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Understanding good ecological status: a palaeolimnological approach

The current study uses multiproxy palaeolimnological analysis of sediment cores to 

reconstruct the long-term (102 to 103 years) nutrient status of Upper Talley and Llyn 

Pencarreg, two closely adjacent, moderately nutrient-enriched lakes in 

Carmarthenshire, South Wales. The use of diatoms, Pediastrum and ephippia allows 

for the analysis of changes in ecosystem dynamics in response to nutrient enrichment, 

whilst pollen, charcoal analysis and archaeology enables the degree to which 

limnological change was driven by human impact to be examined. Reconstruction of 

long-term ecosystem status shows that despite the similarity of environmental 

parameters, Upper Talley and Llyn Pencarreg are very different lakes. Upper Talley 

(max. depth; 4m) demonstrates constant fluctuations in ecosystem dynamics, typical 

of shallow lakes with a high sensitivity to environmental change, whilst Llyn 

Pencarreg (max. depth 1 Om) illustrates a high degree of stability with gradual changes 

in limnological status that are indicative of deeper lakes with fewer functional groups. 

Within the context of the EUWFD's aim to restore lakes to good ecological status, the 

results indicate the need for a more detailed methodology that accounts for the 

complexity of long-term ecosystem dynamics in response to human impact, examines 

changes at different levels of the food chain using a range of proxy indicators and 

locates realistic baseline states based on individual lake ecology of pre-impact 

conditions. In this respect the ultimate aim of restoring lakes to good ecological status 

in a range of lake types is more likely to be achieved.
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CHAPTER 1

INTRODUCTION AND RESEARCH AIMS 

1.1 Background

Water quality is a key environmental issue of global concern. Inland waters are 

subject to multiple pressures, including nutrient enrichment, acidification, bulk 

organic and toxic metal pollution, and hydro-morphological impact (e.g. Abel, 1996). 

Anthropogenic nutrient enrichment, or eutrophication (Greek eutrophus; well fed), is 

recognised as the most common cause of poor water quality throughout northern 

Europe today, particularly within many of the lowland lakes of Britain (Moss et al., 

1997).

The European Union Water Framework Directive (EUWFD; Directive 2000/60/EC) 

aims to address issues of poor water quality, by ordering the restoration of inland 

water bodies across Europe to good ecological status by 2015. The emphasis on 

ecological, rather than simply physico-chemical, status has had major implications in 

terms of water quality monitoring. There has been an expansion in the development of 

biotic indices and associated predictive models for invertebrates (e.g. Boon, 2000; 

Wright et al, 2000) and, more recently, for diatoms (Kelly et a/., 2008). The 

instigation of coherent regional and international monitoring programmes has also 

received much attention (e.g. Boix et al., 2005; Diekmann et al., 2005; Gassner et al., 

2005; Nyman and Korhola, 2005). In brief, following the classification of water 

bodies (rivers, lakes, transitional waters and groundwater) into ecotypes based on a
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suite of relevant geographic, catchment, physico-chemical and biological parameters, 

a key concept is the definition of the baseline or reference state for each type of water 

body. For a particular type of river or lake, the baseline condition is taken to represent 

its natural state prior to significant human impact. Through a process of screening, 

examples of pristine sites have been identified for each type of water body (e.g. 

Bennion et al, 2004 for Scottish lochs; Leira et al, 2006 for lakes in Eire). The 

ecological status may then be defined as the degree of ecological deviation between 

the pre-industrial and present states. The reference state also acts as the target for 

restoration, in order to achieve long-term sustainability (Smol, 1992; Battarbee, 1999).

An obvious drawback in this approach is that non-impacted reference sites may be 

difficult to locate for some types of water body, such as lowland, fertile lakes in the 

UK, the catchments of which tend to be heavily populated. Following the screening of 

UK river and stream sites for the purposes of diatom monitoring (e.g. Kelly et al., 

2008), the lack of pristine reference sites in England is notable compared to the less 

densely populated areas of the UK (Figure 1.1). The common assumption that 

permanent limnological impact has occurred only over the last ca. 150-50 years as a 

result of intensified industrial activity and agricultural expansion is thus uncertain, 

particularly at sites with a long-term history of anthropogenic activity extending back 

beyond ca. AD 1850.



100km

Figure 1.1 Map showing pristine reference sites for rivers and streams in the UK (not 

including N. Ireland). Note the paucity of pristine reference sites compared to the 

more densely populated areas of the UK (taken from Kelly et al., 2008).



In terms of water quality monitoring, lakes are a special case. Unlike rivers, 

groundwater and coastal waters, sediment accumulates over time in the lake basin, 

providing the potential for high resolution proxy data on past environmental change 

(Smol, 2002). A range of biological, geochemical and mineralogical remains may be 

preserved in sediment cores, and multi-proxy palaeolimnological analysis of lake 

sediments can offer a powerful means by which to reconstruct past water chemistry 

and ecosystem dynamics. This potential has been exploited in the context of EUWFD 

research and palaeolimnological data from core samples dated to ca. AD 1850 (pre- 

Industrial Revolution) provide information for the reference state of lakes prior to 

major impact (Bennion et al., 2004; Leira et a/., 2006). Relying on two samples per 

site, the approach has the major logistical advantage that analytical time is minimised. 

On the other hand, it is acknowledged (e.g. Bennion and Battarbee, 2007) that its 

reliability rests on a set of assumptions, one of the most important being that 

conditions prior to ca. AD 1850 represent long-term stability and minimal human 

impact. In addition, with some exceptions (e.g. Leira et al, 2006), the potential for 

associated palynological reconstruction of the cause-and-effect relationship between 

human activities and eutrophication is rarely used for devising management plans.

As outlined below (Section 1.10), the primary focus of this study is to investigate 

long-term variability in eutrophic lake ecosystems, using palaeolimnological 

techniques to improve our understanding of long-term ecosystem dynamics and 

response to human impact. By doing so, the validity of the EUWFD approach to lake 

classification can be tested and realistic reference states can be defined.



1.2 Eutrophication

As water drains over the surface of lake catchments it collects dissolved organic 

substances, major ions and key nutrients from catchment soils and transports them via 

runoff to the aquatic environment (Wetzel, 2001). The concentration of key nutrients 

in freshwater is generally low; therefore increases in phosphorus (P) and nitrogen (N) 

can be the precursor to a rise in lake productivity (Moss, 1988). The extreme result of 

this process is eutrophication\ a condition represented initially by increased 

macrophyte growth, which is dominated by canopy forming species (Scheffer, 2004). 

This is followed by a rise in algal production, which is characterised by species 

indicative of enrichment, and increased turbidity causing loss of light to the benthic 

zone. Deoxygenation of the hypolimnion, due to an increase in the supply of organic 

material, which promotes bacterial activity, may then lead to the reduction, structural 

simplification and eventual loss of biodiversity at all trophic levels. In extreme cases 

these changes are accompanied by the development of toxic, unicellular blue-green 

algae (e.g. Anabaena and Aphanizomenon) causing serious conservation and water 

quality problems (Harris, 1994).

In some cases, particularly shallow, polymictic lakes with high baseline, aquatic 

macrophyte biomass, competition for light and nutrients following nutrient 

enrichment can result in significant increases in algal biomass and the complete loss 

of plants. This shift in lake conditions from one state to another is referred to as 

alternative stable states (Philips and Moss, 1994; Breukers et a/., 1997; Karst and 

Smol, 2000; Scheffer and Carpenter, 2003; McGowan et at., 2005) and highlights the 

importance of maintaining a healthy plant community. Aquatic macrophytes keep



algal biomass low by shading and preventing photosynthesis and by supporting a 

healthy zooplankton population, which exploits the algal community and keeps 

primary production under control (Scheffer, 2004). Phytoplankton population 

expansion is prevented by the uptake of nutrients from the water column by aquatic 

macrophytes and clear water is maintained because macrophyte architecture and root 

networks reduce sediment re-suspension (James and Barko, 1990). A clear, plant- 

dominated state gives rise to maximum habitat diversity and a rich assemblage of 

species at all trophic levels (Moss et al., 1997; Smol, 1992; Lau and Lane, 2001) thus 

producing high conservation value.

The switch to algal domination and a concomitant decrease in aquatic macrophyte 

abundance can lead to the loss of zooplankton refuge and the subsequent collapse of 

many predator-prey relationships. Consequently, the shift from one state to another is 

relevant to ecosystem stability. Spawning and feeding grounds for piscivorous fish 

may be lost whilst predation pressure from zooplanktivorous fish tends to increase 

(Lammens et al., 1997). This reduces the number of zooplankton available to graze 

on algae and allows algal blooms to expand and water turbidity to increase thus 

encouraging the development of filamentous algal mats (Thorns et al., 1999; Balaya 

and Moss, 2003). Periphyton growth may increase as fish such as Tinea tinea (Tench) 

and Rutilis rutilis (Roach) increase grazing pressure on benthic animals such as snails, 

which feed on periphyton (Phillips et al, 1978; Phillips et al., 1996). The lack of 

protection that accompanies a reduction in aquatic macrophytes can increase wind 

fetch, causing the re-suspension of internally loaded sedimentary P into the water 

column and perpetuating algal production even further (Smol, 2002).



Recent research has placed a great deal of emphasis on locating the exact point of 

change (temporally and spatially) between the clear water, macrophyte-dominated 

state and the turbid, algal-dominated state (McGowan et al., 2005; Sheffer et al., 1993; 

Didham and Norton, 2006). Although evidence suggests that the vegetation-turbidity 

relationship is controlled by changes in nutrient concentrations (Moss et al., 1997), 

the precise nutrient levels at which the threshold can be crossed varies between lakes 

depending on long-term trends in anthropogenic disturbances and individual patterns 

of stability. This suggests that the threshold is not controlled by one linear overriding 

process, but by a range of complex and unpredictable feedback mechanisms (Figure 

1.2) (Scheffer, 2004). Information explaining the parameters controlling ecosystem 

response and therefore how the combination of conditions defining ecological 

thresholds may vary from lake to lake is still extremely limited. An improved 

understanding of these mechanisms in a range of lake types would increase our ability 

to define realistic and sustainable baseline targets for restoration.

Figure 1.2 Diagram showing the positive and negative feedback systems involved in 

the switch from one alternative state to another (adapted from Scheffer, 2004). Each 

route can be evaluated by multiplying signs along the chosen path.



1.3 Catchment Characteristics and Water Chemistry

A few long-term nutrient dynamic studies have shown that before the stabilisation of 

catchment vegetation in the early Holocene, late-glacial lake development involved a 

process of natural eutrophication, particularly in areas of carboniferous bedrock 

where nutrients were easily leached (Edwards and Deevey, 1984; Delcourt and 

Delcourt, 1991). As nutrient rich run-off found its way into local water bodies, these 

lakes became increasingly more productive. However, it appears that lake 

development was not always characterised by increased enrichment. Renberg et al. 

(1993) and Engstrom et al. (2000), for example, found that the ontogeny of lakes in 

sparsely vegetated, non-calcareous catchments in Sweden produced an opposite trend 

towards reduced productivity. This was found to be the result of low nutrient 

availability within the more acidic catchments and the subsequent reduced movement 

of base cations to water bodies.

The above studies indicate that bedrock type is a major influence on natural baseline 

nutrient loads. To test this theory Kamenik et al. (2001) examined the effect of 

catchment characteristics on the water chemistry of lakes in the Austrian Alps along 

an altitudinal gradient of 1502 - 2309m a.s.l. Stepwise linear regression and 

multivariate statistical analysis revealed that bedrock mineralogy and the chemical 

weathering of carbonate minerals from the lake catchments did indeed exhibit the 

greatest influence on water quality status. The majority of high mountain lakes are 

naturally acidic due to bedrock with low calcium carbonate (CaCC^) content and 

sparsely vegetated catchments. However, some of these lakes were unexpectedly 

alkaline. Kamenik et al. (2001) found that this was due to the additional influence of
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large, steep catchments, high exposure and thick soils, which encouraged the physical 

weathering of carbonate minerals from a catchment containing very little limestone. 

The study therefore also indicated that the trophic status of a lake and its natural 

susceptibility to eutrophication are controlled by a wide range of environmental 

characteristics that in combination influence its development trajectory and govern its 

limnological status (Smol, 2002).

1.4 The Role of Phosphorus in Lake Enrichment

During the late 1960's and early 1970's, when lake enrichment was first recognised as 

a problem, scientists began to take an empirical approach towards examining the 

cause of the increase in algal growth in lakes throughout the USA and Europe. These 

studies supported Leibig 's Law of the Minimum (which states that the growth of an 

organism is controlled by the availability of one specific environmental factor) by 

showing a strong positive correlation between algal growth and the nutrient P 

(Vollenweider, 1968; Brylinsky and Mann, 1973; Schindler, 1974; Dillon and Rigler, 

1974). The most notable of these studies was by Schindler (1974), who fertilised half 

of oligotrophic Lake 226, in the Experimental Lakes Area (ELA) of north-western 

Ontario, with P, nitrogen (N) and carbon (C) and the other half with just N and C. 

Within two months algal blooms appeared in the P-enriched half, whilst the other half 

remained oligotrophic (low productivity with P concentrations of >8 ug I" 1 ). From 

this he concluded that although P is present naturally at lower concentrations than N, 

it is in fact the most important limiting nutrient to algal growth.



Although some studies do stress the role of N in the process of nutrient enrichment 

(Penczak et a/., 1992; Goldman et al, 1990), many examples, such as Lake 

Washington, Seattle, USA (Edmondson, 1991), demonstrated a significant correlation 

between a direct improvement in lake transparency and a reduction in P. At Lough 

Augher, Co. Tyrone, Northern Ireland (Anderson et al, 1990) the redirection of P-rich, 

untreated effluent from a local creamery also reduced lake enrichment by stabilising P 

concentrations. This remedial action led to the eradication of algal blooms and caused 

the lake to return to its previous mesotrophic (medium productivity with P 

concentrations of >25 ug I" 1 ) status.

Initially, catchment characteristics, such as bedrock, exposure, dilution capacity and 

wind induced sediment re-suspension (Sheffer, 2004), influence the amount of P that 

enters surface waters leading to differences in the magnitude of P enrichment between 

lakes. Human impact in the catchments of shallow, lowland lakes, where P 

concentrations are often already high due to carbonate bedrock geology (e.g. English 

Lake District; Moss, 1988) may exacerbate natural enrichment. Changes in vegetation 

disturbance associated with changing catchment land-use can also alter hydrology 

patterns, causing increased run-off, and as a consequence the gross transfer of 

dissolved P ions from soils to lake may also be increased (Likens et a/., 1977). 

Studies in Ireland (Neal et al., 2005; Jordan et al., 2005) also found that the 

precipitation and reactive transfer of P from non-calcareous soils during periods of 

anthropogenic activity were lower than from soils with a high CaCC»3 content due to 

differences in hydrological properties and P-absorption, even following identical 

disturbance events. Drainage area size and natural flow regimes were also found to 

influence P inputs (Lazzarotto et al., 2005). These differences indicate that even lakes
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located closely together within a small geographical area may have different 

thresholds during the enrichment process.

1.5 Temporal Patterns of Epilimnetic Phosphorus Loading

To date, the main focus for eutrophication studies has been a relatively short time 

span of 150 to 200 years, during which period an exponential increase in P 

concentrations has been observed at many sites (e.g. Anderson, 1994; Haworth et al., 

1998; Lotter, 1998). Since the 1960's significant quantities of nutrient rich waste 

from sources such as untreated sewage, storm drainage, industrial effluents, detergents, 

intensive stock husbandry and agricultural fertilisers have entered water-bodies 

causing serious water quality problems (Moss, 1988; Moss, 1996; Moss et al., 1997). 

A recent report by DEFRA (2004) on the contribution of agriculture to the diffuse 

pollution of surface waters states that between 1961 and 1991 P loads from cereal 

cultivation alone rose by 418%, whilst loads from cattle and sheep waste increased by 

95% and 135%, respectively. During this period poor nutrient management led to a 

doubling of losses of P from land to water from 0.62kg ha" 1 in 1931 to 1.24kg ha" 1 in 

1991.

Catchments dominated by arable cultivation have also lost up to 100 tonnes of 

sediment per hectare every year compared to 5 tonnes yr" 1 in uncultivated catchments, 

of which at least 25% is delivered to surface waters. DEFRA (2004) discuss case 

studies from Esthwaite Water, the River Avon and Slapton Ley, which indicate that 

these increases in sediment and P loads have led to incidents of high turbidity and a 

reduction in the abundance of aquatic macrophytes accompanied by the loss of some
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fish communities. The occurrence of toxic blooms resulting from these increases in P 

have also caused the contamination of potable water supplies and have compromised 

the amenity value and ecological status of many lowland water-bodies, making 

eutrophication a key conservation issue (Moss, 1996).

These short-term studies assume that modern cultural eutrophication has occurred 

against a long-term background of relative stasis, which represents the baseline 

required for restoration targets. This approach does not take into account the 

possibility that natural, long-term variability and/or the influence of prehistoric and 

historic land-use activities may have had a significant effect on water quality status, 

which in turn may have led to permanent shifts in water quality status and ecosystem 

dynamics. The few studies that link long-term changes in vegetation patterns and 

catchment hydrology with shifts in limnology show that pulses of prehistoric and pre- 

AD 1850 historic human activity and land-use change correlate closely with inferred 

increases in total phosphorus (TP) and changes in aquatic ecology. Fritz (1989), for 

example, found that moderate limnological response to prehistoric land-use at Diss 

Mere, Norfolk, UK, began in the Neolithic and Bronze Ages as a result of widespread 

deforestation to provide land for farming. Additionally, although the lake appeared to 

recover from these catchment events, further episodes of forest disturbance and 

agricultural practices within the lake catchment prevented its complete return to a pre- 

agricultural baseline conditions.

A similar pattern was observed at Crawford Lake, Ontario, Canada. Ekdahl (2004) 

found that lake productivity increased between the 13 th and 15th centuries when 

Iroquoian Indians settled in the area. Again, permanent limnological impact followed
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despite over 400 years of minimal nutrient inputs following abandonment of the 

settlement area. Hakansson and Regnell (1993) found similar results over the last 

6000 years at Lake Bussjosjon in Southern Sweden, whilst at Dallund S0 in Denmark 

changes in farming practices during the medieval period released high amounts of soil 

nutrient ions, which contributed significantly to the lake's long-term eutrophic history 

(Bradshaw, 2001).

It can be seen from these studies that although some lakes appear to exhibit a certain 

degree of recovery following major impact events, limnological impact may be 

permanent, even when anthropogenic influences are reduced or removed. More 

importantly it appears that in cases like these, lakes may have been primed by earlier 

disturbances for a rapid return to eutrophic conditions as P inputs increased in the last 

150-200 years. The possibility of permanent, long-term changes over recent millennia 

could mean that the natural, pre-impact state aimed at by restoration ecologists may 

now be extremely difficult to define and ultimately that the future sustainability of 

waterbodies may be jeopardised by choosing inappropriate restoration targets. The 

provision of long-term palaeolimnological proxy data is essential to reconstruct lake 

history, identify natural patterns of ecosystem behaviour and elucidate rates of 

recovery associated with ecosystem stress. Only with such data can the validity of 

assumptions implicit in the concept of a natural, stable baseline state be tested, and the 

point at which the system began to change from its natural trajectory, be defined.
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1.6 Lake Restoration and Reducing P Concentrations

Studies at Lake Washington, Seattle, USA (Edmondson, 1991) and Lough Augher, 

Co. Tyrone, N. Ireland (Anderson et al., 1990; Ripley, 1983) indicate that 

eutrophication from artificially-induced increases in nutrient loads may be reversed by 

a reduction in P loads. The success of this approach has also been demonstrated more 

recently at Lake Apopka, Florida, USA (Coveney et al., 2005) and Lake Miiggelsee, 

Berlin, Germany (Kohler et al, 2005) where reductions in external loading led to 

improvements in water chemistry status and in the functioning of ecosystem dynamics.

One of the most significant studies highlighting the response of lake systems to 

reduced nutrient loading incorporated 35 lakes from North America and Europe 

(Jeppersen et al., 2005). This study considered a wide range of lake types and 

environmental variables, which could influence and explain the observed patterns of 

eutrophication and identified rates of recovery. Lakes were selected to represent a 

trophic spectrum from oligotrophic to hypereutrophic (with mean summer TP 

concentrations between 7.5 ug I" 1 and 3500 ug I" 1 ), a range of altitudes from lowland 

to upland (altitude up to 481 m), climatic regimes from sub-tropical to temperate 

(latitude 28 to 65°) and shallow (mean depth < 5 m) to deep (mean depth up to 177m) 

morphometry. In the lakes that responded to a reduction in P loading, recovery was 

characterised by reductions in phytoplankton biomass, enhanced zooplankton grazing, 

the return of fish populations with an emphasis on piscivores, and an increase in the 

abundance of aquatic plants, particularly in shallow lakes, along with the return of 

annual fluctuations in plant species composition.

14



However, this study also demonstrated that strategies for successful restoration are not 

as simple as just reducing nutrient loads. As reported by Moss (1988), Scheffer (2004) 

and Moss et al. (2005), unpredictable changes in predator-prey relationships along 

with apparently random shifts in water chemistry have prevented the complete 

recovery of some lakes. The most common problem preventing sustainable lake 

restoration appeared to be the delayed release of sedimentary P, which can accumulate 

during enrichment and be released decades later into the hypolimnion from the water 

sediment interface by factors such as wave action (Aalderink et al., 1985), benthic 

foraging (Meijer, et al, 1989) or conditions of anoxia (Wetzel, 2001). P-resuspension 

can maintain a state of enrichment despite the reduction of P-input via runoff and may 

be most significant in shallow lakes where sedimentary P loads are already high due 

to previous phases of eutrophication (S0ndergaard et al., 2003; Welch and Cooke, 

2005). Producing a viable restoration programme appears to depend on the natural 

balance of a system before enrichment and its inherent ability to deal with external 

and internal shifts in P concentration. To date little attention has been paid to 

developing an understanding of the thresholds of response, which lead to the turbid, 

algal dominated state.

1.7 UK Water Legislation with Reference to the European Water Framework 

Directive (EUWFD)

Since 1945 the regulation of water quality in Britain has been fragmented, with a 

distinct lack of emphasis on sustainable restoration and conservation of water supplies 

and the surrounding terrestrial environment to which they are directly linked (Table 

1.1).

15



Legislation

1945 Water Act

1973 Water Act

1974 Control of Pollution Act

1980 Water Act*

1985 Food and Environment 

Protection Act

1989 Water Act

1 990 Environment Act

1991 Water Industry Act

1991 Water Resource Act

1991 EU Urban Waste Water Dir.

1992 Private Water Supply Reg. *

1 995 Environment Act

1996 Surface Water Act *

1998 Groundwater Regulation

1999 Water Industry Act

2000 Water Framework Directive

Aim

To develop water companies and boards

To create Water Authorities

Water Authorities responsible for issuing discharge 

consent for sewage effluent

To provide clean water for domestic purposes

To provide controls for disposal of waste at sea under 

licence

Privatisation with economic regulation.

To adopt an integrated approach to pollution release into 

air, water and land

To amalgamate sewage legislation

To control pollution discharge to surface water

To sufficiently treat waste-water before disposal

To define wholesomeness by improving private supplies

EA to assume responsibility for the NRA's and pollution.

To set standards for improving public water supplies.

To protect groundwater supplies

To control disposal of industrial and domestic effluent.

Most significant piece of water legislation so far, which 

integrates all previous water Acts

Table 1.1 Table outlining water legislation in Britain between 1945 and 2000

(* Scotland only) (Compiled from the Scottish Parliament Environment Office;

scot.gov.uk, 2006)

Increasing ecosystem degradation and associated demands for the ecological and 

chemical improvement of surface water quality status, has led the European Union to 

issue a directive to ensure the sustainable management of water resources throughout 

Europe. These constitutional changes are presented under the EUWFD (Directive

16



2000/60/EC) (European Union, 2000), which aims to encourage public participation 

and reduce the social and economic impacts of pollution, whilst preventing further 

deterioration of water resources by promoting sustainable water consumption and 

improving aquatic habitats. When coupled with conservation legislation such as the 

EC Wild Birds Directive (Directive 79/409/EEC) (DEFRA, 2005) and the EC 

Habitats Directive (Directive 92/43/EC) (DEFRA, 2005), which are intended to 

restore, maintain and protect flora and fauna in their natural habitats, the EUWFD has 

great potential to improve the long-term regional management of water supplies and 

their associated catchments.

The fundamental objective of the EUWFD is to achieve at least good ecological status 

of standing waters throughout Europe by 2015, and achieving good ecological 

potential of heavily-modified waters (UKTAG, 2008). Initiated in 1997, the program 

aimed to establish environmental water monitoring networks to enable the 

classification of reference conditions by 2006. In Europe, this led to the development 

of the first large-scale, integrated monitoring programmes designed to assess water 

quality status and investigate the causes and effects of water pollution. Monitoring 

techniques included new biotic indices based on the relative abundance of 

microcrustaceans (Boix et al., 2005; Nyman and Korhola, 2005), the comparison of 

present day, habitat-specific fish communities (Diekmann et al., 2005) and 

reconstructed historical fish communities (Gassner et al, 2005), general biodiversity 

assessment (Oertli et al., 2005), and the classification of eco-regions based on minor 

differences in climate (Moos et al., 2004; Kolada, et al., 2005).
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As noted above, a key concept is the non-impacted reference state by which to 

measure ecological impact at polluted sites, and from which to define targets for 

restoration. As part of this, the adoption of palaeolimnological techniques to provide 

snapshot proxy palaeolimnological data on the reference state prior to major recent 

human impact (ca. AD 1850), against a background of assumed naturalness (Bennion, 

et al., 2005; Anderson and Odgaard, 1994; Bradshaw 2001; Amsinck et al, 2003; 

Bradshaw and Rasmussen, 2004), was noted. By 2008 member states were required 

to present draft management plans to individual governments with an emphasis on the 

classification of surface water, based on the developed reference conditions, which 

will then be used as a guideline for identifying appropriate monitoring strategies and 

defining good ecological status. Management plans will be finalised by 2010 and 

should be in full operation by 2015 with environmental objectives attained by 2021.

In Britain it is the task of the UK Technical Advisory Group (UKTAG, 2008), made 

up of experts from a range of conservation agencies, specialist task teams and steering 

groups, to coordinate the appropriate research and development required to implement 

the intended changes. It is also the job of UKTAG to provide technical advice to, and 

receive policy advice from, The Department for Environment, Food and Rural Affairs, 

The Welsh Assembly Government, The Scottish Government and The Department of 

Environment, Northern Ireland, and to develop policy consistency pertaining to water 

quality in the UK. Using current knowledge of hydrology and physico-chemical and 

biological water quality, UKTAG has developed a classification scheme and devised a 

framework for monitoring based on environmental standards that support healthy 

communities of aquatic plants and animals. The result is an 18 class, ecotype 

classification system for lakes that first addresses alkalinity (low, medium, high, marl,
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peat, brackish) and depth (very shallow, shallow, deep), then considers local factors 

such as geology, altitude and type-specific features such as water residency time 

(UKTAG, 2008).

However, there is still little consensus as to what exactly is considered good 

ecological status and if conditions prior to any permanent human impact are 

considered to represent the baseline reference state, then little work has been done to 

identify when the ecological consequences of impact in a range of lake types first 

occurred. Examining and quantifying the differences in limnological stability and 

ecosystem behaviour during phases of anthropogenic stress for different lake types is 

therefore a subject that needs attention. Some lakes, for instance, may have a long 

history of human impact but the ability to return quickly to a pre-impact state, 

whereas others, with a history of natural susceptibility to eutrophication, may not.

In a study of the ecological succession of algae, following impact events at Lough 

Augher, Co. Tyrone, N. Ireland, for example, Anderson et al. (1990) found that the 

degree and duration of change depends on the natural condition of the lake before 

impact and the extent of damage caused by the impact event. During recovery, 

indicator species re-appeared only when their optimal conditions were achieved and, 

though patterns of eutrophication can be fairly predictable in this sense, the recovery 

trajectory varied following different impact events. The variations were explained in 

terms of changes in ecosystem structure, individual water chemistry thresholds, water 

residence times and the availability of certain nutrients such as P and Si (Anderson et 

al., 1990).
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Ideally, effective restoration requires long-term data to provide information on 

ecosystem health, natural variability and natural productivity patterns without the 

effects of human impact. Generating this information from a range of sites would 

highlight how a range of factors interact in different lake types in order to enable the 

definition of a realistic, attainable baseline and facilitate the maintenance of good 

quality status. Knowledge of individual site histories can also help to identify the 

exact timing of change and the possible reasons for changes in limnological 

conditions (Smol, 1992). A long-term palaeolimnological approach has clear 

potential to produce this information, which can then contribute towards developing 

improved restoration plans for reversing change in complex ecosystems. In contrast, 

short-term approaches share the assumption that systems were in a 'state of good 

health' prior to the Industrial Revolution or immediately before the intensification of 

land-use during the 1950's (Anderson et al., 1990; Anderson and Rippey, 1994; 

Anderson, 1997; Bennion, et al, 2000; Bennion et al, 2002). This does not take into 

account any earlier phases of human impact and assumes that significant deleterious 

changes in water chemistry and ecosystem health have only occurred in recent 

decades.

Studies in Scotland (Bennion et al, 2005), and Denmark (Amsinck et al, 2003) used 

palaeolimnology to identify baseline reference conditions, but their data only covered 

the previous 150-200 years, and in both cases this was shown to be insufficient due to 

a background of long-term nutrient pollution before the nineteenth century. It was 

concluded that the definition of baseline conditions was unreliable. Fritz (1989), 

Hakansson and Regnell (1993; 2000), Ekdahl et al, (2004) and Bradshaw (2001) have 

already shown that earlier events can have significant and long-lasting effects.
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Although it is not logistically feasible to study the long-term record for every site 

needing management the assumption that ecosystem change has occurred only 

recently needs to be tested further. Long-term, site-specific research across a range of 

ecosystem types and impact scenarios is needed before definition of the development 

of realistic reference conditions for good ecological status is attempted.

1.8 The Value of a Palaeolimnological Multi-proxy Approach

In the absence of long-term, water quality data, shifts in species presence and changes 

in the abundance of certain biotic indicators (e.g. diatoms, Cladocera and pollen) in 

lake sediment sequences can be used to infer changes in water quality and link this to 

climate change and human activity within the surrounding catchment for the time 

period represented by the core. Knowledge of the sensitivity of proxy indicators to 

environmental variables in the modern environment allows interpretation of changes 

within the fossil community and enables inferences to be made about past 

environmental conditions (Battarbee, 1986; Stoermer and Smol, 1999).

Important advances in the field of quantitative palaeolimnology have enabled the 

estimation of water chemistry variables from biological sedimentary records using 

weighted averaging (WA) regression and calibration techniques (ter Braak and van 

Dam, 1989). Surface sediment calibration sets of biological and water quality data 

from a large dataset of lakes spanning the environmental gradient of interest (e.g., TP, 

pH, salinity) have been analysed using regression techniques to generate quantitative 

estimates of species optima, which are used to construct transfer functions. 

Application of the resultant transfer function to fossil assemblage data by calibration

21



enables quantitative estimates to be generated for key water chemistry variables and 

produces a picture of change over time (Smol, 2002). Palaeolimnological 

reconstruction can provide the information needed to examine the timing and rate of 

change in ecosystem stability prior to pre-pollution background conditions, and assess 

whether a stable baseline existed in the past and if so how modern environmental 

conditions deviate from this.

The physical and chemical parameters of a lake ecosystem (e.g. geology, light, 

temperature, climate, nutrient availability and water residency time) determine its 

biotic composition and structure. Because these components are closely integrated, 

both within- and between-trophic level changes in one parameter will automatically 

have an effect on the whole community (Whittaker, 1975). Ideally therefore, 

sustainable management and restoration plans should be based on and monitored via 

the examination of interactions within a system in order to incorporate the complexity 

of, often non-linear, relationships between components. The same principle applies to 

palaeolimnological reconstruction; although the analysis of one strong proxy indicator 

can yield valuable information about water quality status, it does not reflect the real 

complexities of food web interactions and changes within the immediate environment. 

With limited information, the natural patterns of past ecosystem behaviour and the 

possible links between biotic components at different trophic levels may be obscured.

A wide range of physical, chemical and biological remains can be preserved in lake 

sediments and the use of several of these as indicators to produce complimentary sets 

of data can strengthen interpretation (Battarbee, 1999) and help to evaluate a range of 

explanations (Birks et al, 2000). The results of a multi-proxy approach can thus
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provide the evidence necessary to explore temporal variations in natural stability, 

vulnerability and general ecosystem health and produce a clearer picture of the causes 

and consequences of nutrient enrichment. More specifically, this approach can be 

used to explore interactions between trophic groups during the eutrophication process 

and to test rates and levels of response to varying degrees of impact. Multi-proxy 

reconstruction can also compensate for gaps in the sedimentary record of one key 

indicator where poor preservation is a problem (Lowe and Walker, 1999), although 

the confines of time and finance often prevent the use of many indicators (Lotter, 

1998).

Each fossil reflects different aspects of the overall food web. Diatoms, which occur at 

the bottom of the food chain, can reflect past changes in water chemistry and rates of 

photosynthesis (Smol, 1990). A range of micro-crustacea (e.g. Cladocera) can 

respond to community changes at the zooplankton level (Harm, 1990), whilst ephippia 

production can indicate stress within the wider ecosystem (Sarmaja-Korjonen, 2004). 

Chironomids, whose head shields preserve well in lake sediments, can provide a 

biological indicator for both the health of an aquatic ecosystem (Walker, et al, 1991) 

and for changes in climatic conditions. Changes in land-use, which might be the 

cause of limnological change, can be indicated by the presence of stenotypic species 

of Coleoptera (Kenward, 1975) and by pollen and plant macrofossil analysis (Faegri 

and Iversen, 1989). The pollen record reflects changes in both local catchment 

vegetation, such as phases of deforestation and agricultural activity, and the aquatic 

macrophyte community, which can highlight shifts in trophic state (Warner, 1990), 

whilst plant macrofossils mainly reflect changes in the aquatic macrophyte 

community.
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Examination of the chemical and physical properties of the sediment matrix can also 

reveal information concerning shifts in the allochthonous and autochthonous organic 

and mineral components with regards to limnological and catchment processes 

(Engstrom and Wright, 1984). In this respect, palaeolimnology can meet the 

requirements of the EUWFD by providing long-term information on ecosystem 

dynamics, reconstructing changes during phases of human impact and locating the 

lakes baseline reference state. Additionally, this provides a compatible approach to 

the monitoring of modern water quality using biotic indicators such as diatoms (Yang 

et al, 2005; Kelly et al., 2008)

1.9 Theories of Ecosystem Dynamics and Ecological Functioning 

1.9.1 Stability or Fluctuation?

A common assumption in lake conservation is that high ecosystem diversity is a 

reflection of stability and good ecosystem health. A central tenet is that a wide range 

of species at different trophic levels will protect the system against collapse during 

phases of environmental stress (Odum, 1953; MacArthur, 1955; Elton, 1958; May, 

1973; Pimm and Lawton, 1978; Tilman, 1996; Naeem and Li, 1997; Naeem, 1998). In 

addition, Yodzis (1981) suggests that the higher the degree of interaction between 

trophic levels and the stronger the links in community structure, the more ecosystem 

integrity will be protected during disturbance. Work by Persson et al. (2001) supports 

this hypothesis by showing that during nutrient enrichment the species that are more 

vulnerable to predation are replaced by invulnerable prey, which in turn stabilise 

trophic dynamics. However, McCann (2000) points out that the removal of just one
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species during perturbation (known as Keystone) can lead to significant changes in 

community composition and in some cases may cause complete community collapse. 

Daphnia is a prime example of this as its disappearance can cause disturbance to the 

entire aquatic food web (Moss et al, 1994).

Many of the studies based on diversity and ecosystem health are based on theoretical 

debate or field studies focusing on changes in terrestrial environments. Aquatic 

studies also show a positive correlation between diversity and stability, but reveal that 

the factors governing ecosystem health are far more complex than just a measure of 

diversity (Scheffer, 2004). The multiple interactions between trophic levels mean that 

freshwater systems are often unpredictable and factors such as disease or seasonal 

changes in temperature produce baseline states that are naturally dynamic rather than 

static. These long-term shifts in ecosystem dynamics, however, can produce internal 

stabilising mechanisms that become inherent to the system and are instrumental in 

retaining stability and building up ecosystem resilience by a process of reorganisation 

(Rolling, 1973; Carpenter et al., 1985; Levin, 1999). Additionally, Elmqvist et al. 

(2003) found that community expansion also increases the diversity of responses 

amongst species contributing to the same ecosystem, which is critical to ecosystem 

resilience, renewal and reorganisation associated with future environmental change.

In their discussion of resilience in lake ecosystems, Dent et al. (2002) refer to these 

regime shifts as multiple states and explain that each condition represents the response 

of internal processes to external perturbation and protect the system against future 

episodes of eutrophication. Within each state individual species regulate ecological 

processes and biogeochemical cycles, which help to maintain equilibrium so that

25



ecosystem functioning and integrity is not lost during phases of impact (Peterson et al, 

1998). This confirms that rather than just being a function of high diversity, 

ecosystem stability depends on the presence of keystone species to maintain 

ecological function (Lawton, 1994). Peterson et al, (1998) also proposed that 

although there are great similarities in ecosystem organisation at the trophic scale, the 

stability of an individual ecosystem depends on the ecological history of its catchment 

and the evolutionary history of interacting species.

For many lakes the presence of a healthy aquatic macrophyte community is the key to 

good ecosystem health. Fringing aquatic plants have the benefit of controlling algal 

growth by the release of allopathic exudates and maintaining water clarity by the 

uptake of nutrients (Lau and Lane, 2001). Additionally, Ho ward-Williams (1981) 

found that some aquatic plants are associated with certain filamentous algae that act as 

nutrient filters by helping to absorb excess nutrient loads during high concentrations. 

Filter-feeding cladocerans, which essentially keep algal growth in balance, are 

provided with refuge from fish predation and thus help to control algal biomass 

(Scheffer, 2004). Water velocity is impeded, whilst root growth prevents sediment re- 

suspension and nutrient release (Carpenter et al., 1983). The chances of water 

turbidity and sedimentary P release are therefore reduced (Schiemer and Prosser, 1976) 

and a firm substrate is provided for plant germination (Lau and Lane, 2001). A 

healthy plant community also provides refuge and spawning grounds and encourages 

a community structure of invertebrates (Engel, 1988), macroinvertebrates such as 

dragonflies, stoneflies and mayflies (UK Biodiversity, 2001), zooplankton (Timms 

and Moss, 1994), fish (Lammens, 1989) and birds (Hargeby et al., 1994).
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It has been suggested that mesotrophic lakes represent the most stable of lake 

ecosystems due to their narrow range of nutrient loads (between 10 and 25 ug 1") and 

high diversity (UK Biodiversity, 2001). One of the most important features is that 

they support the highest macrophyte diversity of any lake type and are known to 

produce the highest proportion of nationally scarce and rare aquatic plants. 

Characteristic plants include White lotus (Nymphaea alba), Yellow water lily (Nuphar 

luted) and several species of pondweed; Potamogeton gramineus, P. filiformis, P. 

obtusifolius and P. perfoliatus (Fossitt, 2000). The enhanced water clarity of 

mesotrophic lakes encourages habitat availability in the pelagic, littoral and benthic 

zones, which ultimately gives rise to high diversity at all trophic levels.

Naturally mesotrophic lakes are now rare due to anthropogenic eutrophication, and 

many have high conservation status to protect them against further degradation. 

Lough Neagh in Northern Ireland (Foy et a/., 2003) underwent a marked increase in 

nutrient loads from 20 ug I" 1 in 1981 to 145 ug I" 1 in 1999, which corresponded with a 

combined increase in point (sewage) and diffuse (agricultural) inputs from the lake 

catchment. Poor water quality was indicated by the increase in nutrient status, and 

despite a nutrient reduction programme in four of Lough Neagh's river catchments, 

trophic status has remained high. Many similar examples can be found in the 

literature (e.g., the Bosherston Lakes, Wales, Rees et al., 1991; the Anglesey Lakes, 

Wales, Haworth et al., 1996; Lake Windermere, England, Picketing, 2001; Lough 

Melvin, Ireland, Girvan and Foy, 2006; lakes in the Somerset Levels, England, 

Carvalho and Moss, 2006).
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In these lakes the high diversity and strong connectivity between functional groups 

enabled them to deal with phases of impact and although nutrient enrichment has 

heavily affected ecosystem dynamics at these lakes, resilience mechanisms based on 

species richness may also help them to recover once the source of impact is removed. 

In contrast, the low productivity of oligotrophic lakes means that functional groups 

are reduced and there are fewer trophic interactions with weaker bonds, which can 

lead to destabilisation and collapse (McCann, 2000; Parker and Schindler, 2006; 

Rellstab et al, 2007).

1.9.2 Ecosystem Resilience and Thresholds of Response

Schindler (1990) and Smol (2002) propose that when a system is under stress from 

external or internal drivers, shifts in ecosystem health are reflected as behaviour 

outside of the natural range of variability. Although some systems may respond 

slowly to environmental change, in other cases the evidence suggests the existence of 

thresholds that mark the border between one set of feedback mechanisms and another 

which, if crossed, can cause dramatic changes in state that have catastrophic effects on 

the entire system (Carpenter et al, 1999; Scheffer et al, 2001; Folke et al, 2004). 

The paradox of enrichment proposed by Rosenzweig in 1971, for example, shows that 

when these thresholds are crossed normal patterns of behaviour become redundant. 

As enrichment at the algal level amplifies, population cycles also increase and 

although there is a strong relationship between high diversity and good ecosystem 

health, there is a point where populations are taken beyond the systems carrying 

capacity and community structure becomes unstable. The patterns that follow depend 

on the individual system but if enrichment persists the collapse of trophic interactions
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will gradually bring both predator and prey populations nearer to zero. A threshold 

may then be crossed to a regime state that can devastate ecosystem structure and 

functioning (Carpenter et al., 1985) and it is clear that there is an increased chance of 

this when human activities erode the system's ability to repair and nutrient loads 

increase beyond a manageable capacity. However, it is also possible that the multiple 

states model described by Dent et al. (2002) can maintain a system and enable it to 

return to a steady cyclic state following perturbation.

From studies based on experimental work and field observation designed to 

understand ecosystem stability in freshwater systems, an important concept has arisen 

that highlights thresholds of ecological response and the role of multiple states in 

preventing complete ecosystem collapse. The alternative stable states model involves 

a shift from macrophyte dominated, clear water to a turbid state with high 

phytoplankton concentrations (Timms and Moss, 1984; Blindow, et al, 1993, Moss et 

al., 1996; Karst and Smol, 2000). As turbidity increases, plant macrophyte abundance 

decreases and the zooplankton that are using plants for daytime refuge to escape fish 

predation become vulnerable (Phillips et al., 1996). The decrease in zooplankton 

grazing may then result in negative feedback allowing phytoplankton crops to expand 

and be dominated by the inedible taxa (e.g. Aulacoseira granulata, Aphanizomenori) 

normally characteristic of turbid conditions (Lau and Lane, 2001). The point where a 

system begins to destabilise is usually marked by an eventual reduction in edible prey 

at the algal level (Roy and Chattopadhyay, 2007).

Many studies describe shifts from plant to algal domination in response to 

anthropogenic stress, whilst some have even observed both states in the same lake
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(Sheffer et al., 1994; Telesh et al, 1999). In all cases the shift to algal domination is 

regarded as representative of poor water quality. However, algal domination can 

provide a protective mechanism against complete collapse during phases of 

eutrophication, by maintaining photosynthesis at the phytoplankton level and 

protecting the more vulnerable species (Moiling, 1973; Levin, 1992). Holling (1973) 

describes this as resilience theory and explains that ecological resilience is the amount 

of reorganisation it takes to transform a system from one stable state to another and to 

return to a steady or cyclic state following perturbation. As noted, a healthy aquatic 

plant community is essential for good ecosystem health and the ability to locate the 

boundary between these states may provide a key to maintaining good quality status 

(Scheffer, 1990; Scheffer et al., 1993; Janse, 1997; Coops, 2002; van Ness et al., 2002; 

Morris et al., 2003; Scheffer, 2004).

1.10 Rationale for the Research

Most inland European waters are subject to human-induced pollution impacts, of 

which eutrophication is the most serious. In order to address the problem, the dictates 

of the EUWFD have led to a major expansion of regional European water quality and 

biomonitoring programs over the last decade. For lakes, which preserve a proxy 

record of past change in the sediment record, regional monitoring is increasingly 

being supported by large-scale palaeolimnological programmes, to provide a temporal 

perspective, which is otherwise lacking.

The EUWFD research methodology focuses on producing regional data-sets for 

ecological impact assessment and for defining the reference state of water bodies as a
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target for restoration based on conditions of minimal impact. For lakes, modern lake 

type is classified by a suite of physico-chemical parameters (e.g. geology, alkalinity, 

water depth), to produce regional and local typology groups. Under the typology 

classification, 'pristine' sites have been selected for risk assessment with the intention 

of examining the degree of recent change in diatom assemblages and analogue 

matching the results with lakes from other typology groups to compare degrees of 

impact and prioritise restoration plans. Using rapid palaeolimnological techniques, a 

statistical measure of the compositional change between 'top' (present) and 'bottom' 

(ca. AD 1850) samples is estimated by detrended correspondence analysis (DCA) of 

proxy data-sets such as diatoms, whilst inferred ecological status in the bottom, ca. 

AD 1850 sample provides the reference state for restoration targets based on 

conditions of minimal impact.

Although DCA provides a simple and rapid estimate of recent (last 150 yrs.) 

compositional change in response to human impact, the application of the 'top- 

bottom' approach is based on a number of important assumptions. The first 

assumption is that the comparison of two single samples is a valid technique for 

summarising patterns of ecological change over the last ca. 150 years. However, this 

is least likely to be valid in the most complex ecosystems such as shallow, eutrophic 

lakes. In defining the reference state, assumption two is that the pre- industrial state 

represents a stable, equilibrium prior to significant human impact, even at lakes with a 

long-term history of human activity. In classifying lakes, a third assumption is that 

the 'pristine' state defined from a lake with a given set of physico-chemical 

characteristics may provide a useful tool for the restoration of other lakes with similar, 

non-biological characteristics.
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Longer-term palaeolimnological research has the potential to test these assumptions 

by increasing our understanding of long-term ecosystem dynamics at a range of lake 

types. Due to their complexity, meso to eutrophic lakes are an appropriate focus for 

this study. To date, most high-resolution palaeolimnological research has focused on 

relatively short-term environmental change (ca. 150 yrs. BP) (Anderson and Odgaard, 

1994; Bennion and Appleby, 1999; Bennion, 2001; Bennion et al, 2001). While these 

studies are valuable for testing the degree to which the 'top and bottom' approach is a 

reliable reflection of change over recent timescales (assumption 1), they do not 

address the issue of long-term ecosystem stability and human impact (assumption 2), 

and the validity of lake classification (assumption 3).

The top-bottom approach has focused on diatoms, which are well recognised as 

sensitive proxy indicators for key water chemistry parameters such as total 

phosphorus (TP), pH and salinity. In attempting to improve our understanding of the 

ecosystem as a whole, it is also well recognised that the multi-proxy approach, 

combining a range of palaeolimnological indicators, may strengthen interpretation of 

past environmental change.

An additional drawback of much palaeolimnological pollution-impact research on the 

recent timescale is that it does not take advantage of changes in catchment dynamics 

through analysis of proxies such as pollen and charcoal, which may be transported 

from the catchment to the lake sediment. Similarly, while many long-term pollen 

studies do focus on the effects of human impact within terrestrial environments (e.g. 

Gaillard et al, 1992; Walker, 1993; Dumayne and Barber, 1994; Harmata, 1995; 

Stevenson et al, 2001), there are still few studies that link these changes to
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corresponding impacts on the aquatic environment (Bradshaw, 2001; Fritz, 1989; 

Hakansson and Regnell, 1993). Long-term human activity within lake catchments and 

its direct effect on ecosystem health is therefore still poorly understood.

Although there is no doubt that 20th century human activities have led to accelerated 

eutrophication, permanent limnological change due to human processes may have first 

occurred many centuries ago. The long-term ecology of the natural baseline state 

needs to be explored in order to provide realistic ideas about sustainable restoration 

targets and the future ecology of surface waters. It is only by examining long-term 

ecosystem dynamics that the validity of the assumptions surrounding definition of the 

reference state may be tested. To date, relatively few studies have concentrated on the 

dynamics of long-term (Holocene) eutrophication. Those that have tend to focus on 

lakes which are currently hypereutrophic, and results have shown that permanent 

changes in ecosystem status have often taken place well before this date (Amsink et 

a/., 2003; Bradshaw and Rasmussen, 2004; Bennion et al, 2005).

In this project, a long-term multi-proxy palaeolimnological approach is adopted to 

reconstruct the dynamics of changing water quality and ecosystem status in two 

moderately shallow eutrophic lakes, and to examine the underlying patterns of 

ecosystem response to external impact. The concept of a stable baseline state is tested 

and rates of change during periods of natural and anthropogenic environmental 

change are assessed. To achieve this, qualitative and quantitative palaeolimnological, 

multi-proxy data are compared to Holocene proxy data for natural and anthropogenic 

impact over millennia rather than decades or centuries. More specifically, the concept 

of long-term equilibrium prior to major (post-AD 1850) human impact is tested (Smol,
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1992; Birks et a/., 2000). The study will thus produce data for determining whether 

the concept of the pre-1850 AD reference state is valid. By analysing impacts and 

response in two closely-adjacent sites of highly similar physico-chemical limnological 

characteristics, the validity of lake EUWFD classification systems may also be tested.

1.11 Aims

1 In two moderately nutrient-enriched sites which would be classified as highly 

similar in the context of WFD guidelines, the aim is to reconstruct mid- to long- 

term ecosystem dynamics over the long (102 to 103 years) timescale, since the 

early- to mid-Holocene,

2 To explore the degree to which observed limnological change has been driven by 

human activities rather than natural (ontogeny or climate-induced) change prior to 

the documented intensification of water pollution following the Industrial 

Revolution,

3 To test the validity of the single-sample pre-1850 AD definition of the reference 

state (assumption 1) and the concept of a stable equilibrium baseline prior to ca. 

AD 1850 (assumption 2),

4 To test the validity of site classification (assumption 3) by comparing and 

contrasting thresholds of ecosystem response, stress and resilience between the 

two sites during the process of eutrophication,
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5 To use the results to inform the definition of realistic sustainable plans for 

maintaining good ecological status, as outlined by the dictates of the EUWFD,

1.12 Objectives

1 To select two closely-adjacent study sites of similar catchment and limnological 

characteristics, with similar modern catchment land-use characteristics,

2 To obtain a long (>6m) sediment core from at least one of the chosen sites using 

an appropriate combination of coring techniques,

3 Within the confines of a PhD, to use an appropriate range of proxy indicators to 

reconstruct:

a. physical, chemical and biological change within the lake ecosystem,

b. different trophic levels in the past ecosystem, and

c. changes in human land-use activity in the catchment.

4 To collate extant local archaeological and documentary data on the chosen sites as 

an independent record of past human land-use within the catchment.

5 To carry out integrated data analysis in order to achieve Aims 1-5, above.
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CHAPTER 2 

THE PROXY INDICATORS

2.1 Introduction

A range of indicators have been chosen to achieve the aims and objectives outlined in 

Chapter 1. In combination, they have the potential to provide strong proxy data on 

changes in the lake catchment and associated changes in water quality and ecosystem 

status, at both the long and short time scales. Pollen and charcoal have been selected 

to identify impact within the lake catchment and to evaluate lake productivity status, 

whilst a range of biological indicators are chosen to represent the plant macrophyte, 

phytoplankton and zooplankton levels of the food chain and to define ecosystem 

complexity and the patterns of ecosystem dynamics related to the process of 

eutrophi cation.

2.2 Stratigraphic Description

The Munsell Soil Colour Chart (MDKI, 1994), first developed by the US Soil 

Conservation Service to classify soil types, provides a rapid and consistent means of 

describing changes in basic sediment colour and composition. The Troels-Smith 

(1955) classification scheme, designed for the rapid field analysis of peat, is used for 

detailed description of sediment structure. Results can be summarised using a system 

of standardised symbols representing physical features, such as colour and 

stratification, humicity and sediment structural composition, including the origins of
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organic components. However, the scheme can be complex and difficult to translate 

for non-users. Digital photography can also provide a permanent record of any 

stratigraphic changes throughout the core before sediments are sub-sampled for 

analysis.

2.3 Magnetic susceptibility

This non-invasive method is used to infer relative changes in ferruginous mineral 

concentrations in sediment sequences. Since the magnetic qualities of deposited 

minerals remain unaltered following deposition, their magnetic susceptibility can be 

quantified, providing an indication of relative changes in catchment erosion over time 

(Dearing, 1999). Results are presented as susceptibility, which is a measure of the 

magnetic receptivity of a sample (Nowaczyk, 2001). One of the first successful uses 

of this technique was at Lough Neagh in Northern Ireland (Thompson et al., 1975), 

where higher values correlated closely with evidence of land clearance and increased 

sediment accumulation rates. Although the integrity of these results means that the 

method has become widely used to identify changes in land-use and catchment 

inwash (Dearing and Flower, 1982; Anderson and Rippey, 1988; Snowball and 

Thompson, 1988; Dearing, 1991; Maher and Thompson, 1995), the method does have 

some limitations.

Blakemore (1975) discovered that fine-grained magnetite was internally metabolised 

by a certain type of soil bacteria, which used it for navigation. This process produced 

high magnetic susceptibility values in samples containing the bacteria, which has the 

potential for being interpreted as increased catchment erosion. Additionally, the post-
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depositional dissolution of magnetite can cause a reduction in magnetic susceptibility, 

thus producing an underestimation of the erosion signal (Hilton and Lishman, 1985). 

Nevertheless, magnetic susceptibility is a widely used, non-destructive, cost effective 

proxy and results can be produced relatively quickly.

2.4 Loss on Ignition

The organic content of sediment cores is composed of autochthonous material from 

aquatic plants and phytoplankton, and allochthonous material from the inwash of 

catchment vegetation (Meyers and Teranes, 2001). Combustion of sub-samples at 

550°C can provide an assessment of the total percentage content of organic carbon 

(Dean, 1974). Further combustion at 850°C provides a measure of inorganic 

carbonate (Dean, 1974) by molar conversion of CO2 loss. The residue then comprises 

non-carbonate clay minerals, feldspar minerals and quartz, etc. (Smol, 2002). In 

theory, a more robust interpretation of catchment erosion can be produced when the 

results are compared to the magnetic susceptibility profile. Both techniques provide a 

fast, inexpensive and relatively accurate means of quantifying sedimentary 

composition, which compares well with other, more complex approaches (Dean, 

1974).

The limitations of these methods are reviewed in Sutherland (1998), Heiri et al. 

(2001) and Boyle (2004), whilst Smol (2002) points out that because LOI 

measurements are expressed as a percentage, an increase in one component will 

always lead to a decrease in the other so that when lake productivity and catchment 

erosion are both high a true reflection of sediment composition is not given. Although
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many studies have shown that organic measurements are an important component of 

down core studies (Gaillard et al, 1991; Meyers and Ishiwatari, 1993; Anderson and 

Rippey, 1994; Dean, 1999), LOI does not identify the primary source of organic 

production. This means that the dominant depositional process is not identified and 

periods of high autochthonous productivity during periods of eutrophication cannot be 

separated from periods of high organic inwash from catchment activities such as 

deforestation.

2.5 Carbon/Nitrogen Ratio (C/N)

Changes in C/N can provide proxy data on the origin of sedimentary organic biomass 

and identify changes in the sources of sedimentary organic material (Hollander et al., 

1992; Hodell and Schelske, 1998; Meyers and Lallier-Verges, 1999; Sampei and 

Matsumoto, 2001; Fellerhoff et al., 2003). Aquatic and terrestrial plants have 

different ratios of carbon to nitrogen (algae contains a higher proportion of nitrogen 

than land plants), which is usually measured as a value representing the weight ratio 

between the two elements (Meyers and Teranes, 2001). Thus, C/N values falling 

between 4 and 10 typically represent algal production, whereas land plants tend to 

provide ratio values of over 18. Ratios that fall between 10 and 18 are more common 

in lake sediments, indicating a mixture of both allochthonous and autochthonous plant 

matter and provide a baseline from which to interpret shifts in either direction.

Sarazin et al. (1992) found that the C/N of algal biomass can increase as nitrogen-rich 

proteins become degraded, especially in highly productive lakes such as Aydat Lake, 

France, where C/N values increased as a result of down-core de-nitrification.
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Conversely, Meyers et al. (1995) found that the selective degradation of carbon-rich 

sugars and lipids in plant matter caused the C/N ratio of sedimentary wood to be 

lower than in fresh wood. However, any changes in the C/N due to post-depositional 

changes in the elemental composition of organic material are usually small compared 

to the stratigraphic shifts displayed by terrestrial inwash (Kaushal and Binford, 1999) 

and primary production (Brenner et al., 1999). Additionally, Boutton (1991) found 

that C/N analysis was inadequate for making specific inferences about shifts from a 

macrophyte to an algal dominated system as freshwater macrophytes display such a 

wide range of C/N values.

2.6 Carbon Isotope (513C) Ratio

Changes in the isotopic carbon ratio, generally written as 6 13C or 13C/12C, can provide 

a proxy for shifts in palaeo-productivity. As the sedimentation of C^ algal material 

removes 12C from dissolved organic carbon (DIG) in surface waters, the heavier 13C 

remains and deposited organic matter subsequently displays a lighter 13 C/ 12C ratio 

than the DIC source (Wolfe et. al., 2001). During periods of increased algal 

sedimentation the 5 13C value of the remaining inorganic carbon available for algal 

growth rises, producing higher 8 13 C values in newly produced material. Thus, 

increases or decreases in the 5 1 C of sedimentary organic matter are positively 

correlated with changes in algal productivity (Meyers and Teranes, 2001).

When studying eutrophication at subtropical lakes in Florida, USA, Brenner et al. 

(1999) found that changes in diatom assemblages associated with raised productivity 

and measurements of total phosphorus (TP) corresponded closely with increases in
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8 13C. Similarly, palaeolimnological reconstruction, also of lakes in Florida (Gu et al., 

1996), revealed a strong relationship between high planktonic 8 13C, raised nutrient 

levels and increased Chl a (chlorophyll a) in surface sediments during periods of 

increased productivity suggesting that 8 13C analysis may be a reliable proxy for 

phases of enrichment.

During the process of oxidation, however, the release of 12C from the decay of organic 

carbon can also produce high 8 13C values, whilst the anoxic conditions indicative of 

hypertrophic waters can produce relatively low values (Meyers and Teranes, 2001). 

Additionally, 13C/12C of DIG in lake-water is controlled by factors such as the 

exchange of atmospheric CC>2, rates of photosynthesis and respiration, carbonate 

weathering and the decomposition rate of different types of plant matter (Brenner et 

a/., 1999). As the sedimentation of  3 algal material removes I2C from DIG, changes 

in any of these parameters could potentially result in shifts in the 5 I3 C profile that may 

be interpreted as changes in rates of primary production.

Analysis of the 5 !3 C profiles for biota from four Canadian Shield lakes (France, 1995) 

shows that broad differences between the 8 13 C signatures of littoral and pelagic 

primary producers may also be misleading in terms of lake productivity. It is thought 

that the pelagic-littoral differentiation of carbon flow between the two groups is due to 

the relationship between the diffusion resistance of CCK in water and water 

turbulence, i.e. under conditions of high turbulence the diffusive boundary layer 

resistance of algae is lower (Osmond et al., 1981). Thus, in the benthic zone where 

water turbulence is generally low compared to the pelagic zone, primary producers 

will become enriched in 13C relative to 12C. Changes in the carbon isotope ratio may
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therefore reflect shifts in the availability of benthic/pelagic habitats rather than 

changes in nutrient enrichment.

Ultimately, care must be taken when interpreting the data and comparisons should be 

made between the C/N profile and multiproxy indicators in order to increase the 

confidence with which one may use these techniques to infer phases of eutrophication.

2.7 Diatoms (Bacillariophyceae)

Diatoms are unicellular algae, whose amorphous, hydrated, siliceous frustules often 

preserve well in lake sediments. These centric or pennate frustules are characterised 

by perforations and reticulations which, when observed in detail under a high- 

powered microscope, enable them to be identified, in most cases, to species level 

(Barber, 1981). The preference of each species for specific environmental variables 

(e.g., water chemistry and light availability) and habitat availability (e.g., benthic, 

pelagic or littoral) make them powerful environmental indicators.

Past limnological conditions can be reconstructed quantitatively by using transfer 

functions. This approach has been used to great effect to investigate a wide range of 

research questions including lake acidification (Battarbee, 1984; Charles et al, 1987), 

changes in sea level (Palmer and Abbot, 1986; Zong and Tooley, 1996) and shifts in 

salinity as a reflection of climate change (Reed et al., 2001). Phosphorus (P) is the 

most important limiting nutrient to algal growth in many lakes and has major 

significance in the eutrophication process. Past epilimnetic P-concentrations can be 

reconstructed using a diatom-inferred total-phosphorus (DI-TP) transfer function and
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changes in reconstructed DI-TP may then be used to infer changes in P loads. With 

strong chronological control, this information can be compared with catchment 

history to trace the possible causes of change in the nutrient budget.

Modern datasets of lake chemistry and diatom assemblages have been combined and 

harmonised in the Environmental Diatom Database Initiative (EDDI) (Battarbee et al., 

2000). Transfer functions derived from individual training sets have been validated 

for a number of lakes. Anderson (1997), for example, used the Northern Irish transfer 

function to reconstruct DI-TP in six rural lakes in Northern Ireland, whilst Bennion 

(1995) reconstructed the nutrient histories of three hypereutrophic lakes in Anglesey 

using the Welsh transfer function. Likewise, Marchetto and Bettinetti (1995) 

successfully utilised the combined European transfer function to reconstruct the 

phosphorus histories of two deep sub-alpine lakes in Italy. Although not infallible, 

Hall et al. (1997) have shown that reconstructed environmental parameters can 

compare well with modern water chemistry records.

Whilst DI-TP models have made considerable progress in recent years, they are 

constantly re-evaluated and refined in order to improve their performance. Birks 

(1998), for example, reviews the need for robust statistical methods to construct the 

non-linear unimodal relationship between species and their environment with reliable 

estimations of the standard errors of prediction, whilst Rippey et al. (1997) discuss the 

need for further validation of transfer functions, and suggest that increasing the 

number of lakes within modern calibration datasets would improve species 

representation and lengthen the variable gradients. Fritz et al. (1993) suggest that care 

should be taken when studying long time periods where minor, yet important,
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fluctuations in phosphorus concentrations can be lost. From a taphonomic point of 

view, poor preservation of diatom frustules can destroy the record and bias the 

reconstruction. Dissolution may occur under highly alkaline conditions, in which case 

the fossil assemblage may favour the stronger, heavily silicified species (Round, 

1964; Flower, 1993). Problems may also occur with the identification of individual 

species that are visually very similar in structure, yet have different water chemistry 

preferences.

2.8 Pediastrum

The genus, Pediastrum, is a non-motile, radially symmetrical, coccal green algae, the 

flattened cells of which form star-like colonies in numbers genetically determined for 

each species. Cell wall structures and morphological modifications are specific to 

each species enabling taxonomic identification to species level (Komarek and 

Jankovska, 2001). The exine of Pediastrum is composed of resistant sporopollenin, 

which protects colonies against desiccation and microbial attack, enabling their long- 

term preservation in lake sediments and allowing them to survive harsh pollen 

preparation techniques (Lowe and Walker, 1999). The remains of Pediastrum 

colonies can be abundant in limnic sediments, often surpassing the concentration of 

pollen grains (Jankovska and Komarek, 2000), and providing an additional indicator 

of phytoplankton composition.

In recent years palynologists have begun to recognise the potential of Pediastrum for 

palaeoecological reconstruction (van Geel, 1986). Although few studies have used 

Pediastrum as an indicator for eutrophication both Huber (1996) and Eilers et al.
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(2004) suggest that their presence in exceptionally large numbers could be an 

indication of changes in productivity. However, Pediastrum analysis is still in its 

infancy and there are only two algological identification keys available to separate 

Pediastrum into its different species and provide descriptions of the habitat niches and 

indicative environmental tolerances (Jankovska and Komarek, 2000; Komarek and 

Jankovska, 2001).

2.9 Cladocera Ephippia

The presence and/or absence of Cladoceran ephippia (egg sacs), which preserve well 

in lake sediments due to their protective, chitinous carapace, can be used as a 

qualitative proxy of stress within in the zooplanktonic component of the food chain. 

Under normal conditions Cladocera reproduce by parthenogenesis and eggs are kept 

in the brood chamber of the parent individual where they grow and eventually hatch 

(Langdon Brooks, 1959). During times of stress (such as food shortage, lake-level 

change, climate change and possibly eutrophication) ephippia are produced by 

gamogenesis (Frey, 1982; Fryer, 1972). The eggs are produced and fertilised sexually 

in the brood chamber then become surrounded by a hardy protective carapace, the 

ephippia, which separates from the female during seasonal moulting. These resting 

eggs become part of the sedimentary sequence, where they are capable of dormancy 

over long time periods until circumstances are more suitable for their continued 

development (Pennack, 1989).

It is common to find a small number of ephippia in most temperate lake sediments as 

seasonal temperature changes cause ecosystem stress. However, the increases in
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abundance during phases of stress caused by human impact or long-term climate 

change are usually far greater. In sedimentary records from lakes Kaksoislammi and 

Rutikka in southern Finland (Sarmaja-Korjonen, 2004) and B011ing S0 in Denmark 

(Bennike et al., 2004), increases in the abundance of ephippia correlated well with 

known phases of extreme cold, whereas, during the rapid warming of the early 

Holocene ephippia were absent. At lakes Kaksoislammi and Rutikka, however, 

additional sporadic increases in ephippia, indicative of significant changes in 

predator-prey relationships, were most likely to be explained by anthropogenic 

eutrophi cation.

This method therefore has potential for identifying periods of ecosystem stress 

associated with human impact, although observed changes in ephippia abundance 

during eutrophication reflect changes in predator-prey relationships resulting from 

shifts in trophic status rather than being a direct response to trophic change 

(Slusarczyk, 2001). Although this method is not as useful as the taxonomic analysis of 

Cladoceran body parts, which can indicate changes in habitat availability as a result of 

changes in water chemistry status, it does provide rapid evidence of biological 

response at the zooplankton level of the food web. However, little research has been 

done to compare modern analogues with the presence and abundance of fossilised 

ephippia, so their application as a proxy indicator of environmental change in 

palaeolimnology is currently in its early stages.
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2.10 Pollen

Pollen analysis (palynology) is a well-established technique for reconstructing 

environmental change within lake catchments, and can be a strong proxy for human 

occupation and changes in land-use. In addition, regionally synchronous events such 

as the Ulmus decline (Davis, 1981) can be used as biostratigraphic markers for 

indirect dating. The outer exine of each pollen grain consists of tough, waxy 

sporopollenin (Lowe and Walker, 1999), which allows unfertilised grains to preserve 

in sediment layers. Each taxon has unique morphological and structural features such 

as germinal apertures and bladder sacs (Moore et. al, 1991), which enable 

identification by comparison with pollen keys, photographs and reference slides.

Based on uniformitarian principles, fossil pollen assemblages can be interpreted in 

terms of climate change (Faegri and Iversen, 1989), deforestation (Walker, 1993) and 

agricultural practices (Behre, 1986). Additionally, patterns of aquatic macrophyte 

growth, which can change in abundance and composition with eutrophication, can be 

examined and assessed in terms of ecosystem health (Boutton, 1991).

Apart from the differential preservation of pollen grains, the most prominent 

limitation to the interpretation of pollen diagrams is that of differential pollen 

production between different taxa. Self-pollinating (autogamous) plants with 

cleistogamous flowers, which rarely or never open, release very little pollen and are 

therefore under-represented in pollen diagrams (Lowe and Walker, 1999). 

Conversely, some wind-pollinated species can be over-represented resulting in 

interpretations that suggest a higher number of trees than reality (Andersen, 1973).
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However, correction factors have been developed to overcome the marked differences 

in the amount of pollen produced by different plants (e.g. Andersen, 1973; Sugita et 

al., 1999: Brostrom et al., 2005)

2.11 Charcoal

Charcoal analysis can provide a valuable complement to palynological inferences of 

human activity. Analysis assumes that charcoal particles are carried into the air by 

radiated heat as carbonaceous material is burnt. Particles of varying size become 

dispersed and can be carried to a lake basin by water or wind, depending on distance 

of the fire from the lake and meteorological conditions (Tolonen, 1986). Charcoal 

particle abundance can thus be used as a proxy indicator for the presence of fire, 

which is often a secondary indicator of local habitation (Burden et al., 1986).

Although particles can sometimes become crushed during the sieving process 

(Bennett et al, 1990) charcoal generally survives the pollen preparation techniques. 

When particles are counted and the results are compared to the pollen data, peaks in 

charcoal abundance and corresponding reductions in arboreal pollen can represent 

human induced forest burning (Davies et al, 1971; Tolonen, 1978). Smoother curves 

in the charcoal record can indicate small-scale burning (Burden et al, 1986), human 

habitation (Tsukada et al, 1986), the accumulation of airborne charcoal from the 

larger regional catchment, or the burning of small lakeside fires (Griffin and 

Goldberg, 1979). More recently the presence of carbonaceous particles in lake 

sediment cores has been explored as a method for examining the onset and effects of
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industrial activity and the combustion of fossil fuels, though the methods for 

preparation and analysis are different from charcoal (Wik et al, 1986).

The use of charcoal as an indicator of fire was first carried out at Ordrup Mose in 

Denmark (Iversen, 1941). Charcoal analysis was widely used by the 1960's 

(Hutchinson and Goulden, 1966; Tsukada and Deevey, 1967; Davies, 1967); by the 

1970's, Waddington's (1969) work at Minnesota encouraged the development of 

more quantitative approaches (Hope and Peterson, 1976; Byrne et. al., 1977; Tolonen, 

1978; Clark, 1982). Clark's (1982) point count estimation is the most accurate, 

simple and rapid method, although the main limitation is that the area scanned on the 

slide is relatively small compared to the sample volume, and results are extrapolated 

to the whole sample. Additionally, micro-charcoal data can include particles from a 

wide source area (Clark, 1990).

2.12 Sediment Accumulation Rates

The sediment accumulation rate (SAR) is the degree at which allochthonous and 

autochthonous sediments from numerous sources accumulate at the lakebed within a 

given time (e.g. cm2 yr" 1 ). Changes in the SAR can be observed in relation to 

increases in catchment erosion during climate change (Molnar, 2004) and human 

activity (Colman et al., 2000), and increases in the deposition of material from within- 

lake productivity during phases of eutrophication (Sapota et al., 2006). Fluctuations 

in accumulation rates can be compared to other multiproxy data to infer the 

components responsible for observed changes. Values are usually derived from the 

age-depth curve, although this assumes constant rates of accumulation between dates
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and when only a few dates are available the estimation of changes in S AR may not be 

reliable.

2.13 Radiocarbon Dating

Radiocarbon dating provides a temporal framework to enable the comparison of shifts 

in nutrient status and rates of limnological change with known phases of climate 

change and human occupation, in relation to the pollen record and documented 

archaeological and historical events. Two radiocarbon dating methods are available:

a) The decay counting of 14C in bulk samples, using gas proportional or liquid 

scintillation counting methods, which measures the departure of C/1 C from an 

equilibrium value (Smol, 2002). This method requires 5-10g dry sediment, which 

due to its size typically contains organic matter from a number of sources.

b) Accelerator Mass Spectrometry (AMS), based on counting to estimate the 12C: 14C 

ratio, can produce age estimates from samples as small as a few milligrams, 

reducing analytical time to only a few hours compared to weeks. This has 

increased the range of dateable materials to include items such as conifer needles 

(Zbinden, et. al., 1989), insect assemblages (Hedges et. al, 1989; Elias and 

Toolin, 1990) and pollen grains (Brown et al., 1989; Regnell, 1992), although the 

technique is expensive.

There are several problems associated with the radiocarbon dating of lake sediments. 

The in-wash of terrestrial material, which often contains a mixture of old and young
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organic matter or humic acids, can produce ages older or younger than expected 

(Olsson, 1968; O'Sulivan et. al, 1973; Bjorck and Hakansson, 1982; Hedenstrom and 

Risberg, 1999). Bioturbation can pull younger sediment down into the lower layers, 

disturbing the sequence (Bjorck and Wohlfarth, 2001), whilst root penetration can 

also affect the overall age of bulk samples (Kaland et al., 1984). A lake reservoir 

effect may occur if the 14C/12C in aquatic plant tissues is lower than the 14C/12C of 

atmospheric COa, or where carbon dissolved from carbonate rich bedrock becomes 

incorporated into the lake water and thus into submerged aquatic plants during 

photosynthesis (Peglar et al., 1989).

To produce an age-depth model a few dates are usually obtained for each core and 

supplemented by indirect dating via. the pollen record, or biostratigraphical 

correlation with cores either from the same lake or from lakes in the same region 

(Telford et al, 2004). Age estimates for depths where dates are not available are 

usually estimated by linear interpolation. However, this method assumes a constant 

sediment accumulation rate between points, which may not be the case (Bennert, 

1994a). In cases where few dates are available the use of stratigraphic markers such 

as the Elm decline (Huntley and Birks, 1983) can strengthen the chronology.
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CHAPTERS

THE STUDY REGION AND DESCRIPTION OF THE STUDY SITES 

3.1 Introduction

Selection of the study area was based primarily on the availability of the Upper Talley 

core from Aberystwyth (University of Wales), which potentially provided a full Post­ 

glacial and Holocene sequence for the Carmarthenshire region of Wales. The lack of 

recent palaeolimnological research in South Wales when compared to the north was 

also noted. The second study site, Llyn Pencarreg, was chosen due to its proximity to 

Upper Talley (10k north), which provided the opportunity to standardise 

environmental variables between the two sites. There was also a distinct lack of 

previous palaeoecological and palaeolimnological research at Llyn Pencarreg. Upper 

Talley and Llyn Pencarreg therefore provided the ideal opportunity for the 

environmental reconstruction and ecological comparison of two sites with apparently 

similar environmental characteristics, and also to expand palaeolimnological research 

for this part of Wales.

This chapter first describes geology and glacial landforms for Wales, and present an 

overview of changes in Holocene climate, landscape and human occupation for the 

British Isles with particular reference to studies from Wales. This is followed by 

individual descriptions of the selected study sites with an overview of their catchment 

character, lake size, and the archaeological evidence for human-landscape interactions 

in the catchment. The archaeological record is considered at the catchment level in
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Chapters 6 and 7 in relation to direct human impact and potential causes of 

limnological change at the study sites.

3.2 Geology

Differences in the bedrock geology of the UK have produced a range of lake types 

that respond differently to changes in environmental conditions depending on their 

specific characteristics. As water runs over the Earth's surface, ionic crystals pass 

into solution by binding with the ions in water (Summerfield, 1999), which are then 

carried to surface water bodies. In this respect bedrock type can influence the nature 

of lake water and define its physical character. In England, for example, lakes in 

limestone catchments (e.g. parts of the Lake District, Cumbria) are more prone to 

enrichment than lakes in granitic catchments, due to the increased levels of carbon 

dioxide, produced by the dissolution of CaCC>3 from bedrock (Moss, 1988). These 

lakes often become hypereutrophic due to heavy catchment activity and constant long- 

term use (Moss et al, 1997). Scotland on the other hand is dominated by hard rock, 

granitic geology (e.g. the uplands of Galloway) and here lake waters are naturally 

prone to acidification, which has been exacerbated by acid precipitation (Battarbee et 

al, 1990).

Wales has a complicated geology composed of both hard and soft bedrock that 

represent several successive geological stages (Figure 3.1). South Wales is mainly 

composed of calc-alkaline type, Pre-Cambrian, volcanic and plutonic rock that 

correspond with the Uriconian Volcanic Series. These extend as far east as Norfolk, 

suggesting an extensive arc of volcanic activity across the south of Wales and Central
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England ca. 6 - 7 million years ago (Piasecki et al., 1980). The overlying Cambrian 

sequence, which contains the earliest records of marine life in Wales, was formed ca. 

5mya when the sea extended its boundaries across parts of western Wales. This 

material now appears as rock outcrops through the more recent Ordovician and 

Silurian muds and silts. Above this, Devonian Old Red Sandstone features such as 

the Gower Peninsula and the Brecon Beacons are followed by the Millstone Grits and 

Coal Measures of the Lower Carboniferous (Pringle and George, 1948).

Repeated regional oscillations and compressions have greatly modified the original 

patterns of geological deposition throughout the whole of South Wales and as a 

consequence the rock has produced stratigraphic sequences that are individual to each 

area. These regional differences have given rise to a wide range of lake types 

including oligo-mesotrophic lakes. The latter lake type can be naturally eutrophic but 

are often situated in rural catchments with relatively low population densities. As a 

consequence they provide sites ideal for the investigation of ecosystem stability at 

locations where human impact is not particularly extreme and possibly temporary in 

nature.

3.3 Glacial Landforms

According to ice margin maps, during the height of the Devensian glaciation (ca. 20 k 

cal. yrs. BP) south Wales was at the southernmost limit of the ice sheet (Bowen, 

1978). Radiocarbon dated glacial deposits and oxygen isotope evidence from 

continental margins and marine cores show that during the Late Devensian (between 

ca. 20 and 12 k cal. yrs. BP) the British-Irish ice sheet and Welsh Ice Cap, which
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covered most of Wales, fluctuated several times due to minor climatic oscillations 

(Bowen et al., 2002). These oscillations appear to correspond with a series of 

Heinrich events (i.e. periods of climatic warming when large icebergs broke off from 

glaciers and traversed the North Atlantic; Alley and MacAyeal, 1994), followed by 

the re-advancement of ice during the Younger Dryas (ca. 12.8 to 11.5 k cal. yrs. BP) 

and subsequent retreat as temperatures finally increased during the climatic 

amelioration of the Late-Glacial.

These climatic oscillations caused a high degree of glacial and periglacial activity in 

southern Wales, resulting in the development of a number of glacial landforms. The 

prominent south Wales end-moraine, which extends across the south coast 

(Charlesworth, 1929), for example, marks the southern limit of the Welsh Ice Sheet. 

Lateral melt-water channels and terminal and recessional moraines reflect several ice 

margin retreats (Ellis-Gruffydd, 1977; Lewis and Thomas, 2005) that correspond with 

the glacial fluctuations suggested by Bowen et al. (2002). In addition, major troughs 

caused by at least four ice streams mark the retreat of the Welsh Ice Cap from this 

area (Jansson and Glasser, 2005). On the south west coast sediment sequences from a 

number of proglacial lakes indicate their development in dammed river valleys as the 

Irish Ice Sheet re-advanced into Wales during the Younger Dryas (e.g Llyn Teifi; 

Etienne et al, 2006). The formation of glacial kettle lakes further inland (the focus of 

this study), are the result of large areas of dead ice breaking away from the edge of the 

Welsh Ice Cap during its final retreat (Eyles and McCabe, 1989).
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3.4 Post-glacial/Holocene Climate Change

The Blytt-Sernander classification scheme divides Holocene climate change in north­ 

western Europe into four distinct units; Boreal (10.0 k - 7.5 k cal. yrs. BP), Atlantic 

(7.5 - 5.0 k cal. yrs. BP), Sub-Boreal (5.0 - 2.5 k cal. yrs. BP) and Sub-Atlantic (2.5 k 

cal. yrs. BP - present). Based on observed changes in the colour and texture of 

sediment layers in Danish peat bogs, Blytt (1876) proposed that the dark layers 

containing macrofossils were produced during dry, continental periods, whilst the 

lighter layers with low organic content were produced during wet oceanic periods. 

With the addition of a firm chronology and comparison with detailed paleoclimatic 

records (e.g. mire stratigraphies and lake level studies; Sernander, 1908) and ice 

margin reconstructions from varved clays in Scandanavia (De Geer, 1912) the system 

is recognised as the standard Post-glacial sequence for climate change in north-west 

Europe (Table 3.1). The additional biostratigraphic pollen divisions constructed for 

Sweden (von Post, 1916) and Denmark (Iverson, 1954), identify the major vegetation 

type for each unit according to the prevailing climatic conditions.

Holocene palaeoclimate studies focusing on the British Isles tend to support these 

general, pre-determined divisions; despite regional differences in vegetation type that 

compare with present-day differences, the reconstruction of post-glacial forest 

succession for the British Isles (e.g. Hibbert and Switsur, 1976; Godwin, 1940) 

display broad synchroneity with the Scandanavian model. In Wales pollen profiles 

from Snowdonia, (Ince, 1983), Llanilid, Glamorgan (Walker and Harkness, 1990), the 

Elan Valley, Cardiganshire (Moore, 1970) and Gors Geuallt, Caernarvonshire 

(Crabtree, 1972), for example, all indicate that at the end of the Younger Dryas
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Blytt-Sernander
Climatic Period

SUB-ATLANTIC
( ca.2500 cal. yrs.
BP)

SUB-BOREAL
(ca. 5000 - 2500 cal.
yrs. BP)

ATLANTIC
(ca. 7500 - 5000 cal.
yrs. BP)

BOREAL
(ca. 10000 -750 cal.
yrs. BP)

YOUNGER
DRYAS
(ca. 11000 - 10000
cal. yrs. BP)

Climatic
Description

Cool and humid

Warm temperatures and moist
conditions due to changes in
atmospheric circulation.

Summer temperatures increased
to the maximum of the entire
Holocene (Climatic Optimum).
Mild winter temperatures with 
high rainfall.

Rapid climatic amelioration and
increased atmospheric moisture
content.

Cold and dry

Dominant
Vegetation

Spread of grasses
and Fagus

Decrease in Ulmus at
5k cal. yrs. BP and
increase in Quercus,
Tilia and Alnus.

Quercus, Tilia and
Alnus. Initial
formation of raised
bogs.

Corylus and Pinus

Juniperus scrub and
Betula.

Table 3.1 Table showing the Blytt-Sernander climate model for North-Western 

Europe from ca. 11000 cal. yrs. BP to present including the corresponding pollen 

zones (adapted from Caseldine, 1990; Lowe and Walker, 2000)

pioneering grassland communities typical of open habitats (e.g. Common Sorrel; 

Rumex acetosa, Nettle; Urtica, Meadowsweet; Filipendula, Crowbwrry; Empetrum) 

dominated the landscape. Juniper (Juniperus} and Birch (Betula) were generally 

established by ca. 10.0 k cal. yrs. BP followed by Hazel (Corylus) and Pine (Pinus), 

which spread in response to the rising Boreal temperatures. The wet Atlantic period 

was marked by the arrival of Alder (Alnus) and Willow (Salix) and the spread of Oak 

(Quercus) and Lime (Tilia), whilst the onset of the Sub-Boreal was characterised by 

peat formation and a decline in Elm (Ulmus). The latter decline corresponds at sites
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across Wales at ca. 5.0 k cal. yrs. BP (Hibbert and Switsur, 1976) and has been 

controversially linked to climate change, the Dutch Elm pathogen (Ophiostoma ulmi), 

ecological competition and human impact (Peglar and Birks, 1993). The links 

between climate, vegetation and human impact suggest that the cause is probably a 

combination of all these factors. Finally, the cooler climate of the Sub-Atlantic has 

encouraged the establishment of Beech (Fagus) and the return of grassland 

communities to the Welsh landscape.

Corresponding wet and dry palaeoclimatic phases have also been observed in the 

development of raised bogs at sites in England (e.g.; Hughes et al, 2000; Barber et 

a/., 2000; 2003; Hughes and Barber, 2003; Dark, 2006) and north Wales (e.g. 

Chambers, 1983a; Ellis and Tallis, 2001) from ca. 7.0 k cal. yrs. BP and again at ca 

5.0 cal. yrs. BP in response to the moist Sub-Boreal climate. These findings are 

strengthened by the observed relationship between past phases of river flooding 

(reflected as abrupt changes in sedimentation rates and gravel deposition on river 

floodplains) and climatic deterioration marked by periods of increased rainfall 

(Coulthard and Macklin, 2001; Macklin and Lewin, 2003).

Faunal studies from sites in England and Wales also provide corresponding evidence 

for Holocene climate change. Molluscan and ostracod analysis on lake marl sediments 

from Llangorse Lake, south Wales (Walker et al., 1993) reflect shallow water 

conditions and highlight the relatively dry climate of the Late Younger Dryas/Early 

Boreal. Evidence from stenotypic sub-fossil Coleoptera (beetles) from the Glanllynau 

kettlehole in north Wales (Coope and Brophy, 1972) and Goldcliff in the Severn 

Estury (Smith et al, 2000), support the suggestion of rising temperatures throughout
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the Boreal period; changes in the relative abundance of thermophilous taxa (e.g. Lixus 

elongates, Sibinia variata, Cyphocleonus trisulcatus) from ca. 9.5 k cal. yrs. BP 

indicate that the increase in Holocene temperature and rainfall was rapid, whilst 

taxonomic shifts between 7.0 and 5.0 k cal. yrs. BP support Lamb's (1985) hypothesis 

of a postglacial 'climatic optimum' during the Medieval period .

During the Sub-Boreal there appears to be a gap in the available faunal data to explain 

climate change in Britain. However, changes in atmospheric moisture during this 

period were recognised in the analysis of sub-fossil chironomids and their habitat 

preferences at rivers in northern France (Gandouin, 2005; 2006). Rather than the 

stable moist conditions postulated by Blytt (1876) however, the results of these 

studies indicate that this was a period of shifting weather patterns. These shifts 

caused changes in the flow rates of watercourses, which was reflected in shifts in the 

relative abundance of lentic and lotic species (e.g. Microtendipes spp. and 

Rheocrictopus spp. respectively). Finally, the cool conditions of the sub-Atlantic 

period are validated for Britain by high resolution, multiproxy reconstructions of 

climate change using diatoms, chironomids and pollen at Lochnagar, north-east 

Scotland (Dalton et al., 2005), where thermophilous taxa decreased in response to 

climatic cooling. This was particularly marked during the 'Little Ice Age' (between 

ca. 1450 and 1890 AD) when temperatures were ca. 1.5°C lower than today (Jacoby 

andD'Arrigo, 1989).

Although regional studies indicate differences in climate change at the local scale, 

controlled by factors such as changes in oceanic and atmospheric circulation 

(Hoerling et al., 2001), coastal proximity (Burn, 1997) and micro-topography (Guisan

60



and Theurillat, 2000), the above discussion indicates that the traditional Blytt- 

Sernander model for north-western Europe can be applied, with caution, to the British 

Isles in order to produce a broad overview of climate change throughout the Holocene 

period. The present study will therefore adopt the system to compare and evaluate the 

influence of climate change on the core data.

3.5 Human Impact and Changes to the Holocene Landscape

Evidence for human impact during the Holocene can be found in pollen records, 

which reflect deforestation, changes in agriculture, and soil erosion due to the 

introduction of new technology and subsequent increases in land-use. This 

information can be compared to archaeological evidence for human settlements and 

burial sites to highlight direct catchment occupation and potential impact. Many 

studies show that settlement sites are particularly common in lowland lake catchments 

where sheltered positions and good quality soils encouraged human occupation (e.g. 

Fritz, 1989; David et al., 1998; Bradshaw, 2002). In fact, the following section 

indicates that significant changes in climate can also have a great deal of influence 

over patterns of human migration. Welsh palaeoecological research has had a strong 

focus on palynological studies aimed at reconstructing past anthropogenic activity 

(Caseldine, 1990) and although there are regional differences in the degree of impact, 

when pollen data is compared to the local archaeology, a picture of landscape change 

due to human occupation can be developed. The following section addresses 

Holocene human occupation of the British Isles (with particular reference to Wales) 

and explores the potential of each archeological period to function as a major cause of 

environmental change.
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3.5.1 Late Upper Palaeolithic (ca. 11 to 10.0 k cal. yrs. BP; Barton, 1999)

The return to glacial conditions in the high latitudes of the northern hemisphere during 

the Younger Dryas (ca. 11.0 k cal. yrs. BP) meant that Britain was still largely 

unpopulated (Jacobi, 1979). By ca 10.0 k cal. yrs. BP, however, climatic 

improvement, coupled with low sea levels encouraged Palaeolithic groups to return 

from the continent to continue a hunter-gatherer lifestyle and reoccupy many of the 

caves inhabited during the Upper Palaeolithic (ca. 40.0 k cal. yrs. BP) (Wymer, 1981; 

Wymer, 1999; Barton, 1999). Although archaeological evidence for human 

occupation has been found at several coastal sites around the River Severn (e.g. 

Tidenham near to Gloucester, Caldicot in Gwent, and Roath and Lavemock in South 

Glamorgan; Wymer, 1999), the south coast (e.g. Priory Farm Cave, Eel Point, Bacon 

Hole, Bosco's Den, Cathole Cave, Paviland Cave; Jacobi, 1979) and Carmarthen Bay 

(Coygan Cave; Clegg, 1970 and Little Hoyle Cave; McBumey, 1959) and in the north 

at Pontnewydd and Tremeirchion (Green, 1986), human impact on the landscape 

appears to have been minimal and difficult to separate from natural changes in the 

pollen record. By constrast, there is a significant paucity of environmental evidence 

for occupation further inland during this period (e.g. Traeth Mawr and Bwlch Owen, 

Carmarthenshire; Caseldine, 1990), possibly resulting from the extensive glaciation of 

inland and upland Wales. This may have restricted human habitation to the coastal 

areas where temperatures were warmer and flora and fauna more abundant.
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3.5.2 Mesolithic Period (ca. 10.0 to 6.0 k cal. yrs. BP; Mithen, 1999)

According to Jacobi (1976) and Mithen (1999) climatic improvement during the 

Boreal period (from ca. 10.0 k cal. yrs. BP) and the development of mixed deciduous 

woodland encouraged humans to spread further inland in pursuit of migratory animals 

(e.g. roe deer, red deer, elk, brown bear, Arctic hare). In addition, charcoal records 

from the north Yorkshire Moors, England, show evidence of forest burning during the 

late-Mesolithic (ca. 6.0 - 5.0 k cal. yrs. BP) (Simmons and Innes 1996), suggesting 

movement to the north and human interaction with the immediate environment. 

However, it should be noted that during the earlier Mesolithic, human groups 

followed a food extraction strategy comprising hunting, fishing and gathering, and as 

a consequence anthropogenic impacts on the Welsh landscape during the Early 

Mesolithic were minimal.

In Wales charcoal evidence at upland sites in locations such as Moel y Gerddi 

(Chambers and Price, 1985), The Preseli Mountains (Seymour, 1985), Coed Taf 

(Chambers, 1983b) and The Black Mountains (Cloutman, 1983; Smith and Cloutman, 

1988), also suggest deliberate intervention (and potentially incipient management of 

resources) by ca. 6.0 k cal. yrs BP. The discovery of lowland flint knapping sites at 

Craig-Y-Llyn (Savory, 1961) and Waun-Fignen-Fellen (Berridge, 1980) also suggest 

a pattern of logistical movement from the lowlands during the winter to the highlands 

in the summer in order to exploit local resources and take advantage of seasonal 

changes in the local flora and fauna.
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Whilst hunting and the exploitation of plant resources were still important in the later 

Mesolithic, coastal sites such as Prestatyn (Clark, 1938), the Gower Peninsula 

(Lacaille and Grimes, 1955) and Goldcliff East (Ingrem, 2000) have all produced 

evidence for both shallow and deep sea fishing. Further inland, the archaeological 

evidence suggests that lowland, wetland areas were also accessed for hunting and 

fishing and in some areas environmental conditions encouraged a certain degree of 

settlement (e.g. Freshwater West; Lambert, 1963). The lack of pollen evidence for 

deforestation in these areas, however, may indicate that activities were centered on the 

use of natural clearings (Brown, 2002) or that subtle forest clearance is missed by low 

resolution studies (e.g. Star Carr; Day, 1993).

3.5.3 Neolithic Period (ca, 6.0 to 4.5 k cal. yrs. BP; Whittle, 1999)

Although the archaeological record for the Neolithic period in England suggests that 

Neolithic communities had interacted with Europe for some time, the abrupt spread of 

settlements, pottery, monumental funerary structures and polished tools dates the 

Mesolithic/Neolithic transition to ca. 6.0 k cal. yrs. BP (Whittle, 1999). The 

discovery of flint axeheads and wooden handles from this period may relate to 

woodland clearance, which links to the provision of open land for grazing 

domesticated animals and growing edible plants (Edmonds, 1995). Although changes 

to the landscape were generally still minor and localized, pollen studies from sites in 

the north of Wales (e.g. Llyn Mire; Moore, 1978, Trum Felen; Bostock, 1980 and 

Nant Helen; Chambers and Price, 1988) and in the south (e.g. the Brecon Beacons; 

Chambers, 1982, Llangorse; Jones et al, 1978 and the Black Mountains; Price, 1981) 

show that decreases in arboreal pollen were increasingly accompanied by the
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appearance of ruderal (e.g. Plantago lanceolata) and cereal pollen (e.g. Hordeum and 

Triticum dicoccum), demonstrating the development of a mixed farming economy. It 

has been suggested that the diversity in farming practices during the Neolithic was 

promoted by the high rainfall and temperatures of the late Atlantic and early Sub- 

Boreal periods (Bonsall et al, 2002), which encouraged a more sedentary lifestyle 

marked by cultivation and animal husbandry.

The construction of communal tombs also grew in importance throughout the 

Neolithic (Whittle, 1999). Although styles varied from region to region, in Wales 

small chambered monuments were usually constructed from stone slabs enclosed 

within a cairn, that were used to mark land boundaries and provide a final resting 

place for ancestors and a focus for ritual (e.g. Pant y Saer on Anglesey in the north 

and Carreg Coetan in the south; Williams, 2003). Throughout Britain there is also 

evidence for an increase in ditched and causewayed enclosures (e.g. Windmill Hill, 

Haddenham, Edmonds, 1993) and cursus monuments (e.g. Cleaven Dyke Perthshire, 

Barclay, 1997) indicating the expansion of both domestic and ritual landscapes. In 

Wales, for example, evidence of an Early Neolithic settlement has been excavated at 

Llandygai, 2km south of the Menai Straits (Lynch and Musson, 2001) and included 

eight postholes from an early Neolithic house, ceremonial monuments, two henges 

and a cursus. 'Irish Sea' pottery found at the site dates the settlement to ca. 6.5 k cal. 

yrs. BP, thus producing some of the earliest structural evidence of permanent human 

occupation in Wales.
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3.5.4 Bronze Age (ca. 4.5 k to 2.8 k cal. yrs. BP; Parker Pearson, 1999)

The Early Bronze Age in Britain is marked by the first occurrence of metal artifacts 

such as the flat axe found at the base of the ditch at Mount Pleasant (ca. 2300 cal BC). 

The only secure calendar date for the use of metal tools, however, comes from the 

Corlea trackway in Ireland (2264-2134 cal. BC), not from the tools themselves (Parker 

Pearson, 1999). Although there is evidence of settlement continuity at many sites in 

Britain, during the Early Bronze Age the landscape became more open as major land 

clearance allowed for large scale colonization of previously untouched areas (Smith, 

1984). The warm, dry conditions of this period encouraged an increase in agricultural 

activity. At many sites in Wales agricultural expansion in the lowlands and a 

pastorally dominated landscape in the highlands is represented at many sites by the 

first major increase in cereal, grass and Plantago lanceolata pollen (Caseldine, 1990). 

Table 3.2 shows that in Wales the palynological shifts correlate well in areas where the 

development of mixed farming was common.

Recent research shows, however, that these changes were non-sustainable, 

particularly on the poorer upland soils where sustained deforestation, increased run­ 

off, soil saturation and the formation of blanket bog, which began during the middle 

Bronze Age, caused a population shift to the lowland areas where soils were in better 

condition (Caseldine, 1990; Champion, 1999). It is also possible that these factors 

were encouraged by a phase of climatic deterioration at the end of the Sub-Boreal 

period (van Geel et al, 1996), which may have been triggered by major volcanic 

activity; the Santorini eruption occurred at the late 17th century BC, 40 miles north of
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Site

Cefh Graeanog, 
Wales
Nant Helen, 
Glamorgan
Llanllwch, 
Carmarthen
Llangorse 
Carmarthenshire
Machynys, 
Carmarthenshire

North

West

near

Lake,

Llanelli,

Author

(Chambers, 1983)

(Chambers et al., 1988)

(Thomas, 1965)

(Chambers, 1999)

(Lillie era/., 2000)

First Record of Pollen 
Indicators of Agricultural 
Activity (cal. years BP)

3,000

3,310

3,200

3,240

3,700

Table 3.2 Table showing the date of first occurrence of agricultural indicators in 

pollen records from a selection of sites in Wales.

Crete inducing tephra deposition in the Nothern Hemisphere at least (Manning et al., 

2006).

On the other hand, the environmental evidence from lowland sites in Wales suggests 

that by ca. 3.0 k cal. yrs BP the intensive exploitation of farmland caused major 

increases in open heathland, accompanied by shifts in hydrology, changes in soil 

quality and the first significant evidence of soil inwash to lake systems due to the 

permanent removal of woodland (e.g. Bryn y Castell, Snowdonia, Mighall and 

Chambers, 1995; Coed Taf, Chambers, 1983a; Nant Helen, Chambers and Price 1988; 

Llangorse, Chambers, 1999; Tregaron and Whixall Mosses, Turner, 1964). Local 

archaeology indicates that although the main focus of land clearance was to increase 

the amount of available farmland, forest cover was also removed for the mining of 

metal ores and the production of Bronze (e.g. Great Orme, Llandudno; Champion, 

1999), the construction of funerary monuments (e.g Penrhyncoch, Smith and Taylor, 

1969 and Moel Goedog, Conway and Younis, 1984) and settlement enclosures
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(Champion, 1999). The result of these combined factors was that by the end of the 

Bronze Age both upland and lowland soil quality had seriously declined and there was 

a contraction of available land with which to produce food for a growing population.

3.5.5 Iron Age (ca. 2.8 k to 2.0 k cal. yrs BP; Haselgrove, 1999)

Climatic deterioration continued into the Iron Age and there was a general movement 

towards the warmer foothills, lakesides and margins of river valleys (Mytum, 1988; 

Caseldine, 1990). On the whole, the construction of enclosed farmsteads, suggesting 

tactical defense, was increasingly important, along with an emphasis on land 

clearance for grazing and small scale farming (e.g. Penycoed, Walker, 1985). At 

some sites, however, the archaeological evidence demonstrates that the traditional 

shift from Bronze to Iron Age, which Haselgrove (1999) places at 2.7 k cal. yrs. BP, 

was actually less distinctive. In fact, prolonged woodland clearance, along with an 

significant increase in both arable and pastoral farming indicates that there was also a 

high degree of settlement continuity at many sites (e.g. Welsh Marches [Savory, 

1980]; Llangorse [Jones etal., 1985]; Carneddau [Walker, 1993]).

Excavation of sites in Britain shows that during the Early Iron Age enclosed 

farmsteads of 1 to 2 hectares were common, though the shape of the domestic 

buildings (e.g. D-shape, rectangular or circular) and settlement layout appear to be 

regional features (Hingley, 1992). Towards the end of the Iron Age closed 

settlements in areas of political stability, such as south Wales, were replaced with an 

increased number of aggregated, open settlements (Haselgrove, 1999), whilst at many 

sites in mid-Wales deforestation correlates with marked peaks in Plantago lanceolata
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suggesting that pastoral farming and general animal husbandry increased in 

importance, particularly on the higher grounds (Hogg and King, 1963; Moore and 

Chater, 1969). This pattern is also apparent in south Wales, where a phase of 

settlement and agricultural expansion at ca. 2.2 k cal. yrs. BP is reflected as 

deforestation, soil deterioration and soil inwash in pollen records from Llangorse 

(Jones et al., 1985), the Brecon Beacons (Chambers, 1982) and the Black Mountains 

(Price and Moore, 1984). At some sites (e.g. Castell Henllys [Mytum, 1988]; Castell 

Ditches [Parkinson, 1976]), bone evidence from the butchery of cows, sheep, goat and 

pigs also indicate the importance of domesticated animals and the consumption of 

meat as a part of the Iron Age diet.

Large scale deforestation during the Iron Age in Wales also coincides with the 

exploitation of woodland to produce charcoal for iron smelting (e.g. Braich y Dinas; 

Hughes, 1922) and for the building of hillforts (e.g. Moel-y-Gaer [Guilbert, 1975]; 

Bryn y Castell [Mighall and Chambers, 1995]). Although common across large areas 

of Britain, the latter defended settlements appear to be particularly clustered in the 

south of Wales, with the smaller forts (>3 acres) extending along the west coast to 

Anglesey and the larger structures (<15 acres) placed along the English border to the 

east (Cunliffe, 2005). Intensive deforestation for the construction of forts, made 

possible with the adoption of more effective iron tools, is reflected in pollen records. 

Changes to the landscape are often accompanied by the construction of funerary 

monuments and Late Iron Age funerary deposits (e.g. Harding's Down [Crampton, 

1973]; Llyn CerrigBach [Fox, 1946]).
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3.5.6 The Roman Period (ca. 2.0 k cal. yrs BP to ca. 400 AD; Cleary 1999)

It is understood that long-term settlement expansion and agricultural intensification by 

local populations during the Roman period probably caused great impact on the 

British landscape, though this differs regionally depending on the resistance of local 

populations (Cleary, 1999). The development of towns with administration centers, 

amphitheatres and bath-houses, etc., on old settlement sites was common throughout 

England, producing the nuclei of many major English cities today (e.g. York, 

Leicester, London). Mining of mineral ores such as copper, gold, iron, lead and silver 

was also an important component of the Roman economy and may even have been 

one of the primary reasons for the Roman conquest in Britain, for regardless of 

previous mineral exploitation the scale of production and the effect on woodlands 

increased dramatically following Roman occupation (Cleary, 1999).

Although the Welsh tribes fiercely resisted Roman occupation until 74 AD, after this 

date the high degree of chronological and cultural overlap with Iron age communities 

suggests that the Romans generally settled in areas that were already occupied 

(Hanson, 1999). Following this date, on the basis of the remains of Roman forts and 

bathhouses (Manning, 2001) and the large-scale, manufacturing of pottery in Wales 

(Blackmoor, 2002), it is suggested that the evidence indicates the development of a 

strong Roman economy. Carbonized grains in the plant macrophyte record (e.g. 

Triticum dicoccum, T. spelta and species of Avena accompanied by arable taxa such 

as Chenopodium and Urticd) and evidence of palaeosoils at Colfryn (Keeley, 1986) 

and Stackpole Warren (Benson et al., 1990) provide evidence of ancient field systems, 

plough marks and even podzolisation from the first century AD, suggesting a
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concurrent increase in land-clearance and arable cultivation (Caseldine, 1999). A 

number of waterlogged plant remains from Roman wells at sites in Wales also 

produce valuable information of changing crops and Romano-British diets. Exotic 

plants such as Anethum graviolens (dill), Coriandrum sativum (coriander), Figus 

carica (fig) and Vitis vinifera (grape), along with indigenous Corylus avellana 

(hazelnut), Sambucus (elderberry), Rubus rubus (blackberry) and Rubus idaeus 

(raspberry) have been discovered in deposits from Caernarvon (Hillman, 1985), 

Carmarthen (Hillman, 1978) and Whitton (Wilson, 1981), indicating a variety of 

crops based on both local and imported food types.

There is also evidence that underground mining activities changed the Welsh 

landscape. The most outstanding example of Roman mining in Carmarthenshire is the 

Dolaucothi goldmines in the River Cothi valley where half a million tons of rock and 

earth were removed leaving a series of hills and humps in the Carmarthenshire 

landscape (Shepherd, 1993). New roads were also constructed to transport the mined 

metals and metal products to the coast for export (Lewis and Jones, 1969). It seems 

that these activities also caused significant air pollution. Atmospheric pollution in the 

geochemical record of peat layers, detected in samples taken from the former metal 

mining area of Ystwyth valley, Dyfed (Mighall et al, 2002a), for example, show that 

lead processing caused significant lead enrichment during the Roman Period, whilst 

samples from Copa Hill, Cwmystwyth, in mid-Wales indicate that copper production, 

which continued into the Roman Period, caused serious soil contamination (Mighall et 

al, 2002b).
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3.5.7 Post-Roman Period and the Scandinavian Presence (ca. 400 to 1050 AD; 

Hills, 1999)

Following the Roman retreat, direct and continuous contact with Ireland to the west, 

Scandinavia to the north-east, Germany to the south-east and France to the south 

maintained an outside influence on the British Isles (Hills, 1999). Although this was a 

period of settlement continuity (e.g. Dark, 1996), there is little evidence to explain 

how these changes affected the cultural and rural landscape outside of England. So 

far, it is clear that Post-Roman Wales was characterized by a high concentration of 

scattered lowland farmsteads (Caseldine, 1990) with a distinct lack of upland 

settlements, accompanied by forest regeneration on the higher grounds. The desertion 

of upland areas is likely to reflect the Sub-Atlantic climatic deterioration reported by 

Lamb (1977) when populations in general moved to the warmer lowland areas. The 

economy was mixed and appears to have varied at a regional scale; at some sites (e.g. 

Dinas Emrys; Seddon, 1960) pollen studies for this period show evidence for an 

increase in pastoralism on the lower slopes, whereas others reflect an arable landscape 

in the lowland areas dominated by the cultivation of Triticum spelta, T. dicoccum and 

Hordeum vulgare and supplemented by the rearing of domestic cattle (e.g. 

Cledemutha, Tomlinson, 1987).

From 800 AD, monuments, settlements and farmsteads in the British Isles had a 

strong Scandinavian influence dominated by rural hamlets consisting of large 

timbered halls, enclosure ditches and small family buildings (Richards, 1999). In 

Wales the influence of 'Celtic' populations remained dominant in the north, whilst in 

the south (e.g. Gwent, Dyfedd and Glamorgan) evidence of Scandinavian incursions
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and general migration patterns are reflected in the style of buildings and burial sites 

and the distribution of Nordic family and place names (e.g. Skomer and Swansea) 

(Weale et aL, 2002). On the whole, large and prosperous settlements from this period 

are rare and Scandinavian populations appear to have concentrated mainly on the 

trading of goods, such as horses, fur, honey, wine, whale oil and dairy produce, with 

the existing Welsh communities (Charles, 1934).

3.5.8 The Medieval Period (ca, 1050 to 1500 AD; Schofield, 1999)

During the Medieval period climate was the main factor influencing human migration 

and patterns of agricultural activity. At the beginning of the 11 th century improved 

climatic conditions (i.e. the 'Medieval Warm Period'), coupled with a population 

increase, encouraged rural communities to move to higher altitudes where upland 

areas were exploited and a hafod and hendre system of seasonal transhumance 

agriculture was common (Caseldine, 1990). In the 14th century, however, climate 

change in the northern hemisphere (i.e. the 'Little Ice Age') influenced a second shift 

back to the warmer, lower grounds (Schofield, 1999).

In his study of the documentary evidence of peasant agriculture in Gwynedd, Thomas 

(1975) describes the economic and environmental changes in rural Medieval Wales, 

which appear to correspond with these significant changes in climate. In Phase 1 

(1000 to 1200 AD) populations practiced a 'natural' barter economy where every 

plant had its prescribed value for making agricultural and domestic implements, 

building materials, food and medicine. Small lowland hamlets contained 'wattle and 

daub' huts with modest arable plots and incentives were given to clear upland
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woodland for common pasture where cattle were grazed and utilized for meat, dairy 

produce and skins. During Phase 2 (1200 to 1350 AD), though deforestation was still 

limited, large areas of pasture were utilized, often more than 1000 feet above sea 

level, with the main nuclei of village life found in the semi-lowland and sheltered 

upland areas where crops such as oats, corn and barley were grown. By the late 13th 

century, however, many communities had left the upland slopes. Although actual 

figures are unknown due the absence of census data, by the mid-14th century the 

Black Death had wiped out whole communities; the county of Gwynedd, for example, 

contained ca. 120 townships with sparse population densities of between 1 and 6 

families per square kilometer.

During Phase 3 (1350 to 1500 AD) uneven mortality rates due to further outbreaks of 

the Black Death and a money based economy under a new administrative structure 

coupled with climatic deterioration caused a shift back to the lowland areas. At Col 

Fryn (Jones and Milles, 1989) and Ty Mawr (Caseldine, 1990) plant macrofossil 

evidence shows that Secale cereale (rye), Hordeum vulgare (barley), Triticum spelta 

(spelt wheat), T. aestivo-compactum (club wheat) and T. dicoccum (emmer wheat) 

crops were grown, whilst pollen evidence from Llyn Mire (Seymour, 1985) and Llyn 

Cororion (Watkins, 1990) indicate that Cannabis sativa cultivation became 

increasingly important. In fact, high sediment accumulation rates at Llyn Mire 

(Seymour, 1985) and Llyn Berwin (Caseldine, 1990), probably caused by deep 

ploughing, and permanent deforestation at Plynlimon (Moore, 1968) and Bwlch-Y- 

Fign (Taylor, 1973) indicate that, although land divisions and similar farming 

techniques remained (Hills, 1999), this was a period of intense agricultural activity.
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Ecclesiastical establishments constructed during the early medieval period became the 

focal point of the parish with churches serving small nucleated villages and 

monasteries forming the center of towns and cities with each diocese centered within 

monastic or secular cathedrals. One of the finest examples of Cistercian Abbeys in 

Wales is Strata Florida (Robinson and Platt, 1998), the building of which completely 

changed the immediate landscape. Deforestation was followed by large-scale land 

drainage and the digging of water channels to accommodate the Abbey, which along 

with additional alms houses, gatehouses and agricultural buildings was completed in 

1184 AD. These building not only served a religious function but also became the 

regional centers of administration and trade; evidence of a growing Cistercian wool 

industry from the middle of the 13 th century, for example, is supported by the high 

concentrations of sheep/goat bones at rural sites like Strata Florida, Tintern Abbey 

(Parkes and Webster, 1976) and Valle Crucis Abbey (Barker, 1976).

3.6 Palaeolimnological Research in Wales

Palaeolimnological research in Wales is far less extensive than studies that focus on 

reconstructing the effects of climate and human impact on the landscape. Figure 3.2 

shows that detailed studies that highlight long-term palaeolimnological change are 

centered in the highlands of north Wales and include the Late Quaternary diatom 

stratigraphy of Cors Geuallt (Crabtree, 1965; 1969; 1972), the environmental history 

of high mountain, oligotrophic tarns in Snowdonia (e.g. Llyn Glas and Llyn Clyd) 

using pollen and diatoms (Evans and Walker's, 1977) and a reconstruction of the 

evolution and subsequent histories of Llyn Padern and Llyn Peris at Llanberis Pass,
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Llyn Padern and 
Llyn

lyn Pencarreg* 
Upper Talley Lake i

Figure 3.2 Map showing the location of sites in Wales where previous 

palaeolimnological reconstructions have been carried out in relation to the study sites 

selected for this project (Upper Talley and Llyn Pencarreg).

76



North Wales, using pollen, chrysophytes, diatoms and chemical stratigraphy (Elner 

and Happey-Wood, 1978; 1980).

To date the majority of diatom-based studies from Wales contribute to EDDI training 

sets for the development of total phosphorus (TP) transfer functions (Battarbee et al., 

2000). Although the Welsh transfer function has been applied to reconstruct past 

nutrient concentrations at individual lakes (Figure 3.2), the studies are short-term 

only. Bennion (1995) and Bennion et al, (1996a), for example, reconstructed the 

trophic history of three lakes in Anglesey over the last 150 years and recent 

environmental impact has been investigated at Llyn Tegid, Gwynedd (Bennion et al., 

2002), Llyn Idwal and Llyn Cwellyn, Snowdonia (Bennion et al, 1997) and Llyn 

Eiddwen and Llyn Fanod, Ceredigion (Bennion et al, 1998).

Llangorse Lake (SOI31262), the largest glacial lake in South Wales, is a naturally 

eutrophic site within the Llynfi river valley in the Brecon Beacons National Park, 

which has been subject to the most extensive scientific investigation. Recently 

designated a Special Area of Conservation (SAC) due to its high biodiversity, algal 

blooms were first recorded in the 12th and 16th centuries (Griffiths, 1939) and blooms 

occurred during the 1970's as a result of sewage effluent from the adjacent village 

(Brecon Beacons, 2006). A diatom inferred TP (DI-TP) reconstruction (Bennion and 

Appleby, 1999) indicates a rise in nutrient status which appears to be linked to 

agricultural intensification in the recent past.

These studies show that there is a clear lack of long-term palaeolimnological research 

in Wales as a whole, but particularly in the south where studies focus mainly on
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changes in the diatom record due to recent human impact (ca. past 200 years). The 

present study therefore aims to address this gap in current research by selecting two 

sites in the south of Wales for palaeolimnological investigation.

3.7 Selection of Study the Sites

To test whether two very similar lakes may show significant differences in response to 

environmental change, closely adjacent sites (10 km apart in Carmarthenshire, South 

Wales; Figure 3.2) were selected in catchments with similar geological characteristics. 

Sites were chosen with pH in the circumneutral range in order to avoid complications 

with limnological response to acid precipitation (Battarbee et al, 1990). The 

limnological similarity of the lakes was assessed in March, 2005 by basic water 

chemistry measurements and field observation of physical similarities (Table 3.3).

Upper Talley is higher in nutrient status and has a larger catchment (calculated using 

ARC-GIS), whilst Llyn Pencarreg has a greater maximum depth, but otherwise the 

two lakes are similar in all respects. There is documentary evidence for similar 

patterns of long-term human impact at both sites particularly during the medieval 

period, which gave rise to associated changes in land-use.
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Environmental 

Parameters

Origin

Geology

Soil Type

Catchment Size (m2)

Height OD (m)

Surface Area (km2)

Max. Depth (m)

Spring TP (jig I 1)

DOC (%)

PH

Conductivity (uS cm'l)

Upper Talley

Glacial

Non-calcareous Silurian 
Wenlock bedding, with 
Old Red Sandstone layers
Well-drained, loamy 
brown earth
180

105

0.07

4.3

100

93.3

6.6

91

Llyn Pencarreg

Glacial

Non-calcareous Silurian 
Wenlock bedding, with 
Old Red Sandstone layers
Well-drained, loamy 
brown earth
60

110

0.09

10

36

92.8

6.3

82

Table 3.3 A comparison of environmental parameters between Upper Talley and Llyn 

Pencarreg including origin, geology, soil type, catchment size, height above sea level 

(OD), surface area, maximum depth, Spring total phosphorus (TP) concentration, 

dissolved oxygen content (DOC), acidity (pH) and conductivity.

3.7.1 Upper Talley, Carmarthenshire, South Wales 

3.7.1.1 The Lake and its Immediate Surroundings

Upper Talley Lake (NGR SN633330) (Figure 3.3) is situated at approximately 105m 

OD. It has a surface area of 7 ha (0.07 km2) and a maximum water depth of 4.3 m at 

the centre. Catchment geology is predominantly non-calcareous Silurian Wenlock 

bedding overlaid by Old Red Sandstone layers, which outcrops throughout the

Llandeilo area (Pringle and George, 1948), and the catchment size is 180 m2 .
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Figure 3.3 Map showing the Upper Talley Lake, Carmarthenshire, South Wales.

80



The lake basin itself was originally formed during the Late Devensian either by 

erosion of a lithological weakness, sub-glacial melt-water or as a kettle hole (Pacey, 

1993); the glacial origin is supported by the presence of glacial material at the base of 

sediment cores (Butler, 1984). Soils are now mostly well-drained, loamy brown 

earths apart from areas where clays are present (Davies, 1982). In addition to surface 

precipitation, hydrological input appears to be mainly generated from run-off from 

hills situated to the north (Moelfre), east (Mynydd Llansadwrn) and west (Mynydd 

Cynros) and by input from three subterranean springs, which provide the lake with 

mineral-rich water (Johnson, 1998).

The land directly surrounding the lake forms a steady incline to the water's edge and 

is predominantly pasture dedicated to low intensity sheep grazing with small wooded 

areas of Quercus, Alnus and Corylus, whilst in the littoral zone the modem lake 

supports a low abundance and diversity of aquatic macrophytes. Upper Talley is one 

of two lakes linked by means of a narrow channel; the second lake, Lower Talley, is 

bounded by a well-marked hydroseral transition from mature alder-carr to reed swamp 

to open water with a littoral zone rich in aquatic plants. The mound separating the 

two lakes, interpreted by Butler (1984) as a terminal moraine, now supports a number 

of different tree species including Quercus, Fagus, Larix, Ficus and Corylus and a 

range of other woodland plants.

Due to the high conservation value of the Talley Lakes a notification of Site of 

Special Scientific Interest (SSSI) has been allocated under the Wildlife and Country 

Act of 1981. The Carmarthenshire Bird Trust reports sightings of the rare ring-neck 

duck, whilst in winter the lake supports a wide variety of wildfowl including
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Goldeneye, Pochard, Tufted Duck, Teal, Mute and Whooper Swans, Pintail, Scaup 

and Smew. In summer the Great Crested Grebe and Kingfisher visit the lake and 

otters have been spotted hunting at its north end (Forster, 1993). One of Upper 

Talley's most important features is the presence of the only known population of the 

medicinal leech (Hurudo medicinalis) in Wales (Lloyd, 1998). This species is listed 

on Appendix II of The Convention on International Trade in Endangered Species of 

Wild Flora and Fauna (CITES), Appendix III of the Bern Convention and Annex V of 

the Habitats Directive. The International Union for the Conservation of Nature and 

Natural Resources (IUCN) lists Hurudo medicinalis as 'Vulnerable' due to a decline 

in its natural habitat and host species and the adverse effects of agricultural pollutants, 

which may have serious implications for its long-term survival.

3.7.1.2 Archaeology in the Upper Talley Region

Figure 3.4 shows the known archaeology within 5 km of the study sites. The map 

indicates that there was human activity in the Upper Talley area from as early as the 

Neolithic period. Although there is no direct evidence for settlements during the 

Bronze Age, activity is highly concentrated around the Talley lakes and consists of 

standing stones and round barrows. Their presence on higher ground suggests that 

they may relate to funerary and ritual sites away from any main settlement area, whilst 

their composition, mainly of stone and covered with turf, suggests that they were 

constructed from cairn material typical of prehistoric monuments and probably found 

in the immediate vicinity the site. On the mound between Upper and Lower Talley, 

archaeological remains of what is thought to be a Norman Motte and Bailey Castle 

have been located by aerial photography (Hogg and King, 1963). Hillfort sites from
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Figure 3.4 Diagram showing known archaeology within 5 km of the study sites.
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the Iron Age have also been found within a 4.5 km radius of Talley, the nearest being 

at Pen-y-Ddinas, which lies 2.0 km to the north of the study site, though Roman 

archaeology is far less common.

Evidence of Medieval settlements and farmsteads are profuse in the Talley region, but 

most importantly the site provides an excellent example of medieval occupation and 

subsequent abandonment, with the remains of one of Britain's largest 12th century 

Premonstratensian Abbey, which lies on the south bank of the Upper Talley lake 

(Price, 1894; Owen, 1893, 1894; Robinson and Platt, 1998). Founded in 1185 AD by 

Rhys ap Gruffydd (ruler of Dehevbarth, south Wales), Talley Abbey housed an order 

of white cannon Cistercian monks. The widespread influence of ecclesiastical 

settlement on woodland clearance and agricultural activity is indicated in pollen 

records in mid to south Wales at around 1200 AD (e.g., Tregaron: Turner, 1964; 

Preseli: Seymour, 1985). However, this is the first study to explore the possibility of 

associated limnological impact.

In an account of his journey through Wales (Itinerarium Cambriae, 1191 AD), 

Giraldus Cambrensis (1146-1223 AD) describes the Talley Lakes as a 'rough and 

sterile spot, surrounded by woods and trees on every side', suggesting that the monks 

may have settled in an area showing little indication of any previous human 

occupation and that changes to the landscape due to the building of the Abbey were 

minimal. Apart from the subsequent evolution of the village of Talyllychau (translated 

as 'the head of two lakes') to the south of the Abbey (present population 530; 

Carmarthenshire, 2007), no settlements have been established since the monastery 

was abandoned. The site therefore provides an excellent opportunity for assessment of
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the long-term impact of early settlements on water quality between the 12th and 16th 

centuries.

3.7.1.3 Previous Research at Upper Talley

An undated sediment core from Upper Talley was analysed for pollen by Butler 

(1984) at a resolution of 20-25cm. Inferred postglacial shifts in vegetation were 

attributed to early Holocene climate change, whilst phases of woodland clearance and 

agricultural activity were tentatively linked to documented local human occupation. 

Although absolute dates were not produced due to the lack of material suitable for 

dating, Butler (1984) reasons that a significant clearance phase beginning soon after 

the Tilia decline could be the result of Bronze Age activity. Butler also suggested that 

a subsequent phase of clearance, reflected as a decline in Alnus and accompanied by a 

three-fold increase in agricultural and pastoral herbs, could represent activities on the 

valley floor during the building and occupation of the Abbey.

Fourteen years later, a higher resolution pollen reconstruction was carried out by 

Johnson (1998) on the same core used for the present study. Palynological correlation 

with a range of radiocarbon-dated, biostratigraphic horizons from the Lower Talley 

Lake and linear interpolation provided an age-depth chronology. Johnson (1998) 

identified minor forest disturbance during the late Mesolithic period (the cause of 

which was difficult to evaluate) and found evidence for major clearance during the 

Bronze Age and Medieval periods, as did Butler (1984). These major shifts were 

characterised by increases in cereal, pastoral herbs, hemp and flax pollen suggesting 

major agricultural changes in the Talley landscape during this period. Changes in the
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aquatic pollen record also suggested a shift in lake productivity, with a loss of 

aquatics during the medieval period and an increase in the diversity of aquatic plants 

immediately following this phase. Urtica also appeared, which both Moore (1978) 

and Heinselman (1973) argue is indicative of the addition of phosphorus to the 

nutrient budgets of the local catchment.

3.7.2 Llyn Pencarreg, Carmarthenshire, South Wales 

3.7.2.1 The Lake and its Immediate Surroundings

Llyn Pencarreg (NGR SN538457) (Figure 3.5) is situated 10km to the north of the 

Talley Lakes and 6km from Lampeter at approximately 110m OD. It has a surface 

area of 9 hectares (0.09km2) and a maximum water depth of 10m at the centre - 

almost 6m deeper than Upper Talley. It has been suggested that the lake is also 

glacial in origin, formed in the late Devensian period during glacial retreat, but to date 

there is no evidence of this. Bedrock geology at Llyn Pencarreg is the same as at 

Upper Talley and the main catchment soils are also well-drained, loamy brown earths. 

Catchment size, however, is only 60 km, which is a third of the size of Upper Talley.

Apart from a wave-cut platform on the west bank and a steady incline to the east, the 

north and south lakesides are steep, forming sills that overlook the lake. Beyond this 

to the north are hills (Allt Llwyn), which presumably contribute to the hydrological 

budget by surface run-off. Like Upper Talley the land immediately around the lake, 

to the north, west and east, is predominantly pasture with patches of Corylus and 

Quercus, and is used for low intensity sheep grazing and stud farming. Aquatic
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Figure 3.5 Map showing Llyn Pencarreg, Carmarthenshire, South Wales.
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vegetation in the littoral zone of the lake is dominated by Potamogeton spp. and 

Littorella uniflora, which grow on the gravely, western marginal shelf down to a 

water depth of about 3 m. The village of Pencarreg (population 1120; 

Carmarthenshire, 2007) is situated on the high granite sill (160m) at the southern edge 

of the lake.

Llyn Pencarreg lies just within the river valley of Afon Teifi, which, along with ten of 

its tributaries, has been designated a Special Area of Conservation (SAC) and Site of 

Special Scientific Interest (SSSI) for its significant conservation and landscape value. 

The Carmarthenshire Bird Club, for example, report sightings of the rare Whooper 

Swan and migrants such as Black Tern, Sandwich Tern and Sabine's Gull. In the 

winter months the lake supports a community of waterfowl including Teal, Widgeon, 

Pochard, Goldeneye and Coot (Forster, 1993).

3.7.2.2 Archaeology in the Llyn Pencarreg Region

Figure 3.4 indicates human activity close to Upper Talley from as early as the 

Neolithic period with the discovery of several axe pieces within a 4.0 km radius of the 

site indicating interaction with the immediate environment. As with Upper Talley, 

Bronze Age round barrows and standing stones are profuse on the hills surrounding 

Llyn Pencarreg. However, the Pencarreg record also lists a Bronze Age well at Banc- 

y-Garn (2.0 km southeast of Pencarreg) and several remnants of pottery, suggesting 

that there was also some settlement activity in the area.
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The remains of a defended enclosure at Blain-Maes (1.0 km from Pencarreg) provides 

the closest archaeological evidence of Iron Age settlement, whilst hillforts can be seen 

at Dolgwn Isaf (1.5km to the east of Pencarreg) and Ty Neydd, immediately 

northwest of Dolgwm Isaf (Dyfed Archaeological Trust, pers. comtri). Finds from the 

Roman period are more common at Pencarreg than at Talley and are discussed in 

more detail in Section 8.3. There is also a main road that runs through the village of 

Pencarreg, which is situated on the sill directly overlooking the lake (the A485, now 

linking Carmarthen to Aberystwyth). The route is recorded as a Roman road, which 

may have been built to transport gold from the Dolaucothi goldmines to the south 

coast.

The medieval period is marked by the discovery of archaeology directly associated 

with settlement activities. These include several holy wells within a 4.0 km radius of 

Pencarreg and two water mills and a corn mill at Rhyd Y Bont (2.0 km south of 

Pencarreg), Rhyddlan (4.0 km southwest of Pencarreg) and Tirnewydd (5km 

northwest of Pencarreg) respectively. As with Talley there are several medieval finds 

in the village of Pencarreg itself suggesting a high degree of activity within the lake 

catchment during this period. The parish church and graveyard are also medieval in 

origin, indicating a well-established village community from the 13th century 

onwards. However, the church may not have acted as a focus for a nucleated 

settlement as during the 12th and 13 th centuries it was customary for the Welsh to live 

in dispersed communities.

A disused railway is situated on the south bank of the lake below the sill, part of the 

Lampeter to Carmarthen line, which was built in 1866 and extended to Aberystwyth
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in 1867, thereby providing a link between these major towns until 1965 (Lampeter, 

2005). Due to its proximity to the lake its construction may have had some influence 

on limnological conditions. To date, there has been no limnological or 

palaeolimnological research at Llyn Pencarreg.
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CHAPTER 4

METHODS AND TECHNIQUES 

4.1 Field Techniques 

4.1.1 Collection of the Long Cores

In March 1994, two llm parallel sediment cores were collected by Wendy Johnson and 

team, Aberystwyth University, from closely adjacent boreholes in the deepest central 

water of the Upper Talley Lake, at a water depth of 4m (UT2/94a). A single 7m sediment 

core was collected in March 2005 from the deepest waters of Llyn Pencarreg at a depth of 

10m (LPC/05a) by a team from the Universities of Hull, Birmingham and Aberystwyth. 

In both cases a rod-driven Livingstone piston corer (Livingstone, 1955) and anchored 

platform were used.

At Llyn Pencarreg a coring platform attached with rope to two inflatable boats (Figure 

4.1) was stabilised with three anchors to ensure that a constant position was maintained. 

Water depth was measured with a hand-held echo sounder. The distance between the 

water surface and platform surface was calculated to determine the number of rods 

needed for each drive and the drive depth was marked on the rods before the corer was 

inserted through the central hole of the coring platform for each drive.
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Wooden frame

Central borehole

Boat 2

Figure 4.1 Schematic diagram showing the coring platform, raft and boats used to 

support the Livingstone corer. The raft is attached to the boats with luggage straps before 

fully inflated. (Modified from drawing provided by J. Hope, UCL)

92



When coring reached a depth of 4m, 8m of 12" drainpipe casing was inserted into the 

central coring hole to ensure that the corer extracted sections from the same borehole and 

to prevent distortion of the extension poles. A tripod and hoist provided mechanical aid to 

recovering sections as the drives became deeper and the force of suction on the corer 

increased. To prevent contamination of the core sediments the core barrel interior was 

cleaned following each drive by immersing the device in water and pulling the piston up 

to draw water through. The sediment sections were extruded into labelled 3" drainpipe, 

which had previously been cut in half lengthways, and each section was tightly wrapped 

in cling-film, with tissue blocking each end, to avoid drying (Wright, 1980) and bacterial 

fixation of CC>2 from the surrounding atmosphere, which can lead to younger radiocarbon 

age estimates (Geyh et. al, 1974). The sections were then sealed with waterproof tape.

4.1.2 Collection of the Sediment Water Interface

At Upper Talley a shorter surface core of 70cm (UT2/94b), which encompassed the 

sediment-water interface, was collected from a water depth of 4m using a clear perspex 

tube fitted with a piston (Johnson, 1998). At Llyn Pencarreg a short surface core of 70cm 

(LPC/05b) was collected with a Glew messenger-operated gravity corer (Glew, 1991) 

from a water depth of 10m. In both cases the sediments were extruded in the field at a 

resolution of 0.5cm for the top 1cm and at a resolution of 1cm thereafter, and sub- 

samples were stored in labelled, sterile whirl-pack bags.

The core sections and surface samples from Upper Talley were stored in the University of
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Aberystwyth cold store at a temperature of 4°C and Dr. Henry Lamb provided access to 

this material in March 2003. Core sections and surface samples from Llyn Pencarreg 

were kept in the University of Hull cold store at a temperature of 4°C.

4.1.3 Water Chemistry

Water samples were collected in acid-washed, sterile bottles, which were rinsed with lake 

water immediately before use. Samples were collected from the southern littoral zone of 

the Upper Talley on 22 nd March 2005 and from the western littoral zone of Llyn 

Pencarreg on 24th March 2005. Dissolved oxygen (DO) and temperature were measured 

in situ on the same dates, using a VWR DO 200 probe, and pH using a VWR pH probe. 

Conductivity was measured with a HI 9033 conductivity meter. Unfiltered water samples 

were analysed for total phosphorus (TP) concentration within twelve hours of collection, 

using a Palintest Photometer 5000 with tube-test heater.

4.1.4 Collection of Modern Plant Samples

Modern plant samples were collected from the lake edge and local catchments of Upper 

Talley and Llyn Pencarreg, placed in labelled envelopes and wrapped in newspaper to 

prevent bacterial decomposition. Envelopes were kept in the University of Hull cold 

store at a temperature of 4°C and sent to the NERC (Natural Environment Research 

Council) Isotope Geosciences Laboratory (NIGL) in April 2006, for standard carbon 

isotope analysis (see Section 4.2.5) by Prof. MJ Leng. Results were compared to Meyers
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and Teranes (2001) classification of bulk organic matter from lacustrine algae and  3 

land plants.

4.2 Laboratory Techniques

4.2.1 Stratigraphic Description

The surface of cores UT2/94a and LPC/05a were cleaned by scraping horizontally with a 

scalpel to avoid vertical contamination. Colour and texture were described using a 

Munsell soil colour chart (MKDI, 1994) and the Troels-Smith (1955) classification 

scheme. Following visual examination the cores were photographed digitally for future 

reference before sub-sampling.

4.2.2 Magnetic Susceptibility

A type M. S. 2 Bartington magnetic susceptibility meter and core-scanning loop were 

used to measure 2 cm interval profiles of uncalibrated volume susceptibility at the 

Universities of Aberystwyth (UT2/94) and Birmingham (LPC/05). In each case the core 

sections were passed continuously through the scanning loop and drift was calculated 

automatically by blank (air) measurements at the beginning and end of each run. The 

Upper Talley magnetic susceptibility data extended to a depth of 11.50m, the top 9.90m 

are employed in this study to match the multi-proxy profile.
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4.2.3 Sub-sampling

All equipment was thoroughly washed after taking each sub-sample to avoid 

contamination. UT2/94a was sliced into 2cm sub-samples, put into labelled, sterile whirl- 

pack bags and stored in the University of Hull cold store at 4°C. Subsample levels were 

correlated where possible with Johnson's (1998) pollen sequence. However, there was a 

39cm gap in the sequence between 4.34 and 3.95m.

LPC/05a was sent to The University of Birmingham for sub-sampling for pollen analysis 

under the supervision of Dr. Warren Eastwood. On return to the Hull University it was 

noted that some drying and shrinkage had occurred due to careless re-wrapping of the 

core sections following pollen analysis. Correction factors were calculated for each core 

section by dividing the original section length (measured in the field) by the length 

following shrinkage. The correction values were used as a replacement measurement for 

each centimetre of core sediment before shrinkage (Table 4.1). Where excessive drying 

and shrinkage had occurred at the top and bottom of some core sections the pollen sub- 

sample points and core log data were used to find the original length and separate 

correction factors were calculated. Most of the pollen sub-sampling points were clearly 

visible so good correlation between subsamples was established with confidence. The 

correction lengths were measured out on each individual section before sub-sampling. 

Core sections were sliced into the equivalent of 2cm thickness and stored in sterile whirl- 

pack bags in the University of Hull cold store at a temperature of 4°C.
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Drive;

I

II

III

IV

V

VI

Length
of

section
in field

(cm)
90

92

86

80

58

94

Length of
section
after

shrinkage
(cm)

84

86

75

70

50

80

Correction
equation

(cm)

84/90

86/92

75/86

70/80

50/58

80/94

Correction
factor
(cm)

0.93

0.94

0.87

0.87

0.86

0.85

Correction
equation
(cm) for

desiccated
ends

62/86

(At basal end)

55/80

(At basal end)

37/58

(At basal end)

Correction
factor (cm)

for
desiccated

ends

0.72

0.68

0.63

Table 4.1 Table showing the correction factors applied to each section of core LPC/05a 

to overcome the problem of shrinkage.

Additionally, on return from the University of Birmingham the Glew core samples were 

missing. A second surface-core, which encompassed the sediment-water interface, was 

collected with a Glew messenger-operated gravity corer (Glew, 1991) from a water depth 

of 10m in July, 2005 by Dr. Warren Eastwood and team from the University of 

Birmingham. The second core, however, was only 22cm long, thus for the final analysis 

there was a gap in core sediments between 22cm and 1.22m at the top of the Livingston 

core
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4.2.4 Loss on Ignition (LOI)

Sub-samples of approximately Ig were taken at a resolution of 4cm and dried overnight 

at 100°C. Each sample was weighed and heated by furnace combustion at 550°C for two 

hours in pre-weighed ceramic crucibles. Samples were cooled in a desiccator, to avoid 

the re-absorption of moisture, and weighed again. Each crucible weight was subtracted 

from the total weight of each sample and the remaining percentage weight difference was 

calculated using equation 1 (Heiri et al., 2001).

LOI 550= ((DWm~DW 550)/DWm)xWO (1)

Where;

.£0/550 = percentage loss of dry weight following ignition at 550°C

DW}oo = dry weight of the sample before combustion

DW550 = dry weight of the sample after heating at 550°C

The same samples were combusted at 850°C for a further two hours and cooled in a 

desiccator. The percentage weight difference, before and after combustion, was 

calculated for each sample to estimate CC>2 loss, using equation 2 (Heiri et. a!., 2001).

LOIS50= ((DW sso-DWsy)/DW loo)x\00 (2)
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Where;

£0/850 = percentage loss of dry weight following ignition at 850°C

= dry weight of the sample after combustion of organic matter at 550°C 

= dry weight of the sample after heating at 550°C 

= dry weight of the sample before organic combustion

To convert CC>2 loss to carbonate content, this figure was divided by a molar conversion 

factor of 0.44 (Dean, 1974; Bengtsson and Enell, 1986). This assumes that all the 

carbonate present is calcium carbonate, which may not be the case.

4.2.5 Carbon Nitrogen (C/N) and Carbon Isotope (513C) Analysis

Sub-samples of 1cm3 were taken at a resolution of 4cm, from the same depths as the LOI 

sub-samples, and stored in glass vials at a temperature of 4°C. In June 2005 samples 

were analysed by Prof. MJ Leng at NERC (Natural Environment Research Council) 

Isotope Geosciences Laboratory (NIGL). Samples were loaded into tin capsules, placed 

into the carousel of a Carlo Erba NA 1500 and dropped sequentially, in a continuous flow 

of helium carrier gas, into a 1020°C furnace. A pulse of oxygen gas was used to promote 

exothermal flash oxidation of each tin, ensuring further combustion of the sample, and 

the product gases were further oxidised by chromium and cobalt oxides in the lower part 

of the furnace. After the removal of excess oxygen and water, by passing through hot 

copper and magnesium perchlorate, the remaining Na and CO2 were passed through a GC 

column and a thermal conductivity detector, which generates an electrical signal
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proportional to the concentrations of N2 and CO2 present in the helium stream. The data 

were evaluated by the Costech EAS software station with a Costech chromatography 

software package (EAS 1.7) to report %N and %C data for each sample. The weight 

percentages were calibrated against an Acetanilide standard and multiplied by the C and 

N atomic weight ratio (1.167) to produce the C/N atomic ratio.

Meanwhile, the helium stream carried the N2 and CO2 through a trap at 90°C (for the 

complete removal of water), before reaching a VG Triple Trap held at -196°C. Here the 

CO2 was frozen allowing the N2 and helium to vent into the atmosphere. The Triple Trap 

was then evacuated before warming the CO2 trap and expanding the sample into the inlet 

of the Optima mass spectrometer, which has triple collectors allowing for the 

simultaneous monitoring of CO2 ion beams at m/e = 44, 45 and 46; and a duel-inlet 

allowing the rapid comparison of sample CO2 with reference CO2 . The 45/44 ion beam 

ratios were converted to 13 C/ 12C ratios after correction for common ion effects ('Craig' 

correction). In each run approximately ten replicates of the laboratory standard (BROC1) 

were analysed and from knowledge of the laboratory standard's 8 13 C value versus VPDB 

(belemnite carbon shell from the Cretaceous Peedee Formation of South Carolina) the 

I3 C/12C ratios of the samples were converted to 5 13 C value versus VPDB (Prof. M.J. 

Leng,pers. comm.).

The organic data (lithology, magnetic susceptibility, LOI and carbon isotope) were 

presented using T1LIA (Grimm, 1991) and TG View (Grimm, 2004) apart from magnetic 

susceptibility from Upper Talley, which was scanned from Johnson (1998) and analogue
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matched by depth with the remaining organic data. Zone boundaries were defined by eye 

and labelled UTOZ (Upper Talley Organic Zones) and LPOZ (Llyn Pencarreg Organic 

Zones).

4.2.6 Diatoms (Bacillariophyceae)

Sub-samples were taken at a resolution of 8cm throughout both cores, increased to 4cm at 

key horizons, and dried in an oven overnight. 0.025g of sediment was measured from 

each dry sample and prepared following standard techniques (Battarbee, 1986). Organic 

matter was oxidised in hot 30% hydrogen peroxide (HiO2) by placing samples in beakers 

on a hotplate at a temperature of 90°C. A few drops of concentrated hydrochloric acid 

(HC1) were added to each sample following oxidation, to remove carbonates. Samples 

were then transferred to test tubes and washed with distilled water in a Centaur 2 

centrifuge at a speed of 1200rpm for five minutes to allow the clay particles to form a 

suspension while the diatoms and other silt-sized particles formed a pellet at the base of 

the test tubes. The water was decanted after each wash leaving the pellet intact. This 

process was repeated until all clays had been removed (i.e., when supernatant ceased to 

be cloudy). Individually numbered plastic pipettes were used to mix each sample to 

avoid cross contamination. Samples were then topped up with distilled water to 10ml.

A microsphere solution (supplied by UCL Geography Department) for calculating 

absolute abundance of diatom frustules (Battarbee, 1982) was mixed to a concentration of 

6.81 x 107 microspheres ml" 1 and agitated in a sonic bath before use to prevent clumping.
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Using an Eppendorf pipette, 1ml aliquot measures of the solution were added to each test- 

tube immediately prior to use. Sample residues were dried overnight on 40mm round 

cover slips then mounted onto microscope slides using Naphrax®, which has a suitable 

refractive index (Cooper, 1999). Slides were heated on a hotplate in the fume cupboard 

at a temperature of 90°C for ten minutes, to evaporate the toluene from the Naphrax®, and 

then cooled before counting.

Taxonomic identification was made using a Leica DMLS under oil immersion at a 

magnification of x 1000 and determined to species level using Sims (1996), Barber 

(1981), Germain (1981) and Krammer and Lange-Bertalot (1986, 1988, 1991a, b). 

Approximately 500 valves were counted per slide along transects to provide a statistically 

reliable estimate of species composition and a tally was made of the number of 

microspheres observed per count. The diatom data were displayed using TILIA (Grimm, 

1991) and TG View (Grimm, 2004). Biostratigraphic zone boundaries were defined by 

application of the constrained incremental sum of squares clustering technique, using 

CONISS (Grimm, 1987) on square root transformed data and zones were referred to as 

UTAZ (Upper Talley Algal Zone) and LPAZ (Llyn Pencarreg Algal Zone). CONISS 

(Grimm, 1987) was not displayed on the final diagram, due to lack of space. Species' TP 

optima were taken from the European Diatom Database Initiative (EDDI) Combined 

European TP transfer function (Battarbee et al., 2000) and trophic classification was 

taken from Vollenweider and Kerekes (1981) model, which is based on the relationship 

between inflow P-loads, water residence time and the resultant P and chlorophyll a 

concentrations.
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4.2.6.1 Data Analysis

The concentration of diatoms in each sample was calculated using equation 3. 

X = (YxNl/N 2 )x40 (3)

Where;

X = diatom concentration

Y= the number of microspheres initially introduced

NI = the number of diatoms counted

N2 = the number of microspheres counted

40 = the correction factor used to enable the final data to be expressed as microsphere

concentration per gram of dry sediment originally prepared.

Diatom concentrations were expressed as the number of valves per Ig of dry sediment 

and presented with the percentage diatom data under the defined Algal Zones. To test 

whether fluctuations in diatom concentrations were the result of changes in sediment 

accumulation rate, diatom concentration (DC) was divided by pollen concentration (PC) 

and compared graphically to the original DC trend (after Bennett et a/., 1990). This 

approach assumes that pollen influx is constant and that variations in PC are solely due to 

variations in sediment accumulation at the core location. Although this works best when 

the pollen signal indicates a fully forested landscape (with arboreal pollen at > 90%), 

work by Brostrom et al. (2005) indicates that the method also works in more open
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landscapes. An alternative approach is to divide sediment accumulation rates (SAR) by 

DC to convert DC into diatom accumulation rates (DAR). However, the lack of dates at 

sample depths means that changes in the profile will be abrupt and constant rates will be 

assumed between dates.

Diatom-inferred total-phosphorus (DI-TP) was reconstructed by application of the EDDI 

Combined European TP transfer function (Battarbee et al., 2000). The combined TP 

dataset was chosen as this was developed from, and validated for, a broad range of sites 

across Europe and so provided a long TP gradient. To derive the transfer function from 

the raw data the species optima of the modern training set were estimated by regression 

using C2 version 1.4.2 (Juggins, unpublished) and diatom inferred TP (DI-TP) values 

were estimated from the fossil diatom data using weighted averaging with tolerance 

down-weighting and inverse de-shrinking (WATOL _ Inv) calibration methods, as this 

produced the lowest prediction error. DI-TP values were back-transformed to ug I" 1 from 

Iog10 values and presented as part of the algal stratigraphy.

The sample specific errors of prediction and confidence intervals were estimated by 

bootstrapping, which removes random groups of samples from the dataset and re- 

examines the performance of the reconstruction. Prediction errors are given as root mean 

square errors of prediction (RMSEP (boot)). The 95% confidence intervals were 

displayed against the reconstruction at each sample depth to assess predictive ability. The 

Hills N2 Diversity Index for each fossil sample, calculated in C2, was used as a measure 

of species diversity of fossil samples.
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To further explore species variation, detrended correspondence analysis (DCA) was 

applied to the percentage diatom data using the program CANOCO version 4.5 (ter Braak 

and van Dam, 1989). This technique assumes a unimodal response, which is appropriate 

for large data-sets with many zero values. For both sites the gradient length of Axis 1 was 

>2.5 SD units (2.7 SD units for UT; 3.1 SD units for LP), indicating that DCA rather than 

correspondence analysis was the most appropriate technique (Jongman et al. 1995). 

Analysis was performed by detrending by segments and non-linear rescaling on 62 

samples and 114 species for Upper Talley and 69 samples and 47 species for Llyn 

Pencarreg. Sample scores were scaled as weighted mean species scores. Results were 

displayed graphically using the program C2 version 1.4.2 (Juggins, unpublished). Species 

and sample distribution was then interpreted based on a knowledge of contemporary 

diatom ecology.

4.2.7 Cladocera Ephippia

The study intended to use cladocera analysis to complement diatom analysis, but the high 

organic content of samples made the cleaning process slow, intricate and impractical 

within the given timeframe. Tests were made to find the most appropriate heating times 

and sieve sizes but problems were encountered with loosing body parts in the process of 

sediment removal or body parts being obscured by organic material under gentler 

treatment, particularly at the base of the Llyn Pencarreg core. The same problems arose 

when preparing samples for ephippia analysis and it was therefore decided that counting 

in dry sediment was appropriate.
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Alternate 2cm slices (providing ca. 20g of sediment per sample) were wet sieved at 

150um under warm running water. Samples were dried overnight in petri dishes and 

residues examined under a microscope at a magnification of x 63 by sorting using a metal 

seeker. Although ephippia can be identified to species level (Sarmaja-Korjonen, 2004) 

time was a limiting factor so the total ephippial sum was counted instead. A note was 

made of the frequency of double yolked ephippia, which appeared at various points of the 

Upper Talley sequence. Total abundance for each sample was divided by 20 and 

presented as number of ephippia per g" 1 dry sediment, displayed using TILIA (Grimm, 

1991) and TG View (Grimm, 2004).

4.2.8 Pollen, Pediastrum and Charcoal

Sub-samples of 0.5cm3 were taken at a resolution of 8cm to a depth of 10m for UT2/94 

and 6.80m for LPC/05. A higher resolution of 4cm was employed at key horizons. Sub- 

samples were taken from both Glew cores at a resolution of 1cm and every 0.5cm for the 

top cm of each core

Samples were prepared using standard pollen techniques (Moore et al., 1991) at the 

University of Aberystwyth (pollen) and Hull University (Pediastrum and charcoal) for 

core UT2/94 and The University of Birmingham (pollen) and Hull University 

(Pediastrum and Charcoal) for core LPC/05. In all cases preparation included the 

addition of one Lycopodium tablet, dissolved in 10% hydrochloric acid (HC1), a sodium 

hydroxide (KOH) treatment to remove humic acids, sieving with a 150um mesh to
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remove large organics, washing with hot sodium pyrophosphate to remove clay particles 

and a hydrofluoric acid (HF) treatment to remove silica. This was followed by acetolysis 

to remove lignin and cellulose. A few drops of 0.2% aqueous safranin solution were 

added to each sample, to enhance the characteristics of pollen grains and Pediastrum 

colonies, before washing with tertiary-butyl alcohol (TBA) to dehydrate the samples. The 

residues were mounted on microscope slides with glycerine jelly (UT2/94) or silicon oil 

(LPC/05). Pollen identification was carried out by Johnson (1998) to a depth of 7.50m 

for the UT2/94 sequence and by Andrew Moss (University of Birmingham) to a depth of 

6.90m for LPC/05. The Upper Talley data were presented by Johnson (1998) as part of a 

palynological study that also incorporeted a second core from the Lower Talley lake, 

which lies adjacent to the Upper Talley lake.

The percentage pollen data were displayed using TILIA (Grimm, 1991) and TG View 

(Grimm, 2004). Biostratigraphic zone boundaries were defined by application of the 

constrained incremental sum of squares clustering technique, using CONISS (Grimm, 

1987) on square root transformed data and zones were referred to as UTPZ (Upper Talley 

Pollen Zone) and LPPZ (Llyn Pencarreg Pollen Zone). Land pollen data was limited to 

human indicators to highlight human impact within the lake catchments (e.g. 

deforestation and agricultural activity), whilst non arboreal pollen (NAP) was expressed 

as a percentage of total land pollen (TLP) and presented graphically to provide an 

estimate of changes in land-use for the length of the core. The percentage aquatic pollen 

and spore data were also presented with the limnological data in the final multiproxy 

analysis to enable the comparison of changes in habitat availability with the process of

107



eutrophication. 

4.2.8.1 Data Analysis

Charcoal particles were counted using the Clark (1982) point count method under a Leica 

DMLS at a magnification of x 400. The systematic approach involved counting the 

number of charcoal 'hits' on fifty random fields of view per slide or continuing until at 

least ten Lycopodium grains were observed. Charcoal concentration was calculated using 

equation 4 (Clark, 1982).

(4)pi

Where;

h = number of hits

Af = area of field of view (0.00233 cm2)

L = number ofLycopodium spores added to each sample (10,679 per tablet)

1 = number ofLycopodium spores counted in each sample

p = number of points on the graticule (202)

W = volume of sediment processed (0.5cm3 )

The resulting charcoal data, expressed in cm2 cm"3 , were presented using TILIA (Grimm, 

1991) and TG View (Grimm, 2004) by comparison with selected pollen taxa. Major 

stratigraphic boundaries were defined by eye based on changes in abundance.
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For Pediastrum analysis twenty-four traverses were made per slide using a Leica DMLS 

at a magnification of x 400. A tally of Lycopodium grains was made at the same time and 

Pediastrum abundance was estimated using equation 5.

P = ((Lt/Lc)xPo)xV (5)

Where;

P = Pediastrum abundance,

Lt = Number of Lycopodium spores in each tablet added to a single sample,

Lc = Number of Lycopodium spores counted for each sample,

Po = Pediastrum colonies observed on the same slide,

V = Volume of sediment processed.

Concentration was expressed as the number of colonies present per cm3 of sediment 

originally prepared. Identification was made to species level using Komarek and 

Jankovska (2001) and specific environmental preferences were taken from Jankovska and 

Komarek (2000) and Komarek and Jankovska (2001). Results were displayed using 

TILIA (Grimm, 1991) and TG View (Grimm, 2004) and presented with the diatom data. 

The concentration of pollen grains in each sample (pollen grains/ cm"3 ) was calculated 

using equation 6.
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Where;

N = Number of pollen grains per cm"3

p = Number of pollen grains counted in each sample

e = Number of Lycopodium counted in each sample

X = Number of Lycopodium in each sample

V= Volume of sediment processed

The concentration for each sample was divided by the original sample volume to produce 

the total number of pollen grains per cm .

To test whether Upper Talley exhibited evidence for alternate stable states, the aquatic 

pollen sum (APS), determined by calculating the total percentage abundance of aquatic 

pollen every 4-8cm, was compared to diatom concentrations (DC) for the same depths, to 

identify shifts between algal (DC) and plant (APS) dominance. Major phases of human 

impact were also marked for comparison.

The Arable/ Pastoral Index, developed by Turner (1964) to reflect contrasts in modern 

agricultural land use at different sites, was used to summarise catchment farming patterns 

in each sequence. The index was derived by expressing the number of Plantago grains as 

a percentage of the combined number of pollen grains from Plantago, Artemesia, 

Chenopodiaceae, Compositae (Asteraceae) and Cruciferae (Brassicaceae) (Turner, 1964). 

Results were displayed graphically and presented with the percentage NAP curve to
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assess changes in land use. Turner's (1964) boundaries for arable (> 15%) and pastoral 

(<50%) regions were used to assess agricultural land-use and values between 15% and 

50% were taken to represent a combination of both types. Phases of human occupation 

were marked to examine the relationship between human activity and changes in land-use 

and allow for between-site comparison of agricultural patterns.

4.3 Sediment Accumulation Rates

Sediment Accumulation Rates (SAR) were estimated using 'psimpolP (Bennett, 1994b), 

which produces values using individual radiocarbon dates, assuming constant rates of 

sediment accumulation between dated sample depths.

4.4 Radiocarbon Dates

4.4.1 AMS Dates: Upper Talley and Single Sample from Llyn Pencarreg

The sampling strategy for 14C radiocarbon dating aimed to provide maximum 

chronological resolution within the constraints of limited funding. Alternate 2cm slices 

from UT2/94 were wet sieved at 250um under warm running water. Residues were dried 

overnight in petri dishes and examined under a microscope at a magnification of x 63. 

Specimens suitable for radiocarbon analysis were removed using a fine, dampened plastic 

bristled paintbrush, cleaned with distilled water and put into individual glass vials then 

stored in the University of Hull cold store at 4°C. Table 4.2 gives a list of materials
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extracted from core UT2/94. Plant macrofossils were stored in a dry environment to 

avoid bacterial and fungal activity and the absorption of CO2 (Wohlfarth et al, 1998).

In December 2004, the Upper Talley samples marked * in Table 4.2 (1 x Corylus 

avellana, 1 x wood fragment, 1 x charcoal taken from 3 samples between 2.52m and 

2.62m and 1 x Potamogeton seeds) were submitted to the SUERC Dating Laboratory in 

East Kilbride for AMS radiocarbon dating. Emphasis was given to terrestrial organics 

weighing between 2-10mg in order to provide enough carbon for analysis. For this 

reason the charcoal from M63a, M64a and M65a were submitted as one sample. 

Justification for the selected horizons is given in Table 4.3.

From Llyn Pencarreg, a sample of well preserved wood from the base of LPC-05 was 

submitted to SUERC for AMS radiocarbon dating in June 2005, to provide initial 

chronological assessment.

4.4.2 Bulk AMS Dates: Llyn Pencarreg

Apart from the piece of wood no other material suitable for AMS dating was found in 

core LPC/05 so a chronology was obtained instead by bulk sediment matrix dating. This 

was not ideal as it can incorporate a mixture of organic matter from a number of sources 

and could produce erroneous dates (O'Sullivan et al, 1973). 4g samples were taken 

using a metal spatula, which was cleaned in distilled water between samples, and placed
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into plastic whirl pack bags. Samples were stored in the University of Hull cold store at 

4°C. Justification for the selected horizons is given in Table 4.4.

4.4.3 Age-depth Model

Age-depth curves were constructed for both cores using linear interpolation (Telford et 

al., 2004). When referred to in the text all inferred ages were rounded off to the nearest 

100 years, i.e. estimated time resolution of the century scale. Although this made it 

difficult to date phases of limnological change exactly, a major aim of the study was to 

reconstruct ecosystem dynamics during the process of eutrophication, thus the timeframe 

produced enough certainty to locate major phases of occupation (e.g. Bronze Age, 

Medieval period) as reasons for long-term limnological change.
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Depth (m)

0.44-0.46

0.92-0.94

0.96-0.98

1.04-1.06

1.16-1.18

2.52-2.54

2.56-2.58

2.60-2.62

4.60-4.62

5.24-5.26

6.12-6.14

7.28-7.30

7.32-7.34

7.96-7.98

8.16-8.18

9.28-9.30

9.36-9.38

9.62-9.64

Sample No.

Mlla

M23a

M24a

M26a*

M29a

M63a*

M64a*

M65a*

M115a

M131a*

M153a

M182a

M183a

M199a

M204a

M232a

M234a

M242a*

Material

8 x Potamogeton seeds

6 x Potamogeton seeds

3 x Potamogeton seeds

7 x Potamogeton seeds

3 x Potamogeton seeds

Charcoal

Charcoal

Charcoal

Pine bud

Wood

2 x Potamogeton

Wood

Almts cone

Burnt organics

Wood

Degraded seeds

Degraded seeds

Nut (Coryhts avellana]

Weight (g)

0.0082

0.0045

0.002

0.0067

0.002

0.0027

0.0026

0.0018

0.006

0.0063

0.0033

0.0085

0.0127

0.0078

0.04

0.0121

0.0079

1.06

Table 4.2 Table showing the materials extracted from core UT2/94 for radiocarbon 

dating.
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Sample Depth 
(m)
1.04-1.06

2.52-2.62

5.24-5.26
9.62-9.64

Material

Potamogeton seeds

Charcoal

Wood
Nut (Coryhis 
avelland)

Justification

To check for a possible carbon reservoir effect 
(Peglar et al, 1989) and provide a chronology 
for the top of the core.
Carbon isotope results indicate a significant 
increase in algal biomass and an increase in 
rates of primary production at this point. 
Increase in diatom abundance and peak in 
ephippia. Decrease in arboreal pollen and 
introduction of agricultural indicators.
Extremely well preserved specimen.
To fix chronology for the core base. Extremely 
well preserved specimen.

Table 4.3 Table justifying the horizons selected for radiocarbon dating for the Upper 

Talley core (UT2/94).

Sample Depth 
(m)
0.02 - 0.03
1.36-1.38

3.40-3.42

5.44-5.46

6.72-6.73

Justification

To fix chronology for the top of the core
Peak in Aulacoseira granulata, DI-TP, diatom concentration and 
ephippia. Decrease in tree pollen.
Decrease in Tabellaria flocculosa and diatom concentration and 
increase in Fragilaria exigua and F. virescens. Decrease in grass and 
herb pollen and increase in arboreal pollen.
Major shift in planktonic and benthic diatom taxa, decrease in DI-TP 
and increase in diatom concentration. Decrease in tree and shrub 
pollen, expansion of grass and herb pollen and increase in aquatic 
macrophyte pollen.
To compare with the AMS date produced from a layer of wood and fix 
chronology for the core base.

Table 4.4 Table justifying the horizons selected for radiocarbon dating for the Llyn 

Pencarreg core (LPC/05).
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CHAPTER 5 

RESULTS FROM THE UPPER TALLEY CORE (UT2/94)

The results from Upper Talley are presented in the following chapter. Chronological data 

are reported based on the age-depth model in Section 5.18, at the end of the chapter.

5.1 Water Chemistry

A set of basic water chemistry measurements taken in March 2005 indicated that Upper 

Talley is circumneutral (pH 6.6), and hypereutrophic, with a total phosphorus (TP) 

concentration of 100 ug I" 1 . In spite of this, the waters are well oxygenated (DO; 93.3%), 

with low conductivity (91 uS cm"1 ).

5.2 Lithology

The lithology description (Table 5.1) indicates that from the core base the sediments 

became increasingly organic rich, with a gradual transition from light to very dark brown, 

consolidated, diatomaceous lake mud, which was at its darkest between 7.00m and 

6.75m. Plant macrofossils comprising seeds, leaves and twigs were present, with a well- 

preserved hazelnut (Corylus avelland) at a depth of 9.62m. Between 6.75m and 6.00m a 

gradual transition to dry, friable, homogenous lake mud occurred with the appearance of
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Depth 
(m)

0- 

1.00-

2.00- 

3.00-

4.00- 

5.00-

6.00-

6.50- 

7.00-

8.00- 

9.00-

10.00-

Boundary 
Depths (m)

2.54-2.50

4.50 - 4.30

7.00-6.50

Laboratory Sediment 
Description

Fine organics with traces of silt 
and clay. Insect remains and 
charcoal present.

Gradual transition to soft, 
brown/green, homogeneous
gyttja.

Gradual transition to dark 
brown, fibrous, organic rich, 
homogeneous mud.

Gradual transition to dry, 
friable lake mud with patches 
of clay.

Plant macrofossils present with 
well-preserved hazelnut at 
9.62m.

Diatomaceous lake-mud 
becoming increasingly dark 
and organic rich towards the 
upper zone boundary.

Munsell 
Description 
(MDKI, 1994)

Olive brown; 
2.5YR4/4

Dark brown; 
10YR 3/3

Brown; 
10YR 5/3

Very dark brown; 
10YR 2.5/2

Brown; 
10YR 5/3

Troel-Smith 
Notation 

JTroels-Smith, 1955)

Ld.3, As.l, Ag+, 
nig.2, strf.O, sicc.2

Lso.2, As.2, Ag+, 
nig.3, strf.O, sicc.2, 
humo.2

Lso.2, As.2, Ag+, 
nig.3, strf.O, sicc.2, 
humo.l,Lf.2

Lso.2, As.2, Ag+, 
nig.3, strf.O, sicc.4, 
elas.2, humo.2

Lso.3, As.l, Ag+, 
nig.2, strf.O, sicc.4, 
elas.3

Table 5.1 A detailed lithology describing the changes in colour and texture of core 

UT2/94

light brown patches of clay between 6.50m and 6.00m. Between 4.50m and 4.30m the 

sediments became increasingly dark brown and organic rich with a fibrous texture. A 

final, gradual transition produced soft, green-brown, homogenous gyttja between 2.54m 

and 2.50m, which continued to the top of the core. Traces of silt and sand were also
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found in the upper sequence along with the appearance of macro-charcoal and insect 

remains.

5.3 Magnetic Susceptibility

The magnetic susceptibility results for the core sections from 9.90m to the sediment- 

water interface are given in Figure 5.1 (taken from Johnson, 1998). Apart from high 

values for the basal ca. 50cm of the sequence, magnetic susceptibility values were 

relatively stable. A minor increase began at a depth of 3.75m, which peaked at a depth of 

2.20m. This was followed by a brief fall then a second increase, which began at 1.60m 

and continued to the upper zone boundary where values decreased sharply.

5.4 Organic Content

In UTOZ-1 (Figure 5.1) organic content was low at the core base (20%), rising to 54% at 

a depth of 9.66m then falling sharply to 35% at the top of the zone. A consistent rising 

trend subsequently continued throughout UTOZ-2 to a depth of 6.22m in UTOZ-3 where 

a maximum percentage of 67% was produced. Organic content then decreased sharply to 

34% at a depth of 5.95m, followed by an increase to 61% at 5.74m.
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In UTOZ-4 percentages fluctuated significantly between a maximum of 60% and a 

minimum of 35% with an overall decreasing trend to 34% (4.34m). A general decreasing 

trend continued throughout UTOZ-5, from 45% at a depth of 3.95m to 16% at a depth of 

2.50m, producing the minimum percentage of the entire sequence. Values immediately 

increased to 28% at the top of the zone (2.3m), followed by a general increasing trend to 

35% at 1.10m in UTOZ-6. Finally, above 1.10m and throughout UTOZ-7, organic 

content fluctuated but remained relatively low between a maximum of 26% and a 

minimum of 20% at the top of the core.

5.5 Calcium Carbonate (CaCO3)

content fluctuated for most of the sequence (Figure 5.1). In UTOZ-1 a base 

percentage of 7.0% marked the start of a decreasing trend which continued into UTOZ-2, 

culminating in a value of 3% at 8.20m. This was followed by values fluctuating between 

5-12% to a depth of 7.0m in UTOZ-3. Between 7.0m and 6.30m values decreased to the 

minimum of the core (1%) followed by a sharp increase to 9% at 6.40m. Percentages in 

the upper part of UTOZ-3 fluctuated between 5% and 10%. In UTOZ-4 CaCO3 was 

relatively stable with an overall decreasing trend to 2% at a depth of 4.50m. Following 

an increase to 12% at 3.60m, low values (mean = 4%) continued into UTOZ-6 with an 

increase to 8% at 1 .30m. Finally, in UTOZ-7, values increased from 2% at the zone base 

to 15% at the top of the core, producing the maximum of the entire sequence (15%)
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5.6 Carbon: Nitrogen (C/N) Ratio

In UTOZ-1 (Figure 5.1) a C/N ratio of 10.0 is observed at the core base followed by a 

steady increase to a value of 17.0 at a depth of 8.30m in UTOZ-2. Values are then 

relatively stable varying between 15.7 and 19.9 with a mean of 17.0. This continued into 

UTOZ-3 with an increase to 17.5 at the top of the zone. In UTOZ-4 C/N ratios decreased 

from a value of 19.5 (the maximum value of the core) at 5.30m to 16.7 at a depth of 

4.34m. From 3.95m in UTOZ-5, C/N ratios decreased from 18.7 to 14.1 at a depth of 

3.20m, then increased to 17.0 at 3.00m, followed by a sharp decrease to 6.1 (2.30m). 

This, the minimum recorded for the sequence, was immediately followed by a sharp 

increase to 16.2 at the base of UTOZ-6. In UTOZ-6 and UTOZ-7 values formed a 

decreasing trend tol 1.3 at the top of the core.

5.7 Stable Carbon Isotopes (513C)

The results of 5 13C analysis are given in Figure 5.1. In UTOZ-1 an initial value of-22.0 

%o at the core base decreased sharply to -29.0 %o at a depth of 9.70m then more gradually 

to -30.5 %o at a depth of 9.20m in UTOZ-2. Between 9.00 and 6.75m relatively stable 

values were recorded between a minimum of-29.0 %o and a maximum of-31.0 %o, apart 

from a decrease to the minimum value of the entire sequence (-32.5) at 8.50m (UTOZ-2). 

In the upper part of UTOZ-3, 5 UC values increased to -29.0 %o at a depth of 5.60m. 

UTOZ-4 displayed a gradual decreasing trend, which continued into UTOZ-5 where a 

value of-30.4 %o was produced at 3.18m. A sudden increase to -28.6 %0 at 2.54m was
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followed by relatively stable values around a mean of-28.7 %o which were observed for 

the remainder of UTOZ-5 and into UTOZ-6 to a depth of 1.26m. Above this latter depth, 

5 13C values decreased to -28.1 %o at the top of the zone. In UTOZ-7 values finally 

decrease from -28.5 %o at the zone base to a value of-29.5 %o at the top of the core.

5.8 Carbon Isotope Analysis of Modern Plant Samples

The results of carbon isotope analysis of modern vegetation (Table 5.2 and Figure 5.2) 

indicated that the 5 13 C values of individual species fell within the expected range (-25.0 

%o to -39.0 %o) (Meyers and Teranes, 2001). C/N ratios, however, did not clearly 

represent the expected signatures for algae or  3 land plants; algae produced a high C/N 

ratio of 13.6, whilst terrestrial Urtica was lower than expected (6.9). Aquatic 

macrophytes fell within a wide range of values predicted by Boutton (1991), with 

Sparganium producing a low C/N ratio of 6.6 and Phragmites producing the highest 

value (37.7).

Plant Type and date of collection
Sparganium (22/03/05)
Urtica (22/03/05)
Moss from inlet (22/03/05)
Algae from lake edge (22/03/05)
Moss from lake edge (24/03/05)
Poaceae (24/03/05)
Sphagnum (24/03/05)
Juncaceae (22/03/05)
Phragmites (24/03/05)

81JC (%o)
-28.2
-30.2
-30.3
-27.8
-28.9
-30.1
-29.2
-30.4
-29.5

C/N Ratio
6.6
6.9
7.3
13.6
19.4
8.2
22.1
21.9
37.7

Table 5.2 Table showing the 5 13C (%o) and C/N composition of modern vegetation 

samples from Upper Talley lake and its immediate catchment.
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Figure 5.2 Diagram showing the elemental and carbon isotope compositions of organic 

matter in modern vegetation samples from Upper Talley lake and the local catchment 

compared to Meyers and Teranes (2001) classification of bulk organic matter from 

lacustrine algae and Cj land plants.
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5.9 Diatom Analysis

Diatom preservation was excellent throughout, with a total of 114 taxa present. 31 taxa 

were present at >4% in at least one sample (Table 5.3). The results of diatom analysis, 

expressed as percentage counts for taxa occurring at >4%, are given in Figure 5.3. Zones 

defined by CONISS were named Upper Talley Algal Zones (UTAZ).

UTAZ-1: 9.90 - 9.80m (ca. 9.7 - 9.3 k cal. yrs. BP)

The diatom assemblage at the base of the core mainly comprised benthic taxa. These 

included Sellaphora pupula, Navicula rhyncocephala, Navicula radiosa, Gomphonema 

parvulum, Gomphonema gracile, Eunotia bilunaris, Cymbella silesiaca, Cymbella 

elginensis, Anomoeoneis vitrea, Achnanthes minutissima and Cocconeis placentula. A 

range of benthic Fragilariales (Fragilaria construens var venter, F. pinnata, F. ulna, F. 

vaucheriae, F. virescens and F. exigud) were also present. Of the planktonic taxa, 

Tabellaria Jlocculosa was the most common at 20%.

UTAZ-2: 9.80 - 8.50m (ca. 9.3 - 6.9 k cal. yrs. BP)

A marked and abrupt transition occurred at the zone boundary to an assemblage 

dominated by planktonic Aulacoseira granulata, Stephanodiscus minutulus and 

Cyclotella stelligera. The relative abundance of A. granulata increased at the expense of 

C. stelligera, reaching a maximum of 80% at a depth of 9.20m.
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Species Name

Achnanthes minutissima
A. lanceolata
A. subatomoides
Anomoeoneis vitrea
Asterionella formosa
Aulacoseira distans
A. granulata
Cocconeis placentula
Cyclotella distinguenda 
var. unipunctata
C. meneghiniana
C. ocellata
C. pseudostelligera
C. stelligera
Cymbella silesiaca
C. ventricosa
Eunotia bilunaris
E. pectinalis
Fragilaria capucina var. 
gracilis
F. construens var. venter
F. crotonensis
F. exigua
F. pinnata
F. ulna
F. vaucheriae
F. virecens
Gomphonema angustatum
G. parvulum
Navicula radiosa
N. rhyncocephala
Stephanodiscus mmutulus
Tabellaria flocculosa

EDDI 
Code
XXG997
XXG978

AN9999
AS001A
XXG956
XXG988
XXG977
XXG992

CY003A
XXG991
XXG971
XXG968
CM103A
CM001A
XXG949
XXG946
N/A

FR002C
XXG985
XXG961
XXG995
XXC917
FR007A
XXG961
XXG978
XXG938
NA003A
NA008A
XXG974
XXG981

TP Optima (\ig r1 ) 
transformed from 
logio
24.5
123.0

N/A
44.0
12.5
112.2
132.0
13.5

251.0
34.0
40.0
19.0
16.2
91.2
15.5
33.5
N/A

51.50
30.0
16.0
34.0
N/A
53.0
16.0
N/A
64.5
30.2
85.8
40.0
15.0

———————————————————————————————————

Trophic Preference

Mesotrophic
Eutrophic

Meso-eutrophic
Meso-eutrophic
Mesotrophic
Hypereutrophic
Hypereutrophic
Meso- eutrophic

Hypereutrophic
Eutrophic
Eutrophic
Eutrophic
Meso-eutrophic
Eutrophic
Mesotrophic
Meso-eutrophic
Meso-eutrophic

Meso-eutrophic
Meso-eutrophic
Mesotrophic
Meso-eutrophic
Meso-eutrophic
Eutrophic
Mesotrophic
Meso-eutrophic
Meso-eutrophic
Mesotrophic
Eutrophic
Eutrophic
Mesotrophic

Life Form

Benthic
Benthic

Benthic
Planktonic
Planktonic
Planktonic
Benthic
Planktonic

Planktonic
Planktonic
Planktonic
Planktonic
Benthic
Benthic
Benthic
Benthic
Planktonic/ 
Tycoplanktonic
Benthic
Benthic
Benthic
Benthic
Benthic
Benthic
Benthic
Benthic
Benthic
Benthic
Benthic
Planktonic
Planktonic

Table 5.3 Diatom taxa recorded at >4% total diatom abundance in at least one sample of core UT2/94 with 

their EDDI codes (Battarbee et a/., 2001), TP optima (Battarbee et al., 2001), trophic preference 

(Vollenweider and Kerekes, 1981) and ecological life form (Barber, 1981; Germain, 1981; Sims, 1996).
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UTAZ-3: 8.50 - 7.00 m (ca. 6.9 - 4.4 k cal. yrs. BP)

This zone was dominated throughout by A. granulata with the significant co-occurrence 

of S. minutulus, which increased to 15% at 7.15m. Benthic taxa were very rare, with G. 

parvulum being the only benthic taxon with any significant presence, resulting in a zone 

of extremely low diversity.

UTAZ-4: 7.00 - 5.70m (ca. 4.4 - 3.3 cal. yrs. BP)

A. granulata continued to dominate in this zone, although a notable reduction in 

abundance at the zone base was followed by an increase to 75% at 6.50m and a reduction 

to 30% at 6.00m. The decrease in A. granulata and loss of S. minutulus at 6.80m was 

matched by a corresponding increase in the relative abundance of centric, planktonic taxa 

characterised by C. stelligera, C. distinguenda var. unipunctata, C. pseudostelligera, C. 

ocellata, Asterionella formosa and A. distorts. In the benthic group C. silesiaca made a 

notable reappearance at the zone base rising to 10% at 6.10m, whilst Gomphonema 

angustatum, Fragilaria capucina var. gracilis and Eunotia pectinalis appeared for the 

first time.

UTAZ-5: 5.70 - 4.20m (ca. 3.3 -1.2 k cal. yrs. BP)

From the zone base the planktonic taxa recorded in Zone 4 increased in abundance at the 

expense of A. granulata. At a depth of 4.80m, however, A. distans, C. distinguenda var.
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unipunctata. C. ocellata and C. pseudostelligera disappeared, and C. stelligera, A. 

formosa decreased markedly in relative abundance.

UTAZ-6: 3.95 - 2.50m (ca. 1.1 - 0.7 k cal. yrs. BP)

As A. granulata abundance decreased, T. flocculosa, A. distorts, A. formosa and C. 

stelligera increased in abundance. This was accompanied by a increase in the relative 

abundance of benthic taxa (F. pinnata, F. vaucheriae, E. bilunaris, C. silesiaca, A. 

minutissima, A. vitrea, A. subatomoides and A. lanceolata) and the introduction of new 

species (Fragilaria crotonensis and Navicula stroemii). Zone 6 was thus a high diversity 

zone with a general increase in the relative abundance of both planktonic and benthic 

taxa, although planktonic species abundance decreased significantly at the top of the 

zone.

UTAZ-7: 2.50 - 1.00m (ca. 0.7 - 0.4 k cal. yrs. BP)

Zone 7 was marked by a clear initial increase in the relative abundance of C. stelligera, 

which dominated to a depth of 1.50m then decreased sharply. This was matched by an 

increase in A.distans and C. meneghiniana, which appeared for the first time at 1.30m 

and increased markedly thereafter. C. ocellata reappeared at the zone base at low 

abundance and increased at the upper zone boundary. The latter increase in planktonic 

taxa was accompanied by a trend towards increased relative abundance of many benthic 

taxa (eg. A. minutissima, C. silesiaca, F. construens var. venter, F. crotonensis, F.
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pinnata, C. placentula, G. parvulum and E. pectinalis) at the expense of A. vitrea, F. 

capucina var. gracilis and A. subatomoides.

UTAZ-8: 1.00 - Om (ca. 0.4 - 0.0 k cal. yrs. BP)

The relative abundance of benthic F. pinnata increased from 10% at the zone base to 

30% at the top of the core, dominating Zone 8 and accompanied by notable increases in 

the planktonic, centric species C. stelligera, C. ocellata and C. meneghiniana. A. 

granulata reappeared at the zone base and increased in abundance towards the top of the 

core, whilst benthic species either decreased at the zone base (e.g., G. parvulum, A. 

minutissima, F. crotonensis) or increased towards the midzone then decreased at the top 

of the core (eg. E. bilunaris, C. placentula, N. radiosa, N. rhyncocephald).

5.10 DI-TP Reconstruction

The results of the DI-TP reconstruction are given in Figure 5.3. Good representativity of 

fossil taxa in the modern dataset (99%) indicates that the reconstruction is likely to be 

reliable. The sample specific errors of prediction and confidence intervals estimated by 

bootstrapped coefficient of determination are given in Figure 5.4 with an RMSE boot 

value of 0.27.
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Figure 5.4 Scatter plot of the sample specific errors of prediction for Upper Talley (UT2/94) 
estimated by bootstrapping and presented with error bars
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The overlap in error bars indicates that fluctuations in DI-TP are not statistically 

significant. The dominant taxa are both abundant and well represented in the training set, 

but they are all common, morphologically variable taxa which are merged in the EDDI 

training set and have broad tolerance ranges (e.g. A. granulata N2 = 32.3; Tol = 0.43 logic 

Kg I' 1 ; C.stelligera N2 = 24.7; Tol = 0.35 log]0 ug I"1 ; F. pinnata N2 = 53.9; Tol = 0.50 

logio ug I"1 . Although they include classic eutrophic species, statistically, they are not 

strong indicator taxa. The results are therefore presented, but interpreted with caution. In 

UTAZ-1 to UTAZ-4 the trend in DI-TP values was controlled largely by fluctuations in 

the relative abundance of the eutrophic taxa A. granulata and S. minutulus.

In UTAZ-1 (a single, outlier sample), the DI-TP estimate was 25.0 ug I"1 . This increased 

in UTAZ-2 to 50.0 jag I"1 at a depth of 9.75m and again to 150.0 ug I"1 at 9.25m, remaining 

high and stable for the rest of the zone. In UTAZ-3 a further increase to the maximum of 

the entire sequence (256.0 jag I"1) at 7.50m was followed by an abrupt decrease to 45.8 ug 

I"1 at the top of the zone. In UTAZ-4 two marked peaks in DI-TP to 127.3 ug I"1 and 126.6 

ug I"1 at 6.70m and 6.34m respectively, were followed by a decrease to 15.0ug I"1 . DI-TP 

was relatively stable for the whole of UTAZ-5, UTAZ-6 and into UTAZ-7, producing a 

mean value of 16.0 ug I"1 , then increased gradually to a peak of 33.1 ug I"1 at 1.94m. A 

decrease to 19.0 ug I"1 was followed by an increase to 28.0 ug I"1 . Finally, in UTAZ-8, DI- 

TP increased to 33.8 ug I"1, and decreased to 26.4 ug I"1 at the top of the core.
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5.11 Diatom Concentrations

At the core base (Figure 5.3) the diatom concentration was the minimum for the sequence 

(l.lxlO7 cm"3), increasing thereafter to stable, higher values with a mean of 3.0x107cm~3 , 

from the base of UTAZ-2 to the top of UTAZ-3. In UTAZ-4 values increased sharply 

and to 1.87xl08cm~3 (6.80m), the maximum for the sequence. A general decreasing, 

although fluctuating, trend followed in UTAZ-5 and -6 to a value of 7.0xl07cm~3 at 

3.00m depth. At the top of UTAZ-6 concentration increased sharply to 9.2xl07cm"3 . In 

UTAZ-7 an increase from 5.1xl07cm"3 (2.30m) to 1.12xl08cm"3 (1.25m) was followed by 

a general decreasing trend to 5.3xl07cm"3 at the top of the core.

5.12 Data Analysis

5.12.1 Detrended Correspondance Analysis (DCA)

DCA axis 1 (Xi = 0.582) and DCA axis 2 (k2 = 0.131) explained 22% and 18% of the 

variance in the diatom percentage data, respectively, indicating that a relatively high 

proportion of the total percentage variance was summarised in the first two axis. A 

scatter plot of Axis 1 against Axis 2 (Figure 5.5) of the species scores indicates that the 

first axis may represent a nutrient gradient and thus that P could have had a major 

influence on species composition and distribution. A. granulata (XXG988) and S. 

minutulus (XXG974) plot closely together and have high scores on Axis 1. These taxa 

are characteristic of high epilimnetic P and turbid conditions.
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Nutrient tolerant G. angustatum (XXG978) can also be found in the same ordination 

space to the right of Axis 1. Meso-eutrophic diatoms such as F. vaucheriae (FR007A), F. 

pinnata (XXG995), F. leptostauron (FR014A) and N. pupula (XXG930) with TP optima 

of 53.0 ug I" 1 , 34.0 ug I" 1 , 57.5 ug I" 1 and 47.0 ug I" 1 , respectively, plot in the centre of the 

range. The underlying pattern was less clear for oligo- to mesotrophic taxa. Taxa with 

low scores on Axis 1 included mesotrophic taxa such as A. exigua (AC008A), Caloneis 

silicula (CA003A) and F.crotonensis (XXG985), which have TP optima of 48.0 ug I" 1 , 

32.0 fig I" 1 and 30.0 ug I" 1 respectively. These plotted in the same ordination space as F. 

nitzchoides (FR042A), C. ventncosa (CM001A), which have high TP optima of 115 ug 1" 

1 and91.2ugr1 .

Although TP is probably the major floristic influence, the lack of a clear gradient may be 

due to the influence of other limnological variables such as pH (e.g. A. carissima; 

AC152A, A. lapponica; AC038A and A. rupestris; AC118A). Changes in pH could also 

be associated with the process of eutrophication or, of course, acidification, producing a 

more complex nutrient gradient than expected. The spread of species scores on DCA1, 

for example, may also suggest a gradient associated with the presence of aquatic 

macrophytes, which can change in abundance with trophic status particularly in shallow, 

eutrophic lakes where an increase in turbidity can cause a shift from benthic taxa 

characteristic of the clear water, macrophyte dominated state to planktonic taxa 

associated with organic pollution and high light attenuation. Taxa supporting this 

interpretation include Achnanthes clevei (AC006A), A. linearis (AC002A) and Cymbella 

elgmensis (CM051A) at the high end of Axis 1, A. carissima (AC 152A) and Fragilaria
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leptostauron (FRO 14A) in the middle range and A. exigua (AC008A) and F. nitzschoides 

(FR024A) at the low end. The gradient may also be associated with changes in lake 

level, which can cause a shift in the planktonic:benthic ratio as the depth of the photic 

zone changes with lake depth.

A plot of Axis 1 scores against depth (Figure 5.6) followed the same pattern as the diatom 

based phosphorus reconstruction (DI-TP) and the abundance of taxa associated with 

enrichment, particularly A. granulata (Figure 5.2). This shows that the diatom 

assemblages are tracking changes that are related to P concentrations and, although other 

environmental variables or interactions between variables may be influencing changes in 

the diatom flora, nutrient availability has a highly significant effect on species 

distribution.

5.12.2 Hills Diversity Index (N2)

Figure 5.7 shows that species diversity displayed an approximately inverse relationship 

with the DI-TP reconstruction and the abundance of A. granulata. The results support the 

idea that an increase in P concentrations and productivity are often accompanied by a 

decrease in species richness and abundance (Scheffer, 2004).
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5.13 Cladocera Ephippia

In UTEPHZ-1 (Figure 5.8) ephippia abundance increased from 0.05 g" 1 ds at the core 

base to a peak of 0.9 g" 1 ds at a depth of 8.13m. A decrease to 0.05 g" 1 ds at a depth of

6.93m followed. In UTEPHZ-2 ephippia presence immediately increased to 0. 9 g" 1 ds at 

a depth of 6.53m followed by a final decrease to 0.05 g" 1 ds at 4.60m. At the base of 

UTEPHZ-3 ephippia were mainly absent, then abundance increased sharply and 

significantly from 0.1 g" 1 ds at 3.00m to 1.45 g" 1 ds at 2.53m. This was followed by a 

return to low abundance at the upper zone boundary. Finally, in UTEPHZ-4 ephippia 

presence was low (ca. 0.05 g" 1 ds) to a depth of 29cm then increased rapidly to the 

maximum of the entire sequence (1.5 g"1 ds) at the top of the core.

5.14 Pediastrum

Only two species were observed, Pediastrum boryanum and P. simplex. As can be seen 

in Figure 5.3, three main phases of P. boryanum deposition occurred. The first was in 

UTAZ-5 between 5.80 and 5.20m, the second in UTAZ-6 and 7 between 3.75 and 2.50m 

and the third in UTAZ-7 and 8. The latter occurrence began at a depth of 1.80m and 

continued to the top of the core where 72196 cm"3 was the maximum abundance recorded 

in the entire sequence. P. simplex appeared at a depth of 1.00m in UTAZ-8 and increased 

from 235 cm"3 to 1504 cm"3 at the top of the core.
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5.15 Pollen Analysis

Figure 5.9 shows a summary pollen diagram of selected trees, shrubs, grasses, herbs and 

aquatic pollen, which highlight changes in vegetation patterns that may be the result 

of human activity in the Upper Talley catchment. A more detailed description of the 

pollen data from the entire core is presented in Johnson (1998).

UTPZ-1: 7.75 - 6.40m (ca. 5.6 - 3.5 k cal. yrs. BP)

Zone 1 was dominated by arboreal pollen types, which comprised 80% of the sum. 

Following a decrease at 7.25m, Birch (Betuld) pollen percentages increased towards the 

upper zone boundary accompanied by increases in the abundance of Oak (Quercus) and 

Hazel (Corylus avelland) pollen, whilst Alder (Alnus glutinosd) decreased in relative 

abundance from 7.25m. Plantain (Plantago) and Sorrel (Rumex acetosd) and common 

grass (Poaceae) pollen were recorded for the first time. A general increase in aquatic 

macrophyte pollen was also observed characterised by the significant presence of 

pondweed (Potamogetori) and Sedge (Cyperaceae) pollen.

UTPZ-2: 6.40 - 4.50m (ca. 3.5 - 1.2 k cal. yrs. BP)

A general decrease in arboreal pollen percentages was observed, characterised by 

reductions in the relative abundance of Quercus, Betula and C. avellana pollen. The 

relative abundance of A. glutinosa, however, displayed a general increase from 55 % at
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the zone base to 75% at the upper zone boundary. A general increase in herb pollen, 

from 30% at the zone base to 55% at 5.75m, was characterised by a significant increase 

in Poaceae and Rumex acetosa. Other taxa recorded were Barley (Hordeum), Plantago, 

Rose (Rosaceae) and Cabbage/Mustard (Brassicaceae). The increase in aquatic pollen 

percentages noted in the previous zone continued to a depth of 5.75m before decreasing 

to the top of the zone. This was mainly controlled by an increase in pondweed 

(Potamogetori), minor increases in Bur-reed (Sparganium), Buttercup (Ranunculus) and 

Shore weed) Littorella uniflora.

UTPZ-3: 4.50 - 3.00m (ca. 1.2 - 0.8 k cal. yrs. BP)

In Zone 3, although arboreal pollen abundance increased at the zone base, the relative 

abundance of individual taxa was relatively stable with the exception of Ash (Fraxinus 

excelsior), which disappeared from the record at 3.50m. Poaceae pollen percentages 

increased from 15% at 4.30m to 30% at the top of the zone, whilst Heather (Calluna 

vulgaris) percentages also increased from a depth of 3.80m. Little change was observed 

in aquatic macrophyte pollen abundance, apart from a minor increase in Quillwort 

(Isoetes) at 3.10m

UTPZ-4: 3.00 - 2.40m (ca. 0.8 - 0.6 k cal. yrs. BP)

Marked changes were observed in this zone, which was characterised by the reappearance 

of F. excelsior at 2.25m and a reduction in the relative abundance of A. glutinosa and C.
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avellana followed by a considerable reduction in Betula from 42% at the zone base to 

11% at 2.40m. This decrease in Betula abundance was followed by an increase to 20% at 

the top of the zone. At a depth of 2.50m Poaceae pollen increased to the maximum 

percentage of the entire core (67%), followed by an immediate decrease to 21% at the 

upper zone boundary. The increase in Poaceae pollen was matched by a significant 

increase in the abundance of Bracken (Pteridium aquilinum) to 12% at a depth of 2.20m. 

A concurrent increase in the proportion of herbs and cereals was reflected in a general 

increase to 70% at a depth of 2.40 although this was followed by a decrease towards the 

upper zone boundary.

The percentage of aquatic macrophyte pollen displayed a shifting trend in this zone, 

characterised first by a decrease towards the mid-zone (from 32% at the zone base to 

9%), followed by an increase to 31% at 2.10m and finally a decrease to 7% at the top of 

the zone. Changes in aquatic pollen were mainly the result of shifts in the percentage of 

Cyperaceae pollen.

UTPZ-5: 2.40m - 1.10m (ca. 0.6 - 0.44 k cal. yrs. BP)

In this zone the relative abundance of Betula pollen increased to 36% at 1.40m, whilst 

Quercus pollen percentages displayed a general decrease towards the top of the zone. 

These changes were accompanied by a marked increase in the abundance of pollen from 

dwarf shrubs. Aquatic pollen increased in relative abundance to 38% at the top of the
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zone and was mainly characterised by Isoetes, White water lily (Nymphaea alba) and 

Littorella uniflora and the reintroduction of Potamogeton at 1.25m.

UTPZ-6: 1.10 - Om (ca. 0.4 - 0.0 k cal. yrs. BP)

In Zone 6 major changes in arboreal pollen proportions were matched by a corresponding 

increase in the abundance of grasses and herbs. The relative abundance ofBetula pollen 

initially increased from 25% at the zone base to 40% at 50cm, followed by a decrease to 

20% at the top of the core. Quercus pollen also decreased in abundance from 35% at the 

zone base to 12% at the top of the core, accompanied by a decrease in A. glutinosa and C. 

avellana pollen proportions. Corresponding with these changes Poaceae pollen 

abundance increased from 35% at the zone base to 60% at the top of the core, whilst 

overall herb pollen percentages also increased towards the upper zone boundary, 

characterised by increases in P. lanceolata and Brassicaceae. At 0.60cm aquatic pollen 

increased to its maximum percentage of the entire core (57%), characterised by increases 

in Cyperaceae, Potamogeton, Isoetes and Moss (Sphagnum) and, to a lesser extent, 

Ranunculus, Yellow pond lily (Nuphar) and Nymphaea alba. This latter peak in aquatic 

pollen percentages was followed by an immediate decrease to 37% at the top of the core.
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5.15.1 Alternate Stable States

Comparison of diatom concentration (DC) and aquatic pollen sum (APS) is given in 

Figure 5.10. Relatively stable DC values (mean = 25xl06 cm"3) between 7.75m and 

7.00m were followed by a sharp increase to 190 xlO6 cm~3 at a depth of 6.70m. DC then 

displayed a general decreasing trend for most of the core, with marked peaks at 6.00m 

and 2.50m.

APS displayed an initial increase from 8% at the core base to 45% at 5.75m followed by 

a decreasing trend to 5% at 4.00m. Percentages then increased again to 30% at 2.90m 

followed by a sharp decrease to 8% at 2.30m. The APS then displayed a sustained 

increase to 54% at 60cm, which was followed by an immediate decrease to 32% at the 

top of the core. Apart from at a depth of 2.50m, there were no other obvious shifts 

between the two plant groups. With each phase of human impact, however, APS reached 

a limit reflecting a threshold in the growth of aquatic macrophytes. This was 

immediately followed by a decrease suggesting deterioration of the plant community.

5.15.2 Diatom and Pollen Concentrations

The diatom concentration divided by pollen concentration (DC/PC) and the original 

diatom concentration (DC) and for each sample are plotted in Figure 5.11. This analysis 

removes the affect of sediment accumulation from the DC data so that changes observed 

in the DC curve are controlled by factors other than sedimentation. From the core base to
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a depth of ca. 5.30m, removal of the sediment accumulation factor (DC/PC) shows that 

changes in DC can be attributed purely to changes in diatom abundance. The major 

influences on this process are increased diatom production during phases of enrichment 

and changes in silica (Si) concentrations (Anderson, 1989). From a depth of 5.30m the 

DC and DC/PC graphs diverge indicating that changes in the DC trend may have been 

influenced by a combination of sediment accumulation and changes in in-lake diatom 

abundance.

5.15.3 Land-clearance and the Arable/Pastoral Index

The results for Non-arboreal Pollen (NAP) and the Arable/ Pastoral Index (API) are given 

in Figure 5.12. Between 7.68m and 6.70m NAP is ca. 1% reflecting a predominantly 

forested catchment. This was accompanied by a sudden peak in API to 50% at 7.20m. At 

the beginning of the Bronze Age (6.70m) an increase in NAP from 1% to 23% at a depth 

of 6.00m indicates an increase in open ground, followed by a fluctuating trend (between 

10% and 20%) to a depth of 4.30m. This was accompanied by a significant decrease in 

API to 3% at 4.80m indicating that deforestation was accompanied by a sustained 

increase in arable land-use. From 4.30m NAP decreased to 36% at 2.48m, whilst the API 

for this period (medieval) reflects predominantly arable farming with values fluctuating 

between 3% and 10%. From a depth of 2.00m to the top of the core NAP indicates a 

sustained increase from 13% to 48% reflecting an increase in deforestation and open 

ground, whilst the API for this period reflected values between 3% and 10% and a peak 

to 17% at 72 cm.
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5.16 Charcoal Analysis

The results for charcoal analysis are given in Figure 5.9 and are presented with selected 

pollen taxa to enable comparison with shifts in vegetation patterns. Charcoal particles 

were present throughout UTPZ-1 and UTPZ-2, increasing steadily from 2cm2 cm"3 at the 

core base to 8cm2 cm"3 at a depth of 4.46m. In UTPZ-3 charcoal abundance decreased 

significantly then increased to 12cm2 cm"3 at the top of the zone. In UTCZ-4 a maximum 

of 15cm2 cm"3 at a depth of 2.54m was followed by a significantly decrease in UTCZ-5, 

apart from an increase to 9cm2 cm"3 at 1.82m. Finally, in UTCZ-6, charcoal particles 

steadily increased from 6cm2 cm"3 at the zone base to 13cm2 cm"3 at the top of the core.

5.17 Sediment Accumulation Rates

Sediment Accumulation Rates (SAR) for the sequence are given in Figure 5.13 and 

summarised in Table 5.4. Although rather imprecise due to lack of chronological control, 

the observed changes indicate clear increases in SAR during phases of human activity.

Depth (m)

9.97
8.77

6.93
5.33
2.77

0.69

-8.85
-7.09

-5.49
-3.25
-0.85
-0.05

SAR (yr cm'1 )
9.4690
7.6608
13.4969
5.9916
6.7991
9.0066

Table 5.4 Table showing a summary of SAR for the Upper Talley core (UT2/94)
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Figure 5.13 Diagram showing approximate sediment accumulation rates (SAR) for the 
Upper Talley core (UT2/94) based on linear interpolation between dates.
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5.18 Radiocarbon Dates and Chronology

The results of AMS 14C dates (calibrated using the University of Oxford Radiocarbon 

Accelerator Unit calibration program, OxCaB; Bronk Ramsey, 1995) are given in Table 

5.5. Figure 5.14 gives a comparison of these dates with those from Johnson's (1998) 

radiocarbon, cross-correlated horizons from the Lower Talley (Table 5.6). Both sets of 

dates displayed extremely good correlation between 9.30m and 5.25m providing a secure 

chronology. However, above 5.25m the dates from this study were older than the dates 

from Johnson (1998) placing the most prominent synchronous shift of the entire core at 

1365±40 cal. yrs. BP compared to 650 cal. yrs. BP in Johnsons (1998) study. This may 

suggest a dating error possibly from the reworking of sediments or the inwash of 

older/newer carbon from the lake catchment (O'Sullivan et. ai, 1973). Additionally, the 

date at 2.57m was obtained by AMS analysis of charcoal, which by definition can 

produce older dates as it is derived from wood from older arboreal species.

In light of these dates, there may be a possible chronological error in terms of absolute 

dating in the upper part of the Upper Talley sequence, above ca. 2.5m, of up to ca. >700 

radiocarbon years. As such, this part of the sequence should be treated with caution until 

further, higher resolution dating evidence is available. However, when these dates are 

compared to catchment history at Upper Talley, the date of ca. 0.65 k cal. yrs. BP 

corresponds with a well-documented phase of medieval occupation, which included the 

construction of an Abbey and additional ecclesiastical buildings directly on the lake 

shore. Additionally, a phase of limnological impact at ca. 1.3 k cal. yrs. BP suggests
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Figure 5.14 Diagram showing the comparison of age depth curves from SUERC (2005) 
and from Johnson (1998)
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significant human activity around Upper Talley during the 8 th century AD. Post-Roman 

Wales, however, was characterized by a distinct lack of upland settlements, accompanied 

by forest regeneration on the higher grounds possibly reflecting human migration 

associated with the Sub-Atlantic climatic deterioration (Lamb, 1977). A major phase of 

impact during this period would also contradict the statement by Giraldus Cambrensis 

(1146-1223 AD) who in the 12th century describes the Talley Lakes as a 'rough and 

sterile spot, surrounded by woods and trees on every side' suggesting little previous 

impact to the immediate landscape.

Although the more recent dates from SUERC were discarded based on the above 

assessment of documented catchment conditions, the chronology should still be treated 

with caution. Figure 5.15 gives the age-depth curve used for the length of the core based 

on the selected dates. Extrapolation of dates for the remainder of the core allowed for 

comparison with documented phases of human activity within the lake catchment as 

potential causes of limnological change.
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Publication Code

SUERC-4382

SUERC-4410

SUERC-4383

SUERC-4384

Sample Depth 
(m)

1.04-1.06

2.52-2.62

5.24-5.26

9.62-9.64

Measured Age 
(14C yrs BP ±1 o )

895±40

1365±40

1455±35

9310±45

13C %o

-23.4

-30.1

-23.7

-27.7

Table 5.5 Table showing calibrated 14C ages for samples from the Upper Talley core 
(UT2/94).

Bio-stratigraphic 
Horizon

C anna bis peak

Magnetic 

susceptibility peak

LOI (550°C) dip

Ulmus decline

Magnetic 
susceptibility peak

Magnetic 
susceptibility peak

Depth (m) at Lower 
Talley

1.40

2.56

6.16

7.08-6.92

9.16

10.04

Depth (m) at Upper 
Talley

0.8

2.42

5.32

7.68-7.92

10.06

11.20

Correlated 
Radiocarbon Dates 

(cal. yrs. BP)

350

650

1,750

5,550

10,550

12,550

Table 5.6 Table showing the bio-stratigraphic markers and magnetic susceptibility 
horizons cross-correlated from the Lower to the Upper Talley core (Johnson, 1998).
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Figure 5.15 Table showing the final age-depth model for UT2/94 constructed from a 
combination of dates from Table 5.4 and Johnson (1998).
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CHAPTER 6 

RESULTS FROM THE LLYN PENCARREG CORE (LPC/05)

The results from Llyn Pencarreg are presented in the following chapter and, as with 

Upper Talley, the chronological data are reported based on the age-depth model in 

Section 6.18.

6.1 Water Chemistry

A set of basic water chemistry measurements taken in March 2005 indicated that Llyn 

Pencarreg is circumneutral (pH 6.6) and eutrophic (DI-TP; 31 ug I" 1 ). Waters were well 

oxygenated (DO; 93.3%) with a low conductivity value of 72 nS cm"1 .

6.2 Lithology

The core lithology (Table 6.1) indicated that the basal sediments were composed of a firm 

consolidated, very dark brown, fibrous lake-mud, which continued to a depth of 5.80m. 

Plant macrofossils, such as leaves, were present in high abundance between 7.00m and 

5.70m and a layer of well-preserved wood, which inhibited core recovery, was found 

between 6.56 and 6.54m. A gradual transition to a less consolidated, brown, homogenous 

lake gyttja occurred between 5.80m and 5.00m and a second gradual
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Depth 
(m)

0-

1.00-

2.00-

3.00-

4.00-

5.00-

6.00-

7.00-

Boundary 
Depths 
(m)

2.00-1.50

5.80-5.00

6.56-6.54

Laboratory Sediment 
Description

Gradual transition to soft, green-
brown, organic rich,
unconsolidated gyttja.

Gradual transition to brown
homogenous lake mud
Layer of wood.

Firm consolidated, very dark
brown lake mud with plant
macrofossils, which remain
throughout the core.

Munsell 
Description
(MDKI, 1994)

Olive brown;
2.5YR4/4

Brown;
10YR5/3

Very dark brown;
10YR 2.5/2

Troel-Smith 
Notation
(Troels-Smith, 1955)

Ld.2, As.2, Ag+,
nig.l, strf 0, sicc.2,
elas 2-3, Ld.2-3,
Dh.2

Lso.2, As.2, Ag+,
nig. 2, strf), sicc.2,
elas.2-3, Ld.2-3,
Dh.2
Lso.2, As.2, Ag+,
nig. 3, strf.O, sicc.2,
elas.3, Ld.2-3, Dh.2

Table 6.1 A detailed lithology describing changes in the colour and texture of core 
LPC/05

transition to soft, green-brown, organic-rich unconsolidated gyttja occurred between 

2.00m and 1.50m. This unit continued to the top of the core.

6.3 Magnetic Susceptibility

The results for magnetic susceptibility are given in Figure 6.1. In LPOZ-1 magnetic 

susceptibility was initially stable (mean -0.7) with a maximum value of-0.2 at 6.10m. 

An initial decrease in LPOZ-2 was followed by a sharp increase to 0.2 at 5.70m and a 

further decrease to -0.2 at the upper zone boundary. In LPOZ-3 relatively stable values
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were followed by a decrease from 0.2 at 4.50m to -1.0 at 4.00m, producing the minimum 

of the sequence. In LPOZ-4 magnetic susceptibility was relatively stable (mean -0.5) to 

a depth of 2.50m, then displayed a sustained increase, which continued to 1.30m in 

LPOZ-5 where a value of 1.1 was recorded. The latter increase was followed by a sharp 

decrease to -0.5 at the upper zone boundary. Finally, in UTOZ-6 values initially 

fluctuated around a mean of 0.25 then, from 10cm, increased sharply to the top of the 

core producing the maximum of the entire sequence (1.5).

6.4 Organic Content

In LPOZ-1 (Figure 6.1) organic content remained exceptionally high, falling between 

84% and 92%, with the maximum of the entire sequence (92%) at the core base. Above a 

depth of 5.28m (LPOZ-2) organic content decreased suddenly and sharply to 37%. 

Values then remained relatively stable (mean 44%) to a depth of 3.50m (LPOZ-3) 

followed by an increase to 63% at 3.28m. An immediate decrease to 50% in LPOZ-4 

was followed by stable values to the top of the zone (mean 55%). In LPOZ-5, organic 

content produced a peak (68%) at 1.75m then decreased to 30% at the top of the zone. 

Finally in LPOZ-6, organic content decreased sharply to 15% at 3.5cm, producing the 

minimum of the entire sequence, followed by a final increase to 27% at the top of the 

core.
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6.5 Calcium Carbonate (CaCO3)

In LPOZ-1 (Figure 6.1) sedimentary CaCO3 content fluctuated between 1% and 5% 

(mean 3%) followed by an increase to 9% at 5.20m in LPOZ-2. Percentages decreased to 

a mean of 2% in the upper part of LPOZ-2, which continued into LPOZ-3 to a depth of 

4.00m, where a value of 15% was produced. Lower values (ca. 2%) were maintained to 

the upper zone boundary where percentages increased to 8% (3.95m). An initial decrease 

at the base of LPOZ-4 was followed by relatively stable values (mean 6%) and a decrease 

to 1% at a depth of 2.00m. In UTOZ-5 an increase to 12% at 1.55m was followed by a 

decrease to 4% at the top of the zone. Finally in UTOZ-6, estimated CaCOa content 

increased towards the upper zone boundary, fluctuating sharply between a minimum of 

1% and maximum of 13% then increased to the maximum of the entire sequence (28%) 

atl.5cm.

6.6 Carbon Nitrogen (C/N) Ratio

The C/N profile (Figure 6.1) displayed a general decreasing trend towards the top of the 

core. A basal value of 21.8 in LPOZ-1 was followed by a fluctuating trend with a value 

of 22.4 at the top of the LPOZ-2 (5.40m). Ratios decreased for the whole of LPOZ-3, 

with a sudden decrease to 12.5 at a depth of 3.60m, followed by a sharp increase to 16.6 

at the upper zone boundary. In LPOZ-4 ratios formed a gradual decreasing trend to 13.6 

at the upper zone boundary then in LPOZ-5 values increased to a peak of 15.5 at a depth 

of 1.36m before decreasing back to 13.0 at the top of the zone. Finally, in UTOZ-6
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values decreased sharply from 14.5 at the zone base to 10.7 at the top of the zone, 

producing the minimum value recorded in the entire sequence.

6.7 Stable Carbon Isotopes (813C)

In LPOZ-1 (Figure 6.1) a basal value of-32.4 %o immediately increased to -30.9 %o at 

6.68m. Although 5 13 C fluctuated, a general decreasing trend followed to a value of-33.0 

%o at a depth of 5.60m (LPOZ-2). At the top of UTOZ-2, 513 C increased sharply to -29.4 

%o (5.36m). In UTOZ-3 values fluctuated between a maximum of -28.0 %o and a 

minimum of -29.0 %o then increased sharply to -26.5 %o at 3.60m, producing the 

maximum ratio of the sequence. This was followed by a decrease to -28.6 %o at the top 

of the zone. A general increase in UTOZ-4 produced a value of -27.4 %o at the upper 

zone boundary and in LPOZ-5, a sharp decrease to -29.1 %o at 1.52m was followed by an 

increase to -27.1 %o (1.32m). Finally, C/N ratios in LPOZ-6 increased from -28.1 %o to 

-27.0 %o, at 9.5m, followed by a decrease to -27 %o at the top of the core.

6.8 Carbon Isotope Analysis of modern plant samples

The results of carbon isotope analysis of modern vegetation (Table 6.2 and Figure 6.2) 

indicated that with the exception of Urtica, Alnus glutinosa and mosses, 8 13C values fell 

within the expected ranges for algae and €3 land plants (-25 to -30). Although algae fell 

within the expected C/N range (7.2) (Meyers and Teranes, 2001), the values for terrestrial
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plants were not clearly represented. Figure 6.2, for example, shows that Rumex, Poaceae, 

mosses and Urtica produced C/N values, which fell within the algal range (4 - 10).

Plant Type and Date of Collection

Alnus glutmosa seeds (22/03/05)

Catkins (22/03/05)

Urtica (22/03/05)

Rubus fruticosus leaves (22/03/05)

Poaceae (22/03/05)

Juncaceae (22/03/05)

Rumex (22/03/05)

Moss (22/03/05)

Algae from lake edge (22/03/05)

Phragmites (22/03/05)

Sphagnum (22/03/05)

5UC (%«)

-30.3

-29.6

-30.1

-29.3

-30.0

-29.2

-29.6

-30.3

-29.4

-29.4

-29.3

C/N Ratio

19.9

33.5

6.5

20.1

8.6

21.2

8.4

7.3

7.2

37.7

20.1

Table 6.2 Table showing the 8 13 C (%o) and C/N results of modern vegetation samples 

from Llyn Pencarreg and its local catchment.
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Figure 6.2 Diagram showing the elemental and carbon isotope composition of organic 

matter in modern samples from Llyn Pencarreg compared to the classification of bulk 

organic matter from lacustrine algae and C3 land plants (Meyers and Teranes, 2001)
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6.9 Diatom Analysis

The preservation of diatom frustules was poor towards the core base and diatoms were 

missing completely below 6.14m. Above this depth a total of 55 taxa were found to be 

present. 47 taxa were present at >2% in at least one sample (Table 6.3). The results of 

diatom analysis, expressed as percentage counts for taxa occurring at >2%, are given in 

Figure 6.3. The decision to display taxa occurring at >2% (rather than >4% as displayed 

at Upper Talley) was based on the presence of taxa in the bottom sample, which were 

significant to the overall interpretation and were excluded from the profile at >4%. 

Biostratigraphic boundaries were defined with the aid of CONISS (Grimm, 1987). Zones 

were named Llyn Pencarreg Algal Zones (LPAZ).

LPAZ-1: 6.90-5.95m (ca. 5.2 - 4.6 k cal. yrs. BP)

From a depth of 6.14m to the top of LPAZ-1 the diatom assemblage was composed of 

planktonic (Aulacoseira granulata, Cyclotella stelligera, C. meneghiniana, 

Stephanodiscus minutulus, Asterionalla formosa and Tabellaria flocculosa) and benthic 

(Amphipleura pelucida, Navicula menisculus, N. recens, N. saxophila, N. cryptotenella, 

N. cryptocephala, Cymbella silesiaca, Achnanthes minutissima, A. lanceolata, Nitzschia 

palaea, Cocconeis placentula, Eunotia bilunaris, Fragilaria virescens, F. exigua, F. 

capucina var. gracilis, F. pinnata and Amphora Hbyca) taxa. A. granulata was the most 

common with an abundance of ca. 40%.
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Species Name

Achnanthes lanceolata
A. minutissima
A. subatomoides
Amphipleura pellucida
Amphora libyca
Anomoeoneis 
brachyseira
Asterionella formosa
Aulacoseira distans
Cocconeis placentula
Cyclotella 
meneghiniana
C. ocellata
C. stelligera
Cymbella affmis
C. silesiaca
Eunotia bilunaris
Fragilaria capucina
F. capucina var. 
gracilis
F. capucina var. 
perminuta
F. exigua
F. pinnata
F. vaucheriae
F. virescens
Frustula rhomboides
Gomphonema 
angustatum
G. gracile
G. parvulum
Navicula 
cryptocephala

EDDI 
Code

XXG978
XXG997
AC136A
AP001A
AM011A

AN9999
AS001A

XXG977

CY003A
XXG991
XXG968
CM022A
CM103A
XXG949
FR009A

FR009H

FR009J
XXG961
XXG995
FR007A
XXG961
FU002A

XXG940
GO004A
XXG938

NA007A

TP Optima (ug I'1 ) 
transformed from 
EDDI Iog10 values
125.36
24.62
19.67
24.05
74.25

44.01

132.09

254.41
34.49
18.46
16.89
16.52
15.26
22.06

50.91

15.98
34.62
52.84
15.98
14.04

49.82
37.27
65.89

56.33

Trophic Status

Hypereutrophic
Mesotrophic
Mesotrophic
Mesotrophic
Eutrophic

Meso - eutrophic

Hypereutrophic

Hypereutrophic
Eutrophic
Mesotrophic
Mesotrophic
Mesotrophic
Mesotrophic
Mesotrophic

Eutrophic

Mesotrophic
Eutrophic
Eutrophic
Mesotrophic
Mesotrophic

Eutrophic
Eutrophic
Eutrophic

Eutrophic

Life Form

Benthic
Benthic
Benthic
Benthic
Benthic

Benthic
Benthic

Benthic

Planktonic
Planktonic
Planktonic
Benthic
Benthic
Benthic
Benthic

Benthic

Benthic
Benthic
Benthic
Benthic
Benthic
Benthic

Benthic
Benthic
Benthic

Benthic
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N. cryptotenella
N. menisciilus
N. minima
N. pupula
N. recens
N. rotunda
N. saxophila
N. submeniscula
Neidium alpinum
N. bisulcatum
Nitzschia bacillum
N. palea
N. linearis
Pinnularia divergens
P. microstauron
P. subcapitata
Stauroneis anceps
Stephanodiscus 
minutulus
Tabellaria flocculosa

XXG979
XXG966
NA042A
XXG930

NA090A

NA134A
NE006A
NE004A
NI211A
XXG976
XXG927
PI008A
PI011A
PI022A
SA001A

XXG974
XXG981

25.09
51.01
83.95
47.82

26.08

39.99
12.18

14.11
80.25
109.64

25.65
58.10
20.97

40.12
14.81

Eutrophic
Eutrophic
Eutrophic
Eutrophic

Meso - eutrophic

Eutrophic
Mesotrophic

Mesotrophic
Eutrophic
Eutrophic

Meso - eutrophic
Eutrophic
Mesotrophic

Eutrophic
Mesotrophic

Benthic
Benthic
Benthic
Benthic

Benthic

Benthic
Benthic
Benthic
Benthic
Benthic
Benthic
Benthic
Benthic
Benthic
Benthic

Planktonic
Planktonic

Table 6.3 Diatom taxa recorded at >2% abundance in at least one sample of core LPC/05 

with their EDDI codes (Battarbee et ai, 2001), TP optima (Battarbee et at., 2001), 

trophic preference (Vollenweider and Kerekes, 1981) and ecological life forms (Barber, 

1981; Germain, 1981; Sims, 1996).
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LPAZ-2: 5.95-5.40m (ca. 4.6 - 4.2 k cal. yrs. BP)

A marked and abrupt transition occurred at the zone boundary characterized by the 

replacement of A. granulata, C. stelligera, C. meneghiniana and S. minutulus with 

Stauroneis anceps and C. ocellata and the loss of many benthic taxa. C. ocellata 

abundance immediately increased to 85% and dominated the zone. At a depth of 5.50m 

T. flocculosa plus a range of benthic taxa (S. anceps, C. silesiaca, N. cryptotenella, A. 

lanceolata, Cymbella affmis, Neidium alpinum, Pinnularia subcapitatd) increased in 

relative abundance.

LPAZ-3: 5.40-3.90m (ca. 4.2 - 3.2 k cal. yrs. BP)

A second major transition occurred at the zone base marked by significant increases in T. 

flocculosa and S. anceps at the expense of C. ocellata, which decreased to 15% before 

disappearing from the record. T. flocculosa immediately increased to 60% relative 

abundance and dominated the entire zone. Planktonic Asterionella formosa and a range 

of benthic taxa reappeared or were recorded for the first time (Anomoeoneis brachyseira, 

Frustulia rhomboides, Navicula alpinum, Pinnularia divergent and P. subcapitatd) in 

this zone.

LPAZ-4: 3.90-2.75m (ca. 3.2 - 2.2 k cal. yrs. BP)

Although T. flocculosa continued to dominate assemblages in this zone it gradually 

decreased to 30% relative abundance at the upper zone boundary, partly in response to
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the increase in A. granulata, C. ocellata, A. formosa and benthic S. anceps. F. virescens 

and F. exigua increased in abundance at the zone base at the expense of P. subcapitata 

and N. alpinum, whilst the P:B ratio increased generally towards the top of the zone in 

response to the introduction of new benthic taxa (Fragilaria capucina var. perminuta, F. 

capucina, F. vaucheriae and Pinnularia polyoncd). These trends produced a high 

diversity assemblage for the entire zone.

LPAZ-5: 2.75-1.40 (car. 2.2 - 1.1 k cal. yrs. BP)

The co-dominance of T. flocculosa and S. anceps continued with both forming peaks of 

50% and 10% respectively at a depth of 1.85m before decreasing towards the upper zone 

boundary. The zone base was marked by increases in the abundance of other benthic taxa 

including N. palea, F. capucina var. gracilis, F. pinnata, N. pupula, N. minima and A. 

brachyseira. A. granulata proportions increased significantly in one sample (to 50%) at a 

depth of 1.35m. Among the benthic taxa F. exigua and F. virescens continued to increase 

in relative abundance, peaking at 58%.

LPAZ-6: 0.22 - Ocm (ca. 0.1 - 0 k cal. yrs. BP)

Following a gap in the core sediments between 1.40m and 25cm, planktonic A. granulata 

abundance declined and was replaced by increases in T. flocculosa and A. formosa at the 

midzone where C. ocellata was also recorded. A wide range of benthic taxa continued to 

be present (C. silesiaca, E. bilunaris, F. virescens, F. exigua, F. capucina var. gracilis, F.
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pinnata, F. capucina, N. cryptocephala, N. submeniscula, N. pupula, N. alpinum, N 

bisulcatum, P. subcapitata, A. brachyseira, G. parvulum, N. cryptotenella, A. 

minutissima, N. palea, N. minima, F. rhomboides, G. angustatum and P. divergens) and 

showed changes in abundance and species replacement at the mid zone.

6.10 DI-TP Reconstruction

The results of DI-TP reconstruction are given in Figure 6.3. Good representation of fossil 

taxa in the modem dataset (98%) indicates that the reconstruction is likely to be reliable. 

The basal DI-TP estimate of 59.6 jug I"1 was the maximum of the sequence and was 

followed by an immediate decrease to 26.0 ug I"1 at 5.90m in LPAZ-2. An increase to 

35.0 ug I"1 (5.60m) was then followed by a decrease to 17.7 ug I"1 the upper zone 

boundary. In LPAZ-3, and to a depth of 3.20m in UTAZ-4, DI-TP estimates were 

extremely stable (mean 13.3 ug I" 1 ). An increase to ca. 19.0 ug I"1 persisted to a depth of 

1.85m in LPAZ-5 and was followed by a further gradual increase to a sharp peak of 53 ug 

1 A at 1.30m. Finally, in LPAZ-6 DI-TP decreased from 34.9 ug I"1 at the zone base to 

11.5 ug I"1 at 10cm, followed by an increase to 25.3 ug I"1 at the top of the core.

The sample specific errors of prediction and confidence intervals estimated by the 

bootstrapped coefficient of determination are given in Figure 6.4 with an RMSE boot 

value of 0.34. The overlap of error bars indicates that fluctuations in DI-TP are not 

statistically significant. As in Upper Talley, the dominant taxa are both abundant and 

well represented in the training set, but they are all common, morphologically variable
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Figure 6.4 Scatter plot of the sample specific errors of prediction for Llyn Pencarreg (LPC/05) 
estimated by bootstrapping and presented with error bars
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taxa which are merged in the EDDI training set and have broad tolerance ranges (A. 

granulata N2 = 32.3; Tol = 0.43 logio ug I" 1 ; C. ocellata N2 = 29.8; Tol = 0.36 logic ug I" 1 ; 

T.flocculosa N2 = 29.1; Tol = 0.42 Iogi 0 ug I" 1 ). Although they include classic eutrophic 

species, statistically, they are not strong indicator taxa. The results are therefore 

presented, but interpreted with caution.

6.11 Diatom Concentration

In LPAZ-1 and -2 (Figure 6.3) the low abundance of diatom frustules and extremely high 

relative proportion of microspheres prevented the calculation of concentration densities. 

At the base of LPAZ-3 an estimated concentration of 2.4xl05 cm"3 gradually increased to 

4.1xl07 cm"3 at 4.20m. A steady and sustained decrease followed and continued into 

LPAZ-4 where a concentration of 6.7xl06cm"3 was produced at a depth of 2.84m. At the 

upper zone boundary diatom concentrations began to increase, rising to 6.2xl07 cm"3 at 

2.20m. Following a decrease to 9.00xl06 cm"3 at 1.40m concentrations peaked sharply to 

an estimate of 3.5xl07 cm"3 (1.32m). Finally, in LPAZ-6, diatom concentrations increased 

from 1.5xl07 cm"3 at the zone base to 1.6xl07 cm"3 at a depth of 1cm.
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6.12 Data Analysis

6.12.1 Detrended Correspondence Analysis (DCA)

DCA axis 1 (X, = 0.572), DCA axis 2 (X,2 = 0.209) and DCA Axis 3 (X3 = 0.057) 

explained 35%, 13% and 4% of the variance in the diatom percentage data, respectively, 

indicating that a moderately high proportion of the total percentage variance was 

summarised in the first two axes. Apart from samples from LPAZ-2, which form a cluster 

with high scores on Axis 1, the majority of Llyn Pencarreg samples cluster together with 

low scores on Axis 1. This reflects the fact that the most significant element of variance 

in the diatom data is between LPAZ-2, during the lake's early history. Species with high 

scores on Axis 1, which characterise LPAZ-2, include C. ocellata (CY009A) and A. 

lanceolata (ACOOIA). To explore variance over the rest of the sequence to the present 

day in more detail, a plot is given in Figure 6.5 of Axis 2 against Axis 3.

The distribution of diatom taxa is not clearly driven by nutrient status. Although 

mesotrophic P. microstauron (PI011A), A. subatomoides (AC136A) and N. bacillum 

(NI211A) (TP optima; 25.7 ug I'1 , 19.7 ug I"1 and 14.1 ug I" 1 respectively) plot closely 

together in the same ordination space with high scores on Axis 2, species of low trophic 

status with low scores can also be found (e.g., E. bilunaris; XXG949, C. silesiaca; 

CM103A, C. qffinis; CM022A and F. exigua; XXG961).
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Taxa of high trophic status are similarly distributed with N. linearis (XXG927), A. 

granulata (XXG988) and C. placentula (CO9999), which have TP optima of 109.6 ug I' 1 , 

133.5 ug I" 1 and 132.1 jig I" 1 respectively, spread along Axis 2. The results suggest that 

the underlying pattern of species distribution is complex and may be influenced by 

multiple factors such as temperature and pH. For example, taxa with low pH (e.g. P. 

subcapitata (PI022A); pH 4.9 and G angustatum (GO003A); pH 4.0) plot to the left of 

the diagram, whereas species with relatively high pH optima (e.g. T. flocculosa 

(XXG981); pH 7.1, P. microstauron (PI011A); pH 6.8, P. divergens (PI008A); pH6.5) 

plot to the right (Battarbee, 2004). When Axis 1 is plotted against core depth (Figure 

6.6) the resulting trend follows a similar pattern to the abundance of the dominant taxon, 

T. flocculosa.

6.12.2 Hills Diversity Index (N2)

Figure 6.7 shows that species richness and abundance fluctuated significantly. To a depth 

of 3.25 m values mirrored the trend in benthic taxa. From the core base a shift from 6.1 

(6.14m) to 2.0 (5.56m) was followed by an increase to 6.9 (5.32m). Diversity values 

immediately decreased again to 3.9 at 3.84m followed by a sustained increase to 5.4 at 

3.32m. A gradual decreasing trend followed, with a value of 2.3 at 1.56m, which then 

increased to 5.7 at 1.32m. Diversity finally decreased from 3.6 at 22.5cm to 2.9 at the 

mid-zone (10cm) followed by a final increase to 5.56 at the top of the core.
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6.13 Cladocera Ephippia

Ephippia were absent for most of the sequence (Figure 6.8). Two major peaks in 

abundance were noted, the first in LPEPHZ-2 at a depth of 1.31m where 0.55 g" 1 ds were 

observed producing the maximum of the sequence. The second was at 22cm where 0.3 g" 

1 ds were recorded followed by a decrease to 0.1 g" 1 ds at a depth of 10cm.

6.14 Pediastrum boryanum

Only one species, Pediastrum boranum, was found (Figure 6.3). Apart from an increase 

to 500 cm"3 at a depth of 4.40m (LPAZ-3), Pediastrum colonies were recorded at low 

density in LPAZ-1 to LPAZ-4. In LPAZ-5 a marked peak at 1.75m was the maximum 

value for the sequence (3000 cm"3 ). Finally, in LPAZ-6 Pediastrum abundance increased 

to 2500 cm"3 at 15cm followed by a decrease to 200 cm"3 at the top of the core.

6.15 Pollen Analysis

Results of pollen analysis are given in Figure 6.9, showing selected trees, shrubs, grasses, 

herbs and aquatic pollen. The results of CONISS (Grimm, 1987), based on the total 

species count, and resulting biostratigraphic zones are also displayed.
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LPPZ-1: 6.90m - 6.20m (ca. 5.2 - 4.7 k cal. yrs. BP)

This zone was dominated by arboreal pollen (98%). At the core base Quercus pollen 

comprised 38%, Corylus avallana 22%, Alnus glutinosa 22% and Betula 8%. Betula and 

Quercus pollen percentages were relatively consistent for the entire zone, whilst Corylus 

avellana pollen percentages increased to 40% at the upper zone boundary. This was 

accompanied by a decrease in Alnus glutinosa pollen to 10% at the top of the zone. 

Ulmus, Fraxinus excelsior, Pinus sylvestris and Tilia pollen were also present from the 

core base and Salix pollen was first recorded at 6.55m. The non-arboreal land pollen 

component consisted of grasses and herbs (e.g. Plantago lanceolata, Urtica, Pteridium 

aquilinum and Filipendula).

The count of aquatic pollen was negligible and mainly characterized by Cyperaceae with 

occasional spores of Isoetes lacrustis, I. echinospora and Equisetum. Sphagnum spores 

were also present at the top of the zone.

LPPZ-2: 6.20m - 5.40m (ca. 4.7 - 4.2 k cal. yrs. BP)

Zone 2 was still dominated by arboreal pollen types. Quercus pollen percentages 

remained at ca. 38% to a depth of 5.60m then decreased to 22% at the top of the zone, 

whilst Betula, Alnus glutinosa and Corylus avellana pollen percentages fluctuated in 

abundance. Ulmus and Fraxinus excelsior pollen remained at low abundance and Tilia 

pollen disappeared from the record at the zone base followed by Pine (Pinus sylvestris) at
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a depth of 5.95m. Grass and herb pollen remained low at ca. 2%, although Plantago 

lanceolata pollen and Pteridium aquilinum spores percentages showed a minor increase 

towards the upper zone boundary, whilst Hordeum-type, Rumex acetosa and Ranunculus 

acra-type were first recorded at the top of the zone. No change was observed in the 

aquatic pollen and spore component.

LPPZ-3: 5.40m - 3.45m (ca. 4.2 - 2.9 k cal. yrs. BP)

Arboreal pollen percentages decreased from 63% of the land pollen sum at the zone base 

to 40% at the top of the zone. Betula pollen proportions remained constant throughout, 

whilst Alnus glutinosa, Corylus avellana and Quercus pollen displayed a steady decline 

in relative abundance, with the largest decrease at the top of the zone. Fagus sylvatica 

pollen was first recorded at the zone base and Tilia and Pinus sylvestris pollen were 

observed again from 5.15m and 5.00m respectively. Corresponding with these changes 

the proportion of herbs increased significantly and Poaceae pollen increased from 20% at 

the zone base to 50% at the top of the zone. Plantago lanceolata and Rumex acetosa 

pollen and Pteridium spores also increased in abundance at the zone base where other 

herb taxa associated with agricultural and pastoral activity were first recorded (eg. 

Apiaceae, Brassicaceae, Jasione montana, Artemesia-type, Aster-type, Rumex acetosella 

and Trifolium).

In this zone aquatic pollen and spores displayed a peak in relative abundance (12%) at a 

depth of 4.90m due to an increase in I. lacrustis spore abundance and the appearance of 

Ranunculus aquatilis pollen and /. echinospora and Sphagnum spores in the record.
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Cyperaceae pollen continued to be present and Potamogeton-type pollen was recorded in 

just one sample at a depth of 5.00m. Following this peak, aquatic pollen and spores 

decreased in relative abundance to 5% at the top of the zone.

LPPZ-4: 3.45m - 1.85m (ca. 2.9 - 1.4 k cal. yrs. BP)

In LPPZ-4, the proportion of arboreal taxa increased to 70% at the zone base at the 

expense of grass and herb pollen taxa. This shift was sustained to the top of the zone. 

Although minor shifts were observed in the abundance of Alnus glutinosa, Corylus 

avellana and Quercus pollen, the increase in arboreal taxa was mainly the result of 

increases in the abundance of Betula, which increased to 30% at 3.75m, and Salix, which 

increased to 7% at the zone base. These increases were matched by a decrease in the 

relative abundance of Poaceae pollen to 20% at the zone base, whilst decreases were also 

observed in Plantago lancoelata, Rumex acetosa and Pteridium aquilinum abundances. 

Oenanthe pollen appeared in the record for the first time at a depth of 2.20m.

Aquatic pollen and spore abundance remained low at ca. 4% and was comprised mainly 

oflsoetes lacustris spores and Cyperaceae pollen.

LPPZ-5: 1.85m - 1.25m (ca. 1.4 - 0.9 k cal. yrs. BP)

Arboreal pollen maintained a mean abundance of 65% to the mid-zone then decreased to 

43% at the upper zone boundary. This shift was due to decreases in Betula, Alnus
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glutinosa, Corylus avellana, Quercus and Salix pollen abundances following a significant 

increase of the latter at the zone base. Poaceae pollen proportions remained consistent at 

20% to a depth of 1.60m then displayed a minor increase in relative abundance to 22% at 

the top of the zone. This was accompanied by increases in the percentages of Plantago 

lanceolata, Hordeum-type and Rumex acetosa pollen and the first records of Cannabis 

saliva and Plantago media. Pteridmm aquilmum spores also displayed a significant 

increase in abundance towards the upper zone boundary. No change was observed in 

aquatic macrophyte pollen and spores, which remained constant at ca. 5% and were 

composed mainly oflsoetes spp. spores and Cyperaceae pollen.

LPPZ-6: 25cm - 0 (ca. 0.1 - 0 k cal. yrs. BP)

From the zone base to the top of the core a significant decrease in arboreal pollen was 

observed, including decreases in Betula percentages from 18% to 3%, Alnus glutinosa 

percentages from 13% to 2%, Corylus avellana percentages from 20% to 6%, Quercus 

percentages from 20% to 9% and Salix percentages from 5% to 2%. The major decrease 

in arboreal taxa was matched by an increase in Poaceae from 20% to 55%. Hordeum- 

type, Rumex acetosa pollen and Pteridium aquilmum spores were also present and a 

significant increase in the relative abundance of Plantago lanceolata percentages was 

recorded. Aquatic pollen and spore abundance expanded to its maximum abundance of 

the entire core (18%) at a depth of 7cm linked to a substantial increase in Isoetes spp. 

spore percentages.
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6.15.1 Alternate Stable States

Comparison of the diatom concentration (DC) and aquatic pollen sum (APS) is given in 

Figure 6.10. Following a significant peak in APS at 5.00m, results indicated a steady 

decrease during the Bronze Age. The decrease correlated with an increase in DC, which 

peaked at 4.20m and may represent a shift from plant macrophyte to algal domination. 

APS remained low throughout the medieval period and DC peaked at 1.30m suggesting 

increased diatom production. Above the gap in core sediments DC remained constant, 

while APS fluctuated. A decrease to mid-zone was followed by a significant increase, a 

peak in production and a final decrease to the top of the core.

6.15.2 Diatom and Pollen Concentrations

Comparison of DC divided by PC with the original DC for each sample is given in Figure 

6.11. Once the sediment accumulation factor is removed from the DC curve, the two 

graphs are comparable and suggest that variations in DC were not influenced by sediment 

accumulation rate. This suggests that within-lake abundance was directly influenced by 

factors such as increased diatom production during phases of enrichment and changes in 

silica (Si) concentrations (Anderson, 1989).
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6.15.3 Land-clearance and the Arable/Pastoral Index

Non-arboreal Pollen (NAP) and the Arable/Pastoral Index (API) are given in Figure 6.12. 

Between 6.80m and 5.50m (during the Neolithic period) API fluctuates considerably 

(max; 50% at 6.50m, min; 9% at 6.20m), suggesting variability in agricultural land-use, 

whilst a mean NAP value of ca. 1% indicates that farming activities took place in a 

predominantly forested catchment. A steady increase in NAP during the Bronze Age 

from 5% at 5.50m to 65% at 3.50m indicates a sustained increase in open ground. API 

shows that tree clearance was accompanied by a trend towards arable farming, which 

continues to a depth of 3.30m, where a value of 3% suggests predominantly arable land- 

use.

A decrease in NAP from 65% at 3.30 to 26% at 3.00m at the end of the Bronze Age 

suggests some forest regeneration, followed by relatively stable values throughout the 

Iron and Roman periods, and into the Post-Roman period to a depth of 1.55m (25%). API 

indicates that land-use remained predominantly arable, which continued into the medieval 

period to a depth. Medieval forest clearance, however, is indicated by the significant 

increase in NAP from 26% at 1.57m to 51% at 1.22m. Above the gap in core sediments 

NAP increases sharply from 32% at 22cm to a maximum value of 78% at the top of the 

core reflecting further increases in open ground. API displays an increase to 18% at the 

mid-zone followed by a decrease to 11% at the top of the core, though land-use remained 

predominantly arable.
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6.16 Charcoal Analysis

The results for charcoal analysis are presented along with selected pollen taxa to enable 

comparison with shifts in vegetation patterns (Figure 6.9). LPPZ-1, LPPZ-2 and LPPZ-3 

have relatively low values with a mean of 0.23cm2 cm"3 . In LPPZ-4 a gradual increase 

began, which continued into LPPZ-5 where a peak of 2.79cm2 cm"3 at 1.72m was the 

maximum of the entire sequence. This was followed by a decrease towards the upper 

zone boundary. Finally, in LPPZ-6 charcoal abundance increase from 1.3cm2 cm"3 at the 

zone base to 2.20cm2 cm"3 at the top of the core.

6.17 Sediment Accumulation Rates

Approximate Sediment Accumulation Rates (SAR) are given in Figure 6.13 and 

summarised in Table 6.4. The observed changes indicate increases in SAR during phases 

of medieval and modern occupation, though the results are not definitive due to the poor 

chronological control.

Depth 
(m)
6.81-6.57

6.49-1.45

1.37-0.9

0.1 -0

SAR
(yr cm "')

6
3
8
1

Table 6.4 Table showing a summary of SAR for the Llyn Pencarreg Core (LPC/05)
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Sediment Accumulation Rate (SAP) 
(yr cm -1 )

10

o

Q. 
0) 
Q

50 -

100

150 

200

250 -

300 -

350 -

400 -

450 -

500 -

550

600 -

OCf)OOU

700

—— 1

Figure 6.13 Diagram showing approximate sediment accumulation rates (SAR) 
for the Llyn Pencarreg core (LPC/05) based on linear interpolation between dates
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6.18 Radiocarbon Dates and Chronology

The dating of lake sediments is notoriously difficult due to the combination of organic 

matter from a number of different sources that may include both 'old' and 'new' organic 

material, which can potentially contaminate the sample; realistically, a comparatively 

large number of radiocarbon dates are necessary to obtain a reliable sequence and 

reconstruct past sediment accumulation rates (Bennet, 1994). This was not possible in 

the present study and due to a lack of finance the age-depth model for Llyn Pencarreg 

was based on six dates of which two were considered unreliable. Table 6.5 shows that 

the radiocarbon age of a well-preserved piece of wood, taken from between 6.56m and 

6.54m (SUERC-11315), was quoted as 2565 ± 35 cal. yrs. BP. The results of bulk 

sediment matrix AMS 14C dates from SUERC (calibrated using OxCallS) are also given 

in Table 6.5 and as part of the age-depth model in Figure 6.14, which incorporates all the 

AMS dates and highlights the chronological problems associated with the Llyn Pencarreg 

core.

Date 1 (SUERC-13488), taken from a depth of 6.73cm, produced an age of 5035 ± 35 

cal. yrs. BP for the sediments near the base of the core. At the very base of the core, 

Ulmus pollen percentages are slightly higher than those from the subsequent horizon. On 

this basis, it is tempting to suggest that the subsequent reduction, which occurs at the 

same depth as the AMS date, represents the 'Ulmus decline', which first appears in 

British pollen records at ca. 5.2 - 5.0 cal. k yrs. BP (Williams, 2003). Significant 

reductions in Ulmus due to a combination of possible factors such as disease,
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deforestation and the provision of fodder for livestock, correspond with this date at 

several sites in Mid to South Wales, (e.g. Llangorse [70 km southeast], Jones et al., 1985; 

Brecon Beacons [50 km east], Walker, 1982; Rhandirmwyn [40 km east], Chambers, 

1982; Tregaron [22 km northeast] Turner, 1964). The subsequent increase in the relative 

abundance of P. lanceolata coupled with the absence of cereal pollen at Llyn Pencarreg is 

also consistent with patterns of changing vegetation during the Neolithic period 

(Caseldine, 1990). Although sparse, the presence of Neolithic archaeology in the form of 

several axe pieces does reflect human presence within a 4km radius of Llyn Pencarreg 

during this period. This date was therefore retained for the base of the sequence.

Date 2 (SUERC-11315) was the well-preserved piece of wood, which produced a date of 

2565 ± 35 cal. yrs. BP for the sediments at 6.5m depth. Compared to the basal date 

(Table 6.5) this age would appear to be particularly young for this part of the sequence. 

Additionally, if this date is correct sediment accumulation rates for this part of the core 

would be exceptionally high at 137cm2 yr, which is not reflected in the low, stable 

magnetic susceptibility profile and, compared to other sites, is unrealistic for phases of 

human impact during the Neolithic period in a landscape with over 90% arboreal taxa 

(Figure 6.9). Considering that there was some resistance to the piston corer below ca. 

5.0m, it is reasonable to assume that the wood may have originated from higher up in the 

sequence and was displaced by the corer during sediment retrieval. It is also possible that 

the weight of the wood caused it to sink to the deeper sediments over time, or 

additionally, the problems encountered with root penetration, which can lead to the
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production of younger dates, may also be a potential source of younger carbon (Kaland, 

1984). For these reasons Date 2 was considered unreliable.

SUERC-13488 (Date 3) was taken from a major statigraphic horizon at 5.5 m, where 

significant changes in the diatom assemblage, a shift in DI-TP and lithological status, an 

increase in land clearance for arable farming accompanied by increased magnetic 

susceptibility values and a reduction in organic carbon, C/N and arboreal taxa indicate 

major changes in both the lake catchment and within the lake itself. This is followed by a 

significant increase in Poaceae and P. lanceolata and the appearance of cereal pollen, 

possibly reflecting the first signs of settled agriculture in the Llyn Pencarreg region. In 

pollen records from across Britain, arable farming first appears in the pollen record 

during the Bronze Age (Godwin, 1940).

However, whereas palynological evidence generally indicate an increase in cereal pollen 

and associated plants during the early Bronze Age (ca. 4.0 k cal. yrs. BP) in the south of 

Wales (e.g. Nant Helen [100 km southwest], Chambers et al., 1988; Llanllwch [30km 

south], Thomas, 1965; Llangorse [70 km east], Chambers, 1995; Machynys [60km 

south], Lillie et al, 2000) and the mid- Bronze Age (from. 3.0 k cal. yrs. BP) in the north 

(e.g. Cefn Graeanog, Chambers, 1988; Llyn Cororion, Watkins 1990; Bryn y Castell, 

Mighall and Chambers, 1995) this date falls during the Iron Age. Considering that this is 

the first indication of arable farming at Llyn Pencarreg, an estimated age of 2585 ±35 

cal. yrs. BP would appear, given the evidence from elsewhere in Wales, to be too young 

for this part of the sequence. Whilst date 3 lies ca. 1m above the wood sample, and

193



would appear to be from a securely stratified context, if this date were used to calculate 

sedimentation rates then an annual average sedimentation rate of ca. 0.2cm per year 

would be occurring, which would be unsupported in the current analysis due to the 

absence of an increase in LOI at this point in the sequence.

Although not as pronounced as the multiproxy evidence for change at 5.5m, Date 4 

(SUERC-13487) marks a phase of limnological impact at a depth of 3.41m. The 

radiocarbon age of 2845 ±35 cal. yrs. BP places these sediments during the late Bronze/ 

early Iron Age when changes in vegetation patterns were also related to land clearance 

for the mining of metal ores, the construction of fortifications, funerary monuments and 

settlement enclosures (Champion, 1999). The presence of both Bronze and Iron Age 

funerary monuments and Iron Age mottes around Llyn Pencarreg does indicate 

significant human activity in the region during this period. If this date is correct then an 

age of ca. 4.3 k cal. yrs. BP can be estimated for the major stratigraphic change at 5.5m, 

thus producing a date closer to those marked by major phases of Bronze Age activity and 

the introduction of arable farming in this part of Wales. Finally, in relation to date 3, it 

should also be borne in mind that the absolute dating of lake sediments is a complex 

process due to the myriad perturbations in sedimentation regimes, but in light of the 

available dates, there may be a possible chronological error in terms of absolute dating in 

the lower part of the Llyn Pencarreg sequences, below ca. 3.5m, of ca. >1000 

radiocarbon years. As such, the lower part of the sequence should be treated with caution 

until further, higher resolution dating evidence is available for this location.
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Dates 5 and 6 provide a chronology for the upper part of the Llyn Pencarreg sequence 

and place a significant phase of catchment impact during the early medieval period. 

Although it is difficult to validate these dates, if they are correct then the sedimentation 

rates for the upper part of the sequence would equate to a rate ofca. O.lcm per year. This 

rate is commensurate with general sediment accumulation rates identified throughout 

lakes in Britain (e.g. Edwards and Whittington, 2001) and northwest Europe (e.g. 

Korhola et at., 2000).

SUERC Code

SUERC- 13485 (GU- 15021)

SUERC- 13486 (GU- 15022)

SUERC-13487(GU-15023)

SUERC- 13488 (GU- 15024)

SUERC-11315 (GU- 14397)

SUERC- 1 3489 (GU- 15025)

Depth(cm)

2-3

136-138

340 - 342

544 - 546

656 - 654

672 - 674

Estimated Radiocarbon 

Age (cal. yrs. BP)

1.0761 ±0.0045

1030 ±35

2845 ± 35

2585 ±35

2565 ±35

5035 ± 35

14,-
Table 6.5 Table showing the results of bulk AMS C dates for the Llyn Pencarreg core 

(LPC/05).
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CHAPTER 7

INTERPRETATION OF THE RESULTS FROM UPPER TALLEY 

7.1 Introduction

To structure the interpretation of the results from each site, Chapters 7 and 8 are 

divided into three sections, 'Nutrient Status', 'Ecosystem Status' and 'Drivers of 

Limnological Change'. 'Nutrient Status' is interpreted mainly on the basis of diatom 

palaeoecology, supported by DI-TP. The 5 13C profile provides a potential estimate of 

changing rates of primary production and the C/N ratio is used to explore the source 

of organic matter and identify and separate changes in algal biomass from terrestrial 

in-wash. 'Ecosystem Status' is described on the basis of shifts in the diatom 

stratigraphy and diatom diversity (Hills N2 Index). The appearance of Pediastrum 

taxa is taken to represent competition within the algal community and the presence of 

Cladocera ephippia indicates stress within the wider ecosystem. Changes in the 

relative abundance of aquatic macrophytes, reconstructed from changing percentages 

of pollen spores from aquatic plants, are also used to indicate ecosystem status. 

Drivers of Limnological Change' are identified from interpretation of the pollen data; 

inferred changes in catchment vegetation are compared to charcoal abundance, local 

archaeological data and evidence from documentary history to locate possible causes.

For the Interpretation of results from Upper Talley, a summary of key indicators is 

given in Figures 7.la (limnology) and 7.1b (lithology) and provides strong evidence 

for ecosystem response to long-term limnological change. Zonation was undertaken
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visually in order to highlight correlations between significant shifts in the data and 

labelled UTMPZ-1 to UTMPZ-7 (i.e. Upper Talley Multi-Proxy Zones). Figure 7.2 

outlines the potential limnological drivers and compares the predetermined zones with 

the anthropogenic and climatological influences discussed in Section 3.5. Finally, 

Figure 7.3 shows catchment archaeology at Upper Talley as potential evidence of 

direct anthropogenic impact.

7.2 Nutrient Status

UTMPZ-1: 9.90 - 9.40 m (ca. 9.9 - 8.8 k cal. yrs. BP)

During the Early Holocene Upper Talley was a relatively unproductive lake. Figure 

7.la shows that the diatom flora at the core base is dominated by oligotrophic and 

mesotrophic planktonic taxa (e.g. Tabellaria flocculosa', Figure 5.3) and a range of 

benthic taxa. DI-TP increased from mesotrophic (25.0 ug I" 1 ) at the core base, to 

eutrophic (50.0 ug I" 1 ) at the upper zone boundary, with an increase in relative 

abundance of eutrophic planktonic taxa (Aulacoseira granulata and Cyclotella 

stelligera) at the expense of mesotrophic planktonic and benthic taxa. The 

interpretation of relatively low productivity may be supported by low diatom 

concentrations and the subsequent increase in DI-TP is supported by a relative 

increase.

The isotope data cannot be interpreted simply in terms of productivity. Figure 7.1b 

shows that where C/N ratios increase from a basal value of 8.0 to 12.4 at the top of the 

zone, there is a significant decrease in 8 13C from -22.0%o to -29 %o. hi respect to C/N
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analysis, which produces a mean ratio from the organic content within each sample, an 

underlying increase in algal material (C/N<10) may have been masked by a significant 

concomitant increase in terrestrial inwash (C/N>10), which is also reflected in an 

associated increase in organic carbon from 20% at the core base to 38% at the top of 

the zone. At the Florida Lakes, USA, Brenner et al. (1999) found that when terrestrial 

inwash increased, the signal for high algal biomass was concealed within a wide range 

of C/N values, thus preventing discrimination of plant type based on C/N. This 

interpretation of data from Upper Talley is supported by the analysis of modern algal 

and terrestrial plant material (Table 4.3), which also reflects a wide range of C/N 

values (between 6.9 and 22.1). Boutton (1991) argues further that the C/N signal can 

be complicated by the contribution from aquatic macrophytes, which also displayed a 

wide range of C/N values in this study, i.e. 6.6 to 37.7 for emergent species.

The apparent decrease in primary production (8 13C) is unlikely to be due to problems 

of progressive diagenesis of organic material, as changes due to microbial 

decomposition have been shown to be less than in the present study (Hodell and 

Schelske, 1998). The 8 13C results may have been affected by anoxic conditions, which 

can alter the relationship between algae and the uptake of dissolved carbon dioxide 

(CC>2). During nutrient enrichment, oxygen availability within the hypolimnion is low 

since algal blooms restrict oxygen exchange between the water and atmosphere, 

particularly at night when photosynthesis ceases (Mannion and Bowlby, 1992). When 

this process is coupled with the decay of algal blooms, anoxia can occur. Bacterial 

decomposition of organic matter, which releases light 12CO2, may then decrease at the 

sediment-water interface, resulting in subsequent increases in the heavy isotopic 

composition of aqueous COi and thus higher sedimentary 8 13 C values (Wetzel, 1975).
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UTMPZ-2: 9.40 - 7.75 m (8.8 - 5.5 k cal. yrs. BP)

During the Early to Mid Holocene the trophic status of Upper Talley moved into the 

hypereutrophic range. Figure 7.1 a shows that this is marked by a rising trend in DI-TP 

to 125.0 ug I"1 at a depth of 9.25m (ca. 8.4 k cal. yrs. BP), which is driven by an 

associated shift in assemblage composition, with the progressive replacement of 

mesotrophic diatom taxa by those indicative of eutrophic to hypereutrophic waters 

(Aulacoseira granulata and Stephanodiscus minutulus). The low, stable diatom 

concentration may be a function of a turbidity-induced reduction in light penetration, 

which is not uncommon at the height of nutrient enrichment when only a few 

dominant species are present (Kamenir, et al, 2004). Figure 5.9 indicates that aquatic 

pollen and spore percentages increased during this phase, suggesting that aquatic 

macrophytes coverage also increased. Figure 5.10 suggests that the low diatom 

concentrations may alternatively be associated with high rates of sediment deposition.

Figure 7.1b shows that in UTMPZ-2, the broad trend of increasing C/N and decreasing 

8 13C values is the opposite of that expected during increasing eutrophication. The 

consistent increase in organic carbon and the presence of terrestrial plant remains in 

this zone provides strong support for the significant input of allochthonous material. 

As in UTMPZ-1, the lack of indication for algal biomass during this inferred phase of 

nutrient enrichment indicates that the C/N signal cannot always be interpreted simply 

in terms of algal or terrestrial input. Similarly, 8 13C values may have been affected by 

associated factors such as the inwash of soil humus, which has been shown to produce 

values similar to those representing low primary productivity (Jenny, 1980), and 

therefore may not be giving a clear signal of primary production within the lake.
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UTMPZ-3: 7.75 - 5.70 m (ca. 5.5 - 2.3 k cal. yrs BP)

UTZ-3 in Figure 7.la is marked by a final increase in DI-TP to 256 ug I" 1 followed by 

a major decrease to 46.0 ug I"1 at 3.8 k cal. yrs. BP, implying that trophic status 

returned to eutrophic at ca. 4.0 k cal. yrs. BP. Unlike the stable values of UTZ- 2, DI- 

TP then fluctuated within the eutrophic range (90 ug I"1 - 120 ug I"1), A sustained 

reduction in nutrient concentrations to 15ug I" 1 at the upper zone boundary (ca. 2.3 k 

cal. yrs. BP) is driven by an increase in meso-eutrophic species such as Cydotella 

stelligera and C. pseudostelligera (Battarbee et al, 2005). The inference of lower 

productivity is also supported by the relative increase in benthic taxa.

The maximum sedimentary organic content for the sequence (65%) occurs at 6.22 m 

(Figure 7.1b). This does not correlate with high DI-TP and the data is again suggesting 

that the former is not simply related to algal productivity. The increase does, however, 

correlate with an increase in aquatic macrophyte pollen and spores suggesting that 

aquatic plant material, which can also display high 8 13 C values, may have contributed 

greatly to the overall percentage of organic carbon. The increase in diatom 

concentrations in a zone of declining DI-TP is difficult to explain, but may reflect 

increased light penetration. An alternate explanation would be reduced sediment 

accumulation rates, which is indicated by the DC/PC ratio (Figure 5.10), but which is 

not supported by the radiocarbon chronology, which shows a major increase in 

sediment accumulation rate at some point after ca. 5000 cal. yr. BP (Figure 5.12). 

Both C/N and 5 13C values fluctuate slightly in this zone, with a subtle increasing trend 

in 8 13C. These fluctuations may relate to the changing nutrient status inferred from
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DI-TP, but given the inferred complexity of the signal in UTZ-1 and UTZ-2, 

interpretation is difficult.

UTMPZ-4: 5.70 - 4.34 m (ca. 2.3 - 1.2 k cal. yrs. BP)

Low, stable, DI-TP values (mean 16.0ug I" 1 ) occurred throughout the Late Holocene, 

driven mainly by a reduction in the relative abundance of A. granulata and maintained 

by a gradual increase in benthic taxa. However, Figure 7.la shows that although the 

DI-TP profile is stable, there are major fluctuations in diatom species assemblage 

composition. These changes in the diatom community may be associated with changes 

in other environmental parameters, which are discussed below in terms of ecosystem 

stability and baseline states (Section 10.2).

UTMPZ-5: 3.95 - 2.30 m (ca. 1.1 - 0.6 k cal. yrs. BP)

UTZ- 5 is difficult to interpret in terms of nutrient status. Apart from a minor increase 

to 18 ug I" 1 at ca. 0.7 k cal. yrs BP, a mean DI-TP value of ca. 16.0 ug I" 1 was 

maintained during the eleventh to fourteenth centuries AD (Figure 7.la). The low 

relative abundance of planktonic taxa supports an interpretation of mesotrophic status. 

Sedimentary organic content approaches the maximum for the sequence (50%) at the 

start of the zone, but then declines steadily to 16% at 0.7 k cal. yr. BP and is 

accompanied by a gradual transition to soft green-brown gyttja suggesting a decrease 

in allochthonous input. Whilst decreasing organic carbon in the sediment is often 

associated with low productivity, in shallow, eutrophic lakes the higher recycling rate 

of organic matter within the water column during increased algal respiration has been
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seen to produce a decrease in sedimentary organic carbon under conditions of high 

primary production (Meyers and Lallier-Verges, 1999).

Although the measurements largely conflict with inferences of trophic status in this 

core, if interpretable in terms of algal biomass, the sharp decrease in C/N from 17.0 to 

6.1 at the top of the zone (Figure 7.1b) may also support high algal productivity 

(Meyers and Teranes, 2001). It is also tempting to infer that the consistent trend 

towards higher 8 13C values from ca. 0.8 k cal. yrs. BP represents a reliable indication 

of increasing productivity, despite the problems of conflict encountered in the lower 

zones. It is possible that the lack of change in DI-TP is related to sedimentary P 

absorption, which can be tested by analysing the chemical composition of sediment 

matrix and has been found to produce low DI-TP measurements during phases of 

eutrophication (Brenner et al., 1999).

UTMPZ-6: 2.30 - 0.50 m (ca. 0.6 - 0.2 k cal. yr. BP)

Figure 7.la shows that during the fourteenth to eighteenth centuries AD a 

predominantly benthic diatom flora characteristic of meso- to eutrophic conditions 

continued to be present. At ca. 0.6 k cal. yrs. BP DI-TP values exhibited a short-lived 

increase to 33 ug I"1, with a notable increase in the relative abundance of Cocconeis 

placentula and Cymbella ventricosa (Figure 5.3). Both taxa are known to replace 

mesotrophic species during phases of natural and artificial catchment fertilisation in a 

geographically broad range of countries including Turkey (Kilin? and Sivaci, 2001), 

Russia (Kravtsova et al., 2006), Scotland (Eggilshaw and Shackley, 1971) and Wales
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(Bennion, 1995; Bennion et al., 1996a) and have high TP optima of 132 ug 1"' and 98 

u,g I" 1 respectively.

If the interpretation of enrichment in the previous zone is correct, then the observed 

peak in DI-TP in this zone may represent a delayed response linked to the crossing of 

a sedimentary redox threshold where oxidation by a process of electron exchange with 

iron molecules has released sedimentary P into the overlying hypolimnion (Smol, 

2002) (Figure 7.la). This process is common during periods of anoxia in 

hypereutrophic lakes but can also result from lake-bed agitation, changes in water-pH, 

light and temperature (Engstrom and Wright, 1984; Wetzel, 2001) or changes in the 

growth pattern of aquatic macrophytes (S0ndergaard et a/., 2003). The inferred time- 

lag between the height of nutrient enrichment (indicated by the C/N and 5 13C in Zone 

5) and response peak in DI-TP at Upper Talley, however, is ca. 80 years, which 

exceeds the maximum period of 20 years observed by Welch and Cooke (2005).

DI-TP decreased to mesotrophic status thereafter, fluctuating around a mean of 19.0 

ug I" 1 and an increase to 28 ug I' 1 , at ca. 0.4 cal. yrs. BP suggests a return to eutrophic 

status. These latter changes were marked by the introduction of planktonic taxa 

characteristic of nutrient-rich conditions, comprising Cyclotella ocellata and the first 

appearance of the highly pollution-tolerant Cyclotella meneghiniana (Hecky and 

Kilham, 1973; Izaguirre et al., 1993; Romo and Miracle, 2004). DI-TP and 5 I3 C 

values remain high, supported by a corresponding steady decrease in C/N (Figure 

7.1b) suggesting that sedimentary algal biomass increased as DI-TP and productivity 

increased.
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UTMPZ-7: 0.5 - 0 m (0.25 - 0 cal. yrs. BP)

Over the last 250 years of the depositional sequence the record is dominated by 

diatoms indicative of eutrophic conditions. Figure 7.la shows that eutrophication is 

reflected in the increase in DI-TP to 38.0 ug I" 1 at ca. 1.0 cal. yrs. BP (ca. 1949 AD). 

Although a lower value of 26.4 ug I" 1 was produced at 2.5 cm, spring measurements of 

TP are presently in the range of 100.0 ug I" 1 suggesting that P loads have increased by 

at least 70.0 ug I"1 since the 17th century. It also suggests DI-TP estimates may be too 

low for a sample dominated by small Fragilaria taxa (discussed in Section 9.2.1). The 

decrease in sedimentary organic content to 20%, (Figure 7.1b) can be interpreted as 

the consequence of increased recycling of organic material in the water column 

associated with increased primary productivity (Meyers and Lallier-Verges, 1999). 

Decreasing C/N values can then be interpreted in terms of a dominance of 

phytoplankton production over terrestrial inwash. This interpretation, however, is not 

supported by the 8 13C profile, which fluctuates around a mean value of -29.0 %o with 

an overall trend towards slightly lower values suggesting an overall gradual decrease 

in primary production.

7.3 Ecosystem status

UTMPZ-1: 9.90 - 9.40 m (ca, 9.9 - 8.8 k cal. yrs. BP)

In the Early Holocene, significant trends in many of the proxy indicators at Upper 

Talley suggest relatively rapid lake ontogeny. At the core base, the co-dominance of a 

range of benthic taxa (Figure 7.la) indicate that the lake was shallow and
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circumneutral. Benthic taxa were dominated by small Fragilaria spp., which are 

common opportunistic, pioneering species during the expansion of the aquatic 

environment (Rawlence, 1988), although examination of a longer core would be 

necessary to confirm this. Their broad habitat preferences and tolerance ranges makes 

palaeoenvironmental interpretation difficult. Hickman and Reasoner (1998), for 

example, relate their presence to the warmer temperate climate of the Early Holocene 

lakes, whilst Karst and Smol (2000) associate their presence to the colder conditions 

surrounding Arctic lakes.

A common point of these studies, however, is that these species occur in shallow 

(<6m) water, which enables them to photosynthesise on the lakebed. Under these 

conditions the growth of aquatic macrophytes is encouraged and in a study of a 

shallow, eutrophic lake, Sayer, et al. (1999) found the distribution of small Fragilaria 

taxa to be epiphytic, growing on and around the stems ofPhragmites. This implies that 

some Fragilaria have the potential to increase in abundance with corresponding 

increases in the macrophyte community. Although the pollen record for Upper Talley 

is absent before ca. 5.5 k cal. yrs. BP, the presence of small Fragilaria and a range of 

other benthic taxa suggest that this may have occurred at Upper Talley. Clear water is 

supported by the inference of mesotrophic status, whilst the dominance of benthic over 

planktonic taxa suggests low diatom productivity in the open waters and that the lake 

was probably fairly shallow (Likens, 1985).

While not definitive, the absence of Pediastrum colonies in this zone (Figure 7.la), 

which have been found to increase during phases of increased primary production in 

lakes throughout Europe (e.g. Bottema, 1974; Nielsen and Serensen; 1992 Komarek
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and Jankovska, 2001) and disappear at the height of enrichment in favour of toxic 

algae (e.g., Aphanizomenom flos-aquae) (Eilers et al, 2004), also supports low 

productivity. The low abundance of ephippia suggests that Cladocera were mainly 

reproducing parthenogenically and their presence could relate to low winter 

temperatures (Langdon Brookes, 1959). At Aitajarvi Lake in northern Finnish 

Lapland, Sarmaja-Korjorne (1999) found that gamogenesis was probably an effective 

survival tool against the extreme cold of the immediate Post-glacial period. Although 

temperatures at Upper Talley were unlikely to be as extreme as northern Finland, 

where seasonal ice coverage extended well into the Holocene, their presence may 

reflect small seasonal bursts of gamogenesis during the cold winter months (Langdon 

Brooks, 1959).

A subsequent marked trend towards increasing diatom planktonic dominance driven 

by C. stelligera, A. granulata and S. minutulus (Figure 7.la) correlates with major 

increases in the percentage of organic carbon and C/N values, and a decrease in 8 13C 

(Figure 7.1b); however complex the latter indicators are to interpret, this does provide 

evidence for major limnological change. The abundance of C. stelligera is consistent 

with increasing climatic warming and productivity change in the Early Holocene (Platt 

et al., 2004) and the influence of more recent warming trends in the Northern 

Hemisphere (Harris et al., 2006). In this zone of increasing productivity Hills Index 

(Na) indicates that diatom diversity was high at the core base (ca. 14.5) and decreased 

inversely as enrichment increased towards the upper zone boundary.
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UTMPZ-2: 9.40 - 7.0 m (8.80 - 4.3 k cal. yrs. BP)

UTZ-2 exhibits remarkable long-term ecological stability. Figure 7.la indicates that 

diatom assemblages are dominated by A. granulata, which is indicative of turbid 

conditions and low water transparency. A. granulata has been observed to increase 

considerably as a result of vertical mixing during the colder winter months at lakes in 

Brazil (da Silva et al., 2005) and Israel (Zohary, 2004) and can form algal blooms 

which out-compete other species, thereby preventing a more diverse flora from 

developing (Kamenir et al., 2004). Kilham (1986) and Kilham et al. (1996) suggest 

that this is enabled by its heavy silica frustules, which help keep it suspended and 

allow photosynthesis under conditions of low light availability. S. minutulus, present at 

a lower relative abundance, has also been found to grow successfully under conditions 

of low light availability to the extent of forming seasonal blooms (Marchetto et al., 

2004), particularly during spring turnover when waters become turbid due to mixing 

of the water column (Bradbury, 1986). In general, the low diatom diversity of this 

zone (Hills N2 = 1.8) is a direct function of a hypereutrophic state and turbid 

conditions (Hynynen et al., 2004).

At ca. 4.7 k cal. yrs. BP the peak in Cladoceran ephippia (Figure 7.la), corresponding 

with the height of enrichment, might be significant to the diagnosis of ecosystem 

health, nutrient enrichment and associated turbidity. Slusarczyk (2001) found that 

ephippial production can be associated with ecosystem pressure caused by fish 

predation and that gamogenesis is more likely to occur in shallow lakes where the 

effectiveness of vertical migration and escape from predators is low. At B011ing S0, 

Denmark, Bennike et al. (2004) found that changes in ephippia abundance were
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related to the development of predator-prey relationships, which had a direct influence 

on food supplies. Pennack (1989) also found that gamogenesis can occur in response 

to decreases in the amount of food available to female Cladocera. It has also been 

demonstrated that the heavily silicified frustules of the dominant diatom species, A. 

granulata, may render it inedible to Cladocera (Kilham et al., 1976).

Low abundance of aquatic plants would also be expected in a hypereutrophic lake of 

this type and although a record of aquatic pollen and spores is missing until ca. 5.5 k 

cal. yrs. BP, the signal above this is initially low and dominated by Cyperaceae (which 

are typically found at wet margins rather than growing in any significant depth of 

water) (Figure 5.9). A lack of aquatic macrophytes is supported to some extent by the 

lack of plant macrofossils in the sediments from this zone (Table 4.2).

UTMPZ-3: 7.75 - 5.70 m (ca. 5.40 - 2.30 k cal. yrs BP)

The disappearance of S. minutulus from the diatom flora at ca. 4.0 k cal. yrs. BP 

correlates with an increase in the diversity of both planktonic and benthic taxa, and 

marked rises in diatom concentrations and in the abundance of aquatic pollen and 

spores (Figure 7.la). The continued dominance by A. granulata to the mid-zone and 

the appearance of F. pinnata, F. exigua, F. virescens and F. vaucheriae (Figure 5.3) is 

consistent with a shallow, enriched lake environment (Kawecka and Olech, 1973). All 

of these factors are consistent with an increase in water clarity (Karst and Smol, 2000). 

However, trophic status remained high and some species present (e.g. A. granulata, 

ephippia) suggest that conditions at Upper Talley were still nutrient-rich, turbid and 

suffering from ecosystem stress.
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Figure 5.10 shows that diatom concentration may have been influenced by factors 

other than sediment accumulation, namely, an increase in P and in silica (Si), which 

was inferred by Johnson (1998) from sediment chemistry analysis. The potential 

influence of P and Si on diatom concentrations is also demonstrated by Schelske et al. 

(1986). These chemical changes may have been encouraged by the long phase of 

turbidity in the previous zone, which distributes dissolved nutrients throughout the 

water column (Wetzel, 2001). Van Donk and Kilham (1990) found that A. formosa 

and species ofFragilaria are particularly good competitors for these elements.

The mid-zone (ca. 3.5 k cal.yrs. BP) marks the start of long-term dynamic in diatom 

species assemblage composition, which culminates in UTMP-4. This is paralleled by 

an increase in diatom diversity (Hills N2 increased to 10.1 at the top of the zone), the 

disappearance of Cladoceran ephippia, the first appearance of Pediastrum colonies and 

a rise in aquatic pollen and spore percentages (Figure 7.la). A. distans (Figure 5.3) is 

recorded in the diatom assemblage, a species that has an optimum TP of 182mg I" 1 in 

southern England (Bennion, 1994; 1995), 289 ug I" 1 in the Cheshire, Shropshire and 

East Midland Meres (Bennion et al., 1996b) and 145 ug I" 1 at lakes in Wales (Allott 

and Monteith, 1999), but which has also been observed in mesotrophic waters 

following eutrophication at lakes in France (St. Jacques, 2005). Likewise, species of 

Cyclotella have been seen to appear as the water column begins to stabilise following 

phases of turbidity, particularly C. stelligera (Marchetto et al., 2004; Salmaso, 1996). 

Their presence at Upper Talley therefore supports the inferred decrease in nutrient 

availability and turbidity (indicated by a concurrent decrease in A. granulata) at the 

top of this zone.
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Figure 7.la also shows that the increase in Cyperaceae and Potamogeton pollen from 

the mid-zone supports the decrease in nutrient concentrations (Haslam et al, 1975). 

More importantly, the abundance of Cyperaceae can be interpreted as the maturation 

of a fringing zone of emergent taxa in at least part of the littoral zone. This may have 

had a significant influence on wind-induced turbidity, and may explain in part the 

above transition to a lower relative abundance in A. granulata. Potamogeton seeds 

were also recorded (Table 3.2), providing strong evidence for macrophyte growth 

within a few meters of the core site (Zhao et al., 2006). Although the presence of 

green algal P. boryanum colonies is often used as evidence for increased primary 

productivity, and they have been observed to form algal mats during phases of 

eutrophication (Janokovska and Komarek, 2000), at Upper Talley their first 

occurrence in this zone may indicate competition within the phytoplankton community 

as enrichment and the associated turbid conditions decreased.

UTMPZ-4: 5.70 - 4.34 m (ca. 2.3 - 1.2 k cal. yrs. BP)

The trends initiated in Zone 3 of Figure 7. la culminated in a reduction to mesotrophic 

status in the Mid to Late Holocene, with the replacement of A. granulata dominance 

by a diverse diatom flora reflecting increased water clarity. Diatom species continue 

to represent a wide trophic range, whilst diatom diversity continued to increase (Hill's 

N2 ; 18.1). Brenner et al. (1999a) found that at Orange Lake in Florida, USA, a similar 

switch in assemblage composition occurred as turbulent conditions subsided following 

the height of enrichment and the heavier Aulacoseira settled out of the water column 

allowing for the expansion of a range of planktonic taxa.
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Increased phytoplankton diversity is also supported by the presence of P. boryanum, 

which is consistently present at low abundance. High diversity, which represents good 

ecosystem health and protects the community against dramatic change (McArthur, 

1955; Smol, 1992; Moss et al, 1997), may have been supported at Upper Talley by 

clear, mesotrophic waters and the high availability of habitats that accompany these 

conditions (Moss et al., 1997). The low ephippia abundance suggests that Cladocera 

were reproducing by parthenogenesis and reflects a lack of stress within the wider 

ecosystem. The algal communities were relatively dynamic, suggesting that a system 

that appears to be stable is not necessarily static.

A transition in the upper quartile of UTMPZ-4 (after ca. 1.3 k cal. yrs. BP), 

characterised mainly by the loss of Cyclotella species, led to a decrease in the 

planktonic:benthic ratio in the upper zone. This could reflect either a decrease in lake 

depth or increase in light penetration with reduced turbidity (Scheffer, 2004). Figure 

5.9 shows that the stability of the Alnus glutinosa pollen curve does not suggest 

infilling and an associated reduction of the limnic zone, and the concurrent reduction 

of A. granulata is certainly consistent with reduced turbidity, so the latter is the most 

likely explanation.

UTMPZ-5: 3.95 - 2.30 m (ca. 1.1 - 0.6 k cal. yrs. BP)

Following the gap in the sediment record, UTZ-5 of Figure 7. la is characterised by the 

expansion of a range of meso to eutrophic, benthic diatom taxa, many of which were 

present at lower relative abundance in UTZ-4. P. boryanum was also present from the
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zone base at a higher frequency than in the previous zone, suggesting high 

phytoplankton diversity and thus relatively good ecosystem health.

Although 8 13 C clearly increases, indicative of an increase in rates of primary 

production, changes in the diatom flora were subdued, perhaps indicating that a 

marked shift in diatom assemblage composition does not always occur during nutrient 

enrichment. Instead the increase in primary production and sedimentary algal biomass 

was matched by an increase in the relative abundance of diatom taxa. The shift 

between diatom concentration and aquatic macrophyte dominance, inferred in Figure 

5.10 at ca. 0.6 k cal. yrs. BP, suggests that a shift in alternate states may have occurred 

in response to these changes. The decline in P. boryanum abundance at 0.6 k cal. yrs. 

BP and subsequent peak in Cladoceran ephippia immediately prior to the inferred 

height of enrichment may again reflect stress due to changes within the wider food 

chain and a loss of stability between trophic groups (Bennike, et al., 2004).

UTZ-6: 2.30 - 0.50 m (ca. 0.6 - 0.2 k cal. yr. BP)

On the basis of reductions in the abundance of a range of eutrophic taxa (A. distans, G. 

parvulum, E. bilunaris, E. pectinalis, A. minutissima, A. subatomoides and A. vitrea), 

Figure 7. la indicates that by ca. 0.6 k cal. yrs. BP, a degree of recovery is indicated by 

the diatom community. C. stelligera, which increased from the zone base, dominated 

the zone and peaked at ca. 0.50 k. cal. yrs. BP, accompanied by an increase in C 

placentula. Both species are commonly found in productive waters (Huttunen and 

Merilainen, 1983), although at Upper Talley the presence of C. stelligera appears to 

correlate with evidence for the increase and decrease in nutrient status before and after
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enrichment-related high-turbidity episodes, suggesting that it is a positive indicator of 

the threshold between eutrophic and hypereutrophic conditions. At Laguna Chica of 

San Pedro in Chile, Urrutia et al. (2000) found a similar pattern where C. stelligera 

increased in abundance as waters became less eutrophic following enrichment.

F. pinnata (Figure 5.3) also increased from the base of this zone, suggesting that this 

diatom was responding to enhanced enrichment. Similar responses ofF. pinnata have 

been found at Lake St Luis (Reavie et al., 1998), Canada, Llyn Clyd and Llyn Glas, 

Snowdonia, North Wales (Evans and Walker, 1977), and Crowfoot Lake, Alberta 

(Hickman and Reasoner, 1998) and may be related to the growth of certain aquatic 

macrophytes. This is consistent with evidence for a marked rise in the proportion of 

pollen and spores from aquatic taxa such as Cyperaceae, Potamogeton, Isoetes, 

Sparganium, Nuphar lutea and Litorella uniflora in mid-zone (Figure 5.9), indicative 

of a rich macrophyte flora both within and around the lake.

In addition to the return of P. boryanum, this zone marks the first appearance of P. 

simplex, at ca. 0.4 k cal. yrs. BP. The latter appears to be a positive indicator of both 

productive conditions and warm temperatures and has recently been described from 

many lakes throughout Europe (Komarek and Janovska, 2001). Goulden (1970), for 

example, reported it to be present at Lago di Monterosi during its recent history as 

climate became warmer and the lake became more eutrophic. However, P. simplex 

tends to occur mainly at the onset of enrichment and disappears as waters become 

increasingly turbid (Komarek and Janovska, 2001). From ca. 0.5 k cal. yrs. BP, an 

ongoing change is indicated by the first appearance of pollution-tolerant Cyclotella 

meneghiniana in particular. Cladoceran ephippia also appeared in low abundance at
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the same depth indicating that lack of stability was causing stress in the wider 

ecosystem.

UTMPZ-7: 0.5 - 0 m (ca. 0.2 - 0.0 k cal. yrs. BP)

Shifts in the proxy data over the past 200 years correlate well; in combination with the 

continued presence of 'new' taxa, there is strong evidence not only for recent 

eutrophication, but also for a major shift in ecosystem status (Figure 7.la). Increased 

planktonic dominance suggests a reduction in water clarity. Under these conditions a 

switch can occur from plant- to algal-dominance. At Upper Talley a reduction in 

aquatic pollen and spore abundance at the lower zone boundary suggests that the 

balance between aquatic macrophytes and algae shifted in favour of the algal 

community. In contrast to Lower Talley, which supports a rich and diverse 

macrophyte flora, the modern lake of Upper Talley is now almost devoid of aquatic 

vegetation.

Figure 7.la also shows that the decrease in relative abundance of aquatic pollen and 

spores correlates with an unprecedented increase P. boryanum and P. simplex colonies 

whose occurrence in a wide range of eutrophic waters during the Late Holocene must 

highlight their ability to adapt to the increasing eutrophication of water bodies 

throughout Europe (Alhonen and Ristiluoma, 1973; Bottema, 1975), America (Smith, 

1950; Prescott. 1962; Jansen, 1968), Switzerland (Komarek and Jankovska, 2001), the 

Middle East (van Zeist and Bottema, 1977) and Russia (Jankovska and Panova, 1998). 

At Lake Karls0, Denmark, Henning (2002) found that an increase in Pediastrum was
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particularly associated with high nutrient loads from sewage effluent and may 

therefore be linked with heavy cultural pollution.

Cladoceran ephippia also increased significantly at the top of the core, indicating 

pressure on the Cladocera population, probably in response to ecosystem stress 

occurring during the eutrophication process. The factors directly responsible are 

difficult to define. Additionally, this is a zone of decreasing diatom diversity (Hill's 

N2; from 17.07 at the zone base to 8.1 at the top of the core) in accordance with the 

inferred increase in enrichment towards the top of the core.

7.4 Drivers of Limnological Change

UTMPZ-1: 9.90 - 9.40 m (ca. 9.9 - 8.8 k cal. yrs. BP)

In UTMPZ-1 of Figure 7.1b, the transition to increased productivity and terrestrial 

inwash at the zone base is accompanied by high magnetic susceptibility values 

(Johnson, 1998) suggesting that the inferred catchment inwash initially contained a 

high mineral component. This is supported to some degree by the CaCCh profile, but 

this decreased towards the upper zone boundary. The increase in C/N values and the 

presence of brown, diatomaceous sediments containing terrestrial macrofossils such as 

leaves and twigs support the inference of increased terrestrial inwash. These 

sediments include a well-preserved hazelnut (Corylus avelland), which provided an 

AMS date of 9,310±45 cal. yrs. BP. This, and a second AMS date of 9,330 cal. yrs. 

BP (Johnson, 1998), indicated that sedimentation at this point of the core occurred 

during the early Post-glacial.
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Although temperatures were still relatively low following the Younger Dryas, 

particularly during the winter months, Figure 7.2 indicates that this date falls during 

the Boreal; a time of rapid warming when catchment vegetation expanded, organic 

based allochthonous inwash was high (Walker, 1981; Rehakova, 1983: Hickman and 

Reasoner, 1998, Pennington, 1999; Birks et al., 2000; Grolund and Kauppila, 2002). 

Sedimentary organic deposition containing a combination of plant debris and humic 

acid from developing catchments was particularly common in lakes in the northern 

hemisphere from ca.10.0 k cal. yrs. BP (Lowe and Walker, 1999) and has been 

observed in lake sequences at Scotland (Connoly and Dickson, 1969; Selby, 2004), 

England (Brown, 1977; Prartono and Wolff, 1998) and Wales (Ince, 1983; Watkins, 

1990).

Pollen data are not available for this zone but other pollen studies (discussed in 

Section 3.4) demonstrate climatically driven patterns of vegetation change in South 

Wales, where Late Glacial instability is followed by the establishment of catchment 

vegetation and the stabilisation of catchment soils. At the upland site of Traeth Mawr 

(Walker, 1981) and at Llangorse Lake (Walker et al., 1993), situated 35 km and 40 km 

to the east of Upper Talley respectively, a closed Betula canopy replaced open ground 

dwarf shrub and heathland communities with Juniper scrub at ca. 9.80 k cal. yrs. BP; 

Alnus became more widespread on the valley floor and, by 9.50 k cal. yrs. BP, Corylus 

avellana, Quercus and Pinus had expanded on the drier soils to form mixed deciduous 

woodland.
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Although there is overwhelming evidence for allochthonous organic material in the 

lake sediments at this point, it is also likely that internal productivity contributed to the 

accumulation of organic matter at Upper Talley. The warmer temperatures of the 

Post-glacial gave rise to a major phase of aquatic ecosystem development in temperate 

lakes of the northern hemisphere (Pickering, 2001), which Whiteside (1981) has 

described as lake ontogeny rather than eutrophication, since ontogeny suggests 

directional changes in water chemistry and community structure as opposed to a trend 

of increasing enrichment. At Krakenes in Norway (Birks et a/., 2000), for example, 

ecosystem development led to the accumulation of sedimentary organic matter as 

primary production increased, chironomid, coleopteran and Cladoceran communities 

developed and aquatic and terrestrial vegetation expanded. Likewise, at Mirror Lake, 

New Hampshire, USA (Likens, 1985) concentrations of organic matter, chlorophyll a, 

diatoms, chrysophyte cysts and bosminids increased at a constant rate due to 

temperature-induced increases in productivity.

The inferred shallow status of Upper Talley (indicated by the high ratio of benthic 

taxa) may also be attributed to the Post Glacial, Boreal climate when regardless of the 

general increase in temperature and atmospheric moisture, precipitation was still low 

and inland lakes, which are sensitive to climatically induced changes in the local water 

budget, were still relatively shallow following the dryer Younger Dryas (Guiter et al., 

2005).
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UTMPZ-2: 9.40 - 7.75 m (8.80 - 5.50 k cal. yrs. BP)

As at other sites in South Wales (Walker, 1981; 1993; Chambers, 1999), the reduction 

in magnetic susceptibility (Figure 7.1b) indicates that catchment soils at Upper Talley 

had stabilised by ca. 8.5 k cal. yrs. BP. This was a common pattern during the Boreal 

period as climatic improvement encouraged the development of mature woodland 

dominated by Ulmus, Corylus avellana, Betula and Quercus. However, while 

catchment vegetation and sedimentary organic carbon stabilised from ca. 9.0 k cal. 

yrs. BP at Traeth Mawr (Walker, 1981) and Llangorse (Walker et al, 1993) giving rise 

to what Chambers (1999) describes as stable, baseline conditions, at Upper Talley the 

accumulation of organic matter continued.

This was accompanied by a sustained increase in C/N values (Figure 7.1b), a dark 

brown sediment matrix with visible terrestrial plant material and turbid, nutrient-rich 

conditions. Although the deposition of autochthonous organic material may have 

contributed to the organic record during the lake development process, evidence from 

both Birks et al. (2000) and Likens (1985) suggests that aquatic development and high 

deposition of internal organic matter only continued for ca. 2.0 k years following the 

Late Glacial and is therefore unlikely to contribute to the significantly long-term 

accumulation of sediments rich in organic carbon at Upper Talley. However, it is 

clear that the accumulation of organic carbon is directly associated with lake turbidity 

and the progressive deposition of organic material. Such long-term turbidity is rare 

and, although not analogous to the present study, Lakes Hora and Tilo (crater lakes in 

tropical Ethiopia on the western margin of the Rift Valley) were the only other early 

post-glacial comparisons which could be found in the literature (Telford and Lamb,
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1999). Long-term turbidity contributed to lake development as the lake basin filled 

with hydrothermal groundwater and solute terrestrial runoff from a catchment 

composed mainly of grassland and woody scrub.

The sustained increase in organic carbon and the low benthic ratio may indicate that 

Upper Talley was extremely shallow (i.e. >1.5m), causing high nutrient concentrations 

and the resuspension of fine, unconsolidated sediments, which in turn can encourage 

the production of diatom taxa with superior light harvesting properties (e.g. A. 

granulatd) (Reynolds et al., 1994). However, meteorological changes at ca. 7.5 k 

cal. yrs. BP are argued to have brought warm onshore Atlantic winds and increases in 

precipitation to South Wales (Briffa and Atkinson, 1997; Walker et al., 1993), which 

in turn caused a general increase in lake levels throughout northwestern Europe 

(Guiter et al., 2995). It is possible that the high rainfall of this period caused an 

increase in catchment inwash (indicated by C/N values) and subsequent in-lake 

turbidity at Upper Talley, though this would be unusual during a period of maximum 

forest cover, which is more likely to prevent soil erosion (Schlosser and Karr, 1981). 

The possibility that the lake was sheltered by dense forest at the time also means that 

wind fetch across the lake is also unlikely to be the cause (van Eerden and Voslamber, 

1995 suggest that wind induced resuspension requires wind speeds of up to 8km hr).

It is also possible that lake conditions were linked to human activity within the Upper 

Talley region. Figure 7.3 shows that there is a Neolithic chambered tomb at Cwm

223



MVv -/. 
Archaeological Sites

Figure 7.3 Diagram showing the presence of archaeology within and immediately around 
the Upper Talley lake catchment
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Gwyddil (3.0 km southwest of Talley) and a stone circles at Llyn Taliaris (5.0 km 

directly south of Talley) and at Cefn Blaidd (0.4 km east of Talley and within the lake 

catchment). As discussed in Section 3.5.3, the labour intensive construction of 

chambered tombs and stone circles suggests a sizeable farming community with the 

free time necessary to build such structures that reflect ideas of land-ownership and 

territorial boundaries (Whittle, 1999). Although palaeoenvironmental evidence for 

human occupation in Wales during the Atlantic period indicates a pattern of seasonal 

occupation coupled with semi-permanent agriculture in small scale forest clearings 

(e.g. Chambers and Price, 1988), the pollen record is not available for this part of the 

Upper Talley core.

Although regional pollen studies often lack the spatial resolution necessary to identify 

the presence of temporary forest clearings for agricultural activity (Day, 1993), it is 

unlikely that deforestation was the cause of eutrophication to this extent; even 

clearance episodes regarded as large-scale during the Neolithic were small and 

temporary in comparison to later slash and bum events (Brown, 1999; 2002). Despite 

the cause of long-term turbidity being hard to identify, low diatom diversity and the 

presence of double-yolked ephippia from ca. 6.8 k cal. yrs. BP to the top of the zone 

indicate that Upper Talley was showing strong signs of ecosystem stress.

UTMPZ-3: 7.75 - 5.70 m (ca. 5.40 - 2.30 k cal. yrs BP)

Following the above phase of natural long-term enrichment, significant decreases in 

Alnus glutinosa, Quercus and Corylus avellana pollen percentages, a significant 

increase in Poaceae from 2% at the zone base to 40% at the top, and the introduction
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of Hordeum-type, Rumex acetosa, Brassicaceae and Plantago spp. (Figure 5.9), 

indicate a period of anthropogenic deforestation and agricultural intensification in the 

catchment from ca. 3.6 cal. yrs. BP. Increased human activity is also implied by the 

increase in charcoal towards the upper zone boundary, whilst the sustained increase in 

non-arboreal pollen (NAP) and decrease in the Arable/Pastoral Index (API) (Figure 

7.2) suggest that changes in land-use were significant and predominantly arable. 

Figure 7.2 shows that the evidence for catchment activity occurred during the Sub- 

Boreal when mild climatic conditions encouraged an increase in agricultural activity at 

many sites in Wales (Table 3.2).

Figure 7.2 also shows that these inferred changes in land-use at Upper Talley took 

place during the Late Neolithic-Bronze Age and corresponds with Bronze Age 

archaeology on the higher ground overlooking the lake as indicated in Figure 7.3. 

Although this matches the general establishment of Bronze Age settlements in Wales 

from ca. 4 k cal. yrs. BP, it does not always provide direct evidence of settlement 

within the catchment itself; funerary practices during this period often took place away 

from the main settlement area (Parker Pearson, 1999). However, the barrows were 

constructed from stone suggesting that local soils were valued for agricultural 

purposes, which was typical of the warmer early Bronze Age; the presence of Bronze 

Age burial archaeology on the hills immediately west (Mynedd Cynros and Allt 

Hafod-Wen) and east (Cefn Blaidd) of Upper Talley, and significant changes in the 

pollen record provide strong evidence for Bronze Age occupation and a regime of 

settled agriculture within the Talley region. The NAP (Figure 7.2) suggests that land- 

clearance at Upper Talley increased during the Iron Age, though the only definitive
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evidence of Iron Age occupation are hillforts situated at least 2km north of the site 

(e.g. Pen Y Ddinas; Figure 7.3)

During this period at Upper Talley, Potamogeton and Cyperaceae pollen percentages 

increased from the zone base indicating the development of a fringing reed zone, 

which may have been encouraged by the generally warmer Sub-Boreal, temperatures 

The increase in macrophytes also suggests that the lake was shallow during this 

period, possibly causing expansion of the littoral zone (Rasmussen and Anderson, 

2005), though Hannon and Gaillard (1997) suggest that it is unwise to make this 

assumption based on a single, central core. However, in northern Europe Gaillard 

(1984), Gaillard and Diggerfeldt (1991) and Borgmark (2005) report a climate driven 

decrease in lake levels at ca. 2845 cal. yrs. BP that caused the expansion of littoral 

macrophytes in shallow lakes.

Although the relationship between aquatic plants and nutrient levels is complex and 

dependent on factors such as lake depth, the magnitude and nature of nutrient loading, 

water residence times and the type of plants present (Melzer, 1999), the abundance of 

aquatic macrophytes also increases in response to an initial increase in nutrient loads 

(Brenner et al., 1999). Regardless of the cause however, an increase in littoral plants 

also controls lake water nutrient levels (the importance of a healthy littoral zone in the 

definition of the baseline state is discussed in Section 1.9.2) and the expansion of 

aquatic plants at Upper Talley may have contributed to the increase in water clarity 

(indicated by the increase in benthic taxa) and reduction in nutrient loads during a 

period of increased human impact.
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UTMPZ-4: 5.70 - 4.34 m (ca. 2.3 - 1.2 k cal. yrs. BP)

The limnological stability demonstrated in UTZ-4 of Figure 7.la appears to correlate 

well with evidence for limited catchment impact. The pollen record is mainly 

characterised by steady values of A Inns glutinosa, whilst herb and grassland taxa are 

stable (Figure 5.9), indicating settled agriculture with constant cultivation (Bradshaw, 

2001). There is a significant reduction in Betula percentages though the decrease in 

NAP (Figure 7.2) suggests that on the whole land-clearance was relatively minor 

compared to UTMPZ-3. The relatively consistent API values indicate that, despite the 

general increase in pastoral farming in Wales throughout pre-history (Caseldine, 

1990), land-use was predominantly arable around the Talley lakes. The decrease in 

charcoal particles in this zone may also be associated with a decrease in human 

activity around the lake (Burden et al, 1986; Tsukada et al., 1986).

Some diatoms in this zone (e.g. E. pectinalis) are typical of shallow, acidic, 

oligotrophic waters (deNicola, 2000) (Figure 7.la). Their presence could be a 

response to a lowering of lake water pH from decayed organic matter and leaf litter, 

which can follow deforestation (Hakansson and Regnell, 1993), or the previously 

discussed spread of acid heathland, which became well established in South Wales 

following sustained Bronze Age land clearance and the prolonged farming of upland 

soils (Chambers, 1988). The presence of acidophilic diatom taxa is accompanied by an 

increase in Calluna vulgaris pollen percentages, a plant which has a preference for 

acidic podsolic soils and grows in areas where there is a lack of competition from 

taller plants (Tansley, 1939).
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The bottom of UTMPZ- 4 marks the beginning of the Sub-Atlantic period (Figure 7.2) 

when climatic conditions became cool with increased rain and humidity and lake 

levels were generally higher than during the Sub-Boreal (Issar, 2003). At Upper 

Talley there is evidence of a lake deepening event during this period (between 2.3 k to 

1.7 k cal. yrs BP). Littoral macrophyte pollen decreases in relative abundance 

suggesting retraction of the littoral zone, planktonic diatoms increase in abundance 

indicating deepening of the pelagic zone, while the decrease in inferred DI-TP may 

suggest nutrient dilution. In limnological terms the evidence suggests that a sudden 

deepening event at Upper Talley may have put a stop to long-term nutrient enrichment 

at Upper Talley and encouraged the expansion of planktonic Cydotella. The sustained 

increase in benthic taxa and the 14C inversion at 5.25 m indicate that rapid sediment 

infilling followed and that the lake became shallower from 1.6 k cal. yrs. BP. This 

may be a reflection of the dryer climate recorded at ca. 1.7 k cal. yrs. BP when lake 

levels in the Northern Hemisphere began to decrease (Rasmussen and Anderson, 

2005).

This zone also crosses the Iron Age-Roman transition (Figure 7.2) and apart from the 

reduction in Betula, the palaeoenvironmental evidence on the whole indicates low 

catchment impact. The preference that Betula has for damp woodland (Archibold, 

1995) suggests that its decrease may be associated with the building of a Motte on the 

wooded area between the lakes, rather than with land-clearance for agricultural 

purposes. Nevertheless, its construction and subsequent use appears to have caused 

minimal environmental and limnological impact. Although a Roman Fort was 

discovered in the eastern part of Dinefwr Park, Llandeilo in 2003 (12km north of 

Talley), there is no recorded archaeological evidence for Roman occupation within the
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Upper Talley catchment; the nearest Roman find is a collection of glass beads from 

Cynwyl Gaeo, 2.5 km southeast of Talley (Figure 7.3). Cunliffe (2005) explains that 

in west and central Wales between the Rivers Teifi and Tywi extending down to 

Cardigan Bay there is a distinct lack of settlement archaeology with which to mark the 

Roman period. This may of course be due to inadequate survey and/or identification, 

though casual finds are also extremely rare. However, it is possible that the lack of 

Roman archaeology in the area could be explained to some extent by the continued 

Ordovician (the ruling tribe of the area) resistance to Roman occupation (Cunliffe, 

2005). The intrinsic link between water bodies and the land directly around them thus 

indicates that this clear phase of catchment stability and evident lack of human impact 

may well explain the inference of relative limnological stability.

UTMPZ-5: 3.95 - 2.30 m (ca. 1.1 - 0.7 k cal. yrs. BP)

UTZ-5 of Figure 7.1 a is characterised by a phase of inferred eutrophication, which 

peaked ca. 0.7 k cal. yrs BP (1300 AD), correlating well with evidence for 

anthropogenic impact in the catchment. Major limnological changes in diatom 

abundance, 8 13C, organic carbon, C/N, Pediastrum and ephippia correspond with a 

gradual increase in mineral inwash towards the top of the zone (Johnson, 1998) 

(Figure 7.1b), suggesting unstable catchment soils. Shifts in the pollen record highlight 

human activity, with reductions in Fraxinus excelsior, Betula, Quercus and Corylus 

avellana percentages indicating forest disturbance on the elevated soils, and a decrease 

in A. glutinosa reflecting deforestation on the damper soils of the valley floor (Figure 

5.9). Although the API (Figure 7.2) reflects continued arable land-use, the significant 

increase in NAP from the base of UTMPZ-5 (ca. l.lk cal. yrs. BP), characterised by
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the presence and increase in pollen from agricultural weed taxa (e.g., Plantago spp., 

Rumex spp. and Ononis; Figure 5.9), suggests changes in farming activity (Johnson,

1998). The presence of Rhamnus and Viburnum pollen is consistent with an increase 

in light penetration to the forest floor but also with the introduction of hedgerows for 

field division. The significant increase in charcoal concentration from ca. 0.9 k cal. 

yrs. BP could therefore indicate human habitation and local domestic activity on a 

larger scale than previously (Burden et al. 1986; Tsukada et al. 1986).

A date of 0.65 k cal. yrs. BP, correlated by magnetic susceptibility with the Lower 

Talley (Johnson, 1998), indicates that these landscape changes occurred during the 

Medieval period. This was a phase of widespread forest clearance, with the 

exploitation of richer catchment soils. Recent studies have started to demonstrate 

evidence for associated impacts on nutrient status in lakes across Northern Europe 

(Bradshaw, 2001; Gaillard et al., 1991; Hakansson and Regnell, 1993; Chambers,

1999) and it is believed that the observed increases in agricultural activity were driven 

by a population increase and made possible by advances in agricultural technology 

(Chavas and Bromley, 2005). On the one hand these advances broadened the amount 

and types of crops that could be grown, whilst on the other, they caused an increase in 

sediment accumulation rates to nearby lakes (Bradshaw, 2001; Jones et a/., 1978).

There is therefore indisputable evidence in the pollen record for major changes in 

human activity within the Talley catchment during the medieval period. Evidence of 

human occupation within the wider landscape can also be observed in the 

archaeological record (Figure 7.3); medieval excavations throughout the entire region 

provide the first evidence of permanent settlements. These include a grange at Cefn
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Blaidd (to the west and just outside of the lake catchment), a longhouse at Lletty 

Leucu (3 km northeast), a mansion 1.0 km to the north in Edwinsford and settlements 

at Bryngwyn-Fawr (1.5 km northeast), Cilwr (3 km west), Cwmbleidd (3km 

northeast), Maes-y-Feundre (3km to the north), Trefywern (2 km northeast) and 

Ynystwilth (2.5 km north). Their presence is typical of the late thirteenth century 

when populations were forced, by climatic deterioration, to the lower foothills, and 

small nucleated settlements and farmsteads developed where agriculture became 

extremely important to local economies (Shofield, 1999).

Within the lake catchment itself, Talley Abbey, along with its chapel and cemetery 

(Figure 7.3), was constructed on the southwest bank of the Upper Talley Lake, 

approximately 50 m from the present lake-shore (Section 3.7.1.2). The Abbey 

administered 7167 acres of parish land; 200 acres of woodland and 3900 acres of 

arable with the remaining land providing rough pasture (Lewis, 1844). The high 

acreage of monastic arable land is reflected in the proportion of cultivated land 

suggested by changes in the pollen record (Figure 5.9). The Abbey lies on a 

watershed between two streams; one flowing north towards the River Cothi and one 

running off Mynydd Cynros to the south-west of Upper Talley and towards the River 

Tywi near Llandeilo and it has been suggested that along with the Upper and Lower 

Talley lakes these streams were likely to have provided the monks and surrounding 

settlements with a water supply (Robinson and Platt, 1998).
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UTMPZ-6: 2.30 - 0.50 m (ca. 0.70 - 0.25 k cal. yr. BP)

The phase of catchment stability at the base of this zone (marked by a significant 

decrease in NAP) correlates with an increase in C/N, indicating reduced nutrient 

enrichment, and C. stelligera, suggesting improvements in water quality. Although 

there are chronological uncertainties, the climatic cooling, which followed the 

Medieval Warm Period and began with three years of torrential rain in ca. 1315 AD, 

changed settlement patterns as communities moved to the warmer lowland areas 

where crop practices were altered to adapt to the shorter, less reliable growing season 

(Jacoby and D'Arrigo, 1989). It is also tempting to infer that this phase was a 

function of abandonment linked firstly to the Black Death in 1350 AD, which had a 

profound effect on the running of monasteries and their influence on the Welsh 

countryside, and to the subsequent demise of Talley Abbey ca. 200 years later in 

AD1536 as King Henry VIII dissolved the smaller non-profitable abbeys (Robinson 

andPlatt, 1998).

The gradual return to eutrophic status from ca. 0.4 k cal.yrs. BP (indicated by shifts in 

the diatom record, the increase in P. boryanum and aquatic plants) suggests that Talley 

was not abandoned completely; changes may be related to the growth of the village of 

Talyllychau, which developed from the agglomeration of cottages associated with the 

Abbey in direct response to the late-16th century population increase (Owen, 1893a; 

1893b; R. Price, Dyfedd Archaeological Society, pers. comm., 2005). Charcoal 

increased substantially from ca. 0.4 cal. yrs. BP, which could support the suggested 

increase in human habitation (Figure 7.3). The API (Figure 7.2) indicates that cereal 

cultivation remained constant, but the increase in NAP proportions, characterised by

233



Poaceae (Figure 5.9), reflect a phase of sustained deforestation and an increase in the 

amount of available meadow. This pattern was common in south Wales from the 

sixteenth century to provide pasture for sheep farming, which expanded considerably 

following the Black Death (Caseldine, 1990).

UTMPZ-7: 0.5 - 0 m (0.2 - 0 cal. yrs. BP)

The unprecedented increase in Pediastrum colonies, increases in DI-TP and Cladocera 

ephippia concentration, decrease in C/N and the first appearance of the pollution- 

tolerant diatom, Cyclotella meneghiniana, all provide strong evidence for the effects of 

accelerated anthropogenic impact in the last ca. 200 years. Sediment accumulation 

rates are also high (Figure 5.13), possibly reflecting increased deposition from both 

internal production and catchment erosion (Jones et al., 1985). The steady decrease in 

the pollen and spore signal from submerged aquatics (e.g. Potamogeton, Isoetes) over 

(Figure 5.9) is consistent with a trend towards increasing algal domination and has 

culminated in a lake devoid of aquatic macrophytes, in contrast to its sister lake, 

Lower Talley. The low abundance of littoral plants has also left soils around the 

immediate lake edge bare and unstable, probably offering little protection from erosion 

and in-wash (Moss et al., 1997).

Figure 5.9 does not contain palynological evidence that these changes are driven by an 

increase in cereal cultivation. Significant reductions in Betula percentages were 

accompanied by an increase in the Poaceae pollen signal and the types of herbs 

associated with grazed land (e.g. Plantago lanceolata). Since the early nineteenth 

century, a substantial portion of common land has been used for grazing sheep around
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the Talley Lakes (Lewis, 1833). This continues to date with intense grazing on the 

grassy banks that run directly to the water's edge. This type of sheep management is 

known to saturate soils with excessive nutrients, which arrive at the lake via run-off 

(Sharpley et al., 1995). However, the API (Figure 7.2) also indicates continued arable 

land-use, which can also produce nutrient-rich runoff. Either process would be 

exacerbated by the lack of littoral macrophytes, which can protect the lake from excess 

run-off. The increase in micro-charcoal abundance in Figure 7.1b supports the idea of 

a population expansion around the lake and may reflect the modern increase in the use 

of fossil fuels (Wick et al., 1986; Schmidt et al., 1999). The cumulative effect of 

increased nutrient loads over the last 200 years, on a limnological background already 

primed for enrichment during the medieval period, appears therefore to have resulted 

in the more recent cultural eutrophication of Upper Talley.

7.5 Summary

Nutrient status and ecosystem dynamics at Upper Talley have fluctuated significantly 

over the last ca. 10k cal. years in response to natural changes, changes in climate and 

human impact. During its development the lake became hypereutrophic characterised 

by a phase of long-term turbidity and a low diversity, planktonic flora (A. granulata 

and S. minutulus). Although increased productivity is usual during the first 2.0 k years 

of lake development (Likens, 1985; Birks et al., 2000), enrichment at Upper Talley 

continued until ca. 4.4 k cal. yrs. BP. It is possible that the lake was very shallow at 

the time causing sediment resuspension, though the reason for such long-term 

enrichment is hard to evaluate. During this period the lake was receiving a high
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proportion of terrestrial inwash, which appears to have masked any possible signal for 

increased primary production.

As conditions began to improve a second increase in trophic status (DI-TP) and 

enrichment related turbidity corresponded with significant changes in land use during 

the Late Neolithic-Bronze Age and the presence of Bronze Age archaeology on the 

hilltops around the edges of the lake catchment. As light attenuation was probably 

high during this period the appearance of new benthic taxa may have been associated 

with the corresponding increase in aquatic plants and spread of the littoral zone. 

However, these changes may also be the result of the changes in climate during this 

period. Throughout the entire period ecosystem stress was indicated by the presence 

and increase in the abundance of Cladocera ephippia, probably associated with the loss 

of habitat and shifts in predator-prey relationships.

Following Bronze Age impact catchment conditions were relatively stable and the lake 

quickly became mesotrophic. Diversity began to increase and underlying shifts in the 

diatom record coupled with an increase in P. boryanum reflected changes in ecosystem 

dynamics probably associated with the gradual increase in water clarity following 

long-term eutrophication. The loss of planktonic centric taxa at ca. 1.3 k cal yrs BP 

may have been part of the recovery process as lake conditions improved, although a 

lake deepening event may also be indicated. During the following Medieval period 

limnological impact was reflected in the organic and isotope records but rather than 

displaying a corresponding shift in assemblage composition, the diatoms reflected an 

increase in the relative abundance of all taxa. The loss of P. boryanum corresponded 

with an increase in A. distans and ephippia indicating changes in ecosystem dynamics
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and stress within the wider foodweb. Although a gradual decreasing trend in diatom 

diversity corresponded with major deforestation in the lake catchment the lake 

remained mesotrophic, possibly due to sedimentary P retention, whilst a delayed peak 

in DI-TP at ca. 0.6 k cal. yrs. BP may indicate the later release of P into the 

hypolimnion. During this phase of increased land-use and limnological impact the 

wide presence of medieval settlement archaeology indicates a strong human presence 

in the Talley area, particularly within the lake catchment.

Although conditions appeared to revert to the pre-enriched state following medieval 

impact, rates of primary production remained high and were accompanied by a gradual 

increase in DI-TP suggesting that the lake may have been primed for a return to 

eutrophication by previous phases of impact. Though fanning activities appear to 

have remained predominantly arable, sustained deforestation from ca. 0.6 k cal. yrs. 

BP indicate a consistent increase in land clearance. P. boiyanum reappeared following 

the delayed release of sedimentary P and was accompanied by the appearance of P. 

simplex, both of which increased towards the top of the core. The marked increase in 

the relative abundance of F. pinnata and appearance of C. meneghiniana and 

Cladocera ephippia, from ca. 0.4 k cal. yrs. BP, accompanied by the reappearance of 

A. granulata at the top of the core, suggests that since the 17th century conditions at 

Upper Talley have become increasingly unstable and nutrient rich.
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CHAPTER 8 

INTERPRETING RESULTS FROM LLYN PENCARREG

8.1 Introduction

As in Chapter 7 the Llyn Pencarreg interpretation is divided into three sections; 

'Nutrient Status', 'Ecosystem Status' and 'Drivers of Limnological Change'. A 

summary of key indicators is given in Figures 8. la (limnological) and 8.1b (lithology 

and catchment) and provides strong evidence for ecosystem response to long-term 

natural and/or cultural eutrophication. Zonation again was undertaken visually in 

order, to highlight correlations between significant shifts in the data, and labelled 

LPMPZ-1 to LPMPZ-6 (i.e. Llyn Pencarreg Multi-Proxy Zones). As with Upper 

Talley, a comparison of these zones against the anthropogenic and climatological 

influences discussed in Section 3.5 are given in Figure 8.2. Figure 8.3 shows 

catchment archaeology at Llyn Pencarreg as potential evidence of anthropogenic 

impact.

8.2 Nutrient Status

LPMPZ-1: 6.80 m - 5.95 m (ca. 5.1 - 4.6 k cal. yrs. BP)

Diatoms are preserved from ca. 4.7 k cal. yrs. BP, during the mid-Holocene. At this 

point of the sequence, the DI-TP mean of 59.6ug I" 1 in Figure 8. la indicates eutrophic 

conditions. This is supported to some degree by the 5 13C values in Figure 8. Ib, which
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increased from -32.4%o at the core base to -30.9%o at 6.68 m (ca. 5.0 k cal. yrs. BP) 

reflecting an increase in primary production, but then decreased to -32.0 %o at the 

upper zone boundary suggesting a fall in productivity. The C/N profile has a mean 

value of ca. 20, which indicates low sedimentary algal biomass or high terrestrial 

inwash, though sedimentary organic carbon is extremely high (90%) and could 

indicate a combination of both.

The high organic carbon in this zone was reflected by the very dark brown and fibrous 

sediment matrix, which contained a high proportion of terrestrial material such as 

leaves, twigs and decomposed plant matter (Table 6.1). hi terms of lake productivity, 

as discussed previously in section 7.1, a high proportion of organic carbon in the 

sedimentary record coupled with high C/N values can disguise the signal for algal 

biomass and any change in algal production may not be apparent (Brenner et al, 

1999; Sampei and Matsumoto, 2001). Kaushal and Binford (1999) show that a C/N 

value of 20 is indicative of sediments containing a high proportion of arboreal plant 

matter, particularly Quercus, which can produce C/N values of around 22 (Meyers 

and Lallier-Verges, 1999). Though the C/N ratio of Quercus was not analysed at Llyn 

Pencarreg, modern plant samples show that A. glutinosa, which produced a relative 

abundance of ca. 60% to 70 % in this zone (Figure 6.9), also has a high C/N value of 

20 (Table 5.2).

LPMPZ-2: 5.95 m - 5.30 m (ca. 4.6 - 4.1 k cal. yrs. BP)

In this zone an abrupt and complete shift in the diatom flora to planktonic dominance 

by Cyclotella ocellata, and a decline in the proportion of benthic taxa to the mid-zone
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accompanies an inferred reduction in nutrient status to mesotrophic (24. 2ug I" 1) 

(Figure 8.la). An estimated increase in DI-TP to a peak of 32.7 jig I"1 at 5.30 m (ca. 

4.3 k cal. yrs. BP) is followed by a decline thereafter to a minimum of 17.7 ug I" 1 at 

the upper zone boundary (ca. 4.1 k cal. yrs. BP), driven mainly by the appearance and 

dominance of C. ocellata. These shifts may indicate that the lake became deeper 

during this phase, in which case the initial decrease in DI-TP may be associated with 

the dilution of nutrient concentrations (Wolin and Duthie, 1999). The subsequent 

transitions may be a function of lake-ontogeny, with stabilisation of nutrient input 

following the initial unstable, turbid phase. This pattern is not mirrored exactly by the 

5 13C data, which show an initial decrease followed by a sharp increase to -29.2%o (ca. 

4.3 k cal. yrs. BP) at the height of DI-TP inferred enrichment. Unlike DI-TP, values 

then remained high.

The trend in C/N data (Figure 8.1b) correlates well with other indicators during the 

inferred height of enrichment at the mid-zone, but this is followed by a marked 

decrease in C/N towards the upper zone boundary, which is not consistent with the 

inferred reduction in nutrient status. This apparent shift in the source of organic matter 

was accompanied by a decrease in organic carbon to 36% at the top of the zone and a 

gradual transition from very dark brown consolidated lake sediment to a light brown, 

homogenous, soft lake mud. However, the source of this organic component is not 

entirely clear; the less fibrous texture of sediments and loss of aggregate plant 

material suggest that the lower C/N values could also be driven by a decrease in 

terrestrial material influx.
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LPMPZ-3: 5.30 m - 3.25 m (ca. 4.1 - 2.7 k cal. yrs. BP)

In the mid-late Holocene, diatom-based inferences of trophic status do not correlate 

well with other indicators. Following a second major change in diatom assemblage 

composition to one dominated by T. flocculosa, DI-TP values are complacent and low 

throughout the zone (mean 11.8 og I" 1 ) and assemblages show a sustained trend 

towards increasing proportions of benthic taxa (Figure 8.la). However, other 

indicators imply an opposite trend. Compared to the relative stability of LPMPZ-1 and 

LPMPZ-2, both C/N and 8 13C correlate well and exhibit marked and sustained trends 

towards decreasing and increasing values respectively, peaking between 3.80 m (ca. 

3.1 k cal. yrs. BP) and 3.20m (ca. 2.7 k cal. yrs. BP) (Figure 8.1b). Above this point 

increases in magnetic susceptibility and CaCOj content and a later increase in organic 

carbon also indicate significant limnological change. Although not reflected in the 

DI-TP reconstruction, there is some qualitative diatom-based evidence that by ca. 3.4 

k cal. yrs. BP the lake was displaying signs of enrichment. The presence of the classic 

eutrophic taxon, A. granulata above 4.60 m (ca. 3.7 k cal. yrs. BP) in Figure 8.la is 

notable, and accompanies the introduction of A. formosa and a decrease in T. 

flocculosa abundance.

In the context of the patterns discussed above, a mean DI-TP estimate of 11.8 |ig I" 1 

for the entire zone, reflecting a lake of stable mesotrophic status, is difficult to 

explain. Low DI-TP estimates for this zone are mainly influenced by the dominance 

of mesotrophic planktonic taxa, particularly T. flocculosa (mean DI-TP for the zone = 

14.8 ug I" 1). The shift in planktonic diatom taxa at the zone base was also accompanied
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by the loss of benthic taxa present in LPZ-2 and the return of a wider range of 

mesotrophic, benthic species observed in LPZ-1. The sustained increase in total 

benthic proportions throughout the zone largely reflects the gradual introduction of 

new benthic species (Figure 6.3; Achnanthes subatomoides, Anomoenoneis 

brachyseira, Frustulia rhomboides, Gomphonema angustatum, G. parvulum), which 

may be related to patterns of aquatic plant growth and expansion of the submerged 

aquatic macrophyte habitat (Sayer et a/., 2007). This is supported by the peak in 

proportions of aquatic pollen types at ca. 3.8 k cal. yrs. BP. As aquatic pollen 

abundance decreases, diatom concentrations increase, which may suggest that nutrient 

levels were kept relatively low throughout the zone first by a dominance of aquatic 

macrophytes, then by an increase in diatom production (Scheffer, 2004).

LPMPZ-4: 3.25 m - 1.85 m (ca. 2.7 - 1.4 cal. yrs. BP)

During the Late Holocene, Figure 8.la shows that the dominant planktonic diatom 

continued to be mesotrophic T. flocculosa, although it was present at a lower relative 

abundance than in LPZ-3. Benthic taxa continued a sustained increase from LPZ-3, 

influenced by increases in the relative abundance of some taxa (eg. Stauroneis anceps, 

Cymbella silesiaca, Eunotia bilunaris, Navicula subminuscula, Fragilaria virescens 

and F. exigud) and the introduction of others (eg. F. pinnata, F. capucina, F. 

vaucheriae, N. pupula, Pinnularia polyonca) (Figure 6.3). Low DI-TP estimates were 

maintained for the entire zone reflecting a lake of mesotrophic status, although an 

increase to IS.Oug I" 1 at 3.10m (ca. 2.6 k cal. yrs BP) and a corresponding increase in 

A. granulata and C. ocellata, indicates minor enrichment. Estimates for the remainder
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of the zone have a slightly higher mean of 14.8 jug I" 1 , compared to 11.8 ug I" 1 in the 

previous zone.

Diatom concentrations displayed a second peak (ca. 1.8 k cal. yrs. BP) although a 

subsequent decrease suggests that changes in concentration are not directly associated 

with DI-TP and that diatom production may be influenced by some other 

environmental variable (Schelske et al., 1986). Figure 6.11, which indicates almost 

perfect correlation between the DC and PC/DC trends, shows that the rate of sediment 

accumulation is also not an influencing factor. The increase in diatom concentration 

may therefore be related to changes in water chemistry and the availability of 

nutrients following the decrease in aquatic macrophytes (Sheffer, 2004), or it may be 

the result of increased silica concentrations, which can occur as a result of changes in 

ground water inputs providing the lake with mineral-rich water (Schelske et al., 1986; 

van Donk and Kilham, 1990).

If the 8 13C curve in Figure 8.1b reflects rates of primary production, values in this 

zone imply a sustained increase, which correlates with the changes in DI-TP, reaching 

-26.7%o upper zone boundary. C/N ratios also decreased to the top of the zone, where 

a value of 13.4 suggests increased importance of algal biomass in the lake sediments. 

Since these changes are occurring in a zone of increasing enrichment, a C/N ratio of 

13.4 is probably reflecting a balance between terrestrial inwash and aquatic 

productivity.
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LPMPZ-5: 1.85 m - 1.10 m (ca. 1.4 - 0.85 cal. yrs. BP)

Approximately parallel increases in DI-TP values (to 15.6 jig I" 1 at the top of the zone) 

(Figure 8.la), organic carbon (peak of 65% at 1.70 m; ca. 1.3 k cal. yrs. BP) and 

CaCO3 (peak of 13% at 1.60 m; ca. 1.2 k cal. yrs. BP) (Figure 8.1b) are all consistent 

with a peak in the long-term trend of increasing lake productivity. This is marked in 

the diatom record by a continued decline in the abundance of T. flocculosa, the loss of 

some benthic taxa (e.g. Nitzschia palea, Amphora libyca, N. minima, A. brachyseira) 

and an overall increase in the total proportion of benthic taxa, mainly due to the rise in 

small Fragilaria (e.g. F. virescens, F. exigua, F. pinnatd) (Figure 6.3). At 1.30m (ca. 

1.0 k cal. yrs. BP) Figure 8. la shows that A. granulata increased in proportion to 50% 

in just one sample generating an abrupt, though temporary, peak in DI-TP of 52.4 ug 

1". Although diatom concentrations have shown little correlation with patterns of 

enrichment at Llyn Pencarreg, an increase to 3.5xl07 cm"3 at the same depth may be 

associated with increased algal production

However, the C/N and 5 13C data are at odds with this interpretation (Figure 8.1b). A 

peak C/N value of 15.5 correlating with a peak in A. granulata at ca. 1.1 k cal. yrs. BP 

may be a response to land-use activities in the catchment rather than within-lake 

processes. If the expected increase in algal biomass is masked by a high proportion of 

terrestrial material, it is possible that the inferred increase in terrestrial in-wash may 

have delivered excess nutrient loads to the lake (Smol, 2002). The 6 13C profile in 

Figure 8.1b also shows shifts that are not typical of increased enrichment. However, 

changing 6 13C values can be interpreted in many different ways and the observed 

decrease in values may not necessarily imply a decrease in primary production.
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Lighter sedimentary 8 13C values can also be influenced by a change in terrestrial plant 

type and the presence of C3 land plants from extreme catchment inwash, compared to 

the heavier C* shrubs and grasses. This is supported to a certain degree by the pollen 

profile, which reflects an increase in pollen from d plants such as Hordeum, 

Plantago lanceolata and Rumex acetosella (Figure 6.9).

LPMPZ-6: 22 cm - 0 cm (ca. 0.18 - 0 cal. yrs. BP)

Following a gap in the sequence, a eutrophic, turbid state is inferred from the initial 

dominance of the diatom assemblage by A. granulata and A. Formosa (Figure 8.la). 

With the renewed dominance of T. flocculosa thereafter, DI-TP decreased from 34.9 

ug T1 at the zone base to 16.5 ug I" 1 at 1.5 cm indicating a recent reduction in nutrient 

concentrations. At the top of the core, however, a higher DI-TP estimate of 25.9 ug I"1 

is associated with an increase in A. granulata abundance and closely matches the 

measured modern water TP measurement of 31.0 ug I"1 .

Although C/N analysis has demonstrated its lack of reliability as a proxy for trophic 

status, the decrease from 14.5 at the zone base to 10.8 at the top of the core suggests 

greater aquatic algal biomass and supports an increase in nutrient enrichment (Figure 

8.1b). The overall trend from LPZ-2 to the top of the core is therefore one of 

increased sedimentary algal biomass indicating that over the last ca. 4.3 k cal. yrs. BP 

phytoplankton production at Llyn Pencarreg has increased steadily. There have been 

few long-term studies of C/N, since the technique has been used mainly to assess 

change and modern nutrient enrichment associated with human impact (Bernasconi et 

al., 1997; Brenner et al, 1996, 1999; Gu et a/., 1996). However, Likens et a/.,
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(1985) found that at Mirror Lake, New Hampshire, USA, autochthonous productivity 

gradually increased throughout the Holocene and was probably related to a gradual 

decrease in lake depth and an increase in algal productivity as lake metabolism 

increased. Additionally, at the top of the core they found that 79% of organic material 

was derived from autochthonous sources, of which photosynthesising primary 

producers provided 70% of all ecosystem source carbon.

The increase in 8 I3 C values from -28.4 %o at the zone base to -27.5 %o at the top of 

the core supports increases in productivity as lighter 8 12C is preferentially utilised 

(Figure 8.1b). Values then decrease towards the top of the core suggesting that factors 

other than primary production may be influencing the 8 I3C curve.

8.3 Ecosystem status

LPMPZ-1: 6.80 m - 5.95 m (ca, 5.1 - 4.6 k cal. yrs. BP)

The diatom data in particular indicate that LPZ-1 is highly distinct. An initial DI-TP 

estimate of 59.6 ug I" 1 in Figure 8.la reflects the presence of C. meneghiniana 

(optimum; 254.4 ug I" 1 ) and S. minutissima (optimum; 40.1 ug I" 1 ), which are common 

co-dominants in eutrophic lakes (e.g. Witkovski, 1994; Yangdong and Brugham, 

1997). In this initial eutrophic phase the dominance of A. granulata (optimum; 133.5 

ug I" 1 ) also indicates high turbidity and light attenuation (Kilham, 1986; Kilham et al, 

1996).

Mesotrophic C. stelligera (18.46 ug I" 1) is also present; its appearance is often 

associated with a decrease in the relative abundance of A. granulata prior to and
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following peaks in nutrient enrichment as a response to reduced turbidity (Harris et 

al., 2006). Using correlation analysis, Koster and Pienitz (2006) found that the 

production of C. stelligera is strongly associated with a high percentage of 

sedimentary organic carbon due to human disturbance, a well-mixed water column, 

and high nitrate concentrations. Prolonged circulation within the water column, 

which Rautio et al. (2000) and Catalan et al. (2002) found to be characteristic of 

mesotrophic, subarctic and alpine lakes, may also explain the assemblage, and this is 

supported by the presence of A. granulata, although lack of frustules below 6.14 m 

means that this cannot be confirmed for that depth. It is also possible that nitrates are 

an important contributor to nutrient concentrations, in addition to total phosphorus 

(Bobbirketal., 1993).

In this zone, diatom species diversity is high (Hill's NI = 6.3), reflecting benthic 

diversity that includes small Fragilaria (F. virescens, F. exigua, F. capucina var. 

gracilis, F. pinnata) and Navicula species (N. menisculus, N. recens, N cryptotenella, 

N. saxophila) with predominantly mesotrophic TP optima and a broad range of habitat 

preferences (Figure 6.3). This has produced a lower DI-TP estimate (59.6 ug I" 1) than 

would be expected for a lake showing signs of nutrient-related turbidity. Similarly, at 

Lake Mondsee, Austria, Dokulil and Teubner (2005) found that many benthic species 

displayed a broad tolerance to changes in water quality and responded at different 

rates to shifts in nutrient loads, affecting the reliability of DI-TP reconstruction. 

Benthic species do, however, provide important ecological information about habitat 

availability and their presence here suggests that the lake must have been shallow 

enough to allow for photosynthesis in the benthic zone.
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The presence of Amphipleura pelucida suggests that not only was the lake shallow but 

possibly also muddy and high in silt (Kelly, 2000). This species is often found in 

shallow pools attached to filamentous algae (e.g. Spirogyra, Anabaena, Oscillatoria) 

during phases of enrichment and is particularly common during the summer months 

when blooms can appear due to the higher concentration of nutrients. The presence of 

Cocconeis placentula (optimum; 133.0 ug 1"') in Figure 6.3 supports the presence of 

filamentous algae, particularly Cladophora, which increases in association with 

increased nutrient loads and high organic matter (Germain, 1981). In Brazil, 

O'Farrell (1994) observed A. pellucida as part of a eutrophic flora, dominated by C. 

meneghiniana and A. granulata, in rivers with a pH of >7, low transparency and a 

high degree of organic pollution. Surprisingly though A. pelucida has a low 

mesotrophic optimum of 24.5 ug I"1 (Battarbee et al, 2000).

Pediastrum boryanum is present at ca. 4.8 k cal. yrs. BP (6.40m) in Figure 8.la, 

although in just one sample. This species displays little ecological restriction but is 

abundant in shallow ponds and lakes where it competes well as part of the wider algal 

community particularly when nutrients are concentrated (Komarek and Jankovska, 

2001). Aquatic pollen was also present, although at low abundance and was mainly 

composed of Cyperaceae, which typically grow in the littoral zone and are widely 

tolerant of a range of aquatic habitats and trophic states (Haslam et al., 1975). Its 

presence is therefore difficult to interpret in terms of water quality, but its occurrence 

does indicate the development of a fringing reed bed. The low abundance of 

Cladocera ephippia suggests that regardless of the inferred high trophic status, 

Cladocera were reproducing under stress-free conditions favouring parthenogenesis 

(Langdon Brookes, 1959).
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LPMPZ-2: 5.95 m - 5.30 m (ca. 4.6 - 4.1 k cal. yrs. BP)

During the mid Holocene, at the base of LPZ-2 the switch in diatom dominance to C. 

ocellata correlates with a trend towards increasing trophic status (DI-TP; 32.7 ug I" 1) 

(Figure 8. la). Although C. ocellata is found in a wide range of environments and has 

a broad tolerance to temperature gradients and trophic regimes, studies of 

eutrophication show that its relative abundance can increase in accordance with 

increasing TP as part of a shift from a high diversity, benthic flora to a low diversity, 

plankton-dominated diatom assemblage (Cherapanova et al, 2007). This is a direct 

consequence of the loss of light penetration to the benthic zone. The assemblage has 

a lower diversity than LPZ-1, with a Hills N2 of 2.0 compared to 6.3 in the previous 

zone.

Rather than indicating a shift in productivity, it is possible that the dominance of 

plankton here may instead indicate an increase in lake level as the lake basin 

developed (Wolin, 1996). At Hamilton Harbour, Lake Ontario, Canada, Duthie et al. 

(1996) found that benthic and epiphytic taxa were replaced by euplanktonic species 

during flooding and lake deepening, ca. 4.0 k cal. yrs. BP, followed by a gradual 

increase in benthic taxa due to long-term infill. More specifically, Moos et al. (2005) 

used detrended correspondence analysis (DCA) to show that centric taxa, including C. 

ocellata, tend to increase in relative abundance as water depth reaches ca. 8.0 m, 

depending on water transparency. The diatom signal of changing lake level can 

become complicated in lakes where nutrient enrichment is occurring, as the shift in 

diatom assemblage described above can reflect either increasing water depth or 

increasing turbidity (Wolin, 1996). The continued presence of Cyperaceae at low
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abundance suggests a narrow reed bed typical of deeper waters with a restricted 

littoral zone (Davis, 1999).

From mid-zone (ca. 4.3 k cal. yrs. BP) C. ocellata abundance falls along with a 

renewed rise in benthic taxa and increase in overall diatom diversity (Hill's N2; 6.9) 

(Figure 8.la). This is matched by a decrease in DI-TP reflecting a return to 

mesotrophic status by ca. 4.2 k cal. yrs. BP. Figure 8.1b shows that these changes, 

however, are at odds with the corresponding peak in magnetic susceptibility, 

suggesting catchment erosion (Dearing, 1991; 1999), and the increase in 8 I3C values 

and decreasing trend in C/N, are probably reflecting increased primary production and 

sedimentary algal biomass. It may be that the marked increase in magnetic 

susceptibility is associated with changes in land-use (Thompson et al, 1975) coupled 

with the inferred development of Llyn Pencarreg, in which case the shift in trophic 

state may reflect the dilution of P concentrations as the lake deepened, whilst the 

increase in productivity may support ecosystem development as the lake expanded.

LPMPZ-3: 5.30 m - 3.25 m (ca, 4.1 - 2.7 cal. yrs. BP)

A major shift in the dominant diatom species from C. ocellata to T. flocculosa 

correlated with a further decrease in DI-TP to 17.7 ug I" 1 (Figure 8.la) and a sustained 

decrease in organic carbon at the zone base from 90% to 37% (Figure 8.1b). The 

presence of P. boryanum colonies at higher abundance than LPZ-2 suggests a healthy 

phytoplankton community (Janokovska and Komarek, 2000) and a wide range of 

benthic diatom taxa produced an increase in species diversity (Hills N2; 6.9). There is
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also an increase in the proportion of acidophilic taxa, indicating a drop in pH. In 

addition to T. flocculosa, these include Pinnularia subcapitata, P. microstauron, P. 

divergens and Neidium alpinum (Figure 6.3). These species are characteristic of high 

Arctic, tundra ponds (Canada; Antoniades et al., 2005), lakes in the Rocky Mountain 

Foothills (Alberta, USA; Hickman and Schweger, 1991) and in the Adirondacks 

(northern New York, USA; Whitehead et al., 1986), all of which are situated in 

catchments where water chemistry is influenced by low nutrient, acid based soils.

DCA results from Llyn Pencarreg (Figure 6.5) also indicate that TP concentrations are 

not the only factor influencing species distribution. There may be an underlying 

acidity gradient in the species data, and the introduction of these acidophilic species at 

Llyn Pencarreg suggests a decrease in pH over time in the early to mid-Holocene. 

Their appearance correlates with a decrease in DI-TP, which would be expected due 

to a decrease in the binding of P to organic acids (Prather and Hickman, 2000) in 

more acidic water conditions. The pH change may have been related to peat or heath 

formation in the hydrological catchment, which would release hydrogen ions (Turner 

et al., 1989) and organic acids (Woods, 1989) into the inflowing water. The presence 

of Sphagnum spores and Calluna vulgaris pollen (Figure 6.9) support this 

interpretation to some degree, although there is no major change in the pollen signal 

in this zone.

The diatom assemblage also includes Nitszchia palea, Navicula cryptotenella, N. 

cryptocephala and Eunotia bilunaris (Figure 6.3), which also occur together in the 

Gravatai River, Brazil (Salomoni et al, 2006) and have been described as typical of 

polluted waters (van Dam, 1994; Lobo et al, 1995). The inferred increase in rates of
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primary production (8 13C) and algal biomass (C/N) (Figure 8.1b) and the return of A. 

granulata (Figure 8.la) in the diatom assemblage at ca. 3.6 k cal. yrs. BP is in conflict 

with the inferred low trophic status of the lake. As discussed in LPZ-1, the appearance 

of A. granulata may be related to turbidity and increased light attenuation due to 

eutrophication (Scheffer, 2004). Studies have also shown, however, that its presence 

is directly related to water column instability during vertical mixing (da Silva et al, 

2005; Zohary, 2004). Owen (1992) and Bradbury (1971) have shown that 

Aulacoseira species are characteristic of changes in water level due to the increase in 

turbulence, whilst Anderson and Odgaard (1994) found their presence to be associated 

with wind exposure and changes in thermal stratification. If the inference of an 

increase in water depth at the base of the previous zone is correct, then an increase in 

stratification would have led to the introduction of a mixing regime at Llyn Pencarreg.

By 3.4 k cal. yrs. BP. A. formosa had appeared in the diatom record (Figure 6.3). This 

species is common in temperate lakes (Bertrand et al, 2003), and has been observed 

under a range of trophic conditions (Reynolds, 1998, 2000; Romo, 1998; Negro et al, 

2000). Experimental data have also shown that its growth patterns can be affected by 

stratification, temperature and an increase in Si reserves to >0.5 ug I" 1 (Bertrand et al., 

2003). Like A. granulata, A. formosa often out-competes smaller planktonic diatoms, 

such as C. ocellata, when Si availability is high (Kilham, 1986). An increase in Si 

reserves is highly possible with an increase in lake depth (Schelske et al, 1986) and 

may be reflected in the increase in diatom concentrations at ca. 3.4 k cal. yrs. BP. 

The depletion of Si limits diatom production (Kilham, 1986) and the steady decrease 

in diatom concentrations from this point towards the top of the zone may be directly
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related to diminishing Si reserves as enrichment and diversity increased (Shelske et 

al, 1986).

In this zone, aquatic macrophyte pollen percentages show a marked increase from 

stable, low values of ca. 1% to a peak of ca. 13% at 3.80 m (ca. 3.1 k cal. yrs. BP) 

(Figure 8.la). This correlates with the reduction in DI-TP and reflects an increase in 

spores of mesotrophic /. Lacustris (Figure 6.9). The rest of the aquatic pollen 

assemblage was mainly composed of submerged macrophytes (e.g. /. echinospora, 

Ranunculus aquatilis) commonly found in oligo- to mesotrophic waters. /. lacustris 

in particular is found at sites with thin, peaty soils and both species are characteristic 

of remote highland lakes (Haslam et al., 1975), which supports the inference of 

acidification.

LPMPZ-4: 3.25 m - 1.85 m (ca. 2.7 - 1.4 cal. yrs. BP)

During the Late Holocene the increase in relative abundance of A. granulata at ca 1.8 

k cal. yrs. BP and the continuous presence of A. formosa, during an inferred phase of 

lower trophic status, indicates that stratification probably persisted at Llyn Pencarreg 

(Figure 8. la). In a zone of gradually decreasing species diversity (from a Hill's Index 

of 5.6 at the core base to 3.4 at the top of the zone) the sustained rise in proportions of 

benthic taxa was driven by increased abundance of small Fragilaria species (eg., F. 

exigua, F. virescens, F. pinnata; Figure 6.3). Discussing lake-ontogeny, Wetzel 

(2001) stated that once a lake basin has filled with water, the deposition of 

allochthonous and autochthonous material will cause gradual infilling and shallowing
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over time and therefore benthic taxa will increase in relative abundance as light 

penetration and the availability of benthic habitats increases.

The reduction in relative abundance of aquatic pollen in this zone (compared to LPZ- 

3) suggests that the increase in benthic diatom taxa was not particularly associated 

with the presence of submerged macrophytes (Sayer et al, 2007). The main pollen 

and spore taxa are the emergent Cyperaceae and submerged /. Lacustris (Figure 6.9), 

which is particularly associated with mesotrophic lakes up to 6 m deep (Haslam et al, 

1975). Its preference for low alkalinity means that /. lacustris is often found in 

catchments with peat formation and its presence therefore supports the previous 

inference of low pH (the increase in Pinnularia species also supports this). Sphagnum 

spores and Calluna vulgaris pollen are both present in the Llyn Pencarreg pollen 

record, indicating the continuing presence of acid-tolerant species in the lake 

catchment, albeit at slightly lower abundances than the previous zone.

LPMPZ-5: 1.85m - 1.10m (ca. 1.4 - 0.9 cal. yrs. BP)

Nutrient enrichment peaks at ca. 0.9 k cal. yrs. BP with an increase in both A. 

granulata and diatom concentrations (Figure 8.la). Diatom production at Llyn 

Pencarreg appears to be influenced by multiple factors. The lack of change in aquatic 

plant abundance, however, suggests that these changes are not associated with 

changes in the littoral zone (Figure 6.9). Whitmore (2004) found that although diatom 

concentrations in surface sediments from lakes in Florida, USA, were positively 

correlated with limnetic chlorophyll a, other factors such as Si concentration and 

sediment accumulation rate influenced the trend. The peak in A. granulata abundance
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at ca. 0.9 k cal. yrs. BP supports an interpretation of high Si availability (Kilham, 

1986) and indicates that the peak in nutrient availability was again accompanied by 

turbidity and increased light attenuation.

Figure 8.la indicates that stress within the wider ecosystem was indicated by the 

presence of Cladoceran ephippia for the first time (ca. 1.0 cal. yrs. BP), suggesting 

that enrichment caused ecological change at various levels within the ecosystem. 

There is increasing evidence to support the idea that increasing nutrient loads destroy 

the integrity of aquatic systems and causes stress through changing food web structure 

and predator-prey relationships (Shovonlal and Chatopadhyay, 2007). It appears that 

following an initial increase in Cladocera (particularly Daphnia) as a response to 

increased nutrient concentrations and algal abundance, the production of ephippia at 

the height of eutrophication is a response to stress, and is important in the 

maintenance of ecosystem stability (Persson et al, 1992; 2001).

The marked increase in P. boryanum colony abundance at the earlier date of ca. 1.3 k 

cal. yrs. BP may also be associated with enrichment (Figure 8.la). Although its 

Holocene distribution is cosmopolitan, from lake and pond sediments to peat bogs, P. 

boryanum appears to be a taxon of altitudes below 600 m where it is often seen to 

increase in eutrophic lakes as both enrichment and temperature increase (Komarek, 

and Jankovska, 2001). Its disappearance at the height of eutrophication may also be 

associated with ecosystem status and may be reflecting changes in algal community 

dynamics. This interpretation is supported by an initial increase in diatom diversity 

(Hill's N2 = 5.7), possibly related to the initial increase in productivity, followed by a 

reduction to a Hill's N2 value of 3.8 at the height of enrichment.
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LPMPZ-6: 22 cm - 0 cm (ca. 0.2 - 0.0 k cal. yrs. BP)

Over the past ca. 200 years correlated shifts in the proxy data indicate major changes 

in ecosystem status. These include changes in diatom assemblage composition, P. 

boryanum and Cladoceran ephippia abundance, associated with high nutrient 

concentrations and low diatom diversity (Hill's N2 = 2.8) at the start of the zone, 

where DI-TP estimates decline before increasing again towards the top of the core 

(Figure 8.la). Ecosystem status at the zone base, where A. granulata dominates the 

diatom flora, is similar to the peak at the upper boundary of LPZ-5, which is 

interpreted as a shallow, turbid, eutrophic lake. P. boryanum was also abundant, 

indicating competition in the algal community, although it is often replaced by toxic 

algae such as Aphanizomenon and Anabaena with extreme enrichment (Moss, 1988; 

Smol, 2002). Ecosystem stress is also indicated by the high Cladoceran ephippia 

concentrations at the zone base.

The reduction in DI-TP at the mid-zone (ca. 120 cal. yrs. BP) is associated with an 

increase in T. flocculosa and other diatom taxa at the expense of A granulata. These 

changes correlate with higher species diversity (Hills NI = 5.5), a marked reduction in 

P. boryanum abundance and the absence of Cladoceran ephippia, suggesting good 

ecosystem health. However, non-biological proxies do not correlate with these 

changes; In Figure 8.1b the increase in magnetic susceptibility and CaCOs, 

accompanied by increased inferred primary production (low C/N and high 513C) are 

indicative of an increase in productivity.
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In the very recent past the lake has returned to eutrophic status. This is supported by 

an increase in DI-TP to 25.3 jag I" 1 at the top of LPZ-6 in Figure 8.la, accompanied by 

increases in planktonic A. granulata and C, ocellata and a reduction in the proportion 

of benthic diatom taxa. The increase in Hill's N2 from 2.3 at the mid-zone to 5.5 at 

the top of the core, and the increase in relative abundance of aquatic pollen to 18%, 

appear to be an early response to increased nutrient loads and suggest a speedy return 

to eutrophication at Llyn Pencarreg in the past 100 years.

8.4 Drivers of Limnological Change

LPMPZ-1: 6.80 m - 5.95 m (ca. 5.1 - 4.6 k cal. yrs. BP)

At the base of this zone the palynological data indicate mature woodland with very 

high relative abundance of arboreal pollen (> 95%), composed mainly of Betula, 

Corylus aveliana-type, Alnus glutinosa and Quercus (Figure 6.9). Underlying 

fluctuations in the relative abundance of A. glutinosa (e.g. at 4.9 k cal. yrs. BP) and C. 

avellana-type (e.g. at 4.7 k cal. yrs. BP) pollen may suggest phases of woodland 

disturbance associated with human activity; this is supported by the presence of 

Pteridium aquilinum spores, which usually increase in abundance with a loss of 

woodland cover (Tansley, 1939); at Llyn Pencarreg, changes in its relative abundance 

correlate closely with shifts in the relative abundance of C. avellana-type pollen in 

particular. The presence of Plantago lanceolata is not an uncommon feature of 

Neolithic pollen records from Wales and along with Poaceae is often interpreted as 

representing small areas of woodland meadow, maintained for grazing (Caseldine, 

1990). The NAP curve (Figure 8.2) suggests that there may have been minor land-
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clearance activities from ca. 5.5 k cal. yrs. BP, whilst the API for this period indicates 

significant shifts in the amount of arable and pastoral farming, possibly reflecting the 

importance of small woodland clearings for grazing and minor cultivation (Brown, 

1999; 2002).

Though not within the lake catchment itself, the discovery of two Neolithic axe flints 

from Glancyforiog (4.0 km southwest of Pencarreg) and Troed-Rhiw-Sion (3.5 km 

northwest of Pencarreg), and one extremely fine grained recrystallised crystal tuff 

handle of group VIII type along with two stone axes of polished flint (showing 

evidence of their latest use as sharpening stones) from Castell-Du (1.0 km north of 

Pencarreg) indicate human presence within 1.0 km of the site during this period 

(Figure 8.3). Although the presence of Neolithic axe remains is not at all definitive of 

human settlement, their importance as tools for woodland clearance supports the 

above inference of increased land-use. The absence of cereal pollen, low charcoal 

concentration (Figure 8.2) and low magnetic susceptibility values (Figure 8.1b) 

indicate that any cultivation, or possible human habitation, in the catchment was still 

small-scale (Greig, 1987; Webley; 1974). The NAP indicates that, regardless of 

fluctuations in some arboreal pollen taxa, the landscape was still predominantly 

woodland. This is supported by the abundance of leaves and twigs in a dark, fibrous 

sediment matrix. Again this may reflect the use of small woodland clearings for 

grazing and/or cultivation.
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Figure 8.3 Diagram showing the presence of archaeology within and immediately around 
the Llyn Pencarreg lake catchment
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It is also possible that these minor changes in vegetation were climatically driven. 

The top of the zone marks the end of the Atlantic period when a cold episode caused 

the decline of thermophilous arboreal taxa and shifts in vegetation community 

dynamics throughout northwestern Europe (Lamb, 1997). Although it is known that 

shifts in climate influenced human migration, the causal link between the cultural and 

natural environments makes interpretation of the pollen record extremely complex 

(Berglund, 2003). However, evidence for Neolithic settlements and a transient, 

agricultural economy in Wales during this period suggests that human impact may 

have significantly changed the immediate environment (Caseldine, 1990; Whittle, 

1999).

The basal sediments are devoid of diatoms (Figure 8.2) and may even represent peat 

or forest floor material prior to the filling of the lake basin; the high C/N ratios (mean; 

22) of this zone (Figure 8.1b) could be due to the low organic N content of cellulose 

and lignin (Taylor et al, 1989; Thain and Hickman, 1999). Likens (1985) noted that 

both P concentration and organic carbon are exceptionally high in forest floor soils, 

which is in accordance with the eutrophic status inferred for this part of the sequence. 

Diatom valves from 6.50 m were highly fragmented, although preservation improved 

in the upper two samples of this zone. The interpretation of sheltered woodland 

around Llyn Pencarreg suggests that wind fetch, which can disturb lake sediments and 

can lead to damaged diatom frustules, is probably not a significant factor at this stage. 

Flower (1993) suggests that frustule breakage can also be associated with high-energy 

environments such as rivers or streams, or in the littoral zone where energy is also 

high, particularly when aquatic vegetation cover is low. This supports an 

interpretation for the upper part of this zone of a very shallow, muddy environment;
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the low abundance of aquatic pollen demonstrated in Figure 8.la, restricted to 

Cyperaceae, may suggest varieties typical of damp forest floors and that specialist 

aquatic species have not yet colonised the water body (Haslam et al, 1975).

The core was taken from what was thought to be the deepest part of the lake, though a 

complete bathometry was not possible due to ownership rights and lack of access to 

the whole lake. Although sediments were extracted from the centre of the lake, the 

presence of terrestrial conditions at the core base may suggest that this was not at the 

deepest point of the lake and that prior to this the lake-level may have fallen an 

unknown distance below the level of the coring site (Stager et al., 1986). This would 

explain first the lack of diatoms in the basal sediments, and secondly the presence of 

broken frustules, which may represent lake shore or shallow littoral sediments during 

an early phase of lake expansion. However, this phase also represents the end of the 

wet Atlantic period (ca, 5.0 k cal. yrs. BP) when it was more common for lake levels 

in north-eastern Europe to be high due to the increase in atmospheric moisture and 

precipitation, which started at ca. 7.5 cal. yrs. BP and was sustained over the next 

2500 years (Almquist-Jacobson, 1995).

LPMPZ-2: 5.95 m - 5.30 m (ca. 4.6 - 4.1 k cal. yrs. BP)

In the mesotrophic lake environment inferred from LPZ-2, the presence of fine sand, 

silt (Table 6.1) and the reduction of organic material (Figure 8.1b) in the core 

sediments begins at ca. 4.4 k cal. yrs. BP and is typical of deep water deposition 

(Wolin and Duthie, 1999). The significant shift to an assemblage dominated by 

planktonic C. ocellata supports the inference of a deep water phase. These factors
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may also, in part, demonstrate increased erosion of the lake edge (indicated at Llyn 

Pencarreg by the peak in CaCOs at ca. 4.4 k cal. yrs. BP and steady increase in 

magnetic susceptibility from ca. 4.3 k cal. yrs. BP), which can inhibit plant growth 

around the lake edges causing a decrease in organic matter in core sediments (Hannon 

and Gaillard, 1997). Although Figure 6.9 shows that arboreal pollen abundance 

generally remained high, there are significant fluctuations in relative abundance of 

Betula, Alnus glutinosa, Corylus aveliana, Ulmus and Tilia pollen throughout the 

zone with a marked decrease in Quercus at the top of the zone.

This zone falls during the beginning of the Sub-Boreal period (Figure 8.2) when the 

climate was warm and humid due to changes in atmospheric circulation and 

conditions were dryer than during the Atlantic causing changes in vegetation patterns. 

However, if the decline in species such as Ulmus and Tilia at Llyn Pecarreg are due to 

climatic influences (this corresponds with pollen records from across Wales at ca. 5.0 

k cal. yrs. BP; Turner, 1964), then a marked cooling of climatic conditions is 

suggested by the reduction of these thermophilous species. Additionally, the observed 

fluctuations in Alnus glutinosa, which is commonly observed in pollen records 

covering the end of the Atlantic Period, is difficult to reconcile with the warm and 

humid interpretation suggested by Sub-Boreal peats at sites in Wales (Hughes et al, 

2000; Barber et al., 2000; 2003; Hughes and Barber, 2003; Dark, 2006; Chambers, 

1983a; Ellis and Tallis, 2001).

Increased erosion and fluctuations in arboreal pollen abundance can also indicate that 

impact from land-use change in the lake catchment was also affecting the lake 

sediments. Figure 8.2 shows that these inferred changes were associated first with the
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Late Neolithic and may represent an expanding economy of shifting cultivation where 

temporary forest-openings were followed by arboreal regeneration (Brown, 1999). 

That Alnus glutinosa, Tilia and Ulmus grow on the more fertile catchment soils may 

suggest that these areas were selected for land-clearance and cultivation. This is also 

reflected in studies from Llyn Mire (Moore, 1978) and Trum Felen (Bostock, 1980), 

both east of Pencarreg and Moel y Gerddi to the west (Chambers and Price, 1988).

Secondly, the sharp increase in NAP (Figure 8.2) from ca. 4.2 k cal. yrs. BP 

(characterised by a decrease in Quercus and increases in Poaceae and Plantago 

lanceolata), which marks the first significant increase in open ground, corresponds 

with the Neolithic/Bronze Age transition. As discussed in section 3.5.4, the warm 

Boreal temperatures of the Early Bronze Age encouraged major land-clearance at sites 

across Britain (Smith, 1984). This is reflected in studies from Wales, where major 

forest clearance at many sites formed a predominantly open landscape and major 

increase in grassland by ca. 3.0 k cal. yrs. BP. At Llyn Pencarreg, the API curve 

(Figure 8.2) corresponds with these changes though a significant shift towards arable 

farming is indicated in the lake catchment possibly highlighting its lowland position 

compared to sites such as Waunwelen in the Preseli Mountains (Seymour, 1985) and 

Waun-Fignen-Fellen in the Black Mountains.

Although deforestation is often the cause of eutrophication, the opposite relationship 

seems to have occurred at Llyn Pencarreg. The deepening of the lake basin (which 

may itself in part be related to human-induced hydrological change; climate is 

unlikely to be responsible as the Sub-Boreal was a period of reduced rainfall) appears 

to have buffered the system (Figure 8.2). The proxy data in this zone therefore appear
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to indicate complex limnological change possibly resulting from a combination of 

catchment impact and lake development influences that are difficult to disentangle. 

The inferred human impact, however, may have been instrumental in directly causing 

a shift in lake level at Llyn Pencarreg. Evidence from Lake Texcoco, Mexico 

(Bradbury, 1971) indicates that the damming and channelling of waterways by human 

activity, particularly in association with deforestation, can cause rapid hydrological 

changes and increases in water level. It is also possible that activities such as dam 

building and pond creation by beavers, which can cause complex changes in 

hydrology, may have contributed to a shift in lake depth and changes in water flow 

(Johnson and Naiman, 1990).

However complex the latter changes are to interpret and separate into their cause and 

effect, this zone provides significant evidence of major limnological change.

LPMPZ-3: 5.30 m - 3.25 m (ca, 4.1 - 2.7 k cal. yrs. BP)

During the mid to late Holocene a second major shift in the diatom sequence 

correlates closely with palynological evidence for continued changes in land-use. A 

marked decrease in arboreal pollen percentages continues from the previous zone 

(Figure 8.1b) consisting of a reduction in the relative abundance of all major species 

(e.g. Betula, C. avellana, A. glutinosa and Quercus) and corresponding with 

fluctuations in magnetic susceptibility and a rise in charcoal particles. There is also a 

lithological shift from dark brown sediments with plant macrofossils to lighter 

sediments characterised by decomposed organics coupled with the sudden decrease in 

organic carbon and C/N at the zone base, indicating an increase in autochthonous
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organic deposition. It should be noted that charcoal concentrations throughout are 

low compared to those typically recorded during large-scale forest and vegetation 

removal (Eckmeier, 2007) and the observed changes may simply be associated with 

an increase in the use of wood as a household fuel or the burning of lakeside 

vegetation (Griffin and Goldberg, 1979).

As P. aquilinum often expands in parallel with the loss of tree cover (Tansley, 1959), 

it is likely that increasing spore percentages indicates the formation of open habitat as 

trees were cleared. The first appearance of many herb and cereal pollen taxa suggests 

that human impact at Llyn Pencarreg reflected an expanding pattern of settled 

agriculture. Increases in Poaceae, Plantago lanceolata and Rumex acetosa at ca. 4.1k 

cal. yrs. BP and the appearance ofJasione montana, Aster-type and Ranunculus acris 

reflect the development of meadow and suggest an increase in grazing (Figure 6.9). 

Hordeum-type, Trifolium, Rubiaceae and Apiaceae pollen also appear in this zone 

along with Daucus carota and Brassicaceae indicating cultivation on a wider scale 

than in earlier zones. The NAP (Figure 8.2) also shows that there was a sustained 

increase in open ground within the lake catchment, whilst the API indicates that this 

was a period of agricultural expansion with a significant increase in arable farming.

A calibrated date of 2,845 cal. yrs BP at the top of the zone places these changes 

during the Bronze Age, when an upland pastoral economy in this part of Wales was 

accompanied by a significant increase in cereal cultivation (Caseldine, 1990). The 

most prominent changes, however, were observed at the zone base, which has an 

interpolated age of ca. 4.1 k cal. yrs. BP. The sharp increase in land-clearance in the 

previous zone and the Bronze Age agricultural expansion of this zone are somewhat
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early compared to other sites in Wales (Table 3.2), though Briick (1999) and Thomas 

(1999) argue that by ca. 4.0 k cal. yrs. BP, patterns of agriculture at some sites in 

Wales did reflect sedentary settlement and expansion, which was encouraged by the 

warm conditions of the Sub-Boreal. Throughout this zone, the intense agricultural 

activities that occurred in upland Wales during the Bronze Age (Section 3.5.4) may be 

the cause of the inferred increase in heathland and gradual change in diatom 

assemblage to one dominated by acidophilic taxa. This is matched at ca. 2.9 cal. yrs. 

BP by a sudden increase in Betula, which tends to prefer well-developed acid based 

soils (Archibold, 1995).

Compared to Upper Talley there is a distinct lack of Bronze Age archaeology within 

the Llyn Pencarreg catchment and its immediate surroundings (Figure 8.3). The 

majority of sites from this period are concentrated to the south of Pencarreg and, as 

with Upper Talley, are limited mainly to standing stones and round barrows. The 

discovery of pottery shards at Chwibanogl (3.5 km southeast of Pencarreg), a Bronze 

Age well (discovered at Bane y Garn during the summer drought of 1976 in attempts 

to find water) and a decorated, Pygmy cup with bevelled edges from Neudd-Fawr 

(2km directly north of Pencarreg) also provide evidence of human presence in the 

Llyn Pencarreg region. The time invested in the technological advancement of using 

metal alloys and the making of pottery items such as those above suggest an 

agriculturally driven society with time to spend on making cultural items such as 

pottery, jewellery and weapons (Parker Pearson, 1999).
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LPMPZ-4: 3.25 m - 1.85 m (co. 2.7 - 1.4 k cal. yrs. BP)

During the late Holocene the pollen data indicated a general increase in the relative 

abundance of arboreal taxa, which then remained stable at ca. 70% to 80%, and a 

notable decrease in grasses and herbs (Poaceae, Plantago lanceolata, Rumex acetosa 

and R. obtusifolius) (Figure 6.9). Salix pollen increased significantly in relative 

abundance for the first time, possibly reflecting its growth on the damper soils around 

the lake; its presence may be influenced by the heavy rainfall of the cool, wet Sub- 

Atlantic period, which began at ca. 2.5 k cal. yrs. BP (Lamb, 1997). Corylus 

avellana-type and Ouercus pollen percentages also increased towards the top of the 

zone, suggesting their expansion on the higher, dryer soils and may reflect regrowth 

following widespread deforestation during the Bronze Age. Although an increase in 

woodland canopy is supported by the notable reduction in P. aquilinum spore 

abundance, the API (Figure 8.2) indicates that agricultural activity continued in the 

lake catchment during this period and farming patterns remained predominantly 

arable

An estimated date of ca. 2.7 k cal. yrs. BP at the zone base falls at the Bronze-Iron 

Age transition, where the diatom record indicates minor increases in nutrient 

concentrations and turbidity. Although the pollen evidence indicates a general 

expansion of agricultural and pastoral activities in South Wales from ca. 3.7 k cal. yrs. 

BP (Turner, 1964, 1965; Taylor, 1973; Walker and Taylor, 1976), the colder Sub- 

Atlantic climate at the end of the Bronze Age drove many communities away from the 

defended upland sites to small dispersed farmsteads in the foothills. This produced 

regional differences in settlement patterns depending on local topography, some of

270



which had little impact on the landscape due to their temporary nature (Caseldine, 

1990). Despite the inference of catchment stability in the pollen record, the increase in 

charcoal and magnetic susceptibility from ca. 2.0 k cal. yrs. BP and the minor peak in 

CaCOs at ca. 2.2 k cal. yrs. BP (Figure 8.1b), accompanied by a significant reduction 

in Betula (ca. 2.3 k cal. yrs. BP) (Figure 6.9), suggest human activity.

Both the Iron Age and Roman occupation of Wales are also represented by sediments 

in this zone. Archaeological evidence for Iron Age activity in the area consists mainly 

of structures and buildings found within a 2 km radius of Llyn Pencarreg and smaller 

finds from human habitation, such as the quern stones (used by both Iron Age and 

Roman populations) discovered at Sunny Hill (2.0km southwest of Pencarreg) and 

Cellan (0.5km north of Llyn Pencarreg), the latter being the only evidence of Iron Age 

activity within the Llyn Pencarreg catchment so far (Figure 8.2). Closer to Llyn 

Pencarreg and within the village itself, Roman finds are more common and include a 

gold coin from the Arcadius period (383-408 AD), found exposed in a garden in the 

village of Pencarreg, and a macehead found at the bed of Llyn Pencarreg itself. These 

items indicate Roman activity close to the site, which may be linked to the building of 

the road on the ledge above the lake that is known to be Roman in origin; members of 

the Roman army were often employed to do heavy manual/construction work 

(Pearson, 1999). Surprisingly however, these latter activities caused very little 

limnological impact.
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LPZ-5: 1.85 m -1.10 m (ca. 1.4 - 0.8 cal. yrs. BP)

Following the Roman period a sustained increase in magnetic susceptibility and a 

peak in CaCO3 (Figure 8.1b) correlate with the inferred peak in enrichment at ca. 0.9 

k cal. yrs. BP (Figure 8.la), providing clear evidence for human impact. Limnological 

change is also reflected in the transition from brown consolidated lake mud to soft, 

green-brown gyttja, which typically contains plant and mineral based terrestrial 

material (Wetzel, 1983). In the pollen record (Figure 6.9) what appears to be an 

initial phase of woodland regrowth in the lake catchment is followed by decreases in 

Fraxinus excelsior, Pinus sylvestris, Salix, Alnus glutinosa, Quercus, C. avellana-type 

and Betula, suggesting wide scale deforestation from ca. 1.2 k cal. yrs. BP. This is 

mirrored by the NAP (Figure 6.12), which indicates a significant increase in open 

ground from ca. 1.1 k cal. yrs. BP and is supported by the increase in Pteridium 

aquilinum spores indicating increased light penetration to the forest floor. A 

predominantly arable economy is indicated (Figure 8.2), though the relative 

abundance of cereal pollen remained constant suggesting little change in the types of 

crops being grown. Anthropogenic activity at Llyn Pencarreg may also be indicated 

by the first significant increase in charcoal at the zone base.

A date of ca. 1.4 k cal. yrs. BP at the zone base falls within the 7th century AD when, 

regardless of the Viking invasion of Britain, the paucity of Scandinavian archaeology 

highlights the Vikings' failed attempts at colonising Wales (Schofield, 1999). The top 

of the zone, however, represents sediment accumulation during the early medieval 

period (ca. 0.8 cal. yrs. BP) when extensive woodland clearance is known to have 

taken place in South Wales to accommodate the increase in population (Seymour,
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1985). An increase in upland fanning was also encouraged by the warmer climate of 

the early Medieval period, which encouraged populations to move to higher ground 

where small farmsteads became the norm (Schofield, 1999).

From the mid-zone (ca. 1.2 k cal. yrs. BP; Figure 8.1b) the decrease in arboreal taxa 

described above is accompanied by an increase in Hordeum and the first record of 

Cannabis sativa pollen, reflecting the use of hemp during the medieval period for 

medicinal purposes and as source of fibre for canvas and rope (Mercuri et al., 2002). 

Evidence for local Cannabis cultivation at Llyn Pencarreg compares well with other 

sites in Wales including Carningli (Seymour, 1985) and Llyn Mire (French and Moor, 

1985) where high concentrations of Cannabis pollen in lake sediments suggest that 

lakes were often used for retting, which is known to cause eutrophication.

Medieval occupation within the Llyn Pencarreg district is represented by a wide range 

of archaeology that may provide evidence of clustered, agriculturally influenced, 

settlements protected by a regional defence network (Figure 8.3). The presence of 

several Granges (e.g. Mynachlog Glyn Du, 3.0 km east of Pencarreg and Rhuddlan 

Deifi, 5.0 km southwest), for example, suggests the existence of enclosed farming 

communities (Schofield, 1999). The excavation of water mills (e.g. at Rhyd Y Bont, 

0.5 km southwest of Pencarreg and Rhyddlan, 2.5 km west) and fulling mills at 

Tirnewydd (3.5 km northwest) and Pandy (3.5 km southwest) and the discovery of 

silver coins at Lowtre (1.0 km northwest) and within the village of Pencarreg also 

suggest human presence from at least 1200 AD when the warmer climate enabled 

large areas of upland to be utilized for pasture and the semi-lowland and sheltered
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upland areas provided arable land for crops such as oats, corn and barley and the use 

of money for trading became more common (Thomas, 1975).

Additionally, the discovery of a network of Mottes around Pencarreg (e.g. Lampeter 

to the northeast, Castell Du to the north and Castell Santesau to the southwest) 

indicate that the area may have been tactically defended (Spurgeon, 1987); this may 

be supported by the presence of a tower-house at Pantscawen, 2.0 km northeast of 

Pencarreg. However, the Mottes are positioned along what are now major routeways, 

suggesting that they may have been travel outposts positioned along tracks that linked 

the individual small holdings within a larger farming community (Creighton, 2005). 

The presence of several medieval chapels (e.g. Capel lago, 3.0 km east; Llanfechan, 

2.0 km west), churches (e.g. Pencarreg and Lampeter, 3.5 km northeast) and holy 

wells (e.g. Ffynnon Fair, 0.5 km north; Ffynnon Bedr, 3.0 km northeast; Ffynnon 

Rhydderch, 3.5 km west) may have formed community focal points serving the small 

nucleated farming hamlets of the Pencarreg region (Schofield, 1999).

LPZ-6: 22 cm - 0 cm (ca. 0.2 - 0.0 k cal. yrs. BP)

Although environmental change between ca. 0.8 and 0.2 k cal. yrs. BP cannot be 

interpreted due to the missing sediments, Zone 6 provides strong evidence of 

enrichment at the zone base, followed by a recovery at the mid-zone and a final 

increase in productivity at the top of the core. Changes in the aquatic pollen record 

also appear to reflect shifts in nutrient dynamics (Figure 8.la) and may highlight a 

transition from algal to plant domination (Scheffer, 2004). As enrichment decreases 

at the mid-zone, for example, aquatic plant pollen proportions display a significant
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increase, which continues to the top of the core as nutrient loads increase again. The 

corresponding increase in magnetic susceptibility and CaCOs in Figure 8.1b suggest 

that limnological change is associated with changes in land-use and the subsequent in- 

wash of mineral-rich soil from the lake catchment. Sediment accumulation rates are 

also at their highest for the entire core. As would be expected, these changes are 

accompanied by a decrease in organic carbon, increased rates of primary production 

(8 13C) and an increase in algal biomass (C/N).

Catchment disturbance is supported by a major decrease in the abundance of arboreal 

pollen (e.g. Salix, Fagus sylvatica, Corylus avellana-type, Betula and Alnus glutinosd) 

(Figure 6.9), a significant increase in open ground (Figure 8.2) and an increase in P. 

aquilinum spores. A general increase in the proportions of grass and herb pollen types 

(e.g. Poaceae, Hordeum-type, P. lanceolata, Rosaceae acetosa and Trifolium) 

indicates that tree removal is accompanied by an increase in cereal production and the 

expansion of meadow. Charcoal concentration also displays a minor increase towards 

the top of the core, which may reflect local population expansion over the last 200 

years. Although national population figures have dropped steadily during this period, 

Pencarreg parish records provide evidence of a general population increase during the 

19th century.

Unfortunately the missing sediments span the period between ca. 1200 and 1800 AD, 

so ecosystem status before 1800 AD cannot be examined. Considering that the 

chronology is somewhat uncertain, it is possible, however, that the inferred phase of 

enrichment at the zone base is partly a response to the impact of the construction of 

the Lampeter to Carmarthen railway line, which was built in 1866. Its extension to
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Aberystwyth in 1867 provided a major communication link between the north and 

south of Wales until its closure in 1973 (Lampeter, 2005). Limnological impact 

during its construction and subsequent operation is extremely likely considering its 

proximity to Llyn Pencarreg and the use of coal fired engines. Over the last ca. 50 - 

100 years nutrient status at Llyn Pencarreg has rapidly increased again possibly 

primed by previous impact and encouraged by the well-documented expansion of 

agricultural technology from the mid-20th century onwards.

8.5 Summary

At Llyn Pencarreg mesotrophic status was maintained for most of the 5,000 year 

sequence. Complex changes at the core base, however, included complete shifts in 

diatom assemblage composition at ca. 4.5 and at 4.2 k cal. yrs. BP. These changes are 

difficult interpret and may be associated with the limnetic changes of the Sub-Boreal 

or deforestation and changes in patterns of hydrology as the lake developed from what 

may have been a muddy woodland pool or stream with a high relative abundance of 

P. boryanum and surprisingly high diatom diversity, to a larger water body initially 

displaying a low diversity assemblage. Changes in agricultural activity from a 

predominantly transient pastoral economy to one dominated by arable farming were 

also reflected in the increase in open ground and presence of P. lanceolate. 

Mesotrophic status was established by ca. 4.1 k cal. yrs. BP and was marked by an 

increase in diatom diversity and a sustained increase in the introduction of new 

benthic taxa, which continued for the next 3,000 years and may represent a process of 

infilling at Llyn Pencarreg.
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The diatom flora contained many acidophilic taxa, particularly T. flocculosa, which 

dominate the diatom assemblage and display decreases in relative abundance in 

correspondence with increases in DI-TP. Between ca. 3.1 and 2.7 k cal. yrs. BP, for 

example, a sustained decrease in the relative abundance of this species corresponded 

with changes in land-use during the Bronze Age. However, although catchment 

disturbance and limnological impact were highlighted, DI-TP remained stable and 

mesotrophic. The sustained increase in magnetic susceptibility from ca. 2.5 k cal yrs. 

BP followed a period of relative stability and corresponded with Iron Age activity 

within the Pencarreg district followed by Roman occupation within the catchment 

itself and the construction of a road through the village of Pencarreg. The decrease in 

productivity and increase in T. flocculosa followed by a peak in P. boryanum may 

have been associated with these changes, although limnological change was not 

highlighted by any of the remaining indicators.

During the medieval period human impact and significant land clearance led to a 

temporary increase to eutrophic status at ca. 1.0k cal. yrs. BP, characterised by a peak 

in A. granulata and DI-TP and accompanied by an increase in ephippia and a decrease 

in diatom diversity. Local archaeology for this period is profuse and suggests a wide 

spread of nucleated settlements that were centred around several holy establishments 

with the development of a local economy based on a combination of pastoral and 

arable farming. The concurrent increase in deforestation and catchment erosion at 

Llyn Pencarreg during this period suggests that an increase in agricultural intensity 

was the cause of increased lake productivity. Unfortunately a significant gap in core 

sediments means that conditions between 1200 and 1800 AD could not be examined. 

However, though the chronology at the top of the core is tentative, ecosystem status at
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ca. 200 cal. yrs. BP - the EUWFD's choice of baseline conditions recommended for 

restoration - indicates nutrient enrichment with high algal diversity and increased 

productivity with signs of ecosystem stress. Although a significant degree of recovery 

from this latter state was reflected at the mid-zone of Zone 6, shifts in limnological 

conditions were complex and changes in land-use from ca. 0.1 k cal. yrs. BP once 

again appears to have influenced an increase in trophic status.
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CHAPTER 9

RECONSTRUCTION OF THE LONG-TERM PALAEOLIMNOLOGY AND 

PALAEOECOLOGY OF UPPER TALLEY AND LLYN PENCARREG

9.1 Introduction

In Chapters 7 and 8, long-term palaeolimnological and palaeoecological change was 

reconstructed from a range of proxy indicators chosen to reflect ecosystem status at 

different trophic levels and changes in limnology due to external forcing (e.g. human 

impact and climate). The multiproxy data appear demonstrate marked differences in 

patterns of change in ecosystem status between Upper Talley and Llyn Pencarreg. 

Not all changes, however, were completely synchronous. This, on one hand, may 

indicate differences in the timing of response and, by implication, in the response 

thresholds of different proxy indicators in different parts of the system. However, on 

the other hand problems with the ability of the proxy indicators to realistically reflect 

past changes in ecosystem response may be demonstrated. This chapter examines the 

strength of the chosen proxy indicators to reconstruct long-term changes in ecosystem 

dynamics, identify the potential drivers of limnological change and to examine and 

compare the rates and magnitude of these changes at two sites with similar 

environmental characteristics. Ways in which the study could have been enhanced 

given sufficient time and finances are also discussed.

279



9.2 Palaeolimnological Interpretation of Long-Term Ecosystem Dynamics

The following section examines the ability of the selected indicators to effectively 

reconstruct shifts in ecosystem dynamics in response to changes in productivity. The 

discussion is divided into 4 sections; 'The Phytoplankton' (Diatoms, DI-TP and Other 

Algal Indicators), 'The Zooplankton', 'Aquatic Macrophytes' and 'Carbon and 

Nitrogen Isotope Ratios'. The strengths and weaknesses of each indicator are 

assessed and evaluated in terms of their ability to represent shifts in nutrient status and 

corresponding changes at each trophic level.

9.2.1 The Phytoplankton 

9.2.1.1 Diatoms

During the process of eutrophication it is usual for the diatom population to respond 

to shifts in water quality. Although the dominant indicator species may vary from site 

to site, there is often a significant degree of predictability in the given shifts in species 

assemblage composition. Several authors have discussed the association between lake 

trophic status and expected sequences of algal production (Hutchinson, 1967; Moss 

1988; Wetzel, 2001; Scheffer, 2004). These studies show that recognition of these 

patterns in the palaeolimnological record are of great value in locating the natural, 

pre-enriched, baseline state prior to the onset of nutrient enrichment, and also in 

defining a state of impact prior to recent acceleration.

280



In their discussion of changes in the diatom assemblage composition observed at 

Ammersee and Starnberger See, Germany, Alefs and Muller (1999) noted that several 

Alpine foreland lakes displayed similar sequences in response to nutrient loading (e.g. 

Lake Holzmaar and Chiemsee, Germany; Soppensee and Zurichsee, Switzerland). In 

each case the dominant species formed what Alefs and Muller (1999) referred to as 

the 'basic species sequence of eutrophication' where four stages of eutrophication 

were characterised by shifts in the relative abundance of planktonic species indicative 

of certain degrees of P enrichment. Due to their predictive ability during 

eutrophication, Philbert and Prairie (2002) also suggest the assessment of changes in 

the dominant open-water planktonic taxa to obtain clear inference of nutrient 

dynamics. Although lake fertility is not quantified by these associations, these studies 

show that sequences of species presence often track changes in productivity well, 

providing information on changing lake status and a reliable warning of changes in 

trophic status.

Recognition of similar eutrophication patterns at the study sites helped to identify the 

different stages of nutrient enrichment and may enable between-site comparisons of 

temporal variation in the dominant eutrophic species, ultimately enabling the location 

of baseline states. At Upper Talley changes in diatom species assemblage 

composition during long-term eutrophication displayed a pattern of marked 

fluctuations in response to shifts in nutrient concentrations (Table 9.1). Figure 9.1 

shows that at the onset of eutrophication (Stage 1) there was a marked increase in C. 

stelligera accompanied by a decrease in benthic taxa and diatom diversity. Stage 2 

indicates a reduction in species diversity to planktonic taxa able to withstand high 

nutrient loads and increased turbidity (A. granulata and S. minutulus).
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Stage of 
Sequence

1 
Increase in 

Eutrophication

2
Height of 

Eutrophication

3 
Decrease in 

Eutrophication

4 
Clear Water 

Phase

Diatom Dynamics; 
Upper Talley

• Increase in C. stellligera
• Increase in C. 
meneghiniana in modern 
pollution

•Dominance by taxa able 
to withstand high nutrient 
loads (A. granulata and S. 
minutulus) 
• Decrease/ loss of C. 
stelligera

• Increase in C. stelligera 
•Decrease in eutrophic 
taxa

• Decrease in C. stelligera

Diatom Dynamics; 
Llyn Pencarreg

• Peak in A. granulata 
• Temporary 
appearance of C. 
stelligera

Other 
Significant 
Features

• Increase in 
Pediastrum

•Presence of 
ephippia
• Low diversity of 
benthictaxa

High diversity of 
benthictaxa 
particularly small 
Fragilaria and 

Navicula spp.

Table 9.1 Table showing the inferred4-stage sequence of eutrophication at Upper 
Talley and Llyn Pencarreg highlighting changes in diatom assemblage composition 
and other proxy indicators
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The subsequent reappearance of C. stelligera and increase in benthic taxa (Stage 3) 

suggest improvements in water quality. Finally, Stage 4 shows the loss of A. 

granulata and a sustained increase in benthic taxa reflecting clear water, which is 

indicative of good ecosystem health.

During the medieval period the changes associated with Stage 2 (the height of 

enrichment), were not exhibited and instead benthic species increased in relative 

abundance from ca. 1.2 k cal. yrs. BP. This may be an alternate response to nutrient 

enrichment although lake-level decrease in freshwater lakes can also cause an increase 

in the relative abundance of benthic taxa (Round, 1964). However, the diatom 

assemblage at this point of the core is characterised by planktonic taxa usually 

associated with a more eutrophic assemblage (Reynolds, 1973). Following medieval 

impact, Stage 4 of the sequence is characterised by the first appearance of C. 

meneghiniana indicating poor water quality and possibly reflecting a change in the 

type of polluting activities in the lake catchments (El-Bestawy, 2000).

In contrast, limnological change in response to human impact at Llyn Pencarreg was 

marked by an increase in A. granulata and the brief appearance of C. stelligera at the 

height of enrichment (Table 9.1). The sequence in general is characterised by gradual, 

long-term trends of change; for example, the change in relative abundance of A. 

granulata in response to changing nutrient status during the Bronze Age was slow and 

prolonged (Figure 8.la). Medieval and modern (i.e. last 150 - 200 years) enrichment 

produced much sharper changes in response to nutrient dynamics, although this may 

in part be a consequence of a natural reduction in water depth by lake infilling; the 

steady increase in benthic taxa and reduction in T. flocculosa are consistent with the
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effects of lake infilling, which may have increased the sensitivity of biotic 

communities to environmental change as the lake became shallower (Moss et al, 

1997). Alternately it is possible that resilience pathways may have been eroded, 

which has been observed in deep lakes as a result of the fewer functional groups 

(Carpenter^ al., 1985; Scheffer et al., 2001).

Despite the variations in response to catchment impact at Upper Talley and Llyn 

Pencarreg, A. granulata and C. stelligera appear to be the strongest indicators of 

increased nutrient enrichment. The difference in behaviour of C. stelligera between 

the two sites (i.e. at Upper Talley it appears either side of the height of enrichment 

and at Llyn Pencarreg at the height of enrichment) may be associated with its 

preference for meso-eutrophic conditions and the relatively lower nutrient status of 

Llyn Pencarreg.

9.2.1.2 DI-TP

The predictive ability of the Combined European diatom-based total phosphorus 

transfer function has been validated for a range of lakes and climates across Europe 

(Battarbee et al., 2000). Although inferences of nutrient status are strengthened by 

the reconstruction of quantitative nutrient dynamics, in this study the dominant taxa 

were common, though morphologically variable and are thus merged taxonomically in 

the EDDI training set, resulting in broad tolerance ranges. This is reflected in the 

sample specific errors of prediction and confidence intervals estimated by 

bootstrapped coefficient of determination. For Upper Talley, an PJVISE boot value of
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0.27 and a RMSE boot value of 0.34 at Llyn Pencarreg indicate that fluctuations in DI- 

TP are not statistically significant and although the dataset includes classic eutrophic 

species, statistically, they are not strong indicator taxa (e.g. A. granulata N2 = 32.3; 

Tol = 0.43 logio ug I" 1 ; C ocellata N2 = 29.8; Tol = 0.36 logic ug I" 1 ; C.stelligera N2 = 

24.7; Tol = 0.35 log, 0 ug I" 1 ; F.pinnata N2 = 53.9; Tol = 0.50 log, 0 ug I" 1 ; T.flocculosa 

N2 = 29.1; Tol = 0.42 loglO ug I" 1 ). The results are therefore presented, but 

interpreted with caution.

The increase in small Fragilaria and Navicula spp., which occurred from ca. 1.2 k 

cal. yrs. BP at Upper Talley and ca. 3.1 k cal. yrs. BP at Llyn Pencarreg (Figure 9.2), 

may also have affected the reliability of DI-TP reconstruction. Recent research 

suggests that assemblages with a high ratio of small benthic Fragilaria and/or 

Navicula may not be totally appropriate for DI-TP reconstruction as their affinity with 

benthic habitats and increased photosynthesis at the lakebed may reduce the reliability 

of the calibration (Bennion, 1994; Sayer, 2001; Philbert and Prairie, 2002). Empirical 

evidence from Kitner and Pouliekova (2003), for example, indicates that modern 

diatom samples from a range of benthic substrates produce different estimates of 

trophic status in the same water body. The presence of small Fragilaria and Navicula 

spp. with low TP optima may thus have caused an under estimation of DI-TP (Figure 

9.2). However, omitting them from the transfer function, as suggested by Sayer 

(2001) and Bennion (1994), was not feasible as the high percentage (maximum; ca. 

50%) would mean recounting slides to provide a statistically reliable estimate of 

species composition and the time limitations of the study did not allow for this.

286



5- zs Depth (cm) -, TO

n>ooioojooiooioojooiotnotnocnow ooooooooooooooooooooo I I I I I I 1 ...]————I———I———I————I————I———I————I———I———!———I———I———I

c
TJ
ro-^

gn



The presence of a wide range of benthic taxa has, however, provided useful 

qualitative proxy data on changes in substrate/habitat availability, water clarity and 

the relative abundance of plants during the different stages of eutrophication 

(Scheffer, 2004). This has been explored in more detail by Stenger-Kovacs et al. 

(2007) who developed the idea of using littoral and benthic diatoms to reflect patterns 

of substrate availability as an indication of ecosystem health. Sayer (2001) and 

Bennion et al. (2005) expand on this idea by suggesting the construction of transfer 

functions to reconstruct shifts in habitat availability. When used in conjunction with a 

nutrient reconstruction, the changes in benthic taxa tend to compensate for the lack of 

reliability in DI-TP and may help locate natural baseline states in terms of habitat 

availability and ecosystem health.

9.2.1.3 Other Phytoplanktonic Indicators

Although P. boryanum colonies display a cosmopolitan relationship with water 

chemistry parameters (Komarek and Jankovska, 2001), at Upper Talley and Llyn 

Pencarreg the presence and absence of colonies provided additional proxy data for 

phytoplankton dynamics and competition in the wider algal community. Whilst 

Upper Talley emphasises its general lack of ability to predict eutrophic conditions 

(Figure 7.la), Llyn Pencarreg displays changes in the abundance of P. boryanum in 

response to eutrophication by the increasing immediately prior to increases in A. 

granulata (Figure 8.la). As with other sites in Europe, modern eutrophication has 

produced a significant increase in P. boryanum colonies (and more recently by P. 

simplex at Upper Talley) possibly due to the combined influence of changes in climate 

and human impact (Komarek and Jankovska, 2001).
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Diatoms and Pediastrum preserve well in lake sediments, but form only part of the 

algal community. The high diversity of phytoplankton in a healthy lake can 

encourage competition for nutrients and light availability so that even the baseline 

state is variable and changes in algal populations are not easy to predict without the 

complete long-term record (Cottingham, 1996; Reynolds, 1971). During the height of 

eutrophication the loss of light and increase in turbidity, which appears to have 

encouraged increases in A. granulata at the study sites, can also cause blooms of 

filamentous, toxic, blue-green algae (eg., Oscillatoria, Anacystis) accompanied by 

poor water quality and deterioration of ecosystem status (Dokulil and Skolout, 1986). 

Scheffer (2004) refers to this phase as the third alternate stable state and suggests that 

the threshold between algal dominance and cyanobacteria occurs at different nutrient 

levels, depending on individual lake characteristics.

The analysis of fossil pigments, which uses carotenoids (eg., myxoxanthophyll, 

aphanizophyll and oscillaxanthin) as a proxy indicator of the presence of 

cyanobacteria (Hall et al., 1997; Lotter, 2001), would have allowed a more complete 

assessment of long-term phytoplankton dynamics. It may have strengthened 

reconstruction of shifts in the dominant plant groups that can take place at the height 

of enrichment. In addition, low DI-TP estimates at times of inferred enrichment may 

also have been explained, particularly during the medieval period at Upper Talley 

when diatom response to nutrient enrichment was subtle and the peak in DI-TP was 

delayed when compared to changes in the other proxy indicators. Charophyte 

analysis also records changes in community structure during enrichment episodes by 

reflecting changes in benthic and pelagic habitats (McGowan et al, 2005). Although 

Charophytes are filamentous green algae, they are more closely related to the Plantae
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and tend to reflect the behaviour of aquatic macrophytes (Graham, 1993). 

Examination of changes in the relative abundance of Charophytes may thus have 

provided the present study with an additional tool with which to assess shifts in the 

wider algal community during phases of enrichment.

As an indication of limnological change charaphytes may be replaced by Zannichellia 

palustris, Callitriche truncata and species of Potamogeton during phases of 

catchment impact (Davidson et al., 2005). Additionally, the appearance of 

Charophyte meadows at the onset of lake enrichment can provide a nutrient trap. This 

can have a positive effect on water clarity by reducing nutrient loads and turbidity, 

whilst delivering oxygen to the sediments via their roots, thereby enhancing 

denitrification and preventing the release of iron bound phosphorus to the epilimnion 

(Van den Berg et a/., 1999; Kufel and Kufel, 2002). Coops (2002) has shown that this 

process is usually reversed at the height of enrichment as Charophyte abundance 

decreases in line with the loss of aquatic macrophytes.

9.2.2 The Zooplankton

At both sites the presence of Cladocera egg sacs (ephippia) correlated with diatom 

inferred phases of increased nutrient status, producing clear evidence of ecosystem 

stress during phases of eutrophication (Table 9.1). At Upper Talley each phase of 

inferred eutrophication produced Cladocera ephippia (Figure 7.la), with the additional 

presence of the double-yolked variety occurring during the initial phase of long-term, 

natural enrichment (between ca. 9.0 and 2.0 k cal. yrs. BP), supporting the inference 

that this was a period of intense ecosystem stress. Cladocera ephippia were absent
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from most of the Llyn Pencarreg sequence, but made an appearance during the 

medieval period and although a gap in the core prevented continuous analysis, egg 

sacs were still present above the gap (ca. 0.2 k cal. yrs. BP) (Figure 8.la). This 

suggests either long-term ecosystem disturbance or a second shift in ecosystem 

dynamics following medieval impact, and indicates changes in community structure 

as an indirect response to changes in nutrient status.

The presence of double-yolked ephippia at Upper Talley appears to be particularly 

significant; Fryer and Frey (1981) suggest that the production of ephippia with double 

yolks reflects environmental instability when evolutionary trade-off can shift from K- 

to R-selection (Chapman and Reiss, 1997). During K-selection a single egg is 

produced in a watertight carapace to protect it against predation during diapause. 

Although the protective covering of the two-yolked ephippium tends to gape at the 

anterior end offering less protection, the provision of more yolk increases the chances 

of species survival. Double-yolked ephippia, identified to species level, have also 

been observed in lakes of the English Lake District, the Yorkshire Pennines and North 

America (Daphnia thorata, Chydorus ovalis and C. sphaericus', Fryer and Frey, 

1981), South America (Camprocerus macrurus; Weismann, 1977) and the Isle of 

Rhum (Daphnia longispina', Fryer and Frey, 1981). In each case their presence 

indicate a phase of ecosystem stress.

In this study the use of Cladocera ephippia provided a quick and useful tool that 

helped to identify phases of stress and contribute to the understanding of ecosystem 

status at a higher trophic level during phases of nutrient enrichment. Studies show, 

however, that the appearance of ephippia is not simply a direct cause and effect result
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of eutrophication. McCarthy et al. (2006), for example, have shown that although the 

ephippia of some Cladocera do respond to changes in P concentrations, Daphnia 

ephippia are particularly sensitive to changes in the availability of N, and their 

presence may be linked to the dominance of inedible cyanophytes during phases of 

low N. This suggests that different species of Cladocera may respond to different 

ecological parameters. Although the present study was restricted to rapid analysis of 

changes in abundance, identification to species level may have provided the study 

with additional information on changes in ecosystem dynamics. Although in its early 

stages, work by Sarmaja-Korjonen (1999; 2003; 2004) shows that when certain 

habitats are under stress specific members of the Cladocera community will produce 

resting eggs. At Rutikka Lake in Finland (Sarmaja-Korjonen, 1999), for example, a 

threshold was crossed, which correlated with changes in prehistoric cultivation, and 

gave rise to an increase in the ephippia of just one species, Alona affinis (suggesting 

ecosystem change in the benthic and littoral zones; Harm, 1990).

The study of ecosystem dynamics would also have been improved by incorporating 

the analysis of Cladocera species composition. Their chitinous body parts (e.g., head 

shields, claws, post-abdomen) can usually be identified to species level (Hann, 1990), 

and analysis provides useful information on changes in the Cladoceran community. 

As keystone species their loss can lead to shifts in predator-prey relationships 

throughout the food chain (Frey, 1960; Whiteside, 1970; Crisman, 1980; Kerfoot, 

1981; Brugham and Speziale, 1983). Their sensitivity to limnological change means 

that shifts within the Cladoceran community can be used as a tool to accurately 

reconstruct changes in habitat availability during eutrophication; the loss of aquatic 

macrophytes that can accompany increases in trophic status, for example, often results
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in the replacement of Bosmina longispina with B. Longirostris (Crisman and 

Whitehead, 1978).

However, as noted in the methods of the present study (Section 4.2.8) the use of 

Cladocera was unfeasible due to time constraints and the high organic content of core 

sediments. Studies by Simpson (2000, 2001) at acid lakes in Scotland met with more 

success, probably due to the lower sedimentary organic content.

9.2.3 Aquatic Macrophyte Pollen

Changes in macrophyte abundance can reflect both changes in lake depth, which 

controls the size of the littoral zone (Rasmussen and Anderson, 2005), and shifts in 

productivity status due to competition for nutrients between the major plant groups 

(i.e. macrophytes and algae) (Sheffer et a/., 2002). In the present study the aquatic 

pollen sum (APS), as a proxy for aquatic macrophyte community composition, was 

compared to changes in diatom concentrations (DC) in order to examine their strength 

as indicators for shifts in alternate states by representing changes in dominance 

between the two plant groups. The results suggest that apart from high DC values and 

low APS abundance during the medieval period at Upper Talley (Figure 5.10) and the 

replacement of high APS with high DC during the Bronze Age at Llyn Pencarreg 

(Figure 6.10), DC showed a general lack of change during phases of inferred nutrient 

enrichment. Changes in the abundance of aquatic pollen and spores, on the other 

hand, generally provide good representation of shifts in the aquatic macrophyte 

community during phases of external impact at both Upper Talley and Llyn 

Pencarreg. Again, the analysis of fossil pigments could be used to examine changes
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in the wider algal community and shifts between algal and plant domination could 

also be assessed.

The approach could also be tested more rigorously by analysis of plant macro fossils in 

the sediment record. Birks and Birks (2000) suggest that all pollen studies should be 

supplemented by macrofossil analysis to overcome the problems associated with 

limited taxonomic resolution, particularly for aquatic taxa that tend to reproduce 

vegetatively (asexually). Plant macrofossils display great potential for reconstructing 

community dynamics (Davidson et al, 2005). Zhao et al. (2006) found that remains 

were dispersed unevenly with high concentrations close to source, particularly 

Potamogeton seeds. This provided an additional spatial estimation of the dominant 

taxa and information on species richness, which could be used to map changes at 

different points of the lake throughout the enrichment process.

Both terrestrial and aquatic macrofossils were rare in the Llyn Pencarreg sediments 

though Potamogeton seeds were common at Upper Talley (Table 4.2). Their presence 

correlated with peaks in aquatic pollen abundance, which supports the reliability of 

the pollen record, and also as an additional indicator of aquatic plant abundance and 

strengthens evidence for aquatic plant succession. This approach can also be used to 

locate the baseline vegetation before human impact, which can then be linked to lake 

restoration plans. Although other unidentified aquatic macrofossils were present 

sporadically at low abundance they were not quantified and analysed as an indicator 

of changes in vegetation, again due to lack of time. In studies where this method is 

adopted, the picking and analysis of Charaphyte oospores could be incorporated as an 

additional indicator of changes in ecosystem status.
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9.2.4 Carbon and Nitrogen Isotope Ratios

At Upper Talley and Llyn Pencarreg changes in the carbon isotope ratio correlate with 

some phases of enrichment, though changing values often appear to be in response to 

factors other than rates of primary production. At Upper Talley, for example, the 

phase of long-term enrichment between ca. 9.0 k and 2.0 k cal. yrs. BP, characterised 

by the domination by A. granulata, high DI-TP, low diatom diversity and the presence 

of Cladocera ephippia, is accompanied by a contrasting decrease in 5 13C values 

implying low primary production, whilst C/N indicate a marked increase in terrestrial 

in-wash as opposed to algal biomass (Figure 9.3). Llyn Pencarreg also shows that the 

carbon isotope profile did not always change in parallel with eutrophication inferred 

from A. granulata and C. stelligera (Figure 9.4).

The possibility of the significant influence of environmental variables other than TP 

(eg. pH, temperature, respiration, anoxia) suggests that 8 13 C may sometimes not be 

entirely appropriate for assessing trophic conditions (Meyers and Teranes, 2001) and 

the location of pre-impact baseline states using 8 13C analysis is therefore questionable. 

At several of the Florida Lakes, Gu et al. (1996) and Brenner et al. (1999) found that 

the pre-impact 8 I3 C values of sedimentary organic matter displayed notable between- 

lake differences, even within a small geographical area. Bernasconi et al. (1997) 

suggest that the range of differences may be due to between lake variations in the 

isotopic composition of primary producers during the annual cycle and is probably 

related to the complexity of the carbon cycle in aquatic systems. They also suggest 

that pre-impact 8 13 C values may control the extent of change with future episodes of 

nutrient enrichment.
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Thus shifts in primary production may not be a true reflection of the magnitude of 

enrichment. Although a reliable indicator for changes in the source of organic matter 

during phases of human impact, the C/N signal lacks a clear response to high algal 

biomass during phases of eutrophication when catchment inwash is also high. 

Reasons for this are discussed in Section 7.1. As an alternative, C/N analysis in lakes 

where terrestrial inwash is high shows a strong potential for examining changes in the 

dominant terrestrial vegetation by inferring the composition of lacustrine organic 

matter (Lamb et al, 2004).

9.3 Palaeoecological Interpretation of Long-Term Human Impact

The following section examines the ability of the selected indicators to effectively 

reconstruct changes in the external factors that may be responsible for initiating 

limnological change. The discussion is divided into 4 sections; 'Pollen', 'Charcoal', 

'Archaeology' and 'Other Potential Drivers'. As with the limnological indicators, 

strengths and weaknesses are assessed and evaluated in terms of their ability to 

identify long-term changes in catchment conditions and, when compared to the 

limnological data, can help to determine the potential cause of corresponding changes 

in lake status.

9.3.1 Pollen

The use of a single core for all proxy analyses allows direct comparison of the pollen 

record with biological indicators to assess the causes of limnological change with a 

high degree of certainty (Birks et a/., 2000). Figures 9.5 and 9.6 show that changes in
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arboreal and herb pollen taxa provide representation of changes in catchment 

vegetation in response to human activity at Upper Talley and Llyn Pencarreg. Major 

deforestation phases during the Bronze Age, medieval period and the last 200 years 

were characterised by tree clearance and an increase in the types of grass and herb 

pollen associated with open ground (e.g. Poaceae, Plantago lanceolata, Pteridium 

aquilinum) and arable farming (e.g Rumex acetosa, Hordeum). These changes in 

vegetation patterns compare well with other pollen studies in Wales (e.g. Thomas, 

1965; Chambers, 1983; Chambers, 1999; Lillieef a/., 2000).

Additionally, the Non-Arboreal Pollen (NAP) curve has provided the study with a 

summary of changes in the pollen record that represent changes in the availability of 

open land (Figures 7.la and 8.la). This provides a simple basis for comparing the 

timing and magnitude of land clearance in the lake catchments and evaluating the 

relationship between human impact and the extent of limnological change. Although 

work by Sugita et al. (1999) has shown that in different regions of Europe catchments 

with the same amount of open ground in the source area produce different NAP 

signals due to differences in the contribution of background pollen, the pollen signal 

is generally distance weighed and vegetation in the immediate area, close to the 

coring site (Sugita, 1993), will usually contribute more pollen to the record than 

vegetation from the wider landscape.
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As discussed in Chapter 3, Upper Talley and Llyn Pencarreg are situated in the same 

climatic and topographic region and it can therefore be assumed that background 

conditions are consistent and between-site differences in NAP reflect local differences 

in the extent of catchment land-clearance. Subject to similar land-use practices both 

sites also show evidence for major deforestation during the Bronze Age, medieval 

period and more recently (ca. past 400 years). Most importantly, in spite of showing 

a subdued pattern of eutrophication, the NAP data suggests that it is Llyn Pencarreg 

rather than Upper Talley, which shows the higher degree of human impact.

The Arable/Pastoral Index (API; Turner, 1964) (Figures 7.2 and 8.2) provides a 

simple measure of the character of human impact within a lake catchment that 

compliments the NAP data by characterising the type of land-use change. This allows 

for the comparison of phases of land clearance with types of agricultural land-use and 

an overall comparison of the degree of human impact between sites, thus producing a 

more detailed evaluation of human activity in the lake catchments. Upper Talley and 

Llyn Pencarreg have produced long-term records of broadly similar temporal changes 

in the type of agricultural activity taking place in the lake catchments. Prior to the 

onset of major deforestation at both sites API values suggest a mixed agricultural 

economy, though significant fluctuations at Llyn Pencarreg reflect a higher degree of 

change during this period. At both sites the most significant shift in the API occurred 

during the Bronze Age, when an increase in open land was characterised by values 

that suggest a gradual though major transition to a predominantly arable farming 

regime during this period. Although NAP at both sites indicates intensified land 

clearance during the medieval period and in the last ca. 400 years, API suggests that
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since ca. 0.2 k cal. yrs. BP at Upper Talley and ca. 0.1 k cal. yrs. BP at Llyn 

Pencarreg agricultural land-use has remained predominantly arable.

This is contradicted by the current status of land-use at Upper Talley where intense 

sheep grazing takes place on the grassy banks that run directly to the water edge. This 

has continued since at least the early nineteenth century when Lewis (1833) noted a 

substantial portion of common land was used for grazing sheep around the Talley 

Lakes. It is possible however, that the pollen types used in the API (Turner, 1964) do 

not fully represent the finer grasses and weed taxa found in modern improved pasture, 

thus underestimating the importance of pastoral farming. This would indicate that the 

herb spectrum needs to be studied in more detail to examine the possible differences 

in agricultural taxa between now and then (Brostrom et al., 2004). In spite of this, 

when examined in combination with the NAP curve the API provides strong evidence 

for changes in land-use that correspond with shifts in ecological status.

9.3.2 Charcoal

Charcoal analysis provides an additional proxy indicator for human occupation within 

the lake catchments. Clark (1988) suggests that as with pollen analysis, it can be 

assumed that the background signal is constant and that under natural conditions lakes 

within the same climatic and topographic region will receive similar amounts of 

charcoal. As it is well established that Upper Talley and Llyn Pencarreg are in similar 

catchments, this assumption again allows for the comparison and evaluation of 

charcoal particles during periods of increased human activity.
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At both sites increases in charcoal correspond with deforestation and a general 

increase in grasses and herbs during the Bronze Age, medieval period and more 

recently (past ca. 400 years) (Figures 9.5 and 9.6). Although Hornberg et al. (2006) 

found that the subtle effect of hunter-gatherer populations on changing vegetation 

patterns through the use of fire was difficult to evaluate due to the re-deposition of 

sedimentary material, some studies do indicate large peaks in the charcoal data as a 

result of forest burning during the Bronze and Iron Ages (Wilcox, 1974; Millspaugh 

and Whitlock, 1995; Pitkanen, 1999).

At Upper Talley and Llyn Pencarreg however, the smooth curves and low values of 

the charcoal data, compared to those produced by natural fires or slash and burn 

farming, are more likely to indicate the small scale burning of lakeside or wetland 

vegetation (as recorded in a recent high resolution study of Mesolithic sediments from 

County Cork, south-west Ireland; Mighall et al., 2008), or the burning of wood by 

increased human habitation within the lake catchments (e.g. Burden et al, 1986; 

Tsukada et al., 1986). It is assumed, therefore, that the comparison of charcoal 

abundance at the study sites represents differences in the degree of human occupation. 

Apart from during the Bronze Age the charcoal record is in general agreement with 

the pollen data and NAP curve, indicating that human occupation has generally been 

more intense at Llyn Pencarreg.

9.3.3 Archaeology

The presence of archaeological structures and artefacts was used as an additional 

indicator of anthropogenic impact both around Upper Talley and Llyn Pencarreg and
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within the lake catchments. Although this provided the study with the opportunity to 

spatially examine the presence of archaeology for each major archaeological period 

(Figure 3.4), knowledge of ancient settlements and changes to their immediate 

environment is still severely limited; the evidence found is always less than has 

actually survived, which in turn is far less than the total amount of evidence existing 

during the time of deposition (Barker, 1993). The interpretation of evidence in 

relation to the existence of prehistoric settlements was therefore extremely cautious 

and the presence of prehistoric axes, standing stones or funerary barrows was not 

applied significantly in the evaluation of human occupation. Nevertheless, the 

discovery of archaeology within a 5km radius of Upper Talley and Llyn Pencarreg 

does provide strong evidence for the presence of humans during the Neolithic, Bronze 

Age, Iron Age, Roman occupation and medieval period.

When the archaeological record is compared to changes in the abundance of pollen 

and charcoal, the occurrence of both Bronze Age and Medieval archaeology in the 

Upper Talley and Llyn Pencarreg region corresponds with major changes in the pollen 

record. These changes include a significant increase in the amount of open land, an 

increase in deforestation and the appearance of agricultural indicators, suggesting 

major changes to the landscape. Although the use of this technique to reinforce the 

case for human impact was tentative in the present study, at sites in northwestern 

France Gaudin et al. (2006) showed that the method was successful when the spatial 

analysis of archaeology using GIS was compared to 218 regional pollen datasets. In 

this respect, not only did the presence of ancient structures and artefacts indicate 

human occupation, but the pollen data showed that agricultural activity was confined 

to the lowlands whereas the upland areas were utilised for grazing.
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9.4 The Influence of Other Variables 

9.4.1 Climate

Although wet and dry palaeoclimatic phases are clearly seen in raised bogs 

throughout upland Britain (e.g. Ellis and Tallis, 2001; Barber et al, 2000; 2003; 

Hughes and Barber, 2003; Dark, 2006), the complexity of attempting to disentangle 

the more subtle influence of climate during phases of limnological change from 

human impact is problematic. Some studies, however, show that there may be an 

influence of climate on lake levels in the northern hemisphere as a result of changes in 

precipitation regimes (Battarbee et al, 2002; Hinzman et al, 2005). By comparing 

the limnological and pollen data to the Blytt-Sernander model of climate change in 

northern Europe, the present study was able to produce a broad summary of the 

potential influence of climate on inferred changes in lake depth at Upper Talley and 

Llyn Pencarreg.

Application of this technique to the core data enabled changes in climate to be 

evaluated as a potential cause of limnological change. The inferred increase in lake 

depth at Upper Talley at ca. 2.3 k cal. yrs. BP (e.g. a decrease in DI-TP, an increase in 

planktonic Cyclotella and a decrease in aquatic macrophytes), for example, falls at the 

beginning of the wet Sub-Atlantic; a markedly wet period characterised by a sudden 

rise in lake levels (Issar, 2003). At Llyn Pencarreg, on the other hand, the sharp 

inferred increase in lake depth at ca. 4.5 k cal. yrs. BP falls during the Sub-Boreal 

when dry conditions between ca. 5.0 and 2.9 k cal yrs BP led to a phase of 

exceptionally low water levels between ca. 4.6 and 4.0 k cal yrs. BP (Diggerfeldt,

306



1988). A major strength of the present research is that climate is controlled by the 

proximity of Upper Talley and Llyn Pencarreg, and any major change in weather 

patterns should be consistent at both sites.

9.4.2 Other Potential Limnological Drivers

The diatom-based DC A species scores for both sites (Figures 5.6; Upper Talley, and 

6.6; Llyn Pencarreg) summarise the major compositional changes in the diatom flora 

over time and, when compared to the multiproxy data, help to identify the major 

drivers of change. As noted in Chapters 5 and 6, the distribution along Axis 1 was 

related clearly to a nutrient/turbidity gradient in Upper Talley, but at Llyn Pencarreg 

other variables such as changes in lake depth and complex changes in macrophyte 

abundance and composition may also have had an influence on the diatom flora. The 

scatter plot of Axis 2 and Axis 3 (Figure 6.5) indicated that pH changes may have 

influenced the Llyn Pencarreg diatom community (Section 6.12.1). This may have 

been explored further by application of a diatom-based pH transfer function 

(Battarbee et al., 2000). However acidification was not the focus of the study and 

Llyn Pencarreg produced adequate information to suggest changes in ecosystem 

dynamics in response to eutrophication.

9.5 Summary

The study demonstrates the value of a multi-proxy approach in reconstructing the 

timing and magnitude of ecosystem change in response to long-term enrichment, and 

for evaluating the contribution of external forces to the eutrophication process. The
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limnological indicators provided a record of long-term changes in productivity (DI- 

TP, aquatic plants, 8 13C and C/N) and evidence of shifts in ecosystem status, hi 

addition, the pollen and charcoal data, the presence of archaeology and the Blytt- 

Sernander, north-eastern European model for Holocene climate change produced a 

framework of possible influences to changes in lake status.

Although some problems were encountered, on the whole the selected indicators 

performed well in the long-term reconstruction of lake conditions at Upper Talley and 

Llyn Pencarreg. The DI-TP did not perform as well as expected considering that the 

good representation of diatoms in the modern dataset (i.e. 99% at Upper Talley and 

98% at Llyn Pencarreg). This may have been due to the influence of a high 

proportion of benthic and littoral diatoms, which tend to reflect habitat availability 

rather than shifts in nutrient status. At the primary trophic level, however, the diatom 

stratigraphy reflected shifts in abundance and assemblage composition in response to 

environmental change. Variations in the abundance and diversity of aquatic 

macrophytes also provided information that helped to identify eutrophic patterns, 

whilst Pediastrum reflected shifts in the wider algal community in response to 

variations in productivity status. However, a general description of changes in the 

phytoplankton community would have been strengthened greatly by the use of fossil 

pigment analysis and Chara oospores; these indicators may have also helped to 

highlight shifts between the main plant groups during the process of eutrophication.

Although it is possible that different species of ephippia reflect a range of water 

quality problems, when compared to the multiproxy record the presence of ephippia 

during phases of enrichment undoubtedly reflected ecosystem stress at both Upper
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Talley and Llyn Pencarreg. This assessment may have been strengthened by the 

analysis of Cladocera body parts, which can reflect habitat availability and changes in 

nutrient status. Whereas the 6 13 C values appeared to be influenced by a range of 

environmental factors other than productivity, and therefore lacked the ability to 

reflect changes in productivity, the C/N ratios did meet with more success. However, 

the C/N profile was more useful as an indicator for long-term terrestrial inwash and 

appeared to reflect changes in the immediate catchment better than shifts in 

productivity.

Catchment impact was supported by changes in the pollen record, particularly during 

the Bronze Age and medieval periods when an increase in deforestation and open 

ground corresponded with the introduction of agricultural indicators and an increase 

in arable farming. Although the occurrence of archaeology reflects human presence 

in the area, it would be overconfident to suggest that this indicates the existence of 

past human settlements within the lake catchments. The presence of Talley Abbey, 

and the availability of ecclesiastical records for the early 13 th century, however, is 

indisputable evidence for human occupation within the lake catchment during the 

medieval period. Finally, the influence of climate and other variables are examined as 

alternative causes of limnological change. This emphasised the importance of 

considering that a range of drivers can be ultimately responsible for changes in lake 

conditions.
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CHAPTER 10

COMPARISON OF THE LONG-TERM CHANGES IN ECOSYSTEM 

DYNAMICS AT UPPER TALLEY AND LLYN PENCARREG

10.1 Introduction

The selection of closely adjacent sites with similar catchment characteristics allowed 

geology (non-calcareous Silurian Wenlock bedding, with Old Red Sandstone layers), 

soil type (well drained, loamy, brown earth), vegetation (i.e. temperate deciduous) and 

climate at Upper Talley and Llyn Pencarreg to be treated as constants. Apart from 

catchment size and lake depth all other parameters are also comparable (Section 3.7). 

The two sites would thus be classified within the same category of lake-type under the 

rules of the EUWFD, which in turn enables the efficacy of the EUWFD methodology 

for classification, impact assessment and definition of the reference state to be tested 

(Chapter 11).

The focus of Chapter 10 is to compare long-term ecological and limnological 

reconstruction between Upper Talley and Llyn Pencarreg in order to explore the 

contrast in response mechanisms and magnitude of enrichment between two 

seemingly similar lakes (Aim 3). This will ultimately allow for the evaluation of 

ecological characteristics, which may differ between the two lakes despite the 

similarity of environmental parameters. The multiproxy data are interpreted in terms 

of changing ecosystem dynamics, as discussed in section 1.9, and the associated 

influence of changes in land-use are assessed by comparison with the pollen, NAP 

and API data. Figures 10.1 and 10.2 place the sites on a common timescale to allow
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for the direct comparison of both catchment and limnological indicators during phases 

of impact.

10.2 Comparison of Ecosystem Response to External Impact During the Major 

Archaeological Phases at Two Similar Lakes

10.2.1 Mesolithic (ca. 10.0 to 6.0 k cal. yrs. BP)

Sediments from the Mesolithic period are missing from the Llyn Pencarreg core due 

to on-site coring problems, which may have prevented the retrieval of a full Holocene 

sequence. It may be that the initial origin of the lake was earlier (i.e. below 7.0.m), in 

which case the basal sediments may represent a lake shallowing event. Alternately, 

the sequence may be almost complete and the woody sediments may represent its 

earliest stage of development. The latter would indicate that the lake is not of glacial 

origin (Section 10.2.2) and evolved more recently as a result of changes in catchment 

hydrology. Upper Talley, on the other hand, evolved from a shallow lake with a 

dominance of benthic taxa and low inferred nutrient levels (indicating shallow, clear 

mesotrophic status prior to ca. 9.7 k cal. yrs. BP) to one displaying a low proportion 

of benthic taxa, which were replaced with planktonic species indicative of eutrophic 

waters. The presence of double yolked ephippia from ca. 9.2 k cal yrs. BP provides 

very clear evidence of intense environmental pressure that may be habitat-linked; as 

discussed in Section 2.8, changes in the reproduction techniques of Cladocera are 

usually related to unpredictable shifts in the wider ecosystem in response to 

limnological change (Sarmaja-Korjonen, 2004).
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The likely causes of limnological change are discussed in Chapter 7.3 and indicate 

that in addition to human impact, other factors including climate and lake depth may 

have had an influence. However, it is likely that limnological stress at Upper Talley 

was encouraged by the exceptionally high nutrient concentrations and turbid 

conditions, from ca. 8.4 k cal. yrs. BP, which pushed the ecosystem to a point where a 

resilience threshold was crossed to a new state that was maintained until the start of 

the Bronze Age (ca. 4.5 k cal. yrs. BP). A low diversity planktonic assemblage 

dominated by obligate meso- to eutrophic diatoms (A. granulata, C. stelligera and S. 

minutulus) (Stage 1; see section 9.2.1.1) was followed by further changes in diatom 

assemblage composition whereby A. granulata dominated the record demonstrating 

its ability to be able to withstand extreme turbidity (Stage 2).

As the robust silica frustules of A. granulata enable them to stay buoyant during 

phases of turbidity (Kamenir et al, 2004), it is likely that along with filamentous blue- 

green algae (Dokulil and Skolout, 1986) its presence at Upper Talley maintained 

photosynthesis at the base of the food chain. The presence of ephippia may therefore 

be associated with a reduction in available prey; it is possible that the heavier silica 

frustules of A. granulata also rendered it inedible (Kamenir et al., 2004). 

Furthermore, if the evidence from sedimentary fossil pigments is correct then the algal 

community during this period will also be limited to the presence of inedible toxic 

green algae (Hall et al., 1997; Lotter, 2001). It is therefore likely that conditions at 

Upper Talley during the Mesolithic period offered little food opportunities for 

secondary consumers.
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During this period conditions at Upper Talley are in accordance with the 'multiple 

states' model suggested by Dent et al. (2002) that describes ecological status during 

phases of extreme environmental pressure. The model predicts a process of species 

reorganisation during phases of environmental change whereby a shift in community 

structure to one with species more suited to withstand the new conditions enables 

ecological stability to be maintained (Holling, 1973; Levin, 1999). It is also 

consistent with the concept that the dominance of a few robust taxa can protect the 

more vulnerable species from extinction (Persson et al., 2001). Although many 

authors (e.g. Odum, 1953; May, 1973; Yodis and Innes, 1992) suggest that stability is 

maintained by high diversity during times of stress, conditions at Upper Talley 

indicate that the new, low diversity diatom assemblage prevented community collapse 

by maintaining ecological stability and preserving ecosystem integrity at the 

phytoplankton level during extreme eutrophication.

Regardless of the traditional views of ecosystem stability (stated in the previous 

paragraph) that depend on strong community interactions, conditions at Upper Talley 

show that long-term stability can be maintained at the phytoplankton level alone. 

Recent theoretical analysis suggests that the persistence of large numbers of 

competing phytoplankton communities that can survive on a minimal number of 

limiting resources, are able to produce a range of ecological responses to 

environmental change. This promotes stability without the need for a high density 

community (McCann, 2000). Again, the concept of algal competition could have 

been tested further with the analysis of fossil pigments to examine the shifts in 

dominant species that can take place during the nutrient enrichment process (Hall et 

al., 1997; Letter, 2001).
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10.2.2 Neolithic (ca. 6.0 to 4.5 k cal. yrs. BP)

Although nutrient loads at the study sites were high during the Neolithic period, 

human activity was generally of a temporary nature (Caseldine, 1990) and therefore 

likely to cause low level environmental impact within lake catchments. This is 

reflected at both sites by the presence of Neolithic archaeology in the region (Figure 

3.4), situated in a landscape still dominated by arboreal taxa (Figure 10.1) and 

woodland plants (Figure 6.9, e.g. Filipendula, Hedera helix and Pteridium 

aquilinum). Reductions in the relative abundance ofBetula at Upper Talley and Alnus 

glutinosa at Llyn Pencarreg, however, suggest that if these changes were the result of 

human impact then they probably occurred in different areas of the catchments; the 

shift in Betula suggests tree removal on the dryer slopes at Upper Talley, whilst at 

Llyn Pencarreg the reduction in Alnus glutinosa during the wet Atlantic period is 

likely to indicate deforestation of the valley floor. These differences in the location of 

tree removal may also be reflected in the peak in pastoral activity at Upper Talley 

(Figure 10.1), possibly indicating grazing on the higher catchment slopes.

Considering that human impact within the catchments appears to have been fairly 

subtle, corresponding limnological change is displayed at both sites. However, the 

shifts in limnology were very different in nature, possibly reflecting differences 

within the lake catchments. The peak in ephippia at Upper Talley indicates that the 

highest nutrient loads of the entire core led to an increase in ecosystem stress, which 

extended from the Mesolithic period. The presence of ephippia may be associated 

with the loss of specific habitats (e.g. aquatic macrophytes; Jeppesen, 2001), a 

reduction in available prey (Pennack, 1989) or direct changes in water chemistry
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parameters (Binford, 1986). Whatever the reason for limnological pressure, Upper 

Talley continued to display characteristics of the low diversity multiple states model, 

referred to in the previous section (Dent et al, 2002) that is created to protect 

ecosystem integrity during phases of extreme ecological pressure.

As noted, at Llyn Pencarreg the inferred changes in ecosystem status at the 

Neolithic/Bronze Age interface, were associated with what may be the origin and 

early development of the lake. Changes in nutrient status and species composition 

appear to reflect a hydrological shift from a nutrient-rich muddy, woodland pool to a 

larger water body. The corresponding decrease in nutrient loads, benthic taxa and 

planktonic taxa associated with high organic matter (e.g. C. meneghiniana and A. 

granulatd) and the shift to an assemblage dominated by C. ocellata (Figure 10.2) may 

therefore be associated with the deepening and expansion of Llyn Pencarreg (Ruhland 

et al., 2003).

10.2.3 Bronze Age

The timing and extent of Bronze Age impact at the study sites was distinct and clearly 

comparable, though land-clearance began later al Upper Talley (ca. 3.8 k cal. yrs BP) 

compared to ca. 4.2 k cal. yrs. BP at Llyn Pencarreg (Figure 10.1). The concurrent 

and significant shift from a predominantly pastoral to a largely arable landscape was 

characterised by an increase in Hordeum, and ruderals such as Plantago lanceolata 

and a significant rise in Poaceae, which follows a similar pattern to other sites in 

Wales (Thomas, 1965; Caseldine, 1990; Mighall and Chambers, 1995; Chambers, 

1983; 1988; 1999; Lillie et al., 2000). Rumex acetosa also increases, suggesting that
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despite the shift to mainly arable farming, pastoral activities continued to a lesser 

degree. These changes in catchment conditions correspond with the presence of 

Bronze Age funerary archaeology on the hills surrounding both Upper Talley and 

Llyn Pencarreg (Figure 3.4). In both cases the cairns were constructed from stone, 

which will have cleared the land for ploughing and suggests that local soils were 

valued for agricultural purposes. Although not definitive evidence for anthropogenic 

impact around the lakes, the concurrent increase in charcoal (Figure 10.1) at both sites 

also suggests a major increase in human impact.

In spite of these between-site similarities, the magnitude of human impact was 

significantly different and land-clearance was notably higher at Llyn Pencarreg 

(compare the NAP profiles in Figure 10.1) suggesting that the inferred changes in 

land-use were more intense at this latter site. The difference in the degree of impact, 

however, was not reflected in the magnitude of limnological change and the 

associated increase in nutrient status was considerably higher at Upper Talley 

(compare DI-TP values in Figure 10.2). Llyn Pencarreg exhibited a slow response to 

the changes in land-use with gradual trends of change rather than a sudden threshold 

shift. Even though A. granulata appeared in response to land clearance and increased 

algal competition is indicated by the temporary peak in P. boiyanum and increase in 

diatom diversity, there were no signs of ecosystem stress and the lake remained within 

the mesotrophic range. In contrast, nutrient loads at Upper Talley increased sharply 

and significantly in accordance with the changes in land-use, whilst poor water quality 

and ecosystem stress was indicated once more by a second major increase in A. 

granulata and a peak in ephippial production.
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The changing aquatic macrophyte communities also exhibited significant differences. 

At Upper Talley the increase in aquatic macrophyte abundance at ca. 3.4 k cal. yrs. 

BP corresponded with a decrease in ephippial production suggesting that there may be 

an association between the two indicators. However, the overall diversity of aquatic 

macrophytes remained low and was dominated by the submerged plants Cyperaceae 

and Potamogeton. Dominance of these taxa at several lakes around the World has 

been found to reflect shallow, damp peaty conditions, particularly in the littoral zone 

(e.g. Mid-Wales, Handa, 1976; North America, Lauderback, 2008; Tibet, Shen et al, 

2008). These conditions are also suggested by the introduction of Salix at ca. 3.4 k 

cal. yrs. BP.

At Llyn Pencarreg a peak in aquatic macrophyte abundance occurred at the onset of 

land-use change, possibly reflecting the higher degree of land-clearance. The 

development of a more diverse plant community, represented by Cyperaceae and a 

range of emergent, mesotrophic species (e.g. Isoetes lacustis, I. echinospora and 

Ranunculus aquatilis) (Figure 6.9) may reflect deeper water (Yuan, 2007). Their 

presence would have provided increased habitat availability and may be instrumental 

in the concurrent increase in diatom diversity at Llyn Pencarreg, which suggests good 

ecosystem health (van Nes et al., 2002) compared to Upper Talley. As changes in 

land-use intensified aquatic macrophyte abundance rose to a sharp peak (ca. 3.9 cal. 

yrs. BP), followed by an immediate decline. The subsequent decrease in relative 

abundance corresponded with the appearance of A. granulata, which peaked at the 

height of land-clearance. Its appearance is turbidity-related and may be associated 

with the reduction in macrophytes, which can cause sediment instability in the littoral 

zone (Schiemer and Prosser, 1976). These changes are typical of the classic shift
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from plant to algal domination during phases of catchment impact (Figure 10.3) 

(Mason, 2002).

Considering that land-clearance was more intense at Llyn Pencarreg, its lower 

inferred nutrient status can only be described by the major difference in magnitude of 

eutrophication and the high trophic status of Upper Talley at the onset of Bronze Age 

land-clearance (mean; 46 ug I" 1 ). This may have primed the lake for a rapid return to 

hypereutrophic status, poor water quality and ecosystem stress. As noted, in contrast 

to Upper Talley, Bronze Age impact at Llyn Pencarreg took place against a 

background of relatively low nutrient loads and it is possible that this helped to 

maintain ecosystem stability. Additionally it is likely that lake water was deeper at 

Llyn Pencarreg, which may buffer the lake from the effects of human impact and 

prevent phases of eutrophication (Plater et al, 2006). Although a complex 

combination of natural and human influences caused a high degree of limnological 

change at Llyn Pencarreg during the first ca. 500 years of development, the transition 

to a mesotrophic status dominated by T. flocculosa appears to have produced a 

'stable' state.

Conditions at Upper Talley and Llyn Pencarreg during the Bronze Age suggests that 

although large scale land-clearance and a shift to arable farming took place within the 

lake catchments, changes in lake trophic status during this period were predetermined 

by differences in nutrient concentrations before deforestation began rather than by 

catchment impact itself. Upper Talley shows that high background nutrient loads at 

the onset of human impact can quickly produce a threshold of poor ecosystem health, 

whilst results from Llyn Pencarreg suggest that low nutrient concentrations and a
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deeper water depth can protect a system from extreme limnological change, despite 

the higher degree of land-clearance. Evidence of these significant differences in two 

sites with similar physico-chemical characteristics highlights the need for site-specific 

assessment to identify the main influences on long-term nutrient status, and, to 

evaluate their importance in setting baseline states (Chapter 11).

10.2.4 Iron Age

Archaeological evidence at both Upper Talley and Llyn Pencarreg indicates continued 

human presence in the region during the Iron Age (Figure 3.4). Although an increase 

in Betula at ca. 2.7 k cal. yrs. BP suggests re-growth on the dryer slopes, the pollen 

records indicate that both the timing and magnitude of human impact at the study sites 

was different. Figure 10.1 indicates that changes in land-use continued at Upper 

Talley and reflected the highest degree of land-clearance at the site so far at ca. 2.6 k 

cal. yrs. BP. The concurrent shift towards an arable farming regime (see API profile) 

is accompanied by the appearance of cultivated plants (e.g. Brassicaceae, Daucus 

carotd), increases in Poaceae, P. lanceolata and Hordeum and a decrease in R. 

acetosa, reflecting a decrease in pastoral activities.

A pattern of prolonged land-clearance from the Bronze Age appears to show a phase 

of settlement continuity at the beginning of the Iron Age. This was also common at 

other sites in Wales (e.g. Welsh Marches [Savory, 1980]; Llangorse [Jones et al., 

1985]; Carneddau [Walker, 1993]) as populations remained on the warmer foothills, 

lakesides and margins of river valleys in order to compensate for climatic 

deterioration that extended from the late Bronze Age onwards (Myrum, 1988).
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Although land-use remained primarily arable, at the end of the Iron Age (from ca. 2.2 

cal. yrs. BP) the magnitude of land-clearance decreased and was accompanied by a 

concurrent decrease in P. lanceolata and Hordeum; possibly reflecting movement 

away from lake catchments at the beginning of the wet Sub-Atlantic period.

Temporal patterns of land-use at Llyn Pencarreg, however, are in complete contrast 

with those at Upper Talley. Compared to the increase in land-use at the latter site 

during the early Iron Age, there was a significant reduction in land-clearance at Llyn 

Pencarreg (Figure 10.1; NAP profile). This began at ca. 2.8 k cal. yrs. BP, and was 

characterized by a decrease in both Poaceae and Hordeum. Although the increase in 

Salix is later at Llyn Pencarreg (ca. 2.8 k cal. yrs. BP), compared to ca. 3.4 k cal. yrs. 

BP at Upper Talley, its presence at both sites may reflect the damp conditions of the 

Sub-Atlantic. This is supported at Llyn Pencarreg by the loss of Caluna vulgaris, 

though its corresponding increase at Upper Talley could reflect differences in local 

conditions, which may have been a contributing factor to spatial patterns of land-use.

At ca. 2.2 k cal. yrs. BP the minor increase in land-clearance at Llyn Pencarreg, 

characterised by P. lanceolata and R. acetosa (Figure 10.1), suggests renewed land- 

use, although not to the magnitude reflected at Upper Talley during the early Iron 

Age. At many sites in Wales (e.g. Llangorse (Jones et al., 1985), the Brecon Beacons 

(Chambers, 1982) and the Black Mountains (Price and Moore, 1984) evidence of 

settlement expansion at ca. 2.2 k cal. yrs. BP is accompanied by deforestation, 

renewed agricultural and pastoral activity, soil deterioration and soil inwash, 

particularly in the dryer upland areas (Hogg and King, 1963; Moore and Chater, 

1969).
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In spite of long-term catchment activity, limnological conditions at Upper Talley 

improved throughout the Iron Age. The reduction in DI-TP to meso-eutrophic status 

and increase in a range of planktonic Cyclotella species accompanied by a decrease in 

A. granulata reflect recovery from long-term hyper-eutrophication. The increase in 

diatom diversity is concurrent with this interpretation and can reflect improvements in 

ecosystem health (Das et al, 2008). This development is difficult to explain in a lake 

showing evidence of intense human activity, though the increase in Cyclotella species 

could be directly linked to a lake deepening event, which as discussed in the previous 

section, can cause a decrease in enrichment, and also in A. granulata abundance 

(Plater et al, 2006), and may 'absorb' the usual limnological impact that is indicative 

of intensified land-use (Mason, 2002). Additionally, the peak in aquatic macrophytes 

corresponds with lower nutrient loads inferred from other indicators at the beginning 

of the Iron Age. Their subsequent decrease may reflect the reduction in littoral area 

that is characteristic of lake deepening events (Rasmussen and Anderson, 2005), thus 

strengthening the evidence for the potential of internal influences effecting 

limnological status.

At Llyn Pencarreg the peak in A. granulata at the start of the Iron Age may reflect 

slow limnological response to intensified land-use during the Bronze Age. As 

turbidity decreased and water clarity increased (indicated by the sustained increase in 

benthic species and reduction in DI-TP and planktonic T. flocculosa), aquatic 

macrophytes increased and peaked at ca. 2.3 k cal. yrs. BP. This suggests that there is 

a direct relationship between the algal and macrophyte plant groups at Llyn Pencarreg 

that may have helped to balance nutrient loads. If this is the case, renewed expansion

324



of aquatic plants may have buffered the lake from the effects of limnological impact 

during the phase of land-use at ca. 2.2 k cal. yrs. BP.

Despite their similarities and proximity, not only do Upper Talley and Llyn Pencarreg 

follow different temporal patterns of land-use during the Iron Age, but again indicate 

that although land-clearance took place within the lake catchments, changes in lake 

ecology and the capacity of each system to buffer itself from limnological impact was 

dictated by individual lake history. Lake conditions at the study sites during the Iron 

Age therefore suggest that maintaining ecosystem integrity relies on factors such as 

changes in lake depth and the response of aquatic macrophytes to changing nutrient 

loads, which can keep lakes in a 'stable' state rather than demonstrating a catastrophic 

threshold shift. As discussed in Chapter 11, the greater depth of Llyn Pencarreg, in 

spite of being classified as 'shallow', may be significant.

10.2.5 Roman and Post-Roman Occupation

Again contrasts in temporal patterns of land-use were indicated at the study sites 

during the Roman period, although there are many similarities during the post-Roman 

period. At Upper Talley the lack of change in arboreal pollen and the reduction in 

Poaceae, Hordeum and P. lanceolata during the Roman period suggest catchment 

stability and may reflect the strong Ordovician resistance to Roman occupation and 

the reappearance of localised farming traditions. Cunliffe (2005) explains that this 

was common in west and central Wales, extending down to Cardigan Bay; which may 

also explain the lack of settlement archaeology at many sites. The archaeological 

record shows that this may also true of Upper Talley; the only evidence for Roman
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occupation is a Roman fort that was discovered in the eastern part of Dinefwr Park, 

Llandeilo, 12km north of Talley, and at Pencarreg, 10km north.

In contrast, the archaeological record at Llyn Pencarreg indicates that this was a site 

of Roman occupation (e.g. a gold coin from the Arcadius period (383-408 AD), quern 

stones and a macehead found at the bed of Llyn Pencarreg itself), which may be 

linked to the building of the road through the village of Pencarreg. However, 

although Figure 10.1 indicates an increase in Hordeum pollen, suggesting local 

cultivation from ca. 1.7 k cal. yrs. BP, there is surprisingly little evidence of 

deforestation around the lake. This on the one hand may be due to the temporary 

nature of occupation, although on the other hand major clearance during the Iron Age 

may have provided enough land for these changes to take place without further tree 

removal.

Following an initial decrease in land-use during the post-Roman period, Figure 10.1 

indicates that land-clearance at both Upper Talley and Llyn Pencarreg began to 

increase again from ca. 1.3 k cal. yrs BP (NAP). However, the changes in land-use 

appear to vary between the sites. At Upper Talley a peak in cereal (Hordeum) 

production at ca. 1.3 k cal. yrs. BP is followed by a significant resurgence in pastoral 

activities (API) characterised by an increase in R. acetosa. In contrast, at Llyn 

Pencarreg the consistent presence of cereals and herbs in the pollen record indicates 

that although land-clearance increased, land-use type remained the same. Hills (1999) 

explains that during this period populations were driven to sheltered lowland areas, in 

response to the cool, Sub-Atlantic climate, where pollen records reveal a mixed 

economy of pastoral and arable farming that varied at a regional scale.
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In spite of these changes to the landscape, limnological response at both sites was 

mild, indicating that by ca. 2.0 k cal. yrs. BP both Upper Talley and Llyn Pencarreg 

demonstrated the ability to withstand phases of low or temporary human impact in 

their immediate catchments. Shifts in the Upper Talley diatom record appear to relate 

to internally driven changes that began during the Iron Age in response to either 

changes in lake depth or improved water clarity following 6,000 years of natural 

eutrophication. In fact, regardless of the strong evidence for catchment impact during 

the post-Roman period, the increase in benthic taxa and diatom diversity indicates that 

water quality at Upper Talley improved even further, whilst nutrient concentrations 

remained mesotrophic. This may be related to the relatively high percentage of 

aquatic macrophytes during the Roman period, which may have maintained nutrient 

concentrations. Their subsequent reduction however, led to a stable aquatic 

community, which was established during the post-Roman period.

At Llyn Pencarreg the presence of A. granulata suggests that the turbid conditions 

represented during the Iron Age continued until ca. 1.8 k cal. yrs. BP. Although an 

increase in DI-TP was noted during the post-Roman period from ca. 1.3 k cal. yrs BP, 

nutrient status stayed within the mesotrophic range. Aquatic macrophyte growth also 

remained stable between ca. 2.0 and 1.0 k cal. yrs. BP, dominated by Cyperaceae and 

Isoetes lacustris indicating clear, mesotrophic waters (Haslam, 1975). Changes at the 

study site thus indicate that nutrient loads can remain stable during temporary phases 

of human impact. At the shallower Upper Talley, minor shifts in limnology may 

reflect the lake's natural ability to deal with environmental change (Scheffer, 2004), 

whilst the lack of change at Llyn Pencarreg again supports the hypothesis that deeper 

lakes can absorb the effects of catchment impact (Carpenter et al, 1999).
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10.2.6 Medieval

Changes to the Medieval landscape at Upper Talley and Llyn Pencarreg were 

significant and palynological evidence for land-clearance (which continued from the 

Post-Roman period) was accompanied by an increase in cereal production (Figure 

10.1; NAP). An arable regime was maintained at both sites (API), and thet intensified 

land-use was comparable with other sites across Northern Europe during this period 

(Bradshaw, 2001; Gaillard et al, 1991; Hakansson and Regnell, 1993; Chambers, 

1999). These changes reflect the changes in Medieval farming technology that 

enabled increased cultivation and agricultural production to meet the needs of a 

growing population (Chavas and Bromley, 2005).

In Figure 3.4 the presence of Medieval archaeology (e.g longhouses, mills, silver 

coins, mottes, chapels and holy wells) at the study sites provides the first evidence of 

permanent occupation and may reflect the small nucleated settlements and farmsteads 

that developed in the semi-lowland and sheltered upland areas and on rich catchment 

soils as a result of the climatic improvements (The Medieval Warm Period) of the 11 th 

century (Thomas, 1975). The Abbey at Upper Talley was also constructed during this 

period (completed 1185 AD; Robinson and Platt, 1998) and, as indicated by both 

documentary and pollen evidence, the high proportion of monastic arable (3900 acres) 

and pastoral land (3000 acres) (Lewis, 1844) produced the most significant changes to 

the local landscape since the Bronze Age. At Llyn Pencarreg the network of Mottes 

suggests tactical defence of the area (Spurgeon, 1987) and trade-links between the 

small nucleated villages and farming communities (Creighton, 2005), suggesting the 

presence of well-established communities based on a strong rural economy.
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Considering the previously mesotrophic status of both lakes (Figure 10.2), 

limnological response to changes in land-use (from ca. 1.0 k cal. yrs. BP at Upper 

Talley and 1.2 k cal. yrs. BP at Llyn Pencarreg; Figure 10.1) was sudden and in both 

cases produced evidence for ecosystem stress. At Upper Talley a threshold of 

ecosystem stress at ca. 0.7 k cal. yrs. BP is indicated by the appearance and significant 

increase of Cladocera ephippia (Figure 10.2), an increase in inferred primary 

production and a sharp increase in algal biomass; all positive indicators of 

eutrophication. Changes in the diatom community, however, were subtle and limited 

to an increase in the relative abundance of benthic taxa. This change may on the one 

hand have caused an underestimation of nutrient concentrations, but on the other their 

increase may reflect maintenance of the algal community. At the highly productive 

Lake Kinneret (Israel), for example, Kamenir et al. (2004) found that increases in the 

abundance of individual species was conducive with maintaining community stability 

by preventing significant increases in species diversity and the potential for 

community collapse (the 'paradox of enrichment'; Rozentzweig, 1971). The increase 

in species abundance also suggests a resilience mechanism that assures photosynthesis 

at the base of the food chain and the continuous inflow of energy during a period of 

perturbation (Brinkhurst, 1974).

The presence of ephippia at Upper Talley may be linked to underlying changes in the 

aquatic macrophyte community and the associated shifts in predator-prey 

relationships. A. granulata abundance was low during this period (Figure 10.2) 

suggesting that turbidity was also low and it may be possible that nutrient loads were 

maintained by a process of sedimentary P-absorption. This mechanism removes P 

from the main water body and maintains epilimnetic nutrient concentrations during
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periods of high external loading, particularly at shallow lakes (S0ndergaard et al, 

1992; 2003; Brostrom, 1998). As sedimentary P is potentially mobile, the peak in 

nutrient concentrations at ca. 0.6 k cal. yrs BP may be linked to phosphorus release 

from wind stress or sediment mixing (Wetzel, 2001).

In contrast, at Llyn Pencarreg land-clearance corresponded with the appearance and 

subsequent peak in A. granulata and a reduction in benthic taxa (Figure 10.2), 

indicating a strong response to changes in land-use, albeit of a different nature to 

changes at Upper Talley. The decrease in diatom diversity and the first appearance of 

ephippia at Llyn Pencarreg also reflect ecosystem stress and poor ecosystem health. 

The response to nutrient enrichment was therefore much faster than the gradual 

changes observed during the Bronze Age when catchment impact was also 

substantial. Studies have shown that in lakes deeper than 10m, where there are fewer 

functional groups (which may be reflected in the lower diatom diversity values of the 

entire core compared to those at Upper Talley) and resistance pathways can be 

eroded, a gradual loss of resilience may cause a sudden shift to a state of limnological 

stress during phases of environmental impact (Carpenter et al., 1995; Scheffer et al., 

2001). However, despite marked limnological impact at Llyn Pencarreg the changes 

were mostly temporary; although the pollen record indicates that deforestation 

continued, the majority of indicators returned to equilibrium following the height of 

enrichment. This was accompanied by an increase in aquatic macrophytes, reflecting 

improvements in ecosystem health (Figure 10.2).

The data from the medieval period therefore suggest that resilience pathways are 

controlled by the innate ability of each lake to resist these phases of impact, which are
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different at each site. Additionally, although nutrient loads returned to a pre-impact 

state (mesotrophic) at both sites, the proxy indicators give a mixed impression of rates 

and degrees of recovery. At Upper Talley, although ephippia decreased and C. 

stelligera increased in abundance indicating ecosystem recovery (Stage 3 of the 

eutrophic sequence), the sharp inferred increase in algal biomass (Figure 7.1b) and the 

appearance and increase in relative abundance of C. placentula (Figure 10.2), which 

tends to be characteristic of lakes with floating vegetation during phases of 

eutrophication (Germain, 1981), indicates that primary production remained high. At 

Llyn Pencarreg rates of primary production and algal biomass also remained high 

(Figure 8.1b), whilst the presence of ephippia suggests that species of Cladocera from 

specific habitat types were still under pressure. The results may represent a lag 

between improvements in water quality and ecosystem status or subtle changes in 

ecosystem health that may not be immediately obvious (Bondavalli et al, 2006). This 

could have significant bearing on the location of baseline states based on the simple 

top-bottom approach (Chapter 11) as the presence of certain species may give the 

impression of good ecosystem health, when this is not in fact the case.

10.2.7 Modern (ca. 0.4 cal. yrs BP to present)

In spite of the relatively low levels of human impact recorded at rural sites in Britain, 

when compared to regions of high population density such as south east England (e.g. 

Bennion, 1994), modern cultural eutrophication has caused a pronounced 

deterioration in water quality and ecosystem health at both Llyn Pencarreg and Upper 

Talley. Intensified land clearance is indicated at both sites (NAP; Figure 10.1). It is 

important to note that although the degree of impact was higher at Llyn Pencarreg,
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Upper Talley again showed evidence for higher nutrient status, whilst the presence of 

Cladocera ephippia indicate a state of stress in the recent sediments, again 

demonstrating the different response pathways of the two sites with similar typology. 

Despite the earlier recognition of eutrophic sequences at both study sites, modern 

cultural enrichment appears to have caused an increase in the abundance of the 

majority of indicators and the appearance of new species at Upper Talley.

At Upper Talley an increase in nutrient concentrations as long ago as ca. 0.4 k cal. 

yrs. BP, caused a shift to an algal assemblage containing eutrophic C. meneghiniana, 

a gradual decrease in diatom diversity (Figure 10.2), and the first appearance of P. 

simplex. A peak in aquatic macrophyte growth was followed by a subsequent 

decrease, and corresponded with a gradual increase in turbidity, which may have been 

encouraged by the destabilisation of sediments in the littoral zone. As nutrient loads 

increased, C. stelligera displayed a reduction that is typical of its behaviour at Upper 

Talley (Stage 1 of the eutrophic sequence). The presence of ephippia reflects marked 

ecosystem stress and corresponds with the threshold in plant growth, again suggesting 

that there may be a relationship between these indicators and the loss of aquatic 

habitat.

At Llyn Pencarreg, the gap in the core sediments means that conditions between ca. 

0.9 k and 0.2 k cal. yrs. BP cannot be analysed, and consequently the cause and extent 

of change in ecosystem status for this period remains elusive. From the approximate 

chronology, Figure 10.2 shows that poor water quality was apparent from as early as 

the 19th century; it is likely that the building of the Lampeter to Aberystwyth railway 

in 1866, which runs directly through the lake catchment, contributed to the inferred
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poor water quality indicated immediately above the gap. However, a subsequent 

trend towards mesotrophic conditions immediately followed, demonstrating the lake's 

resilience capacity and ability to return to equilibrium. Improvements in ecosystem 

health were demonstrated by the major decrease in A. granulata and the 

disappearance of Cladocera ephippia, indicating decreased light attenuation, a 

reduction in ecosystem stress and improvements in ecosystem health. Benthic taxa 

expanded and P. boryanum was present at low abundance, suggesting an increase in 

habitat availability and community competition.

About 50 - 100 years ago Llyn Pencarreg showed the strongest shift of the entire 

sequence with an abrupt return to eutrophic conditions (Figure 10.2). The increase in 

macrophytes was sudden compared to earlier trends, and although this implies that 

aquatic plants took advantage of the increase in nutrient concentrations, if 

eutrophication continues to intensify the plant community is likely to follow previous 

patterns by reaching a threshold of collapse. Compared to the rate of change during 

the Bronze Age and the medieval period, the recent changes were very rapid (Figure 

6.12) and possibly reflect agricultural intensification and an increase in the use of 

silage.

The study therefore adds weight to the concept that differences between two 

'identical' lakes can be due to natural behaviour and individual response mechanisms 

rather than simply being a direct function of external impact. It is possible however, 

that the inferred deterioration in water quality and ecological status towards the top of 

each core may reflect, in part, different types of catchment pollution. Intensified sheep 

grazing on improved pasture, which can produce surplus nitrogen that easily
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mobilises in soils and leaches into aquatic ecosystems causing damage at all trophic 

levels (Carpenter et al., 1998), can clearly be observed on the banks of Upper Talley, 

whilst Llyn Pencarreg is located in what appears to be a predominantly agricultural 

landscape. Additionally, the contrasting histories of human impact at the sites has 

caused different enrichment trajectories according to the timing of change in the lake 

catchments

10.3 Summary

The use of data taken from a single core from each site has allowed for the
7 ^

comparative reconstruction of ecosystem dynamics over time (10 - 10 years) in two 

similar lakes and evaluation of the direct contribution of human impact to the 

eutrophication process. The multiproxy indicators were selected to represent different 

trophic levels and produce a realistic picture of ecosystem change. Higher up the food 

chain, although fish are not represented in this study, other studies show that changes 

at the phytoplankton level are representative of the amount of energy entering the 

system and therefore algal productivity is usually a robust indicator of changes in the 

wider ecosystem (Brinkhurst, 1974; Carpenter et al., 1985). The results of the present 

study support this.

Examination of the trophic histories of Upper Talley and Llyn Pencarreg demonstrates 

that despite the uniformity of environmental parameters (e.g. climate, geology, depth, 

size and water chemistry), which leads to their similar clasification under the 

EUWFD, eutrophication can differ significantly from lake to lake due to differences 

in lake development, individual environmental experience and natural differences in
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ecosystem composition, population dynamics and ecosystem health (Holling, 1973; 

Peterson et al, 1998; Levin, 1999). This supports the idea that, despite their 

similarities, each lake is not purely a product of a fixed set of environmental factors, 

and that individual components produce discrete pathways of ecosystem change and 

ecological thresholds of response that can cause unpredictable changes in community 

composition (Scheffer, 2004). The present study also supports the idea that 

differences in lake-depth can particularly influence lake response to phases of human 

impact (Moss et al., 2003) This may have serious implications for the location of 

baseline states if lakes continue to be categorised under such a narrow classification 

system (i.e. >3.0 m and <3.0m). This is discussed further in Chapter 11.

Upper Talley and Llyn Pencarreg have also shown that the timing and extent of 

ecosystem change in response to human impact can vary with each phase of nutrient 

enrichment at the same site. This may be related to progressive increases in land-use 

within the lake catchments, the gradual erosion of resilience mechanisms; which can 

occur in deep lakes (Llyn Pencarreg) (Carpenter et al., 1995; Scheffer et al, 2001), or 

increased lake sensitivity; which can take place in shallow lakes (Upper Talley) 

(Hakala et al. 2004). When the divergence in development trajectories between Llyn 

Pencarreg and Upper Talley is set in context with other sites, it is clear that although 

both lakes display a common capacity to return to a state of equilibrium when the 

source of impact is reduced or removed, lake character is strongly influenced by 

individual history, which is unique at each site and central to the problem of defining 

the relatively undisturbed reference state. This has important implications for 

applying the concept of a common reference state for lakes in the same region (see 

Chapter 11).
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These findings appear to be supported by research, which focuses on different lake 

types in other regions. At Glacier Bay, Alaska, Engstrom and Fritz (2006), for 

example, demonstrated that the significant biochemical couplings between ecosystem 

development and catchment events are usually site specific. Likewise, at the shallow, 

calcium-rich, Lake Krankesjon and Lake Takern in southern Sweden (Blindow et ai., 

1993), to maximise light availability submerged aquatics accessed one of a number of 

random feedback mechanisms depending on minor differences in water level and 

community composition at each site. In whole lake experiments Schindler (1990; 

1998) found that changes in the biotic community due to ecosystem stress can vary 

significantly between lakes as a result of differences in baseline nutrient 

concentrations, productivity and community composition. Furthermore, Reynolds et 

al. (1998) found that the development of effective groups is not simply a function of 

increasing nutrient loads and that changes also depend on the arrival and 

establishment of new species, which is a function of time, individual development and 

catchment history.
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CHAPTER 11

THE EU WATER FRAMEWORK DIRECTIVE; IMPLICATIONS OF

SHORT-TERM (LAST 200YRS) ANALYSIS ON A BACKGROUND OF

LONG-TERM (HOLOCENE) CHANGE

11.1 Introduction

In the following section, reconstruction of the long-term dynamics of eutrophication 

and shifts in ecosystem status at two closely adjacent lakes (Upper Talley and Llyn 

Pencarreg) classified similarly under the EUWFD, provide a means to test the efficacy 

of the 'top-bottom' approach for shallow, meso- to eutrophic lakes (Section 1.11, 

Aims 3-5). As outlined in Section 1.8, in the absence of long-term monitoring data, 

palaeolimnology has the potential to provide valuable information on ecosystem 

status prior to accelerated human impact during the 19th and 20th centuries, hi recent 

years the top-bottom approach, based on the analysis of diatom surface sediment 

samples and 'pre-impact' samples (ca. AD 1850 in UK studies), has become an 

accepted approach for regional palaeolimnological research to measure limnological 

deviation due to the effects of acidification (Battarbee et al., 2005) and recent climate 

change (Clark et al., 2005). The method has also become an integral part of the 

EUWFD, in providing a measure of limnological impact, expressed as the magnitude 

of ecological deviation from the AD 1850 state, which may also be used to define 

reference conditions and restoration targets for different 'types' of lake (UKTAG, 

2008; Bennion et al, 2005; Leira et al., 2006).

337



These studies, however, do acknowledge potential limitations. In a regional diatom- 

based European study of recent ecological deviation in mountain lakes, Clarke et al. 

(2005), for example, note the inherent limitations of the top-bottom approach in that it 

'only compares two reference points within a core and cannot account for changes 

occurring throughout the record'. This statement is reinforced by Bennion et al. 

(2005) who found the analogue matching of pristine sites within the same region 

difficult due to individual differences in site histories. Similarly, although Bennion 

and Battarbee (2007) suggest that the approach has the advantage that it can smooth 

annual variations in a sediment record, they also acknowledge that the method may 

fail to produce a realistic indication of ecological change.

There is currently a lack of detailed, long-term research on moderately shallow, meso- 

to eutrophic lakes with which to test the assumptions that the approach is based on. 

The most important assumptions comprise (1) that single top and bottom samples are 

adequate to model ecological deviation over the last ca. 150 years, (2) that a stable 

state of equilibrium existed prior to the putative reference state of ca. AD 1850, and 

(3) that lakes which are classed as similar in terms of physico-chemical characteristics 

in a given geographic region will have similar ecosystem characteristics, allowing 

definition of restoration targets by comparison with the reference state of another, 

similar lake. In the context of the results of the present study, the following chapter 

discusses the implications of the EUWFD and examines the dictates approach (Aims 

3 - 5) to defining realistic sustainable plans for restoration based on the concept of a 

reference state.
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11.2 Testing the Single-sample, Top-bottom Approach to Defining Recent (last 

ca. 150 years) Change

A 'top-bottom' approach, using diatoms to indicate changes in water quality, has been 

adopted at sites in the UK in order to prioritise restoration targets based on the degree 

of deterioration between a point of minimal impact and present lake status (Bennion 

and Battarbee, 2007; UKTAG, 2008). The method is relatively inexpensive and 

allows for rapid analysis of a regional data-set. As noted (assumption 1), the 

technique assumes firstly that the 'top and bottom' approach is a reliable reflection of 

change over the recent timescale (last ca. 150 years). This section aims to examine the 

validity of taking single samples to represent the degree of recent limnological change 

between present day (top sample) conditions and those of ca. AD 1850 (bottom 

sample).

To identify the samples representing ca. AD 1850, the chronology of the recent 

sediment record was estimated by linear interpolation, assuming constant sediment 

accumulation rates between the top of each core and radiocarbon dates at 80cm (350 

cal. yrs. BP) for Upper Talley and 1.37m (1,030 cal. yrs. BP) for Llyn Pencarreg. 

This places 'bottom' samples at a depth of 34cm for Upper Talley and 20cm for Llyn 

Pencarreg. Following Bennion and Battarbee (2004), the direction and magnitude of 

floral dissimilarity between present day (top sample) and ca. 1850 (bottom sample) is 

estimated using the DCA Axis 1 scores (summarising 34% and 35% of the variance 

for Upper Talley and Llyn Pencarreg, respectively) and ecological status is assessed 

by examining the multiproxy data in the recent sediment record as a whole. Figures
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11.1 (Upper Talley) and 11.2 (Llyn Pencarreg) show recent change at the study sites, 

with the top and bottom samples clearly marked.

11.2.1 Upper Talley

At Upper Talley DCA analysis indicates a deviation of 0.2 SD units from 0.3 SD in 

the bottom sample (34cm) to 0.5 SD in the top sample (2.5cm) (Figure 11.1), 

providing a measure that reflects the deterioration in lake conditions between ca. AD 

1850 and present. As discussed in Section 10.3, although the basal sample is unlikely 

to represent a stable 'pristine' state, the changes in the diatom flora do at least indicate 

that the degree of difference between bottom and top samples provides a reliable 

summary of overall change in the intervening period. In this long-term study, the 

sample resolution is low, but changes in the diatom flora indicate unidirectional 

change over the last ca. 150 years as a response to recent eutrophication.

11.2.2 Llyn Pencarreg

At Llyn Pencarreg the DCA Axis 1 scores indicate an increase of 0.6 SD units from 

0.4 SD in ca. AD 1850 sample (20cm) to 1.0 SD in the top sample (0.5cm) (Figure 

11.2). As with Upper Talley, the bottom sample does not represent a pristine state. In 

contrast to Upper Talley, however, the diatom data exhibit complex shifts over the last 

ca. 150 years which are not unidirectional, indicating that the top-bottom approach 

does not adequately model the degree of response to impact over the last ca. 150 

years. Variation in the DCA Axis 1 scores indicates a limnological shift from 

eutrophic to an improved, mesotrophic state in the mid-zone (with a decrease in
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the relative abundance of A. granulata, accompanied by the loss of Cladoceran 

ephippia), followed by a return to eutrophic status over the last ca. 50 to 100 years. 

The ca. AD 1850 data provide no more than a 'snap shot' of more complex trends in 

nutrient enrichment that are missed by the top-bottom method.

11.3 Testing the Concept of a Long-term Stable State of Equilibrium prior to ca. 

AD 1850

Even on the basis of the top-bottom approach, it is clear that in neither site does the 

ca. AD 1850 sample represent a relatively undisturbed, reference state. Instead, the 

long-term Holocene data indicate that by ca. AD 1850, both lakes were turbid and 

eutrophic, and that the bottom sample represents part of a more complex, long-term 

trend of Holocene eutrophication and changing ecosystem dynamics.

11.3.1 Upper Talley

In terms of understanding eutrophication dynamics at Upper Talley, conditions in the 

ca. AD 1850 reference sample are the culmination of an enrichment trend that began 

ca. 400 years ago as part of a broader pattern of significant fluctuation throughout the 

Holocene. A shift in trophic status at ca. 0.4 k cal. yrs. BP was followed by a 

progressive increase in nutrient tolerant taxa (i.e. P. boryanum, P. simplex, A. 

granulata, C. stelligera, C. meneghiniana), and a reduction in aquatic pollen and 

spores, indicating that the increase in nutrient enrichment is more prolonged than the 

single 'bottom' sample suggests.
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Although land-clearance at Upper Talley has increased significantly in the last ca. 150 

years BP, the steady increase in available land (NAP; Figure 10.1), and sustained 

increase in catchment erosion (magnetic susceptibility; Figure 7.1b), suggest that 

intensified human impact within the lake catchment from ca. 0.4 k cal. yrs. ago is the 

major cause of these changes. As noted in previous sections, in general Upper Talley 

has been characterised by high instability throughout the Holocene, with major 

fluctuations over time in a variety of proxy indicators even prior to the ca. 0.4 k cal. 

yr. BP eutrophication trend.

11.3.2 Llyn Pencarreg

Over the long term, Llyn Pencarreg shows a greater degree of stability than Upper 

Talley, but the results indicate that conditions of poor ecosystem health in the ca. AD 

1850 sample are also part of a longer-term trend of eutrophication. The cause of 

impact in the 'bottom' sample cannot be assessed in full due to the gap in the 

sediment sequence, although as noted, it may be partly a function of railway 

construction in addition to any agricultural impact. Before the gap, conditions at Llyn 

Pencarreg demonstrate that even at a site of relative 'stability', there had been 

significant human impact from as early as the medieval period, characterised by an 

increase in open land (NAP; Figure 10.2) and changes in the organic record (Figure 

8.1b), which drove a long-term trend towards higher nutrient status.

In summary, neither lake exhibits a long-term pattern of stable equilibrium prior to the 

AD 1850 sample. Upper Talley demonstrates that the most recent increase in nutrient 

status began ca. 400 years ago, whilst in the past 150 years Llyn Pencarreg has
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fluctuated between eutrophic and mesotrophic states rather than displaying a 

straightforward increase in trophic status, and had previously shown a subtle but 

increasing trend towards higher nutrient status since the medieval period.

11.3.3 Testing the Baseline Reference State at Llangorse Lake, Carmarthenshire.

It is useful to assess the conclusions drawn in this study against those from another 

similar lake in the region which has been the subject of high resolution, long-term 

palaeolimnological analysis. Llangorse Lake (Bennion and Appleby, 1999), is 

situated in the Brecon Beacons National Park to the east of the study sites, and has 

similar climatic and geological parameters. A maximum depth of 9.00m also places 

Llangorse in the same typology class as the study sites. An interpolated date of AD 

1850 at a depth of 1.10m (Bennion and Appleby, 1999) shows that the lake was 

hypereutrophic (ca. 170 jig I" 1 ). DCA analysis was not part of the study, though the 

change between 1850 and the present is unmistakable and in this case reflects a clear 

improvement in trophic status. However, the lake is still eutrophic, with a total 

phosphorus concentration of ca. 100 ug I" 1 , and is dominated by planktonic eutrophic 

taxa (e.g. Aulacoseira spp. and Stephanodiscus spp.), as opposed to the pre-Roman 

Fragilaria assemblage reported by Jones et al. (1974). Additionally, an increase in 

trophic status between the penultimate and top samples suggests that P loading is on 

the increase again, reinforcing the suggestion that the top-bottom approach, which 

ultimately sets the parameters for restoration targets, is of limited utility for assessing 

important changes in water chemistry and ecological status.
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11.4 Can a Realistic Reference State be Defined?

The above discussion shows that in three similar lakes (Upper Talley, Llyn Pencarreg 

and Llangorse Lake), the bottom ca. AD 1850 sample does not represent conditions of 

minimal impact. Although DCA (and associated diatom data from single samples) 

provides a warning of ecosystem deterioration, the technique is not adequate to model 

the degree of limnological change in response to recent human impact. The Holocene 

palaeolimnological data allow changes in ecosystem health, water chemistry 

trajectories and patterns of ecosystem dynamics in response to nutrient enrichment to 

be examined from a longer perspective, to locate a realistic baseline state for 

restoration. Reconstruction of the patterns of ecosystem response to phases of 

eutrophication at Upper Talley and Llyn Pencarreg allows definition of the ecological 

status of a pre-enriched, baseline state that represents natural lake conditions, and 

(depending on how far back in time this may be) to assess whether it is feasible to use 

this as a restoration target.

Although examination of long-term nutrient dynamics at the study sites indicates 

phases of poor ecosystem health caused by anthropogenic impact during major 

archaeological phases (i.e. Bronze Age, Medieval Period) at both Upper Talley and 

Llyn Pencarreg, modern eutrophication has produced more marked shifts than at any 

other time, other than in the lakes' early development. Although not the case in 

Llangorse, which overall has improved in nutrient status since ca. AD 1850, this 

suggests that the ca. AD 1850 state may potentially be valid as an indicator of the 

minimum target for restoration. On the other hand, as in this study, there is evidence 

that the ecosystem may have been subject to multiple stressors (e.g. eutrophication,
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pH change). This is supported by the conclusions of regional top-bottom research; in 

Ireland, for example, Leira et al. (2006) found that due to the high sensitivity of the 

lakes, diatom assemblages were affected by a range of external drivers (e.g. pH, 

nutrient loading, ice cover), making regional classification more complex than 

anticipated.

At both lakes the effects of long-term local human occupation mean that a true natural 

baseline state representing minimal human impact was located at ca. 2.1 k cal. yrs. BP 

for Upper Talley and ca. 4.0 k cal. yrs. BP for Llyn Pencarreg when both lakes were 

mesotrophic and in good ecosystem health (Figure 10.2). Although the high 

proportion of benthic taxa may have caused an underestimation of DI-TP, their 

presence indicates the availability of benthic habitats, which is believed to encourage 

strong community composition and robust predator-prey relationships (Brinkhurst, 

1974). High diatom diversity and the presence of P. boryanum reflect competition in 

the algal community, which can effectively summarise ecosystem health; 

photosynthesis is maintained at the benthic zone, whilst an associated increase in 

zooplankton diversity helps to develop strong trophic relationships between functional 

groups that is likely to have a positive effect on ecosystem health (Carpenter et al., 

1985; Allott and Monteith, 1999).

Good ecosystem health was also reflected by the lack of obligate eutrophic diatoms 

and in the stability of the aquatic macrophyte community, the benefits of which are 

described in Section 9.3.1. In the present study aquatic macrophytes have responded 

to catchment impact by initially increasing in abundance followed by a decrease, 

which causes the parallel loss of aquatic habitats and a decrease in ecosystem

347



diversity (Krull, 1970), highlighting their usefulness as an indicator of ecosystem 

health. It is therefore assumed that the lack of change in relative abundance of aquatic 

pollen and spores at Upper Talley and Llyn Pencarreg during this period reflects a 

lack of environmental change.

Although Upper Talley and Llyn Pencarreg appear to regain equilibrium following 

medieval land-clearance, neither site demonstrates a complete return to the conditions 

described above, probably due to continuous human impact within the lake catchment. 

C. stelligera demonstrates changes in abundance that are indicative of the eutrophic 

sequence described in Section 9.2.1.1, whilst diatoms indicative of poor ecosystem 

health are consistently present (e.g. C. placentula and C. meneghiniana). Although 

there are changes in the abundance of aquatic macrophyte pollen and spores indicative 

of changes in ecosystem health, community composition was diverse and composed 

of species indicative of the mesotrophic state (e.g. Nymphaea alba, Littorella uniflora, 

Ranunculaceae), providing information that can be of great use to restoration plans.

At Llyn Pencarreg examination of the missing sediments would be necessary to 

evaluate in full the changes in ecosystem status following the Medieval Period, and 

the cause and magnitude of impact reflected in the ca. AD 1850 sample. However, 

high resolution sampling shows that the return to mesotrophic status, ca. 50 - 100 

years ago, demonstrates characteristics of good ecosystem health; e.g. a decrease in A 

granulata, increase in benthic taxa and a reduction in aquatic macrophytes.
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11.5 Testing the Validity of Site Classification

The lakes of Upper Talley and Llyn Pencarreg are located within the same geographic 

region and would be classified within the same type group in the UKTAG (2008) 

system. Under the described typology framework, pristine lakes have been selected at 

sites in Ireland (Leira et al., 2006) and Scotland (Bennion et al., 2004) to analogue 

match with other lake types, with the intention of grading lake status into good, 

moderate, poor or bad quality in an attempt to reflect the degree of recent (past ca. 

150 years) ecological deterioration. The validity of the classification system therefore 

has a bearing both on impact assessment, and on defining targets for restoration.

The following section shows that despite their similar physico-chemical 

characteristics, analysis of the biological proxy indicators at Upper Talley and Llyn 

Pencarreg describe two very different lakes. The two lakes would be classified in the 

same water depth category (>3.0 - 10.0 m). The most likely explanation of 

differences in ecosystem response between the two sites is that of differences in water 

depth, probably coupled with variation in morphometry. The results therefore indicate 

that the classification system is too broad to address the differences between the study 

lakes, that may not be initially obvious.

Throughout the Holocene diatom species composition at Upper Talley fluctuates 

significantly with shifts in benthic and planktonic taxa and the gradual introduction of 

new species. McCann (2000) refers to these frequent changes in ecosystem 

composition as 'dynamic stability' and explains that the system is constantly changing 

as it attempts to maintain a state of 'equilibrium' in response to subtle changes in

349



water chemistry and minor environmental influences within the lake catchment. In 

contrast, ecosystem dynamics at Llyn Pencarreg reflected gradual changes in the 

diatom community related to long-term, lake infilling. Response to nutrient 

enrichment from changes in land-use became progressively stronger with each major 

phase of human impact possibly reflecting a long-term reduction of ecological 

integrity, which may be encouraged by intensified land-clearance.

During phases of nutrient enrichment the proxy indicators become difficult to 

compare due to differences in rates of response between the two sites. To explore 

between-site variation further, ecosystem status during the previously discussed 

mesotrophic state (Upper Talley; ca. 2.3 k cal. yrs. BP and Llyn Pencarreg ca. 4.1 k 

cal. yrs. BP) provides the opportunity to examine the lakes during a period of similar 

nutrient status. Although both lakes became mesotrophic following lake 

development, differences in ecological status reflect a contrast in levels of 

productivity and species diversity. At Upper Talley aquatic pollen abundance is 

between 25% and 30% with a rich and diverse flora (Figure 11.3a), dominated by 

Cyperaceae, and a range of submerged macrophytes typical of meso-eutrophic 

nutrient loads (e.g. Ranunculus, Nympheae, Isoetes spp.). hi contrast macrophyte 

abundance at Llyn Pencarreg is considerably lower at 5% to 15% with generally lower 

diversity (aquatic pollen is limited to mesotrophic Cyperaceae and Isoetes lacustris). 

Diatom diversity (Figure 11.3b) and concentrations (Figure 11.3c) are also 

consistently higher at Upper Talley. Variations in diatom assemblage composition 

between the two lakes also reflect differences in the opportunity for colonisation and 

in the availability of habitat types (Cairns et al, 1983).
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In this study, environmental parameters (e.g. climate, geology, water chemistry) are 

controlled to enable the comparison of two seemingly similar lakes. However, the 

above discussion shows that despite this, between-lake variations in baseline 

conditions reflect two lakes of contrasting nature. The control of environmental 

parameters also enables the examination of human impact at the study sites as a 

potential cause of these between-site differences. The timing of impact during the 

Bronze Age, medieval period and more recently (last 400 years) is analogous at both 

sites, whilst the shift in agricultural land-use during the early Bronze Age from a 

mixed farming economy to a predominantly arable regime is also comparable. 

However, the magnitude of land-clearance (Figure 10.1) is consistently higher at Llyn 

Pencarreg indicating that the constant fluctuations in ecosystem dynamics and higher 

productivity status at Upper Talley is not due to the influence of catchment impact.

Upper Talley has a maximum depth of 4.0m, whilst Llyn Pencarreg has a maximum 

of 10.0m and the palaeolimnological analysis indicates that Llyn Pencarreg has 

always been the deeper lake. At the same time Upper Talley has shallow banks that 

form a steady incline into the water, whereas apart from a narrow, wave-cut platform 

on the west bank and a steady incline at the east, the northern and southern littoral 

zones of Llyn Pencarreg are steep and rise high above the water's edge. Although the 

differences in plant abundance and diversity may be associated with the shallow status 

of Upper Talley and the closeness of the coring site to the littoral zone, it is likely that 

these differences are a function of differences in the morphometry of the lake basins; 

the steep sides of Llyn Pencarreg provide little space for aquatic plant growth, and 

although Upper Talley is presently devoid of littoral plants there is provision for a 

healthy littoral zone around the entire lake circumference. Additionally, the gentle
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slopes of the lakesides at Upper Talley provide a range of water depths for the 

establishment of a variety of submerged and emergent taxa (Lehmann, 1998), which 

may explain between-site differences in species richness.

The high diatom concentrations and diatom diversity at Upper Talley (Figures 11.3b 

and 11.3c) may be associated with differences in aquatic macrophyte growth and the 

availability of plant habitat, but it is also possible that the variations in baseline 

diversity and ecological behaviour are influenced by the difference in lake depth. 

This is because shallow lakes naturally support a wider range of functional groups 

with high rates of productivity due to their extensive habitat availability (Reynolds,

2003). Frequent changes in ecosystem status are often observed in shallow lakes due 

to their high sensitivity to environmental change (Schindler et al., 1995; Scheffer,

2004). Not only do these changes strengthen ecosystem integrity by increasing the 

chance of species replacement during phases of impact (Section 1.9.1) (Reynolds, 

1999; Kamenir et al, 2004), but they also produce shifts in an attempt to maintain 

equilibrium and retain good ecosystem health (Harris, 1999). In contrast, 

communities in deeper lakes with fewer available habitats may become structurally 

simplified with reduced species composition (Persson et al., 1992; Battarbee et al.,

2005). The slower response rates often reflected by deep lakes are therefore due to 

the presence of fewer functional groups and their poorer diversity record, which can 

also cause a gradual reduction in resilience pathways with each phase of human 

impact (Beklioglu, 1997).
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Under the EUWFD guidelines, UKTAG (2008) has developed an ecotype 

classification system that defines current lake status based on typology and water 

body delineation that helps to identify the measures required for ecological 

improvement. Within this framework Upper Talley is classed as a deep lake (>3m) 

but has produced information that typically describes a shallow lake environment; 

frequently changing ecosystem status due to a high sensitivity to environmental 

change and the ability to produce high diversity (e.g. plants and algae) and broad 

community composition (Lau and Lane, 2001; Moss et al., 1997; Scheffer, 2004). On 

the other hand the relatively lower productivity status of Llyn Pencarreg and 

background of slow limnological change are typical of deeper lakes (Scheffer, 1998). 

The current study therefore provides clear evidence that despite being similarly 

classified under their physico-chemical characteristics, the broad category description 

for lake depth within the EUWFD, plus the lack of consideration for lake shape and 

distinct absence of biological classification, has allowed for two lakes of considerable 

ecological difference to fall within the same typology group.

The above analysis indicates that in order to provide realistic assessments of current 

lake status a more complex classification system is required that not only considers 

physico-chemical characteristics, but also ecosystem structure. There is already 

acknowledgement in the scientific community that the integration of current 

limnological knowledge is central to the evaluation of present lake conditions. In 

their determination of the ecological status of surface waters (ECOFRAME), Moss et 

al. (2003) show that addressing the demand for good ecological status requires liberal 

interpretation of the EUWFD guidelines with a strong emphasis on biological 

structure if we are to adequately address present ecological status.
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Designed to address the high variability of shallow lakes, their classification system 

can easily be extended to all lake types to establish environmental objectives and meet 

the ecological requirements of the directive. In addition to the more obvious physico- 

chemical parameters (e.g. water chemistry, temperature, geology), the approach 

considers site specific plant diversity and abundance, the presence of invertebrate 

predators, zooplankton to phytoplankton ratio, the analysis of taxa sensitive to 

changes in water chemistry and fish community composition. In this sense 

ECOFRAME (Moss et al., 2003) considers lakes as individual units that cannot be 

represented by a single set of ecological conditions, whilst emphasising that a deeper 

understanding of this concept is necessary to achieve good ecological status for the 

long-term, sustainable restoration of surface waters. The results of this study support 

these arguments in full.

11.6 Implications for Applied Management

Palaeolimnology is not being used to its full potential to address the requirements of 

the EUWFD. The drawbacks in using the top-bottom approach and associated 

classification system to define impact on lakes have major implications for the 

definition of realistic restoration plans. Although it has been demonstrated that the 

post- AD 1850 changes in Upper Talley and Llyn Pencarreg do indicate accelerated 

impact in the 20th century, when compared to earlier periods, and one might argue that 

the natural baseline state several thousand years ago cannot be used as a realistic 

restoration target for a modern lake, the conclusions drawn from this study as to 

differences in ecosystem response are directly relevant to applied management. The 

top-bottom approach does not contribute to the understanding of the complexities of
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ecosystem dynamics, which is necessary to devise successful restoration plans. In 

addition, as acknowledged by Leira et al. (2006) in their discussion of the limitations 

of modern analogue matching to determine deviation in impacted sites compared to 

putative pristine sites, the degree of impact which is already apparent by ca. AD 1850 

(as in Upper Talley, Llyn Pencarreg and Llangorse) may invalidate the use of the pre- 

20th century state as a valid representation of the pristine state. The pristine, 19th 

century shallow, mesotrophic lake may not exist in the heavily-populated areas of 

Britain and Ireland.

If it is realistic to take the 'idealist' approach to restoration, the common occurrence 

of limnological impact in sediments representing ca. AD 1850 does, as noted, 

highlight its unsuitability as a restoration target. This was the case in both Upper 

Talley and Llyn Pencarreg, and restoring to the ca. 1850 state would without doubt 

not represent the achievement of good ecological status. As with other studies of 

long-term human impact (Bradshaw 2001; Ekdahl, 2004; Amsinck et al, 2003; 

Bradshaw and Rasmussen, 2004), the results of this study clearly support the need for 

long-term palaeolimnological research to understand patterns of ecosystem response 

to external impact.

The analysis of multiple proxy limnological indicators is not carried out in most rapid 

regional assessment palaeolimnology studies, in spite of its widespread adoption in 

modern monitoring programmes. For restoration, even if not for impact assessment, 

the results of this study strongly support the contention that analysis of multiple proxy 

indicators is necessary for the definition of management plans. The present study has 

noted that many eutrophic diatom taxa have broad tolerance ranges, with apparently
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site-specific (e.g. differences in the response of C. stelligera during eutrophication in 

the two sites) water chemistry preferences, for example, which might give a false 

impression of ecosystem health, particularly if conditions are inferred from just one 

sample. The use of diatoms alone would not be adequate to produce a complete 

picture of ecosystem health as they only provide information for one level of the food 

chain and their response to environmental change is not always adequate enough to 

measure the full extent of limnological change.

Descriptions of baseline conditions and ecological response to nutrient loading at the 

study sites therefore support the idea that the evaluation of lake status should be 

approached on a site by site basis making use of the full palaeolimnological record to 

take account of the natural condition and function of each lake (White and Walker, 

1997; Carpenter and Lathrop, 1999; Fozzard et al, 1999, Moss et al, 2003). From 

this study, the most valuable combination would be that of diatoms, cladocera and 

aquatic plant pollen (or macrofossils). The link between aquatic macrophytes and 

ecosystem health has been well demonstrated, highlighting the importance of 

regaining a healthy littoral zone as part of restoration plans. Reconstruction of 

changes in the macrophyte community can also identify plant taxa of the baseline 

reference state for re-establishment (Moss et al, 1997).

The analysis of catchment impacts is also not carried out in regional 

palaeolimnological programmes. Although well demonstrated by previous research, it 

is worthy of note that the adoption of pollen and charcoal analysis, magnetic 

susceptibility and C/N analysis in this study has provided invaluable proxy data on 

human impact which is not available in regional impact assessment studies.
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Significant changes in land-use at Upper Talley and Llyn Pencarreg correspond with 

shifts in ecosystem status, demonstrating the importance of palynology in assessing 

the connection between catchment impact and nutrient loading, and having an obvious 

role to play in devising restoration plans.

On a positive note, an important result of the study is that Upper Talley and Llyn 

Pencarreg is that the data appear to demonstrate a natural ability to revert to a state of 

equilibrium with the removal of major sources of human impact. Although recovery 

is not complete, with carefully planned restoration and catchment management aimed 

at encouraging limnological improvement it is possible that both lakes would regain a 

better state of ecosystem health. The evidence suggests that diatoms enter a phase of 

diapause and will reappear under their optimum conditions (Smetacek, 1985). In the 

absence of human impact a return to equilibrium is encouraged by the return of 

diatom taxa associated with good ecosystem health (e.g. Carpenter et al, 1992; 

Mittelbach et al., 1995; Heiri and Lotter, 2004). The return of aquatic plants 

indicative of lower nutrient loads also helps to maintain water quality, trophic status 

and ecosystem diversity (Holmes et a/., 1998). In many cases the plant community 

has also been seen to re-establish itself naturally as part of a wider restoration 

programme that involves lowering nutrient inputs from the lake catchment (Moss et 

al., 1997).

From the results of the present study, a compromise can be suggested for rapid, 

regional palaeolimnological impact assessment, to produce a clearer interpretation of 

environmental change within the constraints of limited time and finance. Spot 

sampling of a longer core using several carefully selected indicators (e.g. diatoms for
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eutrophication, chironomid exuviae for acidification (UKTAG, 2008) and Cladocera 

ephippia for ecosystem stress) would generally provide a reasonable assessment of 

recent shifts in ecosystem status, although a full Holocene approach would be 

unfeasible due to the field sampling time involved in collecting several metres of 

Livingstone core. Bennion and Battarbee (2007) suggest the use of a wider (14cm), 

longer (150cm) piston corer, developed at UCL to collect larger volumes of sediment 

for multiproxy analysis, whilst a Glew, messenger-operated, gravity corer (Glew, 

1991), which is light and easy to transport, can also collect sediment sequences up to 

100cm long. This would provide ca. 400 years of sediment accumulation at UT and 

ca. 600 years at Llyn Pencarreg, which would indeed be adequate to provide a 

realistic indication of ecosystem health, nutrient status and reference conditions. 

Were these techniques coupled with realistic attempts to examine individual lake 

ecology, their application would provide information pertaining to changes in 

ecosystem status during the eutrophication process and thus increase the likelihood of 

successful restoration.
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CHAPTER 12

CONCLUSIONS 

12.1 Precis

Due to the demand for improvements in the ecological and chemical status of surface 

waters within Europe, the European Water Framework Directive (EUWFD; Directive 

2000/60/EC) intends to address the issues surrounding poor water quality by ordering 

the restoration of inland water bodies across Europe, where necessary, to good 

ecological status by 2015. UKTAG (2008), the body responsible for implementing 

the directive in the UK, must produce draft management plans and restoration 

objectives by December, 2008. Palaeolimnological techniques are being increasingly 

employed to complement large-scale biomonitoring programmes.

With a focus on diatom analysis, the 'top-bottom' approach prioritises water bodies 

for restoration depending on the degree of ecological deviation over the last ca. 150 

years. After lake classification, the inferred ecological status at ca. 1850 may also be 

used as a reference state to define restoration plans for individual lakes of a similar 

type. The technique is based on a set of assumptions which can be tested by longer- 

term palaeolimnological research. The most important are (1) that the degree of 

compositional change between top and bottom samples is adequate to model 

ecological deviation over the last ca. 150 years, (2) that a stable state of equilibrium 

existed prior to a ca. 1850 undisturbed reference state, and (3) that lakes which are
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regionally classed as similar in terms of physico-chemical characteristics will have 

similar ecosystem characteristics.

To test these assumptions long cores were extracted from two moderately nutrient- 

enriched sites, Upper Talley and Llyn Pencarreg, in Carmarthenshire, South Wales. 

Both lakes would be classified as highly similar under the EUWFD typology 

framework. Multi-proxy palaeolimnological techniques were adopted to reconstruct 

ecosystem dynamics. The range of proxy indicators employed was selected primarily 

on the basis of their strength as indicators of mid- to long-term changes in ecosystem 

dynamics in response to nutrient enrichment (Diatoms, Pediastrum spp., Cladocera 

ephippia, 8 13 C). Phases of human impact within the lake catchment (pollen, charcoal, 

C/N, LOI, magnetic susceptibility, sediment lithology) were examined to identify 

possible causes of limnological impact and explore the degree to which observed 

limnological change has been driven by human activities rather than natural (ontogeny 

or climate-induced) change prior to the Industrial Revolution (ca. 1850).

On the whole, the proxy indicators performed well and the use of data taken from a 

single core from each site allowed for the comparative reconstruction of nutrient 

status and ecosystem dynamics in two similar lakes and an evaluation of the direct 

contribution of human impact to the eutrophication process. However, the results 

show that the observed differences between the two lakes were not due simply to 

contrasting land-use practices in the catchment. Examination of the long-term trophic 

histories of Upper Talley and Llyn Pencarreg indicates that despite their similar 

classification under the EUWFD typology framework, the consequences of 

eutrophication differ significantly from lake to lake due to differences in lake
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development, ecosystem composition, response mechanisms, and in basin 

morphometry.

Upper Talley produced a record characterised by relatively rapid, short-term 

fluctuations in community composition. This was in accordance with the widely 

reported increase in lake sensitivity and lack of stability observed in shallow, 

eutrophic lakes. Llyn Pencarreg demonstrated steady changes and possibly the gradual 

erosion of resilience mechanisms, which appears to be more indicative of deep lakes. 

Upper Talley and Llyn Pencarreg also show that the timing and extent of ecosystem 

change in response to human impact can vary with each phase of nutrient enrichment 

at the same site, which may be related to progressive increases in land-use within the 

lake catchments and changes in lake depth. Also demonstrated is the capacity of both 

lakes to return to a state of equilibrium when the source of impact is reduced or 

removed.

When the significant differences between Llyn Pencarreg and Upper Talley are set in 

context with other sites, it is clear that lake character is strongly influenced by 

individual history, which is unique at each site and central to the problem of defining 

the relatively undisturbed reference state. The results support the idea that each lake 

is not purely a product of a fixed set of environmental factors, and that individual 

components can produce discrete pathways of ecosystem change that can cause 

unpredictable changes in community composition (Scheffer, 2004).

The results were used to test the main assumptions of the palaeolimnological EUWFD 

approach. The results indicate that in some sites, where there is a relatively simple
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trajectory of increasing impact over the last ca. 150 years (Upper Talley), the 'top- 

bottom' approach is perfectly adequate to summarise the degree of recent deviation. 

In others (Llyn Pencarreg), ecosystem change over the last ca. 150 years may be more 

complex, and the technique is less effective. As has been acknowledged in applying 

the technique, the results confirm that at both sites (and in nearby Llangorse Lake) the 

assumption of a stable state of equilibrium prior to ca. 1850 is not valid, due to 

significant human impact over the longer term. While it may be unrealistic to aim to 

restore a lake to a pre-Medieval pristine state, this does have implications for using 

ca. 1850 as an undisturbed baseline for restoration targets in other lakes. The study 

demonstrates that ecological conditions in the bottom, ca. 1850 sample did not 

represent conditions of minimal impact.

Examination of the longer, multi-proxy record shows an extended history of 

limnological impact at Upper Talley from ca. 0.4 k cal. yrs. BP, and a more complex 

site history leading to a recent phase of recovery at Llyn Pencarreg, both of which are 

missed by the top-bottom approach. Finally, the assumption that lakes of similar 

physico-chemical characteristics, within the same locality, should exhibit similar 

patterns of ecosystem response is not valid in this case; the classification of water 

depth 3-10m is too broad, and lake morphometry has also led to important differences 

in ecosystem dynamics.

The long-term data from Upper Talley and Llyn Pencarreg has allowed a more 

realistic reference state to be defined based on conditions of minimal human impact. 

At both lakes this appears to be following Bronze Age impact, when diatoms and 

aquatic plants indicate a mesotrophic phase displaying all the characteristics of good

363



ecosystem health. However, the interpretation of good ecosystem health is clearly 

broad regardless of regional classification, and the ability of Upper Talley and Llyn 

Pencarreg to revert to a state of equilibrium following phases of human impact 

suggests that with careful restoration based on achieving good ecological status, both 

lakes are likely to eventually return to a pre-impact state.

12.2 Future Recommendations

The present study shows that a detailed approach is essential for the development of 

restoration plans based on achieving good ecological status. A classification system 

which includes biological rather than physico-chemical typology groups is essential if 

good ecological status is to be achieved (Moss et al, 2003), whilst multiple proxy 

indicators are necessary to examine and highlight the complex changes in ecosystem 

dynamics indicative of individual lakes. Quick and efficient techniques could still be 

applied, such as sampling at higher resolution (>4 samples in the top ca. 1.5m of a 

core) rather than a 'top' and 'bottom' approach. Proxy techniques other than the 

standard selection (e.g. diatoms), such as charophyte or cladocera ephippia analysis, 

could also be usefully employed (and, in some studies, are being) to address the lack 

of ecological information and produce reliable data to infer changes in ecosystem 

health, hi this manner the aim of achieving good ecological status in a range of lake 

types is more likely to be achieved.
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