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ABSTRACT 

This thesis investigates the concept of mind as a control system using the "Society of 

Agents" metaphor. "Society of Agents" describes collective behaviours of simple 

and intelligent agents. "Society of Mind" is more than a collection of task-oriented 

and deliberative agents; it is a powerful concept for mind research and can benefit 

from the use of metacognition. The aim is to develop a self configurable 

computational model using the concept of metacognition. A six tiered SMCA 

(Society of Mind Cognitive Architecture) control model is designed that relies on a 

society of agents operating using metrics associated with the principles of artificial 

economics in animal cognition. This research investigates the concept of 

metacognition as a powerful catalyst for control, unify and self-reflection. 

Metacognition is used on BDI models with respect to planning, reasoning, decision 

making, self reflection, problem solving, learning and the general process of 

cognition to improve performance. 

One perspective on how to develop metacognition in a SMCA model is based on the 

differentiation between metacognitive strategies and metacomponents or 

metacognitive aids. Metacognitive strategies denote activities such as 

metacomphrension (remedial action) and metamanagement (self management) and 

schema training (meaning full learning over cognitive structures). Metacomponents 

are aids for the representation of thoughts. To develop an efficient, intelligent and 

optimal agent through the use of metacognition requires the design of a multiple 

layered control model which includes simple to complex levels of agent action and 

behaviours. This SMCA model has designed and implemented for six layers which 

includes reflexive, reactive, deliberative (BDI), learning (Q-Ieamer), metacontrol and 

metacognition layers. 
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Chapter 1 Introduction 

1.1 Introduction to the Research 

Artificial Intelligence originated with the desire to develop artificial minds capable of 

performing or behaving like an animal or person. It has developed in a number of 

directions including intelligent systems, reasoning, knowledge representation, and 

robotics. Cognitive Science originated in the desire to integrate expertise in the 

traditionally separate disciplines of computer science, psychology and philosophy, in 

order to advance our insight into cognitive tasks like problem solving, decision making, 

reasoning, perception, language, memory, learning etc. One perspective on how to do 

this is to develop cognitive architectures. These cognitive architectures are also called 

artificial mind models. 

Cognitive architectures are designed to be capable of performing certain behaviours and 

functions based on our understanding of human and non human minds. Important issues 

in developing cognitive architectures include task effectiveness, goal achievement, and 

the ability to perform well in novel situations. There are many examples of developed 

cognitive architectures. Those relevant to this research include SOAR (Newell, 1990), 
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ACT-R (Anderson, 1993), CRIBB (Bartsch and Wellman, 1989), EM-ONE (Singh, 

2005), CogAff (Sloman, 2001) and CAMAL (Davis, 2002). Any cognitive or intelligent 

or robotic architecture can be viewed as a single agent or a large collection of agents. 

Intelligent behaviour can be viewed as a combination of more simple behaviours. 

Imagine a simple reactive agent that can only move towards and collect a resource in 

the environment. Building an optimal or metacognition agent cannot be done with a 

single simple agent, as it needs to interact or take a help from other agents. Hence 

developing SMCA (Society of Mind Cognitive Architecture) can be viewed from the 

perspective of Minsky (1985), which leads to the development of many different types 

of simple agents, with different behaviours. Metacognition is useful for framing the 

constraints for this swarm intelligence. Swarm intelligence requires the inclusion of a 

mathematical theory of how the group of agents work together to achieve a common 

goal. Swarm intelligence uses different mathematical algorithms so as to cover all 

processing and functioning associated with the adopted architecture or mind model 

(Bedau, 2003, Martinoli, 2001) 

"The Society of Mind is more than just collection of theorems. It is a powerful catalyst 

for Thinking about Thinking" (Singh, 2003). 

Hence "Society of Mind" needs a catalyst like metacognition on top of the society of 

agents. Metacognition is a relatively new buzz word in cognitive theory. Metacognition 

is defined as thinking about thinking and can be viewed in two ways: 

Monitoring a group of agents in an intelligent or cognitive or robotic architecture (i.e. 

self reflection) 

Making changes by adapting effective strategies in that group of agents. 
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Metacontrol task is a part of metacognition. Metacognition agent is designed to testbed 

based on metacognitive strategies, such as metacomprehension (remedial action), self 

regulation (metamanagement) and schema training (meaningful learning). Metacognitive 

aids or metacomponents are used for the representation of thoughts (Zalta, 2005, 

Adkins, 2004), that can be made with the help of some aids such as: (1 )using an 

abstraction, metasyntactic variable (matching variables) or metacomponents and (2) 

goal setting variables such as perceptual range, affect, norms and higher level rules are 

metacomponents. The term "norm" is an interdisciplinary term, and can be used to refer 

to a standard principle or a model used for a right action. The executive processes that 

controls the other cognitive components are responsible for "figuring out how to do a 

particular task or set of tasks, and then making sure that the task or set of tasks are done 

correctly". Metacomponents affects on the agent behaviour from a sense of what is 

important instead of what to do. Metacognition agents follow well aligned norms, 

perceptual range, metarules, and learning and affect values. A well driven agent will 

maximize its performance as a consequence of learning to maximize its own reward. 

The approach taken addresses these issues through the design and implementation of a 

model of mind building on the "Society of Agents" metaphor with different behaviours 

and capabilities encapsulated as micro-agents within an encompassing framework. For 

example the implemented Society of Mind Cognitive Architecture (SMCA) has 

reflexive (six behaviours), reactive (eight behaviours), deliberative (fifteen behaviours), 

perceptual (nineteen behaviours), learning (fifteen behaviours, fifteen agents), 

metacontrol (thirty behaviours, one agent) and metacognitive (seventy seven 

behaviours) agents. Indeed, from an extreme perspective in this distributed model of 

mind is designed from combinations of reflexive, reactive, BDI (Belief, Desire, and 

Intention) agents (deliberative), perceptual, learner (Q learning), metacontrol, and 
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metacognitive agents. Agent behaviours can be analysed using many different metrics. 

The major metrics are metabolic activity, competition and social interaction with respect 

to environment and microeconomics. Application of economics on artificial life to 

watch adaptive behaviours. This follows the microeconomic regularities such as cost 

and utility. Testbeds and benchmarks are mainly using for simulating, comparing 

architectures and outcomes in the field of robotics or cognitive architectures. Pfeiffer 

(1988) describes the fungus eater concept as a testbed for simulating models in emotion 

psychology. The fungus world environment allows the principles and behaviours of a 

robot or simulated animal or any artificial mind simulation to be monitored, measured 

and compared (Pfeifer, 1996). This research explores metacontrol and metacognition 

mechanisms in developing optimal agents for the fungus world testbed. 

1.2 Research Questions 

This research project addresses issues associated with the development of a SMCA 

distributed model of mind, using the "Society of Mind" approach and in doing so 

impacts on the following questions. 

What is SMCA? What are the principles used for designing a SMCA? 

What is the difference between reflexive, reactive, deliberative, learning, metacontrol 

and metacognition level processes in a Society of Mind cognitive architecture? 

What are the different parts of meta cognition? How this concept fits with SMCA? 

What are BDI models? How can BDI models plan in different circumstances in SMCA? 

What are the metrics used for measuring a performance of agents in SMCA? 

4 



The above key questions are raised with the intention of providing solutions or at least 

some steps or progress towards answers. These questions are answered in the chapters 

of this thesis. 

1.3 Roadmap of Thesis 

The chapters of this thesis present along with answering the above given questions, 

material related to these research questions including research background, theoretical 

and design principles and results from experimenting with a society of agents in a 

fungus world environment. Each chapter concludes with a summary highlighting the 

main points of that chapter. 

Chapter One gives an introduction to the project, including an overview of the problem 

area, research questions, the background of the study, a statement of the problem, the 

purpose of the study and the chapter organization. 

Chapter Two discusses the nature of cognition, the qualities of natural and artificial 

minds, cognitive science and approaches on the study of Mind. It also discusses the use 

of principles of natural minds in artificial minds such as cost function, goal directed 

behaviour and learning. 

Chapter Three discusses models of artificial minds and different types of cognitive 

architectures, with a specific focus on one developing cognitive architecture. Cognitive 

architectures discussed include SOAR (Newell, 1990), ACT -R (Anderson, 1993), 

CRIBB (Bartech and Wellman, 1989), EM-ONE (Singh, 2005), CogAff (Sloman, 2001) 

and CAMAL (Davis, 2002). It raises issues related to the design of a testbed with which 

to conduct experiments. 
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Chapter Four discusses metacognition, and its relation to metacontrol and learning. This 

chapter also provides ideas of designing a metacognition on specific cognitive 

architecture. This Chapter also discusses specific interest on the topics of execution 

engine and expertise model, Minsky A, B & C-Brain, generic architecture for 

metacognition and metacomponents. 

Chapter Five discusses the definition for society of agents, artificial agents and different 

types of agents, with a specific focus on developing new society of agents. Previous 

work relevant to this research includes Brustoloni (1991), Sloman (2002), Franklin 

(1997) and Minsky (1985). This Chapter also discusses the Minsky's Society of Mind 

model with focus to the newly developing SMCA (Society of Mind Cognitive 

Architecture ). 

Chapter Six discusses the newly developing SMCA (Society of Mind Cognitive 

Architecture). The design part includes reflexive, reactive, deliberative level agents or 

BDI models, general structure of the BDI model and metacognition agent general 

structure. The design also includes metacomponents such as affect, higher level rules for 

resource set, norms and meaningful learning. 

Chapter Seven describes the design of the fungus world testbed and development 

undertaken enabling experimental setup. It gives experimental setup with parameters for 

fungus world environment such as: replenish rates, agent performance parameters, 

output parameters, society of agent's setup in the experiment and general structure of 

the fungus world simulation. 

Chapter Eight discusses the results for three different experimental cases, with analysis, 

discussions and summary. Three sets of experimental combinations were created: (1) 

reactive versus BDI agents; (2) experiments on BDl models; and (2) cognition, BDI, 
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and metacontrol versus metacognition agents. The analysis of experimentl explains 

how the society of agents behaves in different combinations. The experiment2 on BDI 

agents follow the principles such as cost function, optimal decision making and decision 

boundary variables. Experiment3 provides a comparison between cognition and 

metacognition agents. This explains through result graphs, how the concept of 

metacognition improves the performance through unification. The experiment also 

demonstrates how the cognition and metacognition agents demonstrate the "Society of 

Mind" concept. 

Chapter Nine concludes the thesis with discussions of the research work. This chapter 

presents research contributions to the field of artificial intelligence and cognitive 

sciences in terms of the research objectives established in the first chapter. This Chapter 

also discusses certain limitations and future research directions. 
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Chapter 2 Artificial Minds 

2.1 Origin of the Study of Mind 

How does a baby learn to recognize its parents? What is the mind? Are artificial minds 

possible? These are questions that cognitive science and artificial intelligence can 

address. The AI era started with John McCarthy, who named "Artificial Intelligence" as 

the new topic for the 1956 Dartmouth conference (Newell, 1957). At the same 

conference, Alan Newell, J.C Shaw, and Herbert Simon demonstrated the first AI 

programme (Logic Theorist) that could construct logical proofs from a given set of 

premises. This event has been interpreted as the first example of a machine performing 

a cognitive task. A cognitive task is considered to be an element of the mind. The mind 

is a core concept for the field of cognitive science. 

Artificial Intelligence includes many aspirations. Some researchers simply want 

machines to do the various sorts of things that people call intelligence. Others hope to 

understand what enables people to do such things. Some researchers want to simplify 

programming, wondering how to build machines that grow and improve themselves by 

learning from experience. Why can we not simply explain what we want, and then let 
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our machines do experiments, read some books, or go to school, which is the way that 

people learn things. According to Minsky (1990), machines today do not do such things. 

2.2 Cognitive Science 

Cognition is defined as a mental process or activity that involves the acquisition, 

storage, retrieval, and use of knowledge. The mental processes include perception, 

memory, imagery, language, problem solving, reasoning, and decision making (Zalta, 

2005; Wilson & Kiel, 1999). Cognitive science is the interdisciplinary study of the mind 

and the nature of intelligence. Cognitive science is a self-identified academic discipline. 

It includes different backgrounds, such as philosophy, psychology, artificial 

intelligence, neuroscIence, mathematics, computer SCIence, linguistics, and 

anthropology. Scholars may come from a wide range of disciplines, but they share a 

common interest, that of the mind (Wilson & Kiel, 1999). Stillings (1995) defines 

cognitive science as the "The science of mind". 

2.3 Definition of Mind 

Minsky (1985) defines mind as the functioning of the brain. Franklin (1995) defines 

mind as a mechanism of the brain. Minsky says "minds are just what brains do". 

Franklin (1995) argues that the foundation of exploring a mechanism of mind can be 

done through the possibility of artificial minds. The implemented artificial minds are 

man made systems that exhibit behavioural and characteristics of natural living or 

natural minds. Examples of such artificial minds are briefly discussed in the next 

chapter. 
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2.4 Reasons for Studying Artificial minds 

Why do we need to study artificial minds? What is the need for studying nonhuman 

minds such as animals or robots? In "Artificial Minds", Franklin (1995) gave three 

important reasons for studying artificial minds. 

• Questions related to the nature of intelligence in human and nonhuman minds 

are inherently fascinating. The research on artificial minds may well throw a 

light on these questions. 

• To better understand upcoming man machine mechanisms. 

• To build better robots or intelligent machines and to work with them more 

effectively. 

Stillings (1995) also gives some important reasons for simulating human and nonhuman 

minds in the form of artificial minds. 

• Cognitive science theories are complicated and sometimes impossible to 

understand without simulating and observing in software. 

• Comparing people with different capabilities and their cognitive processes via 

simulation. These different cognitive capabilities are applied on arts and science 

to give rise to diverse practical applications. 

2.5 Artificial Life 

Artificial life aims to understand the essential and general principles or properties of 

natural living systems by synthesizing life like behaviours in software, hardware and 

biochemical systems. The artificial life area overlaps with cognitive science, artificial 

intelligence and machine learning. Artificial life originated with Neumann (1946). He 

designed computational universal living systems for understanding living properties like 
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self reproduction and complex adaptive structures. Artificial life 's can be classified into 

three different synthetic methods (Bedau, 2003). 

• 

• 

• 

Soft artificial lives:-This creates software In the form of purely digital 

constructions that exhibits a life like behaviours. 

'Hard artificial life's': - This creates a hardware implementations to exhibit a life 

like behaviours. 

'Wet artificial life's':-These are synthesized living systems and use fluid 

biochemical substances. 

The behaviours of a life can be analysed using many different metrics. The major 

metrics are metabolic activity, competition and social interaction (Bedau, 2003). The 

conversion from a life to artificial system can be done in three stages 

• 

• 

• 

Understanding fundamental properties of the living systems. 

Simulating a basic unicellular organism and their entire life cycle, and 

Finally, designing the rules and symbols for governing behaviour by interacting 

with an environment. 

The mind can be considered to demonstrate the principles and emergent intelligence 

associated with artificial life. The society of agents approach exhibits a 'Swarm 

Intelligence'. The swarm intelligence can be described using mathematical theorems, 

and based on a group of agents working towards to achieve a common goal (Bedau, 

2003). Economic theory can be applied to artificial life in order to analyse and model 

adaptive or intelligent behaviours. The money or energy spent in such a way is the 

utility to be maximized. This follows the economic concepts such as price (cost) and 

utility (Bedau, 2003). 
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2.6 Approaches on Mind 

The mind can be considered as a dynamic structure of asynchronous data, knowledge 

execution systems, and rich infonnation control states. 

Topdown 

Synthetic 

sCIence 

Figure 2.1 Perspectives of Mind. 

According to Franklin (1995), the mind can be viewed in four different ways: top-down; 

bottom-up; analytic; and synthetic. Franklin suggested theses approaches can be based 

on four disciplines, as given in Figure 2.1. The four approaches towards the study of the 

mind are 

• First, psychology considers a top-down analytic approach and tries to understand 

existing minds. 

• Secondly, Artificial Intelligence considers a top-down synthetic approach and 

tries to build a mind based on synthetic mechanism. 

• Thirdly, neuroscience considers a bottom-up analytic approach and tries to build 

a mind based on the activity of a neuron or group of neurons. 
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• Fourthly, the mechanism of the mind considers a bottom-up synthetic approach 

and tries to build a mind based on the mechanisms that represent properties of 

artificial agents. 

Franklin approaches clearly divides the study of the mind into four perspectives. 

Franklin (1995) suggests that, the final approach is the best approach to build artificial 

minds. 

2.7 Principles of Natural Minds 

Animal cognition is defined as the mental process, or activity, or mental capabilities of 

an animal. This has been developed from different disciplines like ethnology, 

behavioural ecology, and evolutionary psychology. Animal psychology includes 

experiments on the intelligence of animals. This is one of the simplest ways of 

exploring the complex behaviour of human beings. Most cognitive scientists are 

interested in comparing human cognition with machine cognitions, only few are 

interested in animal cognition (McFarland, 1993; Bosser, 1993; Berger, 1980). 

The common biological origin of animal and human cognition suggests that there is a 

great resemblance in animal and human cognition, rather than the resemblance between 

machine and human cognition. Animal cognition is similar to human cognition, and 

follows, more or less, human cognitive psychology. According to Berger (1980), 

animals are both like and unlike humans. Children sometimes behave like animals, 

through their reflexive behaviours way. Examples include feeding and training children, 

and so on. 

The behaviour of an animal has consequences which depend on situation, energy use 

and other physiological commodities such as water, weather etc. The important 
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consequence of behaviour is energy expenditure. Such expenditure must be taken into 

account, because it influences the animal state. According to Thorndike (1911), the 

behaviour of animals is predictable and follows the uniformity of nature. He says that 

"any mind will produce the same effect, when it is in the same situation." Similarly, an 

animal produces the same response, and if the same response is produced on two 

occasions, then the animal behaviour for that response must changes. The law of instinct 

or original behaviour is that an animal in any situation, apart from learning, responds by 

its inherited nature. 

Animal behaviour is not simply a matter of cognition; rather it is product of the 

behavioural capacity and the environmental circumstances (McFarland, 1993; Bosser, 

1993).Charles Darwin in his book "Descent of Man" (1871), argued that animals 

possess some power of reasoning. This research is concerned with the principles 

whereby an animal is competent for its resources, and so demonstrates intelligent 

behaviour (McFarland, 1993; Bosser, 1993). 

2.8 Rational Behavior in Animals 

Theories of rational behaviour are commonly use metaphors from the disciplines of 

economics, statistics and cognitive science. These theories mainly focus on state and 

action of an animal under certain circumstances. There are four basic requirements for 

rational behaviour (McFarland, 1993; Bosser, 1993). 

2.8.1 Incompatibility 

There are some tasks an animal or person or robot cannot perform simultaneously. For 

example a robot can not move up and down or left and right at the same time. 
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2.8.2 Common currency 

If the robot or animal cannot perform two activities simultaneously, they must choose 

among available resources on the basis of some index or potential to optimise their 

performance. The potential can be measured across different activities using the same 

unit or currency. 

2.8.3 Consistency 

A person, robot or animal makes a particular choice when it is in the particular state. It 

will make the same choice when it is next in the same state. This follows the assumption 

that a choice from a set of incompatible activities of a robot a person or animals are 

uniquely determined by the state. 

2.8.4 Transitivity 

A robot chooses among potential activities on the basis of some common currency. The 

robot can choose potential activity A over potential activity B (A > B) and potential 

activity B over C (B > C), how will it choose between A and C? If the robot chooses 

A>B>C it is said to be transitive. If the robot chooses A > B, B > C and C > A then its 

choices would be intransitive (McFarland, 1993; Bosser, 1993).The rational agent 

searches for feasible action. If there is no feasible action is found, then it chooses which 

is preferable. A rational agent consistently makes the same choice when in the same 

state and when given the same set of options. The rational decision maker maximizes a 

quantity, usually called utility (McFarland, 1993; Bosser, 1993). 
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2.9 Principles of Minds. 

2.9.1 Optimal Behaviours in Artificial Minds 

Animal behaviour is a trade off between the native courses of action, i.e. physiological, 

and goal oriented behaviour. Animal is engaged with activities to optimize its pattern of 

behaviour with respect to the use of energy and time. If the conditions are relevant to 

two or more activities simultaneously, it chooses the most optimal action among them 

in terms of its innate and learnt decision boundaries. The mechanisms of designing a 

machine are different from the animal's kingdom, but the principles remain the same 

(McFarland, 1993; Bosser, 1993). 

2.9.2 Goal directed Behaviour in artificial minds 

As shown in Figure 2.2, goal directed behaviour in artificial minds (a human, animal or 

machine) involves representation of the goal to be achieved. This means that behaviour 

can be actively controlled by internally represented states. Goal directed behaviour aims 

to minimize the difference between the "desired" state of affairs and the actual state of 

affairs. This difference is called as error in the behaviour. This can be corrected by 

using different factors. The design of an animal is genetically based and product of 

natural selection. But the robot is based on human engineering principles. However, the 

principles of their function and goal achievement can be similar (McFarland, 1993; 

Bosser, 1993). 
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Compare 
Desired state Actual state Behaviour 

or Goal with Goal Controller 
state 

Feedback 

Figure 2.2 Goal directed Behaviour 

2.9.3 Cost of Behaviour 

The decision making level in animals can be defined in terms of cost functions and 

utility behaviours - the micro economic level. Cost functions and utility behaviour in 

animals operate in such a way that a utility (for example, energy) is maximized or 

minimized. Let us consider an example as brick laying robot. Initially the robot has 

stored some sort of energy. The building a bricks is an energy consuming process. The 

robot monitors its energy level and recharges its energy level when low. This principle 

relies on some boundary condition and the same is true for animals. The boundary or 

hunger condition can be varied and sometimes the variable must be nearer the risk of 

death. It is dangerous to allow hunger condition level if the food supply is not 

guaranteed (McFarland, 1993; Bosser, 1993). There are three aspects for calculating a 

cost. 

Cost of being in a particular state, 

Cost to performing an activity; 

Cost of changing the activity. 
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The combination of physiological and perceptual state of the animal can be represented 

as a motivational state. It includes the animal's activities and the animal's present 

behaviour. The motivation of an animal depends on the physiological state (ecological 

properties) and perception of the external world, as well as the consequence of its 

current behaviour. Cost can be measured by considering the fitness of an animal over a 

period of time, where fitness is defined in terms of future expected reproductive success 

after this period. The cost function deals with real risks, real costs and the benefits. The 

utility function is the inverse function of the goal function in ethology. Animal 

behaviour is rational and behaves optimally with respect to this utility. 

2.9.4 Decision Variables 

A decision-making of a person, animal or robot can be described as an activity whereby 

decision variables are compared to decision boundaries. From the economic point of 

view, the decision-making unit is the cost or performance. Decision-making with 

respect to use of a cost and utility function depends on given thresholds, decision 

variables and decision boundaries. 

Cognitive modelling designs implementation mainly based on the analogies between 

animals and products. The product may be food, benefit (goal) and physiological aspect. 

We can also analyse life cycle of the product and life cycle of the animal. A decision of 

a robot, a person or animal is simply the process by which the decision variables are 

changed. 
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2.10 Animal and Finite-state automata 

A finite state automation behaves like a simple mathematical animal, that can be 

regarded as a discrete- time system with finite input and output sets. This responds to 

only a finite number of different stimuli (the input set or alphabet) and output alphabets. 

Automata theory is applied in mathematics and computer science. Automata theory 

applied to animal behaviour uses both neural networks and learning machines 

(McFarland, 1993; Bosser, 1993). 

2.11 Learning in Animals 

Learning is a part of development. It is a result of adaptation to accidental or uncertain 

circumstance. When an animal learns environmental situations, it undergoes permanent 

change. We expect that learning should, in general, bring beneficial results. Animal 

learning is similar to reinforcement learning in machine learning or robotics. 

2.12 Summary 

This chapter introduces the concept of mind and its relationship with the field of 

cognitive science. This chapter gives reasons for the simulation and the different 

approaches and principles of artificial minds. Several researchers give different 

definitions for mind. For example, Minsky argues that "minds are just what brains do", 

or functioning of the brain. Franklin (1995) argues that mind is a mechanism of the 

brain. The principles of artificial minds such as cost function, goal directed behaviour, 

decision making, and learning are introduced. 
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McFarland (1993) and Bosser (1993) argue that behaviour in animals can be described 

in terms of cost function and utility. Money or energy is spent in such a way that utility 

can be maximized or minimized. The animals cost function and utility behaviour can 

also be described at the microeconomic level. They argue that animal behaviour is a 

trade-off between the native courses of action. The animals will engage with the 

activities to optimize its pattern of behaviour with respect to the use of energy and time. 

The decision-making action always follows the micro economic level of cost and utility 

function. 
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Chapter 3 Cognitive Architectures 

3.1 Introduction 

Cognitive architecture refers to the design and organization of mind, and provides the 

means for the integration of cognitive abilities (Langley, 1994). Young (2001) defines a 

cognitive architecture as an embodiment of the scientific hypothesis of human and 

nonhuman cognition. Different types of cognitive architectures can be designed, 

implemented and applied to various tasks. Cognitive architectures are designed to be 

capable of performing certain behaviours and functions based on our understanding of 

human and nonhuman minds. Important issues in developing cognitive architectures 

include task effectiveness, goal achievement, and the ability to perform well in novel 

situations. 

The evaluation of cognitive architectures has always been challenging. Several common 

concepts and different methodologies have been applied on developing new 

architectures. There are many examples of developed cognitive architectures developed 

for different purpose. Different cognitive architectures and paradigms can be said to be 

modelling different aspects of cognition, different aims, with different metaphors, and 
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from different contexts. To develop a better and sophisticated cognitive architecture, 

researchers need to understand: (l) the sufficient description of theoretical, design and 

implementation level of different architectures and; (2) the missing, common and 

generalised factors of relevant cognitive architectures. 

This chapter discusses case study on different types of cognitive architectures, with a 

specific focus on developing and extending a new cognitive model, for simulating 

artificial minds using principles from the study of animal cognition. Those relevant to 

this research include general overview of cognitive architecture (Neumann, 1946), 

ACT-R (Anderson, 1993), SOAR (Newell, 1990), CRIBB (Bartsch and Wellman, 

1989), EM-ONE (Singh, 2005), CogAff (Sloman, 2001) and CAMAL (Davis, 2002). 

The newly developing Society of Mind Cognitive Architecture (SMCA) extends the 

CAMAL cognitive architecture with extra processing layers and a distributed model of 

mind. 

3.2 General Overview of Cognitive architecture 

Cognitive architectures are young branch of science, but some of the architectures and 

theories are old. For example the ancient Greeks and philosophers, like Aristotle in the 

5th century BC, invented syllogistic logic, the first formal deductive reasoning system 

(Buchanan, 2002). Basically, theories of cognitive architectures are divided into two 

classes. (1) First class, the computer is used to model a class of cognitive architecture 

similar to and inspired by the structure of human knowledge; (2) Second class of 

cognitive architecture is based on information processing theory. The information can 

be processed in a sequence of stages from an input to encoding the memory, storage, 

retrieval, and output. 
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A general overview of the basic Neumann cognitive architecture is shown in the Figure 

3.1 (Neumann, 1946). The first layer receives incoming signals as physical signals 

through perception. The storage of data, controlling, retrieving, and processing is 

performed in the next layer. Knowledge can be represented, for example, through the 

use of production systems using well defined principles for knowledge description. 

Production systems consist of a set of rules and special class of rule-based system, 

whose architecture is restricted to fit assumptions about mental structure. In GPS 

(General Problem Solver) (Newell, 1957) production systems are used to represent 

information in memory and reasoning strategies are used. Production systems are a 

fundamental concept for representation in much cognitive architecture. The regulatory 

system works as controller for the application of these set of rules. The processed data 

can be stored in working memory, and passed into permanent memory. 

Pure cognitive 
OJtput 

Physical system 
movement 

signals and sound 
Memory-Iangauge-
process-thought 

Regulatory 
system 

Figure 3.1 Overview of a Cognitive Architecture. 

The computational theory of mind claims that mind is like computer, and some 

functional equivalence to Turing machines. Pylyshyn (1999) suggested that, the task of 

cognitive science is to give details about mental computation mechanisms, and to 

determine the kind of computer human mind belongs. The cognitive science determines 
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the cognitive architecture of mind. Cognitive architectures are analogous to computer 

architectures, and have similar parts. 

3.3 Adaptive Control of Thought Rational (ACT-R) 

ACT-R stands for Adaptive Control of Thought Rational, or alternatively Atomic 

Components of Thought - Rational (Anderson, 1976; Ritter and Shiskowskia, 2003). 

ACT-R is a combined product of Anderson(l976), Bower's existing model of 

declarative memory(Anderson and Bower, 1973), and production system based on 

Newell's model (l973b) .The ACT-R theory was presented in 1983 Anderson's "The 

Architecture of Cognition". 

Psychological experirrents 

Human Cognition 

ACT-R Assumption on 
particular 

ACT-RMODa 

Figure 3.2 ACT- R Structure 

Researchers working on ACT -R strive to understand how people organize knowledge, 

represent and produce intelligent behaviour. This is called as Human-Computer 
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Interface (HCI). The embodiment of human cognition factors are modelled for Human­

Computer Interface. HCl l includes the human behaviour, and the hidden states behind 

the result. HCI combines the advanced work with perceptual recognition, machine 

learning, affective computing, computational modelling, etc. Many researchers in the 

area of HCI are working on cognitive architectures. For example, ACT-R and SOAR 

are the cognitive architectures which are used to implement more dynamic and complex 

HCI problems (Duric and Gray, 2002). HCI is not just concern with 'ed' designing 

regular interfaces. Some applications require interfaces which give a virtual human feel 

on interacting with those machines. This implies that interfaces must exhibit the 

intelligence, which is built into the applications. For example, an airline company wants 

to employ a pilot, to test his ability. He can not use a real aircraft. The poor performance 

can result into fatal accidents and it is also very expensive to use real aircraft. In this 

scenario, the pilot is trained with a simulated application. The designed interface gives a 

feel of real world environment. Here the interface works like an experienced pilot, and it 

generates situations through simulations where the pilot has to make decisions (Byrne, 

2005). 

ACT-R is designed for modelling individual experiments. ACT-R is the most popular 

cognitive architecture. The popularity is due to ACT -R being theoretically well 

grounded, and this is allowed researchers to produce various cognitive phenomena's. 

ACT -R (Figure 3.2) model can be developed based on the results of experiments done 

by psychologists on human cognition. 

IHere HCI means Human Computer Interface and not the more common meaning of 

Human Computer Interaction 
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ACT -R has a complex cognition structure. A fundamental characteristic of ACT-R is 

that uses a production system theory. Production system theory uses a production rules 

for representing human knowledge. The basic premise of ACT-R is a cognitive task. 

The cognitive tasks are achieved by combining production rules and applying on 

memory (Anderson, 1993; Budiu, 1998).There are two different categories of long-term 

memories: (1) procedural and (2) declarative memory. The procedural memory stored 

with human knowledge. For example, the knowledge of swimming, "2 * 3 = 6", drive a 

car, speak English, etc. The declarative knowledge is represented in the ACT -R units 

called chunks. The chunk encodes the information. Each chunk consists of several slots 

or variables. 

The ACT -R designers suggested that, average slot should consist of three to four slots, 

and one must have an ISA slot. The ISA slot determines the ontological type of a chunk 

token corresponds. For example, john841 is a person's chunk. Miller's "magic number" 

argues that chunk should not have more than seven slots. It can be plus or minus two 

slots (Miller, 1956). Chunks have primarily two sources: (1) perceived objects in the 

environment; and (2) recorded solutions for the previously solved problems. The 

production rules specify when and how to retrieve the chunks to solve a problems. The 

ISA value of chunk plays an important role, such as matching the conditions in the 

production. The new production rules can be generating from chunks in memory called 

production compilation processes. The chunks are represented as follows [Chunk-

Name: ISA Chunk type; slotl-label slot1-value; etc]. For example, Fact 2 * 3 = 6, 

knowledge can be encoded as follows [Fact 2 * 3; multiplication-fact; multiplicandl 

two; multiplicand2 three; product six]. 

ACT-R is applied on wide range of human cognitive tasks including knowledge 

compilation, problem solving, education, controlling of perceptions, etc. For example, 
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solving Hanoi puzzle (tower of Hanoi), learning by analogy, language comprehension, 

aircraft controlling, etc. ACT -R system controls a mobile robot that interacts with 

human in building an environments, and obstacles. ACT -R allows much simpler 

programs for rapid construction of intelligent systems (Trafton, 2005). There are more 

than five hundred different scientific publications are published on above applications. 

ACT-R has undergone different versions. ACT-R 4.0 is the first version, ACT-R 5.0 

and ACT-RIPM (Byrne and Anderson, 2001) are the next versions. As this research 

continues, ACT -R evolves closer to the system that can perform a full range of human 

tasks like memory, learning, problem solving, and decision making. Finally capturing in 

great detail how we perceive, think about, and act on the world(Anderson, 1996; 

Anderson, John, Just, Carpenter, Kieras and Meyer, 1995; Rutledge-Taylor, 2004). 

Despite this, ACT-R has some errors and limitations: (1) ACT-R need to update 

millions of chunks for each execution cycle or fire (chunk problem); and (2) ACT-R 

productions fire serial, and it requires minimum fifty milliseconds for each fire. So, it 

takes hour's together to complete the firing, and requires thousands of productions to its 

knowledge base (execution delay). ACT-R has certain limitations (Hochstein, 2002): (1) 

the basic ACT-R model is not very much applicable to HCI, but enhancements like 

ACT-RiPM addresses this issues. (2) ACT-R is not sophisticated for larger problems; it 

is only useful for small set of applications (Hochstein (2002). 

3.4 State Operator And Result (SOAR) 

SOAR cognitive architecture is based on the computational theory of human cognition. 

This architecture follows the multiple constraints and computational theories of mind 

(Anderson and Lebiere, 1998; Newell, 1990). SOAR was introduced by Allen Newell 
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and two of his graduate students, John Laird and Paul Rosenbloom, in 1980 (Newell, 

1957). SOAR addresses sufficient description of theoretical, design, functional and 

implementation issues of human minds. SOAR is well organized to produce a general 

intelligence. SOAR is considered as a symbolic artificial intelligence mechanism for 

understanding and simulating human mind. SOAR uses physical symbol system 

hypothesis for the best way to implement flexible and intelligent behaviours, by 

manipulating and composing symbols. In parallel to ACT -R, Newell developed SOAR 

to handle full range of human capabilities. The views of SOAR cognition are tied with 

psychological theory, and it is expressed in Newell's Unified Theory of Cognition 

(Newell, 1990). SOAR as a cognitive architecture specify fixed set of a process, 

memory and control structure. SOAR cognitive model exhibits flexible and goal driven 

behaviour. The knowledge of the model is continuously enhanced by learning. 

SOAR cognitive architecture is an example of software as theorem for models of mind 

unification. In this theorem, cognitive capabilities like (1) stimulus and response 

(perception); (2) memory and learning; (3) problem solving; and (4) language 

capabilities are unified. Newell (1990) defines "Unification" as a programmed 

extension of a single piece of "software architecture as theorem". A unified theory will 

unify the existing understandings of cognitions. There are different reasons for unifying 

the theories of cognition. Combining a few cognitions through unification may leads to 

required behaviour. Unification is an aim of the science to demonstrate cognitive 

capabilities. The major areas covered by unified theory of cognition are given below: 

perception, memory, problem solving, decision making, routine action, learning, 

language, motivations, emotion, motor behaviour, imaging, and dreaming (Newell, 

1990). 
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As Figure 3.3 depicts, SOAR is classified into two types of memory: (1) long term 

memory or procedural memory or production memory; and (2) short term or declarative 

memory. SOAR's long term memory is based on production system theory, where the 

productions are stored. SOAR's knowledge of the environment is symbolically encoded 

in production rules, and stored in a production memory. 

Figure 3.3 Production Rules in SOAR 

The productions are in the form of IF <condition> THEN <action> format. These are 

fine grained and independent in nature. The working memory is loaded with initial state 

and the operators that are desired for the current state. The control process updates the 

content of the working memory by firing and matching a production from the search 

space by using the appropriate operator. This takes the working memory to the next 

state where the next matching productions are fired and this process continues until the 

goal state is reached or there are no matching productions available in the search space. 

The mapping of a production in SOAR model takes approximately lOms. The SOAR's 

productions have a set of conditions, which are patterns for matching working memory 

and actions to perform when production fires. The actions are elements of working 
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memory. The elements are a set of attribute value pairs of an object. The object has 

goal, state, operator and problem space. SOAR has a two phases decision cycle. 

Figure 3.4 SOAR's Decision Cycle 

SOAR's decision cycle impasses are repeated until the goal is reached. SOAR's 

decision phase has four impasses: (1) "tie impasse", where two or more elements have 

equal preference; (2) "no-change impasse", where no rules match; (3) "conflict 

impasses", where there is two or more preferences claim; and (4) "reject impasses", 

where a preference in working memory is rejected. These four impasses are done with 

SOAR's execution cycle. The execution cycle (Figure 3.4) consists of seven operations 

for pattern matching: input, elaborate state, propose operators, compare operator, 

selecting an operator, applying an operator, and output. 

For example, to stop a car the operator's are represented as follows :(1) propose 

operator: If (colour, red) then propose to stop car; and (2) apply operator: If operator 

proposed to stop car, then stop car. SOAR has a built-in learning mechanism called 

chunking (Waldrop, 1988). This mechanism is using for to create a new production by 

storing an output of impasses obtained from the decision cycle. For example, during a 

decision cycle, SOAR does not understand which operator to select. Then it creates a 

sub-goal to choose an operator. Once, sub-goal selects the operator, the sub-goal goes 

away. This goal is stored in a chunk. The next time, if the SOAR faces a same problem, 

the same stored chunk is executed instead of re-solving a problem. 

SOAR adopts the problem space hypothesis to search in right direction that converges 

to the goal state by adopting the strategies of (i) knowledge-intensive processing and (ii) 
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knowledge-lean processing (Newell, 1990). The process of problem solving is a step by 

step procedure. For each step an appropriate operator must be selected. In the 

recognition phase all the productions that match the working memory content are fired 

by selecting the operators. In each step there may be many operators desired for the 

current state. In a decision phase the operators are sorted into preferences. Among these 

preferences the best operator must be selected. This leads to the goal state. Their may be 

possible that, two operators can be lead to the goal state. 

There may not be any operators that can be selected, in which case the system is not 

defined with what to do next. This state is called as an impasse. Each time an impasse is 

arising, the SOAR sets a sub goal to overcome the current impasse. The decision 

process sets another problem space by saving the current content of the working 

memory. This leads to the cascade of sub goals. SOAR continuously stores new 

knowledge in a long term memory based on the experienced learning mechanism. 

The learning technique adopted in SOAR is called as chunking. Learning adds a new 

production to the long term memory in an elaboration phase. A chunk is a by-product of 

an impasse. All the productions are fired. The operators applied to overcome an 

impasse are stored as a single entity called as chunk. This can be added to the 

procedural memory by creating an index. Chunking mechanism has two important 

functional properties: 

(1) Firstly, it provides a solution to the knowledge-indexing problem; and (2) secondly, 

chunking can be applied for all kinds of impasses. 

The problem solving activity under impasses are placed in a chunked production. 

Consider an example of where 'objectl' is a large and red colour. This information can 

be stored in a data chunk. This can be able to recall 'objectl' as a large and red colour. 

The trick for method of learning the recall rule is called as data chunking (Anderson and 
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Lebiere, 1998; Newell, 1990). The elaboration phase adds special information for the 

next action. This is called as preference. The preferences allow the architecture to 

specify an action that could be taken, and action actually taking. The preference always 

refers to a adopting some particular object in some position in a context stack, and takes 

one of the following values: (1) acceptable; (2) reject; (3) relative preference; (4) 

absolute preference and (5) indifferent. SOAR decision cycle impasses are repeated 

until the goal is reached. 

SOAR decision phase has four impasses: (1) "tie impasse", A scenario in which there is 

a collection of operators, which are desired and can not be discriminated. For example, 

the scenario of two or more elements having equal preferences; (2) "no-change 

impasse", a scenario in which there are no acceptable operators among the preferences, 

which can be applied for the current state. Here no rules match ;( 3) "conflict impasses", 

a situation where the decisions that can be made in the current state are contradicting 

with each other. There are two or more preferences claim; and (4) "reject impasses", a 

scenario in which the only preference is to backtrack by rejecting the previously made 

decision. Preferences in working memory are rej ected. These four impasses are done 

with SOAR execution cycle. These are chosen between multiple rules. 

Research into SOAR is still continuing, and researchers are adding new mechanisms 

(Figure 3.5) for SOAR to solve difficult problems. For example, reinforcement learning. 

SOAR has successfully mimicked other expert systems, such as Neomycin and 

Designer (Franklin, 1995), Robo-SOAR (Laird et al., 1989), etc. Some versions of 

SOAR have been developed within the SOAR architecture including a problem solving 

sentence processing, etc (Newell, 1990). 
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Figure 3.5 SOAR's Recent Version 

3.5 CRIBB 

The development of competency in reasoning about mental states has been studied 

intensively in the field of 'theory of mind'. CRIBB architecture (Children Reasoning 

about Intentions, Beliefs and Behaviour) (Bartsch and Wellman, 1989) is a cognitive 

model that simulates the knowledge and inference processes of a competent child 

solving theory of mind problems. The CRIBB model was designed to investigate the 

belief-desire reasoning model in young children (Wahl and Spada, 2000). 

Dennett (1978) explained a story about maxi and his chocolate in front of the group of 

children's. The boy named maxi puts a chocolate into a blue cup board. Later, his 

mother puts the chocolate into green cupboard while maxi is not present. When maxi 

returns, the children's are questioned where maxi can look for a chocolate. The 

children's group, which are lower than or equal to four years, has more false beliefs. 
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The age group in between four to SIX years older children's almost all answered 

correctly. 

The CRIBB architecture Figure 3.6 consists of representations (rectangular boxes), 

inference schemata (ellipse) and a consistency mechanism. The CRIBB simulation 

starts by giving propositions as an input. This proposition contains the children 

information received during the experimenting. 

Representations (rectangular boxes in Figure 3.6) fall into two main categories: primary 

and secondary representations. Primary representations are the system's own beliefs 

about the situation and, behaviour of person and the others facts about a physical world 

(Wahl and Spada, 2000). The secondary representations are the systems beliefs about 

mental states. This includes another person's perceptions, beliefs and intentions. This 

model states that a person's actions can be explained by his beliefs and desires, where 

beliefs can be derived from perceptions and previously held beliefs. 

CRIBB is given a proposition; a belief is inferred from it. The consistency of the belief 

is checked with the existing set of beliefs, and if no contradiction is found, then added to 

the belief set. The consistency mechanism detects and resolves contradictions in the 

system's belief set. Any beliefs deemed to be false become secondary representations 

(Davis and Lewis, 2003; Lewis 2004). Beliefs can be derived from perceptions and 

previously held beliefs. The CRIBB is given a proposition; a belief is inferred from it. 

The consistency of the belief is checked with the existing set of beliefs (Davis and 

Lewis, 2003). If no contradiction is found, and then it has added to the belief set. For 

example, The CRIBB B-D-I mechanism can be seen at the deliberative level. P, B, D 

and I are named as sets. The minimal "logic" symbol model of CRIBB (Bartsch and 
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wellman 1989; Wahl and Spada, 2000) with reasoning over perceptions (P)~ beliefs (B), 

desires (D) and intentions (1) as follows: 

P: = {r, s, q, p} 

B: = {l p} 

P ® B ~B' 

B':= {r, s, q, p} % the set B' contains the updated perception ofp results in the 

retraction of 1 p. 

B'®D~D' 

D'® I ~ I 

Where B is the existing belief set and P is the perception set, and where the new set 

B-'contains the system's new belief set with all possible contradictions resolved (Davis 

and Lewis, 2003). D is the desire set, and the new set D' contains the system's new 

desire set. I is the intention and I' is the new intention set. The inference schemata 

(ellipses in Figure 3.6) are based on the belief-desire reasoning scheme, while 

perception-belief inferences represent knowledge about the relationship between 

perception and belief. If a person perceives X, then the person believes X. Fact-time and 

belief-time inferences deal with facts and beliefs along a time scale. If a factlbelief is 

true at t 1, then that factlbelief is also true at t2, unless there is new information. 

Wahl and Spada (2000) claimed that CRIBB's theory of mind includes some 

commonsense-schemata that is essential for solving experimental tasks. For example, a 
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person searching a specific location of object or an item; and the schema represents that 

object or item can not be in two places. This example needs commonsense to reason. 

Figure 3.6 CRIBB Architecture 

Lewis claims that CRIBB can be extended by performing different models of emotions 

(Davis and Lewis, 2004). Affective-CRIBB is Lewis (2004) extended CRIBB model. 

The main purpose of the Affective-CRIBB model is to extend affective capabilities by 

including emotion as an essential part of CRIBB. According to Lewis (2003); emotion 

plays a fundamental role in variety of cognitive tasks, such as perception, learning and 

decision making. Lewis (2003) introduced affective affordances into the perception 

mechanisms by extending Gibson's (1986) theory of affordances. Gibson (1986), 

defines affordance is "something that refers to both the environment and the animal in a 

way to existing term does. It implies that complementary of the animal and the 

environment" . 
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As defined above Gibson's (1986), affordance is a fact of the environment, and also a 

fact of the observer in the environment. Gibson, claimed that affordance is something, 

that does not change when the need of observer changes. If the object is believed to be 

in the same place at the time interval, A-CRIBB helps to resolve this contradiction by 

maintaining a consistent belief set. CRIBB will create an affective correspondence 

(ACorr) value for each belief. This belief may be either true or false. ACorr value is 

attached for the each originated belief. If there is any contradiction, then it can be 

compared with the existing belief set. The minimal "logic" symbol model of A-CRIBB 

(Bartsch and Wellman 1989; Wahl and Spada, 2000; Davis and Lewis, 2004) with 

reasoning over perceptions (P), beliefs (B), desires (D), intentions (I) and Affect (A) as 

follows: 

P := {r, s, q, p} 

A: = {importance (high, p), importance (low, r), importance (low, l p)} % From the 

Affect model 

A® P~AP 

AP = {p, s, q, r} 

AP ® B ~ B' 

B':= {p, s, q, r} 

ACorr value used in A-CRIBB model are consist of dynamic values, and that can be 

increased or decreased according to given belief set either true or false. The affective 

response is linked to the drives of the system. A-CRIBB model is based on the goal 

oriented theories of emotion. This incorporates goal base, goal oriented and goal 
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achievement mechanisms. The goal achievement mechanism is a feedback for the sub 

system of A-CRIBB. A-CRIBB model consists of central monitoring system. This is 

responsible for communication between the sub-systems, and controlling the semantic 

messages. According to Lewis (2003), A-CRIBB model has certain limitations: (l) 

central monitoring system is not complete; and (2) the goal achievement with ACorr 

value is limited. 

3.6 Cognition and Mfect architecture (CogMf) 

CogAff is a generic cognitive architecture, and introduced by Sloman (2001). The main 

aim of the cognition and affect architecture is to understand the different types of 

architectures based on human and nonhuman (minds) mental states, such as intelligent 

capabilities, moods, emotions, beliefs, thoughts, and desires (Sloman, 2002). The 

Cognition and Affect project is concerned with understanding mechanisms of emotions, 

and to fit for cognitive models. 

According to Sloman, the 'Intelligence' like 'emotion' is a cluster concept. This varies 

with cluster of capabilities and no sharp boundaries. For example, animals (perhaps 

insects) consist of complex capabilities. Sloman argues that insect follows completely 

complex reactive mechanisms. Similarly an organism like a robot follows reactive or 

reactive with global alarm systems. Sloman claims that animals, humans and others 

have deliberative mechanisms. Because their capabilities are enormously rich. They can 

answer the questions like "what would happen if', "how shall I react know", etc. 

The CogAff architecture was designed to provide a framework for describing different 

kinds of architectures. Sloman mainly classified CogAff architecture into two divisions: 

(l) CogAff and (2) H-CogAff. The CogAff specifies the broader outer line of variety of 
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orgarusms or robots or machines functional roles and mechanisms. H-CogAff 

architecture is specific to human minds. CogAff is an abstract architecture that accepts 

perceptual information, processes, and action outputs in the environment. It is based on 

three-column architecture of perception, central processing and action. CogAff 

architecture (Figure 3.7), consists of three main layers: (1) reactive mechanisms; (2) 

deliberative reasoning and; (3) meta-management. These layers supports for different 

classes of emotions found in humans, animals and others. 

perception 
hierarchy 

META-MANAGEMENT 
(reflective) 
processes 

THE ENVIRONMENT 

action 
hierarchy 

Figure 3.7 CogAff architecture from (Sloman, 2001, 

2002). 

These layers consist of primary and secondary emotions. The reactive layer detects the 

objects in environment, executes, and then determines how to react. This layer interacts 

with the internal, external conditions. Then it produces internal or external state 

changes. The reactive system is very complex and powerful. This layer needs to store all 

the mechanisms of particular mind. For example, reactive children like behaviours. 
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Reactive layer includes a global alarm mechanism, which belongs to primary emotions. 

The deliberative layer supports for secondary emotions. Secondary emotions are 

semantically rich emotions. 

This layer is responsible for perception, planning, evaluation, allocation of resources, 

and decision making. This layer can learn the generalizations, and pass to the other 

layers. The metamanagement layer or reflective layer supervises, and controls the other 

layers of architecture, more efficiently. Sloman describes that; this layer can support and 

control the thoughts. For example, human emotions such as infatuation, humiliation, 

thrill etc. According to Sloman (2001), dividing the layers is left to the researchers. For 

example, Minsky (2001) divided metamangement layers into separate layers, and Davis 

(1996) separated reflexes from the reactive layer (Sloman, 2001). 

3.7 EM-ONE 

EM-ONE architecture originated from Marvin Minsky'S "emotion machine" 

architecture (Minsky, 2002). EM-ONE architecture was proposed by Minsky and his 

student Singh (2005), from MIT media lab. According to Singh, EM-ONE architecture 

is an example for its predecessors Minsky and Sloman, and hence he called Minsky­

Sloman Architecture. Main goal of EM-ONE cognitive architecture is to support 

human-level intelligence in systems. According to Singh his architecture refers to the 

"structure and arrangement of commonsense knowledge and processes". 

EM-ONE architecture for commonsense computing, that is capable of reflective 

reasoning about situations involving physical, social, and mental dimensions. EM-ONE 

architecture involves complex interactions among the several "actors" along with 

physical, social, and mental dimensions. 
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As Figure 3.8 depicts, table building environment is an example for AI architecture, and 

uses artificial environment called Roboverse. This is simulated world with rigid body 

physics, and populated by several actors. These actors are guided by EM-ONE cognitive 

architecture. These actors work together to build a tables and chairs, by using simple 

and modular components like sticks and boards. Components are looks like small toys, 

and they can attach one other with their comer and endpoints. The actors are simulated 

robots, and possess a perceptual system to take physical actions. They are roughly looks 

like a human like shape, with a single arm. The hands can be turned off and on. These 

hands will act like magnets by attracting the nearer objects. Singh demonstrated the 

commonsense mechanism, using as an illustration, the building a table (Figure 3.8) in 

Roboverse. 

Green (left side) wants to build a table; Green watches there is any partly built table to 

attach more legs to complete a table building. Green moves and grabs a stick, and then 

moves nearest to the table. Green tries to build a table by using its single arm. It tries to 

match and attach the table legs, but it fails. Green immediately realizes it needs help. 

Afterwards, Green calls the Pink. Until that, Pink has been involved with its own 

project, and has not been paying attention towards Green. The Pink looks over a Green, 

and realizes Green is trying to disassemble the partially built table. Pink comes nearer, 

and removes the one of the table leg. Green realizes Pink does not understand the 

intention of Green, and then complains. Green realizes Pink, did not see Green attaching 

a stick. Afterwards, Green again tries to attach a stick to the partly built table. This time, 

the Pink watches the construction. Pink realizes that the Green's intention is to complete 

a table, rather disassemble the table. Green expects help from the Pink. Green expects 

Pink to hold a table, so that Green can attach a table leg. Pink holds a table and Green 

inserts the stick. This mechanism proposes a course of action and intentions of other 

41 



actors for reflecting upon repairing mistaken errors. It shows the aspects of physical, 

social, and mental actions. 

Figure 3.8 Singh's Table Building Mechanism 

EM-ONE architecture was proposed and designed for six layers (Figure 3.9), but was 

implemented for the first three layers. Each of the layers is represented by terms called 

mental critics. The mental critics are encoded in the form of frame-based knowledge, 

and support a description of connected actors (two wooden one-armed robots) with 

actions, situations, events (moving, picking, attaching), objects (table sticks), and their 

properties. 

Singh considered each layer as mental critics: (l) reactive critics; (2) deliberative critics; 

and (3) reflective critics. The reactive critics interact with the environment. The 

deliberative critic's reasons about the circumstances, actions and consequences. 

Deliberative critics interact and coordinate with actors, and objects in the environment 
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from, deliberative actions. For example, knowing the exact positions, picking the right 

object, connecting the exact position or edge, and so on. The reflective critics asses the 

effectiveness of deliberative layer. The reflective layer is used for correcting the 

incorrect predicted actions. The self-reflection, self-conscious, and self-idea critics are 

self reflection layers. According to Singh, EM-ONE architecture has meta-managerial 

critics. This has been supported with top-level critics. In, EM-ONE architecture has a 

great flexibility for critics to activate. The central idea of having critical-sector model is 

that, when the system encounters a problem, it brings knowledge of reasoning. 

SELF IDEAS 
(Self appraisal) 

SELF CONSCIOUS 
(Abilites with Goals) 

I' 
SELF-REFLECI1VE 

(Cognitive abilities) 

REFLECI1VE LAYER 
(Correcting the actions) 

DELIBERATIVE LAYER 
(Predictions - Environment) 

REACTIVE lAYER 
(Reflexes-En~nt) 

Figure 3.9 Singh's Proposed Six-layers Architecture. 

Singh (2005) describes, metacritics are concerned with coordinating the activities of a 

layers of mental critics. Metacritics are operated at each 'cognitive cycle'. Cognitive 

cycle is the time between a after sensing the world, and before taking an action. This 

will decide which subset of mental critics should be active in the present time. Singh 

43 



states that EM-ONE architecture is a product of his own style of thinking. He had a plan 

to extend this architecture with meta-metamangement. He argues with his EM-ONE 

example, metamangement is a higher order of thinking that could be used for guiding 

deliberation and reflection (Singh, 2005). 

3.8 CAMAL 

CAMAL (Computational Architectures for Motivation, Affect & Leaming) architecture 

was proposed by Davis (2002, 2004, 2005, and 2006) from the University of Hull. 

CAMAL is a theoretical framework developed from Guardian (Hayes-Roth, 1993), 

Cogaffs (Sloman, 2001) three column, three level architecture; and Sense-Think-ACT­

Cycles mechanism, CRIBB (Wahl & Spada, 2000), and Singh's EM-ONE (Singh and 

Minsky, 2005) commonsense-frame based architectures. The purpose of CAMAL is 

used to simulate artificial minds. 

CAMAL cognitive architecture attempting to demonstrate some theoretical; and design 

issues associated with, linking perception and action through motivation and affect 

mechanism. CAMAL uses different testbeds and physical environments for 

demonstration. Presently using testbeds are five-aside football; tile-worlds; fungus 

world; and physical environments like Robot-CAMAL for control of multiple reactive 

architectures. Some of the experiments are still under investigations (Davis, 2007).As 

Figure 3.10 depicts CAMAL has four tier and five column architecture. This provides a 

basic template for all explanations (Davis, 2007). Cognition tasks involve the control of 

external and internal behaviour of the environment. The control of behaviour, for further 

of its goals. Affect mechanism in CAMAL uses BDI models for adaptive decision 

making across the architecture. BDI (Beliefs, Desires Intentions) are the mental 

44 



components present in rational agent architectures (Bratman, 1987; Cohen 1990; Rao 

and Georgeff, 1993).CAMAL (Davis, 2002) uses a logical model of reasoning based on 

Beliefs, Desires, Intentions that mirrors the motivation and learning. The BDI model 

intentions are adopted plans or strategies for achieving desires. The adoption of specific 

plans converts desires into achieved intended desires. 

Lewis (Davis and Lewis, 2003) research on Affect-CRIBB distinguished affect as 

emotion in terms of their magnitude and type. Emotion is a kind of Affect. The 

emotions are anger, joy, intelligence, etc. A-CRIBB theory affect mechanism uses 

control states and motivators and affordances. 

PERC~ON ~T MOTIVATION COGNITION ACTION 

REFLECfIVEPROCESSES 

Figure 3.10 CAMAL Architecture. 

As discussed in section 3.5, CRIBB (Wahl and Spada, 2000) model uses BDI models 

for representing reasoning capabilities of five year old child. This model has been 

extended with an affordance affect to map onto motivational structures (di cussed in 

section 3.5).The CAMAL agent navigates around the en ironment rec gnize th 
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actors or objects. This follows some of the cognitive capabilities like, perception, 

problem solving and reasoning. Action means recognizing the object and navigating 

around the environment (Davies, 2005). CAMAL architecture has explored to adopt 

affect and learning models over the affect model. This affect magnitude is useful for 

"fitness function". The investigation of deeper learning capabilities should, in general, 

bring beneficial results. The CAMAL principles are under investigation, through a 

satellite project; and a metacontrol and metacognition mechanism on extended CAMAL 

with extra processing layers, for distributed model of mind. This extended architecture 

is discussed separately in chapter 6. 

3.9 Comparison of cognitive architectures 

Cognitive architectures can be assessed in terms of their ability and efficiency to 

support the construction of models and simulations of cognition tasks. The comparison 

Table 3.1 given below explains the different types of cognitive models, their purposes, 

and skills used to develop a cognitive architecture. ACT-R and SOAR are well known 

and very old cognitive architectures. ACT-R and SOAR are very popular and contains 

many users. Popularity is due to their flexibility for researchers to expand for different 

useful applications. 

ACT-R and SOAR incorporate aspects of human-like reasoning and specific problem­

solving capabilities. ACT-R is an example of a moderately specified architecture, in 

which one can build such simulation models. There are some features that are important 

in the study of complex tasks that ACT-R is not well-adapted to model. ACT-R has 

certain errors in chunks management, and time delay in execution. According Wahl and 

Spada (2000), the CRIBB can be re-implemented by using general architecture of ACT-
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R, and is useful. Some of the theoretical constructs adopted for CRIBB's inference 

schema is directly correspondence with ACT-R. The operational resources of a child 

can be expressed with source activation (production rules) in ACT-R. 

Cognitive model Refrence Mechanism Purpose 
ACT-R Anderson(1976) Production systems To demonstrate 

and understand 
human Ski lis 

SOAR Newel 1(1980) Production systems learning, reasoning, 
and Chunking decision making. 
mechanisms (Human level ) 

EM-ONE Singh(2005) Encoded in the Commonsense 
form of Frames (6 thinking and 

layers) Reflective 
reasoning. 

CRIBB Wahl and Spada Belief, Desire, Reasons like a 5 
(2000) Intentions{BDIXBy year old child 

using Primary and 
Secondary 

representati ons) 

CogAff Sloman Reactive, Generic purpose 
(2001- Ongoing) Deliberative (Human, ani mals 

Reasoning and &machine minds) 
Meta-management 

A-CRIBB Davis and LewiS Belief, Desire, Updating CRIBB 
(2004) Intentions{BDI), values, through 

and Affect(Acorr) consistency 
value mechanism 

CAMAL Davis Belief, Desire, Artificial minds 
(2002 - Ongoing) Intentions(BDI) 

Models for 
reasoning 

SMCA 
Vijayakumar and Metacontrol and Artificial minds 

Davis Metacognition on (Extendi ng CAMAL) 

(2007) BDI models 

Table 3.1 Cognitive model's Comparison Table 

Singh (2005) argues that SOAR addresses orthogonal systems, because SOAR is a rule 

based system. EM-ONE is built by using rules. Singh (2005), claims that it is not a 

difficult to implement version of EM-ONE using SOAR as a substrate. In, OAR 
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"architecture" refers to the minimum set of mechanisms. In EM -ONE, architecture 

refers to the "structure and arrangement of commonsense knowledge and processes'~. 

This discussion, reviewed different researchers views on cognitive architectures aims, 

representations, principles, working mechanisms, common factors, generalised factors, 

missing factors, limitations, problems, advantages and disadvantages. 

This Chapter gives clear idea for developing new cognitive architecture. The extended 

CAMAL cognitive architecture with processing layers and distributed model of mind or 

"Society of Mind" approach to Cognitive Architecture (SMCA) is described and 

explained in the Chapter six. 

3.10 Summary 

This chapter summarized models of artificial minds, and different types of cognitive 

architectures, with a specific focus on one developing cognitive architecture. Cognitive 

architectures discussed include SOAR (Newell, 1990), ACT-R (Anderson, 1993), 

CRIBB (Bartsch and Wellman, 1989), EM-ONE (Singh, 2005), CogAff(Sloman, 2001) 

and CAMAL (Davis, 2002). Cognitive architecture refers to the design and organization 

of mind, and provides the means for the integration of cognitive abilities. Cognitive 

architectures are designed to be capable of performing certain behaviours, and functions 

based on our understanding of human and non human minds. Important issues in 

developing cognitive architectures include task effectiveness, goal achievement, and the 

ability to perform well in novel situations. ACT-R and SOAR incorporate aspects of 

humans, like reasoning and specific problem-solving capabilities. CogAff is a generic 

architecture that includes the different levels of abstraction in human and nonhuman 

minds. The CRIBB model was designed to investigate the belief-desire reasoning model 
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in young children. The purpose of CAMAL is used to simulate artificial minds like 

animals and other robots. Singh and Minsky's EM-ONE architecture used for 

commonsense computing. 

This discussion section assessed SOAR (Newell, 1990), ACT-R (Anderson, 1993), 

CRIBB (Bartsch and Wellman, 1989), EM-ONE (Singh, 2005), CogAff(Sloman, 2001) 

and CAMAL (Davis, 2002) cognitive models, in terms of their ability, and efficiency to 

support the construction of models and simulations of cognition tasks. 
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Chapter 4 Metacognition 

4.1 Introduction 

"The Society of Mind is more than just collection of theorems. It is a powerful catalyst 

for Thinking about Thinking" (Singh, 2003). 

Metacognition IS a relatively new buzz word In cognitive theory. The study of 

metacognition has grown SInce the 1970s, in educational psychology. The 

metacognition concept provides a powerful tool towards developing efficient and 

quality computational models. Metacognition is often simply defined as "thinking about 

thinking" (Wilson & Keil, 1999). Metacognition is any knowledge or cognitive process 

that refers to monitoring and controlling any aspect of cognition. Adkins (2004) defines 

"metacognition is thinking about knowing, learning about thinking, control of learning, 

knowing about knowing and thinking about thinking". Minsky (1985) defines "we 

cannot think about thinking, without thinking about thinking about something". The 

metacognitive act can be referred to as metacontrol. Metacognition can be viewed in 

two ways: (1) monitoring a group of agents in an intelligent or cognitive or robotic 
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architecture (i.e. self reflection) and; (2) making changes by adapting effective 

strategies in the group of agents. 

4.2 Elements of Metacognition 

From one perspective, there are four elements to metacognition: (Wilson & Keil, 1999; 

Adkins, 2004; Zalta, 2005; Flavel, 1979) (1) metamemory; (2) metacomprension; (3) 

metamanagement and ( 4) schema training. Metamemory is used for storing the 

information about a cognitive task. This helps for recalling information in the execution 

of cognitive tasks. Flavell and Wellman in 1977 proposed a theory of metamemory to 

explain young children's development and application of recall strategies. The young 

children's failure to apply strategies for recalling information because of their lack of 

awareness of "parameters that govern effective recall". Metacomphrension is used for 

detecting and rectifying the errors. This helps to improve the performance. Research on 

children shows that young learners have a lack of metacomprehension strategies, and 

limited opportunities to develop skills. Hence they need remedial action. Self regulation 

or metamanagement layer works for rectifying the errors in cognitive tasks, and 

thoughts are adjusted by giving feedback. The students make corrections or self 

reflection based on trail and error methods. Schema training is a meaningful learning for 

generating own cognitive structures or frameworks (Cox, 2004). 

4.3 Object-level and Meta-levels 

Cognitive processes can be split into an object-level and a meta-level. The meta-level 

contains information for controlling the object level. The information flow from object 
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level to meta-level is referred to as the monitoring processes. Similarly, flow of 

information from meta-level to object-level is referred to as control processes. 

As depicted Figure 4.1, meta-level or metacognition includes the selection of the 

processes, allocation of study time, termination of processes, selection of processes, 

execution and memory details etc. Metacognition can be constructed based on problem 

solving (e.g. planning) and metacomphrension (e.g. story understanding) processes of 

the object level (Cox 1994, 1995, 2005). "Meta-level is widely using in the reflective 

programmIng. 

/ '" / ~ 

Object --" 
Meta 

~ 

Level Level 
or 

Metacog 
\. , ../ 

Figure 4.1 Cognition to Metacognition 

Self-monitoring meta-level is a component, and it controls and monitors the object 

level. This also changes its behaviour if necessary. Meta-level is also called as self 

monitoring layer. This layer inspects and modifies the self-monitoring meta-level. If M 

is a meta-level and P is its object-level then relationship as follows: (1) M is a program 

that interprets P, and it takes P as an argument; (2) P calls M to monitor, inspect 

modify, correct or improve the P. This is called as reflective" (Kennedy, 2003).On the 

other hand, Cox (1994, 1995, and 2005) and Kennedy (2003) argue their similar views 

on meta-level, metacognition and reflective concepts. Kennedy attempted to 

differentiate metacognition and reflective terms. Similarly, Davis and Buchanan (1977) 

argues that metareasoing and reasoning raises similar confusion between cognition and 
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metacognition. Metareasoning is reasoning about the reasoning. The programs need to 

reason about the functioning part of cognitive processes, and each level of program 

execution (Cox 1994, 1995, 2005). 

4.4 Execution engine & Expertise model 

Externc:d Environment 
(ATe Testbed) 

J ~ 

MiddleWcrre layer 
Action ., , 

Perception .& 
T 

+ Initialize I 
Memory .... 

~ ... Cognitive 
Neroory 

JII"" 
"-

tasks 

t 
~~ . .. Netacognition 

Execution Engine + Expertise Model 

Figure 4.2 Execution engine and Expertise model. 

The execution engine and expertise model is a metacognition model. Metacognition 

layer can be added, from a simple to expertise models. As Figure 4.2 depicts, there are 

three levels in this model: (l) external environment; (2) shell or middleware layer; and 

(3) metacognition. Information can be received from the external environment through 

perception, and can be transferred to memory. The external environment is connected to 

the different cognitions like perception, memory, decision making etc. These cognitive 

tasks are controlled by metacognition. There are three stages in metacognition layer: (l) 
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metacognitive knowledge; (2) metacognitive expenence; and (3) metacognitive 

regulation (Flavel, 1977). 

Metacognitive knowledge contains a database of knowing about an environment, the 

nature of the task, and strategies used for knowing the facts. Metacognitive knowledge 

contains three types of knowledge: (1) declarative knowledge; (2) procedural 

knowledge; and (3) conditional knowledge (Peirce, 2003).The declarative knowledge is 

the actual facts of the information. This contains the agent's or person's knowledge 

about formula, knowing the facts, places, etc. The procedural knowledge is knowledge 

about execution of the given facts. For example, in solving a mathematical problem 

procedural knowledge is used to select which of the available formula in the declarative 

knowledge are appropriate to the problem. The conditional knowledge is knowledge 

about particular skill and strategy used for conditions. The experience after applying 

metacognition to a cognitive task is termed as metacognitive experience. Controlling 

and monitoring a progress of cognitive task is termed as metacognitive regulation 

(Peirce, 2003; Wilson & Keil, 1999; Adkins, 2004). 

4.5 Generic architecture for Metacognition 

Metacognition can be used as a generic concept for computational theories with respect 

to problem solving, reasoning and the decision making. Metacognition can be applied 

on simple to complex cognitive architectures. 

As depicted in Figure 4.3, a generic architecture for metacognition consists of three 

layers: (1) application layer; (2) metacognition; and (3) metacognition architectures. 
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The second layer is called as metacognition consist of three levels: metamemory, 

metacomphrension and self regulation. Metamemory stores strategies used for executing 

a task. An execution strategy includes execution processes and knowledge about the 

environment. Metacomphrension is used for detecting and rectifying the errors. The self 

regulation or metamanagement is using for adjusting an error thoughts and to give a 

feedback. Adding metacognition concept on top of cognitive architectures, improves the 

performance. This is similar to updating a systems memory or processor speed of a 

computer. The architecture remains same but it shows advanced behaviour and 

functioning. 

Appl iccrtion layer 
Ex:- Basic CANAL 

Metacognition 

Metamemory 

~ f 
Metacomprehnsion 

~ f 
Self regulation 

Metacognition 
Architecture 

SNCA 

Figure 4.3 Generic Architecture (My New Perspective). 

4.6 Metacognitive aids or Metacomponents 

Metacognitive aids or metacomponents are used for the representation of thoughts. 

Metacomponents can be represented with the help of some aids such as: (1) using an 

abstraction, metasyntactic variable (matching variables) or metacomponent and ~ (2 
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goal setting variables for increasing the performance. Metacomponents affects on the 

agent behaviour from a sense of what is important instead of what to do. Metacognition 

agents will follow well aligned norms, perceptual range, metarules, and learning and 

affect values. A well driven agent will maximize its performance as a consequence of 

learning to maximize its own reward. These executive processes involve planning, 

evaluating and monitoring the problem solving activities (Zalta, 2005, Adkins, 2004). 

The term "norm" is an interdisciplinary term, and can be used to refer to a standard 

principle or a model used for a right action. The executive processes that controls the 

other cognitive components are responsible for "figuring out how to do a particular task 

or set of tasks, and then making sure that the task or set of tasks are done correctly". 

Norms in society of minds can be guided, controlled and regulates the proper and 

acceptable behaviours. Norms are recent development in cognitive science and artificial 

intelligence. The different models can be formed by using multiple norms. Norms can 

be used in the social laws, learning of norms, etc (Livingston, 1997). For example 

perceptual range, affect, norms, and higher level rules are metacomponents 

4.7 Different Types of Monitoring systems 

According to Kennedy (2003) there are three types of monitoring systems: (1) reflective 

rule-based systems; (2) metacognition for plan adoption; and (3) introspective 

reasoning. Kennedy defines that "A network of mutually monitoring agents are closed, 

but not necessarily reflective" (Kennedy, 2003). According to Kennedy, there are two 

types of reflective-rule based systems. This uses mathematical concepts, and other rules. 

The rules are operating on object level and meta level. The meta-rules are kind of meta­

management. The metacognition system monitors and reasons during its plan adoption. 
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The plan adoption to new situation using its previous experience. Kennedy argues that 

Metacognition provides an efficient plan adoption. Metacognition can not monitor the 

integrity of agents at hostile environments. Finally, the introspective reasoning used on 

refines memory search, and retrieval. This is similar to finding an expected and ideal 

behaviour with reasoning. 

4.8 Minsky A B & C-Brain 

Minsky (2002) addressed the possible inner mechanisms, and higher level thinking of 

the mind. Minsky initially postulated an A-Brain and B-Brain mechanisms (Figure 4.4). 

A-Brain is connected to outer world through sensors and effectors. A-Brian collects 

information form the outer world or environment. A-Brain will control the cognitive 

tasks or mental processes in the architecture. The mental processes include perception, 

memory, imagery, language, problem solving, reasoning and decision making activities. 

B-Brain act like a supervisor for A-Brian. When A-Brain stops or struck or in confusion 

state to react, then B-Brain makes self reflection of A-Brain. B-Brain can supervise an 

A-Brain without understanding A-Brain working mechanisms. 

Figure 4.4 Minsky A B and C-Brain (Minsky, 2002). 

Minsky suggested that, A & B-Brains can have C-Brain. This can control, watch, and 

influence the B-Brain. B-Brain and C-Brain works as similar to the A and B-Brains. In 
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addition to this, Minsky suggested "closed loop" concept. The closed loop concept 

follows transitive mechanism. For example, B is a supervisor of A, C is a supervisor of 

B then C is also a supervisor of A. According to Kennedy (2006), A and B-Brain's can 

not mutually monitor and can modify each other. This is called as closed system, but not 

reflective. 

4.9 "Blind spot" or "Reflective blindness" 

According to Kennedy (2003), Minsky's A and B-Brain architecture interacts with the 

real world and, follows "closed system". The simpler system is sufficient and 

appropriate. The simpler systems can self-observe, and monitor to detect the errors or 

anomalies. Kennedy argues that, higher brain, can not detect the M-brain, when code 

has been deleted or replaced, from the lower level. This needs to add other layer to 

resolve this problem. This may end up with infinite number of brains. This weakness or 

problem is called as "blind spot" or "reflective blindness". 

Kennedy (2003) framed the possible configurations of reflective networks. As Figure 

4.5 depicts, each circle represents an agent. He explained that, the term "agent" is the 

highest level of component in a diagram, and this is sequentially controlled and 

hierarchically organized. The arrow indicates the monitoring relationship between 

agents, and all components. The monitoring system is similar to metalevel. This arrow 

also indicates equality in distributed monitoring. 

Meta-level can be used in the reflective programmIng literature. This executes or 

interprets and monitors an object level (discussed in section 4.3). As depicted Figure 

4.5(a), shows a "centralised" monitoring type. The single agent detects its errors, from 

self execution. Figure 4.5(b) shows an open reflection, where B monitors A, not vice-
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versa. Figure 4.5( c) shows a closed system, where all meta-levels are object levels. 

Figure 4.5(d) shows an open reflection because there is one agent exist C, source of an 

arrow, but not a destination. 

(a) (b) 

A's Self-Monitor meta- "Open", B monitors A's 

level type Meta-level 

Closed Distribution Reflect Open Distribution Reflect : 
: A ond B Monitors each A and B with additionol C 
other with Meto-Ievel 

Figure 4.5 Types of Meta-levels 

Kennedy argues that, mutually monitoring agents may be closed, and may not be 

reflective. She also proposed more complex configurations by using above examples. 

For example she describes organisational structure as follows: "LI monitors L2, which 

monitors LI, which monitors L2, which .... " (Kennedy, 2003). 
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4.10 Metacognition applications 

Metacognition can be applied on different applications: (1) problem solving through 

computational models; (2) education field; and (3) human problem solving, etc.The 

problem solving is a one area where, a natural mind (robots, animals, humans) fits for 

the artificial computational theories in artificial intelligence. The executive control and 

monitoring are important divisions of problem solving to manage problem complexity 

and to evaluate progress towards goals. 
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Figure 4.6 Metacognitive Strategies for Successful Learning 

Metacognition concept can be richly applied on educational field. This includes theories 

of human cognitions can be improved by using self reflection or metacognition. For 

example (Figure 4.6) taken from (Halter, 2004), shows children's improved progress 

through successful learning.Metacognition systems are useful for impro ing the re ult 
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by learning. As Figure 4.6, depicts, their are four metacognitive strategies for a student 

to learn and increase his performance:(l) aware of student goal and motivation; (2) 

knowing his own known information; (3) estimating the time required and time 

scheduling; and (4) learning; and self testing (Halter, 2004). 

The number of cognitive scientists has built computational models for the human 

performances related to metacognition. Two ways metacogniton technique can be 

applied on humans: controlling and monitoring cognitions; and self reflection of 

individuals their own mental process. 

4.11 Summary 

Chapter four discussed about the nature, scope and applications of metacognition with 

the field of cognitive science. This chapter explained elements, strategies, 

metacognition models and metacomponents. Major issues about execution engine and 

expertise model, Minsky A, B & C-Brian, generic architecture for metacognition, 

Kennedy's reflective blindness, and Kennedy (2003) reflective networks are discussed. 

Metacognition is a relatively new buzz word in cognitive theory. Metacognition is 

defined as thinking about thinking. It can be viewed as two ways monitoring a group of 

agents in an intelligent or cognitive or robotic architecture (i.e. self reflection) and 

making changes by adapting effective strategies in that society of agents, to constitute a 

metacognition architectures. 

Representation of thoughts (Zalta, 2005, Adkins, 2004) can be made by the help of 

some aids such as: (l) using an abstraction, metasyntactic variable (matching variables) 

or metacomponents; and (2) goal setting. The term norm is an interdisciplinary term. 

This term can be used as a standard principle or a model used for a right action.~· 
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figuring out how to do a particular task or set of tasks, and then making sure that the 

task or set of tasks are done correctly". Combining agents or society of minds can be 

guided, controlled and regulates the proper and acceptable behaviours. The simpler 

systems can self-observe, and monitor to detect the errors or anomalies. Kennedy points 

that there is a weakness in Minsky's A and B brain. The higher brain, can not detect the 

M-brain, when code is recently deleted or replaced, from the lower level. This needs to 

add other layer to resolve this problem. This may end up with infinite number of brains. 

This weakness or problem is called as "blind spot" or "reflective blindness". 
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Chapter 5 Agents, Testbed and the 

"Society of Mind". 

5.1 Introduction 

Artificial mind can be viewed as a control structure for an autonomous software agent. 

Any cognitive or computational architecture can be viewed as either a single agent or a 

large collection of agents. There is a long history of representing mind as collection of 

agents, dating back to Selfridges's Pandemonium model (Selfridge; 1959). This model 

attempts to explain mind as a collection of agent type tiny demons. The pioneers such as 

Selfridge(1959), McCarthy(1962), Allen Newell and Herbert Simon(1972), 

Minsky(1977), Fodor(1982), Baars(1988), Brustoloni (1991), Anderson(1993), 

Franklin( 1995), Sloman(200 1), Davis(2002) and Singh(2004) were viewed 

computational theories of mind, from artificial agents. 

Different skills and cognitive tasks may be represented as individual micro agents. 

These individual micro agents will demonstrate simple, complex or intelligent 

behaviour, and serve to fulfil the capabilities expected of an intelligent agent such as 
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planning, decision making, problem solving, and learning. The purpose of this research 

is to understand the theory of natural minds and adopt these principles into simulations 

of artificial minds. The theory of mind includes abstract and broad sketches of 

architectures to support the functioning associated with mind. The design and 

implementation of a specific architecture follows hypotheses about human and 

nonhuman minds. This broad approach necessarily requires designing different 

computational simple and complex level agents. Agents are verified by seeing how they 

coordinate their goals by planned solutions and the general process of cognition to 

improve performance (Franklin, 1995, 1996, 1997). 

5.2 Agent Classifications 

An agent senses and acts in its environment. The researchers involved in agent research 

have offered a variety of formal and informal definitions for an agent. Russell (1995) 

defines an agent as "anything that can be viewed as perceiving its environment through 

sensors and acting through the environment through effectors" (Russell and Norvig, 

1995). Brustoloni (1991) says that "autonomous agents are systems capable of 

autonomous, purposeful action in the real world" (Brustoloni, 1991). Intelligent agents 

continuously perform three functions: (1) perceptions, (2) action to effect a change in 

conditions and (3) reasoning to interpret perceptions, solve problems, draw inferences 

and determine actions. Some of the relevant agent classifications are explained below. 

5.2.1 Brustoloni Agent Types 

Brustoloni (1991) classified three types of autonomous agents: (1) regulation agents, (2) 

planning agents and (3) adaptive agents. Regulation agents follow a set of predefined 
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rules and regulate things, similar to the way a thermostat controls temperature. There 

are four types of regulation agents: (l) problem-solving agents (2) case-based agents, 

(3) operational research agents and (4) randomizing agents. Problem solving agents may 

search for planned solutions, and some agents can provide satisfactory solutions. The 

agents can store or remember their moves, plans, and actions. 

A case-based agent uses the search and analogy method. Case-based agents can store 

plans, and test their application in specific circumstances. To solve a problem, a case­

based agent finds the most suitable plan. Operational research agents use a 

mathematical model, such as a queuing theory, to provide an optimal control. 

Randomizing agents simply work by trial-and-error methods. Planning agents follow 

regulation agents with a planned sequence of actions. The adaptive agents learn by 

chunking and other methods involving learning and modification (Brustoloni, 1991). 

5.2.2 Sloman Agent Types 

Sloman (2001) defines an agent as a "behaving system with something like motives". 

Agents can sense and act on the environment. Sloman classifies agent groups based on 

motivations such as thirst, hunger, sex, communication, preference, society norms, etc. 

According to Sloman agents can compare and visualize plans, sense and memorize, to 

various extents based on their degree of mind. According to Sloman, to make a 

complete functioning human agent needs the design of a human-like flexible 

architecture. This architecture may be biological or synthetic or take the form of a robot 

agent. This architecture needs integral diverse capabilities. The agent's architecture 

requires a wide range of cognitive science components such as vision, speech 
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understanding, concept formation, rule learning, planning, motor control, etc (Sloman 

2001,2002, and 2003). 

Sloman argues that a part of human-like agent should have a diverse collection of tasks, 

both externally and internally. Internal actions include generating the motives, verifying 

the motives, selecting the motivations, creating plans, judging inferences, creating, 

monitoring, and identifying new possibilities. External tasks involve actions such as 

finding and eating food, avoiding enemies, building houses, making tools and finding 

friends (Sloman, 2001, 2002, and 2003). Sloman argues that there is no particular or 

unique design for human intelligence. There is no fixed architecture for an intelligent 

agent. This also includes many kinds of human learning, such as learning to drive a car, 

learning to read and write text, learning to play a piece of music, learning to write 

software, and learning many sports skills. Sloman classified the agents based on the 

three layers, as shown in Table 5.1. 

Reactive sub 5)'Stem Follows external sensors and internal I1'Onitoring, acts 

like roore primitive parts of the simple brains. Exa"l>le 

Ii ke insects. 

Deliberative system Follows the reactive system and works with triggering 

responses like non huroon minds. 

N.etamanagement system NDnitoring and controlling the deliberative 

roodels.Metamanagement activities like self I1'Onitoring 

and self I1'Odification capabilities. 

Table 5.1 Sloman Agent Types 

5.2.3 Franklin Agent Types 

Franklin compares natural kinds of taxonomy with artificial agent cla sificati n . 

Franklin contends that there are two possible models for building a mind from agent : 
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biological and mathematical. Franklin argues that artificial agents can be classified in a 

way similar to biological taxonomy (Table 5.2). For example, humans belong to the 

animal kingdom, sub family "hominid" and genus-species "homo sapiens." He believes 

that artificial or computational agents, such as task -specific agents, entertainment agents 

and computer viruses, can be classified in a similar way (Franklin, 1997). According to 

Franklin, giving a definition to autonomous agents is too restrictive; the properties of an 

agent provide a better method of classification. Franklin named several agents based on 

their properties, as shown below. 

Agent name Meaning 

Reactive agents Senses and acts in the environment through timely fashion. 

Autonomous agents Control exercises over the actions. 

Goal oriented agents Purposeful actions not based on the environmental 

conditions . 

Temporarily continuous agents . These agents are continuously running agents. 

Communicative agents Agents have social interaction and communication with 

other agents. 

Learni ng agents Changes the behaviour based on the previous experience. 

Mobi Ie agents Agents can transport from one rrochine to other 

Table 5.2 Franklin agent types 

5.2.4 Minsky's Agent Types 

Minsky states that a complete cognitive agent needs four separate and highly 

interrelated layers (Minsky, 1985). This necessitates the consideration of ongoing 

arguments in agent research. Each mental agent can, by it self do some simple things, 

and when these agents are joined in a special way, the result may lead to true 

intelligence. Most of the "agents" grow in the mind from learned experienc 
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According to Minsky, each agent looks simple and smaller (micro) like a toy, and does 

only small cognitive tasks. Combining all these micro agents in a meaningful way 

almost anything can be built (Minsky, 1985). Minsky considers the following 

properties: (1) how the agents work, (2) origin and heredity, (3) learning and authority 

( 4) communication, (5) self awareness or consciousness, (6) feelings and emotions (7) 

ambition, jealousy, and humour. Minsky argues that creating machines that do the entire 

range of things people do is very far in the future, if it occurs at all. According to 

Minsky (1985), intelligence is a combination of relatively simple things. Imagine a child 

playing with building blocks, and how the child likes to watch a tower grow as each 

new block is added. Minsky says that the mind is like a tower, except that it is 

composed of processes instead of blocks. 

Figure 5.1 Society of Agents (Minsky, 1985). 

As shown in the Figure 5.1, agents can be designed in a way similar to a child playing 

with building blocks. Any cognitive architecture contains a large collection of micro 

agents. Each agent may used in a different way to represent knowledge and reason with 

it. Each agent is specialized for some type of knowledge or cogniti e proce (ingh, 
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2004). Building an optimal agent cannot be done with a single and simple agent, as it 

needs to interact with or take help from other agents. Hence, developing a cognitive 

architecture can be viewed from the perspective of Minsky (1985), which leads to the 

development of many different types of simple agents with different behaviours. Figure 

5.1 depicts a tree (graph) like structure, similar to tree concept in graph theory. This 

contains nodes and branches. Each node represents an individual micro agent. Each 

branch represents a link between nodes. This illustrates Minsky's K-line theorem. The 

K-lines are data and control lines (buses) in the design of computer architecture. 

Assume if there are two different cognitive tasks T1 and T2 to perform in a society of 

agents. Agents 2, 4 and 5 can perform T1 and, agents 3, 6 and 7 can perform T2 

cognitive task. Afterwards T1 and T2 performing agents can be combined as T1 agency. 

Similarly, any number of agents and agencies can be combined to form as "Society of 

Mind". Society of Mind can be framed from any smaller degree to any large extent. For 

example, human mind as a "Society of Mind" is larger, and rat mind as a "Society of 

Mind" is smaller in degree, with a smaller set of agents and agencies. 

5.3 Society of Mind 

The Society of Mind theorem was initially proposed by Marvin Minsky in the 1970s, at 

MIT's AI lab. Minsky's inspiration dates back to the 1960s and the famous 'copy­

demo' proj ect. At the end of the 1960s, Minsky, Papert and his students developed one 

of the first autonomous hand-eye robots. The hand-eye robot demonstration involved 

the robot constructing children's building block structures. It uses a camera to see, and a 

robotic hand to move. From this idea Minsky framed the term "Society of Mind. ,­

Minsky argues that, a mechanical hand, television eye, and a computer robot can build a 
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block structures. This technology took many years for the researchers to analyse 

cognitive operations like seeing, grasping, and move through developed micro-agents. 

Minsky argues that, this development gives many ideas for "Society of Mind" (Minsky ~ 

1986). Minsky views intelligence as not just a simple recipe or as an algorithm for 

thinking, but a combined social activity of more specialized cognitive processes. 

According to Minsky, every mind is a "Society of Mind." The mind consists of a great 

diversity of mechanisms. Minsky proposes that the mind is made up of simple and 

smaller entities called micro-agents. Minsky argues that each agent is like a simple 

piece of code, and can do simple work. The agents can be connected within a larger 

system called a society of agents. Each individual agent, having a different background, 

plays a different role in society. The society of mind results from combining more 

specialized cognitive processes. 

Minsky VIews mind as a vast diversity of cognitive processes, each specialized to 

perform some function. Some important functions include predicting, expecting, acting, 

remembering, explaining, comparing, generalizing, analysing and ways of thinking. To 

handle this complex diversity, Minsky introduces the simple terms "agent" and 

"agency." Minsky states that the term "agent" describes any component of cognitive 

processes. The term "agency" describes the specific combination within a society of 

such simple agents combined to perform some more complex function. As similar to 

agents in agency, "Society of Mind" can have multiple agencies. Minsky ask, 

rhetorically, "If two minds are better than one, how about two thousand?" (Minsky, 

1991). 

Baars (1977) "Global workspace theory", explains mind in terms of conscious and 

unconscious terms as similar to the on and off state of the "Society of Mind". In the 
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"Society of Mind", the active agents are in the "on" state, and non-active agents are in 

the "off' state. The combined activity of active agents constitutes a "total state" of 

mind, and the subset of the activities represents a "partial state of mind." Minsky claims 

that K-lines are the selecting most common agents in the Society of Mind theory. These 

K-lines tum agents on, and are interconnected to each other. K-lines can cause cascade 

effects within a Mind. Many K-lines problems and their solutions are stored in a 

'chunking' mechanism. If the system faces the same type of problem again, then it uses 

the previous solution to resolve it. Minsky divides these K-lines into two general 

classes: (1) nemes and (2) nomes. These are similar to data and control lines in the 

design of a computer. Nemes represents aspects of the world, and nomes control these 

representations. The nemes are divided into polynemes, and micronemes. The 

polynemes agencies are concerned with representing properties of an object. A 

micronemes agency provides global contextual signals across the brain. The nomes are 

divided into three types: (1) isonomes, (2) pronomes, and (3) paranomes. The isonomes 

signals for different agencies (collection of agents) to perform the same type of 

cognitive operations. The pronomes are used for controlling the short-term memory 

representations. The paranomes are used to represent the changes to related operations. 

Minsky argues that K-lines can learn by accumulating and reformulating knowledge. 

Accumulating is the remembering of an example, for simple learning (Minsky, 1980, 

1985; Singh, 2003). 

As was quoted at the beginning of last chapter, "The Society of Mind is more than a 

collection of theorems. It is a powerful catalyst for Thinking about Thinking" (Singh, 

2003). Singh argues that any Society of Mind needs thinking about thinking (i.e .. 

metacognition) to make complete functioning of mind. 
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5.4 Proposed Generic Cognitive Agents 

The currently developing SMCA (Society of Mind approach to Cognitive Architecture) 

makes use of a generic architecture, and developed in terms of generic cognitive and 

metacognitive agent types. It aims to model cognitive abilities, functions and 

mechanisms (e.g., planning, optimal decision making, problem solving and learning) in 

terms of combinations of agents or isonomes. Each agent is designed to fit one of the 

following categories: (1) reflexive agents, (2) reactive agents, (3) deliberative (BDI 

models) agents, (4) learning, (5) metacontrol and (6) metacognitive agents. 

Reflex action is basically derived from human and animal biological neuromuscular 

action. The reflexes are built-in mechanisms where action can occur quickly, before 

thinking. In some cases, reflexes can be changed or overridden; a reflexive agent does 

not have any explicit motivational states like belief, desire, or intentions. For example, 

in the developed testbed, a reflexive agent can move in one of four directions (left, up, 

down, right) in response to the nature of the environment immediately in front of it; 

simply moving into free space and away from obstacles. 

Reactive agent mechanisms, having more flexible control mechanisms, similar to the 

architecture described by Kaelbling (1986). This class of agent has extra perceptual 

pathways and mechanisms for integrating decision making, and behaviours across 

intended actions. For example, in the developed testbed, reactive agents can follow a 

specific goal. The goal is to identify the resource, move shortest way and collect any 

one or more resources (fungus, ore, crystal, medicine, standard ore, golden ore, ore and 

golden ore, ore and crystal, etc) available in testbed. 
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The reactive class of agent, in tum, provides a computational platform for the 

deliberative agents. Deliberative or BDI (Belief-Desire-Intention) agents build on the 

behaviours used in the reflexive and reactive agents. The deliberative actions are 

planned and coordinated in terms of the agent, its internal state, its motivations and its 

perception of resources in the environment. Mind is made of many small processes; 

these are called deliberative or mental agents. Each mental agent by itself can do some 

simple things. BDI (Beliefs, Desires Intentions) are the mental components present in 

rational agent architectures (Bratman, 1987; Cohen 1990; Rao and Georgeff, 1993). In 

the developed testbed, deliberative agents reasons about their own tasks and plans. 

Deliberative agents in a fungus world testbed are capable of performing different tasks. 

The deliberative agents can alter the reactive and reflective agents, from the reasons 

based on the Belief, Desire and Intention set. The deliberative agents can manage their 

internal conditions, through managing their metabolism and food (affect). Based on the 

management of energy, from given threshold value or predicting energy level, and goals 

different BDI models are framed (explained briefly in the next chapter). 

Learning agent's main objective is to maximize the total rewards in the architecture 

(Sutton, 2004). The value function decides how to maximize the total rewards. The 

model of the environment defines how the state and action can occur in the different 

location of the environment. For example, in the developed testbed, q-Iearning 

algorithm applied on reflexive, reactive, deliberative, metacontrol and metacognition 

agents. The learning maximizes the collection of a needed resource or reward (fungus, 

ore, crystal, medicine, standard ore, golden ore, crystal, etc) available in testbed. A 

metacontrol agent operates in a resource-oriented environment. Metacontrol agent 

chooses between the available deliberative and reactive actions according to current 

conditions. If deliberative actions are called control actions, the learned control actions 
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are called metacontrol actions. The metacontrol agents determine the relevant control 

actions (Raja, 2003). Metacontrol actions are part of metacognition. For example, in the 

developed testbed, metacontrol agent chooses the selective learned deliberative (BDI) 

model, but can not change and reason whenever necessary. The learning applied on BDI 

models maximizes the performance of a particular BDI agent. 

Metacognitive agents can control and monitor their own progress in performing 

cognitive tasks or metacognitive regulations (Wilson & Keil, 1999; Adkins, 2004). 

Reflective processes with learning capabilities can lead to metacognition mechanisms. 

Metacognitive agents are necessary for the optimal decision-making capabilities in a 

varying environment. For example, in the developed testbed, metacognitive agents can 

choose any metacontrol task. They can select, change, update and reason for any 

metacontrol task (briefly explained in the next chapter). 

5.5 Testbeds and Benchmarks 

Testbeds and benchmarks are used for simulating and comparing architectures and 

outcomes in the field of robotics or cognitive architectures. A testbed is a development 

environment for experimenting and implementing standard tasks. The testbeds are the 

environments, where standard tasks may be implemented, observed and measured. In 

addition to the environment, it provides a method for data collection, the ability to 

control environmental parameters, and scenario generation techniques (Hanks, 1993). 

Testbed tools provide a method for data collection, ability to control environmental 

parameters, and scenario generation techniques. Testbeds provide a metrics for 

comparing the agent architectures. The main purpose of a testbed is to provide metrics 

for evaluation (objective comparison) in testing agents. Hanks (1993) define 
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"Benchmarks as precisely defined standardized tasks". Task means the job given for a 

robot to perform, and the standard means a benchmark accepted by a significant set of 

experts in the same field. Precise means a mission goal and limited constraints in the 

execution environment (Dillmann, 2004). According to Dillmann (2004), the Hanks 

definition for benchmarks is lacking in terms of "development performance metrics". A 

benchmark should have the following features: repeatability, independence and 

unambiguity. Benchmarks can be measured using two types of metrics: (1) the 

analytical method, for observing a system's performance and (2) the functional method, 

to observe the performance of a specific problem based on a benchmark score 

(Dillmann, 2004). According to Hanks (1993), benchmarks are using for comparing the 

architectural performance of the standard tasks. The results of different architectures can 

be compared and measured, from standard tasks. Artificial intelligence contains 

standard tasks for AI problems. 

5.6 Toda's Simulator Testbed Model. 

An important issue in developing testbed includes complexity, metrics, flexibility and 

the ability to perform well in different situations. There are many examples of 

developed testbeds. Those relevant to this research include Packman (Nason and Laird, 

2004), Tile world (Pollack and Ringuette, 1990), and Fungus world (Toda, 1986). 

5.6.1 Packman 

SOAR capabilities are demonstrated USIng packman testbed. The packman tesbed 

consist of pack-man like agents (eaters) called as eaters, moving around the board or 

environment. The board is filled with 2 types of food: (1) bonus food and, (2) normal 
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food. If the agent receives as a reward of + 10 for moving into bonus food, +5 for 

moving into the normal food, 0 for moving into the empty cell in environment or grid 

board. Agents' capabilities are tested by giving different skills including reinforcement 

learning. (Nason S and Laird J E, 2004). 

5.6.2 Tile world 

Pollack and Ringuette initially introduced tile world testbed in 1990. Tile world is a 

highly parameterised environment, and this can be used to investigate reasoning an 

agents (Lees, 2002).The tile world is an abstract testbed designed for experimenting 

with multi agent architectures in dynamic and unpredictable environments.Tileworld is 

a two dimensional grid on which located different kinds of parameters. The parameters 

tiles, holes, obstacles and a gas station or energy. During the simulation part, objects can 

appear and disappear. The parameters can be controlled with variety of characteristics 

associated with the objects in an environment. The original tile world consists of a grid 

cells (squares) on which different objects can exist. These objects are: agents, tiles, 

obstacles and holes. The agent can move up, down, left, or right. The goal of the agent 

is to collect a tile and move a tile so as to fill the holes. A hole has an associated point 

value. Each hole may consist of three cells on the grid, and may have a total point value 

of five. Once the agent completely fills the hole, it earns the points. The overall 

objective is to gain as many as points possible. Tile world simulations are dynamic, and 

the environment can change continuously (Lees, 2002). 
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5.6.3 Fungus world 

Toda (1961) compared a "complete system" with a microcosm environment. The fungus 

eater is a simulated robot used for fictitious mining. It has been sent to a planet called 

taros to collect uranium ore. The fungus eater can run out of energy and needs to collect 

fungus to replenish its energy store. Uranium and fungi are usually not found in the 

same place. They will keep a certain distance from each other in order to avoid collision 

(Wehrle, 1994; Lewis, 2004). Pfeiffer (1996) assumes: (1) movement or locomotion 

using legs, (2) collection or consumption using arms and (3) decision making using a 

brain. Fungus eaters are synthetic artificial agents and a particular species of animats. 

Animats can be productively viewed from a designer'S perspective. Masanao and Toda 

(1961) invented a new fungus eater testbed, for simulating artificial synthetic agents. 

Multiple agents can be present in the environment at the same time. 

As in Figure 5.2 depicts Toda (1986) proposed the use of micro worlds (a micro 

cosmos) for the purposes of modelling mechanisms and for collecting empirical data 

(Wehrle, 1994). The animats approach will play an important role in the design and 

experimentation on intelligence and cognition. The fungus world environment and 

working principles allows a robot or any artificial mind a simulation for exhibiting a 

specific behaviour in a specific environment (Pfeifer, 1996). Pfeiffer (1988) describes 

the "fungus eater" concept as a testbed for simulating models in emotion psychology. 

The fungus world environment allows the principles and behaviours of a robot or 

simulated models of artificial minds simulation can be monitored, measured and 

compared (Pfeifer, 1996). 

Applying techniques, mechanisms and concepts on a testbed depends on the goals. 

Fungus eaters are complete autonomous creatures sent to a distant planet for collecting 
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ore. They have to think and eat a fungus to maintain an energy level for their survey of 

the world and to show best performance (i.e. to collect ore). The performance can be 

measured in terms of two perspectives: (1) the engineering perspective, which counts 

number of ores collected in a particular time cycle and (2) the cognitive perspective, 

which looks at managing the energy level and metabolism level sufficiently to allow 

surveying (Pfeifer, 1996). 

'-
\ ,l'" l 

-""""""'-";~ .. ,.~ .~. 

Figure 5.2 Toda's Simulator Testbed 

Reasons for choosing Fungus world Testbed for implementation of SMCA: 

• The set of objectives are rich to implement interesting aspects of the real world. 

• The metrics used for fungus world is convenient and easy to use. 

• The assigned parameters will map, interesting and measurable properties of the 

real world environment. 

• Fungus world testbed is very flexible to extended simple to complex Ie el. 
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5.7 Summary 

Chapter Five discussed artificial agents and different types of agents, with a specific 

focus on developing new society of agents. Previous work relevant to this research 

includes Brustoloni (1991), Sloman (2002), Franklin (1997) and Minsky (1985). Agents 

can act and sense in their environment. Brustoloni (1991) explains three types of 

autonomous agents: (1) regulation agents; (2) planning; and (3) adaptive agents. 

There are four types of regulation agents: problem-solving; case based; operational 

research and randomizing agents. Sloman defines agent as a "behaving system with 

something like motives". Sloman classified agent groups based on the motivations. 

Sloman classified three types of agent based on his CogAff model: reactive; 

deliberative; and metamanagement agents. According to Franklin (1995), similar to 

biological taxonomy the artificial agents can be classified. According to Minsky (1985), 

intelligence is a combination of more simple things. According to Minsky every Mind is 

a "Society of Mind". The Mind consists of great diversity of mechanisms. The tenn 

agent refers to the basic element or simplest individual which constitute a "Society of 

Mind". Each individual agent has a different background in order to playa different role 

in the society of mind. The combination of agents to perfonn specific tasks or 

demonstrate specific abilities is tenned an agency.Testbeds and benchmarks are used for 

simulating, comparing architectures and outcomes in the field of robotics or cognitive 

architectures. Pfeiffer (1988) describes the fungus eater concept as a testbed for 

simulating models in emotion psychology. The fungus world environment allows the 

principles and behaviours of a robot or any artificial mind simulation to be monitored, 

measured and compared. 

79 



Chapter 6 

Model 

Design of Society of Mind 

6.1 Fungus World: A scenario for Mind as a Control System 

This chapter describes the design of a SMCA (Society of Mind approach to Cognitive 

Architecture). SMCA model of mind using concepts allied to Davis basic CAMAL 

cognitive architecture (Davis, 2002) and Minsky's "Society of Mind" (Minsky, 1985). 

"Society of Mind" is a control system, and uses the "Society of Agents" metaphor. 

"Society of Agents" concept describes collective behaviours of simple and intelligent 

agents. This uses cognition to metacognition concepts for unification of agents. 

Metacognition has been introduced to control and unify society of intelligent agents. 

Consider the scenario of the fungus world testbed shown in Figure 6.1. Simulated 

agents (actors) are represented as circle shapes. Different parameters exist in the 

environment for the agent's biochemical engine, including metabolism and 

performance. Biochemical engine parameters are an agent's energy level and its rate of 

use (metabolism). The medicine is a metabolic activity parameter, shown as gold colour 
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square shape. The energy resources are: (1) standard fungus, green colour squares in 

testbed, (2) small fungus, small size green colour square shape and (3) bad fungus is 

represented by black colour squires in testbed. The biochemical engine parameters are 

energy level, metabolism,etc.The goal-based parameters are: (1) ore, red colour star 

shapes, (2) golden ore, gold colour star shapes and (3) crystals, white colour star shapes. 

Figure 6.1 Society of Mind scenario 

This simulated world is populated by several actors called artificial synthetic agents. 

These actors or agents are controlled, and guided by further agents and higher level 

mechanisms in the SMCA (described in the next section). The control architecture 

enables the fungus eaters to adapt to their dynamic environment. Actors are simulated 

agents that work together to exhibit various control mechanisms and techniques, thus 

demonstrating a distributed model of mind as a "Society of Mind". 

The actors (agents) demonstrate the "Society of Mind" concept in terms of the 

arrangement of activities within a SMCA for their planning, reasoning deci ion 

making, self reflection, problem solving and learning capabilities. SMCA can be iewed 
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as containing vastly different types of cognitive processes, such as predicting, repairing, 

reviewing, comparing, generalizing, and simplifying and many other ways of thinking. 

Agent behaviours can be analysed using many different metrics. The major metrics are 

metabolic activity, competition and social interaction with respect to environment and 

. . 
mIcroeconomICS. 

SMCA model fitted with reflexive, reactive, deliberative BDI (Belief, Desire, and 

Intention), perceptual, learner (Q learning), metacontrol, and metacognition agents. The 

reflexive layer is framed with reflexive behaviours that suggest courses of action based 

on the state of the environmental conditions. The reactive actions are shortest route or 

planned and coordinated actions in between the agent and resources. The deliberative 

layer helps for selecting and controlling reactive agents. The higher level layers such as 

learning; metacontrol and metacognition levels assess the actions based on criteria that 

have to do with actions that are consistent with BDI models. 

Metacognition (discussed in Chapter 4) is used for adopting the Belief-Desire-Intention 

(BDI) models. The BDI models belong to the deliberative level of the architecture. The 

metacontrol and metacognition mechanisms used in controlling the BDI models belong 

to the top level of architecture. The relationship is as follows: (1) metacognition is a 

program that interprets BDI, and it takes BDI (BDI-ore, BDI-crystal, BDI-ore-crystal, 

BDI-adaptive, etc) as an argument and (2) BDI calls metacognition to monitor, inspect, 

modify, correct or improve the BDI. BDI agents use the metrics drawn from principles 

of artificial economics in animal cognition: (I) physiological and goal oriented 

behaviour; (2) cost function and utility behaviour at the microeconomic level; and (3) 

decision making variables (explained in the second Chapter). 
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The BDI (Belief- Desire-Intention) model allows different groups of coordinated 

capabilities to carry out a particular intention. BDI models follow and control the 

reactive mechanisms. The energy spent in each move ofBDI type's exhibits as minimal 

due to maintenance of low metabolism, and utility is also maximized. A BDI agent 

engaged in activities optimizes its pattern of behaviour with respect to energy and time. 

For example, if the energy level is less than fixed energy level (threshold) or predicting 

energy, then it switches into fungus consumption. If the energy level is more than a 

given threshold or predicted energy level, then it switch towards goal oriented 

behaviour (i.e. collection of ore). This mechanism demonstrates physiological and goal 

oriented behaviour. 

There are different BDI models for the different purposes used in this experiment. They 

are BDI-ore, BDI-crystal, BDI-ore-and-crystal, BDI-adaptive etc. The actors for each 

move compare, review and change their goals from their self-reflection processes, 

which is updated from the affect and norms. Actors can change and control their 

behaviours, such as switching between BDI-ore, BDI-crystal and BDI-ore-crystal, BDI­

adaptive if necessary in the environment. The metacognition layer monitors the 

inference processes that occur in the deliberative and metacontrol processes. The 

activities of all of these courses of actions are managed by SMCA architecture. 

6.2 Design of SMCA 

Basic CAMAL has four tier and five column architecture (Figure 6.2) (Davis, 2002~ 

2004, 2007). This provides a basic template for all explanations (Davis, 2007). The 

extended CAMAL with extra processing layers, named as SMCA for distributed model 

of mind (Figure 6.3). 
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The SMCA model can be used to implement a variety of cognitive control structures. 

The design requires implementing different AI architectures and algorithms. The 

research described in this thesis implements "Society of Mind" architecture for 

controlling the actions of actors in the artificial life domain shown in Figure 6.3. 

Figure 6.2 Basic CAMAL Architecture (Davis, 2002). 

The reflective reasoning and multi-tier architectures are used because it is often difficult 

to assure optimal and perfect operation using just one layer. Hence a higher level layer 

that reflects upon that other layer can be added to help cope with its limitations. In this 

thesis six-layer architecture with reflexive, reactive, deliberative, learning, metacontrol 

and metacognition levels is described. 
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ENvIRONMENT: DoMAIN AND TASK V ARJABLE 

Figure 6.3 SMCA 

Each of these layers is populated by several agents with behaviours that respond to 

problems in the layers beneath, or in the case of the lowest reflexive layer, to 

environment. The intelligence behaviour is a combination of simple behaviours. The 

presently developing mind model SMCA (Figure 6.3 and Figure 6.4) includes reflexive 

(six behaviours), reactive (seven behaviours), deliberative (fifteen behaviours) 
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perceptual (nineteen behaviours), learning (fifteen behaviours), metacontrol (fifteen 

behaviours) and metacognitive (seventy seven behaviours) agents. Indeed, from an 

extreme perspective of the distributed model of mind is fitted with reflexive reactive , , 

BDI (Belief, Desire, and Intention) agents or deliberative, perceptual, learner (Q 

learning), metacontrol, and metacognitive agents. 

Learning layer 
(Q-learning mechanism, based on multi agent 

behaviours) 

Figure 6.4 Group of Distributed Agents in "Society of Mind". 

Combinations of agents organized to work or achieve the different goals (cognitive 

tasks). The different combination of agents is organized for different goals or different 

tasks: (1) collection of ore (2) collection of ore golden ore; and (3) collection of crystals 

can be performed by society of agents. K-lines can cause cascade effects within an 

SMCA. These K-lines tum agents on and are interconnected to each other. For example 

the reactive-ore, BDI-ore and BDI-ore-crystal combination of agents can collect ore. 
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Reactive-crystal, BDI-crystal and BDI-ore-crystal combination of agents can collect 

crystals. This illustrates that the SMCA follows Minsky's K-line theorem. 

Metacognition concept on BDI agents selects the most appropriate type BDI agents 

(BDI-ore, BDI-crystal, BDI-ore-crystal, etc). Metacomponents in Metacognition layer 

helps for switching BDI agents on and off state. Each of the individual layers is 

described in the next sections. 

6.3 Reflexive Level 

Reflexive agent's fits for the first layer of the SMCA (Society of Mind approach to a 

distributed Cognitive Architecture) shown in Figure 6.5. Reflexive agents are designed 

to perform reflexive behaviours. As Figure 6.5 depicts, agents will make decisions and 

take actions based on the given environmental rules. Reflexive agents are simple, 

reactive, and instinctual. Reflexive actions are controlled from a finite state machine. 

Generally, reflex action is basically derived from human and animal biological 

neuromuscular action. The reflexes are built-in mechanisms that can operate quickly 

before thinking. There are two ways that reflexes can behave: (a) simple reflex, which is 

automatic and requires no learning experience and (b) combined reflexes. A finite state 

machine behaves like a simple mathematical animal, that can be regarded as a discrete­

time system with finite input and output sets. This responds to only a finite number of 

different stimuli (the input set or alphabet) and output alphabets. Algorithm 6.1 shows 

mapping of finite state machine (FSM) from perceptual inputs. The example FSM 

works as follows: 

(1) Input * State ~ New state; 
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(2) Input * State ~ Output. 

Finite State Machine(FSM) algorithm 

'1'0 Finitestate( Input, State, f\JewState , Action). 

Finitestate(spacefree,active,active,rrcveahead). 

Finitestate(spacefree,turned,active,rlOthing). 

Finitestate(spacefree,static,active,nothing). 

Finitestate(spaceblocked ,active; turned, turnleft). 

Finitestate(spaceblocked,turned,static,turnleft). 

Finitestate(spaceblocked,static,static,turnleft). 

'Yo Meaning for each of the rule as follows 

IF SpaceAhead(Free) AND State(Active) 

THEN Action(M>veAhead) 

IF SpaceAheadCFree) AND State(Turned) 

THEN State(Active) AND Action(l\bthing) 

IF SpaceAhead(Free) AND State(Static) 

THEN State(Active) AND Action(l\bthing) 

IF SpaceAhead(Blocked) AND State(Active) 

THEN State(Turned) AND Action(TurnLeft) 

IF SpaceAhead(Blocked) AND State(Turnecl) 

THEN State(Static) AND Action(TurnLeft) 

IF SpaceAhead(Bfocked) AND State(Static) 

THEN Action(TurnLeft). 

Algorithm 6.1 Finite State Machine (FSM) 

Finite state machines output is mapped onto the agent action. FSM rules make use of the 

external and internal state conditions. Finite state machine rules can be framed for each 

piece of resource. For example Fsm-Ore, Fsm-Crystal, Fsm-Medicine, Fsm- Fungus, 

etc. As Figure 6.S depicts, agents will make decisions and take actions based on the 

given environmental rules. A reflexive agent (refer Algorithm 6.2) uses any of the four 

control mechanisms to select the next move. 
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The current work make use of four reflexive behaviours: (1) first rule(Rxl) uses finite 

state machine, and moves arbitrary; (2) second rule (Rx2) uses finite state machine, and 

moves randomly;(3) third rule (Rx3) uses FSM, and move towards centre of the 

environment; and (4) fourth rule (Rx4) uses finite state machine, and moves towards 

edges of the environment. 

1 GOAL 1< I Reflexive-BDI I 
"'-2 EJ ..., 

EJ .. Edgel Edge2 ... 

Envirorment 

E:J 
(Center) 

.... 

I Action I Edge3 Edge4 

Figure 6.5 Reflexive Agent Structure 

The reflexive actions or goals satisfy as those specified by the deliberative agents 

(described in the next section). The design for the fungus testbed includes four different 

reflexive agents. A BDI agent in deliberative layer determines which of the reflexive 

control mechanisms are active according to the goals the entire architecture attempts to 

satisfy. These goals determines the number of different types of reflexive behaviours 

required for this specific testbed (reflexive-BDI model is described in the next section). 

Reflexive agents understand the environment sensors, such as the locations of each edge 

or centre point, etc. For each move, they check the corresponding adjacent positions and 

determine the proper direction, either up, down, left or right. The tasks of such agents 

are to navigate environment and avoid collisions with other agents in the environment. 
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Reflexive agent design algorithm 

Rxl: Uses FSM and upl left I right I Down (lst condition):-

Prefers move> nothing, 

Prefers up I left I right I down (arbitrary). 

Rx2: Uses FSM and uplleftlrightldown(2nd condition):-

Prefers move> nothing, 

Prefers Random direction. 

Rx3: Uses FSM X uplleftlrightldown (3rd condition):-

Prefers move nothing, 

Prefers move towards centre of the environment. 

Rx4: Uses FSM X up II eft I right Idown(4th condition):-

Prefers move nothing, 

Prefers move towards edge of the environment. 

Algorithm 6.2 Reflexive agent 

Figure 6.5 shows the simplification of reflexive agent. The difference between them can 

be seen in Algorithm 6.2. The nature of reflexive agents is described in tenns of the 

controlling finite state machine (FSM). 

6.4 Reactive level 

Reactive agents compromise the second layer of the distributed cognitive architecture 

shown in Figure 6.6. Reactive agents are designed to perfonn goal oriented behaviour 

90 



building on the mechanism of the reflexive agents described in the previous section. The 

goals they attempt to satisfy as those specified by the deliberative BDI agents (described 

in the next section). The design for the fungus testbed includes seven different reactive 

agents. The deliberative BDI determines which of the reactive control mechanisms are 

active according to the goals the entire architecture attempts to satisfy. These goals are 

either task related or agent-internal resource related, and determine the number of 

different types of reactive agent required for this specific testbed. 

GOAL <: I BDIAgent I 

EJ '-.7 N ... Fu~us .. 
Agent to. E 

A 

I Action I 
R Resource 

~ ... E 

I AcTIon I 5 
T 

Medicine .. 

Figure 6.6 Reactive Agent 

Table 6.1 shows the seven different reactive control mechanisms possible for a reactive 

agent in this research. Reactive actions are initiated by control mechanisms in response 

to the state of the agent and resources in the environment. Reactive agents respond to 

perceptual input according to move towards any unit: fungus, ore, golden ore, crystal or 

medicine. The algorithm used to control the agent varies according to the agent 

parameters. The reactive agent makes use of the generic perceptual mechanism used 

across all the agents in Figure 6.6, and depending upon its perceptual range returns a 

type, distance tuple for objects it can sense (i.e. agents, fungus, ore, crystal medicine). 
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agent name move towards nearest collects (goal) 

(r 1 )reactive-fungus fungus fungus 

( r2)reactive-ore ore ore 

(r3)reactive-golden ore golden-ore golden-ore 

(r4 )reactive-crystal crystal crystal 

(r5)reactive-medicine medicine medicine 

(r6)reactive-resource resource resource 

( r7)reactive-unit any unit any unit 

Table 6.1 Reactive Agents (seven behaviours) 

Resource Reactive algorithm 

Goal based behaviour towards resource 

Goal: one of ( ore, golden ore and crystal) 

Find the nearest resource by their distance, 

Select the direction towards nearest resource, 

Move towards resource direction (Leftl Right I Up I Down ). 

If No Resource within Perceptual Range follows reflexive 

actions (i.e Move towards edges of the environment), 

Algorithm 6.3 Algorithm for Reactive Fungus Agent. 

This type of agent understands the parameters affecting its behaviour selection such as 

distance to resource, resource type, etc. The algorithm for the generic resource collector 

agent is shown in Algorithm 6.3. This agent collects ore, golden ore and crystal or 

resource. Reactive-fungus type agents can find the nearest fungus available in the 

environment, move towards it and collect it. If the resource required for the reactive 

behaviour is not sensed the agents resort to their default reflexive behaviour. 
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Similarly, small changes to this uncomplicated algorithm are present for all the reactive 

agents listed in Table 6.1; the designs of all types of reactive agents are included in 

Appendix A. The reactive-ore type agents can find and move towards nearest ore 

available in the environment, and collect it. The difference between the each unit, from 

r1 to r7 can be seen in Table 6.1. 

6.5 Deliberative agents 

Deliberative agents compromise the third layer of the distributed cognitive architecture 

shown in Figure 6.7. The design of deliberation mechanisms for the fungus testbed 

includes five different types of BDI agents. The BDI determines which of the reactive 

or reflexive control mechanisms are active according to the goals of the entire 

architecture attempts to satisfy. These goals are either task related or agent-internal 

resource related, and determine the number of different types of reflexive and reactive 

agent required for this specific testbed. For example, as in Figure 6.7 depicts BDI-Ore 

(BDIl) selects and controls the combination of reactive-fungus, reactive-ore, reactive­

golden-ore and reactive-medicine behaviours. BDIS or BDI-Reflexive agent selects and 

controls the combination set of reactive-fungus, reactive-medicine and reflexive 

behaviours. The different versions of deliberative models uses in this experiment are: 

BDI-Ore (BDIl), BDI-Crystal (BDI2), BDI-ore-and-crystal (BDI3), BDI-adaptive 

(BDI4); and BDI-Reflexive (BDIS). 

F or example consider a scenario of hungry agent in a fungus world testbed. The agent 

intends to collect ore. If the agent in a hunger state (energy level is less than threshold or 

predicted energy value) or high metabolism condition, then agent changes their desire 

towards fungus or medicine. Based on the agents needs and cost function, different 
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deliberative agents can be framed. The difference between each BDI model in terms of 

energy level, biochemical and in terms of goal can be seen in Table 6.2. (Appendix A 

gives details of the entire BDI models). 

( Reflexive Rl ) Reflexive R3 

-

ENVIRONMENT: DoMAIN AND TASK VARIABLE 

Figure 6.7 Deliberative agents and their control 

First, it maps internal states onto a belief set from the perceptual range or perceptual 

level. This increases the agent's belief set for sensing in an environment. Second, the 

agent updates the belief set with perceptions and perceptual range. Thirdly, it uses the 

belief set to select the appropriate desire set. Fourth, the agent uses the desire set to 

select an intention. Finally, it selects the appropriate BDI model. The belief set includes 

the complete knowledge resources available in the surrounding environment. BDI 

models are capable of reasoning about their own internal tasks and plans. 
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Model Energy resources Biochem ical 6001 based 

BDI-Ore 40 Not Fungus (food) and Ore 
(BDI!) applicable Medicine 

(M etabo lism) 
B D I-Crystal Fungus (food) and 
(BDI2) Not applicable One leve I Medicine Crystal 

ahead (M etabolism) . 
BDI-Ore- 50 Not Fungus (food) and are and Crysta l 

Crystal applicable Medicine 
(Metabolism). 

Not applicable Thinks two Fungus (food) and A ny unit 
levels fUrther Medicine 

(M etabo lism) . 
B D!- Fungus (food) and 
reflexive Not applicable Thinks three Medicine Reflexive 

levels furthe·r (Metabolism) . 

Table 6.2 BDI agents Affect and Goals 

Finding First level smart energy model 

Predict energy (Finding the decision boundary):-

Find the nearest fungus, 

Find the nearest distance between agent and Fungus, 

Find the agent needed energy by using their metabolism state and 

Energy required, Predict energy is Distance/20 * Energy Use. 

Algorithm 6.4 Smart Energy Level Model 

Deliberative agents in a fungus world testbed are capable of performing different tasks. 

BDI agent follows the reactive actions in each move based on given rules and decision 

variables. Some BDI models favour specific goals towards: (1) ore; (2) crystal; (3) 

medicine, or (4) fungus. BDI models work in terms of a fixed threshold and adaptable 

energy use. 
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A smarter BDI model thinks further ahead, so the agent has sufficient energy to collect 

ore and collect next fungus before running out of energy available(Algorithm 6.4). The 

design of all types of predicting energy models are included in Appendix A. 

Find near~ Fungys 
Type and coHe.ct 

Low 

Figure 6.8 

Find nearest Ore 
Type and collect 

High or Medium 

Find nearest 
Medicineand collect 

Design ofBDI-Ore (BDI 1) 

As in the Figure 6.8 and Algorithm 6.5 illustrates as follows: initially agent searches the 

nearest medicine to collect, and decreases their metabolism to low (see the metabolism 

effect in the testbed setup described in next Chapter). Second, the agent compares its 

energy level with the fixed energy value 40. If the energy level is more than predicted or 

threshold, then it moves towards ore (goal), based on cost and utility function 

(microeconomic level). 

As in the Figure 6.9 illustrates as follows: initially agent searches the nearest medicine 

to collect, and decreases their metabolism to low (see the metabolism effect in the 
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testbed setup described in next Chapter). Second, the agent compares its energy level 

with the predicted energy level (smarter energy). The energy required to survive and 

reach their goal. If the energy level is more than predicted energy level, then it moves 

(different goal) reflexive conditions based on cost and utility function (microeconomics) 

BDI 1 (First) model 

(1 )Metabolism > Low # 

Then searches the nearest medicine to collect to lower the metabolism by 

their reactive mechanism. Uses the Reactive Medicine, 

Find the nearest Medicine by their distance, 

Select the direction towards nearest Medicine, 

Move towards Medicine direction I left I right IUpI down. 

(2)Energy Level < = 40 (1lreshold value) 

The agent desire to move towards to fur'9lJS to avoid the hunger 

condition or their death (Physiological oriented) uses the Reactive 

Fungus, Findes the nearest fungus by distance formula, 

Select the direction towards nearest fUr'9lJS1 

Move towards Fungus type direction I left I right IUpI down. 

(3)Energy Level > 40 (1lreshold value) 

Reactive Ore (Goal based behaviour move towards nearest Ore) 

And the nearest Ore 

Select the direction towards Ore. 

Move towards Resource direction I left I right IUpI do\M1. 

Algorithm 6.5 BDI-Ore 
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Figure 6.9 Design of BDI-Reflexive (BDI 5) 

6.6 Learning Layer 

The fourth layer of the architecture is the learning processes layer. Learning changes 

decision making at one level about actions at another level for tasks defined at yet a 

further level. This layer is in effect controlled through connections to the metacontrol 

level. Reinforcement learning calculates based on what and how to map situations to 

action for maximizing a reward. Q-Learning mechanism finds or tries to find a 

maximum reward for an action. 

Reinforcement learning systems (refer Figure 6.10) In between the agent and 

environment, there are four main sub elements: (1) policy; (2) reward function · (3) 

value function; and (4) models. 
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Policy defines the stimulus-response rules for agent behaviour. Policy is a core element 

for reinforcement learning. Policy maps the perception state from the environment to 

action. Policy is a simple function. It uses lookup table, otherwise it makes extensive 

computation for searching. Some times the policy itself sufficient for determining 

behaviours. 

A reward function defines the goal for the reinforcement learning. The reward function 

maps state and action pair [Q(s, a)] to the single reward. This defines the good and bad 

events for the agent. For example the relationship between policy and reward as 

follows: If the agent's action is low reward, then the policy will be changed to other, 

and it looks for the high reward. Rewards determine the immediate and intrinsic 

desirability of environmental states. Any reinforcement learning agent's main objective 

is to maximize the total reward. 

ENVIRONMENT 

Models 
(Framed from values) 

Values 

(Stimulus, Response) 

Policy 
Q(States, Actions) 

Reward Fundion 

Figure 6.10 Q-Leaming Mechanism 

The values are predictions of rewards. If there is no rewards their would be no values. 

Judgment of changing an action is made based on the value. Rewards are easier to 
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calculate then the values. The values are re-estimated and calculated based on the 

sequence of actions agent made on over its life time. Reinforcement learning algorithm 

is efficient for estimating the values. The value function decides how to maximize the 

total rewards. These algorithms try to finds the optimal value function through the 

iterations. 

The final element is a model. Models are used for planning. This will be considered for 

the future situations. The model of the environment defines how the state and action can 

occur in the different location of the environment. The best actions for the agent can be 

learned by trial and error (Sutton, 2004). Models are used for dynamic programming 

(Sutton and Barto, 1998; Kaelbling et aI., 1996). 

Q-learning algorithms work by estimating the values of state-action pairs. The value 

Q(s, a) is defined as the expected discounted sum of future payoffs. This can be 

obtained by taking an action a from state s. Given the delta value from the current state 

s, selecting an action a, will cause receipt of an immediate goal unit and arrival at the 

next move. The rules can be symbolic, fuzzy, neural or other, depending on the 

direction taken in devising the metacontrol and metacognition part of the architecture. 

Algorithm 6.6 explains the interaction between agent and environment with reference to 

Q-Iearning. Let Q(s,a) be the expected discount of reinforcement of taking an action in 

state s, then continuing by choosing actions optimally (McFarland, 1993; Bosser, 1993). 
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Q-Leami~ Algorithm:-

Let Q(s,a) be the expected discount of reinforcement of taking action an in state s, then 

continuing by chooSing actions optirrolly.(McFarland, 1993; Basser, 1993). 

1. Initialize a table f with states S, actions A and the Q (ut.lity or reward) value estitrotes. 

2. Select an action a (where a (E A) and execute It. 

3. Observe the immediate re\Mlrd r ,Reward defined using some agent relation, for example 

distance to desired object. ():)serve the new state S, achieved by action a on state s, where a E 

Aands E S. 

4. Update the table entry for Qvalue using an appropriate rule, for example 

New(s, a) = Old(s, a) + (r(s) - res'»)! res). The Q values are nearly converged to their optirml values 

5. Update the state: s ~ s. 

6. Repeat from 2 until learning finished. 

Algorithm 6.6 Learning Agent Design for Fungus world 

The delta value is calculated from agent's distance and new distance values: 

Delta is 1 I (Distance + 1); 

and 

Delta is OldQ + ((Distance - New distance)/Distance). 

Afterwards the q value for each direction is assigned. For example, Xval = 660, Yval = 

220, NewDir = down, and Delta = 0.00439997. From the new direction, the new 

locations are calculated. For example. Q([660,220],right), gives s'=[680,220]; Q([660, 

220] ,left), gives s'=[640,220] ; Q[660,220],up), gives s'=[660,200]; and Q([660 220] 
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down), gives s'=[ 660, 240] .Agent selects the biggest q value location, for selecting a 

new direction. 

Metacognition 

1r 
I mAL Metacontrol 

Tasks 

J 
Sa1se1 

EJ 
L r--. I...ea'ns usil'9 Existil'9 

E Control BehcMors 

A 

EJ R 

Aerioo I N 
Deli berati -.e steps 

E r--. uS 1'9 8Dl !rodels 
R 

f-----t 
Basic ul'lits 
(towcrds FuI'9U5, o-e, 
Golden o-e, Medicine, 
Etc) 

Figure 6.11 Learner 

The learning agent (refer Figure 6.11), in effect, changes the goals and deliberative steps 

according to given rules. This may change to move towards ftmgus, ore, crystal and 

medicine at basic reflexive and reactive levels. Learning also can be applied in higher 

level layers. The learning mechanism can follow according to rules framed in the 

deliberative, metacontrol and metacognition levels. The metacontrol mechanisms can be 

viewed in terms of which the agents use existing controllers, learn behaviours (i.e. 

existing Q(s, a) values) or learn new behaviours by training the agents. 

6.7 Metacontrol Level 

Metacontrol agent decides which deliberative agents are to be learned and ready to 

perform in different conditions. The deliberative actions are called control actions. A 
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meta controller determines the relevant control actions.Metacontrol agenf s 

compromises the fifth layer of SMCA as shown in Figure 6.12. The metacontrol agent 

learns actions upon the environment. The agent calculates all the combinations of 

deliberative agent's states (inputs) and actions. Metacontrol agents have different levels 

of skills, such as reflexive, reactive, deliberative, or learning capabilities. As Figure 6.12 

depicts metacontrol agent can select and controls any of one of the decision models such 

as :( 1) leamed-BDI-ore, (2) leam-BDI-crystal, (3) learned-BDI-ore and crystal, (4) 

learned-BDI-adaptive and (5) learned-BDI-reflexives. BDI agents should learn 

themselves by trained method. So adding learning methodology makes more effective. 

Reward is a goal of the metacontrol agent. This defines the good and bad events for the 

selected BDI agent. Metacontrol agent's main objective is to maximize the total reward 

of the running BDI agent. The metacontrol level may be a neural or some neuro­

symbolic hybrid, and that allows learning. These rules can be used by the metacontrol 

part of the SMCA architecture. The rules can be symbolic, fuzzy, neural or other 

depending on the direction taken in devising the metacontrol part of the architecture. 

The metacontrol task level agent does follows :(1) when and what to learn; (2) what 

decision model to select and (3) when to change between architecture possibilities. 

Metacontrol agents can select the BDI model. But cannot reason for higher level 

thoughts. Due to this reason metacontrol agent can not reason and change the BDI 

models. 

Performance (OreBDI) = Ore + Golden_ore + Age 

Affect (OreBDI) = Norm (OreBDI)/ Performance (OreBDI) 

Performance (Crystal BDI) = Crystal + Age 
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Affect (Crystal) = Norm (Crystal)/ Performance (Crystal) 

Performance (OreCrystalBDI) = Ore + Golden_ore + Crystal + Age 

Affect (OreCrystalBDI) = Norm (OreCrystalBDI) / Performance (OreCrystalBDI). 

METACONTROL 

GOAL I «--::::======1 

(runs anyone learned BDI) 

Metacontrol 
Tasks 

LEARNING PROCESSES 
(Q-learner) 

( 
(BDI2) ) 

BDI-Crystal 

Figure 6.12 Metacontrol Task 

6.8 Metacognition Level 

This is the final layer of SMCA mind model. This layer uses norms to control the 

architecture. Metacontrol agents can choose BDI models, but cannot change the 

deliberative models with reasoning. The metacognition level agent works by comparing 

the architectural level, and uses (1) leamed-BDI-ore, (2) leam-BDI-crystal, (3) leamed-

BDI-ore-crystal, (4) learned-adaptive and (5) learned-BDI-reflexive. The metacognition 

agents can change the framework of BDI agents with reasoning. This level works to 

control and monitor the deliberative models. The deliberative models can be switched 

off or on based on the norms. 
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Metacognition (refer Algorithm 6.7) technique in fungus world is decomposed into the 

different actions as given above algorithm. Each of these actions demonstrates a few 

specific types of meta cognitive tasks. It uses different BDI models: (1) A BDI model for 

ore collector; (2) BDI model for crystal collector; (3) An adaptive BDI model for ore or 

crystal collector; (4) BDI model that plan ahead and (5) BDI-reflexive model. This uses 

affect mechanism to find a need, such as metabolism and food. Next it finds the affect 

of each BDI-model for each running cycle. Affect will be calculated based on the norms 

and performance of each BDI model in the environment. Performance will be calculated 

based on the particular type of the resource collected and based on the age of the 

particular agent. As in Figure 6.13, metacognition agent compares the architectural 

level, by keeping all situations in count. Then selects the best possible (optimal) BDI­

model for each cycle to achieve the goal efficiently and increase the performance. 

Norms controls the cognitive components or BDI models. Norms are responsible for 

figuring out when and how to execute a metacontrol task and then making sure that the 

task or set of tasks are done correctly. Metacomponents such as Norms, Affect and 

higher level rules are reason about the action, reflect upon that reasoning, and assess 

cognitive activity with respect to meatacontrol task. Given a loaded norm for resources 

(such as ore, golden-ore and crystal), energy decision boundaries, affect values for 

medicine, fungus, ore, crystal or ore and crystal. This can be used to decide upon the 

DESIRE (i.e. when and what resource to collect). 

Given a loaded norm for ore, crystal, and one for energy decision boundaries. The 

Affect values for medicine, fungus, ore, crystal or ore and crystal can be used to decide 
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upon the desire (i.e. what resource to collect). These are the values for the Q-learner to 

update. These are the values used to decide, for which agent to use for which desire. 

METACOGNITION PROCESSES 

Metamanagement 
Uses M-Norms to 
switch the BDI 

Metacomphrension 
(Remedial action) 
compares the 
architectural 

Metacomponents 
Uses standard rules, 
and appropriate 
rules 

(Q-Ieamer) 

METACONTROL PROCESSES 

-
Figure 6.13 Metacognition layer in SMCA 

By combining all DESlRE®INTENTION from affect values, the agent can choose a 

goal and the means to achieve it. A different metacomponents such as norm or multi 
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norms, affect, perceptual range, and higher level rules may choose the highest affect 

goal and then the best (highest affect) method to achieve it. 

The deliberative steps are verified by using metacognitive aids. Norms will find the 

particular reason and switch the appropriate model in a particular situation. This is 

called metacomphrension (remedial action), and is a part of metamanagement. 

The affect value always lies in between 0 and 1. Affect value is assigned for each BDI 

model (Refer affect Algorithm 6.9). It compares the affect needed, by using the smallest 

affect value assigned for each BDI model. If the affect value of ore-crystal BDI is less 

than ore- BDI and crystal-BDI, then it uses ore-crystal BDI. A similar mechanism will 

be used to determine other affect values. For example, if the metabolism is high, then 

the affect value of medicine is 1. Agent needs to collect medicine and reduce their 

metabolism to medium. If the metabolism is medium, the affect value of medicine is 

0.5. Agent needs to collect the medicine and reduce their metabolism to low. If the 

metabolism is low, the affect value of medicine is O. Agent does not need to reduce their 

metabolism. 

As in the Algorithm 6.9, if the energy level is less than decision boundary, the affect 

value is 0.75. Agent needs to collect energy (fungus) and reduce their hunger. If the 

energy level is greater than or equal to decision boundary, the affect value is O. This 

means agent has sufficient energy to survive. If the total collection of ore is equal to 0, 

norm of Ore-BDI is 0.75.If the total collection of ore is more than zero; norm of 

particular BDI is equal to perceived ore divided by total collected ore. If the total 

collection of crystal is 0, norm of particular crystal-BDI is 0.75. If the total collection of 

crystal is more than zero; norm of Crystal- BDI is equal to perceived crystal divided by 

total collected crystal. 
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Stepl : -flop interml states onto Belief set from the perceptual rmge. l'he perceptual level increases 

the agent's belief set for sensitl] in the erwirorrnent. Example level 5 retums Sense List = [5-

spacefree,4-agent,3-spacefree,2-fungus,andl-spacefree] 

Update Bel ief Set with perceptions ald perceptual ralge. 

Step2: -Use Affect mechcrlism to find a need of the metabolism and need of a food. 

Step3:- Use metacomponents such as J\hrms or M-J\hrms (Such as J\hrml, J\hrm2, J\hrm3, ETC are) 

to decide which BDI model to choose in write time by using write decision (optirrol decision)by 

comparitl] resources avai lable and balQ'lCe the resources in a testbed. 

EXClJ1l>le f\hrm 1: 

Collected ore is Q-el + GoIcJerLorel, 

Collected ore > 0, 

J\hrm_oreBDI = Perceived ore / Collected ore. 

Perceived ore = f\h_Q-e + f'.D_Gold, 

f\hrtlLoreBDI = Perceived ore / Collected ore. 

Collected crystal is Crystal1. 

Step4:- (metacotll>hrension or remedial action) Select appropriate Belief-Desire-Intention 

combination (BDI-Ore, BDI-Crystal, BDI-Q-e Crystal, ETC), by col'\1Xlf'ing the architectural results. 

Step5:- (Metanmagement) Uses M-J\hrms to switch the BDI Ih>dels (Such as BDI-Ore, BDI-Crystal, 

BDI - Ore Crystal, ETC), 

Step6: - (Scherro trainitl]) Use Q-Leaming for CPtitral steps taken from O3eIlt by using M-J\hrms and 

Affect Mechcrtism (Metac<>g1ition level). 

Step7:- Repeats the steps (Stepl to Step6) until SitnJlation ends. 

Algorithm 6.7 Metacognition Agent Design for Fungus world 

108 



Collected (Ore) = 0, 

Norm (OreBDI) = 0.75. 

Collected (Ore) > 0, 

Norm 1 

Norm (OreBDI) = Perceived (Ore)/Coliected (Ore). 

Collected ore is Orel + Golden ore1, Collected (Crystal) = 0, 

~ Norm (Crystal) = 0.75. 

Collected (Crystal) > 0, 

Norm (Crystal) = Perceived (Crystal)/Coliected (Crystal). 

(Collected (Ore) + Collected (Crystal) = 0, 

Norm (Ore_CrystaIBDI) = 1. 

(Collected (Ore) + Collected (Crystal) ) > 0, 

Norm (OreCystaIBDI) = Perceived (Cystal+Ore)/Collected 

(Cystal+Ore). 

Algorithm 6.8 Norm 1 

As similar to the above example (Algorithm 6.8), if the total collection of ore and 

crystal is 0, norm of ore-and-crystal-BDI is 0.75. If the total collection of ore and crystal 

is more than zero, norm of ore-crystal-BDI is equal to sum of perceived crystal and ore 

divided by sum of collected ore and crystal. There are different versions of norms based 

on the different circumstances and reasons. For each decision model, three different 

norms will be calculated based on their performance. Compare the norms each other to 

find out the best norm to use for that particular cycle in testbed. 

For example, Algorithm 6.9 compares the norms. If the norm of the ore_crystal_BDI i 

greater than norm of the ore_crystal_BDIl and ore_crystal_BDI2 then norm of th 
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ore_crystal_BDI is selected. If ore_crystal_BDIl is greater than norm of the 

Affect rulel 

If( Metabolism = Low), Need(Medicine) = 0, 

If (Metabolism = Medium), Need(Medicine) = 0.5, 

If( Metabolism = High), Need(Medicine) = 10, 

If( Energy_level < Decision_boundry), 

Need(EnergyJevel) = 0.75, 

If(Energy _level> = Decision_Boundry), 

Need(EnergyJevel) = 0, 

Need(Medicine) = 0, 

Need(Energy_level) = 0, 

Performance_Ore_BDI is Orel + Golden_orel + Agel, 

Norm_oreBDI > Norm_oreBDIl, 

Norm_oreBDI> Norm_oreBDI2, 

Affect_ore_BDI is Norm_oreBDI / Performance_Ore_BDI. 

Performance_Ore_BDI is Orel + Golden_orel + Agel, 

NoMn_oreBDIl> Norm_oreBDI, 

Norm_oreBDIl > Norm_oreBDI2, 

Affect_ore_BDI is Norm_oreBDIl / Performance_Ore_BDl. 

Performance_Ore_BDI is Orel + Golden_orel + Agel, 

Affect....;ore_BDI is Norm_oreBDI2 / Performance_Ore_BDl 

Algorithm 6.9 Affect 1 

If the ore_crystal_BDI2 is greater than norm of the ore_crystal_BDI and 

ore_crystal_BDIl , then norm of the ore_crystal_BDI2 is selected. Affect or need of the 

particular resource is calculated based on the norm of particular BD I and performance 

criteria. The relationship is as follows: 

Affect ore BDI is Norm oreBDI / Performance Ore BDl' - - - -
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Performance_Ore_BDI is Orel + Golden_orel + Agel. 

The perceptual range or perceptual level increases the agent's belief set for sensing in 

the environment. First, it maps internal states onto a belief set from the perceptual range 

or perceptual level. This increases the agent's belief set for sensing in an environment. 

See, for example, level 5: returns Sense List = [5-spacefree, 4-agent, 3-spacefree, 2-

fungus, and l-spacefree]. Second, the agent updates the belief set with perceptions and 

perceptual range (refer Appendix B). 

6.9 Summary 

This chapter summarizes the design part of SMCA using extended CAMAL cognitive 

architecture with extra processing layers. The distributed model of Mind as a "Society 

of Mind" design includes reflexive, reactive, deliberative level agents, BDI models, 

General structure of the BDI model and metacognition agent general structure. The 

design also includes about the metacomponents such as affect, higher level rules for 

resource set, norms and learning of metacognition steps. The design for metacognition 

or self-reflection architecture in one specific cognitive architecture. Metacognition is 

defined as thinking about thinking. It can be viewed as two ways monitoring a group of 

agents in an intelligent or cognitive or robotic architecture (i.e. self reflection) and 

making changes by adapting effective strategies in that society of agents, to constitute a 

"Society of Mind". Combination of agents work to achieve the different goals 

(cognitive tasks) in three different tasks: (1) collection of ore (2) collection of ore 

golden ore; and (3) collection of crystals can be performed by society of agents. The 

different combination of agents is organized for different goals or task. 
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Chapter 7 Design of Experimental 

Testbed 

7.1 Testbed Setup 

The fungus world testbed is implemented using SWI-Prolog 5.4.6 (SWI_Prolog, 2003). 

The fungus world testbed experiments include cognitive and engineering perspectives 

on the architecture described in the previous chapters. The fungus world environment 

has been created to have both dynamic and static (Figure 7.1). The static blocks are 

more flexible, to create a particular location of the environment. There are different 

parameters in the environment for an agent's biochemical engine and performance. 

Resource parameters in the environment are created through the checkbox consisting of: 

(1) standard fungus; (2) small fungus; (3) bad fungus; (4) ore; (5) golden ore; (6) crystal 

and (7) medicine. The agents are created in the environment by using Prolog graphics 

(Figure 7.1 and Figure 7.2). All of the parameters can be changed according to 

experimental requirements, and are defined in a configuration module. The agent cannot 
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differentiate between standard fungus, small fungus , and bad fungus until it collects or 

eats them. 

Figure 7.1 Fungus world Testbed 

7.1.1 Standard Fungus 
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Fungus is a nutrient for the agents. Each standard fungus gives an agent 10 energy units. 

Initially, each agent has predetermined energy units. For each cycle, the agent consumes 

a fixed number of energy units. If the energy level (nutrients) reaches 0, the agent will 

die. All parameters are defined in the configuration module. These values can be varied 

from 0 to 150. Refer to Tables 7.1, 7.2, 7.3 , and 7.4 for their effects. 
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7.1.2 Small Fungus 

The small fungus gives an agent 5 energy units. If the agent consumes a small fungus,S 

energy units (default) are added to the energy storage. This parameter can be varied 

simply by changing the values in the configuration module. The value can be varied 

from 0 to 150. Refer to Tables 7.1, 7.2, 7.3, and 7.4 for their effects. 

7.1.3 Bad Fungus 

The bad fungus has 0 energy units. If the agent consumes bad fungus, it gets null 

energy. Moreover, bad fungus increases the metabolism rate, and changes the 

metabolism affect. This value can be varied from 0 to 150. Refer the Table 7.4 for their 

effects. 

7.1.4 Ore 

The collecting of ore is the ultimate goal of each agent. Each agent group tries to collect 

as much ore as possible in the environment. At the same time, an agent has to maintain 

the energy level necessary to live in the environment. Initially, collection is 0, and one 

value is added after collecting each piece of ore. This value can be varied from 0 to 150. 

Refer to Tables 7.1, 7.2, 7.3, and 7.4 for their effects. 
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7.1.5 Golden Ore 

Collection of golden ore increases the performance of an agent. One piece of golden ore 

is equal to five standard ore units. This value can be varied from 0 to 150. Refer to 

Tables 7.1, 7.2, 7.3, and 7.4 for their effects. 

7.1.6 Crystal 

Collection of crystal increases the performance of agent by a factor that is double that of 

ore. This value can be varied from 0 to 150. Refer to Tables 7.l, 7.2, 7.3, and 7.4 for 

their effects. 

7.1.7 Medicine 

The medicine affects the metabolism of the agent in the testbed. The collection of 

medicine decreases the metabolism. The metabolic effect is exactly opposite that of 

collection of bad fungus. This value can be varied from 0 to 150. Refer to Tables 7.l, 

7.2, 7.3, and 7.4 for their effects. 

7.2 Experimental setup 

This environment supports the running of the various types of agents, where each agent 

uses a different type of rules and mechanisms. In these experiments, a maximum of 50 

agents were defined. 

The experiments were conducted for the same number of agents, the same type, the 

same number of fungi (including standard, small, and bad), ore (including standard and 
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golden ore) and the same objects (including obstacles). The time scale and maximum 

cycles were kept constant by adding the same type of agent in each experiment. 

ne Experiment for scoiety of agents to demonstrate metacognition in society of minds 

Obstacle: to] Q. f .5 
-_/ 
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Figure 7.2 Parameters Selection Menu 

The same analytical parameters were recorded in each study: energy left after their 

maximum cycles, ore collected, fungus consumption, and life expectancy of agents. 

Tables 7.1, 7.2, 7.3, and 7.4 gives brief explanations of experimental setup parameters 

used, including their types, values, and effects on the experiment. 

Table 7.1 gives the details of actors present in the fungus world environment, including 

their type (numeric or atom), their assigned range of values (0 to n), and their default 

effects on the environment. For example, numeric value for "Number of Agents is (0 to 

50: 20). The range is 0 to 50, and default value is 20. All the parameters are similarly 

defined. 
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PCII"Clmeter Type Value Default Effect 
N.Jmber of Agents N.Jmeric Ot050 Amount of Agents in testbed 

: 20 
Agent Type Categorical: type! Defines type of agent in 

atom etc environment 
Obstacles Categorical: None, Obstacles present or not 

atom Static, 
random 

N.Jmber of Ore N.Jmeric Oto Amount of Ore in Testbed 
150: 20 

N.Jmber of Golden N.Jmeric Oto Amount of Golden Ore in Testbed 
Ore 150: 10 

N.Jmber of Crystal N.Jmeric Oto Amount of Crystal in Testbed 
150: 10 

N.Jmber of Fungus N.Jmeric Oto Amount of Fungus in Testbed 
; 150 : 

20 
Number of Stroll N.Jmeric Oto Amount of Stroll Fu~us in 

Fungus 150 : Testbed 
20 

Number of Bad N.Jmeric Oto Amount of Bad Fungus in Testbed 
Fungus 150 : 

20 

Table 7.1 Parameter for fungus world environment. 

7.3 Replenish (Refreshment) Rates 

Table 7.2 gIves details about the replenishment effects on the fungus world 

environment. 

Replenish rate Type Value Default Effect 
Fungus Numeric 5:2 2 fungus created on every 5 cycles 
Small Fungus Numeric 6: 2 6 small fungus created on every 2 cycles 
Bad fungus Numeric 7: 2 7 bad fungus created on every 2 cycles 
Ore, Golden Ore, Crystal Numeric 0 : 0 Null effect 
Medicine Numeric 5 : 2 5 medicine created on every 2 cycles 

Table 7.2 Replenish (refreshment) rate 

The replenish parameters of fungus, small fungus; bad fungus, and medicine are created 

with different rates in the environment. An example is 'replenish rate of fungu typ 
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numeric," and the value (5:2) means that two fungus will be created on every five 

cycles. Similarly, for every six cycles, two pieces of small fungus will be created. For 

every seven cycles, two pieces of bad fungus will be created. The replenishing effect of 

medicine is that for every five cycles, two pieces of medicine will be created. 

7.4 Agent Performance Parameters 

Table 7.3 gives details about the effect of parameters on agent performance. Each move 

of the agent consumes some energy. The consumption of energy depends on the 

metabolic rate or metabolism of an individual agent. The effect of energy usage for each 

move of an agent is based on the metabolism. If the agent follows Low metabolism, 

energy usage is one unit per cycle. If the agent follows Medium metabolism, for each 

move, energy usage will be two units per cycle. For High metabolism, the agent 

consumes five units for each move. This can be changed, from the configuration 

module. 

Table 7.3 also explains the energy storage level of agents when they consume different 

types of fungus. If the agent consumes standard fungus, the energy storage level of the 

agent increases by ten units. For small and bad fungus, consumption increases the 

energy storage levels by five and zero units, respectively. This also can be changed, 

from the configuration module. The last category in Table 7.3 is the effect of bad fungus 

and medicine on the agents. If the agent collects bad fungus, this increases the 

metabolism. If the agent collects the medicine, it decreases the metabolism. 
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Parameter Type Value Default Effect 
Metabolism Categorical- Low Agents use Energy at 1 unit per cycle 

atom 
Metabolism Categorical- Medium Agents use energy at 2 units per Cycle 

atom 
Metabolism Categorical- High Agents use energy at 5 unit per cycle 

atom 
Fungus Object ; 10 Increases energy level of agent by 10 

Numeric units 
Stroll Object: 5 . Increases energy level of agent by 5 

Fungus f\lJmeric units 
Bad Fungus Object: f\kJmeric 0 Increases energy level of agent by 0 

units 
Bad Fungus Object: N/A Increases Metabolism 

categorical Low to Medium 
Medium to High 
High to High 

Medicine Object: N/A Decreases Metabolism 
categorical Low to Low 

Medium to Low 
High to Medium 

Table 7.3 Parameters Affecting Agent Performance. 

7.5 Output Parameters 

Table 7.4 gives details about the parameters affecting an agent's performance. The 

fungus, small fungus, and bad fungus increase the energy storage levels by ten, five, and 

zero units, respectively. If the agent collects one standard ore, it increases the 

performance by one unit. Collecting a golden ore increases performance by five times 

more than a standard ore. Collection of one piece of crystal increases the performance 

two units. Cycle is a categorical type, and the values are 1, 2, and 5, respectively, for 

agent usage of energy for each move, based on low, medium, and high metabolism 

effects. 
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Parameter Type Value DefCIJIt Effect 
Fungus Object ; l'tImeric 10 Increases t he energy level 

by 10 energy units, to live in the environment 

Srooll Fungus Object ; l'tImeric 5 Increases the energy level 
by 5 energy units, to live in the envi ronment 

Bad Fungus Object; l'tImeric 0 Increases the energy level 
by 0 energy units, to live in the envi ronment 

Decreases the perforroonce by 
Increasing metabolism 

Ore I\k.tmeric 1 Increases the Performance by 1. 

Golden Ore l'tImeric 5 Golden Ore increases the 
agent performance 5 t imes 

More than an ore. 

Crystal NJmeric 2 Crystal Increases the agent 
Performance 2 limes more than a 

Ore. 

Medicine Object. l'tImeric 0 Increases the performance by 
Decreasing metabol ism 

Ef\P Object; N.Jmeric NlA Stores the energy based on consumption 
(Energy storage) of Fungus, Small Fungus, and Bad Fungus. 

Cycle Object: 10r2or5 Agent consumes the 
categorical Energy units Energy 

Categorical-atom 1 Agents use energy at 1 unit 

Low per cycle 

Medium Categorical-atom 2 Agents use energy at 2 unit per cycle 

High Categorical-atom 5 Agents use energy at 5 unit per cycle 

Table 7.4 Output Parameters Defining Agent Performance 

7.6 Society of Agent's Setup in the Experiment. 

The Society of Mind approach to cognition and metacognition in a cogniti e 

architecture is divided into SIX tiers: reflexive, reactive, deliberative learning 

metacontrol and metacognition level. Agents are distributed across different layer of 

architecture, to cover all processing and functioning associated with the adopted rn d I 

of mind. The fo llowing cognition: reflexive (six beha iour), r acti\ ight 
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behaviours), and metacognition: deliberative (fifteen behaviours), learning (learning all 

given behaviours), metacontrol (complex) and metacognitive (complex) (society of 

agents) are set up in the experiment (refer agents selection menu Figure 7.3). (Refer 

section 504 for proposed cognition and metacognition agents in SMCA and design of 

agent's Chapter six). 

Agent Selection 
., "~ ...... ~ .. ,~ .. , ..... _,, .. _._ n.," ............. " ..... " ........ _".,. "'_.~ .... ~._"_,,._., ......... ~.~ .. ,,'_ ...... no........... .. • .. " .... _.." ..... __ ••. .... ._ ..... _ ................... n ... ...... . . 

.society of agents: 
r. Iype1 

(' T¥pe2, 

f' Ty~e3 

r Typ.~4 

r- Type5 

(" TypeS 

C Type! 

(' TypeS 

(' Type9 

r Type1 0 

(' Type11 

C Typet2 

(' Type13' 

r Type14 

r< Type15 

Agents: [5J 0 r ..... .......................... J..................................... 10 

Figure 7.3 Society of Agents Selection Menu 

7.7 General structure of the fungus world simulation 

As shown in Figure 704, the fungus world testbed simulation can be mapped ont 

physically situated agents in cognitive architectures, to demonstrate Society of Mind' 

(SMCA). Agents move and operate in an environment. At each turn each agent 

perfonns two phases. First, the agent moves in an en ironment and check th 
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corresponding adjacent positions. Agents determine the regular (anyone way) and 

random directions (up, down, left, and right). If the adjacent position is space free, then 

it moves to the next corresponding location. Secondly, agents check the parameters and 

rules. If the rule allows it to collect, it collects the parameter, or moves, based on the 

direction assigned. The general structure of the simulation can be sketched as follows. 

Initially (chosen by user), agents are randomly distributed in the environment. 

Each agent's initial effort is determined based on its type; for most types of agents, 

initial effort is determined based on their action and behaviour. Agents' position and 

effort may be observed on the relative display window. In every round, each agent 

moves randomly or in a particular direction in order to meet a fungus, ore, crystal or 

medicine, based on the rules and regulations framed for an each agent. An agent 

perceives its environment by sensing and acting rationally upon that environment with 

its effectors. 

The agent receives precepts one at a time, and maps this percept sequence into different 

actions. Dynamic agent morphology allows an ontogenetic process (metabolism) i.e., 

high, medium or low and aging, i.e., being born, growing, maturing aging, etc. The 

energy level determines the current hunger condition and thereby triggers eating 

(metabolism).The control architecture enables the fungus eaters to adapt to the dynamic 

environment. 
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\ 
START I . 
1 

INTIALIZATrON 
I 

Creates a new FUNSUS WORLD Testbed 
I 

, 

VISJALlZATrON 
Agent's window gives choicebox Displays buttons. 

Choose the type of agents and other parameters, choose the numbers,and (Refer tables 1, 
2,3,4), agents and parameters rcrtdomly distributed and start the experiment available in 

definition button. 

I 
NCNENCNr 

I Every agent moves to meet a particular goal 

Follows the rules and regulations Bundled for different agents. 
A Society of Mind Approach to Cognition and MetaCognition in a Cognitive 

Architecture(SNCA) 

! 
Checks the rules, agent rroy die or exist at the end of the 

experiment (t'Aaximum cycles) based on rules. 
Note the results. 

! 
I e.I> I 

Figure 7.4 Simulation Flowchart (General Structure) 

7.8 Summary 

This chapter describes the design of the fungus world testbed and de elopm nt 

undertaken enabling experimental setup. It gives the experimental setup with paramet r 

for fungus world environment, replenish rates agent performance param t r output 
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parameters, society of agent's setup in the experiment and general structure of the 

fungus world simulation. Intelligent behaviour of an animal or a robot can be only 

understood by competition among the different types of agents by comparing their 

individual performances. The fungus world testbed (platform) was been created using a 

Swi-prolog (version 5.4.6).To test and simulate qualities and capabilities of different 

types of agents (society of agents) and to demonstrate a Society of Mind approach to 

cognition and metacognition in a cognitive architecture. 

124 



Chapter 8 Experimentation Results 

This chapter gives the details of the simulation experiment results using the society of 

agents. The solutions will demonstrate the effectiveness of a Society of Mind approach 

to cognition and metacognition in a cognitive architecture. The results of these 

experiments will provide the basis for solutions or partial solutions for the research 

issues raised in this thesis. 

8.1 Testing Plan 

Society of Mind Cognitive Architecture (SMCA) is designed in the perspective of 

principles of microeconomics in animal minds. Agent behaviours can be analysed using 

many different metrics. The major metrics are metabolic activity, competition and social 

interaction with respect to environment and microeconomics. The SMCA results are 

simulated and presented based on the two metrics. They are (1) fitness function, and (2) 

benefit or goal. Cost can be measured by considering the fitness of an animal over a 

period of time, where fitness is defined in terms of future expected reproductive success 

after this period. The cost function deals with real risks, real costs and the benefits. The 

simulation platform provides a simple way to study the complex interactions bet\\ cen 
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different types of agents. This simulation demonstrates agent's behaviours with respect 

to the use of energy and time to makes decisions. The simulated result graphs compares 

agents performance based on the goal achievement and fitness function. Time scale is 

fixed for all the agents. Each agent will be experimented for the same time scale and 

same resources (refer Figure 8.1). For example type2 agents are running for the 25 

cycles or time scale. Input value of each parameter is defined in the configuration file. 

The output file gives details of each agent. This file includes experiment length, 

experiment number and collection of each parameter. The results of each agent is 

systematically tested and calculated based on their fitness (life expectancy) and 

performance. 

I Testing Plan 
• J 

1 
Conduct the experiments for all 16 SNCA agents 

Metrics based on the fitness (life expectancy) and benefit 
(performance). 

Simulate the results of each agent 10 times 
(Each agent will be experirrented for the sarre t.in:~ scale and 

sa.rro resources) 

Collect the Results from output file 
(Consideri~ average of 10 experiments, to manage consistency, 

And to avoid variations of simulated results) 

Plot the results on excel sheet 

lW 

END 

Figure 8.1 Testing Plan Chart 

Experiments are conducted based on the assigned stastical data for each agent. 

compare a result of each agent, the following statistics were collected: liD e, p tan)-. 
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fungus consumption (including standard fungus, small fungus and bad fungus), ore 

(standard ore and golden ore), crystal collected and metabolism. The life expectancy or 

age of the agent is noted, along with the agent's death (or age after the end of the 

maximum cycles or time). The agent's total performance will be calculated by amount 

of resources (ore, golden ore and crystal) collected, and based on life expectancy. The 

simulations can be executed several times by considering the same input. The final 

result graphs are considered by taking an average of ten simulated experiments. The 

data will be plotted on the excel sheet in order to obtain result graphs. 

8.2 Study One (Systematic comparison of multiple agents) 
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Graph 8.1 
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The results of this experiment (Graph 8.1) shows that BDI model agent maintain a 

higher level of life expectancy than other simple agents. Reflexi e agent are c 11 ct d 
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160/0 of ore, Reactive agents are collected 26% of ore, simple-learning agents collected 

57% of ore and BDI agents are manage to collect 80 % ore BDI agents maintains a 

higher level of 72.5%, life expectancy than reflexive 26%, reactive 36.5% and learning 

agents 41 % . 

8.3 BDI Models to test purposeful actions. 

The results of this experiment graphs given below shows the different BDI models will 

work, based on rewards or resource collection. The graphs are completely linear, based 

on performance. For example: 

(1) Crystal =0, ore = 100'}'o (linear towards ore). 
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(2) Ore =0, crystal = l00'}'o (linear towards crystal) 
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Graph 8.2 Comparison of BD I models 
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8.4 Study Two (Experimentation on BDI models) 

As shown in Graph 8.3, the BDI agent manages to live up to 438 life cycles. The BDI 

agent (Carnal) shows a complete control mechanism in managing an energy level of 40 

(assigned threshold or decision variable), and trying to manage the same line for the 

maximum time of its life cycle. The agents will exhibit optimal decision making 

capabilities near the decision boundary. The life expectancy of the two types of agents 

is shown below. The cognition (reflexive-learner) agent manages to live up to 110 life 

cycles in a fungus world environment. 

100 
00 

_ 00 

~ 70 
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..! 8J 
>-
~ 40 
~ 3) 
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10 
o 

o 100 

Life expectancy 

200 300 

lime(l" cydes) 

400 8JO 

• Lecmer 

Il CAMAL 

Graph 8.3 The Life Expectancy of Cognition versus BDI Agents 

8.4.1 BDI and Reflexive-learner 

The resource (ore, golden ore and crystal) collection of the simple cognition and BDI 

agents is as follows: cognition agents managed to collect 12 pieces of ore, and BDI 

agents managed to collect 95 pieces of ore. Graph 8.4 illustrates agent decision making 

capability at the threshold value. If an agent acquires more than the threshold r 

predicted energy level, then agent tries to collect ore. If the agent has a lack of energy 

then it collects fungus, from their hunger condition. 
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Graph 8.4 Fungus and Ore Collection 

Graph 8.4 shows the fungus consumption rate of cognition and BDI agents in their 

lifetimes. The cognition(reflexive-Iearner) agent managed to collect 6 pieces of fungus 

and the BDI agent are managed to collect 74 pieces of fungus. As Graph 8.4 illustrates, 

in the initial stages, the (reflexive-learner) cognition agent was found to collect more 

fungus than the BDI agent. The BDI agent was not concerned about fungus in this stage. 

Agents in the initial stage born energy with medium metabolism. The BDI agent 

collects the medicine to decrease metabolism. Agents, once they achieved low 

metabolism by collecting required medicine, then it does not concerned about medicine. 

8.5 Cognition, BDI and Metacontrol v / s Metacognition Agents 

The experiments are conducted for various types of agents based on differentiating th 

cognitive model qualities including physiological and goal-oriented beha i ill. h 

conceptual level associated with decision making with its cost function and uti lit) 
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behaviour, performance at the microeconomic level. This section presented some 

experiments in between cognition: (1) reflexive, (2) reactive-ore, (3) reactive-crystal 

and (4) reactive-unit; and metacognition agents. 

Initially, cognition} and metacognition agents had the same percent of (100%) life 

expectancy. After running the experiment (Graph 8.5), the metacognition agent 

maintained 70% energy, as compared to 58% by the cognition agent. The metacognition 

agent was able to collect 840/0 of resources, as compared to 14% collected by the 

reflexive agent. The metacognition agents thus collect a higher percentage of resources 

than the cognition agent. 
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Graph 8.5 Cognitionl vis Metacognition Agent. 

fier Initially cognition 2 (reactive-Ore) and BDI agents had 1000/0 life expectancy. 

running the agent for maximum cycles the following results were een(r t r Graph 

8.6). The metacognition agent maintained 70 % energy as compared to 520/0 t r th 
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cognition2 agent. The metacognition agent was able to collect 82% of resources as 

compared to 64% by the reactive (cognition type) agent. The metacognition agent thus 

collected a higher percentage of resource than the cognition agent. 
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Graph 8.6 Cognition 2 vis Metacognition Agent 

Initially Cognition3 (Reactive-Crystal) and metacognition agents had 100% life 

expectancy (refer Graph 8.7). After simulating the agents for 25 cycles (the maximum 

defined in this experiment), it was found that the metacognition agent maintained 700/0 

life expectancy, whereas the cognition agent maintained 52% of life expectancy. The 

metacognition agent was able to collect 82% of the crystal as compare to 38% collected 

by the reactive crystal agent. The metacognition agent thus collected a higher percent f 

crystal (resource) than the cognition3 agent. 
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Initially, both cognition 4 (Reactive-unit) and metacognition agents possessed 100% life 

expectancy. After simulating agents for the maximum 25 life cycles, the metacognition 

agent maintained 70 % of life expectancy, compared to the cognition agent's 37% of 

life expectancy (Graph 8.8). The metacognition agent was able to collect 82% of the 

crystal, compared to 16% of the crystal collected by the reactive crystal agent. The 

metacognition agent thus collected a higher percentage of crystal (resource) then the 

cognition 3 agents. 

Initially, the cognitive modell (or BDI-ore) and metacognition agents had the same 

percentage (100%) of life expectancy (Graph 8.9). After the experiment, the 

metacognition agent maintained 70% of energy, compared to 64% for the BDI-or 

agent. The metacognition agent was able to collect 82% of resources compared t 5 0, 0 
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of resources collected by the BDI-ore agent. The metacognition agent thus collected a 

higher percentage of resources. 

100 

80 
';!. 
Gr 

60 Cl 
!!! 
ftI 
c:: 40 <Il 
U .... 
<Il 
Q. 20 

o 

100 

80 
';!. 
Gr g 60 
ftI 

E 40 .g 
<Il 

Q. 20 

o 

Graph 8.8 

[: 
~ 
'i' 00 til .. 
C 
~ 40 
G> 
Q. 

20 

0 
~ C') III 

100 ,·.·n .... 
I 

~ 0 

B 
t; .. 
E 40 .g 
G> 
Q. 20 

0 
~ C') III 

Graph 8.9 

.... 

.... 

Life Expectancy 

Time (In Cycles) 

Resource ColJectjon 

Time (In Cycles) 

--C0g4 

~. MetaCog 

--C0g4 

--. MetaCog 

Cognition 4 vis Metacognition Agent 

Life Expectancy 

-+-BDI.Qe 

...•... MetaCog 

0> ~ ~ III c:: 0> N C') III 
~ ~ ~ N N 

TIme{ln Cycles) 

Resource Collection 

-+-BDI.Qe 
__ MetaCog 

•••• 
.... 

0> ~ C') III .... 0> N 
C') III 

~ ~ ~ N N 

TIme{ln Cycles) 

Cognitive Modell vis Metacognition g nt 

134 



Initially, the cognitive model 2 (or BDI-crystal) and metacognition agents had the same 

percentage (100%) of life expectancy (Graph 8.9). After the experiment, the 

metacognition agent maintained 700/0 of energy, compared to 68% for the BDI-crystal 

agent. The metacognition agent was able to collect 84% of resources, compared to 49% 

of resources collected by the BDI-crystal agent. The metacognition agent thus collected 

a higher percentage of resources. 

The BDI3 and metacognition agents began the experiment with the same percentage 

(100%) of life expectancy. After running the experiment, the metacognition agent 

maintained 70% of energy, compared to 65% for the BDI3 agent (Graph 8.11). The 

metacognition agent was able to collect 84% of resources, vs. 70% of resources 

collected by the BDI3 agent. The metacognition agent therefore collected a higher 

percentage of resources than the BDI 3 agent. 
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The metacontroI and metacognition agents began the experiment with the same 

percentage (100%) of life expectancy, and resources (refer Graph 8.12). The 

metacognition agent manages an energy level of 72%, compared to 580/0 from the 

metacontroI agent. The metacognition agent collected 82% of resources, and the 

metacontrol agent collected 68% of resources. 

8.6 Summary and Discussions 

The life expectancy and performance were the metrics used for assessing the efficiency 

of the agent. Life expectancy was defined as the survival of agents in a testbed for fixed 

energy or nutrients. Resource collection was defined as the number of resources, such as 

ore; golden ore and crystal, collected in given a time cycle. The results of all fifteen 

agents in SMCA (Society of Mind approach to Cognitive Architecture), which have 

complex behaviours, is a society of mind built by a society of agents, which 

demonstrates simple, moderate and complex behaviours. Agents demonstrate skills or 

capabilities like decision making, classification, intentions and commonsense activities. 

The BDI models are designed to demonstrate how the metacontrol and metacognition, 

mechanisms can be applied within the different models (thinking of energy, thinking of 

metabolism, thinking of their goals, according to their self-reflection or internal 

conditions). From the experimental sections 8.2 and 8.3, BDI models or simple minds, 

the results show how two minds together are better than the either one alone. In this 

experiment, mind can be viewed as involving vastly different types of cognitive 

processes, such as predicting, repairing, reviewing, comparing, and generalizing. thus 

simplifying other many ways of thinking. Experiment 2 gives a more in-depth analysis 

comparing two types of agents. The first experiment was conducted for 100 life cycles. 
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The second experiment was conducted for 500 life cycles, to find out the in-depth 

potential of the agents through their lifespan. Cognition agents lived up to 110th of their 

life cycle. Cognition agents collected 12 pieces of ore and 6 pieces of fungus in their 

lifetime. BDI agent life expectancy is 438 life cycles, and the managed to collect 74 

pieces of ore and 95 pieces of fungus in their life cycle. For the BDI agent, fungus 

consumption is considerably less, unless it was found to have less energy storage. As in 

Graph 8.4 depicts, in between the 250 and 300th life cycle, the BDI agent's fungus 

consumption rate is found be very high. In this stage, the BDI agent is in the hunger 

condition, and needs more fungus. Hence it switches towards the collection of fungus. 

This results proves that BDI agents can reason about their change of aims 

(deliberations), watch their status (self regulation or self control), and achieve their 

goals. BDI agents manifest decision making and intelligent behaviours (refer section 

8.3). BDI agents have a complete control mechanism for managing food and 

metabolism. These agents' exhibit decision making capabilities near decision variable 

boundary. BDI agents engaged in activities to utilize their pattern of behaviour with 

respect to the use of energy and time. The level of decision making when they are 

hungry (less than the decision making energy level) switch into the fungus consumption 

and if they normal, switch towards goal-oriented (Le. collection of ore), demonstrates 

physiological and goal-oriented behaviour. BDI agent manages the affect mechanisms, 

such as energy level, based on a given threshold or predicted energy level to manage the 

decision boundary. 

Based on the results obtained in these experiments (refer section 8.4) metacognition 

agents consistently performs better against the cognition and BDI agents in all 

experiments. Metacognition agents are more efficient to manage their energy level as 

well as collecting more resources. Where as the Cognition agents are unable to control 

138 



their energy levels (internal conditions), and some times comes down to zero energy 

level and dies before completing their maximum cycles. 

Metacognition agents managed to collect more number of pieces of Ore and Crystals 

(resources) collected with the maximum cycles defined (i.e.25 cycles), as compare to 

cognition agents. It concludes that, metacognition agents, has the complex and 

intelligence (optimal) behaviours to constitute a "Society of Mind" for sensing in the 

environment. The metacognition agent shows complete control mechanism in managing 

a food and metabolism (Affect), try to balance motivations. The agents are exhibiting 

optimal decision making capabilities near a decision variable boundary. The 

metacognitive activity reduces to turning the individual BDI models (BDI-Ore, BDI­

Crystal, BDI-Ore and Crystal) to the ON and OFF state, based on norms and affect. At 

any given point in the cycle, some agents in the Society of Mind are active, while others 

are static. This combined status of mind constitutes Minsk's view of "partial state of the 

mind". The society of agents demonstrates the "Society of Mind" with their different 

Belief-Desire-Intention models. Agents demonstrates "Society of Mind" concept in 

terms of the arrangement of activities within their planning, reasoning, decision making, 

self reflection, problem solving and learning capabilities, from different combination of 

agents. Metacognition agent collects more resource and manages the higher life 

expectancy than any other agents. This result proved a concept of metacognition is a 

powerful catalyst for control and self-reflection. Metacognition concept used on BDI 

models improved the performance. Finally, different combination of agents in SMCA 

demonstrated task effectiveness, goal achievement, and the ability to perform well in 

novel situations. 
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Chapter 9 Conclusions 

The work presented in this thesis provides details of the theory, design, implementation 

and testing of a Society of Mind Cognitive Architecture (SMCA), running in a 

simulation environment. This Chapter presents solutions or progress and remarks 

towards questions raised in the Introduction Chapter. This Chapter also details 

limitations of the SMCA and gives some directions for future research. 

9.1 Research questions and solutions 

This research project addressed issues associated with the development of a SMCA 

(Society of Mind approach to a Cognitive Architecture) based on an extended CAMAL 

cognitive architecture with extra processing layers using a distributed model of mind, 

and in doing so impacts on the different questions. The questions posed in Chapter 1 are 

answered in the chapters of this thesis. These questions are re-visited to provide 

solutions or at least some steps or progress with discussions towards answers. 
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What are the principles used for designing a SMCA? 

The SMCA is designed based on the principles of animal cognition. The behaviour of 

an animal has consequences which depend on situation, energy use and other 

physiological commodities such as water, weather etc. The important consequence of 

animal behaviour is energy expenditure. According to Thorndike (1911), the behaviour 

of animals is predictable and follows the uniformity of nature. He says that "any mind 

will produce the same effect, when it is in the same situation." Similarly, an animal 

produces the same response, and if the same response is produced on two occasions. 

then the animal behaviour for that response must changes. The law of instinct or 

original behaviour is that an animal in any situation, apart from learning, responds by its 

inherited nature(McFarland, 1993; Berger's, 1998). 

Animal behaviour is not simply a matter of cognition; rather it is product of the 

behavioural capacity and the environmental circumstances (McFarland, 1993; Bosser, 

1993).Charles Darwin in his book Descent of Man (1871), argued that animals possess 

some power of reasoning. This research is concerned with the principles whereby agents 

as like animals competent for its resources, and so demonstrates intelligent behaviour in 

developed testbed of SMCA. Chapter 2 and Chapter 8 answer this question. The 

principles of artificial minds are given below (McFarland, 1993; Berger's, 1998). 

Decision Variables 

A decision-making of a person, animal or robot can be described as an activity whereby 

decision variables are compared to decision boundaries. From the economic point of 

view, the decision-making unit is the cost or performance. Decision-making with 

respect to use of energy (food) and benefit (goal) based on given decision variables or 

decision boundaries. Cognitive modelling design and implementation based on the 
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analogies between animal, person and products. Metacognition, metacontrol and BDI 

agents in SMCA testbed manages the affect mechanism, such as energy level, based on 

a given threshold or predicted energy level to manage the decision boundary. Chapter 2 

and Chapter 8 answer this question. 

Cost and Utility Function 

The decision making level in animals is defined in terms of cost functions and utility 

behaviours - the microeconomic level. Cost functions and utility behaviour in animals 

operate in such a way that a utility (for example, energy) is maximized or minimized 

(McFarland, 1993). Metacognition, metacontrol and BDI agents in SMCA testbed 

manages to maximized the energy level by eating fungus (food). 

Learning in Animals 

Learning is a part of development. It is a result of adaptation to accidental or uncertain 

circumstance. When the animal learns environmental situations, it undergoes permanent 

change. We expect that learning should, in general, bring beneficial results. Animal 

learning is similar to reinforcement learning in machine learning or robotics 

(McFarland, 1993; Nason and Laird, 2004). 

The learned agents in SMCA, changes the goals and deliberative steps according to 

given rules. This may change to move towards fungus, ore, crystal and medicine at 

basic reflexive and reactive levels. Learning also applied on higher level layers in 

SMCA. The learning mechanism can follow according to rules framed in the 

deliberative, metacontrol and metacognition levels. The metacontrol mechanisms can be 

viewed in terms of which the agents use existing controllers, learn behaviours (i.e. 

existing Q(s, a) values) or learn new behaviours by training the agents. Q-Iearning 
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mechanisms within SMCA architecture has been discussed previously In Chapter2, 

Chapter6 and Chapter 8. 

Optimal Behaviour in Artificial Minds 

Animal behaviour is a trade off between the native courses of action, i.e. physiological, 

and goal oriented behaviour. Animals are engaged with activities to optimize its pattern 

of behaviour with respect to the use of energy and time. If the conditions are relevant to 

two or more activities simultaneously, it chooses the most optimal action among them 

in terms of its innate and learnt decision boundaries. The mechanisms of designing a 

machine are different from the animal's kingdom, but the principles remain the same 

(McFarland, 1993; Bosser, 1993) (refer Chapters 2). The BDI, metacontrol and 

metacognition agents in SMCA shows complete control mechanism in managing a 

food, metabolism (affect) and try to balance motivations. The agents are exhibiting 

optimal decision making capabilities near a decision variable boundary. 

What are the metrics for measuring a performance of agents? 

Agent behaviours can be analysed using many different metrics. The major metrics are 

metabolic activity, competition and social interaction with respect to environment and 

microeconomics. Application of economics on the artificial life to watch adaptive 

behaviours. This follows the microeconomic regularities such as cost and utility. 

Life expectancy and resource collection are two metrics used in the SMCA testbed 

experimental results. The life expectancy is defined as the survival of agents in a testbed 

for fixed energy or nutrients. Resource collection is defined as the number of resources 

such as ore; golden ore and crystal are collected in given a time cycle (refer Chapter2 

and Chapter8). 
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What is the difference between reflexive, reactive, deliberative, learning, 

metacontrol and metacognition level processes in a cognitive architecture? 

The Society of Mind Cognitive Architecture (SMCA), developed in this thesis, extends 

the CAMAL architecture with extra processing layers as a distributed model of mind, 

using the "Society of Mind" concept. Minsky (1985) state that, intelligence is a 

combination of more simple things, and every Mind is a "Society of Mind". Hence 

Mind consists of a great diversity of mechanisms. The term agent refers to the basic 

element or simplest individual which constitutes an active element in a "Society of 

Mind". The SMCA architecture has designed and implemented for six layers: the 

reflexive, reactive, deliberative (BDI), learning (Q-Ieamer), metacontrol and 

metacognition processing levels. This leads to the development of many different types 

of simple agents, with different behaviours. These agents are distributed across the 

different layers of the architecture. To cover all the processing and functioning 

associated with the adopted model of mind, requires the development of many different 

agent behaviours. Presently, SMCA comprises of six reflexive behaviours, eight 

reactive behaviours, fifteen deliberative behaviours, nineteen perceptual behaviours, 

fifteen learning behaviours, fifteen metacontrol behaviours and seventy seven 

metacognitive behaviours. Experiments conducted for different types of agents based on 

differentiating the agent performance. Metacognition and its relation to metacontrol and 

learning are discussed in the previous Chapters 4, 6, 7 and 8. 

What IS Metacogntion? What is the difference between cognition and 

metacognition? Is deliberation necessary for metacognition? 

Cognition is defined as a mental process or activity that involves the acquisition, 

storage, retrieval, and use of knowledge. The mental processes include perception. 
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memory, imagery, language, problem solving, reasoning, and decision making (lalta, 

2005; Wilson & Kiel, 1999). 

Metacognition is often simply defined as "thinking about thinking" (Wilson & Keil, 

1999). Metacognition is any knowledge or cognitive process that refers to monitoring 

and controlling any aspect of cognition. Adkins (2004) defines "metacognition is 

thinking about knowing, learning about thinking, control of learning, knowing about 

knowing and thinking about thinking". Minsky (1985) defines "we cannot think about 

thinking, without thinking about thinking about something". The metacognitive act can 

be referred to as metacontrol. Metacognition can be viewed in two ways: (l) monitoring 

a group of agents in an intelligent or cognitive or robotic architecture (i.e. self 

reflection) and; (2) making changes by adapting effective strategies in the group of 

agents. 

The metacognition concept provides a powerful tool towards developing efficient and 

quality computational models. This research investigates the concept of metacognition 

as a powerful catalyst for control, unify and self-reflection. Metacognition is used on 

BDI models with respect to planning, reasoning, decision making, self reflection, 

problem solving, learning and the general process of cognition to improve perfonnance. 

The reactive class of agent, in turn, provides a computational platfonn for the 

deliberative agents. The design of deliberation mechanisms for the fungus testbed 

includes five different types of BDI agents. The BDI detennines which of the reactive 

or reflexive control mechanisms are active according to the goals to satisfy. These goals 

are either task related or agent-internal resource related, and detennine the number of 

different types of reflexive and reactive agent required for this specific testbed. Chapter 

4, Chapter 6 and Chapter 8 explains clear ideas about implementation and results part of 

the cognition and metacognition. 
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What are the different parts of metacognition? How can these parts be designed, 

programmed and verified using a simulated environment? 

Chapter 4 and Chapter 6 had gIven a clear roadmap for researches, to develop a 

metacognition concept in computational models. Metacognition is used on BDI models 

with respect to planning, reasoning, decision making, self reflection, problem solving, 

learning and the general process of cognition to improve performance. 

Metacognition concept in a SMCA model is based on the differentiation between 

metacognitive strategies and metacomponents or metacognitive aids. Metacognitive 

strategies denote activities such as metacomphrension (remedial action) and 

metamangement (self management) and schema training (meaning full learning over 

cognitive structures). Metacomponents are aids for the representation of thoughts. To 

develop an efficient, intelligent and optimal agent through the use of metacognition 

requires the design of a multiple layered control model which includes simple to 

complex levels of agent action and behaviour. This SMCA model has designed and 

implemented for six layers which includes reflexive, reactive, deliberative (BDI), 

learning (Q-Iearner), metacontrol and metacognition layers. 

What are the metacomonents? Explain how these metacomponents can be used in 

society of agents? 

Metacognitive aids or metacomponents are used for the representation of thoughts. 

Metacomponents can be represented with the help of some aids such as: (1) using an 

abstraction, metasyntactic variable (matching variables) or metacomponents and; (2) 

goal setting variables for increasing the performance. Metacomponents affects on the 

agent behaviour from a sense of what is important instead of what to do. Metacognition 
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agents will follow well aligned norms, perceptual range, metarules, and learning and 

affect values. A well driven agent will maximize its performance as a consequence of 

learning to maximize its own reward. These executive processes involve planning, 

evaluating and monitoring the problem solving activities (Zalta, 2005, Adkins, 2004). 

The term "norm" is an interdisciplinary term, and can be used to refer to a standard 

principle or a model used for a right action. The executive processes that controls the 

other cognitive components are responsible for "figuring out how to do a particular task 

or set of tasks, and then making sure that the task or set of tasks are done correctly". 

Norms in society of minds can be guided, controlled and regulates the proper and 

acceptable behaviours. 

Metacomponents in metacognition layer reason about the action, reflect upon that 

reasonIng, and assess cognitive activity with respect to meatacontrol task. Given a 

loaded norm for resources (such as ore, golden-ore and crystal), energy decision 

boundaries, affect values for medicine, fungus, ore, crystal or ore and crystal. This can 

be used to decide upon the desire (i.e. when and what resource to collect). Chapters 4 

and chapter 6 answer this question. 

What are BDI models? How can BDI models plan in different circumstances? 

BDI (Belief- Desire-Intention) model has different group of coordinated capabilities to 

meet a particular intention. Deliberative agents compromise the third layer of the 

Society of Mind Cognitive Architecture. The design of deliberation mechanisms for the 

fungus world testbed includes five different types of BDI agents. The BD! determines 

which of the reactive or reflexive control mechanisms are active according to the goals 

architecture attempts to satisfy. These goals are either task related or agent-internal 
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resource related, and determine the number of different types of reflexive and reactive 

agents required for the specific testbed. 

BDI models follow the reactive mechanisms. The metacognition agent shows complete 

control mechanism in managing a food and metabolism. The agents exhibit decision 

making capabilities near a decision variable boundary. The energy spent (maximum 

cycles follows low metabolism) in each move of BDI types exhibits minimal or 

minimized (due to maintenance of low metabolism), and utility is also maximized. BDI 

agents engaged with activities optimize its pattern of behavior with respect to energy 

and time. There are different BDI models, for different purposes are used in this 

experiment. They are BDI-ore, BDI-crystal, BDI-ore-and-crystal, BDI model that plans 

ahead and reflexive- BDI model. Chapters 6, 7 and 8 discusses about the theoretical 

issues, design, implementation and results part of the different BDI models. 

What is Society of Mind? 

Minsky views intelligence as not just a simple recipe or as an algorithm for thinking, 

but a combined social activity of more specialized cognitive processes. According to 

Minsky, every mind is a "Society of Mind." The mind consists of a great diversity of 

mechanisms. Minsky proposes that the mind is made up of simple and smaller entities 

called micro-agents. Minsky argues that each agent is like a simple piece of code. and 

can do simple work. The agents can be connected within a larger system called a society 

of agents. Each individual agent, having a different background, plays a different role in 

society. The society of mind results from combining more specialized cognitive 

processes. 
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In the "Society of Mind", the active agents are in the "on" state, and non-active agents 

are in the "off' state. The combined activity of active agents constitutes a "total state" of 

mind, and the subset of the activities represents a "partial state of mind." Minsky claims 

that K-lines are the selecting most common agents in the Society of Mind theory. The 

actors (agents) demonstrate the "Society of Mind" concept in terms of the arrangement 

of activities within a SMCA for their planning, reasoning, decision making, self 

reflection, problem solving and learning capabilities. SMCA can be viewed as 

containing vastly different types of cognitive processes, such as predicting, repairing, 

reviewing, comparing, generalizing, and simplifying and many other ways of thinking. 

Chapter 5, Chapter 6 and chapter 8 explains how to build an artificial model that 

combines reflexive, reactive, deliberative, learning, metacontrol and metacognition 

processes across the "Society of Mind" architecture to demonstrate how intelligent 

agent can be viewed as a large collection of agents or single agent as collective 

behaviours (Metacognition agent) as a "Society of Mind. The development of SMCA 

(Society of Mind approach to a Cognitive Architecture) using extended CAMAL 

cognitive architecture with extra processing layers demonstrates "Society of Mind". 

9.2 Summary of Main Contributions 

This thesis has made several contributions to the field of artificial intelligence and 

cognitive sciences. 

This thesis addressed two broader aims and research questions related to development 

of Society of Mind Cognitive Architecture (SMCA). 
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This thesis illustrated Society of Mind approach to a Cognitive Architecture. The mind 

is a control system, and uses the "Society of Agents" metaphor. Simulation 

demonstrates Minsky's approach of "Society of Mind." 

The thesis, Society of Mind Cognitive Architecture is the first architecture, completely 

viewing cognitive architecture in the perspective of "Society of Mind" and society of 

agents. 

This research has thrown some light on the operation of animal minds and provided rich 

evidence for McFarland's (1993) theoretical issues of microeconomics and animal 

cognition. The main principles are: (a) cost and utility function, (b) physiological and 

goal oriented behaviour and ( c) decision-making based on decision boundary or 

decision variable. 

The implementation of cognition and metacognition techniques on a society of agents to 

demonstrate "Society of Mind" architecture gives rich evidence to Minsky's theoretical 

issues of "Society of Mind," Minsky'S A, B and C-Brain, a Sloman's (2001, 2002) 

metamangement and Kennedy's (2003) self- reflection concepts. 

This thesis, Society of Mind Cognitive Architecture gives the clear difference between 

cognition and metacognition processes. 

This thesis explains how to build an artificial model that combines reflexive, reactive, 

deliberative, learning, metacontrol and metacognition processes across the SMCA 

architecture, to demonstrate how an intelligent or optimal agent can be viewed as a large 

collection of agents or single agent's collective behaviours (metacognition agent) as a 

"Society of Mind". 
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The developed SMCA is an example for complex AI systems that have metacognition 

techniques inbuilt in their architecture. 

Finally, this thesis gives a clear road map for researchers, to develop a metacognition 

concept on AI applications based on metacognitive strategies, such as: (a) 

metacomprenhsion (remedial action), (b) self-regulation (metamanagement) and (c) 

schema training (meaningful learning), along with metacognitive aids or 

metacomponents such as perceptual range, affect, norms and higher level meta-rules. 

9.3 Further Research Directions and Limitations 

Further research onto develop a Metacognition concept on robots. This can be tested on 

'real world' rather than simulations in testbed scenario. There are large extensions and 

directions can be made to SMCA (Society of Mind approach to a Cognitive 

Architecture). Presently have around fifteen agents, and one seventy seven behaviours. 

This can be extended with some more complex skills. For example to develop a human 

agent (biological agent) as suggested by Sloman in H-CogAff as a part of SMCA. 

Another area for future research is the inclusion of perceptual behaviours within SMCA. 

Agents require communicating each other to compute a particular task. This approach 

can be fits with Barasolu's perceptual symbol systems. Connectionist model approach 

can recognize the symbols systems for interaction. For example, common sense 

computing architecture (refer Singh's EM-One in Chapter 3). SMCA can be extended 

by adding perceptual behaviours. SMCA architecture needs a simulator that produces 

limitless simulations to demonstrate perceptual behaviours. Perceptual behaviours are 

very well explained from Barasalou's theory of a perceptual symbol systems 

(Barasalou, 1999). Barasolu's perceptual symbol systems explain how the brain can 
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capture images, represent and store. Barasolu's concepts are causal relations between 

the world and environment (Barasalou, Simmons, Barbey & Wilson, 2003).Goldstone 

(1994) supports Barasalou's statements and explains how the objects can be simplified 

and filled, from perception. 

SMCA model can be extended further into different application areas such as education, 

business, entertainment, etc. Society of mind cognitive architecture can be extended by 

adding some more behaviour for each of the layer. For example, adding SARSA and 

conceptual learning as part of SMCA. So that metacontroller can get multiple options to 

choose learning mechanisms. SARSA (State-Action-Reward-State-Action) is a learning 

algorithm. This works based on the markov decision process policy. As similar to q­

learning mechanism SARSA works in terms of agent based simulations. According to 

Takadama (2004), SARSA agents are better than q-Iearning mechanism in terms of 

negotiation. 

Conceptual learning is a learning mechanism. This algorithm works based on the 

understandings of people learning methods. This mechanism works based on contrast to 

factual knowledge. This can be implemented as part of the SMCA model. 

Another Future work is to giving database support for SMCA cognitive model. For 

example Cyc model (Lenat, 1995) contains more than two millions of facts and rules 

about the every day world. This ontology level can be added as part of the SMCA. This 

database support contains the wide area of representations. For example, space 

knowledge, beliefs, time, social relationships, physical objects, and other domain areas. 

There are several limitations in SMCA.The developed SMCA model is much limited to 

test certain behaviours, and not up to the demonstration of complex behaviours of 

human. Developed SMCA does not much supports for communication in between the 
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society of agents. SMCA cognitive model testbed presently works on simulation 

scenario. These simulations are very difficult to test on real world robots. SMCA model 

is very much limited in representation. SMCA only uses BDI (belief-desire-intention) 

models for knowledge representation. 

9.4 Summary 

This Chapter summarized solutions or progress and remarks towards questions raised in 

this thesis. This Chapter also gives limitations of the SMCA and some directions for 

future research. The developed Society of Mind Approach to cognition and 

metacognition in a cognitive Architecture is an example for complex AI systems that 

have metacognition techniques inbuilt in their architecture. There are large extensions 

and directions can be made to SMCA (Society of Mind approach to a Cognitive 

Architecture). Developed SMCA does not much supports for communication in 

between the society of agents. 
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Appendices 

Appendix A 

A. 1. Reactive agents design (Design Continued) 

Reactive agent design algorithm 

Goal based behaviour towards Fwagus 

Find the nearest Fungus by distance forrrulo, 

Select the direction towards nearest fungus, 

Move towards Fungus type direction !Ieft! right !Up! 

doVllt'l. 

Goal based behaviour towards resource 

( ore, golden ore and crystal) 

Find the nearest resource by their distance, 

Select the direction towards nearest resource, 

Move tolMlrds resource direction I left I right IUpl 

down. 
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Reactive agent design algorithm 

60aJ based behaviotr towcrds Crystal 

FiOO the nearest Crystal by distance forrrula, 

Select the direction to\WT'ds nearest Crystal, 

IkJve towards Crystal type direction I left I right I Up I 

down. 

Goal based behaviotr towards rescxrce 

(ore, oro golden ore) 

FiOO the nearest ore type by their distance, 

Select the direction towards nearest ore, 

IkJve towards oree direction I left I right IUpI 

down. 

Reactive agent design algorithm 

Goal based behavioc.r towcrds Medicine 

FiOO the nearest 1Aeclicine by distance forrrula, 

Select the direction towards nearest Medicine, 

/kJve towards Medicine direction I left I right IUpI 

down. 

Goal based behaviolr towcrds Unit 

(ore, aOO golden ore) 

FiOO the nearest Unit type by their distance, 

Select the direction towards nearest unit, 

IkJve towards unit direction I left I right IUpl 

down 
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A.2. Second BDI Model Structure 

(Expanded from the BDI model, different structures) 

Find nearest Fungus 
Type and COLLECT 

A. 3. Third BDI Model Structure 

EN <=PE2 

Find nearest Fungus 
Type and COLLECT 

801 2 agent 

Find nearest Crystal 
Type and COLLECT 

801 3agent 

EJ 

Find nearest Ore and 
Crystal Type and 

COLLECT 
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High or Medium 

Find nearest Medicine 
and COLLECT 

High or Medium 

Find nearest Medicine 
and COLLECT 



BDI 3(Thircf) Model 

{l)Metabolism > Low, 

Then searches the nearest medicine to collect to lower the metabolism by their 

Reactive mechanism. Uses the Reactive Medicine 

Uses FSM and uplleftlrightlDolM1, 

Find the nearest Medicine by their distance, 

Select the direction to~ds nearest Medicine, 

MDve towards Medicine direction !Ieft! right !Up! dolM1. 

(2)Energy Level <= Predict_think2_energy, 

The agent desire to trove to\\Qrds to fungus to avoid the hunger condition or 

their death (Physiological oriented) uses the Reactive Fungus 

Uses FSM and up !Ieft! right I Down, 

Find the nearest Fungus by distance forrrula, 

Select the direction towards nearest fungus, 

MDve towards Fungus type direction I left! right IUpl dOlM1, 

Predict_think2_energy = Predict_thinkl_energy + distance of nearest fungus/20 

* energy l,tse use. (T\\() levels ahead thinking of energy level). 

(3)Energy Level > Predict_think2_ energy (Dynamic) 

Reactive Ore (Goal based behaviour to\\Qrds Ore), 

Uses FSM and up I left I right I Down, 

Find the nearest Ore type by their distance, 

Select the direction towards nearest Ore and crystal type, 

Nove to~rds Ore and crystal type direction I left I right !Upl dolM1. 
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A.4. Fourth BDI Model Structure 

EN <= TV 

Find nearest Fungus 
Type and COLLECT 

DDI 4 agent 

EN>TV 

Find nearest 
Unit and COLLECT 
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High or Medium 

Find nearest Medicine 
and COLLECT 



BOI 4(Fourth) Model 

(l)Metabolism > Low, 

Then searches the nearest ~icine to collect to lower the metabolism by their 

Reactive mechanism. Uses the Reactive Medicine 

Uses FSM and uplleftlrightlDown, 

Find the nearest Medicine by their distance, 

Select the direction towards nearest Medicine, 

Move towards Medicine direction Ileftl right I Upi down. 

(2)Energy Level < 30 (threshold energy) 

The agent desire to move towards to fungus to avoid the hlU1ger condition or 

their death (physiological oriented) uses the Reactive FlU1gus 

Uses FSM and uplleftlrightlDuwn, 

Find the nearest Fungus by distance fonnula, 

Select the direction towards nearest fimgus, 

Move towards Fungus type direction Ileftl right IUpl down, 

(3)Energy Level> 30 

Reactive Ore (Goal based behaviour towards Ore), 

Uses FSM and uplleftlrightlDown, 

Find the nearest Ore type by their distance, 

Select the direction towards nearest unit 

Move towards nearest unit type direction I left! right IUpl doWTl. 
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A.5. Finding Smart Energy Levels 

I 

Finding decision boundaries for different smart models 

Predict energy (Finding the decision boundary):­

Find the nearest fungus, 

Find the nearest distance between agent and Fungus, 

Find the agent needed energy by using their metabolism state and 

Energy required, Predict energy is Distance/20 * Energy Use. 

Find the nearest fungus, Find the nearest distance between agent and 

Fungus, Find the agent needed energy by using their metabolism state and 

Energy required Predict_thinkLenergy is Predict energy + Distance/20 * 

Energy Use (One level ahead thinking of energy level). 

predict_think2_energy (Predict_think2_energy):­

Find the nearest fungus, 

Find the nearest distance between agent and Fungus, 

Find the ~ent needed energy by using their metabolism state and 

Energy required, Predict_think2_energy is Predict_thinkl_energy + 

Distancel20 * EergyUse (Two level ahead of thinking energy level). 
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A. 6. Q-learning Agent Structure 

Q-Learning Mechanism in Fungus World Testbed 

Store_qvalues 

Calculate X, Y if perform move in Direction, 

Calculate distance to Resource. Reactive Fungus, Ore, crystal 

Or medicine from NewX, NewY, 

Get an old Q...value,Update locations that will get different Q values, 

(Q value may increase or decrease) 

By using the relation Delta = Old + «Distance - f\Jew distance)1 

Distance),Stores a Q values with respect to locations by order (sorting). 

A decision on what move can be rruIe by using following design 

Get list of Value-Action pairings for current state 

<tofindall (Q-Dir, qvalue ([X, Y], Dir, Q), List), 

Order them -list Order will have smallest Q at Head 

%order (List, Order), 

Reverse list Order to Get Largest Value at top, 

The associated Direction is best, 

According to current Reward policy, 

Direction to go in given by BestDir, 

<to reverses (Order, [BiggestQ-BestDi r l_restOfList]). 
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A. 7. Design of Metacognitive aids or Metacomponents 

Collected (Ore) = O. 

Norm! (OreBDI) = 0.75. 

Collected (Ore) > 0, 

Nonn2 

Norml (OreBDI) = Perceived (Ore)/Coliected (Ore). 

Collected ore is Orel, 

Collected (Crystal) = 0, 

Norml (Crystal) = 0.75. 

Collected (Crystal) > 0, 

Norml (Crystal) = Perceived (Crystal)/Coliected (Crystal). 

Collected (Ore) + Collected (Crystal) = 0, 

Norml (Ore_CrystaIBDI) = 1. 

(Collected (Ore) + Collected (Crystal) > 0, 

Norml (OreCystaIBDI) = Perceived (Cystal+Ore)/Coliected (Cystal+Ore). 
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Nonn3 

Collected (Ore) = 0, 

=> I'hrtn2 (OreBDI) = 0.75. 

Collected (Ore) > 0, 

I'hrml (OreBDI) = Perceived (Ore)/Collected (Ore). 

Collected ore is Orel + golden ore 12, 

Collected (Crystal) = 0, 

=> I'hrtn2 (Crystal) = 0.75. 

Collected (Crystal) > 0, 

I'hrm2 (CystaIBDI) = Perceived (Crystal)/Collected (Crystal). 

Coliected_Cystal is collected Crystal /2, 

(Collected (Ore) + Collected (Crystal) = 0, 

I'hrm2OreCrystai BDI) = 1. 

(Collected (Ore) + Collected (Crystal) > 0, 

Collected (Ore Crystal + Ore) is collected Ore + collected _Golden Ore + 

Collected Crystal /2. 

f'.brm2 (OreCystaIBDI) = Perceived (Cystal+Ore)/Coliected (Cystal+Ore). 

Resource Rule set 

Performance (OreBDI) = Ore + Golden ore + Age. 

Affect (OreBDI) = I'hrm (OreBDI)/ Performance (OreBDI). 

Performance (Crystal BDI) = Crystal + Age. 

Affect (Crystal) = I'hrm (Crystal)/ Performance (Crystal). 

Performance (Ore_CrystaIBDI) = Ore + Golden ore + Crystal + Age. 

Affect (Ore_CrystaIBDI) = I'hrm (Ore_CrystaIBDI) / Perforroonce 

(Ore_CrystaIBDI). 
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Affect rule2 

If( Metabolism = Low), Need(Medicine) = 0, 

If (Metabolism = Medium), Need(Medicine) = 0.5, 

If( Metabolism = High), Need(Medicine) = 1.0, 

If( Energy_level < Decision_boundry), 

Need(EnergyJevel) = 0.75, 

If (Energy _level> = Decision_Boundry), 

Need(Energy_level) = 0, 

Need(Medicine) = 0, 

Need(Energy_level) = 0, 

Performance_crystaLBDI is Crystall + Agel, 

Norm_crystaIBDI> Norm_crystaIBDIl, 

Norm_crystaIBDI> Norm_crystaIBDI2, 

Affect_crystal_BDI is Norm_crystaIBDI/ Performance_crystaLBDI. 

Perlormance_crystaLBDI is Crystall + Agel, 

Norm_crystaIBDIl> Norm_crystalBDI, 

Norm_crystaIBDIl> Norm_crystaIBDI2, 

Affect_crystaLBDI is Norm_crystalBDIl / Performance_crystal_BDI. 

Perlormance_crystal_BDI is Crystall + Agel, 

Affect_crystal_BDI is Norm_crystaIBDI2/ Periormance_crystaLBDI . 
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Affect rule 3 

If( Metabolism = Low), ~(Medicine) = a, 

If (Metabolism = Medium), ~(Medicine) = 0.5, 

If( Metabolism = High), ~(Medicine) = to, 

If( Energy_level < Decision_boundry), 

Need(EnergyJevel) = 0.75, 

If(Energy _level> = DecisiorLBoundry), 

Need(Energy _level) = 0, 

Need(Medicine) = 0, 

Need(Energy_level) = 0, 

Performance_ore_crystal_BDI is Ore! + Golden_orel + Crystal! + Agel, 

~rm_ore_crystaLBDI > f\brnLore_crystal_BDIl, 

~rtTLore_crystal_BDI > f\brnLore_crystal_BDI2, 

Affect_ore_crystal_BDI is 

I\brm_ore_crystal_BDI / Periormance_ore_crystal_BDI. 

Performance_ore:..-crystaLBDI is Orel + Golden_orel + Crystal! + Agel, 

· ~rtTLore_crystaLBDIl > f\brm_ore_crystaLBDI, 

t\brm_orELcrystal_BDll > t\brnLore_crystal_BDI2, 

Affect_ore_crystaLBDI is 

~rtTLore_cryst(lI_BDIl / Performance_ore_crystal_BDI . 

Performance_ore_crystaLBDI is Ore! + Golden_ore! + Crystal! + Agel, 

Affect_ore_crystaLBDI is 

~rtTLore_crystal_BDI2/ Performance_ore_crystaLBDI. 
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Appendix B 

B. 1. Perception of 5 and 10 level with 5 agents 

B 1.1 Reflexive-Edge with 5 agents comparing Perceptual level 5 V /s 10 
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B 1.2 Reactive fungus with 5 agents comparing Perceptual level 5 V / s 10 
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B 1.3 Mode12 (BDI 2) with 5 agents comparing Perceptual level 5 V / s 10. 
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Model2 Resource Collection( 5 agents) 
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B 1.4 Mode13 (BDI 3) with 5 agents comparing Perceptual level 5 V /s 10. 
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B 1.5 

B.2. 

Metacontrol with 5 agents comparing Perceptual level 5 V / s 10. 
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B 1.6 

B 1.7 

Model1 (BDI 1) with 10 agents comparing Perceptual level 5 V /s 10. 
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Mode12 (BDI2) with 10 agents comparing Perceptual level 5 V / s 10. 
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B 1.8 Metacontrol with 5 agents comparing Perceptual 5 V /s 10 

ute Expectnacy (Metacontrol-10 agents) 
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B. 3. Conclusion 

.P=5 

• P= 10 

.P=5 

111 P=10 

This experiment is conducted for observing an effect of perceptual range on each agent 

or agent's performance. The experiment is conducted for two different situations. 

Perceptual range of 5: 1 0 with 5agents 

Perceptual range of 5: 10 with 10 agents 

Life expectancy and resource collection are two metrics used in this experiment. The 

life expectancy is defined as the survival of agents in a testbed for fixed energy or 

nutrients. Resource collection is defined as the number of resources such as ore' golden 

ore and crystal are collected in given a time cycle. Based on the results obtained in the e 

experiments the life expectancy of perceptual range of 10 level agents (ociety f 

agents) has higher expectancy than perceptual range of 5 level agent . Perceptual range 
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of 10 level agents managed to have higher energy level after the maximum cycles 

(i.e.25 cycles), as compare to perceptual range of 5 level agents (10 to 20% more).The 

perceptual range of 10 level agents managed to collect more number of pieces of ore 

and crystals (resources) collected after the maximum cycles (i.e.25 cycles), as compare 

to perceptual range of 5 level agents. It concludes that, the perceptual range or 

perceptual level increases the agent's belief set for sensing in the environment. If the 

perceptual level increases the society of agent's performance also increases. 
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