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Abstract 

The acid catalysed esterification of ethanol by acetic acid, a batch process, has been 

investigated on a laboratory scale at the high temperature range of 78 - 80°C. The 

data has been collected by Raman Spectroscopy and successfully de-noised using 

Principal Components Analysis. The first principal component (PCI) was found to 

describe the fluorescence and other sources of noise in the data and the reconstituted 
data due to the variation captured in the second principal component (PC2) contained 

the actual Raman spectra. Thus the reaction profile as well as the profiles of 

individual reaction components have been clearly mapped out. Validation of this de- 

noising technique has been done by calculating the kinetics of the reaction with the 

reconstituted data, which has been found to follow the theoretical first order reaction 

kinetics. The effect of variable selection procedures on model building has been 

investigated using data from a continuous industrial process, for which reaction 

profiling as was done for the batch system is not applicable. Two variable selection 

techniques, General Randomised PRESS-based Elimination (GRAPE) and the genetic 

algorithm (GA), improve the prediction ability of MLR models by a great deal, 

indicated by Root Mean Square Error of Cross-Validation (RMSECV) values of 

1.0649 - 1.1277 and 1.0977 - 2.0064 respectively. Predicted concentrations are a 

good estimate for the actual concentrations. 
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Introduction 

The need for better process control of industrial batch processes is important, since 

batch processes are finding increasing applications in the chemical industry, 

pharmaceuticals, bio-technical and in the brewery industry among many othersi. 

Chemical manufacture by batch production forms a major and highly profitable sector 

of the chemicals industry. With the present trend towards batch production of high 

value added products like pharmaceuticals and fine chemicals, this sector is rapidly 

expanding. The cost of development of a fine chemical process is high. A significant 

part of this cost is in the laboratory experiments and extensive pilot plant trials 

required for scale up to full production. Strict safety rules also require the 

manufacturers to carry out more detailed safety studies. 

The advantage of batch processes is their ability to produce high-value products 

within short manufacturing times. Moreover, the procedures in batch processes are 

relatively very simple; basically the reactants are loaded into the reaction vessel, 

processed under controlled conditions and then the completed product is discharged2. 

The variation in products from batch to batch needs to be minimised as much as 

possible. This brings in the need for better process control. Good process control 

design is a creative, dynamic, and iterative process. It demands an understanding of 

the big picture, the minute details, and the skills to balance them. Research that aims 

to advance optimisation and control with industrial applications are very relevant. 

Such work will involve non-linear process control techniques, process modelling and 

simulation and on-line real-time computer application control in order to achieve 

process automation. 
Generally, laboratory analytical instrumentation is very accurate and versatile as well 

as expensive and delicate. Thus to be applied industrially, the instrument must be 

ruggedised or protected by some other means from the harsh operating conditions. 

The use of optical analytical devices allows the extension of the analytical instrument 

to various measurement points because of the use of low-loss optical fibres. This 

helps reduce cost. Another advantage is that the expensive and delicate 

instrumentation can be located in the relatively benign environment of a control room, 

with only the optical fibres and relatively simpler sampling equipment at the 

measurement point. 

Many methods are used in process control, ranging from basic knob-twisting methods 
for controlling reaction conditions and feed rates, to advanced programmable 
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controllers. Batch reactions are complex in nature due to their finite duration, 

inconsistency in homogeneity and multicomponent nature. Even with extensive 

automation, control of a batch process is very challenging. Industry is rapidly moving 

away from the situation of doing post-production investigation due to its wastefulness 
both of resources and time3. One solution has been the on-line sampling and analysis 

of various stages of the process at regular time intervals. Besides the expenditure 
involved in equipment acquisition and set-up, it offers information only for correcting 

the fault as and where it is found. 

A more pro-active approach is to create a model that is capable of predicting chemical 

changes within the reaction vessel, with a view to controlling the process from a 

remote position. The initial stage of this work is the continuous monitoring of the 

process in order to acquire information on all stages of the process and also to be able 

to follow all chemical processes going on. This calls for the use of an in-situ probe 

that conveys data to a spectrometer. Such data, when analysed with chemometric 

techniques, offers information vital to the modelling step. 
As a starting point, we have elected to perform real-time monitoring of a relatively 

simple and well-known batch industrial process - the reaction of ethanol and acetic 

acid to produce ethyl acetate and water. Our aim is to establish the use of a 

spectroscopic probe placed in-situ to register all changes occurring in the reaction 

mixture in real time and to present data that can be use to trace and explain all the 

chemical and physical changes occurring. This is a prelude to process control. The 

kinetic (theoretical) characteristics of the process are compared with the data obtained 

experimentally to ascertain authenticity. 
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CHAPTER 1: LITERATURE REVIEW 

1.1 Process Analysis Methods 

Process analysis comprises continuous and discontinuous procedures for establishing 

the nature and properties of a process. Often used in connection with chemical 

processes in the chemical industry, the term "process analysis" is part of industrial 

applied analysis. In recent times on-line and in-line techniques have become more 

technically and economically important, making use of automation. Process analysis 

has been characterised by the use of sophisticated and expensive instruments for 

multicomponent analysis. However, with the increasing availability of spectroscopic 

methods of analysis, these have been substituted by relatively less expensive and 

simpler instruments4. Examples are the use of optical emission spectroscopy, x-ray 

fluorescence spectroscopy in industry5'6. Alongside these spectroscopic methods, 

classical methods like titrimetry, gravimetry, colorimetry and electrochemical 

methods as well as separation methods have always been used for reference. 
Statistical process control is achieved when certain process variables are maintained 

close to their expected values7. In order to ensure that a process proceeds within the 

set values of these variables, the process must be monitored. This reduces variability, 

increases yield, and decreases (hazardous) waste and cost. Many companies in the 

pharmaceutical industry are developing methods for real-time process analysis. Real- 

time process analysis drastically reduces costly hold-up time where the analysis time 

may be longer than the processing time or where a particular batch may be held up 

waiting in an intermediate processing stage waiting for chemical analysis3. 

1.2 Batch Processes 
Many chemical, pharmaceutical, biochemical, and other manufacturing processes are 
batch in nature. Process product quality variables are measured after the end of each 
batch, making it difficult to monitor the progress of the batch process or to control the 

product quality8. There are huge archives of routinely collected data on temperature, 

pressure, flow rates and other such process variables collected by on-line process 

computers within the duration of each batch, and these have been a rich source of 
batch process data for building and testing various multivariate techniques for batch 
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process analysis4. Batch processes can be found in a wide variety of industries- 

everything from hydrocarbon and chemical processing to food, pharmaceutical, and 

consumer goods manufacturing. 

1.3 Control of processes. 
Until recently, all control on the plant was manual. Valves were moved by hand, heat 

was turned on and off by flipping a switch, and levels were determined by watching 

gauges. These were later on replaced by automatic control, initially electrical and 

pneumatic forms and later on in much more sophisticated electronic configurations. 
The addition of computers and centralised digital control systems, then 

microprocessor technology, has led to the distributed control systems (DCSs) so 

commonly used today. 

Pressure and level are two of the most fundamental measurements in process control. 
People have been measuring both for a long time, but the technologies involved are 
by no means static. New developments keep surfacing that help engineers make these 

measurements more accurately and with greater ease and flexibility. 

Worldwide, flow measurement is the largest segment of the industrial measurement 

market, and that segment is growing rapidly, about twice as fast as the overall market. 
Flow is the measurement of confined fluid streams, liquid, gas, or vapour, due to 

either to gravity or to pressure produced by pumps and compressors. Reasons for 

measuring flow can be divided into four categories: control, indication, monitoring or 

totalizing, and custody transfer. 

Temperature was one of the first variables to be measured in the process field and has 

been determined in many different ways. Virtually any physical property that changes 

with temperature has, at one time or another, been used as a basis for this 

measurement. Among the many methods still used in industry today are 
thermocouples (T/Cs), resistance temperature devices (RTDs), thermistors, electronic 
temperature sensors, bimetallic devices, filled devices, infrared (IR) devices, and 
acoustic pyrometry. Programmable controllers of today provide versatile control 

capabilities that make them suitable for a variety of continuous, batch, and discrete 

applications. 

Important as these measurements are, they provide very little information about the 
chemical composition of a process. For this type of determination, analytical 
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measurements are required. Statistical process control enables to keep an industrial 

process under selected and controlled conditions. The traditional analysers and 

statistical tools are useful generally in a univariate way. In a multivariate approach, as 

required for complex batch processes, they allow for monitoring but do not explain 

and correct eventual detected changes. Multivariate statistical process control (MSPC) 

tries to detect variation due to special causes. One can define two types of variation in 

a process: common cause, variation that can be expected if the process is running 

under normal operating conditions (NOC); and special causes, variation that moves 

the process out of NOC. In continuous processes, multivariate control charts can be 

developed to control the process, which are comparable with univariate charts. MSPC 

for batch processes is inherently more difficult9. Batch processes that are very 

common in the chemical industry exhibit large variations in their operation. For batch 

processes the target values for the different process measurements and output 

variables are not clear and constant like in continuous processes. They depend on time 

(or conversion factor) and can be described as ideal temporal trajectories. MSPC can 

then be used to monitor the deviation from this ideal trajectory for a running batch. 

For batch MSPC the data can be arranged in a three-way array, and analysed with the 

batches considered as objects. 
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Figure 1: Illustrating the use of MSPC in batch reaction control. The normal 

operating conditions (NOC) are established within limits of the ideal 

trajectory, and the PCl -PC2 plot of a batch reaction is plotted Points that fall 

outside the NOC require further investigation. 

When a new batch starts, the available measurements are used to calculate the 

position of that batch in the PCI-PC2 plot. If during the run a batch falls outside the 

area of NOC, then action has to be undertaken. 
The objectives of process control are: 

Stabilise the process 
ýb Provide consistent operation from shift to shift 

Increase product quality 

Increase product yield 
Decrease variation in all process parameters 
Co-ordinate production scheduling 
Decrease energy use 
Compliance with environmental regulations. 
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There are a number of technical issues associated with chemical process control: 
(1) most chemical processes are very non-linear, 
(2) time lags and delays due to flow and heat conduction are prevalent, 
(3) hysteresis is common, 

(4) system drift is common, 
(5) plants are often poorly instrumented, and 
(6) first principles models are often unavailable or unattainable. 
Fortunately, compared with some control problems, time scales are very long and 

computation time is not an issue. Many of these issues can be addressed by using 

control schemes which incorporate Non-linear Adaptive Computation (Neural 

Networks). First principle models are not needed if a network can adaptively capture 

the system performance as the plant operates. If the network is trained on-line, then 

plant drift can be tracked. The networks themselves are non-linear and usually have 

no trouble capturing the non-linearities in the processes. Non-linear accurate system 

models permit the system to be controlled into and out of unstable hysteresis regimes. 
Accurate non-linear models also allow accurate prediction farther into the future, thus 

permitting control in the presence of significant time lags and delays. 1° Modern DCSs 

are designed to gather, store, manipulate, and display process information in order to 

improve process control and achieve greater product consistency, quality, and output. 
They also can validate the process, aid in records management, help assure worker 

safety, and provide data needed to comply with environmental regulations. 

1.4 Chemometrics and applications 

Many chemical processes today are characterised by rich data that gives little direct 

information about the process. This data bank is seen as a gold mine of information 

provided that the relevant and important information is extracted effectively and 

quickly enough to be of use in quality and safety improvement, waste reduction and 
increased yield and consequently profits. Such a data extraction method should be 

able to overcome problems like undetected sensor failures, uncalibrated and 

misplaced sensors, lack of integrity of the data historian, and general human errors. 
With the increase in the effectiveness and application of spectroscopic techniques, 
large amounts of (complex) data can now be acquired in an impressively short 
acquisition time. One data analysis technique that has been applied successfully to 
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reduce large amounts of spectroscopic data into meaningful information is 

Chemometrics. 

Chemometrics is the discipline concerned with the application of statistical and 

mathematical methods to chemical data 11,12. A data collection task typically involves 

many measurements made on many samples. Such multivariate data has traditionally 

been analysed using one or two variables at a time. To determine the relationships 

among all samples and variables efficiently, we must process all of the data 

simultaneously. Chemometrics is the field of extracting information from multivariate 

chemical data using tools of statistics and mathematics, and can be typically used for 

one or more of three primary purposes: 

  To explore patterns of association in data; 

  To track properties of materials on a continuous basis; and 

  To prepare and use multivariate classification models. 

The algorithms in primary use in the field have demonstrated a significant capacity 

for analysing and modelling a wide assortment of data types for an even more diverse 

set of applications. A variety of powerful methods have been applied to the 

"supervised" analysis of multivariate data. In these methods, of which multiple linear 

regression (MLR), partial least squares regression (PLS) and principal components 

regression (PCR) are the most widely used, one seeks to relate the multivariate 

spectral inputs to the concentrations of target determinands, i. e. to generate a 

quantitative analysis, essentially via suitable types of multidimensional curve fitting 

or regression analysis 13.14. Although non-linear versions of these techniques are 

increasingly available, 15,16 the usual implementations of these methods are linear in 

scope. 
Patterns of association exist in many data sets, but the relationships between samples 

can be difficult to discover when the data matrix exceeds three or more features. 

Exploratory data analysis can reveal hidden patterns in complex data by reducing the 

information to a more comprehensible form. Such a chemometric analysis can expose 

possible outliers and indicate whether there are patterns or trends in the data. 

Exploratory algorithms such as principal component analysis (PCA) and hierarchical 

cluster analysis (HCA) are designed to reduce large complex data sets into a series of 

optimised and interpretable views. These views emphasise the natural groupings in 

the data and show which variables most strongly influence those patterns. 
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The costs of making experiments are rapidly increasing, at the same time as the costs 

for making additional measurements on an ongoing experiment are decreasing due to 

the availability of electronic instrumentation such as spectrometers, chromatographs, 

etc. Hence, there is a tendency to make fewer and fewer experiments, but measure 

more and more data in each of them. 
In many applications, it is expensive, time consuming or difficult to measure a 

property of interest directly. Such cases require the analyst to predict something of 

interest based on related properties that are easier to measure. One of the goals of 

chemometric analysis is to develop a calibration model, which correlates the 

information in the set of known measurements to the desired property. Chemometric 

algorithms for performing regression include PLS and PCR and are designed to avoid 

problems associated with noise and correlations in the data. Because the regression 

algorithms used are based in factor analysis, the entire group of known measurements 

is considered simultaneously, and information about correlations among the variables 

is automatically built into the calibration model. Chemometric regression lends itself 

handily to the on-line monitoring and process control industry, where fast and 

inexpensive systems are needed to test, predict and make decisions about product 

quality. Chemometrics methods are needed in order to extract useful, specific and 

selective information from these data. Standard chemometric methods have been 

found extremely useful in industry17. Methods such as multivariate calibration and 

other multivariate methods are being used increasingly in applications like the 

monitoring of beer production, the quality control of pharmaceutical formulations, 

cosmetic, and pulp and paper production as well as more recent applications in batch 

processes like biotechnical fermentation processes and wafer production in the 
18 semiconductor industry 

1.4.1 Multivariate Calibration 

Calibration allows the user to relate instrumental measurements to the sample of 

interest. Multivariate calibration allows for the analysis of several measurements from 

several samples or specimens. This compares to univariate calibration, which involves 

the use of a single instrumental measurement to determine a single analyte, Either 

method may contribute to the two-step procedure where 

1) Data is calibrated and 
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2) Predictions based on the calibration are made. 

In calibration, indirect measurements are made from samples where the amount of the 

analyte has been pre-determined, usually by an independent assay or technique. These 

measurements, along with the pre-determined analyte levels, comprise a group known 

as the calibration set. This set is used to develop a model that relates the amount of 

sample to the measurements by the instrument. In some cases, the construction of the 

model is simple due to a certain relationship, such as Beer's Law in the application of 

UV and NIR spectroscopy. Other cases can be much more complex and, in these 

cases, construction of the model is the time-consuming step. Once the model is 

constructed, it can predict analyte levels based on measurements of new samples. 

Another advantage of multivariate calibration is that it can be used to separate 

samples from interferences without the need of highly selective measurements for the 

analyte. In the case of HPLC, certain overlapping or anomalous peaks can be 

systematically separated or deleted from the data set based on certain linear 

combinations of measurements derived from one of several multivariate calibration 

techniques. 

The multivariate calibration set contains multiple measurements from multiple 

sources of samples and pre-determined analyte amounts. The second stage is the 

prediction step for new sample levels, and this uses a model that provides the basis for 

the evaluation of a linear combination of the measurements. Calibration techniques 

(used in the calibration step) differ in determining coefficient values for the preceding 

equation (or a similar equation). Three of these methods to be discussed are multiple 

linear regression, principal components regression, and partial least squares. 

1.4.2 Multiple linear regression (MLR) 

Models constructed from spectroscopy are relatively simple due to linear 

combinations of the instrumental measurements, which makes the model correlation- 
based. Models for a broader range of conditions (i. e., measurements from several 

wavelengths) have been constructed in order to separate overlapping peaks elicited 
from the analyte plus other unknown components or conditions. These methods are 
based upon the following equation: 

xi =bo+bi *yIz+bl*y12+... +bq*y, q+ei 1 
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where xi is the analyte level of the ith specimen, yü is the jth instrumental 

measurement with the ith specimen, b represents the model parameters, and et is the 

error associated with yl. From this equation, the analyte levels of new specimens can 
be predicted when the estimated bj is substituted for aj. 
MLR does not require knowledge of the amount of interference or other samples in 

the calibration set. However the maximum amount of measurements (q) used in this 

method is restricted to approximately 2 to 10 in most cases. Therefore selecting an 

appropriate set of instrumental measurements is paramount. For example, in critical 

care environments, use of Visible-NIR spectroscopy non-invasively monitors oxygen 

saturation in arterial blood19. One wavelength in the visible spectrum monitors blood 

pulsatile volume and oxygen saturation; the other in the NIR measures pulsatile blood 

volume only. Since the interference in this case is the blood volume, the information 

from the two wavelengths can be used to filter out the interference and provide a 

measurement of the oxygen content. 

1.4.3 Factor Analysis and Principal Components Analysis (PCA) 
Factor analysis, of which the most frequently used variety is called PCA, is a 

mathematical technique performed on a set of variables to find its underlying 
dimensions or factors. 

The main applications of factor analytic techniques are: 
1. To reduce the number of variables and 
2. To detect structure in the relationships between variables, that is to classify 

variables. 
Therefore, factor analysis is applied as a data reduction or structure detection method. 
Factor analysis builds a model from data. The technique finds underlying factors, also 

called "latent variables" and provides models for these factors based on variables in 

the data. This technique can be very helpful in finding important underlying 
characteristics which might not themselves be observed, but which might be found as 
manifestations of variables which are observed. Factor analysis is also used for the 

combination of two variables into a single factor. The correlation between two 

variables is summarised in a scatter plot. A regression line can then be fitted that 

represents the "best" summary of the linear relationship between the variables. If a 
variable is defined that would approximate the regression line in such a plot, then that 
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variable would capture most of the "essence" of the two items. Subjects' single scores 

on that new factor, represented by the regression line, could then be used in future 

data analyses to represent that essence of the two items. 
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Figure 2: Illustrating the basis of factor analysis - Reduction of two variables to one 
factor which is a linear combination of both variables. 

In a sense the two variables have been reduced to one factor which is actually a linear 

combination of the two variables. This phenomenon of combining two correlated 

variables into one factor illustrates the basic idea of factor analysis. If the two-variable 

example is extended to multiple variables, then the computations become more 
involved, but the basic principle of expressing two or more variables by a single 
factor remains the same. When there are more than two variables, they define a 
"space" just as two variables defined a plane. Thus, for three variables, a three- 

dimensional scatterplot can be plotted, and again a plane can be fitted through the 

data. With more than three variables it 
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Figure 3: Basis of factor analysis - Reduction of three variables to a plane that 

defines the essential information in the three variables. 
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becomes impossible to illustrate the points in a scatterplot. However, the logic of 

rotating the axes so as to maximise the variance of the new factor remains the same. 

1.4.3.1: Principal Components Analysis. 

Modern laboratory instruments and measurement instruments in the chemical process 

industry are capable of acquiring an over-abundance of data, most of which is under- 

utilised or not utilised at all, as the information they give is not immediately useful. 

There is a great deal of correlation and redundancy in these measurements. Rather 

than being discarded, a better approach is to compress such data so that the essential 

information is retained and is more easily displayed than each of the original variables 
does. Since the essential information lies in how the variables change with respect to 

each other and not in any one single variable, the essential information must be 

extracted from the data, after employing some method of filtering or signal averaging 
to remove the large amount of noise that inevitably accompanies such large data. 
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PCA is a well-known technique of multivariate analysis that is useful in visualising 

and analysing large data sets. First proposed in 190120, it was not widely used until 

the arrival of modern computing technology. The main goal of PCA is to reduce the 

size of a data set which has a large number of intercorrelated variables and retain as 

much of the information present in the original data as possible. Suppose there are 

samples located in an environmental space or in species space for which all 

environmental variables or all species cannot be simultaneously envisioned. Then 

there would be the need for ordination methods. However, with more than three 

dimensions, these methods will not suffice. What PCA does is that it takes the cloud 

of data points and rotates it such that the maximum variability is visible, i. e. it 

identifies the most important gradients. 
When it is used for modelling, PCA is further applied to determine the minimum 
dimensionality needed to reproduce the original information within experimental 

measurement erro? ', i. e. PCA reduces the dimensionality of the problem in order to 

examine the important trends underlying the multivariate system. 
Gurden et al 22 used PCA to successfully map out the process trajectory of an 

industrial reaction, along with other statistical indicators for the detection and 
diagnosis of process disturbances, and thus followed the operation of an industrial 

pilot plant. One major analytical tool both in industry and in research laboratories is 

HPLC, and like all chromatographic techniques, the polarity of the stationary phase as 

compared to the mobile phase determines the effectiveness of the method. Thus there 

are various polarity indicators, and Heberger conducted a comparison and evaluation 

of 8 of these and 30 stationary phases using PCA23, It was found that three principal 

components accounted for 99% of the total variance in the data, indicating that no 

single polarity variable is applicable alone. Further, a loadings versus scores plot 

showed significant groupings of the polarity indicators and stationary phases. An 

example of an environmental application of PCA is the work by Astorga-Espana et. 

al. 24, determining the levels of trace metals and some cations in a fish species native 
to the Canary Islands. PCA discriminated between the major cations and the trace 

metals and also between fish samples belonging to different seasons. 

22 



1.4.4 Partial Least Squares (PLS) regression 
PLS is a multivariate calibration method that establishes a relationship between a set 

of independent variables X e. g. spectra, and dependent variables Y e. g. concentration 

given by 

Y=Xxb+e 2 

where b is the vector of PLS regression coefficients and e is the vector of errors that 

cannot be explained by the model. PLS is a full spectrum method, i. e. all the 

information contained in the spectra is available for the modelling25. In PLS, the 

original X variables are projected unto a reduced data space defined by new variables 

called PLS factors. The projection matrix is iteratively calculated from X and the Y 

variables such that the covariance between them is maximised among all factors. 

PLS is a quantitative spectral decomposition technique that is closely related to PCR. 

However, in PLS, the decomposition is performed in a slightly different manner. 

Instead of first decomposing the spectral matrix into a set of eigenvectors and scores, 

and regressing them against the concentrations as a separate step, PLS actually uses 

the concentration information during the decomposition process. This causes spectra 

containing higher constituent concentrations to be weighted more heavily than those 

with low concentrations. Thus, the eigenvectors and scores calculated using PLS are 

quite different from those of PCR. The main idea of PLS is to get as much 

concentration information as possible into the first few loading vectors. 
Actually, PLS simply takes advantage of the correlation relationship that already 

exists between the spectral data and the constituent concentrations. Since the spectral 
data can be decomposed into its most common variations, so can the concentration 
data. This generates two sets of vectors and two sets of corresponding scores; one set 
for the spectral data, and the other for the constituent concentrations. The two sets of 

scores are related to each other through some type of regression, and a calibration 

model is constructed. 
As both the spectral and concentration data are decomposed simultaneously, and the 

scores are "exchanged" as each new factor is added to the model, PLS is a superior 

method. 

One of the main advantages of PLS is that the resulting spectral vectors are related to 
the constituents of interest. This is an improvement upon PCR, where the vectors 
merely represent the most common spectral variations in the data, completely 
ignoring their relation to the constituents of interest until the final regression step. 
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There are two versions of the PLS algorithm; PLS-1 and PLS-2. The differences 

between these methods are subtle but have very important effects on the results. Like 

the PCR method, PLS-2 calibrates for all constituents simultaneously. The results of 
the spectral decomposition for both of these techniques give one set of scores and one 

set of eigenvectors for calibration. Therefore, the calculated vectors are not optimised 
for each individual constituent. This may sacrifice some accuracy in the predictions of 
the constituent concentrations, especially for complex sample mixtures. In PLS-1, a 

separate set of scores and loading vectors is calculated for each constituent of interest. 

In this case, the separate sets of eigenvectors and scores are specifically tuned for 

each constituent, and therefore, should give more accurate predictions than PCR or 
PLS-2. 

The minor disadvantage in using the PLS-1 technique is about the speed of 

calculation. Since a separate set of eigenvectors and scores must be generated for 

every constituent of interest, the calculations take more time. For training sets with a 
large number of samples and constituents the increased time of calculation can be 

significant, but with modem computers, this is not a real problem. PLS-1 has the 
largest advantage when analysing systems that have widely varied constituent 

concentrations. 

The advantages of PLS are: 
Single step decomposition and regression; eigenvectors are directly related to 

constituents of interest rather than largest common spectral variations. 
l Calibrations are generally more robust provided that calibration set accurately 

reflects range of variability expected in unknown samples. 
Can be used for very complex mixtures since only knowledge of constituents of 
interest is required. 
Can sometimes be used to predict samples with constituents (contaminants) not 
present in the original calibration mixtures. 

While all of these techniques have been successfully applied for spectral quantitative 
analysis, the arguments in the literature generally show that PLS has superior 
predictive ability. In most cases, PLS methods gives better results than PCR, and 
PLS-1 is more accurate than PLS-2. Unfortunately, there are no definite rules, and 
only good research practices can determine the best model for each individual system. 
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Disadvantages of PLS are: 
Calculations are slower that most Classical methods, especially PLS-1. 

Models are more abstract, thus more difficult to understand and interpret. 

Generally, a large number of samples are required for accurate calibration. 
Collecting calibration samples can be difficult; must avoid collinear constituent 

concentrations. 

1.5 On-line Measurement methods 

Because of their rapid response times and the ease with which they perform 

simultaneous multicomponent determinations, spectroscopic techniques are very 

useful in process analysis26. Among the spectroscopic techniques, vibrational 

spectroscopy is the most widely reported in process analysis. 27 

1.5.1 Near Infrared spectroscopy (NIR) 

NIR is more useful for quantitative analysis than for identification purposes. Some 

applications include the determination of water in a variety of samples, the 

quantitation of phenols, alcohols, organic acids and hydroperoxides, and the 

determination of esters, ketones and carboxylic acids. Thus it is a most suitable 

measurement technique for on-line real-time monitoring of the esterification process 
in this research. NIR has had many applications in process analysis, where it performs 
better than many alternative approaches. Recent advances in instrumentation and 

multivariate calibration have increased the utility and performance of NIR 

spectroscopy 28. In comparison with infrared spectroscopy (IR), the NIR technology 

enables the direct in-line analysis of the reaction mixture by remote placing of the 

spectrometer using optical fibres29. NIR has been successfully applied in 

fermentation30, polyesterification3' and purity analysis32 as well as for kinetic 

modeling13. In on-line applications, NIR has been used in tobacco processing, paper 

converting, textile manufacturing, cereal grains processing, oil in snack foods, protein 
in grains and weights and thickness of coatings33. Most NIR methods are temperature 

sensitive, particularly those involving water-based systems34. 
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1.5.2 Raman spectroscopy 
When electromagnetic radiation irradiates a molecule, the energy may be transmitted, 

absorbed or scattered. Of the scattered radiation, the strongest component is made up 

of Rayleigh scattering - an elastic collision between the incident photon and the 

molecule. Where the collision is inelastic, the energy of the molecule changes by an 

amount 4Em, characteristic of the molecule. This is called the Raman effect. The 

change in the energy of the molecule is equal to the difference in energy between the 

incident photon and the scattered photon3s 

Raman light sources are usually in the form of a laser, though the mercury are was the 

initial source. The laser is almost ideal as a Raman spectroscopy light source because 

it has nearly complete linear polarisation, the (intense) beam can be focused on small 

sample volumes, and it is available in various wavelengths. 

The use of Raman spectroscopy in industrial process control is relatively recent and 

rapidly increasing 36'37'38'39' This is because Raman is more advantageous in many 

respects than many other conventional methods. Peaks in Raman spectra are 

abundant, well resolved and provide direct and clear chemical information since they 

correspond to fundamental transitions40. This is an advantage over the more 

commonly used NIR spectroscopy. Due to the selective nature of peaks in a Raman 

spectrum, it is also possible to use a few peak heights or peak areas to follow the 

progress of a reaction with time. Changes in laser intensity can be corrected by using 

an internal standard. Moreover, the light scattering nature of the Raman process 

allows simple and effective and stable fibre probe designs as compared to those 

needed for near- and mid-IR absorbance spectroscopy 41. This allows Raman 

spectroscopy to be used for measuring several spectra simultaneously, and also allows 

remote monitoring of processes in hostile environments. Raman spectra yield more 

information about certain types of organic compounds than IR spectra, and studies 

yield useful information about olefinic functional groups and cycloparaffin 
derivatives that may not be disclosed by IR spectra. Because Raman spectra are less 

cluttered with peaks than IR spectra, peak overlap is less likely and quantitative 

measurements are simpler. Moreover, Raman instruments are not subject to attack by 

moisture, and small amounts of water in the sample cause no interference. Because 

the laser beams can be focused with precision, it is possible to quantify very small 

samples. 
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In their assessment of the application of Raman spectroscopy for on-line real-time 

multi-point analysis, Roberts et al. 42 confirmed the suitability of Raman spectroscopy 
for analytical applications and even for aqueous solutions because of the extremely 

weak response to water. 
Recently, Raman spectroscopy has emerged as an important tool for the investigation 

of polymers. Raman spectra reveal information about the chemical nature, steric 

order, conformational order and orientation of the polymers43. 
In principle, since the intensity of the laser (source radiation) and the quantity of the 

scattering material present determine the intensity of a Raman band (assuming 

instrumental factors are invariant), Raman spectroscopy can be used quantitatively. 

However, reproducibility is almost impossible to control owing to the optical 

properties of the sample and its position with respect to the collection of optics of the 

input and focused laser beam. Consequently, most of the quantitative routines that 

have been used have been based on internal standards44, 
The drawback with this technique is that in addition to the Raman spectra, 

fluorescence spectra also arise, and this causes interferences. Raman and fluorescence 

spectroscopies are similar in their dependence on source intensity and signal loss. 

However, whereas Raman spectra always have multiple regions of uncorrelated 

spectral data, the same is not true for fluorescence spectra12. The presence of 

fluorescent reaction components and the occurrence of extra reflecting surfaces like 

bubbles enhance the occurrence of fluorescence spectra in Raman spectra. In fact, the 

fluorescence contribution can be so much as to render Raman data interpretation 

extremely difficult. Fluorescence can be minimised by a careful choice of the 

wavelength of the laser source for the Raman spectrometer, since the Raman 

scattering intensity decreases with laser wavelength whereas fluorescence gets less 

troublesome at longer laser wavelengths7. 
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1.6: Theory 

1.6.1 Calibration Methods 

Multivariate calibration methods are employed here in order to develop a quantitative 

model to predict all the properties of interest simultaneously. Such a model will be 

described by 

v=g(X, O), 9 

where c is the set of predicted variables (yj, y2, y3...... yAry) from X, the set of predictor 

(independent) variables (XI, x2....., XNx)45, g is a multivariate function and 4 is a vector 

or matrix of model parameters. Ideally, the difference between the actual y and the 

predicted q should be minimal. For a linear model, q' = XB, where B can be 

determined via latent variables as in principal components regression (PCR) and 

PLS46. Here, the predictors are compressed onto orthogonal factors or latent variables 

of which only those capturing the most variance are used to construct B. The number 

of factors to use can be determined by cross validation. The use of latent variables 

removes the problem of collinearity and reduces the influence of noise and 

experimental errors, thereby increasing the predictive ability of the calibration model 

built. 

To cater for non-linearity, two non-linear models are provided. The polynomial PLS 

(n-PLS)47 which is PLS with a polynomial inner relation, and then a multi-layer-feed- 
forward artificial neural network (MLF)48. For modelling non-linear relationships, a 

two layer MLF consisting of a layer with NhIdd non-linear units and a layer of Ny 

linear output units is most often applied. When bias terms are ignored (for notational 

convenience), the model is given by 

qP _ ̀ P(WIX)W2,10 

where Wl (size Nz x Nhidden) and W2 (size Nhidden x Ny) are the model parameters or 

weights and 'F(x) is a non-linear transfer function, here the tangents sigmoid function 

'1'(x)=1/(1+e . 11 
The weight values are obtained by learning or training in which the difference 

between q and y for the calibration set is iteratively reduced. The optimal Nh; dde� can 
be obtained by using a test set or through cross validation. 
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1.6.1.1. Cross-validation 

In order to build and validate a model, training and validation data sets are required. 

The training set is used to build the model and the validation set is used to test the 

performance of the model when presented with new data. A pre-requisite for this 

application is that there must be enough data to be split into training and validation 

sets. Where this is not the case, cross validation is applied. Here, the data (size 

Nsamples) is split up into Npt; 1s training sets (size N�,,,, ) and test sets (size Nies: = Nsampies 

- Nma, �). For each split a model is built using the training samples. Then the 

predictions for the respective test samples are used to calculate the Predicted Residual 

Error Sum of Squares (PRESS) thus: 
ms tin NI sf 

PRESS =E (yu - vlý)z 
j 

12 

When it is used to assess the optimal number of latent variables in PLS and PCR, 

PRESS is calculated as a function of the number of latent variables. The number of 

latent variables that gives the minimum PRESS is used to build the actual model. 

1.6.1.2. Variable Selection 

Another alternative to PLS and PCR modelling is variable selection. The application 

of variable selection has the advantage of removing noise and uninformative variables 

prior to modelling to improve the robustness and predictive power of the model. 

Variable selection can also produce simpler models that are easier to interpret. 

Variable selection, as used in VS-MLR (variable-selection multiple linear regression) 

has been found to outperform both PLS and PCR. In variable selection, PRESS is 

used as a criterion, so that only variables that give the least PRESS are used to build 

the model. 

1.6.1.3 General Randomised PRESS-based Elimination (GRAPE)49 

In classical modelling techniques, the whole data set is used in building the model. 
The difficulties with this approach arise because of the inclusion of variables in the 

data that are a poor representation of the trend in the data, It is these variables that 

reduce the correlation between the real data and the predicted data from the model. 
There are other variables that accurately represent the trend in the data, and any model 
built with these variables highly correlates with the original data. Variable selection 
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techniques of model building seek to isolate only these variables for model building. 

GRAPE is an iterative variable selection process that consists of a random addition 

procedure and a PRESS-based elimination procedure that refines the set of selected 

variables by minimising PRESS. Another option in GRAPE is the use of PRESS- 

based addition. The steps in the recursive version of the GRAPE algorithm applied in 

this work are: 
1. Create a trial solution S by randomly picking N, = Nm. variables. N.. is a user- 

settable control variable. 
2. Set Sbest =S 

3. Calculate PRESSs 

4. For each variable ieS, calculate PRESS&. j (i. e. PRESS of the trial solution S 

without the variable i. 

0 If PRESSs., < PRESSs then S= S-i 

5. If PRESSs < PRESSsb st, then SbeSt = S. 

6. Add random variables joS to S until Ns = N, nax. 
7. Repeat steps 3-6 until a user-settable maximum number of iterations, Niterac, ons, is 

reached. 
Thus in the first recursion, the number of variables to select from is equal to the total 

number of variables. In each subsequent recursion, only variables that were present at 

least once in S after step 4 and variables that were never picked in step 1 or 6 can be 

selected. This is repeated until no decrease in PRESS is observed in a user-settable 

number of recursions counter Nrcc�rsion,. 

In order to make the results of the cross-validation independent of the number of 

samples, PRESS is converted to the Root Mean Square Error of Cross-Validation 

(RMSECV) by: 

RMSECV = ýPRESSýNsampter 13 

1.6.2: Univariate Linear Regression 

This is commonly known as finding the line of best fit through a cloud of points. 
Linear regression is a method that fits a straight line through data. If the line is 

upward sloping it means that an independent variable has a positive effect on a 
dependent variable. If the line is downward sloping there is a negative effect. The 
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steeper the slope, the more effect the independent variable has on the dependent 

variable. 
It is assumed that the relationship between a single X variable and one Y variable is 

linear, i. e. 
Y=bX+a 14, 

where b is the slope of the line and a is the intercept at the Y axis. In this text, the 

variance of a variable is a measure of the spread of a variable about its average value, 

and the covariance is a measure of the similarity of two variables. Variables having 

high covariance are strongly related to each other. To know the strength of this 

relationship, we also need to know the variance of the individual variables. 

Univariate linear regression estimates the values of b and a by minimising the sum of 

squared vertical distances from points to the line. In other words, we choose a 

candidate slope, b and intercept, a. For each recorded (X, Y) pair, we square Y- bX - 

a and add it to the total. The line having the smallest total is the best-fit line. 

In practise, calculus gives us a formula for estimating b directly, and thence a, as 

follows: 
Covariance(X, Y) 

b= 15, 
Variance(X) 

b standing for an estimate of b. a can be ignored if all the variables are centred before 

being used. This is done by calculating the average value of the variable and then 

subtracting this value from all sample values (mean centring). The value of a can be 

calculated after modelling using the estimated value of b and the subtracted averages. 

When working with centred data, the linear regression equation for b in matrix form 

can be expressed as 

b =(XTX). 1XTY 16 

In this case if the variance of X is zero, then b cannot be estimated. This occurs when 

the X variable has the same value for all values of Y. 

1.6.3: Multiple Linear Regression (MLR) 
Correlation is a measure of relation between two variables. For example, a high 

correlation between purchases of say cheese and crackers indicates that these products 

are likely to be purchased together. Correlations may be either positive or negative. A 

positive correlation indicates that a high level of one variable will be accompanied by 
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a high value of the correlated variable. A negative correlation indicates that a high 

level of one variable will be accompanied by a low value of the correlated variable. 
In the situation where there is more than one X variable, a linear regression can be 

formed with the assumption of a linear relationship. Then Y can be expressed as 
Y= brxl + b2z1 +.., bjxs + b,, xn 17 

As it happens, the matrix form of the linear regression equation, b=(XTX). 3XTY also 

works for multiple X variables. In this case, the resulting estimate of b is a vector 

containing the weights applied to the X variables. 
In the case of multiple linear regression there are many situations when (XTX)"' 

cannot be calculated. This situation arises whenever a (non-zero) weighted sum of the 

X variables gives a zero result, or one of the rows or columns of X contains all zeros. 
When such a weighted sum exists, the X variables involved are said to be collinear. 
In practice, it is rare to be able to measure variables with absolute accuracy. So, even 

when some of the X variables are actually collinear, experimental values will not 

show this. 

As the X variables become more and more collinear, the value of (XTX)'I tends to 

zero. Small changes in collinearity alter this value radically. The effect of this on the 

model is particularly bad, because the model tends to amplify noise in the variables. 
Also if the number of recorded samples is less than the number of X variables, then 

collinearity is guaranteed to occur. In this situation, the usual solution is to discard 

variables. 
Therefore the disadvantages with MLR are 

It cannot handle collinearity. 
It is unstable with near collinearity. 

Relevant variables have to be discarded to avoid these problems. 

1.6.4: Principal Components Analysis (PCA) 
The instability of MLR when there are correlated X variables stresses the need to 

examine the structure within data sets, Finding such structure by hand can be 

extremely difficult, even in relatively simple cases. 
Principal components analysis provides a method for finding structure in such data 

sets, Put simply, PCA rotates the data into a new set of axes, such that the first few 
axes reflect most of the variations within the data. By plotting the data on these axes, 
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we can spot major underlying structures automatically. Figures 4 to 7 illustrate this 

point. 
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Figure 4: Scatter diagram of data from two variables, giving little information 
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Figure 5: Data plotted on a new axis that captures the greatest variation in the data. 

The various groupings are easily identified. This axis represents the, first 

principal component, PCI 
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Figure 6: Data plotted on another axis perpendicular to the axis chosen in figure 5. 

This is seen to capture less variation than the axis in figure 5, and the 

grouping here is different. This axis represents the second principal 

component, PC2 
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Fisgnre 7- Data plotted on two new axes (PCI & P('2) to reveal the underlying 

patterns. The principal component value is shown by the length rgf'the arrow 

(continuous fin- the major axis and dotted-lines for the minor axis) linking 

the point to the particular axis. 

The value of each point, when rotated to a given axis, is called the principal 

component value. PCA reduces the spectral data (X) into principal component scores 

('I') and loadings (P), according to the equation 

X=TP'+E 18, 

a linear transformation, where E is the X-residual matrix. The principal component 

scores are uncorrelated and are such ordered that the first, few retain most of the 

variation present in all of the original variables. "thus only a few of the transformed 

variables are needed in further procedures'. The correlation or the covariance matrix 

of the variables is decomposed into eigenvectors, each with an associated eigenvalue. 

The matrix of eigenvectors, called the loadings, contains information on how the 

variables relate to each other while the scores give information on how the samples 

relate with each other. PCA is also used to detect outliers both in the samples and in 

the variables by observation of the residuals and by plotting the scores of'the relevant 
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principal components against each other. Thus unwanted contributions can easily be 

identified and removed from noisy data 5o. In real samples, there are usually many 
different variations that make up a spectrum: the constituents in the sample mixture, 
inter-constituent interactions, instrument variations such as detector noise, changing 

environmental conditions that affect the baseline and absorbance, and differences in 

sample handling. Yet, even with all of these complex changes occurring, there should 
be some finite number of independent variations occurring in the spectral data. 

Hopefully, the largest variations in the calibration set would be the changes in the 

spectrum due to the different concentrations of the constituents of the mixtures. 

Ideally, a set of "variation spectra" that represented the changes in the absorbances at 

all the wavelengths in the spectra could be used instead of the raw spectral data for 

building the calibration model. There should be fewer common variations than the 

number of calibration spectra (in most cases), and thus, the number of calculations for 

the calibration equations will be reduced as well. 

This "variation spectra" could be used to reconstruct the spectrum of a sample by 

multiplying each one by a different constant scaling factor and adding the results 

together until the new spectrum closely matches the unknown spectrum. Obviously, 

each spectrum in the calibration set would have a different set of scaling constants for 

each variation since the concentrations of the constituents are all different. Therefore, 

the fraction of each "spectrum" that must be added to reconstruct the unknown data 

should be related to the concentration of the constituents. 

The "variation spectra" are often called eigenvectors (or spectral loadings, loading 

vectors, principal components or factors), for the methods used to calculate them. The 

scaling constants used to reconstruct the spectra are generally known as scores. This 

method of breaking down a set spectroscopic data into its most basic variations is 

called PCA. 

Since the calculated eigenvectors came from the original calibration data, they relate 

to the concentrations of the constituents that make up the samples. The same loading 

vectors can be used to predict "unknown" samples; thus, the only difference between 

the spectra of samples with different constituent concentrations is the fraction of each 
loading vector added (scores). 

The calculated scores are unique to each separate principal component and training 

spectrum, and can be used in place of absorbances in either of the classical model 
equations (CGS or ILS). Since the representation of the mixture spectrum is reduced 
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from many wavelengths to a few scores, it seems best to use the ILS expression of 
Beer's Law for calculating concentrations due to its ability to calculate concentrations 

among interfering species. It is important to note, however, that the calculations 

maintain the CLS averaging effect by using a large number of wavelengths in the 

spectrum (up to the entire spectrum) for calculating the eigenvectors. So, in effect, 

eigenvector models combine the best features of both the CLS and ILS methods 

together in the calculation. This is the main reason why eigenvector models are 

generally better than classical models in both accuracy and robustness. 
PCA breaks apart the spectral data into the most common spectral variations (factors, 

eigenvectors, loadings) and the corresponding scaling coefficients (scores). 

The trick in using these models comes in how the eigenvectors are calculated. These 

models base the concentration predictions on changes in the data, not absolute 

absorbance measurements (which are used in all the classical models). In order to 

calculate the PCA model, the spectral data must change in some way. 
Multiple orthogonal factors: After the line on which the variance is maximal is 

established, there remains some variability around this line. In PCA, after the first 

factor has been extracted (that is, after the first line has been drawn through the data), 

another line is defined that maximises the remaining variability, and so on. In this 

manner, consecutive factors are extracted. Because each consecutive factor is defined 

to maximise the variability that is not captured by the preceding factor, consecutive 
factors are independent of each other, i. e. uncorrelated or orthogonal to each other. 
Basically, the extraction of principal components amounts to a variance maximising 

rotation of the original variable space. For example in a scatterplot, the regression line 

represents the original X-axis, rotated so that it approximates the regression line. This 

type of rotation is called variance maximising because the criterion for (goal of) the 

rotation is to maximise the variance of the "new" variable (factor), while minimising 

the variance around the new variable. One important point for consideration is how 

many factors to extract. As consecutive factors are extracted, they account for less and 
less variability. The decision of when to stop extracting factors depends on when there 
is only very little "random" variability left. The nature of this decision is arbitrary. 
The defining characteristic that distinguishes between PCA and principal factors 

analysis is that in PCA it is assumed that all variability in an item should be used in 

the analysis, while in principal factors analysis only the variability that an item has in 

common with the other items is used. In most cases, these two methods usually yield 
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very similar results. However, PCA is often preferred as a method for data reduction, 

while principal factors analysis is often preferred when the goal of the analysis is to 

detect structure. 
In PCA calibration, there can be problems with collinearity. If the concentrations of 2 

important constituents in the calibration samples are always present in the same ratio 
(for example, 2: 1 of A to B, such as if dilutions were made from a single stock 

sample), the model will only detect one variation, not two. As far as the model is 

concerned, all the absorbance peaks of constituent A increase or decrease when 

constituent B also increases or decreases, and vice versa. Thus, only one variation is 

detected: the changes in the spectrum of A+B. Therefore, it is very important when 

calibrating eigenvector models that the calibration data have concentrations of the 
individual constituents of interest present in evenly and randomly distributed ratios. 
Before PCA is applied to a training set, the data is commonly mean centred. This 

means that the mean spectrum (average spectrum) is calculated from all of the 

calibration spectra and then subtracted from every calibration spectrum. Mean 

centring has the effect of enhancing the subtle differences between the spectra. This is 

very essential since eigenvector methods calculate the principal components based on 

changes in the absorbance data, and not the absolute absorbance. Thus anything that 

improves the ability of the calculation to detect the differences between the calibration 

spectra improves the model. Since the eigenvectors represent the changes in the 

spectral data that are common to all the calibration spectra, removing the mean simply 

removes the first most common variation before the data is even processed by the 

PCA algorithm. 
PCA is effectively a process of elimination. By iteratively eliminating each 
independent variation from the calibration spectra in series, it is possible to create a 

set of eigenvectors (principal components) that represent the changes in the 

absorbances that are common to all. When the training data has been fully processed 
by the PCA algorithm, it is reduced to two main matrices: the eigenvectors (spectra) 

and the scores (the eigenvector weighting values for all the calibration spectra). By 

multiplying PCI & PC2 (eigenvectors) by the set of representative scalar fractions 
(scores) and summing the results (along with the mean spectrum if the data was mean 
centred), the original calibration spectra can be recreated. The "spectral residual" is 

the difference between this reconstruction and the original. 
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1.6.5: Principal Components Regression (PCR) 

PCA selects a new set of axes for the data. These are selected in decreasing order of 

variance within the data. They are also (of course) perpendicular to each other. Hence 

the principal components are uncorrelated. Some components may be constant, but 

these will be among the last selected. 

The problem noted with MLR was that correlated variables cause instability. The 

solution is calculating principal components, throwing away the ones that only appear 

to contribute noise (or constants), and using MLR on the rest. This process gives the 

modelling method known as Principal Components Regression. Rather than forming a 

single model, as with MLR, models can now be formed using 1,2, .., components, 

and the optimal number of components are decided. If the original variables contained 

collinearity, then some of these components will contribute only noise. So long as 

these are dropped, these models are guaranteed to be stable. 

1.6.6: Partial Least Squares (PLS) 

The intention, in using PCR, has been to extract the underlying effects in the X data, 

and to use these to predict the Y values. In this way, only independent effects are 

used, and low-variance noise effects are excluded. This improves the quality of the 

model significantly. 

However, PCR still has a problem: if the relevant underlying effects are small in 

comparison with some irrelevant ones, then they may not appear among the first few 

principal components. This presents a component selection problem - it is not 

acceptable to just include the first n principal components, as these may serve to 

degrade the performance of the model. Instead, all components are extracted, and it is 

determined whether adding each one of these improves the model. This is a complex 

problem. 
Partial Least Squares (PLS) regression solves the problem. The algorithm used 

examines both X and Y data and extracts components (now called factors), which are 

directly relevant to both sets of variables. These are extracted in decreasing order of 

relevance. So, to form a model now involves extracting the correct number of factors 

to model relevant underlying effects. 51 
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For the two matrices, say a process variable data matrix X (n x m) and a matrix of 

corresponding product quality data Y (n x k), one would like to extract latent variables 
that not only explain the variation in the process data X, but that variation in X which 
is most predictive of the product quality data Y. PLS accomplishes this by working on 
the sample covariance matrix (XTY)(YTX) such that the first latent variable 

t1=w1Tx 19 

is that linear combination of the x variables that maximises the covariance between it 

and the Y space. The first PLS loading vector wl is the first eigenvector of the sample 

covariance matrix XTYYTX. Once the scores 

ti=Xwi 20 

for the first component have been computed, the columns of X are regressed on t1to 

give a regression vector 
Pl = Xl1/&ITl1 21 

and the X matrix is deflated to give residuals 
X2 = X-t1p1T. 22 

The second latent variable is then computed as t2=w2Tx where w2 is the first 

eigenvector of X2TYYTX2, and so on. 
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CHAPTER TWO: EXPERIMENTAL 

2.1 Experiment 1: The esterification of ethanol and acetic acid 

The reaction of interest, the sulphuric acid catalysed esterification of ethanol by acetic 

acid, is old and well established. The reaction is represented by the following scheme: 

I 

CH3COOH + CH3CH2OH 
it 

º CH3000CH2CH3 + H2O (23) 

The reaction goes through a 5-step AAC2 mechanism with known intermediates52, 

shown by the following schematic: 
kl 

RCOOH + i---º RC+OOH2 
(24) k. 1 

k2 
RC+OOH2 + R'OH 

k. 2 
0 RC(OH)20HR' 

(25) k. 2 

k3 
RC(OH)2OHR' º RC(OH)(O+H)20R' 

(26) kj 

k4 
RC(OH)(0+H)20R' f----º RC+(OH)OR' + 1120 (27) k. 4 

ks 
RC+(OH)OR' % 0- RCOOR' + H+ 

k., s 
(28) 

where R= CH3 and R' = CH2CH3. Step 27, which involves the production or 

consumption of a molecule of water, is the rate-determining step. 

2.1.1 Kinetics 

The necessity of knowledge of the kinetics of the reaction in order to adequately 
monitor the process cannot be overemphasised. First of all, the kinetic studies of an 
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experiment establish or confirm the mechanism involved. One obtains a precise 

ascertainment of the reaction parameters. To monitor a chemical process, knowledge 

of all the reacting species including reaction intermediates is very important in order 

to avoid underestimation, inconclusive generalisation and inexplicable changes. This 

knowledge comes from a kinetic study of the process. The study of the kinetics of the 

various elementary steps of a complex reaction reveals those steps that are crucial, for 

example the rate determining step. Kinetic studies give the order of the reaction with 

respect to each of the reacting species, and this is necessary in order to monitor the 

concentration of any constituent at any given time. For multi-step reactions, the 

kinetics show the lifetime and the conditions favouring the appearance or otherwise of 

each chemical species in the mixture. This is very important during monitoring, as the 

need for crucial timing cannot be overemphasized. 

Generally, the reaction progress must show increasing product content and decreasing 

reactant content. For a second order reaction, the reciprocal of the amount of a 

reaction component must be directly proportional to the time. For this particular 

reaction therefore, the integrated form of its rate equation will be 

Aal B., 
In 

BA 
= AB ' (29) 

where Ao and Bo are the initial concentrations of ethanol and acetic acid respectively, 

and A, B are the respective concentrations at time t, k being overall rate constant, i. e. 

k= klkzk3k4ks 
(30) (k-i)(k-Z)(k-3)(k-4)(k-S) 

It follows that a plot of 
1 

versus t should be linear. The linearity of this plot is T: B. 

taken as the proof of the order of the reaction 33. 

Although on the whole the reaction is second order, it is first order with respect to 

each of the reactants as well as each of the products. For first order kinetics, the rate 
of consumption of a reactant is proportional to the concentration of that reaction 
component, by definition, i. e., 
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-d[AJ/dt cc [Al, (31) 

and therefore 

d[AJ/dt = -k[AJ, (32) 

where k is the velocity constant, t is the time in seconds and JAI is the concentration 

of the reaction component. The integrated form of Equation 32 is given as 

In[AJ = -kt + Constant (33) 

Therefore a plot of logjo[AJ against t should give a straight line with a slope of 
sa 

-k/2.303, as a confirmation that the reaction is of the first order 

2.1.2 Reagents 

Glacial acetic acid (AR grade), ethanol, and concentrated sulphuric acid are the 

starting materials. Acetic acid and ethanol are the reactants while concentrated 

sulphuric acid catalyses the reaction. 

Concentrated sulphuric acid: 
This is a corrosive and irritant chemical. It is toxic when ingested. Contact with the 

skin and internal organs causes severe burns. In case of eye contact, immediate 

rinsing with copious amounts of water followed by seeking medical care is advised. 
Direct addition of water results in a violent reaction and is therefore not advised. The 

TLV exposure limit is 1mg/m3. 

Acetic acid: 
This is a flammable liquid that causes severe burns. Care should be taken not to 
breathe the fumes. In case of eye contact, immediate rinsing with copious amounts of 
water and seeking medical attention is advised. The TLV exposure limit is 25mg/m3. 

Ethanol: 

A highly flammable liquid, this substance must be kept away from any sources of 
ignition. Care should be taken to avoid skin contact. Precautionary measures should 
be taken against static discharge. The exposure limit is an 8hr TLV of 1900mg/m3. 
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In addition to the precautions mentioned above, the following precautions are taken 

during the experiment: 

f The temperature of the heater, the flow of the tap feeding the condenser and the 

position of the reflux zone are constantly monitored throughout the procedure. 

f The entire work is done in a fume cupboard that has been checked to be 

functioning properly, thus avoiding inhalation. 

f All sources of ignition are kept away from the working area. 

f All components are stored in a well-ventilated and separate place. 

f All waste is stored for specialist disposal, nothing going down the drain. 

2.1.3 Apparatus and Procedure 

The reaction was performed in a 1-litre reaction vessel set in a water bath heated by a 

thermostated hotplate and fitted with a condenser and a glass stirrer driven by an 

electric powered motor. A model IMO/H0 Raman probe connected to an HLS-785- 

250 Kaiser optical system and a Hololab Series 5000 Raman Spectrometer was fitted 

at one of the probe-ports. The Raman probe uses a class 3B-focus laser. It was then 

connected to a computer with the HOLOGRAM software that controls the 

spectrometer and probe as well as receiving and storing data loaded on it (Figure 8). 
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Funnel 

Probe 

Heater 

Figure 8: Experimental set up showing the cunjigurution of the Raman probe und 

other accessories in the 1-litre vessel. The heater is controlled by a 

thermostat. The condenser, dropping funnel, Raman probe and the motor 

driving the glass stirrer are all held in place by clamps so as not to exert any 

pressure on the reaction vessel. 

300ml of ethanol was poured into the reaction vessel, followed by 300ml glacial 

acetic acid. These volumes were used so that at least 60% of the length of the probe 

would be submerged in the liquid. That way, the probe head is deep enough inside the 

bulk of the reaction mixture to give a uniform and representative measurement. The 

reactants were slowly brought to 78°C while stirring. The reaction was initiated by the 

addition of 15ml concentrated H2SO4, the catalyst. 

2.2 Experiment 2: The Distilled Feed Column Datass 

This is real industrial data obtained from an industrial chemical processing plant. The 

Raman data is obtained from feed to a distillation column that separates raw materials 

into heads for onward processing into naphtha products and into tails that are sold as 

fuel (Figure 9). 

The raw material is naphtha, which is made up of various levels of paraffin 

compounds like butanes, pentanes, dimethylbutanes, methylpentanes, hexane, 

46 



methylhexanes and heptane, aromatic compounds like benzene and toluene, and then 

naphthenes like cyclopentane, methylcyclopentane, cyclohexane and 

methylcyclohexane. The main reaction is oxidation of naphtha into various organic 

acids and acetone. 

Naphtha + air 0 various organic acids + acetone (3l ) 

The tailoring column (as shown in Figure 9) is basically a distillation column with 

trays stacked evenly upwards. 

The DF Plant 

DF oxidation process 
Tailoring 
Column Column 

fl 
Heads Reactor 

(paraffins & 
iso-Paraffins) 

Feed 
(naphtha) Further purification 

AcOH & other columns 
products rý Products 

L-, U Waste stream Tails (cyclics & heavies) 
>100tpd 

Fig. 9: Schematic of the Naphtha processing system on the DF Plant. Feed material is 

introduced to the column wherein heat from the base causes fractions up to Ch 

to emerge as heads and on to the reactor for oxidation into various products. 

The pre-heated feed enters the column around the middle tray and undergoes 
fractional distillation. The heavier materials (tails) descend to the lower trays while 

the higher trays end up rich in the more volatile components (heads). A re-boiler at 

the base of the column continually heats up the tails, so that lighter components keep 

rising up all the time. Only components with boiling points less than or equal to that 

47 

.. _ __ ., 



of cyclohexane pass out as heads. In effect, the naphtha tailoring distillation column 

minimises the amount of C6's and above that gets to the reactor by removing cyclic 

and longer chain hydrocarbons. The heads vapours are condensed and then passed on 

to the reactor for the oxidation into acetic acid, other organic acids and acetone which 

are all very useful starting materials for the production of many chemical products. 

The oxidation reaction, after such tailoring, is more efficient and there is less material 

leftover to be recycled. 

The Raman spectrometer is situated in the control room with a fibre-optic link to the 

probe head and laser inside a purged enclosure in an analyser hut, next to the 

distillation column (Figure 10). The design of the system is such that it measures the 

compositions of both the feed and heads. It takes about a minute to analyse one 

stream, then it switches to the other, and so on. 

The spectrometer is connected to a computer network system for monitoring and 

control of the process, display and analysis of the acquired data. The whole system is 

designed to allow for safe and remote data capture and analysis, so that personnel are 

as far away from any potential hazards within the proximity of the plant area as 

possible. 

The Raman Installation 

------------------------------------------------ ----------------------------------------- 
Piýtnt Sate Area 

Optic Fibre Main Probe Electrical 
>1100111 (uh 

Spectrometer 
cables _ , _. _. to 1000m) 

Column 

Nei%Nm1, 

Control Room 

----------------------------------------------- ------------- ---------------- 
Figure 10: Set-up of the system for obtaining Raman spectra from the distillation 

column. Operating personnel control the system from the control room, a 

safe distance from the hazards in the proximity of the plant area. 
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The data set consists of 137 samples with 1925 variables of Raman spectra from the 

process. Some of the samples are spiked in order to make selected Raman peaks stand 

out since the fluorescence masks the Raman data in many places. Also, the spiking 
helps in calibrating the data. 

The first 89 samples are distillation (separation) column feed data. Of these, the first 

24 are not spiked, while samples 25 to 52 (except 49) are spiked with various 

combinations of some of the non-spiked samples. Samples 53 to 89 exhibit Laser 

Induced Fluorescence (LIF), the last twelve of which are spiked as earlier described. 

The next forty samples are from the distillation column heads and are all spiked 

(except the last three) but are non-LIF. Then finally there are eight LIF non-spiked 

samples from the installation tank. The observation is that the feed data, being rich in 

the heavy components, show more fluorescence than the lighter heads. This 

information is shown in the Appendix. 

The data is supplied with gas chromatography reference data size 137 by 17 to 

facilitate the building of calibration models. The data was obtained form 13P Amoco 

Chemicals Limited, Saltend, Hull, UK. 

2.3 Software 

In this work, the data processing was done with the software MATLAB 5.2 (The 

MathWorks Inc., Natick, Massachusetts, USA) in a Windows operating environment. 

MATLAB has many powerful tools for manipulating, storing, and graphing n- 

dimensional data, MATLAB is an interactive, matrix-based system for scientific and 

engineering calculations with which complex numerical problems can be solved 

without actually writing a program. MATLAB is a high-performance language for 

technical computing. It integrates computation, visualisation and programming in an 

easy-to-use environment where problems and solutions are expressed in familiar 

mathematical notation, Typical uses include: 

" Math and Computation 

" Algorithm development 

" Modelling, simulation and prototyping 

" Data analysis, exploration and visualisation 

" Scientific and engineering graphics 
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" Application development, including Graphical User Interface (GUI) building. 
In this work, MATLAB has been used in the data analysis stage (Principal 

Component Analysis), the modeling stage (Partial Least Squares) and information 

visualisation. 
The PCA algorithm was obtained from the PLS_Toolbox 2.0 (Barry M. Wise and 
Neal B. Gallagher, Eigenvector Research, Inc). All data used for the PCA was mean- 

centred by rows using an algorithm in the PLS Toolbox. Smoothing of some of the 

spectral profiles was done using a 15-point Savitsky-Golay smoothing algorithm in 

the PLS Toolbox. 

Initial data collection and treatment was performed using Microsoft Excel, a 

spreadsheet software program included in Microsoft Office 97, patented and 

copyright owned by the Microsoft Corporation, USA. 
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CHAPTER THREE: RESULTS AND DISCUSSION 

3.1. Experiment 1- Raman monitoring of the esterification reaction 
Initially, the Raman spectra of the Raman-sensitive components of the reaction, i. e. 

ethyl acetate, ethanol and acetic acid, were obtained separately. Figures 11,12 and 13 

show the spectra of these pure substances. These spectra give the naked appearance of 

the various reaction components individually, without the influence of the other 

components or the reaction conditions. More importantly, these spectra reveal, 
individually, the important peaks of each reaction component. Since these are pure 

compounds, the spectral intensity and therefore concentrations that they would show 

would be the maximum, and would thus be useful in the quantitative determination of 

the various reaction components when they are combined in the reaction mixture. 

450( 

400( 

>+ 350( 

300( 

Z 250( 

z 200( 

150( 
100( 

500 L 
0 200 400 600 300 1000 1200 1400 1600 1800 2000 

WAVENUM GERS (cm-1) 

Figure 11: Raman spectrum of pure acetic acid, showing the prominent peaks at 896 

due to C-O stretch, 622 due to OH in-plane-deformation, and 447cm-'. 
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Figure 12: Raman spectrum of pure ethanol, showing the prominent peaks at 930, due 

to C-O stretching, 1056 and 1101 cm"1 respectively. 
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Raman spectrum of pure ethyl acetate 
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Figure 13: Raman spectrum of pure ethyl acetate, showing the prominent peaks at 
895cm*1 due to weak O-ethyl bands, 683cm' and 427cm'1 due to C=0 

stretch. 
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Comparison of each of the pure spectra and reference to literature led to the 

assignment of the peaks in the reaction mixture to their respective compounds. Thus 

peaks at 427 and 683 cm-1 were identified with ethyl acetate (Figure 13). The 427cm I 

peak of ethyl acetate comes from the C=O stretch56 in the compound, while a C113 

rocking motion in the O-ethyl bonds produces the 895cm'I peak57. 
The 930cm4 peak identified as an ethanol peak (Figure 12) comes from the C-0 

stretch in CH2OH, typical of primary alcohols. This peak falls in a band that involves 

C-C-0 asymmetric stretching5a 

The 622cm'' peak of acetic acid (Figure 11) is due to the in-plane OH deformation 

while the peak at 896cm'1 is due to a strong C-O stretch59. These functional group 

assignments to the peaks are a further confirmation that the peaks detected correspond 

to the respective compounds. 
One of the advantages of Raman spectroscopy is that water does not interfere with the 

normal Raman signal. Therefore although water is a significant by-product of the 

reaction, it does not appear in the spectrum at all; neither does it affect the spectra of 

the other components. 

Figure 14 is a plot of the Raman spectra of real-time monitoring of the esterification 

of ethanol and acetic acid. There is an obvious shift in baseline, all spectral intensities 

starting from around 1000 units, and a huge amount of noise especially in the 

wavelength region corresponding to the products. The noise is observed to be greater 
in intensity than the Raman data in many places. However, the detailed nature of the 

information captured is highly commendable, as shown in the 3-dimensional data plot 
(Figure 15). This ability to record a huge amount of data continuously is one of the 

high points of the Raman technique that makes it most suitable for continuous 

monitoring of chemical processes. 
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Fig. 14. ' A plot of the Raman spectra of real-time monitoring of the acid-catalysed 

esterification of ethanol and acetic acid over the entire reaction period. Each 

scan has 1918 data points, and the huge baseline shift and massive noise is 

clear. 

Comparing Figure 14 with Figures 11,12 and 13, the decrease in intensity of the 

Raman spectra is obvious. In Figures 11,12 and 13, the peak heights range between 

1000 and 5000 units approximately, whereas the range in Figure 14 is only 1000 to 

around 2500. This is explained by the fact that in Figure 14 all the components are 

mixed together and therefore their relative fractional compositions would be smaller 
in magnitude than that in the pure liquids. 
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Figure 15: A three-dimensional plot of the Raman spectra of real-lime monitoring of 

the acid-catalysed esterification of ethanol and acetic acid, showing all the 165 

scans taken over the entire reaction period. Across the spectrum it can be 

observed the variation as well as peak appearance and disappearance as the 

reaction progresses. 

Figure 15 also shows the progression of the wavelengths corresponding to the various 

reaction components along the time (Scan no. ) axis. From a `bird's eye view' sort of 

perspective the rise and fall of the peaks and the baseline are easy to observe. The 

diagram is a height-sensitive colour map, therefore the various colours show the 

intensity of the Raman spectrum at any particular point or area. The colours progress 
from blue-black to dark blue to light blue to yellow and then to red as Raman intensity 

increases. This makes the recognition of the highest and lowest intensities easy. 
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3.1.1 Data Analysis 

Having identified the major wavenumbers relating to the various components in 

section 3.1, it is necessary to further establish their identity by seeing how they fit into 

the reaction process. Thus if a particular wavenumber represents ethanol for example, 
it is expected to progress like a reactant, and in an opposite way to another 

wavenumber that represents say ethyl acetate whose progress should be that of a 

product. 
For a given reaction it is expected that the reactant-product relationship should have 

perfectly negative correlation as long as the process is in progress; in effect, as one 
increases, the other decreases. In order to establish this, a reactant profile has been 

regressed against a product profile using the original data, as shown in Figure 16. The 

diagram suggests four stages of the reaction: the initialising or settling down period 0 

(stage one), the active reaction stage " (stage two), a transitional stage + (stage three), 

and the dormant stage & (stage four). 

Each symbol in Figure 16 represents a time span of 15 seconds. Thus during the first 

3 minutes and 15 seconds of stage one, there was no particular pattern. We see a 

cluster of points rather than the expected linear arrangement. This suggests that 

though the process has been started, the chemical reaction has not started yet, hence 

the unsettled appearance. The system begins to look settled during the last 60 seconds 

of this stage, indicated by the straight-line formation of the 4 points. In stage two the 

points follow a straight-line formation with a negative gradient, just as is expected 

from a product-reactant plot. The 5X minutes of stage three again show no particular 

pattern while stage four, though it has an overall upward trend generally, also show no 

particular pattern from point to point. 

The implication is that it is only during the 3-minute second stage, scans 18 to 29, that 

the reaction is in progress. Surely this is not acceptable, since it stands to reason that 

as soon as the catalyst was added to reactants at the desired temperature, the 

esterification should start. What we are observing in the non-linear sections is the 

result of the noise in the system overshadowing the real Raman data. Thus this noisy 
data must be separated from the data of interest, the pure Raman data. This is the 

objective of this research. 
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Figure 16: Regression of a product profile (683cm'') against a reactant profile 
(930cm"') from the initial data, showing the apparent different stages of 

the esterification process. 

The product-reactant relationship during monitoring is expected to look like that 

shown in Figure 17. In effect, the product concentration begins from a minimum and 

keeps rising till the reaction is spent. Meanwhile, the reactant concentration having 

started from a maximum keeps decreasing till the reaction is spent. Thus devoid of 

any disturbance or noise effects, the profile of any product and reactant in the 

esterification reaction described in Section 2.1 is expected to be like Figure 17. To 

ascertain this, the profile of a product wavelength (683cm'' for ethyl acetate) is traced 

together with that of a reactant wavenumber (930cm " for ethanol). 
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General profile of a reaction that tends towards equilibrium 

Amount 

time 
Fig. 17: Schematic diagram of expected profiles of products and reactants during the 

reaction. The reactant starts from a high concentration level and then falls 

continuously till it settles at a constant value, while the product starts from a 

low concentration level and then rises continuously till it settles at a constant 

value. 

A plot of the profiles of these peaks (930 & 683cm') from the original (untreated) 

data during the monitoring period is presented in Figure 18. To allow for better 

viewing and presentation, the data was smoothed using a 15-point Savitsky-Golay 

algorithm. 

The plot shows the expected product-reactant relationship only up to the region of 

scan 34,8 / minutes into the reaction. After this, there is an identical undulating 

pattern for both reactant and product, to the finish, Clearly this is not the result of a 

chemical reaction since reactant and product are always expected to behave opposite 

to each other and not in concord. This observation can be attributed to a dynamic 

effect such as a temperature fluctuation or the effect of stirring considering the similar 

`wavelengths' of the two cycles, being around 50 scans (12.5 minutes) each. The 

undulating pattern, however, is therefore significant enough to completely 

overshadow the response of the reaction components. This is one effect that needs to 

be removed in order to see the full progress of the chemical reaction. 
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Figure 18: Profiles of ethyl acetate and ethanol during the esterification. Data 

smoothed using the 15-point Savitsky Golay smoothing algorithm. 

To remove the effect of fluorescence and other non-chemical contributions, Principal 

Components Analysis (ACA) was performed on the mean-centred raw data. The data 

was first mean-centred in order to enhance the subtle differences between the spectra. 

PCA was selected as a technique because it has the ability of separating spectra that 

are due to independent variations occurring in the data. The assertion has been that the 

undulations in Figure 18 and the massive noise in Figure 15 are due to phenomena 

entirely different from and unrelated to the chemical reaction that is responsible for 

the Raman spectra, i. e. undulations caused by temperature fluctuations or the effect of 

stirring and noise due to fluorescence. Since these are independent of the 

esterification reaction, it follows from the theory of PCA that any variations due to 

them will be represented by different principal components from the principal 

component due to the variation in the chemical information. In this way, it should be 

possible to separate the fluorescence noise and undulations from the pure Raman 

spectra. 
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The first step in PC analysis is performance of eigen analysis to determine the 

optimum number of principal components required to build the PCA model. If the 

number of principal components used is too small, the model is inadequate and cannot 

represent the original data. Inclusion of too many principal components also leads to 

`overfitting', since principal components that contain little information and mostly 

noise are also included in the model building exercise. In effect, any principal 

component that does not contribute significantly to the variation in the data should not 

be included in the PCA model building. One way of checking the contribution of the 

principal components is by the use of their corresponding eigen values. The smaller 

the eigenvalue, the less its contribution to the variation in the data. 
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Figure 19: Plot of'eigenvalue versus number ofprincipal components for the Raman 

data, used to determine the optimum number of principal components to 

use in the PCA model building. 

The optimum principal component number chosen is the one beyond which no 

significant change occurs in the eigenvalues of the subsequent principal components. 

Figure 19 shows a plot of eigenvalues against number of principal components (pc's) 

for the mean-centred esterification data. The huge difference in eigenvalue between 
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PC1 and PC2 indicates that PC1 contains the greatest fraction of the total variation 

and therefore needs to be retained. Similarly PC2 and PC3, though with smaller 
differences, can also be retained. The eigenvalue difference between PC3 and PC4, 

and then PC4 and PC5 are very small in comparison, but beyond PC5 there is no 

observable change in the eigenvalues. In order to avoid leaving out any relevant 

information in the PCA model building therefore, the first five principal components 

were used to construct the model. The data in PC6 and beyond only represent noise 

and contain no chemical information. They are therefore not useable for PCA. The 

result of the PCA modelling using 5 principal components is shown in Table 1. It is 

worth noting that before the PCA modelling, the data is mean centred. 

PRINCIPAL 

COMPONENT 

NUMBER 

EIGENVALUE 

OF COV(X) 

% VARIANCE 

CAPTURED BY 

THIS PC 

TOTAL % 

VARIANCE 

CAPTURED 

1 1.61e +00 99.34 99.34 

2 8.84etOO4 0.55 99.88 

3 +OU4 0.09 99.97 

4 7.27e 0.00 99.97 

5 3.01 e+ouz 0.00 99.98 

6 1.62e+uoz 0.00 99.98 

7 1.28e 0.00 99.98 

8 9.99e+oul 0.00 99.98 

9 9.04e+uul 0.00 99.98 

10 8.03e 0.00 99.98 

Table 1; Results from PCA Model of esterification data. 

The values of percentage variance captured confirm that the choice of 5 principal 

components was most appropriate for building the PCA model, since there is no 
increase in these values after 99.98% total variance at PC5, It is worth noting that 

although Table 1 ends with the 10th principal component, the value 99.98% remains 

the same through to PC25. 

With the separation of the various groupings in the Raman data complete, the next 

stage is to reconstitute the Raman data using the values obtained from the PCA 
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model. Since PCA simply separates the data according to their contribution to the 

total variation, the nature of the original data is not affected. Therefore data 

reconstituted from the PCA should retain the nature and characteristics of the original 

data. The greatest contribution to variation in the data is PC I, and therefore data 

reconstituted from the first principal component is expected to bear the most 

important information in the data. The importance of the reconstituted data is 

expected to decrease with subsequent principal components. 
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Figure 20: Regenerated data based on variation in PC]. A is is very similar to the 

original data because PC] contains 99.31% of the variation in the original 

data. 

The scores and loadings of the first principal component (PC I) were mathematically 

recombined to regenerate the data based upon the variation in PC]. The resulting plot 

is shown in Figure 20. 

The information in Figure 20 looks very much like the raw data, when compared with 

Figure 14. The huge baseline shift and the big noisy peaks are still present. This is to 

be expected since PC] contains 99.34% of the variation in the data. The information 

in Figure 20 is therefore a very important part of the data. To determine the nature of 
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the data reconstituted from PCI, the scores of that principal component are observed. 

An observation of the scores on PC I (shown in Figure 21) shows that the information 

here is definitely not that of the Raman spectra, considering the erratic nature of the 

score plot. 
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Figure 21: Sample number versus scores on PC 1. This diagram is obtained 
directly from the PC'A algorithm in PLS Toolbox. Here, each 

sample number represents a single scan 

The systematic rise and fall in Figure 21 are a result of a noise effect that operates in 

cycles throughout the monitoring period. To ascertain the source of this noise, the 

profiles of wavenumbers 100cm-1 and 1850cm-1 (being baseline values) in the mean- 

centred data (Figure 14) were plotted for all scans (Figure 22), as they should 

represent the variation due to noise in the data. 
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Figure 22: Profile of wavenumber IOOcni ' from the mean-centred data. This same 

profile is obtained for wavenumber 1850cni 1 at the opposite end of the 

spectrum. The similarity between this and the PC] score plot gives an 
indication of the source of the PC] data. 

It is clear that Figure 22 is the exact replica of Figure 21, the PC I score plot. Thus it is 

obvious that PC1 is only noise, specifically the baseline noise in the system. Since the 

fluorescence peaks form the major component, PC1 is largely the contribution from 

fluorescence, rather than the Raman data. This is a different situation from the usual 

case with PCA modelling of spectroscopic data, where the first principal component 

always contains the main chemical information. Therefore the main Raman data is 

represented by the rest of the principal components. This implies that if PCI were 

removed from the data set, the leftover would be Raman data devoid of baseline shift 

and most of the noise. Figure 23 shows the nature of the data remaining after the 

contribution due to PCl has been removed. 
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Figure 23: PC] results: Result of removing the regenerated Raman data obtained 

from the variation captured by PCI, from the mean-centred Raman data 

It can still be seen that most of the noise has been removed, and there appears to be a 

common well-defined baseline, which is about zero on the intensity axis because of 

the initial mean centering. The positions of the peaks are still maintained as in 

Figurel4, confirming that this remaining data still contains the Raman information. 

However, the contribution of acetic acid is still not captured. It is most probably still 

overshadowed by the remaining noise still in the data. 

With the expectation that the data has had the noise removed with the exclusion of the 

variation captured by PCI, the profiles of ethanol and ethyl acetate are mapped out 

once more, using the data shown in Figure 23. These profiles are shown in Figure 24. 

Compared with Figure 18, there appears to be little improvement in the quality of the 

data. The common regular undulation for both ethanol and ethyl acetate after 8.5 

minutes is still present. 
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Figure 24: Profiles of ethyl acetate and ethanol during the esterification, using the 

data remaining after removing PC]. Data has been smoothed using the 

1S point Savitsky Golay algorithm. 

The noticeable difference is the magnitude of the Raman intensities, which drop from 

the 2050 - 1350 range down to the -450 - 350 range. What we see is a removal of the 

fluorescence data that was very high in intensity, but no effect on the undulations due 

to the process dynamics, temperature fluctuations, etc., as the undulation is still 

present. It can therefore be inferred that the principal component(s) responsible for the 

variation due to the undulation is in one of PC's 2,3,4 or 5. 

Since PC1 contains the fluorescence spectra, it follows that PC2 should contain the 

next greatest variation in the data, i. e. the pure Raman spectra. Thus the data 

regeneration stage was repeated, based on the variation in the second principal 

component, i. e. 0.55% of the total variation. The scores and loadings of the second 

principal component (PC2) were mathematically recombined to regenerate the data 
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based upon the variation in PC2. Figure 25 shows the regenerated Raman data using 

PC2 variation. 
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Figure 25: PC2 results: Regenerated Raman spectra based on variation captured in 

the second principal component. 

From Figure 25, it is very obvious that all the noise has been removed, as the data 

now reflects the Raman spectra. There is a common well-defined baseline, which is 

about zero on the intensity axis because of the initial mean centering. In addition the 

acetic acid peaks at 180,493,670, and 943 cm's which were missing both in the 

original data and in PC] are also captured, as are the peaks for ethanol and ethyl 

acetate. In comparison with Figure 23, this is a much more representative data set, 

with no noise at all and all the Raman data peaks standing out conspicuously. To 

determine the nature of the data reconstituted from variation captured by PC2, the 

scores of that principal component are observed by constructing a score plot. An 

examination of the scores for PC2 (Figure 26) shows the expected progress of the 

reaction from the beginning to the tapering end. 
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Figure 26: Sample number versus Scores for PC2. This shows the progress of the 

esterification reaction proper. This diagram is obtained directly from the 

PCA algorithm in PLS Toolbox. Therefore, each sample number 

represents a single scan 

The reaction progress can be seen to be `static' until about scan 8, and then increase 

steadily at a fairly constant gradient until around scan 40, when the rate reduces until 
it reaches almost a constant value. When Figure 26 is compared with Figure 17, it is 

seen that the nature of the reaction follows the expected pattern. This confirms that 
PC2 contains largely pure Raman spectra coming from the esterification reaction. 

Thus whilst PCI captures the fluorescence data, PC2 captures only the Raman data. 

Again, the profiles of the peaks for ethanol, ethyl acetate and this time acetic acid are 

mapped out well in Figure 27. 
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Figure 27. Profiles of the peaks for ethanol, ethyl acetate and acetic acid during the 

esterification, based on the variation captured in PC2. 

Figure 27 is the desired reaction progress, showing the true account of the chemical 

process being monitored. All the noise and the undulations are removed, and the 

result is a perfect picture of a reversible reaction. From an initial starting plateau, 

ethanol and acetic acid concentrations decrease continuously while at the same time 

the ethyl acetate concentration increases. The gradients of both reactant and product 

profiles keep decreasing with time until it is almost zero, at which point the 

regeneration of both reactant and product is so minimal it is almost stopped. 

Comparison of Figure 27 with Figure 14 and Figure 18 demonstrates the progressive 

removal first of fluorescence noise and then noise due to the system dynamics, 

leaving behind a true reaction profile. In this way, principal components analysis has 

been used to filter out noise and purify spectroscopic data to give it more chemical 

meaning. 

Thus we see the adverse effect of fluorescence spectra on Raman monitoring (Figure 

14), and also the effectiveness of PC2 in selecting only the most relevant data (Figure 

27). It is useful to know that whereas the data in Figures 18 and 24 were smoothed 
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(using Savitsky-Golay) for easier viewing, the data in Figure 27 has not undergone 

any such treatment. This shows how accurately PC2 has captured the Raman spectra. 

3.1.2 Kinetics 

Up to this stage, the reconstituted data due to variation captured in the second 

principal component has been observed to be of the nature of Raman spectra. Based 

on information from literature about the wavenumbers corresponding to the various 

reaction components, the reaction profiles have been plotted and have been seen to 

follow the trend expected of a typical reversible reaction. To theoretically validate the 

principal components results and so establish as a true representative of the process, 

either by comparison with concentration data (which is unavailable in this work) or by 

testing the reconstituted data against a well-known chemical theory. For the kinetic 

investigations the profile of ethyl acetate is selected as a product and that of ethanol as 

a reactant, using the PC2 data. In the esterification reaction, the amount of ethanol 
decreases while the amount of ethyl acetate increases with time. This trend is shown 
in Figure 28 for the period of scans 18 to 29, i. e. from 4.5 minutes to 7.25 minutes 
during the experiment. This is the period for which the reaction profile is straight in 

Figures 24,26 and 27. Thus it has been shown that the reaction follows the expected 

reactant-product relationship. 
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Figure 28: Reaction plots for ethanol and ethyl acetate during scans 18 to 29. This 

shows the amount of ethanol (reactant) decreasing while that of ethyl 

acetate (product) increases at the same time. 

Hereafter the PC2 data is tested for compatibility with first order reaction kinetics, as 
discussed earlier on in the experimental section. The kinetic equation for a first order 

reaction is given as 

In[AJ = -kt + Constant (33), 

where k is the velocity constant, t is the time in seconds and [Al is the concentration 

or amount of the reaction component under analysis. Therefore a plot of logio[AJ 

against t should give a straight line with a slope of 412.303, as a confirmation that the 

reaction is of the first order60. Thus the logarithms of the Raman intensities 

(representing the concentrations) of ethanol and ethyl acetate during scans 18 to 29, 

the region of highest reaction rate, are plotted against time as shown in Figure 29. 

As expected, the kinetic plots are perfectly linear. The plot for ethyl acetate has the 

same gradient as the plot of ethanol, except in sign, i. e. whereas the ethanol gradient 
is -0.0002, that of ethyl acetate is +0.0002. This indicates that the rates of 
consumption of ethanol and production of ethyl acetate are the same. 
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Above all, Figure 29 agrees with equation 33, the relation for a first order reaction. 
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Figure 29: Kinetic plots for ethyl acetate and ethanol during scans 18 to 29. The plots 

of logarithms of the Raman intensities versus time give straight lines 

indicating compliance with first order reaction kinetics. 

For ethanol, -k/2.303 is given by -0.0002, giving ka value of 4.6606x104, For ethyl 

acetate, Equation 33 will take the form 

In[AJ = kt + Constant (34), 

since ethyl acetate is a product and is released instead of being consumed. Therefore 

k/2.303 is given by 0.0002, giving ka value of 4.6606x104. 

3.1.3 Conclusion 

Raman spectroscopy has been efficiently used to collect data on the esterification of 
ethanol and acetic acid. The data is very detailed, but contains massive noise as a 

result of fluorescence and dynamic effects such as a temperature fluctuation or the 

effect of stirring. This noise masks and/or distorts the Raman spectra, making it 
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difficult to observe the actual chemical process. Principal components analysis has 

been applied to the Raman data to remove noise. Fluorescence spectra was removed 

by PC! whilst the second principal component contains all the pure Raman data, and 

clearly shows the progress of the reaction, totally devoid of noise and undulations due 

to the dynamics of the system which are contained in the subsequent principal 

components. This technique can be applied to other Raman data sets. However 

whether the Raman spectra will be described by PC1 or PC2 or whichever principal 

component depends on the degree of noise or fluorescence in the data. Thus with a 

less noisy data than that used in this work, PC1 may capture the pure Raman spectra, 

while in a noisier data set, the Raman data may be in PC3 for instance. 

Principal Components Analysis has therefore been shown to be very useful in 

extracting useful information from raw data that is noise-ridden and difficult to 

explain. The fact that the data obtained from PC2 is actual Raman data has been 

confirmed by successful application of first order kinetic equations to the data. 

3.2 Use of Raman Spectroscopy for process analysis - Experiment 2 

In the first experiment, spectroscopic data from a chemical reaction was collected 

during the time the reaction was in progress. This data was analysed and then treated 

with principal components analysis to reveal the important chemical information after 

removing all noise from the data. The success of this exercise was proved by the fact 

that the regenerated data agreed with second order reaction kinetic laws. 

It is worth noting that the batch process described in Chapter 2 was set up and 

performed under controlled conditions in the laboratory. Factors like volume and 

atmospheric temperature and pressure remained fairly constant throughout the 

experiment, and volumes involved were of the order of a few hundred millilitres. The 

reagents used were all of analytical grade and in a state of high purity. Desirable as 

these conditions are, they are different from what pertains on the industrial plant. 

Following the success of monitoring the batch process with PC2 data, the next stage 

was to test the applicability of this technique to data from an industrial process that is 

characterised by large volumes of reagents in vessels that are subject to atmospheric 

conditions. Whereas the experimental work involved only four compounds (one of 

which is not Raman active), the real industrial data contained 17 components in 

various compositions that are sometimes of different orders. The difference in nature 
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between the two data sets emphasises the need to test the method that has worked 

perfectly within the confines of a laboratory under controlled conditions, on real life 

industrial data since that is where the method would ultimately be utilised. 

The data from the industrial plant, described in detail in Chapter 2, is shown in the 

appendix. The appendix shows the various mixtures in the reaction vessel and how 

some of the samples have been spiked in order to enhance their responses. 

Figure 30 shows the Raman data obtained from the processing of naphtha at the DF 

Plant, BP Chemicals Limited, Hull, UK, as described in Chapter 2. 
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Fig. 30: Raman spectra of naphtha, made tip of various levels of paraffin compounds, 

aromatic compounds, and then naphihenes, from the DF processing, plant 

The baseline is at zero intensity this time (as compared to Figure 14). The sharp peaks 

are registered where the samples have been spiked in order to enhance their responses. 

The peaks at 1037cm-1,1026 cm-1 and 833cn1-1 stand out very conspicuously. 

Figure 31 is a `bird's eye view' sort of perspective of the DF naphtha data that shows 

the rise and fall of the peaks and the baseline very easily. The diagram is a height- 

sensitive colour map, therefore the various colours show the intensity of the Raman 
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spectrum at any particular point or area. The colours progress from blue-black to dark 

blue to light blue to yellow and then to red as Raman intensity increases. This makes 

the recognition of the highest and lowest intensities easy. 
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Figure 31: Three-dimensional colourmap of the Raman data from the DF Plant, for 

naphtha processing. The highly spiked samples at wavenumbers 1037cm-', 

1026 cm'1 and 833cm-1 stand out very conspicuously. 

As a first step towards performing PCA, the data is mean-centred to enhance the 

subtle differences between the spectra. Figure 32 shows the mean-centred data that 

was used for analysis. The peaks in Figure 31 are all maintained in the same positions 

in Figure 32. 
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0.25 

Fig. 32: Mean centred Raman data from naphtha processing plant 

Eigen analysis is performed to determine the optimum number of principal 

components required to build the PCA model for the naphtha data. If the number of 

principal components used is too small, the model is inadequate and cannot represent 

the original data. Inclusion of too many principal components also leads to 

`overfitting', since principal components that contain little information and mostly 

noise are also included in the model building exercise. 

Figure 33 shows a plot of eigenvalues against number of principal components (pc's) 

for the mean-centred DF naphtha data. The huge difference in eigenvalue between 

PCI and PC2 indicates that PCI contains the greatest fraction of the total variation 

and therefore needs to be retained. Similarly PC2 and PC3, though with smaller 

differences, can also be retained. The eigenvalue difference between PC3 and PC4, 

and subsequent differences keep decreasing in comparison, but beyond PC9 there is 

no observable change in the eigenvalues. In order to avoid leaving out any relevant 
information in the PCA model building therefore, the first ten principal components 

were used to construct the model. 
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Figure 33: Plot of eigenvalue versus number of principal components for the Naphtha 

Raman data, used to determine the optimum number of principal 

components to use in the PCA model building 

The result of the PCA modelling using 10 principal components is shown in Table 2. 

lt is worth noting that before the PCA modelling, the data is mean centred. The 

eigenvalues of the first ten principal components supports the choice of ten principal 

components to build the PCA model, since after the 10`h principal component, there is 

little difference in the percentage variance captured by the subsequent principal 

components. 
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PRINCIPAL 
COMPONENT 

NUMBER 

EIGENVALUE 
OF 

COV(X) 

% VARIANCE 
CAPTURED BY 

THIS PC 

% VARIANCE 
CAPTURED 

(TOTAL) 
1 7.47e'uul 98.63 98.63 
2 6.51e°°3 0.86 99.49 
3 1.38e'°°3 0.18 99.67 
4 7.25e'uu4 0.10 99.76 
5 4.37e 0.06 99.82 
6 3.70e' 0.05 99.87 
7 3.09e 0.04 99.91 
8 2.25e'004 0.03 99.94 
9 9.52e' 0.01 99.95 
10 9.28e 0.01 99.97 
11 5.67e'oo' 0.01 99.97 
12 4.27e-uu" 0.01 99.98 
13 3.25e-"05 0.00 99.98 
14 2.52e' 

- 
0.00 99.99 

15 2.37e zu 0.00 99.99 
16 1.66e-"0"" 0.00 99.99 
17 1.13e 0.00 99.99 
18 8.92e"'Lo 0.00 99.99 
19 7.42e 0.00 100.00 
20 "006 0.00 100.00 

Table 2: Results showing percent variance captured by PCA model of naphtha data. 

With the separation of the various groupings in the Raman data complete, the next 

stage is to reconstitute the Raman data using the values obtained from the PCA 

model. The scores and loadings of the first principal component (PCi) were 

mathematically recombined to regenerate the data based upon the variation in PCI. 

The resulting plot is shown in Figure 34. 
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Figure 34. Regenerated naphtha data based on the variation captured in PC] 

The information in Figure 34 looks very much like the mean-centred data in Figure 

32. The intensities of both data sets are of the same order. This is to be expected since 

PC I contains 98.63% of the variation in the data. Ilowever, the main spiked peaks are 

conspicuously absent. The information in Figure 34 is therefore a very important part 

of the data. To determine the nature of the data reconstituted from PCI, the scores of 

that principal component are observed. An observation of the scores on PCI (shown 

in Figure 35) shows that the information here is definitely not that of the Raman 

spectra, considering the nature of the score plot. 
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Figure 35: Sample number versus scores on PC 1. This diagram is obtained directly 

from the PCA algorithm in PLS Toolbox. Here, each sample number 

represents a single scan. 

An observation of Figure 35 shows a smooth progression broken by huge spikes at 

certain sample numbers. When this figure is analysed against the data in the appendix 

showing the nature of the 137 samples, it is seen that the smooth (straight) part of the 

graph represents those samples that do not show any laser-induced fluorescence, i. e. 

samples I to 48,50 to 52 and then 90 to 129. These are all Raman spectra only. The 

protruding peaks are for samples that exhibit laser induced fluorescence (LIF). The 

first sample to `jump' out is sample number 49 from the tank blend, showing I. IF. 

Then samples 53 to 77 which are not spiked and which exhibit LIF are in one group 

and distinctly separate from the purely Raman samples. Next come samples 78 to 89 

which are spiked with various amounts of various components of the naphtha mixture 

and exhibit LIF. Then finally the installation tank blend samples, 130 to 137, which 

show LIF also stand out in one group well away from the non-I. IF samples. The 

various groupings in the data according to exhibition of LIF is shown in Figure 36. 
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Figure 36: Sample number versus scores on PCI. This shows the various groupings 

in the data according to whether the sample shows purely Raman spectra or is 

affected by laser-induced fluorescence (LIF). This feature makes PCA a very 

useful and yet simple tool in chemical process control, since at a glance any 

deviation from normal behaviour can be detected. The groupings here agree 

entirely with the information on the data as given in the appendix. 

This feature from the score plot of the first principal component makes PCA a very 

valuable and yet simple tool for chemical process control. Displayed on a control 

panel, this score plot easily shows when the reaction is giving good results and when 

the results are becoming undesirable, which samples give the undesirable results and 

consequently the location and time of the fault. Since the occurrence of fluorescence 

is detrimental to any analytical use of Raman spectroscopy, this method of separating 
the samples affected by fluorescence is very useful and valuable. The control analyst 
therefore has cause to determine whether the LIF samples come from one particular 
location in the plant or undergo one form of influence or another that is not 

experienced by the other samples that do not show LIF. In addition, like any control 
chart Figure 36 shows which samples are acceptable and which ones are definitely out 
of the acceptable range. So that samples 55 and 85 in Figure 36 fall out of the 95% 
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limits, although from the information in the appendix there is no clear difference 

between them and their nearest neighbours. This gives the opportunity to undertake 

close and specific analysis of these two samples to establish the cause of their 

deviation. 

As a method of chemical process control, the results shown in Figure 36 is similar to 

that obtained in Figure 26 showing the progress of the esterification reaction. In 

Figure 26, the stages where the reaction is most active and where the reaction is slow 

or almost stagnant are clearly obvious. Therefore it has been shown that principal 

components analysis can be used to control both a simple chemical reaction 

performed in the laboratory under controlled conditions and with a small number of 

reaction components as well as to control an industrial scale chemical process in a 

chemical plant under varying conditions and constituted of many different reaction 

components. This is made possible by the ability of PCA to separate data into groups 

according to the effects influencing them. 

The data regeneration process is repeated, this time using the variation captured by the 

second principal component, since PC2 has the next most important information in 

the data. The result (Figure 37) is a well-filtered Raman data set when compared to 

the original data (Figure 30). 
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Figure 37: Regenerated naphtha data based on the variation captured in PC2. This is 

the expected nature of the Raman spectra. 

To determine the nature of the data reconstituted from variation captured by PC2, the 

scores of that principal component are observed by constructing a score plot. An 

examination of the scores for PC2 (Figure 38) shows the expected progress of the 

naphtha monitoring process. 

The score plot is the exact nature of how the Raman spectra are expected to look like. 

From the appendix and also from Section 2 of Chapter 2 (2.2), the samples are 

monitored for some time and then occasionally spiked with one or more of the 

components making up the naphtha mixture. This makes the Raman intensity of that 

sample rise sharply over and above the rest. In fact, these peaks are so high in 

intensity that they fall outside the limits of the model (shown in Figure 38 by dotted 

lines). Thus Figure 38 shows that PC2 is definitely a proper representation of the 

naphtha Raman data. 
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Figure 38: Score plot for naphtha data reconstituted from the variation captured by 

the second principal component. This profile looks very much like the 

actual chemical information in the Raman data, as the peaks where the 

samples were spiked stand out clearly out of the rest of the spectra that is 

relatively of very low intensity. 

It is noted that in the monitoring of the naphtha data, the aim is to check the types of 

components that emerge as heads (or tails). Thus what is expected are profiles of the 

various samples showing the different components present each time, a reasonably 

different aim from that of the monitoring of the esterification reaction. 

The peaks observed in Figure 38 occur at wavenumbers 1025,833,640 and 151 cm". 

The profiles of the progression of these peaks within the reaction time are shown in 

Figure 39. 
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Figure 39: Profiles of peaks in PC2 data. 

These are actually the change in concentration of one particular component of the 

continuous reaction mixture, and not a reaction profile such as that obtained in the 

batch reaction. This means that the system of observing the profiles of prominent 

wavenumbers (as used in the esterification) would be of little help if applied here. 

Whereas the batch reaction has a starting concentration that continues to diminish or 

increase steadily as the reaction goes on and can therefore be mapped, the initial 

concentration in the continuous process keeps changing each time a new batch is 

detected. The trajectory of a reaction component is therefore not representative of the 

reaction profile. 
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This can be explained by the following: 

Unlike the esterification, which is a batch process, the Naphtha data comes from a 

continuous process. Thus instead of reactants starting from a high concentration 
level and gradually diminishing (and being regenerated), the reaction components 

are fed in afresh each time and in a continuous manner. Thus it is not possible to 

kinetically follow the profile of a reaction component. 
While monitoring the batch reaction, definite concentration values of the 

individual components are not required since the bulk volume does not change 

and quantities can be comfortably expressed as fractions of the initial 

concentrations. In the case of the continuous Naphtha process, actual 

concentration values are needed to correspond to the (Raman) spectroscopic data. 

Thus the system of monitoring used in the esterification cannot be applied to the 

naphtha processing data. The most suitable method of analysis and evaluation 

therefore is to construct a model that would predict the concentrations of each 

reaction component such that the difference between the actual and predicted 

concentrations from spectral data would be minimal. Then subsequent concentrations 

of various components can easily be predicted from their Raman spectra. To do this 

would need a set of reference data made of a direct measurement of the same samples 

at the same time but using a different method that is tried and tested. This is the gas 

chromatograph data (137 samples by 17 components). 

The data from the Raman spectra of the naphtha data was thus used to build 

calibration models for prediction of the concentration of each of 17 components 

making up the naphtha mix. 

3.2.1 PLS Results 

The mean-centred data was split into a training set and a validation set. These were 

then used to construct and validate a PLS model. The criteria for assessing the model 

were the correlation coefficient of the plot of predicted versus actual variables, and 
then the Root Mean Square Error of Validation (RMSEV) value. For good prediction 

of a set of real actual variables, the correlation coefficient must be as close to unity as 

possible. A perfectly correlated pair of data is one that has a correlation coefficient of 
value 1. Because the correlation coefficient is a ratio, its value lies between zero and 

one, one inclusive, i. e. 0<C: 5 1. The closer the correlation coefficient is to zero, the 
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poorer the correlation between the actual and predicted. The other criterion, the 

RMSEV, is a measure of the difference between the actual data and the predicted 
data. Therefore the smaller the value of the RMSEV, the better the prediction. The 

aim is therefore towards a smaller RMSEV and a correlation coefficient that is as 

close to unity as possible. The models were constructed using the original data and 

then the denoised data (i. e. data reconstituted from the variation captured by the 

second principal component). Table 3 shows the PLS results. 

Data Correlation coefficient from Predicted vrs Actual 

plot 

RMSEV 

Modell Modelt Model 3 

Original 0.9928 0.9955 0.9955 0.2138 

Denoised 0.3207 0.2540 0.2180 2.3702 

Table 3: Results ofPLS modelling of original and denoised Raman naphtha data. 

This shows poorer prediction for the denoised data than for the original 
data. 

It is clear from Table 3 that removing the noise in the data reconstituted by PCA 

makes the prediction by PLS rather worse in all cases. In all three models, the 

correlation coefficients are far closer to zero and the RMSEV is very large for the 

denoised data. The error is very high and the correlation between the original and 

predicted is practically non-existent. Therefore a better method is required. 

3.2.2 GRAPE Results 

The generalised randomised press-based elimination (GRAPE) algorithm randomly 

selects various variables to build the model and rejects those that do not contribute to 

reducing the PRESS. The final set of variables for which there is no decrease in 
PRESS is used to build the new data. Thus this variable selection method removes all 
the noisy data and retains the most important for model building. 
To check the effect of the variable selection method GRAPE, a comparison is made 
between data modelled by MLR and then PLS first without variable selection (i. e. 
using the whole data set) and then with variable selection. 
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The result of MLR and PLS modelling without variable selection is shown in Table 4. 

Method RMSEC V N1 / Nhidden 

MLR 9.4624 

PLS 2.3592 49 

Table 4: Results of modelling without variable selection. This shows a better result by 

PLS than by MLR modelling, though on the whole the RMSECV values are 
too high. 

Here, the RMSECV values are undesirably high, especially for the MLR model. The 

values indicate a wide difference between the predicted and actual data since they are 

far from zero. Therefore variable selection experiments are carried out with Nm = 50 

and Nm = 75. GRAPE and a genetic algorithm are applied to the data to create 

models, as shown in Table 5. 

GRAPE GA 

RMSECV a(RMSECV) N. IOted RMSEC V a(RMSECV) N'Clact04 

MLR (5 0) 1.1277 0.0790 45 1.0977 0.0649 44 

MLR (75) 1.0649 0.0669 45 2.0064 1.2749 39 

Table 5: Results of variable selection experiments. 

Comparing Tables 3&4, there is a vast improvement in the RMSECV values with 

the use of GRAPE and GA. However, GRAPE is better than GA, having lower levels 

of error. When both GA and GRAPE are compared with the PLS result (Table 3), we 

see that normal PLS is more effective than both of these methods, though that result 

was obtained using 60 latent variables to build the PLS model. The advantage of the 

GA approach here is that it requires fewer number of selected variables. 
A graphical presentation of these results is shown in the form of box-and-whisker 

plots in Figure 40. A box and whisker plot are produced for each column of the data. 

The box has lines at the lower quartile, median, and upper quartile values. The 
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whiskers are lines extending from each end of the box to show the extent of the rest of 

the data. The data with values beyond the ends of the whiskers are outliers. 
Thus for the RMSECV plot, the most effective is GRAPE using N75, because its 

corresponding boxplot has very short whiskers and a box with the smallest range. The 

use of the GA using Nm-75 had the widest box range and a very prominent outlier, 

and is therefore the least reliable. This observation is mirrored and enhanced in the 

Nserecred plot that shows the number of variables used for building the model. The plot 

for GRAPE with N, ==50 has the widest box range and prominent whiskers. This 

gives a wide range for Nselected. GRAPE with N, �,. =75 has a smaller box range with 
less prominent whiskers. The GA with N,,, . =50 has the smallest box range while the 

GA with N,,, =75 has a wide box range, second in size only to GRAPE with N.. =50, 

as well as very long and prominent whiskers. In general, however, the method of 

choice is the GA with Nn, ax 50 since it gives a small RMSECV as well as the smallest 
box range in the boxplot. 
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Fig. 40: Box plots of the prediction results of GRAPE and variable selection genetic 

algorithms (VSGA) on the naphtha Raman data. 

Figure 41 shows plots of the original Raman data compared with the predictions from 

the application of GRAPE. The plots show the peaks representing the spiked samples 

where samples were spiked. In all the graphs, good prediction in all the 17 

components of the naphtha mix is observed. The components are made up of paraffin 

compounds, aromatic compounds and naphthenes that cannot be named because of 

restrictions arising from matters of commercial and industrial confidentiality. 
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Fig. 41a: Measured (solid line) and predicted concentration (plus signs) of the first 

six components using GRAPE/MLR. 
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Fig. 41b: Measured (solid line) and predicted concentration (plus signs) for 

components 7-12 using GRAPE/MLR 
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CONCLUSION 
For a complex continuous industrial process, the usefulness of the PCA technique for 

chemical process control has been successfully demonstrated by plotting the scores of 
the first principal component against the sample numbers. Monitoring the progress of 

each chemical component in the process with PCA is however not applicable, due to 
bulk changes in volume and concentration. This is compensated for by the use of 

variable selection algorithms in creating models that give excellent predictions. 
Prediction from PLS modelling gives better results than with MLR. However, when 
the variable selection methods are applied, the results are far better and the predictions 

more accurate than that acquired from the PLS model. Thus future runs in the 

continuous process can be assessed against the MLR model using variable selection. 
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APPENDIX 

I 
Sample Number Sample Type Spike component 

I Non LIF 
2 Non LIF - 
3 Non LIF - 
4 Non LIF - 
5 Non LIF - 
6 Non LIF - 
7 Non LIF - 
8 Non LIF - 
9 Non LIF - 
10 Non LIF - 
11 Non LIF - 
12 Non LIF - 
13 Non LIF - 
14 Non LIF - 
15 Non LIF - 
16 Non LIF - 
17 Non LIF - 
18 Non LIF - 
19 Non LIF - 
20 Non LIF - 
21 Non LIF - 
22 Non LIF - 
23 Non LIF 
24 Non LIF - 
25 Non LIF Spike 1,2,3 
26 Non LIF Spike 1,2,3 
27 Non LIF Spike 1,2,3 
28 Non LIF Spike 4,6,7 
29 Non LIF Spike 4,6,7 
30 Non LIF Spike 4,6,7 
31 Non LIF Spike 5,8,9 
32 Non LIF Spike 5,8,9 
33 Non LIF Spike 5,8,9 
34 Non LIF Spike 10,11,14 
35 Non LIF Spike 10,11,14 
36 Non LIF Spike 10,11,14 
37 Non LIF Spike 15,16,17 
38 Non LIF Spike 15,16,17 
39 Non LIF Spike 15,16,17 
40 Non LIF Spike 14,15,17 
41 Non LIF Spike 14,15,17 
42 Non LIF Spike 14,15,17 
43 Non LIF Spike 5,12,13 
44 Non LIF Spike 5,12 , 13 
45 Non LIF Spike 5,12 , 13 
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46 Non LIF Spike 6,7,8,9 
47 Non LIF Spike 6,7,8,9 
48 Non LIF Spike 6,7,8,9 
49 Tank Blend LIF - 
50 Non LIF Spike 17 
51 Non LIF Spike 12 
52 Non LIF Spike 13 
53 LIF - 
54 LIF - 
55 LIF - 
56 LIF - 
57 LIF - 
58 LIF - 
59 LIF - 
60 LIF - 
61 LIF - 
62 LIF - 
63 LIF - 
64 LIF - 
65 LIF - 
66 LIF - 
67 LIF - 
68 LIF - 
69 LIF - 
70 LIF - 
71 LIF - 
72 LIF - 
73 LIF 
74 LIF - 
75 LIF - 
76 LIF - 
77 LIF - 
78 LIF Spike 1,2,3 
79 LIF Spike 1,2,3 
80 LIF Spike 1,2,3 
81 LIF Spike 4,6,8 
82 LIF Spike 4,6,8 
83 LIF Spike 4,6,8 
84 LIF Spike 9,10,11 
85 LIF Spike 9,10,11 
86 LIF Spike 9,10,11 
87 LIF Spike 14,15,16 
88 LIF Spike 14,15,16 
89 LIF Spike 14,15,16 
90 Heads Spike Non LIF 2 
91 Heads Spike Non LIF 2 
92 Heads Spike Non LIF 2 
93 Heads Spike Non LIF 2 
94 Heads Spike Non LIF 2 
95 Heads Spike Non LIF I 
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96 Heads Spike Non LIF 1 
97 Heads Spike Non LIF 1 
98 Heads Spike Non LIF 1 
99 Heads Spike Non LIF I 
100 Heads Spike Non LIF 10 
101 Heads Spike Non LIF 10 
102 Heads Spike Non LIF 10 
103 Heads Spike Non LIF 10 
104 Heads Spike Non LIF 10 
105 Heads Spike Non LIF 6 
106 Heads Spike Non LIF 6 
107 Heads Spike Non LIF 6 
108 Heads Spike Non LIF 6 
109 Heads Spike Non LIF 6 
110 Heads Spike Non LIF 7 
111 Heads Spike Non LIF 7 
112 Heads Spike Non LIF 7 
113 Heads Spike Non LIF 7 
114 Heads Spike Non LIF 7 
115 Heads Spike Non LIF 3 
116 Heads Spike Non LIF 3 
117 Heads Spike Non LIF 3 
118 Heads Spike Non LIF 3 
119 Heads Spike Non LIF 3 
120 Heads Spike Non LIF 5 
121 Heads Spike Non LIF 5 
122 Heads Spike Non LIF 4 
123 Heads Spike Non LIF 4 
124 Heads Spike Non LIF 4 
125 Heads Spike Non LIF 4 
126 Heads Spike Non LIF 4 
127 Special Non LIF - 
128 Special Non LIF - 
129 Special Non LIP - 
130 Installation Tank Blend LIF - 
131 Installation Tank Blend LIF - 
132 Installation Tank Blend LIF - 
133 Installation Tank Blend LIF - 
134 Installation Tank Blend LIF - 
135 Installation Tank Blend LIF - 
136 Installation Tank Blend LIF 
137 Installation Tank Blend LIF - 

Table 1: Data collected from Naphtha processing plant. (LIF = Laser Induced 

Fluorescence) 
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