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Abstract 

Calcium is an important secondary messenger and plays a major role in 

cell function, including proliferation, cell growth, secretion and death .It 

also plays a critical role in uterine smooth muscle contraction and 

embryo implantation. This thesis is concerned with calcium homeostasis 

in epithelial tissue lining the oviduct and uterus which are key players in 

early reproductive events, being involved in gamete transport, sperm 

capacitation and providing the micro-environment for the gametes and 

early embryo. Calcium transport across epithelial cells is either via tight 

junctions or calcium channels, specifically, members of the transient 

receptor potential (TRP) channel superfamily and the Na+/Ca2+ 

exchanger. TRP channels are an important class of calcium channels 

with more than 28 identified members and their potential involvement in 

calcium transport in uterus and oviduct epithelia has yet to be 

determined. The aim of this study was to discover which TRPC isoforms 

are expressed in epithelial cells lining the female reproductive tract in the 

bovine and human. Gene expression of TRPC channels changes was 

measured throughout the estrous cycle in bovine oviduct and uterine 

epithelial cells using Real-Time PCR, while immunohistochemistry, 

immunocytochemistry and western blotting were used to discover the 

localization of TRPC channels in oviduct/uterine epithelium and changes 

in protein expression of TRPC isoforms induced by sex hormones. . to 

The physiological role of TRPC isofoms in regulating intracellular calcium 

concentration in bovine oviduct epithelial cells was determined using a 

calcium assay approach and finally. the potential clinical relevance of a 

possible role of TRP channels in female reproduction was investigated.  

OF 7 members of TRPC family, TRPC1, 2, 3, 4 and 6 were expressed in 

bovine oviduct and uterine epithelia. In human endometrium, TRPC1, 6 

and 7 genes were detected. Expression levels of all TRPC isoforms 

present in both bovine oviduct and uterine epithelia changed throughout 

the estrous cycle. 17β-estradiol, FSH and LH individually and in 

combination up-regulated gene expression of TRPC isoforms in bovine 

oviduct epithelial cells. However, progesterone inhibited the up-

regulatory effect of 17β-estradiol, FSH and LH on TRPCs gene 



 

 

expression.  TRPC1 and TRPC6 which are the common TRPC isoforms 

in bovine oviduct/uterine epithelium and human endometrium were 

localized on the apical, basal and lateral membranes of the epithelial 

tissue in bovine oviduct/uterus and human endometrium. TRPC isoforms 

were physiologically active in bovine oviduct epithelial cells (BOEC). 

SKF96365 which is a general TRP channel blocker inhibited the calcium 

influx into BOEC. Furthermore, Hyperforin which is a TRPC6 channel 

activator increased the intracellular calcium concentration in BOEC. 

TRPC1, 6 and 7 expression in endometrium of patients being treated for 

infertility by IVF illustrated that gene expression of TRTPC1 and 6 were 

up regulated in the endometrium of the IVF patients compared to 

controls. However, gene expression of TRPC7 in IVF patients was down-

regulated compared to that of the endometrium of the control group. 

Gene expression of TRPC6 and 7 in endometrium of women with Poly 

Cystic Ovarian Syndrome (PCOS) who have higher level of LH and 

normal FSH level, alongside the absence of the post-ovulatory increase 

in progesterone secretion, were up -regulated compared to that of the 

control group. However, the expression level of TRPC1 in endometrium 

of PCOS patients was not significantly different compared to the control 

group. 

Gene expression of TRPC isoforms in the epithelia lining the female 

reproductive tract is possibly regulated by sex hormones via nuclear 

factor-kappa B (NF-КB) signalling pathway. However, further 

investigation is required to determine the mechanisms underlying the 

endocrine regulation of TRPC channels.  
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1. Reproduction 

The reproductive system describes the aspect of physiology involved in the 

survival and propagation of the species. The reproductive systems of both 

males and females have broadly similar components that comprise the gonads, 

a ‘reproductive tract’ and accessory sex glands.  However, unlike other body 

systems that are largely identical between male and female individuals, the 

anatomy of the reproductive system is unique to each of the sexes.  The female 

reproductive tract is a complex system which, in eutherian mammals, 

undergoes periodic physiological changes which relate to functional 

requirements.  The detail of these cyclical changes in female reproductive 

physiology differs between species of eutherian mammals, and can be 

categorised as menstrual (in humans and higher primates such as gorillas 

(Nadler et al., 1979) and chimpanzees (Graham et al., 1972) or  estrous (in 

other placental mammalian species). 

1.1 The oviduct 

The anatomy of the oviduct is highly variable among the different species. In 

general terms, the oviduct is a tube consisting of an internal mucosa, 

specifically termed the endosalpinx, especially in women, an intermediate 

muscular layer, also known as the myosalpinx, and an outer serosa. The 

endosalpinx is lined by three types of cells; ciliated, secretory and peg cells.  It 

is divided into three sections; the infundibulum, the ampulla and the isthmus 

(Menezo & Guerin, 1997). The infundibulum is the part of the oviduct that is 

nearest to the ovary and is associated with the fimbriae, a bordering fringe at 

the ovarian end of the oviduct. The infundibulum is mainly lined with a ciliated 

simple columnar epithelium that facilitates the movement of the oocyte toward 

the uterus (Yániz et al., 2000).  

The ampulla is a thin-walled part of oviduct and forms more than half of the 

length of the tube. In woman, the outer diameter of the ampulla is 1-2 cm and 

the inner diameter is 1-2 mm (Pauerstein & Eddy, 1979). It is in the ampulla that 

fertilization occurs (Shalgi & Phillips, 1988).  The epithelial cells in the ampulla 

are largely secretory and contain a granular cytoplasm and their endoplasmic 

reticulum is spread out irregularly. However, ciliated epithelial cells are still 

apparent (Pauerstein & Eddy, 1979). These secretory cells release secretory 
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material into the lumen for nourishment of the oocyte and embryo providing an 

optimal environment for fertilization (Ledger, 2010).  

The isthmus is the narrow, proximal portion of the oviduct which connects to the 

ampulla and terminates in the uterus at the uterotubal junction. The isthmus is 

2-3 cm in length and 0.1-1.0 mm in diameter (Pauerstein & Eddy, 1979). There 

are fewer ciliated cells in the isthmus compared to the infundibulum and 

ampulla. The increase in the percentage of ciliated cells from the isthmus to the 

fimbriae is dramatic (Shalgi & Phillips, 1988). 

First described by Novak and Everett (1928), the histological appearance of the 

oviductal epithelium undergoes cyclic changes (Novak & Everett, 1928) that are 

regulated by the level of estrogens and progesterone during the 

menstrual/estrous cycle. At the late follicular phase, the height and degree of 

ciliation of the epithelial cells reach a maximum level in the ampulla and 

infundibulum.   Atrophy and deciliation occurs in the late luteal phase. In the 

early follicular phase the epithelial cells undergo hypertrophy and re-ciliation. 

Further atrophy and deciliation occur during pregnancy and the postpartum 

period (Verhage et al., 1979). 

1.2 The uterus 

The uterus in women is a pear-shaped organ, made up of the fundus, body and 

cervix. In the bovine, there are two uterine horns. The endometrium lines the 

uterus and comprises a single layer of columnar luminal epithelium with 

glandular epithelial cells which penetrate into the stroma. This epithelial layer is 

supported by a base of stromal connective tissue (Lawn, 1973). 

17-β estradiol and progesterone, two of the major ovarian steroids, regulate the 

function of the uterus. For instance, a balance of 17-β estradiol and 

progesterone controls proliferation of the uterine epithelial cells by regulating 

DNA synthesis, mitogenesis and expression of cell cycle markers such as Ki67 

(Martin, 1980; Clarke & Sutherland, 1990). Progesterone inhibits the 17-β 

estradiol-induced epithelial proliferation (Martin et al., 1973) . 

During the follicular phase of the menstrual/estrous cycle, a rise in 17-β 

estradiol level leads to an increase in both myometrial contractility and 

excitability to facilitate spermatozoa movement towards the site of fertilization in 
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the ampulla (Mesiano & Welsh, 2007). Also, in the endometrium, proliferation of 

the stromal cells contributes to overall stromal thickening. An increase occurs in 

the surface area and metabolic activity of the surface epithelium which involves 

an increase in the number and size of the glandular epithelial cells.  

Estrogens bind to estrogen receptors ERα, ERβ which are abundant in the 

uterine tissue. Estrogens induce the synthesis of intracellular progesterone 

receptor at the proliferation phase ready for ovulation and the transition to the 

subsequent proliferative phase. In the rat, estradiol increases the mRNA level of 

ERα in glandular and luminal epithelia, however, the protein level of ERα 

decreases in glandular epithelium under the influence of estradiol (Sharma & 

Rao, 1992). 

1.3 Menstrual and estrous cycles 

The menstrual (human) and estrous (bovine) cycles commence with puberty. 

The ovaries begin their endocrine activity with the secretion of two key steroid 

hormones; oestrogen and progesterone. Both menstrual and estrous cycle 

involve changes in the ovary and uterus. The bovine cycle, summarised in Fig 

1, is considered first. 

1.3.1 Bovine estrous cycle 

The bovine estrous cycle (Fig 1.1) begins with ovulation, when the oocyte(s) is 

released from the dominant follicle on the ovary as a result of the preovulatory 

Luteinizing hormone (LH) surge which in turn triggers nuclear and cytoplasmic 

maturation of the oocyte (Gordon, 2003). After ovulation, the tissue of the 

recently ovulated follicle consists of theca interna cells, which have LH 

receptors, and granulosa cells which have both FSH and LH receptors (Boron & 

Emile, 2005). Under the influence of these hormones, the tissue undergoes 

transformation under the effect of follicle stimulating hormone (FSH) and 

Luteinizing hormone (LH) produced in gonadotrophs of the anterior pituitary 

gland (Channing et al., 1980), and differentiates to form small and large luteal 

cells respectively. Both small and large luteal cells secrete progesterone. 

Secretion of LH is regulated by 17-β estradiol concentration (Gordon, 2003) 

whereas, secretion of FSH is regulated by inhibin in association with 17-β 

estradiol (Kaneko et al., 1995). Large luteal cells secrete oxytocin and are 

http://en.wikipedia.org/wiki/Follicle_stimulating_hormone
http://en.wikipedia.org/wiki/Gonadotroph
http://en.wikipedia.org/wiki/Anterior_pituitary_gland
http://en.wikipedia.org/wiki/Anterior_pituitary_gland
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responsive to prostaglandin E whereas, small luteal cells are responsive to LH. 

Formation of a functional CL requires LH. However, the CL maintains its 

function without LH (Peters et al., 1994). Progesterone, which is secreted from 

the CL, is the dominant hormone for the major part of the bovine's estrous 

cycle. The concentration l of progesterone increases from day 3-4 of the estrous 

cycle, and then,  dramatically until day 8 of the estrous cycle when a plateau is 

reached (Gordon, 2003). A decrease in progesterone concentration, the result 

of rapid regression of the CL induced by PGF2α secreted by the endometrium 

(Schramm et al., 1983) is the key event in the estrous cycle. Regression of the 

CL begins 1-4 days before estrous and is completed within 2 days (Gordon, 

2003). Apoptosis is responsible for CL regression (Zheng et al., 1994). PGF2α is 

secreted from the endometrium as a result of interaction with  oxytocin secreted 

from the CL with its specific receptor on the endometrial cells. The formation of 

oxytocin is dependent on the 17-β estradiol secreted by the granulosa cells of 

the follicle using the androstenedione produced in theca cells (Gordon, 2003). 
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Fig 1.1 Hormonal changes throughout the bovine estrous cycle. Taken from 

http://www.google.co.uk/imgres?q=hormonal+changes+in+estrous+cycle&um=1&hl=en&sa=N&

rlz=1T4GGHP_en-GBGB438GB438&biw=1366&bih=583&tbm=isch&tbnid=B9rlHU3_-

jxUBM:&imgrefurl=http://www.fao.org/Wairdocs/ILRI/x5442E/x5442e04.htm&docid=AtGarE7y08

4EQM&imgurl=http://www.fao.org/Wairdocs/ILRI/x5442E/x5442e09.gif&w=599&h=486&ei=waS

yTvWVHcnFtAbM-6ypBA&zoom=1.  Accessed on 31/10/2011 
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1.3.2 The menstrual cycle 

The menstrual cycle (Fig 1.2), which usually takes 28 days, is controlled by 

interaction between the hypothalamus, pituitary gland and ovaries similar to that 

of the estrous cycle. Gonadotropin-releasing hormone (GnRH) is synthesized, 

stored and released by neurons in the hypothalamus. GnRH is then carried to 

the anterior pituitary where it binds to its specific receptors on gonadotrophs 

(Boron & Emile, 2005) and induces the synthesis and secretion of FSH and LH. 

FSH and LH in turn induce the synthesis and release of estrogens and 

progesterone from the ovaries. Furthermore, the ovaries secrete two peptides 

called inhibins and activins which are also involved in regulation of the 

menstrual cycle (Boron & Emile, 2005).  

The follicular phase, which is the first phase of the ovarian cycle, begins  with 

menstruation. The FSH surge in the late luteal phase of the preceding cycle 

results in the development of follicles in the ovary. Upon initiation of follicle 

development, granulosa cells of the follicle start the secretion of 17-β estradiol 

which is turn triggers continue growth and maturation of endometrium, known 

as the proliferative phase of the endometrial cycle. Increased levels of 17-β 

estradiol lead to an LH surge just before ovulation via a positive feedback on 

the anterior pituitary. An increase in progesterone and activin concentrations 

then leads to the FSH surge prior to ovulation (Boron & Emile, 2005). 

The second phase of the ovarian cycle is known as the luteal phase and begins 

after ovulation with the formation of the corpus luteum. Luteal cells secrete 

significant amount of progesterone, and at lower concentrations, 17-β estradiol 

and inhibin. Progesterone and 17-β estradiol trigger further growth and 

development of endometrium (Boron & Emile, 2005). This is known as the 

secretory phase of the endometrial cycle. Increase in estrogen and 

progesterone leads to a fall in FSH and LH levels via a negative feedback on 

the hypothalamic-pituitary system. The decrease in FSH and LH levels results 

in the regression of the corpus luteum which in turn leads to menstrual bleeding 

known as the menstrual phase of the endometrial cycle and initiation of the next 

cycle (Boron & Emile, 2005). 
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Fig 1.2 Physiological and hormonal changes in endometrium and ovary throughout the 

menstrual cycle. Taken from  

http://www.google.co.uk/imgres?q=hormonal+changes+in+menstrual+cycle&um=1&hl=en&rlz=

1T4GGHP_enBGB438GB438&biw=1366&bih=544&tbm=isch&tbnid=6XUkkqokSxQt1M:&imgref

url=http://www.medscape.com/viewarticle/719473_2&docid=I75DhXyo3QjAmM&imgurl=http://i

mg.medscape.com/article/719/473/719473-

fig1.jpg&w=800&h=515&ei=JaayTvquGcv0sgai6u23BA&zoom=1. Accessed on 31/10/2011 
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1.4 Endocrine control of calcium homeostasis 

About 99% of total calcium in the body is stored in crystalline form within the 

skeleton and teeth. About one tenth of the remaining 1% resides within cells in 

the soft tissue. Less than 0.1% of the total calcium in the body is found in the 

extracellular fluid. Approximately half of this extracellular fluid calcium is 

restricted to the plasma, bound to the plasma proteins or involved in formation 

of complexes with PO4
-3. Consequently only approximately 0.05% of total body 

calcium is biologically active and involved in essential physiological activities 

(Aurbach et al., 1992).  

Regulation of Ca2+ homeostasis is hormone dependent. Parathyroid hormone 

(PTH), vitamin D and calcitonin are the three key hormones that regulate Ca2+ 

homeostasis and balance in the body (Mundy & Guise, 1999).  

1.4.1 Parathyroid Hormone 

PTH is a 84-amino acid peptide hormone  secreted from the parathyroid glands. 

The key function of PTH is to prevent hypocalcemia by increasing Ca2+ 

concentration of plasma by acting on bone, kidneys and intestine. It also 

reduces plasma PO4
-3  concentration, thus raising unbound Ca2+ levels (Mundy 

& Guise, 1999).  

PTH secretion from the parathyroid gland is initiated when hypocalcaemia 

occurs, as the secretory cells of the parathyroid are directly responsive to 

changes in free plasma Ca2+ concentration.  PTH can promote either a fast Ca2+ 

efflux into the plasma from bone fluid or a slow increase by triggering bone 

dissolution and transferring Ca2+ and PO4
-3 from bone minerals. In the case of 

rapid Ca2+  efflux, PTH first activates a membrane Ca2+ pump in osteocytes and 

osteoblasts. This Ca2+ pump in turn promotes Ca2+  movement from bone fluid 

into the cytosol of these cells without movement of PO4
-3 (Sherwood, 2008). 

Osteocytes and osteoblast then release the Ca2+ into the plasma. The entire 

process is dependent on cAMP (Dietrich et al., 1976). The slow PTH-induced 

transfer of Ca2+ from bone to the extracellular fluid occurs through stimulation of 

osteoblasts to secrete the receptor activator of NF-ᵏß ligand (RANKL), which 

induces macrophages to differentiate into osteoclasts (Fu et al., 2002). This 

results in stimulation of osteoclasts to metabolise the bone and further increase 
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the formation of osteoclasts.  In parallel, bone formation by osteoblasts is 

transiently inhibited. Released PO4
-3 during bone dissolution is eliminated by the 

kidney under the influence of PTH. However, PTH induces reabsorption of 

filtered Ca2+ by the kidneys which leads to an increase in the plasma Ca2+ 

concentration. Furthermore, PTH enhances the activation of vitamin D 

(cholecalciferol) by the kidney which in turn increases Ca2+ and PO4
-3 

absorption in the intestine. The relationship between PTH secretion and free 

plasma Ca2+ concentration forms a negative-feedback loop similar to that of 

calcitonin (Mundy & Guise, 1999). 

1.4.2 Vitamin D 

Vitamin D is a steroid-like compound produced in the skin from 7-

dehydrocholestrol when exposed to sunlight (Webb & Holick, 1988). Vitamin D 

is then released into the blood stream and after conversion to its active 

metabolite (see below) acts on intestine and bone. In countries close to the 

poles, with seasonal short periods of sunlight, essential vitamin D should be 

obtained from dietary sources. Vitamin D produced in the skin or from a dietary 

source is biologically inactive and must undergo biochemical alteration by 

addition of two hydroxyl (-OH) groups to become activated. The first 

hydroxylation step occurs in liver and the second in the kidney (Kawashima et 

al., 1982). Hydroxylated vitamin D is known as 1,25-(OH)2-vitamin D3 or 

calcitriol. The enzymes that catalyse the second hydrolxylation of vitamin D in 

kidney are regulated by PTH (Barbour et al., 1981; Gkonos et al., 1984; 

Zerwekh & Breslau, 1986).  

Most of the dietary Ca2+ is lost in the faeces. However, when plasma Ca2+ level 

is low, the active form of vitamin D, Calcitriol, increases the absorption of dietary 

Ca2+ as well as PO4
-3 into the plasma (Norman et al., 1982). Vitamin D also 

enhances the effect of PTH on bone. Vitamin D induces its effect by binding to a 

nuclear vitamin D receptor and regulating gene expression (Takahashi et al., 

1988; Suda et al., 1992). 

1.4.3 Calcitonin 

Calcitonin is a 32-amino acid peptide which is secreted by the C cells of the 

thyroid gland and acts in contrast to PTH and vitamin D to decrease plasma 
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Ca2+ levels. Calcitonin induces short-term and a long-term effects on plasma 

Ca2+ concentration in a similar but reciprocal manner to that of PTH. The short-

term action of calcitonin decreases Ca2+ transport from bone fluid into the 

plasma (Friedman et al., 1968). The long-term effect reduces bone resorption 

via inhibition of cAMP activity in osteoclasts (Heersche et al., 1974). Inhibition of 

bone resorption results in hypocalcemia and hyposphatemia. Calcitonin inhibits 

Ca2+ and PO4
-3 reabsorption from the nephron (Quamme, 1980). However, Ca2+ 

and PO4
-3 absorption in intestine is not affected by calcitonin.  

 

 

 

 

 

 

  

  

  

 

  

  

  

  

 Fig 1.3 Endocrine regulation of calcium homeostasis. Taken form 

http://mycozynook.com/102RGCh25OH.htm  
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1.5 Calcium homeostasis in the oviduct and uterus 

Calcium acts as an intracellular second messenger and plays a major role in a 

variety of cell functions, including proliferation, growth, secretion and death 

(Berridge et al., 1998a). As regards the female reproductive tract, it is useful to 

distinguish between the role of calcium ions in the outer muscle coats 

(myometrium of the uterus and myosalpinx in the oviduct) and the mucosal 

lining (endometrium and endosalpinx respectively). While calcium ions are 

obviously closely linked with contraction of the myometrium and myosalpinx 

(Wray et al., 2003),  their role in these processes is not considered in this thesis 

where the focus is on calcium regulation of events in the endosalpinx and 

endometrium. Here the main emphasis is on the epithelial cells lining the 

oviduct and uterus, rather than the stroma, though in some cases, localisation 

of calcium transporters in stroma has been examined. The epithelial cells are 

ultimately responsible for regulating the passage of calcium ions into the lumen 

compartment where they are required by the gametes and cleavage stages of 

the preimplantation embryo and by the blastocyst during implantation (Sanborn, 

2000). The movement of calcium from the blood across the epithelial cells is 

therefore vital for gamete and embryo survival and requires calcium 

transporters but this process has been little studied in female tract epithelia. 

Similarly, intracellular calcium homeostasis is obviously essential for the 

survival of the endosalpinx and endometrium but the mechanisms involved 

have yet to be determined.  

In general, calcium movement across epithelia has to be considered alongside 

calcium exchange between epithelial cells, which  is either via tight junctions or 

calcium channels which are voltage-dependent calcium channels (VDCCs), 

members of either transient receptor potential (TRP) channels, or  Na+/Ca2+ 

exchangers (NCXS) (Linck et al., 1998). VDCCs have been categorised into two 

major groups; high voltage-activated (HVA) channels which are activated at 

voltages higher than -40 mV (depolarized potential) and low voltage-activated 

(LVA) channels which are activated at voltages between -80mV and -60mV 

(relatively small depolarisation) (Huguenard, 1998).   

Many events related to mammalian reproduction, such as gamete transport, 

fertilization, early embryonic development and embryo transport take place in 
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the oviduct. By virtue of its importance as an intracellular second messenger, 

calcium is likely to play a key role in morphological and functional changes in 

the oviduct epithelium.  Alterations in ciliary activity of oviduct, ampullary 

transport of the oocyte and early embryo, are controlled by estrogen and 

progesterone (Nozaki & Ito, 1987) and cytokines such as Platelet-Activating 

Factor (PAF), which is produced by preimplantation embryos (Velasquez et al., 

1995; Downing et al., 2002). PAF induces a transient increase in intracellular 

calcium concentration [Ca2+]i in bovine oviduct epithelial cells (Tiemann et al., 

1996) and increases the proliferation rate in human endometrial HEC-1B cells 

(Ahmed et al., 1994), bovine endothelial cells (Lin & Rui, 1994) and bovine 

endometrial stromal cells (Tiemann & Hansen, 1995). It has been shown that 

PAF-dependent increases in [Ca2+]i in bovine oviduct epithelial cells are 

dependent on Ca2+ influx from the extracellular environment (Tiemann et al., 

1996). Treatment of these cells with verapamil which is a voltage-gated Ca2+ 

channels inhibitor does not affect the PAF-dependent increase in [Ca2+]i 

(Tiemann et al., 1996). Flufenamic acid reduces the PAF-dependent increase in 

[Ca2+]i (Wangemann et al., 1986; Gögelein et al., 1990). Furosemide which is a 

Na+-K+-2Cl- cotransporter, reduces the effect of PAF on the potential difference 

and short-circuit current (ISCC) across human fallopian tubal epithelial cells 

(Downing et al., 2002). 

1.6 Calcium homeostasis in the endometrium 

The human endometrium is a regenerative tissue which remodels during each 

menstrual cycle by going through phases of growth, proliferation, differentiation, 

breakdown and shedding. There are several calcium transport-related proteins 

expressed in endometrium at different levels depending on the stage of the 

endocrine cycle indicating the importance of this molecule in endometrial 

activity during both the menstrual cycle and pregnancy.  

Ovarian hormones, estrogen and progesterone, play an important role in 

calcium homeostasis in endometrium by altering the expression of calcitonin, a 

short peptide hormone (Ding et al., 1994; Dong et al., 2003). Expression of 

P2X1–3,6,7, a ligand-gated ion channel which is activated by extracellular ATP 

is also up-regulated, on the apical side of epithelium at the time of implantation. 
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This has been interpreted as an important role of this receptor in supplying 

increased [Ca2+]i  in the endometrial epithelium (Slater et al., 2000). 

For example, in RL95-2, a human uterine epithelial cell line, increase in 

intracellular calcium ([Ca2+]i ) is related to adhesion of trophoblast-like JAR cells 

to the apical surface of these cells in culture. Pretreatment of RL95-2 cells with 

diltiazem, a voltage-activated calcium channel blocker, results in a reduction in 

intracellular calcium concentration. Furthermore, separation of established 

bonds between RL95-2 and trophoblast-like JAR cells induces an increase in 

[Ca2+]i which is reduced by SKF-96365, a blocker of transient receptor potential 

(TRP) channels; mainly receptor-activated Ca2+ channels and voltage-gated 

Ca2+ channels, but not by application of nifedipin or diltiazem, both of which are 

specific blockers of voltage-gated Ca2+ channels (Tinel et al., 2000). 

Studies such as these on human endometrium calcium homeostasis have 

mainly been carried out on primary cell lines or animal models due to the ethical 

and experimental difficulties of in vivo studies.  

In conclusion, this survey of the literature indicates there are very few studies 

on the mechanisms underlying calcium homeostasis in the endosalpinx and 

endometrium and how these may be linked to the transport of calcium across 

the epithelial cells. 

The aim of this thesis is to address this general lack of knowledge, focussing on 

the potential role of TRP channels in these processes. In order to devise a 

suitable experimental approach, it is necessary to summarise the role of TRP 

channels in epithelial cells and the mechanisms involved in their action. 

1.7  Epithelial cell connections and calcium homeostasis 

 The term Epithelium refers to a layer of connected individual cells which form a 

functional barrier between external and internal environments. The fundamental 

functions of epithelial cells are twofold: a) to maintain separation of different 

compartments within the organism and b) to regulate exchange of the ions and 

nutrients between these compartments (Weinstein & Windhager, 2001; 

González-Mariscal et al., 2003). (Goodenough, 1999). Exchange of ions and 

nutrients can be via passage between the cells (paracellular transport) or 

‘through’ the cells (transcellular) in epithelial tissues.  
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An important feature of epithelial cells is tight junctions which are specialized 

intracellular structures where the plasma membranes of adjacent epithelial cells 

are in very close contact. Several integral membrane proteins complex to form 

the tight junction. These include occludin, claudins and immunoglobulin 

superfamily members (Martìn-Padura. I. et al., 1998; Goodenough, 1999; 

Ebnet. K. et al., 2003).  

Gap junctions (Fig 1.4) are another cell connection mediator which allow direct 

communication between adjacent cells. Molecular exchange via gap junctions 

occurs by passive diffusion. Metabolites, ions, second messengers with 

molecular mass of up to 1000 Da, water and electrical impulses are exchanged 

through gap junctions (Kumar & Gilula, 1996; Alexander & Goldberg, 2003). 

Gap junctions are composed of two connexons, each of which consists of six 

connexin subunits. These subunits contain four transmembrane region, two 

extracellular loops, one cytoplasmic loop and cytoplasmic N and C termini (Söhl 

& Willecke, 2004).  

Desmosomes are another group of intracellular junctions in epithelial cells 

which are also present in myocardium. Intermediate filaments are bound to the 

plasma membrane by means of desmosomes. The desmosome is 

morphologically divided into three zones; the extracellular core region 

(desmoglea), the outer dense plaque (ODP) and the inner dense plaque (IDP) 

(Kowalczyk et al., 1994; Schmidt et al., 1994; Green & Jones, 1996; North et al., 

1999; Garrod & Chidgey, 2008). Desmosomes bind the adjacent cells to one 

another and provide the resiliency of the epithelium (Garrod et al., 1996). 
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Fig  1.4  Schematic drawing of gap junction and its subunits, connexins. A: Each of the adjacent 

cell contributes a hemi-channel to the gap junction. Changes in the configuration of subunits 

lead to opening and closing of the gap junction channels [Adapted from (Kandel et al., 1995)]. 

B: Topology of a connexin with four teansmembrane domains (M1-M4), two extracellular loop, 

one cytosolic and cytosolic N and C termini [Adapted from (Kumar & Gilula, 1996)]. 
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Ions can traverse an epithelium though the tight junctions. Movement of ions via 

tight junction depends on the electrical and concentration gradients across the 

epithelium and is described as passive transport since energy is not required to 

drive transport. However, hormones and other factors affecting the 

electrochemical gradient indirectly control the passive ion flow through tight 

junctions (Pappenheimer, 1987; Goodenough, 1999). Growth factors, cytokines, 

bacterial toxins, hormones and other factors modulate tight junction permeability 

(Garcia et al., 1998; Gopalakrishnan et al., 2002; Benais-Pont et al., 2003; 

Wang et al., 2004).  

Many cells express specific pathways for the transport of ions across their 

membranes and into the cell. Once internalised, these ions can either exit 

through the opposing membrane or can be affect the behaviour of the cell.   

One ion which has special importance is calcium due to its crucial role in many 

physiological events such as reproduction (Tesarik & Sousa, 1996; Jimenez-

Gonzalez et al., 2006). The maintenance of extracellular and intracellular 

calcium concentration is vital for many physiological functions in the body and 

as a consequence, exchange between the extracellular and intracellular 

environments is tightly controlled. Calcium entry into the epithelial cells is 

through calcium selective channels. Absorption of calcium in epithelial cells via 

calcium channels has been the subject of various studies (Lajeunesse et al., 

1994; Yu et al., 1995; Moreau et al., 2002). Several voltage-dependent like 

calcium channels are present in the epithelium of distal part of the nephron (Yu 

et al., 1995). PTH-induced calcium influx in the renal distal tubule via calcium 

channels is thought to be stimulated by both protein kinase A (PKA) and C 

(PKC) (Friedman et al., 1996; Hoenderop JG, 1999). Furthermore, it has been 

shown that 1,225-(OH)2D3- induced calcium channel activation in mammalian 

intestinal cells is via cAMP/PKA-pathway (Massheimer et al., 1994). Further 

studies and the discovery of Transient Receptor Potential (TRP) channel 

superfamily led to recognition of the critical role of TRP channels, more 

specifically TRPV5 and 6, in epithelial cell calcium transport (Peng et al., 1999; 

Hoenderop et al., 2002; Montell et al., 2002; Peng et al., 2003).  



18 
 

Calcium efflux across the basolateral membrane of absorptive epithelia which 

occurs against the electrochemical gradient, is mediated by two calcium 

transporters; the Na+/Ca2+ exchangers (NCX) and Ca2+- ATPase (PMCA).   

1.7.1 Na+/Ca2+ exchangers 

In mammals, three isoforms of NCX have been identified: NCX1, NCX2 and 

NCX3. NCX1 is distributed widely in many different mammalian tissue, and in 

the rabbit kidney, expression is restricted to the distal part of the nephron where 

it localizes mainly on the basolateral (basal) membrane (Hoenderop et al., 

2000; Loffing et al., 2001; Biner et al., 2002). By contrast, NCX2 and NCX3 

expression is restricted to brain and skeletal muscle (Li et al., 1994; Nicoll et al., 

1996). NCXs are activated by the membrane potential, protein kinase C (PKC) 

activation, nucleotides, calciotropic hormones and protons (Blaustein & Lederer, 

1999). Several functional studies suggest that calcium is extruded via the basal 

membrane of the kidney epithelium. However, this mechanism seems to play a 

minor role in the small intestine. 

K+ -dependent Na+/Ca2+ exchangers (NCKX), (Blaustein & Lederer, 1999; 

Philipson & Nicoll, 2000) are expressed in the epithelium of small intestine and 

kidney (Li et al., 2002; Cai & Lytton, 2004). The abundant expression of these 

channels in various tissues indicates their vital role in regulating the intracellular 

calcium concentration in mammalian cells. However, their exact role in epithelial 

calcium transport is yet to be determined.  

1.7.2 Ca2+- ATPases 

PMCAs are widely expressed in all eukaryotic cells where they maintain the 

resting intracellular calcium concentration (Blaustein et al., 2002). Each of the 

the four isoforms of PMCA (PMCA1-4) are encoded by four separate genes and 

each isoform has various splice variants which mainly differ in their carboxy-

terminal (Stauffer et al., 1993; Strehler & Zacharias, 2001). Unlike NCX, PMCA 

is expressed throughout the nephron segment although it is more abundant on 

the basal membrane of the epithelium lining the distal part of the nephron 

(Doucet & Katz, 1982; Borke et al., 1989). PMCA1 and PMCA4 have been 

proposed as ‘housekeeping genes’ which are crucial in the maintenance of 

cellular calcium homeostasis due to their abundant expression. However, 
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PMCA2 and PMCA3 are more tissue specific (Stauffer et al., 1993). Of various 

isoforms of PMCA, PMCA4b is a significant extruder of basolateral (basal) 

calcium in Madin-Darby Canine Kidney (MDCK) cells. Furthermore, in the small 

intestine PMCA1b is the predominant isoform of PMCAs (Kip & Strehler, 2003, 

). 

1.8 Transient Receptor Potential Superfamily Channels 

Transient Receptor potential (TRP) channels were first discovered through 

studying a mutation in photoreceptor cells of Drosophila melanogaster that 

alters eye responses to light by increasing cell membrane permeability to Ca2+ 

(Hardie, 1992), (Pak, 1970; Suss-Toby  E, 1991). Since then, 28 members of 

this superfamily have been identified. All the TRP members have a unique 

structure of six transmembrane domains, one intracellular N- terminal, one 

intracellular C-terminal and a pore domain which is located between the fifth 

(S5) and sixth (S6) segment (Fig 1.5). Despite their unique morphology, 

members of this superfamily differ widely in terms of their selectivity (Padinjat & 

Andrews, 2004) and specific activation mechanism (Venkatachalam K & Montell 

C, 2007).  Members of the mammalian TRP superfamily are divided into seven 

families based on amino acid homologies; the TRPC (Canonical) family, the 

TRPV (Vanilloid) family, the TRPM (Melastatin) family, the TRPP (Polycystin) 

family, the TRPML (MucoLipin) family, the TRPA (Ankyrin) family, and the 

TRPN (NOMPC) family (Montell C et al., 2002a; Montell C et al., 2002b; 

Clapham, 2003a; Corey DP, 2003; Delmas P, 2004; Pedersen SF et al., 2005) 

(Fig 1.6). 
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Figure 1.5 TRP channel topology with six transmembrane domains. E1, E2 and E3 (the 

extracellular loops) are located between segments1 and 2, 3 and 4, 5 and 6 respectively.  
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Figure 1.6 Phylogenetic tree of the TRP family. The evolutionary tree is calculated using the 

neighbour joining method. The total branch length in Point Accepted Mutations units (PAM 

units) demonstrates the evolutionary distance. PAM units are the mean number of substitutions 

per 100 residues (Clapham DE et al., 2001). 
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1.8.1 Transient Receptor Potential Canonical (TRPC) 

The identification of TRPC1 as the first recognized member of mammalian TRP 

channels has led to the establishment of the TRPC subfamily (Wes PD et al., 

1995). On the basis of their sequence alignment and functional properties, the 

TRPC subfamily is further sub-divided into three groups; TRPC1-4-5 , TRPC3-

6-7, and TRPC2 (Clapham, 2003a). 

The TRPC1 gene is located on chromosome 3, q22-q24, and its full length 

polypeptide is composed of about 790 amino acids (Wes PD et al., 1995). Its 

structure is similar to the other TPC family members and contains three ankyrin 

repeat motifs, which mediate protein-protein interaction via its N-terminal 

(Lussier MP et al., 2005a; Rychkov G & Barritt GJ, 2007). 

TRPC2 is nonfunctional truncated protein (Vannier b et al., 1999), and as such 

is considered a pseudogene in the human. The human TRPC2 gene, which is 

located on chromosome 11, lacks the sequence of exon 16, which encodes the 

fifth transmembrane segment and half of the pore region in comparison to the 

functional rodent TRPC2 Yildirim E et al. (2003). 

Human TRPC3 is located on chromosome 4 and consists of 11 exons (Riccio A  

et al., 2002). The expression of TRPC3 is more noticeable in embryonic and 

developing tissues (Stru¨bing C et al., 2003). Human TRPC3 comprises 848 

amino acids which have 94% homology to mouse TRPC3 (Preuss KD et al., 

1997). A short splice variant of TRPC3 with a truncated N-terminus which is 

named Trp3sv has been isolated from a rat heart complementary DNA (cDNA) 

and comprises 736 amino acids (Ohki G et al., 2000).  By contrast, an extended 

splice variant has been detected in human, mouse and rat with one additional 

exon which leads to an extension at the N-terminus of the protein (hTRPC3a: 

921aa; mTRPC3a: 911aa; rTRPC3a: 910 aa) (Yildirim E et al., 2005). 

TRPC4 cDNA was first cloned from bovine adrenal gland (Philipp S et al., 

1996).  This was followed by the identification of various orthologues from 

mouse, rat and human(Mori Y et al., 1998; Mizuno N et al., 1999; McKay RR et 

al., 2000). To date, ten different splice variants have been reported of which 

TRPC4α has the longest sequence. In one group of these splice variants the C-

terminal region is deleted, while the six transmembrane segments are 
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conserved. TRPC4β is another splice variant that lacks 84 amino acids in the C-

terminal region. This deleted domain is the suggested region for calmodulin and 

inositol 1,4,5 triphosphate (IP3) receptors in TRPC4α. In another TRPC4 splice 

variant group, truncated channels at the second transmembrane segment (S2) 

are encoded (Plant TD & Schaefer M, 2003).    

The TRPC5 gene was initially known as CCE2 and was first cloned from rabbit 

and mouse brain (Philipp S et al., 1998). The human TRPC5 gene is located at 

Xq23 and consists of 11 exons with a length of about 308 Kb and the transcript 

length of 5.84 Kb (Sossey-Alaoui K et al., 1999) There are no splice variants 

reported for this member of TRPC family. TRPC5 protein is made of 973-975 

amino acids and its molecular weight has been predicted to be 111.4 kDa. 

Structural comparison of TRPC5 protein and voltage-gated potassium channels 

suggest four TRPC5 proteins form a tetrameric structure that act as a single 

channel. Over-expression of TRPC5 leads to the formation of functional 

channels which confirm the activity of homomeric TRPC5 (Greka A et al., 2003). 

However, several studies have shown that TRPC5 interacts with TRPC1 and 

TRPC4 (Strubing C et al., 2001; Goel M et al., 2002; Hofmann T et al., 2002; 

Strubing C et al., 2003). Furthermore, TRPC3 may be involved in this 

interaction in the presence of TRPC1(Strubing C et al., 2003). Wide expression 

of the other TRPC family members alongside with TRPC5 strongly suggests the 

heterotetrameric arrangement of endogenous TRPC5. 

TRPC5 channel is active at any voltage between -100 to +100 mV. Although 

TRPC5 is not considered as a “voltage-gated channel” its activity is voltage-

dependent (Zeng F et al., 2004). The current-voltage relationship,I-V of TRPC5 

is a double-rectification which is specific to this channel (Xu SZ et al., 2005). 

The permeability of the TRPC5 channel to sodium, caesium and potassium is 

equal, while it is impermeable to chloride and the large cationic molecules such 

as N-methyl-D- glucamine (Okada T et al., 1998; Schaefer M et al., 2000; 

Strubing C et al., 2001; Lee YM et al., 2003; Obukhov AG & Nowycky MC, 

2004; Xu et al., 2005). TRPC5 is also permeable to divalent cations such as 

calcium, barium, manganese and strontium (Okada T et al., 1998; Schaefer M 

et al., 2000; Venkatachalam K et al., 2003). 
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TRPC6 gene was first isolated from mouse brain (Boulay G et al., 1997). The 

human gene is located on chromosome 11q21-q22 and contains 13 exons 

(D’Esposito M et al., 1998; Hofmann T et al., 1999). The full length human and 

mouse TRPC6 proteins differ by just one amino acid (931 and 930 

respectively).  TRPC6 contains two glycosylation sites that control the receptor-

operated behaviors of the channel. These have been located in the first and 

second extracellular loops of the channel using glycosylation scanning (Asn473; 

Asn561) (Dietrich A et al., 2003). Application of different approaches such as 

cellular co-trafficking of TRPC subunits; fluorescence resonance energy transfer 

(FRET), differential functional suppression using dominant-negative subunits 

and co-immunoprecipitation has demonstrated that TRPC6 in its native 

environment form homo and heteromeric channel complexes (Hofmann T et al., 

2000).  

The amino acid sequence of TRPC6 contains three ankyrin domains in the 

amino terminus; an EWKFAR TRP box motif; two inositol 1, 4, 5 triphosphate 

(IP3) receptor binding domains and a calmodulin site which overlaps with the 

second IP3 receptor binding domain (Boulay G et al., 1999; Zhang L & SaffenD, 

2001; Zhang Z et al., 2001; Lussier MP et al., 2005b). 

Four splice variants (TRPC6B,C,D,E) of TRPC6 have been cloned from rat lung 

and human airway smooth muscle cells (Zhang L & SaffenD, 2001). 

The TRPC7 gene is located on chromosome 5q31.1 and consists of 12 exons. 

Translation of human and mouse TRPC7 gene results a protein of 862 amino 

acids (Okada T et al., 1999; Riccio A et al., 2002). 

Two splice variants have been reported for mTRPC7. In splice variant 1, a 

345bp domain, encoding 115 amino acids (261-376) of transmembrane 

segment 1(S1) is deleted. In variant 2, 165bp of the same region of the channel 

encoding 55amino acids(321-376) is deleted (Okada T et al., 1999; Walker RL 

et al., 2001). 
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1.9 Aims 

The aims of this research project were : 

 To discover which TRPC isoforms  are expressed in epithelial cells lining 

the female reproductive tract (oviduct/uterus) in the bovine (addressed in 

Chapter 3) and human (addressed in Chapter 6).  

 To discover if gene expression of TRPC channels changes throughout 

the estrous cycle in bovine oviduct and uterine epithelial cells (addressed 

in chapter 3) 

 To discover the localization of TRPC channels in oviduct/uterine 

epithelium and changes in protein expression of TRPC isoforms induced 

by sex hormones in the bovine (addressed in chapter 4) and in the 

human  (addressed in chapter 6)  

 To discover the physiological role of TRPC isofoms in regulating 

intracellular calcium concentration in bovine oviduct epithelial cells 

(addressed in chapter 5) 

 To examine the clinical relevance of a possible role of TRP channels in 

female reproduction (addressed in chapter 6) 
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Chapter 2 

 

Materials and Methods 
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2.1 Materials 

2- Methylbutan, Sigma Aldrich 

2-mercaptoenol, Sigma Aldrich 

2.5-Di-t-butylhydroquinone (DBQ), Sigma Aldrich 

30% Arylamide solution, Sigma Aldrich 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), Gibco Invitrogen 

8-well strips, Applied Biosystems  

Adhesive film, Applied Biosystems 

Albumin from Bovine Serum, Sigma Aldrich 

Alexa Four 647 donkey anti goat, Invitrogen 

Alexa Flour 488 donkey anti rabbit, Invitrogen 

Ammonium Persulfate (APS), Sigma Aldrich 

Amphotericin B, Gibco Invitrogen 

Aprotinin, Sigma Aldrich 

Bio-Rad Protein Assay Kit, Bio Rad 

Blotting sheets, Sigma Aldrich 

Bromophenol blue, Sigma Aldrich 

CaCl2 , Sigma Aldrich 

Cryomatrix, Shadon-Thermal Scientific 

D- Glucose, Sigma Aldrich 

Dimethyl sulfoxide (DMSO), Sigma Aldrich 

Donkey pAb to Rabbit IgG- HRP, Abcam 

Donkey serum, Sigma Aldrich 

Dulbecco’s Modified Eagle’s Medium (DMEM), Sigma Aldrich 
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Ethylene Glycol Tetraacetic Acid (EGTA), Sigma Aldrich 

EZ-First Strand cDNA Synthesis Kit, Geneflow, Isreal 

EZ-Run™ Pre-Stained Protein Ladder, Fisher BioReagents 

Foetal Calf Serum, Gibco Invitrogen 

Fura PE 3-AM, Sigma Aldrich 

Glycerol, Sigma Aldrich 

Glycine,  Sigma Aldrich 

Hank's Balanced Salt solution without CaCl and MgCl (HBSS), Gibco Invitrogen 

Hyperfilm ECL, GE Healthcare, Amersham Hybound™-P 

Hyperforin, Sigma Aldrich 

KCl, Sigma Aldrich 

PenStrep, Gibco Invitrogen 

L-Glutamine, Sigma Aldrich 

Lauryl sulfate, Sigma Aldrich 

Leupeptin, Sigma Aldrich 

Luminol, Sigma Aldrich 

MgCl2 , Sigma Aldrich 

Mouse mAb to  Actin-HRP, Abcam 

NaCl, Sigma Aldrich 

Newborn Calf Serum, Sigma Aldrich 

N,N,N',N'- Tetramethylethylenediamine (TEMED), Sigma Aldrich 

Non-Idet P-40, Sigma Aldrich 

NucleoSpin® RNA II isolation kit, Macherey- Nagel 

Nutrient Mixture F-12 Ham, Sigma Aldrich 



29 
 

P-Coumoric, Sigma Aldrich 

Pancreatin, Sigma Aldrich 

Paraformaldehyde (PFA), Sigma Aldrich 

PCR Master Mix (2X), Fermentas, Life Science 

Phenylmethanesulfonyl fluoride (PMSF), Sigma Aldrich 

PVDF transfer membrane, GE Healthcare, Amersham Hybound™-P 

Rabbit anti TRPC1, Alomone Labs 

Rabbit anti TRPC6, Alomone Labs 

Real-Time PCR optical 96 well plate, Applied Biosystems 

SKF96365, Sigma Aldrich 

Sodium deoxycholate, Sigma Aldrich 

Sodium orthovanadate, Sigma Aldrich 

strips of caps, Applied Biosystems 

SYBR Green Master Mix (2X), Applied Biosystems 

Tris base, Sigma Aldrich 

Tris HCl, Sigma Aldrich 

Triton X-100, Sigma Aldrich 

TRPC1 goat polyclonal IgG, Santa Cruz 

TRPC6 rabbit polyclonal IgG, Abcam 

Trypsin, Sigma Aldrich 

Tween-20,  Sigma Aldrich 

Vectashield with DAPI, Vector Laboratories 
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2.2 Methods 

2.2.1 Staging  the female bovine reproductive tract  

Fresh female bovine reproductive tracts were obtained from a local abattoir and 

transported to the laboratory immediately in Hans Balanced Salt solution 

without CaCl2 and MgCl2 (HBSS-Gibco Invitrogen) containing 10 mM HEPES 

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)(Gibco Invitrogen) which is 

a zwitterionic organic chemical buffering agent and 1 µM Aprotinin (Sigma 

Aldrich) which is a competitive serine protease inhibitor that inhibits trypsin, 

chymotrypsin, kallikrein and plasmin. The stage of estrous was determined 

according to the ovary characteristics shown in table 2.1 (Ireland et al., 1980). 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1 Staging the female bovine reproductive tract. Taken from Ireland et al,. (1980). 

 

 

Characteristics I II III IV 

Estimated day 

of cycle 

1-4 5-10 11-17 18-20 

External 

appearance of  

corpus luteum 

(CL) 

Red, recently 

ovulated, point of 

rupture not covers 

by epithelium 

Point of rupture 

covered over, 

apex of CL red 

or brown 

Tan or 

orange 

Light 

yellow or 

white 

Internal 

appearance of  

corpus luteum 

Red, occasionally 

filled with blood, 

cells loosely 

organised 

Red or brown at 

apex only, 

remainder of CL 

is orange 

Orange Orange to 

yellow 

Diameter of  

corpus luteum 

0.5-1.5cm 1.6-2.0cm 1.6-2.0cm <1cm 

Vasculature on 

surface of  

corpus luteum 

Not visible Generally 

limited to 

periphery 

Will cover 

the apex of 

CL late in 

this stage 

Not visible 

Follicles >10mm 

in diameter 

Absent Present May be 

absent or 

present 

Present 
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2.2.2 Harvesting and culturing bovine oviduct epithelial cells 

The oviduct was dissected from the tract and connective tissue carefully 

removed. Epithelial cells were harvested by squeezing the oviduct from isthmus 

to infundibulum. Cells were collected into HBSS and centrifuged at 2500 x g for 

5 minutes. The supernatant  was removed and the cells were washed twice by 

being re-suspended in 10 ml HBSS and re-centrifuged at 2500 x g for 5 

minutes. The cell pellet was then re-suspended in 1 ml of cell culture medium 

and counted on a hemocytometer. The cells were seeded into a T25 culture 

flask at a density of 5x106/ml Cells were maintained at 39˚C in a 5%CO2 

incubator. The culture medium (Table 2.2) was first changed after 24 hours and 

then every 48 hours until the cells reached the confluence stage after 7-10 

days.  

Culturing the epithelial cells in a cell culture flask does not replicate the in vivo 

condition due to lack of permeability in the surface to which the cells are 

attached . Permeable transwell could be used to address this issue. However, 

using the permeable transwell membrane in this research project would have 

been extremely expensive. Furthermore, the number of cells that can be 

cultured on each transwell membrane would not have provided enough material 

for the proposed experiments in this research, notably, the  western blots. 

 

 

 

 

 

 

 

 

 

Table 2.2. Bovine oviduct and uterine epithelial cell culture medium 

Compound Concentration 

Dulbecco’s Modified Eagle’s 

Medium 

500 ml 

Nutrient Mixture F-12 Ham 500 ml 

Penicillin 270 U/ml 

Streptomycin 270 µg/ml 

Amphotericin B 20 µg/ml 

L-Glutamine 2 mM 

Newborn Calf Serum 2.5% v/v 

Foetal Calf Serum 2.5% v/v 

Albumin from Bovine Serum 

(essentially fatty acids free) 

0.1% w/v 
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2.2.3 Harvesting and culturing bovine uterine epithelial cells 

Fresh female bovine reproductive tracts were obtained as described in section 

2.1. The uterine epithelium was dissected and cut into 1 x 1 cm pieces and 

incubated at 4˚C for 1 hour in enzyme medium (Table 2.3). Samples were then 

incubated at room temperature for a further hour. The enzyme solution was 

removed and 10 ml HBSS was added to the pieces of tissue and vortexed 

vigorously for 1 minute. HBSS containing dissociated cells was gently 

transferred to a clean 50 ml centrifuge tube. The bovine uterine epithelial cells 

were then centrifuged at 2500 x g for 5 minutes and washed twice by 

resuspending the cell pellet in HBSS and re-centrifuging. Cells were treated as 

described in section 2.2.2 after this step. 

 

 

 

 

Table 2.3 Enzyme Medium 

 

2.2.4 RNA extraction 

Total RNA was isolated from epithelial cells using a NucleoSpin® RNA II 

isolation kit (Macherey- Nagel). Cells were harvested as described in Section 

2.2.2 and 2.2.3, and  the cell pellet was used for RNA isolation according to the 

manufacturer’s manual.  In order to lyse the cells, 350µl buffer RA1 and 3.5µl β-

mercaptoethanol were added to the cell pellet and this was vortexed until the 

cells were completely re-suspended. The cell lysate was then filtered, to reduce 

viscosity, using a NucleoSpin® filter. The lysate was poured onto the filter which 

was placed in a 2ml collection tube and centrifuged for 1 minute at 11,000x g. 

To adjust RNA binding to the silica membrane, 350µl 70% ethanol was added to 

the homogenized lysate and mixed by repeatedly pipetting up and down after 

discarding the NucleoSpin® filter. The cell lysate was then loaded onto the 

NucleoSpin® RNA II column (silica membrane) and centrifuged for 30 seconds 

at 11,000 X g. To desalt the silica membrane 350µl of membrane desalting 

Compound Concentration 

HBSS 200 ml 

Trypsin 0.05% w/v 

Pancreatin 2.7% w/v 
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buffer (MDB) was added to each NucleoSpin® RNA II column and subjected to 

a further centrifugation step at 11,000 x g for 1 minute.  

In order to digest any contaminating genomic DNA from the lysate, 90µl of 

Reaction buffer for rDnase which was provided by the manufacturer and 10µl of 

reconstituted rDnase were mixed and 95 µl of this mixture was applied directly 

onto the centre of the silica membrane of each column. The silica membrane 

was then incubated at room temperature for 15 min. Following this, the silica 

membrane was washed by adding 200µl Buffer RA2 to the column and 

centrifuging for 30 seconds at 11,000 x g.  This wash step was followed by 

adding 600µl Buffer RA3, which desalts the solution containing RNA, to the 

column which was placed into a fresh 2ml collection tube and centrifuged for 30 

seconds at 11,000x g. To complete washing of the silica membrane, 250µl 

Buffer RA3 was added to the NucleoSpin® RNA II column and centrifuged for 

2min at 11,000x g to dry the membrane completely. The RNA was eluted from 

the column by adding 40µl RNase-free H2O to the centre of the silica tube and 

then centrifuged for 1min at 11,000x g. 

RNA concentration and purity were assessed by measuring 260/280 nm 

absorbance on a nanospectrophotometer (Implen, Germany). RNA was then 

stored at -80˚C until further use. 

2.2.5 Reverse transcription 

Isolated total RNA was reverse transcribed to cDNA using the EZ-First Strand 

cDNA Synthesis Kit (Geneflow, Isreal) according to the manufacturer’s 

directions. These consisted of mixing 1 µg RNA and 2 µM Oligo (dT) Primer in a 

0.25 ml nuclease free eppendorf tube. DEPC-Treated water was used to bring 

the volume up to 10 µl. The mixture was then gently mixed and heated at +70˚C 

for 10 min in a thermocycler. Eppendorf tubes were placed rapidly on ice, 8 µl 

Reaction Mix (2.5X) and 2 µl DTT (100 mM) added to each tube and mixed 

gently by pipetting up and down. Samples were incubated at +42˚C for 60 min 

followed by a 15 minutes incubation at +70˚C to stop the cDNA synthesis 

reaction. cDNA was then stored at -20˚C until further use. 
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2.2.6 Solution Polymerase Chain Reaction (PCR) 

Expression of TRPCs genes was confirmed by solution PCR.  PCR Master Mix 

(2X) (Fermentas, Life Science), which consisted of 0.05 units/µl Taq DNA 

polymerase in reaction buffer, 4 mM MgCl2, and dNTPs (0.4 mM dGTP, 0.4 mM 

dATP, 0.4 mM dCTP, and 0.4 mM dTTP) was used.  All reagents were thawed 

on ice, gently vortexed and pulse-spun prior to mixing in a 0.25 ml thin walled 

eppendorf tube.  12.5 µl PCR Master Mix was mixed with 0.1 µM of each 

forward and reverse primers, 1 µg template DNA, and nuclease-free H2O to 

bring the volume up to 25 µl. The mixture was then vortexed and pulse-spun 

before being placed in an Applied Biosystem thermocycler. The thermal stages 

of PCR are shown in table 2.4. 

 

 

Table2.4 The steps of solution PCR. * All primers were designed with the same annealing 

temperature. ** Extension time varies depending on the PCR product size. However, in this 

case all PCR products were smaller than 500 bp and the extension time was the same for all 

the primers. 

 

Primers were designed using Primer Blast from the NCBI website. Each primer 

was ‘blasted’ to check for its specificity. Details of the primers are given in Table 

2.5 and 2.6. 

 

 

 

Temperature (°C) Time Description Cycle 

95 10 minutes Hot start 1 

95 30 seconds Denaturation 35 

60* 30 seconds Annealing 35 

72 30 seconds** Extension 35 

72 7 minutes Final extension 1 

4 infinite - - 



35 
 

Target Gene Primer Sequence Tm (˚C) 

Bovine β actin β actin F TTCAACACCCCTGCCATG 59.64 

β actin R TCACCGGAGTCCATCACGAT 59.73 

Bovine 

cytokeratin 18 

bCytkr18E3E4F TGAGATCGAGGCTCTCAAGG 60.63 

bCytkr18E3E4R TGAGCCAGCTCGTCATACTG 60.16 

Bovine TRPC1 bTRPC1E5E7F CTCGTGGAGGTGGAATTCAG 60.65 

bTRPC1E5E7R TGGACTGGGAAACAAACTCC 59.94 

Bovine TRPC2 bTRPC2E3E4F TCATCCTGACTGCCTTCCTC 60.35 

bTRPC2E3E4R ATGAGCATGTTGAGCAGCAC 60.02 

Bovine TRPC3 bTRPC3E2E4F CAAAAAGTTCGTGGCTCACC 60.67 

bTRPC3E2E4R GCCCAGGAAGATGATGAAAG 59.63 

Bovine TRPC4 bTRPC4E6E7F GACCAATGTCAAAGCACAGC 59.30 

bTRPC4E6E7R CATTGAAGGGGGTAGGAAGG 60.67 

Bovine TRPC5 bTRPC5E6E7F TGATCGCCATGATGAACAAC 60.49 

bTRPC5E6E7R TTGTTGAACCAGTTGCCAAG 59.73 

Bovine TRPC6 bTRPC6E6E7F TGCTTGATTTTGGAATGCTG 59.81 

bTRPC6E6E7R AGGGGTCCCACTTTATCCTG 60.18 

Bovine TRPC7 bTRPC7E3E4F TCCTGGCTGTCTTTGGAGTC 60.39 

bTRPC7E3E4R CTGATGCGTTCACAACCAAC 60.16 

 

Table 2.5 Primers for the solution PCR and their sequence for the gene detected in bovine 

oviduct and uterine epithelia. "E" in the primer's name indicates the exon that the primer is 

designed for.  
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Gene Primer Sequence Tm (˚C) 

Human β actin hβ actin F ACAGAGCCTCGCCTTTGC 59.70 

hβ actin R GGAATCCTTCTGACCCATGC 59.73 

Human 

cytokeratin 18 

H Cytkr18E1 F CAGCATGAGCTTCACCACTC 59.58 

H Cytkr18E1 R CTCCTTCTCGTTCTGGATGC 59.95 

Human TRPC1 hTRPC1E11E12F TGCTTACCAAACTGCTGGTG 59.90 

hTRPC1E11E12R AACTGTTTTGCCGTTTGACC 60.02 

Human TRPC3 hTRPC3E3E4F GCAGCTCTTGACGATCTGGT 60.56 

hTRPC3E3E4R CCTGTCTGAGGCATTGAACA 59.83 

Human TRPC4 hTRPC4E6E7F CTCTGGGAAGAATGCTCCTG 59.94 

hTRPC4E6E7R ATGCTGTGCTTTGACATTGG 59.72 

Human TRPC5 hTRPC5E4E5F ACCTTGGGCTGTTCATCAAG 60.11 

hTRPC5E4E5R CATCCATTCCACGACAGTTG 59.96 

Human TRPC6 hTRPC6E4E5F GCCAACAGCAACTTCTCTCC 60.00 

hTRPC6E4E5R TCCCAGAAAAATGGTGAAGG 59.90 

Human TRPC7 hTRPC7E5E6F AGTACGTGCTGCACTTGTGG 59.97 

hTRPC7E5E6R CGTAGAGCCCTTCCGATATG 59.69 

 

Table 2.6 Solution PCR primers and their sequence for the gene detected in human 

endometrium. 
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2.2.7 Real-Time PCR 

Relative TRPC gene expression level was determined by quantitative real-time 

PCR using SYBR green, an asymmetrical cyanine dye which absorbs blue light 

(λmax = 497 nm) and emits green light (λmax = 520 nm). SYBER green binds 

to double-stranded DNA. However, it also binds to single-stranded DNA with a 

lower performance and to RNA at a rate lower than that of single-stranded DNA. 

All experiments were carried out in triplicate. For each sample, 50 µl SYBR 

Green Master Mix (2X) (Applied Biosystems) was added to 300 nM of each 

forward and reverse primer (Table 2.7 and 2.8), 100 ng cDNA.  Finally, 

nuclease-free H2O was used to bring the final volume up to 100 µl.  This was 

mixed in a sterile 0.25 ml eppendorf tube. The mixture was then vortexed and 

gently centrifuged for 1 minute in a bench centrifuge.  For each sample, 25 µl of 

the above mixture was transferred in triplicate into a Real-Time PCR optical 96 

well plate (Applied Biosystems) which was sealed with adhesive film (Applied 

Biosystems), or into 8 well strips (Applied Biosystems) which were sealed with 

the strips of caps (Applied Biosystems). The 96 well plate or the 8 well strips 

were then centrifuged before being loaded into a Step-one Real-Time PCR 

machine (Applied Biosystems). For Real-Time PCR, cycles consisted of 95°C 

for 10 minutes (Hot start) followed by 40 cycles of 95°C for 15 seconds 

(Denaturation), 60°C for 1 minute (Annealing/ extension) and a cycle of melt 

curve consisted of 95°C for 15 seconds, 60ºC for 1minutes and 95°C for 15 

seconds. In all samples studied, β actin, was measured to act as a comparator 

‘house-keeping’ gene in parallel with the control which varied depending on the 

experiment. The relative gene expression was analyzed using StepOne 

software V2.0 and the baseline and threshold were set manually. Ct method 

(section 2.8) was used to analyse the RT-PCR data. 

The primers that were used in this research were not designed to detect the 

splice variants of each TRPC isoforms. This might affect the data interpretation 

as the exact amount of mRNA which are used for protein synthesis (translation) 

might not have been measured.     
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Gene Primer Sequence Tm (˚C) 

Bovine 

TRPC1 

QbTRPC1E6E7F CCGGCAGTGTAAAATGTTTGC 59 

QbTRPC1E6E7R CATTGGATGTATGGTTTAGGATAACTTC 58 

Bovine 

TRPC2 

QbTRPC2E4F GGCCGGGCCCTCTATG 58 

QbTRPC2E4R GAGCATGTTGAGCAGCACAATC 59 

Bovine 

TRPC3 

QbTRPC3E8F ACAGTGATGTAGAGTGGAAGTTTGCT 59 

QbTRPC3E8R GGAGGTAATGTTTTTCCATCATCAA 59 

Bovine 

TRPC4 

QbTRPC4E6F TGGTCAATATTTGGGCTCATCA 59 

QbTRPC4E6R CGGTGAATTCATGCTGTGCTT 60 

Bovine 

TRPC6 

QbTRPC6E4F CCCATCCAAACTGCCAACAG 60 

QbTRPC6E4R GCGAGGACCACAAGGAACTT 59 

 

Table 2.7 Primers for Real-Time PCR and their sequence for the TRPC genes 

detected in bovine oviduct  and uterine epithelium. 

 

Gene Primer Sequence Tm (˚C) 

Human 

TRPC1 

QhTRPC1E11F CATTGGCACCTGCTTTGCT 58 

QhTRPC1E11R AAGATTGCCACATGCGCTAA 58 

Human 

TRPC6 

QhTRPC6E5 F CGCAGCCTCCTTCACCATT 60 

QhTRPC6E5 R TCAAATCTGTCAGCTGCATTCA 58 

Human 

TRPC7 

QhTRPC7E6F ACATTCTGCCAGCCAACGA 59 

QhTRPC7E6R TCACAGTTCTCCCTAGCGAGAT 58 

 

Table 2.8 Primers for Real-Time PCR and their sequence for the TRPC genes 

detected in human. 
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2.2.8 Analysing Real-Time PCR using Ct method 

Ct is a relative quantification method to analyse the data from Real-Time 

quantitative PCR. Changes in expression of the target gene are measured 

relative to a reference gene (a housekeeping gene) in the control group. A 

series of equations and assumptions are required to analyse the RT-PCR data 

using the Ct method (Livak & Schmittgen, 2001). The exponential 

amplification of PCR is described in the equation below : 

                  
   

   represents the number of target genes at cycle n of the reaction,    is the 

initial number of target genes. The efficiency of target amplification is 

represented by    and n is the number of cycles.   which is the threshold cycle 

and indicates the fractional cycle number at which the amount of amplified 

target is a fixed threshold. Therefore, 

                
          

   represents the threshold number of target genes, the threshold cycle for 

target amplification is shown by       and    is a constant. 

The equation for the endogenous gene (internal control reference) is  

               
         

   represents the threshold number of the reference gene, the initial number of 

reference genes and the efficiency of reference amplification are shown by    

and    respectively.      represents the threshold cycle for reference 

amplification.    is a constant. 

Expression is derived from dividing    by     

  

  
  

              

                
  

  

  
  

Assuming efficiencies of the target and the reference are the same, 
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or 

                 

   represents the normalized amount of target 
  

  
 and the difference in 

threshold and cycle (            ) is shown by    . 

The expression is derived by rearranging the equation  

                  

Finally    for any target gene (q) is divided by    for the calibrator (cb) 

    

     
  

               

                
              

                         

When amplicons designed to be less than 150 bp and the RT=PCR reaction are 

optimized, the efficiency is close to one. Thus, the amount of target gene when 

normalized to an endogenous reference gene and to a calibrator is 

Amount of target gene          

2.2.9 Cell Lysate preparation for Western Blot 

Confluent bovine oviduct epithelial cultured cells were first washed twice with 

PBS. 40 µl of RIPA (RadioImmuno Precipitation Assay) buffer which consists of 

1% non-Idet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 10µg/ml 

Phenylmethanesulfonyl fluoride (PMSF dissolved in isopropanol), 1nM Sodium 

orthovanadate, 10ng/ml Leupeptin and 30ul/ml Aprotinin (Sigma Aldrich) made 

up in PBS were added to each T25 cell culture flask and incubated on ice for 20 

minutes. Cells were then scraped and transferred into a fresh pre-chilled 

eppendorf and centrifuged at 4˚C for 10 minutes at 11,000 x g. The supernatant 

containing the whole cell protein was then transferred into a fresh eppendorf 

tube and stored at -80˚C.  
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2.2.10 Protein assay 

In order to measure the concentration of protein in the cell lysates prepared for 

western blot, a commercial colorimetric assay, based on that of Lowry (1951) 

was used (DC Protein Assay Reagents Package, BioRad). The reaction 

between the protein, an alkaline copper tartrate solution and Foiln reagent 

forms the basis of the protein assay.  The colour development is a result of the 

reaction of protein with the copper in an alkaline medium which is followed by 

reduction of Folin reagent by the copper-treated protein. The main amino acids 

involved in this process are tyrosine and tryptophan, and to a lesser extent, 

cystine, cysteine, and histidine (Lowry et al., 1951; Peterson, 1979). Reduction 

of the Folin reagent occurs by loss of 1, 2, or 3 oxygen atoms leading to the 

production of one or more possible reduced species which produce blue colour 

with maximum absorbance at 750 nm and minimum absorbance at 405 nm.  

To measure the protein concentration in a microplate (Nalge Nunc, Fisher 

Scientific), 20 µl of reagent ‘S’ a proprietary component of the kit was added to 

each ml of reagent ‘A’ (the alkaline copper tratrate solution). To obtain a 

standard curve, 4 different concentrations of Bovine Serum Albumin (BSA) (0.2, 

0.5, 1 and 1.5 mg/ml) were prepared. 5µl of BSA and samples were added into 

wells of a 96 well plate with a flat bottom followed by the addition of 25 µl of 

reagent ‘A’. 200 µl of reagent ‘B’ which is a dilute Folin reagent was then added 

to each well.  The microplate was gently agitated to mix the reagents. 

Absorbance was measured using a plate reader after 15 minutes incubation of 

the microplate at room temperature in the dark. There was less than 5% change 

in the absorbance after an hour. 

2.2.11 SDS-Page 

According to the size of proteins of interest 10% Acrylamide gel was adequate 

for protein separation. SDS-page is a term used for Sodium Dodecyl Sulfate 

PolyAcrylamide Gel Electrophoresis. In this technique separation of proteins 

occurs based on their molecular weight. Polymerization of acrylamide and 

N,N,N',N'- Tetramethylethylenediamine (TEMED) results in formation of SDS-

page gel which is a hydrophilic, neutral, three-dimensional networks of long 

hydrocarbons crosslinked by methylene groups. The size of the pore within the 

gel determine the separation of proteins according to their molecular weight. 
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The amount of acrylamide and crosslinker determines the size of the pore within 

the gel. The increase in the amount of the acrylamide results in the decrease in 

the pore size. The total acrylamide present in the gel is given as a percentage 

(w/v). The percentage of the gel determines the rate of migration and separation 

of proteins (Table 2.9). 

 

 

Protein size (kDa) Gel percentage (%) 

4-40 20 

12-45 15 

10-70 12.5 

15-100 10 

25-200 8 

 

Table 2.9 Percentage of SDS-page Gel.   

 

 6.48 ml dH2O, 5.3ml 30% Acrylamide solution and 4 ml buffer I (Table 2.10), 65 

µl of 10% Ammonium Persulfate (APS) and 5.3 µl N,N,N',N'- 

Tetramethylethylenediamine (TEMED) were added to the above solution to 

polymerise the gel. Acrylamide gel (resolving gel) was poured into the sandwich 

assembly. To ensure a level interface was obtained, the resolving gel was 

overlaid with 100% methanol. 

 

 

Compound Concentration g/L 

Tris base 1.5 M 181.5 

Lauryl sulfate 0.4% w/v 4 

pH was adjusted to 8.8 using HCl 

 

Table 2.10 Composition of Buffer I, used for making resolving gel. 
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The resolving gel was left at room temperature to set for 45 minutes.  The 

methanol was then removed completely before addition of 3.1% stacking gel on 

top of the resolving gel. The 3.1% stacking gel was prepared for two mini size 

SDS-Page gel by mixing 4.87 ml dH2O, 0.75 ml 30% Acrylamide solution and 

1.87 ml buffer II (table 2.11).  Similar to the resolving gel, 75 µl of 10% APS and 

10 µl of TEMED were added to the mixture just before pouring it in the sandwich 

cassette. Combs were rinsed with 100% methanol and placed into the sandwich 

cassette.  

 

 

 

 

Table 2.11 Composition of Buffer II, used for making stacking gel. 

 

SDS-Page gels were maintained at room temperature for 20-30 minutes to be 

polymerized.  The SDS-Page gel was then placed into a tank chamber which 

was filled with SDS-Page running buffer (Table 2.12). 

 

Compound Concentration g/L 

Glycine 0.192 M 14.4 

Tris base 0.025 M 3.03 

Lauryl sulfate 0.1% w/v 1 

 

Table 2.12 SDS-Page running buffer. 

 

 

 

 

 

Compound Concentration g/L 

Tris base 0.5 M 60.5 

Lauryl sulfate 0.4% w/v 4 

pH was adjusted to 6.8 using HCl 
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Cell lysates were boiled alongside Laemmli buffer containing 2-mercaptoethanol 

(Table 2.13) to linearise the proteins for 5 minutes before being loaded on to the 

gel.  The linearised protein binds the SDS giving it a negative charge.  This then 

leads to the separation of protein on the resolving gel solely based on molecular 

weight and not electrical charge. 

 

     

      

 

 

 

 Table 2.13 Composition of Laemmli buffer. 

 

35 µg of cell lysate was loaded into each well. In order to detect the size of each 

band on the gel, 10µl of 10 kDa to 170 kDa protein marker ladder (EZ-Run™ 

Pre-Stained Protein Ladder, Fisher BioReagents) was also loaded into a well. 

SDS-Page gel was then electrophoresed at 120 v for 150minutes.  

2.2.12 Western Blot 

PVDF transfer membrane (GE Healthcare, Amersham Hybound™-P) was 

primed before protein transfer. PVDF transfer membrane was cut into 10 x 10 

cm pieces which were slightly larger than the gel size, and placed into 100% 

methanol for 1min at room temperature. PVDF transfer membrane was then 

washed for 10min in dH2O before being soaked in transfer buffer (Table 2.14) 

for a minimum of 5 minutes. 

 

 

 

 

Table 2.14 Transfer buffer. 

Compound Concentration 

Lauryl sulfate 12% w/v 

2-mercaptoenol 30% v/v 

Glycerol 60% w/v 

bromophenol blue 0.012% v/v 

Tris HCl 0.375 M 

pH was adjusted to 6.8 

Compound Concentration g/L 

Tris base 25 mM 3 

Glycine 0.2 M 75.07 

Methanol 20% v/v 200 ml 



45 
 

Filter paper (Blotting sheets, 3MM- Sigma Aldrich) and fibre pads were cut to 

the dimensions of the transfer cassette (10 x 10 cm) and then soaked in transfer 

buffer for a minimum of 5 minutes.  

The transfer cassette was placed into a tray containing transfer buffer; two fibre 

pads were placed on the transfer cassette and two filter papers were placed 

onto the fibre pads. SDS-Page was removed from the cassette by separating 

the glass plates. The stacking gel was then cut away, the gel was gently placed 

onto the filter paper, and then covered fully with transfer buffer. The PVDF 

membrane was placed on the gel and any air bubbles removed by rolling over 

with a serological pipette. Two filter papers and two fibre pads were placed on 

the PVDF membrane. Any further air bubbles were removed before closing the 

cassette and placing it in the tank chamber for electrophoresis.  The tank 

chamber, containing the transfer cassette and filled with transfer buffer, was 

placed on ice and electrophoresed at 100 V for 150 minutes. 

2.2.13 Immunodetection 

The transfer cassette was disassembled and the PVDF membrane was cut into 

the approximate dimensions of the gel.  The membrane was washed with Tris 

Base Saline-Tween (TBST) (Table 2.14) buffer for 5 minutes. The PVDF 

membrane was then incubated with TBST containing 10% BSA for 30 minutes 

at room temperature to block the non-specific binding sites for the antibody. The 

PVDF membrane was then rinsed for 5 minutes with TBST. 

 

Compound Concentration g/L 

NaCl 150 mM 8.28 

Tris base 20 mM 2.42 

Tween-20 0.1% 1ml/L 

pH was adjusted to 7.6 before addition of Tween-20 using HCl 

 

Table 2.15 Tris Base Saline-Tween (TBST) Buffer 
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Primary antibodies were diluted 1:200 (0.2 µg/ml for both TRPC1 and TRPC6) 

Both TRPC1 and TRPC6 antibodies were raised in rabbit (Alomone Labs). 

TBST buffer containing 2% BSA. Primary antibodies were then added to the 

protein-bound surface of the PVDF membrane which was incubated with the 

primary antibodies at 4°C overnight. Primary antibodies were removed and 

PVDF membrane was washed with TBST buffer three times each for 10 

minutes.  

Donkey pAb to Rabbit IgG- HRP (Abcam) was used as the secondary antibody.  

It was diluted 1:10000 (2 µg/ml) in TBST buffer containing 2% BSA. The 

transfer membrane was incubated with the secondary antibody for 60 minutes 

at room temperature before being washed three times with TBST buffer at 10 

minutes intervals. To develop the PVDF membrane, a 1:1 ratio of ECL1 (Table 

2.15 ) and ECL2 (Table 2.16) was mixed and added to the membrane which 

was then shaken in the dark at room temperature for 5 minutes. Excess ECL 

solution was removed and membrane wrapped in cling film and placed in a 

developing cassette. In a dark room, a Hyperfilm ECL (Amersham) was 

exposed to the PVDF membrane for an appropriate length of time depending on 

the amount of detected protein on the PVFD membrane. The exposed 

Hyperfilm ECL was then placed into a tray containing 1:5 dilution of Kodak® 

processing chemicals for autoradiography films/developer (Sigma Aldrich) and 

shaken vigorously for 1 minute. Hyperfilm ECL was then transferred to another 

tray containing 1:5 dilution Kodak® processing chemicals for autoradiography 

films/fixer (Sigma Aldrich) and shaken for 1-2 minutes. Hyperfilm ECl was 

washed in H2O for 2-3 minutes.  

 

 

 

 

 

 

Table 2.16 Composition of ECL1 reagent. 

 

Compound Concentration 

Luminol (dissolved in DMSO) 2.5 mM 

P-Coumoric (dissolved in 

DMSO) 

0.45 mM 

Tris base 0.1 M 

H2O To adjust the volume 

Stored at 4˚ C 
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Table 2.17 Composition of ECL2 reagent. 

 

The PVDF membrane was washed four times with TBST buffer at 30 minutes 

intervals and was then blocked with TBST containing 10% BSA for 30 minutes 

at room temperature. To detect β actin protein as the control for the experiment 

the membrane was incubated with 1:500 (2µg/ml) of Mouse mAb (Abcam) to  

Actin-HRP in TBST containing 2% BSA for 60 minutes at room temperature. 

The antibody was removed and the PVDF membrane was washed with TBST 

buffer three times at 10 minutes intervals. The membrane was developed as 

described in section 2.13. 

2.2.14 Paraffin embedding and sectioning of the bovine uterus and 

oviduct 

Fresh tissue was obtained from the local abattoir and staged according to 

section 2.1. 

The oviduct and the uterine horns were dissected and cut into approximately 

0.5 x 0.5 cm sections. Tissue sections were placed into a labelled embedding 

cassette that was immersed in 10% formalin overnight. The embedding 

cassettes containing the tissue section were then washed in 70% ethanol on a 

shaker for 10 minutes. Ethanol was replaced with fresh 70% ethanol for a 

further 10 minutes wash step. The embedding cassettes were then placed into 

absolute ethanol for 10 minutes; this step was repeated three times. Tissue 

sections in the embedding cassettes were then placed into isopropanol for 10 

minutes on a shaker. Isopropanol was replaced with xylene or histoclear for a 

further 30 minutes on shaker, refreshing the xylene or histoclear at 10 minutes 

intervals. Excess xylene or histoclear was removed by blotting the embedding 

cassette thoroughly with a tissue. The embedding cassettes containing the 

Compound Concentration 

H2O2 0.1% v/v 

Tris base 0.1 M 

H2O To adjust the volume 

Stored at 4˚ C 
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tissue sections were then placed into three consecutive wax pots melted in a 

60˚C incubator. The time of incubation in melted wax differed depending on the 

thickness and dimensions of the tissue. The sections of uterus were incubated 

in the first wax pot overnight and for one hour in each of the two subsequent 

wax pots, while the oviduct sections were incubated for 1 hour in each of the 

three wax pots. After this time, tissue sections were removed from the 

embedding cassettes and placed in a sectioning frame before being covered 

with melted wax and left at room temperature till the wax was solidified. Paraffin 

embedded tissue was then cut into 10 micron sections using a Microm HM 3555 

microtome (Thermo Scientific).    

2.2.15 Deparaffinization of paraffin embedded tissue sections 

The paraffin embedded tissue was placed on a Super Frost plus slide (Thermo 

Scientific)  and washed twice with xylene, each time for 3 minutes. The tissue 

sections were then washed with 1:1 dilution of xylene in absolute ethanol for 3 

minutes followed by three washing steps of three minutes with 95%, 70%, and 

50% ethanol in turn. The tissue sections were finally rinsed with running cold 

tap water. 

2.2.16 Frozen sectioning of bovine uterus and oviduct 

Fresh tissue was obtained from the local abattoir and staged according to 

section 2.1. 

The oviduct and the uterine horns were dissected and cut into approximately 

0.5 x 0.5 cm sections. Each specimen was placed on a 1cm x 1cm square 

shaped cork with thickness less than 0.5 cm which was covered with 1-2 drops 

of Cryomatrix (Shadon, Thermal Scientific). After adjusting the position of the 

specimen, it was completely covered with Cryomatrix. A scalpel with a plastic 

handle was used to hold the cork which was dipped in a container filled with 2- 

Methylbutan (Sigma Aldrich) and then placed in liquid nitrogen. As the tissue 

freezes and Cryomatrix solidifies, it was placed directly into liquid nitrogen for 1-

2 minutes. Frozen tissue was either cut into 10 micron sections using a Microm 

HM 505E cryostat (Thermo Scientific) or was stored at -80˚C. 
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2.2.17 Immunohistochemistry 

Immunohistochemistry was used to determine the localization of TRPC1 and 

TRPC6 in bovine oviduct and uterine epithelia and human endometrium. 

The tissue sections were either permeabilized to detect intracellular localization 

of TRPC1 and TRPC6, or were used for localization of the TRPC1 and TRPC6 

channels on the cell membrane (non- permeabilized).  

To permeabilize the tissue sections, slides were first placed in a Coplin jar 

containing ice cold Methanol for 5 minutes then incubated in PBS with 0.1% 

Triton X-100 for an hour at room temperature. Triton X-100 (C14H22O(C2H4O)n) 

is a non-ionic surfactant. 0.1% Triton X-100 PBS was removed and the slides 

were washed three times with 0.25% Tween 20 in PBS each time for 5 minutes. 

To block the non specific binding sites, slides were placed in a humidifier 

chamber and tissue sections were covered with PBS containing 2% donkey 

serum (Sigma Aldrich), the host for the secondary antibodies, for 30 minutes at 

room temperature. PBS containing 2% donkey serum was replaced with 1:250 

(1µg/ml) dilution of each of TRPC1 goat polyclonal IgG (Santa Cruz) and 

TRPC6 rabbit polyclonal IgG (Abcam) primary antibodies diluted in PBS 

containing 1% FCS. Slides in the humidified chamber were then incubated at 

4°C overnight. Primary antibodies were removed and the slides washed three 

times, each time for 5 minutes, with PBS containing 0.25% Tween 20 (Sigma 

Aldrich). Secondary antibodies, 4µg/ml Alexa Four 647 donkey anti goat 

(Invitrogen) (against TRPC1 primary) and 4µg/ml Alexa Flour 488 donkey anti 

rabbit (Invitrogen) (against TRPC6 primary), were diluted 1:500 in PBS 

containing 1% FCS. Tissue sections were wrapped in foil paper in a humidified 

chamber and incubated with secondary antibodies for an hour at room 

temperature. Secondary antibodies were removed, the slides were placed in a 

Coplin jar and washed three times with 0.25% Tween 20 in PBS each time for 5 

minutes. 

Excess wash solution was removed and 1 to 2 drops of Vectashield containing 

1.5 µg/ml 4',6-diamidino-2-phenylindole (DAPI) (Vector Laboratories) used to 

cover each specimen. DAPI counterstains DNA and is used to visualise the cell 
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nucleus. Tissue sections were then covered with a coverslip which was sealed 

with nail polish and stored at 4°C. until visualisation 

Non permeabilized staining was done according to the method above with the 

omission of the first two steps of permeabilization with ice cold Methanol and 

PBS containing 0.1% Triton X-100. 

Similarly to the primers used in this research, primary antibodies used for 

TRPC1 and TRPC6 might not be capable to detect the splice variant of these 

isoforms. Furthermore, there is always the possibility of non-specific binding of 

antibodies. Moreover, in immunohistochemistry unlike to the western blot intact 

proteins are the target of the antibodies. Configuration of the proteins within the 

cells and tissue as well as interaction of the target protein with other proteins 

might affect the efficiency of the antibodies.    

2.2.18 Immunocytochemistry 

Confluent bovine oviduct epithelial cells cultured in T25 culture flasks were 

trypsinised then seeded into 8 well chambered coverglass (Nalge Nunc, 

Thermo Scientific). Cells were seeded at a density of 2x105/ml. The oviduct 

epithelial cells regained confluency 7 to 10 days after being seeded into the 

chambers.  

In order to fix the cells, the culture medium was removed using a vacuum 

aspirator and cells were washed with PBS. The epithelial cells were then 

incubated with 4% Paraformaldehyde (PFA) for 15 minutes at room 

temperature. Cells were either immediately stained or stored covered with PBS 

and placed in a humidifier chamber at 4°C. 

Other than the fixation step, immunocytochemistry followed the same procedure 

as described in section 2.2.17. However, cells were not covered with coverslips 

after counterstaining of DNA with DAPI and were stored in humidifier chamber 

at 4°C. 

2.2.19 Image Acquisition 

a Zeiss LSM 710 confocal microscope and Zen software was used for image 

acquisition. Details for wavelength used is given in the figure legend. 
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2.2.20 Measuring Fluorescent Intensity 

Fluorescent Intensity was measured using Image analysing software, ImageJ. 

Integrated density was divided by the measured area. The value obtained was 

in Fluorescence per µm2.  Fluorescent Intensity in epithelial tissues was 

measured from 3 parts of tissue; apical, basal and lateral membrane as shown 

in Fig 2.1. Epithelial cells are assymmetrical due to their polarity and epithelial 

specific connections, such as tight junctions, connexins/gap junctions and 

desmosomes. To analyse the data, the epithelial tissue was therefore divided 

into basal, apical and lateral sections so that the possible role of TRPC1 and 

TRPC6 could be detected, for example, the possible involvement of the TRPC 

channels in tight junctions which are located on the facing membranes of  

adjacent cells.    
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Fig 2.1 Area used for fluorescent intensity measurements of epithelial tissue. 

 

. 
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2.2.21 Calcium assay 

Confluent bovine oviduct epithelial cells cultured in T25 culture flasks were 

trypsinised then seeded at a density of 2x105 cells/ml into sterile black 

polystyrene 96 well plates (Nalge Nunc, Fisher Scientific). The oviduct epithelial 

cells regained confluency 7 days after being seeded into the 96 well plates.  

Culture medium was removed from the wells and confluent bovine oviduct 

epithelial cells were washed with calcium free solution (Table 2.17). Cells were 

then incubated with calcium free solution containing 10µM Fura PE 3-AM 

(Sigma Aldrich) for 30 minutes at 39˚C in a 5% CO2 incubator. Fura PE 3-AM 

was removed from the well and the cells  washed 2-3 times with calcium free 

solution. Cells were kept in the dark after treatment with Fura PE 3-AM to avoid 

non-specific bleaching. The 96 well plate containing the BOECs was placed in 

an Infinite M200 Tecan plate reader (Tecan). i-Control 1.6 software was used to 

control the experiment. Cells were kept at 37˚ C in the plate reader. After 

measuring the basal intracellular calcium, calcium free solution was replaced 

with calcium solution (Table 2.18). Depending on the number of agonists and 

antagonists used and their required time of action, different numbers of kinetic 

cycle without intervals were used for each experiment. 

Fura PE 3-AM is a Cell permeable fluorescent probe for Ca2+ that provides a 

ratiometric readout which reduces effects caused by leaking or bleached dyes 

or varying assay conditions. The emission wavelength for Fura PE 3-AM is 

380nm which shifts to 340nm when bound to calcium. Cells were first excited at 

510 nm and the absorbance measured at 380 and 340 nm. For each emission 

wavelength, multiple readings were carried out per well (2x2 circle with border 

of 450 µm). The ratio of absorbance at 340 nm and 380 nm was used to 

determine the changes in intracellular calcium. Agonist and antagonist used in 

this study are shown in table 2.19. 
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Compound Concentration 

NaCl 130 mM 

KCl 5 mM 

MgCl2 1.2 mM 

HEPES 10 mM 

Glucose 8 mM 

EGTA 0.4 mM 

pH 7.4 

 

Table 2.18 Calcium free solution. 

 

Compound Concentration 

NaCl 130 mM 

KCl 5 mM 

MgCl2 1.2 mM 

HEPES 10 mM 

Glucose 8 mM 

CaCl2 1.5 mM 

pH 7.4 

 

Table 2.19 Calcium solution. 

 

Compound Concentration Function 

2.5-Di-t-butylhydroquinone (DBQ) 15 µM SERCA channel blocker 

Hyperforin 25 µM TRPC6 channel activator 

SKF96365 25 µM General TRPC channel blocker 

 

Table 2.20 Agonist and antagonist used in calcium assay. 
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Chapter 3 

 

Gene expression of TRPC channels in 

female reproductive tract epithelia 
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3. Transient Receptor Potential Canonical (TRPC) genes in female bovine 

reproductive tract 

The role of TRPC channels in the female bovine reproductive tract is largely 

unknown although a number of research groups have reported the presence of 

some of the TRPC isoforms in human and rat myometrium (Babich et al., 2004). 

However, the presence and role of these channels in the epithelium of the 

female reproductive tract has yet to be investigated. Experiments in this chapter 

were designed to identify the TRPC isoforms in bovine oviduct and uterine 

epithelial tissue and to determine the expression pattern of these genes 

throughout the estrous cycle.  Further experiments were conducted to discover 

possible regulator molecules or pathways in these tissues. The bovine was 

used as a model for the human due to the difficulties in obtaining human 

biopsies and  the numerous similarities in human  and bovine female 

reproductive systems (Navara et al., 1995; Anderiesz et al., 2000).  

3.1 Expression of the TRPC family in bovine oviduct epithelium 

Fig 3.1 indicates that the genes that encode TRPC 1 (Lane 2), 2 (Lane 3) , 3 

(Lane 4), 4 (Lane 5) and 6 (Lane 7) are expressed in bovine oviduct epithelium.  

These results were collected from cDNA generated from total mRNA extracted 

from bovine oviduct epithelial tissue.  Expression of β actin confirmed that PCR 

conditions were optimised (Lane 1, Fig 3.1). Positive expression of 

Cytokeratin18 (Lane 9, Fig 3.1), a marker specific to epithelial cells, confirmed 

that template cDNA was from epithelial cells. The expected size of the PCR 

products were β actin 100 bp, TRPC1 232 bp, TRPC2 233 bp, TRPC3 244 bp, 

TRPC4 227 bp, TRPC5 179 bp, TRPC6 183 bp, TRPC7 168 bp and 

Cytokeratin18 181 bp. 

 

 

 

 

 



57 
 

 

  

  

  

  

  

  

 

 

 

 

Fig 3.1  TRPC isofoms expressed in bovine oviduct epithelium. PCR Products eletrophoresed 

on a 2% agarose gel, indicating positive expression of TRPC 1, 2, 3, 4 and 6 in bovine oviduct 

tissue. Expression of TRPC5 and TRPC7 was not detected.  PCR products were loaded on the 

gel as following: lane 1; β actin (100 bp), lane 2; TRPC1 (232 bp), lane 3; TRPC2 (233bp), lane 

4; TRPC3 (244 bp), lane 5; TRPC4 (227 bp), lane 6 ; TRRPC5 (179 bp), lane 7; TRPC6 (183 

bp), lane 8; TRPC7 (168 bp) and lane 9; Cytokeratin18 (181 bp).  
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3.2 Expression of TRPC genes in bovine oviduct epithelium throughout 

the estrous cycle 

Relative gene expression of members of the TRPC family in bovine oviduct 

epithelial tissue is shown in Fig 3.2.  In general, the expression patterns of all 

the TRPC family members showed remarkable similarity throughout the estrous 

cycle. Expression level of TRPC1 was decreased by 0.24 (p= 0.0006) and 0.35 

(p= 0.0007) fold at stage 2 and 4 respectively relative to stage 1 of the estrous 

cycle. However, at stage 3, expression of TRPC1 was up-regulated by 1.49 fold 

(p= 0.01) compared to stage 1 of the estrous cycle (Fig 3.2, A). Expression of 

TRPC2 was down regulated by 0.10 (p= 8.95 x 10-6), 0.72 (p= 0.01) and 0.28 

(p= 0.01) fold at stage 2, 3 and 4 respectively compared to stage 1 of the 

estrous cycle (Fig 3.2, B). Expression level of TRPC3 was decreased by 0.069 

(p= 7.6 x 10-5), 0.65 (p= 0.007) and 0.17 (p= 0.0005) fold at stages 2, 3 and 4 

respectively relative to stage 1 of the estrous cycle (Fig 3.2, C). TRPC4 

expression was down regulated by 0.065 (p= 3.97 x 10-5), 0.63 (p= 0.01) and 

0.17 (p= 8.79 x 10-5) fold at stage 2, 3 and 4 respectively compared with stage 1 

of the estrous cycle (Fig 3.2, D). Furthermore, expression level of TRPC6 was 

decreased by 0.51 (p= 0.01), 0.79 (p= 0.01) and 0.41 (p= 0.006) fold at stages 

2, 3 and 4 of the estrous cycle respectively compared to the stage 1 (Fig 3.2, 

E).  
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Fig 3.2 Changes in expression of TRPC genes in bovine oviduct epithelium throughout the 

estrous cycle. Expression of each TRPC isoforms throughout the estrous cycle was normalized 

to stage 1 of the cycle as a comparator. Expression level of TRPC2 (3.2, B), TRPC3 (3.2, C), 

TRPC4 (3.2, D) and TRPC6 (3.2, E) was lower at stage 2, 3 and 4 of the estrous cycle 

compared of that of the stage 1. However, unlike other TRPC isoforms, expression of TRPC1 

gene (3.2, A) was higher at stage 3 of the estrous cycle compared to the stage 1. All data are 

expressed as a mean of 3 experiments ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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3.3 Differences in gene expression of TRPC isoforms in bovine oviduct 

epithelial tissue and cultured cells 

The pattern of expression of TRPC isoforms by bovine oviduct epithelial cells 

collected from tissue representative of the different phases of the estrous cycle 

and cultured in vitro differed markedly to that observed in intact tissue (Fig 3.3). 

The expression of TRPC1 at stage 2 (p= 0.08) in the Bovine Oviduct Cultured 

Cells (BOEC) was not significantly different to that of the stage 1. However, at 

stage 3 and 4 of the estrous cycle TRPC1 was up regulated by 1.98 (p= 0.02) 

and 10.98 (p= 0.004) fold respectively compared to stage 1. Comparing the 

expression level of TRPC1 between the bovine oviduct epithelial tissue and 

BOEC indicates that although the pattern of expression at stage 2 and 4 of the 

cycle in BOEC was similar to that of the tissue, expression of TRPC1 at stage 2 

in BOEC was 1.68 fold (p= 0.004) higher than that of the tissue. However, 

expression of TRPC1 at stage 4 in BOEC was lower by 0.48 fold (p= 0.002) 

compared to that of the tissue. At stage 3, expression of TRPC1 was up 

regulated in tissue compared to that of the stage 1 but in BOEC there was no  

significant difference in expression of TRPC1 at stage 3 compared to that of the 

BOEC at stage 1(Fig 3.3, A). 

Expression of TRPC2 at stage 2 in BOEC was not significantly different (p= 0.6) 

compared to that of the stage 1. However, expression of TRPC2 at stage 2 of 

the estrous cycle in BOEC was higher by 10.76 fold (p= 0.03) compared to that 

of the tissue. Expression of TRPC2 at stage 3 of the estrous cycle was down 

regulated by 0.64 fold (p= 0.04) relative to the stage 1.There was no significant 

difference (p= 0.4) in expression of TRPC2 at stage 3 in BOEC compared to 

that of the tissue. Expression of TRPC 2 at stage 4 of the estrous cycle was up 

regulated by 1.96 fold (p= 0.002) compared to that of the stage 1 in BOEC. 

Expression of TRPC2 at stage 4 in BOEC was 6.86 fold (p= 0.0004) higher than 

that of the tissue (Fig 3.3, B).  

With regard to TRPC3, expression at stage 2 of the estrous cycle was down 

regulated by 0.44 fold (p= 0.01) in BOEC compared to stage 1. Expression of 

TRPC3 at stage 2 was higher by 6.35 fold (p= 0.02) compared to that of the 

tissue. TRPC3 was down regulated by 0.62 fold (p= 0.03) at stage 3 in BOEC 

relative to the stage 1. There was no significant difference (p= 0.7) in 
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expression of TRPC3 at stage 3 in BOEC and the tissue. At stage 4 of the 

estrous cycle, expression of TRPC3 was down regulated by 0.16 fold (p= 0.002) 

relative to the stage 1. There was no significant difference (p= 0.9) in 

expression of TRPC3 at stage 4 in BOEC and the tissue (Fig 3.3, C). 

Expression level of TRPC4 in BOEC at stage 2 was down regulated by 0.07 fold 

(p= 0.0001) compared to the stage 1. No significant difference (p= 0.5) was 

observed in expression of TRPC4 at stage 2 in BOEC compared to the tissue. 

At stage 3 expression of TRPC4 in BOEC was down regulated by 0.33 fold (p= 

0.001) relative to that of the stage 1. In BOEC expression of TRPC4 at stage 3 

of the estrous cycle was lower by 0.52 fold (p= 0.007) compared to that of the 

tissue. At stage 4 of the estrous cycle, expression of TRPC4 was down 

regulated by 0.07 fold (p= 5.68 x 10-5) relative to the stage 1. Expression of 

TRPC4 in BOEC at stage 4 was lower by 0.41 fold (p= 0.001) compared to that 

of the tissue (Fig 3.3, D). 

Expression of TRPC6 at stage 2 of the estrous cycle in BOEC was reduced by 

0.25 fold (p= 0.005) compared to stage 1. In BOEC at stage 2 of the estrous 

cycle, expression of TRPC6 was lower by 0.49 fold (p= 0.02) compared to that 

of the tissue. Expression of TRPC6 in BOEC at stage 3 (p= 0.6) was not 

significantly different to that of the stage 1. Furthermore, there was no 

significant difference (p= 0.6) in expression of TRPC6 at stage 3 in BOEC 

compared to that of the tissue. At stage 4 expression of TRPC6 was down 

regulated by 0.29 fold (p= 0.01) relative to that of the TRPC6 at stage 4 of the 

estrous cycle was not significantly different (p= 0.3) in BOEC compared to the 

tissue (Fig 3.3, E). 

 

 

 

 

 

 

 

 



62 
 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

  

 

 

 

 

Fig 3.3 Gene expression of TRPC isoforms in bovine oviduct epithelial cultured cells differ 

compared with that of tissue throughout the estrous cycle. Expression of TRPCs at stages 2,3 

and 4 is normalized to stage 1 of the estrous cycle. In cultured bovine oviduct epithelial cells 

expression of  TRPC1 (3.3, A) at stage 2, 3 and 4, TRPC2 (3.3, B) at stage 2 and 4, TRPC3 

(3.3, C) at stage 2, TRPC4 (3.3, D) at stage 3 and 4 and TRPC6 (3.3, E) at stage 2 were 

significantly different compared to the tissue. Data are expressed as mean 3 experiments ± 1 

standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). * represents the P value, 

comparing the changes in the gene expression at different stage of the estrous cycle to the 

stage 1 in  BOEC. * represents the P value, comparing the changes in the gene expression at 

each stage of the estrous cycle in BOEC to that of the same stage in the tissue. 
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3.4 Effect of Sex Steroids, Follicle Stimulating Hormone (FSH) and 

Luteinizing Hormone (LH) on gene expression of TRPC isoforms in 

cultured bovine oviduct epithelial cells 

Acute 24 hour treatment with Progesterone, 17β- estradiol, Follicle Stimulating 

Hormone (FSH) and Luteinizing Hormone (LH) induced significant changes in  

expression of TRPC isoforms BOEC (Fig 3.4). The effect of sex hormones on 

expression of each member of the TRPC family is described in turn.  As FSH 

and LH act synergistically and their circulating levels throughout the estrous 

cycle mirror each other, BOEC cultures were treated with 0.5 International Unit 

(IU) of FSH and LH simultaneously. The concentrations of sex steroids used in 

this experiment chosen were 2 pg/ml of 17β- estradiol (Est) and 10 nM of 

progesterone (Prog) (Ginther et al., 2010). 

3.4.1  TRPC1 

Expression of TRPC1 at stage 1 was 0.60 fold (p= 0.01) lower in response to 

Est when compared to BOEC cultured in the absence of hormonal 

supplementation. However, expression of TRPC1 in FSH/LH-treated BOEC was 

up regulated by 8.12 fold (p= 0.02) relative to the control group. Treatment of 

BOEC with Prog caused a modest, 0.40 fold (p= 0.008) fall in the expression of 

TRPC1 at stage 1 of the estrous cycle. However concurrent treatment of BOEC 

with Prog and Est (p= 0.6) and Prog, FSH and LH (p= 0.3) did not cause any 

change in the expression of TRPC1 at stage 1 of estrous cycle compared to 

that of untreated BOEC. Synchronous treatment of BOEC with Est, Prog, FSH 

and LH promoted a dramatic increase in the expression of TRPC1; a greater 

than 32 fold (p= 0.003) increase compared to that of the untreated BOEC. 

When Prog was combined with the other hormones, no significant changes (p= 

0.05) were observed in expression of TRPC1 relative to the control group (Fig 

3.4, A).  

In cells harvested from stage 2 of the estrous cycle, Est treated BOEC 

displayed a 1.39 fold (p= 0.01) increase in the gene expression of TRPC1 

compared to untreated BOEC. Expression of TRPC1 in FSH and LH treated 

BOEC at stage 2 of the estrous cycle was 3.49 fold (p= 0.02) higher than 

control cells and also greater than that of the effect seen in BOEC treated with 

Est alone. Treatment of stage 2 BOEC with Prog increased TRPC1 expression 
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by 1.50 fold (p= 0.02). A combination of Prog and Est induced a 2.70 fold (p= 

0.01) increase in expression of TRPC1 in BOEC harvested from stage 2 of the 

estrous cycle relative to the control group. Prog, FSH and LH combined, 

increased the expression level of TRPC1 2.63 fold (p= 0.001) compared to that 

of untreated BOEC. A mixture of Est, FSH and LH increased TRPC1 expression 

by 16.82 fold (p= 0.02) relative to the untreated group. However, treating BOEC 

with Prog, Est, FSH and LH led to only a modest 3.24 fold (p= 0.01) increase of 

TRPC1 expression in relation to that of untreated BOEC (Fig 3.4, B). 

In BOEC harvested from stage 3 of the estrous cycle, the expression TRPC1 

fell 0.72 (p= 0.03) fold in response to Est compared to the untreated group. FSH 

and LH treatment led to a 3-fold (p= 0.01) increase in the expression of TRPC1  

relative to the control group whereas Prog down-regulated the TRPC1 

expression level by 0.55 fold (p= 0.02) compared to untreated stage 3 BOEC. 

TRPC1 expression was not significantly different (p= 0.1) in stage 3 BOEC in 

response to treatment with Prog and Est in combination compared to that of the 

control group. Furthermore, treatment of stage 3 BOEC with a mixture of Prog, 

FSH and LH or with Prog, Est, FSH did not induce any significant change (p= 

0.1) in expression of TRPC1 compared to the untreated group. However, a 

combination of Est, FSH and LH increased the expression of TRPC1 in stage 3 

BOEC by 61.31 fold (p= 0.004) relative to the controls. When Prog was added 

to the mixture of Est, FSH and LH, expression of TRPC1 fell to 0.53 fold (p= 

0.01) compared to the control group (Fig 3.4, C). 

At stage 4 of the estrous cycle, a general up-regulation in the expression of 

TRPC1 was observed in response to exposure to each of Est, FSH, LH, Prog 

and their combinations. Est treatment increased the expression level of TRPC1 

by 3.44 fold (p= 0.004) in stage 4 BOEC compared to that of the untreated 

group. TRPC1 expression in stage 4 BOEC in response to FSH and LH was 

22.12 fold (p= 0.01) higher compared to the control group. Prog-treated BOEC 

showed a 5.44 fold (p= 0.004) increase in TRPC1 expression relative to the 

untreated BOEC. When added in combination, Prog and Est up-regulated 

TRPC1 gene expression 20.0 fold (p= 0.002) whereas the up-regulation of 

TRPC1 in response to the mixture of Prog, FSH and LH was only 5.03 fold (p= 

0.02) compared to the control BOEC. Simultaneous treatment of BOEC with 

Est, FSH and LH led to a dramatic 86 fold (p= 0.02) increase in TRPC1 gene 
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expression compared to untreated BOEC. However, addition of Prog to the 

above mixture reduced this extensive up-regulation to a more modest 2.4 fold 

(p= 0.03) increase in expression compared to control cells (Fig 3.4, D).  

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

Fig 3.4 Effect of sex hormones on the expression of TRPC1 throughout the estrous cycle. 

Expression of TRPC1 in BOEC at stage 1 (3.4, A), 2 (3.4, B), 3 (3.4, C) and 4 (3.4, D)  of the 

estrous cycle was altered by each of the sex hormones individually and combined. However, 

combination of Est/Prog and Prog/FSH/LH did not induce any significant effect on the 

expression of TRPC1 in stage 3 BOEC. Changes induced in expression of TRPC1 in BOEC 

was introduced as a fold of that of the untreated BOEC. Data are expressed as mean 3 

experiments ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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3.4.2 TRPC2 

In cells harvested from oviducts at stage 1 of the estrous cycle, treatment with 

Est had no significant effect (p= 0.1) on expression of TRPC2 compared to 

untreated cells. Treatment with FSH and LH led to an 11.47 fold (p= 0.002) 

increase in TRPC2 expression. However at stage 1, BOEC treated with Prog, 

expression of TRPC2 was reduced by 0.49 fold (p= 0.01) of that of the 

untreated BOEC. A combination of Prog and Est did not change (p= 0.8) the 

expression of TRPC2 in cells from stage 1 of the estrous cycle compared to that 

of untreated BOEC. When treated with a mixture of Prog, FSH and LH 

expression of TRPC2 was unchanged (p= 0.4) compared to the control group. 

In stage 1 BOEC treated with Est, FSH and LH, expression of TRPC2 was 

greatly increased by 194 fold (p= 0.04) compared to that of untreated BOEC. 

However, expression of TRPC2 in stage 1 BOEC treated with Prog, Est, FSH 

and LH combined was not significantly different (p= 0.3) to that of the control 

group (Fig 3.5, A). 

At stage 2 of the estrous cycle, treatment of BOEC with Est did not significantly 

(p= 0.2) alter the expression of TRPC2 relative to the control group. Treatment 

of stage 2 BOEC with FSH and LH produced a more marked response as 

TRPC2 expression was 4.64 fold (p= 0.01) higher than that in untreated BOEC. 

Treatment with Prog alone reduced TRPC2 expression by 0.31 fold (p= 0.01) 

compared to the control group. Simultaneous treatment of stage 2 BOEC with 

Prog and Est did not significantly (p= 0.06) affect the expression of TRPC2 

compared to untreated BOEC. Furthermore, a mixture of Prog, FSH and LH did 

not elicit a significant (p= 0.5) response, however concurrent treatment of 

BOEC with Est, FSH and LH dramatically up-regulated TRPC2 expression by 

138 fold (p= 0.04) relative to untreated BOEC. When Prog was added to the 

mixture of Est, FSH and LH, up-regulation of TRPC2 expression was not 

significantly (p= 0.1) different compared to that of control group (Fig 3.5, B). 

Fig 3.5,C shows the expression of TRPC2 at stage 3 of the estrous cycle in 

response to the sex hormones. Treatment of BOEC with Est did not result in 

any significant difference (p= 0.2) in expression of TRPC2 compared to the 

control group. TRPC2 expression was significantly increased by 93 fold (p= 

0.03) in response to FSH and LH treatment. Prog induced a 16.1 fold (p= 0.02) 

increase in the expression level of TRPC2, furthermore, when combined with 
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Est, expression of TRPC2 was up-regulated 18.8 fold (p= 0.002) relative to the 

untreated group. Together, Prog, FSH and LH increased the expression level of 

TRPC2 by 10.2 fold (p= 0.04) compared to the control group whereas 

simultaneous treatment of BOEC with Est, FSH and LH led to an extensive 

increase in expression of TRPC2 by 1702 fold (p= 0.04) relative to that of 

untreated BOEC. When Est, FSH and LH were combined with Prog expression 

of TRPC2 was merely 15.23 fold (p= 0.02) higher than untreated cells (Fig 3.5, 

C). 

As shown in Fig 3.5,D  at stage 4 of the estrous cycle, Est induced a 14.2 fold 

(p= 0.01) increase in expression of TRPC2 in BOEC. The effect of FSH and LH 

was stronger than Est as TRPC2 was up-regulated by 30.93 fold (p= 0.008) 

relative to the untreated BOEC. Expression of TRPC2 in BOEC treated with 

Prog was not significantly different (p= 0.07) compared to the control. A 

combination of Prog and Est increased the expression level of TRPC2 by 55 

fold (p= 0.03), whereas combined Prog, FSH and LH down regulated TRPC2 

expression by 0.55 fold (p= 0.02) relative to that of untreated BOEC. 

Simultaneous treatment of BOEC with Est, FSH and LH resulted in a greater 

than 420-fold (p= 0.008) increase in TRPC2 expression however addition of 

Prog to Est, FSH and LH reduced this up-regulation and no significant 

difference (p= 0.09) was observed compared to the untreated BOEC (Fig 3.5, 

D). 
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Fig 3.5 Effect of sex hormones on the expression of TRPC2 throughout the estrous cycle. 

Expression of TRPC2 in BOEC at stage 1 (3.5, A), 2 (3.5, B), 3 (3.5, C) and 4 (3.5, D)  of the 

estrous cycle was altered by sex hormones. At stage 1 and 2 of the estrous cycle, TRPC2 

expression was changed in BOEC treated with FSH/LH, Prog and the mixture of Est, FSH/LH 

(3.5, A and B). Expression of TRPC2 at stage 3 was altered in BOEC treated with each of the 

sex hormones individually and their combination. However, Est did not induce any significant 

change on the expression of TRPC2 in stage 3 BOEC (3.5, C). At stage 4, expression of 

TRPC2 in BOEC was not affected by Prog and the mixture of Prog, Est, FSH/LH (3.5, D). The 

graphs are plotted on a logarithmic scale for ease of interpretation. Data are expressed as 

mean 3 experiments ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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3.4.3 TRPC3  

Figure 3.6 shows expression of TRPC3 in response to sex hormone treatment.  

At stage 1 of the estrous cycle, expression of TRPC3 was not changed (p= 0.7) 

in response to Est in BOEC compared to the control group. By contrast, FSH 

and LH induced an 11.6 fold (p= 0.04) increase in expression of TRPC3 in 

stage 1 BOEC relative to the untreated BOEC. However, treatment of stage 1 

BOEC with Prog resulted in a 0.49 fold (p= 0.003) down-regulation in 

expression of TRPC3. Treatment of stage 1 BOEC with Prog and Est together 

did not induce any significant effect (p= 0.1) in expression of TRPC3 compared 

to the control group. Prog, FSH and LH together, up-regulated the expression of 

TRPC3 in stage 1 BOEC by 1.79 fold (p= 0.002) relative to the untreated group. 

When combined, Est, FSH and LH increased the expression of TRPC3 by 91.5 

fold (p= 0.0001) at stage 1 of the estrous cycle relative to the untreated BOEC. 

However, addition of Prog to the mixture of Est, FSH and LH decreased this up-

regulation from 91.48 fold the same expression level (p= 0.8) observed in 

untreated BOEC (Fig 3.6 ,A). 

In cells harvested from oviducts at stage 2 of the estrous cycle, treatment with 

Est prompted a 1.59 fold (p= 0.03) increase in expression of TRPC3 relative to 

the control group. Treatment of stage 2 BOEC with FSH and LH also induced 

an increase in the expression of TRPC3 by 2.42 fold (p= 0.01). However, 

treatment with Prog did not have any significant effect (p= 0.3) on the 

expression level of TRPC3 in BOEC at stage 2 of the estrous cycle. A similar 

result was observed in BOEC treated with Prog and Est (p= 0.09). Furthermore, 

simultaneous treatment of BOEC with Prog, FSH and LH did not induce any 

significant effect (p= 0.3) in expression of TRPC3 relative to the untreated 

BOEC. Expression of TRPC3 at stage 2 of the estrous cycle in BOEC treated 

with Est, FSH and LH was 56 fold (p= 3.42 x 10-5) higher than the control group. 

However, addition of Prog to the mixture of Est, FSH and LH abolished this 

increase and up-regulated the TRPC3 expression by 3.47 fold (p= 0.03) relative 

to the control group (Fig 3.6 ,B). 

At stage 3 of the estrous cycle, expression of TRPC3 in BOEC treated with Est 

was not significantly different (p= 0.5) from that of the control group. However, 

FSH and LH together caused a 35.59 fold (p= 0.02) increase in TRPC3 



70 
 

expression compared to the control group. Expression of TRPC3 in BOEC 

treated with Prog was not significantly different (p= 0.05) compared to that of 

the untreated BOEC. Furthermore, Prog and Est did not alter (p= 0.1) the 

expression level of TRPC3 in stage 3 BOEC compared to the control group. 

Treatment of stage 3 BOEC with the mixture of Prog, FSH and LH resulted in 

no significant difference (p= 0.1) in expression of TRPC3 relative to the control 

group. As seen in each of the other groups studied, Est, FSH and LH together 

resulted in a large rise in expression of TRPC3; 483 fold (p= 0.0006) increase 

compared to the untreated BOEC. This dramatic effect was not reduced??  (p= 

0.7) by the addition of Prog to the hormone mixture (Fig 3.6 ,C). 

At stage 4 of the estrous cycle, Est treated BOEC displayed a 7.83 (p= 0.007) 

fold increase in the gene expression of TRPC3. When BOEC were treated with 

FSH and LH, a 17.2 fold (p= 0.0001) increase was detected in expression of 

TRPC3 compared to the control group. Furthermore, Prog up-regulated the 

expression of TRPC3 in BOEC by 7.43 fold (p= 0.004) compared to the control 

group. Expression of TRPC3 in BOEC treated with Prog and Est was 29.6 fold 

(p= 0.007) higher than the control group. However, a combination of Prog, FSH 

and LH resulted in only a modest 2.76 fold (p= 0.02) increase in expression of 

TRPC3 in BOEC. By contrast, simultaneous treatment of BOEC with Est, FSH 

and LH led to a 182 fold (p= 0.003) increase of TRPC3 compared to the 

untreated group. When Prog was added to the mixture of Est, FSH and LH, the 

expression of TRPC3 was up regulated by 1.71 fold (p= 0.03) relative to the 

control BOEC (Fig 3.6 ,D). 
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Fig 3.6 Changes of expression of TRPC3 in BOEC throughout the estrous cycle in response to 

sex hormones. Expression of TRPC3 in BOEC at stage 1 (3.6, A), 2 (3.6, B), 3 (3.6, C) and 4 

(3.6, D)  of the estrous cycle was altered by sex hormones. At stage 1, TRPC3 expression was 

changed in BOEC treated with FSH/LH, Prog, combination of Prog, FSH/LH and the mixture of 

Est, FSH/LH (3.6, A).At stage 2, expression of TRPC3 was altered in BOEC treated with Est, 

FSH/LH, mixture of Est,FSH/LH and combination of Prog, Est, FSH/LH (3.6, B).Expression of 

TRPC3 in stage 3 BOEC was affected only by FSH/LH and mixture of Est, FSH/LH (3.6, C). At 

stage 4, expression of TRPC3 was altered by each of the sex hormones individually and their 

combination (3.6, D). The graphs are plotted on a logarithmic scale for ease of interpretation. 

Data are expressed as mean 3 experiments ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** 

= p<0.001). 
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3.4.4 TRPC4 

In cells harvested from oviducts at stage 1 of the estrous cycle, expression of 

TRPC4 was marginally down regulated by 0.62 fold (p= 0.001) in response to 

the treatment with Est. Furthermore, expression of TRPC4 was 0.43 fold (p= 

0.02) lower in BOEC treated with FSH and LH. Similarly, treatment of BOEC 

with Prog resulted in small 0.36 fold (p= 0.005) down regulation in expression of 

TRPC4 at stage 1 of the estrous cycle compared to the control group. When 

added in combination, Prog and Est did not alter (p= 0.6) the TRPC4 gene 

expression compared to the control cells. Furthermore, when combined, Prog, 

FSH and LH resulted in no significant difference (p= 0.3) in expression of 

TRPC4 relative to the control group. In contrary, treatment of BOEC with Est, 

FSH and LH up regulated the expression of TRPC4 by 3.79 fold (p= 0.003) at 

stage 1 of the estrous cycle. The expression of TRPC4 in BOEC treated with 

the combination of Prog, Est, FSH and LH was the same as (p= 0.7) the 

untreated BOEC (Fig 3.7, A).  

At stage 2 of the estrous cycle, supplementation of the culture medium with Est 

did not caused any significant difference (p= 0.07) in expression of TRPC4 

compared to the control group. Furthermore, there was no real change (p= 0.1) 

in TRPC4 expression when BOEC were treated with FSH and LH.  However 

Prog up regulated the expression of TRPC4 by 21.2 fold (p= 0.004) in BOEC at 

stage 2 compared to the untreated group. This increase in expression was 

enhanced to 39 fold (p= 0.004) by a combination of Prog and Est.  Furthermore, 

a 51 fold (p= 0.002) increase in expression of TRPC4 was detected when 

BOEC was treated with the combination of Prog, FSH and LH compared to the 

control group. Treatment of stage 2 BOEC with Est, FSH and LH also up 

regulated TRPC4 expression in BOEC by 33.9 fold (p= 0.009) relative to the 

untreated group. Treatment of BOEC with the mixture of Prog, Est, FSH and LH 

all together resulted in a 46 fold (p= 0.02) increase in expression of TRPC at 

stage 2 of the estrous cycle (Fig 3.7, B). 

At stage 3 of the estrous cycle, Est-treatment of BOEC had a 0.30 fold (p= 

0.0005) decrease in TRPC4 expression. By contrast, FSH and LH dramatically 

up regulated the gene expression of TRPC4 in BOEC by 115.4 fold (p= 0.001) 

compared to the control group, while Prog induced only a modest 4.7 fold (p= 
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0.002) increase in expression of TRPC4 at stage 3. When Prog was combined 

with Est TRPC4 expression was increased by 5.39 fold (p= 0.01) compared to 

the control. Prog, FSH and LH together up regulated the expression of TRPC4 

in stage 3 BOEC by 3.59 fold (p= 0.04). Synchronous treatment of BOEC with 

Est, FSH and LH led to an extensive up regulation of TRPC4 expression by 

more than 2380 fold (p= 0.01) compared to the untreated group. However, 

combining Prog with the mixture of Est, FSH and LH resulted in a modest 3.25 

fold (p= 0.003) increase of TRPC4 expression relative to that of the control 

group at stage 3 of the estrous cycle (Fig 3.7, C). 

At stage 4 of the estrous cycle, Est induced a 2.02 fold (p= 0.004) increase in 

expression of TRPC4 in BOEC compared to the untreated cells. Treatment of 

BOEC with FSH and LH in combination also resulted in a 5.62 fold (p= 0.01) up 

regulation of TRPC4. Furthermore, Prog treated BOEC displayed a 32.18 fold 

(p= 0.003) increase in the expression of TRPC4 at stage 4 of the estrous cycle. 

When Prog was combined with Est, expression of TRPC4 was 86 fold (p= 

0.005) higher than that of the control group. However, BOEC treated with the 

combination of Prog, FSH and LH displayed a more modest 14.5 fold (p= 0.005) 

increase in expression of TRPC4. Simultaneous treatment of BOEC with Est, 

FSH and LH caused a dramatic 281 (p= 0.0005) fold increase in TRPC4 

expression relative to the control group. This up regulation was decreased by 

addition of Prog to the mixture of Est, FSH and LH by a 16.45 fold (p= 0.002) 

increase in expression level of TRPC4 at stage 4 of the estrous cycle (Fig 3.7, 

D). 
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Fig 3.7 Sex hormones alter the TRPC4 in BOEC throughout the estrous cycle. Expression of 

TRPC4 in BOEC at stage 1 (3.7, A), 2 (3.7, B), 3 (3.7, C) and 4 (3.7, D)  of the estrous cycle 

was altered by sex hormones. At stage 1, TRPC4 expression was changed in BOEC treated 

with Est, FSH/LH, Prog and combination of Est, FSH/LH (3.7, A).At stage 2, expression of 

TRPC4 was altered in BOEC treated with Prog and different  mixtures of sex hormones but not 

with Est and FSH/LH (3.7, B).Expression of TRPC4 in stage 3 and 4 BOEC was affected by 

each of the sex hormones individually and the mixture of them (3.7, C and D). The graphs in Fig 

3.7 C and D are plotted on a logarithmic scale for ease of interpretation. Data are expressed as 

mean 3 experiments ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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3.4.5 TRPC6 

Expression of TRPC6 at stage 1 of the estrous cycle was largely independent of 

hormone treatment when provided individually [Est (p= 0.2), FSH/LH (p= 0.1), 

Prog (p= 0.1) and Prog/FSH/LH(p= 0.08)]. Only a combination of Est and Prog 

promoted a 9.18 fold (p= 0.04) increased in expression of TRPC6 in stage 1 

BOEC. Furthermore, mixture of Est, FSH and LH up regulated the expression 

level of TRPC6 by 175 fold (p= 0.0007). When Prog was added to the mixture 

of Est, FSH and LH a 27.1 fold (p= 0.02) increase was observed in expression 

of TRPC6 in stage 1 BOEC (Fig 3.8, A). 

Est did not produce a significant change (p= 0.3) in gene expression of TRPC6 

in BOEC at stage 2 of the estrous cycle compared to the control group. 

However, a 14.43 fold (p= 0.03) increase in expression of TRPC6 was detected 

in BOEC treated with FSH and LH at stage 2 relative to the untreated group. 

Prog supplementation led to a 8.1 fold (p= 0.01) up-regulation in expression of 

TRPC6 in BOEC compared to the control group. A mixture of Prog and Est 

caused a 14.2 fold (p= 0.0004) rise in expression of TRPC6; an effect similar to 

that of FSH and LH. When combined, Prog, FSH and LH up-regulated the 

expression of TRPC6 by 65.6 fold (p= 0.005) at stage 2 of the estrous cycle; 

lower than the 382 fold (p= 0.002) increase in TRPC6 expression that was seen 

in response to the combination of Est, FSH and LH.  However, treating BOEC 

with Pro, Est, FSH and LH led to a 31.4 fold (p= 0.02) increase in expression 

TRPC6 at stage 2 of the estrous cycle (Fig 3.8, B). 

At stage 3 of the estrous cycle, no changes (p= 0.9) were detected in 

expression level of TRPC6 in BOEC treated with Est compared to the control 

group. However, treatment of BOEC with FSH and LH resulted in a 70.4 fold 

(p= 0.001) increase in gene expression of TRPC6 and Prog treated BOEC 

displayed an 8.6 fold (p= 0.002) increase in expression of TRPC6. Prog and Est 

together induced a 9.71 fold (p= 0.04) increase in expression of TRPC6 

compared to the control group. When combined, Prog, FSH and LH up 

regulated the expression of TRPC6 in BOEC by more than 13 fold (p= 0.01) at 

stage 3 of the estrous cycle. Synchronous treatment of BOEC with Est, FSH 

and LH dramatically up regulated the expression of TRPC6; a greater than 933 

fold (p= 0.006) increase was seen in comparison to that of the untreated BOEC. 
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However, treating BOEC with Prog, Est, FSH and LH led to a 10.5 fold (p= 

0.02) increase of TRPC6 expression at stage 3 of the estrous cycle (Fig 3.8, C). 

At stage 4 of the estrous cycle, Est treated BOEC displayed an 11.5 fold (p= 

0.005) increase in expression of TRPC6 compared to the untreated BOEC. The 

increase in gene expression of TRPC6 was higher in FSH and LH treated 

BOEC; a greater than 74 fold (p= 0.002) up-regulation. Furthermore, treating 

BOEC with Prog resulted in a 17 fold (p= 0.02) increase in expression of 

TRPC6 relative to the control group. BOEC treated with Pro and Est together 

displayed a greater than 183 fold (p= 0.01) up regulation in TRPC6 expression. 

However, combination of Prog, FSH and LH induced only a slight, 2.4 fold (p= 

0.02) increase in TRPC6 expression. By contrast, BOEC treated with 

combination of Est, FSH and LH dramatically up regulated expression of 

TRPC6 by 726 fold (p= 9.6 x 10-5) compared to the control group. However, 

when Prog was added to the mixture of Est, FSH and LH the massive increase 

in expression of TRPC6 was abolished and only  a 3.39 fold (p= 0.007) increase 

in expression of TRPC6 was detected in stage 4 BOEC compared to the 

untreated BOEC (Fig 3.8, D). 
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Fig 3.8 Effect of sex hormones on TRPC6 expression in BOEC throughout the estrous cycle.  

Expression of TRPC6 in BOEC at stage 1 (3.8, A), 2 (3.8, B), 3 (3.8, C) and 4 (3.8, D)  of the 

estrous cycle was altered by sex hormones. At stage 1, TRPC6 expression was changed in 

BOEC treated with combination of Prog/Est,  Est/FSH/LH and Prog/Est/FSH/LH (3.8, A).At 

stage 2 and 3, expression of TRPC6 was altered in BOEC treated with each of the sex 

hormones individually, other than Est, and their combination (3.8, B and C).Expression of 

TRPC6 in stage 4 BOEC was affected by each of the sex hormones individually and the mixture 

of them (3.8, D). The graphs are plotted on a logarithmic scale for ease of interpretation. Data 

are expressed as mean 3 experiments ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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3.5 Expression of TRPC genes in bovine uterine epithelial tissue 

Fig 3.9 indicates that the genes encoding TRPC 1 (Lane 2), 2 (Lane 3), 3 (Lane 

4), 4 (Lane 5) and 6 (Lane 7) were expressed in bovine uterine epithelium.  The 

cDNA was generated from total mRNA extracted from bovine uterine epithelial 

tissue.  Expression of β actin confirmed that the PCR conditions were optimised 

(Lane 1, Fig 3.9). Positive expression of Cytokeratin18 (Lane 9, Fig 3.9), a 

marker specific to epithelial cells, confirmed that the template cDNA was from 

epithelial cells. The expected size of the PCR products were β actin 100 bp, 

TRPC1 232 bp, TRPC2 233 bp, TRPC3 244 bp, TRPC4 227 bp, TRPC5 179 

bp, TRPC6 183 bp, TRPC7 168 bp and Cytokeratin18 181 bp. 
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Fig 3.9  TRPC isoforms expressed in bovine uterine epithelium. PCR Products eletrophoresed 

on a 2% agarose gel, indicating positive expression of TRPC 1, 2, 3, 4 and 6 in bovine uterine 

tissue. Expression of TRPC5 and TRPC7 was not detected in the bovine uterine epithelial 

tissue.  PCR products were loaded on the gel as following: lane 1; β actin (100 bp), lane 2; 

TRPC1 (232 bp), lane 3; TRPC2 (233bp), lane 4; TRPC3 (244 bp), lane 5; TRPC4 (227 bp), 

lane 6 ; TRRPC5 (179 bp), lane 7; TRPC6 (183 bp), lane 8; TRPC7 (168 bp) and lane 9; 

Cytokeratin18 (181 bp). 
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3.6 Expression of TRPC genes in bovine uterine epithelial tissue 

throughout the estrous cycle 

Relative gene expression of TRPC family members throughout the estrous 

cycle in bovine uterine epithelial tissue is shown in Fig 3.10 Changes in 

expression level of TRPCs throughout the estrous cycle was measured relative 

to stage 1 of the cycle. In general, the expression patterns of all the TRPC 

family members show similarity at stage 4 of the estrous cycle.   

In bovine uterine epithelial tissue, expression of TRPC1 was not significantly 

different (p= 0.08) at stage 2 compared to that of stage 1. At stage 3, 

expression of TRPC1 was slightly up-regulated, by 1.29 fold (p= 0.001) relative 

to the stage 1. Expression of TRPC1 at stage 4 was up-regulated by 10.98 fold 

(p= 0.004) compared to stage 1 of the estrous cycle (Fig 3.10, A). 

TRPC2 gene expression was down-regulated by 0.48 fold (p= 0.01) at stage 2 

of the estrous cycle relative to that of the stage 1. However, at stage 3, a 2.41 

fold (p= 0.02) increase was detected in expression level of TRPC2 in bovine 

uterine epithelium. This increase was greater by 39.9 fold (p= 0.005) at stage 4 

of the cycle relative to stage 1 (Fig 3.10, B). 

Expression of TRPC3 appeared to be suppressed in bovine uterine epithelial 

tissue at stage 2 of the estrous cycle by 0.3 fold (p= 0.003). However, at stage 

3, expression of TRPC3 was not significantly different (p= 0.2) to that of the 

stage 1. By contrast, at stage 4 of the cycle, expression of TRPC3 was 

increased by 6.40 fold (p= 0.004) compared to  stage 1 of the estrous cycle (Fig 

3.10, C). 

The expression of TRPC4 at stage 2 of the estrous cycle was not significantly 

different (p= 0.2) compared to stage 1. By contrast, a 2.7 fold (p= 0.02) increase 

in expression of TRPC4 was detected at stage 3 of the estrous cycle. This 

increase was followed by a further 31.2 fold (p= 0.01) up-regulation at stage 4 

of the estrous cycle relative to the stage 1 (Fig 3.10, D).  

Similar to TRPC4, the expression level of TRPC6 was not significantly different 

(p= 0.4) at stage 2. Furthermore, at stage 3 of the estrous cycle, no significant 

change (p= 0.07) was detected in expression of TRPC6 compared to that of the 
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stage 1. However, at stage 4 of the cycle, expression of TRPC6 was up-

regulated by 11.67 fold (p= 0.01) relative to that of the stage 1 (Fig 3.10, E).  
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Fig 3.10 Changes in expression of TRPC genes in bovine uterine epithelial tissue throughout 

the estrous cycle. The expression level of TRPC genes at different stages of the estrous cycle 

was measured relative to the stage 1. Expression of TRPC1 (3.10, A) was not significantly 

changed at stage 2 but  up regulated at stage 3 and 4 of the cycle in comparison to that of the 

stage 1.  Expression level of TRPC2 (3.10, B) was down regulated at stage 2 but up regulated 

at stage 3 and 4 of the estrous cycle. TRPC3 expression (3.10, C) was decreased at stage 2 

compared to stage 1. However, no significant difference in expression of TRPC3 was observed 

at stage 3. TRPC3 expression was increased at stage 4 compared to that of the stage1. 

Expression of TRPC4 (3.10, D) was not significantly different at stage 2 but was up regulated at 

stage 3 and 4 of the estrous cycle in relation to that of stage 1. Expression level of TRPC6 

(3.10, E) in bovine uterine epithelial tissue at stage 2 and 3 was similar to that of the stage 1. 

However, an up regulation in TRPC6 expression was observed at stage 4 of the estrous cycle 

comparing to that of stage 1. Data are expressed as mean 3 experiments ± 1 standard 

deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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3.7 Differences in gene expression of TRPC isoforms in bovine uterine 

epithelial tissue and cultured cells 

The pattern of expression of TRPC isoforms in cultured bovine uterine epithelial 

cells (BUEC) throughout the estrous cycle differed markedly to that observed in 

the tissue. The changes in expression level of TRPCs in both bovine uterine 

epithelial tissue and cultured cells at different stages of the estrous cycle were 

measured in relation to the stage 1 of the cycle and are presented in Fig 3.11. 

The expression level of TRPC1 in stage 2 BUEC was not significantly different 

to that of stage 1 BUEC (p= 0.1) and stage 2 bovine uterine tissue (p= 0.07). 

The change in expression of TRPC1 at stage 3 of the estrous cycle in BUEC 

and tissue was similar and 1.29 fold higher than that of the stage 1 (p= 0.001). 

At stage 4 of the estrous cycle, expression of TRPC1 was down-regulated in 

BUEC by 0.62 fold (p= 0.0004) and lower by 0.05 fold (p= 0.003) compared to 

that of the tissue relative to the stage 1 (Fig 3.11, A). 

Expression of TRPC2 in BUEC at stage 2 of the estrous cycle was higher by 

1.88 fold (p= 0.001) relative to stage 1 which was 3.89 fold (p= 0.0002) higher 

than that of the tissue at stage 2 of the estrous cycle. Similar to the bovine 

uterine epithelial tissue, expression of TRPC2 at stage 3 of the estrous cycle 

was up-regulated by 2.23 fold (p= 0.003) compared to the stage 1. This change 

was close to that observed in the tissue (p= 0.5). Expression of TRPC2 in 

BUEC at stage 4 was not significantly different (p= 0.1) to that of the stage 1 

and was lower than that of the tissue by 0.02 fold (p= 0.005) (Fig 3.11, B). 

While expression of TRPC3 was down-regulated in the tissue at stage 2, it was 

up-regulated by 2.07 fold (p= 0.009) in stage 2 BUEC compared to stage 

1.Changes in expression of TRPC3 at stage in the BUEC was higher by 6.55 

fold (p= 0.0005) compared to that of the tissue. At stage 3 of the estrous cycle, 

expression of TRPC3 in BUEC was slightly up-regulated by 1.33 fold (p= 0.03) 

compared to that of the stage 1 and was 1.73 fold (p= 0.02) higher than that of 

the tissue. Expression of TRPC3 in stage 4 BUEC was not significantly different 

(p= 0.1) to that of the stage 1, and was lower by 0.19 fold (p= 0.005) compared 

to that of the uterine epithelial tissue at stage 2 of the estrous cycle (Fig 3.11, 

C).   
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Expression of TRPC4 at stage 2 was not significantly in tissue compared to 

stage 1, although it was down-regulated by 0.56 fold (p= 0.002) in stage 2 

BUEC. However, this change was not significantly different (p= 0.1) to that of 

the tissue.  When TRPC4 was up-regulated at stage 3 in the bovine uterine 

epithelial tissue, it was down-regulated by 0.22 fold (p= 4.87 x10-5) in stage 3 

BUEC. The change in the expression of TRPC4 in stage 3 BUEC was 0.08 fold 

(p= 0.01) lower than that of the tissue. At stage 4 of the estrous cycle, TRPC4 

was down-regulated in the BUEC by 0.43 fold (p= 0.0009) while it was up-

regulated in the tissue. Expression of TRPC4 in stage 4 BUEC was 0.01 fold 

(p= 0.01) lower than that of the tissue (Fig 3.11, D).   

Expression of TRPC6 in bovine uterine epithelial tissue was not significantly 

different at stage 2 and 3, however it was up-regulated by 3.96 (p= 0.002) and 

5.92 (p= 0.01) fold in stage2 and 3 BUEC respectively. Expression of TRPC6 

was up-regulated in stage 4 BUEC similar to that of the tissue. Up-regulation of 

TRPC6 in stage 4 BUEC was 3.32 fold (p= 0.007) relative to that of the stage 1 

and 0.28 fold (p= 0.03) lower than that of the tissue (Fig 3.11, E). 

 

 

 

 

 

 

 

 

 

 

 

 



85 
 

 

 

  

  

  

  

 

  

  

  

  

  

  

  

  

  

  

  

  

  Fig 3.11 Expression of TRPC isoforms in bovine uterine epithelial cultured cells differs to that 

of the tissue throughout the estrous cycle. Data are expressed as mean 3 experiments ± 1 

standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). * represents the P value, 

comparing the changes in the gene expression at different stages of the estrous cycle to the 

stage 1 in  BOEC. * represents the P value, comparing the changes in TRPCs gene expression 

between tissue and cultured cells at each stage of the estrous cycle. 
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3.8 Discussion  

The objective of this chapter was to investigate whether the genes encoding for 

members of Transient Receptor Potential Canonical channels (TRPC) are 

expressed in bovine oviduct and uterine epithelia.  Once this had been 

established, the secondary aim was to discover whether the pattern of gene 

expression, at the mRNA level, differed varied throughout the estrous cycle. 

Gene expression of TRPC family proteins in bovine oviduct and uterine 

epithelial tissue was investigated due to their importance in calcium 

homeostasis in a variety of tissues since calcium plays vital roles in a plethora 

of fundamental cellular physiological functions including proliferation, growth, 

contraction, secretion and death (Berridge et al., 1998b). TRPC channels, a 

subfamily of Transient Receptor Potential channels, are a novel class of calcium 

permeable cationic channels and it has been proposed they are G protein-

coupled receptor-operated Ca2+ channels (ROCs) or internal Ca2+ store-

operated channels (SOCs) (Xu & Beech, 2001; Clapham, 2003b).  

In the present research, of 7 members of TRPC family; TRPC1, 2, 3, 4 and 6 

genes were expressed in both bovine oviduct and uterine epithelial tissue (Fig 

3.1 and 3.9).. It was also apparent that the expression levels of all TRPC gene 

isoforms in both bovine oviduct and uterine epithelial tissue changed throughout 

the estrous cycle (Fig 3.2 and 3.10).  Moreover, the pattern of expression in the 

oviduct epithelium was different to that of the uterus.  Such cyclical regulation 

suggests a possible role(s) of these channels in the female bovine reproductive 

tract during the cyclical physiological remodelling associated with estrous.  

In general, expression of all the TRPC isoforms present in the bovine oviduct 

epithelium was the highest at stage 1 of the estrous cycle where progesterone 

is the dominant hormone and 17β- estradiol, FSH and LH are at their lowest 

concentration (Fig 3.2).  A notable exception to this was TRPC1 whose 

expression was the highest at stage 3.  By contrast, expression of uterine levels 

of all the TRPC isoforms was highest at stage 4 of the estrous cycle where 17β- 

estradiol is the dominant hormone and progesterone is at its lowest level. It is 

also notable that the concentrations of FSH and LH peak at stage 4 of the 

estrous cycle.  
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At stage 1 (day 1-4) of the estrous cycle, the production of 17β-estradiol from 

the corpus luteum (CL) is reduced which leads to a dramatic fall in 

concentration of 17β estradiol as the CL increases secretion of progesterone. At 

stage 2 (day 5-10), the concentration of progesterone remains high and 17β-

estradiol rises slightly at day 4 before falling to its lowest level throughout the 

cycle at day 7 (Echternkamp & Hansel, 1973; Randel, 1980). At stage 3 (day 

11-17), progesterone is the dominant hormone present in the blood stream 

(Adeyemo & Heath, 1980; Eduvie & Dawuda, 1986; Llewelyn et al., 1987). 

However, by stage 4 of the cycle prostaglandin F2α (PGF2α) which is secreted 

from the uterine epithelium suppresses the secretion of progesterone (LaVoie et 

al., 1975). Secretion of PGF2α is a consequence of oxytocin binding to its 

specific receptor in the uterine epithelium. Oxytocin induces an increase in 

inositol phosphates (IPs) which are involved in store-operated calcium entry 

(Clapham, 2003b) and regulation of intracellular calcium concentration in bovine 

uterine epithelial cultured cells (Asselin et al., 1997). Secretion of PGF2α from 

uterine epithelium starts at the end of stage 3 and beginning of stage 4 of the 

estrous cycle where the expression of TRPC isoforms are at their highest level 

in the uterine epithelium. This suggests a possible role of TRPC isoforms in 

regulating intracellular calcium concentration required for physiological events in 

bovine uterine epithelium. Oxytocin is synthesized in the CL (Abdelgadir et al., 

1994). Secretion of PGF2α occurs at the end of mid luteal phase (stage 3) and 

increases at the beginning of the late luteal phase (stage 4) where TRPC 

isoforms are at their highest level in bovine uterine epithelial tissue (Fig 3.10).  

Furthermore, at this stage, the newly recruited follicle will initiate secretion of 

17β- estradiol. Hence, release of Gonadotropin-releasing hormone (GnRH) from 

the hypothalamus leads to secretion of FSH and LH from the pituitary 

(Kaltenbach et al., 1974; Schams et al., 1974). It has been reported that 

progesterone triggers secretion of dipeptidyl peptidase-IV by endometrium of 

ewe and cow (Liu & Hansen, 1995; Gregoraszczuk et al., 2001). Therefore, 

progesterone could possibly induce its effect by regulating the intracellular 

concentration via TRPC channels. Increasing levels of plasma progesterone 

leads to the secretion of nutrients and electrolytes from oviduct epithelium to 

provide the microenvironment for spermatozoa, mature oocyte, fertilization and 

early embryo. Furthermore, after ovulation, the number of ciliated epithelial cells 

increases to help transport  the oocyte from the infundibulum to the site of 
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fertilization in the ampullary-isthmus junction (AIJ) and to facilitate the 

movement of the early embryo to the uterus (Hunter, 1994; Croxatto, 2002b). 

Both the secretion (Richardson et al. (1985); (Sharma & Rao, 1992; Dickens et 

al., 1996) and motility of ciliated cells (Salathe, 2006) are dependent on 

changes in intracellular calcium concentration. It has been reported that TRP 

channels are involved in the secretion (Uchida & Tominaga, 2011) and motility 

of ciliated cells (Lorenzo et al., 2008) and so it may be the case that the TRPC 

expression pattern is important in regulating the physiology of the epithelia of 

the female reproductive environment. As demonstrated in this chapter, 

expression of TRPC isoforms in oviduct epithelium at stage 1 (day 1-4) of the 

estrous cycle ,which is the most eventful time of the cycle in oviduct (oocyte 

pick up by infundibulum (Talbot et al., 1999), fertilization and early embryo 

transport), is higher than the other stage of the estrous cycle suggesting the 

possible role of these channels in this process. Moreover, such changes in 

expression of TRPC isoforms in bovine oviduct and uterine epithelial tissue may 

result from, hormonal changes throughout the estrous cycle and the different 

expression patterns in uterus and oviduct; possibly due to the different 

expression pattern and level of estrogen receptors (α and β as well as 

progesterone receptor in these tissues (Tibbetts et al., 1998; Wang et al., 2000; 

Mendoza-Rodriguez et al., 2003). 

Due to the necessity of using cultured cells for a significant part of this project, 

changes in the expression level of the TRPC isoforms present in the bovine 

oviduct and uterine epithelium were studied in both Bovine Oviduct Epithelial 

Cultured cells (BOEC) and Bovine Uterine Epithelial Cultured Cells (BUEC) 

throughout the estrous cycle. Furthermore, these changes were compared to 

those of fresh tissue at equivalent stages of the estrous cycle. It was found that 

expression levels of TRPC isoforms present in bovine oviduct and uterine 

epithelium were different in at least one or all the stages of the estrous cycle in 

both BOEC and BUEC compared to tissue at equivalent stages of the estrous 

cycle (Fig 3.3 and 3.11).  For instance, at stage 4 of the estrous cycle TRPC2 

expression was down-regulated in bovine oviduct epithelial tissue, whereas an 

increase was detected in TRPC2 expression in BOEC (Fig 3.3, B).  

The differences in the pattern of gene expression of TRPC isoforms between 

bovine oviduct and uterine epithelium and BOEC/BUEC highlight a possible role 
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for the sex hormones since their concentrations change periodically throughout 

the estrous cycle. These hormones were absent from the basic epithelial cell 

culture medium (Table 2.2), but have been shown previously to have regulatory 

effects on gene expression; for instance, the role of progesterone on gene 

expression regulation in the endometrium of rhesus monkey (Okulicz & Ace, 

1999), role of 17β estradiol in gene regulation in breast cancer (Charpentier et 

al., 2000), FSH-induced gene regulation in pig granulosa primary cells (Bonnet 

et al., 2006) and LH-induced gene regulation in mouse granulosa cells (Carletti 

& Christenson, 2009). To determine if the sex hormones had a regulatory role in 

the expression of TRPC isoforms, BOEC cultures were treated acutely with 

physiological concentrations(Ginther et al., 2010) of 17β estradiol (Est), 

Progesterone (Prog) and Follicle-Stimulating Hormone (FSH) and  Luteinizing 

hormone (LH). In general, an up-regulation in expression of all the TRPC 

isoforms was induced at all 4 stages of the estrous cycle in BOEC treated with 

FSH and LH. This effect was boosted by the addition of Est to a mixture FSH 

and LH. When Prog was combined with the mixtures of either FSH and LH or 

Est, FSH and LH, the up-regulatory effect on expression level of TRPC isoforms 

throughout the estrous cycle was not seen, with modest exceptions. The 

FSH/LH-induced increase in the expression level of TRPC3 and 6 at stage 2 of 

the estrous cycle was not inhibited by addition of Prog (Fig 3.6 and 3.8, B). 

Furthermore, the FSH/LH-induced up-regulation of TRPC4 was not inhibited at 

stage 1 of the estrous cycle (Fig 3.7, A) when Prog was present. At stage 2 of 

the estrous cycle, Prog promoted an increase in expression of TRPC4 

individually and in combination with each or all of Est, FSH and LH (Fig 3.7, B). 

In BOEC treated with Est solely, expression of TRPC1 and 4 was down-

regulated at stage 1 and 3 of the estrous cycle. Similarly, an inhibitory effect of 

Est on expression of TRPC4 was reported in Bovine Aortic Endothelial Cell 

(Chang et al. (1997). However, Est up-regulated the expression of TRPC 1 and 

3 at stage 2 and 4 and TRPC2 and 4 and 6 at stage 4 of the estrous cycle.  

The apparent regulatory effect of Prog on TRPC4 at stage 1 and 2 and Est on 

TRPC1 and 4 at stage 1 and 3 compared to stage 2 and 4 could either be due 

to different expression levels of receptor of these hormone or the presence of 

TRPC1 (Dedman et al., 2004; Dedman et al., 2005) and 4 (Schaefer et al., 

2002) splice variants which might have a different regulation pathway. 
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Furthermore, the up-regulatory effect of a mixture of FSH/LH on expression of 

TRPC isoforms throughout the estrous cycle could be related to the FSH 

receptor which is a member of the rhodopsin-like subfamily of G-protein-

coupled receptors (Marion et al., 2002). Rhodopsin-like receptor could be 

involved in TRPC activation by stimulation of phospholipase C (PLC) through 

Gαq/11 activation (Grasberger et al., 2007; Kero et al., 2007; Kleinau et al., 

2010). Furthermore, activation of LH receptor induces its effect on steroid 

biosynthesis and secretion via G-protein Gαs (Dufau, 1998). As was mentioned 

above, TRPCs are G-protein coupled receptors- channels (Clapham, 2003b). 

Therefore, activation of TRPC channels by FSH/LH could have a positive 

impact on their gene expression level. It has also been reported that Tumor 

Necrosis Factor α (TNF α) up regulates the mRNA expression of TRPC1 in 

Human Umbilical Vein Endothelial Cells (HUVEC) via activation of Nuclear 

Factor-Kappa B (NF-κB)(Paria et al., 2003). Both FSH (Wang et al., 2002b) and 

LH (Gründker et al., 2000) are involved in activation of NF-κB which could be 

related to the regulatory effect of FSH and LH on TRPC genes expression. 

These finding suggest that TRPC gene expression is regulated by sex 

hormone(s) in Bovine Oviduct Epithelial cells and that Est, Prog, FSH and LH 

interact with each other to regulate the expression of TRPC genes in this tissue. 
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Chapter 4 

 

Localization and abundance of TRPC 

channels in female reproductive tract 
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4.1 Localization of TRPC1 and TRPC6 in female bovine reproductive tract 

Localization of TRPC1 and TRPC6 in female bovine reproductive tract was 

studied using immunohistochemistry, immunochytochemistry and confocal 

microscopy techniques. Specific TRPC1 and TRPC6 antibodies were used to 

determine the localization of these cation channels in epithelial tissue lining the 

bovine oviduct and uterus. 

4.1.1 Localization of TRPC1 and TRPC6 in bovine oviduct throughout the 

estrous cycle 

The oviduct consists of three sections; infundibulum, ampulla and isthmus. 

Various physiological events occur in each part of the oviduct. Localization and 

abundance of TRPC1 and TRPC6 was studied in each section of the oviduct 

throughout the estrous cycle. 

4.1.1.1 Localization and abundance of TRPC1 and TRPC6  in non-

permeabilized bovine oviduct epithelium at stage 1 of the estrous cycle 

TRPC1 channels were equally located on the apical and basal sides of the 

bovine infundibulum epithelial tissue and at a lower level on the lateral side of 

the epithelium in non-permeabilized immunostained tissue (Fig 4.1, A). 

However, in bovine ampulla epithelium theTRPC1 channel was equally 

distributed on the apical and lateral sides of the epithelium but its localization 

was lower on the basal side of the epithelium (Fig 4.1, B). In bovine isthmus 

epithelial tissue, the TRPC1 channel was located on the lateral side of the 

epithelial tissue at a higher level compared to the apical and basal side at stage 

1 of the estrous cycle (Fig 4.1, C). At stage 1 of the estrous cycle, localization of 

TRPC6 channel was higher on the apical side of the non-permeabilized bovine 

infundibulum epithelial tissue compared to that of the basal side. On the lateral 

side of the bovine infundibulum localization of TRPC6 was lower than that of the 

apical and basal sides (Fig 4.1, A). Localization of TRPC6 channels in non-

permeabilized bovine ampulla tissue was highest on the lateral and the lowest 

on basal side of the epithelium (Fig 4.1, B). Localization of TRPC6 was slightly 

greater on the lateral side of the non-permeabilized bovine isthmus epithelial 

tissue compared to that of the apical and basal sides where equal distribution 

was observed (Fig 4.1,c.
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Fig 4.1 Localization of TRPC1 and TRPC6 at stage 1 of the estrous cycle in non-permeabilized epithelial tissue of bovine Infundibulum (4.1,A), Ampulla 

(4.1, B) and Isthmus (4.1,C). Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and TRPC6 with Alexa Flour 488 

(Green). 
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Measuring the fluorescence intensity (FI) indicated that the abundance of 

TRPC1 on the apical side of the non-permeabilized bovine oviduct epithelium 

was higher by 9.9 fold (p= 0.01) compared to that of the infundibulum. 

Furthermore, abundance of TRPC1 in isthmus was 16.5 fold (p= 0.0001) higher 

relative to the infundibulum (Fig 4.2, A). On the basal side of the tissue, 

abundance of the TRPC1 channel was 9.6 fold (p= 0.01) higher in ampulla 

compared to the infundibulum. In isthmus, TRPC1 was more abundant by 23.3 

fold (p= 0.0006) compared to the infundibulum (Fig 4.2, B). On the lateral side 

of the non-permeabilized bovine oviduct epithelium at stage 1 of the estrous 

cycle abundance of TRPC1 was higher by 15.3 fold (p= 0.009) in ampulla and 

41.4 fold (p= 0.0002) in isthmus compared to the infundibulum (Fig 4.2, C).  
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Fig 4.2 Abundance of TRPC1 in non-permeabilized bovine oviduct epithelium at stage 1 of the 

estrous cycle in apical (4.2,A), Basal (4.2,B) and the lateral (4.2,C) side of the tissue. 

Abundance of the TRPC1 was higher in ampulla and isthmus on apical, basal and lateral side of 

the epithelium compared to that of the infundibulum. All data are expressed as a mean of 3 

replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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FI measurements of the apical side indicated that the abundance of TRPC6 

channels was higher by 10 fold (p= 0.003)  in ampulla and 135 fold (p= 0.03) 

higher in isthmus compared to that of the infundibulum at stage 1 of the estrous 

cycle in non-permeabilized immunostained tissue (Fig 4.3, A). Abundance of 

TRPC6 protein on the basal side of the bovine oviduct epithelium was higher by 

14 fold (p= 0.008) in ampulla and 280 fold (p= 0.004) in isthmus compared to 

that of the infundibulum (Fig 4.3, B). The abundance of TRPC6 on the lateral 

side of the bovine oviduct epithelial tissue at stage 1 of the estrous cycle in non-

permeabilized tissue was higher by 38 fold (p= 0.001) in ampulla epithelium and 

425 fold (p= 0.02) in isthmus compared to that of the (Fig 4.3, C).  
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Fig 4.3 Abundance of TRPC6 in non-permeabilized bovine oviduct epithelium at stage 1 of the 

estrous cycle in apical (4.3,A), Basal (4.3,B), the lateral (Fig 4.3, C) side of the tissue. 

Abundance of TRPC6 was higher in ampulla and isthmus of the oviduct epithelium in non-

permeabilized tissue at stage 1 of the estrous cycle compared to that of the infundibulum. All 

data are expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; 

*** = p<0.001). 
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4.1.1.2 Localization and abundance of TRPC1 and TRPC6 in permeabilized 

bovine oviduct epithelium at stage 1 of the estrous cycle 

At  stage 1 of the estrous cycle,  TRPC1 channel was localized on the apical, 

basal and lateral sides of the bovine infundibulum permeabilized tissue (Fig 4.4, 

A). However, its localization was lower on the lateral side of the epithelium. 

Localization of TRPC1 channel in bovine ampulla epithelium was higher on the 

apical side compared to the basal side of the permeabilized tissue. Distribution 

of the TRPC1 channel on the lateral side of ampulla epithelium was less than 

that on apical and basal side permeabilized tissue (Fig 4.4, B). In permeabilized 

bovine isthmus epithelial tissue, more TRPC1 channel was present on the 

apical side of the tissue compared to that of the basal and lateral sides where 

equal distribution of TRPC1 protein was observed (Fig 4.4, C).  

At stage 1 of the estrous cycle, the TRPC6 channel was equally distributed on 

the basal, apical and lateral sides of the permeabilized bovine infundibulum 

epithelial tissue (Fig 4.4, A). In bovine ampulla, localization of TRPC6 was 

slightly greater on the lateral side of the epithelium compared to the apical and 

basal side (Fig 4.4, B). However, in isthmus epithelial tissue, localization of 

TRPC6 channel was highest on the lateral side and lowest on the basal side of 

the epithelium (Fig 4.4, C). 
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Fig 4.4 Localization of TRPC1 and TRPC6 at stage 1 of the estrous cycle in permeabilized epithelial tissue of bovine Infundibulum (4.4, A), Ampulla 

(4.4, B) and Isthmus (4.4, C). Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and TRPC6 with Alexa Flour 

488 (Green). 
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Measuring the fluorescence intensity indicated that at stage 1 of the estrous 

cycle, abundance of TRPC1 channel on the apical side of permeabilized 

immunostained bovine ampulla and isthmus epithelial tissue was 8 (p= 0.02) 

and 7 (p= 0.001) fold higher than that of infundibulum  respectively (Fig 4.5, A). 

On the basal side of the epithelial tissue, abundance of TRPC1 channel was 9.6 

fold (p= 0.02) higher on bovine ampulla epithelium compared to bovine 

infundibulum. Abundance of TRPC1 channel was highest in isthmus epithelium 

where the FI was  23.4 fold (p= 0.004) higher than that of the infundibulum (Fig 

4.5, B). Abundance of TRPC1 channel on the lateral side of the bovine oviduct 

epithelial tissue was 6 fold (p= 0.02) higher in ampulla compared to the 

infundibulum. This is slightly higher in the isthmus by 6.43 fold (0.0004) 

increase in comparison to the infundibulum (Fig 4.5, C).  
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Fig 4.5 Abundance of TRPC1 in permeabilized bovine oviduct epithelium at stage 1 of the 

estrous cycle in apical (4.5, A), Basal (4.5, B) and lateral (4.5, C) side of the tissue. Abundance 

of TRPC1 on apical, basal and lateral sides of the tissue in infundibulum was lower than that of 

ampulla and isthmus. On the apical, basal and lateral sides of the epithelium, abundance of 

TRPC1 in isthmus was lower than that of ampulla and higher than that of the infundibulum. All 

data are expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; 

*** = p<0.001). 
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At stage 1 of the estrous cycle on the apical side of the permeabilized bovine 

oviduct epithelial tissue, TRPC6 channel was 15.5 fold (p= 0.02) more abundant 

in the ampulla compared to the infundibulum. This was higher in isthmus by 23 

fold (p= 0.003) compared to that of the infundibulum (Fig 4.6, A). On the basal 

side of the bovine oviduct epithelium, abundance of TRPC6 channel was 18.6 

fold (p= 0.004) higher in ampulla compared to the infundibulum. Abundance of 

TRPC6 in isthmus was 21.45 fold (p= 0.001) higher than that of the 

infundibulum (Fig 4.6, B). Abundance of TRPC6 channels on the lateral side of 

bovine ampulla epithelium was 19 fold (p= 0.01) higher than that of bovine 

infundibulum epithelial tissue. This was higher in isthmus by 30.19 fold (p= 

0.001) compared to the infundibulum (Fig 4.6, C). 
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Fig 4.6 Abundance of TRPC6 in permeabilized bovine oviduct epithelium at stage 1 of the 

estrous cycle in apical (4.6, A), basal (4.6, B), and the lateral (4.6, C) side of the tissue. 

Abundance of TRPC6 was higher in both ampulla and isthmus on the apical, basal and lateral 

sides of the permeabilized bovine oviduct epithelium at stage 1 of the estrous cycle compared 

to that of the infundibulum.   All data are expressed as a mean of 3 replicates ± 1 standard 

deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.1.3 Localization and abundance of TRPC1 and TRPC6 in non-

permeabilized bovine oviduct epithelium at stage 2 of the estrous cycle 

At stage 2 of the estrous cycle, the TRPC1 channel was distributed equally on 

apical, basal and lateral sides of the non-permeabilized bovine infundibulum 

epithelial cells (Fig 4.7, A). Similar to the infundibulum region of the bovine 

oviduct, TRPC1 was localized equally on the apical, basal and the lateral sides 

of the ampulla and isthmus epithelial tissue (Fig 4.7, B and C).  

Localization of TRPC6 channel in non-permeabilized bovine oviduct epithelium 

at stage 2 of the estrous cycle, was higher on the apical side compared to the 

basal and the lateral sides in infundibulum, ampulla and isthmus (Fig 4.7 , A, B 

and C). 
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Fig 4.7 Localization of TRPC1 and TRPC6 at stage 2 of the estrous cycle in non-permeabilized epithelial tissue of bovine Infundibulum (4.7, A), 

Ampulla (4.7, B) and Isthmus (4.7, C). Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and TRPC6 with Alexa 

Flour 488 (Green). 
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Abundance of TRPC1 channel on the apical side of the non-permeabilized 

bovine oviduct epithelium at stage 2 of the estrous cycle was 3 fold (p= 0.04) 

and 6 fold (p= 0.01) higher on ampulla and isthmus epithelium respectively 

compared to that of the infundibulum (Fig 4.8, A). On the basal side of the 

tissue, abundance of TRPC1 channels in ampulla was higher by 1.95 fold (p= 

0.02 ) compared to the infundibulum. Abundance of the TRPC1 was 4.15 fold 

(p= 0.0006) higher in isthmus relative to the infundibulum (Fig 4.8, B). On the 

lateral side of the bovine oviduct epithelium, abundance of TRPC1 was higher 

by 1.74 fold (p= 0.03) and 1.84 fold (p= 0.02) in ampulla and isthmus epithelium 

respectively compared to that of the infundibulum (Fig 4.8, C). 
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Fig 4.8 Abundance of TRPC1 in non-permeabilized bovine oviduct epithelium at stage 2 of the 

estrous cycle in apical (4.8, A), Basal (4.8, B), and the lateral (4.8, B) side of the tissue. 

Abundance of TRPC1 was higher in ampulla and isthmus on the apical, basal and the lateral 

sides of the non-permeabilized bovine oviduct epithelium at stage 2 of the estrous cycle 

compared to that of the infundibulum. All data are expressed as a mean of 3 replicates ± 1 

standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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At stage 2 of the estrous cycle on the apical side of the non-permeabilized 

bovine ampulla epithelial tissue, there was not a significant difference in 

abundance of TRPC6 channel compared to the infundibulum (p= 0.4). Similarly 

in isthmus (p= 0.1) abundance of TRPC6 channel was equal to that of the 

infundibulum (Fig 4.9, A). Furthermore, on the basal side of the tissue, 

abundance of TRPC6 in ampulla (p= 0.1) was not significantly different to that 

of the infundibulum. However, in isthmus, abundance of TRPC6 was higher by 

1.92 fold (p= 0.002) compared to that of the infundibulum (Fig 4.9, B). On the 

lateral side of the non-permeabilized bovine oviduct epithelial tissue at stage 2 

of the estrous cycle, TRPC6 channel was 2.4 fold (p= 0.008) more abundant in 

ampulla region compared to the infundibulum. In contrast, in isthmus epithelium, 

abundance of TRPC6 channel was not significantly different (p= 0.2) to that of 

infundibulum (Fig 4.9, C).  
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Fig 4.9 Abundance of TRPC6 in non-permeabilized bovine oviduct epithelium at stage 2 of the 

estrous cycle in apical (4.9, A), basal (4.9, B), the lateral side of the tissue. On the apical side of 

the tissue there was not a significant difference in abundance of the TRPC6 in ampulla and 

isthmus compared to the infundibulum. Furthermore, on the basal side of the tissue abundance 

of TRPC6 was not significantly different  in ampulla compared to the infundibulum. However, in 

isthmus, abundance of TRPC6 was higher than that of the infundibulum. On the lateral side 

abundance of TRPC6 was higher in ampulla compared to infundibulum. In the contrary, 

abundance of TRPC6 in isthmus was lower than that of the infundibulum.  All data are 

expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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4.1.1.4 Localization and abundance of TRPC1 and TRPC6 in permeabilized 

bovine oviduct epithelium at stage 2 of the estrous cycle 

In permeabilized bovine oviduct epithelium at stage 2 of the estrous cycle, 

TRPC1 channel was localized on the apical side of the tissue more than basal 

and lateral side in the infundibulum region (Fig 4.10, A). In the ampulla region of 

the oviduct, localization of TRPC1 was highest on the apical side and lowest on 

the lateral side of the tissue (Fig 4.10, B). However, in the isthmus region of the 

oviduct TRPC1 distribution was highest on the basal side and equal on apical 

and lateral sides of the epithelium (Fig 4.10, C). 

Similar to TRPC1 channel, TRPC6 was localized on the apical side of the 

infundibulum and ampulla epithelium to a greater extent  than the basal and the 

lateral sides of the epithelium where the channel was distributed equally (Fig 

4.10, A and B). However, in isthmus epithelium TRPC6 channel was distributed 

equally on the apical, basal and lateral sides of the epithelium (Fig 4.10, C). 
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Fig 4.10 Localization of TRPC1 and TRPC6 at stage 2 of the estrous cycle in permeabilized epithelial tissue of bovine Infundibulum (4.10, A), Ampulla 

(4.10, B) and Isthmus (4.10, C). Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and TRPC6 with Alexa Flour 

488 (Green). 
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In the permeabilized bovine oviduct epithelium at stage 2 of the estrous cycle, 

abundance of TRPC1 channel on apical side of the tissue was 0.53 fold (p= 

0.007) lower in ampulla compared to the infundibulum. Furthermore, abundance 

of TRPC1 channel was 0.6 fold (p= 0.03) less in isthmus epithelium compared 

to the infundibulum (Fig 4.11, A). On the basal side of permeabilized bovine 

oviduct epithelium, abundance of TRPC1 channel was not significantly different 

in ampulla (p= 0.1) compared to the infundibulum. Furthermore, there was no  

significant difference in abundance of TRPC1 in the isthmus region (p= 0.8) of 

the oviduct compared to the infundibulum (Fig 4.11, B). On the lateral side of 

bovine oviduct epithelial tissue, abundance of TRPC1 was 2.56 fold (p= 0.003) 

higher in infundibulum compared to the ampulla. Hence, abundance of TRPC1 

channel was 1.4 fold (p= 0.04) higher on the lateral side of the infundibulum in 

comparison to that of the isthmus (Fig 4.11, C). 
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Fig 4.11 Abundance of TRPC1 in permeabilized bovine oviduct epithelium at stage 2 of the 

estrous cycle in apical (4.11,A), Basal (4.11, B), and the lateral (4.11, C) of the tissue. On the 

apical side of the tissue, abundance of TRPC1 was lower in both ampulla and isthmus 

compared to the infundibulum. However, on the basal side abundance of TRPC1 was not 

significantly different nor in ampulla neither in isthmus compared to the infundibulum. On the 

lateral side of the tissue abundance of TRPC1 was lower in both ampulla and isthmus 

compared to the infundibulum. All data are expressed as a mean of 3 replicates ± 1 standard 

deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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Abundance of TRPC6 channels in permeabilized bovine infundibulum epithelial 

tissue at stage 2 of the estrous cycle was 2.25 fold (p= 0.005) higher on the 

apical side compared to that of the ampulla. Abundance of TRPC6 on the apical 

side of isthmus epithelium was 0.5 fold (p= 0.03) less than that of infundibulum 

(Fig 4.12, A). Abundance of TRPC6 channel on the basal side of permeabilized 

oviduct ampulla at stage 2 of the estrous cycle was lower by 0.4 fold (p= 0.04) 

relative to that of the infundibulum. Furthermore, abundance of TRPC6 in 

isthmus (p= 0.6) was not significantly different to the infundibulum on the basal 

side of the tissue (Fig 4.12, B).  Abundance of TRPC6 on the lateral side of the 

bovine oviduct epithelium was higher by 2.6 fold (p= 0.01) in ampulla compared 

to the infundibulum. However, abundance of TRPC6 in isthmus (p= 0.3) was not 

significantly different to that of the infundibulum region (Fig 4.12, C).  
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Fig 4.12 Abundance of TRPC6 in permeabilized bovine oviduct epithelium at stage 2 of the 

estrous cycle in apical (4.12, A), basal (4.12, B) and the lateral side of the tissue. On the apical 

side of the tissue, abundance of TRPC6 was lower in both ampulla and isthmus compared to 

that of the infundibulum. On the basal and lateral side of the epithelium, abundance of TRPC6 

was lower in ampulla relative to the infundibulum. However, abundance of TRPC6 on the basal 

and lateral sides of the isthmus epithelium was equal to that of the infundibulum. All data are 

expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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4.1.1.5 Localization and abundance of TRPC1 and TRPC6 in non-

permeabilized bovine oviduct epithelium at stage 3 of the estrous cycle 

In non-permeabilized bovine infundibulum epithelium at stage 3 of the estrous 

cycle, localization of TRPC1 was slightly greater on the apical side, and its 

distribution was equal on basal and  lateral sides of the tissue (Fig 4.13, A). In 

the ampulla region of the oviduct epithelium, TRPC1 channel was equally 

localized to the apical and basal sides of the tissue while its distribution was 

lower on the lateral side of the ampulla epithelium (Fig 4.13, B). Localization of 

TRPC1 channel in the isthmus region of the bovine oviduct epithelium was 

higher on the apical side compared to the basal side and the lateral side where 

TRPC1 was localized evenly (Fig 4.13, C). 

Localization of TRPC6 channels was higher on the apical side of the non-

permeabilized bovine infundibulum compared to the basal and lateral sides of 

the epithelial tissue at stage 3 of the estrous cycle (Fig 4.13, A).  In bovine 

ampulla epithelum the localization of TRPC6 was  highest on the apical side 

and lowest on the lateral side of the tissue (Fig 4.13, B). In the isthmus region of 

the oviduct, the localization of TRPC6 channel was highest on the apical side 

and lowest on the basal side of the epithelium (Fig 4.13, C). 
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 Fig 4.13 Localization of TRPC1 and TRPC6 at stage 3 of the estrous cycle in non-permeabilized epithelial tissue of bovine Infundibulum (4.13, A), 

Ampulla (4.13, B) and Isthmus (4.13, C). Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and TRPC6 with 

Alexa Flour 488 (Green). 
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In non-permeabilized bovine oviduct epithelium at stage 3 of the estrous cycle 

on apical side of the tissue, the abundance of TRPC1 in ampulla (p= 0.2) was 

not significantly different to that of the infundibulum. However, in isthmus, 

abundance of TRPC1 was higher by 1.95 fold (p= 0.003) compared to the 

infundibulum (Fig 4.14, A). On the basal side of the bovine oviduct epithelium, 

abundance of TRPC1 was not significantly different in ampulla (p= 0.07) 

compared to that of the infundibulum. However, in the isthmus region of the 

oviduct abundance of TRPC1 was higher by 1.4 fold (p= 0.02) compared to that 

of the infundibulum (Fig 4.14, B). On the lateral side of the bovine oviduct 

epithelium, the abundance of TRPC1 channel in ampulla (p= 0.2)  and isthmus 

(p= 0.1) was equal to that of the infundibulum (Fig 4.14, C). 
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Fig 4.14 Abundance of TRPC1 in non-permeabilized bovine oviduct epithelium at stage 3 of the 

estrous cycle in apical (4.14, A), basal (4.14, B) and the lateral (4.14, C) side of the tissue. On 

the apical and basal side of the tissue, abundance of TRPC1  in ampulla was equal to that of 

the infundibulum. However, on the apical and basal sides of the isthmus the abundance of 

TRPC1 was higher than that of the infundibulum. Abundance of TRPC1 on the lateral side of 

the non-permeabilized bovine oviduct epithelium at stage 3 of the estrous cycle was even in 

infundibulum, ampulla and isthmus region. All data are expressed as a mean of 3 replicates ± 1 

standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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On the apical side of the non-permeabilized bovine oviduct epithelium at stage 

3 of the estrous cycle, abundance of TRPC6 channel was 1.5 fold (p= 0.001) 

higher in infundibulum compared to the ampulla. However, abundance of 

TRPC6 in isthmus (p= 0.2) was not significantly different to that of the 

infundibulum (Fig 4.15, A). On the basal side of bovine oviduct epithelium, 

abundance of TRPC6 was 1.8 fold (p= 0.006) higher in infundibulum compared 

to the ampulla. However, abundance of TRPC6 on the basal side of the isthmus 

(p= 0.08) epithelium was not significantly different to that of the infundibulum 

(Fig 4.15, B). On the lateral side of the bovine oviduct epithelium, TRPC6 

abundance was 2.75 fold (p= 0.004) higher in the infundibulum region 

compared to the ampulla. In contrast, abundance of TRPC6 on the lateral side 

of the isthmus epithelium was 1.7 fold (p= 0.002) higher than that of the 

infundibulum (Fig 4.15, C).  
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Fig 4.15 Abundance of TRPC6 in non-permeabilized bovine oviduct epithelium at stage 3 of the 

estrous cycle in apical (4.15, A), basal (4.15, B) and the lateral (4.15, C) side of the tissue. On  

the apical and basal sides of the non-permeabilized bovine oviduct epithelial tissue at stage 3 of 

the estrous cycle, abundance of TRPC6 was lower in ampulla compared to the infundibulum. 

However, that of the isthmus was not significantly different to the infundibulum. On the lateral 

side of the tissue, abundance of TRPC6 was lower in ampulla and higher in isthmus compared 

to the infundibulum.  All data are expressed as a mean of 3 replicates ± 1 standard deviation. (* 

= p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.1.6 Localization and abundance of TRPC1 and TRPC6 in permeabilized 

bovine oviduct epithelium at stage 3 of the estrous cycle 

In permeabilized oviduct epithelium at stage 3 of the estrous cycle, the TRPC1 

channel was equally localized on the apical, basal and lateral sides of the 

infundibulum epithelial tissue (Fig 4.16, A). In the ampulla region of the oviduct 

localization of TRPC1 channel was slightly higher on the apical side of the 

epithelium compared to the basal and lateral sides (Fig 4.16, B). Localization of 

TRPC1 was highest on the apical side and lowest on the lateral side of the 

isthmus epithelium (Fig 4.16, C). 

Localization of TRPC6 in permeabilized bovine infundibulum epithelial tissue at 

stage 3 of the estrous cycle was  highest on the basal side and lowest on apical 

side (Fig 4.16, A). In the ampulla region of the oviduct, localization of TRPC6 

channel was at its highest level on the apical side and its lowest level on the 

lateral side of the epithelial tissue (Fig 4.16, B). Localization of TRPC6 in 

isthmus was similar to that of the ampulla and was the highest on the apical 

side and lowest on the lateral side of the tissue (Fig 4.16, C). 
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Fig 4.16 Localization of TRPC1 and TRPC6 at stage 3 of the estrous cycle in permeabilized epithelial tissue of bovine Infundibulum (4.16, A), Ampulla 

(4.16, B) and Isthmus (4.16, C). Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and TRPC6 with Alexa Flour 

488 (Green). 
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At stage 3, abundance of TRPC1 in the permeabilized bovine oviduct epithelium 

on the apical side was 32.7 fold (p= 0.0005) higher in ampulla compared to the 

infundibulum and 7.8 fold (p= 0.01) higher in the isthmus region relative to the 

infundibulum (Fig 4.17, A). On the basal side of the epithelium, TRPC1 channel 

was 29.5 fold (p= 0.01) higher in the ampulla compared to the infundibulum. 

Furthermore, abundance of TRPC1 was 5.65 fold (p= 0.02) higher in the 

isthmus compared to the infundibulum (Fig 4.17, B). On the lateral side of the 

epithelium, abundance of the TRPC1 channel was 21.4 fold (p= 0.005) higher in 

ampulla compared to the infundibulum and 4.8 fold (p= 0.009) higher in isthmus 

compared to the infundibulum (Fig 4.17, C).  
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Fig 4.17 Abundance of TRPC1 in permeabilized bovine oviduct epithelium at stage 3 of the 

estrous cycle in apical (4.17, A), basal (4.17, B), and the lateral (4.17, C) side of the tissue. 

Abundance of TRPC1 on the apical, basal and lateral sides of the epithelium was the highest in 

ampulla and the lowest in infundibulum. All data are expressed as a mean of 3 replicates ± 1 

standard deviation. . (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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Abundance of TRPC6 on the apical side of the permeabilized bovine oviduct 

epithelium at stage 3 of the estrous cycle was higher by 58 (p= 0.004) and 3.45 

fold (p= 0.00003) in ampulla and isthmus respectively compared to that of the 

infundibulum (Fig 4.18, A). On the basal side of the epithelium, TRPC6 was 38 

fold (p= 0.02) and 1.95 fold (p= 0.001) higher in ampulla and isthmus region 

respectively compared to the infundibulum (Fig 4.18, B). Abundance of TRPC6 

on the lateral side of the oviduct epithelium was 29.6 (p= 0.005) and 1.4 fold (p= 

0.02) higher in ampulla and isthmus respectively compared to that of the 

infundibulum (Fig 4.18, C). 
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Fig 4.18 Abundance of TRPC6 in permeabilized bovine oviduct epithelium at stage 3 of the 

estrous cycle in apical (4.18, A), basal (4.18, B), and the lateral (4.18, C) side of the epithelium 

tissue. On the apical, basal and lateral side of the permeabilized bovine oviduct epithelium 

abundance of TRPC6 was dramatically higher in ampulla compared to the infundibulum and 

isthmus region. A modest increase was observed in abundance of TRPC6 in isthmus on apical, 

basal and lateral side of the tissue compared to the infundibulum.  All data are expressed as a 

mean of 3 replicates ± 1 standard deviation.  (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.1.7 Localization and abundance of TRPC1 and TRPC6 in non-

permeabilized bovine oviduct epithelium at stage 4 of the estrous cycle 

In non-permeabilized bovine oviduct epithelial tissue at stage 4 of the estrous 

cycle,  TRPC1 was localized equally on the apical, basal and lateral sides of the 

infundibulum epithelium (Fig 4.19, A). In the ampulla, localization of TRPC1 

channel was highest on the apical side and lowest on the lateral side of the 

epithelium (Fig 4.19, B). Localization of TRPC1 channel was highest on the 

apical side and similar on the basal and lateral sides of the epithelium (Fig 4.19, 

C). 

The TRPC6 channel was localized equally on the apical and basal sides of the 

non-permeabilized epithelial tissue of infundibulum at stage 4 of the estrous 

cycle. However, localization of TRPC6 was lower on the lateral side of the 

infundibulum epithelium compared to the apical and basal sides of the tissue 

(Fig 4.19, A).  In the ampulla and isthmus, localization of TRPC6 was slightly 

greater on the basal side of the epithelium compared to the apical side. 

Localization of TRPC6 was lowest on the lateral side of the epithelium 

compared to the apical and basal sides in both ampulla and isthmus (Fig 4.19, 

B and C). 
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Fig 4.19 Localization of TRPC1 and TRPC6 at stage 4 of the estrous cycle in non-permeabilized epithelial tissue of bovine Infundibulum (4.19, A), 

Ampulla (4.19, B) and Isthmus (4.19, C). Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and TRPC6 with 

Alexa Flour 488 (Green). 
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Abundance of TRPC1 channel on the apical side of the non-permeabilized 

bovine oviduct epithelium was not significantly different in ampulla (p= 0.05) and 

isthmus (p= 0.7) compared to that of the infundibulum (Fig 4.20, A). On the 

basal side of the bovine oviduct epithelium, abundance of TRPC1 in ampulla 

(p= 0.08) was equal to that of the infundibulum. However, abundance of TRPC1 

was 0.5 fold (p= 0.03) less in the isthmus compared to the infundibulum (Fig 

4.20, B). On the lateral side of the bovine oviduct epithelium, abundance of 

TRPC1 was equal in infundibulum and ampulla (p= 0.9). TRPC1 was 0.4 fold 

less abundant in isthmus (p= 0.01) compared to both infundibulum and ampulla 

(Fig 4.20, C). 
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Fig 4.20 Abundance of TRPC1 in non-permeabilized bovine oviduct epithelium at stage 4 of the 

estrous cycle in apical (4.20, A), basal (4.20, B) and the lateral (4.20, C) side of the tissue. On 

the apical, basal and lateral sides of the tissue abundance of TRPC1 was equal in infundibulum 

and ampulla in non-permeabilized bovine oviduct epithelium at stage 4 of the estrous cycle. 

There was no significant difference in abundance of TRPC1 on the apical side of the isthmus 

compared to that of the infundibulum. However, on the basal and lateral sides of the tissue 

abundance of TRPC1 was lower in isthmus relative to the infundibulum. All data are expressed 

as a mean of 3 replicates ± 1 standard deviation. 
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Abundance of TRPC6 channels on the apical side of non-permeabilized bovine 

oviduct epithelium at stage 4 of the estrous cycle was not significantly different 

in ampulla (p= 0.5) and isthmus (p= 0.6) compared to the infundibulum (Fig 

4.21, A). Furthermore, on the basal side of the non-permeabilized bovine 

oviduct epithelium at stage 4 of the estrous cycle, abundance of TRPC6 was 

equal in ampulla (p= 0.8) and isthmus (p= 0.1) relative to the infundibulum (Fig 

4.21, B). On the lateral side of the tissue, abundance of TRPC6 in ampulla (p= 

0.3) was equal to that of the infundibulum. However, TRPC6 was more 

abundant by 1.27 fold (p= 0.02) on the lateral side of the isthmus relative to the 

infundibulum (Fig 4.21, C). 
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Fig 4.21 Abundance of TRPC6 in non-permeabilized bovine oviduct epithelium at stage 4 of the 

estrous cycle in apical (4.21, A), basal (4.21, B), and the lateral (4.21, C) side of the tissue. On 

the apical and basal side of the non-permeabilized bovine oviduct epithelial tissue at stage 4 of 

the estrous cycle, abundance of TRPC6 was equal in infundibulum, ampulla and isthmus 

region. Furthermore, abundance of the TRPC6 in ampulla on the lateral side of the tissue was 

not significantly different to that of the infundibulum. however, on the lateral side of the isthmus 

abundance of the TRPC6 was higher than that of both infundibulum and ampulla. All data are 

expressed as a mean of 3 replicates ± 1 standard deviation.  (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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4.1.1.8 Localization and abundance TRPC1 and TRPC6 in permeabilized 

bovine oviduct epithelium at stage 4 of the estrous cycle 

In permeabilized bovine oviduct epithelium at stage 4 of the estrous cycle, 

TRPC1 channel was equally localized on the apical, basal and lateral sides of 

the infundibulum region (Fig 4.22, A). Distribution of TRPC1 in ampulla was 

similar to that of the infundibulum and TRPC1 was equally localized on the 

apical, basal and lateral sides of the tissue (Fig 4.22, B). In the isthmus region 

of the oviduct epithelium, localization of TRPC1 was highest on the apical side 

and lowest on the lateral side of the tissue (Fig 4.22, C).  

TRPC6 was localized equally on the apical and lateral sides of the 

permeabilized infundibulum epithelial tissue at stage 4 of the estrous cycle, and 

its localization was higher on the basal side of the epithelium compared to both 

apical and lateral sides (Fig 4.22, A).  Localization of TRPC6 was similar on the 

apical and basal sides of the ampulla but less on the lateral side compared to 

both the apical and basal sides of the epithelium (Fig 4.22, B). In the isthmus 

region, localization of TRPC6 was highest on the apical side and lowest on the 

lateral side of the epithelium (Fig 4.22, C). 
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Fig 4.22 Localization of TRPC1 and TRPC6 at stage 4 of the estrous cycle in permeabilized epithelial tissue of bovine Infundibulum (4.22, A), Ampulla 

(4.22, B) and Isthmus (4.22, C). Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and TRPC6 with Alexa Flour 

488 (Green). 

 

 



136 
 

On the apical side of permeabilized bovine oviduct epithelium at stage 4 of the 

estrous cycle, abundance of TRPC1 was 1.9 fold (p= 0.01) higher than that of 

ampulla. However, abundance of TRPC1 in the isthmus region (p= 0.2) of the 

tissue was equal to that of the infundibulum (Fig 4.23, A). On the basal side of 

the epithelium, abundance of TRPC1 in infundibulum was 1.94 (p= 0.01) and 

2.1 fold (p= 0.02) higher than that of ampulla and isthmus respectively (Fig 

4.23, B). Abundance of TRPC1 on the lateral side of the bovine oviduct 

epithelium in infundibulum was 2.15 fold (p= 0.001) higher than that of ampulla 

and 2.6 fold (p= 0.006) higher than that of isthmus (Fig 4.23, C). 
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Fig 4.23 Abundance of TRPC1 in permeabilized bovine oviduct epithelium at stage 4 of the 

estrous cycle in apical (4.23, A), basal(4.23, B), and lateral (4.23, C) side of the tissue. On the 

apical side of the tissue abundance of TRPC1 was the highest in infundibulum and the lowest in 

ampulla. On the basal side of the tissue TRPC1 was most abundant in infundibulum and less 

abundant  in ampulla and isthmus where equal abundance was observed. Abundance of 

TRPC1 on the lateral side was lower in ampulla and isthmus compared to the infundibulum. All 

data are expressed as a mean of 3 replicates ± 1 standard deviation.  (* = p<0.05; ** = p<0.01; 

*** = p<0.001).  
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Abundance of TRPC6 on the apical side of permeabilized bovine oviduct 

epithelial tissue at stage 4 of the estrous cycle was equal in infundibulum and 

ampulla (p= 0.6) and 2 fold (p= 0.002 ) higher in isthmus compared to the 

infundibulum (Fig 4.24, A). Similar to the apical side, on the basal side of the 

oviduct epithelium, abundance of TRPC6 was equal in infundibulum and 

ampulla (p= 0.5) and higher by 1.33 fold (p= 0.004) in isthmus relative to the 

infundibulum (Fig 2.24, B). Furthermore, abundance of TRPC6 on the lateral 

side of the ampulla (p= 0.2) was not significantly different to that of the 

infundibulum. In isthmus, abundance of TRPC6 was decreased by 0.61 fold (p= 

0.03) on the lateral side of the tissue compared to the infundibulum (Fig 4.24, 

C).  
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Fig 4.24 Abundance of TRPC6 in permeabilized bovine oviduct epithelium at stage 4 of the 

estrous cycle in apical (4.24, A), basal (4.24, B) and the lateral (4.24, C) side e of the tissue. On 

apical, basal and lateral side of the permeabilized bovine oviduct epithelium at stage 4 of the 

estrous cycle,  abundance of TRPC6 was equal in infundibulum and ampulla. On the apical and 

basal side of the isthmus epithelial tissue, abundance of TRPC6 was higher than that of the 

infundibulum. However, on the lateral side of the isthmus abundance of the TRPC6 was lower 

than that of infundibulum. All data are expressed as a mean of 3 replicates ± 1 standard 

deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.1.9 Changes in localization and abundance of TRPC1 and TRPC6 in 

non-permeabilized bovine infundibulum epithelium throughout the 

estrous cycle 

The localization pattern of TRPC1 and TRPC6 channels changed in bovine 

infundibulum epithelial tissue throughout the estrous cycle (Fig 4.25).  

In non-permeabilized tissue, there was no  significant difference in abundance 

of TRPC1 on apical side of the infundibulum at stage 2 (p= 0.1) compared to 

stage 1 of the estrous cycle.. Abundance of TRPC1 on the apical side of the 

tissue was increased by  7 fold (p= 0.002) at stage 3 relative to stage 1. 

Abundance of TRPC1 was 8.9 fold (p= 0.005) higher at stage 4 compared to 

stage 1(Fig 4.26, A). On the basal side of the infundibulum epithelial tissue, 

abundance of TRPC1 channels at stage 2 (p= 0.08) was not significantly 

different compared to that of stage 1. At stage 3 of the estrous cycle a 6.6 fold 

(p= 0.007) increase in abundance of TRPC1 was observed on the basal side of 

the infundibulum epithelial tissue compared to stage 1. This increase was 

higher at stage 4 by 10 fold (p= 0.009) (Fig 4.26, B). On the lateral side of the 

non-permeabilized bovine infundibulum epithelial tissue, abundance of TRPC1 

was higher by 6.5 fold (p= 0.02) at stage 2 compared to stage 1. At stage 3, 

abundance of TRPC1 was 8.67 fold (p= 0.0005) higher than that of stage 1. 

Abundance of TRPC1 channel on the lateral side of the tissue was increased by 

12.75 fold (p= 0.002) at stage 4 compared to the stage 1 (Fig 4.26, C). 
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Fig 4.25 Localization of TRPC1 and TRPC6 in non-permeabilized bovine infundibulum epithelial 

tissue at stage 1 (4.25, A), stage 2 (4.25, B), stage 3 (4.25, C) and stage 4 (4.25,D) of the 

estrous cycle. nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC 

conjugated (Red) and TRPC6 with Alexa Flour 488 (Green). 
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Fig 4.26 Abundance of TRPC1 in non-permeabilized bovine infundibulum epithelium throughout 

the estrous cycle on apical (4.26, A), basal (4.26, B) and the lateral (4.26, C) side of the tissue. 

Abundance of TRPC1 on both apical and basal side of the tissue at stage 2 was not significantly 

different to that of the stage 1. However, abundance of TRPC1 at stage 3 and 4 was higher than 

that of the stage 1 on both apical and basal side of the tissue. On the lateral side of the tissue, 

abundance of TRPC1 was the lowest at stage 1 and the highest at stage 4 of the estrous cycle. 

Abundance of TRPC1 at stage 2, 3 and 4 of the estrous cycle was higher than that of the stage 

1. All data are expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = 

p<0.01; *** = p<0.001). 
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At stage 2 of the estrous cycle on the apical side of the non-permeabilized 

bovine infundibulum epithelial tissue, abundance of TRPC6 was higher by 18.17 

fold (p= 0.01) relative to stage 1. Furthermore, abundance of TRPC6 on the 

apical side of the tissue was higher by 19.64 (p= 0.0007) and 18.67 (p= 0.02) 

fold at stage 3 and 4 respectively compared to that of the stage 1 (Fig 4.27, A). 

On the basal side of the epithelium, abundance of TRPC6 was 9.27 fold (p= 

0.01) higher at stage 2 compared to that of stage 1. TRPC6 was 34.22 (p= 

0.004) and 36.64 (p= 0.01) fold more abundant at stage 3 and stage 4 of the 

estrous cycle respectively compared to stage 1 (Fig 4.27, B). On the lateral side 

of the bovine infundibulum epithelial tissue, abundance of TRPC6 was 19.87 

fold (p= 0.04) higher at stage 2 compared to that of stage 1. At stage 3 of the 

estrous cycle, TRPC6 was more abundant by 41.36 fold (p= 0.001) on the 

lateral side of the epithelium compared to stage1. Abundance of TRPC6 on the 

lateral side of non-permeabilized bovine infundibulum epithelium was 21.4 fold 

(p= 0.003) higher than that of stage 1 (Fig 4.27, C). 
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Fig 4.27 Abundance of TRPC6 in non-permeabilized bovine infundibulum epithelium  

throughout the estrous cycle on apical (4.27, A), basal (4.27, B) and the lateral (4.27, C) side of 

the tissue. On the apical side of the tissue, abundance of TRPC6 was equal at stage 2, 3 and 4 

where it was higher than the stage 1. On basal side of the epithelium, abundance of TRPC6 

was equal at stage 3 and 4 where it was higher than stage 2 and 1. Abundance of TRPC6 on 

the basal side was the lowest at stage 1 of the estrous cycle. On the lateral side of the non-

permeabilized infundibulum epithelium, abundance of TRPC6 was equal at stage2 and stage 4 

of the estrous cycle. The highest abundance of TRPC6 on the lateral side was observed at 

stage 3 and the lowest abundance was observed at stage 1 of the estrous cycle. All data are 

expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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4.1.1.10 Changes in localization and abundance of TRPC1 and TRPC6 in 

permeabilized bovine infundibulum epithelium throughout the estrous 

cycle 

Abundance of TRPC1 on the apical side of the epithelium at stage 2 of the 

estrous cycle in permeabilized bovine infundibulum epithelial tissue was 1.82 

fold (p= 0.008) higher than that of stage 1. However, abundance of TRPC1 was 

reduced by 0.23 fold (p= 5.32 x 10-5) at stage 3 of the estrous cycle compared 

to stage1. A 1.95 fold (p= 0.03) increase in abundance of TRPC1 was observed 

on the apical side of  permeabilized bovine infundibulum epithelial tissue at 

stage 4 of the estrous cycle compared to that of stage 1 (Fig 4.29, A). On the 

basal side of the permeabilized bovine infundibulum epithelial tissue, 

abundance of TRPC1 at stage 2 (p= 0.2) was equal to that of stage 1. In 

contrast, at stage 3 of the estrous cycle abundance of TRPC1 channel was 

reduced by 0.24 fold (p= 0.001) compared to stage 1.  At stage 3 of the estrous 

cycle, abundance of the TRPC1 was increased by 2.12 fold (p= 0.007) relative 

to that of stage 1 (Fig 4.29, B). Abundance of TRPC1 channels on the lateral 

side  of the permeabilized bovine infundibulum epithelial tissue, was 1.9 fold (p= 

0.01) higher at stage 2 of the estrous cycle compared to stage1. However, 

abundance of TRPC1 at stage 3 of the estrous cycle was reduced by 0.27 fold 

(p= 0.0001) compared to stage 1 of the estrous cycle. At stage 4 abundance of 

TRPC1 was increased by 2.6 fold (p= 0.006) compared to stage 1 (Fig 4.29, C). 
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Fig 4.28 Localization of TRPC1 and TRPC6 in permeabilized bovine infundibulum epithelial 

tissue at stage 1 (4.28, A), stage 2 (4.28, B), stage 3 (4.28, C) and stage 4 (4.28, D) of the 

estrous cycle. Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC 

conjugated (Red) and TRPC6 with Alexa Flour 488 (Green). 
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 Fig 4.29 Abundance of TRPC1 in permeabilized bovine infundibulum epithelium throughout the 

estrous cycle on apical (4.29, A), basal (4.29, B) and the lateral (4.29, C) side of the tissue. On 

the apical side of the tissue, abundance of TRPC1 at stage 2 and 4 was higher than that of the 

stage 1. However, at stage 3 of the estrous cycle abundance of TRPC1 was lower than that of 

the stage 1.On the basal side of the tissue, there was no significant difference in abundance of 

the TRPC1 at stage2 compared to that of the stage 1.  Similarly to the apical side, abundance of 

TROC1 at stage 2 and 4 was higher than that of the stage 1 of the estrous cycle. However, at 

stage 3 abundance of TRPC1 was decreased compared to that of the stage 1. All data are 

expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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Abundance of TRPC6 channel on the apical side of the permeabilized bovine 

infundibulum epithelial tissue was 1.66 fold (p= 0.04) higher at stage 2 

compared to that of stage 1 of the estrous cycle. At stage 3 of the estrous cycle, 

abundance of TRPC6 channel was reduced by 0.65 fold (p= 0.01) relative to 

stage 1. However, abundance of TRPC6 on the apical side of the permeabilized 

bovine infundibulum epithelium at stage 4 (p= 0.1) was equal to that of stage 1 

of the estrous cycle (Fig 4.30, A). On the basal side of the permeabilized bovine 

infundibulum epithelial tissue, there was no significant difference in abundance 

of TRPC6 at stage 2 (p= 0.5) compared to stage 1. However, abundance of 

TRPC6 was decreased by 0.75 (p= 0.001) and 0.68 (p= 0.03) fold at stage 3 

and 4 respectively compared to that of stage 1 (Fig 4.30, B). On the lateral side 

of the permeabilized bovine infundibulum epithelial tissue, abundance of 

TRPC6 at stage 2 (p= 0.2) was equal to that of stage 1 of the estrous cycle. 

Abundance of TRPC6 was reduced by 0.73 fold (p= 0.03) at stage 3 relative to 

stage 1. However, there was no  significant difference in abundance of TRPC6 

at stage 4 (p= 0.6) compared to stage 1 of the estrous cycle (Fig 4.30, C). 
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Fig 4.30 Abundance of  TRPC6 in permeabilized bovine infundibulum epithelium throughout the 

estrous cycle in apical (4.30, A), basal (4.30, B) and the lateral (4.30, C) side of the tissue. 

Abundance pattern of TRPC6 was the same on apical and lateral side of the tissue. On the 

apical side of the tissue, abundance of TRPC6 at stage 2 of the estrous cycle was higher than 

that of the stage 1. However, at stage 3 abundance of TRPC6 was decreased compared to that 

of the stage 1. There was no significant difference in abundance of TRPC6 on apical side of the 

tissue at stage 4 compared to the of the satge1. On the basal side  of the permeabilized bovine 

infundibulum epithelial tissue, no significant difference was observed in abundance of TRPC6 

between stage 1 and 2 of the estrous cycle. However, abundance of TRPC6 at both stage 3 

and 4 was lower than that of the stage 1. On the lateral side of the tissue, there was no 

significant difference in abundance of TRPC6 at stage 2 and 4 compared to that of the stage1. 

However, abundance of TRPC6 was decreased at stage 3 compared to the stage 1 of the 

estrous cycle. All data are expressed as a mean of 3 replicates ± 1 standard deviation. (* = 

p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.1.11 Changes in localization and abundance of TRPC1 and TRPC6 in 

non-permeabilized bovine ampulla epithelium throughout the estrous 

cycle 

`On the apical side of non-permeabilized bovine ampulla epithelial tissue, 

abundance of TRPC1 at stage 2 (p= 0.4) was equal to that of stage 1. Similarly 

to stage 2, at stage 3 (p= 0.3) and 4 (p= 0.05) of the estrous cycle abundance of 

TRPC1 channel was not significantly different compared to  stage 1. (Fig 4.32, 

A). Furthermore, on the basal side of the non-permeabilized bovine ampulla 

epithelial tissue, abundance of TRPC1 channel at stage 2 (p= 0.2) and 3 (p= 

0.3) and 4 (p= 0.08) (Fig 4.32, B) was not significantly different to that of the 

stage 1 (Fig 4.32, B). On the lateral side of the non-permeabilized bovine 

ampulla epithelium, abundance of TRPC1 channel was not significantly different 

at stage 2 (p= 0.08) and 4 (p= 0.2) to that of stage 1 of the estrous cycle. 

However, at stage 3 of the estrous cycle abundance of TRPC1 was lower by 

0.61 fold (p= 0.02) relative to stage 1 of the estrous cycle (Fig 4.32, C). 
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Fig 4.31 Localization of TRPC1 and TRPC6 in non-permeabilized bovine ampulla epithelial 

tissue at stage 1 (4.31, A), stage 2 (4.31, B), stage 3 (4.31, C) and stage 4 (4.31, D) of the 

estrous cycle. Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC 

conjugated (Red) and TRPC6 with Alexa Flour 488 (Green). 

 

 

 

 

 

 

 



152 
 

 

 

 

  

  

  

  

 

  

  

 

 

 

 

Fig 4.32 Abundance of TRPC1 in non-permeabilized bovine ampulla epithelium throughout the 

estrous cycle on apical (4.32, A), basal (4.32, B) and the lateral (4.32, C) side of the tissue. On 

the apical and basal side of the non-permeabilized bovine ampulla epithelial tissue, no 

significant difference was observed in abundance of TRPC1 at stage 2, 3 and 4 of the estrous 

cycle compared to that of the stage 1. Furthermore, abundance of TRPC1 at stage 2 and 4 of 

the estrous cycle on lateral side of the tissue was equal to that of the stage 1. However, 

abundance of TRPC1 at stage 3 of the estrous cycle was lower than that of the stage 1.  All 

data are expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; 

*** = p<0.001). 
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Abundance of TRPC6 on the apical side of the non-permeabilized bovine 

ampulla epithelium at stage 2 (p= 0.1) was equal to that of stage 1 of the 

estrous cycle. However, abundance of TRPC6 channel was increased by 1.3 

(p= 0.01) and 1.62 (p= 0.02) fold at stage 3 and 4 respectively compared to 

stage 1 (Fig 4.33, A). On the basal side of the non-permeabilized bovine 

ampulla epithelial tissue, abundance of TRPC6 channel at stage 2 (p= 0.1), 3 

(p= 0.2), and 4 (p= 0.05) was not significantly different to that of stage 1 (Fig 

4.33, B). On the lateral side of the non-permeabilized bovine ampulla epithelial 

tissue, abundance of TRPC6 was increased by 1.57 fold (p= 0.04) at stage 2 of 

the estrous cycle compared to stage 1. However, at stage 3 and 4, abundance 

of TRPC6 was decreased by 0.5 (p= 0.0008) and 0.71 (p= 0.006) fold 

respectively relative to stage 1 (Fig 4.33, C). 
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Fig 4.33 Abundance of TRPC6 in non-permeabilized bovine ampulla epithelium throughout the 

estrous cycle on apical (4.33, A), basal (4.33, B) and the lateral (4.33, C) side of the tissue. On 

the apical side of the tissue, abundance of TRPC6 at stage 2 was not significantly different to 

that of the stage 1. However, abundance of TRPC1 was higher at both stage 3 and 4 on the 

apical side of the tissue compared to that of the stage 1. On the basal side of the non-

permeabilized bovine ampulla epithelium, there was no significant difference in abundance of 

TRPC1 at stage 2, 3 and 4 of the estrous cycle compared to that of the stage 1. However, on 

the lateral side of the tissue abundance of TRPC1 was increased at stage 2 and decreased at 

stage 3 and 4 compared to the stage 1 of the estrous cycle.  All data are expressed as a mean 

of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.1.12 Changes in localization and abundance of TRPC1 and TRPC6 in 

permeabilized bovine ampulla epithelium throughout the estrous cycle 

Abundance of TRPC1 channels on the apical side of the permeabilized bovine 

ampulla epithelial tissue was decreased by 0.12 (p= 0.02) and 0.13 (p= 0.02) 

fold respectively at stage 2 and 4 compared to the stage 1 of the estrous cycle. 

However, abundance of TRPC1 was the same as that of stage 1 at stage 3 (p= 

0.8) of the estrous cycle (Fig 4.35, A). On the basal side of the permeabilized 

bovine ampulla epithelium, abundance of TRPC1 was reduced by 0.10 (p= 

0.02) and 0.14 (p= 0.03) fold respectively at stage 2 and 4 of the estrous cycle 

compared to that of stage 1. No significant changes in abundance of TRPC1 

were observed at stage 3 (p= 0.8) relative to stage 1 of the estrous cycle (Fig 

4.35, B). On the lateral side of the permeabilized bovine ampulla epithelial 

tissue, abundance of TRPC1 was reduced 0.09 (p= 0.01) and 0.16 (p= 0.02) 

fold at stage 2 and 4 of the estrous cycle respectively compared to stage 1. 

However, abundance of TRPC1 at stage 3 (p= 0.3) of the estrous cycle was the 

same as that of stage 1 (Fig 4.35, C). 
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Fig 4.34 Localization of TRPC1 and TRPC6 in permeabilized bovine ampulla epithelial tissue at 

stage 1 (4.34, A), stage 2 (4.34, B), stage 3 (4.34, C ) and stage 4 (4.34, D) of the estrous cycle. 

Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and 

TRPC6 with Alexa Flour 488 (Green). 
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Fig 4.35 Abundance of TRPC1 in permeabilized bovine ampulla epithelium throughout the 

estrous cycle on apical (4.35, A), Basal (4.35, B) and the lateral (4.35, C) side of the tissue.  

Abundance of TRPC1 on apical, basal and lateral side of the epithelial tissue of permeabilized 

bovine ampulla was lower at stage 2 and 4 compared to the stage 1 of the estrous cycle. 

However, abundance of TRPC1 at stage 3 of the estrous cycle was not significantly different to 

that of the stage 1. All data are expressed as a mean of 3 replicates ± 1 standard deviation. (* = 

p<0.05; ** = p<0.01; *** = p<0.001). 
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On the apical side of the permeabilized bovine ampulla epithelial tissue, 

abundance of TRPC6 channels was decreased by 0.03 (p= 0.02) and 0.04 (p= 

0.02) fold at stage 2 and 4 of the estrous cycle respectively compared to stage 

1. In contrast, abundance of TRPC6 was increased by 1.9 fold (p=  0.01) at 

stage 3 of the estrous cycle relative to stage 1 (Fig 4.36, A). Abundance of 

TRPC6 channel on the basal side of the permeabilized bovine ampulla epithelial 

tissue at stage 2 and 4 was decreased by 0.02 (p= 0.003) and 0.04 (p= 0.004) 

fold respectively compared to stage 1. However, abundance of TRPC6 on the 

basal side of the permeabilized bovine ampulla epithelial tissue at stage 3 (p= 

0.1) was not significantly different compared to stage 1(Fig 4.36, B). On the 

lateral side of the tissue, abundance of TRPC6 channel was decreased by 

0.017 (p= 0.01) and 0.03 (p= 0.01) fold respectively at stages 2 and 4 of the 

estrous cycle compared to that of stage 1. However, abundance of TRPC6 at 

stage 3 (p= 0.4) of the estrous cycle was equal to that of stage 1(Fig 4.36, C). 
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Fig 4.36 Abundance of TRPC6 in permeabilized bovine ampulla epithelium throughout the 

estrous cycle on apical (4.36, A), basal (4.36, B) and the lateral (4.36, C) side of the tissue. On 

the apical , basal and lateral side of the permeabilized bovine ampulla epithelial tissue, 

abundance of TRPC6 was lower at stage 2 and 4 compared to the stage 1 of the estrous cycle. 

However, abundance of TRPC6 at stage 3 was higher on apical side but not significantly 

different on none of the basal and lateral side of the tissue compared to the stage 1 of the 

estrous cycle. All data are expressed as a mean of 3 replicates ± 1 standard deviation. (* = 

p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.1.13 Changes in localization and abundance of TRPC1 and TRPC6 in 

non-permeabilized bovine isthmus epithelium throughout the estrous 

cycle 

On the apical side of the non-permeabilized bovine isthmus epithelium tissue, 

abundance of TRPC1 channel was decreased by 0.82 (p= 0.003) and 0.54 (p= 

2.95 x 10-6) fold at stage 2and 4 of the estrous cycle respectively compared to 

stage 1. However, abundance of TRPC1 on the apical side of the tissue at 

stage 3 (p= 0.06) was equal to that of stage 1 of the estrous cycle (Fig 4.38, A). 

On the basal side of the epithelium, abundance of TRPC1 channel was less at 

stage 2, 3 and 4 by 0.67 (p= 0.007), 0.39 (p= 5.98 x 10-5) and 0.21 (p= 0.001) 

fold respectively relative to  stage 1 (Fig 4.38, B). On the lateral side of the non-

permeabilized bovine isthmus epithelial tissue, abundance of TRPC1 channel 

was decreased by 0.28 (p= 3.14 x 10-5), 0.29 (p= 0.0002) and 0.19 (p= 0.0004) 

fold at stage 2, 3 and 4 of the estrous cycle compared to stage 1(Fig 4.38, C).  
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Fig 4.37 Localization of TRPC1 and TRPC6 in non-permeabilized bovine isthmus epithelial 

tissue at stage 1 (4.37, A), stage 2 (4.37, B), stage 3 (4.37, C) and stage 4 (4.37, D) of the 

estrous cycle. Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC 

conjugated (Red) and TRPC6 with Alexa Flour 488 (Green). 
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Fig 4.38 Abundance of TRPC1 in non-permeabilized bovine isthmus epithelium throughout the 

estrous cycle in apical (4.38, A), Basal (4.38, B) and the lateral (4.38, C) side of the tissue. 

Abundance of TRPC1 on the apical side of the epithelium was the highest at stage 1 and lowest 

at stage 4. Abundance of TRPC1 at stage 3 was equal to that of the stage 1. A decrease in 

abundance of TRPC1 was observed at stage 2 compared to the stage 1 of the estrous cycle. 

On the basal side of the tissue, abundance of TRPC1 was the highest at stage 1 and gradually 

decreased throughout the estrous cycle and was the lowest at stage 4. On the lateral side of the 

tissue, abundance of TRPC1 was dramatically higher at stage 1 compared to stage 2, 3 and 4 

of the estrous cycle. Abundance of TRPC1 was equal at stage 2 and 3 where it was slightly 

higher than stage 4 of the estrous cycle. All data are expressed as a mean of 3 replicates ± 1 

standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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On the apical side of the non-permeabilized bovine isthmus epithelial tissue, 

abundance of TRPC6 channel was highest  at stage 1 of the estrous cycle. At 

stage 2, abundance of TRPC6 was reduced to 0.09 fold (p= 0.04) compared to 

stage 1. Furthermore, at stages 3 and 4 of the estrous cycle abundance of 

TRPC6 channel was reduced by 0.19 (p= 0.04) and 0.15 (p= 0.04) fold 

respectively compared to stage 1 (Fig 4.39, A). On the basal side of the 

epithelium of the isthmus region, abundance of TRPC6 channel was lower by 

0.05 (p= 0.004), 0.12 (p= 0.005) and 0.15 (p= 0.005) fold respectively at stage 

2, 3 and 4 relative to stage 1 of the estrous cycle (Fig 4.39, B). Similar to the 

apical and basal side of the epithelium, abundance of TRPC6 on the lateral side 

of the epithelium was lower at stage 2, 3 and 4 by 0.025 (p= 0.02), 0.13 (p= 

0.03) and 0.058 (p= 0.02) fold respectively compared to stage 1 of the estrous 

cycle (Fig 4.39, C). 
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Fig 4.39 Abundance of TRPC6 in non-permeabilized bovine isthmus epithelium throughout the 

estrous cycle in apical (4.39, A), basal (4.39, B) and the lateral (4.39, C) side of the tissue. On 

all apical, basal and lateral side of the epithelial tissue, abundance of TRPC6 was highest at 

stage 1 and lowest at stage 2 of the estrous cycle. Abundance of TRPC6 at stage 3 and 4 was 

much lower than that of stage 1 on apical, basal and lateral side of the tissue. All data are 

expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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4.1.1.14 Changes in localization and abundance of TRPC1 and TRPC6 in 

permeabilized bovine isthmus epithelium throughout the estrous cycle 

Abundance of TRPC1 channel on the apical side of the permeabilized bovine 

isthmus epithelial tissue was highest at stage 1 throughout the estrous cycle. 

Abundance of TRPC1 channel was decreased by 0.16 (p= 5.71 x10-5), 0.30 (p= 

0.0001) and 0.24 (p= 0.0002) fold respectively at stage 2, 3 and 4 of the estrous 

cycle compared to stage 1 (Fig 4.41, A). On the basal side of the isthmus 

epithelium, abundance of TRPC1 was reduced by 0.32 fold at stage 2 (p= 

0.0006) and 3 (p= 0.0004) and 0.24 fold (p= 0.004) at stage 4 of the estrous 

cycle relative to stage 1 (Fig 4.41, B). On the lateral side of the permeabilized 

bovine isthmus epithelial tissue, abundance of TRPC6 was decreased by 0.21 

fold at stage 2 (p= 1.03 x10-5) and 3 (p= 5.07 x 10-6) and 0.16 fold (p= 0.0004) 

at stage 4 of the estrous cycle compared to stage 1 (Fig 4.41, C).  
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Fig 4.40 Localization of TRPC1 and TRPC6 in permeabilized bovine isthmus epithelial tissue at 

stage 1 (4.40, A), stage 2 (4.40, B), stage 3 (4.40, C) and stage 4 (4.40, D) of the estrous cycle. 

Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and 

TRPC6 with Alexa Flour 488 (Green). 
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Fig 4.41 Abundance of TRPC1 in permeabilized bovine isthmus epithelium throughout the 

estrous cycle in apical (4.41, A), basal (4.41, B) and lateral (4.41, C) of the tissue. On the apical 

side of the tissue  TRPC1 was most abundant at stage 1. Abundance of TRPC1 at stage 2, 3 

and 4 was much lower than that of stage 1 and the lowest abundance of TRPC1 was observed 

at stage 2 of the estrous cycle. On the basal and lateral side of the epithelium, abundance of 

TRPC1 was the highest at stage 1. On the basal and lateral side of the tissue, abundance of 

TRPC1 at stage 2 and 3 of the cycle was equal and slightly higher than that of stage 4.  All data 

are expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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On the apical side of the permeabilized bovine isthmus epithelium, abundance 

of the TRPC6 channel was reduced by 0.035 (p= 0.003), 0.092 (p= 0.004) and 

0.075 (p= 0.004) fold at stage 2, 3 and 4 respectively compared to stage 1 (Fig 

4.42, A). On the basal side of the isthmus epithelium, abundance of TRPC6 

channel was lower by 0.044 (p= 0.001), 0.064 (p= 0.001) and 0.052 (p= 0.001) 

fold at stage 2, 3 and 4 of the estrous cycle compared to stage 1 (Fig 4.42, B). 

On the lateral side of the bovine isthmus epithelium in the permeabilized tissue, 

abundance of TRPC6 channel was reduced by 0.033 (p= 0.001), 0.034 (p= 

0.001) and 0.019 (p= 0.001) fold respectively at stage 2, 3 and 4 of the estrous 

cycle relative to stage 1 (Fig 4.42, C). 
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Fig 4.42 Abundance of TRPC6 in permeabilized bovine isthmus epithelium throughout the 

estrous cycle in apical (4.42, A), basal (4.42, B) and the lateral (4.42, C) side of the tissue. On 

the apical, basal and lateral side of the tissue, abundance of TRPC6 was extremely higher at 

stage 1 compared to stage2, 3 and 4 of the estrous cycle. All data are expressed as a mean of 

3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.2 Localization of TRPC1 and TRPC6 in bovine uterus throughout the 

estrous cycle 

Localization and abundance of TRPC1 and TRPC6 channels in bovine uterine 

epithelial tissue throughout the estrous cycle was studied using 

immunohistochemistry and confocal microscopy techniques. 

4.1.2.1 Localization of TRPC1 and TRPC6 in non-permeabilized bovine 

uterus throughout the estrous cycle 

On the apical side of the non-permeabilized bovine uterine epithelial tissue, 

abundance of TRPC1 channel was lower at stage 2 and 4 by 0.42 (p= 0.009) 

and 0.73 (p= 0.01) fold respectively compared to stage 1. However, abundance 

of TRPC1 on the apical side of the tissue at stage 3 was slightly increased, by 

1.37 fold, (p= 0.009) relative to stage 1 of the estrous cycle (Fig 4.44, A). On the 

basal side of the tissue, abundance of TRPC1 channel at stage 2 was 

decreased by 0.55 fold (p= 0.01) compared to stage 1. However, no significant 

difference was observed in abundance of the TRPC1 on the basal side of the 

tissue at stage 3 (p= 0.06) and 4 (p= 0.9) relative to stage 1 of the estrous cycle 

(Fig 4.44, B). On the lateral side of the non-permeabilized bovine uterine 

epithelial tissue, abundance of TRPC1 was decreased by 0.61fold (p= 0.02) at 

stage 2 compared to that of stage 1. However, abundance of TRPC1 on the 

lateral side of the tissue at stage 3 was increased by 1.53 fold (p= 0.009) 

relative to stage 1. Abundance of TRPC1 on the lateral side of the tissue at 

stage 4 (p= 0.1) of the estrous cycle was not significantly different to that of 

stage 1 (Fig 4.44, C). 
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Fig 4.43 Localization of TRPC1 and TRPC6 in non-permeabilized bovine uterine epithelial 

tissue at stage 1 (4.43, A), stage 2 (4.43, B), stage 3 (4.43, C) and stage 4 (4.43, D) of the 

estrous cycle. Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC 

conjugated (Red) and TRPC6 with Alexa Flour 488 (Green). 
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Fig 4.44 Abundance of TRPC1 in non-permeabilized bovine uterine epithelium throughout the 

estrous cycle in apical (4.44, A), basal (4.44, B) and the lateral (4.44, C) side of the tissue. On 

the apical side of the non-permeabilized bovine uterine tissue, abundance of TRPC1 was lower 

at stage 2 and 4 compared to that of the stage 1. However, abundance of TRPC1 at stage 3 

was higher than that of the stage 1. On the basal side of the tissue, abundance of TRPC1 at 

stage 2 was lower than that of the stage 1. However, no significant difference in abundance of 

TRPC1 at stage 3 and 4 was observed compared to the stage 1 of the estrous cycle. On the 

lateral side of the tissue, abundance of TRPC1 was lower at stage 2 and higher at stage 3 

compared to the stage 1 of the estrous cycle. No significant difference was observed in 

abundance of TRPC1 at stage 4 relative to stage 1 of the estrous cycle on the lateral side of the 

tissue. All data are expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = 

p<0.01; *** = p<0.001). 
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Abundance of TRPC6 channel on the apical side of the non-permeabilized 

bovine uterine epithelial tissue was increased at stage 2, 3 by 1.3 (p= 0.02), 

2.99 (p= 0.04) fold respectively compared to stage 1. However, abundance of 

TRPC6 at stage 4 (p= 0.09) was equal to that of stage 1(Fig 4.45, A). On the 

basal side of the non-permeabilized bovine uterine epithelium, abundance of 

TRPC6 channel was increased by 2.41 fold (p= 0.01) at stage 2 compared to 

that of stage 1. However, abundance of TRPC6 on the basal side of the tissue 

at stage 3 (p= 0.07) and 4 (p= 0.5) of the estrous cycle was not significantly 

different to that of stage 1 (Fig 4.45, B). On the lateral side of the non-

permeabilized bovine uterine epithelium, abundance of TRPC6 at stage 2 was 

higher than that of stage 1 by 1.49 (p= 0.02). However, abundance of TRPC6 

on the lateral side of the tissue at stage 3 and 4 was not significantly different to 

that of stage 1 (Fig 4.45, C). 
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Fig 4.45 Abundance of TRPC6 in non-permeabilized bovine uterine epithelium throughout the 

estrous cycle in apical (4.45, A), basal (4.45, B) and the lateral (4.45, C) side of the tissue. On 

the apical side of the non-permeabilized bovine uterine epithelial tissue abundance of was 

higher at stage 2 and 3 compared of that of the stage 1. However, abundance of TRPC6 at 

stage 4 was not significantly different to that of the stage 1. On the basal and lateral side of the 

tissue, abundance of TRPC6 was higher at stage 2 compared to stage 1. However, on both 

basal and lateral side abundance of TRPC6 at stage 3 and 4 was not significantly different to 

that of the stage.  All data are expressed as a mean of 3 replicates ± 1 standard deviation. (* = 

p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.2.2 Localization and abundance of TRPC1 and TRPC6 in permeabilized 

bovine uterus throughout the estrous cycle 

On the apical side of the permeabilized bovine uterine epithelial tissue, 

abundance of the TRPC1 channel was increased at stage 2 and 3 by 1.82 (p= 

0.02) and 3.21 (p= 5.46 x 10-5) fold respectively compared to that of the stage 1 

However, abundance of TRPC1 at stage 4 (p= 0.2) was not significantly 

different to that of the stage 1 of the estrous cycle(Fig 4.47, A). On the basal 

side of the epithelium, there was no significant difference in abundance of 

TRPC1 at stage 2 (p= 0.1) and 4 (p= 0.4) compared to stage 1. However, at 

stage 3, abundance of TRPC1 was increased by 1.75 fold (p= 0.005) relative to 

stage 1 of the estrous cycle (Fig 4.47, B). On the lateral side of the tissue at 

stage 2 (p= 0.1) and 4 (p= 0.5) abundance of TRPC1 was not significantly 

different to that of the stage1. At stage 3, abundance of TRPC1 on the lateral 

side of the tissue was increased by 1.33 fold (p= 0.02) relative to stage 1 of the 

estrous cycle(Fig 4.47, C).  
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Fig 4.46 Localization of TRPC1 and TRPC6 in permeabilized bovine uterine epithelial tissue at 

stage 1 (4.43, A), stage 2 (4.43, B), stage 3 (4.43, C) and stage 4 (4.43, D) of the estrous cycle. 

Nuclei are labelled with DAPI (Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and 

TRPC6 with Alexa Flour 488 (Green). 
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Fig 4.47 Abundance of TRPC1 in permeabilized bovine uterine epithelium throughout the 

estrous cycle in apical (4.47, A), basal (4.47, B) and the lateral (4.47, C) side of the tissue. On 

the apical side of the tissue, abundance of TRPC1 was higher at both stage 2 and 3 compared 

to stage 1 of the estrous cycle. On the basal and lateral side of the tissue, there was not any 

significant difference in abundance of TRPC1 at stage 2 and 4 compared to the stage 1 of the 

estrous cycle.  The same was the cause in permeabilized bovine uterine epithelium on the 

apical, basal and lateral side of the tissue. However, at stage 3 abundance of TRPC1 on both 

basal and lateral side of the tissue was higher than that of the stage 1. All data are expressed 

as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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Abundance of TRPC6 channel on the apical side of the permeabilized bovine 

uterine epithelial tissue was increased at stage 2 and 3 of the estrous cycle by 

3.27 (p= 0.002) and 2.77 (p= 0.01) fold compared to stage 1. There was no 

significant difference in abundance of TRPC6 on the apical side of the tissue at 

stage 4 (p= 0.2) compared to stage 1(Fig 4.48, A). On the basal side of the 

permeabilized uterine epithelium, abundance of TRPC6 channel at stage 2 (p= 

0.1) and 4 (p= 0.4) was not significantly different to that of stage 1. However, 

abundance of TRPC6 on the basal side of the tissue at stage 3 was 1.75 fold 

(p= 0.005) higher than that of stage 1 (Fig 4.48, B). On the lateral side of the 

permeabilized bovine uterine epithelial tissue,abundance of TRPC6 at stage 2 

and 4 was not significantly different compared to that of stage 1. However, at 

TRPC6 was more abundant by 1.33 fold (p= 0.02) on the lateral side of the 

tissue at stage 3 compared to stage 1 of the estrous cycle (Fig 4.48, C).  
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 Fig 4.48 Abundance of TRPC6 in permeabilized bovine uterine epithelium throughout the 

estrous cycle in apical (4.48, A), basal (4.48, B) and the lateral (4.48, C) side of the tissue. On 

the apical side of the tissue, abundance of TRPC6 at stage 2 and 3 was higher than that of the 

stage 1. However,  abundance of TRPC6 at stage 4 was not significantly different to that of the 

stage 1. On both the basal and lateral side of the tissue, abundance of TRPC6 at stage 2 and 4 

was equal to that of stage 1. However, at stage 3 TRPC6 was more abundant on both basal 

and lateral side compared to the stage 1 of the estrous cycle. All data are expressed as a mean 

of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.3 Effect of sex hormones on the abundance of TRPC1 and TRPC6 in 

cultured bovine oviduct epithelial cells throughout the estrous cycle 

It was shown in section 3.4 that sex hormones altered the gene expression of 

TRPCs in Bovine Oviduct Cultured Cells. Immunocytochemistry and confocal 

microscopy techniques were used to determine if sex hormones could also 

affect the abundance of TRPC1 and TRPC6 in BOEC. 

4.1.3.1 Effect of sex hormones on the distribution of TRPC1 and TRPC6 in 

non-permeabilized cultured bovine oviduct epithelial cells throughout the 

estrous cycle 

In non-permeabilized Bovine Oviduct Epithelial Cells (BOEC) at stage 1 of the 

estrous cycle, abundance of TRPC1 was not affected by Est (p= 0.6), FSH/LH 

(p= 0.9), Prog (p= 0.3) and a combination of Est, Prog, FSH and LH (p= 02)  

compared to that of the control group. At stage 2, Est (p= 0.2) and FSH/LH (p= 

0.5) did not induce any changes in abundance of TRPC1 in non-permeabilized 

BOEC. However, the Prog (p= 0.004) mixture of Est, Prog, FSH and LH 

increased the abundance of TRPC1 by 1.95 (p= 0.004) and 1.24 (p= 0.04) fold 

respectively compared to the control group. At stage 3 of the estrous cycle, 

abundance of TRPC1 in non-permeabilized BOEC was decreased by 0.65 (p= 

0.01) and 0.75 (p= 0.003) fold in cells treated with Est and FSH/LH respectively 

relative to that of the control group. Prog (p= 0.9) did not alter the abundance of 

TRPC1 channel in non-permeabilized BOEC compared to the untreated BOEC. 

However, a combination of Est, Prog, FSH and LH increased the abundance of 

TRPC1 in non-permeabilized BOEC by 1.4 fold (p= 0.0005) relative to that of 

the control group. In non-permeabilized BOEC at stage 4 of the estrous cycle,  

the abundance of TRPC1 channel was not affected byEst (p= 0.3), Prog (p= 

0.1), FSH/LH (p= 0.4) and the mixture of all these hormones (p= 0.6) compared 

to the untreated BOEC(Fig 4. 49, A). 

Sex hormones altered the abundance of TRPC6 channel in the non-

permeabilized BOEC. At stage 1 of the estrous cycle, Est decrease the 

abundance of TRPC6 by 0.38 fold (p= 0.002) relative to the untreated group. 

Furthermore, a 0.6 fold (p= 0.02) decreased in abundance of TRPC6 was 

observed in the non-permeabilized BOEC treated with FSH and LH. Abundance 

of TRPC6 in Prog-treated (p= 0.2) non-permeabilized BOEC was not 
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significantly different compared to the control group. There was no significant 

difference in abundance of TRPC6 in non-permeabilized BOEC treated with the  

mixture of Est, Prog, FSH and LH (p= 0.1) relative to the untreated group. At 

stage 2 of the estrous cycle, Est increased the abundance of TRPC6 channels 

by 3 fold (p= 0.003) in the non-permeabilized BOEC compared to the untreated 

group. In FSH/LH-treated BOEC a 1.8 fold (p= 0.01) increase was observed in 

abundance of TRPC6 channel relative to the control. Prog also increased the 

abundance of TRPC6 channel by 4.3 fold (p= 3.8 x 10-5) compared to the 

untreated BOEC. However, in BOEC treated with the mixture of Est, Prog, FSH 

and LH (p= 0.7) abundance of TRPC6 channels was not significantly different 

compared to the control group. At stage 3 of the estrous cycle, Est decreased 

the abundance of TRPC6 in non-permeabilized BOEC by 0.44 fold (p= 0.0006) 

relative to the control group. Abundance of TRPC6 in non-permeabilized BOEC 

treated with FSH/LH (p= 0.2) and Prog (p= 0.05) was not significantly different 

compared to the untreated cells. However, a mixture of Est, Prog, FSH and LH 

slightly decreased TRPC6 abundance by 0.53 fold (p= 0.001) compared to the 

untreated group. In non-permeabilized BOEC at stage 4 of the estrous cycle, 

abundance of TRPC6 channel was decreased by 0.70 fold (p= 0.04) in 

response to Est compared to the control group . In FSH/LH-treated BOEC (p= 

0.1) the abundance of TRPC6 was not significantly different relative to the 

untreated BOEC. Prog induced a 0.5 fold (p= 0.007) decrease in abundance of 

TRPC6 channel in non-permeabilized BOEC at stage 4 of the estrous cycle 

compared to the untreated BOEC. Furthermore, mixture of Est, Prog, FSH and 

LH reduced the abundance of TRPC6 channels by 0.66 fold (p= 0.04) 

compared to the control group (Fig 4.49, B).  
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Fig 4.49 Effect of sex hormones on abundance of TRPC1 and TRPC6 channels in non-

permeabilized Bovine Oviduct Cultured Cells (BOEC). Abundance of both TRPC1 

(4.49, A) and TRPC6 (4.49, B) channels was altered in BOEC treated with sex 

hormones throughout the estrous cycle. All data are expressed as a mean of 3 replicates ± 

1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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4.1.3.2 Effect of sex hormones on the distribution of TRPC1 and TRPC6 in 

permeabilized cultured bovine oviduct epithelial cells throughout the 

estrous cycle 

In permeabilized Bovine Oviduct Epithelial Cultured Cells (BOEC) abundance of 

TRPC1 was altered by  the sex hormones throughout the estrous cycle. At 

stage 1 of the estrous cycle, Est reduced the abundance of TRPC1 channels by 

0.1 fold (p= 5.04 x 10-5) compared to the untreated group. However, FSH/LH 

induced a 1.89 fold (p= 0.01) increase in abundance of TRPC1 relative to that 

of the control group. Furthermore, in Prog-treated BOEC, abundance of TRPC1 

channels was increased by 1.4 fold (p= 0.004) compared to the untreated 

group. A mixture of Est, Prog, FSH and LH (p= 0.5) did not induce any 

significant changes in abundance of TRPC1 channels in permeabilized BOEC 

at stage 1 of the estrous cycle. At stage 2, no significant effect was observed in 

abundance of TRPC1 in BOEC treated with Est (p= 0.1) compared to the 

control group. However, FSH/LH and a combination of Est, FSH,LH and Prog 

reduced the abundance of TRPC1 in permeabilized BOEC by 0.82 (p= 0.02) 

and 0.81 (p= 0.008) fold respectively relative to the untreated BOEC. In BOEC 

treated with Prog, abundance of TRPC1 was slightly increased by 1.13 fold (p= 

0.04) compared to the control group. In permeabilized BOEC at stage 3 of the 

estrous cycle, abundance of TRPC1 channel was not significantly affected in 

Est (p= 0.2), FSH/LH (p= 0.1) and Prog (p= 0.3) treated BOEC compared to the 

untreated group. However, a mixture of Est, FSH, LH and Prog decreased the 

abundance of TRPC1 by 0.66 fold (p= 0.01) in permeabilized BOEC compared 

to the control group. At stage 4 of the estrous cycle, abundance of TRPC1 

channel in Est (p= 0.09) and FSH/LH (p= 0.1) treated BOEC was not 

significantly different relative to the untreated BOEC. However, Prog increased 

abundance of TRPC1 by 1.24 fold (p= 0.03) relative to the untreated BOEC. 

Furthermore, a mixture of Est, FSH, LH and Prog increased the abundance of 

TRPC1 channel by 1.4 fold (p= 0.008) in permeabilized BOEC at stage 4 of the 

estrous cycle compared to the control group (Fig 4.50, A). 

The abundance of TRPC6 in permeabilized BOEC at stage 1 of the estrous 

cycle was reduced by 0.04 fold (p= 0.008) compared to the control group under 

the effect of Est. However, FSH/LH (p= 0.9) and Prog (p= 0.4) did not induce 

any significant changes in abundance of TRPC6 relative to the untreated group. 
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A mixture of Est, FSH, LH and Prog decreased the abundance of TRPC6 

channel by 0.6 fold (p= 0.02) compared to the control group. At stage 2 of the 

estrous cycle, Est reduced the abundance of TRPC6 channel by 0.69 fold (p= 

0.01) relative to the control BOEC. In contrast, FSH and LH increased the 

abundance of TRPC6 by 1.38 fold (p= 0.009) compared to the untreated group. 

Prog significantly reduced the abundance of TRPC by 0.9 fold (p= 0.04) relative 

to the untreated group. A combination of Est, Prog, FSH and LH reduced the 

abundance of TRPC6 channel by 0.13 fold (p= 0.0008) compared to the control 

group.  At stage 3 of the estrous cycle in permeabilized  BOEC, Est (p= 0.9) did 

not induce a significant effect on abundance of TRPC6 channel compared to 

the untreated BOEC. However, both FSH/LH (p= 0.0003) and Prog (p= 0.002) 

reduced the abundance of TRPC6 channel by 0.56 and 0.77 fold respectively 

compared to the control group. Furthermore, a combination of Est, FSH, LH and 

Prog decreased the abundance of TRPC6 channel by 0.63 fold (p= 0.005) 

relative to that of the control group. At stage 4 of the estrous cycle, Est (p= 

0.05) and FSH/LH increased the abundance of TRPC6 in permeabilized BOEC 

slightly by 1.31 fold (p= 0.04) compared to the control group. However, Prog 

induced a decrease by 0.56 fold (p= 0.003) in abundance of TRPC6 compared 

to the control group. Furthermore, a combination of Est, FSH, LH and Prog 

decreased the abundance of TRPC6 channel by 0.79 fold (p= 0.04) in 

permeabilized compared to the untreated BOEC (Fig 4.50, B).  
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 Fig 4.50 Effect of sex hormones on abundance of TRPC1 and TRPC6 channels in 

permeabilized Bovine Oviduct Epithelial Cultured Cells (BOEC). Abundance of both 

TRPC1 (4.49, A) and TRPC6 (4.49, B) channels was altered in BOEC treated with sex 

hormones. All data are expressed as a mean of 3 replicates ± 1 standard deviation. (* = 

p<0.05; ** = p<0.01; *** = p<0.001). 
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4.2 Effect of sex hormones on protein expression of TRPC1 and TRPC6 in 

cultured bovine oviduct epithelial cells throughout the estrous cycle 

It was shown in section 3.4 and 4.1.3 that sex hormones are involved in TRPC 

gene expression regulation, and in the pattern of abundance of TRPC1 and 

TRPC6 channels in Bovine Oviduct Epithelial Cultured Cells (BOEC). The effect 

of sex hormones on TRPC1 and TRPC6 protein expression was studied using 

the western blot technique. As the amount of protein loaded on to each gel was 

equal (35 µg), the protein expression level of TRPC1 and TRPC6 in BOEC with 

different treatments could be compared to each other and the control. In BOEC 

treated with Est, TRPC1 protein expression was lower at stages 1, 2 and 3 

compared to the control (Fig 4.51, A and B). Protein expression of TRPC6 was 

strongly reduced in Est-treated BOEC at all stages of estrous cycle; more 

significantly at stage 3 and 4 compared to the untreated BOEC (Fig 4.51, A and 

B). In FSH/LH-treated BOEC, protein expression of TRPC1 was increased at 

stage 4 of the estrous cycle compared to the control group (Fig 4.51, A and C). 

In contrast, protein expression of TRPC6 was decreased at stage 1 and 

increased at stage 3 compared to the control group (Fig 4.51, A and C). In 

Prog-treated BOEC, protein expression of TRPC1 was slightly reduced at stage 

3 compared to the untreated BOEC. However, this decrease was significantly 

greater than at stage 4 of the estrous cycle compared to the control BOEC (Fig 

4.51, A and D). No significant difference was observed in TRPC6 protein 

expression in Prog-treated BOEC compared to the control group (Fig 4.51, A 

and D). Protein expression of TRPC1 at all 4 stages of the estrous cycle was 

significantly decreased in BOEC treated with the mixture of Est, FSH, LH and 

Prog (Fig 4.51, A and E). In contrast, protein expression of TRPC6 was slightly 

increased at stage 1 of the estrous cycle in BOEC treated with the mixture of 

Est, FSH, LH and Prog compared to that of the control BOEC (Fig 4.51, A and 

E). 
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Fig 4.51 Effect of sex hormones on TRPC1 and TRPC6 protein expression in Bovine Oviduct 

Epithelial Cultured Cells (BOEC). Protein expression level of TRPC1 and TRPC6 was altered by 

Est (4.51, B), FSH and LH (4.51, C), Prog (4.51, D) and the mixture of Est, FSH, LH and Prog 

(4.51, E) individually and combined compared to the untreated BOEC (4.51, A). n=1 
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4.3 Discussion 

The data presented in this chapter show that TRPC1 and TRPC6 are localized 

on the apical, basal and the lateral sides of the cells of the bovine oviduct and 

uterine epithelial tissue. Generally, TRPC6 is more abundant on the oviduct 

epithelium compared to TRPC1. In bovine oviduct epithelial tissue abundance 

of both TRPC1 and 6 on the apical, basal and lateral sides in the infundibulum, 

ampulla and isthmus regions of the oviduct changes throughout the estrous 

cycle. These changes in abundance of TRPC1 and TRPC6 follow the same  

pattern throughout the estrous cycle, however, some differences were observed 

in the pattern of  TRPC1 and 6 abundance on the apical, basal and lateral side 

of the tissue in the oviduct. For example, changes in membrane abundance of 

TRPC6 on the apical and basal sides of the infundibulum, ampulla and isthmus 

epithelium at stage 1 of the estrous cycle were different to that of the lateral 

side. The difference in abundance of TRPC1 on the apical, basal and the lateral 

sides of the epithelium might be due to its physiological role in association with 

STIM and the complex of STIM and Orai proteins (Hong et al., 2011). STIM1 

regulates TRPC1, 3, 4, 5 and 6 (Yuan et al., 2007). However, TRPC1, 4 and 5 

are gated directly by STIM1 whereas, the regulatory effect of STIM1 on TRPC3 

and TRPC6 is via the heteromultimerization of TRPC1-TRPC3 and TRPC4-

TRPC6 (Yuan et al., 2007). Therefore, TRPC channels are functional in STIM-

dependent and STIM -independent mode indicating their role as Store- 

Operated Channels (SOC) and Receptor- Operated Channels (ROC). The 

functional mode of TRPC channels could determine their localization either on 

the membrane (apical, basal and lateral) or intracellularly. 

Although TRPC6 was localized on all sides of the epithelial membrane, its 

abundance was highest on the apical membrane of both the oviduct and uterine 

epithelium throughout the estrous cycle. A similar pattern of TRPC6 distribution 

on both apical and basal membranes was described by  Bandyopadhyay et al., 

(2005) in polarized Madin-Darby canine kidney cells (MDCK) and salivary gland 

epithelial cells (Bandyopadhyay et al., 2005).  

Polarity is a key feature of epithelial tissues and intracellular calcium 

concentration plays a vital role in the maintenance of this (Schwab et al., 1997; 

Kimura et al., 2001). It has been clearly shown that TRPC1 is one of the key 
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players in determining the polarity of Madin–Darby canine kidney-focus 

epithelial cells (Fabian et al., 2008). Furthermore, in polarized rat podocyte cells 

the TRPC6 channel was localized on the apical membrane and co-localized 

with Na+-K+-ATPase (NKA) in the basolateral membrane (Goel et al., 2006). 

NKA is involved in maintaining the resting membrane potential (Lafaire & 

Schwarz, 1986), cellular ion transport, in particular across the epithelial cells 

(Sugi et al., 2001), controlling cell volume (Kerr et al., 1982) as well as being a 

signal transducer (Xie & Cai, 2003). Colocalization of TRPC6 with NKA in 

basolateral membrane of the rat podocytes suggests the presence of a similar 

functional unit in the bovine oviduct and uterine epithelial tissue (Goel et al., 

2006).  It would therefore be interesting in future work to investigate if such an 

interaction occurs in female reproductive tissue. 

Abundance of both TRPC1 and TRPC6 is variable from infundibulum to the 

isthmus end of the oviduct throughout the estrous cycle and this might indicate 

the involvement of these channels in various physiological functions of each of 

infundibulum (oocyte transport) (Talbot et al., 1999), ampulla (fertilization) 

(Shalgi & Phillips, 1988) and isthmus (spermatozoa reservoir and early embryo 

transport) (Lefebvre et al., 1995; Kölle et al., 2009) throughout the estrous 

cycle.     
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Chapter 5 

 

Physiological role of TRPC channels in 

calcium homeostasis of bovine oviduct 

epithelial cells 
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5.1 Functional role of Transient Receptor Potential (TRP) Channels in 

Bovine Oviduct Epithelial Cultured Cells (BOEC) throughout the estrous 

cycle 

These experiments were carried out to discover the physiological role of TRPC 

channels in Bovine Oviduct Epithelial Cultured Cells (BOEC). 

Fig 5.1 and 5.2 shows the data collected from experiments to discover whether 

uptake of calcium by BOEC varies throughout the oestrous cycle due to 

different expression level of TRPC channels at each stage of the cycle. BOEC 

of each stage of the estrous cycle were loaded with 10 µM Fura PE 3-AM in 

calcium free solution as described in section (2.21). Excess dye was removed 

and the basal intracellular calcium concentration of cells in calcium free solution 

was measured. Signal collected at 380 nm (F380) represents the amount of the 

free Fura PE 3-AM and signal collected at 340 nm (F340) emission represents 

the amount of Fura PE 3-AM bound to intracellular calcium. The ratio of 

F380/F340 gives the changes in intracellular calcium concentration. Addition of 

1.5 mM calcium to the extracellular solution resulted in a significant increase in 

calcium influx into the cell and consequently an increase in intracellular calcium 

concentration (Fig 5.1). The data from Fig 5.1 and 5.2 indicate that the calcium 

influx in stage 2 BOEC was modestly higher by 1.14 fold (p= 0.001) relative to 

that of the stage 1. There is no significant difference in basal calcium uptake in 

stage 3 BOEC (p= 0.1) compared to the stage 1. However in stage 4 BOEC 

calcium influx was higher by 1.20 fold (p= 0.0002) compared to that of stage 1.  
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 Fig 5.1 Basal calcium intake in Bovine Oviduct Epithelial Cultured Cells (BOEC) throughout the 

estrous cycle.  This figure is an example of data collected from the plate reader.  The figure 

indicates the changes in free Fura PE 3-AM  verses Fura PE 3-AM bound to the intracellular 

calcium when free calcium extracellular was replaced with solution containing 1.5 mM calcium. 

Changee in basal calcium uptake was measured in BOEC at stage 1 (5.1, A), Stage 2 (5.1, B), 

Stage 3 (5.1, C) and Stage 4 (5.1, D) of the estrous cycle. 
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Fig 5.2 Basal calcium intake in Bovine Oviduct Epithelial Cultured Cells (BOEC) harvested from 

tracts at each stage of the oestrous cycle. This figure shows the mean of the data in Fig 5.1. 

Increase in [Ca
2+

]i occurred by replacing the extracellular Ca
2+

 free solution with solution 

containing 1.5 mM Ca
2+

 was higher at stage 2 and 4 relative to the stage 1. However, no 

significant difference was observed in calcium influx in stage 4 BOEC compared to that of the 

stage 1. All data are expressed as a mean of 6 experiments ± 1 standard deviation. (* = p<0.05; 

** = p<0.01; *** = p<0.001). 
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The data in Fig 5.3 and 5.4 indicate changes in intracellular calcium 

concentration induced by Hyperforin, a TRPC6 channel activator, and 

SKF96365, a general TRP channel blocker. Hyperforin did not induce an 

increase in calcium influx in BOEC at stage 1 of the estrous cycle. 

Unexpectedly, addition of SKF96365 which is a general TRP channel blocker 

slightly increased the calcium influx into BOEC by 1.16 fold (p= 0.01)  compared 

to the intracellular calcium ([Ca2+]i) level in BOEC treated with extracellular 

solution containing 1.5 mM Ca2+ and Hyperforin (Fig 5.3, A).  However, 

intracellular calcium concentration was increased by 1.15 fold (p= 0.001) after 

addition of Hyperforin to the extracellular solution at stage 2 of the estrous cycle 

compared to [Ca2+]i of BOEC incubated with extracellular solution containing 1.5 

mM Ca2+. The Hyperforin-induced increase in Ca2+ influx was abolished by 

addition of SKF96365 to extracellular solution in BOEC at stage 2 of the estrous 

cycle and [Ca2+]i was reduced by 0.89 fold (p= 0.008) compared to that before 

addition of SKF96365 (Fig 5.3, B). At stage 3 of the estrous cycle, treatment of 

BOEC with Hyperforin induced an increased in [Ca2+]i by 1.48 fold (p= 0.003) 

compared to that of the untreated BOEC. Treatment of stage 3 BOEC with 

SKF96365 while Hyperforin was still present in the extracellular solution 

promoted a 0.76 fold (p= 0.01) decrease in [Ca2+]i relative to that before addition 

of SKF96365 (Fig 5.3, C). Hyperforin increased the Ca2+ influx in BOEC at 

stage 4 of the estrous cycle by 1.30 fold (p= 2.78 x 10-7) compared to that 

before Hyperforin treatment. Treatment of stage 4 BOEC with SKF96365 

resulted in a decrease in [Ca2+]i by 0.34 fold (p= 4.64 x 10-11) in comparison to 

that of the stage 4 BOEC before addition of SKF96365 (Fig 5.3, D). Changes in 

[Ca2+]i induced by Hyperforin in stage 2 BOEC was higher by 1.17 fold (p= 

0.0008) compared to that of the stage 1 BOEC. The increase in [Ca2+]i  induced 

by Hyperforin was higher by 1.29 (p= 0.01) and 1.12 (p= 0.0001) fold 

respectively at in stage 3 and 4 BOEC relative to the stage 1 BOEC. The 

intracellular calcium concentration in BOEC in response to SKF96365 at stage 

2 was lower by 0.76 (p= 0.001), 0.78 (p= 8.33 x 10-5) and 0.29 (p= 2.77 x 10-6) 

fold respectively at stage 2, 3 and 4 of the estrous cycle (Fig 5.4).  

 

 



195 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   

Fig 5.3 Changes in intracellular calcium concentration induced by Hyperforin and SKF96365 in 

Bovine Oviduct Epithelial Cultured Cells (BOEC) harvested from tracts at each stage of the 

oestrous cycle. This figure is an example of data collected from the plate reader. Hyperforin 

induced a small increase in calcium influx at stage 1 (5.3, A) of the estrous cycle. Calcium influx 

promoted by Hyperforin at stage 2 (5.3, B), stage3 (5.3, C) and stage 4 (5.4, D) of the estrous 

cycle was stronger than that of stage1 (5.3, A). SKF96365 slightly increased the calcium influx 

at stage1 (5.3, A) of the estrous cycle. However, intracellular calcium concentration was 

reduced by SKF96365 at stage 2 (5.3, B), 3 (5.3, C) and stage 4 (5.4, D) of the estrous cycle. 
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Fig 5.4 Changes intracellular calcium concentration induced by Hyperforin and SKF96365 in 

Bovine Oviduct Epithelial Cultured Cells (BOEC) throughout the estrous cycle. Hyperforin 

induced a calcium influx in stage 2, 3 and 4 BOEC but not in stage 1 BOEC. Preliminary 

activation TRPC6 channel by Hyperforin in BOEC at stage 1 of the estrous cycle resulted in 

unexpected increase in calcium influx by SKF96365 which is a general TRP channel blocker. 

However, at stage 2, 3 and 4 of the estrous cycle SKF96365 abolished the Hyperforin-induced 

increase in intracellular calcium concentration . All data are expressed as a mean of 6 

experiments ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). * represents the P 

value, comparing the changes in calcium influx induced by Hyperforin  at different stage of the 

estrous cycle to the stage 1 in  BOEC. * represents the P value, comparing the changes in 

intracellular calcium concentration induced by SKF96365 at different stage of the estrous cycle 

to the stage 1 in  BOEC.  
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Fig 5.5 and 5.6 show that treatment of BOEC with SKF96365 without activation 

of TPC6 resulted in an inhibition in Ca2+ influx and decrease in [Ca2+]i by 0.90 

fold (p= 0.006), 0.76 fold (p= 2.93 x 10-7), 0.89 fold (p= 1.66 x 10-6)  and 0.63 

fold (p= 8.63 x 10-5) at stage 1 (Fig 5.5, A), 2 (Fig 5.5, B), 3 (Fig 5.5, C) and 4 

(Fig 5.5, D) of the estrous cycle respectively (Fig 5.6). Changes induced by 

SKF96365 in stage 2 BOEC was not significantly different (p= 0.2) to that of the 

stage 1. Furthermore, no significant difference were observed in effect induced 

by SKF96365 in stage 2 (P= 0.05) and 3 (p= 0.1) BOEC relative to that of stage 

1.  

Treatment of BOEC incubated in calcium solution containing SKF96365, with 

Hyperforin resulted in an increase in intracellular calcium concentration at all 

stages of the estrous cycle (Fig 5.5 and 5.6). Intracellular calcium concentration 

was increase by 1.46 (1.53 x 10-5), 1.53 (6.54 x 10-5), 1.57 (p= 0.001) and 1.53 

(p= 1.95 x 10-8) fold as a consequence of Hyperforin treatment of BOEC at 

stage 1, 2, 3 and 4 of the estrous cycle respectively (Fig 5.6). No significant 

difference was observed in BOEC response to Hyperforin at stage 2, 3 and 4 

relative to stage 1 of the estrous cycle (Fig 5.6).  
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Fig 5.5 Changes in intracellular calcium concentration induced by SKF96365 and Hyperforin in 

Bovine Oviduct Epithelial Cultured Cells (BOEC) throughout the estrous cycle. This figure is an 

example of data collected from the plate reader.  SKF96365 reduced the intracellular calcium 

concentration at stage 1 (5.5, A), 2 (5.5, B), 3 (5.5, C) and 4 (5.5, D) of the estrous cycle. 

Introducing Hyperforin to the extracellular solution led to an increase in intracellular calcium 

concentration at stage1 (5.5, A), 2 (5.5, B), 3 (5.5, C) and 4 (5.5, D) of the estrous cycle.  
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Fig 5.6 Changes in intracellular calcium concentration induced by SKF96365 and Hyperforin in 

Bovine Oviduct Epithelial Cultured Cells (BOEC) throughout the estrous cycle. SKF96365 

reduced the intracellular calcium concentration at all 4 stages of the estrous cycle. Treatment of 

BOEC with Hyperforin resulted in an increase in calcium influx at stage 1, 2, 3 and 4 of the 

estrous cycle. However, no significant difference was observed in effect of SKF96365 and 

Hyperforin at stage 2, 3 and 4 compared to stage 1 of the estrous cycle. All data are expressed 

as a mean of 6 experiments ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). * 

represents the P value, comparing the changes in calcium influx induced by SKF96365  at 

different stage of the estrous cycle to the intracellular calcium level before the treatment in  

BOEC. * represents the P value, comparing the changes in intracellular calcium concentration 

induced by Hyperforin at different stage of the estrous cycle to the intracellular calcium 

concentration after SKF96365 in BOEC.  
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The data in Fig 5.7 and 5.8 indicate the effect of 2.5-Di-t-butylhydroquinone 

(DBQ) which is sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) 

inhibitor on intracellular calcium.  DBQ induced a very small transient increase 

in intracellular calcium concentration at all stages of the estrous cycle (Fig 5.7). 

The DBQ-induced transient increase in intracellular calcium concentration at 

stage 2 was not significantly different (p= 0.6) to that of the stage 1. However, 

the DBQ-induced effect in BOEC was lower at stage 3 and 4 by 0.75 (p= 

0.0003) and 0.49 (p= 1.56 x 10-6) fold respectively relative to the stage 1. 

Replacing the Ca2+ free solution with extracellular solution containing 1.5 mM 

Ca2+ after depleting the intracellular store resulted in an increase in [Ca2+]i . This 

increase was not significantly different at stage 2 (P= 0.2), 3 (p= 0.05) and 4 (p= 

0.8) compared to the stage1 (Fig 5.7 and 5.8). Addition of SKF96365 to the 

extracellular solution led to a fall in [Ca2+]i in BOEC. Effect of SKF96365 was 

stronger at stage 4 compared to the other stages of the estrous cycle. Effect of 

SKF96365 was higher at stage 2, 3 and 4 by 1.18 (p= 0.04), 1.28 (p= 0.0002) 

and 2.09 (p= 6.69 x 10-8) fold respectively relative at stage 1 (Fig 5.7 and 5.8). 
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Fig 5.7 Depleting the intracellular calcium store by DBQ enhanced the inhibitory effect of 

SKF96365 on TRP channels present in Bovine Oviduct Epithelial Cultured Cells (BOEC) 

throughout the estrous cycle. This figure is an example of data collected from the plate reader. 

Treatment of BOEC with DBQ induced a small transient increase in intracellular calcium 

concentration due to the intracellular store depletion. SKF96365 inhibited the calcium influx at 

all 4 stages of the estrous cycle in BOEC. However, the effect of SKF96365 was much stronger 

at stage 4 (5.7, D) compared to stage 1 (5.7, A),  2 (5.7, B) and 3 (5.7, C) of the estrous cycle. 
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Fig 5.8 Depleting the intracellular calcium store by DBQ enhanced the inhibitory effect of 

SKF96365 on TRP channels present in Bovine Oviduct Epithelial Cultured Cells (BOEC) 

throughout the estrous cycle.SKF96365-induced decrease in intracellular concentration was 

stronger at stage 4 compared to the other stages of the estrous cycle. All data are expressed as 

a mean of 6 experiments ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). * 

indicates the P value comparing the effect of SKF96365 on calcium influx at stage 2, 3 and 4 

relative to that of the stage 1 of the estrous cycle. 
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5.2 Discussion 

The data above indicate that basal calcium influx in stage 2 and 4 BOEC was 

significantly higher than in stage 1 and 3 (Fig 5.1 and 5.2). However, mRNA 

expression of all TRPC isoforms present in BOEC, other than TRPC2, were 

lower at stage 2 and 4 compared to that of stage 1 and 3 of the estrous cycle 

(Fig 3.3). However, it has been shown previously in chapter 3 and 4 that gene 

expression does not necessarily equate to functional protein levels. Higher 

mRNA level at 1 stage could be due to the requirement for a higher amount of 

functional protein for the next stage. The time gap between the high level of 

mRNA and high level functional protein could be due to the time required for 

translation and post-translational modification (PTM). In other work, mRNA of 

TRPC2 has been detected in bovine testis (Wissenbach et al., 1998). TRPC2 

mRNA was also detected in bovine spleen and liver (Wissenbach et al., 1998). 

Furthermore, TRPC2 is expressed in olfactory epithelium and is possibly 

involved in a pheromone signalling cascade (Liman et al., 1999). It has also 

been reported that Gαs-like G proteins are the G-protein coupled receptors 

involved in transduction in olfactory epithelium (Schild & Restrepo, 1998). 

Interestingly, the LH receptor induces it effects via Gαs-like G protein (Dufau, 

1998). This could indicate a possible role of TRPC2 channels in  bovine oviduct 

epithelium calcium homeostasis.  

 

In order to test functionality of the TRP channels, experiments were conducted 

where cells were exposed to a series of activators and inhibitors.  Hyperforin is 

a TRPC6 specific activator which induced an increase in calcium influx at stage 

2, 3 and 4 but not at stage 1 of the estrous cycle (Fig 5.4) indicating that TRPC6 

is physiologically active in the bovine oviduct epithelial cells. Hyperforin-induced 

calcium influx in BOEC was higher at stages 2, 3 and 4 of the estrous cycle 

compared to that of stage 1. However, the mRNA expression of TRPC6 in 

BOEC was lower at stages 2 and 4 compared to stages 1 and 3. The apparent 

discrepancy between the gene expression data and the findings relating to 

functional activity could be due to different ratios of homotetramer TRPC6 to 

heterotetramer TRPC3-TRPC6 in BOEC at each stage of the estrous cycle 

(Hirschler-Laszkiewicz et al., 2009). Furthermore, the association of TRPC6 

with STIM and the complex of STIM and Orai (Hong et al., 2011) could also 
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affect the activation of TRPC6 because of its distinct roles as Store-operated 

calcium channels (SOC) and Receptor-operated calcium channels (ROC).  

 

 SKF96365 is a general TRP channel blocker and surprisingly induced a 

modest increase in calcium influx in stage 1 BOEC after treatment with 

Hyperforin which did not induce any effect on intracellular calcium 

concentration. However, SKF96365 decreased the intracellular calcium 

concentration in stage 2, 3 and BOEC pre-treated with Hyperforin. Calcium 

entry into cells may act not only as a second messenger but can also induce 

membrane depolarization which consequently activates low voltage-activated 

calcium channels (Perez-Reyes, 2003). Besides blocking TRP channels, 

SKF96365 is a potent blocker of low voltage-activated t-type calcium channels 

which have been identified in bovine ciliary epithelial cells (Singh et al., 2010). A 

Hyperforin-induced increase in intracellular calcium concentration could lead to 

a membrane depolarization that could activate the low voltage-activated t-type 

calcium channels. Therefore, it may be concluded that SKF96365 blocks both 

the TRP isoforms present in BOEC and the low voltage-activated t-type calcium 

channels. At stage 1, Hyperforin did not affect the intracellular calcium 

concentration, suggesting that TRPC6 has limited involvement in the calcium 

homeostasis of stage 1 BOEC regardless to its interaction with other TRPC 

isoforms or other signalling proteins such as STIM. Therefore, stage 1 BOEC 

remained polarized after Hyperforin treatment and consequently low voltage-

activated t-type calcium channels were not activated. However, to determine the 

mechanism underlying the SKF96365-induced calcium influx into the stage 1 

BOEC after Hyperforin treatment further investigation is required. This could be 

done by using siRNA to knock-out each TRPC isoforms and study their role in 

this mechanism. Furthermore, SKF96365-induced activity of low voltage-

activated t-type calcium channels could be determined by depolarizing the cell 

membrane at this stage. 

 

SKF96365 alone induced a decrease in intracellular calcium concentration in 

BOEC at all 4 stages of the estrous cycle (Fig 5.6). This suggests that some or 

all TRPC isoforms present in BOEC are physiologically active throughout the 

estrous cycle. However, inhibition in calcium influx induced by SKF96365 in 

stage 4 BOEC pre-treated with Hyperforin was stronger than that of the BOEC 
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not treated with Hyperforin. This could be due to the activation of low voltage-

activated t-type calcium channels in BOEC pre-treated with Hyperforin (Singh et 

al., 2010). After blocking the TRP channels in BOEC with SKF96365, treatment 

of the cells with Hyperforin still induced an increase in intracellular calcium 

concentration with could be due to the reversible effect of the SKF96365 

(Cherednichenko et al., 2004).  

Depletion of the intracellular calcium store with 2.5-Di-t-butylhydroquinone 

(DBQ) increased the basal calcium intake in BOEC at all 4 stages of the estrous 

cycle compared to the control group indicating that intracellular store depletion 

which activates Store-Operated Calcium channels (SOC) is present and active 

in BOEC. Furthermore, this suggests the possible role of some TRPC isoforms 

present in BOEC as Store-Operated Calcium channels (SOC) (Chevesich et al., 

1997). The role of TRPC channels as SOC has been identified in other 

epithelial cells such as; TRPC1 in prostate epithelial cells (Vanden Abeele et al., 

2003) and TRPC4 in human corneal epithelial cells (Yang et al., 2005). In 

general, the data presented in this chapter indicate that some or all TRPC 

isoforms present in BOEC are functionally active, possibly as both Store-

operated calcium channels (SOC) and Receptor-operated calcium channels 

(ROC). 
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Chapter 6 

 

Role of TRPC channels in female fertility 
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According to the NHS website around 30% of infertility is related to problems 

with the woman. Causes of infertility in women are as below: 

1. Ovulation disorders which can  result in  number of conditions; 

 Polycystic ovary syndrome (PCOS) 

 Premature ovarian failure 

 Hyperthyroidism and hypothyroidism 

 Cushing's syndrome 

2. Damage or dysfunction of the womb and fallopian tubes which could be 

due to; 

 Pelvic surgery 

 Cervical surgery 

 Submucosal fibroids 

 Endometriosis 

 Pelvic inflammatroy disease 

3. Sterilisation 

4. Medicines and drugs 

 Non-steroidal anti-inflammatory drugs (NSAIDs) 

 Chemotherapy 

 Neuroleptic medicines 

 Spironolactone 

 Illegal drugs such as coaine 

5. Age 
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The polycystic ovary which is one of the causes of infertility in women was first 

described by Stein and Leventhal in 1935 (Stein & Leventhal, 1935) as an 

important cause of anovulation or irregular ovulation in infertile females. 

Polycystic ovarian syndrome (PCOS) is a common endocrine disorder with a 

spectrum of symptoms and signs among different individuals or in an individual 

over time (Balen et al., 1995). Different features of PCOS are classified into 

three categories; clinical, endocrine and metabolic. PCOS typically manifests as 

a combination of severe menstrual disturbance (amenorrhea or 

oligomenorrhea), hirsutism, acne, alopecia, and recurrent miscarriages (Sagle 

et al., 1988). The endocrine aspects of this syndrome include 

hyperandrogenism, elevated level of luteinizing hormone (LH), oestrogen and 

prolactin. Insulin resistance, obesity, lipid abnormalities and an increased risk of 

impaired glucose tolerance and type 2 diabetes mellitus are considered as the 

metabolic aspects of the syndrome (Tsilchorozidou et al., 2004). PCOS might 

be differentially inherited and its expression is affected by a number of 

interlinking factors. Genes that could be linked to PCOS are involved in the 

regulation of ovarian steroidogenesis and those which affect body mass index 

(BMI) and adiposity. Poor diet and reduced exercise are important 

environmental factors and PCOS frequently occurs in combination with obesity 

and insulin resistance. This could be an explanation of the correlation between 

obesity development and symptom severity in women with PCOS (Barber et al., 

2006).  

Ther pathogenesis of PCOS has been described by Tsilchorozidou, et al. 

(2004) as, "“A unique defect in insulin action and secretion that leads to 

hyperinsulinaemia and insulin resistance, a primary neuroendocrine defect 

leading to an exaggerated LH pulse frequency and amplitude, a defect of 

androgen synthesis that results in enhanced ovarian androgen production and 

an alteration in cortisol metabolism resulting in enhanced adrenal androgen 

production” (Tsilchorozidou et al., 2004). 

Insulin resistance occurs due to the low efficiency of insulin in lowering blood 

glucose level.  Insulin resistance is significantly higher in obese PCOS women 

compared to non-obese PCOS women. This observation indicates that insulin 

resistance in obese PCOS patients might result from a combination of dual 

factors; one unique to PCOS and the other obesity specific.  
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 The insulin receptor is a tyrosine kinase receptor (RTK class II). Its activity is 

increased by autophosphorylation of a tyrosine residue which consequently 

initiates signal transduction and subsequent actions of insulin. The action of 

RTK II is inhibited by serine phosphorylation. Excessive serine phosphorylation 

of insulin receptors leads to inhibit  insulin signalling; this represents a potential 

mechanism of insulin resistance in some PCOS women (Tsilchorozidou et al., 

2004). Serine phosphorylation also increases enzymatic activity of androgen 

biosynthesis, P450c17 (Zhang et al., 1995), which is a single defect and leads 

both to insulin resistance and hyperandrogenism (Tsilchorozidou et al., 2004). 

According to the World Health Organization (WHO) website, recent lifestyle 

changes have resulted in rising rates of obesity; 1.5 billion adults in 2008, and 

consequently hyperinsulinemia which in females is important in the 

pathogenesis of the PCOS. Secretion of androgen from the ovarian stroma is 

stimulated by insulin. Normal development of ovarian follicles is affected by 

androgen (Okutsu et al., 2010). Excessive androgens cause adverse effects on 

follicular growth as well as suppressing apoptosis which permits the survival of 

follicles which may ordinarily be lost by atresia.  

The correlation between hyperinsulinaemia and hyperandrogenism has been 

shown (Prelevic, 1997). However, most of the evidence suggests 

hyperinsulinaemia as a primary factor. Pathways leading to androgen 

production induced by hyperinsulinaemia (Fig. 6.1) include activation of Insulin-

like growth factor I receptors (IGF-1 R) of theca cells by insulin at high 

concentration and insulin-induced enhanced amplitude of LH pulses via 

stimulation of insulin receptors in pituitary tissue (Tsilchorozidou et al., 2004). 

Furthermore, circulating levels of IGF-1 are increased by insulin-induced 

inhibition of hepatic production of IGFBP-1. Hyperinsulinaemia also contributes 

to hyperandrogenism by inhibiting hepatic synthesis of serum sex hormone-

binding globulin (SHBG), which results in an elevation in levels of free androgen 

and estradiol in the blood stream. There is a striking inverse relation between 

peripheral insulin and SHBG levels such that SHBG concentration is considered 

a reliable marker for hyperinsulinaemic insulin resistance (Tsilchorozidou et al., 

2004). 
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Fig. 6.1 Scheme of proposed interactions leading to excessive androgen level in PCOS 

(Tsilchorozidou et al., 2004).  
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Consequently, PCOS is necessarily defined by a range of clinical and 

biochemical features including disturbed menstrual cycle, elevated serum 

concentration of LH, testosterone, androstenedione (Franks, 1995) and insulin, 

obesity, hirsutism, and acne. PCOS has various manifestations and one, all, or 

any combination of those mentioned could be present in association with 

polycystic ovaries.    

According to the Rotterdam polycystic syndrome consensus workshop group 

which is cosponsored by the European Society for Human Reproduction and 

Embryology (ESHRE) and the American Society for Reproductive Medicine 

(ASRM) diagnosis of PCOS should rely on the presence of at least two of the 

following 3 symptoms (Azziz, 2006):  

1) irregular or absent ovulation, elevated levels of androgenic hormones; 

2)  enlarged ovaries containing at least 12 follicles each  

3) polycystic ovaries (transvaginal ultrasound) 

These recommendations form the so-called “Rotterdam Criteria” the 

accepted standard for diagnosis of PCOS. (Rotterdam ESHRE/ASRM-

Sponsored PCOS Consensus Workshop Group., 2004)".  
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6.1 Expression of the TRPC family in human endometrium 

Analysis of TRPC expression in human samples was carried out on archived  

human endometrium biopsy tissues Hull Royal Infirmary Hospital Archives 

provided by Prof S.L. Atkin and used according to the REC reference number of 

07/Q1104/53. 

Expression of TRPC1 (Lane 2), 6 (Lane 6) and 7 (Lane 7) was detected in 

biopsies collected from human endometrium (fig 6.1). Positive expression of β 

actin acting as the endogenous control (Fig 6.1, Lane 1) confirmed the success 

of the PCR reaction. Furthermore, expression of Cytokeratin18 (Fig 6.2, Lane 

8), a marker specific to epithelial cells, confirmed that template cDNA was from 

epithelial cells. The expected size of the PCR products were  β actin 211 bp, 

TRPC1 242 bp, TRPC3 238bp, TRPC4 249bp, TRPC5 255bp, TRPC6 218 bp, 

TRPC7 240bp and Cytokeratin18  249 bp . 

 

 

   

  

  

  

  

  

Fig 6.2  Expression of TRPC genes in human endometrium. PCR product was loaded as 

following: Lane 1; β actin, Lane 2; TRPC1, Lane 3; TRPC3, Lane 4; TRPC4, Lane 5; TRPC5, 

Lane 6; TRPC6, Lane 7; TRPC7 and Lane 8; Cytokeratin18.  PCR Products were 

electrophoresed on a 2% agarose gel.  Band presence indicates positive expression of TRPC 1, 

6 and 7 in human endometrium tissue; expression of TRPC3, 4 and 7 was not detected. TRPC2 

is a pseudogene in the human.  All PCR products were of the predicted size.   of  β actin: 211 

bp, TRPC1: 242 bp, TRPC6: 218 bp, TRPC7: 240bp and Cytokeratin18 : 249 bp . 
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6.2 TRPC genes and fertility 

Expression of the TRPC channels were next examined in endometrial biopsies 

from women with Polycystic Ovary Syndrome and from women attending for 

assisted conception through In Vitro Fertilization (IVF). The biopsies from the 

endometria of women who were unable to conceive but not diagnosed with any 

physiological problem were used as the control. This group was named Male 

Factor since the cause of infertility was ascribed to pathology specific to the 

male, with the female not having compromised fertility.  These data are 

presented in Fig 6.3. 

 

6.2.1 Expression of TRPC genes in endometrium from Polycystic Ovary 

Syndrome (PCOS) patients 

The data in Fig 6.3, A indicate that expression of TRPC1 in the endometrium of 

PCOS patients was not significantly different (p= 0.1) relative to the male factor 

control. However, expression of both TRPC6 and TRPC7 was up-regulated by 

5.63 (p= 0.01) and 9.83 (0.04) fold respectively in the endometrium of PCOS 

patients compared to the male factor controls (Fig 6.3, B and C). 
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 Fig 6.3 Expression of TRPC genes in the endometrium of women with PCOS was different to 

that of the endometrium of normal women. Expression of TRPC1 in the endometrium of PCOS 

patients  was similar to that of the healthy women (6.3, A). However, TRPC6 and TRPC7 were 

both up-regulated compared to the control group (Fig 6.3 B and C respectively). All data are 

expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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6.2.2 Expression of TRPC genes in endometrium of IVF patients 

The human endometrium biopsies from IVF patients were provided by Dr E. 

Dickerson and used in accordance with REC approval reference number 

07/Q1104/53. 

The data from Fig 6.4, A indicate that in endometrium of women attending for In 

Vitro Fertilization (IVF) on day 21 of the menstrual cycle, expression of TRPC1 

was 6.78 fold (p= 0.009) higher than that of endometrium from women who 

were attending for treatment for ‘male factor’ infertility. Furthermore, expression 

of TRPC6 was 2.20 fold (p= 0.01) higher in endometrium of IVF patients relative 

to the male factor patients (Fig 6.4, B). However, TRPC7 was dramatically 

down-regulated to 10%  (p= 0.001) of its value in the control group (Fig 6.4, C). 
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Fig 6.4 Expression of TRPC genes in endometrium of IVF patients was different to that of the 

endometrium of normal women. Expression level of TRPC1 (Fig 6.4 A) and TRPC6 (Fig 6.4 B) 

was up regulated in endometrium of IVF patients relative to the male factor. However TRPC7 

expression was reduced compared to the control group (Fig 6.4 C). All data are expressed as a 

mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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6.3 Localization of TRPC channels in human endometrium throughout the 

menstrual cycle 

Semi-quantitative measurements of TRPC1 and TRPC6 throughout the 

menstrual cycle were carried out in relation to the proliferative phase of the 

cycle. In non-permeabilized human endometrium tissue, the expression level of 

TRPC1 channels on cytoplasmic membranes was similar at the proliferative, 

early secretory (p= 0.05) and late secretory (p= 0.1) phases of the menstrual 

cycle. However, at the mid secretory phase, abundance of TRPC1 was lower by 

0.41 fold (p= 0.003) compared to that of the proliferative phase (Fig 6.5).  

Membrane abundance of TRPC6 protein in human endometrium was higher in 

glandular epithelium at the proliferative phase compared to the rest of the tissue 

(Fig 6.5, A). However, at early (p= 0.8) and mid (p= 0.1) secretory phase, 

abundance of TRPC6 was similar throughout the tissue (Fig 6.5, B and C). At 

the late secretory phase abundance of TRPC6 was lower by 0.50 fold (p= 0.04) 

relative to that of the proliferative phase (Fig 6.5, D).  

 

 

 

 

 

 

 

 

 

 

 

 

 



218 
 

 

  

   

 

  

  

  

  

  

  

  

 

Fig 6.5 Localization of TRPC1 and TRPC6 in non-permeabilized human endometrium 

throughout the menstrual cycle. Abundance of  TRPC1 was similar at proliferative (6.5, A),  

early secretory (6.5, B) and late secretory (6.5, D) phase. Abundance of TRPC1 was lower at 

mid secretory phase (6.5, C) compared to other stages of the menstrual cycle. TRPC6 was 

more abundant in the glandular compartment (shown by arrows) compared to the rest of the 

tissue in the proliferative phase (6.5, A). At the early secretory (6.5, B), mid secretory (6.5, C) 

and late secretory (6.5, D) phase, TRPC6 was localized evenly throughout the non-

permeabilized human endometrium tissue. Abundance of TRPC6 was equal at proliferative (6.5, 

A), early (6.5, B) and mid (6.5, C) secretory phase. Abundance of TRPC6 was lowest at late 

proliferative phase (6.5, D). Nuclei are labeled with DAPI (Blue), TRPC1 with Alexa Four 647 

FITC conjugated (Red) and TRPC6 with Alexa Flour 488 (Green). 
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Fig 6.6 Abundance of TRPC1 and TRPC6 in non-permeabilized human endometrium 

throughout the menstrual cycle. Abundance of TRPC1 was similar at proliferative and early and 

late secretory phases. However, abundance of TRPC1 was reduced by to half of that 

proliferative phase at the mid secretory phase of the menstrual cycle (6.6, A). Abundance of 

TRPC6 was similar at the proliferative, early and mid secretory phases of the menstrual cycle. 

However, abundance of TRPC6 was reduced to half at the late secretory phase compared to 

the proliferative phase of the menstrual cycle (6.6, B). All data are expressed as a mean of 3 

replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = p<0.001). 
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In the permeabilized human endometrium tissue, abundance of TRPC1 was 

higher in columnar epithelium compared to the glandular part of the tissue at the 

proliferative phase of the menstrual cycle (Fig 6.7, A). Abundance of TRPC1 in 

permeabilized tissue was lower by 0.62 (p= 0.002) and 0.69 (p= 0.008) fold at 

the early proliferative and late proliferative phases respectively relative to that of 

the proliferative phase. However, no significant difference was observed in 

abundance of TRPC1 in permeabilized tissue at mid secretory phase relative to 

the proliferative phase (Fig 6.8, A). 

Abundance of TRPC6 in permeabilized human endometrium was higher in 

glandular epithelium compared to the columnar epithelium at the proliferative 

phase as shown by the arrow in Fig 6.7, A.  At early and late secretory phase 

TRPC6 was present at even amounts (Fig 6.7, A, B and D) relative to the 

proliferative phase. However, abundance of TRPC6 at mid secretory phase in 

permeabilized human endometrium was even higher by 1.67 fold (p= 0.03) 

compared to that of the proliferative phase of the menstrual cycle (Fig 6.8, B).  
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Fig 6.7  Localization and abundance of TRPC1 and TRPC6 in permeabilized human 

endometrium throughout the menstrual cycle. TRPC1 tended to be more abundant in columnar 

epithelium compared to glandular cells in permeabilized human endometrium at the proliferative 

phase of the estrous cycle (6.7 A). However, at  the early secretory stage (6.7 B), mid secretory 

(6.7 C) and late secretory phase (6.7 D) of the menstrual cycle, abundance of TRPC1 was even 

throughout the tissue. TRPC6 appeared more abundant in the glandular part compared to the 

rest of the tissue at proliferative phase, shown by an arrow (6.7 A). At early secretory (6.7 B), 

mid secretory (6.7 C), and late secretory phases (6.7 D) intracellular TRPC6 was localized 

evenly throughout the permeabilized human endometrium tissue. Nuclei are labelled with DAPI 

(Blue), TRPC1 with Alexa Four 647 FITC conjugated (Red) and TRPC6 with Alexa Flour 488 

(Green). 
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Fig 6.8 Abundance of TRPC1 and TRPC6 in permeabilized human endometrium throughout the 

menstrual cycle. Abundance of TRPC1 was similar at the proliferative and mid secretory 

phases. However, lower of TRPC1 was observed at early and late secretory phases (6.8, A). 

Abundance of  TRPC6 was similar in proliferative, early and late secretory phase but higher at 

mid secretory phase compared to other stages of the menstrual cycle (6.8, B). All data are 

expressed as a mean of 3 replicates ± 1 standard deviation. (* = p<0.05; ** = p<0.01; *** = 

p<0.001). 
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6.4 Discussion 

The data presented in this chapter may have significant clinical relevance. The 

results collected from normal human endometrium indicate that TRPC1, 6 and 7 

are expressed (Fig 6.2). Changes in the mRNA expression level of these TRPC 

isoforms and their physiological role in human endometrium throughout the 

menstrual cycle could not be studied due to the lack of biopsies.  However, 

changes in mRNA expression of TRPC1, 6 and 7 in the endometrium of 

patients with Polycystic Ovarian Syndrome as well as endometrium of women 

attending In Vitro Fertilization (IVF) at day 21 of the menstrual cycle strongly 

suggest an important role for TRPC channels in human fertility as well as that of 

the bovine.  

Expression of TRPC1 mRNA in endometrium of PCOS patients was not 

significantly different to that of control tissue. However, mRNA expression level 

of both TRPC6 and TRPC7 was dramatically increased in endometrium of 

PCOS patients (Fig 6.3). Between 6-8% percent of women of reproductive age 

suffer from PCOS (Diamanti-Kandarakis et al., 1999; Asunción et al., 2000; 

Azziz et al., 2004). Variable clinical presentations are observed in this 

heterogeneous disorder. However, increased levels of LH and a normal level of 

FSH are observed in more than 60% of PCOS patients (Blank et al., 2006). 

Furthermore, the post-ovulatory increase in progesterone secretion is not 

present in women with PCOS (Blank et al., 2006). In Chapter 3, it was 

demonstrated that FSH and LH up-regulate the gene expression of TRPC 

isoforms in BOEC at different stages of the estrous cycle and that progesterone 

prevents this up-regulatory effect (Fig 3.4-3.8). Furthermore, the mRNA 

expression level of TRPC isoforms in bovine uterine epithelium was highest at 

stage 4 of the estrous cycle where progesterone is absent and FSH and LH are 

at their highest concentration (Fig 3.10). These data suggest a possible up-

regulatory role of FSH and LH on mRNA expression of TRPC isoforms in 

bovine uterine epithelial tissue and endometrium of PCOS patients and the 

antagonistic activity of progesterone in this process. Examination of TRPC1, 6 

and 7 protein expression levels in endometrium of PCOS patients is necessary 

for further confirmation of these findings.  
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Expression of TRPC1 and 6 was up-regulated in endometrium of patients 

attending for IVF compared to that of women without a physiological problem 

who could not conceive as a result of male partner pathological specification. 

However, expression of TRPC7 was down-regulated in endometrium of these 

patients (Fig 6.4). Discovering the mechanism underlying the changes in 

expression of TRPC1, TRPC6 and TRPC7 in the endometrium of subfertile 

women who attended for IVF is difficult due to lack of background information 

about the patients, however, these data do indicate a role for TRPC channels in 

the epithelial cells of the female reproductive tract.  

The examination of changes in TRPC1, 6 and 7 mRNA expression throughout 

the menstrual cycle was not possible due to difficulties in obtaining human 

biopsies. However, the protein localization and abundance of TRPC1 and 6 was 

studied in endometrium of normal women throughout the menstrual cycle. In the 

glandular epithelium of endometrium, localization of TRPC6 was greater on the 

apical side. Human endometrium acts as a secretory tissue in the early, mid 

and late secretory phase (Kabir-Salmani et al., 2005). Evidence for a possible 

role in this tissue for TRPC channels is provided by the report that G-coupling 

receptors which are the mediators of TRPC channels are localized on the apical 

membrane of  rat salivary glands and kidney ductal cells (Bandyopadhyay et al., 

2005b).  

In conclusion, data presented in this chapter indicate an important role of TRPC 

channels in female reproductive tract, particularly in the epithelium lining the 

endometrium and fallopian tubes. Furthermore, data collected from human 

samples confirmed the possibility of a regulatory role of sex hormones on TRPC 

channel activity.   
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7. Discussion 

The objective of this research was to determine the role of Transient Receptor 

Potential Canonical channels in female reproductive tract; specifically in the 

oviduct and uterus. The focus was on  epithelial tissue due to its direct 

interaction with the gametes and embryo (Croxatto, 2002a) as well as its  role in 

providing an optimal environment (Leese et al., 2001) for reproductive 

processes such as capacitation (Kervancioglu et al., 2000) and fertilization 

(Kano et al., 1994; Kervancioglu et al., 1997). Intracellular calcium 

concentration plays a vital role in the physiological function of epithelial cells 

(Friedman & Gesek, 1995; van de Graaf et al., 2004; Nijenhuis et al., 2005). A 

variety of channels are involved in calcium homeostasis in epithelial cells, one 

of which is TRP channels (van de Graaf et al., 2004; Nijenhuis et al., 2005; 

Menè, 2006; Harteneck & Reiter, 2007; van de Graaf et al., 2007). However, the 

role of TRP channels as an important superfamily of cation channels has been 

neglected in the epithelia of female reproductive tract. The focus of the project 

was on TRPC channels due to their diverse activation pathways as Receptor-

Operated Channels (ROC) and Store-Operated Channels (SOC) and 

physiological function (Xu & Beech, 2001; Clapham, 2003b; Albert et al., 2007). 

The bovine was used a model for the human due to difficulties in obtaining 

human biopsies, and the physiological similarities in female reproductive tract 

and cyclic changes between human and bovine (Navara et al., 1995; Anderiesz 

et al., 2000; Malhi et al., 2005). 

There are several reproductive events after ovulation that are highly calcium 

dependent.  These include: increase in the secretory activity of the epithelial 

cells lining the oviduct in order to provide an optimal microenvironment for the 

gametes and the early embryo; increase in the number of ciliated epithelial cells 

to facilitate the transport of the gametes to the site of the fertilization in the 

ampullary-isthmus junction (AIJ) as well as helping the movement of the early 

embryo to the uterus (Hunter, 1994; Croxatto, 2002a). Changes in the 

intracellular calcium concentration is key in the processes of both secretion 

(Richardson et al., 1985; Sharma & Rao, 1992; Dickens et al., 1996) and 

beating frequency of ciliated cells (Salathe, 2006) and TRP channels have been 

reported to play a role in each process.  For example (Uchida & Tominaga, 

2011), insulin secretion is mediated by TRPM2 via Cyclic adenosine 
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diphosphate ribose (cADPR) (Takasawa et al., 1993) and Protein Kinase A 

(PKA), (Togashi et al., 2006) whereas localization of TRPV4 the base of the 

cilia in the hamster oviductal epithelial cells (Fernandes et al., 2008) and 

localization of TRPV4 at the base of cilia in tracheal epithelial cells (Lorenzo et 

al., 2008) implies a role for these proteins in regulating and stimulating beating 

frequency of the cilia (Lorenzo et al., 2008) 

7.1 TRPC genes expression in epithelial tissue lining female reproductive 

tract 

It was shown in chapter 3 that from seven isoforoms of the TRPC family, 

TRPC1, 2, 3, 4 and 6 are expressed in both bovine oviduct and uterine 

epithelial tissue (Fig 3.1 and 3.9). Quantitative measurements of mRNA of 

TRPC isoforms obtained from each stage of the estrous cycle indicate that the 

expression level of these isoforms changes throughout the estrous cycle in both 

the oviduct and uterus (Fig 3.2 and 3.10). 

Changes in mRNA expression of TRPC isoforms in bovine oviduct epithelium 

was different to that of the bovine uterine epithelium throughout the estrous 

cycle (Fig 3.2 and 3.10).  Expression of TRPC1, 2, 3, 4 and 6 in bovine oviduct 

epithelial tissue was highest at stage 1 where progesterone is the dominant 

hormone and the concentrations of 17β- estradiol, FSH and LH are very low 

(Kaneko et al., 1992). However, in uterine epithelial tissue, expression of all the  

t TRPC isoforms present was  highest at stage 4 of the estrous cycle where the 

concentration of progesterone is very low or absent and 17β- estradiol, FSH 

and LH are the dominant hormones (Kaneko et al., 1992). Stage 1 (day 1-4) 

starts immediately after ovulation, when the oocyte is transported into the 

oviduct. Transport of the oocyte is dependent on the ciliary beat frequency 

which is calcium-dependant (Schmid & Salathe, 2011). Furthermore, plasma 

concentration of 17β- estradiol dramatically drops via  a reduction in 17β- 

estradiol production due to the regression of the corpus luteum (CL).  

Gene expression of both TRPV5 and TRPV6 is up-regulated by 17β-estradiol in 

epithelial cells of duodenum. However, the mechanism underlying this up-

regulation is not understood (van Abel et al., 2003). The regulatory effect of 

17β-estradiol on gene expression of other TRP channel has not been reported. 

One possible link between 17-estradiol and regulation of TRPC expression is 
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the signalling factor nuclear factor-kappa B (NF-КB).  It has been reported by 

Valdez and colleagues (2005) that 17β- estradiol stimulates the NF-КB 

activation in bovine granolusa cells (Valdez & Turzillo, 2005). Moreover, It has 

been reported that FSH triggers the NF-КB activity in rat granolusa cells leading 

to expression of the X-linked inhibitor of apoptosis (XIAP) and inhibition of 

apoptosis (Valdez & Turzillo, 2005). Furthermore, inhibition of  NF-КB activation 

suppresses the FSH-stimulated follicle growth in vitro (Wang et al., 2002a). By 

contrast, progesterone reduces the activation of toll-like receptor 4 (TLR4) and 

NF-κB signalling pathway in the brain of male rats after subarachnoid 

hemorrhage (Wang et al., 2011). The promoter region of TRPC1 contains an 

NF-КB binding site (Paria et al., 2004). Furthermore, expression of TRPC1 in 

human vascular endothelial cells (Paria et al., 2004) and TRPC3 in human 

airway smooth muscle cells (White et al., 2006) is up-regulated in response to 

TNF-alpha; which is an activator of NF-КB pathway (Findlay et al., 2000). The I 

kappa B Kinase (IKK) which phosphorylates the NF-КB inhibitor (IКB) is 

activated by TNF-α. Phosphorylation of IКB at serine 32 and 36 leads its 

ubiquitination and degradation by 26S proteasome. This in turn results in the 

release of the nuclear localization signal of NF-КB and translocation of NF-КB to 

the nucleus. Consequently, binding of NF-КB to its binding sites on DNA is likely 

to result in transcription of NF-КB-linked proteins such as TRPC1 and TRPC3. 

However, FSH-induced activation of NF-КB is independent of IКB 

phosphorylation (Wang et al., 2002b).   

At stage 2 and 3 of the estrous cycle, the concentrations of 17β- estradiol and 

LH are at their lowest level. Several slight increases in FSH concentration (FSH 

waves) occur throughout stage 2 and 3 of the estrous cycle. An increase in the 

concentration of Progesterone begins  between the end of stage 1 and the 

beginning of stage 2, reaching a plateau at the end of stage 2 (Gordon, 2003). 

Progesterone levels drop at the end of stage 3 as the result of regression of the 

corpus luteum, which is induced by secretion of PGF2α by the endometrium 

(Schramm et al., 1983). At stage 4 of the estrous cycle, uterine epithelial tissue 

undergoes proliferation and secretes PGF2α (LaVoie et al., 1975), which is 

induced by binding of oxytocin to its specific receptor in the endometrium. 

Oxytocin signalling elicits a rise in inositol phosphates (IPs), key players in the 

activation pathway for TRPC channels (Clapham, 2003b). Upon activation of 
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Gq-coupled receptors (Okada et al., 1998; Schaefer et al., 2000) and receptor 

tyrosine kinases which activate phospholipases C (PLCs), TRP channels might 

be activated via three pathways; production of diacyglycerol (DAG), hydrolysis 

of phosphatidylinositol (4,5) bisphosphate and production of inositol (1,4,5) 

trisphosphate (IP3) (Ramsey et al., 2006). Activation of α subunit of Gq-coupled 

receptors family leads to stimulation of PLCβ, which in turn results in formation 

of IP3 and DAG. IP3 binds to the IP3 receptor on the endoplasmic reticulum 

membrane and promotes calcium release from internal stores. Furthermore, IPs 

can act as an intracellular calcium concentration regulator (Asselin et al., 1997). 

DAG is an activator of PKCs (Birnbaumer et al., 1996).  Interleukin-1β (IL-1β) is 

a cytokine that regulates protein synthesis and PGF2α secretion in 

endometrium (Davidson et al., 1995). Also, IL-1β regulates the expression of 

TRPC genes in human myometrium (Dalrymple et al., 2004). Furthermore, the 

role of TRPC isoforms in proliferation such as; TRPC6 (Thebault et al., 2006) 

and TRPC1 (Fiorio Pla et al., 2005) has already been  established. Therefore, 

IL-1β could have a regulatory effect on endometrium proliferation through TRPC 

signalling pathways. IL-1β and TNF-α mediate activation of NF-kB in fibroblast-

like synoviocytes via IKK-β (Aupperle et al., 1999). The increase in mRNA of the 

TRPC isoforms present in bovine uterine epithelium at stage 4 of the estrous 

cycle could be partially related to the effect of IL-1β by a similar mechanism, 

due to presence of NF-kB binding site in the promoter region of TRPCs such as 

TRPC1(Paria et al., 2003).  

It was interesting to note that the expression pattern of TRPC isoforms in bovine 

oviduct and uterine epithelial cells maintained in cell culture was different to that 

of the native tissue. This suggests that a key regulatory factor present in vivo is 

absent in conventional in vitro culture medium.  Given the level of endocrine 

control of the reproductive cycle, I hypothesised that the sex hormones may 

play a role in regulating expression of TRP channels.  This was based on the 

observations that sex hormones are the main variable throughout the estrous 

cycle and were absent in the epithelial culture medium. Further investigation 

confirmed the hypothesis that sex hormones regulate the gene expression of 

TRPC isoforms in bovine oviduct and uterine epithelium. 

To examine this possibility, BOEC harvested from different stages of the 

estrous cycle were acutely treated with physiological concentration of sex 
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hormones (Ginther et al., 2010). A combination of FSH and LH resulted in an up 

regulation in expression of all TRPC isoforms throughout the estrous cycle. 

Addition of 17β-estradiol to the mixture of FSH and LH increased the up 

regulatory effect of FSH and LH for each TRPC isoform throughout the estrous 

cycle. Each of these have been shown to have a regulatory role on gene 

expression, for example the regulatory role of 17β- estradiol in gene expression 

in breast cancer (Charpentier et al., 2000), progesterone-induced gene 

expression regulation in the endometrium of rhesus moneky (Okulicz & Ace, 

1999), role of LH in gene expression regulation in mouse granulosa cells 

(Carletti & Christenson, 2009) and the regulatory role of FSH in gene 

expression in pig granulosa primary cells (Bonnet et al., 2006). Furthermore, 

FSH and LH receptors are expressed in the ovary (Camp et al., 1991), human 

ovarian surface epithelium and fallopian tube (Zheng et al., 1996), pig fallopian 

tube (Gawronska et al., 1999) and bovine uterine vein where the LH receptor 

mRNA and protein level are highest during proestrous and estrous cycle 

(Shemesh, 2001). It has been reported that 17β-estradiol increases the 

expression of LH receptors in the epithelium and smooth muscle cells of pig 

oviduct (Gawronska et al., 1999). The promoter region of LH receptor gene 

contains three sites for the transcription factor Specificity Protein 1 (SP1) sites 

(Tsai-Morris et al., 1993). It has been reported that estrogen receptor α (ERα) 

can interact with SP1 in the promoter of low density lipoprotein receptor (LDLR) 

gene which leads to activation of LDLR gene transcription by 17b-estradiol in 

liver hepatoma cells (HepG2) (Li et al., 2001) A similar mechanism might 

explain the increased up regulatory effect of FSH and LH on TRPC gene 

expression in BOEC following  addition of  17β-estradiol  

When Prog was added to the mixture of either FSH and LH or FSH/LH and Est, 

the up regulatory effect of these combinations on expression of TRPC genes 

was lost. In cultured murine leydig cells, Prog reduces the mRNA level and 

function of the LH receptor (El-Hefnawy & Huhtaniemi, 1998). Furthermore, 

progesterone has an inhibitory effect on activation of toll-like receptor 4 (TLR4) 

and nuclear factor-kappa B (NF-κB) signalling pathway (Wang et al., 2011). As 

mentioned above, NF-κB binding site is one of the elements in the promoter of 

some of TRPC channels such as TRPC1 (Paria et al., 2004) . Enhanced 

activation of NF-κB by FSH (Wang et al., 2002b)and 17β-estradiol (Valdez & 
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Turzillo, 2005) and the inhibitory effect of progesterone (Wang et al., 2011) on 

NF-κB activation could explain the up-regulatory effect of FSH, LH and 17β-

estradiol and down-regulatory effect of progesterone on TRPC gene expression 

in BOEC.  

Furthermore, the difference in expression level of some of the TRPC isoforms 

reported in chapter 3 could be due to expression of their splice variants and 

possible different regulation pathway; for instance, TRPC1 (Dedman et al., 

2004; Dedman et al., 2005) and TRPC4 (Schaefer et al., 2002) with both have 

several splice variants.   

To summarise, TRPC1, 2, 3, 4 and 6 are expressed in both bovine oviduct and 

uterine epithelium. Expression of these TRPC isoforms changes throughout the 

estrous cycle. These changes are most likely induced by endocrine changes 

throughout the estrous cycle as the treatment of BOEC with physiological 

concentration of Est, FSH, LH and progesterone individually and in combination 

altered the TRPCs gene expression level in various pattern. Sex hormone 

possibly induced their effect on TRPC gene expression via TNF-α and NF-κB 

pathways. To confirm these hypothesis, inhibitors of NF-κB such as SN50 which 

inhibits the translocation of NF-κB into the nucleus (Wang et al., 2002a) could 

be used. Expression of TRPC genes could be studied in BOEC treated with 

NS50 in combination with sex hormones.  

7.2 Localization and abundance of TRPC1 and 6 proteins in epithelial 

tissue lining female reproductive tract 

Measuring the Fluorescent intensity of TRPC1 and TRPC6, which are the 

common TRPC isoforms expressed in both human and bovine endometrium, 

indicates that TRPC1 and 6 were expressed at the apical, basal and lateral 

membranes of bovine oviduct epithelium. However, abundance of TRPC6 was 

generally higher than that of TRPC1. Furthermore, TRPC6 was more abundant 

on the apical membrane compared to the basal and lateral membranes. This 

could be due to the direct or indirect physiological role of this TRPC isoforms in 

secretion in altering the intracellular calcium concentration (Berridge et al., 

1998b; Li et al., 2003).  



232 
 

In general, changes in abundance of TRPC1 and TRPC6 were detected in the 

ampulla and isthmus throughout the estrous cycle, especially their intracellular 

abundance.  The changes in abundance of protein were generally similar to the 

mRNA level changes detected for these two genes. However, changes in 

abundance of TRPC1 and TRPC6 in infundibulum did not follow the same 

pattern as their gene expression throughout the estrous cycle. The infundibulum 

is a small section of oviduct compared to ampulla and isthmus and the 

difference observed between the abundance of TRPC1 and TRPC6 channels in 

infundibulum and their mRNA level in bovine oviduct epithelium could be due to 

the small amount of mRNA extracted from the infundibulum compared to the 

ampulla and isthmus. Therefore, the changes in mRNA levels of TRPC1 and 

TRPC6 in oviduct throughout the estrous cycle mainly reflect those of the 

ampulla and isthmus but not infundibulum. To re-examine the changes in 

mRNA level of TRPC1 and TRPC6 in infundibulum, ampulla and isthmus it 

would be necessary to confirm the difference in abundance of TRPC1 and 

TRPC6 in different sections of the oviduct throughout the estrous cycle. Due to 

the lack of research on the role of TRPC channels in epithelia in general and 

the epithelia lining the female reproductive tract in particular, no literature was 

found to support or contradict these findings. However, it has been reported that 

localization of TRPC6 was detected on both the apical and basal sides of 

epithelial cells, whereas localization of TRPC1 was limited to the basal side of 

Madin-Darby canine kidney cells (MDCK) and salivary gland epithelial cells. 

(Bandyopadhyay et al., 2005a). In agreement with the data presented in 

Chapter 4, TRPC6 was localized on both the apical and basal sides of the 

epithelial tissue as well as the lateral face of the tissue. In contrast with the 

report by Bandyopadhyay (2005), localization of TRPC1 in polarized Madin-

Darby canine kidney cells (MDCK) and salivary gland epithelial cells was not 

limited to the basal side of the bovine oviduct/uterine epithelial tissue but was 

observed on all apical, basal and lateral sides of the tissue. In polarized cells 

such as epithelial cells, cellular functions which are regulated by calcium are 

limited to specific microdomains (Muallem & Wilkie, 1999; Petersen, 2000; 

Bootman et al., 2001; Kiselyov et al., 2002; Kiselyov et al., 2003; Petersen, 

2003). These domain-restricted calcium changes have been shown to occur 

close to the IP3 receptor sites (Sun et al., 1998; Thomas et al., 1998). The 

apical side of the secretory cells is well-known for local calcium signals 
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(Petersen et al., 1999) and the oviductal epithelium secrets specific proteins into 

the oviductal lumen. A group of these proteins are expressed throughout the 

estrous cycle while secretion of the other group of the proteins by oviductal 

epithelium is cyclical (Gandolfi et al., 1989). Furthermore, secretion is a well-

known feature of the uterine epithelium (Jacobs & Carson, 1993). Apical 

localization of TRPC6 could be due to its involvement in secretory function of 

either oviduct or uterine epithelium. Specially, high abundance of TRPC6 on the 

apical side of the uterine glandular epithelium could confirm this hypothesis.      

The epithelial cells in infundibulum are more ciliated compared to the ampulla. 

The number of ciliated epithelial cells in the isthmus is very low or absent. In the 

rabbit, secretion of oviductal fluid is greater from the ampulla than the isthmus 

due to the greater surface area of the epithelial cells in ampulla (Leese, 1983).  

In the bovine, secretion of oviductal fluid is 10 times greater at estrous where 

the 17β- estradiol is at its highest concentration throughout the estrous cycle 

(Roberts et al., 1975). Similarly, in ewes (McDonald & Bellvé, 1969) estradiol 

triggers the secretion of oviductal fluid, however, progesterone abolishes the 

estradiol-induced secretion. Non-secretory ciliated epithelial cells undergo 

hypertrophy, maturation and elongation under the effect of oestrogen (Comer et 

al., 1998). In contrast, two studies have reported that progesterone induces 

secretion (Gregoraszczuk et al., 2001), for instance, secretion of dipeptidyl 

peptidase-IV by endometrium of ewe and cow  (Liu & Hansen, 1995). It has 

been reported that TRP channels are involved in secretion (Uchida & 

Tominaga, 2011), and Liu et al., (2007) reported that TRPC1 play an important 

role in the secretion of fluid from salivary gland acinar cells (Liu et al., 2007). 

Membrane and intracellular abundance of TRPC1 and 6 in different sections of 

the bovine oviduct was higher in ampulla and isthmus compared to the 

infundibulum. This could be due to a higher number of non-ciliated secretory 

epithelial cells in ampulla and isthmus and related to the physiological role of 

ampulla and isthmus in fertilization (Ellington, 1991) and spermatozoa 

capacitation (Suarez, 2002). 

The difference in abundance of TRPC1 and TRPC6 protein in bovine uterine 

epithelial tissue at different stages of the estrous cycle was not as dramatic as 

that of their mRNA level. This difference could be due to post-transcriptional 

modifications (PTM). However, further investigation is required to clarify the role 
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of PTM and this could be done by using fluorescent staining of two dimensional 

gels (Jacob & Turck, 2008).Furthermore, the antibodies used in this research 

might not be capable of binding to the possible splice variants of TRPC1 and 

TRPC6 proteins while the mRNA of the possible splice variants could have 

been detected by the primers used. This could be another reason for 

differences in the mRNA and protein expression level of TRPC1 and TRPC6 

detected in bovine oviduct epithelial cells. 

The physiological role of TRPC1 in association with Stromal Interaction 

Molecule (STIM) and Orai proteins involved in Store-Operated Channels (SOC) 

complex (Hong et al., 2011) could explain the difference in abundance of these 

channels on the apical, basal and lateral sides of the oviduct and uterine 

epithelia. Furthermore, heteromultimerization of TRPC isoforms with each other, 

which is partially regulated by STIM1 protein, could also affect the localization of 

these channels (Yuan et al., 2007). Differences in abundance of both TRPC1 

and TRPC6 in the bovine oviduct and uterine epithelia throughout the estrous 

cycle and within the tissue might be due to their various physiological roles 

which could be a result of the interaction of TRPC channels with other proteins. 

 7.3 Physiological function of TRPC isoforms in bovine oviduct epithelial 

cultured cells 

Measuring the changes in intracellular calcium concentration using Fura PE 3-

AM (calcium dye) indicated that TRPC6 is physiologically active in bovine 

oviduct epithelial cultured cells. The unexpected response of BOEC to 

Hyperforin at stage 1 of the estrous cycle, which begins just after ovulation, 

could be related to the different ratio of homotetramer TRPC6 and 

heterotetramer TRPC3-TRPC6 in BOEC at this stage of the estrous cycle and 

the possible difference in the activation pathways of these two protein 

complexes (Hirschler-Laszkiewicz et al., 2009). Moreover, the physiological 

association of TRPC6 to STIM and the complex of Orai and STIM (Hong et al., 

2011) might affect the channel response to Hyperforin due to the distinct 

physiological function of  TRPC6 channel  in the form of  Store-operated 

calcium channels (SOC) or Receptor-operated calcium channels (ROC). 

However, the role of other TRPC isoforms could not be studied individually due 

to lack of a specific agonist and antagonist for each TRPC isoforms. Further 
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investigation is required to address the physiological role of each TRPC 

isoforms by using siRNA technique to knock out individual isoforms prior to 

measuring the changes in the intracellular calcium concentration. Furthermore,  

and as shown in chapter 3, expression level of TRPC isoforms in BOEC is 

different to that of the intact tissue. Therefore, to provide a better in vitro model, 

changes in intracellular calcium concentration should be measured in cells 

treated with physiological concentrations of sex hormones. In addition, as 

polarity of the epithelial cells is pivotal to their function, measuring the changes 

in intracellular calcium concentration in polarized cells treated with and without 

hormones is required to expand our understanding of the physiological role of 

TRPC channels in the oviduct and uterine epithelia (Chandra et al., 2007). This 

could be done using transwell permeable supports (Fig 7.1) which permit the 

cells to take up and secrete molecules on both their apical and basal sides and 

thereby carry out metabolic activities under more natural conditions, with  the 

cells as a polarized monolayer.  

 

 

 

 

 

 

 

Fig 7.1  Snapwell transwell permeable supports (adapted from Corning, Transwell-guide) 
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7.4 TRPC channels in human endometrium 

To determine the clinical relevance of the data about the role of TRPC channels 

in epithelial tissue lining the bovine oviduct and uterus, gene expression of 

TRPC isoforms was studied in endometrium of normal women and women   

with Polycystic Ovarian Syndrome as well as in endometrium of women at day 

21 of the menstrual cycle attending for In Vitro Fertilization (IVF).  

Of 7 isoforms of TRPC family, TRPC1, 6 and 7 were expressed in human 

endometrium. Changes in the expression of TRPC6 and 7 in endometrium of 

women with PCOS support the idea that FSH and LH, which are elevated in 

PCOS patients, (Blank et al., 2006) up-regulate the expression of TRPC 

isoforms, and that progesterone which is absent or present at a very low levels 

in PCOS patients inhibits the up-regulatory effect of FSH and LH (Blank et al., 

2006).  This general pattern was observed in in vitro studies in Chapter 3. 

Furthermore, changes in expression level of TRPC1, 6 and 7 in endometrium of 

women attending for IVF point tantalisingly to a role of TRPC channels in this 

tissue .  

Due to the lack of biopsies of endometrium at different stages of the menstrual 

cycle, the changes in expression level of TRPC isofoms throughout the 

menstrual cycle could not be examined.  However, localization and abundance 

of TRPC1 and 6 were studied throughout the menstrual cycle. TRPC1 was 

more abundant in the epithelium, while TRPC6 was more abundant at the apical 

membrane of glandular epithelium indicating the possible role of this TRPC 

isoform in secretion (Li et al., 2003).  

7.5 Conclusion and future work 

TRPC1, 2, 3, 4 and 6 are expressed in both bovine oviduct and uterine 

epithelia. The mRNA level of expressed TRPC isoforms in these tissues 

changes throughout the estrous cycle. Cyclic changes in plasma concentration 

of sex hormones throughout the estrous cycle may regulate the expression level 

of TRPC channels. Further investigation is required to determine the 

mechanisms underlying the regulatory pathways of sex hormones on TRPC 

channels.  TRPC channels are possibly involved in oocyte pick up, sperm 

capacitation, fertilization and early embryo transport in oviduct and secretion as 
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they are present throughout the oviduct and uterine epithelia at all 4 stages of 

the estrous cycle. The TRPC6 channel is physiologically active in bovine 

oviduct epithelial cultured cells.  

Studying the mRNA expression of each of TRPC isoforms and their splice 

variants in infundibulum, ampulla and isthmus is necessary to determine the 

relation between the gene and protein expression of each of these isoforms at 

different stages of the estrous cycle. Furthermore, finding the possible changes 

in the gene and protein expression level of FSH, LH, Est and Prog receptors 

would be critical for understanding the regulatory effect of these hormones on 

gene and protein expression of TRPCs in the epithelial tissues lining the female 

reproductive tract.    Hence, to determine the physiological activation of other 

TRPC isoforms in oviduct and uterine epithelium, the siRNA technique to 

knockout individual TRPC isoforms would be useful. Moreover, activity of these 

channels in polarized epithelial monolayers and in the presence of physiological 

concentration of sex hormones needs to be studied. More importantly, creating 

TRPC isoform-deficient mice and studying oocyte maturation, fertilization, early 

embryo transport, implantation and any other reproductive events would provide 

a great opportunity for understanding the role of these important calcium 

channels in mammalian female reproduction.    

The expression level of TRPC channels in women attending for IVF was 

significantly different compared to the control. Further investigation is therefore 

required to determine the changes in expression level of TRPC isofoms 

throughout the menstrual cycle. Moreover, determining the association between 

the mRNA and protein expression of TRPC isoforms in human endometrium 

and fallopian epithelium throughout the menstrual cycle is important. Finally, the 

physiological role of TRPC channels in the endometrium needs to be 

determined using calcium imaging and electrophysiological, including patch 

clamp, techniques. 
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