
i 
 

THE UNIVERSITY OF HULL 

 

 

 

 

 

Large Eddy Simulation of Acoustic Propagation 

in Turbulent Flow through Ducts and Mufflers 

 

 

 

 

 

being a Thesis submitted for the Degree of 

 

 

Doctor of Philosophy 

 
 

 to The University of Hull 

 

 

 

 

by 

 

 

 

 

 Nishant Kumar Singh 
 

 

 

 

February 2012 

  



ii 
 

Contents 

 

List of Figures          v 

Abstract          xiii  

Declaration          xv   

Acknowledgments         xvii 

Nomenclature         xix 

Chapter 1: Introduction        1 

1.1 Motivation         1 

1.2 Objectives         4 

1.3 Thesis outline        5 

Chapter 2: Low Mach number Compressible Solver    7 

 2.1 Introduction        7 

 2.2 Computational Solver for Low Mach number Flow   12 

  2.2.1 Governing Equations      13 

  2.2.2 Pressure based Compressible Solvers    13 

  2.2.3  Finite-difference-based Central scheme   17 

2.3 Proposed Hybrid Karki-PISO Algorithm     19 

2.4 OpenFOAM        22 

 2.5 Test Case: Simple Expansion Muffler Simulation    27 

 2.6 Closure         34 

Chapter 3: Turbulence Modelling       35 

 3.1   Introduction        35 

 3.2   Introduction to Turbulence      35 

 3.3   Turbulent Energy Spectrum      37 

 3.4   Wall Bounded Turbulent Flow      39 



iii 
 

             3.4.1   Near-wall turbulence cycle      43 

                3.4.2   Streak Instability Cycle      45 

 3.5 Scales of Turbulence        49 

 3.6 Two-point correlation        52 

 3.7 Models of Turbulence        53 

 3.8 Closure          57 

Chapter 4: Simulation of Acoustic Pulse through muffler    59 

 4.1 Introduction         59 

 4.2 Computational Aero-acoustics        64 

 4.3 Computational methodology       78 

 4.4 Acoustic CFD Simulation        84 

  4.4.1 Simple Expansion Muffler Simulation with no Flow   86 

  4.4.2 Simulation with Mean Flow      97 

   4.4.2.1 Simulation of Circular Pipe     97 

   4.4.2.2 Simulation of Simple Expansion Muffler    99 

 4.5 Closure          106 

Chapter 5: Numerical and Experimental investigation of pulse through muffler 107 

 5.1 Introduction         107 

 5.2 Equipments         110 

 5.3 Experimental setup and procedure       111 

 5.4 Results and Discussion        113 

  5.4.1 Experimental study of muffler without mean flow   114 

  5.4.2 Numerical validation of experiment with no flow   120 

  5.4.3 Experimental study of muffler with Mean flow   128 

 5.5 Closure          133 

Chapter 6: Synthetic Boundary Condition for LES     135 

 6.1 Introduction         135 



iv 
 

 6.2 Overview of Turbulence Characteristics      136 

  6.2.1 Two point correlation       136 

  6.2.2 Probability Density Functions      138 

  6.2.3 Velocity Spectrum Function      139 

         6.2.4 Energy Spectrum Function      142 

            6.3 Recycling Method for Inflow Condition in LES and DNS   145 

            6.4 Synthetic Boundary condition for LES and DNS  149 

  6.4.1 Random Perturbation Method      149 

  6.4.2 Streak Transient Growth Method     150 

  6.4.3 Digital Filter based Methods      151 

  6.4.4 Spectral Methods       156 

           6.5 Mixed Spectral Inflow Boundary Condition for LES and DNS   168 

           6.6 Closure          171 

Chapter 7: LES Simulation of Pulsating Acoustic Flow through Channel or Duct 173 

 7.1 Introduction         173 

 7.2 Large Eddy Simulation         178 

 7.3 Sub-Grid Scale (SGS) Modelling       182 

 7.4 Incompressible Channel Flow Simulation using Periodic Boundary  189 

 7.5 Compressible Channel Flow Simulation using Synthetic Inflow Boundary  193 

 7.6 Acoustic Pulse through a Long Channel      198 

 7.7 Closure          201 

Chapter 8: LES simulation of pulsating acoustic flow through Muffler   203 

  8.1 Introduction         203 

  8.2 Computational Setup        207 

  8.3 Two-dimensional Simulation of Simple Expansion Muffler    210 

  8.4 Three-dimensional Simulation of Simple Expansion Muffler   213 

  8.5 Forced Pulsation at the Inlet of Simple Expansion Muffler   224 



v 
 

  8.6 Closure          239 

Chapter 9: Conclusions and Future works       241 

  9.1 Conclusions         241 

  9.2 Future works         243 

  
Bibliography           245 

 

Appendix                                                                                                                                257 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

List of Figures 

 

1.1 (a) Wave propagation in a simple expansion muffler; (b) Muffler installed at the exhaust 

of automobile car.         … 3 

2.1 Central scheme proposed by Kurganov and Tadmor.    … 18  

2.2 Simple Expansion Muffler CFD model.      … 28 

2.3  Comparison of (a) viscous and inviscid simulation, (b) muffler simulations with     

different mesh sizes.         ... 29 

2.4 CFD Simulation plot: (a) mesh of section of simple expansion muffler; (b) sinusoidal 

pulse at the entrance of expansion; (c) Reflections after pulse crosses the expansion 

sections; (d) Various reflections at the end of simulation in inlet and outlet pipes. …31 

2.5 CFD simulation plots at start of expansion: (a), (b) Sinusoidal pulse reaches at entrance of 

expansion chamber, (c), (d) Reflection of pulse from the expansion section. … 32 

2.6 CFD simulation plot at intersection of expansion and outlet: Sinusoidal pulse transmitted 

through the outlet pipe.        … 33 

3.1 Turbulent energy Spectrum.        … 38 

3.2 Velocity profile for turbulent boundary layer.     … 42 

3.3 Top view of the near-wall region covering (x+, z+) = (1400, 450) in the streamwise and 

spanwise directions. Lifted low-speed streaks (black) denote u0 < 0 at y+ = 20 and 

streamwise vortices (grey-shaded) λ2 < 0 for 0 < y+ < 60.    … 46 

3.4 Low speed lifted streak realization in minimal channel flow. (a) 0.55Uc isosurface, (b) 

typical cross-stream distribution of U(y,z), (c) The analytical base flow distribution of eq. 

3.5 at y+=20.          … 47 

3.5 Schematic of (sinuous) Streak stability mechanism in (a) perspective view and (b) top 

view.           … 48 



vii 
 

3.6 Streamwise vortex formation due to transient streak instability, illustrated by cross-stream 

distributions of wx.         … 49 

3.7 Comparison of computed and modelled scales in RANS, DNS and LES.  … 54 

4.1 A uniform mesh with spacing Δx.       … 70 

4.2 Schematic diagram of boundary condition requirements for expansion muffler flow (one 

half of the plane-cross-section).       … 76 

4.3 Face interpolation in central differencing scheme.     … 81 

4.4 Overview of Simple Expansion Muffler CFD model.    … 86 

4.5 Comparison of various spatial discretizations for muffler simulation.  … 88 

4.6 FFT spectrum of figure 2.3 in an extended frequency range.    … 88 

4.7 FFT spectrum analysis for different temporal discretization schemes.   … 90 

4.8 FFT spectrum for crank Nicholson scheme with different θ values.   … 90 

4.9 Comparison of analytical transmission loss for different expansion diameters. … 91 

4.10 Comparison of analytical transmission loss for different expansion lengths. … 91 

4.11 Comparison of transmission loss in a compressible simulation for different expansion 

 chamber diameters.         … 92 

4.12 Comparison of transmission loss for different chamber length.   … 93 

4.13 Comparison of FFT analysis of pressure based Karki-PISO and finite difference based 

 Kurganov and Tadmor simulations.       … 93 

4.14 Transmission pulse through muffler across lower frequency range.   … 95 

4.15 Transmission pulse through muffler across higher frequency range.   … 95 

4.16 Transmission loss in expansion muffler across lower frequency range.  … 96 



viii 
 

4.17 Transmission loss in expansion muffler across higher frequency range.  … 96 

4.18 Contour plot of pressure-differential (∆P) showing pulse propagation through the 

 circular pipe.          … 98 

4.19 (a) Transmission pulse spectrum for pulse propagation in circular pipe, (b) 

 Transmission loss spectrum for pulse propagation in circular pipe.   … 100 

4.20 (a) 2D RANS simulation of muffler, (b) 3D RANS simulation of muffler.  … 101 

4.21 The sinusoidal pulse propagates through the muffler, entering the expansion chamber 

 and creating back-pressure in the inlet pipe (top), travel inside the chamber (middle) 

 and hit the rear tailpipe end (bottom).       … 102 

4.22 Sinusoidal pulse reflects back from the tailpipe end of the expansion chamber, (a) Part 

 of the pulse reflect back and part of it transmit through tailpipe, (b) reflected pulse 

 reaches to the front end of the expansion, where it again get reflected. (c)  After several 

 reflections from inside the expansion, the contour shows the back-pressure and transmitted 

 pulse.           … 103 

4.23 (a) Transmission pressure pulse for pulse propagation in expansion muffler. (b) 

 Transmission loss spectrum for pulse propagation in expansion muffler.  … 104 

5.1 Schematic diagram of experimental setup.      … 110 

5.2 Comparison of input pressure pulses generated by signal generator at different 

 frequencies ranging from 100Hz to 1000Hz.      … 113 

5.3 (a) Transmission loss spectrum at 100 Hz generator frequency. (b) Transmitted pulse 

 plot at 100 Hz generator frequency.         … 115 

5.4 (a) Transmission loss spectrum at 200 Hz generator frequency, (b) Transmitted pulse 

 plot at 200 Hz generator frequency.         … 116 

5.5 (a) Transmission loss spectrum at 400 Hz generator frequency. (b) Transmitted pulse 

 plot at 400 Hz generator frequency.         … 117 



ix 
 

5.6 (a) Transmission loss spectrum at 500 Hz generator frequency. (b) Transmitted pulse 

 plot at 500 Hz generator frequency.         … 118 

5.7 (a) Transmission loss spectrum at 1000 Hz generator frequency. (b) Transmitted pulse 

 plot at 1000 Hz generator frequency.        … 119 

5.8 FFT analysis to show mesh independence of muffler simulation.   … 121 

5.9 Broad spectrum of FFT analysis to show mesh independence of muffler simulation. 121 

5.10 (a) Comparison of Transmission loss spectrum at 100 Hz generator frequency. (b) 

 Comparison of Transmitted pulse plot at 100 Hz generator frequency.    … 123 

5.11 (a) Comparison of Transmission loss spectrum at 200 Hz generator frequency. (b) 

 Comparison of Transmitted pulse plot at 200 Hz generator frequency.     … 124 

5.12 (a) Comparison of Transmission loss spectrum at 400 Hz generator frequency. (b) 

 Comparison of Transmitted pulse plot at 400 Hz generator frequency.  … 125 

5.13 (a) Comparison of Transmission loss spectrum at 500 Hz generator frequency. (b) 

 Comparison of Transmitted pulse plot at 500 Hz generator frequency.   … 126 

5.14 (a) Comparison of Transmission loss spectrum at 1000 Hz generator frequency. (b) 

 Comparison of Transmitted pulse plot at 1000 Hz generator frequency.  … 127 

5.15 Comparison of FFT of muffler without any flow and muffler at 10 m/s flow for 

 generator frequency of 500Hz.       … 129 

5.16 Comparison of FFT at 10m/s and 15m/s at generator frequency of (a) 200Hz and (b) 

 400 Hz.          … 130 

5.17 Comparison of FFT at 10m/s and 15m/s at generator frequency of (a) 500 Hz and (b) 

 1000 Hz.          … 131 

5.18 (a) Comparison of FFT at 10m/s, 12.5 m/s and 15m/s for generator frequency of 500 

 Hz.           … 132 

6.1 Probability density function.        …139 



x 
 

6.2 Trace of velocity components in a hot-wire measurement.    … 141 

6.3 Comparison of three energy spectrum function.     … 146  

6.4 (a) Cyclic inflow generation (b) Mapped or rescaled inflow generation.  … 148 

6.5 Geometry of the Breuer and Rodi’s channel with flow in x-direction.  … 147 

6.6 Probability distribution of wavenumber vector kr.     … 164 

6.7 Wavenumber vector kr and velocity unit vector σr for rth mode.   … 165 

6.8 Von-Karman spectrum showing minimum and maximum wavenumber.  … 165 

6.9 Synthetic boundary inflow profile generated by proposed mixed synthetic boundary 

 condition.          . .. 170 

7.1 Instantaneous velocity contour in channel flow.     … 190 

7.2 Vorticity contour in channel flow.       … 191 

7.3 Comparison of different sub-grid models for mean velocity profile.   … 192 

7.4 Comparison of different sub-grid models for Cross-Reynolds Stress profile. … 192 

7.5 Energy spectrum for LES of channel flow using cyclic boundary condition. … 193 

7.6 (a) Vorticity contour for long channel along the length of the channel. (b) Vorticity 

 cross-section contour along x-axis (at 1m, 6m, 12m and 16m away from inlet). … 194 

7.7 Comparison of mixed synthetic boundary with DNS: (a) Mean velocity profile. (b) 

 Reynolds Stress profile.        … 196 

7.8 Energy spectrum for LES of channel flow using mixed synthetic boundary condition. 197 

7.9 (a) Transmission pulse spectrum for pulse propagation in long channel. (b) 

 Transmission loss spectrum for pulse propagation in long channel.   … 200 

8.1 Velocity contour for 2D simulation, showing vortex roll-up.   … 212 



xi 
 

8.2 Velocity streamlines for 2D simulation of simple expansion muffler, showing vortex 

 roll-up.           … 212 

8.3 Vorticity contour for 2D simulation of simple expansion muffler, showing vortex roll-

 up.           … 213 

8.4 Pressure response spectra at probe location 1.     … 216 

8.5 Pressure response spectra at probe location 2.     … 216 

8.6 Pressure response spectra at probe location 3.     … 219 

8.7 Pressure response spectra at probe location 4.     … 219 

8.8 Instantaneous velocity contour inside expansion chamber.    … 220 

8.9 Mean velocity contour inside expansion chamber.     … 220 

8.10 Velocity contour lines inside expansion chamber showing vortex roll-up.  … 221 

8.11 Pressure isosurface in the range of 100150 pa to 101210 pa inside expansion chamber, 

 showing velocity.         … 221 

8.12 Acoustic pressure (p-p0) isosurface in the range of 99960 pa to 100216 pa, showing 

 velocity.          … 222 

8.13 Acoustic impedance inside the expansion muffler.     … 222 

8.14 Turbulent Kinetic energy profile across the length of muffler.   … 223 

8.15 Pressure profile across the length of expansion muffler.    …223 

8.16 (a) Pressure response spectra at probe location 1, (b) Pressure response spectra at  probe 

 location 2.          … 227 

8.17 (a) pressure response spectra at probe location 3, (b) Pressure response spectra at  probe 

 location 4.          … 228 



xii 
 

8.18 Velocity contour after pulse crosses the muffler and their reflections interacts with the 

 flow acoustics.         … 229 

8.19 Acoustic pressure (p-p0) isosurface in the range of 99960 pa to 100216 pa, showing 

 velocity profile at start (top), after pulse and their subsequent reflections propagate 

 through the expansion muffler (bottom).      … 230 

8.20 Vorticity contour at start (top); and, after pulse and their subsequent reflections from 

 expansion chamber propagate through the expansion muffler (bottom).  … 231 

8.21 Comparison of transmission loss spectrum for RANS and LES in simple expansion 

 muffler.          … 232 

8.22 Transmission pressure spectrum of tailpipe pressure in a LES simulation of simple 

 expansion muffler.         … 232 

8.23 Stretching of pressure pulse during propagation in inlet pipe for (a) 3000Hz and (b) 

 2000Hz pure pulse.         … 234 

8.24 Stretching of pressure pulse during propagation in inlet pipe for (a) 1000Hz and (b) 

 500Hz pure pulse.         … 235 

8.25 (a) Comparison of transmission loss spectrum for various lower forced pulsation 

 frequencies. (b) Comparison of transmission pulse for various lower forced pulsation 

 frequencies (Forced frequencies involved are 500Hz, 1000Hz and 2000Hz). … 237 

8.26 (a) Comparison of transmission loss spectrum for various higher forced pulsation 

 frequencies. (b) Comparison of transmission pulse for various higher forced pulsation 

 frequencies (Forced frequencies involved are 3000Hz, 4000Hz and 5000Hz). … 238 

 

 

 

 



xiii 
 

Abstract 

 

This research involves study of acoustic propagation of pulse in a simple expansion muffler, which 

is very often used in HVAC or automotive exhausts. A hybrid pressure-based compressible solver 

is developed and validated for a low Mach number flow simulation of acoustic pulse. This new 

solver is developed using C++ based OpenFOAM toolkit and further tested for low Mach number 

flow test case. The analysis of simple expansion muffler for various structures, frequency ranges 

and numerical schemes is performed and results are summarized. RANS simulation of duct and 

muffler with mean flow is conducted and results are presented with inherent limitations associated 

with the method. Further, a mixed synthetic inflow boundary condition is also developed and 

validated for LES of channel flow. The mixed synthetic boundary is then used for LES of a simple 

expansion muffler to analyse the flow-acoustic and acoustic-pulse interactions inside the 

expansion muffler. The improvement in the prediction of tonal noise and vortex shedding inside 

the chamber is highlighted in comparison to the RANS method. Further, the effect of forced 

pulsation on flow-acoustic is observed in regard to the shift in Strouhal number inside the simple 

expansion muffler. Finally, a set of benchmark results for experimental analysis of the simple 

expansion muffler both, with and without flow is obtained to compare attenuation in forced 

pulsation for various mean-flow velocities. These experimental results are then used for validation 

of the proposed pressure-based compressible solver.  
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Chapter 1 

Introduction 

1.1 Motivation 

Noise has been one of the most unproductive wastes in recent technological inventions. With 

increasing challenges and complexities in the design process of mechanical devices and stricter 

environment norms set by governments, the control and reduction of noise has become a bigger 

challenge today. The study of sound attenuation has been an active area of research for researchers 

over many decades. In order to understand the control and attenuation of noise in industry, sound 

propagation in acoustic devices has been extensively researched.  

Acoustic filters and ducts are usually employed in various automotive or aerospace applications to 

attenuate noise, the classic example being that of an automotive silence, see figure 1. An acoustic 

high-pass filter, like the vented duct, blocks the low frequency waves and lets the high frequency 

waves pass. A band-stop filter, such as the Helmholtz resonator, blocks any sound within a band of 

frequency around the resonance frequency and lets all other frequencies pass. However, the most 

notably used low-pass filter is a simple expansion muffler, which lets the low frequency waves 

pass and blocks the high frequency waves. Because of the numerous applications in exhaust 

silencer and HVAC (Heating, Ventilating, and Air Conditioning) systems, simulation of 

expansion mufflers has been extensively researched.   

A muffler works on the principle of destructive interference to reduce noise. The flow separation 

inside the expansion chamber leads to reflection of noise which interacts with the incoming noise 



1. Introduction 

3 
 

in a destructive way to attenuate noise inside the device. The widening at the inlet of the expansion 

chamber provides the flow separation which results in the change of impedance. Due to this 

impedance change, a portion of the incoming wave is reflected back to the source and creates 

back-pressure. The transmitted wave, however, first interacts with the waves inside the expansion 

chamber and then with the downstream edge of the expansion chamber to produce respectively, 

vortex shedding and the tonal noise inside muffler. These noises are of great significance to the 

industry and therefore more research is required in this area. Figure 1.1(a) shows wave 

propagation in a simple expansion muffler and Figure 1.1(b) shows a muffler installed in an 

automobile. 

Computational Fluid Dynamics (CFD) has been developed as an important modelling and 

simulation tool for engineering applications in the past four decades. CFD has helped develop 

faster, efficient and cost effective design as an alternative to costly experimental work for industry. 

The modelling of turbulence is believed to be a difficult process to simulate in CFD and it often 

involves simplifications which cause inaccuracies in the simulation. The difficulty is owing to the 

very large range of length scales which could be hard to model and also because of the complex 

nature and sensitivity of the flow fields to the initial conditions. Turbulence is also found to be one 

of the major contributors to the sound attenuation in propagation media and therefore an accurate 

prediction of turbulence is crucial for modelling noise propagation.  

In addition to the difficulties in turbulence modelling, CFD simulation of a simple expansion 

muffler comes with additional problems of back pressure and flow separation due to the sudden 

expansion in the muffler, which further enhances the turbulent fluctuations inside the 

computational domain. Moreover, in order to capture the acoustic scales and avoid aliasing in the 

simulation of an expansion muffler, the discretization should be accurate and turbulence should be 
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modelled accurately. A solver also needs to be robust in order to simulate low Mach number 

simulation of acoustic pulse propagation through an expansion muffler. The problem becomes 

more complicated when mean flow is also included in the simulation, which leads to the 

interaction of various length scales in the same computational domain.   

(a)  

(b) 

  

Figure 1.1: (a) Wave propagation in a simple expansion muffler; (b) A typical expansion muffler 

(left) and installation of muffler as automobile exhaust (right). Courtesy: Datsunparts.com Inc. 

Direct Numerical Simulation (DNS) involves the solution of Navier-Stokes equation by resolving 

all the scales of motion without any turbulence model and therefore is very expensive in terms of 

computational resources and time. Currently computational resources available are not enough to 

simulate engineering problems and therefore direct computation is restricted to low Reynolds 

Outlet Inlet 

Expansion Chamber 

Reflected 

Wave 
Transmitted 

wave 

Incoming 

wave 
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number flow only. As a practical alternative, the Reynolds-averaged Navier-Stokes (RANS) 

simulation method is more common in engineering and industrial applications. On the other hand, 

RANS involves averaging of Navier-Stokes equations and is not found to be very accurate and 

effective in unsteady flow. However, a compromise between RANS and DNS lies in Large-Eddy 

Simulation (LES). LES spatially filters the equations of motion using appropriate filter and 

resolves eddies larger than the filter size and models only the effect of smaller eddies on larger 

ones. The benefit of LES is that it is more reliable and accurate than RANS and yet it does not have 

to solve the entire range of turbulence scales like DNS.    

1.2 Objectives 

A set of Navier-Stokes equations provides a full range of length scales in a physical problem and 

involves no simplifications. The computation of the set of Navier-Stokes equation can provide the 

true solution of the physical problem. In fluid dynamics problems, DNS computes the full range of 

length scales of Navier-Stokes equations and therefore requires extremely fine mesh for the 

computation. On the other hand, LES only computes the larger scales of the Navier-Stokes 

equations and the effects of smaller scales are modelled and therefore mesh requirements are only 

moderately high. In case of unsteady flow simulation, these LES simulations consume enormous 

computational time and resource. However, with recent advances in computational resources, 

these moderate mesh requirements can now be simulated. Acoustics, being a fluid dynamics 

problem, can also be correctly represented by the set of Navier-Stokes equations, which can be 

computed using DNS or LES to obtain solutions. Simulation of a simple expansion muffler 

involves either a long inlet/outlet or a non-reflection boundary at the ends to avoid any reflections 

into the computational domain. In the case of a long inlet/outlet, the DNS or LES of Navier-Stokes 

equations would require a large number of points and therefore such computation has so far been 
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avoided. The present investigation, therefore, focuses on LES simulation of pulse propagation in a 

simple expansion muffler and duct.  

The main objectives of this research are: 

 Develop and validate a Navier-Stokes solver for low Mach number computation of internal 

acoustic flow. 

 Develop and validate a mixed synthetic inflow boundary for LES of internal acoustic flow. 

 Investigate the pulse propagation and its interaction with flow-acoustic in a simple 

expansion muffler. 

1.3 Thesis Outline 

The research carried out in this thesis can be outlined as follows: 

Chapter 2 introduces the proposed pressure based Karki-PISO compressible low Mach number 

solver and the C++ based OpenFOAM software. A mesh independence study is carried out for a 

typical pulse propagation problem through simple expansion muffler to acknowledge the spatial 

discretization in the simulation.  

Chapter 3 provides background theory on turbulence along with several turbulence models and 

introduces a wall-bounded turbulence-generation mechanism.  

In Chapter 4, different configurations and numerical schemes are investigated for the simple 

expansion muffler for pulse propagation in a no-flow condition. Later on, RANS simulations with 

considerable mean flow are carried out for circular pipe and simple expansion muffler to 

investigate the transmission loss spectrum.  
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In Chapter 5, experimental analysis of an expansion muffler is carried out for a range of random 

pulsating noises both with and without considerable mean flow. The analysis of transmission loss 

for various flow speeds is also conducted for several pulsating flow frequencies.  

Chapter 6 introduces the mixed synthetic boundary condition for inflow turbulence and the 

evolution of the synthetic boundary along with other contemporary inflow boundary condition is 

introduced.  

In Chapter 7, LES of channel flow is performed and comparison of various sub-grid models is 

conducted to demonstrate the ability of OpenFOAM to conduct LES of wall bounded flow. The 

mixed synthetic boundary condition for inflow generation is also used for LES of a long channel.  

In Chapter 8, extending the experience gained in the use of LES for channel flow presented in the 

preceding chapter, the acoustic mean flow simulation of simple expansion muffler and a detailed 

analysis of various frequencies available in the muffler is presented. Further, a simple expansion 

muffler is analysed for various frequencies of forced pulsation at the inlet and the effect of forced 

pulsation on the flow-acoustic interaction are discussed.  
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Chapter 2 

Low Mach number Compressible Solver 

2.1 Introduction 

Simulation of acoustic propagation and attenuation has been an essential component of the design 

and development of noise reduction systems. With increasingly stricter regulations on noise level 

in various engineering appliances, study of acoustic propagation and attenuation has gained 

considerable importance for industry and society. Generally, the compressible solvers preserve 

more acoustic information in comparison to the incompressible solvers but it comes at the expense 

of extra computation costs. However, due to advances in the memory and speed of high 

performance computers, the application of computational method to such problems is becoming 

viable. This chapter introduces a new pressure based compressible solver for simulation of low 

Mach compressible flow. This solver is then verified with simulation of a single sinusoidal pulse 

imposed on the inlet of a simple expansion muffler. 

Despite these advances, however, there are several issues hindering the growth of the area of 

Computational acoustics. These issues include the disparity in the scales of flow fields and fields 

associated with acoustic waves. Although incompressible solvers provide savings in duration of 

computational effort, that saving comes at the cost of losing some acoustic information from the 

solution, which is often critical to the problem, especially in understanding the physics of acoustic 

pulse propagation in various acoustic devices. For compressible solvers, spatial pressure variations 

vanish as the Mach number tends towards zero, but they still affect the velocity to a high degree. 

Therefore, many unsteady flow problems, especially acoustic noise simulations or turbulent flow 



2. Low Mach number Compressible Solver 

9 
 

simulations, require highly accurate simulation. Besides that, the governing equations for acoustic 

flow change their type and therefore equations for unsteady inviscid compressible flow form a 

hyperbolic system with finite wave speed, whereas their incompressible counterpart is 

hyperbolic-elliptic with infinite propagation rates. These are the reasons why most of the 

time-dependent Computational Acoustic studies in the past have avoided Computational Fluid 

Dynamics (CFD) methods for simulation of acoustic pulse and instead, some computational 

models were used. However, with the current advances in high performance computing and CFD 

techniques, it has become possible to simulate a time dependent computational acoustic problem at 

low Mach number.  

Two different approaches named pressure-based methods and density-based methods have 

traditionally been adopted in developing numerical methods for solving low Mach number flows. 

There has been a lot of work in the density based methods in the past but the pressure-based 

methods are also gaining popularity among researchers. The pioneer work in this area was done by 

Chorin (Chorin 1967, Chorin 1968), which was further enhanced and modified by Patankar in their 

SIMPLE family of scheme. (Patankar 1980) Clearly, the SIMPLE scheme was one of the most 

robust and widely applicable finite-volume methods available at that time. Karki and Patankar 

(Karki, Patankar 1989) further extended the scheme to make a unified algorithm for both 

compressible and incompressible flow problems, which worked for all Mach number flow ranges. 

Shyy and Chen (Shyy, Chen et al. 1992a) also introduced a pressure-based multi-grid method 

using upwind schemes for density and convective terms. A non-orthogonal boundary-fitted mesh 

with collocated grid was used and a comparative study for the efficiency and robustness was 

carried out. The method was found to be more efficient than the single grid methods and found to 

achieve faster convergence and performance speed-ups.  
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On the other hand, an implicitly discretised time dependent non-iterative pressure-based Operator 

Splitting method named PISO (Pressure-Implicit with Splitting of Operators) was developed by 

Issa (Issa 1985). This Operator splitting method uses the splitting of operators into a series of steps 

in such a way that the pressure equations are decoupled from the velocity equation at each time 

step. The fields obtained at each time step are a close approximation of the exact differencing 

equation with an order of accuracy depending upon the power of number of operator splitting on 

time-step increment (δt). PISO was also tested for its stability and its applicability to the steady 

state problem (Issa, Gosman et al. 1986). PISO was further extended for implementation to 

combustion related problems by Isaa et al.(Issa, Ahmadi-Befrui et al. 1991). Some semi-implicit 

methods have also been implemented recently for the resolution of acoustic wave in low Mach 

number flows (Wall, Pierce et al. 2002). 

There has been some extensive works done in the past in the area of density-based methods for low 

Mach number flow regions (Chorin 1967, Pulliam, Steger 1980, Merkle, Venkateswaran et al. 

1992, Merkle, Choi 1988, Choi, Merkle 1993). Previously, Turkel (Turkel 1987) extended 

Chorin’s method to compressible governing equations and devised a preconditioning scheme for 

Euler equations for all Mach number flows. Merkle and Choi (Merkle, Choi 1988) further 

improved Turkel’s work by adopting the splitting of the static and dynamic pressure contributions 

to solve the problem of low Mach numbers as small as 10
-6

. Choi and Merkle improved 

preconditioning procedure to achieve Mach number independent convergence and twice improved 

speed-up later on in their work (Choi, Merkle 1993).  

Finite difference methods have been widely using the central schemes for solving nonlinear 

convection-diffusion equations governing spontaneous evolution of large gradient phenomena. 

The preference for the finite difference method for central schemes is because the 
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convection-diffusion equations are not tied to specific eigen-structures, like most finite volume 

methods. The most famous of these methods is the first-order central Lax-Friedrichs scheme (Lax 

1954). This method was further improved by providing higher resolution and maintaining the 

simplicity of the Riemann-solver-free characteristic by central scheme of Nessyahu and Tadmor 

(NT) (Nessyahu, Tadmor 1990). Kurganov and Tadmor (Kurganov, Tadmor 2000) further 

modified the NT-scheme by using precise local propagation speed information without requiring 

any other specific information except the CFL (Courant–Friedrichs–Lewy) number. This central 

scheme provides approximate solutions in terms of cell averages integrated over Riemann fans of 

varying size. In order to improve the compressible flow solver in the low Mach region for 

finite-element methods, Schneider (Schneider, Karimian 1994) proposed a Finite Element 

Differential Scheme (FIELDS) for compressible flow using mass flux instead of velocity as the 

dependent variable in addition to pressure and temperature. This method seems to have overcome 

the pressure checkerboard problem (like SIMPLE schemes) but the robustness of the algorithm has 

remained questionable. Jenny and Muller (Jenny, Muller 1999) attempted a technique to accelerate 

convergence of compressible low Mach number flow solvers by artificially reducing the speed of 

the sound and subtracting a constant term from the pressure in the entire flow field to perform a 

steady-state simulation. A unique attempt has been made to formulate a finite-element 

Characteristic-Based-Splitting (CBS) method based on Taylor-Galerkin/pressure-correction for 

both compressible and incompressible flows. (Zienkiewicz, Codina 1995, Hawken, 

Tamaddon-Jahromi et al. 1990) 

There have been many attempts to construct a unified solver to simulate low Mach number flow 

using finite difference and finite volume methods for both compressible and incompressible flow 

problems. The first such attempt was made by Harlow and Amsden (Harlow, Amsden 1968, 
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Harlow, Amsden 1971) in their Implicit Continuous-fluid Eulerian (ICE) to solve time-dependent 

viscous compressible and incompressible flow problems. This method essentially reduces to the 

Marker and Cell (MAC) method in the low Mach number flow region. The MAC method was 

proposed by Harlow and Welch (Harlow, Welch 1965) to overcome the formation of a 

checkerboard pressure field by introducing the staggered grid arrangement. Patankar and Spalding 

(Patankar, Spalding 1972), however, extended this method and incorporated it into their SIMPLE 

(Semi-Implicit Pressure Linked Equations) code. Currently, the collocated scheme is preferred 

over scattered grid because of the complicated computational effort required in extension of 

staggered arrangement to non-orthogonal grids. Rhie and Chow (Rhie, Chow 1983) constructed 

the first such procedure for the finite-volume based method, which uses non-orthogonal 

co-ordinates and a collocated variable arrangement. Rhie introduced a notable procedure named 

multi-grid method in his next work to accelerate the iteration procedure (Rhie 1989). Later, Shyy 

et al. (Shyy, Chen et al. 1992a, Shyy, Chen et al. 1992b) extended this to pressure based methods 

and compared their results and efficiency with those of the single grid methods. This method 

seems to have higher speed-ups while working with incompressible methods. Initial work in this 

area was also done by Brandt (Brandt 1977) and Braaten et al. (Braaten, Shyy 1987)  

In the present work, a pressure-based hybrid algorithm derived from Issa’s PISO solver (Issa 1985, 

Issa, Gosman et al. 1986) and Karki’s low Mach number flow solver (Karki, Patankar 1989), is 

proposed to simulate low Mach aero-acoustic flow in a simple expansion muffler. An attempt is 

made in the present work to formulate a low Mach number compressible flow solver for acoustic 

propagation problems. A recent attempt of developing pressure based low Mach number flow 

solver is made by Wall et al. (Wall, Pierce et al. 2002), which is similar to incompressible 

pressure-correction method but involves more iterations at each time step. Moureau et al. 
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(Moureau, Berat et al. 2007) has also devised a similar strategy for application in combustion 

stability problem. The hybrid pressure-based compressible flow solver is specially designed to 

handle low Mach number flow regions, instead of the general pressure based subsonic flow 

compressible solver used by commercial CFD codes. Section 2.2 explains well-known pressure- 

based finite volume compressible solvers and central scheme based finite difference compressible 

solvers. In section 2.3, a new proposed hybrid Karki-PISO compressible solver is put forward. In 

the end, some test cases are performed for validation of the proposed solver.  

2.2 Computational Solver for Low Mach number Flow 

The most common computational methods used for simulation of acoustic pulse through a muffler 

are Analytical method and Boundary Element Method. Advanced CFD methods like Finite 

Volume Methods (FVM) have been more or less restricted in application to acoustic propagation 

problem because of constraints in terms of the vast computational requirement for acoustic 

problems. The other problem in solving acoustic problems is the time-dependent nature of these 

simulations, which again puts extra computational load in terms of computational requirement and 

computational robustness. However, with the remarkable improvement in the computational 

resources in last decade, it has become possible to apply these CFD methods to acoustic problems. 

These CFD studies have the capacity to provide a better insight into the physics of these problems 

(DeSpirito, Binseel 2008, Middelberg, Barber et al. 2004, Mohiuddin, Rahman et al. 2007). Unlike 

BEM methods which solve a Helmholtz equation to obtain results, CFD methods usually solve 

Navier-Stokes equation or Euler equations to simulate flow. 
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2.2.1 Governing Equations: 

The equations which need to be solved in laminar CFD solver are continuity equation, momentum 

equation, energy equation and equation of state: 
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         (2.4) 

Where ρ is density,    are the components of velocity, P is the pressure, T is temperature, h is 

enthalpy, τ is the viscous stress, and R is the ideal gas constant. A total energy equation, instead of 

the enthalpy equation, could have better conservation properties in the presence of shock waves 

but it is not considered here as there are no shock waves involved in the low Mach number flows.  

2.2.2 Pressure-based Compressible Solvers 

Most of the efficient pressure-based solvers employ either the PISO or SIMPLE method. Many 

hybrid methods have also been inspired by these approaches to enhance the performance of PISO 

in the low Mach number flow region. In this section, PISO discretization and Karki’s approach are 

explained and Kurganov et al.’s finite difference based central scheme is briefly introduced.  

Pressure-Implicit with Splitting of Operators (PISO) discretization: 

The governing equations (2.1)-(2.4) for compressible fluid have been expressed in difference form 

for each mesh point as 
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                                                      (2.5) 
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Where n and n+1 denote successive time levels and H(    and G(e) are operators which take the 

form as 

                                                                          (2.8) 

                                                                            (2.9) 

Here, the suffix m is a grid node identifier and summation is all over the nodes involved in the 

formulation of the finite-difference representation of the spatial fluxes. Issa suggested an improved 

scheme for better accuracy at corrector stage by splitting off the operators as 

                                                                         (2.10) 

The details of this splitting of operator can be found here (Issa 1985, Issa, Gosman et al. 1986). 

Further, a pressure equation is derived by taking divergence of Eq. (2.5), substituting for 

       
    in Eq. (2.6) and rearranging the expression to get 

  
             

      
 

  
       

       
 

                             (2.11) 

It can be seen that the Eq. (2.5) and (2.11) are linearly coupled through the appearance of     and 

  
   . This coupling enables the algorithm to iteratively solve discretisation equations second 

order accurate (O(2)).  
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In the final formulation, the splitting of operator is included in the Eq. (2.5), (2.6) and (2.7) to 

formulate a predictor-corrector scheme. There are two and three stage predictor-corrector 

methods, the effectiveness and accuracy of which is discussed elsewhere. A typical multi-stage 

scheme is composed of one predictor step and other corrector steps.  

Momentum predictor step: The equation of momentum is solved in this step implicitly using old 

pressures and densities as 

 
 

  
 

  

       
       

       
      

    
 

  
                                              (2.12) 

This equation solves for   
 , which is used in the corrector step. 

Momentum Corrector step: The momentum equation is then written in explicit corrector form as 

 
 

  
 

  

       
        

       
      

    
 

  
                                           (2.13) 

Subtracting Eq. (2.12) from (2.13) and invoking the continuity equation and equation of state, the 

pressure-increment equation is obtained as 

     
 

  
 

  

   
  

     
        

  
              

   
                              (2.14) 

This pressure-increment equation is solved to yield    field. Equation of state and continuity 

equations are used to determine    and   
  . Similarly the second momentum corrector step and 

third momentum corrector steps can be implemented to improve accuracy and efficiency. The final 

corrector step thereby completes the splitting and the latest computed fields are now regarded as 

the final solution to the original equations (2.1), (2.2), (2.3) and (2.4). The details of this method 

can again be found here (Issa 1985, Issa, Gosman et al. 1986).  
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Karki’s approach: 

In an attempt to construct a procedure for viscous flow at all Mach number flow, Karki and 

Patankar (Karki, Patankar 1989) put forward a different approach using a compressible form of 

SIMPLER algorithm. This approach casts momentum equations in terms of the physical velocity 

components along the grid lines, and keeps pressure as the main dependent variable in preference 

to density. The mass flux through the control-volume face of each grid is given by 

    
              

     
         

       
       

                             (2.15) 

In Eq. (2.15), the second order term     
  is ignored. The velocity changes and density changes 

respond to the change in pressure as follows: 

  
        

     
                      

  

  
                                                  (2.16) 

                                                                                (2.17) 

Here ae and Ae are the convective and diffusive coefficients. K represents a measure of influence of 

pressure on density and can be obtained from the equation of state. In a one-dimensional situation, 

the mass flux on the face can be given by 

    
        

           
 

   
 
        

                                       (2.18) 

The diffusion like term involving de is responsible for downstream pressure effects, whereas the 

convective term involving K exhibits upstream effects. The ratio 
     

   
  is inversely proportional to 

the square of the Mach number. At high Mach numbers, the term involving upstream pressure is 

dominant and the equation exhibits a hyperbolic nature. However at low Mach numbers, the term 
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involving pressure differencing becomes dominant and the equation exhibits an elliptic nature. As 

this algorithm should yield a pressure correction equation that exhibits the correct Mach number 

dependent behaviour, the present equation exhibits the Mach dependent behaviour through these 

two convection like and diffusion like terms. The details of this method can be found here (Karki 

1986). This idea of yielding a pressure correction equation that exhibits elliptic behaviour in 

subsonic flow and hyperbolic behaviour in supersonic flow has become the basis of opting for the 

proposed Mach uniform hybrid algorithm, which also has the robustness of PISO. 

 

2.2.3 Finite-difference-based Central Scheme 

As mentioned earlier, finite-difference methods for solving convection-diffusion equations are not 

tied to specific eigen-structures as most of finite volume methods are, and therefore are universally 

used for solving convection-diffusion equations. Kurganov and Tadmor’s (Kurganov, Tadmor 

2000) central scheme uses the idea of constructing a central scheme by using precise information 

of the local propagation speed to improve the second order Riemann-solver-free NT scheme. The 

scheme does not require any other characteristic information besides the CFL related speeds. 

Besides, the realization and generalization of this scheme for complicated multidimensional 

systems is comparatively easier than those upwind schemes of a similar order. This scheme has far 

less numerical viscosity than the original NT scheme and it can be written and integrated 

efficiently in semi-discrete form much more easily than other central schemes. 
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 Figure 2.1: Central scheme proposed by Kurganov and Tadmor. 

 

This scheme can be represented as the Godunov-type scheme by initially assuming already 

computed approximation of the piecewise-linear solution at time level   , based on cell averages 

  
  and reconstructing approximated derivative       

  using equation, 
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The solution evolves in time according to estimated local speed of propagation at cell boundaries, 

 
  

 

 

: the upper bound is denoted by  
  

 

 

  and is given by, 
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Where    
  

 

 

     
  

  

 
      

 . A narrower control volume is used where at each time step 

integration is performed over the intervals [        
           

               (as shown in Figure 

2.1). The points         
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    separate between the 

smooth and the non-smooth regions and the non-smooth region are then contained inside these 

narrower control volumes. The exact evaluation of the new cell averages at       is obtained as, 
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 ...(2.21) 

Finally, the desired cell averages,   
    for the discrete second-order central scheme are obtained 

by averaging the approximate solution of the piecewise-linear approximation of Eq. (2.21) as, 

  
    

 

  
      

 
  

 
 

 
  

 
 

        

 ... (2.22) 

2.3 Proposed Hybrid Karki-PISO Algorithm 

A hybrid algorithm is proposed here which adopts the operator splitting feature of PISO with 

modified predictor and corrector steps inspired by Karki’s derivation of mass-flux at 

control-volume face represented by equation (2.15), achieving a tighter coupling between 

predictor and corrector steps. Previously, there have been several attempts to obtain a hybrid 

algorithm using various known methods. Some of them are mentioned by Barton in his work 

(Barton 1998) where a hybrid PISO+SIMPLE scheme is also presented. However unlike the 

present implementation, where a closer coupling has been achieved, the PISO+SIMPLE hybrid 

algorithm uses one loop of PISO and a consecutive loop of SIMPLE to obtain a final corrected 

value. This PISO+SIMPLE algorithm has not been tested for low Mach number acoustic 

simulations. A very similar attempt has also been made by Xu (Xu, Ge et al. 2009) to implement a 

hybrid SIMPLER+PISO named as SIMPLEXT. All these hybrid algorithms are generally 

simplistic and have not been specifically tested for low Mach number acoustic simulations. The 

proposed hybrid Karki-PISO algorithm can be explained in various predictor-corrector steps as 

follows: 
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Momentum predictor step: The equation of momentum of this hybrid algorithm is solved in this 

step implicitly using old pressures and densities as 

 
 

  
 

  

       
       

       
      

    
 

  
                                             (2.23) 

Momentum Corrector step: The momentum equation is then written in explicit corrector form as 
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In the corrector stage, the coupling is required to be established using a pressure-correction 

equation. As it can be noticed at this stage, the density value from previous iteration is used on the 

left side of Eq. (2.24), instead of the latest density value. However the pressure differential on the 

right side of Eq. (2.24) uses the latest density value obtained from solving the pressure corrector 

equation (Eq. (2.28)) and then applying the equation of state (             ) to finally get the 

latest pressure value p*. We can form an incremental form of equation by subtracting Eq. (2.23) 

from Eq. (2.24) as  

 
 

  
 

  

        
     

         
                                         (2.25a) 

This can also be re-cast as: 

    
      

 

  
 

  

   
  

    
                                                   (2.25b) 

Again, we have Karki’s formulation in equation (2.15), which can be expressed as follows for the 

low Mach number flow: 
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The value for      
  can be substituted from Eq. (2.25) and the value for    in     

   can be 

substituted from Eq. (2.17) to finally obtain the expression 
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The continuity equation (2.6) can now be expressed as: 

    
    

       
 

  
                                                                (2.27) 

Taking the divergence of Eq. (2.26) and substituting it in Eq. (2.27) gives 

      
        

 

  
 

  

  
 

  

             
   

     
 

  
          

This equation can be rearranged with the help of the equation of state to give 

    
 

  
 

  

   
  

    
      

  
                

          
       

               (2.28) 

This is termed as the pressure correction equation. This equation is solved to yield the p* field. 

Equation (2.25a) may then be used to determine the value of   
    Similarly the second momentum 

correct step can be implemented to improve accuracy and efficiency. The final corrector step 

thereby completes the splitting and the latest computed fields are now regarded as the final 

solution to the original equations (2.1), (2.2), (2.3) and (2.4).  

It is evident from the direct comparison of Eq. (2.14) and Eq. (2.28) that an additional pressure 

gradient term has appeared in the proposed hybrid algorithm in contrast to the original PISO 

algorithm. This resembles very closely to the Karki’s derivation of mass flux at the control volume 

face. However the beauty of this algorithm is that it still keeps PISO’s second order accuracy 
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(O(2)) and operator splitting feature, which is claimed to be responsible for a better accuracy and 

higher efficiency at the momentum corrector stages, while keeping the low Mach effectiveness of 

Karki’s approach intact. (Issa 1985, Issa, Gosman et al. 1986) The diffusion like term involving 

 
 

  
 

  

   
  

is responsible for downstream pressure effects, whereas the convective term involving 

K exhibits upstream effects. The ratio  
 

  
 

  

   
  

     
  is inversely proportional to the square of 

the Mach number. At high Mach number, the term involving upstream pressure is dominant and 

the equation exhibits the hyperbolic nature. However at low Mach number, the term involving the 

pressure differencing become dominant and the equation exhibits elliptic nature of pressure. As 

this algorithm should yield a pressure correction equation that exhibits the correct Mach number 

dependent behaviour, the present equation exhibits the Mach dependent behaviour through these 

two convection like and diffusion like terms.  

The Eq. (2.28) apparently introduces a pressure differential term (term involving K) in the 

equation, which resembles to the set of equations formed by the asymptotic form of low Mach 

number semi-implicit implementation by Klein (Klein 1995, Munz, Roller et al. 2003).  

2.4 OpenFOAM  

The core technology of OpenFOAM (Field Operation and Manipulation) is a flexible set of 

efficient C++ modules. These C++ modules include solver, which simulates specific problems in 

engineering mechanics; utilities, which performs pre- and post-processing tasks like simple data 

manipulations, visualisation and mesh processing; and libraries, which creates toolboxes that are 

accessible to the solvers/utilities. The idea behind creation of FOAM is to develop a C++ class 

library that makes it possible to implement complicated mathematical and physical models as 
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high-level mathematical expressions. This is facilitated by making the high levels of the code 

resemble as closely as possible standard vector and tensor notation. In this approach tensorial 

fields ( like     etc ) are considered as the solution of a set of partial differential equations rather 

than viewing the problem as a numerical one in which arrays of floating values are obtained by 

inverting matrices. An object-oriented programming (OOP) methodology has been adopted, which 

is easier to write, validate, and maintain than procedural techniques.  

FOAM has implemented most of the object-oriented features like abstraction, encapsulation, 

inheritance and polymorphism to optimise the performance of the tool for computational fluid 

dynamics simulations. There are numerous uses of data abstraction and data encapsulation to hide 

the data behind the interface and also to provide a well defined access to encapsulated data. An 

example of inheritance within FOAM is the use of inheritance to represent conceptual links 

between turbulence models. Similarly, an example of polymorphism can be witnessed in the 

implementation of boundary conditions. While a great deal of attention has been paid to the 

development of new and efficient algorithms for CFD, little has been published about the overall 

code design. The robust design and efficient algorithms has made FOAM an effective CFD tool 

which can implement a wide variety of continuum-mechanics modelling techniques, including 

those of incompressible and compressible fluid flow, multiphase flow, and free surface flow, 

together with various turbulence modelling techniques.  

Implementation of tensor fields: The majority of fluid dynamics can be described using the tensor 

calculus of up to rank 2, i.e., scalars, vectors, and second-rank tensors. Therefore there have been 

three basic classes created: scalarField, vectorField and tensorField. These tensor field classes are 

somewhat different from mathematical tensor field and they do not contain positional information. 

They are essentially ordered set lists of tensors and so only point-wise operations (i.e. tensor 
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algebra) can be performed at this level. As C++ allow operator overloading therefore it is possible 

to resemble tensor algebra to mathematical notation by overloading +, - , *, etc.  The next level of 

tensors is referred to as “geometric tensor fields” and contains the positional information lacking 

in the previous classes. Again, there are classes for the three ranks of tensor currently 

implemented, volScalarField, volVectorField, and volTensorField. In addition to the additional 

metrical information necessary to perform differentiation, which is contributed by reference to a 

mesh “mesh class” fvMesh, these classes contain boundary information, previous time step 

necessary for the temporal discretization, and dimension set information. Since every algebraic 

expression is checked dimensionally before execution, therefore it is impossible to execute any 

dimensionally incorrect expression in FOAM.  

 Implementation of partial-differential-equation classes: Computational modelling requires the 

solution of partial differential equations, which is accompanied by converting them into systems of 

equations by linearizing them and finally inverting the resulting matrix using a suitable matrix 

solver. In the case of unstructured meshes, the differential operators   ,   and     lead to sparse 

matrices which have a complex structure requiring indirect addressing and appropriate solvers. 

FOAM currently uses the conjugate-gradient method, with incomplete Cholensky preconditioning 

(ICCG), to solve symmetric matrices. For asymmetric matrices the Bi-CGSTAB method is used. 

The matrix inversion is implemented using face addressing throughout, a method in which 

elements of the matrix are indexed according to which cell face they are associated with. Both 

transient and steady state solutions of the equation systems are obtained by time-marching, with 

time step being selected to guarantee diagonal dominance of the matrices, as required by the 

solvers.   
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To address the issue of the matrix representation of a differential equation by mathematical 

notation, classes of equation object called fvMatrixScalar, fvMatricVector, etc are defined. These 

classes are defined to handle addressing issues, storage allocation, solver choice, and the solution. 

The standard mathematical operators + and – are overloaded to add and subtract matrix objects. In 

addition, all the tensorial derivatives t / , . ,  , etc., are implemented as member functions of a 

class finiteVolumeMethod (abbreviated to fvm), which construct appropriate matrices using finite 

volume discretization. Numerical considerations are relevant in deciding the exact form of many 

of the member functions.  

Mesh topology and boundary conditions: Geometric information is contributed to the geometric 

fields by the class fvMesh, which consists of a list of vertices, a list of internal cells, and a list of 

boundary patches (or cell faces). The vertices specify the mesh geometry, whereas the topology of 

any cell is specified as an ordered list of indices together with a primitive shape describing the 

relationship between the ordering in the list and the vertices in the shape. These primitive shapes 

can be defined at run time and usually consist of tetrahedron, pyramid, prism or hexahedron. 

The exterior boundary of the domain is defined by fvMesh, which incorporates a set of patches. 

Every patch carries a boundary condition, which is dealt with by every fvm operator in an 

appropriate manner. There are different classes of patch like calculated, fixed value, fixed 

gradient, zero-gradient, symmetry, cyclic, and other boundary conditions, each of which is derived 

from a base class, patchField. All boundary conditions have to provide the same types of 

information, that is, they have the same interface but different implementation, which is actually a 

good example of implementation of polymorphism in the code. Boundaries suitable for specific 

situations like inlet, outlet, wall etc can be devised using these basic elements. An additional 
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patchField processor is also available, which helps in parallel implementation of the code for 

multi-processor simulation runs.  

Turbulence modelling in FOAM: In turbulent flow, there are coherent structures on a variety of 

spatial scales from the largest, determined by the size of the geometry, down to very small scales 

where viscous scales dominate. The range of scales involved may be over several decades. There 

are two approaches to solving for turbulence: either the mesh used is fine enough to resolve all of 

the flow scales, or the range of scales explicitly simulated must be reduced, with the effect of the 

unresolved scales being accounted for by modelling. There are different types of 

Reynolds-Averaged Simulation (RAS) and LES models implemented in FOAM. For RAS, there 

are various turbulence models available, whereas for LES, the range of possible LES model is even 

larger. In LES, the turbulence models can be incorporated directly into the momentum equation, or 

a virtual class hierarchy may be constructed in order to make the model run time selectable. LES 

uses a three level hierarchy in contrast to the flat hierarchy used by RAS models.  

There are different sets of model implementation available. The first of those sets involves models 

that use Bousinesq hypothesis, in which the effect of unresolved turbulence on the large scale flow 

is modelled as an increase in viscosity. This is equivalent to model B as 

          
 

 
        

                                                 .... (2.29) 

where,   
        

 

 
        and the models differ in the way the turbulent viscosity is evaluated. 

The Smagorinsky and One-equation model come into this set of models. A second set of models 

provides a full solution of the balance equations for B: for example, the model of Deardorff  

(Deardorff 1970) has the form, 
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                  .... (2.30) 

 Most of the available CFD codes require the six individual equations for the above equation to be 

written out separately. However in FOAM these can be expressed as a single tensorial equation: 

Solve   ( 

  fvm::ddt(B) + fvm::div(phi, B)  

 - fvm::laplacian(nut/sigmaB, B) 

= = P - fvm::Sp(C1*epsilon/k, B) 

 - (2.0/3.0)*(1.0-C1)*l*epsilon 

 - C2*(P-(1.0/3.0)*l*tr(P)) 

 ); 

 

A third set of LES model is the scale-similarity model, which introduce further interaction between 

different turbulent scales by introducing a second level of filtering. These models are usually 

combined with other models to give a mixed model. The class hierarchy of the LES models in 

FOAM is based on the relationships, at the base of which is a virtual base class isoLESmodel. 

Derived from this are intermediate classes: isoGenEddyVisc, isoGenSGSStress, and 

isoGenScaleSimilarity, which implement Eq. (2.29) and Eq. (2.30) respectively. Finally, details of 

the models are implemented in the highest level classes. For example, the classes derived from 

isoGenEddyVisc calculate the value of υt is used in eq. (2.29). isoMixedSmagorinsky is a mixture 

of a scale similarity and an eddy-viscosity model, and so multiple inheritance is used to represent 

this relationship.  
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2.5 Test case: Simple Expansion Muffler Simulation 

Aiming at sound attenuation in propagating medium of various engineering devices, various 

acoustic filters have been used. For numerous uses of simple expansion mufflers in exhaust 

silencers and air conditioning HVAC systems, a simple expansion muffler has been chosen for 

simulating a pulsating flow to demonstrate the effectiveness of the proposed low Mach hybrid 

Karki-PISO compressible solver. The details of various aspects of this simulation are provided in 

Chapter 4 and only necessary information pertaining to the set of results introduced in this chapter 

is provided here. Second order spatial discretization and temporal discretization are employed in 

these simulations. An axi-symmetric 5 degree uniform mesh is used as mesh for this simulation as 

shown in Figure 2.4 (a). 

A pure single period sinusoid of 3200Hz frequency and amplitude of 0.05 m/s is imposed at the 

inlet of the expansion muffler using the proposed Karki-PISO compressible solver. The CFD 

model has long inlet and outlet, in this simulation fourteen times the length of the expansion 

section, to ensure a sufficient amount of data to obtain reasonable results.  

 

 

 

 

 

Figure 2.2: Simple Expansion Muffler CFD model. 

Outlet Inle

t 
Expansion 
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Figure 2.3: Comparison of (a) viscous and nearly inviscid simulation; (b) muffler simulations with 

different mesh sizes. 

(a) 

(b) 
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This also avoids reflections from the walls and expansion sections contaminating the monitoring 

data at probes Pr1 and Pr2, as shown in figure 2.3 (a). The inlet and outlet pipe diameters are 

chosen so that the diameter of the expansion pipe is three times larger than that of the inlet pipe. 

Figure 2.5 (a) shows a 5 degree axisymmetric uniform mesh of a simple expansion muffler, 

whereas figure 2.5 (b), (c) shows respectively incident pulse and transmitted pulse reaching and 

passing through the muffler’s expansion section. After various reflections from the expansion 

section, the incident and transmitted pulses are recorded in the inlet and outlet pipes at probe 

locations Pr1 and Pr2. The reflections from the expansion chamber can be seen in the inlet and 

outlet pipe section of the CFD simulation of figure 2.5 (d). Figure 2.6 shows the detailed behaviour 

of the pulse interaction with the expansion. Figure 2.6 (c) and (d) clearly show the generation of 

reflected waves from the expansion that travels towards the inlet pipe and only a part of it is 

transmitted through the expansion section. Finally, figure 2.7 provides the velocity distribution of 

the transmission pulse and its interaction with the interface of the expansion section and outlet 

pipe. Figure 2.7 (c) and (d) clearly shows the passage of transmission pulse through the outlet pipe 

and reflection from the expansion section towards the inside of the expansion chamber.  

Computational verification: A comparative Fast-Fourier Transform (FFT) analysis is conducted 

for viscous and inviscid simulation of the simple expansion muffler to analyse the viscous error 

reflected in transmission loss throughout the frequency spectrum. Figure 2.3 (a) shows perfect 

agreement between viscous and inviscid simulations. The figure clearly shows that there is not 

much effect on the frequency analysis of the simulation due to the introduction of viscous forces.  
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Figure 2.4: Velocity contours: (a) mesh of section of simple expansion muffler; (b) sinusoidal 

pulse at the entrance of expansion; (c) Reflections after pulse crosses the expansion sections; (d) 

Various reflections at the end of simulation in inlet and outlet pipes. 

(a) 

(d)   

(b) 

(c) 
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Figure 2.5: Velocity contours at start of expansion: (a), (b) Sinusoidal pulse reaches at entrance 

of expansion chamber, (c), (d) Reflection of pulse from the expansion section. 

(a) 

(b) 

(c) 

(d) 
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Figure 2.6: Velocity contour at intersection of expansion and outlet: Sinusoidal pulse transmitted 

through the outlet pipe. 
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Mesh independence: To check for spatial discretization error in the simulation, FFT analysis is 

performed for a range of mesh sizes; from 4mm to 1mm. Figure 2.3(b) shows no considerable error 

in the simulation and all the results for various mesh sizes match very well. 

 

2.6 Closure 

This chapter has introduced the low Mach compressible Karki-PISO solver for acoustic 

propagation. The chapter also outlines other related finite-volume and finite-difference methods 

and discusses the evolution of the Karki-PISO compressible solver. The C++ based OpenFOAM 

CFD tool kit is also discussed and the implementation of several of its models and features is 

discussed. A test case of a simple expansion muffler is then taken and the acoustic pulse 

propagation problem is then solved using proposed Karki-PISO compressible solver. An inviscid 

simulation is also carried out and the results are satisfactory, compared with the viscous simulation 

for the validation of compressible solver. Study of mesh dependence also provides good 

agreement for the frequency-range of our interest. Post processed velocity contours for the 

simulation of pulses propagation through the expansion muffler show interesting interaction of 

flow near the expansion and the generation of back pressure and transmission pressure in the inlet 

and outlet pipes.  
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Chapter 3 

Turbulence Modelling 

 3.1   Introduction 

This chapter aims to provide a brief summary of important aspects of turbulence modelling. Only 

those aspects of turbulence modelling which are relevant to this thesis are considered in this 

chapter. The chapter briefly defines turbulence, explains various important parameters of 

turbulence, discusses near-wall turbulence, outlines scales of turbulence and types of correlation 

and finally discusses various models of turbulence.  

3.2   Introduction to Turbulence 

It is known that at low velocities wall bounded flow is smooth and the various layers of fluid flow 

in an orderly fashion. This flow is called laminar. When velocity is increased, the flow becomes 

intrinsically unsteady and chaotic (even if there is an implementation of constant boundary 

conditions) and this flow is called turbulent. The transition of flow from laminar to turbulent 

occurs when a certain Reynolds number (usually more than 2000, depending on the flow 

geometry) is reached. Most industrial fluid flows are turbulent and that makes the process of 

understanding this phenomenon very important.  

Turbulence is one of the least understood topics in fluid dynamics and can be loosely described as 

irregular motion in rotational flow obeying probabilistic constraints. It has been shown several 

times in the past that turbulence can only develop and persist in rotational flow or in the presence 

of shear. The velocity gradient developed due the presence of the shear provides the energy 

differential that converts the small initial perturbations into large scale coherent structures (Lesieur 
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1997). The process is only possible when inertial forces overcome the influence of viscous forces 

which are used to damp down the small initial perturbations (i.e. at high Reynolds number). 

Although there is no strict definition of turbulence present in the literature, turbulence can still be 

described by the following characteristics: 

Randomness: Turbulent flow is random, irregular and chaotic. It consists of a spectrum of different 

scales known as turbulent eddies. These turbulent eddies have their characteristic velocity and 

length scales and exist somewhere in space for a certain time and are subsequently destroyed. 

Although turbulence is chaotic, it is deterministic and can be described by Navier-Stokes 

equations.  

Three-Dimensional: Turbulent flow is always three dimensional and unsteady. However, it can be 

treated as two-dimensional when equations are time averaged for two-dimension geometries (For 

example in the RANS simulation). In this case, the fluctuations in time are superimposed upon 

mean value for each quantity as:               .  

Diffusivity: Diffusivity is stronger in turbulent flow than laminar flow. This is very useful because 

this means that the spreading rate of the boundary layer increases (because of three-dimensional 

diffusion of turbulent eddies by momentum exchange) as flow becomes turbulent. This strongly 

enhances the heat transfer, mixing and friction.  

Dissipation: Turbulent flows are dissipative. Since the kinetic energies of small eddies are 

transformed into thermal energy, it makes the flow dissipative. There is an energy cascade which 

allows the transfer of kinetic energy from larger eddies to the smaller eddies. The smallest eddies 

receive energy from slightly larger eddies, and the larger eddies receive energy from even larger 
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eddies and so on. The largest eddy receives its energy from the mean flow. This process of energy 

transfer is called a cascade process.  

Continuum: Turbulence is also a continuum phenomenon. Although the smallest scales of 

turbulence are extremely small, they are still many orders of magnitude bigger than the molecular 

length scale. This is followed by the fact that time dependent, three dimensional continuity and 

Navier-Stokes equations contain all of the physics of a given turbulent flow.  

Vortex Stretching: Vorticity is connected to the rotational nature of the fluid and its 

three-dimensionality. Vortex stretching is the main physical process of spreading the motion over 

a wide range of wavelengths. The turbulence gains energy if the vortex elements are oriented in a 

direction in which the velocity gradients can stretch them. The energy cascade which was 

explained previously can also be explained in terms of vortex stretching. The larger eddies in the 

flow interact most strongly with the mean flow and carry most of the energy. In turn, vortex 

elements that comprise most of the smaller eddies are stretched by the larger eddies, transferring 

their energy to smaller eddies. The energy is dissipated in the shortest wavelengths by viscous 

forces.   

These properties lead to the inference that turbulence is definitely not isotropic, except at the 

smallest scales, where it is non-directional. The rest of the larger eddies obviously strongly depend 

on the mean flow direction.  

3.3   Turbulent Energy Spectrum 

Richardson (Richardson 2007), in his pioneer work explained how the larger scale coherent 

structures break up into smaller pieces. Later on, Kolmogorov (Kolmogorov 1991) predicted the 

scale distribution of eddies which surprisingly fits well with Richardson’s energy cascade. An 
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assumption was made in Kolmogorov’s theory that the large scale influence of anisotropy is 

gradually lost, when energy is transferred from larger scale to smaller scales. In the turbulent 

energy spectrum shown in the Fig. 3.1, Kolmogorov’s law is graphically represented by the dotted 

line, which is derived from dimensional analysis and expressed as: 

                                                               ....  (3.1) 

where   is a universal constant and experimentally found to be of the order of 1.5. Kolmogorov’s 

law states that, if the flow is fully turbulent then the energy spectrum should exhibit a -5/3 law in 

the inertial region. The spectrum shown in Figure 4.1 can be broadly divided into three parts I, II, 

III, generally known as the large eddy region, inertial range and dissipative range respectively. 

 

Figure 3.1: Turbulent energy spectrum, (Hinze 1975) 
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Region I: This region consists of large eddies which carry most of the energy and interact with the 

mean flow to extract energy from the mean flow. The energy transfer from the mean flow to the 

larger eddies takes effect via the production term,   , in the transport equation for turbulent 

kinetic energy. The large scale eddies in this region contain most of the turbulent kinetic energy. 

Region II: At a sufficiently high Reynolds number, this region, more commonly known as the 

inertial sub-range, contains transitive scales. These scales obey the Kolmogorov’s law mentioned 

above and are dominated by inertial forces rather than viscous forces. In the cascade process, this 

region is also known as the “transport region”; it dissipates very little energy and mostly transfers 

energy from the large scales to the very small scales. Since the assumption in the cascade process 

is that all the energy from large eddies is transferred to small eddies, it means that the number of 

small eddies will be greater than that of the large eddies. (i.e Nkkk is constant, where Nk is number of 

eddies and kk is turbulent kinetic energy of the eddies.) The eddy range (wavenumber range) in the 

inertial sub-range increases with increasing Reynolds number.  

Range III: This region in the energy spectrum is called the dissipative range. Eddies in this region 

are small and isotropic and this is the region where dissipation takes place. The eddy scales in this 

region are described by Kolmogorov scales (            ). The energy transfer from turbulent 

energy to heat energy is governed by ε in the transport equation for turbulent kinetic energy k. 

3.4   Wall Bounded Turbulent Flow 

The presence of a solid boundary has profound effects on the flow turbulence and is often 

described as the site of the generation of fresh turbulence. Flows near the wall have a number of 

distinctive properties that are common to many otherwise dissimilar flows. Thus the channel flow 

and pipe flow boundary layer have very similar characteristics close to the wall, whereas away 
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from the wall they have notable differences.  Apart from the limiting influence because of the 

presence of the solid boundary on the growth of the instabilities due to viscous processes, the 

resulting vortices are restricted in scale to some fraction of the distance to the boundary surface. A 

variety of studies of wall bounded flows have yielded insights into the analytical, statistical and 

structural characteristics of this sort of turbulence phenomenon.  

Prandtl (Prandtl 1925)assumed in his pioneer work that the inner thin region near the wall 

characterises the wall bounded flow and the behaviour of turbulence in this inner region is 

independent of the rest of the flow and only determined by viscosity ν and viscous shear stress at 

wall   . Characteristic velocity scale    and length scale    can be obtained for the inner region 

by dimensional analysis as follows: 

     
  

 
            

 

   
.                                                .... (3.2) 

where the characteristic velocity scale   is also referred to as fictional velocity and the length scale 

   is referred to as the viscous length scale. Various quantities normalised with    and    are 

expressed in wall units; for example y
+
 is normalised as y/   to define different regions in 

near-wall flow. The y
+
 is similar in expression to the Reynolds number (Re= ul/ν) as its magnitude 

also determines the relative influence of inertial and viscous effects. 

The flow region where the effect of inertial forces is negligible in comparison to the viscous effects 

is called viscous sublayer and the mean flow velocity in this region has a universal form which 

follows the law of the wall: 

                                                         … (3.3 a) 
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This viscous sublayer is confined to the very thin region near the wall, in the range of about y
+
<5, 

as shown in Figure 3.2. The thickness of this sublayer decreases with increasing Reynolds number. 

However, the influence of viscosity becomes negligible away from the wall and the size of the 

large eddies becomes independent of Reynolds number and characteristic length scale. This is 

called the outer region or defect region and the velocity profile in this region is not universal. In 

between the viscous sublayer and outer region, there is an overlap region called the log-law region, 

where the length scale of the dominant eddies is proportional to the distance to the wall. The 

log-law of the wall for mean velocity profile can be obtained by considering a local equilibrium 

between production and dissipation in the log-law region, as follows (von Karman 1930): 

   
 

 
                                                              .... (3.3 b) 

where A is a dimensionless integration constant and Karman’s constant   ≈ 0.4. For smooth 

surfaces A≈5. Pope (Pope 2000) later confirmed that Eq. (3.3) is valid for y
+ 

>30, as shown in 

Figure 3.2.  

Another wall unit named the friction Reynolds number is defined as the ratio of the size of the large 

eddies δ in the core of the channel to the size of the large eddies in the near wall region δv.  

    
 

  
 

   

 
                                                            .... (3.4) 

The friction Reynolds number has the same function for wall turbulence as the turbulent Reynolds 

number (free shear) has for the Kolmogorov cascade. However there are some marked differences 

as well, which are worth noticing in the context of large and small eddies. 
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Figure 3.2: Velocity profile for turbulent boundary layer. (Wilcox 2006) 

In wall turbulence, large and small eddies are segregated in space due to the presence of the wall 

and the near-wall area is dominated by the smaller eddies of size    determined by the viscous 

effect. On the other hand, further away from the wall, the turbulence of the Kolmogorov cascade 

has both large eddies and Kolmogorov eddies coexisting at a given space and a full range of length 

scales is generated. The second difference between free shear turbulence and wall turbulence lies 

in the way turbulent kinetic energy is transported in the flow. Most of the production of turbulent 

kinetic energy happens in the near wall region with a peak at y
+
=12. (Kim, Moin et al. 1987, 

Antonia, Kim 1992) The smallest eddies in the near wall region are the major source of turbulence 

and are consequently transported towards the main flow. Dissipation of the energy in the core flow 

takes place through a classical Kolmogorov energy cascade. Various attempts have been made to 

better understand wall turbulence, its structure and dynamics. 
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Since the 1950s, a number of experiments of increasing sophistication have revealed a degree of 

connectedness in the motions occurring in wall bounded flows. For example, it has been shown 

that velocities at different spatial and temporal positions can be highly correlated. (Spalart 1988, 

Karweit, Blanc‐Benon et al. 1991) It is now recognised that there are “structural” features 

embedded in the randomness of turbulent flow and therefore turbulence is not just random 

distributions, which is also very clear from the description of turbulence in the previous section. It 

is also easy to imagine that such a phenomenon is the result of coherent events within the 

seemingly random turbulent fields. Substantial effort has been expended in attempting to get a 

deeper understanding of the wall-layer physics that might be responsible for these observations. In 

recent decades, the accumulated knowledge of wall region flow has coalesced around a few rather 

closely related ideas about the structural composition of the boundary layer. Central of those is the 

idea that bounded turbulent flows are composed of coherent structures (CS), which are defined as 

the flow elements or eddies showing a considerable degree of organisation and repetitiveness. The 

cause of the tremendous increase in drag and heat transfer in the near wall region is also supposed 

to be because of these coherent structures of turbulent flows.  In addition, the transport of energy 

from these structures to the core flow is the source of the boundary layer's characteristic 

logarithmic profile.  Clearly a better understanding of the underlying mechanisms is important for 

the improved treatment of the boundary layer.  

 

3.4.1   Near-wall turbulence cycle 

 A retarding motion tangential to the surface interacts with the wall boundaries via viscous shear 

and blocks the motion of fluid normal to the interface. Although mean flow properties are largely 
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influenced by the wall, their categorisation has been generally difficult. However, they have been 

categorised by some in terms of turbulence properties as local and non-local modes of influence 

for wall boundaries. Non-local modes are defined as bulk flow phenomena that affect the flow's 

turbulent characteristics, but are not in close physical proximity to the surface that produces them. 

Since non-local modes are typically not very Reynolds number dependent, their effects are usually 

well produced by direct simulations. However the character and extent of these non-local modes 

must still be taken into account, considering the fact that they can strongly influence the mesh 

spacing required to resolve a certain flow section. Local modes of wall interactions, on the other 

hand are defined as the retardation of the flow due to viscous shear and the wall turbulent scale’s 

limiting influence perpendicular to the surface. As described in the previous section, the near-wall 

shear functions as a source of turbulent energy for coherent structures in the buffer and log-law 

layers (Figure 3.2) which is produced through various instability mechanisms. Although many 

prominent features such as low speed streaks, longitudinal coherent structures and a variety of 

vortical configurations have been listed in the near wall region, their generation mechanisms and 

mutual interactions have remained ambiguous. Recent works (Le, Coleman et al. 2000, Jeong, 

Hussain et al. 1997, Schoppa, Hussain 2000, Hamilton, Kim et al. 1995), however, have 

formulated a more comprehensive theory on wall turbulence production, which is supported by 

numerical and physical experiments at low Reynolds numbers. The theory describes a 

self-regenerating cycle of lifted near-wall streaks, longitudinal vortices and internal shear layers 

and accounts for most of the turbulence phenomenon observed in boundary layers. This theory, 

named as the Streak instability theory, has been further corroborated for low and moderate 

Reynolds numbers. While the other mechanisms, such as eddy roll up, surely contribute to the 

near-wall turbulence formation, they are not dominant and have been numerically shown to be 
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unable to sustain the turbulence cycle in isolation. Some evidences also have suggested that the 

streak instability cycle does not remain the dominant turbulence production mechanism at high 

Reynolds numbers. This deviation in this theory is attributed to the displacement of coherent 

turbulence production from the near-wall region to the outer boundary layer, which happens after 

     10000. However, for the aerodynamic boundary layer the streak instability cycle is 

considered as the dominant mechanism for coherent turbulence structure production near the wall. 

3.4.2   Streak Instability Cycle 

It is believed that streaks are generated by the lifting of low speed fluid near the wall by the vertical 

velocity induced by the streamwise vortices, described by their close proximity in figure 3.3. 

Recently Schoppa et al (Schoppa, Hussain 2000) have proposed that the streak plays a significant 

and dynamic role in the formation of streamwise coherent structures through the streak instability 

mechanism. Linear stability analysis shows that typical near-wall streaks are unstable to sinusoidal 

perturbations in a channel flow solution and therefore a sinusoidal perturbation can initiate an 

instability which in turn would produce vortices and a shear layer kick-starting the near-wall cycle. 

A base flow of the following form has been generated to separate the instability of vortex-less 

streaks: 

            
          

              
  

  
                  

                                                        .... (3.5) 

where U
+
 is the mean velocity profile and    

  is the wall normal circulation of streak.    
  along 

with Spanwise wavenumber, b
+
 and transverse decay, cσ are chosen to approximate a typical streak 

from previous minimal channel simulations (see Figure 3.4).  
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Figure 3.3: Top view of the near-wall region covering (x
+
, z

+
) = (1400, 450) in the streamwise and 

spanwise directions. Lifted low-speed streaks (black) denote u0 < 0 at y
+
 = 20 and streamwise 

vortices (grey-shaded) λ2 < 0 for 0 < y+ < 60 (Jeong, Hussain et al. 1997). 

The streak waviness in z is applied to investigate the stability of the base flow (Eq. 3.5) and has the 

form, 

                                    

                                                                   .... (3.6) 

where    is the linear perturbation amplitude and a
+
 is the x-wavenumber of the perturbation. 

These initial conditions are shown to evolve by linear instability into a natural instability 

eigenmode, the growth of which is characterised by an increase in total energy in Fourier modes 

with a z-wavenumber of 0 (z mean) and an x-fundamental mode proportional to a.  
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Figure 3.4: Low speed lifted streak realization in minimal channel flow. (a) 0.55Uc isosurface, (b) 

typical cross-stream distribution of U(y,z), (c) The analytical base flow distribution of eq. 3.5 at 

y
+
=20 (Schoppa, Hussain 2000). 

The streak instability process can be understood in greater detail in the Figure 3.5. In the figure 

profiles of    , denoting the perturbation velocity normal to the base flow vortex lines, are overlaid 

with contours of streamwise vorticity wx at two x (half wavelength apart) and the bold arrows 

denote the differential streamwise velocity     of the displaced vortex sheet. The thick lines in 

Figure 3.5 (a) and (b) indicate the base flow vortex lines, while the dashed counterparts denote 

perturbed vortex lines. The instability mechanism is dominated mostly by wx through the induction 

of    , which displaces the vortex sheet anti-symmetrically in both x and z (see Figure 3.5). The 

displaced vortex sheet now experiences a differential streamwise velocity,     at any point on the 
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sheet, as for example the vortex line at X0 will move faster at      than at      . This in turn 

intensifies wx on top of the streak through vortex line tilting (Figure 3.5 (b)). The enhanced wx then 

further accentuates    , and so on, thereby completing the feedback loop responsible for the 

instability.  

 

Figure 3.5: Schematic of (sinuous) Streak stability mechanism in (a) perspective view and (b) top 

view (Schoppa, Hussain 2000). 

Schoppa et al. (Schoppa, Hussain 2000)further proceed to study the CS's non-linear evolution 

using Direct Numerical Simulation (DNS). The DNS is initialised using the equations 3.5 and 3.6 

to obtain a starting field free from extraneous perturbations. The first observations by Schoppa et 

al. (Figure 3.6 (a)-(c)) shows the direct creation of streamwise vortices due to the growth of the 

sinuous amplitude of the underlying streak. The streak instability then continues to sustain the 

streamwise vortex well after initial formation (Figure 3.6 (d)), emphasising the phenomenon’s 

importance to turbulence production.  
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Figure 3.6: Streamwise vortex formation due to transient streak instability, illustrated by 

cross-stream distributions of wx (Schoppa, Hussain 2000). 

 

3.5 Scales of Turbulence 

In a typical turbulent flow, the largest eddies present in the flow extracts their energy from the 

mean flow. The slightly smaller eddies receive their energy from even larger eddies and the energy 

transfer process from larger to smaller eddies goes on to the smallest scales. It is these smallest 

eddies which dissipate and transform their kinetic energy to thermal energy. The whole cascade 

process creates a spectrum of eddies of various length scales and the largest scale is comparable to 

the flow geometry. Although frictional forces exist throughout the flow at all scales, they are 

largest at the smallest scales (eddies). In the idealized model, the frictional losses at all the scales 
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are neglected, since they are comparably very small. However, more realistic models take into 

account the small fraction of dissipation at all scales in the flow and it is assumed that most of the 

energy (90%) carried by the largest eddies is dissipated at the smallest dissipative scales. These 

smallest dissipative scales where dissipation occurs are known as Kolmogorov scales, as explained 

earlier.  

The dissipation, denoted as ε, is the energy per unit time per unit mass, which is proportional to the 

kinetic viscosity, ν, times the square of turbulent fluctuating velocity gradient  
  

  
 . Kolmogorov’s 

velocity scale,   , length scale,   , and time scale,    are determined by viscosity ν and dissipation 

ε. The argument is that, since kinetic energy is destroyed by viscous forces, therefore viscosity ν 

must have a role to play here; similarly, larger the amount of kinetic energy being transformed into 

thermal energy, the larger the velocity gradient. With these considerations, velocity scale,   , 

length scale,   , and time scale,    can be given by dimensional analysis as follows: 

          , 

    
  

 
 

   

, 

       
 

 
 

   

                                                     .... (3.7) 

Integral length scale: As turbulence contains a continuous energy spectrum of different scales, it is 

often convenient to analyse the flow in terms of spectral distribution of energy. Generally, spectral 

representation of energy is a Fourier decomposition of energy into domain of wavenumbers κ. 

Considering the reciprocal of κ as eddy size, an expression for kinetic energy contained between 

wavenumber κ and κ+dκ can be obtained as       , which is further used to obtain the 

expression, 
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                .... (3.8) 

where k is kinetic energy per unit mass of fluctuating turbulent velocity and E(κ) is the energy 

spectral function/density. Considering that the large eddies so strongly influence the turbulence, it 

follows that energy spectral density E(κ) would be a function of larger eddies, l and their 

dissipation rate, ε. Dimensional analysis for high Reynolds number turbulence established that k 

can be expressed in terms of ε and l as (Taylor 1935): 

                                                             .... (3.9a) 

which can be rearranged to give: 

  
  

 
                                                          … (3.9 b) 

where l is also known as the integral length scale.  

Another important feature characterising a turbulent flow is turbulent intensity. It is usually 

quantified in terms of specific normal Reynolds stress components,          ,            and          , which 

could be regarded as the kinetic energy per unit mass of fluctuating quantity in three co-ordinate 

directions. These turbulence fluctuations are the ones which are imposed on the mean flow in a 

typical Reynolds Average Navier-Stokes Simulation (RANS) as,      (discussed later). The 

turbulent kinetic energy, k can be obtained by summing up the squares of all three turbulence 

fluctuations and multiplying it by ½, as follows: 

  
 

 
                 

 

 
  

   
                                           .... (3.10) 
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3.6 Two-point Correlation 

When averaging a product of those quantities, for instance u and v, we can write it as a sum of its 

average and fluctuating part, as 

                                                                              .... (3.11) 

This equation suggests that the mean of the product of two quantities differs from the product of 

two mean values. The quantities          are said to be correlated if               or else they are 

said to be uncorrelated. For example, two points in the near-wall region can be found to be 

correlated whereas one point near the wall and another far from the wall would not be correlated in 

a typical channel flow. 

In general, there are two types of two-point correlation commonly used in experimental and 

theoretical turbulence studies:  

(a) Temporal two point correlation, and  

(b) Spatial two point correlation.  

The first involves the correlation of parameters separated in time while the other involves 

correlation in separation of parameters in spatial position. The basis of the correlation is the 

pioneer work by Taylor (Taylor 1935) which describes the relation between spatial and temporal 

separation as follows: 

 

  
   

 

  
                                                         .... (3.12) 
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However this relationship is only proved to be valid for small turbulent fluctuations. More relevant 

two point correlations are obtained from extensive analysis of one point time correlation data using 

autocorrelation functions.  

A two point time autocorrelation tensor is defined by considering the correlation of velocities at 

one point and two different time as follows: 

              
        

                                                                     .... (3.13) 

Similarly a two point velocity (space) correlation tensor is defined by considering the correlation 

of two point x and x+r in flow, as: 

             
        

                                                                   .... (3.14) 

Further discussion in this regard is presented in Chapter 6. 

3.7   Models of Turbulence 

The presence of wide ranges of length scales and time scales for eddy dimensions require these 

scales to be computed and solved. Since Navier-Stokes equations exactly compute these wide 

ranges of scales and the associated turbulence structure in a typical turbulent flow, the computation 

cost of the simulation is mostly too high for practical applications. In the past, various classes of 

techniques for simplification of turbulence scales have been employed by choosing different range 

of scales to model flow simulation. These techniques can be classified as follows: 

Direct Numerical Simulation (DNS): DNS is the simulation of Navier-Stokes equations without 

employing any model. Because no model is employed in the simulation, all scales of flow have to 

be resolved by the computational grid and that increases the cost of computation to a prohibitive 
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level for industrial applications. The only source of error in such simulations comes from the 

discretization error and aliasing error (no dissipation error). However the computational cost rises 

with Reynolds number; the cost in the near-wall flow is proportional to     and in the  

 

Figure 3.7: Comparison of computed and modelled scales in RANS, DNS and LES. 

away from wall region is proportional to   (can be derived from equations 3.7 and 3.9). These 

prohibitively large requirements of computational resources limit the applicability of DNS to low 

Reynolds number flow and in understanding the turbulence physics. One of the pioneering works 

in the DNS simulation of wall-bounded channel flow was conducted by Kim et al. (Kim, Moin et 

al. 1987) at a Reynolds number of 3300 with about 4x10
6 

grid points.  

Reynolds Averaged Navier-Stokes (RANS): In this method, Navier-stokes equations are 

averaged in time over a period big enough to capture even the lowest frequency oscillations in the 
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domain. The averaging almost ignores the unsteady behaviour of turbulent flow and a somewhat 

steady consideration of turbulence is made while the effect of turbulence on mean flow is 

evaluated. The Reynolds stress term   
   

        appearing in the governing equations for averaging 

quantities represents the effect of fluctuating velocities on the averaged ones. Taking advantage of 

the Boussinnesq assumption, Reynolds stress can be considered proportional to the strain rate by 

introducing eddy viscosity    as: 

      
   

        
 

 
  

   
                   

                                         … (3.15) 

The problem then shifts to the way of guessing the eddy viscosity    and therefore these models 

are called eddy viscosity models. Turbulent length and time scale characteristics are calculated 

through various models to derive the turbulent viscosity field. This can be done using simple 

algebraic relations such as Prandtl’s mixing length hypothesis (Prandtl 1925) or one equation 

models for turbulent kinetic energy (Kolmogorov 1942)(Kolmogorov 1991) or two-equation 

models such as the     model (Jones, Launder 1972). Although the eddy viscosity assumption 

which implies that the turbulent motion is in equilibrium with the mean flow is not perfect but it is 

a reasonable approximation considering that the local mean gradient characterises the mean 

distortion to turbulence in simple shear flows. 

Despite inability to handle unsteady flow effectively and not being very accurate in some other 

cases, RANS are easy to implement, faster to solve and have good accuracy in modelling mean 

flow. For these reasons, the approach is still widely practised in CFD modelling. 

(c) Large-Eddy Simulation (LES): Unlike DNS, LES does not resolve the complete range of 

turbulent scales and only captures scales as small as practically feasible. In this way LES computes 

the dynamics of as much of the large energy containing resolved scales of the flow as is 

economically feasible while modelling only effects of small unresolved phenomenon on the larger 



3. Turbulence Modelling 

57 
 

resolved scales with the help of sub-grid models. This method takes into account the fact that 

energy is mainly contained in the largest scales of flow. The division of the scales of flow into 

larger resolved and smaller unresolved scales in LES modelling is termed as grid scale (GS) and 

sub-grid scales (SGS) respectively. The division in scales can be accomplished by convolving the 

dependent flow variables in Navier-Stokes equations with a predefined kernel, which works like a 

high-pass filter and separates the GS scale. In traditional methods filtering is applied to the 

Navier-Stokes equation to obtain a governing relation for filtered velocity. The filtering of the 

Navier-Stokes equation creates a need for the modelling of sub-grid scale (SGS) stresses and the 

way this SGS stress is modelled to obtain a closed system of equations distinguishes one LES 

method from another. In the process of modelling, the GS motion is explicitly simulated whereas 

the average effect of the SGS motion on GS motion is accounted for by a SGS model. Figure 3.7, 

illustrates scales computed and modelled by various methods and it clearly shows that LES is an 

interesting and efficient compromise between DNS and RANS. 

The basic equations for LES were first formulated by Smagorinsky in the early 1960’s for 

application in meteorology. (Smagorinsky 1963) The first engineering application of LES was 

performed by Deardorff (Deardorff 1970) in a channel flow simulation. Since then, LES has 

become a very attractive research and industrial application tool. LES has been implemented for 

channel flow (Moin, Kim 1982), isotropic turbulence (Lesieur 1997), free shear mixing layer 

(Vreman 1995) and flow with separation (Le, Moin et al. 1997). The RANS and LES equations 

used in this research are provided in the appendix. 
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3.8 Closure 

The phenomenon of turbulence and its characteristics and spectrum were introduced in this 

chapter. Wall bounded flow and various turbulence generation mechanisms near wall bounded 

flow were also introduced. Various scales of turbulence and two point correlations were 

introduced as reference to the generation of synthetic boundary conditions in subsequent chapters. 

Finally, various available models of turbulence like DNS, RANS and LES were introduced. The 

chapter concisely has introduced the important information about turbulence which is useful for 

the current research.  
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Chapter 4 

Simulation of Acoustic Pulse through Muffler 

4.1 Introduction  

Computational simulation of acoustic propagation and attenuation has always attracted researchers 

and industries alike for various applications. There has been considerable research done in recent 

past in the area of turbulence generated noise or noise source identification. The focus of these 

investigations is predominantly where there is no forced oscillation introduced and only noise due 

to turbulence or flow characteristics have been important. However, these investigations have 

been concentrated towards using simplified mathematical models or sets of linear/nonlinear 

equations for simulation of sound propagation. Therefore, additional research is required in the 

area of CFD simulation of sound propagation. This chapter will investigate various spatial and 

temporal discretizations for acoustic simulation, simulate a simple expansion muffler without flow 

for several structural configurations, and simulate pipe and muffler with flow using the RANS 

method.  

Because of the numerous applications in exhaust silencers and air-conditioning HVAC systems, 

the expansion muffler has been extensively studied by various authors (Potente 2005, Arenas, 

Gerges et al. 2004, Munjal 1987, Selamet, Radavich 1997). The acoustic simulation of expansion 

mufflers has been an essential component of the design and development of noise reduction 

systems. Some analytical one-dimensional models have also been proposed recently to accurately 

predict the sound propagation in different expansion mufflers (Yasuda, Wu et al. 2010, Panigrahi, 

Munjal 2007). A better and more effective mathematical model that has been attempted by some 
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researchers uses either the Boundary Element Method (BEM) or the Finite Element Method (FEM) 

to solve a Helmholtz equation to simulate the acoustic propagation (Arenas, Gerges et al. 2004, 

Selamet, Radavich 1997, Selamet, Radavich 1997, Selamet, Ji 1999, Seybert, Soenarko et al. 

1985). Different measurement techniques were proposed for FEM/BEM methods to accurately 

predict various design parameters like transmission loss or insertion loss in expansion muffler, 

including four-pole and three-point technique (Arenas, Gerges et al. 2004). Some improvements in 

the FEM/BEM based methods have also been reported with an enhanced four parameter method 

(Barbieri, Barbieri 2006, Barnard 2004). Besides these, few attempts to find a simpler, faster and 

cost effective plane wave models have also been made with some success (Suwandi, Middelberg et 

al. 2005, Munjal 1997). This model was further improved by Liu (Liu, Lu et al. 2009) to include 

the effect of high order model waves. There has always been interest in CFD simulation of 

acoustic pulse but the large disparity between the acoustic and flow scale leads to an enormous 

computational requirement and this made the CFD simulation of acoustic propagation 

prohibitively expensive in the recent past, especially for industrial applications. However, with 

drastic improvements in the computational performance and memory of recent computers/clusters, 

some successful attempts have been made to computationally simulate the acoustic propagation of 

acoustic pulse in a laminar flow using CFD.  

Recently, two alternative techniques have been proposed to achieve solution convergence in low 

Mach number flows viz., Asymptotic and Preconditioning. The asymptotic technique uses the 

perturbed form of equation, which discards specific terms so that the physical acoustic waves are 

replaced by pseudo-acoustic modes. On the other hand, the Preconditioning technique uses a 

preconditioning matrix to scale the eigenvalues of the system to a similar order of magnitude. This 

alleviates the disparity in the wave speeds and leads to a well converging solution. The 
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pressure-based SIMPLE algorithm has been further extended by different authors using these 

techniques. A multi-length scale- single time scale asymptotic analysis was done by Klein (Klein 

1995) for the full Euler equations which included the influence of long wavelength acoustic waves 

at leading order in the velocity field. Munz et al. (Munz, Roller et al. 2003) further extended 

Klein’s work and proposed a Multiple Pressure Variable (MPV) method, which used the SIMPLE 

algorithm for simulation of weakly compressible flow. Bijl et al.(Bijl, Wesseling 1998)and 

Webster et al. (Webster, Keshtiban et al. 2004) performed similar computations using asymptotic 

technique on boundary-fitted grids and Cartesian grids respectively.  

In an attempt to extend the compressible flow solver to the incompressible range, a hybrid 

flux-splitting scheme with collocated grid and preconditioning was used by Rossow (Rossow 2000) 

to simulate airfoil flow using a 5 stage Runge-Kutta scheme. Rossow further extended his work to 

derive a blended pressure/density-based method based on the SIMPLE method (Rossow 2003). It 

may be important to note that it has been claimed that when conventional methods without 

preconditioning are used, false solutions could be obtained due to excessive artificial damping and 

accumulation of errors. The preconditioning procedure can artificially enhance numerical wave 

propagation and thus reduce the number of time steps required for acceptable solutions. However, 

preconditioning methods need to be customised for specific kinds of problem and sometimes it is 

hard to choose the right preconditioner for a new specific problem, which in turn could be 

troublesome in developing a more universal and unified numerical solver for low Mach number 

flow. 

Most of the acoustic investigations of muffler with mean flow in the past have unsurprisingly been 

concentrated towards experimental or one-dimensional analysis. A one-dimensional model has 

been proposed by Munjal (Munjal 1997) for typically small mean flow in a side-inlet-outlet 
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muffler. CFD modelling of muffler with mean flow has been done recently by Mohiuddin 

(Mohiuddin, Rahman et al. 2007) without imposing any acoustic pulse through the muffler. In 

similar attempts to model high frequency waves of aerodynamic problem, there has been constant 

development in last few decades in the area of Computational Aero-acoustics (CAA). CFD 

modelling of expansion muffler with mean flow and with an acoustic pulse imposed at the inlet has 

mostly been attempted using the Finite difference method (FDM) or FEM/BEM based methods for 

their dissociation with eigen structure and computational simplification due to analytical models 

respectively. Therefore, FVM methods have largely been avoided due to their computational 

complexity and high memory and speed requirements. This certainly limits the study of acoustic 

modelling and neglects problems where turbulence and mean flow interactions are important. 

Some high resolution methods have been attempted recently by Hwang et al. (Hwang, Lee et al. 

2007) to accurately predict the performance of an exponential pipe muffler with mean flow using 

the finite difference method. The simulation has solved Euler equations using 2
nd

 order 

Runge-Kutta method for time discretization and MUSCL (Monotone Upwind Schemes for 

Conservation laws) for space discretization. Later, Obikane (Obikane 2009) has also attempted to 

simulate a complex muffler configuration using a third order finite difference scheme. The unique 

feature of this method is that it has solved Navier-Stokes equations instead of Euler equations, 

using a third order finite difference scheme. The results obtained in this work seem to be promising 

for a complex muffler structure. However, these results cannot be verified experimentally or with 

available results in literature for a complex muffler configuration. In the present work, a simple 

expansion muffler is therefore selected for acoustic simulation so that the results could be verified 

with analytical or available experimental results.  
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Many attempts have been made in the past to simulate acoustic pulse propagation in the expansion 

mufflers of various configurations using commercial CFD codes (DeSpirito, Binseel 2008, 

Middelberg, Barber et al. 2004). In their initial attempt, Middelberg et al. used the Fluent 

commercial package to simulate the pulse through a muffler but CFD simulation results were still 

not up to the mark (Middelberg, Barber et al. 2003). They later improved their CFD simulation 

results by using a second order backward scheme and results were close to the experimental results 

(Middelberg, Barber et al. 2004). DeSpirito (DeSpirito, Binseel 2008) replicated his work with 

Fluent software and extended his research for CFD modelling of a specific earplug design. 

()Recently, Piscaglia (Piscaglia, Jasak et al. 2010) simulated a similar case using state of the art 

OpenFOAM (OpenFOAM 2007) software to acoustically simulate a random acoustic pulse 

through an expansion muffler using a customised acoustic boundary condition with different time 

varying acoustic inlet perturbations. They implemented numerical filtering along with data 

smoothing at post processing level to improve the result quality. 

An attempt is made in the present work to simulate an acoustic pulse in the expansion muffler 

using a hybrid low Mach number pressure-based Karki-PISO compressible flow solver (explained 

in section 2.3). The issues concerning computational acoustic simulation are also reviewed in the 

light of the present work. Various spatial and temporal discretization methods are investigated for 

acoustic simulation in the present work. Apart from that, several structural configurations of 

simple expansion muffler are also investigated to investigate the pulsation response of the muffler. 

The RANS approach is adopted for obtaining mean flow profile for pipe and muffler 

configurations, and pulse is thereafter imposed to acoustically simulate the device.  
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4.2 Computational Aero-acoustics 

The CAA community has been mostly working towards obtaining better numerical schemes to 

solve transport equations to get a more accurate and robust solver for aero-acoustic applications. 

Since these methods usually solve some form of Euler equation, the solution of these simulations 

come at expense of ignoring the viscous term in the computational equation, which could be 

important in certain applications. The other problem with the typical computational aero-acoustics 

methods is that they usually do not strictly model the turbulence and therefore the study of 

turbulence and acoustic interaction is very limited in typical CAA studies. Despite that, the 

contribution of CAA in acoustic propagation and attenuation analysis has been tremendous and 

various aspect of this research has been shaping the field of computation acoustics for more than 

20 years. 

 The area of Computational Aero-acoustic (CAA) has come to light from the middle of the 1980s 

and since then it has gained attention of various researchers to study flow with short 

wavelengths.(Lighthill 1992) However, many date the birth of CAA as recent as the 1993 

publication of Tam and Webb (Tam, Webb 1993), highlighting special requirements for efficient 

finite difference method. The areas of application of CAA have mostly been in the noise 

generation due to flow, noise radiation from a source or noise propagation into a flow field. In the 

last three decades, this area has made spectacular progress due to rapid advances in computational 

resources. On the other hand, it should not be assumed that the CAA methods are completely 

different from CFD methods. CAA methods are actually very strongly linked to CFD. CAA 

methods have been developed in a way that it uses specific techniques to resolve wave behaviour 

well and that’s what makes these methods different from typical CFD methods. The issues related 

to CAA are discussed here in brief: 
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Broad frequency bandwidth: Typical CAA problems involve widely spread frequency range. The 

high frequency acoustic waves can coherently cover long distance with negligible attenuation due 

to the viscous effects. These high frequency waves are also called “spurious waves” and usually 

arise due to insufficient resolution of relevant length scales of any given problem. Noise in a 

typical expanded jet consists of frequencies in the range of Strouhal number from 0.01 to 10, 

which makes a ratio of 1000 between the highest and the lowest frequency. The highest frequency 

or shortest wavelength in the problem domain decides the spatial resolution requirement of the 

problem. It has been reported that a general CFD method require a resolution of 18-25 mesh points 

for typical expanded jet, whereas a CAA method might only need 6 to 8 mesh points. (Tam 

2006)A great amount of effort has been put by the CAA community to develop computational 

schemes which could provide adequate resolution at fewer number of mesh points in 

computational domain.  

Disparity between mean flow and Acoustic wave: It has been found that there is a large disparity 

between mean flow and acoustic waves. The acoustic waves which are radiated or propagated with 

the mean flow have fluctuations of the order of around four with respect to the mean flow 

magnitude. This large disparity between these two parameters presents extreme computational 

challenges. Putting this disparity in context, it can easily be seen that the small amplitude of the 

acoustic disturbance is almost comparable to the numerical error, which is the difference between 

computed mean flow and exact mean flow solution. This leads to the discussion among the 

researchers to develop high order computational schemes which are robust and correct to greater 

extent. Some researchers proposed to solve for the perturbation after the mean flow has first been 

determined, instead of solving the fully non-linear equation to capture the very small amplitude 
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sound field directly. However the problems related to generation of noise from flow has to solve 

full nonlinear equation to capture small amplitude sound field directly. 

Multiple length scale problem: Most of the aeroacoustic problems are multiple length scale and 

the length scale of the acoustic source is very different from the acoustic wavelength. Since the 

growth and decay of the large turbulence structure in the noise source region is dictated by the 

thickness of mixing layer, there are various length scales available in the inner flow region. In the 

outer region, the natural length scale of the acoustic field is the acoustic wavelength. A careful 

consideration of spatial resolution requirement is essential for the simulation of the existing 

multiple length scales. It has also been reported that the adequate resolution of instability wave in 

the mixing layer of the jet requires a minimum of 15 mesh points, which makes a spatial resolution 

in the sound source region 50 times finer than the acoustic field region. The spatial resolution 

requirement along with the CFL number restriction leads to excessive computational time.  

Numerical dispersion: A typical aeroacoustic problem is usually concerned with the directivity, 

propagation and radiation of sound spectrum. Unlike aerodynamic problem where accurate 

solution is only required in the vicinity of aerodynamic body, aeroacoustic problem require a 

computed solution which is accurate throughout the computational domain. Besides, the large 

distance between the noise source and the boundary make it essential to have a computational 

scheme which is accurate over such a long propagation distance. Thus, the numerical scheme has 

to be free from any numerical dispersion, dissipation or anisotropy.  

Spatial discretization: Since viscosity terms are usually ignored in a typical computational 

aeroacoustic problem, the Navier-Stoke equations are replaced by Euler equations to solve 

compressible problems. The temporal and spatial derivative of these equations has to be 

approximately discretized and their discretized equations must be solved. It is important to note 
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that the exact solutions of the discretized equations are not the same as those original partial 

differential equations. This constitutes an error referred to as the difference between the solution of 

original partial differential equations and the discretized system. As a simple example, a one 

dimensional advection equation or first order wave equation can be taken as: 

  

  
   

  

  
   

                                                …… (4.1) 

where c is constant and has unit of speed. Fourier-Laplace transform on eq. (4.1) decomposes to 

their Fourier components in   and t. The Laplace transform of a function     , denoted by      , 

and its inverse, are related by  

 

       
 

  
            

 

  

 

                          

                   
 

 

   

.... (4.2) 

 

Where ω is the angular frequency (Laplace transform variable) and C is a contour in the upper half 

ω-plane parallel to the real axis. The Fourier transforms of Eq. (4.1) leads to, 

    
       

        
                                                      …. (4.3) 

and then its pole evaluation is obtained by setting denominator to zero. This finally, leads to the 

dispersion relation, 

                                                               …. (4.4) 

which provides a relationship between wave number k and angular frequency ω. Since all the 

components of the Fourier modes travel with the same speed c, the superimposed waveforms 
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retain their shape as they propagate. Further discretizing Eq. (4.1) on one dimensional mesh shown 

in figure 4.1, an approximation of x-derivative at nth mesh point can be obtained using standard 

central differencing quotient or Dispersion Relation Preserving (DRP) with a stencil of (2N+1) 

points as, 

 
  

  
 

 
  

 

  
         

 

    

 

                                    ….. (4.5) 

where        , and this makes the semi-discretized  form of Eq. (4.1) as the system of 

equations, 

   

  
  

  

  
                 

 

    

 

                                …. (4.6) 

Now taking Fourier transform, it can be found that, 

    
       

         
                                                      ….. (4.7) 

This is similar to Eq. (4.3) except that k is replaced by k*. Now inverting the Fourier and Laplace 

transforms, the exact equation of the discretized equation can be obtained as, 

 

        
 

  
  

     

        
                

 

    

 

                     …. (4.8) 

The dispersion relation is now replaced with the expression, 

                                                                   …. (4.9) 
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Eq. (4.8) has a pole at          which can be picked in the ω-plane by deforming the inverse 

contour C and using Residue theorem afterwards, 

              
 

  

                
        

   

                           …. (4.10) 

For large values of t, the k-integral of Eq. (4.10) may be evaluated by stationary phase point 

     which is obtained by zero of the derivative of phase function                . This 

leads to the expression, 

  

  
         

  
 
    

 
 

 
 ,                                    …..(4.11) 

This expression provides    as a function of x/t. The term 
  

  
 is called group velocity and it is also 

the propagation speed of the component of solution with wave number k. As 
   

  
 is not usually 1, 

different Fourier components travel with different speed and therefore wave packets of even 

slightly different wave number propagate with different propagation speeds. A serious dispersion 

can be witnessed over a long propagation distance even with small differences in group velocity. 

This is the source of dispersion in computational modelling.  

In general, two solutions exist for the dispersion relation, one for long wavelength and another for 

short wavelength. The group velocity of long wavelength is positive and is well resolved 

component of the solution, whereas group velocity of short wavelength is negative and poorly 

resolved which counters the physical phenomena of Eq. (4.1). The long wavelength solutions are 

referred to as smooth waves whereas short wavelength solutions are referred to as spurious waves 
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(mentioned above). For second order finite difference scheme, the speed of propagation of 

spurious waves is equal to that of the smooth waves but in an opposite direction of propagation.  

 

 

 

Figure 4.1: A uniform mesh with spacing Δx. 

Temporal discretization: Besides the spatial discretization, numerical dispersion also comes from 

time discretization of the partial differential equations. In the semi-discrete formulation, time 

marching methods can be separated as explicit scheme and implicit scheme. There could also be 

semi-implicit scheme formation of time discretization. Implicit schemes are solved by iterative or 

approximate factorization methods and are therefore useful for obtaining solution of a stiff system 

of ODE. It is especially important when it is required to suppress the component associated with 

the fastest eigenvalues of the solution. Semi-implicit time schemes are usually used in suppressing 

high wave number spurious waves, which in turn relaxes the CFL restriction associated with 

acoustic waves.  

In explicit finite difference formulation, the two type of time marching schemes which are most 

famous are: 

 Runge-Kutta method (single-step scheme) 

 Linear Multi-step method (multi-step scheme) 

The basic difference between these two schemes is in terms of the way flux of information travel 

forward in time. Runge-Kutta (RK) schemes are single step scheme where integration moves 

   n-1   l   n+1 

Δx 
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forward from any point without using previous time-step information of the solution. The resulting 

system of differential equations can be written as, 

  

  
                                                                 …. (4.12) 

  The explicit p-stage RK method for Eq. (12) can be written as, 

                

 

   

  

                 

   

   

               

                             …. (4.13) 

where    are dependent variables evaluated at time   and Δt is the time step.        and     are the 

co-efficients which can be obtained by solving various numerical conditions for a given accuracy 

level of p. The eigenvalues of the right hand side of the linearized Eq. (4.12) determine the stability 

of the RK methods and the order of accuracy of the method is equal to the number of stage p of the 

method. For instance, classical RK schemes have accuracy level up to 4 and stability region 

includes the imaginary axis for 3
rd

 and 4
th

 order RK schemes. In problems associated with very 

small diffusion (negative real part of the eigenvalue) such as in turbulence and aeroacoustic flow 

calculations, RK schemes have useful applications. These schemes are obviously restricted by the 

CFL conditions of the spatial discretization of right side of Eq. (4.12) in finite difference 

formulation. RK methods have additional dispersion and dissipation (discussion in next subsection) 

beyond that from the evaluation of spatial discretization and this additional dispersion and 

dissipation could be reduced by optimizing the co-efficients of the RK methods. Some low 

dispersion and dissipation (LDD) schemes have also been introduced that have lower formal order 
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of accuracy (less than p for p-stage RK method) than the usually achievable order (p
th

-order) with 

the given classical p-stage RK method. Another advantage of RK method comes from the fact that 

these methods are very low storage methods which do not use the information from the previous 

timesteps. 

LM methods on the other hand are multi-step methods and information travel forward in time 

using previous timestep information. The solution obtained is superposition of physically correct 

solution and spurious solutions. The physically correct solution tends to correct solution as 

timestep tends to zero, whereas the spurious solution has to be carefully suppressed and damped 

with time by choosing small enough timestep. Although LM methods are not self starting but a 

lower scheme can be used for initial steps. Since the LM methods only require one evaluation of 

F(u, t) per time level, these are very efficient. However their spurious solutions can have much 

stricter CFL constrains than high order RK method. Eventually, it has been found that the RK4 

method and LM method have roughly similar computational efficiency and associated cost.  

(e) Numerical dissipation: In addition to the numerical dispersion, CAA problems also suffer 

from other inaccuracies while discretizing partial differential equations, namely numerical 

dissipation. Again considering the Eq. (4.8) and Eq. (4.10) at         , the extent of damping 

of numerical solution can be evaluated depending on the kind of stencil used. For a central 

differencing stencil,       is a real function for real k and Eq. (4.10) behaves as dispersive wave 

quanta without being damped in time. For an asymmetric stencil,       is complex for real k and 

solution will be damped in time only if            is negative for all k. However if the sign of c 

and           is same then the numerical result grow exponentially in time causing numerical 

instability. Therefore the necessary condition for numerical stability can be expressed as: 
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                                                          …. (4.14) 

Most of the famous upwind schemes satisfy these criteria. However the drawback of upwind 

scheme is that there are significant dissipations in the high wave numbers region of the solution. 

Various artificial damping has been introduced by some researchers to damp out the spurious 

waves of the computation scheme. In the Eq. (4.1), an artificial selective damping term D(x) can be 

introduced as, 

  

  
   

  

  
      

                                                     .... (4.15) 

Further, spatial dicretization using the 7-point optimized stencils can be described as, 

   

  
 

 

  
       

 

    

   
   

   
       

 

    

  

                           ..... (4.16) 

It is also assumed that the discretization of term    is proportional to the values of    within the 

stencil. dj are the damping stencil co-efficients and     are the artificial kinematic viscosity. The 

values of dj are chosen to selectively damp the high wave number spurious waves only. It has been 

found that the introduction of artificially selective damping in a computational scheme performed 

extremely well in eliminating most of the spurious short waves in numerical solution. Besides, 

artificial selective damping also smoothes out discontinuities over several mesh spacing and is 

effective in all shock capturing schemes. 

(f) Radiation boundary conditions:  Since the domain of simulation is inevitably finite, it is 

necessary to impose outflow and radiation boundary conditions at boundaries of the problem 

domain. For a highly accurate simulation, it is necessary that these boundary conditions must let 
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the outgoing disturbances go without getting reflected back into the computational domain. The 

most frequently used system of equations for aeroacoustic problem is Euler equations, which is 

formed after ignoring the viscous terms in the Navier-Stokes Equations.  

Three type of small-amplitude fluctuations are accounted for solving CAA problem in general 

Euler equations. These are acoustic fluctuations, vorticity and entropy waves. It is also assumed 

that the source is far from the problem domain. Tam and Webb (Tam, Webb 1993) derived the 

expression for asymptotic solution of the outgoing acoustic wave at boundary in polar form as, 

 

 
 
 
 

    

  

  
  

  

   
  

 

    
     

    

 
 
 
 
 
 

 

  
 

     

    

     

    

  
 
 
 
 
 

      
 

                            ..... (4.17) 

The subscript ‘a’ indicates that the disturbances are associated with the acoustic waves only. V( ) 

is defined as                           
 

    and M is the mean flow Mach number. 

Eq. (4.17) is then further derived with respect to t and r to obtain the expression which any acoustic 

disturbances satisfies for arbitrary function F to provide a set of far field radiation boundary 

condition as, 

 
 

    

 

  
 

 

  
 

 

  
  

 
 
 
 

         
 

                                   ..... (4.18) 

This method has been derived by extending for the first term only and therefore can suffer from 

inaccuracies whenever source is not located near the centre of the computational domain. The 

reason for the inaccuracies could be the slow convergence of asymptotic expansion.  
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(g) Outflow boundary condition: The outflow region requires to not letting the outgoing 

reflections get back into the computational domain. Various Non-reflecting boundary conditions 

have been developed to accommodate such problems. Non-reflecting boundaries attempt to annul 

any incoming waves at the boundary. Other approach is Perfectly Matched Layer (PML) where 

domain is enclosed by a buffer region and terms are added to the governing equations to minimize 

reflection of outgoing waves. A typical schematic for boundary requirements is showed in the 

Figure 4.2. 

Tam (1993) proposed the asymptotic solution for density, velocity and pressure fluctuations as 

follows, 

 

 
 
 
 

  

 
 
 
 
 

             
  

  
            

  

  
            

   
 
 
 
 

+ ... ,                             .... (4.19) 

The explicit terms               are explained in Eq. (4.18) and     and F are arbitrary 

functions. These functions are eliminated by a combination of various derivatives and following 

boundary conditions are obtained, 
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Thompson (Thompson 1990, Thompson 1987) has proposed non-reflective characteristic based 

boundary condition for one dimensional equation which finds characteristic solution easily. 

However characteristic solutions for three-dimensions are not as promising as one dimensional 

form of characteristic boundary equations (which is exact). Thompson’s characteristic solution is 

based on local identity and decoupling of left and right going waves across the interface. The three 

characteristic curves with slopes                and         are needed for any 

characteristic to cross the domain. The integrated values of the dependent variables along the 

characteristic curve are known as Riemann invariants and these boundary conditions are referred 

to as characteristic Boundary condition. These boundary conditions can be approximated for 

multidimensional flow to write conservative form of Euler equations as, 

 

 

 

 

 

 

 

 

Figure 4.2: Schematic diagram of boundary condition requirements for expansion muffler flow 

(one half of the plane-cross-section). cf. (Colonius, Lele 2004)  

                                                            .... (4.21) 

where primitive variable              and h and      are standard conserved variables and 

their transverse flux to the boundary,- P is the Jacobian matrix that transforms between 
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conservative and primitive variables      
   

   
 ,- S is a matrix whose columns are right 

eigenvectors A and   is a vector with components defined as, 
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 (h) Wall boundary conditions: Wall boundary conditions are necessary to impose the 

computational representation of the solid surface in the physical problem. For problem related to 

interior flow like duct flow, turbomachinery noise etc, wall boundary conditions are especially 

very critical. The representation of zero relative motion at solid rigid wall is generally done by 

no-slip condition at wall boundary. Mostly rigid walls are assumed to be isothermal or adiabatic in 

computation. Generally, for the approximation of a set of Euler equations, it is evident that the 

order of the resulting finite difference equation would be higher than the original partial 

differential equations. This higher order governing equation requires an extended set of boundary 

condition and the boundary condition which would work well for partial differential equations 

would not work well in these cases. The boundary conditions like no-slip boundary conditions are 

not sufficient in these cases. However, in this chapter the Navier-Stokes equations have been 

solved which eliminates the difficulty of obtaining specialised boundary condition. 

Near the wall boundary log layer, it has been found that the kinetic energy and dissipation are 

inversely proportional to the distance from the wall. This creates a situation where singular 
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numerical behaviour presents numerical challenges (Tam 2006). Solving the continuity equation at 

wall using one-sided differencing for wall normal derivative of velocity and density would not be 

sufficient as it would create numerical instability and spurious waves in the near wall region. A 

method for development of technique for discretization of pressure gradient in the wall normal 

direction is introduced by Tam and Dong (Dong, Lu 2004) in a way to introduce a ghost row in the 

exterior grid of the body. Other terms in the boundary region are computed after obtaining pressure 

gradient in consistency with the governing equations accompanied with the isothermal/adiabatic 

condition or no-slip boundary conditions. Despite all the efforts, even high order schemes in the 

near wall region have been found to produce spurious waves and create numerical instability in the 

computational domain. A great deal of research effort is needed to produce wall boundary 

conditions with minimum numerical instability.  

4.3 Computational Methodology 

The computational methodology of the simulation constitutes the discretisation of averaged 

Navier-Stokes equations (described in section 2.2.1), the pressure-velocity coupling, and the 

numerical solution of the resultant matrices along with other functionalities. Most of the 

methodologies have been extensively covered in various manuals, text books and other 

publications and therefore only those portions which are relevant to the current work are 

reproduced here for completeness. There are several numerical methods available for 

computational acoustic simulation which includes mainly Finite Element (FE), Finite Difference 

(FD) and Finite Volume (FV) methods. Unfortunately the FE method configurations do not 

guarantee local conservation of dependent variables which is one of the most important factors in 

CFD methods. Therefore, FD and FV methods are more widely used in computational acoustic 

simulations. Most of the part of this work uses new pressure based finite-volume hybrid 



4. Simulation of Acoustic Pulse through Muffler 

79 
 

Karki-PISO compressible solver, and the pressure-velocity coupling of this method is discussed in 

details in section 2.3. Another alternative approach for acoustic simulation uses central 

differencing based finite difference compressible solver and is discussed in details in section 2.2.3. 

Discussions throughout this chapter are mostly made in the context of FV methods and only 

occasional contexts are made to FD methods with specific notes. 

Spatial discretisation: The governing equations of flow (described in section 2.2.1) are discretised 

and applied in an infinitesimal region of space to integrate over a control volume and in time, as 

shown in Eq. (4.23).  

 
 

  
    

 

            
 

             
 

          
 

 

... (4.23) 

The various spatial differencing terms in the final integral form of governing equations are 

convection term, diffusion term and source terms as shown in Eq. (4.23). Since the overall order of 

the differential equation is second order (because of second order diffusion term), the order of the 

discretization should be either equal to or higher than second order. The present spatial 

discretisation features unstructured boundary fitted meshes with collocated grids. A 

non-dissipative second order discretisation in space and time is employed in association with fully 

implicit time-stepping for a good compromise between speed and accuracy. The system of partial 

differential equations is treated in a segregated manner and an explicit coupling between each 

result is performed.  

The convective term in the equation is integrated over the control volume and linearised as 

follows, 
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... (4.24) 

The face field    can be evaluated using various methods like the Upwind scheme, Central 

Scheme, Total Variation diminished (TVD) or Normalised Variable diagram (NVD) scheme. The 

Upwind differencing (UD) determines    from the direction of flow and is bounded at the expense 

of accuracy. 

    
                           

                           
                      … (4.25) 

Central differencing (CD) is second order accurate but is unbounded. The face flux is determined 

as:   

                                                          ... (4.26) 

Where         , as shown in figure 4.3.  

TVD and NVD schemes adjust the discretisation of convection term locally based on indicator 

function that follows the local shape of the solution in a one dimensional analysis. TVD schemes 

measures total variation of the numerical solution as, 

                

 

 

... (4.27) 

which is standard bounded variation when solution is considered to be piecewise constant function. 

A scheme is said to be TVD if the solution satisfies, 

                                                     ... (4.28) 
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Where    is the solution at time    . Some schemes are obtained by blending the central 

differencing (CD) scheme and upwind differencing (UD) scheme. Self-Filtered Central 

differencing (SFCD) scheme employs a blended combination of higher order central differencing 

and upwind differencing with built-in adaptive filter to automatically remove any non-physical 

spurious waves. The blended differencing preserve boundedness with reasonable accuracy as, 

                                                   ... (4.29) 

Where   is blending co-efficient chosen for specific kind of differencing which forms different 

schemes with different filters.  

 

 

 

 

 

 

 

Figure 4.3: Face interpolation in central differencing scheme. 

A NVD method proposed by Jasak et al.(Jasak, Weller et al. 1999) has modified general NVD 

scheme by changing normalised variables in terms of gradients of the dependent variable to make 
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it work for unstructured meshes with no increase in computational cost.  Face flux can be obtained 

as follows, 

      
     

        
                                                ... (4.30a) 

                                           ... (4.30b) 

The blending function   is calculated according to the local value of     and scheme constant  . 

Larger the value of  , larger the blending in the scheme and therefore lower value of blending 

function should be used for higher resolution. Two additional faces are introduced midway 

between face and other points two obtain local information in this method, as shown in Figure 4.3.  

Temporal discretisation: The temporal derivative and integration of the generalised transport 

equations in time are considered next. First term in the Eq. (4.23) is the temporal discretisation 

term. The integral equation (4.23) is discretized using various schemes with different terms having 

different order of accuracies.  However, as long as the individual order of accuracy of terms is 

second order or more, the overall accuracy of the scheme will be second order. Various temporal 

discretization schemes are available with different accuracies, like first-order Euler scheme, 

second-order backward scheme and second-order Crank-Nicholson scheme. Present work uses the 

Crank-Nicholson time scheme and is explained briefly. 

Crank and Nicolson (Crank, Nicolson 1947) in his famous work presented temporally discretised 

numerical solution for approximation of diffusion equation (4.27a) as follows, 
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                                               ... (4.31b) 
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Keeping a time step of    and a spacing of h, the equation (4.27a) can be discretised and 

rearranged in  -scheme as, 

           
    

                   
    

  

 ... (4.32) 

Where      . The eq. (4.27) with    , corresponds to explicit Euler time-marching, while 

    corresponds to fully-implicit Euler time-marching scheme. An expression similar to Eq. 

(4.27) can be obtained by using the integral equation (4.23) instead of diffusion Eq. (4.26a). For 

   , the scheme forms a tri-diagonal system of simultaneous equation which can efficiently be 

solved to obtain   
   . The scheme is unconditionally stable for any value of   

 

 
. One can 

choose to make    and h proportional along with second order accuracy this makes the scheme 

accurate and efficient. The typical problem of stiffness in solution of Navier-Stokes equations with 

higher resolution persists with this scheme too but a compromise between accuracy and 

boundedness can be achieved.  

Boundary conditions: The working fluid in the study is air and ideal gas properties of air are 

assumed. The velocity inlet is a time varying single period sinusoid of certain frequency and its 

amplitude is 0.05 m/s. The velocity outlet is set to a non-reflective boundary condition explained in 

section 4.2(g) to avoid large velocity reflections from the outlet boundary. The pressure outlet is 

set to a constant total atmospheric pressure (Dirichlet boundary). The shear stresses due to viscous 

forces are addressed in the FV based compressible solver calculations and heat transfer at the walls 

of the model is neglected.  
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4.4 Acoustic CFD Simulation 

The commonly used acoustic filters are High-pass filter, Band-stop filter and Low-pass filters. An 

acoustic high-pass filter can be constructed simply by inserting a short side branch into the pipe. 

This acoustic filter blocks the low frequency waves and let pass the high frequency waves. 

High-pass filter reflects back the energy trapped in the side branch back to the source and is not 

radiated out of the side branch. The other kind of filter is band-stop filters, which absorbs standing 

waves (or energy) in a band of frequency during one part of cycle and in the later part of the cycle, 

it returns that energy back to the pipe. The phase relationship is such that all the energy is returned 

back towards the source. Therefore these filters block any sound within a band around the 

resonance frequency, and let pass all other frequencies. The last type of acoustic filter named 

Low-pass filter can be constructed by inserting an expansion chamber in duct, for example, Simple 

Expansion Muffler. The simple expansion chambers allow passing low frequency waves and 

blocking high frequency waves. For numerous uses of simple expansion mufflers (low-pass filter) 

in exhaust silencers and air conditioning HVAC systems, a simple expansion muffler has been 

chosen for simulating a pulsating flow.  

Various parameters have been defined for measurement of specific characteristic of acoustic filters. 

The difference between the acoustic power radiated without any filter (muffler) and power 

radiated with the filter (muffler) is called Insertion loss.  

        
  

  
                                                       ... (4.33) 

Where    is sound radiated without filter and    is sound radiated with filter. The unit of IL is dB 

(decibel).  
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However the performance characteristic which is getting more favoured among researchers is 

Transmission loss because mostly researchers are interested in finding acoustic transmission 

behaviour of the elements. Transmission loss is defined as the difference between the sound power 

incident at the entry of the filter (or muffler) and the sound power transmitted after the filter and is 

represented as follows,  

        
    

    
      

    

    
                                         ... (4.34) 

Where      and      are the amplitudes of incident and transmitted waves in the muffler and are 

proportional to the intensities       and      with the proportionality factor of         . 

Another important parameter in determining muffler performance is Back-pressure. The returned 

static pressure exerted by the muffler towards the inlet through restrictions in the flow is called 

Back pressure. The incident, transmitted, reflected or back pressures are depicted in the Figure 4.4. 

The attenuation in the muffler is achieved by the destructive interference of these incidents, 

transmitted and reflected waves in the expansion section and elsewhere.  

The CFD model has long inlet and outlet (fourteen times the length of expansion section) to ensure 

sufficient amount of data to obtain reasonable results. It has been found by trial and error that to 

obtain a reasonable result, a minimum of fourteen reflections from the inside the expansion section 

has to be included in the time history of the monitoring points near outlet and therefore the length 

of the inlet and outlet pipe has to be fourteen time the length of the expansion section. 
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Figure 4.4: Overview of Simple Expansion Muffler CFD model (top), Sector-mesh for simple 

expansion muffler: Side View (middle) and Front view (bottom). 
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This also avoids the reflections from the walls and expansion sections to contaminate the 

monitoring data at probes Pr1 and Pr2, as shown in Figure 4.4.  A mesh spacing of 4mm or smaller 

is adopted for most of simulations in this chapter. The simulation requires a time step of 5µs which 

equates to the sampling frequency of 200 kHz and Nyquist frequency of 100 kHz. The 

corresponding wavelength to Nyquist frequency is 3.4mm, which is shorter than the mesh spacing 

for this simulation and therefore solver will be unable to resolve frequencies above Nyquist 

frequency and aliasing would not be an issue.  

4.4.1 Simple Expansion Muffler simulation without mean flow 

At first, a simple expansion muffler is considered without any imposed mean flow at the inlet of 

muffler. The flow is considered laminar and no turbulence model is employed. Only a sinusoidal 

pulse is imposed at the inlet of muffler and it is allowed to propagate through the expansion section 

to determine transmission loss. The mesh independence study for a simple expansion muffler is 

already presented in chapter 2. The simulation performed in chapter 2 is further verified in this 

section by employing various spatial and temporal discretization schemes. Thereafter, verification 

of the proposed muffler configuration is done to estimate transmission losses.  

Various spatial discretization schemes explained in section 4.3 are employed and their 

transmission losses are Fourier transformed. The comparative FFT plots for these simulations are 

presented in Figure 4.5. Although a good agreement can be seen in these simulations, this must be 

brought to notice that finite volume acoustic simulation is vulnerable to spatial discretization error 

in higher frequency ranges, as shown in Figure 4.6. The Figure 2.3 (b) is produced in the frequency 

range of interest 0-3000Hz, whereas Figure 4.6 is produced for much higher frequency range. It 

can easily be observed that 4mm mesh provides a very good agreement in the range of 0-3000 Hz, 
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but considerably differs from 1mm and 2mm meshes in the range of 3000-6000Hz. A good 

agreement between 1mm and 2mm shows that discretization errors are very low for these mesh 

spacing.  

Various temporal schemes like first order Euler scheme, second order backward scheme and 

second order Crank Nicholson scheme are employed to investigate the propagation of sinusoidal 

pulse in simple expansion muffler. It has been found that Euler scheme not being stiff captures the 

propagation of sinusoidal pulse in a straight pipe with no difficulty but with an expansion in the 

middle (simple expansion muffler); it struggles to capture the higher frequency on the FFT 

spectrum, as shown in Figure 4.7. Second order backward scheme provides better accuracy in the 

frequency spectrum and successfully captures higher frequency part of the spectrum. 

 

Figure 4.5: Comparison of various spatial discretizations for muffler simulation.  
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Figure 4.6: FFT spectrum of figure 2.3 in an extended frequency range. 

However backward scheme is found to be stiff and could be a problem for the stability of the solver. 

A better compromise seems to be crank Nicholson scheme which provides compromise between 

stiffness and accuracy with different   values and is found to be unconditionally stable for 

     . Comparison of FFT spectrum with various   values is provided in Figure 4.8.  

Geometric configurations: There have been various analytical studies to model transmission loss 

(TL) of simple expansion muffler. Wilson (Wilson 1994) proposed the following relation for 

calculation of transmission loss: 

           
 

 
   

 

 
 

 

                              …. (4.35) 

Where K=2π/λ, and m= (      .  
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Transmission loss for simple expansion mufflers of varying inner and outer diameters can be 

obtained using Eq. (4.35) as shown in figure 4.9. Similarly, transmission loss for varying length of 

expansion section can be obtained as shown in figure 4.10. Simulation is also carried out to match 

the trend in transmission loss for varying expansion diameters and expansion length as shown in 

figure 4.11 and 4.12. The trend in transmission loss of simulated results considerably matches the 

analytical results, which verifies the new proposed compressible solver for acoustic simulations. 

Considering the robustness and effectiveness of the finite difference central schemes, the central 

scheme based finite difference solver of Kurganov and Tadmor (explained in section 2.2.3) is also 

tested for acoustic propagation of sinusoidal pulse.  

 

Figure 4.7: FFT spectrum analysis for different temporal discretization schemes.  
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Figure 4.8: FFT spectrum for crank Nicholson scheme with different   values. 

 

Figure 4.9: Comparison of analytical transmission loss for different expansion diameters.  
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Figure 4.10: Comparison of analytical transmission loss for different expansion lengths. 

The result presented in figure 4.13 clearly shows that despite being robust and effective in 

capturing frequency attenuations, their performance in acoustic propagation is still hardly 

comparable to the proposed finite volume based Karki-PISO solver for low Mach number flow 

simulations. Besides, the finite difference based methods are computationally very expensive for 

its dependence on CFL condition and therefore are ignored in later part of the work.  Further, 

analysis of the simple expansion muffler with 
  

  
    is performed by subjecting the muffler to 

sinusoidal pulses of different frequencies, extending from lower (200Hz to 500Hz) to the higher 

ranges (1000Hz to 3000Hz). 
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Figure 4.11: Comparison of transmission loss in a compressible simulation for different 

expansion chamber diameters.  

 

Figure 4.12: Comparison of transmission loss for different chamber length.  
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Figure 4.13: Comparison of FFT analysis of pressure based Karki-PISO and finite difference 

based Kurganov & Tadmor simulations.  

Figure 4.14 and Figure 4.15 present the transmitted pulse for lower and higher frequency ranges. A 

clear development of higher frequency small perturbations can be seen developing for 500Hz 

frequency in figure 4.14, which further develops in magnitude and oscillation for higher frequency 

ranges, as shown in figure 4.15. Figure 4.16 and figure 4.17 shows the FFT plot of transmission 

loss across the muffler. Apart from the abrupt attenuation for 500Hz frequency, the transmission 

loss spectrum resolves all the relevant scales in the expansion muffler in the desired frequency 

range.  

The frequency analysis of simple expansion muffler shows attenuation due to viscous forces 

present in muffler flow simulation and when flow is assumed to be laminar. The laminar 

assumption might not be true for all practical applications but the simulation provides a very 

interesting set of characteristic of pulse propagation in muffler encompassing effects of important 
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viscous forces in the muffler. There is no model employed for modelling turbulence in the 

computational domain. However, to investigate the effect of turbulence on mean flow, there is a 

requirement of a turbulence model to model length scales of flow and the statistics attached to it. 

Once an effective turbulence model is employed for the simulation, there can be a detailed 

investigation of the effects of turbulence on mean flow and acoustic propagation of sound in that 

flow field has to be considered.  

 

 

Figure 4.14: Transmission pulse through muffler across lower frequency range. 
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Figure 4.15: Transmission pulse through muffler across higher frequency range. 

 

Figure 4.16: Transmission loss in expansion muffler across lower frequency range. 
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Figure 4.17: Transmission loss in expansion muffler across higher frequency range. 

4.4.2 Simulation with Mean Flow 

Simulation of acoustic propagation in a turbulent fluid flow is considered to be computationally 

challenging and complicated in nature. The finite volume methods have certain restrictions in 

terms of higher stiffness of the Navier-Stokes equations in low Mach number flow simulations. 

The other issue involved in simulating acoustic problem is related to the length scales of the flow 

quantities. The smaller length scales involved in these simulations make it further challenging. 

Some of the challenges involved with mean flow acoustic simulations have also been mentioned in 

the section 4.2. In the present work, acoustic simulation of a simple circular pipe is made to first 

check the acoustic propagation capability of the current compressible solver. Later, a 

two-dimensional simulation of simple expansion muffler is carried out to simulate pulse 
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propagation through the muffler. For RANS and LES simulations, standard     turbulence 

model have been used through out this work to simulate acoustic devices.  

4.4.2.1 Simulation of Circular Pipe 

Circular pipe is one of the most common elements in the acoustic devices. A mean flow of 10 m/s is 

obtained in the circular pipe. Once a mean flow profile is achieved with satisfactory statistics, a 

sinusoidal pulse is forced at the inlet of the pipe. The Karki-PISO solver shows robust performance in 

the simulation of the forced pulse propagation through pipe and works very well even with the first 

order temporal discretization. A second order Crank-Nicholson temporal discretization is however 

adopted for better resolution of the acoustic and flow parameters. A much finer mesh of 2mm has to be 

adopted considering the circular edges which could either overstretch or narrowed in the 

computational domain. This mesh seems to resolve the mesh well with the second order limited linear 

spatial discretization. Figure 4.18 displays the contour of acoustic-pressure, which is the difference of 

mean and instantaneous pressure profiles, showing sinusoidal pulse propagation through circular pipe. 

In order to obtain a transmission pulse spectrum and transmission loss spectrum, two probe points near 

the inlet and near the outlet are chosen and pressure data are recorded at those locations. The 

transmission pressure pulse and transmission loss are plotted on the frequency spectrum as shown in 

figure 4.19 (a) and 4.19 (b).  The transmission pressure spectrum shows the presence of pressure pulse 

around the range of 2000-3000 Hz. This can be because of the numerical dispersion of the 3000Hz 

pulse while it transverse through the pipe. 
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Figure 4.18: Contour plot of acoustic-pressure (∆P) showing pulse propagation through the 

circular pipe. 

The transmission loss in the figure 4.19 (b) shows a peak near the low frequency, which is most 

likely because of the resolution of large scale of turbulence by the turbulence model. The high 

peaks at lower frequencies are also congruent with small amplitude pressure signal variations in 

the transmission pulse spectrum of figure 4.19(a). Another small peak is observed at the frequency 

of 500 Hz which could be the result of resonance generated in the open pipe. The transmission loss 

increases linearly thereafter showing that there is transmission loss throughout the higher 

frequency domain. This transmission loss results from the numerical limitation of the RANS 

simulation, as it uses the averaging of flow variables inside the computational domain. Any 
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realistic pressure attenuation in the higher frequency domain would be superimposed by these 

numerical transmission losses arising from the RANS averaging of flow fields.  

4.4.2.2 Simulation of Simple Expansion Muffler 

Simple expansion muffler is somewhat different in design and is a bit more complicated in 

comparison to the simple duct or pipe. The expansion chamber in the middle of the design 

provides the flow separation which leads to pressure and velocity fluctuations in the chamber. The 

destructive interference of muffler acoustics makes muffler an important sound- attenuation 

device. Simple expansion muffler has been studied in the section 4.4.1 for simulations without any 

mean flow, considering flow to be linear. Now, a mean flow RANS simulation is conducted using 

standard     turbulence model to capture length scales of flow and acoustics. A 

two-dimensional simulation is conducted for a 10 m/s mean flow using Karki-PISO compressible 

solver with 5 degree mesh of 4mm mesh spacing. The same simulation is then performed using a 

3D mesh with same 4mm mesh spacing. 
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Figure 4.19: (a) Transmission pulse spectrum for pulse propagation in circular pipe. (b) 

Transmission loss spectrum for pulse propagation in circular pipe. 

(a) 

(b) 
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The large inlet and outlet make the 3D simulation computationally very expensive but the three 

dimensional simulation provides a good validation for Karki-PISO compressible solver and is 

generally able to capture more scales and avoid singularity in the solution domain which could 

arise from the 5 degree mesh.  

 

 

 

 

 

Figure 4.20: Velocity Contour (a) 5
0
sector RANS of muffler. (b) 3D RANS of muffler. 

(a) 

(b) 
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Figure 4.21: Acoustic-pressure contours showing sinusoidal pulse propagation through the 

muffler, entering into expansion chamber and creating back-pressure in the inlet pipe (top), 

travelling inside the chamber (middle) and hitting the rear tailpipe end (bottom). 

A mean flow profile is first obtained for both 2D and 3D meshes and the velocity profile for both 

cases are shown in figure 4.20 (a) and (b). The mean velocity profile clearly shows the change in 

Mach number across the length and width of the expansion muffler. The Mach number start to 

increase near the tailpipe end of the muffler and a great amount of turbulent kinetic energy 

exchange takes place there.  
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On top of the mean flow profile, a pure sinusoidal velocity pulse of 3200 Hz is imposed at the inlet 

of the muffler to simulate the acoustic propagation of pulse through the muffler.  

 

 

 

Figure 4.22: Sinusoidal pulse reflects back from the tailpipe end of the expansion chamber, (a) 

Part of the pulse reflect back and part of it transmit through tailpipe, (b) reflected pulse reaches to 

the front end of the expansion, where it again get reflected. (c) After several reflections from inside 

the expansion, the contour shows the back-pressure and transmitted pulse. 

The pulse propagation can be seen inside the expansion chamber in figure 4.21, where the contour 

plot of difference between the instantaneous pressure and mean pressure is shown. This  

(a) 

(b) 

(c) 
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Figure 4.23: (a) Transmission pressure pulse for pulse propagation in expansion muffler. (b) 

Transmission loss spectrum for pulse propagation in expansion muffler. 

(a) 

(b) 



4. Simulation of Acoustic Pulse through Muffler 

106 
 

acoustic-pressure (ΔP) contour shows in figure 4.21 that the pulse enters the chamber and creates a 

back pressure in the inlet section of the muffler. The pulse then travels across the length of muffler 

to hit the tailpipe end of the muffler, where it loses its turbulent kinetic energy to the wall. Figure 

4.22 shows the pulse reflection at the tailpipe end, where part of pulse is transmit through the 

tailpipe.   

The transmitted pressure waves from the expansion chamber are recorded at a point just after the 

expansion. The second probe is kept near the inlet to record the pressure waves. These recorded 

pressure data are Fourier transformed to obtain transmission pressure pulse and transmission loss 

spectrum as shown in figure 4.23 (a) and 4.23 (b). The transmission loss spectrum shows 

reasonable attenuation at lower frequency range. The transmission pressure plot also captures the 

large peaks in the spectrum which corresponds to the lower frequency signals. If a comparison of 

transmission pressure pulse is made with the laminar case in figure 4.15, it is evident that the high 

frequency component of the pulse is either lost with the mean flow interactions or gets averaged by 

the numerical method. So, although numerical method captures all the attenuation peaks in the 

simulation, there seems to be a trend of increasing attenuation for higher frequency range, which 

could be either due to discretization error in the numerical method or the dissipation and 

turbulence modelling error. (Discussed in section 4.2) Despite these slight discrepancies due to 

numerical averaging in RANS methods, the method provides reasonable agreement in the lower 

frequency range and also predicts the attenuation frequency at correct level. The averaging in 

RANS methods method further restrict the scope of the work and is found to be limited to lower 

frequency analysis.  
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4.5 Closure 

This chapter has further validated low Mach compressible Karki-PISO solver for acoustic 

propagation. Chapter also outlines various computational issues related to simulation of acoustic 

propagation. A laminar compressible solver with no flow and a RANS turbulent compressible 

solver with mean flow, both provide encouraging results for pulse propagation through pipe and 

simple expansion muffler. The disappearance of some high acoustic frequencies from the 

computational domain in RANS simulation is also noted to limit the applicability of RANS in 

acoustic simulations. The detailed study of various spatial and temporal discretization points to 

some compromise between stability and accuracy by introducing blended discretization methods. 

Simulation of pulses with different frequencies has also provided some interesting results which 

would be further discussed in subsequent chapters.  
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Chapter 5 

Numerical and Experimental Investigation of Pulse 

through Muffler 

5.1 Introduction 

This chapter introduces experimental and numerical analysis of acoustic propagation in simple 

expansion muffler in different flow circumstances. The analysis is sub-divided into two parts, one 

with no considerable mean flow and another with different amounts of mean flows. The chapter 

also validates the Karki-PISO compressible solver introduced in Chapter 2 for no-flow condition 

with various random frequency pulses generated in experiment by a signal generator as input 

signals. A detailed analysis of the recorded pulse is performed, which includes the FFT analysis.  

The importance of mufflers in various HVAC and acoustic devices has already been discussed. 

Mufflers work on the principle of acoustic cancellation of sound waves which reduces the noise 

radiated by the device to the surroundings. Expansion muffler performance can be evaluated based 

on insertion loss, transmission loss and back pressure for its optimal design. In general, an exhaust 

muffler should satisfy basic design requirements such as adequate insertion/transmission loss, low 

back pressure, modest size and durability. Although insertion loss is the true measure of the 

muffler performance, as it accounts for losses in radiated power due to insertion of the muffler, 

transmission loss is favoured by researchers as they are interested in finding acoustic transmission 

behaviour of the elements rather than absolute attenuation. Most conventional mufflers are round 
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or oval with an inlet and outlet pipe attached and some mufflers also contain partitions (or baffles) 

or an extended inlet/outlet to help reduce noise.  

Measurements are required to supplement the analysis with known parameters and necessary data 

from the experimental setup. Measurement of transmission loss is not very difficult and one has to 

only record sound at two discrete points across the muffler element under investigation. Even 

though measurements for sound propagation in a muffler without mean flow is very 

straight-forward, the introduction of mean flow introduces some complications. There is a need for 

an accurate measurement of dissipation of acoustic energy emerging from the tail pipe end in the 

shear layer of mean flow and finally the measurement of accurate transmission loss of muffler as 

required for design specifications. The experimental setup requires alteration for the flow to be 

incorporated into the experiment, as shown in Figure 5.1. However, this setup makes it difficult to 

obtain a pure sine pulse and therefore a random pulse of mixed frequencies is considered in this 

thesis. Different measurement techniques are available for acoustic measurement and only 

relevant measurement techniques for measuring acoustic parameters are listed here; details of 

these techniques can be found elsewhere. (Munjal 1987) 

The Two-microphone method is one of the most widely used experimental methods so far. The 

method uses two microphones located at fixed positions to record signals. A random noise 

generator creates the required signal which is passed through a filter so as to retain only the desired 

frequency range and which then is power amplified before being fed to an acoustic driver, which 

creates an acoustic pressure field on a moving medium in the transmission tube. This input signal 

is picked up by microphone and preamplifier amplifies the signal before feeding it to the FFT 

analyser (See Figure 5.1) (Selamet, Radavich 1997). This method, however, requires an anechoic 

termination for reflections not to interfere with the transmitted waves. The method also needs to 
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feed a continuous signal for attenuation study. The reflection co-efficient of the termination can 

also be calculated according to this theory. Subsequently, it is found that it is very difficult to 

obtain a perfectly non-reflecting anechoic termination for acoustic propagation study. Besides, the 

investigation of propagation of sound in this chapter is aimed at pulse propagation rather than 

continuous sinusoidal wave. For these reasons, the two-microphone method has not been used in 

this experimental study and rather a somewhat different setup is constructed for this pulse 

propagation study without an anechoic termination. The setup uses long inlet and outlet pipes to 

record sufficient acoustic data before reflection reaches the microphone. The long inlet and outlet 

pipes ensure that most of the reflections from the expansion chamber can be recorded without 

interference from the reflections generated at the outlet and inlet. If a smaller outlet pipe were 

used, it is quite possible that all the reflections from expansion chamber might not be recorded 

before reflections from the outlet reaches the recording point and therefore unrealistic attenuation 

might be registered. In case of anechoic termination, it is possible that the low amplitude 

reflections from the anechoic termination might add to the recorded data and show no attenuation 

at all where there is indeed some real attenuation. 

In the present work, a detailed analysis of frequency responses in a simple expansion muffler for 

random pulses at various generator frequencies is made in the presence or absence of mean flow. 

In the case of acoustic simulation without mean flow, numerical validations are also made using a 

hybrid Karki-PISO compressible solver. Experimental pulses are imposed at the inlet of the 

muffler and their responses are recorded at designated locations in the muffler for a detailed 

spectral analysis. The same experimental frequency pulse generated by the signal generator is then 

fed to the computational inlet of a simple expansion muffler to obtain the simulated response from 

the compressible Karki-PISO solver. The recorded experimental and computational responses for 
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the simple expansion muffler are then compared on the frequency spectrum to analyse the 

attenuation across the frequency range. The study is conducted on a simple expansion muffler with 

      ratio of 4 with long inlet and outlet pipes attached to it. The experimental study in the 

presence of mean flow provides a set of benchmark acoustic response data for acoustic simulation 

without any anechoic termination in the simple expansion muffler. Conclusions are finally drawn 

based on the observation and obtained results. 

 

 

 

 

 

  

 

 

 

Figure 5.1: Schematic diagram of experimental setup. 

 

5.2 Equipment  

Various equipment, devices and software used in this experimental investigation can be listed as 

follows- 

Microphone 

Amplifier 
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Muffler 

Signal 

Analyser 
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Power 

Amplifier 
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Loudspeake
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Flow 
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Microphone (Brűel & Kjær, Type 4134) 

Microphone Amplifier (Brűel & Kjær, Type  2609) 

Loudspeaker Amplifier (SONY TA-FE330R) 

Signal Generator (RS-Components Ltd, Thandar TG503, 5MHz Pulse generator) 

Loudspeaker (8 Ὠ) 

Digital computer with Labview software as interface for signal analysis 

MATLAB software for FFT Analysis. 

 

5.3 Experimental Setup and procedure 

An experimental setup for measuring the transmission loss and insertion loss for a continuous 

pulse with anechoic termination has previously been done by Selamet et al. (Selamet, Radavich 

1997).The experimental setup, however, has to be slightly altered in this case because of the 

involvement of the mean flow in another part of the investigation. Instead of a linear acoustic 

source, a vertical acoustic source is adopted in this study to avoid interference with mean flow (See 

loudspeaker in figure 5.1). The experimental configuration constitutes long upstream and 

downstream pipes to avoid contamination of data at the upstream and downstream probes. 

Anechoic termination has not been used as it is found that a perfectly anechoic termination is hard 

to achieve and it is also found that the small amount of energy transmitted from the expansion in 

consecutive reflection from the inside of expansion chamber is crucial for obtaining the 

transmission loss spectrum and these small amplitude reflections from the expansion chamber 

could be hard to distinguish from anechoic reflections from the outlet. Besides, as a final 

comparison has to be made with the numerical solution, which most certainly would not have the 

equivalent anechoic numerical termination at its outlet, the current experimental setup seems more 
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reasonable. The length of the expansion chamber is 100cm and the diameter of the inlet and outlet 

pipe is about 12 cm.  

The current experimental setup constitutes extended upstream and downstream pipes, with a 

simple expansion muffler placed between them, as shown in Figure 5.1. Two different 

measurements were conducted for ‘pipe without filter (expansion chamber)’ and ‘pipe with filter 

(expansion chamber)’, with same random pulse generated at a given generator frequency. It was 

ensured throughout the experiment that the same shape pulse was used as input to both the ‘pipe 

without filter’ and ‘pipe with filter’. This could also be seen as obtaining an insertion loss rather 

than transmission loss, considering the nature of measurement. However, the use of long inlet and 

outlet pipe was adopted with proper care taken in ensuring the same input pulse be imposed in the 

simple expansion muffler which was imposed in the pipe. This ensures that both insertion and 

transmission loss could be considered the same for this study.  

 A signal generator (Thandar TG503, 5MHz Pulse generator) has been used to generate a random 

sinusoidal pulse which is amplified by power amplifier (SONY TA-FE330R) and passed through 

the loudspeaker, which creates acoustic pressure field on moving medium. The input signal after 

getting deflected from the muffler element is transmitted through the downstream pipes, where the 

microphone picks the signal and the preamplifier amplifies the signal before feeding it to the data 

acquisition system. Same measurement is conducted without expansion and data is collected for 

the same. MATLAB software is then employed to Fast Fourier Transform the acoustic data using 

equation 4.34 to obtain transmission loss spectrum for the muffler element.  

For numerical simulation, the responses are recorded for the setup constituting ‘pipe without filter’ 

and responses are converted into pressure signals, which is then fed to the computational solver for 
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simple expansion muffler geometry to obtain pressure data for two probe locations near the inlet 

and after the expansion chamber. The pressure data is then Fourier transformed to obtain 

transmission loss spectrum and comparisons are then made with the experimental results to 

analyse the attenuation due to simple expansion muffler. 

5.4 Result and Discussion  

Experiments are conducted for simple expansion muffler with various random pulses generated at 

different generator frequencies by the signal generator as shown in figure 5.2. These signals are 

imposed at the inlet with or without any mean flow in the experiment.  

 

Figure 5.2: Comparison of input pressure pulses generated by signal generator at different 

frequencies ranging from 100Hz to 1000Hz.  
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5.4.1 Experimental study of muffler without mean flow 

For every pulse generated at various generator frequencies, the input pressure pulse and 

transmitted pressure pulse are recorded by the microphone and are then Fourier transformed to 

analyse the attenuation due to simple expansion muffler. The transmitted pulse plot after the 

expansion and the transmission loss spectrum of the signal attenuation for pulses generated at 

generator frequencies in the range of 100Hz to 1000Hz are shown in figure 5.3 to figure 5.7. Since 

all these pulses have mixed range of frequency as it can be seen in figure 5.2, the attenuation in the 

transmission loss spectrum can be seen to be more in the higher frequency range and considerably 

less in the lower frequency range. Higher frequency perturbations for transmission pulse at 

generator frequency of 1000 Hz can be seen in the figure 5.7 (b). These high frequency 

perturbations are attenuated inside the expansion muffler by the destructive interference and a 

higher attenuation near 1000Hz frequency is evident from the figure 5.7 (a). It is important to note 

a low attenuation in the lower frequency ranges in the experimental study of pulse propagation 

without any mean flow. 
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Figure 5.3: (a) Transmission loss spectrum at 100 Hz generator frequency. (b) Transmitted pulse 

plot at 100 Hz generator frequency.   

(a) 

(b) 
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Figure 5.4: (a) Transmission loss spectrum at 200 Hz generator frequency. (b) Transmitted pulse 

plot at 200 Hz generator frequency.   

(a) 

(b) 
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Figure 5.5: (a) Transmission loss spectrum at 400 Hz generator frequency. (b) Transmitted pulse 

plot at 400 Hz generator frequency.   

(a) 

(b) 
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Figure 5.6: (a) Transmission loss spectrum at 500 Hz generator frequency. (b) Transmitted pulse 

plot at 500 Hz generator frequency.   

(a) 

(b) 
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Figure 5.7: (a) Transmission loss spectrum at 1000 Hz generator frequency. (b) Transmitted pulse 

plot at 1000 Hz generator frequency.   

(a) 

(b) 
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5.4.2 Numerical validation of experiment with no flow 

The pressure based Karki-PISO compressible solver with laminar flow considerations is used in 

this section for experimental validation of the solver. Unlike the previous pulse propagation 

simulations in chapter 2 and 4, the input pulse in current simulation is not a pure pulse but a mix of 

various low and high frequency waves. These pulses can also be considered as distorted pulse of a 

mix of various random frequencies. The pressure based compressible PISO solver seems to 

struggle in terms of stability and the Navier-stokes equations ultimately diverge. The divergence 

can only be controlled by using blended discretization for space and time which would result in 

loss of some of high frequency waves in the domain. The Karki-PISO solver on the other hand 

provides the required stability by introducing pressure gradient term in the pressure correction 

equation, as shown in equation 2.28. This solver provides stability by easing the stiffness in the 

eigen vector of the system of Navier-Stokes equations and enhance the stability of the solver to 

deal with random pressure fluctuation imposed at the inlet of the expansion muffler.  

Mesh independence: Mesh independence study is conducted to ensure minimum spatial 

discretization error for simulation of mixed-frequency inlet pulse for different mesh. Figure 5.8 

shows a very good agreement among the simulations done for the different mesh sizes ranging 

from a coarse mesh of 4mm to a fine mesh of 1mm. The agreement matches completely in the 

frequency range of interest 0-3000Hz and the spatial discretization error seems to go away sharply 

for much finer meshes such as those with size 1mm and 2mm for higher frequency ranges, as 

shown in figure 5.9. 
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Figure 5.8: FFT analysis to show mesh independence of muffler simulation. 

 

Figure 5.9: Broad spectrum of FFT analysis to show mesh independence of muffler simulation. 
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Numerical validation: The experimental data collected in section 5.4.1 has been used to validate 

the Karki-PISO compressible solver with the same set of random mix frequency inputs (shown in 

figure 5.2) at the inlet.  The acoustic measurements in the experiments are done in terms of voltage, 

mV and these measurements have to be converted into pressure signals, in Pascals. The scaling 

factor is devised to convert the measurement into comparable units, so that predicted and measured 

results can be compared. The comparison of the transmission loss spectrum and transmitted 

pressure pulse for different generator frequencies is shown in Figure 5.10 to Figure 5.14. The 

transmission loss spectrum predicted by Karki-PISO compressible solver clearly captures all of 

the attenuation peaks in the frequency domain. The transmitted pressure pulse predicted by the 

simulation also seems to agree very well with the experimental pulse. As a transient finite volume 

compressible flow solver, the prediction capability of the solver for a random mix of frequencies 

as input is very impressive. The stability of the solver is found to be very good throughout the 

pulse propagation and all the high frequency pressure pulses seems to be captured by the solver. 

The prediction demonstrates the ability of the Kaki-PISO solver to handle the low Mach number 

acoustic flow simulation and capture all the available high frequency components in the solution.  

Despite using the fully second order temporal and spatial dicretization, there seems to be slight 

difference in the prediction frequency. It is due to the numerical dissipation in the solution due to 

instantaneous random changes in the inlet boundary condition which results in stiffness of the 

system of finite volume Navier-Stokes equations. The Karki-PISO compressible solver clearly 

handles the challenge in solution stiffness better and provides better predictability in pulse 

propagation than conventional finite volume subsonic flow solvers. 
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Figure 5.10: (a) Comparison of Transmission loss spectrum at 100 Hz generator frequency. (b) 

Comparison of Transmitted pulse plot at 100 Hz generator frequency.    

(a) 

(b) 
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Figure 

5.11: (a) Comparison of Transmission loss spectrum at 200 Hz generator frequency. (b) 

Comparison of Transmitted pulse plot at 200 Hz generator frequency.    

(a) 

(b) 
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Figure 5.12: (a) Comparison of Transmission loss spectrum at 400 Hz generator frequency. (b) 

Comparison of Transmitted pulse plot at 400 Hz generator frequency.    

(a) 

(b) 
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Figure 5.13: (a) Comparison of Transmission loss spectrum at 500 Hz generator frequency. (b) 

Comparison of Transmitted pulse plot at 500 Hz generator frequency.    

(a) 

(b) 
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Figure 5.14: (a) Comparison of Transmission loss spectrum at 1000 Hz generator frequency. (b) 

Comparison of Transmitted pulse plot at 1000 Hz generator frequency.    

(a) 

(b) 



5. Numerical and Experimental Investigation of Pulse through Muffler 

129 
 

5.4.3 Experimental study of muffler with Mean flow 

The last two sections have dealt with the simulation of pulse propagation in simple expansion 

muffler without any mean flow inside the muffler. However, in most of the practical situations, the 

mean flow is necessarily available in the simple expansion muffler during pulse propagation and 

this makes it very important to study the phenomenon of pulse propagation through the muffler 

with considerable amount of flow present inside the muffler. In the context of experimental 

analysis of mean flow effect on the transmission loss, Byrne et al. (Byrne, Skeen et al. 2006) used 

an inlet pipe of 16mm diameter with expansion cross-section of 50 mm x 50 mm and a length of 

100 mm. These diameters are very small in comparison to the present work. Incidentally, Byrne et 

al did not find much difference in attenuation in the muffler with and without flow for a range of 

low velocities. Apart from the scale of the geometry, the expansion section used in their 

experiment is also rectangular and length of expansion is smaller than the present work.  

A set of experiments have been conducted for a simple expansion muffler with different amount of 

mean flow inside the chamber. The same random mix of pressure pulses, used in the last two 

sections, is imposed over the mean flow at the inlet of the simple expansion muffler. The acoustic 

data is collected after the expansion chamber of the simple expansion muffler and also separately 

for a simple pipe without expansion in the presence of imposed mean flow. The recorded data is 

calibrated and Fourier transformed to obtain transmission loss spectrum. Figure 5.15 shows the 

comparison of transmission loss spectrum for imposed pulse at 500 Hz generator frequency with 

10 m/s flow velocity and without any flow. The comparison shows a consistent level of attenuation 

throughout the frequency range. However it is important to note that the attenuation at very lower 

range of spectrum is more pronounced that the higher range of spectrum. In other words, the 
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attenuation in the lower frequency ranges for the no-flow condition is less pronounced and rather a 

higher attenuation 

 

Figure 5.15: Comparison of FFT of muffler without any flow and muffler at 10 m/s flow for 

generator frequency of 500Hz. 

in that range is observed  due to the consistent attenuation throughout the spectrum after the 

introduction of mean flow. This is an interesting result which would be discussed in the context of 

mean flow simulation of simple expansion muffler in later chapters.  

Further, the mean flow analysis is extended for the other generator frequencies and different mean 

flow velocities. Comparisons are made in the presence of three different mean flow velocities of 

10 m/s, 12.5 m/s and 15 m/s for different generator frequencies ranging from 200 Hz to 1000Hz. 

Figure 5.16 and Figure 5.17 shows the comparison for 10 m/s and 15 m/s flow in various range of 

generator frequencies (200Hz to 1000Hz). It is apparent that there is a slightly  
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Figure 5.16: Comparison of FFT at 10m/s and 15m/s at generator frequency of (a) 200Hz and (b) 

400 Hz. 

(a) 

(b) 
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Figure 5.17: Comparison of FFT at 10m/s and 15m/s at generator frequency of (a) 500 Hz and (b) 

1000 Hz.  

(a) 

(b) 
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Figure 5.18: (a) Comparison of FFT at 10m/s, 12.5 m/s and 15m/s for generator frequency of 500 

Hz. 

higher attenuation for the lower mean flow (10 m/s) than the higher mean flow (15 m/s). It has also 

been found that there is considerably lower attenuation at zero mean flow (evident from the figures 

5.16-5.18), in contrast to the higher attenuations at lower mean flow of 10 m/s. Therefore, it can be 

inferred that there must be an optimum mean flow velocity for a given generator frequency which 

would provide the maximum attenuation in the expansion muffler. However, the study is not 

focused on finding an optimum flow speed for attenuation and therefore it will not be explored 

further in this regard. A comparison of transmission loss spectrum for various flow velocities 

ranging from 10 m/s to 15 m/s at 500 Hz generator frequency is shown in figure 5.18. The overall 

spectrum supports the argument of having higher attenuation for a considerable lower mean flow 

value. These mean flow experimental acoustic data for simple expansion muffler provides 

benchmark transmission loss information for muffler without anechoic termination.  
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5.5 Closure 

An experimental analysis was conducted for a simple expansion muffler both, without mean flow 

and with considerable mean flow condition. The muffler analysis without any mean flow showed 

lower attenuation in the transmission loss spectrum at the lower range of frequency. The 

experimental data was used thereafter to validate successfully the Karki-PISO compressible low 

Mach number flow solver. The solver captured the attenuation peaks in the transmission spectrum 

accurately with acceptable shift in frequency value. Finally, the experimental analysis of muffler 

for various mean flow velocities provided a set of benchmark results which showed higher 

attenuation in transmission loss for considerable mean flow in the muffler. This higher attenuation 

was due to the interaction of turbulence with mean flow acoustic. The analysis also provided a 

comparison for muffler attenuation with various generator pulses under both, with and without 

considerable mean flow. It was found that after a certain value of mean flow velocity, the trend in 

attenuation at higher frequency range of the transmission-loss spectrum was reducing. 
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Chapter 6 

Synthetic Boundary Condition for LES 

6.1 Introduction 

Apart from the direct approaches to inspect instantaneous numerical fields, there are other 

approaches which use statistical or time averaged mean flow quantity like ρ, U, P and T. These 

averaged RANS simulations are found to be satisfactory in various applications and reaches 

universal asymptotic behaviour irrespective of initial boundary condition (George, Davidson 

2004). However, LES and DNS approaches are found to require a turbulence representation at the 

inlet for an accurate simulation. Although an upstream flow condition can ideally provide a good 

inflow data, the computational boundary cannot, however, be extended upstream indefinitely. The 

inlet condition should also be consistent with the turbulence model chosen for simulation. In some 

cases, random fluctuations are superimposed on uniform inlet velocity to achieve turbulent 

behaviour at the inlet (Rai, Moin 1993). It has also been found that the various flow types have 

different requirement of inflow condition. For instance, in simulating free shear flow the random 

perturbation could amplify the disturbances exponentially and inflow condition is believed to be of 

less importance, whereas in the wall-bounded flow, these random fluctuating inflows are found to 

be very important.  

The generation of random velocity profile for inflow data to match actual turbulent flow field is a 

difficult and computationally challenging process. It is therefore more preferred to use a lower 

order description provided by different related turbulent quantities then to use enormous amount of 

information to describe turbulence. A variety of turbulence methods has been developed for 
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accurate presentation of turbulence in inflow data (Karweit, Blanc‐Benon et al. 1991, Lee, Lele et 

al. 1992, Bachera, Bailly et al. 1994, Lund, Wu et al. 1998, Billson, Eriksson et al. 2003, Ewert 

2005, Jarrin, Benhamadouche et al. 2006, Fathali, Klein et al. 2008). A mixed synthetic boundary 

condition has been proposed in this chapter and discussion regarding the evolution of this method 

is also presented.  

6.2 Overview of Turbulence Characteristics 

6.2.1 Two-point Correlation 

Spatial correlation: It has been found that velocities at different spatial and/or temporal positions 

can be highly correlated. As explained in Chapter 3, turbulent fluctuations are basically 

characterised by velocity correlations. A two-point velocity (space) correlation tensor has been 

defined by considering correlation of two points x and x + r in flow, as: 

            
        

                                                                   .... (6.1) 

where x is the location and vector r is the displacement vector between two spaces in the flow. Rij 

would be called statistically steady if it is not the function of time, t and it will be called statistically 

homogeneous if it is not a function of x. The turbulent kinetic energy can be obtained from Rij as 

follows: 

       
 

 
                                                          .... (6.2) 

An integral length scale, L can be defined in this context as the integral of normalised space 

correlation tensor with respect to k over all displacements, as follows, 
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.... (6.3) 

where 3/16 is the scaling factor. This integral length scale is a statistical quantity which provides a 

convenient measure of the extent of the region within which velocity components are appreciably 

correlated.  

Temporal correlation: Again, in Chapter 3, a two point time autocorrelation tensor was defined by 

considering correlation of velocities at one point on two different times as: 

             
        

                                                                     .... (6.4) 

Here a time averaging of the fluctuating quantities is done at the same point in space but at 

different times. An integral time scale, τ can be defined in this context by integrating normalised 

Rij over all possible values of   as follows:
 

        
           

       
   

 

 

 

.... (6.5) 

The integral time scale denotes the memory time of turbulence. It is often believed to be related to 

the integral length scale and velocity fluctuations.  

In simulating flow problems, not only the statistical, integral or time averaging of flow parameters 

provide important information but also the mean of the second moment of flow parameters 

provides important information about the flow characteristics. The second moment defines the 

root mean square (RMS) as follows: 

                                                                   …. (6.6) 

RMS velocity can also be seen as the standard deviation of the velocity fluctuations which is equal 

to the square root of the variance.  
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6.2.2 Probability Density Functions 

Probability density functions (PDFs) are a vital statistical tool for detailed analysis and finer 

description of the turbulence phenomenon. More information can be extracted for a certain 

parameter to judge its biasness, spread or distribution in space, time and various other domains, if 

these tools are applied properly. For instance a probability density function fv can be used to 

compute mean velocity    for a velocity signal v as follows: 

                
 

  

 

…. (6.7) 

The probability function has to be chosen and normalised such that 

          
 

  

   

…. (6.8) 

PDFs can provide useful representation of the turbulent fluctuations. If the velocity fluctuation is 

skewed towards the negative or positive side of the mean value, then the PDF plot will also show 

the skewness toward the right direction. On the other hand, PDF can also provide information 

about intermittent large fluctuations in the rather flat fluctuation profile. However, instead of 

looking for PDFs for all fluctuations, there are some terms defined for checking the degree of 

symmetry of PDF, known as skewness. It is defined as, 

                          
 

  

 

.... (6.9) 

Flatness provides information about any very large fluctuation in a rather flat fluctuation profile. It 

is defined as, 
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.... (6.10) 

For its applicability, PDFs are an important statistical and analysis tool for turbulent flow 

simulation. 

6.2.3 Velocity Spectrum Function 

When we discussed in Chapter 3 the convenience of using frequency or wavenumber space over 

time domain, we also introduced the energy spectrum to obtain kinetic energy. A hot-wire 

measurement of time trace velocity components   
     is shown for the homogeneous turbulence 

field in Figure 6.2. The PDF of the fluctuation in these velocity components can provide 

information about the skewness and flatness of these fluctuations. 

 

Figure 6.1: A Probability Density Function. 
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However it is also important to understand the velocity and energy spectrum generated by these 

fluctuations. A Fourier transform of fluctuations can provide information about the structure and 

size of different eddies through the equation 

  
                  

  

  

 

.... (6.11) 

where k and x are vector form of wavenumber and space co-ordinates respectively.       is the 

calculated amplitude of the prescribed Fourier coefficient. In order to obtain a symmetric 

autocorrelation function    , an averaged square value of fluctuation velocity’s Fourier transforms 

is performed as  

  
                              

  

  

 

.... (6.12) 

The autocorrelation tensor     is already discussed in Chapter 3, whereas,    (k) is the velocity 

spectrum tensor and is also the Fourier transform of the velocity correlation as expressed here. 

       
 

   
               

 

  

 

.... (6.13) 

The inverse transform of this can be obtained as 

         
      

                                          
  

  

 

.... (6.14) 
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Figure 6.2: Trace of velocity components in a hot-wire measurement (Davidson 2004). 

At this point, it is important to revisit the energy spectral function, E(k) (discussed in chapter 3) in 

the context of Eq. (5.13). The energy spectrum function vector E(k) can be expressed in terms of 

autocorrelation tensor         as (Bradshaw, Ferriss et al. 1964): 

        
 

 
         

           
  

  

 

 i=1, 2, 3.                        .... (6.15) 

And from Eq. (5.15) and (5.13), it is easy to infer the relation between energy spectra function and 

velocity spectrum function as follows, 
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  i=1, 2, 3.                      .... (6.16) 

Eq. (6.15) and (6.16) are referred to as the Fourier transform pair for velocity and energy 

spectrum functions. 

6.2.4 Energy Spectrum Function 

A detailed discussion about the physical process of generation of turbulent energy spectrum is 

made in section 3.3. An expression according to Kolmogorov’s law for the energy spectrum was 

presented as                 . An isotropic behaviour has been adopted for convenience in 

generation of energy spectrum function, which provides a simplification in generating various 

components for the velocity correlation tensor       , which can finally be expressed as a unique 

energy spectrum function      (see Eq. (6.16)). From Eq. (3.8), kinetic energy expression can 

now be inferred as 

  
 

 
  

             
 

 

 

.... (6.17) 

Further assuming isotropic conditions, the velocity spectrum        can be assumed to be only 

dependent upon wavenumber vector k and must have the form, 

                                                       .... (6.18) 

A spectral incompressibility condition can be imposed to formulate the expression 

                                                           .... (6.19) 

Eq. (6.18) and (6.19), along with Eq. (6.17) and due application of Gauss’s theorem, can provide 

the expression for velocity spectrum function as 
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.... (6.20) 

which leads to the energy spectrum function with application of Eq. (6.16) as 

 

         
    

    
   

  
 

  
       

 

  

 

          i=1, 2, 3.                      .... (6.21) 

There have been various implementations of energy spectrum in the past and a few of the 

important ones are discussed here.  

Kolmogorov’s 5/3rd energy spectrum: Kolmogorov’s energy spectrum is one of the earlier works 

done in the area of energy spectrum function which depicted the close to ideal picture of 

turbulence small scales at high Reynolds number. The details of this model and its various scales 

were explained in the sections 3.3 and 3.5 of Chapter 3. The final energy spectrum is given by Eq. 

(3.1) and its related scales are listed in Eq. (3.7). 

Gaussian energy spectrum: A Gaussian probability distribution of velocity correlation is assumed 

for the fluctuation in this case. The Gaussian spectrum simplifies the model and provides a bell 

shape distribution as shown in the case of PDFs (Ghanem 1999). The velocity correlation leads to 

the energy spectrum function E(k) as 

                

   
       

     

 
  

.... (6.22) 

where Δ is proportional to the inverse of the Gaussian distribution spread. However, it has been 

experimentally found that the real turbulence distribution is far from Gaussian in nature. 
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Pope’s energy spectrum: Pope (Pope 2000) in his work introduced an energy spectrum which 

provides an accurate representation of turbulence spectra and is found to be very close to the real 

turbulence spectrum. The spectrum is a mixed model which is derived from both Von-Karman and 

Kolmogorov spectra and is depicted as 

        
         

  

             
 

 
 
   

                
          

.... (6.23) 

where   ,   ,  ,   are constants and   is a constant with most likely value of 2. L and η are the 

characteristic length scale for large eddies and Kolmogorov eddies respectively.  

Von-Karman energy spectrum: This spectrum is so far the most realistic analytical representation 

of energy spectrum E(k).The spectrum was primarily aimed at smaller and intermediate wave 

number ranges but is found to work well for even higher wavenumbers, as there is an exponential 

term added in the spectrum (Hinze 1975). The exponential term in the equation ensures that higher 

spectral moments converge smoothly in the spectrum. Being one of the most accurate models, it 

has been modified on various occasions (Goedecke, Ostashev et al. 2004, Bauer, Zeibig 2006)and 

the latest modified Von-Karman spectrum is as follows: 

       

    
 

  

      
 

               
                

.... (6.24) 

                                                
                                                              .... (6.25) 

The integration of energy spectrum over all wavenumbers provides the coefficient    and is found 

by the expression, 
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where the gamma function,  

          
       

 

 

 

.... (6.26) 

A comparative study by Ostashev et al. clearly suggests the superiority of Von-Karman spectrum 

over others, as shown in Figure 6.3 (Ostashev, Brähler et al. 1998). 

 

6.3 Recycling Method for Inflow Condition in LES and DNS 

The recycling method is one of the most accurate techniques to generate an inflow condition for 

LES and DNS, where a precursor simulation generates a sufficiently accurate boundary condition 

for main simulation. There are various ways to generate the library for precursor simulation, for 

example using periodic boxes of turbulence or cyclic channel flow calculation using periodic 

boundary condition, as shown in Figure 6.4. It is also important to note that precursor simulation 

need not necessarily be at the same Reynolds number and is only supposed to provide a realistic 

scale of turbulence at the inlet.  

Breuer and Rodi (Breuer, Rodi 2007)in their precursor method of a periodic channel duct, 

produced inlet data for a 180 degree bend periodic duct (shown in Figure 6.5). On the other hand, 

Spalart (Spalart 1988) performed a DNS simulation of a spatially developing boundary layer using 

zero-gradient boundary by using an additional source term in the Navier-Stokes equation with 

periodic boundary in a streamwise direction.  
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Figure 6.3: Comparison of three energy spectrum function (Ostashev, Brähler et al. 1998). 

 

He further modified his work by adding a fringe region in the end of domain to enforce decreased 

boundary-layer thickness, so that the periodic boundary can be reintroduced at the inlet (Spalart, 

Watmuff 1993). 

Cyclic method: For computing fully developed turbulent pipe flow, it is required that the flow is 

invariant in the streamwise direction and generally this requires a pipe length of 40 times the 

diameter. However, the cyclic method can produce invariance with a very short section of pipe and 

has been extensively been used in LES and DNS study of wall bounded flow (Fureby, Gosman et 

al. 1997, Lamballais, Lesieur et al. 1997). 
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Figure 6.5: Geometry of the Breuer and Rodi’s channel with flow in x-direction. 

 

 

Mapping method: Precursor calculation is performed at the samples downstream of the inlet and 

the sample is then mapped back at the inlet (Tabor, Baba-Ahmadi et al. 2004, de Villiers 2006). 

Chung and Sung (Chung, Sung 1997) in a comparative study of various inflow conditions along 

with their spatiotemporal inflow condition introduced the spatial and temporal database of 

cut-plane which sweeps across the length at single time-step. They used Taylor’s frozen field 

hypothesis during sweeping across the cutting planes. Despite the varying flow velocity across 

channel length, this method produced a reasonable inflow condition. 

Although recycling methods are very accurate as an inflow for LES or DNS, these are 

computationally expensive and are not applicable to most of the flow simulation of practical 
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Figure 6.4: (a) Cyclic inflow generation (b) Mapped or rescaled inflow generation. 

importance. In simulation of acoustic propagation in muffler, for example, in case of longer inlet 

and outlet makes the computation too expensive and the recycling of the acoustic information from 

the downstream to upstream flow go against the purpose of simulation to evaluate acoustic 

attenuation. Synthetic boundary condition is found to be a good alternative for generation of 

inflow condition for LES or DNS. 

Periodic b.c. Periodic b.c. 

Main Simulation 

Inflow data 

(a) (b) 
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6.4 Synthetic Boundary Condition for LES and DNS 

It is widely accepted that a realistic inlet boundary conditions are crucial for accuracy of a 

computational simulation. RANS approaches only require the mean profile for velocity and 

turbulence variable for an accurate solution but it is not as straight forward for the LES or DNS.  

The inflow data for LES or DNS require turbulent unsteady inflow conditions. To obtain the 

turbulent unsteady inflow, there has been a lot of research performed and techniques devised 

recently.  

6.4.1 Random Perturbation Method 

This method uses random pattern over inlet boundary in such a way that the pattern matches the 

turbulence statistics. It is one of the simplest approaches to generating synthetic inflow condition. 

A Gaussian distribution of zero mean and unit variance is used to generate random fluctuations and 

is imposed upon the uniform mean inlet velocity as follows: 

     
      

                                                .... (6.27) 

where    is the instantaneous velocity,   
  is the uniform mean velocity,   

  is the square root of 

turbulence intensity,    is the random number between 0 and 1, and    is the parameter which 

ascertains the amplitude of fluctuation based on the distance of the point from the wall. Clearly,   
  

in this case can be represented in terms of kinetic energy k as 

  
   

 

 
                                                   .... (6.28) 

However it is important to note that there are no significant two-point spatial correlations between 

velocity components and there is no two-point temporal correlation either.  
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An effort has been made by Lund et al. (Lund, Wu et al. 1998) to bring some correlation between 

the velocity components by constructing a signal matching the target Reynolds stress tensor using 

Cholesky decomposition     of the Reynolds stress tensor    . The turbulent fluctuation are then 

similarly imposed over mean values, as follows, 

     
                                                          .... (6.29) 

where     is given by 

     

      

                
  

                               
     

 

            .... (6.30) 

Although Lund’s method provides correlation between the velocity components, it does not really 

provide any spatial or temporal correlation. This results in uniform spreading of energy across all 

wavenumbers and therefore contains excess energy at small scale, contrary to the physical 

turbulence phenomenon.  

6.4.2 Streak Transient Growth Method 

A typical recycling technique usually takes many flow-through times to start a transition to a real 

turbulence regime. This is believed to be because of the perturbations produced from the numerical 

simulation errors after many flow-through times (Schoppa, Hussain 2000, de Villiers 2006). This 

method is computationally very expensive and sometimes is not useful in propagation problems. 

On the other hand, algebraic methods like random perturbation methods do not seem to generate 

turbulence like structure and correlations. A simplistic approach has been adopted by Schoppa et 

al. (Schoppa, Hussain 2000) in their work to produce turbulence structures with proper statistical 

characteristics of turbulence. This approach has already been described in details in section 3.4.2.  
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As was explained earlier in section 3.4.2, near-wall streaks are unstable to sinusoidal perturbations 

in a channel flow solution and a sinusoidal perturbation can initiate an instability which in turn 

produces vortices and shear layer, which end up kick-starting the near-wall cycle. Therefore it is 

possible that if these streaks are produced artificially then they would interact with mean flow to 

cause instabilities which in turn would end up kick starting a near-wall turbulence cycle. In this 

case, a laminar parabolic profile is used as the initial inflow profile. This parabolic profile (  
 ) is 

then superimposed with near-wall parallel streak of slow and fast moving fluids using Eq. (3.5) as 

            
          

              
  

  
                    

                                            .... (6.31) 

This mean flow profile (  ) is then perturbed to give wave character which would produce 

streamwise vortices using the following equation: 

                                    

                                              .... (6.32) 

where constant    and   are chosen to produce sparse streak spacing, constant    is the linear 

perturbation amplitude and term    
  is the wall normal circulation of streak. This method has 

been used in channel flow simulation with considerable success (de Villiers 2006). 

6.4.3 Digital Filter based Methods 

Despite providing some correlation and generating turbulence like structure, the streak transient 

growth method takes a lot of time to achieve steady state and is obviously not universally 

applicable, considering its wall-bounded genesis. The correlation produced has also not been 
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found to be very strong in space and time. Klein et al.(Klein, Sadiki et al. 2003) and Schluter et al. 

(Schluter, Pitsch et al. 2004) in their work inferred that random inflow methods usually loses its 

turbulence character immediately downstream and lacks the large scale structures and therefore 

provides the same result as the laminar inlet profiles do. An approach to produce artificial velocity 

data to remedy those problems is adopted by Klein et al. (Klein, Sadiki et al. 2003) which 

reproduces the first and second order one point statistics using given autocorrelation function. The 

random fluctuation fields (Gaussian shaped) in all three dimensions are generated with zero mean 

(   ) and unit variance (   ) and are filtered. It was assumed that if    is the series of random 

data then a linear non-recursive digital filter can be defined as, 

          

 

    

 

.... (6.33) 

where bn are the filter co-efficient. The three dimensional filter is then obtained with convolution 

of these one dimensional filters as, 

                                                           .... (6.34) 

An autocorrelation function is then obtained by transforming the correlated data from an amplitude 

tensor related to Reynolds stress tensor. A special shape for     is therefore considered and it has, 

for a given time, the form: 

          
                 

            
    

 

      

        
 

 

    

       
   

   
  

 .... (6.35) 
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where the desired length scale is       and filter co-efficient is   
        

   

   
 . After the 

filtering operation, a spatially correlated data is obtained for velocity as 

                          
            

  

      

  

      

  

      

 

.... (6.36) 

This is then superimposed on average velocity field to obtain target velocity profile and Reynolds 

stress profile as 

                                                                .... (6.37) 

This velocity profile is then fed into the first layer of the inflow plane. Random fields are generated 

using Eq. (6.36) and (6.37), which are again fed to inflow before shifting the previous layer to the 

next layer. There inflow data is generated in these three layers to produce space and time correlated 

data. The coefficient     is obtained by Eq.(6.35). Klein et al. tested this method for direct 

simulation of a turbulent jet (Klein, Sadiki et al. 2003). Veloudis et al. (Veloudis, Yang et al. 2007) 

used digital filter for a repeating periodic channel flow simulation. In the investigation, they 

estimated length scale based on streamwise direction and found that improved results could be 

obtained with varying length scale in the filtering process. In contrast, di Mare et al. (di Mare, 

Klein et al. 2006) attempted to achieve filter coefficients    by inverting Eq. (6.35). The 

coefficient for the two point correlation tensor is extracted and decomposed as 

                                                           .... (6.38) 

where     are the eigen vectors of the correlation tensor and    are the corresponding eigen values. 

The coefficients     are considered as characteristic eddies of physical space and these methods 
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are usually referred to as Proper Orthogonal Decomposition (POD). Although these methods are 

deployed for large eddy simulation of boundary layer flow, they are found to be difficult to 

implement in coupled RANS-LES solvers. Ewert (Ewert 2005, Ewert, Emunds 2005) also 

proposed a method inspired from digital filter using space correlation, where a solenoidal 

(divergence free) velocity field was considered for a computational aeroacoustics (CAA) noise 

identification problem. The argument was made that the non-solenoidal velocity field would give 

rise to spurious wave which would contaminate the flow solution (Ewert, Emunds 2005). A stream 

function is generated by random field filtering (Eq. 6.39) which is later correlated in lateral and 

longitudinal direction for true representation of turbulence:  

                        
 

  

 

.... (6.39) 

where G has the same form as filter coefficient   . The divergence free guaranteed solenoidal field 

can be achieved in tems of stream function as 

  
  

  

  
    

   
  

  
                                        .... (6.40) 

 Recently a modified form of this method named the Random Particle-mesh (RPM) method was 

also introduced by Ewert (Ewert 2008) where a temporal correlation is also introduced in the 

inflow condition of CAA simulation. Ewert’s method is found to be very effective in noise 

identification problems in CAA.  

Recently, Fathali et al. (Fathali, Klein et al. 2008, Fathali, Meyers et al. 2008, Fathali, Klein et al. 

2009) have further extended the work of Klein et al.(Klein, Sadiki et al. 2003) by introducing 

velocity field as the linear combination of individual uncorrelated filtered random fields. These 
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related linear combinations provide a multi-correlation among different velocity components, 

which produces different integral scales, cross-integral length scales, and correct Reynolds stress 

values. Velocity components as a linear combination of different uncorrelated random field     can 

be given as 

                       

                       

                                                         .... (6.41) 

Clearly, the presence of f13 and other similar terms in expression of u and w (and u) introduces a 

cross-correlation between these components. These velocity fields are related to Reynolds stress 

via autocorrelation function as 

         
          

          
     

         
          

          
     

         
          

          
     

                  

                  

                                                           .... (6.42) 

The presence of cross integral length scale and corresponding Reynolds stress scales provides a 

better estimate of local length scale and local Reynolds stress. Although this method is slightly 
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more expensive than Klein et al.’s original digital filter, the accuracy obtained is found to be worth 

the extra computational cost in various applications.  

6.4.4 Spectral Methods 

Spectral methods are one of the most extensively used and easy to implement methods for inflow 

in LES and DNS simulation. These methods provide the most sought for temporal and spatial 

correlation in turbulence characteristic at the inlet. Fourier synthesis techniques are among the 

most important attempts in generating spectral method for inflow turbulence generation. Since a 

Fourier series can be expressed in terms of any periodic function, therefore an estimated mean 

velocity profile in x-direction can be decomposed as 

       
      

 
                            

         
                .. (6.43) 

where    is the maximum flow velocity and the shape of the velocity profile is govern by the 

Fourier series. The coefficients of the series are replaced with the stochastic random variables to 

generate a new series for original mean value as 

      
  

 
                                           .... (6.44) 

where coefficients are obtained from Uhlenbeck-Ornstein process with original mean value, μ 

along with specified variance, σ. Therefore the new Fourier series with coefficients related as 

                produces a spatially coherent velocity field. A fluctuation field around the 

mean can be obtained by subtracting Eq. (6.44) and (6.43) as follows: 
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.... (6.55) 

where   
         , and is a stochastic variable with zero mean and finite variance. This method 

was first attempted to generate synthetic velocity by Kraichnan (Kraichnan 1969) for a 

three-dimensional homogeneous and isotropic flow (Eq. 6.11). For three-dimensional space, 

velocity spectrum function Eq. (6.11) can be modified to include the random phase angle    to 

obtain an approximation of the modified velocity spectrum as 

                    

 

   

 

.... (6.56) 

Rogallo (Rogallo 1981) used this method to map velocity field for study of turbulence decay. 

Amplitude of the velocity field in this case was obtained from the simple consideration of energy 

spectrum function (         ). Bachera et al.(Bachera, Bailly et al. 1994) have also 

established a spatially correlated turbulent field with no actual temporal correlation. A time series 

of independent spatially correlated velocity fields is filtered in a frequency domain with a 

dominant frequency at       . For that purpose, an inverse Fourier transform of function       

(Gaussian distribution centred at   ) is calculated and defined as 

       
 

       

    
 

                                            .... (6.57) 

Besides this method being computationally expensive, the convectional effect in typical shear flow 

is not found to have been accounted for in this method.  

Karweit et al. (Karweit, Blanc‐Benon et al. 1991) have provided a distinct representation of 

Kraichnan’s formulation and expressed wavenumber modes in vectorial form as 
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.... (6.57) 

where      is the direction of each mode number. Eq. (6.57) can be simplified and expressed for 

the real part of Eq. (6.57) in terms of a finite sum of modes as 

                        

 

   

 

.... (6.58) 

where    are amplitudes,    are phase angles and    are the direction of the r
th

 Fourier mode.    

is obtained from the energy spectrum for that particular wavenumber range    as 

                                                           .... (6.59) 

The vector    is a random selection of vectors in a spherical wave space of radius     . From the 

Fourier expansion Eq. (6.44) it is clear that all modes in the frequency domain have to satisfy 

following restriction for incompressibility consideration: 

                                                          .... (6.60) 

So it can be inferred that the vector    and the direction of the turbulent fluctuation mode    are 

perpendicular to each other. This method has been particularly successful in noise propagation 

problems. However the temporal correlation has found to be missing in this implementation, 

which rules out a very crucial implementation, hence it was later modified for temporal correlation 

to be successfully implemented in problems involving noise identification.  

Bailly et. al. (Bailly, Lafon et al. 1995, Bailly, Juve 1999) attempted to alleviate the problem 

encountered by Bachera et al. in relation to convectional effect in typical shear flows. The sum of 
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the finite Fourier series in their implementation consist of a local convection velocity term    to 

obtain an isotropic velocity spectrum as 

                                    

 

   

 

.... (6.61) 

where    is the angular frequency of r
th

 mode and is a random Gaussian distribution in probability 

density function. This is expressed as 

      
 

      
     

        

    
                                  .... (6.62) 

 

where            , is function of wavenumber and K is usually obtained from RANS 

simulation. Considering the isotropic assumption, the Von-Karman spectrum explained in section 

6.2.4 is considered in this method.  

       

    
 

  

      
 

               
                

where    is the wavenumber at which maximum spectral energy is found in the energy spectrum 

curve. This value of    is found by considering the length scale L as the integral equation as 

  
 

  
        

 

 
 

    

 

 

 

   

.... (6.63) 

This integral equation provides the constant    on calculating maxima as, 

   
  

  

  

 
                                                       .... (6.64) 
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Although this method is computationally cost effective and memory efficient, these methods still 

overestimate the noise prediction. This method has been used in noise prediction of both external 

flow like the circular jet (Bailly, Lafon et al. 1995) and internal flow like the diaphragm duct 

(Bailly, Lafon et al. 1996). However this method, like many other methods, also lacks time 

correlation which reduces the value of this method for noise prediction calculations.  

Meanwhile, Lee et al. (Lee, Lele et al. 1992) proposed a spectral method with spatial correlation 

using Taylor’s hypothesis in low Mach number compressible flow. This spectral method was later 

modified by rescaling the fluctuation magnitude as in Eq. (6.29) by Le et al. (Le, Moin et al. 1997) 

to match the desired Reynolds stress tensor. The modified method is then used to generate inflow 

condition in simulation of backward facing step problem. However, not only this method lacks the 

temporal correlation but also it is computationally complex in compared to Lee et al. (Lee, Lele et 

al. 1992), considering the inverse Fourier transform in the near-wall region is complex. Blom et al. 

(Blom, Verhaar et al. 2001) and then Snellen et al. (Snellen, Lier et al. 2003) proposed a spectral 

method based on Karweit et al. (Karweit, Blanc‐Benon et al. 1991) which uses the velocity 

spectrum 

             
             

 

   

 

The method uses the so-called moving axis spectrum       to take into consideration the 

convection effect on turbulence by mean flow. The term      , however, is similar to the Bailly 

et al.’s (Bailly, Lafon et al. 1995) probability density function (Eq. (5.62)) and only differs in 

implementation. The method filters the energy spectrum with       to obtain velocity spectrum 

amplitude    as 
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                             .... (6.65) 

where       employs the Von Karman spectrum explained in Eq. (6.24). Despite a different 

implementation of convection of turbulence, this method is still no better than Bailly et al.’s 

approach. Smirnov et al. (Smirnov, Shi et al. 2001) modified Karweit et al.’s formulation based on 

local time and length scale to generate a non-homogeneous, anisotropic turbulence by explicit 

diagonalisation of the Reynolds stress    . The modifield velocity signal is expressed as 

         
 

 
                   

 

   

                    

   
 

 
            

 

 
   

       

.... (6.66) 

The energy spectrum used in this method has the form 

       
  

  
                                              .... (6.67) 

The method can be used for anisotropic turbulence length scale and has been used as the inflow 

condition for LES. 

In order to provide an effective scheme with temporal correlation, Billson et al. (Billson, Eriksson 

et al. 2003) put forward a method which synthesizes isotropic fluctuation at each time step m using 

an asymmetric filter as follows: 
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  .... (6.67) 

where    
      generates velocity field for time step m using Karweit et al.’s (Karweit, 

Blanc‐Benon et al. 1991) method expressed in Eq. (6.58). The value of a and b are kept such that 

the RMS value of         and    
      still remains the same but at the same time provides the 

correlation between instances in time. The time scale   in this case is obtained from the RANS 

simulation by calculating the average kinetic energy as follows: 

   
  

 
                                                   .... (6.68) 

Davidson and Billson (Davidson 2007b, Davidson, Billson 2004, Davidson, Billson 2006) have 

further attempted to simulate a hybrid LES-RANS with the same time correlation, but with 

different set of boundary methods for near wall space. The method employs Karweit et al.’s 

spectral equation (6.58) with fluctuations generated in all three dimensions as follows: 

                        

 

   

 

It is important to remember that the wavenumber    is a random selection of vector about a sphere 

of radius equal to      as shown in Figure 6.6. The expression satisfies the criteria of Eq. (5.60) to 

ensure that the direction of wavenumber    and direction of fluctuation mode    remain 

orthogonal (perpendicular to each other).    is again obtained from the energy spectrum for a 

particular wavenumber range    using expression 
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The wavenumber vector    can then be defined in its components with different random selection 

of angles as 

               

               

                                                                .... (6.69) 

The unit vector    which lies in a plane normal to the waveumber vector    can be obtained as its 

components as 

                               

                               

                                                                           .... (6.70) 

The direction of vector    is randomly chosen in the plane through   , as shown in Figure 6.7. The 

associated probability distribution of random variables can be listed as in Table 6.1. 

                   

                   

                      

                  

 

Table 6.1: Probability distribution of random variables. 
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They also used Von Karman energy spectrum (E(x)) discussed in section 6.2.4 and expressed in 

Eq. (6.24) and (6.25) as, 

       

    
 

  

      
 

               
                

                                                
                             

where    is estimated to be around 1.453 (Section 6.2.4). The parameter    (wavenumber with 

maximum spectral energy) is obtained from Eq. (6.64). Figure 6.7 explains the geometry of the r
th 

mode vector    and wavenumber vector   . 

 

 

 

 

 

 

 

 

Figure 6.6: Probability distribution of wavenumber vector   . 
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Figure 6.7: Wavenumber vector    and velocity unit vector    for r
th

 mode. 

 

 

 

 

 

 

 

  

 

 

 

Figure 6.8: Von Karman spectrum showing minimum and maximum wavenumber.  
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The energy spectrum       is subdivided into N equidistant points with wavenumbers ranging 

from the minimum   to the maximum   . Selection of these two parameters is done considering 

the energy spectrum shown in Figure 6.8 as follows: 

    
  

  
                     

  

 
 

                                          .... (6.71a) 

where Δ is the grid spacing and can be obtained in all three dimensions as 

   
  

  
                                                                   .... (6.71b) 

The value of    can be obtained by knowing the value of L, as    values are already known to be 

1.453. The length scale L can be found from RANS simulation as proportional to the inlet 

boundary layer thickness δ. In literature it is found that L is 10% of δ (Davidson, Billson 2006, 

Davidson 2007a, Davidson, Dahlstrom 2007). 

                                                          .... (6.72) 

The value of p in Eq. (6.71a) is found to be suitable as 2 in most applications.   

Besides these, there are some other recently commendable attempts made in the direction of 

synthetic boundary inflow generation. Jarrin et al. (Jarrin, Benhamadouche et al. 2006, Jarrin, 

Prosser et al. 2009) proposed a unique method for inflow generation technique based on 

consideration of turbulence as superimposition of coherent eddies. Coherent structures are 

generated by a predefined shape function encompassing the spatial and temporal nature of 

turbulence. A new eddy is generated at the inlet with compact support in the domain [-rx, rx] x [-ry, 

ry] x [-rz, rz]. Each eddy is convected by the mean velocity into the inlet and once the old eddy is 
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out of the domain, a new eddy is generated and convected through the inlet. The turbulent field can 

be written as the finite sum of N eddies as, 

      
 

 
      

         

 

   

 

.... (6.73) 

where f is a simple tent function and σis the length scale for eddies. The velocity signal is then 

rescaled with Lund’s transformation described in Eq. (6.29) and Eq. (6.30) using Cholesky 

decomposition     of the Reynolds stress tensor    . This technique has also been employed in 

various applications of interior and exterior flows for LES simulation (Poletto, Revell et al. 2011, 

Uribe, Jarrin et al. 2010). Despite its anisotropic characteristic, its application being only found in 

a few areas. Nevertheless, the method seems to provide good prediction of first and second order 

statistics and two point correlations for noise prediction applications. 

Kornev et al. (Kornev, Kroger et al. 2007, Kornev, Hassel 2007, Kornev, Kroger et al. 2008) have 

proposed another inhomogeneous turbulence generation method which considers turbulence as 

random spot distributed in an unknown form evaluated by a prescribed autocorrelation function. 

The fluctuating velocity components at the n
th 

instant of time can be given as the finite sum of 

velocities at each spot as 

                                    

 

   

 

   

 

... (6.74) 

where      is the centre of the i
th 

spot,    is the random number and    is the length scale of i
th

 spot. 

The function                 is unknown and has to be determined with the help of a prescribed 

autocorrelation function given by 



6. Synthetic Boundary Condition for LES 

168 
 

           
                                        

                   
 

                                    …. (6.75) 

The velocity signal is then rescaled with Lund’s transformation described in Eq. (6.29) and Eq. 

(6.30) using Cholesky decomposition     of the autocorrelation function    . Eq. (6.74) provides 

the two point correlation and temporal correlation whereas Eq. (6.75) provides the one point 

cross-correlation. These velocity fluctuations are then fed to the inflow of LES simulation. The 

significance of this formulation of this method is that it is inhomogeneous, exact and anisotropic 

and provides a more realistic approach to turbulence generation.   

 

6.5 Mixed Spectral Inflow Boundary Condition for LES and DNS 

A mixed synthetic inflow boundary condition can be obtained by selecting appropriate correlation 

function for space and time and also by selecting a true analytical representation of turbulence. 

Unlike the most recent methods such as those proposed by Jarrin et al. (Jarrin, Benhamadouche et 

al. 2006), Fathali et al. (Fathali, Klein et al. 2008) and Kornev et al. (Kornev, Kroger et al. 2007) , 

Davidson et. al.’s (Davidson, Billson 2006) method lacks the cross correlation term in the 

synthesis. A mixed spectral method is proposed to generate a turbulent velocity field with a 

designated temporal correlation, two points spatial correlation and one point cross correlation. The 

method is described as follows: 

1) A turbulent velocity field is generated with N random Fourier modes with the help of Eq. 

(6.58) as 
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 where    and    are obtained from Eq. (6.69) and Eq. (6.70). The amplitude of fluctuation 

    is obtained from Eq. (6.59). Angles   ,   ,    and    are obtained by random probabi

 lity distributions (Table 6.1). 

2) A Von-Karman spectrum is chosen as given in Eq. (6.24) and is subdivided into N 

equidistant points with wavenumer ranging from   to   , given by Eq. (6.70). 

3) The energy spectrum is then summed up with the help of Eq. (6.58) to obtain the 

three-dimensional velocity fluctuations.  

4) At this point, a cross correlation term is introduced by employing Lund’s transformation on 

the velocity components by constructing a signal matching the target Reynolds stress 

tensor using Cholesky decomposition     of the Reynolds stress tensor    with the help of 

the equation 

                                                       …. (6.76)               

 where     is again given by a normalised form of Eq. (6.30) as: 

    
 

    

 

  
 

      

               
  

                               
     

 

 

  
 

 

5) A temporal correlation of Billson et al. (Billson, Eriksson et al. 2003) is then employed to 

obtain synthesised turbulent fluctuation: 

                                

       
   

 
                        

     …. (6.77) 

This is the final turbulent velocity fluctuation field which is superimposed on the mean inflow 

field. 
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Steps (1) and (2) are continuously repeated on various spectrum stages of generation of Fourier 

modes. Eq. (6.76) provides an extra cross-correlation term which has been found to be very crucial 

in getting better results in a few recent works (Jarrin, Benhamadouche et al. 2006, Fathali, Klein et 

al. 2008, Kornev, Kroger et al. 2007, Mesbah 2006). The method is thereforesomewhat more 

expensive than Davidson et al.’s (Davidson, Billson 2006) method. Synthetic boundary conditions 

have been generated for various geometries in this study using this method. A typical synthetic 

boundary inflow condition profile generated by this technique for plane channel flow is shown 

below in Figure 6.9. 

 

 

Figure 6.9: Synthetic boundary inflow profile generated by proposed mixed synthetic boundary 

condition. 
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6.6 Closure 

A mixed synthetic boundary condition for inflow turbulence was introduced in this chapter. The 

evolution of the mixed synthetic boundary generation method was presented and a comparison 

made with other methods. An overview of turbulence characteristics was picked up from Chapter 3 

and further extended with introduction of velocity and energy spectrum. After explaining the 

recycling method for inflow condition and other synthetic boundary condition methods in LES and 

DNS, the mixed synthetic spectral inflow boundary condition was introduced. This is further 

validated for channel flow simulation in Chapter 7 and for a simple expansion muffler in Chapter 

8.  
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Chapter 7 

LES Simulation of Pulsating Acoustic Flow through 

Channel or Duct 

7.1 Introduction 

In the last few decades, computational simulations of turbulent flow problems have become an 

important research tools in understanding the physics of turbulence. The last two decades in 

particular have seen the rise of Large Eddy Simulations (LES) in calculation of traditionally 

difficult turbulent flow cases such as unsteady and re-circulating flows and for Computational 

Aero-acoustic applications. The accuracy of the LES simulation of turbulent flows comes at an 

expense of considerable computation cost as compared to the conventional RANS method. RANS 

solves ensemble averaged mean flow with an appropriate model used to describe the effect of 

fluctuations around this mean, whereas LES solves filtered average of large scale motion of flow 

and models small scale of flow. Despite that, LES is still much less expensive than Direct 

Numerical Simulation (DNS), which needs to resolve the full range of scales available in the flow 

and therefore requires more computational resources. As LES occupies a middle ground between 

DNS and RANS, it has received growing interest among researchers for turbulent engineering 

applications over the last decade and is becoming an important tool for industrial applications with 

increasing computational advances in recent years. 

For its geometrical simplicity, a fully developed channel flow has been extensively studied by 

various authors to clearly understand the complex turbulence phenomenon near the wall. Different 
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incompressible and compressible flow LES solvers have been employed to simulate plane 

channel. For the incompressible flow cases, the pioneer work is done by Deardorff (Deardorff 

1970) and Schumann (Schumann 1975) in simulating plane channel flow. Detailed analysis with 

accurate wall resolution and turbulence statistics are produced later by Moin and Kim (Moin, Kim 

1982) and Kim et al. (Kim, Moin et al. 1987) respectively. Different approaches have also been 

used for incompressible simulation of channel flow for different configurations (Jarrin, 

Benhamadouche et al. 2006, Bauer, Zeibig 2006, Bauer, Zeibig 2006, Fureby, Gosman et al. 1997, 

Breuer, Rodi 2007, de Villiers 2006, Davidson 2007a, Ducros, Comte et al. 1996). Recently, some 

high resolution methods have also been attempted to investigate the source of error and scope of 

improvement in the incompressible solver for channel flow (Laizet, Lamballais 2009). In the 

compressible flow case, the compressibility effect comes into the effect in modelling SGS stress. 

Since SGS models were originally derived for incompressible solvers, an additional physical 

mechanism needs to be considered particularly in the implementation of the energy equation. 

Various attempts have been made to address the issues concerning SGS modelling of compressible 

flow (Vreman 1995, Ducros, Comte et al. 1996, Erlebacher, Hussaini et al. 1992, Fureby 1996) . 

Channel flow has been studied by various authors in different ranges of flow speed, which include 

subsonic to moderate and supersonic flow  (Lenormand, Sagaut et al. 2000, Moser, Kim et al. 

1999, Suh, Frankel et al. 2006, Pantano, Pullin et al. 2008). Recently an argument has also been 

made in favour of universality of compressible flow for wall bounded flows (Brun, Haberkorn 

2008). High resolution methods have also been implemented to obtain solvers with better accuracy 

in compressible flow simulations (Suh, Frankel et al. 2006, Nagarajan, Lele et al. 2003, Knight, 

Zhou et al. 1998, Rizzetta, Visbal et al. 2003).  Although there have not been many investigations 

in compressible pipe flow simulation, there has been some interest in this area among some 
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researchers (Rudman, Blackburn 1999, Eggels, Unger et al. 1994, Eggels, Westerweel et al. 1993, 

Xu, Lee et al. 2005) . 

Various sub-grid-scale models have been derived for different applications in LES simulation. The 

most popular of them is Smagorinsky’s SGS model (Smagorinsky 1963), which has been used by 

Moin and Kim (Moin, Kim 1982) for wall bounded channel flow. Knight and Okong (Knight, 

Zhou et al. 1998) also employed the Smagorinsky model using unstructured finite volume grid for 

compressible channel flow. However, these studies have also identified the shortcomings of the 

Smagorinsky model; e.g., it’s over dissipative characteristic; limiting behaviour for wall bounded 

flow; unaccounted backscattering of energy from small scale to large scale; and unaccounted 

compressibility effects. Some of these shortcomings have been addressed with enhanced 

perturbation at the inlet for synthetic boundary conditions. A more recent introduction is the 

dynamic sub-grid scale model by Germano et al (Germano, Piomelli et al. 1991), which is 

implemented by Piomelli (Piomelli 1993) for simulating high Reynolds number flow. An 

improved near wall performance has been achieved with one equation sub-grid scale model in 

simulating compressible wall bounded flow (Fureby, Gosman et al. 1997, Fureby 1996). Mixed 

sub-grid scale models have been employed by Lenormand et al (Lenormand, Sagaut et al. 2000) to 

simulate both subsonic and supersonic compressible channel flow. A detailed comparative study 

has also been made by Fureby et al (Fureby, Tabor et al. 1997) to investigate the sensitivity of 

different SGS models to simulation results. In a high order compact finite difference setup, a low 

Mach number LES channel flow simulation is performed by Rizzetta et al (Rizzetta, Visbal et al. 

2003) using both Smagorinsky and dynamic SGS models with low-pass operators to obtain 

agreeable results.  
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Out of various LES simulation setup for channel flow simulation, LES technique with no-slip 

boundary condition without a wall model is found to be most successful. However, much finer 

grids are required in the wall normal direction for capturing an acceptable fraction of near wall 

energy for simulation at practical Reynolds numbers. This further increases the computational cost 

of LES simulation. There have been attempts to provide the approximate boundary condition near 

the wall to avoid increased computational cost. The first of such pioneer works, where wall-normal 

derivatives of the wall-parallel velocity was constrained to obtain logarithmic profile was carried 

out by Deardorff (Deardorff 1970) and Schumann (Schumann 1975). Some hybrid RANS-LES 

methods have also been used where simplified wall laws are imposed with the help of blending 

functions to diminish the effect of eddy-viscosity near the wall. (Davidson, Dahlstrom 2007, 

Jarrin, Prosser et al. 2009) Another approach known as detached-eddy simulation does not adopt 

any explicit blending function but a transport equation for turbulent kinetic energy close to the wall 

is solved and blended with the LES in resolved flow (Nikitin, Nicoud et al. 2000). However the 

approximation of the near-wall boundary condition introduces numerical error in the 

computational domain which requires to be thoroughly considered and kept under control. Various 

analyses have been done in regard to various errors like discretization error, aliasing error, and 

dissipation error and their effect on the accuracy of the simulation has been discussed in recent 

investigations (Geurts, Vreman et al. 1993, Ghosal 1996, Glendening, Tracy 2001, Chow, Moin 

2003, Blaisdell, Spyropoulos 1996) . 

Pulsating flow has been experimentally and numerically studied by various authors to gain insight 

into the sound propagation and attenuation phenomenon in pipe and duct. Preliminary 

investigations in pulsating channel flow have been focused on measurement of wall shear stress 

and near wall region parameters (Ronneberger, Ahrens 1977, Mao, Hanratty 1986, Binder, Tardu 
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et al. 1985, Tardu, Binder et al. 1994). Tardu et al.(Tardu, Binder et al. 1994) forced a range of 

frequencies and amplitudes (0.1-0.7 times the mean velocity) in the pulsating flow and found that 

the fluctuations generated by pressure gradient in the near wall region do not propagate beyond a 

certain distance    (dimensionless stokes length) from the wall. Similar observations are also made 

by Scotti and Piomelli (Scotti, Piomelli 2001), who adopted LES for pulsating channel flow 

simulation and validated previous experimental finding in the near-wall region. Scotti and 

Piomelli (Scotti, Piomelli 2002) also investigated various RANS turbulence models for turbulence 

to estimate their effectiveness for pulsating channel flow. Recently, Comte et al. (Comte, 

Haberkorn et al. 2006) also adopted the LES method to simulate pulsating channel flow to 

investigate the origin of the critical Strouhal number range for near-wall shear impedance lower 

than the laminar regime. More recently, a spectral dynamics study of pulsating pipe flow is made 

by Manna and Vacca (Manna, Vacca 2008) to investigate the effect of pulsation on near wall 

coherent structures for a fixed frequency with ratio of amplitude of oscillation and mean flow in 

the range of 1 to 11. However most of the pulsating channel and pipe flow studies have been 

mainly focused on near wall region and propagation of sound in the central region still needs 

further investigations.  

This chapter presents the LES of Channel flow and validates the simulation with the DNS results 

of Kim et al. (Kim, Moin et al. 1987).  The research also investigates various LES sub-grid models 

for channel flow using a cyclic boundary condition. Moreover, LES is performed for channel flow 

using the mixed synthetic boundary condition introduced in Chapter 6. Later on, a forced pulsation 

is introduced at the inlet in a steady mean flow profile of the channel and pulse propagation 

through the channel is analysed to observe the attenuation in the channel.  
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7.2 Large Eddy Simulation  

Unlike DNS, Large Eddy simulation (LES) does not resolve the complete range of turbulent scales 

and only captures the scales as small as practically feasible. In this way LES computes the 

dynamics of as much of the large energy containing resolved scales of the flow as is economically 

feasible while modelling only effects of small unresolved phenomenon on the larger resolved 

scales with the help of sub-grid models. The division of the scales of flow into larger resolved and 

smaller unresolved scales, termed grid scale (GS) and sub-grid scales (SGS) respectively, can be 

accomplished by convolving the dependent flow variables with a predefined kernel, which works 

like a high-pass filter. In traditional methods, filtering is applied to the Navier-Stokes equation to 

obtain a governing relation for filtered velocity. The filtering of the Navier-Stokes equation creates 

a need for the modeling of sub-grid scale (SGS) stresses and the way this SGS stress is modelled, 

resulting in a closed system of equations, distinguishes one LES method from another. In the 

process of modeling, the GS motion is explicitly simulated whereas the average effect of the SGS 

motion on GS motion is accounted for by a SGS model.  

The basic equations for LES were first formulated by Smagorinsky in the early 

1960’s.(Smagorinsky 1963) A need for an alternative method for resolving all the scales of motion 

was realized as the computational resources were severely limited at that time. It was known from 

the theory of Kolmogorov that the smallest scales of motion are uniform and that these small scales 

serve mainly to drain energy from the larger scales through the cascade process, it was felt that 

they could be successfully approximated. The larger scales of motion, which contain most of the 

energy, do most of the transporting and are affected strongest by the boundary conditions should 

therefore be calculated directly, while the small scales are represented by a model (called SGS 

models). Although the main features of the GS flow appear independent of the SGS models, 
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different SGS models predict the mean effect of the SGS motion on the GS motion differently. In 

Large Eddy Simulation of flow with very high or low grid Re numbers (ReG = Δ
2 

D/ υ, where Δ is 

the grid spacing, υ the viscosity and D the rate of strain), the SGS model must incorporate the 

effects of the viscous sub-range and full inertial range, respectively. The grid filter width Δ 

mentioned above facilitates the filtering operation. It retains scales larger than Δ and filter out the 

smaller scales, which are modelled with SGS models.  

Formally, any flow variable, k, in LES is composed of a large scale and a small scale contribution 

as:  

       .                                                 … (7.1) 

The prime denotes the small SGS scale and the overbar denotes the larger grid scale. To extract the 

large scale components a filtering operation is applied, which is defined as: 

                                                          … (7.2) 

Where Δ is the filter width and is also proportional to the wavelength of the smallest scale retained 

by the filtering operation. G (x, x’; Δ), the filter kernel, is a localized function or function with 

compact support (i.e. the function is large only when x and x’ are not far apart), that satisfies the 

condition: 

                                                                  … (7.3) 

The most commonly used filter functions are the sharp Fourier cut-off filter, best defined in wave 

space as 
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  … (7.4) 

the Gaussian filter, 

      
 

 Δ 
      

   

Δ 
    

   … (7.5) 

and the tophat filter in real space: 

          
 

Δ 
                  

                

  

  … (7.6) 

When this filtering process is applied to the Navier-Stokes equations, one obtains the filtered 

equations of motion. Provided that the filter commutes with differentiation, these appear at first 

glance to be very similar to the RANS equations. For incompressible flow they are: 

0 u  

)(
1

)(
T

uupuu
t

u






  

 … (7.7)

 

Although the definition of the velocity appearing above differs from that in the RANS equation, 

the issues of closure are conceptually very similar. Since uuuu   a modelling approximation 

must be introduced to account for the difference between the two sides of the inequality: 

uuuu                                                   … (7.8) 
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In LES the term τ is known as the sub-grid scale stress and has the property that 0  as Δ 0 , 

so that in the limit of small mesh spacing a DNS solution is returned. It is functionally similar to 

the Reynolds stress in RANS modeling but predictably the physics of the problem is different in 

LES. The SGS stresses represent a much smaller part of the turbulent energy spectrum than the 

RANS turbulent energy, so that the accuracy of the stress model may be less crucial than in RANS 

computation. However if the turbulent dissipation in the small scales is not accurately represented 

by the SGS model it can lead to a build-up of energy in the resolved scales and computational 

instability.  

After decomposition of the velocity field i.e. 'uuu  , the SGS stress can be decomposed into 

three separate terms as, 

.'')''()()')('( uuuuuuuuuuuuuuuu                   … (7.9) 

Each term has its physical significance. The first term in the equation is known as Leonard term, 

which can be computed from the resolved velocity field and represents the interaction of resolved 

eddies to produce sub-grid turbulence. The second term is known as cross term, which is related to 

the energy transfer between the resolved and unresolved scales. Energy can be transferred in either 

direction, but generally move from the larger to the smaller eddies. This term physically represents 

the interaction between unresolved and resolved eddies. The last term represents the effect of small 

eddy interaction and is generally known as the SGS Reynolds stress. The SGS stress as a whole is 

a Galilean invariant and therefore is independent of frame of reference, whereas the cross stresses 

and Leonard stresses are not Galilean invariant. Also, the correlations that are used to model these 

stresses are approximations and therefore contain errors that defeat any attempt at precision. For 
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these reasons the decomposition of SGS stress has largely been abandoned in favour of modelling 

the SGS term as a whole.  

 

7.3 Sub-Grid Scale (SGS) Modelling 

 As we know that the dissipative scales in LES are generally not resolved and therefore the main 

role of the SGS model is to extract energy form the resolved scales, mimicking the drain associated 

with the energy cascade. This can be accomplished in a very similar way to the RANS model, 

where there was an eddy-viscosity model. However the eddy viscosity model used in LES is based 

on the hypothesis that the non-uniform component of the SGS stress tensor is locally aligned with 

the resolved non-uniform part of the rate of strain tensor. The normal stresses are taken as isotropic 

and can therefore be expressed in terms the SGS kinetic energy. 
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T

SGS  
        … (7.10)

 

Where for incompressible flow,    is the large scale strain rate tensor, 

   
 

 
            … (7.11) 

The isotropic part of the stress tensor, 
 

 
 tr(   is either modeled or expressed in the filtered 

pressure.  

Smagorinsky model: Smagorinsky model was first proposed sub grid scale eddy viscosity model 

to be proposed, which was derived from the simplifying assumption that the small scales are in 

equilibrium and dissipate entirely and instantaneously all the energy received from the resolved 
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scales. (Smagorinsky 1963) There are other similar methods to derive the eddy viscosity but they 

all usually produce the algebraic Smagorinsky model of the form: 

                  

               

                                                              … (7.12) 

where Cs is the Smagorinsky constant and the value of this parameter has been determined from the 

isotropic turbulence decay and ranges between 0.18 and 0.23 for such flows. This model however 

is excessively dissipative in laminar or high shear regions (caused by high   ) and therefore    

parameter must be decreased in these situations. This serious deficiency of such models in laminar 

or high shear region is dealt with some success for near wall flow by using the van Driest damping 

function which reduces the sub-grid eddy viscosity as a function of wall-normal distance. This is 

however somewhat undesirable, as the SGS model should preferably depend exclusively on local 

flow properties. Also, since the assumption in Smagorinsky models that deviatoric SGS stresses 

and resolved stain rates align does not normally hold true therefore the correlation between the 

model and the actual turbulent stress behaviour is quite low. Despite these drawbacks, this model 

is relatively successful because of the reason that it dissipates energy at approximately the right 

overall rate.  

One Equation model: As the Smagorinsky model is based on the assumption of small scale 

equilibrium, it therefore becomes correspondingly less accurate as the condition moves farther 

from equilibrium. Unfortunately, non-equilibrium conditions commonly occur in free shear layers, 

separating flows, boundary layers and wall dominated flows like pipe and channel flows and are 

thus too common to dismiss out of hand. The problem can be addressed by adding transport 
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equations for one or more of the sub-grid turbulence characteristics to the model. The simplest 

such approach is One-equation model.  

Most one-equation models are also based on eddy-viscosity concept and in addition solve a 

transport equation for a sub-grid scale quantity on which the eddy viscosity depends. One such 

quantity is the sub-grid scale kinetic energy, defined as  

   
 

 
        

 

 

… (7.13) 

which provides a SGS velocity scale. Other possibilities include transported SGS viscosity or 

vorticity. One variant One-equation turbulent energy model is given by Yoshizawa (Yoshizawa 

1986), 

  

  
                                      

… (7.14) 

Where the SGS eddy-viscosity     , and the dissipation,  , can be found from,  

           Δ 

  
   

 
 

Δ
 

 … (7.15) 

However one-equation model itself is not free from deficiencies. These models do not address the 

problem of discrepancy between the principle axes of the SGS stress and the rate of strain tensor. 

This problem is attributed to the fact that even this model is based on eddy-viscosity concept and 

therefore similar problems were also encountered by the earlier models such as Smagorinsky 
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model. Although under similar equilibrium conditions one-equation model should not perform any 

better than Smagorinsky model, but they provide a more accurate time scale through the 

independent definition of velocity scale and have also shown better results when used to model 

transitional flows or flow with large scale unsteadiness. Fureby et al. (Fureby 1996, Fureby, Tabor 

et al. 1997) in particular, have studied performance of different SGS models in channel flows and 

shown the one-equation model to be quite effective and superior to Smagorinsky and other 

algebraic models under those circumstances. 

Scale Similarity and Liner Combination (mixed) models: Although eddy-viscosity models are 

able to model global dissipative effect, their correlation between strain rate and sub-grid stress and 

their energy transfer from small scales to large scales (backscatter) are poor and therefore the 

model is unable to produce local energy exchange correctly.  

A scale similarity model by Bradina et al. (Bardina, Ferzinger et al. 1980) is based on the idea that 

the smallest resolved eddy of size O(Δ  interacts with the SGS eddies in a very similar way to 

which the slightly larger resolved eddies interact with those of size O(Δ . This can also be 

conceived as a sort of extrapolation procedure from the smallest resolved to SGS scales, an 

approach which will generally work if there is a regular pattern in the data over the range 

extrapolated. The largest sub-grid scale can be obtained by filtering the SGS velocity          

to give             . Now following Bradina’s assumption and equation obtained for   gives: 

                                                                       … (7.16) 

In this case the correlation between the scale similarity model and the exact SGS stress is relatively 

high and it predicts important turbulent stress structures at correct locations. It is also found to 

transfer energy from the smallest to the larger resolved scales. Unfortunately it hardly dissipates 
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any energy and therefore it could not be used as an independent SGS model. This problem can be 

alleviated by combining it with eddy-viscosity model to produce the linear combination or mixed 

model,  

                           
 

 
      

… (7.17) 

which lacks the stability problems and has been shown to produce improved results compared to 

Smagorinsky model.  

Dynamic Models: The concept Dynamic models are considered to be a one step further to scale 

similarity model. It was first proposed by Germano et al. (Germano, Piomelli et al. 1991)  as a 

procedure, which can apply to most of the models described before. The coefficients procedures 

are, based on energy content of the smallest resolved scales, rather than a priori input as in 

Smagorinsky model. This is accomplished by assuming that the behaviour of these scales is very 

similar to the sub-grid scales, which is very analogous to the Scale similarity model. A 

self-contained sub-grid scale model is produced by calculating the SGS model coefficients for 

these small scales and applying it to the LES.  

To formally describe the procedure, we recall the equation described in scale similarity model with 

second or ‘test filter’, with a filter width Δ  that is larger than and equal to the original filter width 

Δ. If this test filter is applied to once filtered Navier-Stokes equation, the final sub-grid stress that 

must be modeled in the test-filter level LES is given by, 

                                                               … (7.18) 
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At this stage the large scale part of SGS stress at the test filter level can explicitly be computed 

from the LES field from the following relation, 

                                                            … (7.19) 

It follows directly from definitions above that, 

                                                        … (7.20) 

This equation is known as Germano identity and forms the basis of the dynamic model. The use of 

identity to calculate the model coefficients is illustrated in following derivation by Piomelli 

(Piomelli 1993). 

Consider a generalized eddy-viscosity model to relate both sub-grid and sub-test grid stresses to 

their respective resolved fields,   and  . 

                                                             … (7.21) 

On substituting this equation into Germano identity, it is found that the identity can be satisfied 

only approximately, since stresses are replaced by modeling assumptions, and the system is over 

determined (five independent equation to determine one coefficient). It was proposed that the error 

produced by approximation be minimized in accordance with the least-squares method. The error 

is given by: 

                                                … (7.22) 

Where M=     and    is assumed to be smooth on the scale so that it can be extracted from the 

filtering operation. The least square minimization is then applied to give, 
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… (7.23) 

This simplifies to give required coefficient, 

    
 

 

     

     
 

… (7.24) 

Where < > denotes an appropriate ensemble averaging. This model can be applied to mixed 

models and models with two or more coefficients as well. The ensemble averaging has the purpose 

of removing very sharp fluctuations of the coefficients, which would otherwise destabilize 

numerical calculations and make the model inconsistent, since coefficients cannot be removed 

from the filtering operation. This averaged version of the procedure has also removed spurious 

large and negative eddy viscosities. Several other approaches have also been tried with varying 

success. One of these, the one used by Germano, was to average the coefficients CL and Cv over all 

homogeneous directions. However this is only possible for flow with some degree of 

homogeneity. Another attempt made by Ghosal (Ghosal 1996) used an integral formulation of the 

Germano identiy (described above), that rigorously removes the mathematical inconsistency. The 

expense of this added confidence is the solution of an integral equation at each time step.  

The introduction of dynamic models has caused significant progress in the sub-grid scale modeling 

of transitional flows and has removed many of the traditional problems encountered with static 

models. In free shear and channel flows the dynamic model automatically adjusts, by lowering the 

coefficient in areas of high shear and near the walls, a function which is normally performed by the 

van Driest damping function. Another advantage is that the eddy viscosity automatically goes to 

zero in laminar regions of the flow.  
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There are still some drawbacks of these approaches, which includes the requirement of additional 

averaging, either in homogeneous direction, along the streamline or in local region of the flow, is 

necessary to avoid excessive fluctuations in model coefficients. In addition to this, unless the 

scheme is somehow additionally bounded, the dynamic procedure occasionally produces negative 

dissipation, which if left unchecked, could violate the conservation of energy law and leads to 

unphysical results.  

7.4 Incompressible Channel Flow Simulation using Periodic Boundary 

In order to demonstrate the ability of OpenFOAM to perform LES simulation, an incompressible 

channel flow simulation is carried out using cyclic method, introduced in section 6.3. The distance 

between the two parallel walls of the channel is   , where   is referred to as the channel half 

width. If the flow is developed, there is a constant mean pressure gradient in the streamwise 

direction which is directly related to the friction velocity    at the wall by, 

  

  
 

  
 

  
 

... (7.25) 

The general consensus for the adequate overall dimension for the computational domain for cyclic 

channel flow simulation seems to be about           in the streamwise, wall normal and 

spanwise direction respectively. However, there have been encouraging results from by Fureby et 

al. (Fureby, Gosman et al. 1997) using minimal channel approach with a smaller computational 

domain of           to minimise computational cost. The geometric set-up for channel is 

similar to the figure 6.5 of chapter 6.  

Although the domain seems to be slightly smaller to capture all the scales, but it is found that it 

performs an accurate LES when compared to the DNS results. The DNS simulations performed by 
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Kim et al. (Kim, Moin et al. 1987) have been used to compare all the LES channel flow simulation 

in this work at frictional Reynolds number of 395. The simulation is carried out at the streamwise 

velocity of 0.1335 m/s to ensure that the DNS situation of Kim el at. is maintained. The offset in 

the velocity and pressure value due to recycling value from outlet to the inlet, is compensated by 

adjusting streamwise velocity and pressure gradient dp/dx, given by equation 7.25. The simulation 

is performed for 400 flow-through times to ensure that the LES statistics matches to the DNS 

statistics. The instantaneous velocity contour for channel flow is shown in figure 7.1. The vorticity 

contour is shown in figure 7.2, which demonstrates the generation of longitudinal streaks in the 

computational domain. These streaks are unstable to the perturbation produced at inlet and this 

instability kick starts a streak instability cycle which is said to be responsible for near wall 

turbulence cycle. Mesh points of            with wall gradient is maintained throughout the 

computational domain. 

 

 

Figure 7.1: Instantaneous velocity contour in channel flow. 
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Figure 7.2: Vorticity contour in channel flow. 

The comparison of mean velocity profile along wall normal direction is shown in the figure 7.3. 

The figure compares velocity profile for various sub-grid models for LES to demonstrate the 

effectiveness of sub-grid model in comparison to DNS.  It can be seen that a very good agreement 

with DNS is achieved for all the sub-grid models away from the wall but the dynamic sub-grid 

model provides better solutions near the wall. The comparison of cross Reynolds stress along wall 

normal direction is shown in figure 7.4. The comparison shows that the stresses are very close to 

DNS away from the wall but the dynamic model performs better near wall. One-equation model 

provides a better compromise between the Smagorinsky and the dynamic model. Since the 

investigations in this research are mostly concerned at away from the wall, this research has 

adopted Smagorinsky sub-grid model for its numerical stability and accuracy away from the wall.  
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Figure 7.3: Comparison of different sub-grid models for mean velocity profile. 

 

Figure 7.4: Comparison of different sub-grid models for Cross-Reynolds Stress profile. 

y 

y 
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Figure 7.5: Energy spectrum for LES of channel flow using cyclic boundary condition.  

 

The energy spectrum generated for LES of channel shown in the figure 7.5 demonstrates that the 

spectrum follows the -5/3 law of Kolmogorov spectrum. 

 

7.5 Compressible Channel Flow Simulation using Synthetic Inflow Boundary 

A simulation of compressible flow in a long channel is elucidated in this section using the mixed 

synthetic boundary condition developed in section 6.5. The channel dimension is        . 

The synthetic boundary condition help provide turbulence like structure as an initial inflow 

condition for LES simulations. The steady profile for velocity for the mixed synthetic boundary 

condition is quickly achieved in a channel flow simulation. The time taken to achieve steady 

Line gradient 

= -5/3  
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profile is only 20-25 flow-through times, in comparison to the 200-400 flow-through times taken 

by periodic boundary conditions.  

The vorticity profile developing along the length of the channel is shown in figure 7.6 (a). The 

figure shows the generation of longitudinal streaks in the computational domain as flow progress 

along the length of the channel.  

 

 

Figure 7.6: (a) Vorticity contour for long channel along the length of the channel. (b) Vorticity 

cross-section contour along x-axis (at 1m, 6m, 12m and 16m away from inlet) .  
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These streaks are unstable to the synthetic fluctuations produced by the von-Karman spectrum 

involved in the generation of fluctuation part in the synthetic boundary condition at the inlet and 

this instability initiates streak instability near wall turbulence cycle. Figure 7.6 (b) shows the 

vorticity planes generated by synthetic inflow across the length of the channel. The mean flow 

profile seems to develop quickly from the RANS mean flow profile in the near-wall region but the 

development of flow in the bulk flow region took considerable amount of time (20-25 

flow-through times). This is consistent with the observation made by Jarrin et al. (Jarrin, 

Benhamadouche et al. 2006) in the development of his Synthetic-Eddy Method. The mean velocity 

profile and Reynolds-stress profile are compared with the DNS results obtained from Moser et al. 

(Moser, Kim et al. 1999) with necessary scaling for the current simulation of 10 m/s mean flow. 

The mean flow profile satisfactorily agree with the DNS profile in the bulk flow region and 

matches the trend reasonably in the near-wall region, as shown in Figure 7.7 (a). The 

Reynolds-stress profile seems to match the trend of DNS profile satisfactorily, as shown in Figure 

7.7 (b). 
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Figure 7.7:  Comparison of mixed synthetic boundary with DNS: (a) Mean velocity profile. (b) 

Reynolds Stress profile.  

y 

y 



7. LES Simulation of Pulsating Acoustic Flow through Channel or Duct 

196 
 

The energy spectrum generated for LES of channel using synthetic boundary inflow condition 

shown in the figure 7.5 demonstrates that the spectrum reasonably follows Kolmogorov’s law. 

Besides that, the spectrum also shows some particular dissipation in the high frequency, smaller 

energy containing scales inside the channel due to the Von-Karman spectrum used in generating 

the turbulence scales in the development of synthetic boundary condition.  

 

Figure 7.8: Energy spectrum for LES of channel flow using mixed synthetic boundary condition. 

 

 

 

 

Line gradient 

= -5/3  
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7.6 Acoustic Pulse through a Long Channel 

The CFD simulation of propagation of acoustic pulse with considerable mean flow has put forward 

some serious computational challenges for the CFD community. The introduction of acoustic 

pulse to mean flow simulation presents an important scenario for understanding the physics of 

interaction between turbulence and acoustic pulses. This understanding could help attenuate sound 

propagation in turbulent flow, like in the case of various applications in the past.  

The pressure based compressible flow solver for laminar flow simulation usually consists of some 

built-in errors in the simulation, such as the error due to 1) the presence of wall; 2) the reflections 

from the wall of computational boundary; 3) the disparity in the acoustic scale and flow scale; 4) 

numerical aliasing; and 5) the numerical discretisation/dispersion. Despite the presence of these 

errors, general compressible solvers usually found fit-to-use for most of applications and provide 

good agreement with the experimental results as well. However, the study of acoustic propagation 

and acoustic noise source prediction involves the wave or perturbations of very small scale and 

therefore the solver for the acoustic simulation need to be very robust and extremely accurate.  

Mean flow simulation introduces an additional error due to the modelling of turbulence in the 

simulation, which makes it even more important for the solver to be more robust and accurate. 

There will also be an additional dissipation error which would arise with the introduction of 

turbulence model in the mean flow simulation. RANS simulation of pulse through a pipe has been 

demonstrated in section 4.4.2.1. It can easily be seen that due to the very nature of the RANS 

modelling, the turbulent scales of the simulation have been averaged and whole energy spectrum is 

modelled rather than computed, which results in some arbitrary pressure equalisation in the 
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domain during simulation. LES provides an interesting opportunity to simulate pulse propagation 

with greater accuracy. 

In order to obtain a transmission pulse spectrum and transmission loss spectrum for LES of long 

channel, two probe points near the inlet and near the outlet of the channel are chosen and pressure 

data are recorded. The transmission pulse spectrum and transmission loss spectrum are obtained 

on the frequency spectrum as shown in figure 7.9 (a) and 7.9 (b). The transmission pulse spectrum 

shows the presence of pulse 2000-3000Hz, along with some perturbations, which was not present 

in the RANS simulation of circular pipe in section 4.4.2.1. (See Figure 4.19) These perturbations 

are captured accurately by the LES, and are produced due to the turbulence interaction with the 

scales of mean flow.  A low frequency peak is observed in the transmission loss spectrum shown in 

figure 7.9 (b), which is likely to be originated from the resolution of large scales of turbulence by 

turbulence models. Unlike the RANS simulation of circular pipe, where the large scale turbulence 

scales in the simulation are underestimated due to averaging, the LES provides more realistic large 

scale attenuation. Subsequent to the first peak, there are other peaks at 450 Hz, 1250 Hz and so on, 

which corresponds to the chamber resonances generated in the long channel. It is important to 

compare the RANS simulation of pipe in this context where the first mode of resonance is not 

obtained with high accuracy. The RANS simulation of pipe showed a linear increase in 

transmission loss throughout the higher frequency domain due to the averaging of flow variables 

inside computational domain and therefore the chamber resonances below certain frequency range 

were found to be lost due to superimposition with those scales, as shown in Figure 4.19 (b). 

However, LES captures these high frequency scales accurately and captures the higher modes of 

resonance in the channel.  
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Figure 7.9: (a) Transmission pulse spectrum for pulse propagation in long channel. (b) 

Transmission loss spectrum for pulse propagation in long channel. 

(a) 

(b) 
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7.7 Closure  

In this chapter, the ability of OpenFOAM to perform LES of channel flow using cyclic boundary 

condition has been demonstrated and the channel flow simulation is validated with DNS results 

available in literature. Various other LES sub-grid models are also investigated in the context of 

accuracy and compared with the DNS results for channel flow. Besides, the synthetic boundary 

condition as inflow condition for simulating channel flow is also validated in this chapter. A forced 

pulsation through the channel over a steady mean flow profile is successfully simulated to obtain a 

better resolution of large scale of mean flow. The LES of forced pulsation in channel is found to 

compute the scales related to channel resonance more accurately then the RANS simulations.  
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Chapter 8 

LES Simulation of Pulsating Acoustic Flow through 

Muffler 

8.1 Introduction 

The need of a robust and accurate compressible solver for acoustic propagation simulation has 

already been stressed. Moreover, it has been pointed out that turbulence modelling of -mean flow 

introduces additional numerical inaccuracies in terms of dissipation error due to modelling 

assumptions. Because of its unique shape, the simple expansion muffler introduces further 

numerical challenges arising from the production of various reflected and transmitted waves from 

the expansion chamber inside the domain of mean flow simulation. 

 Because of the inherent limitations in RANS methods such as averaging of the length-scales and 

modelling of the full spectrum instead of computing the broad length spectrum, accurate acoustic 

simulation using RANS methods are rather difficult. RANS modelling is also not very effective for 

the same reasons in separating flow cases including expansion muffler, cavity and resonators. 

DNS can provide accurate results in separating flow cases but it comes at very high computational 

cost and is mostly not feasible for industrial applications. LES, on the other hand provides a very 

interesting opportunity for the CFD community to explore the area of Computational 

Aeroacoustics (CAA) to study sound propagation. Although LES is computationally less 

expensive than DNS, it is still much more expensive and exhaustive than RANS methods. 
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However, with recent advances in computational capacity, several attempts have been made by the 

CFD community to simulate such flow cases.  

Most of the research in the past has been conducted towards noise source identification or noise 

source prediction. A lot of work has been carried out to extend the near-field acoustic data to the 

distance farther away. A simpler domain extension method usually uses uniform cartesian mesh 

and employs analytical integral formulation methods such as Kirchhoff surface (Freund, Lele et al. 

1996) and more refined Ffowcs Williams and Hawkings (FW-H). Gloerfelt et al. (Gloerfelt, Bailly 

et al. 2003, Gloerfelt, Bailly et al. 2001) conducted DNS simulation for flow over cavity using 

compressible Navier-Stokes equations to obtain radiated noise directly and used it as a benchmark 

to compare with hybrid methods using mean-flow profile with different integral formulations of 

Kirchhoff surface and FW-H (Gloerfelt, Bailly et al. 2003). Some hybrid methods for noise 

prediction use LES or DNS with acoustic analogy. LES or DNS is used to compute the sound 

sources in the well known acoustic analogy such as Lighthill’s analogy. A DNS simulation with 

Lighthill analogy for sound radiation by turbulence is conducted by Whitmire et al. (Whitmire, 

Sarkar 2000) Ali et al. (Ali, Escobar et al. 2008) implemented LES with Lighthill’s analogy for 

flow induced sound from fluid-structure interaction. Seror et al. (Seror, Sagaut et al. 2001) 

compared DNS and LES results with Lighthill’s analogy and found some discrepancies in acoustic 

spectrum. 

In another approach to predict noise propagation in an extended domain, a set of Linearised Euler 

Equations (LEE) are solved around a known stationary mean flow. Bailly et al (Bailly, Juve 2000) 

have computed LEE using dispersion-relation-preserving (DRP) spatial scheme along with 

fourth-order Runge-Kutta (RK4) temporal discretization. Astley (Astley 2009) has also 

implemented LEE for a subsonic flow case in turbofan aeroengines. Bogey et al (Bogey, Bailly et 
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al. 2002) have also used LEE along with aerodynamic source term obtained directly for reference 

from solving Navier-Stokes equations. LEE has also been used as hybrid model where mean flow 

is supplied by RANS equations (Lummer, Grogger et al. 2001). Addad et al (Addad, Laurence et al. 

2003) have also successfully conducted LES for forward-backward facing step along with LEE for 

noise source prediction.   

Although there have been very few investigations in the area of high fidelity simulation of a simple 

expansion muffler, there is a lot of research work reported with other similar geometries and 

applications. A DNS study has been conducted to investigate resonant instability in a cavity by 

Rowley et al. (Rowley 2002, Rowley, Colonius et al. 2002), who hypothesized that the presence of 

backflow in cavity flow simulation leads to an absolute instability in the wake mode. In DNS 

simulation of slit resonators in a normal incidence, Tam et al (Tam, Ju et al. 2003, Tam, Kurbatskii 

et al. 2001) observed that at high sound pressure intensity, vortex shedding is the dominant 

dissipation mechanism. Recently, they performed three dimensional simulations to correctly 

predict the trend in measured impedance using slits with different aspect ratios but failed to predict 

the exact linear evaluation to acceptable tolerances. (Tam, Ju 2009) A band-stop filter, Helmholtz 

resonator has been simulated by Roche et al (Roche, Vuillot et al. 2010) using direct simulation of 

Navier-Stokes equations and compared with the simulation using Euler equations. The simulations 

were conducted both with and without mean flow, to compare the attenuation due to viscous 

dissipation and vortex shedding. Their results also support the nonlinear absorption of resonant 

liner at higher sound intensities. Mendonca et al (Mendonca, Read et al. 2005) have performed 

detached eddy simulation (DES) on a double diaphragm orifice of an aircraft climate control 

system to detect the noise signature using Lighthill’s analogy and the noise detected has been 

correctly validated with the experimental measurements conducted by microphone.   
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Despite the availability of various analytical sound prediction methods, LES has been considered 

to be a very reliable tool for design and development of sound attenuation systems. Since the 

Navier-Stokes equations consider viscous effects, some attempts have been made to simulate 

acoustic propagation using Navier-Stokes equations without any acoustic analogy (explained 

before) in various attenuation devices to get deeper understanding of the physics behind 

sound-mean flow interaction. A pressure based semi-implicit compressible Navier-Stokes solver 

has been presented by Wall et al. (Wall, Pierce et al. 2002) This method is similar to the 

pressure-correction method but requires iterative steps at every time step to stablise the solution 

for low Mach number flows. The method also claims to have a large (2.6 times) efficiency gain 

and much smaller (15 times) computational expense in performing LES at low Mach number flow. 

Such low Mach compressible LES solvers have also been found to be an effective tool in handling 

combustion instability problems. Roux et al (Roux, Lartigue et al. 2005) conducted compressible 

LES investigation in a complex swirled premixed combustor and found very good agreement with 

experiments in cold and reacting cases. Usually the acoustic analysis of the noise is calculated on 

wavenumber-frequency space; however Roux et al (Roux, Gicquel et al. 2008) in their recent LES 

simulations of mean and oscillating flow have used Proper Orthogonal Decomposition (POD) 

along with spectral maps to show all unsteady modes in the simulation. In another attempt to 

simulate an automobile muffler with a resonator attached in the expansion section, an exact 

compressible Navier-Stoke solver has been used by Obikane (Obikane 2009) to simulate low 

speed forcing oscillation at the inlet of the muffler. Rubio et al (Rubio, Roeck et al. 2006a) have 

recently attempted a 2D LES of simple expansion muffler to predict tonal noise. They further 

extended their investigation in three dimensions to predict both tonal and broadband noise 

produced near the expansion section of a simple expansion muffler (Rubio, Roeck et al. 2006b). 
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However, none of the investigations reported so far has covered the LES of forced 

oscillations/pulsation at the inlet of a simple expansion muffler.  

This chapter presents two-dimensional and three-dimensional LES simulation of muffler flow 

acoustic and forced pulsation of a simple expansion muffler for different ranges of frequencies. 

Unlike Rubio et al (Rubio, Roeck et al. 2006b) this work employs long inlet and outlet ducts for the 

muffler configuration to ensure that no reflections contaminate the interaction of different acoustic 

waves in the domain during the acoustic flow simulation. Besides, a longer expansion chamber (10 

times the expansion) has been used and the flow Mach number is 0.03, which is realistic for 

practical applications. The chapter also observes the physics of flow-turbulence-acoustic 

interaction in the muffler which is said to be responsible for tonal and broadband noise. This work 

also forces a pulse at the inlet of muffler to observe its interaction with flow acoustic. The chapter 

also highlights the advantages of the Karki-PISO algorithm (proposed in Chapter 2) for LES 

simulation in the context of acoustic propagation simulation.  

 

8.2 Computational Setup 

The LES simulation is carried out for two-dimensional and three-dimensional meshes. The 

two-dimensional simulation saves time but does not capture small scale turbulence and its effect 

on mean flow and acoustic pulse. On the other hand, three-dimensional simulation captures 

smaller scales of turbulence but it is computationally very expensive. Keeping this in mind, at first 

a two-dimensional LES is carried out to ensure good agreement with theory and statistics and then- 

a three-dimensional LES simulation is carried out for detailed analysis of the muffler. A mean flow 

of 10 m/s (M=0.03) is considered throughout the simulations and in the later part, a positive 
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sinusoidal pulse is forced on the inlet. Positive sinusoidal is considered to clearly analyse the 

flow-acoustic effect in the computational domain on the travelling pulse. In simulating simple 

expansion chamber, Acoustic Pressure can be defined as the difference of total pressure and mean 

pressure inside the chamber. This acoustic pressure provides interesting visualisation of pressure 

pulse propagation inside the simple expansion muffler.  

Numerical schemes: A second order limited linear blended differencing scheme explained in 

section 4.3 is used for spatial discretization for this work. The Crank and Nicholson’s second order 

temporal discretization with different θ values (equation 4.32) is used for all the simulations. The 

blended spatial differencing and mixed Crank-Nicholson scheme helps in stabilising the stiffness 

produced in solving Navier-Stokes equations when solving a compressible set of equations. The 

hybrid Karki-PISO algorithm proposed in Chapter 2 further enhances the robustness of the solver 

and extends the temporal discretization to operate at fully-implicit time marching scheme. This is 

particularly helpful in reducing temporal discretization errors introduced during simulation of 

forced pulse propagation in muffler, as shown in figure 4.8 of chapter 4.  

Mesh refinement: The mesh size for the large domain should be kept at minimum possible to 

provide accurate results. A 4mm mesh is again used due to acoustic and LES simulation 

requirements for better resolution of length scales. With Karki-PISO algorithm, it is found that the 

4mm mesh along with synthetic boundary condition for LES model provides accurate result for 

acoustic propagation in simple expansion muffler. The wall grading is used near wall and no-slip 

condition is used instead of any wall function. No-slip condition is used to avoid any error 

introduced into the solution domain due to the wall-function modelling. A total number of 2.5 

million mesh points are used for the 3D simulation on 24 cores for a period of 1500 hrs time (more 

than 2 months) on 2.00 GHz Xeon processor to reach a steady state in the LES simulation.  
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Boundary condition: The boundary conditions in these simulations are very much the same as in 

chapter 4, except the inlet velocity boundary. The new boundary condition is not only the time 

varying sinusoidal pulse but a mixed form of synthetic turbulence boundary and synthetic 

pulsating boundary. This mixed form of inlet boundary is formulated keeping in mind the initial 

boundary requirements for LES simulations in such a developing flow. The synthesised turbulent 

fluctuations generated in section 6.5 of chapter 6 can be given by Eq. (6.77) as, 

                               

This turbulent fluctuation along with forced pulse is superimposed on the mean flow. The forced 

pulse is given by, 

                                                             … (8.1) 

The final fluctuation is given by considering the turbulent intensity for the pulsating sinusoidal and 

imposed on mean flow as follows, 

                                                    … (8.2) 

Where    is the mean-flow velocity and    is the turbulent intensity. The amplitude of forced 

pulsation A is kept at 0.5 m/s. A non-reflective boundary condition is adopted at the outlet. Rest of 

the setup is same as the RANS simulations in chapter 4.  
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8.3 Two-dimensional Simulation of Simple Expansion Muffler 

The ineffectiveness of RANS modelling in simulating separating flows is evident from the 

simulation of simple expansion muffler in section 4.4.2.2. The pressure-difference contour in 

section 4.4.2.2 shows that the pulse bifurcates near the expansion of muffler because of the 

averaging of the dispersing pulse- that moves forward to create unphysical pressure differentials in 

the expansion chamber due to pressure-fluctuation averaging. These problems can be alleviated by 

using LES models which computes most the larger length scales rather than modelling all the 

length scales like RANS models. As mentioned before, acoustic propagation simulation deals with 

much smaller amplitude of oscillations in comparison to the mean flow and therefore the 

numerical solver should have very low numerical noise. On these ground, LES stands a better 

choice and provides a much accurate and robust technique for abovementioned reasons. The 

requirement of turbulence like inlet boundary condition is achieved by the introduction of a new 

variant of mixed synthetic boundary condition introduced in chapter 6 and explained in previous 

section. First, LES simulation of simple expansion muffler is performed to achieve a steady state 

flow and then, a forced pulsation is imposed in the later part of the work. After obtaining the results 

for a stable LES simulation in simple expansion muffler, the simulation is processed to analyse 

flow-acoustic interactions inside the expansion chamber and in the tailpipe. 

Noise generation: The noise generation due to turbulence inside the muffler has quadrupole nature 

and is not a very prominent noise source in muffler. However the monopole and dipole noises 

produced by flow-acoustic feedback-coupling in expansion chamber or by the acoustic resonances 

excitation in chamber and tailpipe, are more effective source of noise generation in simple 

expansion muffler. The mechanism of acoustic feedback-coupling has been studied in the context 

of flow over cavity by various authors. The flow separation at sharp backward facing edge forms 
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thin shear layer or vortex sheet. These unstable vortex sheets quickly roll up to form a train of 

vortices. The vortex sheets are perturbed by acoustic waves reflected at the downstream edge of 

the expansion muffler and cause chamber resonance.  

Acoustic simulation: LES simulation is carried out with the same 5 degree sector mesh, which was 

used in chapter 2 and 4. Mesh spacing of 4mm is maintained inside the computational domain. The 

mixed synthetic boundary condition is used with rest of the boundary conditions similar to muffler 

simulation of chapter 4. Besides, the boundary conditions at sides are set to symmetry boundary 

conditions. The blended second order Crank-Nicholson time discretization is employed in 

combination with the spatial limited linear second order discretization scheme. Since the analysis 

of simple expansion muffler simulation in this study is not concerned about the near wall scales, 

the Smagorinsky sub-grid scale turbulence model has been adopted over other more accurate 

sub-grid models (discussed in section 7.4) for the LES simulations in this chapter. It can be seen in 

section 7.4 that most the statistics for Smagorinsky model in a flow way from wall matches very 

well with the DNS statistics. Apart from that, the Smagorinsky model has also been found to be 

very stable in comparison to the other more accurate models.  

As it is evident from the velocity contour and streamline of Figure 8.1 and Figure 8.2, even at very 

low Mach number, the shear layers or vortex sheet start to roll up quickly and break down into 

periodic vortex shedding. This is supported by the vorticity contour of Figure 8.3 as well, where 

the vortex roll up can be seen in the expansion section of the muffler. These periodic vortex 

shedding has also been witnessed by Rossiter (Rossiter 1966) in his experimental cavity noise 

investigation and he has described the periodic noise as similar in mechanism to edge-tone noise 

generation. Inside the expansion chamber, these vortices are convected downstream to the tailpipe 

end of the expansion-wall, where it hits the wall and breaks down into smaller vortices.   
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However, the unsteady compressible LES of the sector-mesh carried out in this section does not 

appropriately describe the turbulent flow field and its related dissipation. The simulation can only 

be considered to model the largest eddies in the 5 degree sector geometry accurately and therefore 

sector-mesh simulation should reasonably predict the low frequency tonal components.  

 

Figure 8.1: Pressure contour coloured by velocity, showing vortex roll-up. 

 

Figure 8.2: Velocity streamlines for simulation of simple expansion muffler, showing vortex 

roll-up. 
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Figure 8.3: Vorticity contour for simulation of simple expansion muffler, showing vortex roll-up. 

In addition, the broadband components of the flow which are responsible for turbulence generated 

noise cannot be predicted with the sector-mesh models accurately and therefore a truly 

three-dimensional analysis needs to be done. 

8.4 Three-dimensional Simulation of Simple Expansion Muffler 

Three-dimensional compressible LES simulation is carried out to compute flow-acoustic 

interactions and to estimate the effect of flow-acoustic on forced pulse propagation. In the previous 

section, the three types of noise sources in the muffler have been explained. The noise generated 

due to chamber resonance excitement, noise generated by flow-acoustic feedback-coupling and 

noise generated by turbulence. The first noise source is obtained due to the rolling up of vortices in 

shear layer, when flow separation takes place at the entrance of the expansion chamber. 

Considering that the vortex shedding process happens due to flow-acoustic interaction at certain 

specific frequency, this source is perhaps the major contributor for tonal noises inside the muffler. 

The second noise source is obtained at the rear wall of the expansion chamber near the entrance of 
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tailpipe. The rolled up vortices hit on these walls, breaking up into smaller vortices and generating 

heavy exchange of energy between flow vortices and breakup vortices. The second source is 

believed to contribute mostly in broadband noise inside muffler.  

Computational setup: The computational setup in the three-dimensional simulation is almost the 

same as in the two-dimensional simulation except that there is no symmetry boundary needed 

three-dimensional mesh, as boundary is closed. The same mixed synthetic boundary condition is 

used for generating better inlet inflow condition. The length of the tailpipe is shortened (halved) to 

reduce computational cost. Mesh spacing of 4mm is maintained in this simulation as well. 

However some refinements near the wall has been made to capture better flow parameters. 

Numerical schemes in this simulation are same as sector-mesh simulation. 

Acoustic Simulation: Rossiter (Rossiter 1966) has derived a semi-empirical formula for the 

Strouhal number St in their experimental investigation of first type of noise in cavity flow as 

follows, 

   
  

  
 

   

   
  

 

…  (8.3) 

Where   is frequency, D is the height of the inlet pipe,    is the free-stream velocity, n is the 

mode number, M is the Mach number, k is the ratio of convection velocity of the vortices to the 

free stream velocity and   is a factor to account for the time lag between of a vortex and the 

emission of a sound pulse at the trailing edge of cavity. In another approach to find out the tonal 

noise inside exhaust chamber, Desantes et al (Desantes, Torregrosa et al. 2001) pointed to the 

acoustically excited resonance in exhaust and obtain the formula for acoustic resonance frequency 

as, 
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… (8.4) 

Where    is the characteristic acoustic length of expansion chamber and is given by       

       , where 0.525D is the end-correction in the pipe.  

For a simple expansion muffler considered in this work, where flow velocity is at M=0.03 and inlet 

pipe diameter is D=0.048m, the first acoustic chamber resonance is expected at Strouhal number 

of 1.1, given by equation 8.4. On the other hand, equation 8.3 provides the Rossiter frequency for 

tonal noise which occurs at a Strouhal number of 0.225. To demonstrate the acoustic behaviour, 

the time history of pressure, density and velocity are recorded by putting probes at four distinct 

points inside the expansion chamber.  Out of these four probes, the first probe is located near the 

inlet of the expansion wall inside chamber at (7.6, 0.04, 0), the second probe is located at the other 

end of the expansion wall inside the chamber at (8.0, 0.04, 0), the third probe is located at centre of 

middle of the expansion at (7.8, 0.004, 0) and the fourth probe is located in the tailpipe of the 

muffler at (8.2, 0.001, 0).   
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Figure 8.4: Simple Expansion Muffler 3D Mesh: Front View (top) and Side View (bottom) 
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Figure 8.5: (a) Pressure response spectra at probe location 1. (b) Pressure response spectra at 

probe location 2. 

(a) 

(b) 
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The recorded data from the first two probes inside the expansion chamber provides a pressure 

response spectrum  
  

     with a chamber resonance around Strouhal number of 1.1. This is shown 

at Strouhal number 1.1 in Figure 8.5 (a) and Figure 8.5(b) with spectrum peaks.  Some degree of 

distinction in the location of peaks can be explained with the dependence of the analytical 

formulation of on Mach number, which considerably fluctuates inside the expansion chamber. It 

can also be noted in this context that the Mach number of 0.03 at inlet decelerate inside the 

expansion chamber to a lower than 0.03 average Mach number and therefore analytical formula do 

not predict the exact location of Strouhal number. Figure 8.9 shows the average mean velocity 

inside the expansion chamber, which can provide an approximation for Strouhal number at various 

locations inside the chamber. The non-periodic frequency present in the pressure spectrum of 

second probe is perhaps due to the interaction of vortex coming toward the wall and the break-up 

vortex returning after the impact. These vortex interactions can be better explained with the 

velocity iso-surfaces presented in the figure 8.11 and figure 8.12. The frequent reflections near the 

tailpipe end of the expansion chamber can be seen in figure 8.12. The figure 8.11 and figure 8.10 

clearly shows the rolling up of vortices and their breaking up after they hit the wall and interact 

with the incoming waves. 

The third probe located at the centre of the pipe has a weaker magnitude of resonance chamber at 

Strouhal number of 1.1. However there is another frequency present in the chamber which occurs 

at Strouhal number of 0.5, as shown in figure 8.6. This is most likely the vortex shedding 

frequency. However there is some discrepancy in determination of analytical Strouhal number in 

the middle of the expansion chamber, which can be explained with the previous explanation of 

change in Strouhal number with lowering Mach number inside chamber. The fluctuation in Mach 

number inside expansion chamber can be estimated from the velocity contour in expansion 
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chamber shown in figure 8.8. The fourth probe located in the tailpipe shows the vortex shedding 

frequency at Strouhal number of about 0.2, which is close to the analytical approximation. This 

also supports the argument regarding change in predicted Strouhal number with lowering Mach 

numbers. The resonance frequency for this simulation is seen to be weak but can be seen at 

Strouhal number of around 1.1, as shown in figure 8.7. It is important to note that the analysis done 

by Rubio et al. (Rubio, Roeck et al. 2006a) do not use practically relevant Mach number and uses a 

short channel instead of long pipe (to save computational time and resource) which tends to make 

the computational domain susceptible to the contamination from the reflection of waves in flow 

acoustics. 

It is believed that the most important sources of turbulent kinetic energy arise from the shear layer 

created from the interaction of the flow coming from the inlet pipe with the stagnant flow inside 

the expansion chamber. A local maximum turbulent kinetic energy is reached near the entrance of 

the inlet into expansion chamber, as shown by the first peak in figure 8.14. However the most 

dominant source of turbulent kinetic energy is the rear chamber wall (tailpipe end) where the 

vortex hits the wall and breaks down into smaller vortices. A global maximum is reach at the rear 

end as shown by the second peak in figure 8.14. So, unlike the previous assumption that most of 

the turbulent energy exchange happens at the front end, it can be seen that a stronger exchange of 

energy takes place at the rear wall if the length of the chamber is long enough. In that contest, it 

must be noted that the acoustic impedance inside the expansion chamber is found to be very high 

near the front end of the expansion chamber in comparison to the rear end of chamber, as shown in 

figure 8.13.  
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Figure 8.6: Pressure response spectra at probe location 3. 

 

Figure 8.7: Pressure response spectra at probe location 4. 
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Figure 8.8: Instantaneous velocity contour inside expansion chamber. 

 

 

 

Figure 8.9: Mean velocity contour inside expansion chamber.  
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Figure 8.10:  Pressure contour coloured by velocity inside expansion chamber showing vortex 

roll-up. 

 

 

Figure 8.11: Pressure isosurface coloured by velocity in the range of 100150 pa to 101210 pa 

inside expansion chamber, showing velocity.  
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Figure 8.12: Acoustic pressure (    ) isosurface in the range of 99960 pa to 100216 pa, 

showing velocity. 

 

 

Figure 8.13: Acoustic impedance inside the expansion muffler. 
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Figure 8.14: Turbulent Kinetic energy profile across the length of muffler. 

 

Figure 8.15: Pressure profile across the length of expansion muffler. 
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The pressure plot in figure 8.15 shows a linear decay and as the flow enters expansion chamber the 

flow expands and pressure drops at constant value until flow reaches the rear end of expansion 

chamber. The pressure in the inlet and tail pipe decay as expected in duct type of flow.  

8.5 Forced Pulsation at the Inlet of Simple Expansion Muffler 

To investigate the propagation of sound inside an expansion muffler, a sinusoidal pulse is forced at 

the inlet of simple expansion muffler. The forced oscillation is combined with the synthetic 

boundary condition according to equation 8.2 to keep realistic turbulence along with pulsation in 

the inflow condition. In case of forced oscillation, it has been noted that more high frequency 

waves can be captured with fully implicit Crank Nicholson scheme. The Karki-PISO algorithm 

provides the computational flexibility to adopt fully implicit Crank Nicholson scheme without any 

stability issue in simulation of forced pulsation over mean flow profile obtained from 

three-dimensional compressible simulation. The rest of the computational setup is kept similar to 

the one uses for previous three dimensional simulations.  

Acoustic Simulation: Acoustic simulation of forced pulsation has already been studied in chapter 4 

with regards to the no-flow laminar condition. Muffler was also simulated with mean flow using 

RANS to obtain spectral analysis of attenuation in muffler. However, it was found that RANS 

usually tends to loses high frequency waves in the computational domain, leading to disparity and 

discrepancies in the predicted attenuation for higher frequency ranges. In last section, 

three-dimensional simulation of muffler flow acoustics is achieved using LES sub-grid model. On 

the top of the flow profile achieved in last section, a 3000Hz sinusoidal pulse is imposed at inlet of 

muffler. The mesh spacing and numerical schemes are same as in the last section.  
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A similar flow acoustic analysis is made in the domain of the computation by choosing same four 

probes at same location in the muffler. The pressure, density and velocity data are recorded 

throughout the period of pulse propagation at these four probe locations, near the front wall of 

expansion, near the rear wall of the muffler, in the middle of the muffler and in the tailpipe 

immediately after expansion. The pressure spectrum for probe 1 at the front wall of the expansion 

in figure 8.16(a) shows that the chamber resonance at the location has shifted to 1.6 from the 

previous 1.1. The peaks in figure 8.16 (a) seems to be a bit smoother, signalling the cancellation of 

few perturbations occurring in figure 8.5, where only flow acoustics were considered in the 

simulation. The shift in Strouhal number of the chamber resonance and the smoothening of certain 

perturbations are due to the presence of forced pulsation and their subsequent reflections inside the 

chamber. The pressure spectrum for probe 2 at the rear wall of the expansion in figure 8.16(b) 

shows the presence of other frequency modes occurring primarily at Strouhal number of 0.4. These 

frequency modes are different from the chamber resonance which can also be seen occurring there 

in the spectrum. These mode frequencies are the frequencies at which the vortex near the rear wall 

of chamber sheds or interacts and get pushed by the incoming forced pulse and subsequent 

reflections. The velocity contour in figure 8.18 and vorticity contour in figure8.20 clearly indicates 

the formation of vortex rolls very close to the rear wall of muffler after the pulse crosses the 

expansion inside the muffler. A comparison between the velocity contour before pulsation (figure 

8.10) and velocity contour after pulsation (figure 8.18) also supports the formation of vortex at the 

corner of rear wall. A closer look at the isosurfaces shown in figure 8.19, highlight the presence of 

high velocity, closely spaced isosurfaces near the rear wall of the expansion chamber, which also 

supports the presence of these frequency modes. This spectrum also consists of the frequency of 

interaction of flow acoustic shedding and pulse propagation in the muffler.  
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The pressure spectrum for probe 3 in figure 8.17 (a), on the other hand dominantly shows the 

presence of pulse propagation frequency and the frequency of their subsequent reflections from the 

expansion walls. The pressure spectrum for fourth probe in the tailpipe shown in figure 8.17 (b)  

shows the presence of all the frequency modes, including the Rossiter frequency, vortex shedding 

frequency, vortex interaction frequency and the turbulent frequency, altogether.  

In order to perform the analysis of effect of forced pulsation in the muffler, on a similar note to the 

analysis in section 4.4.1, two probes are again located in the simulation domain of the simple 

expansion muffler, one near the inlet and another immediately after the expansion chamber. The 

frequency analysis of pressure spectrum is performed to obtain transmission loss spectrum and 

pressure pulse spectrum. The transmission loss spectrum for LES simulation in figure 8.21 shows 

the pulse attenuation in the simple expansion muffler at various frequencies. Figure 8.20 also 

compares the transmission loss spectrum for RANS and LES simulation in expansion muffler at 

forced inlet frequency of 3200Hz. It can easily be seen in the figure that there are some 

discrepancies at the higher frequency range of the transmission loss in RANS simulation of 

expansion muffler. The discrepancy is supposed to be due to the averaging in RANS simulation 

which results in smoothening out of the high frequency oscillations.  
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Figure 8.16: (a) pressure response spectra at probe location 1. (b) Pressure response spectra at 

probe location 2. 

(a) 

(b) 
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Figure 8.17: (a) pressure response spectra at probe location 3. (b) Pressure response spectra at 

probe location 4. 

(b) 

(a) 
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Figure 8.18: Pressure contour coloured by velocity after pulse crosses the muffler and their 

reflections interacts with the flow acoustics. 

 

 

 

This can be better understood, if a comparison between the RANS transmission pulse plot (figure 

4.23(b)) and LES transmission pulse plot (figure 8.22) are made. The comparison clearly shows 

the missing high frequency oscillations in the RANS simulations. It is well known that the LES 

adopts the Kolmogorov’s theory of self-similarity and predicts the transient flows better than 

RANS. RANS on the other hand uses statistical averaging and model most of the scales in the 

computational domain.  
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Figure 8.19: Acoustic pressure (    ) isosurface in the range of 99960 pa to 100216 pa, 

showing velocity profile at start (top), after pulse and their subsequent reflections propagate 

through the expansion muffler (bottom).  
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Figure 8.20: Vorticity contour at start (top); and, after pulse and their subsequent reflections from 

expansion chamber propagate through the expansion muffler (bottom).  
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Figure 8.21: Comparison of transmission loss spectrum for RANS and LES in simple expansion 

muffler.  

 

Figure 8.22: Transmission pressure spectrum of tailpipe pressure in a LES simulation of simple 

expansion muffler. 
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The ability of LES to compute most of the large scale eddies and only model the small scale eddies 

through sub-grid scales provides it an edge over RANS, where most of scales are modelled. These 

attributes of the two methods justify the missing high frequency modes in the RANS results, 

shown in figure 8.22. The propagation of pressure pulse in the inlet pipe for higher frequency 

ranges is shown in figure 8.23. The stretching of pulses during the propagation can be observed by 

comparing the pulse at 1m, 3m and 5m away from the inlet. The pulse propagation for lower 

frequency range is shown in figure 8.24. The pulse stretching and perturbation seems to be more 

affected in these lower frequency ranges. The stretching of pulse could be due to the 

superimposition of turbulence scale and back-pressure over the forced pulsation profile. It is 

important to note that the back-pressure profile remains effectively constant throughout the 

simulation and the stretching in the pulse is primarily the effect of turbulence length scales on 

pulse propagation. In this case also, LES is capturing the effect of back-pressure and turbulence 

better than RANS methods and demonstrate the pulse and turbulence interaction for a range of 

frequencies.  

To better understand the acoustic response of simple expansion muffler for a range of frequencies, 

a detailed acoustic response analysis is performed. The mean flow profile of simple expansion 

muffler is forced with a range of pulsating flow of varied frequencies, and their acoustic responses 

are recorded at certain points for obtaining a transmission loss spectrum and transmission pulse 

plot in the tailpipe. Figure 8.25 shows the transmission loss spectrum and transmission pulse plot 

for frequencies ranging from 500Hz to 2000Hz. 
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Figure 8.23: Stretching of pressure pulse during propagation in inlet pipe for (a) 3000Hz and (b) 

2000Hz pure pulse. 

(a) 

(b) 
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Figure 8.24: Stretching of pressure pulse during propagation in inlet pipe for (a) 1000Hz and (b) 

500Hz pure pulse. 

(a) 

(b) 



8. LES Simulation of Pulsating Acoustic Flow through Muffler 

235 
 

As it is evident from the figure 8.25 (a), the attenuation inside the simple expansion muffler for 

pure sinusoidal sound propagation has higher attenuation at their natural sinusoidal frequency than 

at other frequencies. This observation can also be supplemented with the pulse propagation 

demonstrated in figure 8.24 for lower frequency ranges and in figure 8.23 for higher frequency 

range, where the pulse stretches and thereby attenuates at their frequencies. This phenomenon was 

not captured by the laminar compressible solver in section 4.4.1 and 4.4.2, where either there was 

no turbulence effect taken into account or the model of turbulence and numerical method itself had 

some limitations. The better capturing of various acoustic scales and acoustic attenuation in the 

present work is due to the fact that the current LES simulation of sound propagation in muffler 

captures turbulence scales and flow separation effects more accurately than the previous 

simulations done in chapter 4. 

For a much higher frequency range of 3000Hz to 5000Hz, the transmission spectrum and 

transmission pulse plot is shown in figure 8.23. The transmission loss spectrum shows good 

agreement in the range of validated frequency of 0 to 3000Hz. It is important to note that the 

attenuation in the pulse at its own spectral frequency is much less affected in these higher 

frequency ranges, as demonstrated in the figure 8.23(a). It is due to the fact that at higher frequency, 

the length scale of turbulence does not have much larger interaction with the pulse and therefore 

the attenuation at its own spectral frequency is not much expected. The transmission pulse plot in 

figure 8.26 (b) shows reasonable increase in fluctuation with increasing input frequency in 

comparison to the transmission pulse plot in figure 8.25 (b). These increased high frequency 

fluctuations are very important to understand the various frequencies inside the expansion 

chamber muffler. 
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Figure 8.25: (a) Comparison of transmission loss spectrum for various lower forced pulsation 

frequencies. (b) Comparison of transmission pulse for various lower forced pulsation frequencies. 

(Forced frequencies involved are 500Hz, 1000Hz and 2000Hz)  

(a) 

(b) 
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Figure 8.26: (a) Comparison of transmission loss spectrum for various higher forced pulsation 

frequencies. (b) Comparison of transmission pulse for various higher forced pulsation frequencies 

(Forced frequencies involved are 3000Hz, 4000Hz and 5000Hz). 

(a) 

(b) 
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Regarding the shift in Strouhal number range upon introduction of forced pulsation at inlet, it is 

perhaps the high frequency reflections (mostly near the sinusoidal frequency range, as shown in 

figure 8.26(b)) inside the expansion chamber from forced pulsation which causes the increase in 

vortex roll-up (decreases overall local average Mach number) and hence increases the Strouhal 

number for chamber resonance. It was found in figure 8.16 that the Strouhal number for chamber 

resonance increases considerably from 1.1 to 1.6, upon forced pulsation.  

8.6 Closure 

The chapter performs LES simulation of expansion muffler using mixed synthetic boundary 

condition for the inflow. A two-dimensional simulation is successfully conducted to understand 

the physics of the flow and predict the response of the simple expansion muffler upon forced 

pulsation at the inlet. Thereafter, a three-dimensional LES simulation is conducted to understand 

the flow acoustic inside the muffler. The analysis of flow acoustics inside muffler indicates that the 

chamber resonance occurs at Strouhal number 1.1, for a Mach number of 0.03. Forced pulsation of 

various frequencies are imposed at the inlet of the simple expansion muffler for the 3D LES 

simulation and it is found that the chamber resonance for the forced pulsation shifts to a higher 

Strouhal number of 1.6. The transmission loss spectrum for various forced pulsation of different 

frequencies show higher attenuation at the sinusoidal frequencies itself. The effect of turbulence 

and back-pressure on the pulse propagation is also highlighted in the context of flow-acoustic and 

forced-pulse interaction.  
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Chapter 9 

Conclusions and Future work 

9.1 Conclusions 

This thesis has developed and validated a pressure based Navier-Stokes compressible solver for 

simulation of acoustic propagation of noise in turbulent flow through ducts and mufflers. 

Moreover, a mixed synthetic inflow boundary condition is also developed and validated for LES of 

channel flow. In the end, LES of a simple expansion muffler has been conducted to analyse the 

flow-acoustics and acoustic-pulse interactions inside the expansion muffler. This chapter presents 

an overview of different numerical and experimental results and conclusions. Following the 

conclusions, directions for future works are also itemised.  

In Chapter 2, a new hybrid pressure-based Karki-PISO compressible solver was proposed and 

verifications were conducted for spatial and temporal accuracies. The proposed Karki-PISO solver 

has provided a low Mach number universal solver that can simulate the Navier-Stokes equations 

using a unique pressure-correction technique. This solver was further put to investigation in 

Chapter 4 to successfully analyse the behaviour of various geometrical and numerical aspects of 

simple expansion muffler design. The simulation of simple expansion muffler for forced pulsation 

at the inlet also provided an interesting similarity with the analytical and similar previous 

experimental results. In case of considerable mean flow, the simulation of a circular pipe captured 

the resonance frequency of the pipe in the transmission loss spectrum. It was found that the 

transmission loss spectrum provides an unrealistic linear increase in sound attenuation at higher 

frequency due to the simplifications and averaging in RANS techniques. For a more complicated 
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turbulent flow involving separation and reattachment, a simple expansion muffler was analysed 

for forced pulse propagation over a considerable mean flow profile at the inlet of the muffler. 

Although the transmitted pulse in the muffler captured all the high amplitude peaks, it was found 

that the transmission pulse did not capture very high frequency fluctuation, which was clearly 

averaged out by RANS simulation. The linear unrealistic increase in attenuation in transmission 

loss spectrum also pointed to RANS averaging. This was later confirmed by the LES simulation 

results obtained for a simple expansion muffler in Chapter 8.  

In Chapter 5, a set of benchmark experimental results were obtained for a simple expansion 

muffler both with and without mean flow. The experimental results without mean flow showed a 

lower attenuation in the lower range of transmission loss spectrum, which was captured by the 

Karki-PISO compressible solver with acceptable shift in frequency plane. The experimental 

simulation with mean flow provided some interesting results which showed higher attenuation for 

certain mean velocities. The attenuation towards the higher frequency end of the transmission loss 

spectrum was reduced with increasing velocity inside the muffler from those certain values. This 

higher attenuation for a mixed random pulse forced at the inlet of the muffler was further 

confirmed with the LES results obtained in Chapter 8 from the simulation of forced pure pulse 

propagation in a simple expansion muffler, where there was higher attenuation in pulse 

propagation at their natural frequencies in the transmission loss spectrum.  

A mixed synthetic inflow boundary condition was introduced in Chapter 6 with its evolution in the 

context of initial boundary generation for LES. This mixed synthetic boundary condition was 

further successfully adopted in simulating channel flow and pulse propagation in channel with 

mean flow in Chapter 7. It was found that the LES captures the large scales of mean flow better and 

provides accurate channel resonance inside the duct, compared with other resonance modes. In 
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Chapter 8, LES of a simple expansion muffler was performed to analyse the flow-acoustic present 

in the mean flow simulation of the muffler. Chamber resonance due to tonal noise and vortex 

shedding due to turbulence interactions and the other modes of these periodic structures were 

found for certain Strouhal number in flow. The effect of forced pulsation inside the expansion 

muffler was observed with regards to the shift in Strouhal numbers for these periodic structures 

with Strouhal number for chamber resonance shifting from 1.1 to 1.6. The interaction of 

flow-acoustic with the turbulence scales inside the muffler was observed with flow-visualisation, 

contours and isosurfaces to capture a greater insight into the physics of the interaction.  

To summarise, a set of Navier-Stokes equations were solved for the acoustic propagation of pulse 

in a simple expansion muffler using a pressure based low Mach number flow solver. The LES 

simulation of pulse propagation provided an accurate set of solutions for noise propagation in a 

complex separating flow. It could be hoped that with recent improvements in computational 

resources, this pressure based Karki-PISO solver could fill the gap between the computational 

aeroacoustics solver and general CFD solvers.  

 

9.2 Future Work 

The following research could be considered to be future extensions of the current research work: 

a) Finer mesh: Although LES of a simple expansion muffler has provided a good agreement 

from theory in our frequency-range of interest, it is known from the mesh independence 

study in Chapters 4 and 5 that the spatial discretization errors do exist for the higher 

frequency ranges. These higher frequency ranges can be further investigated by using finer 

mesh (less than 4mm mesh spacing) for simple expansion muffler geometry.  
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b) Near-wall investigations: The present research was focused on the bulk flow region and 

near-wall effects were largely overlooked. Future work will focus on the near-wall 

flow-acoustic interactions and also on the analysis of the various forced pulse propagation 

in the internal flow problems. In this regard, other applications (apart from the simple 

expansion muffler) of internal flow acoustic propagation and attenuation will be studied.  

c) Improvement in the mixed Synthetic inflow boundary: Improvement in the mixed 

synthetic boundary should be presented so that near-wall functions can be avoided. The 

near-wall models are usually associated with the accuracies in the statistics in the wall 

region of the flow.  

d) Further Applications: Other complex turbulent flow applications for acoustic simulation 

will be studied. A wall mounted Helmholtz resonators or other will be studied. The wall 

mounted resonators can facilitate an opportunity for the near-wall investigation of the 

flow-acoustic interaction in the device.  
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Appendix 

Navier-Stokes equations solved in this work for RANS and LES simulations are as follows: 

RANS Equations: 
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Where   denotes density weighted Favre-averaged variable and   denotes averaged variable.      

is usually computed using Boussinesq assumption (Eq. 3.15) and 
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LES Equations: 
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(10.7) 

Where   denotes density Favre-filtered resolved variable and   denotes filtered variable and 

               

         
    

   
 

   

   
 

Where    is turbulent viscosity,     is the resolved rate of strain and Prt is turbulent Prandtl 

number.  


