approximately ±3.3%. As the manufacturer specifies a spatial 

uniformity of ±0.5% for the CCD it can be assumed that this arises from fluctuations in the 

dark level. Before analysing profiles recorded using the imaging system corrections were 

applied by subtracting the background from the recorded image.

(a)

~w—r

Number of pixels

Figure 6.11: (a) Background recorded in the dark on the CCD camera and (b) MathCAD
analyzed on the X direction.
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6.3.3 Calibration of imaging system

To calibrate the CCD imaging system a copper grid (S450 B450) with 450(^m wide 

openings and 450um bars giving a period of 900um (Figure 6.12), was contacted to the 

surface of the Lumilass G9 glass plate. The plate was mounted on the glass window on the 

beam delivery tube and a 157nm mirror oriented at 45° to the beam axis was used to turn the 

F2 laser beam onto the grid/G9 plate. This excited fluorescence in a bar pattern that could 

then be imaged onto the CCD. A red filter was mounted in front of the CCD and a lens used 

to produce an image of the grid on the CCD at a magnification of 2x shown schematically in 

Figure 6.13. The images were recorded on the CCD profiler software in AVI and BMP files. 

The images on the AVI files for several shots were transferred to Video Decompiles 

application which extracted the video images of each shot of frames. These images were then 
read and analysed in MathCAD.

S450 B450

450um

Figure 6J2: Grid ofS450 B450 with the distance 450/im apart.
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Laser beam Rail

Laser beam output

Dichroic filters 

CCD camera

Figure 6.13: Schematic diagram for the calibration of the CCD camera with magnification by 2.

A 120mm focal length lens spaced a physical distance of 180mm from the grid was used 

for image formation on the CCD, and to minimise spherical aberration, its aperture was 

restricted to give an^-number of 6. This enabled relatively clear, sharp, images, Figure 6.14a, 

to be produced at nominally 2x magnification, neglecting optical shifts in the fluorescence 

plate and window glass on the beam delivery tube. The profile of the irradiance is seen in 

Figure 6.14b and whilst the spaces (bright regions) are well defined there is considerable light 

leakage in the regions that should be dark. This is well above the typical background for the 

CCD and may possibly arise because of reflections and scattering when fluorescence is 

viewed through the plate, Figure 6.15.
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(a)

Number of pixeJs

(b)

Figure 6.14: (a) Image taken at magnification of 2 by using 2cm diameter lens for better 
resolution with (f#6) and (b) profile of the grid read from the MathCAD across X dimension with

background subtraction.

Reflection

Scattering

Lumilass G9 
glass

157nm laser

Figure 6.15: Reflection effects in Lumilass G9 glass plate that could influence image fidelity.
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The magnification of the system was checked from the known grid period and the known 
spacing of 20 nm for pixels on the CCD. A value of 2.2x was obtained in this way compared 
with the calculated value of 2x based on the nominal focal length of the lens of 120mm. This 
true value is higher than that calculated because the latter neglected the refraction in the 
Lumilass G9 glass plate and optical window.

6.4 Experimental Arrangement and Results

6.4.1 Divergence Measurement

This section describes measurements of the divergence of the highly multimode Fa laser, 
based on measuring the size of the output beam at various distances from the resonator output 
window. The beam divergence obtained experimentally from the Fa laser was measured using 
beam patterns taken on the heat-sensitive paper or thermal paper at various distances from the 
output laser. The thermal paper used for this objective offers a convenient method for 
detecting the beam shape and it is more convenient to detect the alignment of the beam. 
However, thermal papers have small dynamic range and non-linear thermal properties which, 
means this method gives only a tentative idea of the shape of the incident radiation of the 
laser and is unable to provide qualitative intensity profiles for further analysis. Therefore, for 
the divergence measurement and to determine the intensity profile of the beam, the 
experiment was concentrated on recording the images of the beam via the Lumilass G9 
fluorescent glass plate for the near-field profile.

For the far-field profile, the beam was brought to a focus using a CaF2 lens with focal 
length of 200mm. The focal spot size of the beam provided information of determining the 
divergence (X: wider and 7:narrow directions) and hence an estimate of the spatial coherence 
of the beam [1], The divergence measurement gives the spreading angle of the propagating 
beam i.e. how much it is diverging from a collimated parallel beam. Divergence is important 
because the lower its value, the longer the beam will remain at a given diameter. 
Nevertheless, beam divergence measurement is not providing the real characteristics of the
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beam, because the expanding beam will change the divergence value itself. For this objective, 

M2 measurement can be supported in evaluating the performance of the beam [10].

Recording the beam profile distributions required a converter medium to enable 
conversion from VUV to visible light. Here, the Lumilass G9 glass plate described in the 
previous section was applied as a linear, uniform and UV-radiation-resistant converter 
medium. The optical set-up plays an important role here for the CCD camera to record 
adequately. Because of the sensitivity of the CCD camera, it is impossible for the CCD 
camera to sit parallel to the incident beam in the vacuum environment. Thus, the image of 
fluorescence beam was captured through the glass window on the CCD camera with the 
optical lens arrangement in air.

To determine the size of the direct output beam, the thermal paper was located at the 

distance of 800mm from the laser output, showing the direct output beam image of the 

157nm ?2 laser. The burn pattern has shown (Figure 6.16) the beam to have a rectangular 

cross section at 800mm with dimension of 23mm and 7mm for the wider width (X) and 

narrow width (Y) respectively.

7mm (narrow)
' '""I!

23mm (wide)

Figure 6.16: Burn pattern on the distance of 800mm away from the laser aperture with size of the 
direct output beam as 23mm (wide) and 7mm (narrow).

6.4.2 Beam divergence through the Lumilass G9 fluorescence glass

Figure 6.17 is shown the experimental arrangement for this experiment, where the beam 
image was captured by putting the fluorescence glass plate (Lumilass G9) parallel to the 
beam and the fluorescence light viewed through the glass window by using reflecting mirror 
in the vacuum chamber. The mirror was located at an angle of 45° behind the glass and the
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reflection of the beam was recorded through the glass window by using CCD camera. To read 

the image out from the CCD camera, it depends on the array of pixels, which produce output 

directly proportional to the amount of radiation they receive. By imaging on the aperture of 

the CCD camera array, and correlating the output of each pixel with their position in the 

array, the spatial distribution of intensity of the beam can be determined. The CCD camera 

based system enabled capture of intensity of the incident beam, in both the X and Y 
dimensions.

Laser beam Rail Fluorescent glass

- Mirror

Glass window
300mm Varied distance 

Laser beam output
Dichroic filters

CCD camera

Figure 6.17: Schematic diagram of arrangement to capture images of the beam fluorescence at 
varying distance from laser output. Imaging onto the CCD used a demagniftcation a 7x.

CCD camera has limiting capability in capturing incident light, which at high intensity 

can cause saturation to occur. To overcome this problem, and for the CCD camera to capture 

only desired radiation from the fluorescent glass, it is necessary to eliminate any emission, 

which possibly more comes from the red lasing from fluorine. Figure 6.18a shows an 

example of a bright image captured on the CCD. Here, by keeping the CCD camera at low 

level intensity of light reached, the saturation effect from high intensity fluorescence can be 

seen when analyzing the bmp image read into MathCAD. The graph in Figure 6.18b shows 

the result from the bmp image in Figure 6.18a after subtracting the background value. From 

Figure 6.18a below, the saturation happen on the glass which provides evidence that this 

glass only linear at the certain energy as stated in the section 6.2.2.
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£•
i 100

Number of pixels

(b)

Figure 6.18: (a) Beam fluorescence image at 3. 7mJcm 2 which gives bright image viewed on the 
CCD camera, arrows indicate the dimension for wider width (X) and narrower width (Y) and (b) 

graphical representation of intensity along Y dimension from the beam shown at (a), showing
saturation occurred at highfluence.

To eliminate any red emission reaching the CCD camera, two dichroic filters (cyan and 

yellow subtractive filters) were placed in front of it. The images of the beam formed on the 

fluorescence plate were then recorded on the CCD camera attached to the computer. The 

fluorescent glass was then moved accordingly to the varied distance on the rail and the 

images were then recorded and analyzed. The distance ranged over 800mm, 900mm, 

1000mm and 1100mm as measured from the laser output, where the shorter distance than 

800mm were not possible because of constraint set by the beam tube.
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The size of the direct output beam of the F2 laser was 23mm by 7mm, which was too big 
to be captured by the size of the CCD camera aperture (6.4mm by 4.8mm), and thus the beam 
had to be de-magnified for the image to be recorded. The de-magnification was chosen to be 
by 7x, for the profile of the beam to be viewed. The distance from the fluorescence surface to 
the lens was 42cm (S0) and the distance from the lens to the CCD camera (Si) was 6cm with 
focal length of the lens was 5cm.

The images shown in Figure 6.19 (a -d) were taken and recorded on the software 
attached to the CCD camera at varying distances along the rail in the vacuum chamber. A 
measurement of the narrow and wider width of the beam was made from the profile analyzed 
in MathCAD. The example of the beam profile extract from MathCAD is shown only for the 
distance 800mm hi Figure 6.19a. The demagnification of the CCD camera was set to ~7x. At 
the distance of 800mm from the laser output, the size of the beam on the narrow width is 
7.2mm and wider width is 31.5mm. At 900mm, the narrow width is 7.6mm and wider width 
is 31.8mm is shown in Figure 6.19(b-d). At 1000mm away from laser output with narrow 
width is 7.7mm and wider width is 33.2mm and at 1100mm, the narrow width 8.03mm and 
the wider width 33.7mm.The images shown are based on a single laser pulse. To measure the 
size of the beam from the profile shown in Figure 6.19a, the widths were defined in terms of 
the full-width at half maximum points.

155



157nm F2 Beam Characterization

Figure 6.19(a): Beam image shown in the distance of 800 mm away from the laser output with Y 
(narrow width) of 7.2mm and X (wider width) of 31.5mm.

.0. 240

Figure 6.19: Cross sections of wider (top) and narrower width (bottom) for the beam extracts
from Figure 6.19(a).
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Figure 6.19(b): Beam image shown at a distance of 900mm from the laser output with Y (narrow 
width) of 7.6mm and X (wider width) of 31.8mm.

Figure 6.19(c): Beam image shown at a distance of 1000mm from the laser output with Y (narrow 
width) of 7.7mm andX (wider width) of 33.2mm.
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Figure 6.19(d): Beam image shown at a distance of 1100mm away from the laser output with Y 
(narrow width) of 8.0mm andX (wider width) of 33.7mm.

The beam sizes at various distances are plotted in Figure 6.20 enabling the divergence of 
the beam to be determined from the resultant slope of the graph. For the beam width 
(FWHM) values on the narrow width (Y dimension), the value of the divergence is 2.7mrad. 
The divergence for the orthogonal direction is shown in Figure 6.21 and gives a divergence of 
7.9mrad.
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Figure 6.20: Narrow width of beam plotted versus distance giving a divergence of 2. Jmradfor
the 157nm laser.
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Figure 6.21: Wider width of beam plotted versus distance from which a divergence of7.9mradis
found for the 157nm laser.
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6.5 Analysis of Beam Fluctuations

In the present work one of the matters of specific interest was the extent to which surface 
roughness on ablated materials is influenced by intrinsic mode fluctuations with the 157nm 
laser i.e. coherence effects. Previous work [11] has reported a preliminary attempt to 
measure such fluctuations using a small diameter aperture to sample a fixed point on the 
output beam so as to allow a measurement of pulse-to-pulse fluctuations. With this approach 
it is difficult to correct for pulse-to-pulse fluctuations in laser output that are unconnected to 
mode 'noise' e.g. possibly arising from changes in excitation voltage, discharge quality of the 
laser etc. In the present studies the objective was to use the fluorescence plate imaging 
technique to characterise the magnitude of spatial fluctuations on the multimode beam for 
images acquired using single pulses.

To do this a region of dimensions 10mm x 10mm was selected the FI laser beam by use 
of an aperture and this region was reflected onto the Lumilass G9 plate using a mirror as 
illustrated in Figure 6.22. The fluorescence image was then recorded using the CCD with a 
2x magnification being used to improve the spatial resolution. The two-dimensional spatial 
image was captured as a bmp image for a single pulse, imported into MathCAD and, after 
correction for background noise, analysed statistically.

Laser beam Rail Mask

p2 laser ./i

/

r^ ——————— ̂
li

"

^=—

/'
Fluorescent glass

!^ —————

\ ^ °

Mirror

Glass window

Laser beam output Lens

Dichroic filters

CCD camera

Figure 6.22: Schematic diagram of the fluctuations analysis -which I Omm by 10mm mask placed
on the rail.
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Visually the images acquired in this way appeared quite uniform as is evident from the 
example shown in Figure 6.23a for the selected region involved. The quantified pixel levels, 
however, showed a degree of fluctuation as seen from the examples in Figure 6.23 b and c for 
pixel rows in the direction of X, the wider dimension and 7, the narrower dimension, of the F2 
laser beam.

(a)

200

.~ 100

_i_ J_ 1 _L

I

96 1056 1152 124 X 1344 144 1536 1632 1728 182 4 192

Number of pixels

(b)
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"•3
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•/O
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c

0

1 1 I 1 1
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1 1 1 1 1 -
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RO -05

O

Number of pixels

(C)

50 100
Q<(*

50 100 
RQ(">

Figure 6.2 3: (a) Bmp image of the selected area beam captured onto the CCD earner a from the 
fluorescent glass (b) Fluctuations profile of the cross section for the wider width (X) and (c) cross 

section for narrow width (Y) and histograms show the spatial fluctuations where Q andRO are only
mathematical symbols.
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Also shown is a histogram representation of the spatial fluctuations. Fluorescence images 
were recorded for various laser output energies and thus fluence on the plate. To minimise the 
contributions from the small but significant change in mean laser fluence and hence 
fluorescence amplitude over the image at the CCD, averaging and statistical characterisation 
was carried out on restricted groups of adjacent pixels and the ratio cr/<m> = (standard 
deviation/mean) was obtained. This was repeated over typically 5 intervals across the CCD 
image and these were then used to produce an average value for o/<m>. The several data 
points show at different points of the beam. For an F2 laser fluence of ~0.5mJcm"2, a level at 
which the Lumilass glass should remain essentially linear in its fluorescence response, the 
averaged single-pulse spatial fluctuation was cr/<m> = 3.1% (standard deviation /mean). The 
plot in Figure 6.24 show a/<m> for the X and Y directions of the beam with various F2 laser 
operating voltages to change the fluence on the fluorescent plate. It appears there is little 
change in the average a/<m> as the fluence is raised; it should be kept hi mind, however, 
that at the higher fluencies a degree of fluorescence saturation is likely which could act to 
compress the amplitude of fluctuations. The use of attenuator plates was deliberately avoided 
hi this part of the work because of concerns that they could introduce fluctuations that would 
be difficult to characterise i.e. through inhomogenieties, scattering etc.
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Figure 6.24: Fluctuations (cr/<m>) against fluencesf or X and Y directions across the F2 laser beam, 
the data points are average of 5 groups of 64 pixels with different points on the beam.

6.6 Coherence Width from Focal Distribution

A focal plane measurement of the irradiance distribution allows the coherence function 
(mutual intensity function) to be found at the input plane of the lens. The theoretical basis for 
this has been given by Beran and Parrent [12]. They show that the intensity (irradiance) 
distribution I(x) in the focal plane i.e. image of the effective source at infinity, is related to the 
mutual intensity function F(p,0) in the input plane of the lens by

2jfipxI(x) = constan. JT(/>,0)exp——dp (6.1)

Here x is the position variable in the image plane and p = £,1 - ^2 the difference between 
two points §1 and £2 in the lens aperture in the one-dimensional case. It is seen from this 
equation that I(x) is the Fourier transform of F(p,0) so that the inverse Fourier transform of
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I(x) gives r(/?,0), allowing the coherence function to be found. It is to be noted that there are 
several restrictions for this approach to be valid [12]. Firstly, the intensity across the lens 
input should be constant which, in general, is not the case with laser illumination is. 
However, provided the intensity is essentially constant over distances greater than those for 
which F(p,0) shows significant variation this should not influence the findings. Secondly, the 
theory breaks down near the edge of a source. Finally, it is assumed the lens point-spread- 
function makes no contribution, which will be justifiable provided the lens aperture is much 
greater than the coherence interval involved.

A simple view of this relation has been given by Berant and Parrent and we give an 
example here to support the link between I(x) and T(p,G). Suppose, as shown in Figure 6.25, 
an incoherent slit source is positioned at a distance from the lens that is much greater than its 
focal length. The lens then forms an image of the source that is essentially in its focal plane. 
The van Cittert-Zernike theorem relates T(p,G) at the lens to the Fourier transform of the 
source intensity distribution, which for the slit is a sine function. As, according to equation 
(a), the intensity distribution in the focal plane image is the Fourier transform of r(/?,0) this 
will hence be a rectangular function i.e. the transform of sine. This is consistent with the 
expected image of a slit produced by the lens.

Rectangular 
irradiance 
distribution

«; s jnc - MC p Lens Rectangular
irradiance distribution 
in focal plane

Figure 6.25: Lens producing image of distant, finite size, incoherent slit source. The mutual 
coherence function (MCF) at the lens is a sine function and the irradiance in its focal plane is the 

Fourier transform of the MCF. This is a rectangular Junction and is the image of the slit.
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To measure the focal spot distribution the output from the F2 laser was focussed onto the 
Lumilass G9 plate using a 200mm focal length calcium fluoride lens as seen in the set up in 
Figure 6.26. Figure 6.27 shows a photograph of a lens, fluorescent glass and a mirror hi the 

vacuum tube. A turning mirror oriented at 45° directed fluorescence from the plate to a lens 
which imaged the spot onto the CCD array. The magnification was one-to-one. To avoid 
saturating the fluorescent glass several attenuators were placed in front of the lens, and to 
eliminate red emission from the laser discharge a red filter was positioned in front of the 
CCD camera. The output from the camera was read into MathCAD so that the spatial 
irradiance distribution could be analysed.

Laser beam Rail Lens Fluorescent glass
Mirror

Glass window

Laser 
beam output

Dichroic filters

camera

Figure 6.26: Schematic diagram of the experimental set-up for focal irradiance distribution.

Figure 6.27: A photograph of lens, Lumilass G9 glass and a mirror sitting at 4 5° on the rail track.
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Figure 6.28 shows the focal irradiance distribution along the direction of the narrow 
dimension of the laser. Calibration showed that 50 pixels on the camera corresponded to 

lOOOum giving a spatial scale of 20um per pixel. As seen in Figure 6.29, both a Gaussian and 
a Lorentzian function give a reasonable description of the focal distribution in the narrow 
direction. The empirical forms derived for these were

x' — 128 V———— with a= 16
)

Lorentzian I(x') = 67 with£-= 10
1-

(6.2)

(6.3)

where x', a and s are in units of numbers of pixels. These are compared with the 
experimental distribution in Figure 6.29 and it can be seen that while both are reasonable in 
the central region, the Lorentzian decays less rapidly in the wings.

ID;

50

200

Number of pkels

Figure 6.28: Cross section profile of the narrow width (Y) beam according for the focal spot
irradiance.
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Figure 6.29: Focal irradiance graphs show the fit between Gaussian (—) and 

Lorentzian (—)for the beam intensity (_).

The inverse Fourier transform of a Gaussian distribution of the form exp -Tig x2 is:

03

= Jexp- Ttgx
g (6.4)

If in equation (6.2) a new variable £, = /?//l/is defined and in equation (6.3) a change in 

variable made to x = x'-l28 and we set Tig - 1/cr, the inverse transform of the experimental 

distribution becomes

r(AO)

The mutual coherence function is thus a Gaussian with a 1/e width p^ given by

(6-5)

(6-6)

Using the calibration of 20um per pixel gives a = 16 x 20um, so with/=200mm and /I = 

157nm the 1/e width is found to be PGW = 3.1xlO"5m or 31um. This is plotted in Figure 6.30.

167



157nm F2 Beam Characterization

•a
Lorentzian l/e 

width 25(im

p (Microns)

F/g 6.30: Mutual coherence Junction derived from experimental focal irradiance distribution in 
direction of the narrow dimension of the F2 laser output beam. Results shown for Gaussian and a 

Lorentzian fit to the irradiance distribution. The coherence function is shown as a function of p, the 
separation of two points on the beam at the input plane of the lens, Gaussian l/e width = 31jjm>

Lorentzian l/e width = 25jum.

In similar fashion the inverse Fourier transform of equation (6.2) for the Lorentzian 
irradiance function 7(jc^) defined by equation (6.3), is an exponential

T(/>,0) * exp-
2ne\p

(6.7)

This has a l/e width oflpiw I - &f/2ne, and with s = 10x20um,/=: 200mm and A =157nm, 
gives I paw I - 25p.m. This is shown in Figure 6.30 for comparison with the Gaussian fit.

Though neither the Gaussian nor Lorentzian fits in Figure 6.29 give exact 
correspondence with the experimental distribution, they bound the result in a reasonable way. 
It can thus be argued that the exact coherence function likely falls between those shown in 
Figure 6.30. The advantage of this approach is that a quantitative form for the coherence 
function is obtained rather than simply an estimate of its width being determined from a 
measurement of the divergence. The main experimental uncertainty is in ensuring that the 
fluorescent plate surface is located hi the focal plane, which becomes more problematic if 
short focal length lenses with limited depth of focus are used. It is also important to avoid 
saturating the fluorescence emission by using appropriate attenuation so that the profiles are 
not distorted. The width of the plots in Figure 6.30 is dependent on the criterion applied and
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if, for example, the 1/e2 width is taken it is 44u.m for the Gaussian and Slum for the 

Lorentzian. As these are much smaller than the dimension of the beam at the lens, the 

restrictions noted above on uniformity of irradiance and the influence of edge effects should 

be satisfied. Further work on Fourier analysing the full focal spot distribution to obtain the 

two-dimensional coherence function would be of interest but time constraints prevented this 
in the present studies.

6.7 Modelling of Mode Coherence Fluctuations

To theoretically determine spatial fluctuations in the highly multimode output beam of 

the Fa laser a numerical model has been used based on a set of Hermite-Gaussian modes with 

weightings chosen to simulate the beam profile. Fluctuations are assumed to arise because the 

modes have differing frequencies as set by the constraints of the laser optical resonator and 

laser line-width. Those lying sufficiently close in frequency may remain coherent over the 

duration of the emission pulse. If their relative phases are fixed then interference effects will 

remain unchanged from pulse-to-pulse. However, in a free-running laser it is more realistic to 

assume that the relative phase of modes varies randomly from pulse-to-pulse, so interference 

effects will fluctuate resulting in changes in the fluence at a fixed point in the beam.

This can be illustrated by a simple example where two optical fields with unity amplitude, 

angular frequencies a) and & + Set), and phase difference <f> are added, producing a resultant:

in[(6) + Sa>)t + ^)] 

The time averaged irradiance, found from ER, can be expressed as

2 V{sin 2 CD t + sin 2 [Q + Sca)t + 0]- cos[(2fi) + 8ai)t + 0] + cospfor + </))}dt~ - —————————————————— ——————————————————

(6.9)
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If the averaging time,z; is considerably longer than 1/v where v =ca/2n is the optical 
frequency, the two sine squared terms in the integral each average to 1A and the cosine in the 
third term to zero. Assuming dot « to, the fourth term remains so that

/v 2 \ i cosa> + t , 2 ,(*> f ^ ,,,,», = <£*) = !+ J — i ——— ̂ — = 1+ * cos( —— + </>) (6.10)

Defining the coherence time as rc = l/Sv= 2n/Sa) this becomes

. TtTsin—
JtT

T,
1 = 1 + ———cos

(6.11) 

The following observations can be made:

(i) If T » rc, it follows from equation (6.10) that 1=1 and the resultant irradiance is 
simply that for incoherent addition of the two waves.

(ii) The difference between the irradiance averaged over a finite time and the long- 
term average is

-cos(—+ ̂ ) (6.12)
Tc

Suppose now the waves are emitted as a series of pulses each of duration r. If the phase 

difference 0 remains constant then, according to equation (6.12), /will, in general, differ 
from the long-term average but this difference will be the same from pulse-to-pulse. 
However, if the phase difference varies randomly from pulse-to-pulse then / will fluctuate

over a range ± sine — , as the cosine term is bounded by ±1 .
* c

This is illustrated in Figure 6.3 1 where / is plotted with a ratio of 'pulse' duration to 

coherence time set at T/TC -4.5 and ^ is varied randomly from 0 - 2?t for a sequence of 100 
pulses. / is seen to fluctuate about the average value of unity in a noise-like manner.
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Figure 6.31: Run of 100 values for I with the phase difference </> in equation (a) set to a random 
value in the range 0-2 n on each calculation.

A highly multimode laser will have a very large number of modes with slightly different 
frequencies that interfere and the following approach was used to model fluctuations. For a 

laser pulse of durationr, modes within a frequency interval of 1/r are assumed to remain 
coherent and hence their fields can be added coherently in order to determine the irradiance. 

If the laser linewidth is Av there will be AV/(!/T) = Avt such coherent mode groups that are 
independent of one another that can then be added incoherently to produce the laser output 

beam profile.

6.7.1 Implementation

The calculations described below were carried out using the MathCAD software package. 
A function producing a flat-topped Gaussian for incoherently added modes was chosen to 
represent the ¥2 laser beam, as the mathematical basis exists for determining its mode content 
[13]. Additionally, a flat-topped profile provides a convenient reference level against which 
to measure spatial fluctuations. The flat-topped Gaussian is made up of Hermite-Gaussian 

functions Em (x) weighted by a coefficient cm . These are defined by

9 7/— . ., exp- x I vn E(x) = Herr4m,j2x/v0 ] * °
(6.13)

where Herm(m^x/v0) is the value of the Hermite polynomial of degree m at x and v0 is 

the spot size of the fundamental Gaussian mode. The weighting coefficient is [13]
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u+u (-1)") m,2t 2 )exp- 2f 2
(6.14)

where Lagty^t2) is the value of the Laguerre polynomial of degree n at 2t*. The width co0

of the flat-topped Gaussian is determined by N through the relationship^ = N + l 1/2

The irradiance profile I(x) of the beam along jc is then the incoherent addition (long-term 
average);

(6.15)

the summation being taken over all modes with a non-zero coefficient cm.

In the present studies 90 Hermite-Gaussian transverse modes giving N = 89, and a value 

of v0 = 301jxm to give a divergence characteristic of the ?2 laser beam in a direction parallel 
to its narrow width, were used. The mode weightings are shown in Figure 6.32. It is noted 
that the contributions above m ~ 60 becomes increasingly small for the parameters chosen.

Figure 6.32: Mode weightings for aflat topped Gaussian calculated using equation (6.14) with N
= 89.
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The resulting profile and underlying lowest order Hermite-Gaussian mode for these 
parameters is seen in Figure 6.33.

-2000 2000
Position (microns)

0.5

-2000 2000

Figure 6.33: (a) Flat-topped Gaussian distribution with beam width of 2019fan simulated with 
m = 90 Hermite-Gaussian modes. Blue line -fully incoherent addition of modes giving long-term 
average irradiance (fluence). Red line -partial coherence where it is assumed there are 600 

independent groups of 90 transverse modes, each group being coherent but with random 
phases, (b) Irradiance profile of underlying fundamental Gaussian distribution, spot size v0

= 301/m.

To treat the partially coherent case the number of coherent mode groups within the laser 

linewidth was estimated from the coherence time and the averaging time, the latter taken as 

the emission pulse duration r . Assuming a Lorentzian line shape of width Av fwhm (full- 

width at half-maximum) the coherence time is \lnAv and the number of mode groups is j 

=T/TC = IrnAv, the factor of two arising for an unpolarized beam [14]. With Av= 8.8GHz for 

the F2 laser [15] and a pulse width of r= llns (fwhm), j = r/i;c = 608. Each coherent mode 

group is then formed from

(6.16) 
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where the phase <f> takes a random value between 0 and 27t. The irradiance of the /* mode 
group is found from

•yW*;W (6>17)

and the total irradiance (equivalently fluence) profile of the beam obtained by summing 
over all independent randomly phased groups

(6.18)

The result for partial coherence withy = 600 is seen in Figure 6.33 and it is evident that 
significant spatial fluctuation occurs when compared with fully incoherent addition.

The corresponding probability distribution for the time-averaged irradiance (fluence) 
across the profile is shown in Figure 6.34 and has a good fit with a Gaussian. The ratio of the 
standard deviation to the mean is 0.038, which compares closely with a value of

7 = 0.041 expected using a simple statistical argument that has previously been used to

estimate mode fluctuations [14]. A statistical optics treatment of this problem has also been 
reported independently by Rydberg et al [16]. They analyse mode coherence effects in optical 
projection lithography using excimer laser sources and have used the term 'dynamic speckle' 
[16] to describe spatial fluctuations that vary with each pulse.
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Figure 6.34: Probability distribution of normalised time-averaged irradiance (fluence) over the 
flat-topped Gaussian profile in Figure 3, for partially coherent mode addition ~withj = 600. The 

solid line is a Gaussian fit to the distribution with a standard deviation of 0,038.

The scale size over which these variations occur is governed by the spatial coherence 

width as this determines the range over which correlations are maintained across the beam. 

Figure 6.35 shows the real and imaginary parts of the normalized correlation function y [17] 

and |y| calculated from the results for the partially coherent case in Figure 6.33. Taking the 

spatial coherence width as the spacing between two points on the beam where |y| falls to its 

first minimum, a value of ~60um is found from Figure 6.35. Estimates of the lateral scale of 

fluctuations in figure 6.33 are consistent with this finding.

0.5

-0.5
200

Figure 6.35: Normalized correlation Junction y versus spacing between points on beam profile for
partially coherent case in Figure 6.33(a).
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These theoretical results give a magnitude of 3.8% for mode coherence fluctuations 

which compares quite closely to a value of -3.3% obtained from the fluorescence imaging 

measurements described in section 6.4. It should be noted that the modelling is a 
simplification in that

(i) It neglects gain saturation effects which can act to reduce fluctuations over the
'cold cavity' case (i.e. resonator without gain medium) [14]. 

(ii) It does not take account of the shape of the laser pulse 

(iii) The spectrum of the ¥2 emission is assumed to be Lorentzian and to occur on a

single line; whereas it is known [15] that weak lasing may also occur on other
adjacent transitions.

The fluctuations found in this way are larger than expected for other excimer because 

the relatively narrow linewidth of the 157nm Fa laser means fewer incoherent mode groups 

are involved in the averaging. This effect can play a role not only in materials processing by 

ablation, as was of interest here, but also in lithography [16].

6.8 Summary of Coherence Measurements

Three experimental approaches have been used to estimate the spatial scale length over 

which coherence is maintained in the ¥2 laser output beam. The beam has a quasi-rectangular 
profile, with greater divergence in the long dimension than in the narrow dimension on 

account of the difference in the maximum transverse mode numbers in this asymmetric 

profile.

In Chapter 3, micron sized cones formed in ablated polycarbonate were shown to 

produce interference by reflection in a two-dimensional analogy of the Lloyd's mirror 

geometry. From the range over which fringes remained visible, estimates of the spatial 

coherence lengths of ~54fxm along the Y axis (narrow dimension) and ~21-24jnm along the X 

axis (wide dimension) of the beam were obtained (Table 6.3).
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The second approach is to use the full-width at half-maximum divergence angle, A9, 

obtained from the fluorescence imaging of the direct output beam at increasing distance from 

the laser output as described in section 6.3.2. On the assumption of a uniform one- 

dimensional irradiance distribution the spatial coherence width, A, is related to A0by

A=X/A6 (6.19)

This expression gives the spacing between two points on the beam at which the 

coherence first falls to zero. This is clearly at best an approximation for the actual beam 

profile generated by the laser, particularly in the X direction. Values obtained from equation 

6.19 in this way are 58^im along the Y axis and 20um along the Xaxis.

The third method, described in section 6.5 is based on a Fourier transform of the focal 

irradiance distribution. This has the potential to provide quantitative information on the form 

of the mutual intensity function and as such it is more powerful than the two other methods 

above, neither of which can provide such information. A preliminary measurement based on 

fluorescence imaging of the ¥2 laser focal plane irradiance distribution was made for the Y 

axis (narrow direction) of the beam. The resulting coherence function appeared to fall 

between the transform of a Gaussian and Lorentzian, giving a coherence width in the range 

44 - SS^irn based on the distance over which the mutual intensity function dropped from 1 to 

1/e2 . This value differs somewhat from that found using the other methods (Table 6.3) but 

this is not surprising given that these are estimates based on simplifying assumptions about 

the beam profile.
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Method

Interference fringes 

produced by cones

Direct beam divergence 

(full-width at half maximum)

Fourier transform of focal 

irradiance

Spatial coherence A in 

narrow beam direction (Y)

54um

58um

44 - 5 1 um

Spatial coherence A in 

wide beam direction (X)

21-24um

20um

Not measured

Table 6.3: Summary of spatial coherence widths of the Ft laser output beam determined 
by three techniques. Xand Y define orthogonal directions in the rectangular output beam.
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CHAPTER 7

CONCLUSIONS

7.0 Main Findings and Conclusions

During the course of the research in this thesis experiments were carried out using 

157nm ?2 laser radiation on the ablation properties of polymers that included 

polydimethylsiloxane (PDMS), SU-8, Nylon 66, ultra-high molecular weight polyethylene 

(UHMWPE), Lexan polycarbonate (PC) and allyl-diglycol CR-39 polymer. The ablation 

thresholds of these polymers obtained from etch rate measurements are summarised in Table 
7.1. These range from -lOmJcm"2 for polycarbonate to lOSmJcm"2 for PDMS, the differences 

probably being largely traceable to their differing VUV effective absorption coefficients. 

Here, most of the work was subsequently concentrated on the Lexan polycarbonate and 

CR-39 polymer.

Polymer Experimental ablation

	threshold fluence (mJcm"2 )

PDMS 105 ± 10

SU-8 90 ± 5

Nylon 66 27 ± 3

UHMWPE 28 ±3

Lexan polycarbonate 10 ±5

CR-39 polymer 50 ±10

Table 7.1: The ablation threshold from the etch rate measurements for PDMS, SU-8, nylon 66, 
UHMWPE, Lexan polycarbonate and CR-39 polymer.
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Previous research has shown that the photoetching of polymers can produce a variety of 
morphological features on the ablated surface e.g. well-organized laser-induced periodic 
structures, one and two-dimensions ripples driven by relaxation of stress in aligned polymers, 
and micro-scale cones. In the course of the studies, it was observed that very well defined 
cones could be produced on ablated Lexan polycarbonate surfaces that were either seeded 
with small particles or were un-seeded. In a similar fashion it was found that certain ablation 
parameters led to exceptionally well defined cones forming on CR-39 polymer. These conical 
microstructures proved useful as they permitted an estimate of the ablation threshold (F/) to 
be determined from the apex angle of the cones. This gave FT = 25mJcm~2 with 20% 
uncertainty in the calculation for Lexan polycarbonate using a refractive index u= 1.463 to 
determine reflection loss at the sloping wall. The corresponding value was 58mJcm"2 for CR- 
39 though this remains an estimate as the 157nm refractive index was not available for this 
material. The cones developed on the CR-39 were exceptionally good, having very straight 
smooth walls and extremely sharp tips. The cones that developed on the surface led to 
interference effects that resulted in fringes forming in the region adjacent to their base. The 
characteristics of the interference fringes can be related to the divergence of the laser, thus 
allowing spatial coherence to be determined. The spatial coherence calculated from 
interference effects produced by cones of a few microns dimensions on polycarbonate was 
found to be -21-24 urn based on wide dimension of the beam with an 8 mrad divergence 
value, and 54um on the orthogonal dimension with an 3 mrad divergence value.

The morphology of cones on polycarbonate and CR-39 polymer indicated that a very 
smooth surface can be produced on microstructures produced by 157nm ablation. The surface 
roughness of these polymers was characterised using white light interferometry (VEECO- 
Wyko NT 1100) on regions free of cones and compared with the value predicted using a 
theoretical model based on mode related coherence fluctuations. Based on the F2 laser 

linewidth a value o/<F> - 4% is obtained for the unpolarised beam giving for polycarbonate 

with Oeff » 3 x 105 cm" 1 and for CR-39 with Oeff«< 2.9 x lO^m"1 , the measured roughness for 

polycarbonate with mm = 10 (100 pulses) is ~20nm compared with a corresponding predicted 
value of r = 13nm, with various uncertainties explained in this chapter. For CR-39 
experiments give ~40nm for 100 pulses, compared with a predicted roughness of 14nm 
showing that in this case there is a considerably larger difference between these values.
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A preliminary study was made of CR-39, a track-etch material for heavy ionising 
particles, by exposing it to a 226 Ra alpha source (~5MeV) and then using chemical etching 
(NaOH 6.25N for l.Shour) to reveal the alpha tracks. Various pulse numbers of 157nm laser 
pulses were used to ablate these samples and then optical and scanning electron microscopy 
(SEM) employed to view changes to the morphological structure of the etched tracks. As 
radiation damage alters the properties of the polymer it was conjectured that laser etching 
might be a possible route to revealing tracks. However, the samples exposed to alpha 
particles and then laser etched -without prior chemical etching showed no morphological 
evidence of tracks after ablation at 157nm. This is possibly because the latent radiation* 
damage sites initially extend over a diameter of only about lOnm and hence would be 'un- 
resolvable' at this wavelength. However, interesting effects were observed in radiation 
exposed samples that were chemically etched in NaOH to reveal deep tracks of 2-3um 
diameter and then ablated using 157nm laser. Smoothing of the edges tracks due to melt flow 
relaxation and, under multiple numbers of exposures, a significantly increased density of 
cones structures was seen, evidently their growth being seeded by edges of the tracks.

In the final part of this work a technique was developed for characterising the VUV F2 
laser beam using a fluorescence glass plate (Lumilass G9). This approach was found to be 
technically quite useful as several important characteristics of the laser beam could be 
determined. Using this fluorescence technique, two-dimensional beam profiles could be 
recorded using a CCD camera and subsequently analyzed using MathCAD software allowing 
indirect measurements of spatial coherence, and beam fluctuations to be assessed. The 
saturation effects on the fluorescent glass were also investigated. The beam divergence of the 
laser measured using this technique was 2.7mrad in the narrow and 7.9mrad in the orthogonal 
wide direction. From focal spot irradiance, focal spot found to be as 0.42mm on narrow width 
(Y) gives the divergence of 2.1mrad. Using a low laser fluence of O.SmJcm"2 , the fluctuations 
value calculated in MathCAD (Section 6.5) shows a value of-3.3%. The coherence width 
derived from fluorescence focal irradiance the 1/e width is found to be 31um for Gaussian fit 
and 25 um for Lorentzian fit. From modelling of fluctuations using the Hermite-Gaussian 
simulation, the theoretical results give a magnitude of 3.8% for mode coherence fluctuations 
which compares quite closely to a value of-3.3% obtained from the fluorescence imaging 
measurements described in section 6.5.
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7.1 Summary

A summary of spatial coherence measured in this chapter from the interference fringes 

produced from cones and fluorescence method based on the X and Y direction of the laser 

beam can be concluded in Table 6.3, reproduce below as convenience.

Method Spatial coherence A in 

narrow beam direction (Y)

Spatial coherence A in wide 

beam direction (X)

Interference fringes produced 

by cones
54um 21-24um

Direct beam divergence (full- 

width at half maximum)
5 8 urn 20um

Fourier transform of focal 

irradiance

44 - 51 um Not measured

-H x

Table 6.3: Summary of spatial coherence widths of the Fj laser output beam determined by three 
techniques. Xand Y define orthogonal directions in the rectangular output beam.

7.2 Future work

A preliminary study was made of CR-39 polymer exposed to alpha radiation, chemically 

etched and then ablated at 157nm. For future work, it could be of interest to extend this to 

investigating the effects of NaOH etching in increasing normality or etching time for 

radiation exposed samples and how this influences the ablation properties of the material. The 

potential for high quality 157nm ablation of CR-39 polymer has been seen in the 

exceptionally well defined straight, smooth walls and sharp tips that are formed on cones hi
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this material. This points to an opportunity for further studies on using this material as a 
substrate for defining various micro-structures by VUV ablation e.g. using nano- and micro- 
particles to seed cones in a controlled way, and micro-whiskers to generate analogous 
prismatic structures on CR-39.
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APENDIX A

PROFILE OF THE CONE

(1) Profile of the cone viewed tilted based on the stage.

(2) Viewed of the cone based on the half angle viewed (9V), height perceived (h) and height of
cone (h0)

(3) Viewed of the cone based on the half angle viewed (9V), height perceived (h) and height of
cone (h0) and half base of the cone (b0)
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The height perceived is h, giving:

hcos00 = —h0

h = h0 cosft0
(i)

Then by substituting (i) and considering the half base of the cone as b0, the perceived angle 
(dp); with viewing angle as (0V) giving:

tantf =
P hQ COS0y

From equation (ii), if viewing angle (0V) is 0, then equation (ii) become:

ho (iii) 

And if viewing angle (9V) is 90°, equation (iii), become tan dp =00, and0p -90", so for the

half true angle (0,} for each of the angle applied, if tan ft = — , giving
h0

the equation below:

tan fttan ft = ——'- 
p cosft,

cos ft0 . tan 0p - tan 0,

00 = tan "'(tan ft .cos ft,)
(iv)

Viewing angle (0V) viewed from horizontal, thus for the viewing angle from the vertical, 
giving:

ft, = tan""1 tan 0p . cos(— - 0y)\
(v)
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Abstract Conical structures formed in 157 nm laser-ablated 
polycarbonate exhibit a well-defined fringe structure with a 
period of a few 100 nm surrounding the cone base. Experi­ 
ments and modelling studies of the interference produced by 
these micro-conical mirrors are shown to provide a means of 
measuring the spatial coherence of the highly multi-mode 
157 nm laser.

PACS 42.55.-f • 52.38.Mf

1 Introduction

Conical structures formed in laser-ablated polymers, semi­ 
conductors and metals have been investigated quite exten­ 
sively since the 1980's [1-4]. Evidence suggests these cones 
are initiated by particulate inclusions either inherent to the 
material, generated via the ablation process itself or delib­ 
erately added to the surface [1], The role of diffraction, re­ 
flection and interference effects has been considered by a 
number of authors [1, 3,4], as these influence the evolution 
of the cone structure.

In this paper we report on cones of microscopic dimen­ 
sions (a few microns) that develop in polycarbonate when 
ablated using the 157 nm Fa laser. There is interest in the 
ablation of polycarbonate [3, 5], as laser machining permits 
components such as micro-lenses [6] and large-area lens ar­ 
rays [7] to be fabricated in this high optical quality material, 
as well as micro-channels to be denned for use in 'lab-on- 
chip' micro-reactors [8]. In previous work, Hopp et al. [3]

P.E. Dyer (C21) • C.D. Walton • R. Zakaria
Physics Department, University of Hull, Hull, HU6 7RX, UK
e-mail: p.e.dyer@hull.ac.uk
Fax: +44-01482-465606

have reported on conical microstructures formed in poly­ 
carbonate ablated in a fluence range between about 20 and 
600 mJ cm~2 at 193 nm and observed their symmetry is in­ 
fluenced by the laser polarisation. Lapczyna and Stuke [8] 
have presented 157 nm VUV laser etch rate measurements 
for polycarbonate, in relation to micro-channel fabrication. 
Of specific interest in the present work is that cones with an 
appropriate apex angle develop distinct fringes with a period 
of a few 100 nm in the region adjacent to the edge of their 
base. Modelling confirms these fringes arise through inter­ 
ference of the direct beam with the beam reflected from the 
cone wall and provides a reasonably good description of the 
surface depression and fringes around the base. The cones 
effectively form a micro-conical mirror that produces circu­ 
lar fringes in a manner akin to the linear fringes with the 
Lloyds mirror arrangement [9]. From the radial extent of the 
fringes it is shown that the spatial coherence width of the 
157 nm laser can be found for orthogonal directions of the 
rectangular output beam.

2 Experimental arrangement

A Lambda Physik Fa laser producing up to 35 mJ per pulse 
at < 20 Hz was used to ablate samples of polycarbonate 
(Lexan, supplier Goodfellow Cambridge Ltd) in the form 
of 3 mm thick sheets. The output beam from the laser was 
passed through a rectangular aperture to extract a region of 
quasi-uniform fluence and a CaFa lens used to produce a 
15 x demagnified image of the aperture at the surface of 
the sample. The full-angle beam divergence of the direct 
output beam was ~3 mrad in its narrow dimension and 
~8 mrad in its long dimension. Ablation was carried out 
in vacuum (10~5 mbar) at a laser pulse repetition rate of 
~10 Hz. Cones were readily produced at fluences in the
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range 20-200 ml cm~2 without deliberate paniculate seed­ 
ing, although in some cases alumina powder (0.05 urn diam­ 
eter) was applied to the surface to increase their areal num­ 
ber density. Following exposure to a given number of pulses 
and fluence, the depth of material removed was determined 
using a white-light interferometer (VEECO-Wyko NT1100) 
allowing the average etch depth per pulse and the ablation 
threshold to be obtained. Surface features were imaged us­ 
ing a scanning electron microscope (SEM, Carl Zeiss SMT 
Ltd, Model EVO 60), and the measured wall angle of cones 
was used to make an independent estimate of the thresh­ 
old [2].

3 Results

The average etch depth per pulse d as a function of flu­ 
ence F for polycarbonate ablated at 157 nm based on 
100 and 500 pulses is shown in Fig. 1. A linear fit of 
the form d = k~ l InF/Fj- gives an ablation threshold of 
FT & 11 mJ cm~2 and an effective absorption coefficient of 
k = 3.0 x 105 cm" 1 . The latter is considerably higher than 
a value of 1.14 x 105 cm" 1 at 157.4 nm for Lexan poly­ 
carbonate as determined by the conventional measurement 
of optical constants [10]. An estimate of the threshold was 
also made using the limiting angle of the apex of conical 
structures formed in the polymer [2], This calculation took 
account of the angular dependence of the surface energy 
loading and gave a somewhat higher value for the thresh­ 
old of FT » 25 mJ cm~2 . For comparison, a threshold value 
of FT ~ 20 mJ cm~2 is estimated from data in [8].

Figure 2a shows a group of conical structures formed on a 
polycarbonate surface subjected to 100 pulses at a fluence of 
81 mJcrn"2 . The SEM viewing angle is 60° from the verti­ 
cal. The surface well away from these structures is seen to be

120

ffi 40 -

20 -

Fluence (mJcrrT3)

Fig. 1 Average etch depth per pulse versus fluence for polycarbonate 
ablated at 157 nm using, • 500 laser pulses, and • 100 laser pulses

Fig. 2 (a) Cones in polycarbonate ablated with the 157 nm laser (100 
pulses, 81 mJcm~2 per pulse). SEM viewing angle = 60° from verti­ 
cal, (b) As (a), but viewing angle = 0°. Arrows indicate fringes on cone 
wall, (c) Viewing angle = 0° with convolution bas-relief filter applied 
to enhance fringes
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smooth and devoid of significant debris, indicating the good 
surface quality attainable in this material when ablated with 
the 157 nm laser. The micron-scale cones in the main group 
have smooth, relatively straight, walls and there is substan­ 
tial depression formed adjacent to the base, where the etch 
depth is greater than the mean surface. A well-defined set 
of circular fringes arising from interference between the di­ 
rect beam and that reflected from the cone wall [3] also sur­ 
rounds each base, the fringe period being ~250 nm. A pair 
of partially evolved cones is evident in the top left-hand cor­ 
ner of the SEM, the initiating particulates presumably only 
having become present near the end of the pulse sequence. 
When viewed from above (Fig. 2b and 2c), a careful exam­ 
ination of these structures shows that the fringes exhibit an 
asymmetry. They are visible over a greater distance along 
the direction of the narrow dimension of the F2 laser output 
beam than in the orthogonal direction. This is attributed to 
the difference in spatial coherence widths in the low- and 
high-divergence directions of the beam and is discussed fur­ 
ther below. Additional support for this observation comes 
from the fact that cones A, C and D, which approximately 
lie along the high-coherence direction, are seen to imprint 
fringes on the walls of their neighbour. In contrast, cone D, 
lying to the right of cone B, i.e. being displaced along the 
low-coherence direction, has no fringes on its wall; neither 
does it appear to produce fringes on B.

Region of interference

Fig. 3 Schematic diagram showing region of interference of the inci­ 
dent beam with that reflected from the cone wall

A plane wave description was used but with the reflected 
field reduced to correct for the 3D beam expansion from the 
conical surface. The sum of the incident and reflected fields 
for the s- and p-polarised components is, respectively,

= \ — = I exp — 
VV2/

i (kx sin 8<j> + kz cos 50)

x exp -i (kx sin[26>, - 50] + kz cos[20r - 8<j>]) , (2a)

,= T2
\o exp — i (kx sin 50 + kz cos 50)

4 Interference model

We assume that radiation reflected from the cone wall inter­ 
feres with the direct beam producing a set of circular fringes 
on the flat surface beyond the cone base. For this geometry, 
straightforward analysis gives for the fringe period, A,

//?p
\Rp sin(20, -

x exp -i (kx sin[26>r - 50] + kz cos[20, - 50]). (2b)

Here Ix =

A =
sin2#r ' (D

where A. is the laser wavelength and 9, is the half-angle of 
the cone apex.

To quantify the fringe system, the amplitude reflection 
coefficients Rs and Rp for s- and p-polarised radiation, re­ 
spectively, were calculated using the Fresnel equations [11], 
assuming the incident 157 nm beam to be unpolarised. 
These were based on the real refractive index /z = 1.463 for 
polycarbonate at 157.4 nm [10], as estimates showed that 
including the extinction coefficient (<0.37 based on the ef­ 
fective absorption coefficient) had a negligible influence on 
their value. A vector sum of the field for the independent 
s- and p-components of the direct and reflected beams was 
formed and the irradiance along x (Fig. 3) determined. The 
line width of the Fa laser is sufficiently small [12], so that 
temporal coherence can be assumed over the optical path 
differences involved.

accounts for the irradiance
reduction at x produced by expansion of the reflected beam 
from the cone wall, where b is the radius of the cone base. 
The incident beam is nominally normal to the surface, but 
with a small spread of angles, 50, with respect to the z axis 
(Fig. 3) to allow account to be taken of beam divergence. 
The average amplitude of the incident wave is unity.

The fluence F is given by the product of irradiance and 
pulse duration and hence is proportional to the scalar prod­ 
uct, FStp oc £5i p • Es<p . To account for finite spatial coher­ 
ence FS:P was integrated over A0, the full divergence angle 
of the laser, with the simplifying assumptions that the source 
was spatially incoherent and had a uniform irradiance distri­ 
bution,

_ p*/2 dS4>
U ' S ' P ./-Ad/2 "' A0

For multiple-pulse exposure the fringe system does not re­ 
main stationary along x, because the cone height and base 
radius progressively increase as ablative etching proceeds. 
This leads to a spatial shift of the fringes and, over a num­ 
ber of pulses, effectively results in a loss of fringe visibility.
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Fig. 4 Modelled interference fringes produced in the region adjacent 
to the base of a cone in polycarbonate with cone half-angle = 0.337 rad 
(19.3°) and base radius of 2461 nm. The cone edge is at the origin 
x = 0. 100 pulses at 81 mJcm"2 per pulse and effective absorption 
coefficient k = 0.024 nm" 1 and ablation threshold FT = 15 mj cm"2 . 
Refractive index /z = 1.463

Assuming the cone height increases at a uniform rate from 
pulse to pulse and that d = k~ l In F/FT describes the etch 
rate per pulse, the removed depth of surface dm for m pulses 
is

dm = Y] - ln[/tot(*, n)y]. «=l*

Here

Ftot(x, «) =

and

- b(n)} 

+ b(m)-b(n)) for 0 < x < x

Fm =\ forx>xmm .

*max = b(n)/ cos 29V is the maximum value of x for which 
the reflected beam overlaps the incident beam on the nth 
pulse when the cone has a base radius b(n) (Fig. 3). y = 
F/FT is the ratio of the incident to the threshold fluence. In 
this simplified picture the cone-initiating mechanism, which 
is thought to initially depend on diffraction at a particulate 
inclusion [1, 3], is neglected.

Figure 4 shows the calculated surface profile beyond the 
base of a cone produced in polycarbonate ablated with m = 
100 pulses, F = 81 mJcm"2 , FT = 15 mJcnT2 (y = 5.4). 
The cone angle was set at Qt = 19.3° and the pulse num­ 
ber chosen to produce a cone base radius of 2.5 urn to al­ 
low for comparison with the result in Fig. 2a and b. A value 
of k — 0.024 nm" 1 , some 20% lower than deduced from 
Fig. 1, was used to provide a cone depth consistent with ex­ 
periment. It is evident that the simulated profile is in good 
qualitative agreement with the etched region containing the

fringes seen adjacent to the cone base in the SEM. The peak- 
to-peak depth modulation reaches ~95 nm near the base 
edge. An interference minimum is placed at x — 0 as there 
is a TT phase shift for the reflected s-component, and, with 
At = 1.463, when 6t < 34.4° for the p-component. This min­ 
imum location likely plays a role in the cone development 
but was not investigated further here. The fringes have a 
period of ~252 nm, in good agreement with (1). The etch 
depth outside of the reflected beam zone is 7031 nm, but it 
is deeper by ~ 150-195 nm at the edge of the cone base (de­ 
pending on beam divergence) because of the reflected con­ 
tribution. The fringe amplitude is limited by the spatial shift 
from pulse to pulse. Further, fringe visibility falls as x in­ 
creases both because of the finite spatial coherence of the 
beam and the reflected beam expansion factor Ix .

The etch-depth curves in Fig. 4 are for intrinsic beam di­ 
vergences of 3 mrad and 8 mrad as estimated for the nar­ 
row and long dimension, respectively, of the rectangular out­ 
put beam of the 157 nm laser. In the simulation these di­ 
vergences have been increased by 15 x because of the pro­ 
jection image demagnification factor. The range over which 
fringe visibility is maintained is lower for the larger di­ 
vergence as the corresponding spatial coherence width is 
reduced. This is borne out by the experimental results in 
Figs. 2b and 2c, where the fringes in the direction of low spa­ 
tial coherence extend over a considerably smaller distance 
than those in the orthogonal direction.

In the low-coherence direction an estimate of the spatial 
coherence width / can be made from the observation that 
fringes persist out to Xj ~ 800-900 nm from the cone edge. 
The direct and reflected rays that meet at this limiting point 
are spaced laterally by w = 2xicos2 0t , giving w « 1.43- 
1.6 urn for a cone half angle 0, = 19.3°. Multiplying this by 
the image reduction factor of 15, the spatial coherence width 
in the wide dimension of the 157 nm laser beam is / w 21- 
24 urn, which is consistent with / = A./A0 ^ 20 um based 
on full-angle divergence of A<£ = 8 mrad. For the narrow 
dimension a similar estimate gives / « 54 um.

Other evidence for the difference in spatial coherence 
widths is seen in Fig. 2b. Cones A, B and C, aligned along 
the high-coherence dimension, imprint fringes on each oth­ 
ers' walls. In contrast, cones B and D, aligned roughly in 
the low-coherence direction, do not, because of the lower 
coherence width.

5 Conclusions

The period of fringes formed around the base of micron- 
scale size cones produced in 157 nm laser ablation of poly­ 
carbonate is consistent with these arising through interfer­ 
ence of the incident beam with a component reflected from 
the cone wall. These structures form good-quality micro- 
conical mirrors and effectively provide a two-dimensional
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Lloyd mirror interferometer. Modelling shows that an ob­ 
served asymmetry in the spatial extent of the fringe system 
is related to the spatial coherence of the laser, which differs 
in the two orthogonal axes of the output. Good qualitative 
agreement is found with the observed etching in the vicinity 
of the cone base. An estimate for the spatial coherence of 
~22 urn and 54 urn in the high- and low-divergence axes, 
respectively of the VUV beam, has been derived from the 
fringes. These values are consistent with expectation based 
on the source divergence. The results also show indirectly 
that the quality of etching in polycarbonate with the 157 nm 
laser is suitable, in principle, for use in fabricating micro- 
optical components.
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Ablation of pristine and radiation exposed CR-39 
polymer using a 157nm laser
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The polymer CR-39 (allyl diglycol carbonate) finds application in optical components because 
of its excellent transparency in the visible region and its good scratch resistance. It is also 
widely used as a detector for heavy ionizing particles, based on revealing their damage tracks 
by selective chemical etching ('track-etch' detector). The influence of coherent and 
incoherent radiation on the polymers chemical etching properties have been reported 
previously [1], principally in relation to track-etch detection. Here we describe an 
investigation of the ablation of CR-39 using 157nm ¥2 laser radiation, motivated by an 
interest in producing optical microstructures and the possibility of revealing radiation damage 
tracks by photoablation.

Initial experiments on clean CR-39 surfaces involved measurements using a white light 
interferometer of the depth of material removed and surface roughness induced by the VUV 
laser radiation over a range of fluences and exposure pulses. From etch depth-fluence plots 
the threshold fluence was estimated to be <50mJcm"2 and the effective absorption coefficient 
approximately 3xl05cm" 1 . Ablation surfaces were found to be of good quality, with little re- 
deposited debris evident, although over most of the fluence range studied there was a 
propensity for conical structures to develop. The cones were extremely well defined 
compared with those seen in other UV laser-polymer ablation experiments, having straight, 
smooth walls and very sharp tips. Those of a few micron-scale size with appropriate apex 
angle, exhibited a well-defined circular fringe system surrounding their base, with a period 
consistent with them arising though the interference between the direct beam and that 
reflected from the cone wall. This is confirmed by modelling which provides a good 
description of the fringes and the 'scalloping' effect that the wall reflection produces in the 
vicinity of the base. Experiments using nano- and micro-particles to seed cones, and micro- 
whiskers to generate analogous prismatic structures on CR-39 are currently underway.

CR-39 samples exposed to a particles (primarily 4.87 and 4.61MeV) from a 226 Ra source 
showed no morphological evidence of radiation damage tracks when etched using the F2 
laser. This is likely because the radius of damage tracks in the polymer is typically ~5nm and 
hence 'un-resolvable' at a wavelength of 157nm. However, interesting effects have been seen 
in radiation-exposed samples that were chemically etched in NaOH to reveal deep tracks of a 
few microns diameter and then ablated at 157nm. These include smoothing of the edges of 
tracks due to melt flow relaxation and, under multiple pulse exposure, a significantly 
increased density of conical structures, apparently seeded by the edges of tracks.

[1] N. Dwaikat, T. lida, F. Sato, Y. Kato, I Ishikawa, W. Kada, A. Kishi, M. Sakai and Y. Thara, "Study etching characteristics of a track 
detector CR-39 with ultraviolet laser irradiation", Nucl. Ihstr. and Meth. in Phys. Res, A 572, 826 (2007).
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Abstract

Enhancement of the biocompatibility of a material by 
means of laser radiation has been amply demonstrated 
previously. Due to efficient absorption of the energy, 
short wavelengths and energies per pulse, polymers are 
usually processed using UV lasers, but the processing 
of polymers with IR lasers has also been demonstrated 
previously. In this work a comparative study for the 
surface modification of nylon 6,6 has been conducted 
in order to vary the parameters driving 
biocompatibility (surface topography, hydrophobic 
reactions, hydrophilic reactions and surface chemistry) 
using CO2 and excimer lasers. Topographical changes 
were analysed using white light interferometery which 
indicated that both laser systems could be implemented 
for modifying the topography of nylon 6,6. Variations 
in the surface chemistry were evaluated using EDX 
and XPS analysis and showed that the Oj increased 
and decreased for the CO2 and F2 laser irradiated 
samples, respectively. Modification of the hydrophobic 
and hydrophilic reactions was quantified by measuring 
the contact angle, which was found to increase in all 
instances for both laser systems. It is proposed that the 
increase in contact angle, especially for the CC>2 laser 
irradiated samples, is due to a change in wetting 
regime as a result of the surface pattern produced.

Introduction

It has been demonstrated previously by others that 
nylon can be utilized within the biomaterial industry 
[1] as sutures [2], vascular grafts and other hard tissue 
implants [3]. However, the common theme emanating 
from past work is that the polymer surface does not 
give rise to adequate cell adhesion and proliferation. 
As a result of this one can see that it may be an 
advantage to devise a technique which would allow the 
bioactiviry of the nylon to be increased. Numerous 
techniques have been developed to produce surfaces 
that have the ability to do this. Some of these methods 
are radiation grafting [4], plasma surface 
modification[5,6] and using various coatings [7]. Laser

surface modification [8,9] is another method which has 
the ability to improve bioactivity and offers a number 
of benefits:

• Relative cleanliness.

• Accurate processing.

• Allows much control over the heat affected 
zone (HAZ) due to the ability of relative 
precise control over the thermal profile and 
thermal penetration/absorption.

• Precise placement of the beam onto the target 
material allowing user specified areas of the 
target material to be processed.

• Non-contact processing.

The CO2 laser is one of the most used lasers 
throughout the scientific world and within many 
industries because it is one of the most versatile. It is 
capable of emitting radiation within the infra-red (IR) 
region of the electromagnetic spectrum on rotational- 
vibrational transitions with wavelengths ranging from 
9 to Hum [10]. Due to the versatility and high powers 
that these lasers can achieve they have been 
implemented for many years in the general field of 
materials processing. Specific to polymers, IR lasers 
give rise to resonant coupling in the form of bond and 
lattice vibrations allowing for the processing to be 
thermolytical. This is due to the fact that the photon is 
only weakly absorbed by the polymer, with the energy 
that has been absorbed being distributed to vibrational 
modes [11].

Ultraviolet (UV) excimer lasers have also been seen to 
be an extremely versatile tool. Since they offer 
relatively small operating wavelengths and have high 
energies per pulse, these lasers have also been 
employed for materials processing over a number of 
years. They also have other applications in areas such 
as medicine [12-14], photolithography and the



pumping of dye lasers [10]. With regards to the 
processing of polymers, UV lasers tend to give rise to 
the absorption of the light through electronic excitation 
which is often within delocalized electron 
configurations. In consequence polymers can have 
broad absorption features and directly break the 
polymer bonds as a result of the high photon energy 
[15]. With most lasers it is seen that the smallest 
possible features that can be achieved are on the 
micron scale; however, nano-structures have been 
achieved using a laser emitting at a wavelength of 
157nm [16].

Previous and current research has shown that it is 
imperative that any biomaterial should be optimized 
such that it can function appropriately and efficiently 
within the desired biological environment. In many 
applications it is seen that the bulk properties of a 
biomaterial are decided upon such that the surface 
properties are compromised [17,18]. For instance, this 
is seen throughout the use of polymeric biomaterials as 
they offer excellent bulk properties for biological 
applications; however, they possess surface properties 
that do not lend themselves to high performance in 
regards to cell adhesion and proliferation [19]. As a 
result of this, one can see that it would be necessary to 
attempt and vary the surface properties of the material 
without changing the bulk properties in order to 
influence the wettability and biocompatibility 
characteristics. The role of wettability in biomaterials 
science has been one of the most interesting subject 
areas in biomaterials surface science for a number of 
years and has allowed many to endeavour to determine 
the complex links between surface wetting and 
bioactivity [20]. A number of theories have been put 
forward in order to explain this phenomenon in which 
they usually fall into two basic categories. The first 
attempts to correlate the surface energy with the 
biomimetic properties whilst the second involves water 
solvent properties near the surface in which a 
correlation between the contact angle and 
biocompatibility is strived for. It should be noted; 
however, that in both of these categories arises a 
fundamental factor in which the surface energy/wetting 
is related somewhat to the biological response [21]. 
Many researchers have taken various approaches as to 
ascertain quantitative reasoning to bioactivity such as 
Van Oss et al. [22] by utilizing the 'equation of state' 
approach to calculate interfacial tensions from 
previously measured contact angles in order to attempt 
and predict cell adhesion. Such approaches have been 
found to fall short for determining a quantitative theory 
regarding the bioactivity of a material. Through the 
available literature it can be seen that extensive 
research is now being carried out regarding this in the

attempt to link wettability and bioactivity of materials 
[23,24].

Both CO2 and excimer lasers can be employed to 
produce variations in surface characteristics which can 
lead to a manipulation of the bioactivity of a material 
with regards to cell adhesion and proliferation [9,18]. 
In this paper, two very different laser systems are used 
and compared to produce surface variations in nylon 
6,6 with the wettability characteristics being 
quantified.

Experimental Technique

CO2 Laser System

The 10.6um wavelength Synrad cw 10W CO2 laser 
system, with a spot size of the order of lOOum, is 
housed at Loughborough University and uses a 
galvanometer scanner to scan the beam directly across 
the target material. The target material and laser 
system was held in a laser safety cabinet in which the 
ambient gas was air. An extraction system was used to 
remove any fumes produced during laser processing. 
In order to generate the required marking pattern the 
Synrad Winmark software version 2.1.0, build 3468 
was used. In addition, the software was capable of 
using images saved as .dxf files which can be produced 
by using CAD programs such as, in this case, Licom 
AutoCaM

F2 Excimer Laser System

The Lambda Physik LPF 202 F2 excimer laser system 
with a wavelength of 157nm is housed at the 
University of Hull and utilizes a projection etching 
system to irradiate the target material. The beam 
outputting from this laser had to be fully encased in a 
vacuum chamber running at pressure of around 2*10"3 
mbar. This is due to the fact that 157nm light is highly 
absorbed in ambient air over a few cm. A diagram of 
the projection etching system can be seen in Figure 1.

Mask

Las*

Object 
plane

Figure 1 - Schematic diagram showing the projection 
etching system used



With u being the object distance, v being the image 
distance and f the focal length of the lens. Prior to any 
experimentation being carried out it was necessary to 
determine the required image plane.

In order to achieve the required trench dimensions an 
aperture projection mask was produced (Laser 
Micromachining, Ltd) using SS316 foil. The mask was 
30mmx30mm and consisted of an array of five 
apertures with a diameter of 0.5mm in a straight line 
spaced by 1mm centre to centre. This allowed 50um 
wide trenches to be etched, spaced by 50um upon 
using a demagnification of 10.

Laser Irradiation Procedures

The nylon 6,6 was sourced in lOOmm* 100mm sheets 
with a thickness of 5mm (Goodfellow Cambridge, 
Ltd). To obtain a conveniently sized sample for 
experimentation, the as-received nylon sheet was cut 
into 30mm diameter discs using a IkW cw CO2 laser 
(Everlase S48; Coherent Ltd). No discernible HAZ 
was observed under optical microscopic examination.

For the Synrad CO2 laser system, trenches were 
produced with spacings of 50 and lOOum (sample CIO 
and C9, respectively) by scanning the beam across the 
target material. To produce these spacings, each 
experiment was carried out twice: firstly using a power 
of 50% (5W) with a velocity of lOOOmms" 1 and 
secondly using a power of 80% (8W) with the same 
velocity.

The Lambda Physik LPF 202 F2 excimer laser system 
was used to produce two areas of etched trenches by 
traversing the stage and keeping the beam stationary. 
The first of these being to achieve an etch depth of 
approxiamately lum (sample F3) and the second 
giving a depth of approximately lOum (sample F4). In 
order to achieve these depths each site required 1,000 
and 10,000 pulses, respectively, as the etch depth per 
pulse was approximately Inm per pulse. With this in 
mind it was possible to determine the traverse 
velocities, vt, by using Equation (1).

DRv, =—— (1)
' N

Where D is the diameter of one of the apertures in the 
mask, R is the repetition rate (which was 20Hz) and N 
is the number of pulses. Upon using this equation it 
was determined that for lum and lOum deep trenches 
velocities of 0.01 and O.OOlmms' 1 was to be used, 
respectively.

Mechanical Roughening Procedure

For further verification of laser induced contact angle 
modification two samples were roughened manually 
using DA-F P220 emery paper. One sample was 
roughened using a zig-zag motion traversing from the 
top to the bottom of the sample (sample Rl). The 
second sample (sample R2) was roughened by carrying 
out the same technique as the first sample, with the 
addition of rotating the sample through 90° and 
repeating the roughening method with the emery 
paper.

Topography, Wettability Characteristics and 
Surface Chemistry Analysis

After the laser irradiation of the nylon 6,6 samples they 
were analysed using a number of techniques. An 
optical microscope (Flash 200 Smartscope; OOP Ltd) 
was used to obtain optical micrographs of the samples. 
The surface profiles were determined using a white 
light interferometer (WLI) (NewView 500; Zygo, Ltd) 
with MetroPro and TalyMap Gold Software. The Zygo 
WLI was setup using a *10 Mirau lens with a zoom of 
xQ.5 and working distance of 7.6mm. This system also 
allowed Sa, Ra and Wa roughness parameters to be 
determined for each sample.

The samples were ultrasonically cleaned in 
isoproponal (Fisher Scientific, Ltd) for 3 minutes at 
room temperature before using a sessile drop device to 
determine various wettability characteristics, in 
accordance with the procedure detailed by Ranee [25]. 
This was to allow for a relatively clean surface prior to 
any contact angle measurements being taken. The 
sessile drop device used was a Dataphysics OCA20 
with SCA20 Software. This allowed the recent 
advancing and receding contact angles for triply 
distilled water and the recent advancing angle for 
diodomethane to be determined for each sample. By 
achieving the advancing and receding contact angles 
the hysteresis for the system was determined. In 
addition, by knowing the advancing contact angles for 
the two liquids it was possible to use the software to 
draw a Owens, Wendt, Rabel and Kaeble (OWRK) 
plot to determine the surface energy of the samples. 
For the two reference liquids the SCA20 software used 
the Strom et al. technique to calculate the surface 
energy of the material. It should be noted here that 10 
contact angles, using 2 droplets, in each instance was 
recorded to achieve a mean contact angle for each 
liquid and surface.

Selected samples were analysed using X-ray 
photoelectron spectroscopy (XPS) and were also 
sputter coated with Au to attain adequate conductance 
and analysed using scanning electron microscopy



(SEM) and energy dispersive X-ray (EDX) analysis. 
This allowed any surface modifications in terms of 
chemical composition due to the laser irradiation to be 
revealed.

Results and Discussion

Optical Microscopy Analysis

In order to effectively and completely compare the 
laser irradiated samples an optical micrograph of the 
non-irradiated material was obtained, as can be seen in 
Figure 2.

SOOjim

Figure 2 - Optical micrograph of the non-irradiated 
nylon 6,6 sample (Sample N6).

The optical micrograph of the non-irradiated sample 
shown in Figure 2 appears to have a minimal surface 
topography. The black dots on the image arise from the 
debris from the cutting of the samples. This debris was 
removed during the ultrasonic cleaning.

It was seen that both laser systems gave the ability to 
produce relatively good quality urn features in the 
nylon 6,6 samples. With regards to the trenches 
produced by the CO2 laser, with a distance of 50um 
between each trench, it can be seen in Figure 3 that no 
distinct trench lines had been produced.

*

Figure 3 - Optical micrograph of nylon 6,6 CO2 laser 
irradiated sample using 8W, lOOOmms" 1 .

From Figure 3 it is possible to visualize that the CO2 
beam was scanned horizontally across the sample. 
However, as the spot size of the CO2 laser was of the 
order of lOOum the scan overlaped itself so that no 
distinct grooves are left in the material. In addition to 
this, gas bubble rupture sites can be seen on the surface 
which is considered to be as a result of the melting and 
re-solidification of the nylon 6,6 following CO2 laser 
irradiation. Also, as a consequence of the melting it 
appears that the material does not ablate with the CO2 
laser and as the material re-solidifies it produces a 
protrusion away from the surface. Owing to this 
phenomenon any trenches produced would arise due to 
two straight parallel protusions, with the unirradiated 
part of the sample being the bottom of the trench. In 
comparison, the F2 excimer laser produces grooves that 
are considerably better defiled, as can be seen in Figure 
4. One other major difference that the F2 excimer laser 
offers is that the trenches are ablated and etched into 
the nylon 6,6 sample.

)
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Figure 4 - Optical micrograph of trenches produced
using the F2 excimer laser using 1000 pulses per site, a

fluence of 40mJcm"2 and a repetition rate of 20Hz
(Sample F3).



White Light Inteferometry Analysis

The Zygo WLI and TalyMap Gold software were 
employed to elucidate the surface properties of the 
laser irradiated surfaces. Figure 5 shows the 
continuous axonometric with regards to the non- 
irradiated nylon 6,6 sample.

Figure 5 - Continuous axonometric image for the non- 
irradiated reference sample. (Sample N6)

Figure 5 shows how much smoother the surface of the 
nylon 6,6 is prior to laser irradiation, having an Sa 
value of only 0.038um. This smoothness is also 
confirmed by taking a profile extraction of the surface, 
which can be seen in Figure 6.

Figure 6 - Profile extraction of the surface shown in 
Figure 5.

The graph shown in Figure 6 allows one to see that 
maximum peak heights of the surface topography is 
approximately 0.3um. In comparison, the CO2 laser 
irradiated samples are considerably rougher than the 
reference sample indicating that considerable surface 
topography changes of nylon 6,6 are possible by this 
means. Figures 7 and 8 show continuous axonometric 
images for the CO2 laser irradiated samples.

Figure 8 - Continuous axonometric for CC>2 laser 
irradiated nylon 6,6 at 8W, lOOOmms"1 (Sample C9).

The surface roughness parameter Sa was determined 
for each of the surfaces. The Sa roughness value for« 
the 5W CO2 laser irradiated nylon surface was 
0.262um, whereas the higher power of 8W gave rise to 
a slightly rougher surface with an Sa value of 
0.35Sum. In addition, the effect the beam has had on 
the surface topography can be seen more prominently 
in Figures 7 and 8. However, by taking a profile 
extraction (Figures 9 and 10) of the surfaces 
perpendicular to the direction of the grooves, it can be 
seen that there is no fixed periodicity to the surface 
pattern. This is due to the fact that the spot size is 
larger than the intended surface pattern and the 
irradiation lines overlap.

Figure 9 - Profile extraction of the surface shown in 
Figure 7, perpendicular to the grooves.

A*

Figure 7 - Continuous axonometric for CO2 laser 
irradiated nylon 6,6 at 5W, lOOOmms" 1 (Sample CIO).

Figure 10 - Profile extraction of the surface shown in 
Figure 8, perpendicular to the grooves.

Figures 9 and 10 show that the maximum peak height 
observed for 5W and 8W laser powers were 2 and 3um 
respectively. Even though there is no fixed periodicity 
for the irradiated samples shown in Figures 9 and 10, it 
can be seen that there are distinct grooves produced in 
the nylon 6,6 as a result of the CC>2 laser processing. 
This is more discernible when comparing the 
continuous axonometric images shown in Figures 7 
and 8 with that of the non-irradiated reference sample



shown in Figure 5, along with the relative profile 
extraction curves.

Figures 11 and 12 show the continuous axonometric 
images for the F2 excimer laser irradiated nylon 
surfaces for different pulse numbers per site.

Figure 11 - Continuous axonometric image for F2
excimer laser irradiated nylon 6,6 at 1,000 pulses per

site (Sample F3).

Figure 12 - Continuous axonometric image for F2
excimer laser irradiated nylon 6,6 at 10,000 pulses per

site (Sample F4).

The etched trenches using the F2 excimer laser shown 
in Figures 11 and 12 are considerably more defined 
than the CO2 laser irradiated samples (see Figures 7 
and 8). In comparison to the CO2 laser irradiated 
samples the pattern etched into the sample as shown in 
Figures 11 and 12 have a more distinct periodicity and 
can be easily identified with profile extractions as 
shown in Figures 13 and 14.

Figure 14 - Profile extraction of the surface shown in 
Figure 12, perpendicular to the grooves.

The roughness parameter for the surface shown in 
Figure 11 was found to be Sa = 0.248um, whereas the 
roughness for Figure 12 was found to be Sa = 2.647um 
which is considerably greater than the other three 
samples due to the depth of the trenches being 
approximately lOum. It should be noted that for the* 
other three samples the surface features were around 2 
to Sum as can be seen in the other profile extractions 
(Figures 9, 10, 13 and 14). Using the non-irradiated 
sample as a reference it can be seen that both lasers are 
capable of increasing the roughness of the surface of 
nylon 6,6; however, as the F2 excimer laser offers 
better precision and accuracy due to the etch rate for 
this particular system being of the order of Inm per 
pulse it can be seen that the roughness can be more 
accurately controlled. This is contrasted with the CO2 
laser system as the surface pattern is dependant on the 
surface melting and resolidifying to produce a 
protrusion out of the surface which gives rise to a level 
of inaccuracy for the surface pattern.

Effects of Laser Irradiation on the Wettability 
Characteristics

As it has already been discussed, it is believed by 
many that the characteristic contact angle for a 
material is the potential driving force in regards to the 
prediction of how a biomaterial will perform within a 
biological environment. The dynamic advancing 
contact angles and hysteresis for triply distilled water 
for each of the samples can be seen in Table 1, along 
with the recorded three roughness parameters Sa, Ra 
and Wa for each sample.

Figure 13 -Profile extraction of the surface shown in 
Figure 11, perpendicular to the grooves.



Table 1 - A summary of the results for the seven
samples along with their characteristic contact angle

and hysteresis with triply distilled water.
Sample ID Sa 

(Urn)
Ra

(urn)
Wa 

(urn)
Contact 
Angle
0

Hysteresis 
(°)

CO2 Laser Irradiated Samples
CIO
C9

0.262
0.358

0.346
0.256

0.118
0.190

53.91
52.36

17.22
19.82

F2 Excimer Laser Irradiated Samples
F3
F4

0.248
2.647

0.253
2.947

0.021
0.978

66.67
72.92

31.05
40.97

Emery Paper Roughened Samples
Rl
R2

3.104
3.735

2.368
3.055

1.862
3.568

43.95
38.37

26.01
22.25

Non-Irradiated Reference Sample
N6 0.038 0.043 0.020 49.34 19.98

The surface roughness shown in table 1, has been 
considerably increased, by up to an Ra of 2.904um, in 
comparison to the non-irradiated sample using both 
laser systems. It can also be seen that the contact angle 
for each laser irradiated sample was increased with the 
F2 excimer laser irradiated samples giving the largest 
change with a contact angle of 72.92° for the roughest 
sample. This does not concur with current theory as the 
contact angle should decrease with increasing surface 
roughness [18,26]. Further studies of the surfaces were 
required in order to explain these results. The contact 
angles determined for the emery paper roughened 
surfaces were decreased in comparison to the non- 
irradiated sample and will be discussed in more detail 
later.

Using the SCA20 software the surface energy and 
components for each sample were obtained to try to 
explain the variation in contact angle and can be seen 
in Table 2.

Table 2 - Surface energies and components of each of 
the five samples.

Sample 
ID

Contact 
Angle

(°)

Polar 
Component 

(mJm-2)

Dispersive 
Component 

(mJm-2)

Total Surface 
Energy 
(mJnr2)

C02 Laser Irradiated Samples
CIO
C9

53.91
52.36

20.75
24.27

27.38
23.90

48.13
48.17

F2 Excimer Laser Irradiated Samples
F3
F4

66.67
72.97

9.78
8.46

37.19
28.44

46.98
36.90

Emery Paper Roughened Samples
Rl
R2

43.95
38.37

22.57
24.68

34.86
36.85

57.43
61.53

Non-Irradiated Reference Sample
N6 49.34 20.15 36.12 56.27

The data given in Table 2 shows significant changes 
within the surface energy components in comparison to 
the non-irradiated reference sample used. After CO2 
laser irradiation the total surface energy is slightly 
reduced due to a change in polar and dispersive 
components. It can be seen that the polar component 
increases by up to 4.12mJm'2 for the rougher sample, 
whereas the dispersive component is reduced by 
12.22mJm"2. As it is the polar component of the 
surface energy that plays the major role in determining 
the contact angle it can be seen that these results do not 
correspond with existing theory. For instance, 
Lawrence and Li [17] state that a laser-induced 
increase in the polar component, along with an 
increase in O2 content, would give rise to a reduction 
in the contact angle.

Following on, subsequent to F2 excimer laser 
irradiation the polar component of the surface energy 
is considerably reduced by up to lOmJm"2. This 
substantial reduction in polar component could be seen 
to be the main reason as to why there is a significant 
increase in the contact angle. The dispersive 
component is quite inconclusive due to the fact that 
both results lay either side of the value determined for 
the reference sample. As a result of this, further 
research may be required to determine the trend of the 
dispersive component in this case and could be used as 
a further study to confirm the results achieved here. 
However, it still can be seen that the total surface 
energy determined for the F2 excimer laser irradiated 
samples is somewhat lower with 36.9mJm"2 for sample 
F4.

In order to determine if these changes in surface 
energies were as a result of variations in surface 
chemistry three samples where chosen for XPS and 
EDX analysis. Table 3 shows the surface O2 content 
for selected samples.

Table 3 - Surface O2 content for selected samples
Sample ID

CIO
F3

Surface O2 Content 
(%)

22.23
17.48
20.70
20.76

Contact Angle 
0

53.91
66.67
43.95
49.34

The non-irradiated reference sample showed that, in 
terms of weight, 79.24% was carbon and 20.76% was 
oxygen. In comparison with the CO2 laser irradiated 
sample the oxygen content had risen slightly to 
22.23%, whereas the F2 excimer laser irradiated 
sample was found to have less oxygen content with 
only 17.48%. The oxygen in the ambient air of the CO2 
system could have possibly allowed oxidation of the 
surface to occur as the molten nylon re-solidified.



Additionally, as the F2 excimer laser system was 
under vacuum, there would have been a reduction in 
oxygen and as a result the surface would not oxidize 
and could potentially lose oxygen content during the 
laser ablation process.

Due to the ability of using these laser systems to 
manipulate the wettability characteristics further 
research can also be made by carrying out biological 
testing of the laser irradiated samples. This would 
determine if cell adhesion and proliferation can be 
optimized by using these lasers to produce surface 
modification in terms of surface chemistry and surface 
topography. In addition, as nylon 6,6 has a high water 
absorption rate it may be possible to identify, through 
extended research, whether surface modifications 
using laser technology allows this parameter to be 
reduced. By experimenting with different ambient 
gases it may also be possible to inflict greater chemical 
changes on the surface of the material allowing for 
further studies of how the chemical nature of the 
surface gives rise to the variation in contact angle and 
surface energy.

Determination of Active Wetting Regime

As it has already been shown, surface energy, XPS and 
EDX analysis for the CO2 laser irradiated samples 
should allow the samples to have a contact angle that is 
lower than the contact angle determined for the non- 
irradiated sample. To clarify this, two samples were 
roughened using emery paper, of which the continuous 
axonometric images can be seen in Figure 15 and 16, 
in order to find some explanation for this phenomenon.

Figure 15 - Continuous axonometric image of the first 
emery paper roughened sample (Sample Rl).

Figure 16 - Continuous axonometric image of the 
second emery paper roughened sample (Sample R2).

As a result of the mechanical roughening of the 
samples it can be seen in Tables 1 and 2 that an 
increase in polar component and roughness has given 
rise to a significant reduction in contact angle, which 
agrees with Lawrence and Li [17]. It must be stated at 
this point that the images shown in Figures 15 and 16 
give an indication that no periodic pattern has been 
induced on the surface of the nylon 6,6 samples. In 
contrast, the laser irradiated samples have more 
periodic patterns relative to the manually roughened 
surfaces. These periodic patterns appear to have an 
extremely large affect on the wettability of the 
samples. As discussed by Jung and Bhushan [27] there 
are two regimes in which a material can wet; these 
being the Cassie-Baxter and Wenzel regimes. In which 
the Wenzel regime, shown in Figure 17, allows the 
whole sample to be wetted such that the droplet is in 
complete contact with the surface.

Figure 17 - Schematic diagram showing a droplet of
water on a patterned surface giving rise to the Wenzel

wetting regime.

On the other hand, the Cassie-Baxter regime, shown in 
Figure 18, allows the droplet to rest upon the 
roughenedsurface peaks forming air gaps between the 
droplet and the surface.

Figure 18 - Schematic diagram showing a droplet of 
water on a patterned surface giving rise to the Cassie- 

Baxter wetting regime.

It is proposed here that a change from the Wenzel 
regime to the Cassie-Baxter regime was the likely



reason for the observed increase in the contact angle 
for the CO2 laser irradiated samples and the F2 
excimer laser irradiated samples. This would be due to 
the fact that the Cassie-Baxter regime inherently gives 
rise to larger contact angles in comparison to the 
Wenzel regime. Therefore, it is also proposed that the 
surface pattern is the main driver for the manipulation 
of the wettability characteristics, implying that the 
surface roughness (Table 1), surface energy 
components (Table 2) and surface O2 content (Table 3) 
do not play a governing role. In order to confirm this 
proposal more research into which wetting regime 
takes place is required.

Conclusions

It has been demonstrated that both the CO2 and F2 
excimer laser systems that have been employed in this 
study have the ability to modify the surface of nylon 
6,6. The CO2 laser couples into the material via 
resonant coupling which gives rise to bond vibrations 
allowing the temperature to rise and melt the material. 
Upon cooling the molten material re-solidifies and a 
protrusion away from the surface becomes evident on 
the surface. This is contrasted with the F2 excimer laser 
as it ablates the nylon 6,6 allowing the required pattern 
to be etched into the material. As a result the F2 
excimer laser system offers a major advantage over the 
CO2 in the fact that it ablates approximately Inm per 
pulse, with the fluence used in this instance, allowing 
the user to be precise and accurate with the surface 
topography they require. However, the amount of time 
it takes to pump the F2 vacuum system to operating 
pressure and the amount of time it takes to produce a 
number of few urn deep trenches is considerably 
greater than the CO2 laser system employed in this 
study.

Both of the laser systems affect differently the nylon 
6,6 samples with regards to wettability and surface 
energy parameters - two major factors which are 
believed to manipulate the bioactivity of a material in 
regards to cell adhesion and proliferation. The CO2 
laser has been seen to be capable of producing contact 
angles slightly larger in comparison to an unirradiated 
reference sample. This does not agree with current 
theory as the increased polar component and increased 
O2 content should give rise to a reduction in contact 
angle. For instance the F2 excimer laser irradiated 
samples gave larger contact angles which seems to be 
the result of a decrease in polar component and 
decrease in O2 content. However, it has been proposed 
here that the increases in the contact angle for both 
laser systems could also be due to the fact that the 
sample surfaces are patterned, such that they give rise 
to a change in wetting regime from Wenzel type to the

Cassie-Baxter regime. This may allow one to see how 
the CO2 laser irradiated samples would give a larger 
contact angle in comparison to the non-irradiated 
sample. This would imply that the surface pattern 
dominates the wettability characteristics of the 
material. In order to confirm this proposal much more 
research is required into how the droplet forms on the 
sample surface.

Acknowledgements

We would like to thank Matthew Gibson, Peter 
Wileman and David Britton for all of their much 
appreciated support. This study is financially supported 
by the EPSRC (No. EP/E046851/1).

References

1. Mao, C. et al. (2005) In vitro studies of platelet 
adhesion on UV radiation-treated nylon surface. 
Carbohydrate Polymers, 59,19-25.

2. Karaca, E. et al. (2008) Analysis of the Fracture 
Morphology of Polyamide, Polyester, Polypropylene, 
and Silk Sutures Before and After Implantation In 
Vivo. Journal of Biomedical Materials Research Part 
B: Applied Biomaterials.

3. Makropoulou, M. et al. (1995) Ultra-viole and Infra­ 
red Laser Ablation Studies of Biocompatible Polymers. 
Lasers in Medical Science, 10,201-206.

4. Benson R. S. (2002) Use of Radiation in 
Biomaterials Science. Nuclear Instruments and 
Methods in Physics Research B, 191, 752-757.

5. Arefi-Khonsari, F. et al. (2005) Processing of 
Polymers by Plasma Technologies. Surface and 
Coatings Technology, 200, 14-20.

6. Pappas, D. et al. (2006) Surface Modifcation of 
Polyamide Fibers and Films using Atmospheric 
Plasmas. Surface and Coatings Technology, 201,4384- 
4388.

7. Harnett E.M. et al. (2007) The surface energy of 
various biomaterials coated with adhesion molecules 
used in cell culture. Colloids and Surfaces B: 
Biointerfaces, 55,90-97.

8. Yu, F. et al. (2005) Laser interference lithography as 
a new and efficient technique for micropatterning of 
biopolymer surface. Biomaterials, 26, 2307-2312.

9. Mirzadeh H. et al. (2003) Influence of laser surface 
modifying of polyethylene terephthalate on fibroblast 
cell adhesion. Radiation Physics and Chemistry, 67, 
381-385.



10. Silfvast W. T. (1996) Laser fundamentals. 
Cambridge, UK. Cambridge University Press.

11. Skordoulis, C. D. et al. (1995) Ablation of nylon- 
6,6 with UV and IR lasers. Applied Surface Science, 
86,239-244.

12. Duncan, A. C. et al. (2002) Laser Microfabricated 
Model Surfaces for Controlled Cell Growth. 
Biosensors & Bioelectronics, 17,413-426.

13. Pfleging, W. et al. (2007) Laser-Assisted 
Modification of Polystyrene Surfaces for Cell Culture 
Applications. Applied Surface Science, 253, 9177- 
9184.

14. Callewaert, K. et al. (2003) Excimer Laser Induced 
Patterning of Polymeric Surfaces. Applied Surface 
Science, 208-209,218-225.

15. Tiaw, K. S. et al. (2007) Precision Laser Micro- 
Processing of Polymers. Journal of Alloys and 
Compounds.

16. Sarantopoulou, E. et al. (2007) Polymer Self- 
Assembled Nano-Structures and Surface Relief 
Gratings Induced with Laser at 157nm. Applied 
Surface Science, 253,7884-7889.

17. Lawrence J. et al. (2001) Modification of the 
Wettability Characteristics of Polymethyl Methacrylate 
(PMMA) by Means of CO2 , Nd:YAG, Excimer and 
High Power Diode Laser Irradiation. Materials Science 
and Engineering A, 303,142-149.

18. Hao L. et al. (2005) Laser surface treatment of bio- 
implant materials. New Jersey, USA: John Wiley & 
Sons Inc.

19. Lai, J. et al. (2006) Study on Hydrophilicity of 
Polymer Surfaces Improved by Plasma Treatment. 
Applied Surface Science, 252, 3375-3379.

20. Ma Z. et al. (2007) Surface modification and 
property analysis of biomedical polymers used for 
tissue engineering. Colloids and Surfaces B: 
Biointerfaces, 60,137-157.

21. Vogler E. A. (2004) Role of water in biomaterials. 
In: Ratner, B. D. et al., editor. Biomaterials Science. 
Second ed. San Diego, California, USA. Elsevier 
Academic Press.

22. Van O. et al. (1975) Phagocytic engulfrnent and 
cell adhesiveness. New York, USA. Marcel Dekker.

23. Kim, M. S. et al. (2007) Gradient polymer surfaces 
for biomedical applications. Progress in Polymer 
Science.

24. Ball M. D. et al. (2004) Cell interactions with 
laser-modified polymer surfaces. Journal of Materials 
Science: Materials in Medicine, 15,447-449.

25. Ranee D. G. (1982) Chapter 6 - thermodynamics of 
wetting: From its molecular basis to technological 
application. In: Brewis DM, editor. Surface Analysis 
and Pretreatment of Plastics and MetalsEssex, UK. 
Applied Science Publishers.

26. Lawrence J. et al. (2001) Laser modification of the 
wettability characteristics of engineering materials. 
Suffolk, UK. Professional Engineering Publishing 
Limited.

27. Jung Y. C. et al. (2007) Wetting transition of water* 
droplets on superhydrophobic patterned surfaces. 
Scripta Materialia, 57,1057-1060.

Meet The Author

David Waugh is currently undertaking a Ph.D at the 
Wolfson School of Mechanical and Manufacturing 
Engineering, Loughborough University, UK under the 
supervision of Dr. Jonathan Lawrence. His research is 
focusing on using laser surface treatment of polymeric 
biomaterials for enhanced cell response. He obtained 
his MPhys Hons. in Physics with Lasers and Photonics 
and MSc in Laser Applications in Micro-Machining 
and Processing from the University of Hull, UK.


