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Sane Problems in the Analysis of Spatial Pattern 

Measurement of spatial pattern is of interest in many fields 

of study including forestry, ecology, archaeology, geography, astronomy; 

etc. Sane new methods for measuring various aspects of spatial 

patterns formed by point events in the plane, are proposed. 

Sampling a population in the plane is usually carried out 

using either quadrat counts or distance measurements. Only the latter 

are used in this Thesis, as the methods introduced are aimed at the 

plant biologist or forester studying patterns formed by trees in a 

forest stand, where distance sampling is the easiest. 

The first method introduced is a new conditioned distance 

ratio method for analysing spatial pattern, which attempts to place 

patterns on an envisaged regular/random/aggregation scale. Instead 

of using an index as with most previous methods, a histogram of 

certain distances is formed, and analysis is based on viewing and 

hypothesis testing of this histogram. 

To new robust estimators of the density of a forest stand 

are described, which are unbiased for a wide range of spatial patterns. 

The first estimator has a coefficient mich varies according to some 

quantitative feature of the spatial pattern. This is a new idea for 

obtaining robust estimators. 



What constitutes a clumped or sparse area within a spatial 

pattern is very subjective. A method for the defining and marking 

of such areas is described. A canputer package is used for the 

actual drawing of the clunped and sparse areas. 

The final topic to be discussed is that of two species in 

the plane. - The spectral theory of two-dimensional, bivariate point 

processes is given, and then used to study the relationship between 

two species cohabiting in the plane. 

All the methods described are used on data, sane of which 

are simulated, the rest being the coordinates of real trees in a 

forest stand. 
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CHAPTER 1 

ANALYSIS OF SPATIAL PAT'T'ERN 

1.1 Introduction 

The term spatial pattern is used to refer to the pattern 

formed by a population of individuals in n-dimensional Euclidean 

space. It is usual hcwever to consider only n=2, or sometimes 3, 

higher dimensions rarely lending themselves to practical purposes. 

The special case of n=1 is often referred to as the theory of point 

processes or series of events, there being a natural ordering of 

individuals in one dimension, which does not easily or necessarily 

generalize to higher dimensions. 

The analysis of spatial pattern is of great importance in 

the fields of astronomy, geography, ecology, forestry, oceanography, 

archaeology and many others. For example, the astronomer may be 

interested in the pattern taken up by a group of stars, the geographer 

in the pattern formed by villages in a county, the ecologist by 

the patterns formed by herds of elephants, etc. 

As with most authors, only patterns in the Euclidean plane 

formed by point events, which are usually the positions of individuals 

in a population, will be considered. Attention is also restricted 

to the spatial variation of the pattern. Thus the temporal variation 

is assumed to be non-existent or negligible, as for example when 

dealing with the pattern formed by pyramids in Egypt, or trees in a 
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forest. However in the cases where there is appreciable temporal 

variation, instantaneous spatial variation can be studied, e. g. 

when dealing with the spatial pattern at a particular instant of a 

flock of birds in the air. Also,. populations occupying discrete 

habitable units, e. g. aphids on leaves, will not be studied here, but 

only populations occupying a continuum, or more specifically the 

two-dimensional Euclidean space, although the results can easily be 

generalized to n-dimensions. 

All examples given of analysis of data will be fran the 

area of forestry, and theory is developed with a view to aid the 

ecologist concerned with forest or plant ccxrrnunities, Warren (1972) 

having reviewed the role of point processes in forestry. However 

all the theory and methods proposed for analysing spatial patterns can 

be used by any investigator of spatial pattern following his own bent. 

Usually the individuals within a population will be referred to as 

trees, rather than points in the plane. This is so that random 
of sampling points" will not be confused with the individuals in the 

Population, thus making for clarity of exposition. It is suggested 
that the investigator mentally alter "trees" to his own liking 

throughout the text. 
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1.2 Poisson Forests 

The first question one usually asks when analysing a spatial 

patternis whether the individuals, considered as points, are placed 

randomly, i. e. whether they form a 2-dimensional Poisson process, or what 

is often referred to as a Poisson forest. For this to be so, the 

individuals are positioned so that 

i) in any area of size A, the probability of 

finding i individuals depends on A and not on the shape 

of the area; 

ii) if A is srial1, the probability of finding 

more than one individual within the area is small 

canpared to A; 

iii) occurrences of individuals in non overlapping 

areas are independent. 

It has been noted by many authors,, for example, Evans (1953), 

Greig-Smith (1964), Pieisu (1969,1974), Whitford (1949), that random 

Patterns in forestry or plant carraunities are seldcm found. If a 

P°Pulation is not randan, then the individuals either tend to occur 

together to form an aggregated or clumped pattern, or tend to "repel". 

each other to form a pattern with regularity. There is an envisaged 

scale on which patterns can be placed. At one end is extreme regularity 

where individuals are situated at the vertices of an equilateral triangular 

lattice, this being the pattern symmetric about each individual with the 

highest density for a given minimum distance between any tm individuals. 

At the other end of the scale, individuals cluster together, and the 
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extreme case can be considered as a pattern formed by clumps of 

coincident points. In between these extremes lies the Poisson forest 

which can be thought of as the frontier between regular and aggregated 

patterns. Fig. 1(1) shows examples of a regular pattern, a Poisson 

forest, and an aggregated pattern. In the sequel, the term "regular" 

will usually refer to patterns which are neither randan nor 

aggregated. It is not restricted to the special cases of the regular 

lattices which will be referred to as regular triangular lattice, 

regular square lattice, and regular hexagonal lattice, (scmetimes with 

.. regular" omitted). 

The above described scale of pattern is obviously not adequate 

to characterize all spatial patterns. For example, difficulty arises 

when one tries to place a pattern formed by pairs of coincident points 

situated at the vertices of a triangular lattice, upon the described 

pattern scale. 
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Fig. 1(1) Examples of a regular pattern, a Poisson forest and an 

, aggregated pattern 
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It may be possible to find score physical reason why 

individuals in a population take up a particular pattern. For 

example, a particular kind of plant may reproduce vegetatively, and thus 

one would expect the stems to form an aggregated pattern.. Again the 

instantaneous pattern formed by the positions of individuals in a 

particular solitary species of animal may be regular due to repulsion 

between individuals. 

1.3 Sampling within a spatial pattern 

Sampling a population in the plane provides many problens. 

In general there are two methods of sampling the individuals in order to 

measure sane aspect of the spatial pattern. The first is quadrat sampling 

where sample plots of specified area and shape are located within the 

population. The second method is distance sampling, where distances 

between individuals, and other such distances are used for measuring 

the pattern. These two methods are analogous to those used for point 

Processes in one dimension where either counts of events in certain 

intervals are made (quadrat sampling), or the intervals between events 

are measured (distance sampling). 

The first sampling method is probably most useful for 

sampling small plants or insects, and the second method for sampling trees 

within a forest. In this thesis, the only methods used are distance 

methods, which can be easily implemented by the forester who will only 

need to pace out the distances. 

/ 
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1.4 Testing for randamess 

Many authors have proposed methods for testing a population for 

randanness (see e. g. Besag and Gleaves (1973), Clark and Evans (1954), 

David and Moore (1954), Diggle, Besag and Gleaves (1974), Eberhart (1967), 

Greig-Smith (1952), Holgate (1965a, 1965b), Hopkins and Skellam (1954), 

M untford (1961), Pielou (1959), Stiteler and Pa. til(1971). Same use 

quadrat-. methods and sane use distance methods. Also many indices 

of non-randanness have been proposed, e. g. the variance to mean ratio, 

(Clapham (1936)), the index of clumping, (David and Moore (1954)), 

Lloyd's index of mean crowding, (Lloyd (1967)), Hopkins and Skellam's 

index, (Hopkins and Skellam (1954)), Pielou's index, (Pielou (1959)) 

etc., to measure the extent to which patterns are removed from 

randomness. These indices form a useful guide to the type of pattern 

under investigation. In chapter two a new diagnostic distance method 

for analysing spatial patterns is described which attempts to supply 

more information about the pattern, rather than one value of an index 

as irrst previous methods do. The method allows various tests of 

hYPotheses to be made including tests of randomness against various 

alternatives. 

The idea behind the method is to sample the population using 

randomly placed sampling origins, and then to form a histogram which 

hopefully sheds light onto the type of pattern. Also defined in 

chapter two is a random variable formed from two distance measuranents, 

which has the remarkable property of being distributed uniformly for a 

wide range 9f spatial patterns ranging from regular, through randan, to 

aggregated patterns. 

0 



-7- 

1.5 Robust estimation of density 

A problen of great interest is that of the estimation of 

the density of individuals within a large area in the plane. This may 

be of special interest in forestry, as an estimate may be needed of 

the number of trees per unit area within a forest, maybe to aid with 

yield estimates, etc. Rather than counting every tree, an estimate 

needs to be made using a sample of observations. 

In forestry quadrat methods suffer fron the disadvantage 

of being impractical and thus distance methods are preferred. 

Holgate (1972) has reviewed distance methods for estimating the 

density. Most estimators used so far are designed for a particular 

spatial pattern, usually the Poisson forest, such that they are unbiased 

for this particular pattern, and are then used on other spatial patterns 

where bias may be appreciable, Persson (1971) quantifying the matter. 

If an estimator of the density is unbiased or approximately unbiased 

for a wide range of spatial patterns, then it is robust. To this 

end, Diggle (1975) uses two distance measurements, biased in opposite 

directions, combined to reduce bias. S. M. Lewis 11975) also linearly 

es two distance measurements to form an estimator which is 

unbiased for t different types of pattern and reduces bias for others. 

In chapter three, two new estimators are proposed which are 

approximately unbiased for a very wide range of spatial patterns. 
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1.6 The mapping of clumped and-sparse areas within a spatial pattern 

of points 

There exist now many ccenputer packages for the drawing of 

various maps, e. g. contour (or isopleth) maps, confonnant (or 

chloropleth) maps. These packages are very useful to geographers as 

they save time and effort in the construction of such maps, only a 

set of data needing to be supplied. 

Given a set of point events in the plane, e. g. weeds in a 

cornfield, it may be of interest to know where any clumps may be 

situated, and in the other extrsne, where there are sparse areas, i. e. 

where the point events "tend not to occur". A. simple method to 

determine this may be to view a dot map consisting of a dot for each 

event (cf. page 34). However, as noted by Stiteler (1970), and others, 

unless one is dealing with extreme cases, it is often difficult to 

distinguish visually between regular'and randan populations, and between 

random and aggregated populations. Hence it may be difficult to 

determine the clunped and sparse areas within a population with this 

method. 

In chapter four, a method is described which, with the aid of 

a canputer package named SYMP, defines clumped and sparse areas within 

a spatial pattern, the ocsruter package drawing contours of the various 

areas. Obviously the idea of a clumped or sparse area is very 

subjective and depends on the case in hand. Nevertheless, these ideas 

are expanded in chapter four, with a view to mapping the clumped and 

" sparse areas within a forest. 
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Pielou (1974) discusses various types of maps for use with 

spatial pattern, and in particular how an isopleth map of the density 

of a spatial pattern can be constructed by counting the number of 

points within small sampling quadrats.. " However this method suffers 

fresn the use of arbitrary sized quadrats.. 

1.7 dimensional, bivariate spectral tr=y for analysing spatial 

pattern 

An area in the theory of statistical ecology or spatial point 

processes which has not as yet received much attention, is the analysis 

of two types of species, or point events, in the plane. The ecologist 

may be interested in the relationship between two species of plants 

cohabiting in the same area, and from this point of view, Pielou (1961, 

1969,1974) discusses two relationships between species, namely assoc- 

iation and segregation, on which further details can be found in 

chapter five. However useful probabilistic or statistical results 

connected with 2-dimensional, bivariate point processes will be 

welcaned by the ecologist, and at present there seen to be only a few. 

Fran a probabilistic view, Bartlett (1964) discusses the 

spectral theory of two-dimensional, univariate point processes, generalised 

from his paper on the spectral theory of point processes in one- 

dimension, Bartlett (1963). Results using the spectral theory on various 

data, and also a stminary of the theory are reported in Bartlett (1974, 

1975). D. R. Cox and P. A. W. Lewis (1972) discuss the theory of 

bivariate point processes in one-dimensioi. 
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In chapter five the spectral theory of two-dimensional 

bivariate point processes is discussed. The theory is applied to 

sane tree position data, with the auto spectra being used for the 

study of individual species, while the cross spectra are used to shed 

light on the relationship between the species. 

1.8 Data 

All methods and theory described for analysing spatial 

patterns are used on data,. both actual and simulated. One type of 

data, kindly made available by Dr. E. D. Ford of the Institute of 

Terrestrial Ecology, Penicuik, and described in Ford (1975), is in the 

form of the coordinates of trees planted on rectangular lattices with 

death of sane of the individuals. A second type consists of the 

coordinates of the six species of trees in Lansing Woods, Michigan, 

U. S. A., kindly supplied by Professor D. J. Gerrard. The trees are 

within a square area of 19.6 acres, but is scaled to be represented by 

a 15in x 151n area (i. e. 1 in. represents 61.6 ft. ). The types and 

numbers of trees are as follows 

Type of tree No. of trees 

Black oaks 136 

Red oaks 363 

White oaks 460 

Hickories 716 

Maples 530 

Miscellaneous 107. 
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Diagrams showing subsets of the positions of the trees 

are on pages 91- 106. 

Data for the third type are simulated. The models used 

include modified Thomas processes, Thomas processes, Poisson forests, 

a regular type pattern, and an aggregated type pattern. All the 

models will be described fully in the appropriate part of the text. 
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CHAPTER 2 

ANALYSING SPATIAL PATI'ERNS 

2.1 Introduction 

In this chapter a method is proposed for investigating 

the spatial pattern formed by point events in the plane, which will 

be referred to as trees for convenience, even though they may be 

representing stars, pyramids, villages etc. The aim is to analyse 

spatial pattern with regard to an envisaged regular/random/aggregation 

scale, by considering a histogram of certain distance measurements, 

rather than the usual methods of using pattern indices and testing 

for randanness. 

The method requires that N randczn points be selected within 

the spatial pattern, ensuring that the area sampled is well within 

the boundaries of the population. This enables edge effects to be 

neglected. The randan points will be referred to as the sampling 

origins. Fran each of these sampling origins, the distance, X, to 

the nearest tree, and the distance, Y, fron this tree to its 

nearest neighbour are measured. The N pairs of measurements 

(X1' Y1)' .... (XN, YN) are then split into two sets, A and B, where 

A= 1(X1, Yi) : Yi 4 2Xi, 

B=t (Xj, Yi ) : Yi > 2Xi I 

(i = 1, ..., n) 

(j = 1, ... , m) } (m +n= N) . 
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For convenience the mathers of A and B are relabelled as 

(Xli, Yli) and (x 2j' Y2j ) respectively. Fig 2(1) illustrates 

the gemetrical configuration for these randm variables, where 0 is 

the randan sampling origin, P is the nearest tree to 0, Q is P's 

nearest neighbour. tI -c 

Q 

(i) (ii) 

Fig. 2(1) The gexnetrical configuration of X1, Y1, and X2, Y2. 
i 
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Define the randan variables Wli and W2j as 

Wli = 1/ ¬ 2-rr + sinI: - (-Tr* : )cos ýLI (i = 1,..., n) 

where si n (i ý: ) zU /X"L 
, and 

W2j = 4X2j 2 /Y2j 2 (j = 1, ..., m). 

The reasons for defining Wli and W2j in this manner will 

beeane clear later. The Wli's will be used for the analysis of 

spatial pattern, and the W2j 's will be sham to have the same distri- 

bution for a wide range of patterns. That is, the information about 

the spatial pattern resides essentially in the Wi, IS. 

2.2 The Poisson forest 

The Poisson forest is the most widely used model in the 

analysis of spatial pattern. It occurs when any small area of size 

öa contains one "tree" with probability1 + o(Ca) , contains no 

trees with probability 1- 7töa + o(äa) , where 71 is a constant known 

as the rate or density. Also the events that the area Sa contains 

or does not contain trees are independent of those for any other 

area gay which does not intersect öa. Thus the Poisson forest is 

only another name for the two dimensional Poisson process or random 

process. 

Fig. 2(2) illustrates the gecanetrical configuaration of the 

random variable X, the distance fron a random sampling origin, or to 

the nearest tree P.. 
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7' 
n1 

JV 
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k 

P 

x 

rig. 2(2) To find the p. d. f. of X for the Poisson forest. 

Let F(x) be the distribution function of X for the Poisson 

forest. From Fig. 2(2), the probability that there are no trees 

in the circle through P, centre 0, is exp ( _ºlx2) , where 71 is the 

density of the process. Thus 

1 '- F (x) = exp (-lflr-x2) , 

and on differentiating, we have the probability density function 

(p. d. f. ) of X to be 

2T'Rx exp(-AT'x2) (O 6x <CO) . 
(1) 

This is a well known result (see e. g. Skellam (1952), 

" Pollard (1971) etc. ). 
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For Y4 2X, in order to obtain the p. d. f. of Wl, it is 

easier to work in terntis of angle and x1 as shown in Fig. 2(3), 

rather than Y1 and Xl. For 0441 denote 

pr¬ x4X4x+ dx, Y. > 2x sin (/4)} by Hl (x, 4) dx. 

For Y> 2X denote 

pr¬ x<XSx+ dx, Y> y3 by H2 (x, y) dx. 

Now Hl (x, O) = pr jx< X4 x+ dx, Y) O) , which is the 

unconditioned, p. d. f. of X. Thus 

H1(x, O) = 2? tlTx exp (ý71Tr'x2) 
. 

(2) 

Also H1(x, -W) = pri x<XSx+ dx, Y> 2x J 

= H2 (x, 2x) (3) 

and it is easily seen that 

m 
pr (Y > 2X) = H, (x, ir)dx. (4) 

0 

(i) (ii) 

Fig. 2 (3) 
. 

To find H1 (x, 4) and H2 (x, y) 
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Fran Fig. 2 (3) (i) , 

H1(x, op + dfl = H1 (x, 4) X pr ¬ no trees in shaded region . 

For the Poisson forest, 

A 
pr¬no tree in shaded region] =1- (21r - 2SPO) T yly. 

Now y= 2x sin(/4), and thus for fixed x, 

dy =x cos(24)d4 , 

an thus 

H1(x,, 4 + dd) = Hl (x, f) ¬1 -A ('x'+ý) 2x sin (/) x cos (/ )} dd. (5) 

Fran Fig. 2 (3) (ii) 

H2 (x, y + dy) = H` (x, y) X pr t no trees in shaded region , 

= H2 (x, y) (1 - 271Trydy) . 
(6) 

Thus fron equations (5) and (6) 

'ýHl(x4 ) 

.ýý_ 21(x ) ýl (ir+ý x sin (/o) cos 

Z) H2 (x. y) 

öy2 H2 (x, Y) 717rydy. (8) 

Integrating equations (7) and (8) with respect to y 

ill (x, 4) = Cl (x) expL-Axt¬sin f- (rr+ý) cos cHJ (01< X<001 04 ý4 n' ). 
. 
(9) 

H2 (x, y) = C2 (x) exp(J1ry2) (0 x<oo , 2x <y< oo )' (10) 

where C1 (x) and C2 (x) aifunctions of x. 
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The boundary conditions (2) and (3) give 

21nx exp (-7 WTx2) = C1(x) exp (A1Tx2) 

and C1(x) exp (- 2 A7rx2) =C 2 (x) exp (-4? 1Tr x2) 

whence C1(x) = 271Trx exp (-211Tf x2) and C2 (x) = 27ºTrx. 

Substituting these values in equations (9) and (10) 

Hl (x4) = 27\Trx exp[_71x2 ¬2-n- + sin+ - (7T'+ 4) cos 4 fl (O .C X4" , 0q, n), (11) 

and H2(x, y) = 21tlT. x exp(71ii y2) (0 < x< oo , 2x < y <oo) . 
(12) 

Fran equation (4) 

co (pr4Y 
> 2X} = exp(--4? IT1'x2)dx 

= 1/4. 

The joint p. d. f. of X1 and I is thus from equation (11) 

'Z)H (x, ý) 
14=3 A2TT(T+O)x3 sin exp 

f 
_Ax2¬2v+ sin$-(lr+ý )cosy}) 

(O e x<oo ,o< 
ý<1r), (13) 

and the joint p. d. f. of X2 and Y2 is frm equation (12) 

_ 
-ý) H (x, y) 4 äy= 16 772xy exp (-? I Try2) (0 <x< ca , 2x <y< oo) . (14) 
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Putting Wl = 1/ 12Tr+ sin j- (1r'+l) cosT3 , it is easily 

seen that -wl 
2dwl 

= (i'+4) sin d4 , and thus from equation (13), 

the marginal p. d. f. of W1 is 

00 

3 ilk' 
f 

x3w 
2 

exp (-A Tx2/w) dx (41714 w 7rý*1) 
0 

which reduces to air. Hence if we define R1 = 3(1 -1W1), then Rl is 

distributed uniformly over [ 0,1] . 
2 Putting W2 = 4X22/Y2, the marginal p. d. f. of W2 is fron 

equation (14) 

00 
32112? xw2 exp(--4)Trx2/w2)dx (0-( w (- 1)p 

0 

which reduces to unity. Thus W2 is distributed uniformly over [ 0,1] . 

The argument of the exponential function in equation (13) 

indicates why W1 was so defined. Instead of dealing with the 

randan variables X1 and Yll or X1 and 1, which have carlicated 

distribution it is now possible to use Wl which has a simple 

distribution for the Poisson forest. Essentially W1 is a function of 

the ratio Y1/Xl and is thus independent of the density of the Poisson 

process. 

2,3 ' The trianqular, care and hexagonal'Iattices 

If points are packed sy netrically into a plane so that 

each point is a distance d fron n other points, then the only values n 

can take are 3,4 and 6. The patterns are shown in Fig. 2(4)' and 

are referred to as the regular triangular lattice for n=t, the 

regular square lattice for n=4, and the regular hexagonal lattice 

forn= 3. 
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Fig. 2(4) Three types of regular lattices 

It is easily seen that the densities of the three lattices 

are (2/, /S) d 2, d 2, 
and (4/3,3) d''2 respectively for the triangular,, 

square and hexagonal lattices. Thus the triangular lattice can 

be considered as the most regular pattern obtainable. 

For each lattice Y=d with probability one. The p. d. f. 

of X is given by 

7ix/(4d2) (0 f- x< 'd 

Xý1r - 6cos'"1(/d/x)1/ý, 4 
2) ((d <x< dJ j) , (151. 

2'Tx/d2 

x 127r 
- 8cos-1(, d/x)} /d2 

for the triangular lattice, 

(0 x4 /d) , 

(/d <. x (16) 

for the square lattice, 
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3/` 4 2ý 

x¬ 
31r 

- 2cos 1(/d/X) /(2) 

(0 .x: ½d), 

(/d <x, d) , (17) 

for the hexagonal lattice. 

The p. d. f. of X2 is thus 

4lrx 

jd2 
/= 

8x/d2 (0 Ct x C. /d) for the triangular lattice, 

2ä2 /4= 8x/d2 (0 xt /d) for the square lattice, 

87rX Tr /= 8x/d2 (0 Cx; /d) for the hexagonal lattice. 
3.6 34- 

Thus the p. d. f. of X2 is the same for all three lattices. 

Now W2 = 4X2/Y22, and hence it-follows that W2 is again distributed 

uniformly over [0,1] for all three of the lattices. 

For the distance ratios in set A, 

sin(k4) = /d/x, 

and thus 

d cos(h4 )/14sin2(/4) 

As Wl = 1/¬21r + sinj- (Tr+ý) cos fl, it is easily seen 

that 

d_ -£2W+ sin f_ (1(. +E) cosT j -2 (? T +1 ) sin , 
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or 

d4T 21r+ sind- (7T+ )cos J2 

1 

/I(1r+f )sind . 

Hence fron equation (15) the p. d. f. of Rl = 3(1 -TrW1) for 

the triangular lattice is 

4_ n'f1T -6 (hTr -/ 4) 2Tr+ sin¢ - (Tr + ý) cos 
2' 

cos (/4) (18) 
3[1 2sin(2 ) (1 -n'ß(24) )ä (w+ )sin 4sir 4(/4)l 

where 3[l -T/ ý 21r+ sin '- i'rr'+ý )cos +}] = r, 3 
rllii +3Ar: 1. 

177T + a,, f 
1 

(i. e. . 904 1- r 1). 

Expression (18) does not simplify much and is thus calculated 

by cxnputer program. Similar expressions can be obtained for the 

p. d. f. of Rl for the square and hexagonal lattices, viz. 

4[1_ 1T(2 il) F"2Tr'+ sin4 - (1r+4 )cos+32 (square lattice), 8(1- T) ('r+sin (ý) 

41v+ 1 11 
(i. e. . 758 (- r4 1),, and 

i2rr 
+ 1I 

41 'T( j2T1-+ sin4 - (n-+4 )cos4j2 
3C 8(1 -h -rr/ )44I (hexagonal 

(Tr + +) sin (/ f) lattice) 

4 (2 Tr + 3r-3 1ýr. 
1 1n+ 

3I 
) (i. e. . 505 4r 1) . 

Fig. 2(5) shows the p. d. f. of R1 for the three lattice 

patterns and also for the Poisson forest. 
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Fig. 2(5) The p. d. f. of R1 for the triangular, square and hexagonal 

lattices, and also for the Poisson forest. 
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2.4 An aggregation model 

Now consider an idealised extrene aggregation pattern. 

This occurs when the trees are in clumps of at least two individuals 

occupying the same point. In this case R1 is zero with probability 

one. One should note that the proposed sampling procedure cannot 

differentiate in this case between different distributions of clump 

sizes; for example R1 is zero for pairs of coincident trees situated 

at the vertices of a square lattice and also zero for 100 trees 

situated at each of the vertices of a square lattice. 
. 

However 

when the pattern is formed by dense clumps of small area, it is more 

natural to work in terms of the spatial pattern of the clump centres, 

together with the distribution of the number of trees within a clump. 

In the idealised extreme aggregation case the mass of the 

R-distribution is concentrated entirely at zero. The mass 

is uniformly spread between zero and one in the randan case, and 

concentrated more andiroretowards one for the cases of increasing 

regularity (hexagonal, square and triangular lattices). This suggests 

that aggregation patterns can be regarded as characterised by 

R1-distributions concentrated toward zero. 

Suppose "clump centres" form a Poisson forest in the plane 

with density X11, and suppose a proportion of these clumps are single 

trees while the reminder are shall local Poisson forests with 

local density., < , where ýc > >A, Fig. 2(6) shags a realisation 

of this process. 
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" 

0 40 0 

Fig. 2(6) A realisation of the clumped n-odel 

There are three situations arising in the sampling 

procedure: (i) if the random sampling origin, 0, falls within 

one of the local Poisson forest cltmps, then so do P and Q, where 

P is the nearest tree to 0 and Q is P's nearest neighbour. Thus 

in effect we are taking observations in a Poisson forest of density,,.., 

and the R1 value will belong to the uniform distribution on CO, 1] 

(ii) If 0 falls outside one of the clumps, and P is a single tree 

clump, we are in effect taking observations in a Poisson forest of 

density 7i1, and the Rl value will again belong to the uniform distri- 

bution on [0,11 
. (iii) If 0 falls. outside one of the clumps and P 

is a tree on the periphery of a multi-tree clump, then the same 

argument which led to the uniform distribution for R1 in section 2.2 

applies, except that the density for Y is,, instead of 11. Hence the 

randan variable 

cl-a'Ault 
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Z= 1/ ý (1 + -A1ýc 1)1T 
+ sin - (-rr+f) cosT 3 

is uniformly distributed overtherange(T+ 7\ ý(11TO J, 

noting that pr (Y 4 2X) =3 , z/ (3, +7 1), 
(which--> 1 as a/)1-: 7 oo , and 

when. /i11 = 1) . 

The distribution of W1 conditioned on case (iii) is therefore 

given by 

pr¬w1 <, w) = pri 21r+ sind - (Tr +; f ) cos; f 3 1/w 

= pr¬ 1/Z + (1 - il 
lla) Ti- > l/w } 

= pri z 1/[1/ß,, i - (1 - 111/. ß)R]) 
ft /w - (1 -4- )ßr]-1 -[ (3 +tr)n] -1 

(cy-7)-1 - [(3 +6-)7t]-1 

Where 111/ =0 

Again putting R1 =3 (1 -"ºTW1), the p. d. f. of R1 in case 

(iii) is 

f (r) - 
46( 

_ 

32 [3 
(1 -a-) 

+ rl -2 (0 .r< 1) . 

_ (1+k)(1+kr)2, 

where k=l (l -er)/o-. i. e. a censored Pareto distribution. 

It is assumed that case (i) or case (ii) happens with 

probability V, and that case (iii) happens with probability 1 -V; 

the unconditioned p. d. f. of R1 is then 

g (r; V, k) =v+ (1 - v) (1 + k) (1 + kr) -2 (0 (rc1, k> 0). (19) 
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t 

Parameters ,o and k can be considered as parameters of 

aggregation. Thus' indicates to what extent the population tends 

towards clumping, and k measures the actual clumping, increasing as 

clumping increases. Thus for slight clumping one expects ' to 

be near one with k large or small depending on whether the clumps are 

dense or not. For intense clumping P will be near zero and k will 

again be large or small depending on whether the clumps are dense or 

not. Fig. 2(7) shows the p. d. f. g(r; v , k) for various values of v 

and k. 

10 

8ý 

6 

2 

ZOO 
'=S 

IO 
-1 

Fig. 2 (7) The p. d. f. of Rl for the clumped model 
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Now consider the distribution of W2 in the three cases above. 

In case (i) W2 will be defined in a local Poisson forest and is thus 

distributed uniformly over [0,1]. In case (ii) W2 is defined in a 

Poisson forest of density 7\1 and is again distributed uniformly over 

CO, 13 . No values of W2 arise in case (iii), since the probability 

that Y> 2X may be assumed negligible. Overall therefore W2 is 

distributed uniformly in the aggregation model. 

2.5 Estimation of V and k. 

Given observations rl, ..., r in the aggregation case 

described above, rough estimates v and k of V and k can be obtained 

by equating the sample mean, r, and the proportion of r 's greater than 

', s, to the theoretical values thus: 

r= (1-v)¬(l+k)log (l+k) -k)%k 1 (20) 

and 's =v + (1 - v)/(2 + }: ) . (21) 

Substituting v=2[ (2 + k) s- 1] /1 frm equation (21) into 

equation (2C» k is the solution of the equation 

r-s (1 + k) (2 + k)1og(1 + k) 
- 2k I= K(k) (22) 

(1 - 2s) k3 
% 

(0<s< , Osrs1, k>0). 

Fig. 2(8) shcws the graph of K(k) plotted against k>0. 

Fran equations (20)'and (21) it is easily seen that r-s>, 0 and 

s<! for this clumped case. Thus in practice (F - s)/(1 - 2s) should 

be greater than zero, and hence this value determines k from Fig. 2(8). 
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Fig. 2 (8) The functic K (k) to estimate k 

1.0 

as 

0 of aZ o"3 oW os 

Fig. 2 (9) för -given r ands and k determined 

frcan K (k) . 
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After determining k, V is obtained fron equation (21) as 

=2¬(2+i -11/s-. 

Fig. 2(9) shows values of v for givens and k. 

The log likelihood L(V, k) of the observations rl, ..., n 

is given by 

L(v, k) _ log¬V + (1-V) (l+k) (1+kri)-21 , and hence the 
i=1 

maximum likelihood estimates v and 
k 

of V and k can be found by calculating 

values of L(v, k) over a grid of values for v and k surrounding the 

initial estimates v, k, and fitting a quadratic surface over the 

grid points in the neighbourhood of the observed maximum. The maximum 
A 

point of this fitted surface gives the values of v and k, and the 

coefficients of the second degree terms give the estimated terms of 

the information matrix, and hence by inversion the estimated variance- 

covariance matrix of v and 
k. 

Appendix A gives the details of the fitting of the quadratic 

surface described above. 

Re capitulating, the proposed method for analysing spatial 

pattern is to select N sampling origins, measure the distances 

(x1, yi), i=1, ..., N and then form a histogram of the values ri 

obtained from these distances. The histogram will then give insight 

into the type of pattern. 
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2.6 Testing hypotheses about the pattern 

First consider the two simple hypotheses, 

H0 : the ri's are fron a Poisson forest, i. e. Rl, -%. (, ß(0, l). 

Hl : the ri's are from a square lattice population. 

As a test of HO against Hl, H0 can be rejected if all 

the observed ri's are greater than the smallest possible value of R1 

under Hl i. e. if 

M= min¬rl, ..., rnj > 3(Tr+ 1)/(2" + 1) = 0.758. 

Under Ho, prtM >. 3 (n' + 1)/(21r'+ 1)3 = 
¬3 (2T- 1)/ (2ir+ 1)) n= (°. Z42 '. 

Under H1, pr¬M >, 3(, rr'+ 1)/(2zr+ 1)1 = 1.0. 

Thus the power of this test is unity and the Type 1 error 

is (0.242) n which converges to zero very fast as n increases, e. g. 

for n=8, its value is about 1(375. 

Similar considerations apply if the pattern under the 

alternative hypothesis is a triangular lattice or a hexagonal lattice, 

the critical values for M being 0.904 and 0.505 respectively. 

Consider now the prcblen of testing for the presence of 

aggregation, taking as null hypothesis, HO, that R1-ß- U(0,1), 

corresponding to the assumption of a Poisson forest, 'and as alternative, 

H1, that R1 has the P. M. g(r; v k) of equation (19), corresponding 

to the above described aggregation model with parameters ) and k. A 

conventional large sample test of v, k 
against their hypothetical 

values under H0, using their estimated variance-covariance matrix is 

not possible, since v =-1 and k=0 separately imply HO, and the 
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likelihood surface contains horizontal generators lying in the planes 

V=1 and k=0. However all that is required is to test the 

sample (rl, ... , rn) for uniformity over C 0,13 against an alternative 

implying concentration of the R1 distribution toward zero. A 

suitable procedure is a 1-tailed test of (/ - FLfii? as N(O, 1). 

(See Cox (1955)). If the test leads to the rejection of H0, the 

estimates 
v, k and their estimated variance-covariance matrix can 

be used for the estimation of V(yi 0) and k(ý 0), the log likelihood 

surface having the required paraboloidal form in the neighbourhood 

of the true parameter values. 

One should note that inference based on the observed values 

of R1 implies a loss of information inasmuch as only n out of the N 

observations of X and Y are used. However it has been shown that 

the expectation of n ranges from 0.093N for the triangular lattice, 

to 4N for the Poisson forest, and then increases to N as aggregation 

increases. In light of the fact that lattice patterns are self 

evident and the test of randatmess against the hypothesis of a lattice 

population is very powerful, the information loss is greatest where 

it can most be spared, and smallest where it is most needed. 

In section 2.7 data will be tested for randanness against 

an alternative of aggregation using Cox's test described above. The 

results will be compared to those obtained by testing for randcznness 

using Holgate's (1965) test statistic, T =Exi2 /vi2, where xi is the 

distance to the nearest tree from the sampling origin, and vi is the 

distance of the second nearest tree to the sampling origin. For a 

large sample, T is distributed as N(/, 1/(12N)) for the Poisson forest. 
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In practical terms both tests require the same amount of work in 

collecting data. 

2.7 Results 

The method of analysis was used on data of three types. 

The first type is in the form of the co-ordinates of trees planted on 

rectangular lattices with death of some of the individuals. This 

was kindly made available by Dr. E. D. Ford of the Institute of 

Terrestrial Ecology, Penicuik, and described in Ford (1975). The 

second type consists of the co-ordinates of the six species of trees 

in Lansing Woods, Michigan, U. S. A., kindly supplied by 

Professor D. J. Gerrard. Data of the third type were simulated by 

a modified Thomas process (M. T. P. ) as described in Diggle, Besag 

and Gleaves (1975), where clump centres, considered as trees, are 

distributed randanly, and a Poisson nunber of "offspring", with mean A4-, 

are allocated to the clumps. The offspring are placed at distances 

distributed radially normally, with radial dispersion Cr, from the 

clump centre, i. e. the joint p. d. f. of the radial co-ordinates of an 

offspring from the clump centre is 

f (r, 6) =r exp(-, r2/a )/(27ra) (r ;>0,0 40f, 2i . 

Fig. 2(10) shows sections of data from the rectangular 

lattices with death, and fran'the simulated data. Figures showing 

the data fron Lansing Woods can be found in Chapter 4 on pages 91-10 7. 
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(ii) M. T. P. (^ = 5.0,4'" = 0.2) 

Fig. 2(10) Examples of the data 
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For each set of data, 100 sample origins were selected 

at randan, giving 100 pairs (X, Y) for analysis. Fig. 2(11) shows 

histograms of the ri's. Tables 1 and 2 summarise the results 

obtained. I 

The values of Cox's statistic for testing the ri's in each 

data set for unifonnity (and hence the spatial pattern for randcaness) 

are shown in Table 1, together with the results of Holgate's 

randanness test for canparison. Table 1 also gives the results of 

a Kolmogorov-Smlrnov test applied to each data set to test the 

hypothesis that the W2j 's are from a uniform distribution. 

Table 2 shows the estimated values, p, k and their 

variance-covariance matrix for the sets of data for which Cox's test 

rejected randoirmess in favour of clumping. Also given in Table 2 

are the results of a 'X %. test, to test the fit of the aggregation 

model. This is done by finding the expected nuTber of the N points 

to be found in each of 20 disjoint intervals covering 00,11 frcm 

the p. d. f. g(r; v,, k). V and k having been estimated by v and k. 

The ? ý1value is then found in the usual manner. 
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Fig. 2(11) Sample ri's for the data sets. 
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Fig 2 (11) Continued 
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Table 1. Cox's test and Holgate's test for rard anness, together 

with a Kolmogorov-Smirnov test for uniformity of the 1"2j IS. 

Type of forest n 
K-S test 

Cox's Test Holgate's Test for W2j is 

Rect. lattice No. 1 with 52 death 

Rect. lattice No. 2 with 
death 59 

Rect. lattice No. 3 with 55 death 

M. T. P. (,, o-= 5.0, cr = 0.2) 98 

M. T. P. Sµ= 2.0, a-= 0.2) 89 

M. T. P. = 5.0, c= 1.0) 71 

Hickories in Lansing Woods 74 

White oaks in Lansing Woods 81 

Red oaks in. Iansing Woods 79 

Black oaks in Lansing Woods 77 

Maples in Lansing Woods 78 

Miscellaneous in Lansing 
Woods 93 

--O. 10 

0.07 

0.18 

10.14** 0.71** 0.40 

9.26** 0.64** 0.10 

0.57 0.47 0.11 

0.06 0.45 0.11 

0.22 0.51 0.19 

3.52** 0.89** 0.23 

4.82 ** 0.57* 0.12 

2.42** 0.56* 0.21 

8.00** 0.69** 0.19 

* significant at 5%, ** significant at 1% 
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Table 2: The values of V, k and their estimated var-cov matrix, 

together with a) test for the fit of the aggregation model. 

Type of forest v k var-cov matrix x2 
7 

M. T. P. S/i = 5.0, r=0.2) 0.17 12.58 (0.02 0.21 2.98 

0.21 5.13 

M. T. P. ý= 2.0,6'= 0.2) 0.16 10.15 0.001 0.26 4.63 

0.26 29.92 

Red oaks 0.92 16490 2.0 x 10 3 62.6 10.88 ( 

62.6 64 x 107 

Black oaks 0.51 6.36 3.0 x 10 3 0.93 3.00 

0.93 428 

Maples 0.92 9706 1.0 x 10 3 28.2 4.69 ( 

28.2 4.0 x 107 

Miscellaneous trees 0.34 14.31 0.04 0.32 7.21 

0.32 6.25 
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Inspection of the histograms of the ri's for the rectangular 

lattices with death indicates that the patterns are obviously far fran 

random. The effect of the missing individuals is shown up by values 

of the ri's near to zero. 

In the case of the simulated data, when the radial dispersion 

of the modified Thomas process becomes relatively large, the pattern 

becanes effectively indistinguishable from a Poisson forest. This 

is illustrated by the sample with ^= 5.0 and 6-= 1.0, (the density 

of the clump centres being 0.44). The other two modified Thomas 

processes both fitted well to the aggregation model, as indeed they 

should do, the single trees occurring when there are no offspring in 

a clunp, and the local Poisson forests occurring otherwise. 

The data from Lansing Woods proves to be the most interesting. 

It appears that the Hickories and White oaks each form a Poisson 

forest, while the Red oaks, Black oaks, Maples and Miscellaneous trees 

tend towards clumping. In each case v measures the tendency towards 

n 
clumping and k is a measure of the density of the clumps. Note that 

the Red oaks and Maples tend only to very slight clumping (i. e. 0 near 1), 

but with clumps which are very dense (i. e. k large). The Black oaks 

and Miscellaneous trees tend very much tcwards clumping. 

It is pleasing to note that the test of randcgnness based on 

the ri's has given the same results as Holgate's test of randanness. 

However when aggregation does occur, the new method may well give 

Hore insight into the pattern through v 
and 

k. 

In each of the twelve sets of data, which ranged fran 

regular, to randan, to aggregation, the Kolmcogorov-Smirnov test gave 
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no evidence for rejecting the hypothesis that the W2j 's were from a 

uniform distribution. It would be interesting to know what is the 

class of stationary spatial point processes, where multiple events 

do not dominate,, for which W2 is not distributed uniformly on [ or 11 

This class would seem to be quite restricted. 
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Appendix A 

A regression equation is fitted to the log likelihood, 

Lid (v , k) as described in Chapter 2. Thus let 

+byk3 .+ ck +dpi+ekj +f +Eij, (1) Lij (v, k) = ayi 
ý 

where a, b, c, d, e, f are constants, and Eid ^«N (0, r2) . Lid is the 

value of the log likelihood over a grid of points pi, k3 which 

contains max (L). The constants are found in the usual gray using 

least squares which is carried out by use of a statistical package, 

GLIM, developed by the Working Party on Statistical Computing of the 

Royal Statistical Society. 

Fishers information matrix is given by E[Rxax 
. iý III 

(see e. g. Silvey (1970)), i. e. 

E 
(L(vk) 

ýy2 

E( L(vkl 
aväk 

E 
ý'`L(vkl 

E(ý2L(vk) 5 kz 

From equation (1), Fishers information matrix is thus 

2a b 

b 2c . 

Hence by inversion, the variance-covariance matrix of -) and k 

is 

1 2c -b 

(4ac-b2) -b 2a 
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CHAPTER 3 

THE ROBUST ESTLMATION OF DENSITY 

3.1 Introduction 

In chapter 2a method for analysing spatial patterns was 

proposed which does not depend on the density of the spatial process. 

In fact only pairs of distances need to be measured each based cn N 

sampling origins placed at randcm within the population. 

As the density of the process may be of interest especially 

to the forester, two new robust density estimators are proposed which 

use the sane distance measurements as for the method of analysing the 

spatial pattern, viz (Xi, Yi) i=1, ..., N, where Xi is the distance 

from the ith randomly placed sampling origin to the nearest tree (say), 

and Yi is the distance fron this tree to its nearest neighbour. 

As in chapter 2, the N pairs of measurements (X1, Y1) ..., 

(XN, YN) are split into two sets A and B, where 

A= ¬(Xi, Yi) : Yi : 2Xi (i = 1, ..., n) I, 

B= (X. �Y. ) ): Y. > 2X (7 = 1, ..., m)} º (m +n= N). 

For convenience we relabel the menbers of A and B as 

(Xli'Yli) and (X2j, Y2j ) respectively. 

Define the randan variables, 

2112 = X1i2 j 2Tr + sin f 
ii (TT + 41 11) cos (T li 

l IiT 

(i = 1, ..., n) , 

where sin(/ Ali) = /Y1iX1iI 
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The aim is to find estimators of the density, 7l trees 

per unit area, or equivalently the mean area per tree or inverse 

density, 0 =7l 
1, based on the randan variables just defined. 

3.2 The Poisson forest 

The joint p. d. f. of X1 and ý1 is 

T(T'+ f )6 -2 x3 sin 4 exp [- x29-1¬Z1r + sin4 - (Tr+ ý)cos4 ] (1) 
. 

(0 ýX< oo ,0l, ý 
e4 Tr ) 

(see Chapter 2 equation (13)). 

The joint p. d. f. of X2 and Y2 is 

16-rr 28 2xyep(-611Ty2) (O 4x<oo , 2x< y<oo)(2) 

(see Chapter 2 equation (14)). 

The likelihood of the observations ¬(x 
ii' Yii)l' 

1(x2j' y2j) 

is 

L (G) = 
() n 3Tt(TT+ +li) e -2 x3,. Sin (cli) e: ý0. [- x21 B-' j 2-Tr' 

i-1 

+ sin (4 li) - (lr+ fli) cos (ý li)) 
I 

m 
X i1 161120-2 x2jy2jexp (-Tr y2j 6 

i=1 

Hence 

n 

" 

a1ogL (a) 
= -2 (n+m) 6 -1 +j [Xil B -22. rr + sin (fli) - («, r+ eli) cos (i )) 1 

i=1 

m 
+ ý1ry2, B 2j=1 
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Thus the maximum likelihood estimator of 0 is 

B=/ (E Z I, li +C y2j ) /N" 
i=1 j=1 

Because 
a- 18 

= 2N (0L -(9)/0 
2, 

L 
is unbiased, fully efficient, 

with variance /0 IN. 2 

" an equation (1), the joint p. d. f. of X1 and Z1 is 

36IT2 e -2 zlX1 exp (- fT 91z2) (x1 < z1 et 2x1,0 4( Xl < c)O ). 

Hence the marginal p. d. f. of Z1 is 

Z1 
36 -2 e-2 zlxl exp lr e lzi) 

clxl (0 4 Zl < Co ) 
z1/2 

which integrates to 

21r2 9-2zi exp (-irr 6 lz2) (0 4 zl < co )" 

Similarly the marginal p. d. f. of Y2 is 

2/2 

O 

i6iT 2B -2 x2y2exp (-'Tr B 
1y2) dx2 (0 < y2 ao ). 

which is 

21120-2 y2 eV (- W1 y2) (0 4 y2 c 00 ). (3) 

Thus Z2 and Y2 are identically distributed with mean 20/Tr 

and variance 2s 2/ T"2 . 

Now eL has of course been derived specifically for the Poisson 

forest. We now modify it so that it is approximately unbiased for a 
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wide range of spatial patterns. 

A 3.3 The Estimator 0 

If 9 fran the previous section were used for patterns other 

than the Poisson forest, it would generally be biased. In order to 

overcome this we vary the coefficient of the estimator according to 

sane quantitative feature of the spatial pattern, whose value varies 

with the type of pattern. The feature chosen is p, the probability 

that Y> 2X, which varies fran 0.91 for trees at the vertices of a 

triangular lattice, through 0.25 for a Poisson forest, to zero for the 

case of extreme aggregation, in which the trees form clumps of 

coincident points. In the sample situation, p can be estimated fran 

the N pairs of measurements (X, Y) by m/11, the relative frequency of the 

event Y> 2X. Accordingly, consider the estimator 

T= (a + kan/N) 9 

_ 1r'(a +b N) (E Zli +E Y2j )4'Tý 
i=1 j=1 

where a and b are constants chosen to make T effectively unbiased for 

a wide range of spatial patterns. 

The expectation of T, conditional on m, is 

Tr(a+km/1`T)ihýuZ+mJA ) 

where =E (Z1) ,y=E (Y2) , and hence 

E(T) _ -rº't (a+bF) (q 
Z+P y). 

+bpq 
y- kz)/NI, 

where q= 1-p. 
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Thus T is asymptotically uroitsed for any particular 

spatial pattern if 

a. + bp =2&/ ¬1T (q 
z+P juy) (= V, say) 

for that spatial pattern. 

V is a parameter with a value for each spatial pattern. 

In particular, for a Poisson forest V=1 and E (T) =0 exactly if 

a+ 4b= 1. 

(4) 

For a forest formed by the vertices of a triangular lattice 

of side d, the p. d. f. of x is 

4 rx/(. �3d2) (0 4xC /d) 

4x Pr - 6cos 1(/d/x) 1 /( ßd2) ('d 4x< d/ý73-), 

(see Chapter 2, equation (15)). 

Obviously pr (Y = d) = 1,0 =/, d2, and 

pr (Y > 2X) =p= 
0kd 

41r x/ ( ßd2) dx 

= /1'//'3-. 

Hence E (Y2) =2 0/ and var (Y2) = 0. The expressions for 

the mean and variance of Z2 are rather catlicated and are best 

calculated by means of a ca uter program. Similar results can be 

obtained for square and hexagonal lattices. The values of p, V, and 

the means and variances of Zi and Y2 are given in Table 3 for the 

triangular lattice, the square lattice, the hexagonal lattice, and' also 

for the Poisson forest. 
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For an aggregation pattern, a Thomas process, Thomas (1949), 

is used. Here clump centres, considered as trees occur as a Poisson 

forest and each clump has a Poisson number, with mean ac., of 

"offspring" trees which are coincident with the clump centre. This 

model is not completely realistic, ' but it does provide a good aggregation 

model when the pattern is almost a Poisson forest, i. e. when is 

small. For the Thomas process p= 34exp(- 0L) and 

E (T) = ¬a + 4b exp (-oc) 3 (1 +cc) 0. The means and variances of 

Zi and Y2 for the Thomas process for various values of cc are shown in 

Table 3. 

Table 3. The values of p, Z, (-Z, ýky, (ry2 , and V for various patterns 

where,, "z =E (Zi) , o-Z = var (Zi) , jy =E (Y2) ,y= var (Y2) and 

V=26/¬Tr(q", x +ply 

Pattern p 4Z/0 
Z/ 

&2 

Triangular lattice 0.91 1.16 8.0 x 1(D5 

Square lattice 0.79 1.03 1.1 x 10 3 

Hexagonal lattice 0.60 0.88 9.7 x 10 3 

Poisson forest 0.25 0.64 0.20 

Thanas Process (c. = 0.1) 0.23 0.70 0.25 

" (c = 0.5) 0.15 0.95 0.46 

of (cC= 1.0) 0.09 1.27 0.81 

to " (oC= 2.0) 0.03 1.91 1.82 

of (cc= 3.0) 0.01 2.55 3.24 

11 (4 = 5.0) 0.002 3.82 7.30 

V 

1.15 0 0.55 

1.00 0 0.63 

0.77 0 0.78 

0.64 0.20 1.00 

0.70 0.25 0.91 

0.95 0.46 0.67 

1.27 0.81 0.50 

1.91 1.82 0.33 

2.55 3.24 0.25 

3.82 7.30 0.17 
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Fig. 3(1) Values of V plotted against p for various spatial patterns 
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Fig. 3(1) shows values of V plotted against the values of p 

for the various spatial patterns. It will be seen that the points 

happen to fall effectively on two straight lines, and thus the 

constants a and b fran equation (4) can be calculated for each of 

these lines. -The constant 'b' is given the value of the estimated 

slope of the line in each case, and the constant 'a' is given the value 

which makes the line pass through (ä, 1) in each case. Hence 

consider the following two estimators based on T, 

61 = /1T(1.17 - 0.6&n/N)( E z1 + Iý 
2") IN, 

i=1 j=1 

m A 
and e2 = /7r (0.20 + 3.20m/N) (c zli + y. 2 

) ý' 
i=1 j=1 

The appropriate estimator B1 or ß2 is approximately 

unbiased for any spatial pattern whose value of V lies on or near one 

of the two straight lines in Fig. 3(1). This is because V happens to 

be equal to the appropriate (a + bp). 

The variance of Bi (i = 1,2) is after much algebra 

'2[ (at + biP) (P6 y222 Iq a)+pq¬ (ai+b j-2biq) j- (ai+2b. p) fey II IN 

+ 0(1/N2) (i = 1,2, ), 

where al = 1.17, bl = -0.68, a2 = 0.20 and b2 = 3.20. 

If we knew beforehand whether the spatial pattern underlying 

the data was on the regular or aggregated side of a randan process, 

we would know which of Bl or 92 to use as an estimator of (9. In 

practice this decision can be based on the value of m/N, and the 

folla'ing estimator B is accordingly proposed, 
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n n B= /x'(1.17 - 0.68m/N) ( 2z2 +y ý/N (m 3 äN) 
i=1 11 j=1 27 

1r(0.20 - 3.20m/N) 
i=1zli 

+ y2j IN (m )" 
j=1 

The expectation and variance of 6 are not the same as 

those for Bl2 because of the risk of misclassification when 

p>ä and m/N < and vice versa. After much algebra 

E (B) = /'T f[1.17-0.68p) 
-0.97 (1-4p) (L) -3.88 (zpq/-rr)eL2/Nk I¬q, 

cý., y 

+ pq (Ju`y 
z) 

¬ -0.68 + 3.88 ý (L) J ii I 

where L=N (ä-p) / (Npq) 
/, 

and (") is the standard normal distribution 

function (see Appendix B for details). 

As N -« oo ,E (e) (1.17-0.68p) (qouz+P, ly) (P > ä) 

1r (0.75, +0.25)) (P = o) 

? FF (0.20+3.2p) (q'AZ+Pp 
y) 

(P < a) . 

Thus for patterns for which 2 6/ ¬Tr (q, 
Z 

+pj. &y) lies 

on or near one of the straight lines in Fig. 3(1), 0 is approximately 

unbiased, except when p is near ä and for small N. However Table 4 

shows that for the Poisson forest with N= 500, the bias is only 0.03 49 . 

The variance of 0 is extranely long and awkward. Details 

can be found in Appendix B. After much tedious algebra 

var(6) =42[¬ (1.17-0.68p)2(1- §)+(0.20+3.2p)2 I[q 
z(7y 

2 
+ 0.9409 N (1- ý) (qikz+Pjy) 2+pq Vzdz+2yzdz) 

"+ 
O(/"zgz+/u`yJkzgyz+%ay gyl 

- 7.5272 (1-4p) ý (q Vkz4p y) 
2-15.0544 C2 (q A Z+py) 

2/N] 
º (5) 
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_ý where _ (L)': (L =N (ä-PY(NPj. ) )C=2 
Tr e_ýL2 

dz = (3.4225-5.0320p+1.8496p2)+(4.0255-56.6480p+63.9424p2)1 

- 7.5272(1-p)(1-4p) ý 2, 

d= (-2.1645+4.1072p-1.8496p2)+(3.5405+24.6768p-63.9424p2 

+ 3.7636(1-2p)(1-4p) 
2, 

d= (1.3689-3.1824p+1.8496p2)+(-1.3289+7.2944g+63.9424p2 

+ 7.5272p(1-4p)ý 2, 

gz = 3.7636 - 33.2128p + 14.3172p2 - 15.0544p3 

gy= (28.7896p+1.4.744p2+30.1088p3) , 

- 
gY = -(10.6312p+15.7916p2+15.0544p3). 

Table + shows var(6) evaluated for the patterns considered 

in Table 3., for carparison with var (ä 
i) , for the appropriate i. Also 

given in Table 44 are E (6 ) and E (6i) for the appropriate i. N is 

chosen as 50 and 500. 

It can be shown fron equation 5 that var (ä) _'1.055 02IN for 

the Poisson forest, and so ä is 47% efficient compared to 6L 
which is 

fully efficient. This is approximately midway between the efficiencies 

of A1 
and 62 which are 85% and 21%. However if it is ]cncwm that the 

spatial pattern is a Poisson forest, ÖL 
should of course be used as 

an estimator of G. Fran Table 4 it can be seen that var ((9) = var ((9 i) 
for p not near / and . for large N. Thus for this case var ((9) can be 

" estimated using an estimate of var(Ö i) based on equation (4), viz. 

7r (ai+b p) 2 (I a-Y 4q ö 
z) 4J (ai+bi 2blq) 

z 

- (ai+2blp 
y1 

2J, NI (6) 



-55- 

wvz <m §§§ 88888888 `GJ 

OOOÖÖÖÖÖÖÖÖ 

O rl M dr to 

11 
m88888888888 

... . OoOO. O. O..... O v u: ooOo 
z 

- 
e1 8o r- 

m r- 
'8 bn (n 

CA 
rn %D N 

ri .1 cp w .ýOOo . -i OOO r4 

r-I O S. - Ö 
CA 

C14 rn <0 OOON 
O rl rl 

HOOO 
.H 

ýNM 
'Rr Lf1 

N --ý 888äö000000 
öööööööööö 

.H M ýi' ßf1 <e, Npp SO800000000 

OOOOOOOOOOO 

8 r-I N . -1 r-I lD N Q0080 01 Cl 1ý 
ON 

N 
l C1 L.. C. 1 

" 
01 0 ON 

ý0 11 w ri r-i O C; OO i-I OOÖH 
-O 

z 
((ý 

8O 
CA OO00 rn rn 

N 

r4 r4 O r-I r-t rl ÖÖ 
r4 

a+ 'ý 
< 

r"1 r"I r-1 r-I NNNNNNN 
m 

W v-I rn 2 U) U) M to (n m ,ý 
Np 

4 C) N-NNNHOOO8 

OOOOO. OOOOOO 

m 
(D 

W 41 W 'w 4.3 4J (a to In En HNN U) N 
NU NU N 

(a 
. -I 

W 
4Oi r: ý; OOoOO8 OO 

2ro 040 0.. 4 aN K'; 
Na a) 00nNun En nu ýý n 

HxasH HHHH 



-56- 

where p=l-q=m/IýI, z=n1L zii, m1Ly. 
2j 

, 

QZ=n1ý, z4 
2 

-/`A. and Or =m1ý4- may. 
z 

n 
In section 2.5 the estimator 6, together with another to 

be described next, will be used on the same data as in Chapter 2. 

Estimated standard errors will also be given, based on equation (5), and 

found in a similar manner to (6). 

3.4 The second estimator 

An approximately unbiased estimator, il 
, of A=B -1, 

the density of the trees is now described. It is defined by 

7l =4 (1T N)-1 " )+2, 
j=1 

where Y. 2j = Y2j , given that Y2j is greater than score small fixed value E. 

For the Poisson forest, 

00 
pr ý Y2ý >EJ 2112 7' 2y2 

exp (-. rr-& y2) dy2, 

_ (1 + ; N. Tr ý 2) 
exp (_ 71T. E2). 

Thus freu equation (3), the p. d. f. of Y2ý is 

2IT27\2y3eXp(-AT y2)/ (1+ A7l'E-2)exP(_ -A TrL 2), 

and hence 

ES (Y2, ) -2 + A-rr-ý2 ) 

var ¬ (y2/i)-21 = 7127T'2j(1 + 7l7r2) Ei ( -ÄTr i 2) 
-1j/ (1 + 71TTi2)2 

ý 

where Ei(. ) is the exponential-integral. 
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Now N(m/N) is no longer 4N for thePoisson forest, but is 

reduced by the factor, pr (Y2 Hence for the Poisson forest 

E(71) _ %lexp(- %TI'F. 2), 

=A+O(E ). 

ti Thus 7ý is unbiased for the Poisson forest as F--"' 0. The 

reason for using Y2 instead of Y2 is to prevent very small values of 

Y2 fran inflating the estimate. Note that the variance of (Y2)-2 

is infinite, while although that of (Y1 )-2 is not infinite, it is very 

large for small 5-- . 

Another criticism of this estimator is that m will be small 

for aggregated patterns, and thus much of the available information 

is lost. It is a high price to pay, but the estimator will be shown 

to be approximately unbiased. for a wide range of spatial patterns. 

For the triangular, square and hexagonal lattices, noting that 

Y2 is always greater than f- , we have the following 

E (MIN) = /7r /13, Ej (Y2) -2 3_/.. 3 il (triangular lattice) 

E (m/N) = ; Tt" If E¬ (Y2) -2j _ (square lattice) 

E (m/N) = 3Tº"/ý. E (Y2)-2} = 4,43 
l (hexagonal lattice). 

Hence E (A) _7. for all three lattices and the variance is 

obviously zero for each. Now consider the following aggregation model. 

Suppose the trees are aggregated in very small areas of 

average size S-, the areas being distributed with density ö. The 

sampling origin, 0, will fall outside a clump with probability 1- Yö 

and Y will almost certainly be much less than 2X. With probability Y, 
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X and Y will both be measured within a clump, and then 7\ will estimate 

the density, ý say, of the trees within a clamp. Hence overall, 

E(%) _ ?l äý 
. However, in a large area K, there are K clumps 

on average, and hence X KS trees, and so the overall density, 7l 
, 

equals öS. Thus E 
ti 

It has been shown that % is unbiased for models from extrane 

regularity to extreme aggregation. Hence it may reasonably be conjectured 

that 71 is unbiased for a wide range of spatial patterns. 

The variance of 7l is easily seen to be 

16(`12N)-1 p[ var ý (Y2)-2j +q rE ý (Y2)-221 
2]It 

and can be estimated by 

16 (Tr2N)-1 PC 2+ 02 1" 

where p=1-q= m/N, 'ü = 
mý (y2j) -2. 

and 0.2= m, '(y2j)-4 -J2. 

3.5 Results 

The sane data were used as for the analysis of spatial pattern 

in Chapter 2. Table 5 summarizes the results obtained for T and 
6 

with N= 100, .=0.01. Estimated standard errors are also given. 

In spite of the large loss of information when using 

this estimator seans to work remarkably well for patterns of a more 

regular type. The estimator 0 did reasonably well although there 

were a few poor estimates, the worst being for the Black oaks and the 

last of the modified Thcmas processes. Better results may be obtainable 
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Table 5. True values of 0 and their estima 
-` 

tes 
n 

for 

various sets of data, with sample size N= 100. 

Type of forest m N 
"., 
7L 

s. e. 

of j1 (9 
A 
(9 

s. e. 

of ö 

lattice 1 25 1.54 1.08 0.21 0.65 0.58 0.05 

Lattice 2 61 1.34 0.99 0.09 0.75 1.02 0.06 

Lattice 3 50 1.34 1.35 0.14 0.75 0.70 0.04 

Red oaks 27 1.61 1.81 0.47 0.62 0.75 0.06 

Black oaks 24 0.60 0.47 0.12 1.65 2.98 0.40 

White oaks 26 2.04 2.53 1.13 0.49 0.51 0.05 

Hickories 21 3.18 2.66 1.15 0.31 0.46 0.07 

Maples 
, 
20 2.36 3.61 1.19 0.42 0.56 0.08 

Miscellaneous 11 0.48 0.45 0.22 2.10 3.00 0.53 

M. T. P. (p. = 5.0,6 = 1.0) 23 2.20 1.68 0.50 0.46 0.51 0.06 

M. T. P. (µ = 2.0,9-= 1.0) 16 1.18 0.65 0.20 0.85 0.63 0.11 

M. T. P. (p. = 2.0,01= 0.2) 7 1.25 0.44 0.24 0.80 0.42 0.10 

for a larger sample size, although one must bear in mind the 

practical aspects of collecting actual data. I^ "`'ýý' Dý 
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Appendix B 

A 
To find the expectation and variance of &. 

0 

m 
6=k -W (1.17-0.68m/N) zli + L-; y2j 

1 IN (m äN) 
i=1 j=1 

22 IN (m 4N) /-rr (0.20 +3.20m/N) z11 + y2j 
i=1 j=1 

Now m -,. Binmial (N, p) and can $ius be approximated by a 

Normal (Np, Npq) variate. 

Let L=N (ä-p) /, C= exp (-/L2) , and 
; f(-) be 

the standard normal distribution function. 

Iota 1 äN 

Let Ir = (21r Npq) - mr exp ¬ 
-/ (m-Np) 2/Npq ý dm (r >/ 2) ý 

1 1,00 

2 
_ (2ºr') (mau + Np)r e 

ýu du, 

L 
2 

(Npq)ý (27r)_ß (u+ Np)r-1 ue u+ NP Ir-1, 

_eo 

_ -(4N)r-1C + NpIýl + Npq(r-1)Ir-2. 
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Then 

ID =ý (L) , 

Il= -C+Np 4)(L), 

12= -C(1-4N + Np) + (N2p2 + NM) (T (L) , 

I3 = -C( + '14-N2p + N2p2 + 2Npq) + (N3p3 + 3N2p? q) (L), 
16 

I= -C( 
N3 

+- 
Nap 

+ 4N3p2 + N3p3 + 5N2p2q + ; N2pq) + 4 64 16 

4 

+(N 404 + 6N3p3q + 3N2p2q 
2) 4 (L). 

The expression for or Il follow by elenentary integrationf 

and those for I21 I311 4 follow from the recurrence relation. 

Lemma 2 

Let it = (2 r Npq) m exp ¬^i( N) 2/NPq 
, 

4N 

Then similarly to I IIna 1f 

Ho=1- 4(L)ß 

H1 =C +Np(1 - 
ý(L))r 

H2 =C (3-N + Np) + (N2p2 + Npq) (1 (L)) , 

H3 =C (16 2+ 4N2p + N2p2 + 2Npq) + (N3p3 +. N2p2q) (1 (L)) F 

H4 =C (6 "3+ -f1-6N3p + ; N3p2 + N3p3 + 5N2p2q + 4N2pq) 4+ 

(N4p4+6N3p3q + 6N3p3q + 3N2p2c) (1 (L)) . 

A Ii, Hi (i = 0,, ...: , 4) are now used to find E (9) , var (0) . 

Now E (Blm) _ n' (1.17 0.68nJ J) ¬ NZZ + m*x r%tkZ) 
} JN (M r äN) 

71' (0.20 + 3.20n/N) N, uZ +m (fly ý z) 
IN (M c 4N) . 
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Hence 00 

E() = ¬1.17N 
HO + 1.1 ) H1 - 0.68 

y^ Jttz) H2 

y) 
1l+3.20 JLy ^ýz) I2 +" 0.2ONj&L I0 + (3. O/iz + 0.20 

_g{¬ (l. 17 0.68p) -" 0.97 (1-4p) ý (L) i 
q%j`Z + PJiy 

+T rl1 ay ^p) (-0.68 + 3.88 (L)) 3.88CN 1¬ 
q 

after some tedious algebra. 

Finding the variance of 
8 

proves to be very complicated. 

Firstly, 

var(6) = Ei E(&21m) [EE(m)]2. 

Now 

E(tý21 m) _ 
lr2 (1.17 - 0.68m/N)2¬(N-m)a-Z + may + (N-m), Z 

4N 

+2 (N - M) M/,, y+ m2kL 
2 (m3 ; N), 

z 4N2 
(0.20 + 3.20M/N) 2¬ (N-m) 0' 

Z+my+ 
(N-n) 222 

+2 (N m)mv y jz + m2/t Y2 (m < ; N) . 

Thus 

=Z + 1.3689c. 
y 

[1.3689NcC1H0+_2.96O1c( 
E( 2) 2 

4N2 
-1.3689N y Jut) 21 Hl 

+ 2.0536 aZ N1-1.5912 ccy d -l + 2.9601 
y-)2ý 

H2 

.+¬-. 
4624 Z 14-2 +. 4624 ccy N2-2.0536 N 1(l, 

ky -'ea Z) 
21 H3 

+¬ . 4624W-2 -Z) 
2I H4 

+ similar expression involving Ii (i = 0, ..., 4)J , 
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whereaZ=0-Z+Njt, cagy = 3- + N)4. 

On expanding this expression and subtracting [E( 9)] 2,1 

after much algebra one obtains the approximation to var(e) given in 

section 3.3. 
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CHAPTER 4 

THE IOCATICt OF CLUMPED AND SPARSE AREAS 

WITHIN A SPATIAL PATZERN 

4.1 Introduction 

In this chapter a method is introduced which uses the idea 

of potential for the determination of cluq: )ed and sparse areas within 

a spatial pattern formed by point events in the plane. Once again 

the points will be referred to as trees as probably the most useful 

application is in the area of forestry. 

Intuitively a particular small region within a spatial 

pattern contains a clump of trees or is within a clump of trees if the 

local density of trees there is somewhat grater than the overall density. 

Similarly, in vague ternis, a sparse area occurs in a region where 

the local density is sanewhat less than the overall density. Apart from 

these basic intuitive requirements of a definition for clumped and 

sparse areas within a spatial pattern, the definition is more or less 

arbitrary. For example one may define the most dense clump within a 

spatial pattern as those trees, say k (> 2) in number, which are 

contained in a circle D such that 

k2 Ina k 

rD rc 7frrD 2 

where the maximum is taken over all circles C; rc is the radius of 

circle C, i is the number of tress contained in circle C, and %o is 

a constant greater than the overall density A. 
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The same procedure is then carried out for finding the 

second most dense clump with the first clump removed fran the measure- 

ments. Then the third, fourth, etc. clumps are found until no more 

circles can be found such that i/ (ir rc2) > %. 

This definition of the clumped areas is awkward to use in 

practice, but is one of many definitions that could be used for 

practical purposes, the value of adding to the subjective definition 

of a clmip. Another method for defining clumps and sparse areas is 

now described, and is one which is easily implemented. 

Consider a point P within the spatial pattern. Let 

rl, ..., rn be the distances fran P to the nearest tree, second nearest 

tree, etc., up to the nth nearest tree respectively. Define P as being 

within a clump of n trees, or within a sparse area of size n, 

according to whether 

n 
Tn =¬ b1(n) a (j) GATT' rý) + b2 (n)) <n or > Sn 

j=1 

respectively, (n = 2,3, .... ). 

where bl(n), b2(n), Cl, Sn are constants dependent on n, the a(j)'s 

are weights given to each distance rj, and (k is the overall density 

of the spatial pattern. If C1 6. T, 
1 

< Sn, then P is not within a 

clump of n trees, nor within a sparse area of size n. 

The choice of the a (j) 's, b1(n) , b2 (n), C1 and Sn reflects 

one's ideas or-needs of what constitutes a clump or a sparse area. 

For example, if a(j) is monotone decreasing with j, then the closer a 

tree is to the point P, the more the tree determines the state of P. 
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It should be noted that the point P could be within 

clumps of sizes nc, n2, ... uni and at the same time within sparse areas 

of sizes nl, n2, ..., ný frcm this definition. This is not a drawback 

but rather an advantage. For example Fig. 4(1) shows a point P 

which by a certain defined Tn, may be within a clump of size 2, within 

a sparse area of size 3, within clumps, of sizes 7 and 8, but not 

within clumped or sparse areas of sizes 4,5 and 6. 

As we shall see, the density, ?, is included in Tn in 

such a way as to make the definition independent of the density. Thus 

the results obtained for a particular pattern will be the same as 

those for the pattern scaled by score factor. 

0 

0 

" 
Xp " 

0 

0 

Fig. 4(1) The point P within various' clipped and sparse areas. 
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One method for choosing Cn and Sn is given, and then the case 

a(j) =1 (j = 1, ..., n) is considered in detail with b1(n) and 

b2(n) suitably chosen. The method is then used on various sets of 

data including that from Lansing woods. 

Suppose the point P was a randcsnly placed point within 

a Poisson forest. Then define P as being with a clump of size n if 

T1 < Cn(ct), where Qc = PrT n< Cl(CI-) , 

and within a sparse area of size n if 

Tn > Sn (-c-) , where 1 -(X- = Pr ¬ Tj1 > Sn (cc )3; 

i. e. Cn (a) and Sn (a) are the 100a c. % and 100(1-w-)% points of the 

distribution of Tn. Once again the choice of 'c is arbitfiary and 

reflects one's ideas of what constitutes a clump or sparse area. 

Intuitively for a Poisson forest, one expects roughly' C(M of 

every m points chosen at random within the Poisson forest, to fall within 

a clumped area, and ocM to fall within a sparse area for every n. 

Note that the weights, a(j), still have not been defined. 

It must be pointed out that 7\ must be known for use with Tn. 

Hawever if the clumps and sparse areas of a spatial pattern are to be 

mapped, one would probably know the coordinates of all the. trees and 

thus is known. 
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4.2 The distribution of Tn for the Poisson forest 

Let Yi = Aiv R2 (i = 1, ..., n), where R. is the distance 

fran a randcmly placed point P to the ith nearest tree. 

Define X1 = Y1, X. = Yi - Yi-1 , (i = 2, ..., n). 

The joint p. d. f. of R1, ..., I is 

It 
exp 7ATr(r2 - ri-1)1 2 7TT' ldri 

i=1 
(r0 =0 rl c r2 ... c rn < co ), 

whence the joint p. d. f. of X1,..., X1 is 

n 
exp ¬- 

xi3 dxl.... dx 
n i=1 

(0 cx l< co , ... ,0: xn < co ). 

Thus X1, ..., X1 are independently distributed as exponential 

variates with mean unity. 
n 

Let Tn =E a(j) Y. 
j=1 1 

. 0, 

a (i) Xk. 
j=l ]C--l 

Reversing the order of suutmation, 

nn 
Tn- Xk Eai7). 

n 
_ A(k)XK, (1) 

k=1 

n 
where A (k) _a (j) . j=k 

Now the p. d. f. of is exp (-x) , (0 x< co) , and thus the 

p. d. f. of A(k)Xx is 
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A(k) exp ¬-x/A(k) 
. 

Hence it is easily seen that the characteristic function of 

A (k) X (k) is 1/ ¬1 - iA (k) si , giving the characteristic function of 

T' as 
n 

n 

k=1 

n 
where D (k) = rr 

j=1 
j7k 

1D (k) 
1-iA (k) s 1-iA (k) s 

1 
1-A(j)/A(k) 

Inverting the characteristic function, the p. d. f. of T1 is 
nf/ 

(t) = 
jD] D (k) 

exp t -t/A (k) , (0 .t<00) 
n1 A (k) 

and hence the distribution function of TI is 
n 

n 
F1 (t) =1- D(K) exp¬ -t/A(k)3 

k=1 

Now T= bl(n)T1 + b2(n), where bl(n) and b2(n) are constants. 

Therefore the p. d. f. of Tn is 

nt -b (n) 
fn (t) = (n) 1DT (k) 

(k) 
exp - 

2A (k) (b2 (n) <t< 00 ), 
(n) 

bl ` bl( 

and the distribution function of T is 
n 

n t-b 2 (n) 

. Fn (t) 1-D (K) °xP -b (n) 
)/A 

(k) (b2 (n) :t< CO) 
" k=1 1 
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4.3 The case of uniform weights 

For the rest of the chapter only the case a(j) =1 

(all j) will be considered. This implies in some sense that all the 

nearest n trees to a point P are equally important when determining 

whether P is within a clump or sparse area of size n or not. 

For convenience choose 

b1 (n) =6 n (n+l) (2n+1) ' b (n) _- 
(n+l) 

22 (2n+1) 

It is easily seen that 

A (k) =n+ 1-k, D (k) = 
(n+l-k) n-1 (-1)k-1 

(n-k) ! (k-1) 

After sane algebra, the p. d. f. of n is 

rn(n+l) n(r. ý1) (2n+1) l} 

(t) _n 
(n+l) (2n+1) n 

kn-1 -1)n-k 
L2+6 

exp gn 6 nl 

(n) 
k( k k-1 

3n (n+1) :t< ao 2 (2n+1) 

and the distribution function is 

1n In \ n-k _ 
[n(n+1) 

+n 
(n+l) ( 

- 
(ý 

k (-) exp 26 G (t) =1n 
n. k_1 (k l 

(-Jjj 2 t <' co 

From equation (1) and the fact that n= b1(n)TT + b2 (n) , 

"E (T 
n) 

Jn 
(n+1) (2n+1) 

Et (n+l-j) -2 (2n+1) = 0, 
=1 
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and 
n 

Var (T )n (n+1) (2n+1) (n+1-j) = 1. 
j=1 

Thus b1 (n) and b2(n) were chosen to standardise Tri in such 

a way that the mean of T1 is zero and the variance of Tn is unity. 

Fig. 4(2) shwas the p. d. f. 's of Tn for a(j) a 1, 

__ 
6b (n) 3n (n+1) for various values bl (n) 

Jn 
(n+l) (2n+1) 22 (2n+1) 

of n. Table 6 shows the values of C 
1(cC) ,S 1(oß 

(n = 2, ..., 22) , 

for o. = 0.05 and 0.025 (i. e. the 5%, 95% 2/% and 97/% probability 

levels of n). 

4.4 Practical details 

The distribution theory for Tn just described is only 

relevant to the Poisson forest and a randomly placed sampling origin, P. 

However the measurements r1, r2, ..., r (n = 2, ... ), and hence n 

can be made for any spatial pattern and fron any point P within the 

spatial pattern. The distribution of n for a randan point P within 

a Poisson forest was used in order to produce suitable values for 

Cn and Sn, the critical values for clumped and sparse areas of size n. 

once produced, these can be used as yardsticks for clupedness and 

sparseness in any set of points in the plane. 

Within the spatial pattern under consideration a set of grid 

points, formed by the vertices of a square lattice, are used as sampling 

origins. Fran each of these grid points, the distances to the nearest 

N trees are measured, and then the N-1 values T2, ..., TN are calculated. 
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Table a. The values of C (c(-) (K) ,S for oC = 0.05 and 0.025, 
1 n 

n=2, ..., 22. 

n (0.05) C Sn (0.05) Cl (0.025) %(0.025) (0.025) 
n 

2 -1.125 1.947 -1.188 2.572 

3 -1.198 1.921 -1.298 2.503 

4 -1.256 1.901 -1.371 2.454 

5 -1.290 1.885 -1.425 2.415 

6 -1.320 1.872 -1.466 2.385 

7 -1.343 1.860 -1.499 2.360 

8 -1.363 1.851 -1.526 2.345 

9 -1.379 1.842 -1.550 2.322 

10 -1.392 1.835 -1.570 2.306 

11 -1.404 1.828 -1.587 2.293 

12 -1.415 1.822 -1.602 2.280 

13 -1.424 1.816 -1.616 2.270 

14' -1.432 1.812 -1.628 2.260 

15 -1.440 1.807 -1.639 2.251 

16 -1.446 1.803 -1.649 2.243 

17 -1.452 1.799 -1.658 2.235 

18 -1.458 1.795 -1.666 2.228 

19 -1.463 1.792 -1.674 2.222 

20 -1.468 1.789 -1.681 2.216 

" 21 -1.472 1.786 -1.688 2.210 

22 -1.477 1.783 -1.692 2.205 
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Fig. 4(2) The p. d. f. Of Tn for various values of n. 



-74- 

With these values of T (2 (n( N) for each grid point, it is possible 

to draw a contour map showing cltunped and sparse areas of size n, 

with the aid of a computer package designed for drawing contour maps 

from values at each of a set of points in the plane. The package 

used here is SYNAP, which was originally developed at the 

Laboratory for Computer Graphics and Spatial Analysis, Graduate School 

of Design, Harvard University, Cambridge, Massachusetts 02138, U. S. A. 

Examples including the results of clapping Lansing Woods are shown in 

section 4.6. 

4.5 The 'most likely' clu-nps and'sparse areas 

It was noted in section 4.1 that a point P may be within 

clumped and/or sparse areas of several sizes. It may be more 

infonnative to give a 'most likely" cltunp or sparse area size which 

P is in. The following methods for achieving this are just two of 

several conceivable methods. 

(i) Firstly, a particular grid point could be considered to 

be within a' clump of "most likely" size L if 

ocL =min ¬okn : n(Tl) = can, (2 (-n(- N)1 , and T1 Gý, 
n 

and could be considered to be within a sparse area of "most likely" size 

m if 

am= rnax ýn'( n) f 
n' 

(2 n, N) and Tn > Sm. 
n 

i. e. for a grid point to be in a c1i p of size 1, oL must be the 

smallest probability value for the Poisson forest distribution of Tn 
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and to be within a sparse area of size m, m must be the largest 

value. 

In practice the number of grid points needed to obtain 

reasonable results must be very large canpared with the total nunber 

of trees. 'The follc»iing method which defines clump sizes only will 

be used in the sequel. 

(ii) Within a Poisson forest, the distribution theory for n still 

holds if the distances to the n nearest trees fron a randm point are 

measured fran a random tree instead. Thus instead of using grid 

points, the distances to the N nearest trees from each of the trees 

within the spatial pattern could be recorded. 

Let n (i) = bl (n) Eb ? or r1. + b2 (n) 
j=l 

where rij is the distance frc8n tree i to its jth nearest neighbour, 

b1 (n) 
Jn 

)6 1 (2n+1) and b2 (n) _2 (2n+1) 

Define tree i as having "most likely" clump nurr er g+l, if 

pC - (i) = min ¬ o<-n (i) n (T (i)) _ cCn (i), (1 4n r* N) , and 
9n 

T9 (i) c Cg, 

and zero otherwise. 

Thus an integer 0,2,3, ..., N is assigned to every tree 

within the spatial pattern, there being no trees with "most likely" 

clump size one (i. e. single trees do not constitute a clump). 

Then define tree i as being within a clump of 'most likely" 

size L defined by a set, SL, of L trees, if tree i£ SL and there 

exists a tree kf S1 which has "most likely" clump number L -1 and the 
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rest of the menbers of 9L are the L-1 nearest neighbours to tree k, 

such that S, m where Sn foams a "most likely" clump of in 

trees. The idea behind this definition is made clear by the example 

discussed below. 

Fran this definition a tree may be within several clunps 

which overlap, but a clump cannot be a subset of the trees contained 

in another clump. Fig. 4(3) shows the positions of twelve trees 

labelled fron A to L, together with their "most likely" clump nunbers, 

such that two clumps are formed. Trees A, B, C, D, E and F form a 

clump of size six, trees F, G, H, and I form a clump of size 4, and 

trees J, K and L are not in any clumps. Note that tree B is within 

the clump of size six although it has "most likely" clump nunber 

four, and that 'trees C and D do not form a clump of size two as they 

are both contained in the clump of size six. Tree E is contained in 

the clump of size six although it has "frost likely" clump number zero, 

because it is one of the 5 nearest neighbours to tree A. Tree F 

is in the two clumps because it is the one of the nearest neighbours 

to both tree A and tree G. 

0 O 
K 

0 
I. 

0 

Fig. 4(3) Examples of "most likely" clumps 
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The contours in Fig. 4(3) are drawn by hand to illustrate 

which trees are in each clump. It will be seen that when there are 

many trees within the pattern forming many clumps, it is easier to 

emit the hand drawn contours, just leaving the 'most likely" clump 

numbers for the trees, and-whQroe the absence of a number implying 

that the number is zero. 

The tree-based technique just described cannot be applied 

successfully to sparse areas due to the lack of trees fron which to 

measure the appropriate distances. Trees could be shown to be within 

sane sparse areas, where there exist a few scattered trees, but sparse 

areas void'of trees would not be shown up. 

4.6 Results 

The grid point method of mapping the clumped and sparse 

areas of a spatial pattern was used in (i) a Poisson forest generated 

by a pseudo-randan number generator; (ii) a modified Thomas process 

(see Chapter 2 page 33) with mean number of offspring 5, and radial 

dispersion 0.2; (iii) a population of trees placed at the vertices of 

a square lattice of side 1.0, and then displaced randomly, the radial 

coordinates of the displacement having p. d. f. 

1 
r exp (-k 2/d2) 

,O:. 6 2TT ,04r< co , 2 TFd2 

(here d was taken as 1.0); (iv) the trees in Lansing Woods, as described 

in Chapters 1,2 and 3. " 

f 



-78- 

The value of N was chosen as 22 for two reasons. Firstly, 

to enable edge effects to be kept small. Secondly, because for 

N> 23 the rounding errors badly distorted the distribution function of 

Tn when calculated by ccm zter, and thus preventing Cn and n fron 

being found. The sampling area for each data set was chosen as a 

10.4 in. by 10.4 in. square placed symmetrically within the 15 in. 

by 15u+. area containing the trees. (Note that 1 in. represents 61.6ft. ) 

Within the sampling area, a square grid of 23 by 23 points 

was placed to cover the area entirely, and then for each set of data, 

and for each grid point, the values of Tn (n = 2, ..., 22) were found. 

The cater package SYNAP was then used on each set of data to map the 

clunped and sparse areas for several levels (sizes) between 2 and 22. 

Typical output from SYMAP is shown overleaf. ' For each tree within 

each data set, the "most likely" clump size was found as indicated 

in section 4.5. Results obtained are found in Figs. 4(4), 4(5), 4(6), 

4(7), 4(8), 4(9), 4(10), 4(11) and 4(12). 

For each set of data there corresponds one Figure, 

consisting of four diagrams. Each Figure has its key on the relevant 

preceding page. Note that for some of the data sets, the subsets 

of trees forming clumps as defined by the "most likely" clump size 

numbers are enclosed in a heavy black line. However when there are 

many trees close together this is not very practical and it is probably 

just as informative to show the "most likely" clunp size numbers for 

each tree, the absence of a nwnber indicating it to be zero. For 

each data set, the clumped and sparse areas at different levels as 

drawn by SYm%P, are shcum, different coloured contours indicating 
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different levels. The continuous lines indicate clumped areas, 

and the broken lines indicate sparse areas. Thus for example a blue 

broken contour indicates a sparse area of size ten, while a green 

continuous contour indicates a clumped region of size two. Also given 

for the data sets, except the first, is a diagram of the position of 

the trees, to aid the viewing of the clumped and sparse areas in 

relation to the positions of the trees. 

F 
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Key to Fig. 4 (4) (POISSON FOREST) 

4(4) (i) "Most likely" clump sizes for the simulated Poisson 

forest for C 
1(oc) 

defined by the 2/% probability 

level of T. (i. e. cC- = 2/) . 

4(4) (ii) "Most likely" clunp sizes for the simulated Poisson 

forest for Cn(or, ) defined by the 5% probability level 

of T 
1, 

(i. e. a. = 5). 

4(4) (iii) Contours of the clumped and sparse areas of the 

simulated Poisson forest with n (oc) and Sn (o ) 

defined by the 2/% probability level of T1. 

4 (4) (iv) Contours of the clumped and sparse areas of the 

simulated Poisson forest with Ch (O'-) and Sn (aC ) 

defined by the 2/% probability level of T. 

Colour code 

Colour level 

-2 continuous line - clamped area 

-5 broken line - sparse area 

- 10 

- 22 
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Key to Fig. 4(5) 

4 (5) (i) 

(MODIFIED THOMAS PROCESS (X = 5.0,3= 0.2) 

"Most likely clump sizes, ( ac- = 2k). 

4 (5) (ii) Positions of tree centres. 

4(5) (iii) Clumped and sparse areas, levels 2,5, ( cc = 2/). 

4 (5) (iv) Clumped and sprase areas, levels 10,15,22, (o= 2/). 

Colour code 

colour level 

-°_ 2 

-5 

-' 10 

15 

22 

continuous line - clumped area 

broken line - sparse area 
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Key to Fig. 4 (6) (SIMULATED DISPLACED-REGULAR DATA) 

4(6) (i) "Nbst likely" clump sizes, (cc = 23, -). 

4 (6) (ii) Positions of tree centres. 

4 (6) (iii) Clumped and sparse areas, levels 2,4,7*, ( c( = 212). 

4 (6) (iv) Clumped and sparse areas, levels 10*, 15*, 22*, (c=2 z) . 

*Note that there are no areas, clumped or sparse 

at this level. 

Colour code 

colour level 

2 continuous line - clunped area 

4 broken line - sparse area 

7 

`- 10 

15 

22 
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Kato Fig. 4 (7) 

4 (7) (i) 

(WWLES IN LANSING WOODS) 

"Most likely" clump sizes, (c( = 2½). 

4 (7) (ii) Positions of tree centres. 

4(7) (iii) Clumped and sparse areas, levels 2,4,7, ( c( = 2/). 

4M (iv) 

Colour level 

2 

4 

7 

10 

15 

22 

Clumped and sparse areas, levels 10,15,22, 

cc = 2k) . 

continuous line - clunped area 

broken line - sparse area 
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Key to Fig . 4(8) (HICKORIES IN LANSING WOODS) 

4 (8) (i) "Most likely" clump sizes, ( °C = 2/). 

4 (8) (ii) Positions of tree centres. 

4(8) (iii) Clumped and sparse areas, levels, 2,4,7 

(0C=2/). 

4(8) (iv) Clumped and sparse aread, levels 10,15,22, 

( cc- = 2/). 

Colour code 

Colour level 

2 continuous line - clumped area 

4 broken line - sparse area 

7 

"- 10 

15 

22 



(1) 

(ii) 

[4p+7 

i+ 

} 
{3t 

+ 
+4. 

+ 

+i ++ 
#+ '" "4»; b 

+ 4- + 
+ 4. 

+ 
+ ++ } 

+8 

+ ++ + + 

7 +1 ++ 
+ 

6+41WO 
% + I 

11 
+ 2ý2 

++ 

+ '7 
t 

+21 
t2 

+4- 
N 

+ +} t }4 
+ 3 

++ +t} t 

' + }} ++ +t 
t 

+ 4} } ++ 

++} + ,}+ 

f 
iFý } } 

+++ 

421 + 
+ i 

++ 
} 

+ iý +ý + + }+ ++ 

++ i} , . 417 1' *+++ 

+ 
i. ++}++ 1s 

+ a r+7 ý+++++++ 
++ 2li 

+} IT 

++ +$ ++ +} . $+ +#+ 
+ i" ++} 

44. 

++ }+}++ 

+ ++ +++++ +# ++ + 

+++} +} 
i 

+}4+I+ 

+ ++ 4 
+ +++ +++ ++++++ ++ 

++ ++ ++ 

+++} 

+ a. + 

.+++++ ++}}+ 

} 
++' ++ 

+ +}+ }} ++ 

++ 
+ ++++ ++}+ 

+ +{ ++}}+ +4- 

++ 
++ 

++ 44. +i7 ++{+ 
{" 

4+ +i + 4+ + . 3.4. 
+ 

i 4.4. 



O id 

O") 

+4. + 

+ 

V/fY 

++ { . ý'ý ý. + 

+{ \r 
+ 

^ 

1+ \`' `"" ý+ 
--+ 

+. + 
+ 

+{ºý, F`ý, 
{ i ý` ý`" All + fý rte/ 0Y. 

'11 
7. 

+ IL ,ý{++ k" + 
+ iý ) 'ý ++J+ 

+ +ýý w1 {- 
y�wr 

fý ýý 
+}++4+ 

+ + \1 ++ 

_ý +++ 

-}" ++ 

/� \i i" ++++r +i 
++ 

i 

+++ 
+M \ý \tt i }+ 

+ 

A- 4 

I- 

+ }. 4- 
++ 

+}F4. 
Yi 

-}- 

4-), 4, 

i1 ii 
-+ 

ä I, 
+ a- +-I i' '. 

+ 

-I- 
" 14- { " +/Fi 

i" "1- 
IF 



-96- 

Key to Fig. 4 (9) 

4 (9) (i) 

4(9) (ii) 

4(9) (iii) 

4 (9) (iv) 

Colour 

(WHI'T'E OAKS IN LANSING WOODS) 

"Most likely" clump sizes, (o( = 2/). 

Positions of tree centres. 

Clumped and sparse areas, levels 2,4,7, (cC = 2/). 

Clumped and sparse areas, levels 10,15,22, 

k= 2/) 

level 

2 continuous line - clumped area 

4 broken line - sparse area 

7 

10 

15 

22 
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Key to Fig. 4 (10) (RED OAKS IN LANSING WJODS) 

4 (10) (i) "Most likely" clunp sizes, (c( = 2h). 

4(10) (ii) Positions of tree centres. 

4(10) (iii) Clumped and sparse areas, levels, 2,4,7, 

(K= 2/). 

4(10) (iv) Clumped and sparse areas, levels 10,15,22, 

( a. = 2k). 

Colour code 

Colour- level 

2 continuous line - clumped area 

4 broken line - sparse area 

7 

10 

15 

22 
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Key to Fig. 4 (11) (MISCELLANNEDUS TREES IN LANSING WOODS) 

4 (11) (i) "Most likely" clump sizes, ( c( = 2/) . 

4(11) (ii) Positions of tree centres. 

4(11) 
. . 

(iii) 

4 (11) (iv) 

Colour level 

--- 2 

4 

7 

10 

15 

22 

Clumped and sparse areas, levels, 2,4,7, 

( oc=2'). 

Clumped and sparse areas, levels 10,15,22, 

(ox=2/). 

continuous line - clumped area 

broken line - sparse area 
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Key to Fig. 4(12) 

4 (12) (i) "Most likely" clump sizes, 

4 (12) (ii) Positions of tree centres. 

4 (12) (iii) 

4 (12) (iv) 

Clumped and sparse areas, levels 2,4,7, 

(«c =2/). 

Clumped and sparse areas, levels 10,15,22, 

( aC = 2/). 

(BHLACK OAKS IN LANSING Wt7ODS) 

Colour code 

Colour level 

2 

4 

7 

10 

15 

22 

continuous line - clumped area 

broken line - sparse area 



(1) 

+-2.1 

+ 

f 

+r+S 
+s ++r 

+ ýt 
s 

+g }rz 
+11 

++ 4-pt 

+++ 
++ 

} 
+ + 

+ 

+ 

+ 

`1) + 
+ + 

+ ++ 

+ + 
+ 

+ + + 
' + 

+ + 
+ + + + 

+ 

+i ,o 

4- 1 

+ 

+ 

+ 
+ + 

is 
4. 

+ 



111 

(ri) 

i/4 + 

r. r 

%'t 

itF 
t 

` 

ii 
/+ 

} 

1ý+ 

\\ \ 

"F t/ 

1 



-108- 

Fig. 4(4) (the Poisson forest) illustrates the differences 

obtained by taking different values of a. to calculate n(&) and 

Sn (cc ). Obviously the larger a. is, the more clumped and sparse 

areas are obtained. 

Fig. 4(5) (Modified Thomas process) shows results for a very 

clumped population. Note that the particular value of 0(-(2k%) 

allows very large clumps to be defined, although the population was 

generated by clumps of size 1+X, where X- Poisson (5.0). Note 

also that many of the trees have "mostly likely" clump size 23. 

This is the maximum allowed for by the choice of N, (i. e. 22), due to 

practical purposes, and thus a "most likely" clump size of 23 must 

be interpreted as a "most likely" clump size of at least 23. 

Fig. 4(6) shows pleasing results obtained for the displaced- 

lattice population model, noting that the pattern does not visually 

differ a great deal fram the Poisson forest population. There 

are only two trees with a "most likely" clump size different from 

zero (i. e. both are 2), only small clumped areas up to size 5 are 

defined, and there are no sparse areas. 

Figs. 4(7),..., 4(12) shows Lansing Woods mapped for 

clumped and sparse areas. 

Note that a contour containing a clumped area may or may not 

contain the number of trees indicated by the contour "level". This 

is to be expected fron the basic definition, as it is the points contained 

within the contour which determine the clump, i. e. it is frcrn these 

points that the distances to the nearest n trees are measured. The 

trees contained within a clump is another idea entirely, and is taken 
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into account by the method of "most likely" cltunps in section 4.5. 

Some sparse areas are seen to contain trees. However by definition 

a sparse area is an area where the local density is somewhat less 

than the overall density and thus sane trees are allowed within 

sparse areas. 

The contour raps of different species in Lansing Woods can 

be canpared in order to give some infonnation on the relationship 

between the species, e. g. whether they tend to occur together or repel 

each other. Accordingly we are brought to the theory of bivariate 

processes in the plane which is discussed in the next chapter. 
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CHAPTER 5 

TIE SPE C2k AL ANALYSIS OF TWO-DIMENSIONAL, BIVARIATE POINT 

PROCESSES FOR USE IN FORESTRY 

5.1 The spectra 

in this chapter, an outline is made of the spectral theory 

for a bivariate point process in the plane, taking the form of a 

synthesis, not explicitly given before, so far as one is aware, of 

existing spectral methods as applied in, (1) the two dimensional 

univariate case (Bartlett (1964)), and in (ii) the one-dimensional 

bivariate case (D. R. Cox and P. A. W. Lewis (1972)). Only the 

counting process will be considered, the "intervals" being more 

awkward to deal with, i. e. we deal with counts of events in rectangular 

regions (or intervals) in the plane, rather than "distances" between 

events which are more natural in one dimension anyway. The theory 

will be given in the spirit of a paper by Bartlett (1964), and will 

then be applied to sane tree position data. 

Suppose there are two types of events, A and B, such that they 

form a stationary (2nd order), bivariate point process in the plane. 

Let N (r) = (Na (r) NB (r)) be the number of type A and type B 

events in the rectangle, (0,0), (0, y), (x, y), (x, 0), where r= (x, y). 

It is assumed that the process is regular (i. e. no multiple 

events). Now 

E £dN(r)3 =k dr, where dr = dxdy, 
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dN(r) = N(r + dr) - N(r), and ?l= (NA, 7B), 

ZAG 7ý. B 
constants. 

This is a result of the stationarity of the process. Let 

T 
E ¬dNT(r) dN(r')1 _¬AA, + ý(r - Z)] dr dr', (r # r*) 

where T denotes the transpose. 

The complete covariance density function for N(r) is then 

defined by 
ýA O 

(r - ro) 
OX 

where 
9(r 

- r1) is the two dimensional Dirac delta function. 

Denote ö (r - r') by 
('d A (r - r') 

AB (r - r') 
, and 

4( oAB (r - r) B (r - _r')) 
thus g' (r - r') is the complete autocovariance of NA(r) , 8B (r - r') 

is the complete äutocovariance of NB(r), and SAB(r - ri) is the cross- 

covariance of 
NA (r) and NB (r) . 

The complete spectral function for NA (r) is then 

+A(W) __ 
12 ýe iw. r U A(r)dr +? AJ 

4-n- 

where w. r = w{ x+yy. Denote'47 . 
A(w) by g (w) for convenience. 

Similarly the ccmplete spectral function for NB(r) is 

B (W) 2 1[e-iw. r ýý B (r) dr + B. 
7- 

ff 

4 TT 

The cross spectral function for Nh(r) and IP (r) is 

eAB(L) =1ýjew. r v AB(r) ýj. 
47r2 

4 
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and once again denote Q-TT2 '' (w) by g (w) , which has a real part 
CB (w) and an imaginary part 

g (w) " 

5.2 Estimation of the spectra 

Suppose the A and B events are containei within a square 

area of side L for convenience, and that their coordinates are 

( i, A)ý i=1,... r nA, (XB , YB), j=1, ..., nB An estimate of 

the spectrtun for Ih (r) is then 

P, 
q 

p, 
q 

p, 
q 

where 

nA 
)ý " 

p, 
q L 

s=1 
sw+ Ys qw s=1 

and * denotes the canplex conjugate, and (wp, wq) = w. 

Thus 

AA 

p, q=2n exp 
ci[ (x5 - xr) wp + 

L s=1 rl 

(- x) q] . 

It can be shaven (e. g. see D. R. Cox and P. A. W. Lewis (1966)) 

thaain order to make the bias of P, 
g zero for the Poisson process, 

wpL and wqL must each be a multiple of 2r. Thus take 

wp = 27rp/L, wq = 2-T5/Lo p. 4 
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In effect is is a "power spectrum" and estimates 

to Cr g (w) ". Tb estimate the normalized spectrLun, g (w) /7, the 

"distance" scale is normalized by the estimate 
n /L2 of ,A Thus an 

estimate of the normalized spectrum of IA(r) with a normalized 

frequency scale is 

AA nnAAA 
exp 

¬i[L (s-4) (p A)+L 
(ys Yr) (q ri )} , 

AÄ 
L-ý L., 

n s=l r---l n 

nA nA º 2 ¬il s- r')wP + (ysº- Yrº) qý n 

AA Al AA Ar AA 
where w= (WP. wq) = (2Trp/n 27rq/n ), xs = xsn /L. y= YS Ar and 

noting that w L, wL is still a multiple of ZTr as required. pq 
Similarly, 

BB 
p, 

q = 
?B ýn LB exp 

¬i[ (xs - xBr 
F). p+ (yB1_ 

1- 
yB') q1 

i, 

n s=1 r=1 

iBB BI BB B' BB 
where w' = (W , wq) _ (2 tT P/n . 21T q/n )º xs = xs n /L. y=yn /L' 

In a similar manner the estimate of the normalized cross 

spectnim is 

B 
'I. mR 2n ýL A' B' I At Bf Pq- JAB 

E1 
rt1 

exp i (xs -r )wp + (ys - Yr )wq 

where w' wý) _ (2 -rrp/ 
ri n8 

,2 Trq/ 
ri nB). x=xn 

nB/L. pqss 
A/ A AB BlB / -A-Bý B' B AB 

Ys =Ys nn/ r=xr, ýJnn/L Yr=Yr nn /L 
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Table 7(i) The periodogram for maples in a square area of side 5 in. 

(1 in. representing 61.67 ft. ) in Lansing Woods. 

p, --5 positive 

q 3.59 2.64 2.21 2.28 1.79 2.61 2.01 1.50 
1 

2.48 1.86 2.06 1.76 1.39 3.61 1.75 2.19 

positive 2.09 2.32 1.89 2.22 1.47 2.15 2.56 2.50 

2.39 2.75 2.02 3.81 2.43 1.51 3.19 2.78 

1.79 1.37 3.42 2.33 2.06 2.27 2.42 2.39 

1.90 1.79 1.70 2.30 2.32 1.90 2.64 2.37 

2.89 3.24 2.75 2.87 2.20 1.60 1.29 2.04 

2.08 2.40 2.78 2.06 0.98 1.65 1.86 2.18 

negative 

1.93 3.26 1.73' 1.82 2.58 2.15' 1.79 3.25 

2.11 1.46 2.29 1.49 3.17 1.55 2.13 2.68 

1.40 2.75 1.44 2.22 1.76 1.48 2.11 1.85 

1.28 1.73 2.49 1.99 2.62 2.13 1.86 3.31 

2.06 2.65 1.88 1.35 2.45 2.38 2.33 1.66 

1.64 2.38 2.80 2.42 2.20 1.57 1.95 2.13 

2.00 2.66 2.36 1.32 1.57 2.16 1.99 2.53 

2.68 2.25 1.40 1.38 2.71 2.92 2.41 2.20 

ý- P 

q 

I 
positive 
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Table 7(ii) The periodogram for Hickories in the same area. 

p- positive 

q 

I 
positive 

3.39 3.04 2.37 2.45 1.93 2.81 2.17 1.62 

3.16 3.15 2.86 1.72 2.62 1.58 0.72 2.12 

2.93 3.10 2.86 3.09 1.73 1.28 2.05 2.51 

2.82 2.23 1.43 2.86 2.37 2.78 2.15 2.11 

1.43 1.70 2.11 1.86 2.73 1.29 1.40 1.91 

2.24 2.70 2.27 2.47 1.45 1.05 2.24 2.28 

1.85 1.74 2.52 2.73 2.21 2.71 1.73 0.89 

2.34 1.99 1.84 2.87 2.33 1.82 1.79 1.72 

1.81 2.17 1.82 1.23 2.12 1.73 

2.67 2.77 2.03 2.03 2.20 2.42 

1.10 1.21 1.57 1.32 2.34 1.62 

1.54 2.68 1.34 2.84 2.01 2.08 

1.38 2.35 2.54 2.46 2.19 2.54 

2.01 2.48 1.15 2.20 1.61 1.43 

2.39 2.10 1.94 2.60 2.19 2.74 

1.71 1.35 1.40 1.16 1.90 2.11 

negative ý- p 
3.22 2.91 

2.71 1.78 

1.92 2.78 q 

1.88 1.75 

1 

2.17 1.60 positive 

2.50 1.47 

1.43 2.05 

2.15 2.56 
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Table 7 (iii) The real part of the two-dimensional cross periodogram 

for the Maples and Hickories 

p positive 

q 
1 

-1.19 0.46 -. 046 0.75 0.70 -0.54 0.08 0.27 

positive -0.69 0.24 -0.20 0.29 -0.10 -0.42 0.12 0.64 

0.22 -0.51 0.79 -0.44 -0.02 0.11 0.25 0.14 

-0.08 -0.51 0.17 0.69 0.05 0.16 -0.06 0.44 

-0.46 -0.13 -0.33 -0.62 0.02 -0.31 0.34 0.41 

0.26 -0.54 0.09 0.19 0.06 0.17 -0.13 -0.65 

-0.34 -0.03 -0.50 0.44 0.51 0.17 -0.17 -0.11 

-0.01 -0.06 -0.37 0.17 0.10 -0.54 -0.11 -0.46 

negative -k p 
0.11 0.52 -0.05 0.01 0.13 0.02 -0.41 -1.00 

1.10 -0.74 -0.26 0.14 -0.70 -0.30 -0.44 -0.74 q 

0.24 0.09 0.08 0.18 -0.31 0.21 -0.01 0.45 

-0.42 '-0.09 -0.15 -0.62 0.26 -0.00 -0.28 -0.19 positive 

-0.12 -0.34 0.40 -0.55 0.00 -0.41 -0.15 -0.39 

-0.24 0.45 -0.17 0.23 0.39 0.01 -0.04 -0.19 

-0.60 -0.11 -0.09 0.15 -0.02 0.18 0.26 0.01 

0.43 0.47 -0.05 -0.15 0.22 0.08 -"0.16 -0.55 
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Table? (iv) The imaginary part of the two dimensional cross periodogram 

for the Maples and Hickories. 

p positive 

q 

I 
positive 

1.21 -0.10 -0.50 -0.25 -0.50 0.46 0.12 -0.11 

0.00 0.08 -0.47 0.46 0.10 0.23 -0.34 0.29 

0.07 0.39 -0.81 0.52 -0.26 -0.39 0.10 0.58 

0.39 0.13 -0.50 0.36 -0.51 0.12 -0.54 0.10 

-0.21 -0.31 -0.79 -0.54 0.37 0.03 0.49 0.65 

0.15 0.18 0.26 -0.78 -0.29 0.12 -0.54 0.18 

-0.07 -0.20 -0.44 -0.44 0.02 0.14 -0.02 -0.23' 

0.67 0.09 -0.82 -0.46 '0.38 -0.36 0.25 0.68 

-0.86 0.10 -0.11 0.22 0.77 -0.32 0.28 -0.07 q 

-0.23 0.03 0.21 0.17 0.19 -0.21 -0.03 -0.28 
1 

positive 
-0.29 * -0.13 -0.27 0.43 0.60 -0.24 0.04 0.37 

-0.20 -0.37 -0.33 0.21 -0.21 -0.32 0.19 -0.63 

0.21 0.16 -0.39 0.22 -0.44 -0.00 1.05 0.54 

-0.35 -0.29 -O. o8 0.72 0.04 0.36 0.34 -0.32 

-0.27 -0.41 -0.15 0.15 0.39 -0.03 -0.20 0.52 

negative -p 

-0.41 -0.18 -0.68 -0.28 0.41 -0.30 -0.31 0.03 
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The periodograms, P, q, P, q and the cross periodogram ikB 
p, q 

for the counting process of the Maples and Hickories in a small section 

of Lansing Woods (see Chapters 1,2,3 and 4) were calculated and 

are presented in a similar manner to results obtained by Bartlett (1964) 

for other data. The spectra are & othed by averaging the values 

over separate 4x4 grids. Table 7 shows the results obtained. 

Note that the spectra in Table '7 are not evaluated at 

p=q=0 as the bias is greatest near w=0. The individual values 

for the auto-spectra can be tested, with null hypothesis of a Poisson 

process, as -C ? 
values, and the sun of the values in each 4x4 grid 

as 
A2 

values. Given that the null hypothesis is not rejected for 

both the A and B events, zero correlation between the two types of 

events can be tested for (see e. g. Cox and Lewis (1966), Jenkins and 

Watts (1969)). However when the A and B events do not form Poisson 

processes testing hypotheses becomes more difficult, and the matter is 

not entered upon here. 

5.3 The Isotropic case 

Inspecting two dimensional spectra as in Table 7 is a hard 

task. It can be made easier if not only stationarity is assumed, but 

also isotropy, which implies that the processes are independent of 

direction. Then the spectra can be averaged over the angle & between 

wý= (w/, f) and each r-r; so that they depend only on w. 
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The periodogram for the A type events was seen to be 

A 
P, 

q AEL 
¬1 

Wp 
s' 

r) + 
q(Ys 

Yr)ý 
n s=1 r=1 

2AA9t1 
ri exp ifw coh) (xs - Xý) +w sin(0) (YS -YN 

s=1 r=1 

and hence 

AAw 
22 ES (P, 

qý A Lº 27T 
ý i[w cos(o) (s/r 

n s=1 r=1 0 

+w sin(e) (ys - yr )1 d6 

A2 ný' nj 
(wdA ) ri 

s- r= 0 rs ' 

A' A' 2I Al 21/ where drs = xs - xr )+(- Yr) , ö(. ) is the Wessel 

function of order zero. [ Note 

2rr 

exp [i (a cosh +b sin6), d(9 =ö( a2+b2) 
,J (see Bartlett (1955)) . 

0 

Thus the isotropic spectrum of the A type events is estimated 
A at w= 2Trp/n, p=o, 1, .... by 

A 
nA t 

Jo (we 2 
ri 

s=1 r-1 

and similarly the isotropic spectrum of the B's is estimated at 
B 

w= 2Tt'p/n, p=O, 1, ... by 
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r 

2 nB 
n 

J0 (wd ). 
nB ý1 rs 

The cross periodogram for the A and B events was seen to be 

B 
IP 

q2 exp i iw P (xA 
r- 

xBr + wq (YS Ar- 
Yr )ý r 

n 
nB s= r=1 

and thus the isotropic cross spectrum is estimated at 

w=2lt'p/ nn, p=0,1, ... by 

nA 
n 

2 
0(w d ). 

-1 

L 
r=1 AB 

nn 

B At 1rr 
where d_¬ (xs - xB )2+ VS, = Yr )2 Note that the 

r 

imaginary part of the isotropic cross spectrum is zero. This is because 

E(Iý, =2 
np' 

=n 

2ýr 

: )ý 
AlB 

P, q f, 

O 

exj ilW (Al_ - xs cos 
B s1 r=1 n 

4 

r 

') 
sin8]1 dO + w(ys y 

and thus the imaginary part is 

nA nB I 
2tr 

At B1 A' gº 
constant XEE. J sin {w(x5 

- r) cas+ w(ys - yr) sine] dG , 
s=1 r1 0 

which is 

nA nB 
2p- 

constant )( sin (a cos& +b sin& ) d8 +I sin (a cosh +b sin&) d& 
s=1 r=1 

0 (a = w(xsA 
ý-x), b= w(Yrý - Yr)). 

Note that as w -i. co ,EB (P 
'q) 

-> 2 and E0 (P 
q) --3,0. 
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5.4 Spectral theory in relation to forestry 

It is of interest when -dealing with two or more species of 

plants or trees in the plane to know the relationship between them. 

As mentioned in chapter one, any statistical or probabilistic results 

connected with the different species do not prove anything about causal 

factors but may give same "measurement" of the relationship between 

the species. To this end Pielou (1969,1974) discusses two measures 

of the relationship between two species, namely association and 

segregation. 

Two species are positively associated if they tend both to 

be present or both to be absent in the same areas. The definition 

can be made precise for species in discrete habitable units (e. g. 

leaves on a tree) when one can count the number of units that contain 

both species, the number that contain one species and not the other and 

vice versa, and lastly the number of units that contain neither one 

nor the other. However when the species are in a "continuum" (here 

the plane), problems arise when trying to sample the populations due 

to the placing and size of the sampling quadrats. This is discussed 

at length by Pielou (1969,1974). As yet there are no distance 

methods for measuring association between species, and so we propose 

here to use the isotropic cross spectrum for the counting process instead. 

Two species of A and B types are unsegregated if they are 

randcenly mingled. That is, given the positions of all the individuals, 

are the A's and B's allocated to the positions at randan? If not they 

are segregated either positively or negatively. Positive segregation 

occurs when A's tend to be near A's and B's near B's, and negative 
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segregation occurs in the reverse situation. This is discussed 

"mere fully by Pielou (1969,1974). 

A method of testing and measuring the segregation between two 

species is discussed by Pielou (1961,1969,1974). It is as follows. 

For each individual in the two populations the type of its nearest 

neighbour is recorded and the results set out in a2x2 contingency 

table thus, 

Species of nearest neighbour 

AB 

Species of Aabm 

base plant Bcdn 

rsN. 

The usual xztest is then carried out to test whether the 

observed cell frequencies depart from expectation. Note that the test 

is not strictly valid as under the null hypothesis the events of 

certain nearest neighbours to each tree are clearly not independent 

for all the trees. 

Pielou then goes on to define a coefficient of segregation, 

observed number of mixed pairs S=1- 
. acted number of mixed pairs ' 

N(b + c) 
ms+nr " 

Für an unsegregated pcpulation E(S) = 0, for a fully segregated 

population, S=1, and for isolated A-B pairs, S= -1. Thus S ranges 

fran -1 to +1. 
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In section 5.5 the isotropic periodogram, the isotropic 

cross periodogram and Pielou's coefficient of segregation will be found 

for various sets of data including the six species in Lansing Woods. 

The periodograms give insight to the pattern formed by the individual 

species, while the cross periodogram and Pielou's coefficient give 

information about the relationship between two species. 

5.5 , Results 

Firstly some remarks are made on the interpretation of the 

spectra. The isotropic periodogram, I (w) (= E ©[ 
' P, 

q 
(w)1 has 

value 2nA at w=0 and tends to 2 as w tends to infinity. For 

the Poisson forest, the isotropic spectrum has constant value 2, 

except for w=0, where the value is 2ri Hence for any particular 

spatial pattern, I(w) will have value 2ri at w=0, then will decrease 

and probably oscillate about the value 2 in an erratic way, levelling 

out to the value 2 as w increases. The value of I(w) for small w, 

(but not too close to zero, as then bias is appreciable), indicates 

a great deal about the pattern. If the pattern is clumped, then I(w) 

will be large for small w, but if the pattern is regular, then I (w) is 

less than 2 for small w. If I(w) is practically two for all w>0, then 

the spatial pattern is probably 'a Poisson forest. 

The cross periodogram for two species indicates the nature 

of the correlation between the counting processes of the two species. 

The isotropic cross*spectrun has imaginary part zero, and if also the 

real part is zero, then the two species are uncorrelated. The 

isotropic cross periodogram I*B(w) is biased for w near zero, but for 
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small w can tell us whether the two species are positively or 

negatively associated. If the two species are positively associated, 

then IAB(w) will be large and positive for small w, if they are 

negatively associated, then IAB (w) will be large and negative for small 

W. 

Note that the measure of segregation is not directly related 

to the isotropic cross spectrum. This is illustrated by the case of 

two independently placed Themas processes. Here the isotropic 

cross spectrtui is identically zero, while the segration coefficient 

will be appreciably positive implying positive segregation. 

Fig. 5 (2) (i) and Fig. 5 (2) (ii) show the isotropic periodogranms 

IA(w), IB(w) obtained for two independently simulated Poisson forests 

within a square of 5 in. x5 in. (Fig. 5(1)). Both the periodograms 

do not vary significantly fron 2. Fig. 5 (74 (iii) shows the isotropic 

cross periodogram, I (w) obtained for these two Poisson forests. 

The bias is appreciable for w less than 0.5, but for w>0.5, IAB (w) 

does not vary appreciably from zero. Bartlett (1964) shows the bias 

for the periodograrns and cross periodograms is appreciable for p< nl/3I 

where 2Tr p/n = w, (p = o, 1, ... ).. 

The numbers in the laver right hand corners of Figs. 5(2)(1), 

(ii), (iii), and for all the Figures showing periodograms, are the 

nu x of points over which the periodograms are uniformly smoothed 

(see e. g. Cox and Lewis (1966)). Also given in each of the Figures 

sh wing cross periodograms is the value of Pielou's coefficient of 

segregation, S. 

Fig. 5(4)(1) and Fig. 5 (4) (ii) again show the periodograms 

for two Poisson forests within a5 in. x5 in. square area. Note the 
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bias for small w. In fact for each of the four Poisson forests 

n= 60, and thus the bias is appreciable for p<4, or w<0.42. 

Fig. 5(4)(iii) sho, s the cross periodogram for these two Poisson forest, 

indicating that they are highly associated. This is pleasing since 

the population of the A type trees was generated as a Poisson forest 

in the usual way and then to each A type tree, aB type tree was 

allocated and then displaced isotropically a rand m distance between 

zero and 0.3 in. Thus the populations were constructed to be highly 

" associated, but individually, Poisson forests. They are as shown in 

Fig. 5(3). 

Fig. 5(5) shows two regular-type populations, generated 

independently in the following manner. An A type tree was placed at 

random within the sampling square of 5 in. x5 in., and then 59 other 

A type trees were placed sequentially such that if one of them as 

it was placed randanly in the square, was within a distance of 0.3 in. 

fran another A type tree, it was replaced again and again at random, 

until the minim= separation was greater than 0.3 in. The 

population of B type trees was formed in a similar manner with minirrurn 

separation of 0.4 in., and independently of the A type trees. 

Fig. 5(6)(i) and Fig. 5(6)(ii) show the isotropic periodograms for the 
"A 

and B type events. For small w, IA(w) and IB(w) are much less than 

" 2, thus showing the populations to be more regular than random. The 

isotropic cross periodogram does not vary appreciably from zero, which 

is to be expected as the populations were generated independently. 

" Fig. 5(7) shows two populations generated similarly to the 

previously described regular model. The A type trees were generated 

exactly as before, but this time the B type trees not only have a 
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minn n separation from B type trees of 0.4 in., but also have a 

minfl-nun separation fron A type trees of 0.4 in. Thus the two 

populations are negatively associated. Fig. 5(8)(i) and Fig. 5(8)(ii) 

show the periodograms, while Fig. 5(8)(iii) indicates the strong 

negative association between the two populations. 

Fig. 5(9) shows a Poisson forest of A type trees, and a 

population of clumped B type trees, having twenty clump centres, considered 

as trees, placed at a randan distance between zero and 0.3 in. fron 

twenty of the A type trees, chosen at randan. Then to each clump 

centre is allocated a uniformly distributed number of offspring type 

B trees, the domain being ¬ 0,1,2,3,4 Fig. 5 (10) (1) and Fig. 

5(10)(ii) show the periodograms for the A and B populations, while 

Fig. 5(10)(iii) shows the cross periodogram. The periodogram for the 

B-type trees, shows the population to be extremely clumped, IB(w) 

being much greater than 2 for an appreciable range of w. 

The cross periödogram in Fig. 5(10)(iii) shows the species to be 

correlated in score manner, the large value of 
& (w) for small w 

indicating that sane of the'A and B type trees tend to be close together. 

Having studied the isotropic auto spectra and isotropic cross 

spectra of various artificial populations, the species in Lansing Woods 

can now be subjected to the same methods of analysis. The sampling 

area was taken as a 10 in. x 10 in. square placed symmetrically within 

the 15 in. x 15 in. square containing the tree position data of 
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Lansing Woods (1 in. represents 61.6 ft. ). The species are shown 

in chapter four in relation to the mapping of clumped and sparse 

areas, (see Figs. 4(7) - 4(12)). It is important to remember that for 

the spectral analysis of this data, it is assumed that the positions 

of the trees form an isotropic, stationary point processs. This may 

be dubious for the Miscellaneous trees and the Black oaks, but they 

are included for canpleteness. Pielou's test and coefficient of 

segregation do not rely on isotropy or stationarity. 

Figs. 5(11), 5(12), 5(13), 5(14), 5(15), 5(16) show the 

smoothed isotropic periodograms for the Maples, Hickories, White 

oaks, Red oaks, Miscellaneous trees, and Black oaks respectively. The 

species are then taken in pairs and the fifteen smoothed isotropic 

cross periodograms are shown in Figs. 5(17) to 5(31). Tabel 8 shows 

the nubers of trees for each of the species. 

Table V. The numbers of trees for each species within the sampling 

area. 

Type. No. of trees 

Maples 296 

Hickories 261 

thite oaks 205 

Red oaks 173 

Miscellaneous trees 52 

Black oaks 35 
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2.0 - JAB (w) Fig. 5(20) Cross periodogram for the Maples and Miscellaneous trees 
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2.0 1 (w) Fig. 5 (23) Cross periodogram for the Hickories and Red oaks 

t. 5 

o. 5 

r J 

'Ü. J 

-1. G 

-1. G 

-Y. 0 

ß"0 I'AB (w) Fig. 5 (24) Cross period gram for the Hickories and Miscellaneous 
trees 

Z"J 

I. E. 

0.5 

1/0.5 ý/T. G 1.5 2. G `2.5 ý"r 9" GW3.5 

-0.5 

-1. G 

-1.5 

s S=O. 11 
-2.0 

2.0 

1.5 

t. G 

0. s 

J 

-n. J 

-1.0 

ý1"J 

.. 'I . C1 



-143- 

1.5 

1"Ci 

G. . 

r. 
J 

-C. 1 

2. S 

2. JhB (w) Fig. 5 (27) Cross periodogran- for the-White. oaks and 
Miscellaneous trees 

C. 5 

-2. %i 
S-0. ZI 

.G 2: r. 2.5 3.1' 9. ý 

5 

2. r, T-(w) Fig. 5 (28) Cross periodogra'a faz-. the Mite oaks and Black oaks 

t. ". 

C. G 

r 

-IL 

-t. 0 

" 1.3 

.. ) r 



-144- 

2.0, (w) Fig. 5(29) Cross periodogram for the Red oaks and Miscellaneous 
trees 
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The smoothed isotropic periodograms for the Maples, 

Hickories and White oaks all tend to oscillate about a limit except 

for w very small. It appears that for the Maples and Hickories, there 

is sane slight clmping, as I(w) may be large for small w, but this 

may also be due to the bias. As the limit abtut which I(w) seen 

to oscillate is slightly greater than 2 for each of the species, this 

suggests that they form Poisson forests with a few pairs of trees (or 

even greater nunbers) which are coincident. The periodogram for the 

Red oaks shows that they are probably slightly clurnped,. and similarly 

for the Miscellaneous trees and Black oaks. Again there are probably 

coincident trees in the Red oak and Miscellaneous tree populations. 

The results obtained for the smoothed isotropic cross- 

periodograms were rather disappointing. It appears that the 

counts of the species are more or less uncorrelated for all pairs of 

species except the pair (Miscellaneous trees, Black oaks). However 

there seems to be some reaction between species at very short distances, 

the following pairs tending to inhibit each other; 

(Maples, Hickories) 

(Maples, Black oaks) 

(Hickories, White oaks) 

(Miscellaneous trees, Black oaks). 

As the spectral analysis suggests that the Maples, Hickories 

and White oaks form practically a Poisson forest, then observation of 

the-cross periodograms of pairs of these species, suggests that only the 

Maples and White oaks are unsegregated, while the Maples and Hickories, 

and the Hickories and White oaks are positively segregated. This is 
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shown to be true by Pielou's test of segregation. Nothing can be 

said about the segregation of the other species from spectral results 

because they do not form Poisson forests. However results of 

Pielou's test made on every set of data discussed are shown in 

Table 9. 
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Table 9. Pielou's segregation test, with the coefficient of segregation, S. 

Type of trees X2 value S Type of segregation 

Independent Poisson forests 0.00 0.01 unsegregated 

Associated Poisson forests 53.47** -0.68 negative 

Regular model 58.82** -0.72 
. 
(independent species) 

Regular model 16.69** -0.38 (associated species) 

Poisson forest and 36.34** 0.56 clumped model 

(MA, HK) 7.99* 0.12 

(MA , K) 0.48 0.04 

(MA, RK) 9.48** 0.15 

(MA, MI) 3.26 0.11 

(MA, BK) 0.26 0.05 

(HK, WK) 0.19 0.02 

(HK, RK) 2.53 0.08 

(HIC, MI) 2.76 0.11 

(HK, BK) 3.62 0.13 

(WK, RK) 1.29 0.06 

(M, M: T-) 10.30** 0.21 

(WK, BK) 0.65 0.07 

(RK, MI) 18.05** 0.29 

(RK, BK) 17.89** 0.31 

(MI, BK) 5.03** 0.26 

** significant at 1%. 
* significant at 5% 

NA - Maples, HK - Hickories, WK -Vi. te oaks, RK - Red oaks, 

MI - Miscellaneous trees, BK - Black oaks. 

negative 

negative 

positive 

positive 

unsegregated 

positive 

unsegregated 

unsegregated 

unsegregated 

unsegregated 

unsegregated 

unsegregated 

unsegregated 

positive 

unsegregated 

positive 

positive 

positive 
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A note on future research 

Further methods of describing a spatial pattern other 

than the regular/random/aggregation scale, are desirable. It may 

be possible to find a series of indices which characterize patterns 

more precisely. More tests of randanness will probably join the 

list of those already in use, even though most spatial patterns in 

nature are not randm. 

The area of robust estimation of the density of a spatial 

point process is a relatively new one. More robust estimators need 

to be found and ccmpared to those already in use. However for 

practical reasons all, estimators using distance measurements ought to 

use only distances from points (usually randan), and not distances 

from random trees. Being able to choose a tree at random obviously 

implies that a list of all the trees is available. 

Mapping of the clumped and sparse areas of a spatial pattern, 

according to chapter four, may or may not have its uses in various 

fields of study. It nay for instance be of interest to the econanists ' 

or urban geographers, mapping a particular type of shop in a city, 

needing a rigorous definition of where there are too many shops of this 

type or too few of than. Advance for the present theory is probably 

the defining of clump centres, and what might be termed "sparse area 

centres", and then the testing of hypotheses about the clump centres, 

etc. For example one could test whether the clump centres foam a 

Poisson forest or not, or whether the trees around a clump centre are 

at a distance fron the clump centre, distributed radial normally, etc. 
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The spatial analysis of two-type point processes, is a 

wide open field. There is much scope (and need) for research into 

the relationships between species cohabiting in the plane. Indeed 

the general theory of two-dimensional bivariate point processes 

needs much attention, either through spectral theory or other probabilistic 

methods. However the theory of one-dimensional bivariate point 

processes and the theory of two-dimensional univariate point processes, 

probably need to develop further beforehand. 

8 

4 
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