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Summary of Thesis
The thesis is primarily concerned with the III-V-N semiconductors Gallium Ni-

tride (GaN) and the dilute nitride Gallium Nitrogen Arsenide (GaNAs) and the

effect that the band structure has on electron transport in these materials. En-

semble Monte-Carlo algorithms are developed in order to determine the electron

transport properties of these materials, coupled with derived expressions for a novel

band-structure approximation based on the cosine form that incorporates the in-

flection point in the Γ valley. The algorithm is validated by comparison of the

output of the simulation with the well characteristics of other III-V semiconduc-

tors, and the new band-structure approximation is validated through comparison of

the generated characteristics with experimental work and the output of the balance

equations.

Characteristics for GaN (bulk and in a 1D device) are presented, with excellent

agreement with other works. It is found in bulk systems that there is the possi-

bility of a significant number of negative-effective mass states occurring in GaN,

dependent on inter sub-band (Γ- L-M) energy separation, and that these states

have a noticeable effect on the characteristics of the system, both equilibrium and

transient, particularly on the occurrence of the negative differential velocity in the

velocity characteristics. A proof-of-concept algorithm for a 1D device code incor-

porating GaN is also presented with favourable results.

Two models for bulk dilute GaNAs are used, one based on the Nitrogen Scattering

model to measure the dispersive effect of N impurities, and one modeling the lower

E−band from the BAC model with the cosine band-structure approximation to

measure the distortive effect. Both models are used to generate equilibrium and

transient characteristics for the material and we find that we have good agreement

with recent works, particularly with the nitrogen scattering model.
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Chapter 1

Introduction
Semiconductors play an integral part in society today and have a wide range of

applications. Silicon, perhaps one of the best known and understood materials,

has been fundamental in the digitalisation of our society, with sophisticated silicon

based devices being found all around the home, such as in personal computers,

game consoles and mobile telephones. Other semiconductor compounds are also

widely used in household appliances, such as in the laser diode that is found in

CD/DVD players and, increasingly, Blu-Ray drives. However, there is still much

research being done on semiconductors. One such area of research is in high-power,

high-frequency semiconductor devices, particularly for use in fast switching devices

and terahertz generators and amplifiers for use in medical and security applications.

In a drive to attempt to create devices that exhibit these properties, there has been

a lot of interest in the research and development of III-V semiconductors, such as

GaAs, InP [1, 2] and GaN [3–7]. These III-V semiconductors have superior optical

properties in comparison to tried and tested materials such as Silicon, with their

direct band gap. The larger electron mobilities present in III-V semiconductors also

allow for multi-functional devices to be made. GaN is also the focus of work in high-

power applications due to it’s huge threshold field for electrical breakdown, such as

in high power-gain, high-frequency amplifiers [8, 9]. Much work has also recently

been performed on dilute nitride III-V-N materials such as GaNAs [10–12], InNP

[13] and GaInNAs, in an effort to create high-frequency response semiconductors.

For this thesis, we concentrate on two materials that have shown much promise

over recent years, GaN and dilute GaNAs and investigate some material properties

which demonstrate the potential for high-power, high-frequency response devices.
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We open this chapter by discussing some of the major concepts underpinning

semiconductor physics, particularly those that play a major role in high-field III-V

semiconductor physics. We then continue by discussing the III-V-N materials GaN

and dilute GaNAs in more depth, before finally closing the chapter with an outline

for the rest of the thesis.

1.1. Band-structure

If we place an electron in a non-uniform potential (away from any lattice) with

energy E and treat the electron as a wave with frequency ω = E/~, through

solution of the time independent wave-equation we find that we have a simple

relation between E and the wave-vector of the electron, k:

E(k) = ~2k2

2me

(1.1.1)

whereme is the electronic mass [14]. This relation is the basis of the free-electron

model. As ~k can be shown to be the electron momentum, (1.1.1) can be shown

to be equivalent to the kinetic energy of the electron in classical physics. However,

if we then place the same electron into a lattice that possesses a periodic, varying

potential, for example, in a crystal where potential wells form around the atoms

in the lattice, we find that this is no longer the case. We now have to solve the

Schrödinger wave equation for an electron taking into account the potential at a

given position, r. For a crystal potential profile V (r) applied to an electron with

the wave function ψ(r) and energy E(r),

[
− ~2

2m0
∇2 + V (r)

]
ψ(r) = E(r)ψ(r). (1.1.2)
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Figure 1.1) A visual representation of the lattice potential profile suggested by the
Kronig-Penney model. Dots represent atoms. Image after Kittel [15].

Bloch proved that the solution to this equation must have the form,

ψk = uke
ik·r, (1.1.3)

where uk is some function, and, for a lattice with a periodicity such that a move

by a translational vector R would result in moving one period,

u(r) = u(r + R). (1.1.4)

This result, Bloch’s Theorem, states that the solution to the wave equation in any

periodic potential must itself be periodic [15]. This allows us to concentrate on

obtaining the solution solely based on the unit cell, which in reciprocal space is the

first Brillouin zone, knowing that the solutions found in one unit cell will apply to

all unit cells.

In order to find a simple solution to the Schrödinger wave-equation (1.1.2), Kro-

nig and Penney idealised the one-dimensional potential profile of the system as a

series of small square potential barriers centred around the position of the atoms

in the lattice [16], as depicted in figure 1.1. Solving (1.1.2) in one dimension, as-

suming a potential barrier width of b and potential V0 (as illustrated in figure 1.1),
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Figure 1.2) E − kz bands as suggested by the Kronig-Penney model. The shaded area
represents the first Brillouin zone, note that either side of this zone is a continuation
of this function in accordance with Bloch’s theorem.

at the limit where V0 →∞, b→ 0 and V0b→ constant yields the solution,

P

Ka
sin (Ka) + cos (Ka) = cos ka, (1.1.5)

where K =
√

2meE/~ and P is a constant based on the selected parameters that

quantifies how easy it is for an electron to tunnel through the barriers (with smaller

numbers inferring that it is easier to tunnel through). This equation can clearly only

hold true when the LHS of (1.1.5) lies between -1 and 1, and as K is proportional

to the energy of an electron, it means that there are ranges of energies where no

solution to the wave equation exists, giving rise to forbidden energy “gaps” in the

band that electrons cannot attain. Figure 1.2 depicts bands as suggested by the

Kronig-Penney model if P = 3π/2, and also illustrates Bloch’s theorem, showing

that the wave-function is identical across each Brillouin zone, with the principal

zone, usually known as the “reduced zone”, being shaded. In this model, the

bands are symmetric around the zone centre, which is not always the case for more
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complex systems.

Whilst using this model can show that there is an infinite number of bands,

electrons tend to remain in the lowest energy bands, not all of these bands are

useful in transport. If we were to cool the temperature of the system down to 0K,

the highest energy band that contains electrons is termed the valence band, and

the lowest band that does not contain electrons is termed the conduction band.

For the purposes of these thesis, as we are dealing with electron transport, we will

solely concentrate on the structure of the conduction band.

1.1.1. The Effective Mass

Whilst the Kronig-Penney model is good for showing the origin of bands and pro-

duces a simple result, in three dimensional space, the band-structure is generally

more complex. This is partially due to variances in the lattice constants in differ-

ent directions, and in binary and higher order compounds, the relative sizes and

charges of the atoms can also complicate the band-structure. This can often mani-

fest as bands having multiple “valleys”, or local energy minima, throughout the

Brillouin zone, and the valleys are generally not symmetric in all directions.

Full band-structure models making use of tight-binding (such as work performed

in [17]), empirical pseudopotentials [18, 19] or Green’s functions [20] can be used

to solve transport problems using numerical methods. However, at valley minima

located at energy Ec, an analytic approximation for the band-structure similar to

the energy of an electron in free-space, the parabolic band-structure approximation,

can often be used [14]. It is of the form,

E(k) = ~2k2

2m∗ + Ec. (1.1.6)
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Such an approximation is based on the concept of the effective mass of an electron,

m∗, and is thus defined as [14, 21, 22]:

m∗ = ~2

d2E/dk2 . (1.1.7)

For a band with spherical symmetry, or close to the valley minima,m∗ is a constant.

The concept of effective mass is useful for describing the motion of electrons, it is

often the only parameter required for describing the carrier transport around the

local energy minima in a material. The parameter m∗ is termed the effective mass

as an electron in a band will travel as if it has mass m∗. We can demonstrate this

by taking the group velocity of the electron wave in a parabolic band, where the

effective mass is constant throughout the valley, and showing the momentum using

the effective mass is equal to that of the crystal momentum, ~k,

v(k) = 1
~
δE

δk
= ~k
m∗

=⇒ m∗v(k) = ~k. (1.1.8)

1.1.2. The single band k.p approximation

In reality, valleys in the conduction band are rarely parabolic, and the effective

mass of the electron does change as it increases in energy. In order to take this into

account, we can use the k.p model, which is known as such due to the fact that the

solution is based on solving the Schrödinger equation using the Bloch theorem and

k.p perturbation theory [23]. Solving this for a single conduction band, utilising

Bloch’s theorem, we obtain the following dispersion relation [22, 24]:

~2k2

2m∗ = γ(Ek) (1.1.9)
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where m∗ is now the effective mass of the electron at the minima of the band. γ(E)

is usually taken in terms of the Kane non-parabolicity to the first order, obtaining

[14, 22, 25],

γ(E) = E(1 + αE) (1.1.10)

where α (the first-order non-parabolicity constant) is taken to be,

α = 1
Eg

(1− m∗

me

)2 (1.1.11)

where we take Eg to be the difference in energy between the valence band maximum

and valley minimum, and me to be the rest electronic mass. Note that γ(E) does

not necessarily have to take the form as shown in (1.1.10), it can include higher

order terms or a completely different function, should it be required. (A good recent

example where (1.1.11) is not used to determine α can be seen in the publication

by Hadi et al. [26], who varied this constant to try and determine how altering α

affected the characteristics output by their model for ZnO.)

1.2. Electronic Transport

1.2.1. Boltzmann Transport Equation

The Boltzmann transport equation (BTE) describes the behaviour of carrier trans-

port in semiconductors over time in real space and momentum space. For a distri-

bution of electrons described using the distribution function f(k,v), for an electron

with velocity v when an subjected to an external force F, the Boltzmann Transport
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Equation (BTE) is of the form [14, 22]

∂f

∂t
=
(
∂f

∂t

)
collision

− (v · ∇rf + F · ∇pf), (1.2.1)

taking into account the transport evolution due to collisions (electron scattering)

and drift due to the applied field only. Unfortunately, due to the BTE being a

partial differential equation over six dimensions (three in real space, r, three in

momentum space, p), finding an analytic solution to the equation is difficult to

do. Steady state solutions have been found, however, using energy and momentum

balance equations that incorporate the electron energy and momentum relaxation

times. Dyson and Ridley [3] suggest the velocity and energy solutions to be

d 〈v〉
dt

= eF
〈 1
m

〉
− 〈v〉
τm

, (1.2.2)

d 〈E〉
dt

= eF 〈v〉 − 〈E〉
τE

, (1.2.3)

where τE and τm are the energy and momentum relaxation times, and 〈v〉 and

〈E〉 are the velocity and energy averages of the system. However, these equations

depend on prior knowledge of the relaxation times of the system, something that

is not always known. The Boltzmann equation can also be solved using numerical

methods, such as through the use of Monte-Carlo methods to simulate electron

transport though the system. Details of these methods will be presented in a

future chapter.

1.2.2. Electron scattering

The BTE provides for collision affected transport, which is primarily down to elec-

trons being scattered during drift in a crystal system. Whilst in a perfect crystal,
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electrons would continue to be accelerated in a linear fashion, dependant on the

strength of the field, in practice, this is not the case, and electrons can be scattered

while drifting, altering the direction of travel and potentially the electron energy.

There are many scattering mechanisms that exist, though not all mechanisms exist

in all systems, for example, alloy scattering does not occur in pure elemental semi-

conductors. We therefore focus on the most common scattering mechanisms found

in semiconductor transport, scattering caused by charged impurities and threaded

dislocations, and scattering that is phonon-assisted.

1.2.2.1. Charged impurity and dislocation scattering

Charged impurity scattering occurs from impurities introduced during crystal growth

(wanted or otherwise), whilst threaded dislocations, which is the inclusion or omis-

sion of a line of atoms in the host material, often occur due to the strain that is

introduced by growing the material on a substrate with different lattice spacings.

Both of these imperfections in the host material cause disruptions to the otherwise

periodic potential across the system, and thus scatter electrons due to the abnor-

mal field that is exerted around the location of the impurities and dislocations, and

thus have the potential to disrupt the path of electrons, particularly slow moving

particles that spend longer in the vicinity of the impurity or dislocation.

1.2.2.2. Phonons and phonon-assisted scattering

At temperatures above 0K, the lattice of any solids encounter vibrations. These

lattice vibrations cause the potential landscape around each of the atoms to deform

and as a result, disturb electrons in the area. As electrons are much smaller than

the atoms, any changes in the system caused by the atoms are almost immediately
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picked up by the electrons and affect the path of the electrons. In order to account

for the effects of these lattice vibrations in a simple manner, we quantise the energy

of the vibrations into phonons with a wave-vector q, and from phonon dispersion

relations, frequency ωq, energy ~ωq. It thus transpires that phonons act as if they

have a momentum of ~q and energy ~ωq when interacting with particles, which

allows us to apply the principles of conservation of energy and momentum when

determining the outcome of any interaction with other particles. Hence, if an

electron with wave-vector k and energy Ek absorbs a phonon with wave-vector q

and energy ~ωq, through conservation of energy and momentum, we would expect

that the electron after the event would have a momentum of k + q and an energy

of Ek + ~ωq.

There are two major phonon modes that can occur in solids, low-frequency acous-

tic modes (when neighbouring atoms vibrate in phase with each other) and higher

frequency optical modes (when neighbouring atoms vibrate out of phase with each

other) [15]. These modes can be further subdivided into transverse and longitudinal

modes [27], and there can be multiple modes of each. Longitudinal acoustic (LA)

and optical (LO) modes cause acoustic and optical deformation potential scatter-

ing mechanisms (also known as acoustic and non-polar optical phonon scattering,

respectively), termed as such due to lattice vibrations deforming the band struc-

ture of the host material. In polar crystals, LO modes can also induce polarization

waves in the material, causing an additional macroscopic time-dependant electric

field that the electrons are able to interact with and are thus scattered from. Phon-

ons that affect electrons in this manner are known as polar optical phonons, and

are generally the dominant scattering mechanism in polar materials, particularly

II-VI and III-V materials. A similar effect also occurs with LA phonons, these po-
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lar acoustic phonons cause what is known as piezoelectric scattering [14], though

this type of scattering is generally only dominant at low temperatures.

1.2.2.3. Fermi’s Golden Rule

Fermi’s Golden Rule is the quantum mechanical embodiment of the scattering

process. It states that for a electron with an initial state k〉 transitioning to a final

state k′〉 via any particular scattering mechanism, the probability per unit time

that this transition will occur is given by [28],

S (k,k′) = 2π
~
|M (k′,k)|2 δ (Ef − Ei) (1.2.4)

where k and k′ are the initial and final wave-vectors of an electron, |M (k′,k)|

is the scattering mechanism matrix element that links the two states and Ef and

Ei are the final and initial electron energies. To obtain a scattering rate in three

dimensional space, the sum can be converted to an integral over all potential final

states in a crystal with volume Ω. For one-phonon scattering, where Ek and Ek′ are

the energies of the initial and final states and ~ω is the energy of a single phonon,

we obtain [22],

W (k) = Ω
(2π)3

2π
~

ˆ
|M (k′,k) |2δ (Ek′ − Ek ∓ ~ω) δk′−k∓q,0dk′. (1.2.5)

The ∓ arises from the two phonon interactions that can occur in conjunction

with the principle of conservation of energy, phonon absorption (corresponding to

the minus in the equation), and phonon emission (corresponding to the plus in the

equation), in order to make the delta function equal to zero.

Fermi’s Golden Rule is derived from perturbation theory with the assumption
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that any collision occurs instantaneously and has a permanent effect. However, as

there are many collisions in any system, it is clear that the effects of any collision is

not permanent. Each collision is not instantaneous either. However, if the duration

of each collision (that is, the amount of time that the collision mechanism affects

the particle) is much smaller than the time between collisions, then we find that

this rule is valid - a condition that we find to be satisfied in nearly all cases [22, 29].

1.2.3. High Field Transport

One of the great draws of some of the materials that we will be studying in this

thesis is that they exhibit interesting effects in high field scenarios. First focussing

on the steady state high-field effects, Figure 1.3 shows the steady-state velocity-field

characteristics for Gallium Arsenide (GaAs) as generated by a two-valley model.

In low fields, electronic transport is ohmic, the velocity of an electron vd is linearly

proportional to the applied electric field F . We term this constant of proportion-

ality as the low-field mobility, µlow, for the host material, giving the relation:

vd = µlowF. (1.2.6)

As it can be seen in figure 1.3, (1.2.6) describes the low-field transport of the

GaAs system well when we set µlow ≈ 8300 cm2V−1s−1 (which is consistent with

other work [30, 31]). However, when we reach the mid- to high-field regions of

the graph, we see a deviation from this ohmic behaviour and low-field mobility,

with the velocity reaching a peak “saturation” velocity, vsat, before the velocity of

the electrons in the system decreases as the applied field increases, or a negative

differential velocity (NDV). Whilst NDVs do not occur in all materials, such as
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Figure 1.3) A velocity-field characteristic for GaAs generated from an Ensemble Monte-
Carlo code using the k.p band-structure approximation describing various key features.

Silicon [32], which just reaches a maximum saturation velocity, they do in the

materials that we study in this thesis, and it is thus important to be able to

understand the processes behind them.

NDVs can occur for multiple reasons. The most well-known reason is due to

the Gunn effect [33], which is physical embodiment of the Ridley-Watkins-Hilsum

theory [34, 35], also known as the Transferred Electron (TE) effect. The TE effect

only occurs in multi-valley systems, and is, as the name suggests, the effect of

electrons transferring from one valley to another distinct valley. As the momentum

of an electron is relative to the local minima of the valleys, electrons transferring

between the valleys could mean a sudden change in momentum. This effect is

particularly prominent when electrons are able to transfer from the middle (in terms

of energy) of one valley to the bottom of a satellite valley where the energy minima

is located higher with a larger effective mass, due to conservation of momentum,

the velocity of the electron must decrease.[32]. It is also usually the case that the

effective mass in the upper valleys is much higher that that in the lower valleys,
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Figure 1.4) Velocity Overshoot in GaAs generated from the Ensemble Monte Carlo
model using the k.p approximation (as described in Chapters 2) when the applied
field is 25 kV/cm. Parts of this image after Ferry [21].

making it more difficult for electrons to gain momentum, which contributes to the

severity of the NDV. The NDV in figure 1.3 is caused by this TE effect combined

with higher effective masses in the upper valley. NDVs may also occur due to the

shape of the band-structure. In materials such as GaN, there is an inflection point

close to the energy centre of the central Γ valley [18, 36] where electrons begin

to experience negative effective mass effects, and decelerate as a larger energy is

attained. If enough electrons are able to attain these states, then as the applied

field, and hence, the average energy of the system increases, the average velocity

of the system may decrease causing a NDV.

1.2.3.1. Velocity Overshoot

One curious phenomenon that occurs in these materials at high field is the occur-

rence of velocity overshoot in the transient regime when the energy relaxation time

of a system is greater than that of the momentum relaxation time. This transient

characteristic is depicted in figure 1.4. Initially when the field is switched on, the
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electrons in the system, having not undergone any effects that would cause an NDV,

attempt to reach the drift velocity to match the low field mobility (which would be

by continuing to follow the black dashed line in figure 1.4) [21]. As the average en-

ergy of the system rises, the characteristic deviates from this path to reach a peak

velocity (vpeak). In low field scenarios, this peak velocity is also the steady state

velocity, as the peak velocity has been reached due to equilibrium being reached

between the drift due to the field and the scattering mechanisms. In high-field

scenarios, however, we find that the electron velocity begins to drop again, due to

electrons beginning to undergo (in the case of GaAs) the TE effect and/or negative

effective mass transport and thus decelerating, before finally reaching equilibrium

at the steady state velocity, vsteady−state. We find at higher fields, that the peak

velocity is generally higher and occurs earlier, as the increase in field ensures that

the electrons accelerate faster and gain energy more quickly, reaching the threshold

for either of these processes much sooner.

1.2.4. Effect of Crystal Structure

Throughout this thesis, we examine materials with two different crystal structures,

zinc blende and wurzite. Both of these crystal structures are tetrahedral in nature,

however, whilst zinc blende has face-centred cubic symmetry, the wurzite crystal

structure has hexagonal symmetry [29]. This difference in structure inevitably

has effects on the shape of the band structure, but more importantly, the lack of

inversion symmetry means that more than one LO phonon mode can occur.

Whilst most of the materials we study in this thesis posses the zinc blende crystal

structure, Gallium Nitride, whilst it exists in both crystalline forms, the Wurzite

form is more commonly found in nature as it is more energetically favourable. Thus,
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we will use Wurzite band-parameters for GaN throughout this work. However, as

the energies of the optical phonon modes for wurzite GaN are close to the energy

for a zinc blende GaN optical phonon, we make the approximation that there is

only one optical phonon mode in wurzite GaN and that its energy is the same as

that of zinc blende GaN. It has previously been noted that this is a reasonable

approximation to make, particularly as the effect of these extra phonon modes and

the associated anisotropy is small [37].

1.3. N-based III-V Semiconductors

III-V semiconductors have always been the source of much interest, with materials

such as Gallium Arsenide (GaAs) and Indium Phosphide (InP) now well character-

ised throughout the semiconductor world. With direct band-gaps and high electron

mobilities, these materials have found many uses in the optoelectronic world. These

materials also have many uses in building electronic devices, their high mobilities

and large potential electron velocities make them ideal for use in high-frequency

electronics.

Whilst GaAs and InP have been thoroughly investigated and are well under-

stood, many of the Nitrogen based III-V materials are not. However, much is

being done to remedy this, and there have been many theoretical and experimental

studies performed in order to understand the properties of these N-based systems.

In particular, two N-based III-V based compounds, Gallium Nitride and dilute

Gallium Nitrogen Arsenide, have been the subject to a lot of recent research, and

form much of the work underpinning this thesis. We thus discuss the properties

and the surrounding interest of these two materials.
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1.3.1. Gallium Nitride

The use of wide band-gap materials, such as Gallium Nitride, has gained a lot

of interest in the area of semiconductor physics. As a result, there has been a

lot of research, both theoretically and experimentally, on bulk GaN and device

hetrostructures where GaN is a constituent material. GaN is an excellent material

for use in high-power and high-frequency applications, as it has been shown to have

a high breakdown field and a large saturation velocity. It is also a good material

for use in optical applications, due to it’s wide, direct band gap. GaN has been

shown that it is a highly stable material, electronically and thermally, even though

it tends to have a larger concentration of defects per unit volume than other III-V

and II-VI semiconductor compounds [38]. This larger defect density is partially

due to that fact that the growth of GaN crystals is difficult to do perfectly, as

there are no materials that are lattice-matched to GaN to grow on. Therefore,

there has been a significant effort to grow GaN on Silicon Carbide (SiC), where

the lattice mis-match along the a-axis is 0.11Å, or 3.4% [39]. This has proven to

be successful, due to GaN’s high stability, however, there are still ongoing efforts

to find an improved lattice matching for GaN in order to increase the quality and

performance of GaN overall [39, 40]. There has also been work done on growing

GaN on a GaN substrate, thereby eliminating one of the sources of defects in the

material [41].

Optically, GaN is very well understood. Naturally operating at a optical wavelength

of 405 nm, and through the creation of higher order compounds incorporating GaN,

such as Indium Gallium Nitride (InGaN), other, slightly longer wavelengths reach-

ing into the green and yellow ranges of the visible light spectrum. Due to these

properties, combined with the well established red LEDs, it is now possible to
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create the full range LED colours efficiently. A good example of their use is in

traffic lights, their fast response time and high efficiency when compared to con-

ventional light bulbs means that their use is now widespread across the UK. GaN

has also been used to create white light LEDs with higher efficiencies than con-

ventional bulbs, and work is ongoing to create higher efficiency white light sources

[42]. Other optics-based uses for GaN include the creation of the blue laser diode,

which can now be found in many consumer households in Blu-Ray players, with

the smaller wavelengths achieved by this diode allowing for higher capacity optical

discs to be read.

Whilst the optical technology based on GaN is mature and, for the most part,

well understood, the electronic transport properties and the technology surround-

ing these properties are not. Fortunately, there has been much recent interest in

this area as GaN is especially suited for high power technologies due to it’s high

breakdown field, suggested to be above 4MV/cm [17, 43], and it has also been

linked with high frequency applications as it possesses a large saturation velocity,

estimated to be in the region of 2.5− 3× 107 cm/s [44, 45].

One particular technology that has been researched in recent years is the use

of GaN and other nitride compounds (especially AlGaN/GaN and InGaN/GaN

heterostructures) is the High Electron Mobility Transistor (HEMT, also known as

the Heterostructure Field Effect Transistor, or HFET) [46]. While most semicon-

ductor devices are created through the doping of the active semiconductor ma-

terials, HEMTs work through the creation of a junction between a highly-doped

wide-gap material and an undoped material with a narrower band gap and a lower

conduction band minima to form a triangular quantum well, and within it a “two-

dimensional electron gas”, or 2DEG. As the electrons in this 2DEG are, as the name
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implies, confined to movement in two directions and that the 2D electron mobilities

are greater than their 3D counterparts, the use of 2DEGs is advantageous for use in

fast switching applications. GaN based HEMTs have wide range of uses in the high-

power, high-frequency markets, with one such use being high-gain, highly efficient

power amplifiers for pulsed signals, thanks to their high breakdown field and high

frequency response, with power output reported to be between 250W and 400W

at microwave frequencies [9, 47–49]. This technology has made its way into mobile

network base stations, utilising the material’s high-power, high-frequency and high

mobility characteristics that are required for the broadcast of reliable, wide-ranging

4G networks, and has been researched for use in the competing WCDMA (Wide-

band Code Division Multiple Access) [50] and WiMAX (Worldwide Interoperability

for Microwave Access) [51] 4G networking systems, with these devices operating

comfortably at these 4G frequencies of 2.2GHz, amplifying the input signal with

a power added efficiency of approximately 55%. HEMTs, in this role of high fre-

quency power amplification, have also got a place in military applications, with

developments into versatile, high-gain, broadband response amplifiers that can be

used with a multitude of high power military equipment [8]. Some research has

also been conducted into the use of GaN based HEMTs in terahertz detection and

amplification [5, 52], though most research into terahertz detectors using HEMTs

has now moved onto other materials such as InP and GaAs [4, 53].

There has also been recent focus on the causes of the negative differential velocity

(NDV) of the electrons that occurs under high-field conditions with a view to poten-

tially exploit these underlying causes for terahertz frequency band (usually defined

as the 300GHz - 3THz band between infra-red and microwave frequencies) electro-

magnetic radiation generation [3, 54]. There are two major causes of the NDV that
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have been suggested in GaN, the first being the transferred electron effect, and

the second cause being the inflection point in the band structure which allows for

negative effective mass states, as first suggested by Krömer [55]. As the availability

of THz emitters is well sought after, due to its uses in the security and medical

imaging industries, as well as there being research into HEMT technology, much

research has been undertaken in order to exploit the potential properties of GaN

causing these NDVs. Recently, there has been much theoretical and experimental

activity in the creation and operation of Gunn diodes, which work on the principle

of the Gunn effect, for this purpose. One of the earliest results by Joshi et al. [6]

suggested that for a Gunn diode that is 1µm in length with a potential of 50V

applied across it, EM radiation of frequency 135GHz could be emitted. Since then,

there has be much activity in the theoretical simulation of these devices, with these

simulations yielding suggestions that GaN based Gunn devices can indeed emit RF

radiation in the THz band. Drift-diffusion models have suggested that GaN Gunn

diodes can reach about 1.8THz [54], while Monte-Carlo based simulations suggest

operating frequencies of 300GHz. Simulations by Macpherson et al. [56], which

includes self-heating effects, suggests that a room temperature Gunn diode based

on GaN with an active region of 2µm in length can achieve approximately 280GHz

with higher frequencies possible at lower temperatures, whilst more recently, Yang

et al. [57] have calculated that it should be possible for a GaN to reach an oper-

ating frequency of 352GHz at room temperatures. It is interesting to note that

the temperature dependence suggested by the two models are completely different,

Yang et al. believe that increasing the temperature of the system would increase

the operating frequency of the device, Macpherson et al. believe the opposite. This

discrepancy may be down to the differences between the models that have been
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used, though these differences serve as a good example to show that there is still a

lot that is not understood and that there is still a lot of research being performed

in an attempt to determine the exact properties of these systems.

Whilst there is still some debate in the community as to the actual properties

of the GaN Gunn diode, and whether THz radiation can be generated, there have

been experimental attempts to verify some of the properties of this diode. Yilmazo-

glu et al. [58] fabricated a device and recorded the current-voltage characteristics

from the device, noting that the calculated drift velocities as determined from the

experimental values matched previous theoretical predictions (comparing favour-

ably with works such as Joshi et al. [6], Foutz et al. [44]) and experimental results

from bulk measurements [59].

1.3.2. Dilute Gallium Nitrogen Arsenide

As well as binary compounds such as GaN, there has been much interest in the

use of ternary III-V based semiconductor materials. Indeed, there has been much

recent activity of research into III-V materials that have been doped with small

concentrations of nitrogen atoms, due to the strong effects that the nitrogen im-

purities have on the host semiconductor material. Nitrogen (N) states in dilute

nitrides have distinct localized energy levels and, amongst other effects, causes a

large optical bowing of the band gap [13, 60, 61] and highly distorts the dispersion

relation in the conduction band (CB) of the host material.

One material of particular note is lightly N-doped GaAs, or GaNxAs1−x (which

we shall refer to as dilute GaNAs henceforth in this chapter). Dilute GaNAs

inherits many of the properties of GaAs, however, due to the strong effect of the

N impurities, the band gap between the conduction and valence bands reduces
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(with a reduction of about 50meV at ultra-dilute N concentrations, up to 0.4 eV

at 4% N concentration) [62], and significantly alters the electron effective mass

within the conduction band [63–65]. Indeed, the band-anticrossing (BAC) model

as originally suggested by Shan et. al. [66], and then later refined through the use

of Green’s functions [20], suggests that the GaNAs conduction band around the Γ

point actually splits into two or more sub-bands, and that an inflection point is

introduced into the lower sub-band of the Γ band structure, potentially allowing

for electrons to reach negative effective mass (NM) states.

Like GaN, dilute GaNAs has both potential optical and electronic uses. It is

usually less favoured than the quaternary compounds containing gallium, nitrogen

and arsenide, such as InGaNAs, though it is recognised that GaNAs is a good

material for determining the properties of dilute nitrides [67]. Nevertheless, GaNAs

has been used for practical applications. One such property that has been exploited

is the optical bowing caused by the introduction of the N impurities which causes

the material band gap to narrow, and as a result, an optical red-shift is observed. In

particular, the ability to tune the band gap of the material by varying the nitrogen

concentration of the material is a highly useful one, especially for optoelectronic

devices. One such device which has benefited from such tunability is the solar cell

[68], by using this ability, an optimal band gap, and thus, an optimal nitrogen

concentration can be found for the solar cells such that their efficiency are as high

as possible.

Recent work has been focused on determining the steady-state electronic prop-

erties of bulk GaNAs, directed towards determining the origin of the negative

differential velocity (NDV) [11, 69] and on the mid to high field properties of the

semiconductor [70]. It has previously been suggested that GaNAs has the poten-
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tial for use in high-frequency scenarios, particularly in the terahertz region [10, 71],

and as such, understanding of the transient regime is crucial in order to be able to

potentially exploit this property.

1.4. Outline of Thesis

The next two chapters of this thesis are concerned with the algorithms and equa-

tions required to develop models in order to determine the properties of these

III-V-N materials. Chapter 2 describes the different algorithms that are utilized in

order to obtain results for this thesis, whilst chapter 3 explores the use of a new

analytic band-structure approximation that is particularly suitable for Gallium Ni-

tride and other dilute nitrides. The work presented in the first two chapters is then

combined in chapter 4, where the algorithm is tested and validated against ma-

terials with well known parameters and characteristics, such as Gallium Arsenide

and Indium Phosphide, and the new band-structure approximation is tested and

contrasted with well known band-structure approximations.

The next two chapters then use the algorithms and approximations previously

presented to determine the transport properties of GaN and dilute GaNxAs1−x.

Chapter 5 is concerned with the characteristics of bulk GaN, whilst chapter 6

extends the model to simulate one-dimensional devices and analyses the character-

istics of this model. We then take a look at bulk GaNxAs1−x using two different

approaches in chapter 7, and discuss the effect of Nitrogen on the host band struc-

ture. We draw the thesis to a close in chapter 8 by drawing conclusions from this

work and discuss potential future extensions to the project.
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Chapter 2

Monte-Carlo methods for electron transport
simulations
The use of a Monte-Carlo (MC) method is well suited for semiconductor electron

transport simulations. It is one of many models that can be used in semiconductor

transport simulations, which range from the semi-classical drift-diffusion (DD)

models to full quantum descriptions using numerical solutions of the Schrödinger

equation. DD models make use of the drift-diffusion equations that have been

derived from the Boltzmann Transport Equation, however, this model is unsuit-

able for investigating sub-micron devices and non-equilibrium behaviour. To study

such phenomena more complex models must be adopted. Numerical solutions of

the Schrödinger equation result in a highly accurate set of data being produced,

however the computational effort would be very great and can only be achieved

for a small number of particles. Green’s Functions methods, while a slightly less

accurate method, would allow for a solution containing many more particles than

the Schrödinger equations would allow. However, the use of Green’s Functions

would still be computationally challenging.[72]

Monte-Carlo methods are between the DD and full quantum methods in terms

of both speed and accuracy. These methods can be used as purely semi-classical

methods, or, if the problem requires it, quantum corrections can be included in

order to take account of possible many body effects. However, for the purposes

for work in this thesis, the semi-classical approach will be sufficient. This chapter

will describe the Monte Carlo method implemented in the different codes and

algorithms that have been used. Whilst most of the algorithms are based on that

presented by Tomizawa [25], the codes have been re-designed and re-developed in
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FORTRAN 95 to accommodate the chosen band-structure models.

In this chapter, we first discuss the use of an analytic band-structure in Monte-

Carlo models. We then give the base algorithm for our Monte Carlo models using

analytic band-structures for bulk materials of infinite size, and then finally 1D n+-

i-n+ devices, limited in size in the direction of the applied electric potential. Then,

in each case, the differences between the methods will be discussed.

2.1. Band-structure approximation in Monte-Carlo
models

One of the most important parts of any charge transport simulation, whether it is

bulk or more complex, is how the band-structure of the material is modelled - in

the case of electrons, the energy profile of the conduction band across the Brillouin

zone. The shape of the band, how the energy (E) of an electron relates to its

wave-vector (k), affects much in the simulation as it has a fundamental effect on

the Density of States function, and in turn, this affects the rate of scattering of any

electron in the band. It is therefore in our interest to ensure the band-structure is

represented accurately in Monte-Carlo codes. Full-band models, by the very name,

use numerical data (e.g., from data calculated from empirical pseudo-potential

methods (EPM)) to build the full conduction band structure. The drawback of

this method is that this requires the use of numerical methods to calculate the

other information required for the simulation, such as scattering rates and density

of states at each point of the band, and this can take a considerable amount of

computing time and memory. For this reason, simulations that approximate various

sections of the band-structure using analytic equations are often favoured.

In analytic simulations, like those presented in this thesis, the Monte-Carlo
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M-L

Figure 2.1) (a) The conduction band-structure of wurzite GaN as calculated by EPM
(image after Bulutay et al. [18]) and (b) how a sample analytic two-valley model for
use in Monte-Carlo codes based on this band structure would be conceptualised if a
parabolic approximation was used. Energy scale on the y-axis is relative to the top of
the valence band.

method treats each of the energy minima and the surrounding structure, each

known as a valley (for example, a energy minima at the Γ point and the surround-

ing band-structure would be known as the Γ valley), as unlinked self contained

valleys rather than treat the system as continuous throughout the whole Brillouin

zone (see Figure 2.1). Each valley is then characterised by an analytic E − k re-

lation, rather than numerical data, which allows for the use of analytic relations

when calculating scattering rates, decreasing algorithm complexity and run-time

significantly. It is assumed that the only way an electron can transfer to a different

valley in this model is via a phonon assisted scattering process. A full continuous

band-structure is not simulated, rather, analytic approximations including only

the valleys around two or three of the lowest energy minima are used. Spherical
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symmetry is also often assumed and hence, the E−k relation is the same in all dir-

ections. Some semiconductors may require the use of ellipsoidal symmetry instead

[22, 25], such an approach is not required in this work.

Using this approach does have its drawbacks, however. Most band-structure

approximations, such as the simple parabolic approximation (as depicted in Figure

2.1) or the slightly more complex k.p approximation do not have an upper limit,

so theoretically, electrons in the simulation can achieve larger energies than would

normally be allowed by the actual band structure without transferring to higher

energy valleys. In practice, however, the probability of this happening is small,

though it can lead to slight over-estimation of average energies and other transport

properties.

Regardless of the drawbacks that arise from using the analytic methods, Monte-

Carlo methods using analytic band-structure models, if set up correctly, provide

good agreement with experiment and other theoretical methods, examples of this

can be seen in Chapter 4.

2.2. Algorithm for bulk materials

In bulk materials, the following algorithm is used as a base in simulations:

1. Calculate scattering rates for a range of energies and maximum permissible

drift time (which is related to the sum of the scattering rates, see section Cal-

culation of Scattering Rates and Maximum Drift Time) between scattering

events.

2. Set initial conditions and electron states (by starting with a thermalised elec-

tron distribution).
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Direction of Applied Electric Field

Figure 2.2) An example on how the wave-vector, and hence, momentum of an electron
may change during the course of a simulation. Solid arrows indicate drift, dashed
arrows indicate scattering.

3. Drift electrons for a random period of time (subject to constraints) by up-

dating the wave-vector (and hence, momentum) and position of the electron.

4. Scatter electron (using Fermi’s Golden Rule which assumes an instantaneous

effect) based on the use of a random number generator to determine the

scattering event that occurs.

Steps 3 and 4 may be repeated as required up to a set drift time, and for multiple

electrons (see section 2.4 for details on performing this). Figure 2.2 is an example

on how the wave-vector of an electron might change when this algorithm is used.

2.2.1. Calculation of Scattering Rates and Maximum Drift

Time

In order to increase performance, scattering rates are pre-calculated for electrons

in both the Γ valley and the upper valleys at energy “points” between 0eV and a

maximum (dependent on the material and the energies the electron can potentially

attain) at intervals of 2meV (though again, this is dependent on material and

how much the scattering rates are liable to change across these intervals), and

stored in a look-up table. Doing this removes the need to calculate the scattering

rates for an electron every time it scatters, vastly decreasing the run time, at the
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expense of accuracy. However, the error introduced through the use of this method

is mitigated by choosing an appropriate value for the energy interval so that the

difference between the scattering rates at two consecutive energy “points” is small.

Let Wt(Ek) be the scattering rate for scattering mechanism t for an electron

with energy Ek corresponding to wave-vector k. If we have a total of T scattering

rates, we can determine the drift time of an electron between scattering events τ .

Tomizawa states that the probability of an electron travelling for a time τ is

P (τ) = WT (Ek) exp
[
−
ˆ τ

0
WT (Ek)dt

]
. (2.2.1)

where WT (Ek) = ∑n
t=1Wt(Ek), the sum of all scattering rates (of which there are

n) at a particular energy point [25]. Equation (2.2.1), however, has no analytical

solution, due toWT (Ek) not being equal across all energies. In order to circumvent

this, a new scattering mechanism is introduced, termed “self-scattering”, which

causes no changes to the electron state if selected. The self-scattering rate for

each energy point is set so that the total scattering rate WT (Ek) becomes constant

across all energies, so that

Γ = WT (Ek) =
n+1∑
t=1

Wt (Ek) (∀Ek). (2.2.2)

where there are n scattering mechanisms, excluding self-scattering, which is the

n+1th scattering mechanism. In order to minimise the effects of this self-scattering,

Γ is set to the largest total scattering rate across the chosen energy range, thereby

becoming energy independent in the following expressions. By substituting (2.2.2)
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Figure 2.3) The storage of scattering probabilities can be thought of by placing the
cumulative scattering probabilities on a number line, one after another. In this case,
we have 3 scattering mechanisms, plus self scattering. For Λ2, the probability of using
mechanism 2 is added to that of mechanism 1. This allows for easy selection of a
scattering mechanism using a uniform random number generator.

into (2.2.1), it is now possible to obtain an analytic solution, which is found to be,

P (τ) = Γe−Γτ . (2.2.3)

In order to be able to make use of the scattering rates in the selection of a

scattering mechanism (which will be described in more detail in section 2.2.4),

they have to be converted to scattering probabilities. Each scattering mechanism

is assigned an integer index (m). For each energy point, the code stores the rates

cumulatively, normalised to Γ. Thus, for a scattering mechanism t when an electron

has an energy Ek, we obtain a cumulative probability, Λt (Ek),

Λt (Ek) =
∑m
j=1Wj (Ek)

Γ , (2.2.4)

noting that when m = n+1 (i.e. when calculating for self scattering) , Λt (Ek) ≡

1. This provides a series of probabilities for a total of T mechanisms for a range of

energies, where, for an electron with energy Ek, the probability of the mechanism

denoted by index m being selected is Λm (Ek) − Λ(m−1) (Ek) (where Λ0 (Ek) = 0),

and the probability of self-scattering occurring is 1−Λn (Ek). Figure 2.3, through

the use of a number line, illustrates how the probabilities are stored in the program.
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2.2.2. Initial Electron States

In order to determine the electronic properties of the material, the algorithm at-

tempts to start with a realistic electron distribution. Using the Fermi-Dirac func-

tion (allowing for three degrees of freedom by introducing a factor of 3/2),

f(Ek) = 1
1 + e[(Ek−EF )/(3kBT/2)] (2.2.5)

where kB is the Boltzmann constant and T is the lattice temperature, and 0 ≤

f(Ek) ≤ 1. We assume that e[Ek/(3kBT/2)] � 1 and that the Fermi energy, EF ,

corresponds with the minima of the lowest conduction band, and so is set to 0.

Thus, we obtain,

f(Ek) = 1
e[Ek/(3kBT/2)] . (2.2.6)

Rearranging, we obtain,

Ek = −3kBT
2 ln [f(Ek)] (2.2.7)

As it is known that f(Ek) is a value between 0 and 1, we then use a uniform ran-

dom number generator to determine the energy of any particular electron. Should

the random number generator pick 0, then a new random number is generated, to

avoid calculating ln [0]. The electron wave-vectors are then determined from this

energy, the magnitude is determined through the use of the selected band-structure

approximation, whilst the direction of the wave-vector is determined through the

use of two more randomly generated numbers, giving all directions an equal prob-

ability of being selected.
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2.2.3. Electron Drift

A new drift time is determined each time an electron enters a drift phase of the

algorithm, through the use of the solution of equation 2.2.3 in terms of τ ,

τ = − ln (r)
Γ . (2.2.8)

where r is a random number generated by a uniform random number generator

between 0 and 1 (again, generating a new number if 0 is selected). As the applied

field is known to be constant throughout the device, using τ, the change in the

wave-vector of the electron can be calculated using the equation,

∆k = −eF
~
τ. (2.2.9)

where ∆k is the change in the wave vector over this drift step, e is the electronic

charge and F is the applied field vector. For simplicity, we assume that the field

is applied solely in the x-direction, and thus, only altering the x component of the

wave-vector, giving,

∆kx = −eFx
~
τ (2.2.10)

It is assumed that the rate of change in kx is constant throughout the drift step, so

when calculating the distance the electron has moved in the x-direction, we assume

that the electron moves with a constant velocity, corresponding to kx,(inital) + ∆kx

2

(where kx,(inital) is the wave-vector in the x-direction before the drift step started),
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that is,

xfinal = xinitial + v

(
kx,(inital) + ∆kx

2

)
(2.2.11)

2.2.4. Electron Scattering

In order to determine which scattering mechanism is to be used, a random number,

r, between 0 and 1 is generated using a uniform generator. As the algorithm has

generated cumulative scattering probabilities, Λn (Ek), the condition for selecting

a scattering mechanism with index m becomes,

Λm−1 (Ek) < r ≤ Λm (Ek) . (2.2.12)

It is implied that "self-scattering" will occur if the random number generated is

higher than that the sum of all the scattering probabilities.

Once the scattering mechanism has been chosen, the wave-vector is updated

accordingly. In all cases, the energy change is straight forward and hence the

magnitude of the after-scattering wave-vector, |k′|, is easily obtainable. However,

the determination of the direction of the vector can be more difficult to calculate.

Two scattering angles are calculated in order to detemine this direction, the polar

angle, θ′, and the azimuthal angle, φ′, their relation to the before- and after-

scattering states can be seen in figure 2.4. The azimuthal scattering angle, φ′, is

always determined by the relation,

φ′ = 2πr (2.2.13)
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Figure 2.4) An illustation of sample polar (θ′) and azimuthal (φ′) scattering angles
between the initial (k) and final (k′) electron wavevector states. The azimuthal angle
is in the x− y plane only, and is always perpendicular to the inital state.

where r is a random number between 0 and 1, generated via a uniform random

number generator. This is due to the fact that the transition rates are always inde-

pendent of the azimuthal angle. However, the determination of the polar scattering

angle of scattering, θ′, depends on whether the scattering mechanism is isotropic

or anisotropic.

2.2.4.1. Isotropic Scattering

Isotropic scattering mechanisms, such as Non-Polar Optical and Acoustic Phonon

scattering, are mechanisms in which the electron wave-vector has equal probability

of pointing in any direction after scattering. In these cases, the polar angle can

simply be determined by the relation

cos (θ′) = 1− 2r (2.2.14)

As there is an equal probability for any scattering angle to occur, we assume

that the obtained θ′ and φ′ are the polar and azimuthal angles of the new direction
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of k’, rather than the change in these angles from the initial direction.

2.2.4.2. Anisotropic Scattering

For the anisotropic scattering mechanisms, Polar Optical Phonon, Impurity and

Piezoelectric scattering, the determination of θ is more complex than having a

direct relationship with a uniform random number generation. The probability

of scattering through a polar angle between 0 and θ′ can be found by solving

Wt(Ek)θ:0−θ′/Wt(Ek)θ:0−π (where the θ subscript denotes the limits of the polar

integration) in terms of cos(θ′). It has been worked out for POP scattering using

the parabolic band-structure to be [25]

cos (θ′) = 1 + f − (1 + 2f)r
f

(2.2.15)

where r is a random number between 0 and 1, and f , in terms of the electron energy

before (Ek) and after (E ′k) scattering, is defined as,

f = 2
√
EkEk′(√

Ek −
√
Ek′

)2 . (2.2.16)

Similarly, for Impurity Scattering, again, for the parabolic band structure, [25]

cos (θ′) = 1− 2r
1 + (1− r)

(
2k
qD

)2 . (2.2.17)

where qD is the Debye length, given by

qD =
√
εskBT/e2n (2.2.18)
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where n is the electron concentration. For Piezoelectric scattering, one can obtain,

using the parabolic band structure,

cos(θ′) = 1
2k2

(
2k2 + q2

0

(
1− Exp

[
1 + χr +W0

(
−e−1−χr

)]))
(2.2.19)

where χ = ln
[
1 + 4k2

q2
0

]
− 4k2

q2
0+4k2 , W0 (x) is the Lambert W-function (with the zero

denoting the principal branch) and q0 is the electronic screening, given by
√

2m∗ωL/~.

(See Appendix A for the derivation of the Piezoelectric scattering angle expression).

When the scattering angles have been decided, it is very difficult to work directly

in the laboratory/original frame of reference
(
kLx , k

L
y , k

L
z

)
. It is much easier to use a

rotated frame, denoted by
(
krx, k

r
y, k

r
z

)
, rotated around the origin of the laboratory

frame so that the initial wave-vector is parallel to the new z-axis. The relationship

between the laboratory frame and the rotated frame is characterised by two angles

of rotation, angle α clockwise round the kLx axis and angle β clockwise round the

kLz axis, as shown in Figure 2.5.

The k′ vector can then simply be determined in the rotated frame as (where k′

is the magnitude of the final vector which already has been calculated),

k′ = (k′ sin θ cosφ, k′ sin θ sin φ, k′ cos θ). (2.2.20)

In order to obtain the direction in the laboratory frame (so we can apply the field

simply in the next drift step), we need to multiply this by a transformation matrix.
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Figure 2.5) Comparison between the kL and kr frames. The z-axis in the rotated frame
is set so that it is co-incident with the initial wave-vector.

The transformation matrix from the laboratory frame to the rotated frame is,



cos(β) cos(α) sin(β) sin(α) sin(β)

− sin(β) cos(α) cos(β) sin(α) cos(β)

0 − sin(α) cos(α)


. (2.2.21)

While we may not necessarily know what these angles are, the trigonometric func-

tions can be replaced in terms of k (the original wave-vector) and its orthogonal
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components, kx, ky and kz in the laboratory frame.

sin α =

√
k2
x + k2

y

k

cos α = kz
k

sin β = kx√
k2
x + k2

y

cos β = ky√
k2
x + k2

y

. (2.2.22)

Finally, the inverse of this transformation matrix is found, and by right-multiplying

by equation (2.2.20), we obtain k′ in the laboratory frame, as shown in equation

(2.2.23).

k′ =



k′x

k′y

k′z


=



ky√
kx

2+ky
2

kxkz

k
√
kx

2+ky
2

kx

k

−kx√
kx

2+ky
2

kykz

k
√
kx

2+ky
2

ky

k

0 −
√
kx

2+ky
2

k
kz

k





k′ sin θ cosφ

k′ sin θ sinφ

k′ cosφ


. (2.2.23)

2.3. Bulk Single Electron Monte Carlo Simulation

The simplest model that can be used to simulate the electron transport based on

this algorithm is to track the movement and scattering of a single electron, giving

rise to a Single Electron Monte Carlo (SMC) simulation. While the usefulness

of the SMC simulation is limited, the main advantage of using this method is its

speed. For the work presented in this thesis, the SMC was used as a tool to gain

experience in Monte Carlo simulations and as an effective test mechanism when

adding new features that would be later implemented in more sophisticated codes.

The base algorithm as described in section 2.2 is performed on a single particle

until the simulation has been run for a specified period of time within the simu-
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lation, and then the data generated by the simulation is analysed and output for

the applied field. The SMC code is often looped over a series of applied fields to

obtain field dependence data.

2.3.1. Output

Whilst the data that can be obtained from the SMC is limited to steady state

transport properties, time averaged velocities and energies over the whole simula-

tion time can be obtained.

2.3.1.1. Velocity

Equation (1.1.8) states that the velocity of an electron in k-space is

〈v〉 = 1
~
dEk

dk
. (2.3.1)

Over one drift step j, with drift time τ , it is assumed that the rate of change

of energy is constant. As the change in energy over τ is small, we make the

approximation dEk
dk = ∆Ek

∆k where the ∆ symbolises this small change, rather than

a derivative. Using (2.2.9) as a substitution for ∆k,

〈v〉j = −∆Ek

eFτ
= −Ef − Ei

eFτ
, (2.3.2)

where ∆Ek = Ef − Ei, the difference between the initial and final energies within

the drift step.

In order to obtain the time-averaged velocity for the whole simulation consisting

of n drift steps amounting to a total simulation time T , the total sum of the distance
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traveled in each drift step is divided by the total simulation time. Thus,

〈v〉T = 1
T

n∑
j=1
〈v〉τj

τj

= − 1
eFT

∑
(Efj

− Eij ). (2.3.3)

After each time step, in order to calculate the average velocity, the algorithm

calculates Ef − Ei and stores it.

2.3.1.2. Energy

Making the same assumption that the rate of change of energy is constant over a

drift time τ , the average energy of an electron during a drift step is simply,

〈E〉j = Ei + Ef
2 . (2.3.4)

Thus, to get an average energy over the entire simulation time, T,

〈E〉T = 1
T

n∑
j=1
〈E〉j τj = 1

T

n∑
j=1

Eij + Efj

2 τj. (2.3.5)

After each time step, in order to calculate the average energy, the algorithm

calculates Ef + Ei and stores it.

2.4. Bulk Ensemble Monte Carlo Simulation

Whilst the SMC code is useful for quickly obtaining transport properties of mater-

ials in the steady-state regime, it lacks the ability to determine transient transport

properties of materials and also is unable to generate distribution functions of vari-

ous electron parameters. The Ensemble Monte-Carlo (EMC) code seeks to solve
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these issues by simulating a system with many particles simultaneously, taking

“snapshots” of the distribution of electrons at a specified intervals in order to be

able to track the evolution of the system.

2.4.1. Ensemble Algorithm

The EMC simulation treats all electrons as separate entities that have no effect

on each other - essentially running many SMC simulations at the same time. The

pre-calculation of scattering rates is only done once, as it is assumed valid for all

electrons. After this step, each electron is taken in turn, and then simulated using

steps 3 and 4 from the base algorithm for a period of one time step, dt. If this time

dt occurs before the end of a drift step, the drift step is “paused” and not allowed

to run to the end until the next time step. Once all electrons have completed the

time step (meaning that all electrons have been simulated for the same period of

time), a snapshot of the electron distribution and other parameters can be captured

- which allows for the monitoring of the time evolution of the transport properties.

The base algorithm is therefore amended for use in the EMC simulation and is

listed below.

1. Calculate scattering rates for a range of energies and maximum permissible

drift time between scattering events,

2. Set initial conditions and electron states (by starting with a thermalised elec-

tron distribution).

3. Select each electron in turn and repeat these steps on each electron until the

end of the current time step.

a) Drift electron until the time of the next scattering event or the end of
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the time step (whichever comes first) by updating the wave-vector (and

hence, momentum) and position of the electron,

b) Scatter electron (using Fermi’s Golden Rule which assumes an instantan-

eous effect) based on the use of a random number generator to determine

the scattering event that occurs.

4. If required, output average velocities/energies and electron distributions at

the end of the time step.

Step 3 is repeated for each electron, whilst steps 3 and 4 are repeated for each time

step. As the EMC simulation treats all electrons as independent from one another,

it is possible to implement a multi-threaded approach to step 3 of the algorithm,

that is, run this simulation with multiple electrons at once, in order to speed up

the simulation. An alternative to this is, if the simulation is being run for multiple

field strengths, run simulations for these different applied field strengths in parallel.

In this case, step 1 would only need to be performed once for all fields, before the

simulation runs steps 2 - 4 for all fields in parallel.

2.4.2. Output

The EMC code produces ensemble averaged data at the required point in time of

the simulation, based on the distribution of the system. To calculate the average

velocity and energy of the electrons in the ensemble, one simply needs to take the

instantaneous properties and average over all n electrons.

〈v〉t = 1
n

n∑
i=1

1
~
∂E(k)i
∂kx,i

. (2.4.1)
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〈E(k)〉t = 1
n

n∑
i=1

E(k)i. (2.4.2)

The EMC simulation is also capable of outputting valley occupancy data, and

the distribution of the velocities and energies of the electrons, and can be taken

at the end of any time step. To obtain time evolution properties, this needs to be

done at multiple points in the simulation (as described in section 2.4.1).

2.5. 1D n+ − i− n+ Diode Monte Carlo Simulation

The simplest device that can be simulated is the 1D device, where a small length of

a material is placed between two doped contacts made from the same material. To

keep things as simple as possible, the device is assumed to have infinite dimensions

perpendicular to the potential to be applied, as illustrated in figure 2.6.

2.5.1. Device algorithm.

In order to simulate a device, the bulk algorithm has to be amended to take into

account the limited dimensions of the device.

Figure 2.6) A diagram showing the layout of the simulated diode. The blue shaded areas
are n-doped regions, the green shaded active region is an undoped intrinsic region.
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1. Calculate scattering rates for a range of energies and maximum permissible

drift time between scattering events,

2. Set up the device, create the mesh, and set up the super-particle states.

3. Set initial conditions (charges/fields per grid spacing) and electron states (by

starting with a thermalised electron/distribution of electrons).

4. Select each particle in turn and repeat these steps on each electron until the

end of the current time step or electron has left the device.

a) Drift electron until the time of the next scattering event or the end of

the time step (whichever comes first) by updating the wave-vector (and

hence, momentum) and position of the electron,

b) Remove the electron if it has left the device (either though the anode or

the cathode)

c) Scatter electron (using Fermi’s Golden Rule which assumes an instantan-

eous effect) based on the use of a random number generator to determine

the scattering event that occurs.

5. Determine number of electrons to re-introduce into the device and add them,

setting initial conditions for these in the same was as was done for the initial

electrons step 3.

6. Determine the charge and potential at each grid node.

7. Output particle data (if required at this point).

Steps 4 to 7 can be repeated as required. Parallel calculations can be performed

in step 4, in a similar fashion to the EMC code, as the electrons are again deemed

to be independent of each other.
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2.5.2. Time Step and Mesh Size Determination

Unlike the bulk material simulations, the device has a potential applied across a

finite length, rather than a field across an infinite length. In order to accommodate

for the variable field across the length of the device, the algorithm divides the

device into a grid of discrete “strips” or cells. It is assumed that the conditions

are identical across the whole area of a cell, reducing the need to determine the

properties of each electron in turn.

In order to determine a suitable grid spacing, a series of stability criteria must be

met. First, a suitable time step, ∆t, must be selected, that is, the simulation time

between re-calculation of the field across each cell. If the time step is too long, the

field won’t be able to react to the particles’ movement in the device fast enough for

a meaningful simulation. In order to determine the time step, the plasma frequency

of the material must be determined using the relation, [25]

ωp =
√
e2n

εsm∗
(2.5.1)

where e is the electronic charge, n is the largest specified carrier density, εs is the

static dielectric constant and m∗ is the smallest effective mass that the electron

can encounter. The time step must be much smaller than 1/ωp.

A suitable cell length (or mesh size), ∆x, must also be obtained. As the model

needs to be able to react to the movement of charge throughout the device, the

resolution must be sufficiently fine to be able to react to any variation in charge.

Therefore, the cell lengths must be smaller than the wavelengths associated with

this movement of charge. Tomizawa [25] states that the smallest wavelength is

comparable to the Debye length of the system (equation 2.2.18) [25], thus, for the



Chapter 2: Monte-Carlo methods 46

simulation to remain stable, the cell length must be selected to be smaller than

the Debye length. However, using a cell length that is too small for the time step

chosen may also result in the inability for the simulation to adapt to the changing

conditions of the system quickly (as a particle may be able to move over more than

one cell in a time step without the field being re-calculated), so care has to be taken

when selecting this cell length. In order to ensure that the particles are unable to

“skip over” a cell, the following relation should be used to validate the choices of

∆t and ∆x,

∆x > vmax ×∆t (2.5.2)

where vmax is the maximum velocity that the electron can be expected to gain

during the simulation.

2.5.3. Super-particles

If the simulation assumed that all particles had the charge of an electron, running

this simulation with typical doping levels would potentially require the simulation

of billions of particles. In order to reduce this requirement, each particle in the

simulation is treated as a “super-particle”, that is, a particle that represents a

multiple of particles. In charge and potential calculations, each super-particle is

treated as if it holds the sum of the charges of the particles it represents, but when

the super particle is subjected to drift and scattering, it is treated as if it only has

the charge of a single electron.
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Figure 2.7) A representation of the cloud-in-cell scheme. The dashed lines are cell
boundaries, the solid lines are the grid nodes where the charge profile is taken from,
the dot represents a super-particle, and the grey shaded box represents the area the
charge is spread over. The charge contributes to the profile of the cell it resides in, so
in this case, there is a ~80% contribution to cell 2, and a ~20% contribution to cell 3.

2.5.4. Potential and field strength determination

In the device, the field is dynamic, unlike the bulk simulation, and has to be

constantly updated. To do this, the algorithm has to solve Poisson’s equation but

in order to do this, the charge density profile across the device has to be determined

at the centre of each cell, or grid node. A “cloud-in-cell” approach is used to do this

- each super-particle representing n particles with charge q is assumed to create a

cloud of electronic charge around it, spread uniformly across an area corresponding

to one cell width, ∆x, with the super-particle in the center of the charge cloud.

Unless the particle is on a cell boundary, then this cloud will have an influence on

two cells. An illustration of the cloud in cell approach can be seen in Figure 2.7.

In order to obtain the field across a cell, Poisson’s equation in one dimension has

to be solved for the potential, ψ

∂2ψ

∂x2 = − ρ
εs

(2.5.3)

where ρ is the charge density. By allowing ∂x2 → ∆x2 (which can be done as the

mesh is equally spaced in this model), ∂2ψ can then be taken to be the difference
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of two changes of potential, that is,

∂2ψ → ∆ψi−1→i−∆ψi→i+1 = (ψi−1−ψi)−(ψi−ψi+1) = ψi−1−2ψi−ψi+1 (2.5.4)

where i represents the index of a grid node. Substituting this into (2.5.3) yields

a set of linear equations that can be used to determine the potential at a grid node

i, that can be solved numerically through the use of matrix methods.

ψi−1 − 2ψi − ψi+1

∆x2 = −ρi
εs
. (2.5.5)

This solution works provided that the potential at either extreme of the device,

ψ1 and ψmax is provided. In the case of this device, ψ1 is set to zero, while ψmax is

set to the potential that is applied across the device. The field between two grid

nodes can then be simply worked out as (for a particle between points i and i+ 1)

fx = ψi+1 − ψi
∆x (2.5.6)

2.5.5. Initial Conditions

Like in the bulk simulations, the energy distribution and wave-vectors of the

particles is determined according to a thermalised distribution. However, unlike

the bulk simulations, where the initial position of the particles wasn’t important

(just the wave-vector), in the device, due to it’s finite dimensions in one direction,

position becomes very important. In the device, the super-particles are uniformly

placed in the cells in the doped n+ regions only, in order to balance out the positive

charge that is caused by the uniform doping of the contacts. This ensures that the
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device starts with a uniform net zero charge, and therefore a uniform electric field

across the device when the potential is applied. No super-particles are injected into

the intrinsic (active) region as the lack of dopants in the region means it is already

electrically neutral.

2.5.6. Monte-Carlo dynamics

The Monte-Carlo based routines, (i.e. the drift and scattering regimes) are very

similar to those performed in the bulk algorithms. However, due to the introduction

of variable fields and the mesh, the routines have had to be modified. In the drift

subroutine, the code now has to check the field across the cell that the particle is

currently in, rather than use a constant field. If the particle crosses a cell boundary

in the middle of a drift, however, the field in its initial cell is still assumed to apply

to the particle until the end of the drift as it would be very difficult to determine the

intermediate velocity of the particle at the cell boundary, which would be required

in order to be able to work out the average velocity of the particle in both phases

of the drift.

In the scattering routine, it is assumed that as the intrinsic region is devoid of all

dopants, that impurity scattering is negligible, and as such, if the code selects the

impurity scattering mechanism whilst the particle to be scattered is in the intrinsic

region, self-scattering (i.e. no change) occurs instead. Conversely, the impurity

scattering is considered to be large in the doped region, as the main contributor to

the impurity scattering is considered to be the charged dopants.

Finally, the position of the particles is always tracked, and if the particle is

detected to have left the bounds of the device in the x-direction (i.e. parallel to

the field), then the particle is removed from the simulation.
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2.5.7. Dynamic Electron Injection

Whilst particle removal is performed during the Monte-Carlo phases of the al-

gorithm, no injection of particles is performed. In order to avoid the device being

depleted of carriers (which would be entirely unphysical), a routine is executed be-

fore the charge and potential distributions are calculated that determines how many

particles have left the device via the anode and the cathode and injects particles

back into the contacts. The routine decides on the number of particles to inject

by applying the principle of charge neutrality, that is, it attempts to maintain a

charge neutral area at the extremes of either contact. When particles are injected

into the contacts, their initial states are set in the same way as when the particles

are initialised at the beginning of the simulation (see section 2.2.2).

2.5.8. Output

The output of the device code is similar to that of the EMC code, however, it can

average over cells as well as over the whole device, so that a profile of the device

can be built. Data that can be output from the device simulation includes velocity,

energy and valley occupancy averaged over the entire simulation or over each cell

to create a profile, and charge and potential profiles. This can be done at each

time step, which allows for the observation of the time evolution of the system.

2.6. Summary

This chapter has demonstrated how the Monte Carlo method can be implemented in

electron transport simulations, in bulk materials, and simple devices. The relative

merits of the different algorithms have been discussed, while the use of a single
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electron Monte Carlo algorithm is tempting due to its very low run times, the

range of data that can be extracted is limited to time averaged velocity, energy

and valley occupancy data in the steady-state regime. The Ensemble Monte Carlo

method produces a range of output, providing ensemble averaged data at any point

in time, which allows for both the steady-state and transient transport properties

to be determined. Of course, this has implications for the run time, though this

becomes less of an issue when parallelisation is introduced. The use of this method

to simulate a one dimensional device has been also been described, where the field

can vary across different sections of the device. Through the use of finite element

methods and coupling the system with a Poisson solver for the potential calculation,

we have demonstrated how the field profile across the system can be calculated,

thus allowing for such systems to be successfully modelled.
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Chapter 3

The Cosine Band-structure Approximation
It is well known that the band-structure of GaN is highly non-parabolic around

the Γ point, however, the use of the well known k.p band-structure approximation

does not provide a satisfactory approximation to the band-structure, missing vital

features of the structure that have been postulated to produce negative effective

mass transport in GaN. Therefore, to accurately simulate electron transport in

GaN, full-band structure simulations have been used. While producing accurate

results, these simulations are computationally expensive to run due to the numerical

integrations involved throughout the simulation.

In 2005, Ridley, Schaff and Eastman suggested the use of a cosine band-structure

approximation [36]. This cosine band model provides an approximation that is in

close agreement with that of the actual band-structure of GaN as calculated by

empirical pseudo-potential (ESP) methods [18], and takes the form:

Ek = EB
2 (1− cos(ka)). (3.0.1)

where Ek is the energy of an electron with wave vector k, EB is the energy differ-

ence between the energy minimum and maximum of the valley, k is the magnitude

of the wave vector, and a is the c-axis hexagonal lattice constant. It turns out

that this is an excellent approximation to the Γ-valley in GaN [3], and can also be

adapted for other materials that exhibit a similar band-structure.

We therefore begin this chapter by exploring the use of a novel band-structure

approximation that closely resembles that of the band-structure around the Γ point.

The inflection point in the valley, postulated to give rise to a negative effective
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mass effect at higher electron energies is taken into account. We continue by

making comparisons between the cosine band-structure approximation and other,

well-established analytic approximations (the parabolic and k.p approximations)

and analysing some of the properties of the approximation. We close the chapter

by deriving scattering rates based on this band-structure approximation in order

to be able to take advantage of these properties in Monte Carlo simulations.

3.1. Approximation Properties

3.1.1. E − k Relation

Figure 3.1 depicts the E−k relations of the cosine model and the more established

parabolic and k.p approximations. At first glance, it can be seen that the cosine

band-structure approximation has a very similar profile to that of the k.p approx-

imation at low energies. A simple benefit of the use of the cosine approximation is

that there is a inherent maximum attainable energy within the valley, EB, which is

not the case in other approximations. This ensures that in Monte Carlo simulations

the electrons in the Γ-valley will not be able to attain a higher energy then would be

physically possible if the electron was to remain in this valley. However, the cosine

band-structure approximation is of particular value for GaN because it contains

the inflection point necessary to facilitate negative effective-mass transport, unlike

the parabolic approximation, which assumes a fixed effective mass at all points in

the valley, and the k.p approximation, which does feature a varying effective mass,

however, negative effective mass states do not feature in this approximation. We

will return to the topic of effective masses later (in section 3.1.3).
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Figure 3.1) An E-k diagram of the parabolic (red, dot-dashed line), k.p (blue dashed
line) and cosine (black solid line) band-structure approximation, when GaN paramet-
ers are used at a temperature of 300K. For the parabolic and k.p approximations,
the effective mass of the electron at the Γ point is set to 0.2me, and for the cosine
approximation, a = 5.186Å and EB = 2.7 eV

3.1.2. Density of States

We can derive the density of states for the cosine band structure. The density of

states, dN , per unit volume is

dN = 1
2

(
k

π

)2

dk. (3.1.1)

Rearranging equation (3.0.1) in terms of k, we get,

k = 1
a

cos−1
(

1− 2Ek

EB

)
. (3.1.2)

Differentiating (3.1.2) with respect to E,

dk
dEk

= 1
EBa

√
(Ek /EB )− (Ek /EB ) 2

. (3.1.3)
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Figure 3.2) The density of states with respect to energy for the parabolic (red dot-
dashed line), k.p (blue dashed line) and cosine (black solid line) band-structure ap-
proximations (using parameters from Figure 3.1).

Substituting (3.1.2) and (3.1.3) into (3.1.1), and simplifying, we get the Density

of States for a cosine band-structure,

N(Ek) = dN

dEk
= [cos−1 (1− 2Ek /EB )] 2

2EBa3π2
√

(Ek /EB ) 2 − (Ek /EB )
. (3.1.4)

Figure 3.2 shows a comparison of the density of states calculated from different

band-structure approximations. It can be seen that the density of states for all three

approximations are closely matched at lower energies, deviating for the various

models at larger energies. It is important to note that at energies close to the band

edge (EB), the density of states for the cosine band-structure approximation tends

towards infinity and the approximation loses validity, so this approximation should

not be used too close to the band edge.



Chapter 3: The Cosine Band-structure Approximation 56

0 Π�4 Π�2 3Π�4 Π
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
0

Π � 4

Π � 2

3 Π � 4

Π

k�a

V
e
lo

c
it

y
H´

1
0

7
c
m

�sL

Figure 3.3) A plot of the velocity of an electron against k for the parabolic (red dot-
dashed line), k.p (blue dashed line) and cosine (black solid line) band-structure ap-
proximations (using parameters from Figure 3.1) in the direction of k.

3.1.3. Negative effective-mass transport

As shown in chapter 1, we can get a relationship between the velocity of an electron

and it’s position in k-space.

v(k) = 1
~
dEk

dk
. (3.1.5)

For a cosine-approximated valley, the velocity of the electron in the direction of

k is:

v(k) = EBa

2~ sin(ka). (3.1.6)

By referring to figure 3.3, it can be seen that at higher energies, there is a

deceleration of the electron, as opposed to an acceleration, something that isn’t

observed in the parabolic and k.p approximations. This effect of deceleration

solely due to the band-structure is caused by what is known as negative effective
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Figure 3.4) The calculated effective mass of an electron for different values of k when the
parabolic (red dot-dashed), k.p (blue dashed) and cosine (black solid) approximations
(using parameters from Figure 3.1).

mass states, through analogy with Newton’s second law, the acceleration of the

electron is in the opposite direction to the force on the electron caused by the

applied electric field. This negative effective mass effect was originally postulated

by Krömer [55], and it has discussed at length by Ridley et. al.[3, 36]. Using

(1.1.11), the effective mass of the electron when in a valley approximated using the

cosine band structure is,

m∗ = 2~2

a2EB cos (ka) . (3.1.7)

A comparison between the different band structure approximations, illustrating

the how the effective mass is related to the wave-vector of an electron can be seen

in figure 3.4, where the occurrence of negative effective mass states can clearly be

seen when using the cosine band-structure approximation.
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3.2. Derivation of Scattering Rates

The use of this new analytic band-structure approximation requires the derivation

of new scattering rates. We use Fermi’s Golden Rule, which was introduced in

chapter 1, to derive the rates, as it provides a mathematical expression for the

probability of an electron transitioning from an initial state, k, to a particular final

state k′ via some scattering mechanism. Fermi’s Golden Rule can be expressed in

the form,

S (k,k′) = 2π
~
|Hk,k′|2δ (Ef − Ei ∓ ~ω) δk′−k∓q,0 (3.2.1)

where S (k,k′) is the transition rate and |Hk,k′ |2 is known as the “matrix element”

[22, 28], and is defined for a system with an initial energy of Ei and final energy

of Ef (including all interacting particles). The Dirac Delta function ensures that

the expression complies with the principle of conservation of energy, whilst the

Kronecker delta imposes the principle of conservation of momentum. The matrix

element is dependent on the type of scattering, which means that Fermi’s Golden

Rule will produce different transition rates for the different scattering mechanisms.

Fermi’s Golden Rule can then be used in order to obtain an overall scattering

rate, by integrating over all possible potential final states, k’ that an electron can

transition to from a set initial state, k. The overall scattering rate for any particular

scattering mechanism in the three-dimensional system is then given by,

W (k) = Ω
(2π)3

2π
~

ˆ
|Hk,k′ |2δ (Ef − Ei) δk′−k∓q,0dk′ (3.2.2)

where the integration performed occurs over all possible final states that can
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occur within the crystal with volume Ω. It is this expression which we use to

derive the various scattering rates using the cosine band-structure approximation.

3.2.1. Polar Optical Phonon Scattering

Polar Optical Phonon (POP) scattering is the dominant form of electron scattering

in polar materials at room temperatures. Whilst the polar optical phonon scat-

tering rate has previously been derived by Dyson and Ridley [3], the derivation of

this rate has previously not been published, and hence, it is a worthwhile exercise

to re-derive the rate.

It has been shown that the matrix element for POP scattering is given by equa-

tion (3.2.3), where e is the electronic charge, ωo is the polar optical phonon fre-

quency, q is the phonon wave vector, q0 is the electron screening, n(ωo) is the

phonon occupation number and 1
εp

= 1
ε∞
− 1

εs
(where εs and ε∞ are the static and

high frequency dielectric coefficients, respectively).

|Hk,k′ |2 = ~e2ωoq
2

2εpΩ (q2 + q2
0)2

(
n(ωo) + 1

2 ±
1
2

)
. (3.2.3)

Substituting this into (3.2.2) and neglecting any potential electron screening, we

obtain the scattering rate before integration, which is identical to that given by

Ridley [22],

W (k) = e2ω0

εp8π2

(
n (ωo) + 1

2 ±
1
2

)ˆ 2π

0

ˆ 1

−1

ˆ qzb

0

q2

q4

× δ (Ek′ − Ek ∓ ~ωo) δk′−k∓q,0q
2dqd(cos θ)dφ. (3.2.4)

We can convert eqn. (3.2.4) to be an integration over k′ instead, as the relation-
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ship between k′ and q is unique, obtaining,

W (k) = e2ω0

εp8π2

(
n (ωo) + 1

2 ±
1
2

)ˆ 2π

0

ˆ 1

−1

ˆ ∞
0

k
′2

q2

× δ (Ek′ − Ek ∓ ~ωo) δk′−k∓q,0dk
′d(cos θk)dφ. (3.2.5)

Using the principle of conservation of momentum (provided by the Kronecker

delta), we have q2 = k2 + k′2 − 2kk′ cos θk. Substituting this into equation (3.2.5),

W (k) = e2ω0

εp8π2

(
n (ωo) + 1

2 ±
1
2

)ˆ 2π

0

ˆ 1

−1

ˆ ∞
0

k
′2

k2 + k′2 − 2kk′ cos θk

× δ (Ek′ − Ek ∓ ~ωo) dk′d(cos θk)dφ. (3.2.6)

To simplify the integration further, the integral over k′, can be converted to one

over energy, Ek. Using equation (3.1.3),

W (k) = e2ω0

εp8π2

(
n (ωo) + 1

2 ±
1
2

)ˆ 2π

0

ˆ 1

−1

ˆ ∞
0

k
′2

k2 + k′2 − 2kk′ cos θk

× δ (Ek′ − Ek ∓ ~ωo)
EBa

√
(Ek /EB )− (Ek /EB ) 2

dEk′d(cos θk)dφ. (3.2.7)

Integration over the azimuthal angle just introduces a factor of 2π. Following

this with an integration over cos θk produces,

W (k) = e2ω0

εp8π

(
n (ωo) + 1

2 ±
1
2

)
k′

k
ln
(

(k′ + k)2

(k′ − k)2

)

×
ˆ ∞

0

δ (Ek′ − Ek ∓ ~ωo)
EBa

√
(Ek /EB )− (Ek /EB ) 2

dEk′ . (3.2.8)

Finally, the integration of the delta function with respect to energy restricts Ek′

to be equal to Ek±~ωo, with values of k’ similarly restricted. This yields the POP

scattering rate in a spherical cosine band, equivalent to that given by Dyson and
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Ridley [3],

W (k) = e2ω0

EBaεp8π

(
n (ωo) + 1

2 ±
1
2

)
k′

k

1√
(Ek /EB )− (Ek /EB ) 2

ln
[

(k′ + k)2

(k′ − k)2

]
.

(3.2.9)

3.2.2. Non-Polar Optical Phonon Scattering

Non-Polar Optical Phonon (NPOP) scattering, also called Optical Deformation Po-

tential (ODP) scattering in some literature, has no part in intra-valley scattering in

GaN, due to it’s polar nature. However, NPOP scattering is the primary scattering

mechanism for inter-valley scattering for scattering between non-equivalent valleys

(e.g. from the Γ to one of the M-L valleys) and equivalent valleys (e.g. between

the six M-L valleys) in materials such as GaN. For the purposes of GaN, however,

only scattering into the Γ valley from satellite valleys need be considered using the

cosine-band structure approximation, as the approximation is only used for the Γ

valley. The scattering rate for NPOP scattering to, or between, the satellite valleys

is determined by the shape of the valley that the electron is transferring to, in our

case, the parabolic approximation. However, this derivation is very similar to that

which would be required for equivalent valley scattering, should this approximation

be used for satellite valleys in other models.

The matrix element for NPOP scattering is, [14, 22]

|Hk,k′ |2 = D2
o~

2Ωρωo

(
n(ωo) + 1

2 ±
1
2

)
(3.2.10)

whereDo is the optical deformation potential constant and ρ is the material density.

By substituting (3.2.10) into Fermi’s Golden Rule, (3.2.2), we obtain the scattering
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rate integral,

W (k) = 1
(2π)3

πDo
2

ρωo

(
n (ωo) + 1

2 ∓
1
2

)ˆ
δ (Ek′ − Ek ∓ ~ωo) dk′. (3.2.11)

Assuming that the effect of the frequency dependence in the Dirac delta function

is negligible when compared with the rest of the expression, we can convert this

equation to an integration over energy by using the relation:

1
2π3

ˆ
δ (E ′ − E) dk′ =

ˆ
δ (Ek′ − Ek ± c)N(Ek′)dEk′ (3.2.12)

where c is some constant with no dependence on dEk′ . Equation (3.2.11) there-

fore becomes:

W (k) = πDo
2

ρωo

(
n (ωo) + 1

2 ∓
1
2

)ˆ ∞
0

δ (Ek′ − Ek ∓ ~ωo)N (Ek′) dEk′ . (3.2.13)

Through the use of the properties of the Dirac delta function, integrating this

equation produces the scattering rate for NPOP scattering, which is identical to

that of the NPOP scattering rates of other scattering rates except for the density

of states term, which is band-structure dependent.

W (k) = πDo
2

ρωo

(
n (ωo) + 1

2 ∓
1
2

)
N (Ek ∓ ~ωo) . (3.2.14)

Substituting in (3.1.4), we get,

W (k) = πDo
2

ρωo

(
n (ωo) + 1

2 ∓
1
2

) [cos−1 (1− 2(E ∓ ~ωo) /EB )] 2

EBa3π2
√

((E ∓ ~ωo) /EB )− ((E ∓ ~ωo) /EB ) 2
.

(3.2.15)
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3.2.3. Piezoelectric Phonon Scattering

Piezoelectric (PZ) phonon scattering can be thought of as the acoustic mode equi-

valent of POP scattering. Unlike POP scattering, however, PZ scattering is less

dominant at room temperature. However, at low energies and temperatures, the

effects of PZ scattering cannot be neglected.

The matrix element for PZ scattering is [14, 22]

|Hk,k′ |2 = e2K2
avkBTq

2π

8εp~Ω (q2 + q2
0)2 . (3.2.16)

where

K2
av =


e2

14
εp

(
12

35cL
+ 16

35cT

)
for zinc blende structures

1
εp

(
e2

L

cL
+ e2

T

cT

)
for wurzite structures

. (3.2.17)

cL and cT are the longitudinal and transverse spherical elastic constants and e14

is a piezoelectric constant determined by the piezoelectric tensor for zinc blende

structres. eL and eT are defined as

e2
L = e2

33
7 + 4e33 (e31 + 2e15)

35 + 8 (e31 + 2e15)2

105 ; (3.2.18)

e2
T = 16e2

15
35 + 16e15 (e33 − e31 − e15)

105 + 2 (e33 − e31 − e15)2

35 . (3.2.19)

where e15, e31 and e33 are the various wurzite structure piezoelectric constants.

[22] The scattering rate integral, by substitution into (3.2.2), is therefore,

W (k) = q2K2
avkBT

8π2ε~

ˆ
q2

(q2 + q2
0)2 δk±q−k′,0δ (Ek′ − Ek ∓ ~ωq) dk′. (3.2.20)
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Converting (3.2.20) to an integral over q,

W (k) = e2K2
avkBT

8π2ε~

ˆ 2π

0

ˆ 1

−1

ˆ 2k

0

q4

(q2 + q2
0)2 δk±q−k′,0

× δ (Ek′ − Ek ∓ ~ωq) dq d (cos (θ)) dφ. (3.2.21)

The integration over the azimuthal angle φ simply introduces a factor of 2π into

the rate, yielding

W (k) = e2K2
avkBT

4πε~

ˆ 1

−1

ˆ 2k

0

q4

(q2 + q2
0)2 δk±q−k′,0δ (Ek′ − Ek ∓ ~ωq) dq d (cos (θ)) .

(3.2.22)

In order to integrate over cos (θ), we must make an approximation known as the

“long wave” approximation. In the long wave approximation, we note that, for

acoustic waves, kmax ≈ 1%π
a
, that is, the maximum k-vector is approximately 1%

of the Broullion zone of the crystal when PZ scattering is occurring. Therefore, we

assume that kmaxa ≈ 0.01π. Using this, we can safely use the Taylor expansion for

a cosine, as we now know kmaxa, the maximum value we assume ka can be, to be

small. This yields,

cos (ka) ≈ 1− k2a2

2 + k4a4

24 +O
(
k6
)

(3.2.23)

Substituting (3.2.23) into (3.2.22) yields,

W (k) = e2K2
avkBT

4πε~

ˆ 1

−1

ˆ 2k

0

q4

(q2 + q2
0)2 δk±q−k′,0

× δ

(
EB
2 cos (ka)− EB

2

[(
1− (k′a)2

2 + (k′a)4

24

)]
∓ ~ωq

)
dq d (cos (θ)) .

(3.2.24)



Chapter 3: The Cosine Band-structure Approximation 65

It is important to note that cos (ka) in (3.2.24) is regarded as a constant, as no

integration over k is performed, therefore, the substitution in (3.2.23) is only per-

formed on cos (k′a). Applying the conservation of momentum from the Kronecker

delta to (3.2.24),

W (k) = e2K2
avkBT

4πε~

ˆ 1

−1

ˆ 2k

0

q4

(q2 + q2
0)2 δ

{
EB
2 cos (ka)

× −EB2

[(
1− a2 (k2 + q2 − 2kq cos (θ))

2 + a4 (k2 + q2 − 2kq cos (θ))2

24

)]

× ∓~ωqdq d (cos (θ)) . (3.2.25)

Equation (3.2.25) is now in an state in which we can integrate the Dirac delta

over cos (θ) using the identity

ˆ
f (x) δ (g (x)) dx =

n∑
i=1

f (xn)
g′ (xn) (3.2.26)

Before differentiation, however, we neglect the term (kqa2)2 cos (θ) that arises

from the expansion of a4 (k2 + q2 − 2kq cos (θ))2, as (kmaxa2)2 ≈ 10−4π2, which is

much less than 1. Differentiating (3.2.25) with this term neglected with respect to

cos (θ) using (3.2.26), we obtain

W (k) = e2K2
avkBT

4πε~

ˆ 2k

0

q4

(q2 + q2
0)2

1
(EB/2) [kqa2 + (a4/6) (k3q + q3k)]dq. (3.2.27)

The summation sign has been dropped, as all the cosn (θ) terms have been can-

celled out, meaning that there is only one term to sum. (3.2.27) can be further

simplified to give,

W (k) = e2K2
avkBT

2πε~EBka2

ˆ 2k

0

q3

(q2 + q2
0)2 [1 + (a2/6) (k2 + q2)]

dq. (3.2.28)
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Integrating (3.2.28) with respect to q and inserting the limits yields the scattering

rate,

W (k) = 3e2K2
avkBT

2πε~EBka2
χ2χ1 ln [(χ1χ2) / (q0

2 (6 + 5a2k2))]− 4k2χ3

χ1χ32 , (3.2.29)

where χ1 = 4k2 + q0
2, χ2 = 6 + a2k2 and χ3 = 6 + a2 (k2 − q0

2).

3.2.4. Acoustic Phonon Scattering

Acoustic Phonon, or Acoustic Deformation Potential (ADP) scattering, is the

acoustic mode equivalent of NPOP scattering, but unlike NPOP scattering, ADP

scattering is present within the Γ valley and plays no part in inter-valley scattering

of electrons. Like PZ scattering, ADP is only a dominant scattering mechanism

at low energies and temperatures, but it is for these very reasons again that they

must not be neglected.

The ADP matrix element is, [14, 22]

|Hk,k′ |2 = Ξd
2kBT

2ρν̄sL2 (3.2.30)

where Ξd is the acoustic deformation potential constant, ν̄sL is the longitudinal

acoustic velocity. Substituting this into (3.2.2), we obtain, [25],

W (k) = 1
(2π)3

πΞd
2kBT

~ρν̄sL2

ˆ
δ (Ek′ − Ek ∓ ~ωq) dk′. (3.2.31)

As with the NPOP scattering, we can convert the equation to be integrated

over energy as long as we neglect the angular dependence on the delta function

and consider acoustic phonon scattering as an elastic process as ~ωq � kT at
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most temperatures.[22] (As there is no k′ dependence outside of the delta function,

unlike in the derivation of PZ scattering, it is advantageous to do this, see Ridley

[22].) Thus, we obtain

W (k) =
ˆ
πΞd

2kBT

~ρν̄sL2 N (Ek′) δ (Ek′ − Ek) dEk′ . (3.2.32)

Integrating this, we can easily obtain the ADP scattering rate though the integ-

ration of the Dirac delta function:

W (k) = πΞd
2kBT

~ρν̄sL2 N (Ek) . (3.2.33)

which, as with the NPOP scattering, is an identical expression to that of other

band structures. Substituting in the density of states for the cosine band structure

approximation, and Equation (3.2.33) becomes:

W (k) = πΞd
2kBT

~ρν̄2
sL

[cos−1 (1− 2E /EB )] 2

EBa3π2
√

(E /EB ) 2 − (E /EB )
. (3.2.34)

3.2.5. Charged Impurity Scattering

Imperfections often occur through the growth of semiconductor crystals. One type

of imperfection that can occur is the inclusion of foreign molecules to the crystal,

usually artificially included in the material in order to alter the transport properties

of the material (often referred to as doping a material).

Using the Brooks-Herring approach, Ridley suggests that the matrix element is



Chapter 3: The Cosine Band-structure Approximation 68

[22],

|Hk,k′ |2 = Z2e4

ε2sΩ2
1

(|k′ − k|2 + q2
0)2 . (3.2.35)

where Ze is the charge on an impurity atom, and q0 ≡ qD, the Debye length.

Through the use of the delta function and the principle of conservation of energy,

we can assume that |k′| = |k|. Therefore, it can be shown that, if the angle between

k and k′ is θ, using trigonometric identities, we find,

k′ − k = 2k2 (1− cos θ) . (3.2.36)

Substituting (3.2.35) and (3.2.36) into (3.2.2), and multiplying by NIΩ, the num-

ber of impurities in the normalization volume,

W (k) = 1
8π3

ˆ 2π
~
NIZ

2e4

ε2s

1
(k2 (1− cos θ) + q2

0)2 δ (Ek′ − Ek) dk′. (3.2.37)

Substituting out dk′ for k′2dk′d cos θdφ, we obtain

W (k) = 1
8π3

ˆ 2π

0

ˆ 1

−1

ˆ ∞
−∞

2π
~
NIZ

2e4

ε2s

1
(2k2 (1− cos θ) + q2

0)2 δ (Ek′ − Ek) k′2dk′d cos θdφ.

(3.2.38)

We can further replace k′2dk′/8π3 by (N(Ek′)/4π)dEk′ , allowing for the easy

integration of (3.2.38). Integrating with respect to the azimuthal angle φ and

energy,

W (k) =
ˆ 1

−1

4π2

~
NIZ

2e4

ε2s

1
(2k2 (1− cos θ) + q2

0)2
N(Ek)

4π d cos θ. (3.2.39)
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Finally, by integrating (3.2.39) we obtain the scattering rate for charged-impurity

scattering,

W (k) = 2πNIZ
2e4

~ε2s (q2
0 (4k2 + q2

0))N (Ek) . (3.2.40)

As with the NPOP scattering rate, the expression is identical to that derived for

parabolic band-structures, except for the density of states, which takes the required

form (in this case, the cosine form).

3.2.6. Threaded Dislocation Scattering

Due to the lack of lattice-matched substrates for the epitaxial growth of GaN crys-

tals, lattice dislocations occur throughout the material. These can play a significant

role in the characteristics of the material if there is a sufficient concentration of them

- it is therefore important to ensure they are not neglected. It is also important

to note that electrons that are traveling parallel to the thread dislocations will not

be scattered by them, and therefore only the component of the k-vector perpen-

dicular to the dislocation is taken into account. Dislocation scattering is therefore

a two-dimensional rate, and it is assumed that the dislocations are perpendicular

to the applied electronic field.

Look and Sizelove suggested that the transition rate for dislocation scattering is

(with the momentum relaxation rate factor of (1− cos θ) removed)[73],

W (k) = 1
(2π)2

2π
~

ˆ
|Hk,k′|2δ (Ek⊥ − Ek′⊥) dk′⊥. (3.2.41)

It has been shown that, to an excellent approximation that the matrix element
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is [73],

|Hk,k′ |2 = e2λ2

εa (1 + q2λ2) (3.2.42)

where,

λ =
(
εkBT

e2n′

)1/2

(3.2.43)

and n′ is the effective screening concentration. Substituting (3.2.42) into (3.2.41)

W (k) = 1
(2π)2

2π
~

ˆ (
e2λ2

εa (1 + q2λ2)

)2

δ (Ek⊥ − Ek′⊥) dk′⊥. (3.2.44)

Converting this into an integration over energy by making substitutions like so,

dk′⊥ = k′⊥dk
′
⊥dθ =

 cos−1 (1− 2Ek′⊥/EB)
EBaπ

√
(Ek′⊥ /EB )2 − (Ek′⊥ /EB )

 dθdEk⊥ . (3.2.45)

Putting (3.2.45) into (3.2.44), we obtain,

W (k) = 1
2π~

ˆ 2π

0

ˆ ∞
0

(
e2λ2

εa (1 + q2λ2)

)2

× cos−1 (1− 2Ek′⊥/EB)
EBa2

√
(Ek′⊥ /EB )2 − (Ek′⊥ /EB )

δ (Ek⊥ − Ek′⊥) dθdEk⊥ .(3.2.46)

Integrating this, we get,

W (k) = 1
~

(
e2λ2

εa (1 + q2λ2)

)2 cos−1 (1− 2Ek⊥/EB)
EBa2

√
(Ek⊥ /EB )2 − (Ek⊥ /EB )

. (3.2.47)

Finally, we must multiply this by the areal density of dislocations, Ndis, as the
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rate derived is for one dislocation per unit area. Hence, our final rate for dislocation

scattering is,

W (k) = Ndis

~

(
e2λ2

εa (1 + q2λ2)

)2 cos−1 (1− 2Ek⊥/EB)
EBa2

√
(Ek⊥ /EB )2 − (Ek⊥ /EB )

. (3.2.48)

3.3. Summary

In this chapter, an overview of the cosine band-structure approximation and its

various characteristics have been described. The basic form of the approxima-

tion has been compared with that of other approximations, particularly the k.p

approximation, the two approximations are similar at low energies but begin to

diverge significantly at energies above 0.5 eV. We have also explained the effect of

the inflection point in the approximation, giving rise to the negative effective mass

effect, which is thought to be crucial in some III-V nitride materials, in particular,

Gallium Nitride. By using this new cosine band-structure approximation, we can

try to gain insight into how much of an effect negative mass states has the electron

transport characteristics of these materials.

In order to include this band-structure approximation in our simulations, we

have derived scattering rates specifically for this approximation. Figure 3.5 shows

all derived rates as a function of energy, compared with the rates for a parabolic

band-structure, with the exception of dislocation scattering. We find, through

comparison of these rates with those derived from other models, that the scattering

rates deviate more at higher energies, thus, it is expected that the effect of the new

band-structure approximation will be more apparent at higher energies.
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Figure 3.5) Comparison of scattering rates derived using the parabolic (dashed) and
cosine (solid) band-structure approximations assuming GaN parameters at a temper-
ature of 300K. POP (black), NPOP inter-valley (assuming an inter-valley separation of
1.2 eV, red) ADP (blue), PZ (green) and Impurity (brown) scattering rates are included
in the comparison. Dislocation scattering is not included as it is only a two-dimensional
rate.
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Chapter 4

Demonstration of Monte Carlo codes
The basic algorithms described in chapter 2 are given by Tomizawa [25]. They

have been re-engineered to make use of the latest Fortran features and parallel-

isation techniques, as well as to make use of a new band-structure approximation

(as described in chapter 3). However, in order to be able to use these codes with

confidence, the codes are checked against the properties of materials with known

characteristics. As two major sets of changes have been made to the codes, com-

putational (use of new language features and parallelisation) and physical (use of

a new band-structure approximation), separate tests for each sets of changes need

to be performed, to ensure that the results are believable by checking our results

against other theoretical and experimental works.

To this end, in this chapter we first demonstrate that the computational changes

that were made to the algorithm produce expected and believable results, by gen-

erating results from materials that have well documented transport characteristics,

namely Gallium Arsenide (GaAs) and Indium Phosphide (InP). Results from the

code are compared with experimental results for velocity-field characteristics. A

check of the model when a third valley is added to the algorithm is then performed

by checking the output of the three valley Zinc Oxide (ZnO) model against recent

theoretical works, as there is very little available experimental data. In both these

cases, we use the well-established k.p model for the band-structure in order to

perform these tests. The chapter concludes by arguing the case for the new cosine

band-structure approximation, with details and results of tests which compare the

results that the physical changes to the model (introduced by this new approxim-

ation) produce, with experimental data and other models, using sample Gallium



Chapter 4: Demonstration of Monte Carlo codes 74

Nitride parameters.

4.1. Demonstration of computational changes

4.1.1. Materials

4.1.1.1. Gallium Arsenide

Gallium Arsenide (GaAs) is a well-understood direct band gap III-V semiconductor

that has been intensively studied over the past decades [74, 75]. GaAs can be used

in a variety of high frequency situations due to it’s high electron mobility and

the transferred electron (TE) effect (also known as the Gunn effect) due to the

relatively small energy difference between the two lowest conduction band valleys

(∼ 0.3 eV) [74]. These properties make GaAs an excellent candidate for fast field-

effect transistors, with switching speeds of 30GHz being reported [76], and has

also been used in Gunn diodes in order to generate EM waves with frequencies

around 100GHz [77]. It also has optoelectronic uses, due to its direct band gap

it can be used in lasers with relative efficiency when compared with indirect band

gap materials (such as Silicon) [31]. However, a major drawback of GaAs when

compared with GaN is that the field in which electrical breakdown occurs is relat-

ively low, GaN has a breakdown field approximately an order of magnitude greater

than that of GaAs at approximately ∼ 4× 105 V/cm [78, 79], restricting its use in

high power situations. That said, GaAs is a cheap and relatively fast responding

material that is used in a wide variety of low power applications. Due to it’s well

known characteristics, and abundance of experimental data, GaAs is an excellent

and simple candidate to validate this algorithm with.
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4.1.1.2. Indium Phosphide

Indium Phosphide (InP), like GaAs, is a direct band gap III-V semiconductor

that has also been studied extensively [80]. Like GaAs, it has been touted as a

material suited to high frequency electronics (again, due to the TE effect) and

has even been the subject of some investigations into terahertz (THz) frequency

electromagnetic wave generation [1], again, due to high electron mobilities and

the transferred electron effect. As InP also has a direct band gap, it is suitable

for efficient optoelectronic applications. Its main drawback, however, is its low

breakdown field, whilst slightly higher than that of GaAs [2], limiting its usefulness

in lower power situations. Nevertheless, with it’s high electron mobility and the

Gunn effect exhibited by the material, it is a good choice for low power high

frequency applications. Its well known characteristics and parameters allows for

InP to be used as an excellent material to validate the algorithm with.

4.1.1.3. Zinc Oxide

Zinc Oxide (ZnO) is a direct-band gap II-VI semiconductor that has gathered

much recent interest [26, 81–84]. Unlike GaAs and InP, ZnO favours the wurzite

molecular structure (though it can also form a zinc blende structure) [85], and,

like GaN, it has a wide band gap and has been touted as a possible competitor to

GaN in high-field electronics. As it is a transparent material, it has seen use in the

creation of transparent electrodes, a recent example of this by Oh et al. [86] suggests

the use of zinc oxide in the production of light-emitting LCD devices, replacing the

more expensive and hazardous indium tin oxide layer. It has also gathered interest

in the optoelectronic field, with a similar band gap to GaN, it shares some optical

properties with it, with optical emission occurring at approximately 384nm [87],
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comparable with that of GaN, which emits light at wavelengths of about 405 nm.

Less is known about ZnO than GaAs and InP, with a large variance in the re-

ported material parameters, which gives rise to many different reported transport

characteristics (which is particularly noticeable when looking at the different re-

ported velocity-field characteristics of the material [81–84]). Thus, the validation

of the algorithm presented in this thesis is limited to comparing results from other

theoretical works using their parameters, there is very little reliable experimental

data on ZnO with regards to electron velocity.

4.1.2. Results

The parameters that are used in this set of tests are summarized in table 4.1. We

discuss the characteristics of GaAs and InP first, as their material properties and

transport characteristics are well known and experimental data is easily accessible,

and then move on to analysing ZnO and tests of a three-valley model.
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Table 4.1) Parameters used in the tests for GaAs, InP and ZnO. For ZnO, parameters
from Bertazzi et al. [82] take precedence over other sources.
∗Calculated from the C44 elastic constant, 44.3GPa. [88]

Parameter (units) GaAs
[31, 74, 89]

InP[80] ZnO
[81, 82, 88, 90]

Crystal Structure Zinc Blende Zinc Blende Wurzite
Density

(
kg/m3) 5360 4810 5606

Longitudinal sound velocity
(
ms−1) 5240 5130 6590

Transverse sound velocity,
(
ms−1) 2480 2160 2810∗

Non-polar optical deformation
potential coupling constant, (eV/m)

1011 6.7× 1010 1011

Inter-valley scattering coupling
constant, (eV/m)

1011 2.5× 1011 1011

Acoustic deformation potential, (eV) 7 8 3.83
Piezoelectric constant e14 (C m−2) −0.16 −0.035 –
Piezoelectric constant e15 (C m−2) – – −0.37
Piezoelectric constant e31 (C m−2) – – −0.62
Piezoelectric constant e33 (C m−2) – – 0.96
Energy gap (eV) 1.424 1.34 3.4
Static dielectric constant (ε0) 12.9 12.5 8.2
High-frequency dielectric constant
(ε0)

10.92 9.61 3.7

Energy gap (between Γ1 and Γ3
valley minima) (eV)

– – 4.4

Energy gap (between Γ1 and
satellite valley minima) (eV)

0.29 0.59 4.6

Number of equivalent satellite upper
valleys

4 4 6

Effective mass, Γ1 minima (me) 0.067 0.078 0.22
Effective mass, Γ3 minima (me) – – 0.42
Effective mass, satellite upper valley
minima (me)

0.35 0.26 0.7

Polar optical phonon energy (meV) 35.36 42.82 72
Non-polar optical phonon energy
(equivalent valleys) (meV)

27.8 29 50

Non-polar optical phonon energy
(inter-valley) (meV)

34.3 27.8 50

Charged carrier concentration
(cm−3)

1014 1015 1014
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Figure 4.1) Velocity-field data for GaAs and InP. Lines are from Monte-Carlo code using
the EMC algorithm and the k.p band structure, points are experimentally obtained
data points. Black: GaAs, red: InP. (GaAs experimental data from Blakemore [74],
InP experimental data from Maloney and Frey [80].)

4.1.2.1. Gallium Arsenide & Indium Phosphide

The steady-state velocity-field characteristics that have been generated for GaAs

and InP, along with experimental data, are shown in figure 4.1. It can be seen

that there is a close correlation between the theory and experimental results in

both cases, particularly in the case of GaAs. The discrepancy in the data can be

accounted for by noting that the codes do not account for all scattering mechanisms

that are known to happen in the materials, which would most likely cause an

overestimation in the velocity as there would be an absence of momentum relaxing

events, and that the concentration of charged impurities in the experimental data

was not specified, where the expectation is that larger impurity concentrations

would cause a decrease the magnitude of the velocity saturation, and potentially

decreasing the critical field slightly, with the opposite effect occurring with a smaller

concentration of impurities.

We also look at the energy-field and the Γ1 valley occupancy characteristics in
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Figure 4.2) Energy-field characteristics for GaAs (black) and InP (red) using the EMC
algorithm and the k.p band structure. Average energy is relative to the minima of the
Γ1 valley (i.e. the bottom of the conduction band)
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Figure 4.3) Steady state occupancy of the Γ1 valley as a function of the applied field
for GaAs (black) and InP (red) using the EMC algorithm and the k.p band structure.
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figures 4.2 & 4.3, and find that they are consistent with the velocity-field char-

acteristics from the models. From the energy-field characteristics, it can be seen

that the sharp increase in steady-state average electron energy (with respect to the

field), at slightly lower fields than the critical field - a characteristic that is consist-

ent with the occupancy characteristic, with electron transfer to the satellite valleys

beginning to occur at a similar field. The occupancy-field characteristics also fit

well with the velocity-field characteristics, with the transferred electron effect be-

ginning before the critical field and the saturation velocity is reached. Based on

the combination of these characteristics, we can make a reasonable assumption that

the algorithm performs as expected and can therefore be relied upon for two-valley

k.p approximation based models.

4.1.2.2. Zinc Oxide

In this set of tests, both a two valley and a three valley model are used. The

two valley model uses the lowest conduction band valley at the Γ point (Γ1) valley

and the six satellite valleys located between the L and M points in the Brillouin

zone. The three valley model includes the next highest valley at the Γ point, the

Γ3 valley.

Figure 4.4 compares the velocity-field characteristics of these two models, and it

can be seen that the resulting characteristics between the two models are almost

identical. This is not surprising, as the the Γ3 valley, which only features in the

three valley simulations, has a similar energy minima to that of the satellite L-M

valleys. Also, as the valley is narrower than the L-M valleys (as referenced by the

lower effective mass), larger energies can be attained more quickly and, as such,

electrons can be promoted into the satellite valleys from the Γ3 valley quickly.



Chapter 4: Demonstration of Monte Carlo codes 81

0 200 400 600 800 1 000
0.0

0.5

1.0

1.5

2.0

Field HkV�cmL

V
e
lo

c
it

y
H´

1
0

7
c
m

�sL

Figure 4.4) Velocity-field characteristics of ZnO as determined by a two-valley (red line)
and a three valley (black line) EMC model when using the k.p band structure.

Encouragingly, however, this characteristic is comparable to those obtained by

Bertazzi et al. [82] (figure 4, blue line) and Furno et al. [83] (figure 2) (from where

many of the parameters we have used for the simulation have been taken), with a

similar critical field (approx. 250 kV/cm), and a fairly similar peak velocity (this

work suggesting 2.4 × 107 cm/s, compared with ∼ 2.2 × 107 cm/s as suggested by

the referenced recent theoretical works.)

The energy-field characteristics, depicted in figure 4.5, however, indicate that

there is a difference between the two models, whereby at larger fields, much after the

point in which inter-valley transfer occurs, the three valley model reports a slightly

lower average electron energy than the two valley model. This is an expected

characteristic, as the electrons in the Γ3 valley can be at slightly lower energies than

those in the satellite valleys (as the Γ3 valley minimum is slightly lower than the L-

M valley minima), and it is favourable for electrons to be in a lower state if possible,

which the Γ3 valley enables. This is evident in figure 4.6, where a comparison has

been made between the valley occupancy profiles of the two models. It can be

seen that there is virtually no difference between the occupancies of the lowest
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Figure 4.5) Average electron energy (relative to the Γ1 valley minima) as a function
of applied electric field across bulk ZnO as predicted by a two-valley (red line) and a
three valley (black line) EMC model using the k.p band structure.
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Figure 4.6) Valley occupancy (as a percentage of the system) in ZnO at various fields
for the Γ1 (solid), Γ3 (dashed) and the L-M (dotted) valleys when using a two (red)
and three (black) valley EMC model using the k.p band structure.
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(Γ1) valleys, with the only difference being that a proportion of the electrons that

transfer to the L-M valleys in the two-valley model transfer to the slightly lower

energy Γ3 valley instead in the three valley model.

Whilst this demonstrates that the algorithm can be adapted to simulate a three-

valley model successfully, it can be seen that, at least in this case, the additional

computational time and code complexity required to simulate the third valley is

difficult to justify. However, it is useful to be able to validate these changes so that

for future work utilising this algorithm, should the three valley model be needed,

it can be used in the knowledge that it works.

4.2. Cosine band-structure approximation
demonstration

As the computational changes and updates that have been applied to the algorithm

have been shown to produce results that are in excellent agreement to other works,

both theoretically and experimentally, attention can now be focused on demon-

strating that the implementation of the cosine band-structure approximation in

the Γ valley within the algorithm produces believable results. To do this, the

characteristics for GaN that are generated using the EMC code that utilises this

approximation is compared with the characteristics from the EMC code that uses

the k.p model. We also compare the velocity-field characteristics with data ob-

tained through the use of a simple hydrodynamic model and the velocity data

obtained through experimental work. For the EMC simulations, we revert to the

use of a two valley model, and in both models, we use a spherical parabolic satellite

valleys in the M −L position . The GaN parameters used in these validation tests

are listed in table 4.2.
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Table 4.2) Parameters used in the tests for GaN. Parameters obtained from [6, 7, 44, 91–
94].

Parameter (units) GaN

Crystal Structure Wurzite
Density

(
kg/m3) 6150

Longitudinal sound velocity
(
ms−1) 6560

Transverse sound velocity,
(
ms−1) 2680

Non-polar optical deformation potential
coupling constant, (eV/m)

1011

Inter-valley scattering coupling constant,
(eV/m)

1011

Acoustic deformation potential, (eV) 8.3
Piezoelectric constant e15 (C m−2) −0.3
Piezoelectric constant e31 (C m−2) −0.55
Piezoelectric constant e33 (C m−2) 1.12
Energy gap (eV) 3.39
Static dielectric constant (ε0) 8.9
High-frequency dielectric constant (ε0) 5.35
Energy gap (between Γ1 and satellite valley
minima) (eV)

1.2

Number of satellite upper valleys 6
Effective mass, Γ1 minima (used in k.p based
simulations only) (me)

0.2

Effective mass, upper valley minima (me) 1.0
Polar optical phonon energy (meV) 91.2
Non-polar optical phonon energy (equivalent
valleys) (meV)

91.2

Non-polar optical phonon energy (inter-valley)
(meV)

91.2

Hexagonal lattice constant along c-axis (Å) 5.186
Γ valley width (from minima to top of
valley)(eV)

2.7

Charged carrier concentration (cm−3) 1017

4.2.1. Velocity-field characteristics.

We first take a look at the velocity-field characteristics. The characteristics gener-

ated using the cosine band-structure approximation based EMC model is compared

with the k.p approximation based EMC algorithm using the same parameters, ex-
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Figure 4.7) Velocity-field characteristics of GaN as predicted by Equation 4.2.1 (red
dashed), generated using the EMC code with the k.p (solid grey) and the cosine (solid
black) approximation, in comparison with experiment by Barker et. al.[59] (blue dots)

perimental data from Barker et al. [59], and a simple hydrodynamic model based

on the energy balance equations, characterised by the equation,

〈vF 〉 = EBa
2eF 〈τm〉

2 (~2 + e2F 2a2 〈τe〉 〈τm〉)
(4.2.1)

where F is the applied electric field, 〈vF 〉 is the average electron velocity in the

direction of the field, 〈τe〉 is the energy relaxation time and 〈τm〉 is the momentum

relaxation time. The relaxation times are set to averaged values for GaN around

the inflection point in the band structure (∼ 1.35 eV), as such, we use 〈τm〉 = 30 fs

and 〈τe〉 = 150 fs [3, 95].

Figure 4.7 shows a comparison in the velocity-field characteristics, where it can

clearly be seen that there is a marked difference between the two band-structure

models. Whilst there is little difference in the saturation velocity, simulations

using our cosine band-structure approximation suggest a critical field that is much

closer to that suggested the simple hydrodynamic model and the experimental
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data than the k.p model. Based on these comparisons, one can be satisfied that

the cosine band-structure approximation does indeed provide a better fit to recent

experimental data when compared with the k.p approximation. Though it is true

that the hydrodynamic equation appears to be a closer fit with the experimental

data, as stated above, 〈τm〉 & 〈τe〉 are the average energy and momentum relaxation

times across all conditions and we assume that they are valid for all applied field

strengths, which in reality, they are not. As such, these values treated as fitting

parameters, rather than substituting in representative values for each field. As a

result, the hydrodynamic model can only be used as a rough guide to the velocity

field characteristics of the system in steady-state, the Monte-Carlo approach using

the cosine band-structure, which does not require any experimental data to be

provided allows for more insight into the behaviour of the system.

4.2.2. Other characteristics

We now turn our attention to a comparison of other steady-state characteristics

generated by both the cosine band-structure approximation based and the k.p

based EMC models, in order to ensure that the characteristics are consistent with

each other. Figure 4.8 depicts the relationship between the steady-state occupancy

of the Γ1 valley with respect to the applied field, and figure 4.9 shows the energy-

field characteristics of the two models. From the occupancy-field characteristic, it

can be seen that the k.p model suggests that electrons begin to transfer to satel-

lite valleys earlier that the cosine band-structure approximation predicts (with the

first sign of the TE effect occurring at approximately 70 kV/cm in the k.p ap-

proximation as opposed to 100 kV/cm when using the cosine approximation). This

is consistent with the energy-field characteristics, as it can be seen in figure 4.9
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the EMC code with the k.p (grey) and the cosine (black) approximation
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Figure 4.9) Energy-field characteristics generated using the EMC code with the k.p
(grey) and the cosine (black) approximation
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Figure 4.10) Electron mobility as a function of field when using the EMC code with
the k.p (grey) and the cosine (black) approximations.

that the two characteristics begin to diverge at about 70 − 80 kV/cm, where the

k.p approximation suggests that the average energy of an electron begins to rise

sharply with the field, unlike the cosine approximation, with this feature of the

characteristic occurring closer to 100 − 110 kV/cm. It is also consistent with the

velocity-field characteristics as again, the critical field in the velocity-field charac-

teristics is larger when the cosine band-structure approximation is used, similar to

the energy-field characteristics.

We finally turn to the mobility-field characteristics (figure 4.10), and find that

there is a large discrepancy between the two models at low field, something that

was already evident by inspection of the velocity-field characteristics. The k.p ap-

proximation suggests a low field (at 2 kV/cm) mobility of about 2300 cm2V−1s−1,

whilst the cosine band-structure approximation yields a much lower low-field mo-

bility of approximately 430 cm2V−1s−1, which is in very close agreement with work

by Ilegems and Montgomery [96] (440 cm2V−1s−1) and, more recently, experimental

and theoretical works by Abdel-Motaleb and Korotkov [97] (also 440 cm2V−1s−1)

for a carrier concentration of 1017 cm−3. The high-field electron mobility is almost
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identical in both models, which is not surprising as most electrons have transferred

into the upper valley, which is identical in both models, and as can be seen in the

velocity-field characteristics, the attained velocities are very similar.

4.3. Summary

In this chapter, the concepts introduced in chapters 2 & 3 have been subject to a

series of tests to check their computational and physical validity. We first checked

the re-engineered algorithm and found that it executed successfully, yielding results

that match up with previous experimental data and other theoretical works for

GaAs and InP, as well as producing almost identical results to the base code, as

shown in [25]. We then extended the algorithm to include a third valley and tested

our algorithm against recent ZnO theoretical results, and whilst we discovered that,

at least in that case, the the addition of a third valley made little difference to the

theoretical characteristics, it still gave an expected outcome and gives us confidence

in this version of the algorithm should it be needed for later works.

The new approximation as described in chapter 3 was then integrated with the

algorithm that had been tested in the earlier sections of this chapter, and found that

the use of the new approximation gave a velocity field and mobility characteristic

that agrees more favourably to experimental results obtained from GaN than the

use of the k.p approximation in the model does, and produced other characteristics

that are consistent with these results. We can therefore use the re-written algorithm

and the new approximation for GaN and other materials that have a band structure

containing a valley that can be closely approximated with the form presented in

the new approximation, and be confident in the results that are obtained.
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Chapter 5

Bulk Gallium Nitride
In previous chapters, we laid the foundations of our simulations for Gallium Ni-

tride (GaN), describing the algorithms in chapter 2, developing a new analytic

approximation for the GaN band structure in chapter 3, and checking that these

new features and systems were successfully implemented in chapter 4. We can now

focus on using these foundations to determine some of the transport properties of

GaN. In this chapter, we will focus on bulk GaN, that is, we assume a uniform,

infinitely large block of GaN and apply a constant, uniform electric field across the

whole system.

Throughout this chapter, we use a two valley model, as used in the previous

chapter, to simulate the system. It is assumed that the two valleys in the Brillouin

zone are totally separate, and electrons can only transfer between the two valleys

via non-polar optical phonon scattering (see section 2.1 for a detailed description on

this model). Polar-optical, equivalent- and inter-valley non-polar optical, piezoelec-

tric and acoustic phonon scattering are all considered, as well as charged impurity

scattering, using expressions derived in chapter 3. Dislocation scattering is not

considered as the effect of dislocations in the material is assumed to be negligible.

The Ensemble Monte-Carlo (EMC) code coupled with the cosine band-structure

approximation has been used to determine the properties of the system. All bulk

simulations are run for a total simulation time of 4 ps to allow for enough time for

the system to reach steady-state conditions, broken into 40000 time steps of 0.1 fs,

and 15000 particles are used. We assume that the temperature of the system is

300K, and the concentration of charged impurities is 1023 m−3.

We use the same GaN material parameters used in our simulations as those used
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Table 5.1) Gallium Nitride simulation parameters at 300K. Parameters obtained from
[6, 7, 44, 91–94].

Parameter (units) GaN

Crystal Structure Wurzite
Density

(
kg/m3) 6150

Longitudinal sound velocity
(
ms−1) 6560

Transverse sound velocity,
(
ms−1) 2680

Non-polar optical deformation potential coupling
constant, (eV/m)

1011

Intervalley scattering coupling constant, (eV/m) 1011

Acoustic deformation potential, (eV) 8.3
Piezoelectric constant e15 (C m−2) −0.3
Piezoelectric constant e31 (C m−2) −0.55
Piezoelectric constant e33 (C m−2) 1.12
Energy gap (eV) 3.39
Static dielectric constant (ε0) 8.9
High-frequency dielectric constant (ε0) 5.35
Energy gap (between Γ1 and satellite valley minima)
(∆EΓ−L)(eV)

Varies from 0.7− 1.9

Number of satellite upper valleys 6
Effective mass, upper valley minima (me) 1.0
Polar optical phonon energy (meV) 91.2
Non-polar optical phonon energy (equivalent valleys)
(meV)

91.2

Non-polar optical phonon energy (inter-valley) (meV) 91.2
Hexagonal lattice constant along c-axis (Å) 5.186
Γ valley width (from minima to top of valley) (eV) 2.7

in the validation test in the previous chapter (repeated here in table 5.1), with one

exception, being the energy gap between the Γ1 and next lowest satellite valleys

(∆EΓ−L), as in the wurzite structure for GaN, the lowest satellite valley is at the

M-L position [18]. An exact value for ∆EΓ−L is currently unknown. Estimates of

this separation have varied between 1.1 eV and 2.27 eV [6], though Semenenko et al.

[94] published experimental optical measurements in 2011 suggesting that the size

of this gap is between 1.18 eV and 1.21 eV.

Thus, we open this chapter by investigating how varying the valley separation
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affects the steady-state transport characteristics of the system. We then investigate

the effect of negative effective mass on the system under steady-state conditions

comparing our two valley model with a one valley model, where the transferred

electron (TE) effect is unable to occur as there is no satellite valley for electrons

to transfer into. Using this, we are also able to determine how much of an effect

the TE mechanism has on the system by comparing the models that include and

exclude the TE effect. We close the chapter by studying how the characteristics of

GaN during the first picosecond of the simulation, again, investigating the potential

effects of negative effective mass through the use of a one-valley system alongside

our two-valley models, and the contribution of the TE effect through the use of

this direct comparison.

5.1. Comparison of Valley Separations

As the energy separation between the minima of the two lowest conduction band

valleys is not exactly known, steady-state electron transport characteristics of GaN

have been generated using five different values for the valley separation, 0.7 eV,

1.2 eV, 1.35 eV, 1.6 eV and 1.9 eV. Whilst the valley separation of 0.7 eV is outside

of the range for the separation given in the literature [6, 18, 56, 94], using this

separation allows us to investigate the cosine band-structure approximation in a

regime where the TE & NM mechanisms are separate (that is, the threshold for

the TE effect is well below that of the NM effect). However, we will not comment

on the effect of the NM states in this section (we will be investigating this later in

the chapter, see section 5.2).

We start by comparing the velocity-field characteristics for GaN for the selected
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Figure 5.1) Average velocity-field characteristics for various valley separations (using
the EMC simulation and the cosine band-structure approximation), and the calculated
velocity-field characteristics when using the balance equations/simple hydrodynamic
model (signified as Bal Eqns. in the legend).

values of ∆EΓ−L (figure 5.1), along with the result as predicted through use of the

simple hydrodynamic model based on the balance equations, (see equation (4.2.1)).

We find that the saturation velocity, over this range of separation energies, ranges

from 2.23×107 cm/s at a peak field of 123 kV/cm for a valley separation of 0.7 eV, to

2.84 × 107 cm/s at a peak field 175 kV/cm for a valley separation of 1.9 eV. These

results are comparable other works, with Foutz et al. [44] suggesting a slightly

higher peak velocity of 2.9× 107 cm/s at a relatively low critical field of 140 kV/cm

when the inter-valley separation is as high as 2.1 eV, (where the discrepancy between

the critical field reported by them compared with our work is explainable through

the choice of band structure approximation), while Yamakawa et al. [17] suggest

a peak velocity of 2.8× 107 cm/s at a critical field of 180 kV/cm using a full-band

model with a valley separation of 2.0 eV, and produces very similar results to our

model where the separation is 1.9 eV. At low field strengths, the velocities obtained

are identical, as expected, due to the only difference between the models being the

separation between the Γ and upper valleys, and hence, the threshold energy when
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Figure 5.2) Percentage of electrons in the system occupying the Γ1 valley in the steady
state as a function of field for various ∆EΓ−L.

scattering into upper valleys can occur, ∆EΓ−L−hωij, that is, the valley separation

energy less one inter-valley (IV) non-polar optical phonon, which is the threshold

for inter-valley scattering by phonon absorption. We would therefore expect that

the various characteristics will begin to diverge at approximately the field strength

where IV transfer begins to occur, and by referring to figure 5.2, which shows the

equilibrium occupancy of the Γ valley as a function of the applied field, we can see

that this is broadly the case. It transpires that this “divergence” of the velocity-

field characteristic for a particular separation occurs at the field strength when the

occupancy of the Γ valley for that separation drops to approximately 98%. As high-

field scenarios are reached, it can be seen that the velocity characteristics begin to

converge, which again can be linked to the occupancy characteristics. Referring

to figure 5.2, at high fields (> 300 kV/cm), the rate of change of the lower valley

occupancy with respect to the applied field is shallower for the models utilising

the lower valley separations than the larger separations. As the occupancy has a

large effect on the velocity, it follows that the greater the change in occupancy,

the greater the effect on the system velocity, thus providing the link between the
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Figure 5.3) Average mobility of electrons in the steady state as a function of field for
various valley separations (using the EMC simulation and the cosine band-structure
approximation).

two characteristics, though we note that this convergence of characteristics is more

pronounced in the velocity field characteristics than the occupancy characteristics.

Figure 5.3 depicts the electron mobility-field characteristics. As with the velocity-

field characteristics, we can see that all models have yielded identical mobilities

regardless of valley separation in the low-field regime, with electrons having an av-

erage mobility of approximately 430 cm2V−1s−1 at 2 kV/cm, in excellent agreement

with previous works, suggesting 440 cm2V−1s−1 [96, 97]. A divergence in the char-

acteristics can be seen when the occupancy of the Γ valley reaches approximately

98%, as expected, due to the link between mobility and velocity. In effect, a notice-

able “kink” can be seen in each characteristic at the fields where electron transfer

begins to take effect. At high-field, again, much like in the velocity-field charac-

teristics, we note that the mobility-field characteristics converge. However, the

mobilities converge with nearly identical mobilities being recorded over all valley

separations, with mobilities of 20− 25 cm2V−1s−1 occurring when a field strength

of 500 cm2V−1s−1 is applied.
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Figure 5.4) Average energy-field characteristics for various valley separations (using the
EMC simulation and the cosine band-structure approximation). Energy is relative to
the Γ1 valley minima at the bottom of the conduction band.

We now look at the energy-field characteristics for the different valley separations,

as shown in figure 5.4. First commenting on the general shape of all the models,

we note that they all show this elongated “S” shape characteristic, something that

has already been seen when investigating other materials in the previous chapter.

This “S” shape arises from the different processes that occur in these materials. In

the low-field regime, electrons do not gain momentum from the field quickly, and

thus, gain energy at a lesser rate than would be the case with larger fields, due to

the elastic charged impurity scattering being dominant at low energies over a range

of applied fields. When electrons are unable to gather energy quickly, they have to

spend longer in this low energy region, thus encountering more scattering events,

increasing the probability that a momentum-relaxing collision that sets the elec-

tron’s momentum against the applied field (which ensures that the electron must

first lose energy as it loses momentum against the field, and hence overall) occurs.

If the electrons are able to gain enough energy so that impurity scattering does not

play a large role, the inelastic polar-optical phonon (POP) scattering mechanism
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Figure 5.5) Energy (left) and velocity (right) number distributions under steady-state
conditions when fields of 25 kV/cm (black), 50 kV/cm (red) and 80 kV/cm (blue) are
applied to the system (using the EMC simulation and the cosine band-structure ap-
proximation). These distributions are near-identical for all valley separations con-
sidered.

(particularly in the energy-reducing case where scattering occurs due to phonon

emission) becomes dominant. At sub-0.2 eV energies, electrons gaining momentum

and energy slowly are very likely to encounter this scattering mechanism which

decreases the electron’s energy by 0.1 eV, placing it in the high impurity scattering

rate region. This makes it difficult for the affected electron to gain energy, thus

keeping the average electron energy low.

Whilst we see that there is a low average energy (comparable to those suggested

by the thermal distribution) at these low fields, referring back to the velocity-field

characteristics in figure 5.1, it appears that there is a fairly large increase in the

average velocity of the system. In figure 5.5, where the electron energy and velocity

distributions are displayed for sample fields in the low-field regime, we can see that

at 80 kV/cm, unsurprisingly, there is a larger “tail” in the energy characteristics,

causing a noticeable shift in peak velocity and a slight broadening in the velocity

distribution. This seemingly disproportionate shift is explainable by combining the

band-structure energy and velocity relations (equations 3.0.1 and 3.1.6) to obtain
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an energy-velocity relation:

vk = EBa

~

√√√√EBEk − E2
k

E2
B

(5.1.1)

where EB is the width of the Γ band and a is the c-axis lattice constant. The

relation suggests that, for the first half of the band, the rate of increase in velocity

with respect to energy starts high, but the potential increase in velocity diminishes

as energy is increased, until the mid-point of the band is reached. Thus, the (rel-

atively) large increase in the average velocity caused by a small change in average

energy is a physical occurrence.

Beyond 100 kV/cm, the rate of energy increase with regards to the field increases

dramatically. Most electrons are able to gain enough energy quickly so that many

electrons are not affected by the impurity scattering and the peak in POP scat-

tering trying to push the electrons back to this region, however, the systems reach

equilibrium at energies well below the valley separation energy. This equilibrium

occurs, again, mostly due to the POP scattering by phonon emission rate. Unlike

the charged impurity scattering, which is only dominant for electrons with energies

up to 0.1 eV, POP by emission is dominant for electrons with energies of 0.2 eV

up to energies just larger than the valley separation (there are, of course, other

scattering mechanisms that affect the system, but their contribution is negligible

compared to POP emission). There is one critical difference between the impurity

and POP scattering mechanisms, however, that ensures that there is this growth

in the energy-field characteristics. While charged impurity scattering is isotropic,

POP scattering is anisotropic in such a way that an electron is more likely to be

scattered in the current direction of travel - which for most electrons in this scen-
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ario, is in the general direction of the field. Thus, electrons in the mid-field regime

generally encounter energy reducing scattering mechanisms, but are also less likely

to be back scattered than in the low field regime, meaning that it is easier for elec-

trons to regain energy that they have lost. Higher applied fields, as it can be seen

from figure 5.4, means that electrons can reach a higher energy, on average, due

to faster rate of gain of energy means that electron can gain more energy between

scattering events.

In high-field regimes, the average energies of the systems are fairly steady around

the valley separation energy (i.e. the third part of the “S”). The inability of the

system to attain average energies much higher than this can be explained by the

same reasoning as given in the low-field regime, as most electrons will have trans-

ferred into the upper valleys (refer back to figure 5.2) as they are able to reach

energies where IV scattering is dominant with a relatively small number of scat-

tering events. Once electrons transfer to the upper valleys, they tend to have low

energies relative to the local minimum, where impurity and POP by emission are

highly dominant. Indeed, we find that the scattering rates in the upper valleys are

approximately an order of magnitude larger than their counterparts in the lower

valley, making it more difficult for electrons to reach high energies (relative to the

upper valley minimum). Thus, we end up with a similar characteristic to that

found at low-field, albeit centred around the upper valley minima rather than the

thermal energy.

We can now explain how varying the valley separation makes a difference between

the two models with ease. As we would expect through comparison with the other

characteristics presented, there is little difference between the models in low-field

scenarios, only seeing variations in the energy-field characteristics at high-field.
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As explained in the previous paragraph, we see the characteristics for each model

reach energies around the valley separation in question before increases in the

applied field make little difference to the average energy of the system, due to

the hugely inhibitive scattering rates in the upper valleys, particularly around the

valley minima. Thus, models utilising a larger valley separation have a larger mid-

field phase, as larger fields are required in order to be able to ensure the majority

of the electrons in the system are able to attain the energies required.

5.2. Effect of Negative Effective Mass

We now focus on the effect of the negative effective electron mass (NM) states in

the bulk material. We start by analysing the effect that the potential NM states

have on the system in the absence of other mechanisms that could potentially

cause a negative differential velocity (NDV) in the direction of the applied field,

that is, we remove the possibility of the TE effect occurring. To do this, we run the

model with the electrons confined to the Γ valley only, and compare this with the

results obtained from the two valley model. For the two valley model, only valley

separations of 1.2 eV and 1.9 eV will be considered.

It can already be seen from figure 5.1 that the TE mechanism has a sizeable effect

on the velocity-field characteristics of the material, as the saturation velocity and

the critical field are both decreased by assuming a lower valley separation. In figure

5.6, the one-valley model is plotted alongside the two valley model where ∆EΓ−L

is set to 1.2 eV and 1.9 eV. Focussing on the one-valley model at first, with the TE

mechanism unavailable, a noticeable NDV still occurs, with the model predicting

a saturation velocity of 2.98 × 107 cm/s at a critical field of 185 kV/cm. We find
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Figure 5.6) Velocity-field characteristics for GaN when a one valley model is used (solid
line), and a two valley model is used where the energy separation of the two valleys
is 1.2eV (long dashed) and 1.9eV (short dashed), using the EMC simulation and the
cosine band-structure approximation for the lower band.
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Figure 5.7) Percentage of electrons in the system occupying the Γ1 valley with a positive
effective mass (solid lines) or a negative effective mass (dashed lines) in the direction
of the applied field, and the satellite valley (dot-dashed line) as a function of field for
the one-valley model (black), and the two valley model where the valley separation is
1.2eV (blue) and 1.9eV (red)
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that there is a dominant proportion of NM states in the one band model, with NM

occupation reaching approximately 75% of the system at 500 kV/cm (see figure

5.7), causing this NDV.

If NM transport was a dominant transport mechanism in the two valley model in

the mid-field regime (that is, more electrons are in NM states than have transferred

into the upper valley around 200 kV/cm where velocity saturation occurs), then the

expectation would be that the velocity-field characteristics of the one-valley model

and two-valley model in question would be very similar, i.e. the characteristics

would share the same velocity saturation point, with the potential for the charac-

teristics to diverge beyond this point in the NDV region. We find that for a valley

separation of 1.9 eV that this is not the case, with the velocity saturation being

0.14 × 107 cm/s lower than suggested by the one-valley model at 2.84 × 107 cm/s,

occurring at the lower critical field of 175 kV/cm. Though there are more electrons

in NM states than have transferred to the upper valleys, it would not be fair to

state that NM transport is dominant, for example, when a field of 180 kV/cm is

applied to the system, there is only 10% of the system in NM states compared

with 4% of electrons that have transferred to upper valleys. At high-fields, the TE

effect becomes a much more favoured process, indeed, suppressing the ability of

the electrons to reach NM states, with NM state occupation reaching a maximum

of 28% of the system at a field of 330 kV/cm, before decreasing at the expense of

the upper valley occupation, which reaches above 60% of the system when a field

strength of 500 kV/cm is applied. When the valley separation is set to 1.2 eV, we

find that the TE effect is completely dominant, with only 4% of the system ever

reaching NM states. If the recent experimental measurements suggesting that this

valley separation is between 1.18 eV and 1.21 eV [94] hold true, the effects of NM
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Figure 5.8) Mobility-field characteristics for GaN using the one-valley and two-valley
models (using the EMC simulation and the cosine band-structure approximation for
the lower band).

transport in GaN are negligible in the steady state regime.

Figure 5.8 depicts the electron mobility-field characteristics. Again, focussing on

the one-valley model, it can be noted that the mobility is appreciably larger than

that of the two-valley model the in high-field regime. Interestingly, the “kink” that

can be seen in the two-valley model characteristics arising from the TE effect (as

discussed previously) can also be seen in the one-valley model at around 170 −

180 kV/cm, although it is a much less aggressive and is difficult to pinpoint. Much

like with the velocity-field characteristics, the effect of NM states alone (from the

one valley model) and the relative contribution of the TE effect by adding a second

valley can be seen, and again, it can be seen that the TE effect is more dominant

than the effect of the NM states, especially in the case where the valley separation is

1.2 eV. In the case where the valley separation is 1.9 eV, the TE effect also dominates

the overall form of the characteristic, though the field strength the “kink” occurs

at is close to that of the one-valley NM characteristic, suggesting that there is

some contribution from the NM states (which is what is expected from figure 5.7,
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Figure 5.9) Energy-field characteristics of the one-valley model (black), and the two
valley model where ∆EΓ−L = 1.2 eV (red) and ∆EΓ−L = 1.9 eV (blue) (using the
EMC simulation and the cosine band-structure approximation for the lower band).

where in the mid-field range, there is a slightly higher population of electrons in

NM states than there are in the upper valley).

Figure 5.9 shows the energy field characteristics of these models. As was shown

in figure 5.4, the two valley models reach average energies that are roughly equal

to the valley separation at high fields, due to the large scattering rates that are

experienced in the upper valley. Clearly, the same cannot be said for the one valley

model as there is no upper valley and thus no valley separation that can be used

to explain high-field scenarios. It is not surprising that the low-field characteristics

are practically identical to the results obtained through the use of the two-valley

model, as the only difference between the two models is the existence the transferred

electron model, and the effect that this has on the system has been explored in

an earlier section. Yet, we find a similarity between the two-valley and one-valley

models, in that the “S” shape can still be observed in the one-valley model, though

in the high-field regime, there is less of a “plateau” as seen in the two valley

model. The shape of the characteristic in the high-field regime is dictated by two
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Figure 5.10) Energy number distributions of the system in steady state for various

high-field scenarios when using the one band model (using the EMC simulation and
the cosine band-structure approximation).

different mechanisms, all scattering rates towards the band edge are very large,

and that some electrons are reaching the band edge unable to increase in energy

any further, decreasing the overall rate of increase in the energy. We can illustrate

this in figure 5.10, where steady-state energy distributions are shown for various

high-field models, it is quite clear to see that as the field strength is increased,

the position of the peak in the distribution increases. However, at fields above

400 kV/cm, there is a large proportion of electrons at the top of the band (at 2.7eV ),

unable to gain any more energy as they are unable to transfer to an upper valley.

This therefore inhibits the rate of increase of the average energy with respect to the

field in the energy-field characteristics, causing the characteristic seen at high-field

in the one-valley model.
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Figure 5.11) Time evolution of average electron velocity for fields of 1 − 500 kV/cm,
using the two valley model where the Γ-L valley separation is a) 1.2 eV and b) 1.9 eV,
and c) using the one-valley model (using the EMC simulation and the cosine band-
structure approximation for the lower band).
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5.3. Transient Characteristics

We now focus on the transient characteristics of GaN, using the two-valley model

with valley separations of 1.2eV and 1.9eV , as well as the one-valley model as

described previously. To do this, we assume that before the beginning of the

simulation (t < 0 ps) there was no applied field and the electrons have a thermal

spread of energies, and that at t = 0ps, the required field is immediately applied

across the system. Snapshots of ensemble-averaged data is taken over the course

of the simulation, as has been previously described in chapter 2.

We start by looking at the the velocity-field-time characteristics for the first 1ps

of transport, as shown in figure 5.11. In all three cases, it takes no longer than 1ps

to reach equilibrium, so by looking at the right edge of each of the graphs (at a

time of 1 ps), the steady state velocity-field characteristics are clearly visible. One

obvious feature visible in all three models is that a velocity “peak” can be seen at

larger applied field strengths. This effect is generally seen when the applied field

strength is larger than that of the critical field as seen in the steady-state velocity-

field characteristics (i.e. the field at which the steady-state velocity saturation

point/peak occurs). These peaks occur at approximately 100 fs after the start of

the simulation, though this is dependant on the field applied across the system and

the valley separation (or lack thereof). We term the occurrence of this transient

peak in velocity “velocity overshoot”, as in these scenarios, the average electron

velocity is larger than the expected steady-state velocity for a small period of time,

before relaxing to equilibrium values.

In order to investigate this phenomenon, we analyse the velocity-time character-

istics for all three models in the mid-field case, where the transient profiles begin
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Figure 5.12) Transient characteristics when the valley separation is 1.2 eV and a field
of 190 kV/cm is applied (using the EMC simulation and the cosine band-structure
approximation for the lower band). Solid line, left axis, velocity. Dashed lines, right
axis, percentage occupancy, with positive (black) and negative (red) states in the Γ
valley, and states in the upper valleys (blue).

to display small, broad velocity overshoots, and in high-field scenarios, well beyond

the critical field, in order to investigate a large and narrow overshoot profile.

5.3.1. Mid-field transient transport

In the mid-field regime, we take transient measurements at a field strength of

190 kV/cm, which is just beyond the critical field for all three models.

We begin by discussing the transient properties of the two valley model when we

set the valley separation to 1.2 eV, with the velocity and occupancy-time charac-

teristics as shown in figure 5.12. A small velocity overshoot peak can be seen, with

the peak velocity of the system reaching 3.38× 107 cm/s after 120 fs, before slowly

falling back to a steady state velocity of 2.21×107 cm/s, reaching equilibrium after

approximately 1 ps. It is quite clear to see that there is almost no contribution

from electrons in NM states, with maximum NM state system occupancy reaching

just 1.9%, thus suggesting that the TE effect (which reaches 32.3% at equilibrium)
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Figure 5.13) Transient characteristics when the valley separation is 1.9 eV and a field
of 190 kV/cm is applied (using the EMC simulation and the cosine band-structure
approximation for the lower band). Solid line, left axis, velocity. Dashed lines, right
axis, percentage occupancy, with positive (black) and negative (red) states in the Γ
valley, and states in the upper valleys (blue).

is driving the NDV characteristic of the system, the time that the peak occurs at

coincides with the start of electron transfer to the upper valley. Before this point,

however, there is a significant decrease in the average acceleration before the TE

takes effect. This is an effect of the shape of the band-structure around the Γ

valley, as electrons approach the required energy to enter NM states, the effective

mass increases, and thus, the acceleration of the particles decreases.

When the valley separation is increased to 1.9 eV, the critical field is at 170 kV/cm

so we look at the characteristics at 190 kV/cm, as shown in figure 5.13. The velocity

characteristic is not overly different to that found in the previous model, a slightly

larger peak velocity of 3.44× 107 cm/s is observed after about 140 fs, before falling

to a steady state velocity of 2.8× 107 cm/s after around 1 ps, which is slightly less

time than previous model required to reach steady state conditions, though it is

difficult to say how much of this difference can be linked with the change in valley

separation. Encouragingly, this result is similar to that obtained by Joshi et al.
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Figure 5.14) Transient characteristics when the one-valley model is used and a field
of 190 kV/cm is applied (using the EMC simulation and the cosine band-structure
approximation). Solid line, left axis, velocity. Dashed lines, right axis, percentage
occupancy, with positive (black) and negative (red) states in the Γ valley.

[6], who suggest a slightly larger peak velocity of 3.8× 107 cm/s after about 120 fs,

using a slightly larger Γ−L valley separation of 2.27 eV and the k.p approximation.

It should be noted that the drop in velocity from the peak to the steady state

value, an approximate change of 0.6× 107 cm/s, is also less than that seen for the

smaller valley separation of 1.2 eV, which saw a change of 1.16 × 107 cm/s. The

peak velocity, and hence the occurrence of the NDV, is found to be present before

the electrons begin to transfer into the upper valleys at 180 fs. We can thus assume

that the shape of the band structure, in particular, the NM effect caused by it,

has a noticeable effect on the system. Indeed, while the occupation of NM states

is never dominant, it is more significant than the effect of electrons in the upper

valley, with 14% of the system in NM states in the Γ valley whilst only 7% of

electrons are in the upper valley under steady state conditions.

Turning to the one-valley model, (figure 5.14) we can investigate the effect of the

NM states if the TE effect is eliminated. When using the two-valley model with

a valley separation of 1.9eV , it was noted that the velocity peak occurred before
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the electron transfer took place. Therefore, we would expect that there is a similar

peak velocity which occurs after a similar amount of time, which is indeed the

case, with a peak velocity of 3.41 × 107 cm/s occurring after 140 fs, the difference

in the peak velocity can be attributed to the random nature of the system. The

differences occur when relaxing back to the steady state characteristics. The most

noticeable difference that can be seen is the time it takes for the models to reach

steady state conditions, while it takes the two valley model about 1 ps, the one-

valley model takes about 0.4 ps, meaning that electrons that transfer to the upper

valley require more time to relax to steady state conditions. As we have already

seen from the steady state characteristics, the equilibrium velocity suggested by the

one-valley model is slightly higher (at 2.98× 107 cm/s). This is because NM states

indicate a deceleration of electron velocity as energy increases and thus electrons

enter these states with large velocities, whilst electrons that transfer into upper

valleys lose a lot of their momentum quickly and start at low velocities, as they are

suddenly much closer to a valley minima. Furthermore, the acceleration of electrons

in upper valleys are generally impeded due to larger scattering rates, keeping upper

valley velocities low, whilst an electron entering a NM state starts at the maximum

attainable velocity, which decreases as it’s energy and wave-vector increases. As

such, an electron being in a NM state does not infer a low electron velocity.

5.3.2. High-field transient transport

We start looking at the high-field transport model by focussing on the two valley

model with a valley separation of 1.2 eV. Figure 5.15 shows the aforementioned

velocity-time characteristics along with the transient occupancy data of the Γ val-

ley (where the positive and negative effective mass contributions have been sep-
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Figure 5.15) Transient characteristics when the valley separation is 1.2 eV and a field
of 400 kV/cm is applied (using the EMC simulation and the cosine band-structure
approximation for the lower band). Solid line, left axis, velocity. Dashed lines, right
axis, percentage occupancy, with positive (black) and negative (red) states in the Γ
valley, and states in the upper valleys (blue).

arated) and the upper valley contribution. It can be seen that the peak velocity

of 5.62× 107 cm/s occurs just 50 fs after the field has been “switched on”, dipping

back to the equilibrium velocity of 1.3 × 107 cm/s after about 300 fs. The occu-

pancy characteristics match the transient profile of the velocity, we can see that

the positive mass system occupancy of the Γ valley begins to drop at around 40 fs,

just before the velocity peak, with electrons moving into NM states in the Γ band

and the TE effect beginning to transfer the electrons to the upper valley occur-

ring at almost the same time. As the occupancy of the upper valleys increases, it

can be seen that the system velocity decreases, with the equilibrium upper valley

occupancy of 79% occurring at the same point where the steady-state velocity is

reached. NM states are never a dominant factor in this case, with a maximum

of 13% occupancy before dropping down to 4%, before steady-state conditions are

reached.

Whilst it appears that there is a slight dominance of NM states over the TE
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Figure 5.16) Transient characteristics when the valley separation is 1.9 eV and a field
of 400 kV/cm is applied (using the EMC simulation and the cosine band-structure
approximation for the lower band). Solid line, left axis, velocity. Dashed lines, right
axis, percentage occupancy, with positive (black) and negative (red) states in the Γ
valley, and states in the upper valleys (blue).

effect for a very brief period of time, as explained previously, NM states have a

much lesser effect on the system when they first appear, when compared to the

TE effect, as an electron that has entered a NM state simply by attaining enough

energy in the Γ band still has close to it’s maximum velocity while the TE effect

instantaneously affects the momentum of the electron in question, thus affecting

the system much less. Hence, we can assume that the effect of the NM states when

they first appear is negligible and therefore play little to no part in the formation

of the velocity characteristic.

When the valley separation is set to 1.9 eV, we see that the velocity peak of

5.78×107 cm/s occurs after 55 fs, which, again, is similar to data by Joshi et al. [6],

who suggest a peak velocity of 6.2×107 cm/s after about 70 fs. On closer inspection

of figure 5.16, it can be seen that there is a more pronounced effect from the NM

states. This is something that is expected, some of the mid-energy electrons that

would have transferred into the upper valley when the valley separation is 1.2 eV are
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unable to do so in this model, as the threshold for IV transfer (at little over 1.8 eV by

phonon absorption) is much higher. This means that there are more electrons in the

lower valley, and due to the fact that the threshold to enter a NM state is at 1.35 eV

in our models, there is suddenly a sizeable proportion of electrons undergoing NM

effects. This difference between the two threshold energies also explains why the

NM occupation begins to increase before inter-valley (IV) transfer takes place, as

the electrons simply must attain enough energy to enter NM states before being

able to be transferred. We see a NM occupation “overshoot”, much like the one that

was seen when the valley separation was 1.2 eV, however, a much larger maximum

occupation is seen at just under 40%, before the IV transfer rate dominates over

the rate at which electrons enter these NM states, pulling the NM occupancy back

down towards 24% in the steady state regime. Again, the occupancy of NM states

never dominates the characteristics of the system, with a large transfer of electrons

into the upper valley, though clearly, the significant proportion of NM states do

have an effect on the system properties, with the velocity peak occurring at 55 fs,

just before IV transfer begins at approximately 60 fs into the simulation, suggesting

that the deceleration of electrons by the field in the NM states causes the peak to

be earlier than would otherwise be anticipated.

We now look at the system without the IV transfer mechanism, with figure

5.17 showing the characteristics for the one-valley model. Quite clearly, it can be

seen that it does not take long for the NM states to dominate in the Γ valley, with

there being 50% occupancy of NM states 85 fs into the simulation. We find that the

peak velocity of 5.77×107 cm/s occurs at a simulation time of 55 fs, which is almost

identical to the peak velocity obtained in the two valley model where the valley

separation is set to 1.9 eV, for reasons as explained for the mid-field characteristics,
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Figure 5.17) Transient characteristics when the one-valley model is used and a field
of 400 kV/cm is applied (using the EMC simulation and the cosine band-structure
approximation). Solid line, left axis, velocity. Dashed lines, right axis, percentage
occupancy, with positive (black) and negative (red) states in the Γ valley.

this is to be expected in this two-valley case, the peak occurred before any electron

transfer took place. We can therefore be confident that NM states has a noticeable

effect on the model in the cases where a large valley separation has been used.

Unlike in the two-valley models, while we see a velocity peak, we do not see a NM

occupancy peak as we would expect, due to there being no higher-energy state or

valley for the electrons to enter, with the maximum occupancy (and steady state

occupancy) of NM states in the system reaching 67%. This system also reaches

equilibrium much faster than the two-valley models, steady-state conditions being

achieved in a little under 200 fs, a trait that was also present in the mid-field

characteristics.

5.4. Summary

In this chapter, we have explored the steady-state and transient properties of Gal-

lium Nitride by using the novel cosine band-structure approximation. We opened
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the chapter by solely focussing on the effect on the steady state characteristics of

GaN by changing the energy separation between to lowest two energy minima in

the conduction band, as there is a wide range of values suggested in the literature

(1.1− 2.1 eV) [6, 18, 56, 94]. It was shown that changing this valley separation has

no effect on the low-field (first 100 kV/cm) transport characteristics of the mater-

ial, nor did it have an effect on the shape of the characteristic. It did, however,

have a profound effect on the characteristics in the mid-field, one of the most no-

ticeable effects on the characteristics was on the value of the peak velocity, and

the critical field at which it occurs, with lower valley separations suggesting lower

peak velocities with lower critical fields. This variation in the peak velocities and

their respective critical fields could be useful in determining the valley separation of

the system, through comparison of experimentally obtained data with theoretical

calculations.

The chapter continued by discussing the effect of negative effective mass states

within the Γ valley and the relative contributions from these states when the valley

separation is set to 1.2 eV and 1.9 eV, and also the potential maximum effect of the

NM states when electrons are unable to transfer into an upper valley. In the steady

state regime, the effect of NM states was found to be dominated by the TE effect,

however, it was found that the NM states have a noticeable effect on the transi-

ent properties of the system when the valley separation is large, with comparable

transport characteristics to those suggested by the one valley model for the first

few hundred femtoseconds of transport. If, like recent work by Semenenko et al.

[94] suggests, that the valley separation between the two lowest conduction band

energies is small, the work presented here suggest that NM states play a negligible

role in all characteristics, and there is very little scope, if any, to potentially exploit
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these characteristics in device development. However, if it is found that the valley

separation is large, then in the transient regime there is potential for exploitation

where the system characteristics are dictated by the shape of the Γ valley, and in

particular, the NM states.
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Chapter 6

Gallium Nitride 1D Device
Whilst it is of value to know the transport properties of bulk GaN, it is useful to

know how it operates in a device. There is much interest in the development of

devices based on GaN, such as in the creation of FETs and Gunn diodes [36, 42, 58,

79, 98]. There has been much relatively recent work looking into to simulate GaN

based-devices using k.p based approaches [45, 56, 99] and full band approaches

[100]. However, as has been discussed previously, the k.p model does not model

the inflection point in the actual band-structure of GaN and thus ignores the effect

of negative effective mass states. On the other hand full band approaches, whilst

accurate, can take large amounts of time to run. We therefore propose the use

of the cosine band-structure, which we successfully demonstrated to provide more

accurate characteristics for GaN than the k.p model, in a device based setting.

In this chapter, we concentrate on the simulation of one-dimensional n-i-n diode

simulations, based on the ensemble bulk simulations that were in the previous

chapter. We use the same material parameters for GaN, in keeping with the recent

data by Semenenko et al. [94], we assume a inter-valley separation of 1.2 eV, we do

not consider other valley separations, nor do we consider the “one-valley” scenario.

Again, polar-optical, equivalent- and inter-valley non-polar optical, piezoelectric

and acoustic phonon scattering are all considered, as well as charged impurity

scattering. We assume for all simulations that our device has an anode and cathode

(with dopant densities of 1024 m−3) of 150 nm each, whilst the intrinsic active region

in the centre is of length 50 nm (giving a total device length of 350 nm). This device

is simulated using a coupled Poisson - Ensemble Monte Carlo solver, as described

in section 2.5 for a simulation time of4 ps.
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6.1. Mesh Spacing and Time Step Selection

In order to determine a suitable mesh spacing and time step, we must use a set

of stability criteria as described in section 2.5.2. Using equation 2.5.1, we can

determine the plasma frequency of the system, in order to determine the maximum

time step of the system [25],

ωp =
√
e2n

εsm∗
=
√

(1.6× 10−19)2 × 1024

8.9× 8.85× 10−12 × 0.2× 9.1× 10−31 ≈ 4.23×1013Hz. (6.1.1)

As the time step can be no larger than 1/ωp, we find that the largest time step

that can be used for these simulations is approximately 23.7 fs. Similarly, for the

grid spacing, the mesh spacing must be no larger the Debye length of the system,

so from equation 2.2.18 [25],

qD =
√
εskBT

e2n
=

√√√√8.9× 8.85× 10−12 × 1.38× 10−23 × 300
(1.6× 10−19)2 × 1024 ≈ 3.57× 10−9m.

(6.1.2)

Whilst this is the maximum step length permitted, in the case of thus simulations,

having such a large cell length when compared with the length of the active region

will result in a very coarse potential profile (with a grid spacing of 3 nm, there

would only be 16 grid points in the active region) and therefore may be unable

to provide detailed enough characteristics of the model. Therefore, a smaller grid

spacing is chosen, selecting 0.2 nm (2Å), which allows for a finer resolution with

250 cells within the active region. By choosing this step length, however, we must

choose an appropriate time step so that particles cannot cross more than one cell

boundary in a single step, through the use of equation 2.5.2 to do so. Setting the
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maximum velocity to EBa/(2~) ≈ 1.062× 106 m/s, we find [25],

∆x > vmax×∆t =⇒ 0.2× 10−9 > 1.062× 106×∆t =⇒ ∆t < 1.88× 10−16s.

(6.1.3)

Thus, we choose a slightly smaller time step of 0.1 fs for these simulations, so

that any calculations involving time are made simpler through the use of a round

number.

6.2. Whole-system and active-region characteristics

As we have now described our system and determined what the stability criteria

for our system is, we can proceed to analyse the results from said description. We

start by looking at average characteristics of the system as a whole and the active

region as the potential across the system changes at temperatures of 300K.
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Figure 6.1) Average velocity of the particles in the whole device (black) and just the
active region (red) as a function of the applied potential (using the device code with
the cosine approximation).
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Figure 6.1 displays the average velocity characteristics across the entire device

and the active region. Across the whole device, particle velocities on average re-

main small even as larger potentials are applied across the device, with an average

velocity of 0.257× 107 cm/s being recorded at an applied potential of 2V. We also

see a linear trend in the relationship between the applied potential and the aver-

age velocity across the whole device. However, by just taking the average velocity

across the active region, we find that the particles are travelling much faster, as

we would expect, because it is assumed that there are no charged impurities in the

active region. Indeed, we see that at an applied potential of 2V, the average velo-

city of an active region particle reaches 2.994× 107 cm/s. Unlike the whole device

average, however, we do not see a linear relationship between the potential and the

velocity, with there being less of a change in the velocity when higher potentials

are reached. This can be explained for two reasons, 1) some electrons are able to

transfer into upper valleys at higher applied potentials, and therefore fields, and

2) the shape of the band-structure approximation that we use and the potential

transition of some particles to negative effective-mass states, thus decreasing the

average velocity of this region.

The average energy characteristics of the device are shown in figure 6.2. In

both the whole system and the active region cases, we see that the average energy

increases as the potential increases, though we see that in the active region, the

average energy of the particles is much higher than the average for the whole

device for each applied potential, much like in the velocity characteristics. Both

characteristics have a similar trend, at higher potentials, a small change in potential

suggests a bigger increase in average energy than would be found for an identical

change at lower potentials.
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Figure 6.2) Average energy of the particles in the whole device (black) and just the
active region (red) as a function of the applied potential (using the device code with
the cosine approximation).

The large discrepancy that we can see between the whole system and the active

region characteristics is explainable by noting that the active region contains ap-

proximately 1% of the particles in the simulation, for example, when 2V is applied

across the device, 1850 particles are in the active region, as opposed to 149265 in

the entire simulation, which leads us to the belief that the whole system charac-

teristics are dominated by the particles in the anode and cathode. Thus, to get a

better idea of what is occurring in the device, we must turn to looking at charac-

teristics at particular points in the device, rather than averaging over the device

or parts of the device as a whole.

6.3. Position-averaged characteristics

We now consider the positional characteristics of the device, that is, the charac-

teristics of the device in each 2Å cell, in order to be able to build up a picture of

what is happening in different regions of the device. All of the following charac-
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Figure 6.3) Potential profile across the device when the applied potential across the
device is 0.5V (blue line), 1V (black) and 2V (red) using the device code with the
cosine approximation.

teristics (bar the potential profiles shown in figure 6.3) are obtained by averaging

the properties of the particles in each cell. We present these position-averaged

characteristics where a potential of 0.5V, 1V and 2V is applied across the device,

roughly corresponding to field strengths of 100 kV/cm, 200 kV/cm and 400 kV/cm

across the active region.

Figure 6.3 displays the potential characteristics across the device, whilst Figure

6.4 depicts the velocity and energy position averaged profiles. The first thing we

note is that due to the strong impurity scattering in the anode and cathode of the

devices, the average electron velocities and energies in these areas correspond to

thermal energies, with average energies of about 0.03 eV, approximately 1.5kBT at

300K, being recorded. This is unsurprising, as when we look at the potential (and

thus, the field) characteristics, we find that the change in potential is negligible

across the entire region. A small change in potential indicates a small field, and

thus, electrons do not gain much energy and momentum between each scattering

event, such that electron scattering, particularly impurity scattering and polar
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Figure 6.4) Velocity-position averaged (left) and energy-position averaged (right) pro-
files when potentials of 0.5V (black, top), 1V (red, middle) and 2V (blue, bottom)
are applied across the device. Each point represents the average velocity or energy of
the particles in each 2Å cell (using the device code with the cosine approximation).
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optical phonon scattering by emission (at slightly larger energies), is able to inhibit

energy and momentum gain through momentum redistribution, with the latter

scattering mechanism being particularly good at reducing the energy of the system.

In the active (intrinsic) region of the system, however, an increase in the average

particle velocity is observed as the particles get closer to the anode. As can be

seen from the potential characteristics, we can see that there is a large field that

affects the active region. Particles therefore gain much more energy and momentum

between scattering events than those in the doped anode and cathode regions, and

are less likely to be back scattered due to the properties of the dominant polar-

optical phonon scattering favouring scattering in the direction of momentum.

Focussing on the high field case, i.e. when a potential of 2V is applied to the

system (sub-figures 6.4c) and f)), we find that there is a region of about 50 nm in

the anode adjacent to the active region where the average energy is larger than

thermal energies. This can be attributed to particles that have been promoted to

the upper valley entering the anode in that high energy, low velocity state. As the

particles travel further from the active region-anode, we find that the average energy

decreases until the thermalised region is reached. As the particles enter the anode,

they suddenly encounter a much lower field, and thus gain less energy from drift in

the field between scattering events than they did in the active region. Particles that

have had their momentum redistributed and/or energy reduced through scattering

events are unlikely to be able to recover any lost momentum (in the direction of

the field) and energy between scattering events. This results in an overall decrease

in particle energy as the particles move away from the active region, until particles

are unable to lose energy directly from scattering (at less than one polar optical

phonon energy, 92meV).
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The average velocity profile, on the other hand, reaches average thermal velocities

over the much shorter distance of approximately 5 nm. This is due to the redistri-

bution of particle momentum, as well as the large quantity of particles that were

already in thermal equilibrium in the anode, whilst there are many high velocity,

high energy particles in the system, the momentum of the particles are scattered in

all directions very quickly upon entry into the anode, thus having little net effect

on the average velocity in the direction of the potential, unlike the energy of the

particles which encompasses all three directions due to it being a scalar quantity.

We now discuss the form of the potential profiles found in figure 6.3. At the

cathode and anode, we find that the potential profile is fairly flat, plateauing around

0V and the maximum potential, whilst in the active region, there is a large change

in the potential, and thus a large field applied across it. This is unsurprising, as

the second derivative of the potential is directly proportional to the charge density

in a cell, as per equation (2.5.5) (assuming the mesh spacing remains constant).

However, in the active region, close to the junction with the cathode, a numerical

instability can be seen where a potential “dip” occurs, which is more prominent and

may dip below 0V when smaller potentials are applied across the system. This is

due to the build-up in charge that occurs in the active region close to the cathode,

causing the potential calculation to undershoot.

We can see this charge build-up in the active region by looking at the number

density plot, as displayed in figure 6.5, which displays the number of particles in

each grid point. In the first 5 nm of the active region, it can be seen that there is a

larger density of particles than over the rest of the region. We see this because at

this point in the device, the average velocity of the particles is low compared with

later in the device (see figure 6.4), so particles on average spend longer in each
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Figure 6.5) The number of electrons in each grid point across the active region and in
the immediate area around it when a potential of 0.5V (black), 1V (red) and 2V (blue)
is applied across the device (using the device code with the cosine approximation).

cell. This is particularly prominent as the model suggests that there is actually a

field in the opposite direction to the applied potential at the cathode-active region

junction which acts to slow the particles down, though as previously explained,

this is a numerical artefact. As the particles build up their velocity, they spend less

time, on average, in each cell, and thus, a lesser number of particles can be seen in

these cells further from the cathode.

In the anode, close to the junction with the active region, we see that there is

a small region where the number density in the first 5 − 10 nm is lower than the

standard number density seen in the bulk of the anode. Most particles entering the

anode from the active region do so with a much larger velocity the average anode

electron, so, as explained in the previous paragraph, spend less time in these cells,

and thus, there are a lesser number of particles in these high-speed cells. As the

particle velocities reduce, we see that the number density of the particles further

from the junction increases, before eventually reaching approximately 100 particles

per cell. We note that it takes longer for particles to reach this point when a larger
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potential is placed across the device, as particles reach larger velocities (as seen in

figure 6.4) and thus take longer to shed their momentum, spending less time in the

cells near the junction. This has an effect on the potential profiles as seen in figure

6.3, it can be seen that the high field areas finish a small distance into the anode

rather than at the junction, extruding from the active region for the same distance

as it takes for the number density to reach nominal values in the anode.

We can also see that this partial depletion of carriers also occurs in the cathode,

close to the active region. Unlike in the anode, the number density profiles in the

cathode is very similar across all potentials, which is unsurprising, given that the

potential profiles are also very similar. This is due to thermal motion occurring

in the cathode, so at most points in the cathode, there is an almost equal chance

of a selecting a particle travelling in any direction in the device. However, as you

approach the active region, particles that enter the active region are much more

likely to continue travelling away from the cathode. Thus, particles that leave the

cathode are less likely to be replaced, due to the particles only being replenished

from one direction, as opposed to being replenished from both directions.

6.4. Energy & Phase-space characteristics

We now take a look at the steady-state characteristics of the system by looking

at the individual super-particles in the system and plotting each super-particle’s

position against its velocity and energy. For these characteristics, we assume an

applied potential of 2V across the device.
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Figure 6.6) The energy-space (top) and phase-space (bottom) diagram of each super-
particle, when 2V is applied across the device at a temperature of 300K (using the
device code with the cosine approximation). Colours indicate positive (blue) and
negative (red) effective mass states in the Γ valley and states in the upper valley
(black).
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6.4.1. Characteristics at 300K

Figure 6.6 plots the position in the direction of the applied potential of each super-

particle in the device against their energies and velocities in the direction of the

applied potential (i.e. the energy- and phase-space diagram). Focussing on the

energy profile first, we can clearly see that the there is a small spread in the electron

energies in the cathode. It was already known from figure 6.4f that the average

energy per grid point is roughly 1.5kBT (≈ 0.03eV), we can see that most electrons

in the cathode have energies of less than 0.1 eV. The situation is, for the most part,

similar in the anode in that most electrons have energies that are less than 0.1 eV.

There are, however, a few electrons that have travelled through the active region

that have larger energies. These traits are echoed in the phase-space plot, where

we find that the velocity spread is relatively small, with most electrons travelling

at low, thermal velocities in (or against) the direction of the applied potential.

We can investigate this further by looking at the distributions of the energy and

the velocity in the cathode and anode, as can be seen in figure 6.7. Focusing on the

energy distributions first, we find that the modal energy is actually at a lower energy

than the average energy for the two regions, with a fairly broad “tail” of larger

energies. Indeed, we see the formation of a “bump” in the two distributions, which

is particularly prominent in the cathode at approximately 0.045 eV. We attribute

this to electron back-scattering, whilst we measure velocity in the direction of the

applied potential, energy, by it’s very nature as a scalar, encompasses motion in all

three directions. Turning our attention to the velocity distribution profiles, we see

in both cases that the distributions resemble normal distributions that are centred

at velocities at around 0.2×107 cm/s, with a slight skew towards positive velocities.

This is viable, due to the small fields that occur across the two regions.
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Figure 6.7) Distributions of electron energy (left) and velocity (right) in the direction

of the applied potential in the contacts (using the device code with the cosine approx-
imation). For the anode, full distributions are not shown as there are only negligible
peaks beyond the displayed range. Blue -Γ valley particles in positive mass states, red
- Γ valley, negative mass, black, upper valley.

We now look at the active region of the device. There is a stark contrast in the

behaviour of the electrons between the cathode/anode and this region, unlike the

cathode and anode, electrons can gain energy and momentum very quickly. Sub-

figures 6.4c) and f) have already shown that this is the case in the active region,

but some interesting features can be seen in figure 6.6. First, looking at the energy

profile in the active region, as particles move towards the anode, the largest energy

attained by the particles increases. By looking at the relationship between this

maximum with respect to the position, it can be seen that the shape this produces

resembles that of the band-structure that we have used. This shape is actually

more prominent in the velocity characteristics, where the maximum velocity curve

can very clearly be seen, including the point where the maximum velocity of the

particles begins to decrease due to the negative-effective mass states after 45 nm.
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Figure 6.8) Distributions of electron energy (left) and velocity (right) in the direction
of the applied potential in the Active Region (using the device code with the cosine
approximation). Blue indicates Γ valley particles in positive mass states, red indicates
Γ valley negative mass states and black indicates upper valley particles.

Turning to the energy and velocity distributions of the electrons in the active

region (figure 6.8), we see that there is a shift to higher energies (0.1 eV peak

energy as opposed to 0.015 eV) and velocities (2.25 × 107 cm/s instead of 0.2 ×

107 cm/s) due to the increase in the electric field. In the energy distribution, we

see a larger tail than seen in the anode and cathode, with a very slight energy

peak occurring at the upper valley minima (located at 1.2 eV). We also do not see

a bump in the distribution, as the little back-scattering that does occur in the

active region is completely occluded by the relatively large increases in energy that

electron drift in the field provides. The velocity distribution shows that the bulk

of the particles in the active region move towards the anode at any given time,

with a distribution highly biased towards velocities in the direction of the applied

potential. Interestingly, we don’t see many particles reach negative effective mass

states or the upper valley region, this is due to the chosen length of the active

region, electrons are only just reaching the threshold energies for transfer into

either of these states before entering the anode.
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Figure 6.9) The energy-space (top) and phase-space (bottom) of each super-particle in
the system against their position in the device, when 2V is applied across the device at
a temperature of 77K (using the device code with the cosine approximation). Colours
indicate positive (blue) and negative (red) effective mass states in the Γ valley and
states in the upper valley (black).
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6.4.2. Characteristics at 77K

We now take a look at the same system at 77K. In doing so, we only reduce the

temperature parameter, we do not modify of any of the band parameters so that

they truly reflect the band structure at this temperature. Obtaining these paramet-

ers would only provide a benefit if we were interested in pursuing running devices

such as these at these temperatures. The reason for decreasing the temperature of

the system is to inhibit some of the scattering mechanisms so that we can clearly

see patterns in the energy and phase space plots, as illustrated in figure 6.9.

We can see an effect which is more prominent towards the cathode, where distinct

lines of electron energies vs. their positions can be seen. The energy separation

between these lines can be measured to be the energy of one polar optical phonon

(POP), confirming that POP is the dominant scattering mechanism in the active

region, due to this, we term this effect “phonon striping”. Looking at the active

region, distinctive lines can be seen at low energies near the junction of the cathode,

these lines are the phonon striping lines due to the huge dominance of the POP

scattering mechanism at 77K. Indeed, these phonon striping characteristics can

be seen throughout the active region and into the anode. While other scattering

mechanisms do have enough of an effect to make these less clear by the time the

particles reach the anode, the lines in the anode do not change in energy with

position, unlike the striping in the active region, due to the lack of a local field.

Thus, as POP is the dominant scattering mechanism for high energies, we see that

these phonon striping lines are spaced one polar optical phonon energy apart. This

effect is also visible when the lattice temperature is set to 300K (refer back to

figure 6.6), whilst the lines are definable, other scattering processes have enough of

an effect to make these lines less clear, so whilst we see electrons tending to form
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these lines, some electrons do get scattered into other energy states.

These characteristics also appear in the phase-space characteristics, again, in

the active region, the phonon striping effect can be seen, though less so than in

the energy-space plot as the velocity measured in our case is in the direction of

the applied potential, and as the energy of the particles can be distributed in three

dimensions without restriction, a high energy particle may have zero velocity in the

direction we are interested in. Interestingly, we see the shape of the band-structure

much more clearly when we look at this lower temperature system, suggesting the

maximum velocity of the particles are being reached after 41 nm into the device,

before the electrons start to lose momentum as a result of the band-structure.

6.5. Summary

Throughout the chapter, we have investigated the properties of a one-dimensional

n-i-n device using the cosine band-structure approximation. We started by discuss-

ing whole system and active region average velocities and energies, finding that as

about 99% of the particles in the device are in the anode and cathode at any one

time, these characteristics are of little use in describing the processes that occur in

the device. Thus, we continued the chapter by looking at position-averaged charac-

teristics, and found distinct differences in the properties of the active region, when

compared with the anode and cathode. It was found that particles in the anode

and cathode mostly follow a thermal regime, as we found the potential across the

anode and cathode varied very little, and thus the field across these regions was

negligible. On the other hand, however, a large potential difference arose across the

active region, and particles in this region were able to reach energies large enough
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to be able to transfer into the upper valleys and negative mass states in the space

of 45− 50 nm. We were also able to spot the occurrence of charge build-up at the

junction of the cathode and the lack of particles in the anode at the junction with

the active region.

We finally looked at energy-space and phase-space plots of the device, and dis-

tributions of the particles in the various regions. We were able to confirm that

the distribution particles in the anode and cathode indeed had similar profiles to

those of a thermal distribution. In the active region, we noticed some interesting

patterns emerging, including the onset of phonon-striping and the effect of the

band-structure on the shape of the energy-space and phase-space plots. Whilst we

did have issues with this simulation, such as the issue with the potential calcula-

tions, we have been able to demonstrate some of the other characteristics that occur

within the device, and that this system works as a proof-of-concept. This method

will therefore serve as a very good base for future works, such as the expansion of

the system to a two- or three-dimensional device.
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Chapter 7

Dilute Gallium Nitrogen Arsenide
In the previous chapters, we have concentrated our efforts on binary compounds,

GaAs, InP and ZnO for algorithm validation in chapter 4, and then GaN, which has

been the focus of the work in chapters 5 and 6. We now look at a ternary compound,

Gallium Nitrogen Arsenide (GaNxAs1−x). In particular, we look at the material

in the dilute nitride case, where the nitrogen concentration is less than 2%. In

the dilute nitride cases, GaNxAs1−x is thought to have similar properties to GaAs,

with the addition resonant energy levels due to the added nitrogen states. Many

models have been developed in order to attempt to determine the characteristics

of the material. One of the more well known approaches that have been used to

model dilute GaNxAs1−x is through the introduction of a new nitrogen scattering

mechanism into the standard GaAs model, which is a mechanism localised around

the resonant energy levels caused by the addition of nitrogen impurities into the

system [11, 24, 69, 70, 101, 102]. The approach assumes that the nitrogen states has

no effect on the host band-structure, or any of the other material parameters, and

thus, this mechanism models the dispersive nature of the strong nitrogen resonance.

Alternatively, another popular model that is often used is the band anti-crossing

(BAC) model [66, 103, 104], which assumes that the band-structure of GaNxAs1−x

is altered due to optical bowing in the lowest (Γ) valley, splitting it into two or

three separate bands, dependant on the concentration of nitrogen impurities and

the position of the various states that are possible. The BAC model is therefore is

primarily concerned with the distortive effect that the injection of nitrogen has on

the band-structure of the host material.

In this chapter, we analyse the properties of GaNxAs1−x broadly using these two
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approaches with our ensemble Monte-Carlo algorithms, and attempt to determine

the relative effects of the dispersive and distortive properties of the material. We

begin this chapter describing these models that we use in order to simulate the

addition of these resonant energy levels. We then move on to look at the charac-

teristics of bulk GaNxAs1−x as suggested by these models, first in the steady state

regime before analysing the transient properties of the material, before drawing

conclusions and potential expansions to this study at the end of this chapter.

7.1. Description of Models

Whilst the two models that we are considering in this chapter deal with the res-

onance effect caused by the nitrogen states in very different ways, there are many

similarities between them. In both of the models, it is assumed that the system

has identical parameters to those of a bulk GaAs system, (see table 7.1 for these

values), and scattering due to phonons and charged impurities are treated in ac-

cordance with the applicable band-structure, in particular, polar optical phonon

(POP), piezoelectric (PZ), optical deformation potential (ODP), acoustic deforma-

tion potential (ADP) and charged impurity scattering mechanisms are considered.

We assume that the upper L-valleys in the band structure are completely unaffected

by the nitrogen resonance and are thus identical to those found in bulk GaAs, and

that scattering to this valley occurs through ODP scattering.

We use our Ensemble Monte-Carlo (EMC) methods in all simulations, employing

the use of 15000 particles and simulating the transport over a period of 4ps.
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Table 7.1) GaAs parameters as used in the nitrogen scattering model for GaNxAs1−x at
room temperature (300K). Parameters have been taken from INSPEC [31], Blakemore
[74], Madelung et al. [89]

Parameter (units) GaNxAs1−x

Density
(
kg/m3) 5360

Longitudinal sound velocity
(
ms−1) 5240

Transverse sound velocity,
(
ms−1) 2480

Non-polar optical deformation
potential coupling constant, (eV/m)

1011

Inter-valley scattering coupling
constant, (eV/m)

1011

Acoustic deformation potential, (eV) 7
Piezoelectric constant e14 (C m−2) −0.16
Energy gap (eV) 1.424
Static dielectric constant (ε0) 12.9
High-frequency dielectric constant
(ε0)

10.92

Energy gap (between Γ1 and
satellite valley minima) (eV)

0.29

Number of equivalent satellite upper
valleys

4

Effective mass, Γ1 minima (me) 0.067
Effective mass, satellite upper valley
minima (me)

0.35

Polar optical phonon energy (meV) 35.36
Non-polar optical phonon energy
(equivalent valleys) (meV)

27.8

Non-polar optical phonon energy
(inter-valley) (meV)

34.3

Impurity concentration (cm−3) 1017

7.1.1. Nitrogen scattering model

Our first model accounts for the inclusion of nitrogen states by assuming that they

add a new scattering mechanism which is strongest around the energy levels of the

states. It is assumed that this does not affect the band-structure of GaAs, thus

this model can be thought of simply as GaAs with extra scattering mechanisms,

as illustrated in Figure 7.1. We only consider nitrogen singlet and pair states in
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Figure 7.1) Schematic of the band-structure used in the nitrogen scattering model. The
red and blue dashed lines indicate where the energy position of the nitrogen singlet
(|N〉) and doublet (|N −N〉) states.

this model, the contribution of any higher order states (such as triplet states) are

assumed to be negligible and hence ignored. Nitrogen impurity concentrations of

0.1%, 0.36%, 0.5%, 1.2% and 2.0% are considered using this model.

To be able to accommodate this model into our algorithm, we require an analytic

approximation for the nitrogen scattering. To do this, we start with a previously

derived expression for nitrogen scattering, [101, 102]

WN(Ek) =
∑
i

πα3

2~
β4
i xi

(Ek − ENi
)2 + ∆2

Ni

N(Ek), (7.1.1)

where α is the lattice constant, N(E) is the density of states at a given energy E,

and for a given nitrogen state i, βi is the coupling parameter, xi is the concentration

of nitrogen states, ENi
is its resonant energy and ∆N is its energy broadening. This

rate is summed over all potential nitrogen states. The parameters βi, xi and ∆Ni

have been determined by fitting these parameters so that the characteristics of the

scattering rates match those obtained through the use of the Linear Combination
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Figure 7.2) The nitrogen scattering rate as a function of energy as used in the first
model at nitrogen concentrations of 0.1% (black, solid), 0.36% (red, short dashed),
0.5% (brown, long dashed), 1.2% (green, dot-dashed) and 2.0% (blue, dotted). The
energy is relative to the energy minima of the conduction band at the Γ point, Ec.
These scattering rates are based on those by Fahy et al. [101] (figure 2), though are
not identical to them.

of Isolated Nitrogen States (LCINS) model from Fahy et al. [101], and thus, from

this we are able to obtain analytic scattering rates for the various concentrations of

nitrogen in GaNxAs1−x for use in our simulations. For simplicity, we assume that

nitrogen scattering is elastic and isotropic. The fitted rates are illustrated in figure

7.2.

7.1.2. Analytic approximation of the E− band

The second model we consider is based on the band anti-crossing (BAC) model,

where the nitrogen scattering is accounted for by splitting the Γ-valley into two

“mixed state” bands, a lower (E−) and an upper (E+) band. In our model, we

only consider the contribution of the E− band, and we assume that the L-valley is

identical to that found in GaAs. This means that we do not consider the effect of

the E+ band, nor do we consider any broadening of the band structure induced by

the nitrogen impurities as suggested by Green’s function approaches [20]. Figure
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Figure 7.3) Schematic of the band-structure when modelling an analytic approximation
of the E− band when the nitrogen concentration is 1.2%. The red dashed line indicates
the energy the nitrogen singlet state (|N〉) resides at. The E+ band (dashed) is included
in the diagram for completeness, however, it is not simulated in this model.

7.3 illustrates the band-structure used in this model.

The E− band in the model is based on the cosine approximation as first discussed

in chapter 3, with slight modification, and takes the form,

E−(k) = EB
2 (1− cos[γkα]), (7.1.2)

where EB is the width of the E− band, γ is a scaling constant, dependent on

the nitrogen concentration, k is the wave-vector of the electron and α is the lattice

constant. For sub-1% nitrogen concentrations, the E− band cannot be satisfactorily

modelled using this approximation. Indeed, in the sub-1% cases, we actually find

that the k.p model for the band structure is an excellent approximation for the

band structure that exists right to the top of the E− band, where the inflection point

is, only requiring special numerical treatment for a very small range of energies, as

has been previously suggested [11]. For a nitrogen concentration of 1.2%, however,

we find that our cosine-based approximation is much better fit to the E− band
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Figure 7.4) A comparison between the BAC model E− band when the concentration of
N impurities is 1.2% (red, solid line), the k.p approximation (blue, dot-dashed line)
and the cosine approximation (black, dashed line)

around the Γ point when EB = 0.32 eV and γ = 4 than the k.p approximation,

as shown in figure 7.4, and is a fairly good fit when the concentration is 2%. We

only consider a N concentration of 1.2% for use with this model. Scattering rates

for the E− band are similar to those that have been derived in chapter 3, with the

substitution of a = γα. Nitrogen scattering is not considered as part of this model,

as it is assumed that the altered dispersion of the band solely and adequately

accounts for the effect of the introduction of the nitrogen states.

7.2. Steady State Characteristics

7.2.1. Nitrogen scattering Model

Figure 7.5 shows the velocity-field characteristics of GaNxAs1−x that were gener-

ated using the model that includes nitrogen scattering, in comparison to bulk GaAs.

We find that at 0.1% N concentration, the peak velocity, vmax = 1.15×107 cm/s at

8.5 kV/cm, which is a significantly lower velocity with a higher critical field than is
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Figure 7.5) Velocity field characteristics of GaNxAs1−x for various concentrations of
nitrogen (see legend) determined using the nitrogen scattering method, with the EMC
code and the k.p approximation.

found in pure GaAs. There is still a sizeable negative differential velocity (NDV)

that occurs, though it is less severe than that found in GaAs. At nitrogen concen-

trations of 0.36% and higher, we find that the characteristics are broadly similar

to each other, suggesting electron peak velocities of between 0.6 - 0.7×107 cm/s,

which occurs at a critical field of around 12 kV/cm. While there is still a noticeable

NDV in the velocity field characteristics at these higher nitrogen concentrations,

it is found that they are largely dampened, as the nitrogen scattering is massively

dominant and eclipses the inter-valley (IV) scattering rate at fields at which the

nitrogen scattering operates, at it’s maximum point, the nitrogen scattering rate

is approximately three orders of magnitude greater than the IV scattering rate.

It is thus unsurprising that the electron mobility-field characteristics, as illus-

trated in figure 7.6, show similar trends in the characteristics. We find that there

is a noticeable decrease in the low-field electron mobility as nitrogen is introduced,

but, as with the velocity-field characteristics, the mobility characteristics for nitro-

gen concentrations greater than 0.36% are very similar to each other. The inset
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Figure 7.6) Electron mobility-field characteristics of dilute GaNxAs1−x when using the
nitrogen scattering model, with the EMC code and the k.p approximation. Inset:
low-field (2.5 kV/cm, denoted by the dark-red vertical line on the main figure) electron
mobility as a function of nitrogen concentration.

in figure 7.6 displays the electron mobility at 2.5 kV/cm as a function of nitrogen

concentration. At nitrogen concentrations ≥ 0.36%, we note that there is very

little difference between the low field mobilities, with mobilities reaching about

1000 cm2V−1s−1, a result that is in close agreement with previous theoretical cal-

culations, which suggest mobilities of around 1000 cm2V−1s−1 [105]. This trend

that we have found is also consistent with that observed experimentally by Patané

et al. [106] (though lower mobilities of 300 − 400 cm2V−1s−1 are seen), with there

being a plateau in the low field mobility for nitrogen concentrations greater than

0.35%.

Whilst there is not much difference between the various velocity-field character-

istics for higher concentrations of nitrogen in our model, there is more of a clear

distinction between the energy-field characteristics and the Γ valley occupancy-field

characteristics. Focussing on the energy-field characteristics at first, which are de-

picted in figure 7.7, we can see that in GaAs, there is a relatively quick increase

in the average energy for low field strengths. As soon as nitrogen is introduced
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Figure 7.7) Energy-field characteristics of dilute GaNxAs1−x when using the nitrogen
scattering model, with the EMC code and the k.p approximation. Energy is relative
to the energy minima of the conduction band at the Γ point, Ec.

into the system, we see that the rate of this increase is more muted due to the

increase in electron scattering in the material, inhibiting the increase in energy

at higher fields. One of most interesting points that can be seen in this set of

characteristics is that the rate at which the energy increases is actually lower for a

nitrogen concentration of 1.2% than it is for a concentration of 2.0%. To explain

this, we refer back to the nitrogen scattering rates in figure 7.2. Making a compar-

ison between the scattering rates for nitrogen concentrations of 1.2% and 2.0%, it

can be seen that the scattering rate for 1.2% is much stronger at energies less than

∼ 0.2 eV, and so electrons, on average, encounter many more scattering events at

this lower concentration of nitrogen, which, in turn, inhibits the electrons ability to

gain energy quickly. A similar effect can be seen on a much smaller scale between

the characteristics for nitrogen concentrations of 0.36% and 0.5% at field strengths

greater than about 30 kV/cm - the scattering rate characteristic when the nitrogen

concentration is 0.36% is larger than that for a concentration of 0.5% at electron

energies above 0.2 eV. These effects have also been seen in recent works by Seifikar
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Figure 7.8) Percentage of electrons in system occupying the Γ1 valley as a function of
applied field for dilute GaNxAs1−x when using the nitrogen scattering model, with the
EMC code and the k.p approximation.

et al. [70].

We finally discuss the Γ valley occupancy-field characteristics, illustrated in figure

7.8. As would be expected through analysis of the other characteristics, there is a

much larger percentage of the system that is able to transfer to the upper L valley

in bulk GaAs than there is in dilute GaNxAs1−x compounds. These characteristics

match the features of the energy-field characteristics that have just been discussed,

as the L-valley minima are set at 0.29 eV above that of the Γ valley. Thus, IV

transfer cannot occur until electrons attain a threshold energy of 0.268 eV (i.e. the

valley separation between the Γ and L valleys, minus the energy of one optical

phonon), which is larger than the threshold for the effects discussed in the previous

paragraph. Therefore, based on the energy-field characteristics, we would expect

that the Γ valley occupancy would be higher for a nitrogen concentration of 1.2%,

than it would be for 2.0% for all fields we have investigated, and this is indeed

what is observed in the occupancy characteristics.

Another point of interest in these characteristics is that a “crossover” between the
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Figure 7.9) Velocity field characteristics for a nitrogen concentration of 1.2% using
our analytic approximation to the E−band (solid line), compared with the nitrogen
scattering model (dashed line) and bulk GaAs (dot-dashed line). All models use the
EMC code.

Γ valley occupancy characteristics for nitrogen concentrations of 0.36% and 0.5%.

We can again link this to the scattering rates, the peak rate when the concentration

is 0.36% is in a better position to dominate over the IV rate than the rate when the

concentration is 0.5%, so when the average energy of the electron is at the threshold

energy of 0.256 eV, electrons are more likely to be able to undergo IV transfer if the

concentration is 0.36%. However, it’s slightly more difficult for electrons to achieve

this energy at this higher concentration due to a slightly larger scattering rate, due

to the nitrogen doublet states, at lower energies, hence why an electron is slightly

more likely to be in the Γ valley at the higher concentration when subjected to

lower applied fields.

7.2.2. Analytic approximation of the E− band

Figure 7.9 shows the velocity-field characteristics using the E− band approximation

model, compared with the bulk GaAs and the 1.2% nitrogen scattering model

characteristics. While the critical field in our E− band model is found to be similar



Chapter 7: Dilute Gallium Nitrogen Arsenide 149

to that of the nitrogen scattering model at about 10 − 12 kV/cm, the E− band

approximation suggests a peak velocity that is much greater, 1.62 × 107 cm/s in

comparison to 0.69 × 107 cm/s. It can also be seen that the peak velocity of the

material is very similar to bulk GaAs under the same conditions, albeit at a higher

field in the nitrogen doped case. As the scattering mechanisms used in both our

E− band approximation and the bulk GaAs case are the same, and the rates only

differ at high-fields due to the different band-structure approximation in use, the

similar peak velocities are conceivable. It is not surprising either to see that the

peak velocity predicted by the nitrogen scattering method, which added another

dominating scattering mechanism that inhibited the movement of the electrons, is

much lower than that of the E− approximation.

The shift in critical field that is seen from bulk GaAs to our approximation is due

to the shape of the band-structure that is used in the respective approximations.

The shape of the cosine approximation used in this model infers that the effective

mass of an electron increasing in energy increases faster than it would in the k.p

model, before it becomes negative. The effect of this is that the electron takes much

longer to reach larger velocities, and hence, higher energies, such as the energy an

electron needs to be able to undergo IV transfer. A larger applied field is therefore

required to get the electrons up to the required energy level before scattering mech-

anisms can inhibit this process. The average energy-field characteristic, as shown

in figure 7.10, shows that the rate of increase in the average energy with respect

to the field is slower in the E− model than bulk GaAs, but is actually faster than

that predicted through the use of the nitrogen scattering model, suggesting that

the carrier scattering induced by the nitrogen impurities has more of an effect on

the system than the band distortion.
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Figure 7.10) Energy-field characteristics for a nitrogen concentration of 1.2% using
our analytic approximation to the E−band (solid line), compared with the nitrogen
scattering model (dashed line) and bulk GaAs (dot-dashed line), all using the EMC
code. Energy is relative to the E− band minimum.
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Figure 7.11) Percentage of system in the simulation under steady-state conditions total
occupancy in the Γ valley/E− band, (grey dashed line), with this split into positive
(black solid) and negative (red dashed) mass components, and percentage occupation
in the L valleys (blue dot-dashed), when using the analytic approximation to the E−
band with the EMC code.
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We can clearly see from the Γ/E− occupancy characteristics in figure 7.11, first

looking at the total occupancy of the E− band and the L valleys (grey and blue

lines) that IV scattering is never a highly dominant factor in the electron transport

in the Γ valley, and the slow transfer of electrons (with respect to the applied field)

to the upper valley matches the shallow NDV characteristic seen in the velocity-field

characteristic (figure 7.9). We can also look at the proportion of negative effective

mass states in the E− band, shown by figure 7.11 using the black and red lines.

Like in previous chapters, we have taken a particle to be in a negative mass state

based on the value of the wave-vector in the direction of the field only, as we are

only interested in the velocity in the direction of the field. It can be seen that there

is evidence of a slight dominance of electrons in negative mass states occurring in

the E− band over the number of electrons in the L valley at field strengths of up

to 14 kV/cm. Even above this field strength, however, we find that there is still

an increasing population of negative mass states under steady-state conditions as

the applied field increases, reaching a population of 17% when a 30 kV/cm field is

applied (with 27% of all electrons having transferred to the L valleys).

7.3. Transient characteristics

7.3.1. Nitrogen scattering model

We now turn our attention to the transient properties when a constant electric field

is suddenly applied to the system. As with the steady-state case, the velocity time

evolution characteristics we have found for 0.36% - 2.0% nitrogen concentrations

are broadly similar to each other, so we mainly focus on the 0.1% and 0.36%

concentration cases. The velocity time characteristics for these concentrations are
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Figure 7.12) Average electron velocity as a function of time for applied fields from 0 to
40kV/cm, when using the nitrogen scattering model with the EMC code, where the
nitrogen concentration is 0.1% (top) and 0.36% (bottom). The steady state velocity
field characteristics of each model can be seen on the right hand side of the graph (i.e.
the Velocity-Field plane at a time of 1 ps)

depicted in figure 7.12.

In both cases, it is found that the maximum velocity is limited by the nitrogen

scattering, with maximum velocities at 30 kV/cm reaching only 3.4 × 107 cm/s

after approximately 100 fs when there is a nitrogen concentration of 0.1%, and

1.95 × 107 cm/s after about 60 fs for nitrogen concentrations of 0.36%, in both

cases lower, though occurring slightly later, than the corresponding peak velocity

found in bulk GaAs at this impurity level, which is 5.8 × 107 cm/s at a time of

160 fs after the start of the simulation. This reduction in peak velocity is not
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surprising, as the nitrogen scattering suppresses the ability of the system to reach

higher velocities, a trend already seen in the steady-state characteristics. Higher

concentrations of nitrogen also tend to increase the time it takes for electrons to

reach the steady state (when compared to lower concentrations), as the magnitude

of the nitrogen scattering rates inhibit the electron’s ability to accelerate quickly

due to a larger number of scattering events, though conversely, we find that bulk

GaAs takes far longer to reach equilibrium.

To understand why this happens, in figure 7.13, velocity and energy number

distributions are plotted for the first 190 fs of transport when a 40kV/cm field is

applied across GaNAs with a nitrogen concentration of 0.1%. Normally, as we

have already shown is the case for pure GaN, IV transfer is the main cause for net

momentum reduction in the system, due to electrons losing momentum as they

transfer into this upper valley, thus causing this overshoot effect. However, if we

use the nitrogen scattering model, we find that this is not the case in GaNxAs1−x.

It can be seen that between 30 fs and 70 fs the average velocity of the particles

increases by a factor of little over 4, from 0.91 × 107 cm/s to 3.82 × 107 cm/s, as

can be seen by the large shift in the peak of the distribution, whilst there is only a

modest shift in the energy distribution, from 0.01 eV to just below 0.1 eV. At these

energies, we see that the nitrogen scattering does not affect the characteristics of the

system. At 110 fs, we begin to see the momentum re-distribution, which happens

with very little transfer to the upper valley. Indeed, we see that most electrons

in the system are well below the threshold energy for IV transfer, with the peak

in the distribution occurring just below 0.2 eV, which is around the energy level

where the nitrogen scattering mechanism becomes dominant. As we take nitrogen

scattering to be an elastic isotropic mechanism, it is expected that over a large
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Figure 7.13) Electron velocity (left) and energy (right) distributions for GaNAs when
the nitrogen concentration is 0.1% and the applied field is 40 kV/cm, as predicted by
the nitrogen scattering model with the EMC code. The snapshots are taken at (from
top to bottom) 30 fs, 70 fs, 110 fs, 150 fs and 190 fs. Energy is relative to the Γ valley
minimum. Grey bars represent electrons in the Γ valley, blue bars, L valleys. Note
that the scales are not the same on all y-axes.
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Figure 7.14) Time evolution of the average electron velocity for the 0.1% concentration
nitrogen scattering model for various field strengths, when using the nitrogen scattering
model with the EMC code.

number of scattering events and particles at that energy, a uniform re-distribution

would be expected to occur, without effect to the magnitude of the momentum.

This is indeed seen as the simulation time passes. After 190 fs have passed, we have

a distribution that is almost symmetrical around the velocity 0.5× 107 cm/s, with

a small contribution from the IV scattering.

There is an interesting property that can be seen in the velocity overshoot charac-

teristics at fields above 25 kV/cm when the nitrogen concentration is 0.1%. Figure

7.14 displays some of the characteristics at various fields, where a velocity under-

shoot can clearly be seen at 0.2− 0.3 ps for fields of 30 kV/cm and 40 kV/cm, but

is absent at lower fields. When a large field is applied, most of the electrons in the

system reach the energy at which nitrogen scattering becomes dominant quickly

and at the same time. We have already seen this in figure 7.13, electrons reached

large velocities in the direction of the field quickly and after 190 fs, the system’s

momentum is re-distributed, corresponding to the trough in the undershoot. The

recovery from this undershoot can be seen in Figure 7.15, which depicts the electron
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Figure 7.15) Electron velocity distributions for GaNAs when the nitrogen concentration
is 0.1% and the applied field is 40 kV/cm, as predicted by the nitrogen scattering model
with the EMC code. Grey bars represent electrons in the Γ valley, blue bars, L valleys.

velocity distribution at 230 fs and 270 fs. It can clearly be seen that the symmetrical

distribution has once again become slightly skewed towards the positive velocities.

In low field cases, it takes longer for electrons to reach the threshold energy for

the nitrogen scattering to be dominant, and thus other processes have more time to

affect the electrons. Thus, a smaller volume of electrons reach the threshold energy,

and due to the slower rate of energy gain due to the lower field, this happens over

a longer time period. This means that the re-distribution of momentum occurs

on a larger time scale, and once in equilibrium, electrons are potentially in high

velocity states for longer before encountering the nitrogen scattering. If the field

is low enough, only a minority of the system will have enough energy to undergo

nitrogen scattering at any period, meaning it will not be dominant across the

system and thus momentum re-distribution does not affect the entire system. This

undershoot is not seen in higher concentration cases either, due to the low energy

doublet nitrogen states, which are locally dominant, causing partial momentum re-

distribution of the system, and much like in the low field cases above, this ensures

that there is no undershoot.
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Figure 7.16) Average electron velocity as a function of time for applied fields from 0
to 40kV/cm, when modelling the E− band using the EMC code, where the nitrogen
concentration is 1.2%

7.3.2. Analytic approximation of the E− band

Figure 7.16 depicts the transient velocity-field characteristics generated for GaN0.012As0.988.

Much like in the nitrogen scattering model, we see comparable increases in the time

it takes for equilibrium to be established with regards to the velocity. In contrast

to the nitrogen scattering model, higher peak velocities are observed, reaching

3.8× 107 cm/s at 30 kV/cm. This is not a surprising outcome, as it has been seen

in the steady state results that the velocities from E− band model are consistently

larger than those found from the nitrogen scattering model. We find that the most

interesting results that arise from this model occur at higher fields, it is immedi-

ately obvious from the transient velocities and occupancies plotted in figure 7.17

that there is a significant population of negative effective mass (NM) states before

there is any IV transfer, with the population of NM states then dropping to below

the population of L valley states in low field cases. This is especially prominent

when a field strength of 30kV/cm is applied to the system, so we focus on this case

to determine the effect of these NM states. We repeat the transient velocity and

occupancy characteristics for 30kV/cm in figure 7.18, in order to make it easier to
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Figure 7.17) Time evolution of the occupancy of positive (black) and negative (red/dark
grey) effective mass states in the Γ valley and occupying the L valleys (light blue/light
grey) in GaN0.012As0.998 when using the E− band approximation. In both graphs,
characteristics at fields 4kV/cm (dot-dashed), 10kV/cm (short dashed), 20 kV/cm
(long dashed) and 30 kV/cm (solid).
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Figure 7.18) Transient properties of GaN0.012As0.998 when using the E− band approx-
imation using the EMC code and a field of 30kV/cm is applied. Velocity (left axis,
solid black line) and occupancy (right axis) of Γ valley, positive (black dashed) and
negative (red dashed) mass states, and the L valleys (blue dot-dashed line). The green
vertical lines note two times of interest 1) the occurrence of the peak velocity before
any IV transfer, and 2) the occurrence of the peak NM occupancy.
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match the features of the characteristics.

We first note that NM states begin to occur at about 80 fs in to the simulation,

well before IV transfer begins (at about 190 fs). This marks the start of a small

period of time (about 400 fs) where there is a significant dominance of NM states

over L valley states. At approximately 160 fs, (denoted by the dashed green line on

figure 7.18) the peak overshoot velocity or 3.8×107 cm/s is attained. At this point

in the simulation, we find that there is 0% occupancy in the upper L valleys, while

approximately 19% of electrons are in NM states, deceasing the average velocity of

the system, and thus causing the overshoot effect to occur earlier than it would have

done in the absence of these states. Shortly after this peak velocity is reached, IV

transfer begins to occur, however, the occupancy of NM states initially increases

faster than the occupancy of the L valleys, before the occupancy of NM states

peaks at 36.5% of the system after 250 fs (denoted by the dot-dashed green line).

Beyond this time, IV transfer becomes the preferred mechanism for the velocity

characteristic, with L valley occupancy increasing at the expense of the NM states,

with there being more electrons occupying L valleys than NM states after 420 fs.

Thus, our model suggests that NM states have a significant effect on the transient

velocity profile, as the effect of the NM states causes the velocity to peak before

any IV transfer begins to occur.

7.4. Summary

Through the use of two models of the GaNxAs1−x band structure in an ensemble

Monte Carlo code, we have examined the steady-state and transient electron trans-

port properties of GaNxAs1−x. Our two models allow us to quantify the effects of
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band distortion and nitrogen scattering on the transport properties of GaNxAs1−x.

We find for the steady-state regime that both models suggest a decrease in the

low-field mobility when compared with GaAs. Both models also imply that the

critical field is shifted to higher values due to the distortive effect the Nitrogen has

on the host band-structure. The effect of adding the nitrogen scattering mechanism

is that it reduces the peak velocity attained in the steady state, and as a result of

this, we therefore find that our nitrogen scattering model is a much better fit to

current experimental data [106] and analytic theoretical predictions [102, 105].

While our nitrogen scattering model assumes non-parabolic band, it does not

include the distortion characteristic of the BAC model. By using an analytic ap-

proximation for the E− band in the BAC a useful insight is gained into the poten-

tial effects of negative effective mass states, particularly under transient conditions.

Through analysis of the transient regime using both models, we find that there is

a noticeable decrease in the peak velocity attained. With the second model, in

mid-field cases (5 - 14 kV/cm), there is always a larger population of electrons in

NM states than there are in L-valley states, though a maximum of 10% of the

electrons in the system occupies either state at any time. At fields greater than 15

kV/cm, there is a significant population of electrons occupying NM states (reaching

peak occupancies of 23% at 20 kV/cm and 36% at 30 kV/cm) for the first 500fs

of transport before the electron occupation in the L-valleys becomes greater than

that of the NM states.

We conclude that the occupation of NM states has a significant effect on the

transient properties of GaNxAs1−x, decreasing the peak velocity attained in the

velocity overshoot. The use of an analytic approximation of the E− band suggests

that the distortion of the band causes a shift in the critical field. Furthermore,
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through the use of our nitrogen scattering model, we find a reduction in the peak

velocity attained in both the steady-state and transient regimes when compared

with bulk GaAs; these steady-state results are in agreement with experimental data

and analytic theoretical works.
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Chapter 8

Conclusions and Future Work
Throughout this thesis, we have explored the properties of the III-V materials

Gallium Nitride and dilute Gallium Nitrogen Arsenide, using a new, novel band

structure approximation, based on a cosine function, that allows us to access and

simulate the effects of electrons in negative effective mass states that occur around

the Γ points of the materials. New expressions for the scattering mechanisms were

derived in chapter 3 that take advantage of this approximation, and using these

expressions, in chapter 4 we successfully demonstrated that this approximation

provided us with accurate results when coupled with ensemble Monte-Carlo algo-

rithms. This was done by comparing our results with results from simulations per-

formed with the k.p band-structure approximation and other works, whilst retain-

ing the fast nature of the code when compared with numerical full-band structure

based models. We were thus able to use this new band-structure in ensemble bulk

and 1D device Monte-Carlo simulations in order to determine the effects of negative

effective mass states and other features from the highly non-parabolic character of

the band-structure in both GaN (in chapters 5 & 6), and dilute GaNxAs1−x (in

chapter 7).

We found that in bulk GaN, the effect of the negative effective mass states were

dependent on the energy difference between the local minima at the Γ and M-L

points in the conduction band, with there only being a noticeable population of

negative effective mass states forming when this valley separation is large. Regard-

less of the valley separation that was used, however, the use of this band-structure

approximation produces characteristics that are close to those suggested by ex-

perimental data [7] and by other simulations that use numerical, full-band struc-
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ture models [17, 97]. We also successfully demonstrated some characteristics of a

nanoscale one-dimensional device using a coupled Ensemble Monte Carlo/Poission

solver algorithm, illustrating some of the effects that can occur within such a device.

In the investigation into dilute GaNAs (in chapter 7), we first developed analytic

forms of the nitrogen scattering rates as used in the nitrogen scattering model for

GaNAs, as determined by Fahy et al. [101] using the linear combination of isolated

nitrogen state methods, and successfully obtained rates to use in our ensemble

Monte Carlo codes, obtaining steady-state velocity-field results similar to those

obtained by Seifikar et al. [70] and low-field mobilities in good agreement with other

theoretical works [105]. We also investigated the transient properties of GaNAs

using this model, noting that transient transport is driven by nitrogen scattering

rather than intervalley transfer, as is the case in GaN. We also investigated the

steady state and transient characteristics using a BAC like model when the nitrogen

concentration in the compound is 1.2%, simulating the lower BAC band using

the cosine band-structure approximation, discovering that negative effective mass

states in the E− band play a vital role in the characteristics of the system.

The work presented in this thesis also presents itself a good base for future

works. On the basis that we were able to derive three-dimensional scattering rates

(as shown in chapter 3), future projects involve the derivation of two-dimensional

scattering rates using the cosine band-structure approximation for use in deter-

mining the transport properties of electrons confined in two-dimensional electron

gasses (2DEGs). Leading on from this, drawing from the work on development of

bulk and one-dimensional systems using the cosine-band structure models coupled

with work on 2DEG scattering rate derivation, the next step in the evolution of

our methods is to move onto two-dimensional simulations of structures. While
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simple devices with an anode, cathode and active region, similar to the 1D device

we presented in chapter 6 can be modeled in two dimensions without the presence

of 2DEGs, the creation of models containing these 2DEG systems will allow for

the development of more complex device models, such as high electron mobility

transistors, that utilize the high electron mobilities that 2DEGs offer.
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Appendix A

Determination of Scattering Angle for
Piezoelectric Scattering

A.1. Derivation for a Parabolic Band

As described in section 2.2.4.2, in order to determine the probability of an electron

scattering with an angle θ′, Wt(Ek)θ:0−θ′/Wt(Ek)θ:0−π must be solved for cos(θ′).

We will do so here for piezoelectric scattering when a parabolic band-structure is

used.

We start with the overall piezoelectric scattering rate through all angles,Wt(Ek)θ:0−π,

which has previously been shown to be [22],

Wt(Ek)θ:0−π = e2K2
avkBT

8π2ε~

ˆ 2k

0

ˆ 1

−1

ˆ 2π

0

q2

(q2 + q2
0)2 δk±q−k′,0

× δ (Ek′ − Ek ∓ ~ωq) dφ d cos (θ) dq. (A.1.1)

This integrates to,

Wt(Ek)θ:0−π = e2K2
avkBT

4πε~

(
ln
[
1 + 4k2

q2
0

]
− 4k2

q2
0 + 4k2

)
. (A.1.2)

In order to determine the scattering rate for scattering between 0 (i.e. no change

to the wave-vector direction) a polar angle θ′, i.e. Wt(Ek)θ:0−θ′ , we must alter the

above integral accordingly so that we are only integrate over the range of angles we

are interested in. We thus change the limits of the integral over cos θ′, obtaining,

Wt(Ek)θ:0−θ′ = e2K2
avkBT

8π2ε~

ˆ 2k

0

ˆ 1

cos θ′

ˆ 2π

0

q2

(q2 + q2
0)2 δk±q−k′,0 (A.1.3)

× δ (Ek′ − Ek ∓ ~ωq) dφ d cos (θ) dq. (A.1.4)
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Integrating this, we obtain,

Wt(Ek)θ:0−θ′ = e2K2
avkBT

4πε~

(
ln
[
1 + 2k2 − 2k2 cos (θ′)

q2
0

]
− 2k2 − 2k2 cos (θ′)
q2

0 + 2k2 − 2k2 cos (θ′)

)
.

(A.1.5)

We can now obtain a cumulative probability function as a function of cos(θ′) by

dividing A.1.3 by A.1.2, thus obtaining,

Wt(Ek)θ:0−θ′
Wt(Ek)θ:0−π

=
ln
[
1 + 2k2−2k2 cos(θ′)

q2
0

]
− 2k2−2k2 cos(θ′)

q2
0+2k2−2k2 cos(θ′)

ln
[
1 + 4k2

q2
0

]
− 4k2

q2
0+4k2

. (A.1.6)

We know thatWt(Ek)θ:0−θ′/Wt(Ek)θ:0−π must be a value between 0 and 1, hence-

forth, we shall denote this quantity by the variable r. We now need to re-arrange

this equation in terms of cos (θ′). We let χ = ln
[
1 + 4k2

q2
0

]
− 4k2

q2
0+4k2 , as we can treat

k (magnitude of electron wave-vector) and q0 (screening) as constant throughout

this derivation. We then make the following substitutions,

r1 = ln
[
1 + 2k2 (1− cos (θ′))

q2
0

]
(A.1.7)

r2 = − 2k2 − 2k2 cos (θ′)
(q2

0 + 2k2 − 2k2 cos (θ′)) (A.1.8)

which in turn reduces (A.1.5) to,

χr = r1 + r2. (A.1.9)

We now have a pair of simultaneous equations to solve. Rearranging both in



Appendix A: Scattering Angle for Piezoelectric Scattering 167

terms of cos (θ′), we get,

cos (θ′) = 2k2 + (1− exp[r1]) q2
0

2k2 (A.1.10)

cos (θ′) = 2k2(r2 + 1) + q2
0r2

2k2(r2 + 1) . (A.1.11)

For both equations to hold true, the value of cos (θ′) must be the same in both

equations. We can thus get r2 in terms of r1 by equating the two right-hand sides,

2k2 + (1− exp[r1]) q2
0 = 2k2(r2 + 1) + q2

0r2

(r2 + 1) . (A.1.12)

This reduces to,

1− exp[r1] = r2

r2 + 1 . (A.1.13)

Taking the reciprocal of (A.1.13), we obtain;

1
1− exp[r1] = 1 + 1

r2
(A.1.14)

exp[r1]
1− exp[r1] = 1

r2
. (A.1.15)

Taking the reciprocal once more,

r2 = exp[−r1](1− exp[r1]) = exp[−r1]− 1. (A.1.16)

We can now substitute (A.1.16) into (A.1.11) and solve for cos (θ′),

cos (θ′) = 1 + q2
0 (exp[−r1]− 1)
2k2 exp[−r1] = 1 + q2

0 (1− exp[−r1])
2k2 . (A.1.17)
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Now, using the relation established in (A.1.9), we obtain a relation between r

and r1,

χr = r1 + exp[−r1]− 1. (A.1.18)

Rearranging in terms of r1, we get,

r1 = 1 + χr +W0 (− exp [−1− χr]) . (A.1.19)

whereW0 denotes the principal branch of the Lambert W function. Substituting

this into (A.1.17) yields the equation used to determine the scattering angle of

an electron subjected to piezoelectric scattering (which is the equation given in

(2.2.19)),

cos(θ′) = 1
2k2

(
2k2 + q2

0 (1− exp [1 + χr +W0 (− exp [−1− χr])])
)
. (A.1.20)

The Lambert W function can only be solved numerically. Fortunately, fast nu-

merical subroutines exist that allows for approximate solutions to be found, see

Barry et al. [107] for a good example.



169

References
[1] J. Hacker, M. Seo, A. Young, Z. Griffith, M. Urteaga, T. Reed, and M. Rod-

well, in 2010 IEEE MTT-S International Microwave Symposium (IEEE,

2010) pp. 1126–1129.

[2] C. Nguyen and M. Micovic, IEEE Transactions on Electron Devices 48, 472

(2001).

[3] A. Dyson and B. K. Ridley, Journal of Applied Physics 104, 113709 (2008).

[4] L. A. Samoska, IEEE Transactions on Terahertz Science and Technology 1,

9 (2011).

[5] A. V. Muravjov, D. B. Veksler, V. V. Popov, O. V. Polischuk, N. Pala, X. Hu,

R. Gaska, H. Saxena, R. E. Peale, and M. S. Shur, Applied Physics Letters

96, 042105 (2010).

[6] R. P. Joshi, S. Viswanadha, P. Shah, and R. D. del Rosario, Journal of

Applied Physics 93, 4836 (2003).

[7] J. M. Barker, R. Akis, T. J. Thornton, D. K. Ferry, and S. M. Goodnick,

Physica Status Solidi (a) 190, 263 (2002).

[8] C. Xie and A. Pavio, in MILCOM 2007 - IEEE Military Communications

Conference (IEEE, 2007) pp. 1–4.

[9] K. Krishnamurthy, J. Martin, B. Landberg, R. Vetury, and M. J. Poulton,

in 2008 IEEE MTT-S International Microwave Symposium Digest (IEEE,

2008) pp. 303–306.

http://dx.doi.org/ 10.1109/MWSYM.2010.5517225
http://dx.doi.org/10.1109/16.906438
http://dx.doi.org/10.1109/16.906438
http://dx.doi.org/10.1063/1.3032272
http://dx.doi.org/10.1109/TTHZ.2011.2159558
http://dx.doi.org/10.1109/TTHZ.2011.2159558
http://dx.doi.org/10.1063/1.3292019
http://dx.doi.org/10.1063/1.3292019
http://dx.doi.org/10.1063/1.1562734
http://dx.doi.org/10.1063/1.1562734
http://doi.wiley.com/10.1002/1521-396X(200203)190:1<263::AID-PSSA263>3.0.CO;2-U
http://dx.doi.org/10.1109/MILCOM.2007.4455083
http://dx.doi.org/10.1109/MILCOM.2007.4455083
http://dx.doi.org/10.1109/MWSYM.2008.4633163


References 170

[10] A. Patanè, A. Ignatov, D. Fowler, O. Makarovsky, L. Eaves, L. Geelhaar,

and H. Riechert, Physical Review B 72, 2 (2005).

[11] N. Vogiatzis and J. M. Rorison, Journal of Applied Physics 109, 083720

(2011).

[12] G. Allison, S. Spasov, a. Patanè, L. Eaves, a. Ignatov, D. Maude, M. Hop-

kinson, and R. Airey, Physical Review B 75, 2 (2007).

[13] W. G. Bi and C. W. Tu, Journal of Applied Physics 80, 1934 (1996).

[14] M. Lundstrom, Fundamentals of carrier transport, second edi ed. (Cambridge

University Page, Cambridge, 2000).

[15] C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley & Sons,

Inc., Hoboken, 2005).

[16] R. D. Kronig and W. G. Penney, in Proceedings of the Royal Society of Lon-

don, Vol. 130 (1931) pp. 499–513.

[17] S. Yamakawa, R. Akis, N. Faralli, M. Saraniti, and S. M. Goodnick, Journal

of Physics: Condensed Matter 21, 174206 (2009).

[18] C. Bulutay, B. Ridley, and N. Zakhleniuk, Physical Review B 62, 15754

(2000).

[19] B. Guo, H. Guo, S. Zhang, and D. Song, Physica B: Condensed Matter 405,

4925 (2010).

[20] J. Wu, W. Walukiewicz, and E. Haller, Physical Review B 65, 233210 (2002).

[21] D. K. Ferry, Semiconductor Transport, 1st ed. (Taylor & Francis, London,

2000).

http://dx.doi.org/10.1103/PhysRevB.72.033312
http://dx.doi.org/10.1063/1.3575336
http://dx.doi.org/10.1063/1.3575336
http://dx.doi.org/10.1103/PhysRevB.75.115325
http://dx.doi.org/10.1063/1.362945
http://dx.doi.org/ 10.1088/0953-8984/21/17/174206
http://dx.doi.org/ 10.1088/0953-8984/21/17/174206
http://dx.doi.org/10.1103/PhysRevB.62.15754
http://dx.doi.org/10.1103/PhysRevB.62.15754
http://dx.doi.org/ 10.1016/j.physb.2010.09.033
http://dx.doi.org/ 10.1016/j.physb.2010.09.033
http://dx.doi.org/10.1103/PhysRevB.65.233210


References 171

[22] B. K. Ridley, Quantum Processes in Semiconductors, 2nd ed. (Oxford Uni-

versity Press, 1988).

[23] E. O. Kane, in Semiconductors and Semimetals: Volume 1, edited by R. K.

Willardson and A. C. Beer (Academic Press, London, 1966) Chap. 3.

[24] M. P. Vaughan, Alloy and phonon scattering-limited electron mobility in dilute

nitrides, Ph.D. thesis, University of Essex (2007).

[25] K. Tomizawa, Numerical Simlulation of Submicron Semiconductor Devices

(Artech House, 1993).

[26] W. A. Hadi, S. K. OâĂŹLeary, M. S. Shur, and L. F. Eastman, Solid State

Communications 151, 874 (2011).

[27] J. A. Reissland, The Physics of Phonons (John Wiley & Sons Ltd., London,

1973).

[28] J. Schwinger, Quantum Mechanics: Symbolism of Atomic Measurements, ed-

ited by B.-G. Englert (Springer Berlin Heidelberg, Berlin/Heidelberg, 2001).

[29] B. K. Ridley, Electrons and Phonons in Semiconductor Multilayers, 2nd ed.

(Cambridge University Press, Cambridge, 2009).

[30] M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, Physics 48, 4587 (1977).

[31] INSPEC, Properties of Gallium Arsenide (The Institution of Electrical En-

gineers, London, 1986).

[32] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. (John

Wiley & Sons, Inc., Hoboken, 2002).

http://dx.doi.org/10.1016/j.ssc.2011.04.004
http://dx.doi.org/10.1016/j.ssc.2011.04.004
http://dx.doi.org/10.1063/1.323516


References 172

[33] J. Gunn, Solid State Communications 1, 88 (1963).

[34] B. K. Ridley and T. B. Watkins, Proceedings of the Physical Society 78, 293

(1961).

[35] C. Hilsum, Proceedings of the IRE 50, 185 (1962).

[36] B. K. Ridley, W. J. Schaff, and L. F. Eastman, Journal of Applied Physics

97, 094503 (2005).

[37] A. Dyson and B. K. Ridley, Journal of Applied Physics 108, 104504 (2010).

[38] S. Nakamura and G. Fasol, The Blue Laser Diode, GaN Based Light Emitters

and Lasers (Springer-Verlag, Berlin, 1997).

[39] S. Y. Ren and J. D. Dow, Applied Physics Letters 69, 251 (1996).

[40] F. Roccaforte, M.-H. Weng, C. Bongiorno, F. Giannazzo, F. Iucolano, and

V. Raineri, Applied Physics A 100, 197 (2010).

[41] S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Mat-

sushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and

K. Chocho, Applied Physics Letters 72, 2014 (1998).

[42] J. Lee, J. Kim, and H. Jeon, Current Applied Physics 9, 663 (2008).

[43] S. Mingiacchi, P. Lugli, A. Bonfiglio, G. Conte, M. Eickhoff, O. Ambacher,

A. Rizzi, A. Passaseo, P. Visconti, and R. Cingolani, physica status solidi

(a) 190, 281 (2002).

[44] B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, Journal of

Applied Physics 85, 7727 (1999).

http://dx.doi.org/10.1016/0038-1098(63)90041-3
http://dx.doi.org/10.1088/0370-1328/78/2/315
http://dx.doi.org/10.1088/0370-1328/78/2/315
http://dx.doi.org/10.1109/JRPROC.1962.288025
http://dx.doi.org/10.1063/1.1889235
http://dx.doi.org/10.1063/1.1889235
http://dx.doi.org/10.1063/1.3500329
http://dx.doi.org/ 10.1007/s00339-010-5683-3
http://dx.doi.org/10.1063/1.121250
http://dx.doi.org/ 10.1016/j.cap.2008.05.020
http://dx.doi.org/ 10.1002/1521-396X(200203)190:1<281::AID-PSSA281>3.0.CO;2-U
http://dx.doi.org/ 10.1002/1521-396X(200203)190:1<281::AID-PSSA281>3.0.CO;2-U
http://dx.doi.org/10.1063/1.370577
http://dx.doi.org/10.1063/1.370577


References 173

[45] B. Aslan, L. F. Eastman, and Q. Diduck, International Journal of High

Speed Electronics and Systems 19, 1 (2009).

[46] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. Asif Kahn, and M. Shur, IEEE

Electron Device Letters 18, 492 (1997).

[47] B. Kim, D. Derickson, and C. Sun, in 2007 Asia-Pacific Microwave Confer-

ence (IEEE, 2007) pp. 1–4.

[48] K. Joshin and T. Kikkawa, in 2008 IEEE Radio and Wireless Symposium

(IEEE, 2008) pp. 65–68.

[49] A. Ashok, D. Vasileska, O. L. Hartin, and S. M. Goodnick, IEEE Transac-

tions on Electron Devices 57, 562 (2010).

[50] R. Vetury, D. Green, S. Gibb, T. Mercier, K. Leverich, P. Garber, M. Poulton,

and J. Shealy, in IEEE MTT-S International Microwave Symposium Digest,

2005., Vol. 00 (IEEE, 2005) pp. 487–490.

[51] T. Kikkawa, T. Iwai, and T. Ohki, Fujitsu Sci Tech 44, 333 (2008).

[52] J. D. Sun, Y. F. Sun, Y. Zhou, Z. P. Zhang, W. K. Lin, C. H. Zen, D. M.

Wu, B. S. Zhang, H. Qin, L. L. Li, W. Xu, J. Ihm, and H. Cheong, in AIP

Confrence Proceedings, Vol. 893 (2011) pp. 893–894.

[53] A. El Fatimy, S. Boubanga Tombet, F. Teppe, W. Knap, D. Veksler, S. Rumy-

antsev, M. Shur, N. Pala, R. Gaska, Q. Fareed, X. Hu, D. Seliuta, G. Valusis,

C. Gaquiere, D. Theron, and A. Cappy, Electronics Letters 42, 1342 (2006).

[54] J. T. Lü and J. C. Cao, Semiconductor Science and Technology 19, 451

(2004).

http://dx.doi.org/10.1109/APMC.2007.4555132
http://dx.doi.org/10.1109/APMC.2007.4555132
http://dx.doi.org/10.1109/RWS.2008.4463429
http://dx.doi.org/10.1109/TED.2009.2038585
http://dx.doi.org/10.1109/TED.2009.2038585
http://dx.doi.org/ 10.1109/MWSYM.2005.1516636
http://dx.doi.org/ 10.1109/MWSYM.2005.1516636
http://dx.doi.org/10.1063/1.3666663
http://dx.doi.org/10.1063/1.3666663
http://dx.doi.org/10.1049/el:20062452
http://dx.doi.org/10.1088/0268-1242/19/3/028
http://dx.doi.org/10.1088/0268-1242/19/3/028


References 174

[55] H. Krömer, Physical Review 109, 1856 (1958).

[56] R. F. Macpherson, G. M. Dunn, and N. J. Pilgrim, Semiconductor Science

and Technology 23, 055005 (2008).

[57] L.-A. Yang, Y. Hao, Q. Yao, and J. Zhang, IEEE Transactions on Electron

Devices 58, 1076 (2011).

[58] O. Yilmazoglu, K. Mutamba, D. Pavlidis, and T. Karaduman, Electronics

Letters 43, 480 (2007).

[59] J. M. Barker, D. K. Ferry, D. D. Koleske, and R. J. Shul, Journal of Applied

Physics 97, 063705 (2005).

[60] M. Weyers, M. Sato, and H. Ando, Japanese Journal of Applied Physics 31,

L853 (1992).

[61] U. Tisch, E. Finkman, and J. Salzman, Applied Physics Letters 81, 463

(2002).

[62] J. E. Lowther, S. K. Estreicher, and H. Temkin, Applied Physics Letters 79,

200 (2001).

[63] J. Perkins, A. Mascarenhas, Y. Zhang, J. Geisz, D. Friedman, J. Olson, and

S. Kurtz, Physical Review Letters 82, 3312 (1999).

[64] Y. Zhang, A. Mascarenhas, H. Xin, and C. Tu, Physical Review B 61, 7479

(2000).

[65] G. Pozina, I. Ivanov, B. Monemar, J. V. Thordson, and T. G. Andersson,

Journal of Applied Physics 84, 3830 (1998).

http://dx.doi.org/10.1103/PhysRev.109.1856
http://dx.doi.org/10.1088/0268-1242/23/5/055005
http://dx.doi.org/10.1088/0268-1242/23/5/055005
http://dx.doi.org/ 10.1109/TED.2011.2105269
http://dx.doi.org/ 10.1109/TED.2011.2105269
http://dx.doi.org/10.1049/el:20070658
http://dx.doi.org/10.1049/el:20070658
http://dx.doi.org/10.1063/1.1854724
http://dx.doi.org/10.1063/1.1854724
http://dx.doi.org/ 10.1143/JJAP.31.L853
http://dx.doi.org/ 10.1143/JJAP.31.L853
http://dx.doi.org/10.1063/1.1494469
http://dx.doi.org/10.1063/1.1494469
http://dx.doi.org/10.1063/1.1383280
http://dx.doi.org/10.1063/1.1383280
http://dx.doi.org/ 10.1103/PhysRevLett.82.3312
http://dx.doi.org/ 10.1103/PhysRevB.61.7479
http://dx.doi.org/ 10.1103/PhysRevB.61.7479
http://dx.doi.org/ 10.1063/1.368562


References 175

[66] W. Shan, W.Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson,

and S. Kurtz, Physical Review Letters 82, 1221 (1999).

[67] R. J. Potter and N. Balkan, Journal of Physics: Condensed Matter 16, S3387

(2004).

[68] N. López, L. Reichertz, K. Yu, K. Campman, and W. Walukiewicz, Physical

Review Letters 106, 1 (2011).

[69] N. Vogiatzis and J. M. Rorison, Physica Status Solidi (B) 248, 1183 (2011).

[70] M. Seifikar, E. P. O’Reilly, and S. Fahy, Physical Review B 84, 1 (2011).

[71] A. Ignatov, A. PataneÌĂ, O. Makarovsky, and L. Eaves, Applied Physics

Letters 88, 032107 (2006).

[72] D. Vasileska and S. M. Goodnick, Computational Electronics, Synthesis Lec-

tures on Computational Electronmagnets (Morgan & Claypool Publishers,

2006).

[73] D. C. Look and J. R. Sizelove, Physical Review Letters 82, 1237 (1999).

[74] J. S. Blakemore, Journal of Applied Physics 53, R123 (1982).

[75] M. Fischetti and S. Laux, Physical Review B 38, 9721 (1988).

[76] H. Thomas, D. V. Morgan, B. Thomas, J. E. Aubrey, and G. B. Morgan,

eds., Gallium Arsenide for Devices and Integrated Circuits (Peter Penegrinus

Ltd., London, 1986).

[77] A. Khalid, N. J. Pilgrim, G. M. Dunn, M. C. Holland, C. R. Stanley, I. G.

Thayne, and D. R. S. Cumming, IEEE Electron Device Letters 28, 849

(2007).

http://dx.doi.org/10.1103/PhysRevLett.82.1221
http://dx.doi.org/10.1088/0953-8984/16/31/026
http://dx.doi.org/10.1088/0953-8984/16/31/026
http://dx.doi.org/10.1103/PhysRevLett.106.028701
http://dx.doi.org/10.1103/PhysRevLett.106.028701
http://dx.doi.org/10.1002/pssb.201000799
http://dx.doi.org/10.1103/PhysRevB.84.165216
http://dx.doi.org/10.1063/1.2164906
http://dx.doi.org/10.1063/1.2164906
http://dx.doi.org/10.1103/PhysRevLett.82.1237
http://dx.doi.org/10.1063/1.331665
http://dx.doi.org/10.1103/PhysRevB.38.9721
http://dx.doi.org/ 10.1109/LED.2007.904218
http://dx.doi.org/ 10.1109/LED.2007.904218


References 176

[78] B. Baliga, R. Ehle, J. Shealy, W. Garwacki, and W. Garwacki, IEEE Electron

Device Letters 2, 302 (1981).

[79] L. Eastman and U. Mishra, IEEE Spectrum 39, 28 (2002).

[80] T. J. Maloney and J. Frey, Journal of Applied Physics 48, 781 (1977).

[81] J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and

K. F. Brennan, Journal of Applied Physics 86, 6864 (1999).

[82] F. Bertazzi, M. Goano, and E. Bellotti, Journal of Electronic Materials 36,

857 (2007).

[83] E. Furno, F. Bertazzi, M. Goano, G. Ghione, and E. Bellotti, Solid-State

Electronics 52, 1796 (2008).

[84] S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, Solid State

Communications 150, 2182 (2010).

[85] C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. M. M.

Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applic-

ations (Springer, 2010) p. 359.

[86] B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J.-Y. Hwang,

and D.-S. Seo, Journal of Applied Physics 99, 124505 (2006).

[87] R. KÃűnenkamp, R. C. Word, and C. Schlegel, Applied Physics Letters 85,

6004 (2004).

[88] O. Madelung, U. Rössler, and M. Schulz, eds., II-VI and I-VII Compounds;

Semimagnetic Compounds, Landolt-Börnstein - Group III Condensed Matter,

Vol. 41B (Springer-Verlag, Berlin/Heidelberg, 1999).

http://dx.doi.org/ 10.1109/EDL.1981.25442
http://dx.doi.org/ 10.1109/EDL.1981.25442
http://dx.doi.org/10.1109/6.999791
http://dx.doi.org/10.1063/1.323670
http://dx.doi.org/10.1063/1.371764
http://dx.doi.org/10.1007/s11664-007-0111-y
http://dx.doi.org/10.1007/s11664-007-0111-y
http://dx.doi.org/ 10.1016/j.sse.2008.08.001
http://dx.doi.org/ 10.1016/j.sse.2008.08.001
http://dx.doi.org/10.1016/j.ssc.2010.08.033
http://dx.doi.org/10.1016/j.ssc.2010.08.033
http://books.google.com/books?id=TYXinw6pKk4C&pgis=1
http://books.google.com/books?id=TYXinw6pKk4C&pgis=1
http://dx.doi.org/ 10.1063/1.2206417
http://dx.doi.org/10.1063/1.1836873
http://dx.doi.org/10.1063/1.1836873
http://dx.doi.org/ 10.1007/b71137
http://dx.doi.org/ 10.1007/b71137


References 177

[89] O. Madelung, U. Rössler, and M. Schulz, eds., Group IV Elements, IV-IV

and III-V Compounds. Part a - Lattice Properties, Landolt-Börnstein - Group

III Condensed Matter, Vol. a (Springer-Verlag, Berlin/Heidelberg, 2001).

[90] M. Goano, F. Bertazzi, M. Penna, and E. Bellotti, Journal of Applied Physics

102, 083709 (2007).

[91] E. Bellotti and F. Bertazzi, Nitride Semiconductor Devices, edited by J. Pi-

prek (Wiley-VCH, Weinheim, 2007) Chap. 4, pp. 69–94.

[92] V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, and A. Zubrilov, “Proper-

ties of Advanced Semiconductor Materials,” (John Wiley & Sons, Inc., New

York, 2001) pp. 1–30.

[93] T. P. Chow and Ghezzo, in III-Nitride, SiC, and Diamond Materials for

Electronic Devices, Vol. 423, edited by D. K. Gaskill, C. D. Brandt, and R. J.

Nemanich (Material Research Society Symposium Proceedings, Pittsburgh,

PA., 1996) pp. 69–73.

[94] M. Semenenko, O. Yilmazoglu, H. L. Hartnagel, and D. Pavlidis, Journal of

Applied Physics 109, 023703 (2011).

[95] C. Bulutay, B. K. Ridley, and N. A. Zakhleniuk, Physical Review B 68,

115201 (2003).

[96] M. Ilegems and H. Montgomery, Journal of Physics and Chemistry of Solids

34, 885 (1973).

[97] I. M. Abdel-Motaleb and R. Y. Korotkov, Journal of Applied Physics 97,

093715 (2005).

http://dx.doi.org/ 10.1007/b60136
http://dx.doi.org/ 10.1007/b60136
http://dx.doi.org/ 10.1063/1.2794380
http://dx.doi.org/ 10.1063/1.2794380
http://dx.doi.org/10.1063/1.3533770
http://dx.doi.org/10.1063/1.3533770
http://dx.doi.org/10.1103/PhysRevB.68.115205
http://dx.doi.org/10.1103/PhysRevB.68.115205
http://dx.doi.org/10.1016/S0022-3697(73)80090-3
http://dx.doi.org/10.1016/S0022-3697(73)80090-3
http://dx.doi.org/10.1063/1.1891278
http://dx.doi.org/10.1063/1.1891278


References 178

[98] P. Perlin, T. Swietlik, L. Marona, R. Czernecki, T. Suski, M. Leszczynski,

I. Grzegory, S. Krukowski, G. Nowak, and G. Kamler, Journal of Crystal

Growth 310, 3979 (2008).

[99] P. Shiktorov, E. Starikov, V. Gruzinskis, M. Zarcone, D. Persano Adorno,

G. Ferrante, L. Reggiani, L. Varani, and J. Vaissière, physica status solidi

(a) 190, 271 (2002).

[100] F. Sacconi, a. Di Carlo, and P. Lugli, Physica Status Solidi (a) 190, 295

(2002).

[101] S. Fahy, A. Lindsay, H. Ouerdane, and E. O’Reilly, Physical Review B 74,

1 (2006).

[102] M. Vaughan and B. Ridley, Physical Review B 75, 1 (2007).

[103] W. Shan, K. M. Yu, W. Walukiewicz, J. Wu, J. W. Ager, and E. E. Haller,

Journal of Physics: Condensed Matter 16, S3355 (2004).

[104] E. P. O’Reilly, A. Lindsay, and S. Fahy, Journal of Physics: Condensed

Matter 16, S3257 (2004).

[105] S. Fahy and E. P. O’Reilly, Applied Physics Letters 83, 3731 (2003).

[106] A. Patané, G. Allison, L. Eaves, N. V. Kozlova, Q. D. Zhuang, A. Krier,

M. Hopkinson, and G. Hill, Applied Physics Letters 93, 252106 (2008).

[107] D. A. Barry, S. J. Barry, and P. J. Culligan-Hensley, ACM Transactions on

Mathematical Software 21, 172 (1995).

http://dx.doi.org/ 10.1016/j.jcrysgro.2008.06.010
http://dx.doi.org/ 10.1016/j.jcrysgro.2008.06.010
http://dx.doi.org/ 10.1002/1521-396X(200203)190:1<271::AID-PSSA271>3.0.CO;2-Y
http://dx.doi.org/ 10.1002/1521-396X(200203)190:1<271::AID-PSSA271>3.0.CO;2-Y
http://dx.doi.org/10.1002/1521-396X(200203)190:1<295::AID-PSSA295>3.0.CO;2-A
http://dx.doi.org/10.1002/1521-396X(200203)190:1<295::AID-PSSA295>3.0.CO;2-A
http://dx.doi.org/10.1103/PhysRevB.74.035203
http://dx.doi.org/10.1103/PhysRevB.74.035203
http://dx.doi.org/10.1103/PhysRevB.75.195205
http://dx.doi.org/ 10.1088/0953-8984/16/31/024
http://dx.doi.org/10.1088/0953-8984/16/31/019
http://dx.doi.org/10.1088/0953-8984/16/31/019
http://dx.doi.org/10.1063/1.1622444
http://dx.doi.org/10.1063/1.3056120
http://dx.doi.org/10.1145/203082.203088
http://dx.doi.org/10.1145/203082.203088

	Summary of Thesis
	Contents
	Acknowledgements
	Declaration of Authorship
	List of Abbreviations
	1 Introduction 
	1.1 Band-structure
	1.1.1 The Effective Mass
	1.1.2 The single band k.p approximation

	1.2 Electronic Transport
	1.2.1 Boltzmann Transport Equation
	1.2.2 Electron scattering 
	1.2.2.1 Charged impurity and dislocation scattering
	1.2.2.2 Phonons and phonon-assisted scattering
	1.2.2.3 Fermi's Golden Rule

	1.2.3 High Field Transport
	1.2.3.1 Velocity Overshoot

	1.2.4 Effect of Crystal Structure

	1.3 N-based III-V Semiconductors
	1.3.1 Gallium Nitride
	1.3.2 Dilute Gallium Nitrogen Arsenide

	1.4 Outline of Thesis

	2 Monte-Carlo methods for electron transport simulations 
	2.1 Band-structure approximation in Monte-Carlo models 
	2.2 Algorithm for bulk materials 
	2.2.1 Calculation of Scattering Rates and Maximum Drift Time
	2.2.2 Initial Electron States
	2.2.3 Electron Drift 
	2.2.4 Electron Scattering
	2.2.4.1 Isotropic Scattering
	2.2.4.2 Anisotropic Scattering


	2.3 Bulk Single Electron Monte Carlo Simulation
	2.3.1 Output 
	2.3.1.1 Velocity
	2.3.1.2 Energy


	2.4 Bulk Ensemble Monte Carlo Simulation 
	2.4.1 Ensemble Algorithm
	2.4.2 Output

	2.5 1D n+-i-n+ Diode Monte Carlo Simulation
	2.5.1 Device algorithm.
	2.5.2 Time Step and Mesh Size Determination 
	2.5.3 Super-particles
	2.5.4 Potential and field strength determination
	2.5.5 Initial Conditions
	2.5.6 Monte-Carlo dynamics
	2.5.7 Dynamic Electron Injection
	2.5.8 Output

	2.6 Summary

	3 The Cosine Band-structure Approximation 
	3.1 Approximation Properties
	3.1.1 E-k Relation
	3.1.2 Density of States
	3.1.3 Negative effective-mass transport

	3.2 Derivation of Scattering Rates
	3.2.1 Polar Optical Phonon Scattering
	3.2.2 Non-Polar Optical Phonon Scattering
	3.2.3 Piezoelectric Phonon Scattering
	3.2.4 Acoustic Phonon Scattering
	3.2.5 Charged Impurity Scattering
	3.2.6 Threaded Dislocation Scattering

	3.3 Summary

	4 Demonstration of Monte Carlo codes 
	4.1 Demonstration of computational changes
	4.1.1 Materials
	4.1.1.1 Gallium Arsenide
	4.1.1.2 Indium Phosphide
	4.1.1.3 Zinc Oxide

	4.1.2 Results
	4.1.2.1 Gallium Arsenide & Indium Phosphide
	4.1.2.2 Zinc Oxide


	4.2 Cosine band-structure approximation demonstration
	4.2.1 Velocity-field characteristics.
	4.2.2 Other characteristics

	4.3 Summary

	5 Bulk Gallium Nitride
	5.1 Comparison of Valley Separations
	5.2 Effect of Negative Effective Mass 
	5.3 Transient Characteristics
	5.3.1 Mid-field transient transport
	5.3.2 High-field transient transport

	5.4 Summary

	6 Gallium Nitride 1D Device
	6.1 Mesh Spacing and Time Step Selection
	6.2 Whole-system and active-region characteristics
	6.3 Position-averaged characteristics
	6.4 Energy & Phase-space characteristics
	6.4.1 Characteristics at 300K
	6.4.2 Characteristics at 77K

	6.5 Summary

	7 Dilute Gallium Nitrogen Arsenide
	7.1 Description of Models
	7.1.1 Nitrogen scattering model
	7.1.2 Analytic approximation of the E- band

	7.2 Steady State Characteristics
	7.2.1 Nitrogen scattering Model
	7.2.2 Analytic approximation of the E- band

	7.3 Transient characteristics
	7.3.1 Nitrogen scattering model
	7.3.2 Analytic approximation of the E- band

	7.4 Summary

	8 Conclusions and Future Work
	A Determination of Scattering Angle for Piezoelectric Scattering
	A.1 Derivation for a Parabolic Band

	References

