
1

Dynamic Model-based Safety Analysis:

From State Machines to Temporal Fault Trees

By

Nidhal Mahmud

Thesis submitted for the degree of Doctor of Philosophy

Submitted on: 19 June 2012

Viva Voce Defence on: 4 September 2012

Revised on: 29 October 2012

Externally examined by: Professor Jean-Marc FAURE

Laboratoire Universitaire de Recherche en Production Automatisée (LURPA)

École Normale Supérieure (ENS) de Cachan

Internally examined by: Dr Bing Wang

The University of Hull

Department of Computer Science

Rapporteur of the jury: Mr Warren Viant

The University of Hull

Department of Computer Science

2

 بسم آلله آلرحمن آلرحيم

It is not arduous to return to the same place, but not in

the same state of fineness in this machine of brutes,

where destiny may be chosen at each join state, to the

final state…

Nidhal Ali Mahmud نضال علي محمود

To the memory of my father Ali Ahmad Mahmud ألمرحوم علي أحمد محمود

3

Abstract

Finite state transition models such as State Machines (SMs) have become a

prevalent paradigm for the description of dynamic systems. Such models are well-suited

to modelling the behaviour of complex systems, including in conditions of failure, and

where the order in which failures and fault events occur can affect the overall outcome

(e.g. total failure of the system). For the safety assessment though, the SM failure

behavioural models need to be converted to analysis models like Generalised Stochastic

Petri Nets (GSPNs), Markov Chains (MCs) or Fault Trees (FTs). This is particularly

important if the transformed models are supported by safety analysis tools.

This thesis, firstly, identifies a number of problems encountered in current safety

analysis techniques based on SMs. One of the existing approaches consists of

transforming the SMs to analysis-supported state-transition formalisms like GSPNs or

MCs, which are very powerful in capturing the dynamic aspects and in the evaluation of

safety measures. But in this approach, qualitative analysis is not encouraged; here the

focus is primarily on probabilistic analysis. Qualitative analysis is particularly important

when probabilistic data are not available (e.g., at early stages of design). In an alternative

approach though, the generation of combinatorial, Boolean FTs has been applied to SM-

based models. FTs are well-suited to qualitative analysis, but cannot capture the

significance of the temporal order of events expressed by SMs. This makes the approach

potentially error prone for the analysis of dynamic systems. In response, we propose a

new SM-based safety analysis technique which converts SMs to Temporal Fault Trees

(TFTs) using Pandora — a recent technique for introducing temporal logic to FTs.

Pandora provides a set of temporal laws, which allow the significance of the SM temporal

semantics to be preserved along the logical analysis, and thereby enabling a true

qualitative analysis of a dynamic system. The thesis develops algorithms for conversion

of SMs to TFTs. It also deals with the issue of scalability of the approach by proposing a

form of compositional synthesis in which system large TFTs can be generated from

individual component SMs using a process of composition. This has the dual benefits of

allowing more accurate analysis of different sequences of faults, and also helping to

reduce the cost of performing temporal analysis by producing smaller, more manageable

TFTs via the compositionality.

The thesis concludes that this approach can potentially address limitations of

earlier work and thus help to improve the safety analysis of increasingly complex

dynamic safety-critical systems.

4

List of abbreviations

AADL Architecture Analysis and Design Language

ABS Anti-lock Braking System

BBW Brake By Wire

CFT Component Fault Tree

DCCA Deductive Cause Consequence Analysis technique

DFOA Deductive Failure Order Analysis

DFT Dynamic Fault Tree

EAST-ADL Electronic Architecture and Software Technology —

Architecture Description Language

ECU Electronic Control Unit

FBD Functional Block Diagram

FFA Functional Failure Analysis

FHA Functional Hazard Assessment

FMEA Failure Modes and Effects Analysis

FMECA FMEA extension for criticality analysis

FPM Failure Propagation Model

FPTN Failure Propagation & Transformation Notation

FSAP/NuSMV-SA Formal Safety Analysis Platform equipped with the NuSMV

model checker for Safety Analysis

FTA Fault Tree Analysis

GSPN Generalised Stochastic Petri Net

HiP-HOPS Hierarchically Performed Hazard Origin and Propagation

Studies

IF-FMEA Interface Focused FMEA

MC Markov Chain

OSATE Open Source AADL Tool Environment

PANDORA Hour or “time” (ORA in Greek) of Priority-AND gates

PASA Preliminary Aircraft Safety Assessment

PSSA Preliminary System Safety Assessment

SAFORA State Automata to Fault-trees extended with temporal

information (ORA in Greek)

SEFT State-Event Fault Tree

5

SM State Machine

SSA System Safety Assessment

TFT Temporal Fault Tree

6

Contents

LIST OF ABBREVIATIONS .. 4

LIST OF TABLES ... 10

LIST OF FIGURES ... 11

1 INTRODUCTION.. 18

1.1 Setting the scene: ... 18

1.2 Research Motivation .. 23

1.3 Research Hypothesis and Potential Solution 32

1.4 Research Objectives .. 33

1.5 Thesis Structure ... 35

1.6 Publications .. 36

2 APPROACHES TO SAFETY ANALYSIS 37

2.1 Classical safety analysis techniques ... 38

2.1.1 Fault tree analysis ... 44

2.1.2 Failure Mode and Effects Analysis .. 51

2.2 Static approaches ... 54

2.2.1 FPTN .. 55

2.2.2 HiP-HOPS .. 57

2.2.3 Component fault trees .. 64

2.3 Dynamic approaches ... 66

7

2.3.1 Altarica ... 66

2.3.2 DCCA ... 71

2.3.3 Dynamic fault trees .. 72

2.3.4 Markov analysis ... 76

2.3.5 State event fault trees ... 82

2.3.6 AADL ... 86

2.4 Discussion ... 88

3 PANDORA ... 90

3.1 Introduction ... 90

3.2 Pandora temporal laws adapted to SM-based analysis 93

3.3 Case study ... 100

3.4 Discussion ... 110

4 AUTOMATIC GENERATION OF TEMPORAL FAULT TREES

FROM STATE MACHINE MODELS OF SYSTEMS 112

4.1 Introduction: .. 112

4.2 Compilation of SMs into TFTs ... 117

4.2.1 The Pandora choice .. 117

4.2.2 Representing SMs using Pandora logic .. 118

4.2.3 Pandora description of the PS state machine 119

4.2.4 Automatic generation of Pandora formulae 122

4.2.5 Conversion of the PS state machine ... 127

4.2.6 Minimisation of the generated TFTs .. 129

8

4.3 Complexity analysis of the conversion algorithm 131

4.4 Supplemental application of the conversion algorithm 133

4.5 Quantitative analysis of TFTs .. 142

4.5.1 Some comparisons with combinatorial techniques 145

4.5.2 Some comparisons with Markov solutions... 146

4.5.3 Probabilistic model of a POR gate with n input events 150

4.6 Discussion ... 151

5 COMPOSITIONAL SYNTHESIS OF TEMPORAL FAULT

TREES FROM STATE MACHINES ... 153

5.1 Introduction ... 153

5.2 The TFT synthesis approach .. 157

5.2.1 Compositional modelling of the analysis-related information 158

5.2.2 The Safora automatic generation and synthesis of TFTs 160

5.3 Case study ... 166

5.3.1 A generic triple-module redundant system... 166

5.3.2 State automata of the GTR ... 168

5.3.3 Synthesis and analysis of TFTs .. 172

5.3.4 Comparative evaluation .. 179

5.4 Discussion ... 184

6 BRAKE-BY-WIRE CASE STUDY .. 186

6.1 Compositional modelling of the BBW failure data 186

6.2 Compositional synthesis of the BBW system fault trees 199

9

6.3 Discussion ... 210

7 CONCLUSIONS... 213

REFERENCES: .. 216

APPENDICES ... 227

A — 1. HiP-HOPS Fault trees displayed using Isograph FaultTree+ 227

A — 2. Outcome of HiP-HOPS Cut-set calculator 228

A — 3. A HiP-HOPS FMEA table showing the further effects of the failure

modes .. 228

A — 4. AADL error model with input / output propagation 229

A — 5. Optimisation example of a Markov model .. 230

A — 6. Markov solutions for the PS (before and after optimisation) 233

10

List of tables

Table ‎2—1. Example of an aircraft FHA — fragment adapted from ARP4761 41

Table ‎2—2. Fragment of FMEA for the ABS .. 53

Table ‎2—3. State variables of the PS system. .. 68

Table ‎2—4. Flow variables of the PS system. ... 69

Table ‎2—5. Transition table of the PS system (i.e., the SM or mode automaton). 70

Table ‎2—6. Assertion table of the PS system. ... 70

Table ‎2—7. Error Model Definition of a component propagating an output deviation —

textual description. ... 88

Table ‎3—1. Temporal gate notation ... 92

Table ‎3—2. A Pandora temporal truth table .. 94

Table ‎5—1. Comparison with FTA results .. 178

Table ‎6—1. Effect classification of the vehicle wheel locking — 193

Table A—1. AADL textual description of a component SM propagating an input / output

deviation .. 229

11

List of figures

Figure ‎1—1. Simple example of a primary standby system .. 19

Figure ‎1—2. Failure behaviour SM of the PS example system 22

Figure ‎1—3. Fault tree of the PS example ... 25

Figure ‎1—4. An example DFT for VMS revised from (Vesely et al., 2002) 28

Figure ‎1—5. Markov model for the DFT of VMS example .. 30

Figure ‎1—6. Reduced representation for the VMS failure behaviour 31

Figure ‎1—7. Organization of the thesis ... 35

Figure ‎2—1. (a) Fragment of a Safety Assessment Process alongside (b) a Typical

System Development Cycle (Fragments adapted from ARP 4761) 39

Figure ‎2—2. Functional block diagram of a Cruise Control .. 43

Figure ‎2—3. Fault tree symbols describing events .. 44

Figure ‎2—4. Fault tree symbols describing gates .. 45

Figure ‎2—5. Some components influencing the anti-lock braking subsystem 47

Figure ‎2—6. Fault Tree of the “No ABS brake reference data supplied to the brake

actuator” ... 48

Figure ‎2—7. An example of minimal cut-sets ... 50

Figure ‎2—8. An example FPTN graphical description — ... 56

Figure ‎2—9. HiP-HOPS architecture (the safety analysis tool perspective) 59

Figure ‎2—10. Abstracted system model for a HiP-HOPS analysis 60

Figure ‎2—11. Refinement of Subsystem2 ... 61

Figure ‎2—12. System fault tree synthesised by HiP-HOPS .. 62

Figure ‎2—13. Fragment of a HiP-HOPS FMEA table showing the direct effects of

failure modes ... 63

12

Figure ‎2—14. HiP-HOPS (the optimisation tool perspective) ... 64

Figure ‎2—15. Component Fault Tree .. 65

Figure ‎2—16. Graphical and labelled transition system associated to the PS Altarica node

 ... 67

Figure ‎2—17. Functional-dependency gate ... 73

Figure ‎2—18. Spare gate ... 74

Figure ‎2—19. DFT of the PS system ... 75

Figure ‎2—20. A Markov model of a simple non-repairable parallel system 76

Figure ‎2—21. An optimised Markov model — same failure rate λ for both components

 ... 78

Figure ‎2—22. Markov model for the primary-standby system. 80

Figure ‎2—23. Optimized Markov model for the primary-standby system. 81

Figure ‎2—24. A more optimized Markov model for the primary-standby system. 82

Figure ‎2—25. Basic SEFT elements .. 83

Figure ‎2—26. SEFT relations and ports .. 83

Figure ‎2—27. Basic SEFT gates .. 84

Figure ‎2—28. Hydraulic Distribution System — adapted from (Bernard R. , 2009). 84

Figure ‎2—29. SEFT of the Hydraulic Distribution System ... 85

Figure ‎2—30. Pump component .. 86

Figure ‎2—31. AADL SM for a component with an output deviation 87

Figure ‎3—1. Pandora’s PAND gate with n inputs (n≥2) ... 90

Figure ‎3—2. Pandora’s POR gate with n inputs (n≥2) .. 92

Figure ‎3—3. Pandora’s SAND gate with n inputs (n≥2) ... 93

Figure ‎3—4. The VMS DFT, SM and system failure TFTs .. 101

13

Figure ‎4—1. (a) The PS example system. (b) SM failure behavioural model of the PS.

 ... 115

Figure ‎4—2. SM example of a static system. .. 119

Figure ‎4—3. Example of a SM with shared events.. 128

Figure ‎4—4. A Markov model optimisation example ... 133

Figure ‎4—5. A second Markov model optimisation example 135

Figure ‎4—6. Markov model of the PS (all failure states merged into one state) 137

Figure ‎4—7. The PS Markov model produced without redundancies 140

Figure ‎4—8. Markov model of a PAND gate with two input events (state 4) 146

Figure ‎4—9. Markov model of a POR gate with two input events 149

Figure ‎4—10. Markov model of a POR gate with n input events 150

Figure ‎5—1. SM of the sensor of the PS example system. .. 154

Figure ‎5—2. SM of the backup B of the PS system. ... 155

Figure ‎5—3. Highly abstract SM depicting the monolithic behaviour of the PS. 155

Figure ‎5—4. Synthesised fault trees. ... 156

Figure ‎5—5. Compositional modelling of the system failure behaviour. 159

Figure ‎5—6. Overview of the Safora method. ... 161

Figure ‎5—7. GTR system .. 166

Figure ‎5—8. Abstract SM of the GTR ... 168

Figure ‎5—9. SM of A .. 169

Figure ‎5—10. SM of S1 ... 169

Figure ‎5—11. SM of S2 ... 170

Figure ‎5—12. SM of B .. 170

14

Figure ‎5—13. SM of C .. 171

Figure ‎5—14. SM of D .. 172

Figure ‎5—15. Synthesized TFT of the GTR (depth first expansion of non-atomic events)

 ... 178

Figure ‎6—1. Architecture of the brake-by-wire system .. 188

Figure ‎6—2. A highly abstract BBW SM .. 189

Figure ‎6—3. Vehicle Dynamics SM .. 196

Figure ‎6—4. Actuator SM ... 197

Figure ‎6—5. Bus SM ... 197

Figure ‎6—6. Comparator SM .. 198

Figure ‎6—7. ECU SM ... 198

Figure ‎6—8. Sensor SM ... 199

Figure ‎6—9. [C-ActuatorFP < C-ActuatorRP] cut-sequence (4) of the “Critically Failed”

hazard ... 210

Figure A — 1. HiP-HOPS synthesised fault tree displayed using FaultTree+ 227

Figure A — 2. Cut-sets determined by HiP-HOPS for the omission on output y of

Subsystem2 .. 228

Figure A — 3. Fragment of an FMEA table synthesised by HiP-HOPS (a further effects

view) .. 228

Figure A — 4. AADL SM for a component with an input-output deviation 229

Figure A — 5. A reducible Markov model .. 230

Figure ‎A — 6 (a). Markov model of the PS (before optimisation) 233

Figure A — ‎7. Markov model of the PS (after optimisation) .. 235

15

Acknowledgements

Several persons have accompanied me in the long journey of this PhD project.

My grateful thanks go to Professor Yiannis Papadopoulos who supervised my studies,

gave me support and invaluable advice throughout, and I am deeply grateful to him for

the opportunity to enter the world of safety analysis. However this project, simply, would

not have even started without Professor Abdelrahim A. Hunaiti, Professor Said Ghoul and

Dr Mourad Maouche, my superior colleagues of Philadelphia University Jordan who

recommended me and tremendously encouraged me, and there are no words that can

express my deepest and grateful thanks to them. I am also very grateful to Dr Leonardo

Bottaci and Dr Bing Wang for all the meetings and discussions shared throughout this

project. Also, I pay my sincere respects to the authors of the journal “Efficient

reachability analysis for Time Petri Nets”, Dr Rachid Hadjidj and Professor Hanifa

Boucheneb. The representation using Latex of the algorithms specific to their journal

impressed me very much and highly encouraged me to convert my own algorithms into

Latex, in this thesis and in the papers listed in the next declaration. Moreover, my grateful

thanks go to Professeur Marc Bouissou and to Dr Max Walter for our fruitful discussions

about Markov models in Vienna and for the exchange of emails afterwards. I am also

very thankful to all those who contributed immensely in the work on severity and effects

of the brake-by-wire failures, including Dr Martin Walker who has made the study of the

effects of different sequences of failures available. I evaluated the concepts and methods

presented in this thesis in reference to this study. I am also thankful to all my colleagues,

particularly those who started their studies in the same period as me, Dr Amer Dheedan

and Dr Shawulu Nggada as well as all those who demonstrated in the labs with me,

particularly Dr Septavera Sharvia, Dr Ian Wolforth, Dr Zurinahni Zainol, Zhibao Mian,

Nabil Abu Hashish, Julius Nganji and Lisa Moore. Finally, my thanks go to the Computer

Science department personnel for always being wonderful in sorting out the

administrative and practical issues that I encountered in my work, particularly Amanda

Millson, Helen El-Sharkawy, Colleen Nicholson, Joan Hopper and Jo Clappison; for the

computer, printer and devices my thanks go particularly to Adam Hird and to the memory

of Debbie Clayton for always preserving a high quality of her work despite the struggle

with her health condition.

Deepest thanks go to my old good friends and much more than that, but I cannot

find the word that can express it, particularly Kamel Kadri, Moumen Agoulmine, Nacéra

Madani, Dalila Allam, Saïd Abdeddaïm, Mourad and Farid Naït-Abdesselam, Tarek

16

Branki, Nacéra Bensaou, Linda Demil, Salima and especially Fariza Tahi whose

distinguished achievements remain always a constant source of inspiration, I am always

indebted and so grateful to them.

Above all, my highest respects and most grateful thanks go to my parents, sisters

and brothers; my heart has always been with them. Likewise, there are no words that can

express my sincere respects and admiration to my uncles, especially Wassef, Medhat and

Jawdat who are the distinguished, elite professors of the “state machine” of life.

Nevertheless, I cannot finish without expressing my huge grateful thanks and respects to

all my former teachers, especially my mathematic teachers in Algiers from my early

childhood to University time.

Finally, I acknowledge that this PhD research was almost completely funded by

the projects: Model-based Analysis & Engineering of Novel Architectures for

Dependable Electric Vehicles EU FP7 project (MAENAD www.maenad.eu), Advancing

Traffic Efficiency and Safety through Software Technology EU FP7 project phase 2

(ATESST2 www.atesst.org), the Safety Design Operation and Regulation EU FP6 project

(SAFEDOR www.safedor.org) and the University of Hull.

http://www.maenad.eu/
http://www.atesst.org/
http://www.safedor.org/

17

Author’s declaration

I declare that the material contained in this thesis represents original work

undertaken solely by the author. The various aspects of the work covered in this material

have been presented in a number of international conferences and scientific publications.

The work on the conversion of state machines to temporal fault trees (chapter

four of the thesis) was presented in (Mahmud, Papadopoulos & Walker, 2010). The

complexity analysis together with the formal version of the conversion algorithm (same

chapter of the thesis) was presented in a journal in (Mahmud, Walker & Papadopoulos,

2012). The work on the compositional synthesis of temporal fault trees from state

machines (chapter five) was presented in (Mahmud, Walker & Papadopoulos, 2011) and

in a journal extension in (Mahmud, Walker & Papadopoulos, 2012). Parts of the literature

chapter of the thesis (chapter two) contributed to some European project deliverables in

[(Törngren et al., 2008) and (Walker et al., 2010)].

18

1 Introduction

1.1 Setting the scene:

Sophisticated computerised distributed engineering systems become increasingly more

prevalent. Yet our dependence on, for example, systems for transport, production plants

or medical devices comes with a potential of harm should any of these systems fail. Such

systems are commonly called safety-critical systems, and they also include power plants,

air traffic control systems, spaceships and many other complex systems.

Several definitions of the term safety appear in the literature. It is outlined by one

of these as an extension of reliability (Avižienis et al., 2001), but from a standpoint of

possible catastrophic failures
1
; and where reliability is defined as a measure of the

continuous delivery of correct service. Thus, a system is in a safe state when it is in any

state of correct service, or when it is in a state of incorrect service but due to non-

catastrophic failures. For example, an aircraft is in a safe state while it is correctly taxiing

or flying; and the same applies as long as it is flying safely with one engine only due to a

failure. In (Avižienis et al., 2001), reliability and safety are both defined as attributes of a

wider scope concept called dependability. The dependability of a computing system can

be defined as “the ability to deliver service that can justifiably be trusted”. Avižienis

(Avižienis et al., 2001) defines dependability as “the ability of a system to avoid failures

that are more frequent or more severe, and outage durations that are longer, than is

acceptable to the user(s)” where a user can be another interacting system. In general

dependability is seen as an umbrella term that includes safety, reliability, availability,

security and maintainability.

A key objective in the design of safety-critical systems is the identification of

potential hazards posed by such systems and the minimisation of the likelihood of these

hazards. To achieve this, analysts need to understand how systems may fail by

investigating potential causes and to estimate the probability of hazardous system

failures, so that a system’s corresponding design can be adjusted with overall failure

preventive measures which render the system safer — this process is known as safety

analysis. The analysis can be qualitative by attempting to determine the necessary and

1
 For studies on basic dependability concepts, taxonomy of faults and fault tolerance, the reader is

referred to (Laprie, 1985) and (Laprie, 1998) and (Avižienis et al., 2004).

19

sufficient causes, or combinations of such causes, that lead the system to a hazardous

state. On the other hand, safety analysis can be quantitative and the objective is to

estimate the probabilities of hazardous system failures from the estimated probabilities of

component failures. Both types of analyses are often done using a Boolean combinatorial

model called the fault tree (FT)
2
 — logical model which shows how low level failures

logically combine and propagate to cause system failures. Although fault tree analysis has

been proved to be a robust technique, the application of this technique is challenged by

the dynamic nature of modern systems. Safety-critical systems indeed become

increasingly dynamic, i.e. exhibit dynamic behaviour undergoing a plethora of mode and

state transitions in the context of operation.

A simple example of dynamic behaviour that has implications for safety analysis

is given in Figure 1—1 (Mahmud, Papadopoulos, & Walker, 2010). The system

illustrated in the figure represents a Primary-Standby (PS) redundant system. It is generic

in the sense that components A (i.e. the primary) and B (i.e. the backup) can be any

sensing, control or actuating device. S is a monitoring sensor whose role is to activate B

upon detection of an output deviation from A (e.g. omission of output). I represents the

input to the system – input to each of the two redundant components, and Out is the

output of the system. Out must receive input from either A or B for the PS system to

function.

Figure 1—1. Simple example of a primary standby system

This example system exhibits dynamic behaviour; for instance it can switch from primary

component A to backup B during its operation — i.e., the state of the system moves from

2
 Direct acyclic graphs which represent how several logical combinations of component failures

(events) lead a composed system to a total failure. Graphically, failure events are interconnected

through Boolean gates, mainly conjunction (AND gates) and disjunction (OR gates), and as

illustrated with an example later in this chapter.

20

state1 = [A active, B OFF] to state2 = [A failed, B ON]. This behaviour renders the

system as fault tolerant since a failure of A can be tolerated without loss of system

function. Looking at scenarios of system failure in more detail, we can observe that the

supposedly fault tolerant system is not always fault tolerant. For instance, if the system is

operating with its primary component but with a failed monitoring sensor, so it is in a

state such as state3 = [A active, S failed, B OFF], then a failure of A will immediately

cause a total failure of the PS example system (B will not be activated since S has already

failed). It is clear that the order of failure of A and S is important for the system, since

the outcomes are so different when A fails before or after S. This creates implications for

fault tree analysis, a technique unable to capture the ordering of events but also creates

difficulties in the analysis of dynamics systems in general. We shall return to this

example later on when we lay out in more detail the motivation of this work.

For better capturing behaviour in dynamic systems, states-transition formalisms

are increasingly being used within system design languages. Descriptions can be from a

functional viewpoint – e.g. to show how an aircraft system moves from taxiing to flying

mode, or from the viewpoint of representing possible dysfunctional aspects which

degrade systems or cause total failure. This latter kind of dynamics’ aspects, from this

point onwards, will be designated by the name of failure behaviour — behaviour of

systems under failure conditions — and is a central issue in this thesis. Recently proposed

system description languages which incorporate states-transitions formalisms for

describing dynamic behaviour include but are not limited to:

(1) AltaRica
3
 — a formal verification technique, which has demonstrated its value in

formally specifying the behaviour of complex systems when faults occur

(Griffault A. , 2003). The language underlying formalism is a state-transition

based system (Rauzy, 2002).

(2) FSAP/NuSMV-SA
4
 — a Formal Safety Analysis Platform equipped with a model

checker, i.e. NuSMV, for Safety Analysis. Like AltaRica, and formal verification

3
 The language AltaRica was issued in 1996 from an industrial collaboration with an academic and

research institution – LABRI (Laboratoire Bordelais de Recherche en Informatique). For

methodological studies on AltaRica, the reader is referred to (Arnold et al., 2005).

4
 FSAP/NuSMV has also been developed in collaboration between research institutions with

industry. This was under the auspices of the Enhanced Safety Assessment for Complex Systems

(ESACS) European project. For methodological studies on the NuSMV model checker, the reader

is referred to (Cavada et al., 1998).

21

techniques in general, this language has the potential of dealing with complex

behavioural aspects of dynamic systems. FASP/NuSMV descriptions have a

state-transition based representation (Bozzano & Villafiorita, 2003).

(3) AADL
5
 — an Architecture Analysis and Design Language intended to be the

aerospace standard. This description system has also a state-transition formalism

for modelling the behaviour of systems
6
, including in conditions of failure (Feiler

& Rugina, 2007).

Furthermore, representations such as Generalised Stochastic Petri Nets (GSPNs) and

Markov Chains (MCs) are also state-transition formalisms. It is emphasised, however, in

[(Codetta-Raiteri, 2005), (Rugina, 2007) and (Walker, 2009)] that GSPNs and MCs have

demonstrated their importance in quantitative analysis (i.e. to compute probabilistic

measures of failures); in addition, these models present rather low-level formalisms

(Rauzy, 2002) – higher level descriptions are often converted into GSPNs and MCs for

quantitative analysis, and thus these models are not well suited to capture complex

systems’ dynamics, and whose representations often need to be abstracted.

In (Papadopoulos Y. , 2000) for instance, it is emphasised that complex system

behaviour can rather be expressed as a hierarchy of State Machines (SMs) or mode

charts
7
, in order to break the corresponding description down into smaller streamlined

constituents – an abstract state represents a set of states at a lower level of the hierarchy.

Furthermore, we find the SM abstraction concept in AADL as well; a SM representation

of the failure behaviour of a component can also represent its subcomponents in the

5
 AADL has been developed under the auspices of the International Society of Automotive

Engineers (SAE) – Avionics Systems Division (ASD). For studies on architectural (and

behavioural) descriptions, the reader is referred to (Feiler et al, 2006). For studies on dependability

modeling and error annex, the reader is referred to (Feiler & Rugina, 2007) and (AADL-

Committee-As2cAnnexE, 2006), respectively.

6
 See the behaviour annex in (AADL-Subcommittee, 2007) and (Gaufillet et al, 2006).

7
 A mode being defined in (Papadopoulos, 2000) as an abstract functional state in which the

system maintains a stable functional profile – e.g. a flying mode for an aircraft is the set of states in

which the system maintains a stable flying profile. Thus, a system’s dynamic behaviour is

expressed as a set of different functional states (i.e. a set of modes) plus a set of modes’ transitions.

Degraded modes are those where there is partial loss of functionality, but in which the system is

still operational. Failed modes are those in which there is total loss of the intended functionality,

and thus rendering the situation hazardous.

22

presence of failures as an abstraction (Feiler & Rugina, 2007). Therefore, SMs are an

expressive, high-level form of representation well-suited for modelling the nominal as

well as the failure behaviour of safety-critical systems; the nominal behaviour of a system

is collectively known as the behaviour of the system without failure conditions.

This thesis aims to improve dynamic safety analysis, and the emphasis is

therefore placed on descriptions of failure behaviour. Such descriptions have in the past

provided input for safety analysis in techniques for example where state automata

describing failure behaviour have been converted into analysis models — e.g., GSPNs,

MCs or FTs.

The SM of Figure 1—2 for instance (originally used in Mahmud, Papadopoulos,

& Walker, 2010) represents the failure behaviour of the primary-standby example system

introduced earlier. This SM depicts the significance of the temporal sequencing of

failures.

Figure 1—2. Failure behaviour SM of the PS example system

For instance, the sequences [A fails before B] or [B fails before A] both lead the system

to a total failure; hence the temporal order is insignificant in this case. On the other hand

the sequence [S fails before A] leads to total failure, while [S fails after A] does not cause

a failure and therefore is not represented in the SM. If the SM was to be converted in a

model suitable for safety analysis (for example a fault tree), then for the accuracy of

results it would be important to preserve the significance of the temporal ordering so that

only one sequence [S fails before A] is accounted as cause of system failure.

23

1.2 Research Motivation

One attempt to perform safety analysis on systems modelled with SMs went through

transforming their descriptions into GSPNs or MCs. However, this was limited to

quantitative analysis as identified earlier in [(Codetta-Raiteri, 2005) and (Rugina, 2007)],

and noted in (Walker, 2009) as well. For instance in (Rugina, 2007), this has been applied

to AADL models (effectively SMs) by transforming these to GSPNs. This was automated

using a transformation tool called ADAPT
8
 (from AADL Architectural models to

stochastic Petri nets through model Transformation). The tool interfaces from the AADL

side with OSATE
9
 (an Open Source AADL Tool Environment) and, from the GSPN side,

with a dependability evaluation tool Surf-2 (Béounes et al., 1993).

However, performing a qualitative analysis before quantification appears to be

beneficial. A central issue is that qualitative analysis can be applied to early models of

system design, and where no probabilistic data are available; and then analysis models

(e.g., FTs) can be interpreted stochastically to perform probabilistic analysis when failure

data becomes available, e.g. in the refined models. Another central issue which favours a

prior qualitative analysis is that removing redundancies, or insignificant component

failures — those which are irrelevant to a system failure behaviour — can make

quantitative analysis more tractable. Something else again which recommends a prior

qualitative analysis is that Boolean model assessment tools are much more efficient than

those of state-transition models (Rauzy, 2002).

One of the premier and rigorous analysis techniques with an underlying Boolean

formalism is Fault Tree Analysis (FTA)
10

. FTA has demonstrated its value in a variety of

contexts over the years
11

, and it is still widely practised in reliability engineering (and in

many safety-critical industries such as automotive, aerospace and nuclear). Besides, FTA

is employed in conjunction with influential formal languages – e.g. qualification of

AltaRica modelling and analysis platform [with a computer performed generation of fault

8
 For details on the tool, the reader is referred to (Rugina et al., 2008).

9
 http://www.aadl.info/aadl/currentsite/tool/toolsets.html#OSATE

10
 For studies on the technique, the reader is referred to the fault tree handbook in (Vesely, 1981).

11
 In the aerospace industry for instance, FTA has been recognised as a significant system safety

analysis technique since 1963 (Ericson, 1999).

http://www.aadl.info/aadl/currentsite/tool/toolsets.html#OSATE

24

tree exhaustive Minimal Cut Sets (MCSs)
12

] as a validation tool
13

, as well as its use (FTA

capability within AltaRica) as part of several aerospace projects on, for instance, Airbus

civil aircraft programs (Pouzolz, 2010). As for FTA employment with recent Architecture

Description Languages (ADLs), several research efforts have been directed towards using

the technique to analyse complex systems by automatically generating fault trees from

models like in AADL (Joshi et al., 2007).

FTA postulates a catastrophic situation (i.e. a hazard or top event in the fault tree

vocabulary) which must be avoided. It then reasons backward to identify all scenarios
14

which could conduct the system to that hazard. It thus deduces a hazard cause, or

contributory causes (i.e. their logical combinations), and a cause can be for instance an

initiating failure of a component of the system under analysis. FTA can be qualitative by

attempting to minimise the deduced cause combinations, i.e. reducing them to logical

expressions that consist of the necessary failures, and which are sufficient to cause the

hazard. The technique can also be quantitative by combining figures for component

failure rates to calculate overall probabilities of system hazards.

For instance, performing FTA on the PS example system of Figure 1—1 will

yield the below results, where each is a necessary and sufficient cause, or combination of

causes, for the system to fail as a whole.

(1) Omission of Input at I (O-I)

(2) Both A and B fail

(3) Both A and S fail (as B will not be activated)

Thus, these results are called Minimal Cut Sets (MCSs) of the fault tree – i.e.

disjunction of branches individually leading the system to the top event, and which are

graphically represented in Figure 1—3 – i.e. fault tree of the fault tolerant example

12
 A MCS is a conjunct of the necessary and sufficient individual component failures which cause

a system hazard, and as illustrated later in this section.

13
 AltaRica has been used in a certification process, and in a first industrial application of Model

Based Safety Analysis (MBSA), with Dassault aviation in 2007. For further details about AltaRica

employment in recent industrial projects, the reader is referred to (Pouzolz, 2010) and (Bernard &

Pouzolz, 2010).

14
 Causal relationships branches of the fault tree.

25

system. Failures A, B, S and O-I are circled
15

 which means they are basic or initiating

events (i.e. they cannot be further developed). The gate in the centre, which is used twice,

is the logical AND gate and the one above is the logical OR gate. The fault tree top event

is the total failure of the PS example system.

Figure 1—3. Fault tree
16

 of the PS example

O-I is a single point of failure (a one-event MCS), and the two other analysis results are

also minimal logical combinations of initiating failures of individual components.

MCS (3) [rightmost branch: both A and S fail], however, does not appear to be an

accurate analysis result: the appearing conjunct will lead the system to a total failure only

if S fails before A, and which means that S will be unable to activate backup B upon

omission of output from A (since it has already failed). But, if S fails after A then it has

already served its purpose and activated B; thus the failure conjunct will not be a

sufficient combination of causes to fail the system as a whole, rendering hence MCS (3)

unduly pessimistic. This example shows, therefore, that a fault tree model is not able to

cope accurately with systems exhibiting dynamic behaviour; and thus performing analysis

on such models will put the obtained results in doubt. These can be dangerously

erroneous such as the case of an optimistic analysis result (e.g. where a system fails when

15
 A, B and S are abbreviations for ‘A failure’, ‘B failure’ and ‘S failure’, respectively.

16
 Although shading is meaningless in a fault tree model; the purpose is to distinguish MCS (3) i.e.

[A and S fail] from MCS (2) in the centre of the tree, and in term of the significance of the

temporal order of failures.

26

in fact this wasn’t predicted), rather than an unduly pessimistic result (a system predicted

to fail but it hasn’t e.g. the PS example system). The sequence [S fails before A] is a

significant temporal order of failures for the example system; hence it needs to be

expressed accurately in the analysis model as a sufficient failure cause. Therefore, there is

a need to extend fault trees with, at least for the case presented in this example, a

modelling capability to express that two failures should occur, but one before another in

order to cause a total failure.

This modelling shortage (and any consequent analysis results with the

corresponding repercussions on the design) is due to, at the origin, the nature of ‘pure’

Boolean logic based combinatorial models e.g. conventional fault trees which from this

point onwards we will call static
17

 fault trees. This poses a significant problem when it

comes to analyse dynamic systems, and where it is imperative to preserve the significance

of such dynamic aspects throughout the analysis.

To compensate this shortage, there have been many important attempts to

increment the modelling capacity of fault trees, and thence to bridge the gap between

FTA modelling tools and the systems being modelled. One of these is the State-Event

Fault Tree (SEFT). It is designed to extend the static fault tree with representation

capacities for states and events (Kaiser et al., 2007). It, therefore, allows a better

capturing of systems state-based descriptions by the analysis model, and hence easily

preserving the significance of the sequence-dependant behaviour (which is typically

associated with fault tolerant systems). A limitation in using SEFTs as analysis models,

however, is that these are not designed for qualitative analysis; they are more suitable for

quantitative analysis instead. This is by converting them to other state-transition

formalisms such as GSPNs or MCs, and to be then passed to assessment tools e.g. Surf-2

(Béounes et al., 1993) from the GSPN side, or a Markov chain generation algorithm

(Vesely et al., 2002) depending on the formalism chosen.

Another attempt in extending fault trees is the Dynamic Fault Tree (DFT). This

one adds dynamic gates to the static fault tree (Vesely et al., 2002). The added ingredients

allow a more accurate representation of systems where the order in which events occur

affects the outcome. The priority AND gate, for instance, and whose output evaluates to

true if all of its input events occur on a one-at-a-time basis (one failure occurs before

another), solves the problem found in the fault tree of Figure 1—3. This added gate

17
 Its use is more expressive in this thesis, since fault trees capture only the ‘static’ aspects of

dynamic systems.

27

represents well a much better alternative to the rightmost branch of the fault tree – i.e.

MCS (3), such that the ordered sequence [S fails before A] leads the system to a total

failure (but not necessarily the inverse). However, and like SEFTs, DFTs are also

designed for quantitative analysis. The DFT methodology
18

 was introduced to provide a

Markov analysis of fault trees (Vesely et al., 2002), fault trees being extended with

dynamic gates (hence becoming DFTs) to capture the significance of the temporal

sequencing of events, and thereby making it possible to automatically generate the

equivalent Markov models, and without a loss of the event-order semantics. As regards

the Markov models, however, despite their straightforward representation of the

sequence-dependant behaviour in systems, they have their own known flaws (Vesely et

al., 2002). They grow easily large and cumbersome, and thus impractical for large

systems
19

.

An attempt to overcome this weakness in a solution of a Markov model
20

 is to

provide modular DFT analysis for a system. This means if a system-level fault tree can be

divided into independent modules (effectively individual branches leading the system, on

their own, to the top event), and if these can be solved separately (through analysis of

their corresponding Markov models), then the corresponding results can be combined to

achieve a full analysis (Vesely et al., 2002). However, even for a simple example DFT —

for a Vehicle Management System (VMS)
21

 with just three components mainly (depicted

by Figure 1—4), the Markov model is complex and presents several redundant paths. In

the VMS example, each one of the three vehicle management components A, B and C is

sharing the same spare S with the other components, and through its corresponding Warm

SPare gate (WSP)
22

. If a component fails, then S (if it has not already failed and is

available) is supposed to take over that failed component’s job.

18
 The analysis technique performed on a DFT model.

19
 The number of states and transitions in a Markov model grows exponentially with the number of

components in the modelled system (Vesely et al., 2002).

20
 Some quantitative assessments may pass through higher level formalisms (e.g. GSPN) for a

following Markov analysis (Rugina, 2007). But, these will also end up being confronted with the

disadvantage of a Markov model (state explosion).

21
 The original version of the DFT (and the corresponding Markov model) can be found in (Vesely

et al., 2002).

22
 A warm spare has a reduced failure rate before being switched into active use. The other types

of spares are cold (do not fail dormant) and hot (maintain their same failure rates) (Vesely et al.,

2002).

28

Figure 1—4. An example DFT for VMS revised from (Vesely et al., 2002)

For the example system to fail as whole, it is sufficient that one of the two DFT

disjunction branches results in the top event, e.g. (i) the single WSP branch (rightmost

one) evaluates to true, which means that C fails and cannot be replaced by S (e.g. S has

failed, or is already replacing either A or B whichever has failed), or C has been replaced

by S which has failed in its turn afterwards. Alternatively, and for a total failure situation,

it is also sufficient that (ii) the WSP conjunct branch (leftmost one) evaluates to true, and

which means that A and B fail together, but none of these can be replaced by S (S has

already failed, or is replacing C in response to a corresponding failure); or simply S is

already replacing either A or B (whichever failed first), but S has failed in its turn

afterwards.

The conversion of a DFT to an equivalent Markov model starts from a state

where all the system components are operational, then repeatedly generates a set of target

states (and associated transitions) by considering the effect of failure of every component.

The same applies to every new state by considering the effects of the remaining failures

(not already treated in a same path from the initial state). Any new state can be either an

operational or a failed state. The former means that the system is still functioning, despite

some component failures. The latter is a state of a total failure of the system. The type of

a state (operational or failed) is determined by being checked against the fault tree.

For the fault tree of the given VMS example, its equivalent Markov model is

depicted by Figure 1—5 (for clarity, state transitions are shown labelled with individual

29

component failures, rather than failure rates). States are labelled with three consecutive

symbols linked to the components A, B and C (in this order). Each symbol represents the

status of its corresponding component, for instance, the first symbol can be A (component

A is functioning), S (component A is failed but S has taken over), or X (component A is

severely failed, meaning that S is also failed or is not available to take over). Therefore if

a state is labelled with e.g. SBX, this means that the VMS system is in a state where A

has failed and then switched to spare S, B is functioning and C, however, is severely

failed (S is no longer available to take over since it is already replacing A). This state i.e.

SBX (when checked against the DFT) is a state of a total failure of the system; in Figure

1—4, a severe failure of C – without a possibility to switch to S – is sufficient to cause

the top event. To be in this specific state, A has to fail first (S takes over) and C fails

afterwards. A reversed order of these failures has a clearly different effect on the system,

such that C fails first (then a switch to S) and A fails afterwards (severe failure of A since

S is no longer available), but the system can still operate in the state XBS – the DFT

shows that also B has to severely fail, so that the AND gate delivers an output which

evaluates to true, hence the top event of the fault tree.

30

Figure 1—5. Markov model for the DFT of VMS example

31

Markov models are solved using ordinary differential equations (Vesely et al.,

2002), with one time-dependant probability associated with each state (which represents

the probability that the system is in that state) and states are mutually exclusive.

However, like the Markov model in Figure 1—5 which corresponds to a relatively small

example system, these models are in general complex with a considerable size. Though,

in this thesis, we also discuss a possibility for optimising them such that the quantitative

results that correspond to the total failures are preserved.

An alternative representation of the VMS failure behaviour can be an abstraction

like the SM model of Figure 1—6, and rather than analysing it using standard fault trees

(like in Joshi et al., 2007 and Rauzy, 2002) we will show later in this thesis that we can

also automatically detect the sequence-dependent failure behaviour, and thereby

producing the combinations/sequences of events leading to a complete failure of the

system (like those in the right-hand side of the figure). Thereafter, these can be analysed

quantitatively, e.g., based on the work in (Merle, 2010) or the quantitative developments
23

of the work in (Walker M., 2009).

Figure 1—6. Reduced representation for the VMS failure behaviour

This figure
24

 shows that the order of failures of any of the two components A or B is only

relevant to the system failure behaviour with respect to an occurrence of a failure of the

component C. If C fails before any possible failures of the two (A or B) – i.e. transition to

state ABS, then all it takes (for a total failure) is either an S failure on its own (and

23
 At the time of writing this thesis, an extension of the work in (Walker M., 2009) with

quantitative analysis capabilities is undertaken at the University of Hull.

24
 The transition labels in the figure are abbreviations of component failures, e.g., ‘A’ means ‘A

fails’…etc.

32

irrespective of its order with failure of C), or both A and B failing afterwards (S is not

available), and in any order between them
25

. Otherwise, if anyone of A or B fails before C

(the system is in the states SBC or ASC, respectively, when C fails), then this is sufficient

to cause a total failure, on its own, since S will not be available to take over C. But if C

does not fail at all, then failures of all the other components (including S, and irrespective

of their orders) become necessary to completely fail this example of VMS.

To summarise, we have outlined through the previous examples two important

problems in current safety analysis approaches to systems exhibiting dynamic behaviour.

The first problem appears in approaches which convert SMs into static fault trees for the

purposes of analysis
26

 and which are not always suitable for dynamic systems.

Qualitative analysis is based on logic manipulations of Boolean equations and, therefore,

the temporal semantics are lost during the assessment, and this can have undesired

repercussions which affect the quantitative results afterwards.

The second highlighted problem appears in approaches which though applicable

to dynamic systems (e.g. using analysis models such as SEFTs, DFTs or GSPNs) enable

mainly quantitative (probabilistic) assessments and not useful qualitative analyses in the

absence of probabilistic data about failures.

1.3 Research Hypothesis and Potential Solution

In this thesis, it is speculated that we can analyse non-repairable systems represented as

state-automata qualitatively as well as quantitatively, and without any loss of the event-

order significance throughout the analysis and that this analysis can in principle be done

in a way that can be applied in large systems. Note that this has not been achieved before

and therefore represents an original contribution to literature in safety analysis of

dynamic systems.

The approach, we propose, allows both qualitative temporal analysis and

probabilistic assessments. The analysis is performed on dynamic system models

25
 In this case (after a failure of C), the representation of a B transition before A is redundant and

thus irrelevant to the system failure behaviour (i.e. if B fails before a failure of A then, when A

fails, there will be two instantaneous transitions to the final state ‘SystemFailure’).

Similarly, the failure-order between S and C is as irrelevant as the failure-order between S, A and

B (it is only important to consider the failure-order of C vis-à-vis anyone of A or B).

26
 It rather encourages a prior qualitative analysis and enables following formal assessments

throughout the calculation of probabilistic measures (quantitative analysis).

33

represented as acyclic SMs which are converted to Temporal Fault Trees (TFTs) in a

Pandora
27

 style (Walker & Papadopoulos, 2006). Pandora is a recent technique of the

University of Hull which augments fault trees with temporal information and enables

qualitative analysis of that information.

The proposed approach intends to bridge the gap between (1) Boolean-based

qualitative analysis (e.g. FTA) and (2) quantitative-only analysis approaches (e.g. Markov

solutions for GSPNs, SEFTs or DFTs), by presenting a solution which is primarily

twofold.

First, in this thesis we demonstrate the feasibility, and technical applicability, of

an automatic generation of Pandora TFTs from SM descriptions of systems which allows

the preservation of the significance of the temporal semantics expressed by SMs in the

analysis models. For this, we develop an algorithm characterised by its quadratic growth

with the number of full paths (from the initial state to the final states) in the SM model.

The generated TFTs are processed through a set of Pandora temporal logic rules, to result

in the relevant minimal sequences of events which cause a system total failure — i.e., the

results of qualitative temporal analysis.

The second element of the approach is a compositional algorithm for constructing

large system TFTs from the smaller TFTs of its constituents. Large systems are typically

described using smaller models of dynamic behaviour for components. The safety

analysis of such systems also demands a compositional approach that can grow and still

deliver results as systems grow large in scale and complexity.

1.4 Research Objectives

This first aim of the thesis is to develop an approach that satisfies the hypothesis and it is

generic in nature and therefore potentially applicable to any description language that

uses a state-transition representation for describing behaviour. Thus, it should be possible

to apply this approach to systems described for instance in AltaRica, AADL and EAST-

ADL
28

 (Freund et al., 2003). A second aim is to develop an approach that can in principle

27
 Pandora means the time, i.e. ORA ([ώρα] in Greek), of the Priority-AND (PAND) gate.

28
 The acronym EAST-ADL means Electronic Architecture through Software Technology,

Architecture Description Language (we particularly mean EAST-ADL2, i.e. the second version of

the language specifications). The language is directed to the automotive industry, and is intended

to incorporate state semantics in its domain model.

34

be automated and in the future incorporated within an automated safety analysis

technique like HiP-HOPS
29

 (Papadopoulos, 2000). This would mean enabling TFTs, i.e.

the automatically generated Pandora failure logic from systems SMs, to be synthesised

and analysed within HiP-HOPS. In turn, this would enable taking advantage of further

capabilities of this tool. HiP-HOPS is also a dependability versus cost architecture

optimisation technique (Parker, 2010). The tool is characterised by its flexibility and its

wider scope of application. It has demonstrated its values in analysing (and optimising

architectures of) systems described using several languages, e.g. SimulationX models for

marine systems (Papadopoulos et al., 2003), Matlab-Simulink models (Papadopoulos et

al., 2001) and, most recently, EAST-ADL2 models for automotive systems (Biehl et al.,

2010).

The verification of the hypothesis and achievement of the aims above relies on

meeting two principal objectives. The first one is an automatic generation of Pandora

TFTs from SM models of systems. A key requirement is that the generation algorithm

detects the sets of events of which the order is relevant to the system failure behaviour as

opposed to those sets in which order is unimportant. A second key requirement is an

algorithm which is practically possible in term of complexity and computational expense.

In summary, the first objective is an applicable approach to perform a

temporal safety analysis which is suitable for complex dynamic systems,

and whose behavioural aspects are represented using SMs (or generally,

state-transition descriptions).

The second objective is to improve the scalability of the approach by enabling the

compositional synthesis of large system TFTs from the individual component SMs. The

idea here is to apply the proposed algorithm on component SMs, and then having

generated local TFTs minimised wherever possible, to proceed and synthesise system

TFTs via a process of composition.

In summary, the second objective is an approach to compositional

synthesis of system TFTs from the SMs of the components of the system.

29
 The acronym HiP-HOPS means Hierarchically Performed Hazard Origin and Propagation

Studies and, in (Papadopoulos, 2000), a state-transition formalism (modes and modes’ transitions)

is suggested to be used for the description of systems with dynamic behaviour.

35

1.5 Thesis Structure

The structure of the thesis is illustrated in Figure 1—7.

Figure 1—7. Organization of the thesis

Analysis System models

Qualitative temporal

analysis

Analysis-related

descriptions
Analysis models

Pandora FTs SMs

Chapter 3:

Pandora

Chapter 4:

Compilation of SMs into Pandora equations

Chapter 5:

Compositional synthesis of Pandora FTs from SMs

Chapter 6:

Case study

Chapter 2:

Approaches to safety analysis

(static vs. dynamic)

36

Chapter 2 consists of a literature review on contemporary safety analysis approaches with

an emphasis on automated safety analysis techniques, like AltaRica and HiP-HOPS, as

well as some dynamic analysis approaches like those based on SEFTs, DFTs and AADL

models. In chapter 3, we continue the literature review with a presentation of the Pandora

qualitative temporal analysis technique and in chapter 4, we present our approach for an

automatic generation of Pandora TFTs from SM models of systems. Chapter 5 presents

our method to improve the scalability of our approach through a compositional synthesis

of system TFTs that is applicable to hierarchical state automata. In chapter 6, we apply

the technique on the brake-by-wire case study and, finally, we present our conclusion in

chapter 7 by discussing the contributions, improvements and future works.

1.6 Publications

The automatic generation of TFTs from SM models of systems, presented in chapter 4,

was outlined in (Mahmud, Papadopoulos & Walker, 2010) and published in the

proceedings of the 40
th
 annual IEEE/IFIP international conference on Dependable

Systems and Networks
30

 (DSN 2010).

The algorithm which generates the TFTs has been formalised and presented

together with an approach for the compositional synthesis of TFTs from SMs in

(Mahmud, Walker, & Papadopoulos, 2011). The latter has been published in the

proceedings of the sixth international conference on Availability, Reliability and Security

(ARES 2011), and presented at the second workshop and tool session on DYnamic

Aspects in DEpendability Models for Fault-Tolerant Systems (DYADEM-FTS).

A journal extension of the latter paper has been published into a special issue of

the ACM Performance Evaluation Review (PER) on Modelling Dynamic Behaviours of

Complex Distributed Systems (Mahmud, Walker, & Papadopoulos, 2012).

On another note, some safety analysis techniques which are detailed in the

literature review are discussed in deliverables of the European project ATESST2

(Advancing Traffic Efficiency and Safety through Software Technology second phase).

For example, a review of relevant safety analysis techniques can be found in (Walker,

Mahmud, Papadopoulos et al., 2010), and (Törngren, Walker, Papadopoulos, Mahmud et

al., 2008).

30
 This was in the framework of the Proactive Failure Avoidance, Recovery and Maintenance

(PFARM) workshop.

37

2 Approaches to safety analysis

According to Laprie (1992) safety is seen as an attribute of dependability, and this is

compatible with the concepts’ definitions presented in the introduction. Laprie (1992)

defines dependability to be: “Trustworthiness of a system such that reliance can

justifiably be placed on the service it delivers”. The service being the behaviour of the

system as it is perceived by its interacting human(s) or other system(s), and a system

failure occurs when the delivered service deviates from fulfilling what the system is

intended for (i.e. the system function). Safety is, therefore, concerned with the non-

occurrence of catastrophic failure consequences on the environment. Examination of

systems to understand how they can fail with the determination of frequencies of possible

failures lead to safety analysis. Such assessments typically provide, in return, a useful

resource in the design of failure mitigation mechanisms.

The range of existing safety analysis techniques in research literature and in use

in industrial practice is enormous. In this chapter, we explore safety analysis through a

comprehensive review of the relevant literature. We study different approaches to safety

analysis and identify the corresponding pros and cons. The results from this study

provide: (a) a more refined view of the problem to address (and its derivatives) and (b) a

classification of the relevant safety analysis techniques including the work presented in

this thesis.

This chapter begins with a presentation of relevant classical safety analysis

techniques, and by using the term ‘classical’ we mean a number of the foremost analysis

techniques, though, still well-established in the safety domain. These include Functional

Hazard Analysis (FHA) (ARP4761, 1996), Preliminary System Safety Assessment

(PSSA) which is also described in (ARP4761, 1996), Fault Tree Analysis (FTA) (Vesely

W. E., 1981) and Failure Modes and Effects Analysis (FMEA) [(ANSI/IEEE-Std.352,

1987) and (Rausand & Høyland, 2004)].

The remaining part of the chapter presents a classification (of some relevant

analysis techniques) into two main categories: static and dynamic approaches to safety

analysis. The former includes, e.g., Failure Propagation & Transformation Notation

(FPTN) (Fenelon & McDermid, 1993), Hierarchically Performed Hazard Origin and

Propagation Studies (HiP-HOPS) (Papadopoulos Y. , 2000) and Component Fault Trees

(CFTs) (Kaiser et al., 2003). The section of dynamic approaches includes fault injection

and simulation techniques such as Altarica [(Griffault et al., 1999) and (Bieber et al.,

2002)], the Deductive Cause Consequence Analysis technique (DCCA) [(Güdemann et

38

al., 2007) and (Ortmeier et al., 2005)], Dynamic Fault Trees (DFTs) (Dugan et al., 2000),

Markov analysis (Trivedi, 2001), State Event Fault Trees (SEFTs) (Grunske et al., 2005)

and stochastic analysis of models described using the Architecture Analysis and Design

Language (AADL) (Rugina A. , 2007).

2.1 Classical safety analysis techniques

Safety analysis typically starts early in the development cycle of a system. This usually

means, given a set of desired functions, safety analysis starts taking place when a decision

has been made to develop a system that is able to fulfil these functions. To illustrate the

integration of safety with the design, Figure 2—1 (adapted from the ARP 4761
31

 related

to the aerospace industry) represents typical design activities associated with the

corresponding safety tasks.

We observe in the Figure 2—1 that a safety technique called Functional Hazard

Assessment (FHA) takes place first. Starting from the aircraft level, FHA attempts to

identify failure conditions that are associated with the aircraft functions. The technique

proceeds during the activities ‘Concept Development’ and the ‘Allocation of Aircraft

Functions to Systems’ of an aircraft design lifecycle. These are preliminary activities

preceding more refined design descriptions and that take place when there is primarily a

functional focus
32

 — i.e., no physical realization has yet been decided.

Before we discuss the relevant safety techniques in more detail, we wish to note

that design and safety analysis practitioners in different industries (like aerospace,

automotive and railway) may use closely related (and sometimes different terminologies

for the same) safety techniques. For example, sometimes in the literature FHA can be

substituted with an improved version known as Functional Failure Analysis (FFA)

[(Papadopoulos et al., 1999), (Papadopoulos Y. , 2000) and (Johannessen et al., 2001)].

Similarly, FFA is used to identify safety hazards in a conceptual design of a system. It

extends FHA to include, e.g., failure classes such as (but not limited to)

omission/commission of service provision or early/late delivery of output.

31
 The Society of Automotive Engineers (SAE) standard for the Aerospace Recommendation

Practice (ARP 4761).

32
 Emphasis is rather put on the functions of a system including the identification of safety

requirements that need to be addressed.

39

Figure 2—1. (a) Fragment of a Safety Assessment Process alongside (b) a Typical

System Development Cycle (Fragments adapted from ARP 4761)

Moreover, Pumfrey (1999) has noted that in the automotive industry FFA can be referred

to as FMEA (i.e., establishment of direct relationships from causes to effects of failure).

However, it is often omitted in the corresponding literature to mention that a specific kind

of FMEA (a predictive
33

 FMEA) that is being used to indicate the same technique as

33
 It starts from hypothetical failure modes to assess the corresponding effects. It takes place in the

early stages of the design lifecycle.

40

FFA. The other kind of FMEA starts from known
34

 rather hypothetical failure modes, and

thus the latter is different from the FFA technique.

Let’s now present the big picture of an integration of some relevant safety tasks

within a system design lifecycle. Figure 2—1, for instance, depicts the process for an

aircraft typical development cycle. But apart from the aircraft specificities, the figure

represents a typical association (and irrespective of the type of industry
35

) of a lifecycle

activities with the relevant safety tasks. The shown top level displays the design activities

and the safety tasks undertaken when the concerns are predominantly functional —

during concept development in the figure. The design engineer builds a formal model of

the aircraft functions and operations architecture. The safety engineer, on the other hand,

extends the architecture with descriptions of failure e.g. a failure propagation model

(FPM
36

), i.e., functional failure modes. Nonetheless, the common underlying basis is the

functional and safety requirements identified in the aircraft level FHA/PASA. The latter

(i.e., PASA), which is used in the aerospace industry, is a preliminary aircraft safety

assessment technique. It is used to evaluate a proposed architecture based on the FHA

(and severity classification
37

 of failure conditions) and derive safety requirements.

Table 2—1 illustrates an example of an aircraft FHA. The function to, e.g.,

decelerate an aircraft on the ground can fail while the aircraft is either in taxing or in

landing mode. The corresponding FHA table shows that a loss of the deceleration

capability (even though alerted) has an effect that is classified as more severe
38

 if the loss

occurs while the aircraft is landing rather than taxiing (even though the failure is non

alerted in the latter phase).

34
 i.e., an FMEA that takes place in the latter stages of the design lifecycle.

35
 This is shown in the V lifecycle model in (Pumfrey, 1999) that represents similar activities and

safety tasks without any industry-specific connotations.

36
 The use of FPM appears in the insertion of the model-based approach (of which models are

primary artefacts) in the industries and in safety standards of the More Integrated Systems Safety

Assessment (MISSA) European project (://www.missa-fp7.eu/). FPMs can be used as basis for the

assessment of the functions (e.g. in MISSA aircraft functions) architectures against the safety

requirements.

37
 E.g. catastrophic, critical, marginal and insignificant failures (IEC-61508, 1997).

38
 We wish to note, though, that in the (ARP4761, 1996) hazardous is synonymous to severe-

major.

41

Table 2—1. Example of an aircraft FHA — fragment adapted from ARP4761

After the allocation of functions to systems (during design), another FHA

assessment, at system-level though, takes place in order to re-examine the system

functions. A system-level FHA is particularly useful to assess the architecture of systems

that integrate multiple functions — the FHA re-takes place to take into account condition

of failure, not only of a single function, but also of combinations of functions. The

outcome helps to start preliminary system safety assessments (i.e., PSSAs) whose

objective is to establish system safety requirements and architecture evaluations. PSSA is

a technique that determines how failures can cause the functional hazards (identified by

the FHA) and thus, when applied to proposed system architectures, it can help to

determine whether or not these (i.e., the architectures) can reasonably be considered as

acceptably safe. The capacity of PSSA in determining scenarios that lead to the

functional hazards makes the technique similar to FTA — i.e., the hazard causes are

structured in a fault tree for assessment. Moreover, the basic events of the PSSA fault tree

can be used by FMEA analysts for the purpose of, e.g., assuring that (at least those more

influential) cause effects have been addressed in the analysis. Although PSSA also

Function Phase Failure

Condition

Failure Effect

Condition on Aircraft / Crew

Classification

Decelerate

Aircraft

on the

ground

Taxi

Non Alerted Loss

of Deceleration

Capability

Crew is unable to stop the

aircraft resulting in low speed

contact with nearby vehicles,

terminal or aircrafts. Crew

reaction time can result in

potential overrun.

Major

Landing

Alerted Loss of

Deceleration

Capability

Crew notifies emergency ground

support of a more suitable airport

for an immediate preparation for

emergency landing. Crew

prepares passengers for landing

overrun.

Hazardous

42

defines safety requirements (as in FHA), it is not intended to verify that the more refined

(or implemented) architectures meet those safety requirements. Indeed, verification of the

safety of a system as a whole is comprehensively complemented by a system safety

assessment (SSA) technique.

A safety integrated development cycle like the one represented in Figure 2—1 —

or like the ‘system and safety lifecycle’ described in (Pumfrey, 1999) — consists of two

major processes that are typically performed in an iterative manner: a system design

process and a safety analysis process. Yet, the functions that must be accomplished by the

system (and their sequential relationships) need to be determined and described at the

early stages of the lifecycle. Functional models such as Functional Block Diagrams
39

(FBDs) are often used to represent the functional interrelationships in a system. These

diagrams consist of blocks of functions connected by directed lines to represent the

function flow and flow direction.

To illustrate the concept we use an example of a vehicle Cruise Control (CC).

Figure 2—2 — constituted from (Abele et al., 2010) — represents the corresponding

FBD, some subsystems (or components) desired functions being textually described. The

input to the CC can be signals for the on, off, set/resume or cancel CC switch modes

which require interpretation. Thereafter, the vehicle speed controller has the basic

functionality to evaluate
40

 the vehicle speed, and thus determines the CC state diagram —

a component which decides transitions between states (e.g. on / off) and calculates the

speed to be maintained by the CC (set point).

39
 These are also referred to in some literature as Functional Flow Block Diagrams, e.g. in (NASA,

2007).

40
 This is typically performed based on additional inputs from, e.g., the vehicle speed sensor and

the wheel speed sensors which are not represented in the figure since they are not within the CC

boundary.

43

Figure 2—2. Functional block diagram of a Cruise Control

The set point is used to calculate a torque request by the controller, and which gets

handled afterwards by the Engine Management System (EMS
41

). We wish to note that in

situations where more information is available at the early stages, functions can be

decomposed hierarchically into a network of sub-functions. We wish to note, though, that

standards like the International Electro-technical Commission (IEC-60812, 2006) and the

military (MIL-STD-1629A, 1980) recommend the use of FBDs as a basis for both FMEA

and FMECA
42

 (a FMEA extension for criticality analysis).

FMEA (and FMECA) inductively derive the corresponding effects from

hypothetical (or known) causes, whereas FTA
43

 works backwards to deduce the causes of

some undesired outcome. In Figure 2—1 for example, the SSA uses the PSSA FTA to

verify that all significant and previously identified effects can be dealt with as events in

the fault tree. At this stage though, these are typically undeveloped events (e.g. because

there is no sufficiently available information), but do not need to be further elaborated on

for verification of compliance with applicable safety requirements. We wish to

emphasize, though, that effects/causes relationships in both techniques, i.e., FTA and

FMEA (as well as FMECA) link effects logically to their corresponding networks of

causes, and typically with neither concept of time nor information about the temporal

sequencing in which the causes occur. Despite this, FTA and FMEA are (until now)

41
 The EMS typically consists of a speed transmission and controls for the torque and idle speed. It

is beyond the CC boundary, and thus not represented in Figure 2—2.

42
 Failure Modes, Effects and Criticality Analysis.

43
 It is conducted in the early stages of the lifecycle for, e.g., the PSSA and usually used as a basis

(among other techniques) for the SSA (e.g., Figure 2—1).

44

among the prevalent techniques used in research and in several safety-critical industries

— e.g., aerospace, automotive and nuclear.

2.1.1 Fault tree analysis

Fault Tree Analysis (FTA) is a deductive top down technique that allows analysts to

perform both quantitative (probabilistic) analysis as well as qualitative (logical) analysis.

This is particularly useful when there is no sufficient probabilistic failure information

about the constituent parts — e.g. subsystems or components — of the system under

analysis (e.g., at the early stages of the conception). FTA starts from a bad (or an

undesired) situation called the top event or the root of the fault tree, and then it attempts

to deduce the different causes (or possibly combinations of causes) that lead the system to

the top event. The root causes can be, e.g., component failures called basic events or

combinations of these. Figure 2—3 illustrates the different graphical representations of

the events that can appear in a fault tree.

Figure 2—3. Fault tree symbols describing events

A basic event (a) is typically an initiating fault. It is represented as a leaf in the fault tree,

which means that it cannot be further expanded, i.e., no other events can lead to it.

However, (b) represents an event that for one reason or another has not been further

developed, because either this does not impact the analysis or there is no sufficient

information. But in the case where an event arises from the combination of other events

that are (or ultimately expand to) basic events, then it is labelled as an intermediate event

(c). A normal event (d) is not expected to cause any problem on its own and is part of the

normal operation of the system. It is typically an external event that may lead to an

undesired situation only in combination with other events. The remaining event (e) does

not necessarily have to be a fault, but is intended to constrain certain types of logic gates.

For example, an INHIBIT gate is true only if its input event is true and its attached

45

conditioning event is also true, the latter can be applied to Priority-AND gates as well.

Figure 2—4 illustrates a list of symbols that correspond to the fault tree gates, even

though the list is not exhaustive
44

.

Figure 2—4. Fault tree symbols describing gates

An OR gate (a) is true if any of its inputs is true, whereas an AND gate (b) is true only if

all of its inputs are also true. In contrast, an exclusive OR (XOR gate as described in c) is

true if exactly one of its inputs is true, while a Priority-AND (PAND gate as in d) is true

if all of its inputs occur (i.e., evaluate to true), but according to the sequence specified in

the conditioning event that is attached to the gate. Finally, the INHIBIT gate (as in e)

described previously acts like an AND gate with two input events: the single input event

of the INHIBIT gate and its attached enabling conditioning event. We wish to note,

though, that a fault tree is fundamentally Boolean logic, i.e., gates with temporal or event-

sequencing information are part of subsequent versions of the fault tree, e.g., the DFT

approach in (Vesely et al., 2002).

Fault trees can be used in conjunction with many design activities of the lifecycle

of a system; they may also take place in the early stages like in the PSSA activity, though

for a predictive role at such stage. For example, qualitative analysis can be performed

very early in the lifecycle to speculate as to how a bad situation can happen, i.e., for

instance through the minimisation of possible combinations of the deduced failure events

that cause the supposed top event of the fault tree. However, quantitative analysis can be

used when sufficient
45

 probabilistic data becomes available, e.g., by combining figures

for actual component failure rates to calculate overall probabilities of system-level faults

(i.e., failure rates for top-events of fault trees). We wish to note, though, that quantitative

FTA can also be performed in a predictive role (Pumfrey, 1999), e.g., starting with an

44
 For a more detailed list of gate symbols, we refer the reader to (Villemeur, 1992).

45
 i.e., with respect to a certain acceptable level of detail or accuracy.

46

acceptable failure rate assigned to the top event, and then deciding how to allocate a

failure rate solution between the events down the tree.

We use an example that represents an anti-lock braking system
46

 (ABS) with

some connected components (as in Figure 2—5) to show a system-level fault tree — of

an omission of ABS brake reference data (i.e., an output deviation that negatively impacts

the brake actuator connected upstream). An ABS is intended to prevent the wheels from

locking while braking, which is very useful when a vehicle needs to be urgently stopped

on slippery surfaces in particular. Thus, it is not exaggerated to say that a driver, average

or professional irrespectively, can be relieved from nerve-wracking situations (with

possible catastrophic consequences) if the vehicle is equipped with an ABS. Figure 2—5

shows a simplified ABS version with three inputs — a brake reference, a vehicle speed

and a wheel speed data — for an intended delivery of a processed brake reference data to

the connected brake actuator. The system is represented only once in the figure, but

overall it is actually duplicated on the vehicle wheels.

46
 The example has been made on the basis of some outcome from the projects ATESST2

(http://www.atesst.org) and MAENAD “Model-based Analysis & Engineering of Novel

Architectures for Dependable Electric Vehicles” (http://www.maenad.eu). We wish to note,

though, that it has been simplified for the purposes of illustrating a fault tree and an FMEA (Table

2—2, page 53).

http://www.atesst.org/
http://www.maenad.eu/

47

Figure 2—5. Some components influencing the anti-lock braking subsystem

The brake reference, as shown in the figure, is some data that is originally

produced by the brake pedal (i.e., a pedal position initially), then propagated and

processed by some components in series that are: the brake pedal sensor to capture the

pedal position (upon detection of a pedal displacement). It then propagates the pedal

position to the next component in the series, i.e., the brake calculator which computes the

driver requested torque using the transmitted pedal position. The brake calculator sends

thereafter the produced value to the brake controller which decides the required torque on

each wheel. The latter is one of the required parameters needed by the ABS function to

appropriately decide the braking force (then delegated to the brake actuator) on the

corresponding wheel. The other parameters required by the ABS function to fulfil its duty

are given by: the sensed vehicle velocity input (captured by the vehicle speed sensor) and

the sensed wheel angular velocity input which is detected by the wheel speed sensor.

These values originate from a component which is represented as an abstraction of the

dynamics of the vehicle — i.e., the effects that the velocities of the wheels can have on

the vehicle. The component outcome represents a torque on each wheel, which allows the

48

corresponding speed (of the wheel) to be sensed, and a detectable overall speed for the

vehicle.

Figure 2—6. Fault Tree of the “No ABS brake reference data supplied to the brake

actuator”

The hierarchal structure of the system to analyse is captured neatly in the fault

tree. For example, the fault tree in Figure 2—6, which represents the network of causes

leading to the top event “No ABS brake reference data supplied to the brake actuator”,

reflects the structure of the ABS and the connected components in Figure 2—5. It shows

how basic and intermediate events (as well as one undeveloped event) connect to the top

event; the intermediate events appear as inner nodes linked to more developed events

downwards in the fault tree. For instance, a defective brake pedal because of, e.g., a break

49

in its wiring, or an initiating fault in the pedal will cause the brake pedal sensor to fail in

its attempt to detect a pedal displacement (omission of input to the brake pedal sensor) —

i.e., the fault tree intermediate event “No brake pedal position to brake pedal sensor”.

The latter is sufficient on its own (OR gate) to cause the higher intermediate event “No

requested brake torque data to the brake controller”, and which propagates through the

brake controller to the ABS (i.e., the intermediate event “No brake reference data

supplied to the ABS from the controller”) then to the actuator (the top event of the fault

tree).

FTA aims at multiple usages (some of which have been mentioned previously).

But we put now more emphasis on qualitative FTA, which does not rely on the presence

of failure measures (necessary for quantitative FTA). Qualitative analysis works by

minimising, i.e., reducing the fault tree such that it displays only the failure events that

could, individually or collectively, cause the top event to occur. The outcome is a

minimal cut-set form of the fault tree, i.e., a representation limited to the significant

failure events — e.g., the fault tree example of Figure 2—7.

In the example, the Boolean logic expression which corresponds to the fault tree

before analysis — i.e., left hand side of the Figure 2—7 — is the disjunction of the

expressions of the separate branches underneath the top event, i.e., the cut-sets which

correspond to the intermediate events E1 and E2. The symbols ‘.’ and ‘+’ represent the

gates ‘AND’ and ‘OR’, respectively.

E0 = E1 + E2

Since E1 and E2 are equal to A + E3 and to B.E4 respectively, then we have:

E0 = (A + E3) + (B.E4)

Moreover, E3 (resp. E4) is equal to B.C (resp. E5+C). Therefore, we get:

E0 = (A + (B.C)) + (B . (E5+C))

50

Figure 2—7. An example of minimal cut-sets

Boolean associative and distributive laws
47

 in addition to the precedence order of the

logic operators (i.e., the fault tree gates) make it possible to remove and re-arrange

parentheses in an expression. Therefore, E0 can be re-written as:

E0 = A + B.C + B.E5 + B.C

Since E5 is the conjunction of the basic events A and D, then E0 becomes:

E0 = A + B.C + B.A.D + B.C

We eliminate the redundant B.C using the OR idempotent
48

 law, and hence:

E0 = A + B.C + B.A.D

47
 E.g., (X+Y)+Z  X+(Y+Z)  X+Y+Z (OR associative law), (X.Y).Z  X.(Y.Z)  X.Y.Z

(AND associative law), X.(Y+Z)  X.Y+X.Z (AND distributive law over OR) and X+(Y.Z) 

X+Y.Z (priorities for Boolean evaluation).

48
 X + X  X (OR idempotent law) and X.X  X (AND idempotent law).

51

The conjunction of A, B and D is removed by using an absorption
49

 law, and thus the

minimal cut-set form of the fault tree (right hand side of Figure 2—7).

E0 = A + B.C

We must point out that qualitative FTA can alleviate some problems that are

encountered in the quantitative
50

 aspects during the assessments of complex systems. For

example, the fault tree minimal cut-set forms help in allocating probabilistic measures to

the relevant failure events, facilitating thereby the consequent quantitative analysis.

Thereafter, the quantitative results from FTA (and FMEA as well) feed back into earlier

assessments
51

 such as system level FTAs and (for the case of an aircraft development)

aircraft level FTAs, like in Figure 2—1.

2.1.2 Failure Mode and Effects Analysis

Failure mode and effect analysis (FMEA) is commonly known (and often used) as a

bottom-up analysis technique. In that sense, it proceeds by analysing the system

components individually, or sometimes collectively, to determine failure effects thereof

on the system
52

. The history of FMEA (and its criticality version known as FMECA
53

)

goes back to the 1950s (Rausand et al., 2004). At the time, the technique was introduced

in response to the growing concerns about the reliabilty of military systems. The standard

guidelines in (MIL-STD-1629A, 1980) were thereafter developed and revised during the

1970s.

49
 X + X.Y  X

50
 In both directions, i.e., probability of occurrence of the top event as well as allocation of

probability budgets to lower-level events (i.e., the predictive role of quantitative FTA mentioned

earlier).

51
 For the purposes of, e.g., helping in the demonstration of compliance with the quantitative

requirements derived from FHAs. This can facilitate the assessments and reviews of the

certification authorities (ARP4761, 1996).

52
 The technique aims at addressing the consequences that result from, typically, single failures.

53
 It adds to the FMEA a formal classification of failure effects according to severity and

probability of each contributing factor to system level hazards. This helps in implementing

corrective measures to mitigate the high risk effects. For more information about FMECA, we

refer the reader to (MIL-STD-1629A, 1980).

52

The technique commonly uses a tabular description to link failure modes
54

 (of the

system constituent parts) to their induced effects and magnitude identified accordingly.

We wish to note, though, that an FMEA table may contain a number of optional columns

that correspond to, e.g., means of failure detection, severity of the failure effects (with

mitigation strategies if possible) as well as comments and recommendations (Pumfrey,

1999). FMEA can be useful in many ways such as (but not limited to) serving as a basis

for probabilistic reliability and availability analysis, providing future references for

consideration of design changes (to avoid or minimise the effects of the most critical

failures identified), and helping to show how some design alternatives can (or cannot)

represent optimal trade-offs
55

 — i.e., designs that meet dependability criteria (such as

safety, reliability and availability) at a minimum cost.

There are different ways to conduct an FMEA (depending on the application), but

the following are generally considered as major steps.

 Definition of the system and its components.

 Identification of the operating states of the components.

 Identification of the component failure modes and the possible effects of each

component failure.

 Investigation of other factors e.g. detection and protection.

 Making conclusions and recommendations.

As an example, Table 2—2 represents a part of an FMEA which corresponds to the ABS

(depicted in Figure 2—5). For the component “vehicle speed sensor”, two failure modes

are considered: no signal and false signal. For example, an omission of output from the

vehicle speed sensor (i.e., “No signal”) makes the ABS ineffective, since it becomes

impossible to detect the lock up tendencies of the wheels — the ABS interprets that a

wheel is being likely to lock up by determining its brake slip according to the signal

received from the vehicle speed sensor. As a consequence on the vehicle, the braking

54
 i.e., forms of deviation from correct service (Avizienis et al., 2004).

55
 In (Papadopoulos et al., 2011), the safety analysis tool framework (HiP-HOPS) integrates an

automated optimisation of design models using genetic algorithms to evolve designs into new and

optimal ones.

53

system switches to regular (i.e., no ABS function). As for the last column of the table, it

shows some comments related to such a situation, like directing the driver to prevent

wheel lock up by manually pumping the brake pedal. The comments can also include

some warnings to prepare the driver, e.g., a possible yawing of the vehicle depending on

the condition of the road, or during a panic stop.

Table 2—2. Fragment of FMEA for the ABS

Component
Failure

Mode

Subsystem

Effects

Vehicle

Effects
Comments

Vehicle

speed

sensor

No signal

Impossible to

determine the brake

slip for each wheel,

and thus the

corresponding lock

up tendencies cannot

be determined.

Vehicle braking in

the regular manner

(i.e. ABS inactive).

1) The driver has to

manually pump the

brakes to prevent

wheel lock up.

2) The vehicle may

spin on wet and

slippery roads (or

during a panic stop)

False signal

Incorrect

determination of the

vehicle speed leading

to incorrect

calculations of the

different wheel brake

slips.

1) Possible lock up

of wheels during

braking (the

corresponding lock

up tendencies were

not detected by the

ABS).

2) Possible

unnecessary changes

to the fluid pressure

at each wheel

(performed

automatically by the

ABS).

Effect 1) same as

above.

Effect 2) possibility

of non optimised

vehicle braking

(depending on the

vehicle speed

estimation and the

brake pedal

position).

Despite the purely combinatorial aspect of FTA and FMEA (which makes them

classified as static approaches too), there is a contemporary and important research focus

— both industrial and academic — on using these techniques in conjunction with

influential, state-of-the-art modelling languages like AADL and Altarica. In the circle of

the aerospace industry for instance, there is a recent work about generating FMEA and

FTs from AADL models. This work is described in (Hecht et al., 2011) and (Hecht et al.,

2010) concerning an automated generation of FMEA and in (Joshi et al., 2007)

54

concerning a generation of fault trees. AADL is clearly gaining growing acceptance in the

aerospace community and Altarica’s modelling and analysis platform — a tool which

uses computer-performed generation of fault trees — was qualified as a validation tool in

several aerospace projects, including Airbus civil aircraft programs (Bernard R. , 2009).

Besides, the company Dassault Aviation
56

 has demonstrated the consistency of its Falcon

7X flight controls according to the requirements of the certification authorities with the

aid of Altarica models. Dassault Aviation has developed an Altarica tool for the

Conception and Analysis of Systems (so-called OCAS) with a generator of fault trees

from Altarica
57

 models proposed in (Rauzy, 2002). The generated FTs can then be

analysed by the Aralia tool (Dutuit & Rauzy, 1997); the performed analysis is both

qualitative — in order to extract all the minimal cut-sets — and quantitative to calculate

probabilities of the top events.

2.2 Static approaches

We present in this part some relevant static approaches in addition to FTA and FMEA

discussed earlier. Static analysis is sufficient for many systems, e.g. where the full failure

behaviour of the system is accurately represented through static causal relationships

between the individual components — the corresponding failures have their effects on the

system individually or in logical combinations with other failures. We wish to note,

though, that some static safety techniques have been extended to model and analyse

dynamic systems. For example, Papadopoulos (2000) suggests an extension of HiP-

HOPS with a modes/ modes’ transitions formalism to be used for the description of

systems with dynamic behaviour. Besides, there has been a considerable body of work

focused on how to enable the tool to handle temporal fault trees [(Walker &

Papadopoulos, 2008) and (Walker, 2009)].

56
 For more details about the different participants in Altarica — industry and academic/ research

bodies — with their corresponding tools and variations of the language, we refer the reader to

(Bernard R. , 2009).

57
 The described compilation into fault trees is based on a variation of Altarica (so-called Altarica

data flow). The reason is to drop out features like bidirectional flows which make the compilation

difficult.

55

The techniques discussed in this section are Failure Propagation &

Transformation Notation (FPTN), Hierarchically Performed Hazard Origin and

Propagation Studies (HiP-HOPS) and Component Fault Trees (CFTs).

2.2.1 FPTN

Failure Propagation & Transformation Notation (FPTN) is a simple graphical technique

designed to allow a compositional approach to safety analysis and to aid FTA and

FMECA in representing the failure behaviour of systems (Fenelon & McDermid, 1993).

The technique consists of a hierarchical notation for the description of faults propagation

through a compositional, modular architecture of a system. Besides, failures in FPTN are

typed according to particular failure domains — e.g., failures of types timing, value or

commission / omission (Fenelon & McDermid, 1992). Failures that are lying in the

timing domain are those which occur at an incorrect time, whereas value failures can

occur, e.g., when an incorrect value is returned by some computation. As for the type

commission (resp. omission), it groups failures that are due to a function which is

provided when not required (resp. a function which is not provided when required). In

FPTN, these types constitute the basis of a simple classification of failures; however, new

failure mode types can be added by users of the notation according to their application

domains. Besides, transformation of failures from one domain into another (which is not

uncommon in many systems) is supported and well-expressed in FPTN — typically, this

can happen as failures propagate through a system. For example, a watchdog timer in a

real-time system can force a computation exceeding its budgeted execution time to return

an approximate value; thus, transforming a failure domain from time to value.

In FPTN, a component or subsystem is typically drawn as a box with a set of

inputs and outputs, by means of which architectures with interconnected modules can be

graphically described. Besides, a module can also contain other modules, thereby

allowing the FPTN descriptions to be hierarchical (Grunske & Neumann, 2002).

56

Figure 2—8. An example FPTN graphical description —

(used in Walker, Mahmud, Papadopoulos et al., 2010)

Figure 2—8, for example, shows a component named Subsystem1 with an error handler

(EH) to the top-left and a criticality class (II*) to the top-right. The component I/O

interface consists of a set of inputs (arrows on the left) and a set of outputs (arrows on the

right). Each arrow is labelled by its name typed with its domain — e.g., input ‘A’ typed

with ‘t’ (timing) and output ‘Y’ typed with ‘o’ (omission). ‘v’ is an abbreviation for

value. The failure behaviour of a module is described inside the box in the form of logical

equations. The canonical form of these equations is a “sum-of-products” form equivalent

to the minimal cut-sets of the fault trees which correspond to the output failure modes.

For instance, the fault X (which is lying in the domain ‘t’) is caused by a conjunction of

failures A and B lying in the domains ‘t’ and ‘v’ respectively. Besides, the figure shows

that the module’s EH handles the failure C:t, and thus this one has no effect on the rest of

the system (i.e., the downstream modules). These capabilities enable the technique to be

used both deductively and inductively: The former to deduce from an output failure its

corresponding root causes (i.e., a fault tree) and the latter by tracing a component failure

through the system to determine its effects (an FMECA). We wish to note, though, that

the logical equations like those represented in Figure 2—8 are typical; FPTN also enables

the description of recovery mechanisms and internal failure modes.

Despite a system architecture being reflected by its corresponding FPTN

description (supposedly facilitating the identification of the causes of faults which

propagate through the system components), the technique suffers from a lack of means

for the analysis of fault propagation (Wallace, 2005). Another issue consists of the

difficulty that may arise as a result of, e.g., changes taking place in components. For

example, changes which may alter the types of propagated faults (or propagation

57

directions) may, as a result, necessitate reconstruction of modules. This limits the

reusability which was hoped through the compositionality of an FPTN failure model.

2.2.2 HiP-HOPS

HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies) is an

automated safety analysis technique originating from a number of classical techniques

such as FFA, FTA and FMEA. The technique starts taking place early in the design

lifecycle with exploratory FFA (Papadopoulos, 2000); though, its primary use can be

described only after a hierarchical model of the system has been developed — i.e.,

following the FFA. The failure behaviour of components is analysed using a modification

of classical FMEA, called the Interface Focused FMEA (IF-FMEA). The application of

this technique generates a model of the local failure behaviour of the component which is

represented as a table. The table provides a list of component failure modes observed at

the component outputs. For each component output failure, the causes are determined as a

logical combination of internal malfunctions or deviations of the component inputs. An

IF-FMEA table records component reactions to failures that are generated by other

components. Moreover, the table determines the failure modes that the component itself

generates and may propagate to other components. Upon determination of local failure

behaviour of all components, HiP-HOPS can show how the functional failures (identified

in the exploratory FFA) arise from combinations of the low-level component failure

modes (identified in the IF-FMEAs). This is done by automatically synthesising fault

trees; a fault tree is generated incrementally by parsing the expressions, which are derived

from the IF-FMEA, and encountered during a hierarchical traversal of the system model.

Additionally, the HiP-HOPS tool automatically performs minimal cut-set analysis

(i.e., the smallest combinations of component failures that are sufficiently needed to cause

a system failure) and probabilistic calculations on the minimised fault trees to predict the

reliability and availability of the system. Last but not least, the tool performs

dependability vs. cost optimisations of system architectures, and has the potential to be

extended and configured to any model that provides the topology of the system. In other

words, a model specifying the components and the connections between components with

failure annotations is suitable for the HiP-HOPS analysis. This has already been

demonstrated with, e.g., Simulink system models (Papadopoulos et al., 2004) and marine

system designs developed in SimulationX (Papadopoulos et al., 2003).

58

Figure 2—9 illustrates the HiP-HOPS analysis of a system model. The system

components — described using, e.g., Matlab Simulink, SimulationX or EAST-ADL

(leftmost hand side of the figure) — are first annotated through a graphical user interface

(the GUI underneath the system model). Those annotations consist of failure modes and

failure expressions which are required for the fault tree synthesis. After being read and

interpreted by the model parser, the annotation formats get converted into another format

readable by the fault tree synthesizer for the generation of fault trees. The resultant fault

trees (to the top right) — these can also be displayed using the Fault Tree Plus tool
58

 —

are then analysed (centre of the figure) to be reduced into minimal cut-sets. Finally, the

cut-sets are passed to an FMEA synthesizer to generate the FMEA tables (bottom right).

58
 A widely used FTA tool of Isograph.

59

Figure 2—9. HiP-HOPS architecture (the safety analysis tool perspective)

60

An example which explains how HiP-HOPS mechanises the construction of fault trees,

determines the cut-sets and constructs the FMEAs from design models follows.

Example of a HiP-HOPS use

Figure 2—10 shows a Simulink system model which consists of two

interconnected subsystems (subsystem1 and subsystem2). Subsystem1.y is the output port

of Subsystem1. Similarly, Subsystem2.y is the output port of Subsystem2.

Figure 2—10. Abstracted system model for a HiP-HOPS analysis

Assuming that Subsystem1 has been annotated with the following failure data:

O-connection1 = Failed1

Where ‘O-connection1’ represents an omission of connection1 (output deviation) and

‘Failed1’ represents an internal failure (i.e., a basic event) of Subsystem1. Information

about cost and weight of a component can also be added as well as probabilities of

failures (e.g., a constant failure rate like, for instance, 6.18754E-06 for ‘Failed1’).

Subsystem2, however, is annotated as follows:

O-y (of Subsystem2) = O-connection1 OR Failed2

where O-y represents an omission of output y, which is caused either by O-connection1

or an internal failure of Subsystem 2 ‘Failed2’. Now, we refine Subsystem2 as in Figure

2—11, which shows two subcomponents P and F arranged in parallel, fed by the input x

of Subsystem2 and supplying output through subcomponent S then y (of subsystem2).

61

Figure 2—11. Refinement of Subsystem2

An output deviation of subcomponent P (omission in the example) is either

caused by an omission on its input (i.e., connection2) or an internal failure of P (i.e.,

FailedP).

O-Po = O-connection2 OR FailedP

Similarly, an output omission from F is either caused by an input omission on

connection2 or an internal failure of F (i.e., FailedF).

O-Fo = O-connection2 OR FailedF

In the example, supply to subcomponent S must be received from at either P or F for its

proper functioning. Therefore, an output omission from S is caused by an internal failure

(i.e., FailedS) or omission on both inputs (i.e., Si1 and Si2 together).

O-So = (O-Si1 AND O-Si2) OR FailedS

Thereafter, HiP-HOPS parses the system’ model and synthesises the component

fault trees into system fault trees — one per system failure, i.e. as in Figure 2—12.

62

Figure 2—12. System fault tree synthesised by HiP-HOPS

HiP-HOPS displays the synthesised fault trees using web browsers like Internet Explorer,

Mozilla Firefox or Netscape Navigator — plus the editor of Isograph FaultTree+

appendix A —1).

The synthesised fault tree shows a total of four cut-sets
59

. Three of those are of

order
60

 one (each contains one basic event) and the other cut-set is of order two. The

failures Failed1, Failed2 and FailedS, which correspond to Subsystem1, Subsystem2 and

its component S respectively, are each a single point of failure. The cut-set of order two,

however, consists of both failures FailedP and FailedF — of components P and F
61

respectively — causing together (i.e., the conjunction of both) the top event to occur
62

.

The different cut-sets are generated automatically by HiP-HOPS using the tool cut-set

calculator; the calculation outcome is shown in appendix A — 2.

59
 A cut set is a branch of the fault tree leading to the top event — the occurrence of the events of

the branch causes the top event to occur.

60
 The order of a cut-set is the number of basic events it contains — i.e., a cut set of order n (nϵℕ+

)

contains n basic events.

61
 Both components P and F belong to Subsystem2.

62
 Omission on both inputs of component S (i.e., Si1 and Si2) will ultimately lead to an omission

on the output of Subsystem2, thereby causing an occurrence of the top event.

63

A further detail to note here (about Figure 2—12) is that the numbers appearing

to the right of each branch (or sub-branch) are results calculated by HiP-HOPS. These

results are based on extra failure data information which we omitted to show within the

failure annotations of the components for the sake of clarity — e.g., failure rates as well

as cost and weight of subsystems/components implementations.

The HiP-HOPS FMEA synthesiser produces FMEA tables which describe direct

and further effects of the failure modes. For example, Figure 2—13 shows that an internal

failure of subsystem1 (i.e., Failed1) has a direct effect which is omission on output y of

subsystem2. An FMEA table showing the further effects of the failure modes is in

appendix A — 3.

Figure 2—13. Fragment of a HiP-HOPS FMEA table showing the direct effects of

failure modes

Overview on optimization of designs with HiP-HOPS

The purpose of optimisation of design models with HiP-HOPS is to have cost-

effective and reliable solutions to the problems that have been identified (Papadopoulos,

Y. et al., 2005). These problems can be related to safety, availability, reliability, or even

too high costs of designs — even though the required dependability criteria like those

cited before are met. In this sense, optimisation can be of multiple concerns and may

target different objectives, and thereby achieving optimality is a hard problem. The

process undertaken can be highlighted through Figure 2—14 which shows (in the left

hand side) a system model annotated with failure and cost information, as well as sets of

64

design variants as the functional requirements can be met by many of these (but each

variant has different dependability characteristics and cost).

The annotated design model (with function/component elements implementable

by variants) is then passed to HiP-HOPS for (dependability vs. cost) evaluation.

Thereafter, HiP-HOPS performs automatic optimisation on the design model by selecting

the variants to apply in the architecture (right hand side of Figure 2—14); this has been

made possible with advances in e.g. genetic algorithms. The returned result is a set of

“Pareto” optimal trade-off designs and the process can be iterative to, e.g., review some

requirements / design concepts.

Figure 2—14. HiP-HOPS (the optimisation tool perspective)

2.2.3 Component fault trees

Component Fault Trees (CFTs) enable a compositional method of modelling the failure

behaviour of a system through the failure behaviour local to the components. It is a useful

way of modelling in a sense that it helps to cope with design changes. Also, it impacts

positively the efforts needed for the analysis following these changes (Kaiser, B. et al.

2003). Each component of the system can be represented by its own fault tree (i.e., the

CFT), which links output failures to input causes through the use of (input / output) ports,

logical gates and basic events. Therefore, CFTs are logical structures like standard fault

65

trees and, in that sense, they can still be analysed (qualitatively and quantitatively) using

standard fault trees algorithms.

Figure 2—15. Component Fault Tree

For example Figure 2—15 shows two CFTs, each corresponds to a component

(e.g. a primary and a secondary) with an internal failure represented by the corresponding

basic event. The power unit (bottom) may propagate a power failure to both components

via their input ports. The power failure is a common cause failure by which both

components fail then propagate their failures through the output ports, and thereby

causing a total failure of the system. Though, a system total failure can also happen if

both components fail internally.

66

CFTs, due to their nature, can be developed separately for different parts of the

system and the approach is, therefore, favourable for reuse (e.g., making libraries of

component types). As for the topology, it appears more as directed acyclic graphs —

called Cause Effect Graphs (CEGs) — rather than a real tree structure.

2.3 Dynamic approaches

We discuss in this section some dynamic safety analysis techniques like Altarica and

DCCA. As for DFTs, SEFTs and AADL (presented afterwards), these are models which

are well-suited to describing the dynamic aspects of complex systems; but the

corresponding dynamic analysis requires their conversion to analysis models like GSPNs

and Markov chains — though, limited to probabilistic evaluations.

2.3.1 Altarica

The Altarica language provides formal specification capabilities for modelling both

functional and dysfunctional
63

 behaviours of systems. The technique has the ability to

describe complex critical systems using a state-transition representation — called

Transition System (TS) in some related literature (like in Bernard R. , 2009) or mode

automata (e.g. in Rauzy, 2002). Indeed, the behavioural underlying state/transition

formalism was one of the initial choices made for Altarica during its development.

A “TS” representation of a component, called a node, is characterised by

variables (whether state variables or data flow variables
64

), events which label the

transitions between the states and an assert clause to constraint the data flows according

to the states. These concepts are illustrated by the following Altarica modelling of the

primary-standby example (i.e., the PS of chapter 1). The node description of the example

system shown next has the following state variables (see

Table 2—3): operational, primary, B and S (all declared as Boolean). This is

because the PS system can work either in primary mode (i.e., “operational = true” and

“primary = true”) or in standby mode (i.e., “operational = true” and “primary = false”);

63
 By dysfunctional behaviour we mean the behaviour under fault conditions.

64
 Flows render Altarica a data flow language as well.

67

otherwise, it is completely failed (i.e., “operational = false”). But this is not sufficient,

more failure information is needed and particularly while the PS is working in primary

mode. For example, the system can operate in primary mode:

(1) with a failed backup component (i.e., “operational = true” and “primary = true”

and “B = false”);

(2) or with a failed monitoring sensor (i.e., “operational = true” and “primary = true”

and “S = false”);

(3) or simply under no failure condition anywhere in the system (i.e., all state

variables are true).

Such failure information is relevant and impacts the failure behaviour of the PS; for

example, a failure of A while the system is in primary mode case (1) would cause a total

failure of the PS. However, the effect would be a system degradation instead (but still

operational) in the case of primary mode (3) — the graphical TS model in Figure 2—16

clearly shows the relevant failure information, and where the middle of the figure

represents a degraded PS system.

Figure 2—16. Graphical and labelled transition system associated to the PS Altarica node

68

Such relevant failure information constitutes an Altarica domain, which is

necessary towards the description of a node. For our example, we define the domain as

follows (using an abbreviated notation which corresponds to each relevant situation

mentioned earlier)

Domain whoisactive = { A0S, AB0, ABS, 0BS };

Where all cases concern the operational status of the PS, but as follows:

A0S means primary mode and B is failed — i.e., case (1)

AB0 means primary mode and S failed — i.e., case (2)

ABS means primary mode and none is failed — i.e., case (3)

0BS means standby mode

Table 2—3. State variables of the PS system.

State Type Initial value

operational bool true

primary bool true

B bool true

S bool true

In other words, the system is operating with the first of the two components from the left

of the succession “ABS” that is not marked with 0 (i.e., false to indicate that the marked

component is failed).

The following represent the textual description of the PS node which conforms to

the syntax of Altarica.

69

node ps

 flow

 input: bool: in;

 output: bool: out;

 state

 operational, primary, B, S : bool;

 event

 Afails, Bfails, Sfails;

 init

 operational := true;

 primary := true;

 B := true;

 S := true;

trans

 operational & primary & B & S |- Afails —> primary := false;

 operational & primary & B & S |- Bfails —> B := false;

 operational & primary & B & S |- Sfails —> S := false;

 operational & (primary = false) |- Bfails —> operational := false;

 operational & primary & (B = false) |- Afails —> operational := false;

 operational & primary & (S = false) |- Afails —> operational := false;

assert

 output = case {operational and input : true,

else : false};

edon

The keywords “node” and “edon” mark the start and end delimiters of the node

respectively. The flow clause represents the input and output flows of the system (and as

in Table 2—4) and the states are as emphasised previously. The three failure events

correspond to the internal failures of the three components of the PS and initially (as

under the “init” clause) all state variables are true.

Table 2—4. Flow variables of the PS system.

Flow Type Direction

input bool in

output bool out

The transitions clause (i.e., “trans”) shows the values of the state variables before and

those that have been impacted after the occurrence of a failure event — these are detailed

in the corresponding transition table of the system (Table 2—5). The valuations which are

shown for the variables, including flow variables like the input
65

 to the system, are called

65
 The input is a single point of failure.

70

configurations and act as guards for the failure events to cause transitions, thereby leading

to new valuations of the variables (i.e., new configurations).

Table 2—5. Transition table of the PS system (i.e., the SM or mode automaton).

Event Guard
New state

operational primary B S

A fails

operational and

primary and B and S

and input

true false true true

B fails

operational and

primary and B and S

and input

true true false true

S fails

operational and

primary and B and S

and input

true true true false

B fails

operational and

primary = false

and input

false — — —

A fails

operational and

primary and B = false

and input

false — — —

A fails

operational and

primary and S = false

and input

false — — —

Finally, the “assert” clause (which corresponds to Table 2—6) states that there is output

as long as the PS is operational with input provided, and there is no output otherwise.

Table 2—6. Assertion table of the PS system.

Assertion Case Value

output operational and input true

output Anything else false

71

In a realistic context of modelling, the number of states and transitions can be

tremendous. Thus, Altarica was also designed to allow a hierarchical description of a

system by declaring instances of nested components, i.e., a tree structure of nodes with a

root or main node, intermediate nodes and the leaves of the tree — more details can be

found in (Griffault, 2003). We close now this section with a summary such that a failure

can be seen as an event which can affect the state of a node, a failure mode can be seen as

a transition characterised by a particular failure event and (last but not least) an assert

section allows to constrain the flows in function of the states — i.e., when an event occurs

(starting from a configuration) the state variables are first assigned with their new values,

then the flow variables are calculated in order that the constraints defined by the

assertions would be respected. Finally, once a system model has been specified in

Altarica, it can then be compiled into lower level formalisms for verification purposes.

This can be done using some available compilers which can generate fault trees, state

automata or stochastic Petri Nets.

2.3.2 DCCA

The Deductive Cause Consequence Analysis (DCCA) [(Güdemann et al., 2007) and

(Ortmeier et al., 2005)] is a formal safety analysis technique. The representation of the

system models uses finite automata with temporal logic semantics known as CTL

(Computational Tree Logic). The technique uses mathematical methods to determine if a

component failure (or combination of component failures) causes a system hazard.

The component failure modes are represented as logical predicates; then a

property called ‘criticality’ specifies whether or not a combination of component failure

modes can cause a given system failure. This property is defined in CTL and can be

extracted automatically from the finite automata in the system model. In the case where

the ‘criticality’ property is true, then the corresponding set of failure modes is a critical

set (which is similar to a cut-set in standard fault trees). The DCCA technique, thus,

attempts to discover all minimal critical sets (i.e., the irreducible sets of failure modes that

are necessary to cause a given system failure). Therefore, the technique is also designed

to make use of initial results from deductive approaches like FTA; otherwise the efforts

which are required to automatically calculate and check each possible set of failure modes

would be exponential.

Moreover, results from formalised versions of FTA, such as formal FTA, can also

complement DCCA. However, formal FTA annotates each gate with CTL semantics,

72

which can cause problems if the inner nodes of the fault tree cannot be easily formalised.

But, DCCA does not require formalisation of the intermediate nodes, and thereby

reducing the amount of time required to create the fault trees. Although these various

techniques help to reduce the impact of the state-space explosion
66

 problem on DCCA, it

is still prone to performance and efficiency problems in certain (albeit worst case)

scenarios.

A more recent extension to DCCA (Güdemann et al., 2008) enables the technique

to take into account the limitation of fault trees in representing the order in which events

may occur — particularly the temporal order of events which is significant to the system

failure behaviour. This new version of DCCA is so-called Deductive Failure Order

Analysis (DFOA). It enables an automatic synthesis of temporal fault trees
67

 from system

models that are DCCA-annotated. This is achieved by applying DCCA first to obtain the

unordered minimal critical sets, then DFOA second to restore a partial ordering to these

sets using semantics based on CTL* — i.e., a version which extends CTL with additional

operators. With these added capabilities, the DCCA technique can produce results

specifying basic combinations of failure modes (for static systems) or sequences of

failure modes (for dynamic systems) that must occur to cause a system failure.

2.3.3 Dynamic fault trees

Dugan originated the dynamic fault trees (DFTs) in response to a shortage in modelling

sequence-dependent failures by static fault trees (Dugan et al., 1992). This consists

mainly of the definition of some special purpose gates for capturing the sequence

dependencies in a system, and thereafter solve the dynamic fault tree as a Markov chain.

The reason is that it is difficult to develop a correct Markov model for a complex system.

However, it is considerably simpler to capture the system dynamics in a DFT model, and

thereby converting automatically the fault tree to its equivalent Markov chain. The DFT

special gates are summarised as follows:

66
 The state-space explosion, though, is a common problem in all formal model-checking

approaches (including Altarica).

67
 These may contain Priority-AND (PAND) and Simultaneous-AND (SAND) gates to represent

sequences and simultaneity of events, respectively. These gates are similar to the gates of Pandora

(see chapter 3).

73

a) The functional dependency gate (FDEP)

This gate is typically used to model a dependency between, on the one hand, a set of

events that are forced to occur when (on the other hand) an event — i.e., a trigger event

— occurs. The trigger event can be for example a failure of the central switch (or

computer which acts as a conduit to transmit messages) in a star network topology for

instance. The dependent events can therefore be communication failures to the different

stations that are connected to the central computer — e.g., each ei 1≤i≤n in Figure 2—17

can represent a communication failure to a station. The FDEP gate has no logical output

(it has no impact to any other element in the fault tree) and is, thus, represented with a

dashed line.

Figure 2—17. Functional-dependency gate

b) Spare gate

This gate is used to model situations where some components (primary units) are

substituted by other components (spares). A spare gate has n input in general (n≥2) and

one output: the first input (typically leftmost) relates to the primary unit and becomes true

if this unit fails. The other inputs correspond to the different spares envisaged to replace

the primary in case of its failure (or failure of any spare already in use since the failure of

the primary unit). The substitution of the primary with a spare conforms to a specific

order (typically left to right) — i.e., if the primary unit fails, then it should be replaced by

74

the next available spare in sequence. If the primary fails and all spares fail (or are not

available
68

), then the output of the spare gate becomes true.

Figure 2—18. Spare gate

The spare units (such as Spare1, Spare2…Sparen in Figure 2—18) have typically

reduced failure rates before being switched into active use (i.e., warm spares) or do not

fail dormant at all (i.e., cold spares), exception made for hot spares which have the same

failure rate irrespective of any state: dormant or active. Systems using cold or warm

spares cannot be modeled accurately using combinatorial fault trees. The sequence-

dependent failures (i.e., the order in which the primary unit and spares may fail) need to

be preserved for a more accurate analysis.

c) Priority-AND gate

This gate captures sequence-dependent failures like in the example of the primary

standby system used in (Mahmud et al., 2010) — which is depicted in chapter one

through Figure 1—1. In the example, it was shown that the order in which the monitoring

sensor S and the primary unit A fail is relevant to the system failure behaviour. It is, thus,

68
 A spare is not available if, for example, it is shared with another gate, and it is still in use in lieu

of the primary unit of that other gate.

75

modelled using a Priority-AND gate — like the one (with two inputs) in the centre of

Figure 2—19. The figure shows that a complete failure of the system is caused by an

omission of input, the sensor failing before the primary unit or both primary and backup

units fail. Assuming that the output ‘Out’ has no failure modes on its own — it must only

receive input from at either unit, primary or standby, for the system to function overall.

Figure 2—19. DFT of the PS system

We wish to note that there are other gates that can be used in a DFT, like the Sequence-

enforcing
69

 gate which forces events to occur in a specific order.

The problem with DFTs is that these are primarily designed for quantitative

analysis, typically solved using Markov chains. The following section shows the

equivalent Markov model for the DFT of Figure 2—19. It highlights some path

redundancies in the model — which can only be eliminated through a qualitative analysis.

We wish to note, though, that Markov models are well-known with the state explosion

problem. Therefore, any effort towards optimising Markov models will have a positive

impact on the analysis overall.

69
 For more details, we refer the reader to (Dugan et al., 1992) and (Vesely et al., 2002).

76

2.3.4 Markov analysis

Markov Chains (MCs) are very powerful in capturing the dynamic aspects of systems and

in the evaluation of safety measures (Trivedi, 2001). They are often used to provide

quantitative solutions for dynamic models like DFTs, SEFTs, GSPNs…etc. The

underlying formalism of a MC is a state-transition system and the quantitative solution is

reached by solving the corresponding differential equations. However, relying on Markov

models only for the analysis also means that:

1. Qualitative analysis is not encouraged.

2. The failure rates (which label the transitions in the MCs) are limited to

exponential distributions.

3. The Markov models themselves are large and cumbersome, and thus impractical

for systems with several components.

A Markov model describes the behaviour of a system such that a state of the

model represents a state of the system whether operational or not, and an arc represents a

failure event
70

. This structure of the model allows writing the probability of being in a

state in the form of an equation according to the source (resp. destination) states of the

incoming (resp. outgoing) arrows. For example, let us assume a simple parallel system

composed of two components A and B, which can fail independently
71

 with the rates A

and B respectively (see Figure 2—20).

Figure 2—20. A Markov model of a simple non-repairable parallel system

70
 This can be a repair event in the case of repairable systems.

71
 In the example, we suppose that there is no common failure mode by which the two components

fail simultaneously.

77

The state 1 represents a state of the system where both components A and B are OK.

However, the state 2 (resp. state 3) represents a state of the system where A (resp. B) has

failed, and finally the state F represents a state where both component are failed.

The Markov solution provided by the model of Figure 2—20 is described as

follows, and where P1, P2, P3 and PF are the probabilities of being in states 1, 2, 3 and F

respectively.

 P1(t) = – (A+B) P1(t)

 P2(t) = A P1(t) – B P2(t)

 P3(t) = B P1(t) – A P3(t)

 PF(t) = B P2(t) + A P3(t)

The solution of the differential equations is given by:

P1(t) = –  

P2(t) = – – –  

P3(t) = – – –  

PF(t) = –   – – – – + 1 (1 is the constant with respect to the

initial condition at time t0 = 0, PF(t0) = 0)

The probability given by the Markov solution for failure of A and B is the same

result given by combinatorial techniques for two components whose failures are

independent, and hence:

P(A failing AND B failing) = P(A failing) × P(B failing)

= (1 – –) × (1 – –)

= –   – – – – + 1

A similar Markov model of a simple non-repairable parallel system composed of

two components failing independently at the same rate  is represented by Figure 2—21,

where state 2 in this model represents a state of the system such that either A or B has

78

failed (not both). This model is optimised but preserves the result which corresponds to

the probability of being in state F (i.e., both components have failed).

Figure 2—21. An optimised Markov model — same failure rate λ for both components

The Markov solution given by the model of Figure 2—21 is as follows:

 P1(t) = – 2 λ P1(t)

 P2(t) = 2 λ P1(t) – λ P2(t)

 PF(t) = λ P2(t)

The solution of the differential equations is given by:

P1(t) = – (at t0 = 0, P1(t0) = 1)

P2(t) = 2(– –) (at t0 = 0, P2(t0) = 0)

PF(t) = – - 2 + 1 (at t0 = 0, PF(t0) =0)

PF(t) is the same as given previously with A = B = .

Optimisation of Markov models is useful considering their growing size and can

be applied to some patterns which are not uncommon in safety-critical systems, like the

Markov model of Figure 2—22. The model can be used for the quantitative analysis of

the PS example system described in chapter 1 (see Figure 1—1). There are three

categories of states: operational, degraded and completely failed. The transitions are

labelled with the component failure rates A, B and S for the primary A, the backup B

and the monitoring sensor S, respectively. The states are textually described with a

succession of symbols representing the system components in the specific order “A, B,

79

S”. This means that the system is functioning with the first one of the two leftmost

components that is not substituted with the symbol ‘X’ (which designates a failed

component). The symbol ‘!B’ in the figure means that component B is not failed, but

cannot take over A’s job. This is due to a premature failure of the sensor which is, thus,

unable to activate B upon failure of A.

In Figure 2—23, we optimise the Markov model of Figure 2—22 whose failure

states — ‘XXS’, ‘X!BX’ and ‘XXX’ — are all merged into one state “Total Failure” and

80

Figure 2—22. Markov model for the primary-standby system.

the redundant transitions are removed. For example once the transition with rate A

occurs from the initial state, then only the transition labelled with rate B matters.

Therefore, the transitions from “XBS” to “XXX” through “XBX” of Figure 2—22 are all

removed. Strictly speaking, the probability of the state “Total Failure” (of Figure 2—23)

is the sum of the probabilities of the states ‘XXS’, ‘X!BX’ and ‘XXX’ (of Figure 2—22).

81

Figure 2—23. Optimized Markov model for the primary-standby system.

Moreover, if the components A and B have the same failure rate, i.e., A = B =

, then the Markov model in Figure 2—23 can be further optimised as in Figure 2—24.

In chapter 4 (section 4.4), we present how we can use the proposed SM conversion

algorithm to automatically optimise Markov state diagrams. Briefly in this section, one

way of doing it is through their conversion to temporal FTs, which can then be minimised

using the Pandora temporal laws. This way, the optimal descriptions of the Markov

models can be automatically extracted from their original (often much bigger) diagrams.

82

Figure 2—24. A more optimized Markov model for the primary-standby system.

2.3.5 State event fault trees

State Event Fault Trees, or simply SEFTs (Grunske, L. et al. 2005), is another failure

modelling technique which introduces representation of the temporal order of events.

SEFTs enable to represent states and transitions in fault trees and, thus, allow preserving

the significance of the temporal semantics expressed in state-based models of systems

(and which one wants to analyse). This allows a more accurate modelling and analysis of

systems exhibiting dynamic failure behaviour, rather than using standard (combinatorial)

fault trees.

In the SEFT approach of modelling, states are conditions which last a period of

time and events are instantaneous and may trigger state transitions (i.e. changes of state).

These are described by Figure 2—25 together the representation of a component.

83

Figure 2—25. Basic SEFT elements

Moreover, the SEFT modelling capabilities allow to clearly differentiate between causal

and sequential relations by means of different ports — i.e., event ports (causal) and state

ports (sequential), see Figure 2—26.

Figure 2—26. SEFT relations and ports

Events can be combined using a conjunction (&) gate and/or a disjunction (≥1) gate to,

e.g., trigger another event. Likewise, states may be combined to express that, e.g., two or

more states must be true for an event to occur (SEFT gates are depicted by Figure 2—27).

84

Figure 2—27. Basic SEFT gates

To better illustrate these different modelling elements, we present the following

hydraulic distribution system (see Figure 2—28), and which consists of a water tank, two

pumps and water distribution. A system failure can be caused by loss of the distribution,

or by either a water leakage in the tank (empty tank) or both pumps fail.

Figure 2—28. Hydraulic Distribution System — adapted from (Bernard R. , 2009).

The corresponding SEFT (see Figure 2—29) shows a conjunction of the two input states

pump1 failed and pump2 failed, the corresponding output is then combined in a

disjunction with the state “Tank Empty”. Likewise, the output of this second gate is then

85

combined in a disjunction with the event “Loss of distribution”. This is to represent the

system failure scenario (top-event of the SEFT).

Figure 2—29. SEFT of the Hydraulic Distribution System

Thereafter, the failure behaviour of each component is described by a state machine and a

component can be in one state at a time (the active state). A state machine representation

in SEFT is shown in Figure 2—30; it describes the failure behaviour of a pump

component (both pumps are identical), and such that:

 “Initialises” is triggered by an event through the event input port (causal relation)

and as shown in the bottom of the figure.

 “Init” is an internal initialiser event (cannot be externally triggered). It sets the

pump “ON” (temporal relation).

 “Fails” is an event which changes the state of the pump from “ON” to “Failed”.

 The “Failed” state is linked to the state output port of the component (causal

order).

86

Figure 2—30. Pump component

For dependability assessments, though, SEFTs need to be converted to other

models like Deterministic Stochastic Petri Nets (DSPNs) (Ciardo et al., 1993), then

automated analysis can be performed by external tools like TimeNet (German et al.,

1995). However, this approach is limited to quantitative analysis and is less suitable for

qualitative analysis.

2.3.6 AADL

The Architecture Analysis and Design Language (AADL) was developed under the

auspices of the International Society of Automotive Engineers (SAE) to describe

hardware and software architectures of performance-critical systems in particular. The

language has capabilities for the representation of the system as an assembly of software

components mapped onto an execution platform. Recently, the language has been

extended with an error model annex for dependability modelling.

The dependability model consists of both the architecture model and the error

model. The former consists of the description of the components with their connections

87

and interactions (also known as the nominal
72

 architecture). The latter addresses the

behaviour of components in the presence of, on the one hand, internal faults and repair

events and, on the other hand, external propagations from the component environment —

only components which are associated with error models (including connections) are part

of the AADL dependability model.

An AADL element (e.g. component or connection) can be associated with an

error model (effectively a state machine), which consists of a model type and at least one

error model implementation. A system error model is a composition of the error models

of its components or subsystems and is meant to capture hazards at system level. Error

models in AADL can be reusable through the use of an annex library, and there are two

kinds of reusable error models: the basic model and the derived model. The basic error

model consists of a declaration of error states for a component or a connection, as well as

properties to specify changes of states due to error events and propagations. However, the

derived error model is the definition of the error state of a component in terms of the error

states of its subcomponents.

Figure 2—31 shows a graphical representation of an error model associated with

a component. “ON” is the initial state which can change to “OFF” due to a failure event,

and then back to “ON” following a repair. It also shows the propagation of an output

deviation (“Deviation”) — it acts like an event which does not change the local state but

is visible outside the component.

Figure 2—31. AADL SM for a component with an output deviation

72
 It describes both the structural and some aspects of the behavioural designs without any failure

condition.

88

Table 2—7 shows the corresponding textual description of the error model example —

the left hand side is for the declaration of states, events and propagations. There is one

output deviation in this case with a default value of 0.8 which represents its probability of

occurrence. The right hand side of the table represents the implementation part — i.e., the

transitions of the state machine (including propagations) as well as failure distributions

(poisson) assigned to the events fail and repair (for quantitative assessments).

Table 2—7. Error Model Definition of a component propagating an output deviation —

textual description.

Declaration Implementation

error model Example1

features

ON: initial error state;

OFF: error state;

Fail, Repair: error event;

Deviation: out error propagation

 {Occurrence => fixed 0.8};

end Example1;

error model implementation Example1.basic

transitions

ON- [Fail] ->OFF;

OFF- [out Deviation] ->OFF;

OFF- [Repair] ->ON;

Properties

Occurrence => poisson 1.0e-3 applies to Fail;

Occurrence => poisson 1.0e-4 applies to Repair;

end Example1.basic;

A description of a similar example (graphical and textual) with input / output propagation

is in Appendix A — 4.

2.4 Discussion

In this chapter, we have presented an overview of relevant safety analysis techniques. We

discussed in more details the shortcomings of techniques for dynamic safety analysis and

expanded on the motivation of this work which was presented in the introduction. For

example, an objective of Altarica (as well as AADL) is to build static fault trees from

state models. This is quite different from that of dynamic fault trees which is to represent

89

non-formally a behaviour with dynamic gates to be mainly analysed quantitatively

afterwards.

Although state-machine become increasingly a popular notation for description of

dynamic behaviour, there is clearly a lack of techniques for the qualitative and

quantitative safety analysis of such models. Synthesis and analysis of fault trees has been

proposed but classical combinatorial fault trees cannot capture dynamic aspects. In

chapter 3 we look in more detail to Pandora an expansion of the fault tree notation with

temporal semantics that potentially solves this problem.

90

3 Pandora

3.1 Introduction

Since FTA is primarily a combinatorial analysis technique, its application on dynamic

systems requires that the modelling and analysis aspects of the approach are extended.

Indeed, some extension attempts of FTA are not new; the Priority-AND gate (PAND see

Figure 3—1) is plausibly one of the first attempts at overcoming the dominant static

aspect of FTA. The gate dates back to the mid-seventies (Fussel et al., 1976) and is

conceived such that its output is true if all inputs occur, and if they occur in a specific

order (typically left to right). This allows the analyst to put a set of events into a

sequence
73

 (i.e., temporal order) like the events e1, e2… en in Figure 3—1, and thus helps

to express a kind of time-dependent information in the fault tree.

Figure 3—1. Pandora’s PAND gate with n inputs (n≥2)

Apart from the modelling perspective of the PAND, there have been efforts made

to work around its quantitative analysis (Fussel et al., 1976). But, qualitative analysis of

73
 The explicit definition of the sequence is typically a conditioning event, even though implicitly

it is commonly understood that the temporal order of inputs is left to right.

91

fault trees that contain such gates is neglected in general. Moreover, some issues

seemingly remain vague in the following definition of the PAND gate which is provided

by the fault tree handbook.

“The PRIORITY AND-gate is a special case of the AND-gate in which

the output event occurs only if all input events occur in a specified

ordered sequence. The sequence is usually shown inside an ellipsis

drawn to the right of the gate.” (Vesely et al., 1981, p IV-11)

One issue, for instance, can be about events which can appear more than once in a

sequence. Another unclear issue can be about events which may occur at the same time,

or events that may contradict
74

 each other. Concerning the first issue, we can assume that,

under condition of no repair, faults which occur will continue to exist as suggested in the

handbook (Vesely W. E., 1981). However, there are still no precise indications regarding

simultaneity and contradiction of events. Besides, the software tools — older ones like in

(Worrell et al., 1978) or even recent ones e.g. in (Isograph, 2002) — seem to simply treat

the PAND as an ordinary AND gate for the logical reductions. But, we have seen how

this assumption can lead to erroneous results when it comes to the analysis of dynamic

systems — like the primary-standby example system seen in chapter 1 (Figure 1—1). The

order in which the primary component and the monitoring sensor fail influences the

system failure behaviour overall (see the SM of Figure 1—2 in the same chapter). Thus, it

is necessary for a correct analysis to preserve the meaning of the PAND gate, not only

during the conversion of the SM to TFTs, but also during the logical reductions of these

TFTs.

Pandora (Walker M., 2009) provides two other temporal gates, the Priority-OR

(POR) gate and the Simultaneous-AND (SAND) gate. The POR gate (see Figure 3—2)

has at least two input events, the first input (typically the leftmost) represents an event

which must occur before any other input event of the gate or simply occurs alone;

otherwise the POR evaluates to false. All input events except the first one are optional,

i.e., they may not occur but the POR output still evaluates to true. However, the SAND

gate (see Figure 3—3) evaluates to true only if all its input events occur, but they also

must occur at the same time. The symbols which correspond to the temporal gates are

represented in Table 3—1.

74
 For example, (e1 PAND e2) and (e2 PAND e1) where e1 and e2 are two events.

92

Table 3—1. Temporal gate notation

Gate Symbol

PAND <

POR |

SAND &

Figure 3—2. Pandora’s POR gate with n inputs (n≥2)

In this thesis, we use a variation of Pandora which omits the SAND gate. This is

due to the SM representation of the analysis-related information of the system to analyse;

though, we assume that events that occur at the same time are due to a common cause

failure (which is represented by its corresponding event in the SM). Similarly, the

Pandora temporal laws using the SAND operator are removed from this variation.

93

Figure 3—3. Pandora’s SAND gate with n inputs (n≥2)

3.2 Pandora temporal laws adapted to SM-based analysis

Temporal fault trees, in this thesis, are generated from the SMs which describe the failure

behaviour of dynamic systems; this will be fully detailed in chapter 4. As we have seen

for the example of the primary standby, it is necessary to preserve the significance of the

SM temporal semantics during the conversion to TFTs; but this is not sufficient. We also

need to preserve the significant fault sequences all along the logical reduction of the

generated TFTs.

Pandora (Walker, 2009) provides a set of temporal laws, thereby enabling a true

temporal qualitative analysis of dynamic systems. However, many of these laws contain

the SAND operator and, therefore, these need to be identified for some alteration — the

laws which were conceived to transform expressions containing exclusively SAND

operator(s) will be completely removed from our selection.

We present in this section a set of Pandora temporal laws selected to suit our

approach for a SM-based analysis. We wish to note, though, that these laws can be

verified using temporal truth tables (Walker, 2009) which are similar to Boolean truth

tables, but suited for temporal logic. For example, Table 3—2 shows that A<B 

(A|B).B, by using values in the table such that zero indicates that the corresponding event

has not occurred (i.e., false). Any other value (strictly greater than zero) indicates that the

94

corresponding event has occurred (i.e., true). Two events with non-zero values are either

simultaneous (holding the same value) or in sequence (the event with the smaller value

occurs before the event with the higher value).

Table 3—2. A Pandora temporal truth table

A B A<B A|B (A|B).B

0 0 0 0 0

0 1 0 0 0

1 0 0 1 0

1 1 0 0 0

1 2 2 1 2

2 1 0 0 0

Table 3—2 shows that A<B evaluates to zero in all rows, except when A and B are both

assigned with different non-zero values, one for A and two for B, and A<B evaluates to

the higher value (i.e., two). This conforms to the definition of the PAND gate whose input

events must all occur, and in sequence so that the output of the gate evaluates to true (i.e.,

the value assigned to the last input event of the sequence).

Commutative Laws

1. A<B  B<A

2. A|B  B|A

Associative Laws

1. A<(B<C)  (A<B)<C

2. (A<B)<C  A<B<C

95

3. A|(B|C)  (A|B)|C

4. (A|B)|C  A|B|C

5. A<(B<C)  (A.B)<C  (A<C).(B<C)

6. (A|B)|C  A|B|C  A|(B+C)  A|B.A|C

Distributive Laws

1. A < (B.C)  B.(A<C) + C.(A<B)

2. A < (B+C)  (A|C).(A|B).(B+C)

3. A < (B<C)  (A<C).(B<C)

4. A < (B|C)  (A<B).(B|C)

5. A < (B|C)  (A|B).(B|C)

6. A | (B+C)  (A|B).(A|C)

7. A | (B.C)  A|B + A|C

8. A | (B<C)  (A|C) + (A|B) + A.(C<B)

9. A | (B|C)  (A|B) + (A.C<B)

10. (B+C) < A  (B<A) + (C<A)

11. (B.C) < A  (B<A).(C<A)

12. (B<C) < A  (B<C).(C<A)

13. (B|C) < A  (B<A).(B|C)

14. (B+C) | A  (B|A) + (C|A)

15. (B.C) | A  (B|A).(C|A)

16. (B<C) | A  (B|C).(C|A)

96

17. (B|C) | A  (B|C).(B|A)

18. (A+B) < (C+D)  (A|C).(A|D).(C+D) + (B|C).(B|D).(C+D)

19. (A.B) < (C.D)  (A<D).(B<D).(C<D) + (A<C).(B<C).(D<C)

20. (A|B) < (C|D)  (A<C).(A|B).(C|D)

21. (A+B) | (C+D)  (A|C).(A|D) + (B|C).(B|D)

22. (A.B) | (C.D)  (A|C).(B|C) + (A|D).(B|D)

23. (A<B) | (C<D)  (A<B).(B|C) + (A<B).(B|D) + (A<B).(D<C)

Non-idempotent Laws

1. A<A  A

2. A|A  A

Absorption Laws

1. A . (A < B)  A < B

2. A . (A | B)  A | B

3. A < (A . B)  A < B

4. A | (A . B)  A | B

In the following and to the end of the list of laws, ‘0’ means “never occurs” and

‘1’ means “always occurs, i.e. before anything else occurs (first always)”.

5. A < (A + B)  0

6. A | (A + B)  0

7. (A . B) < A  0

97

8. (A . B) | A  0

9. (A + B) < A  B < A

10. (A + B) | A  B | A

11. A + (A < B)  A

12. A + (A | B)  A

13. B + (A < B)  B

14. B + (A | B)  A + B

15. A<B . A|C  A<C<B + A<B<C + A<B . A|C

16. A|B  A<B + A|B

17. A|B|C  A<B<C + A<C<B + A<B . A|C + A<C . A|B + A|B|C

18. A<B|C  A<B<C + A<B . B|C

Completion Laws

1. First Completion Law: A.B  A<B + B<A

2. Second Completion Law: A+B  A|B + B|A

3. Third Completion Law: A  B<A + A|B

The below are further laws of completion for the purpose of reducing temporal

expressions, i.e., RCL (abbreviation of Reduction Completion Law):

4. A  A.B + A|B

5. A  (A<B + B<A) + A|B

6. A  B<C<A + C<B<A + A|B|C + C<A|B + B<A|C

7. A  A.B + A.C + A|B + A|C

98

8. A<B  C<A<B + A<C<B + A<B<C + A<B . B|C

9. A  B<A + C<A + B<C<A + C<B<A + A<B . A|C + A<C .A|B +

A|B|C + B<A<C + C<A<B + A<B<C + A<C<B

Mutual Exclusion Laws

1. A<B . B<A  0

2. A|B . B<A  0

3. B|A . A<B  0

Simultaneity Laws

1. A<A  0

2. A|A  0

Extension Laws

1. A<B . B<C  A<B . B<C . A<C  A<B<C

2. A|B . B|C  A|B . B|C . A|C

3. A<B . B<C . C<A  A<C . B<C . C<A . A<C . B<A . C<A

Extended Laws of Extension

1. C<A . B<C  C<A . B<C . B<A

2. C|A . B|C  C|A . B|C . B|A

3. A<B . B|C  A<B . B|C . A|C

4. A|B . B<C  A|B . B<C . A<C

99

5. C<A . B|C  C<A . B|C . B<A

6. C|A . B<C  C|A . B<C . B|A

POR Transformation Laws

1. A|B . B  A<B

2. A|B + B  A + B

3. A<B . A  A<B

4. A<B . B  A<B

5. A<B + A  A

6. A<B + B  B

7. A|B + B  A + B

8. A|B.C + B  A.C + B

9. A|B|C + B  A|C + B

Priority Laws

1. A<B + A|B  A|B

2. A<B . A|B  A<B

3. A<B + A.B  A.B

4. A|B + A.B  A
75

5. A<B . A|B  A<B
76

75
 A|B + A.B  A|B + A<B + B<A (by Conjunctive Completion Law)  A + A<B (by

Reductive Completion Law)  A (by Absorption Law)

100

Tautology and Contradiction Laws

1. A<0  0

2. 0<A  0

3. A<1  0

4. 1<A  A

5. A|0  A

6. 0|A  0

7. A|1  0

8. 1|A  1

3.3 Case study

In this section, we show how the temporal laws that we have presented are useful by

applying them to the vehicle management system (VMS) example of chapter 1. To

summarise, the system operates with three vehicle management components (A, B and C)

and its failure behaviour expressed by the DFT (Figure 3—4 a) is such that either the

spare gate corresponding to the component C is true or the spare gates corresponding to

the components A and B are both true to cause the VMS top-event (i.e., the system

failure).

76
 A<B . A|B  A<B . A<B (by POR Transformation)  A<B (by Idempotent: A.A  A)

101

Figure 3—4. The VMS DFT, SM and system failure TFTs

The spare S is shared among all components, and a spare gate is true if the corresponding

component fails and cannot be replaced by the spare. This can happen because either the

spare itself is failed or is unavailable — i.e., it is replacing another failed component.

Figure 3—4 (b) shows the SM which represents the system failure behaviour (as

explained in chapter 1). Briefly, the state names use the notation based on the succession

“ABC”. The initial state ABC” means that all components are working. Thereafter, the

position of any failed component in the succession will take either the symbol ‘S’ or ‘X’

— ‘S’ means that the failed component has been replaced by the spare and ‘X’ means that

it cannot be replaced by the spare for the reasons mentioned earlier. As for the transitions,

these are labelled with the component symbols to indicate their corresponding failures.

102

In the next chapter, we will present an algorithm for the automatic generation of

TFTs from SMs. That algorithm will generate the following six cut-sequences from the

SM of the VMS. To briefly explain how we obtained these cut-sequences; there is a

corresponding Pandora formula for each final state, a formula is the disjunction over the

paths  (from the initial state to its corresponding final state) of the conjunction of events

that label . Moreover, any one of the events e that label , which is incident from a state

u with an out-degree of two or more (a state at which paths diverge), is the input event,

which must occur first or alone, of a POR gate that associates it with the disjunction of

other events e’ incident from u to the states u’ if, and only if, the subpath of  from u to s

shares an event with the paths from u through u’ to any state. In this section, we put

emphasis on the minimisation of these cut-sequences (not the full conversion algorithm)

in order to reach their corresponding reduced forms, which are described by Figure 3—4

(c). We will use some of the temporal laws presented in this chapter to achieve these

results.

“SystemFailure” =

B.A.C|A|B + (1)

C.A|C|B + (2)

S.C|A|B + (3)

S.A.B|C|A + (4)

C.B|C|A + (5)

S.B.A|C|B (6)

By using POR transformation
77

 #1 to all cut-sequences, we obtain the following

transformed equivalent results:

“SystemFailure” =

C<A . C<B + (1)

77
 i.e., the first minimisation step which reduces a representation using two gates ‘POR’ and

‘AND’ to a representation using one gate only ‘PAND’, i.e. A|B . B  A<B.

103

A<C . A|B + (2)

S.C|A|B + (3)

S . B<A . B|C + (4)

B<C . B|A + (5)

S . A<B . A|C (6)

Then we apply the law of absorption #15 to cut-sequences (2) and (5) to get the

following results, where (2.1), (2.2) and (2.3) are introduced by the transformation of (2)

and (5.1), (5.2) and (5.3) are introduced by the transformation of (5):

“SystemFailure” =

C<A . C<B + (1)

A<B<C + (2.1)

A<C<B + (2.2)

A<C . A|B + (2.3)

S.C|A|B + (3)

S . B<A . B|C + (4)

B<A<C + (5.1)

B<C<A (5.2)

B<C . B|A (5.3)

S . A<B . A|C (6)

Next, we apply the completion law #8 on (2.1), (2.2), (2.3) and (5.1) for the

purpose to reduce all these to simply A<C and we refer to it as (25), i.e., it originates from

the previous cut-sequence #2, plus a branch from the cut-sequence #5. Similarly, we

apply the same reduction completion law (RCL #8) on (5.1), (5.2), (5.3) and (2.1) to

reduce them to B<C and we refer to it as (52) for the same reason as the previous one, i.e.,

104

it originates from the previous cut-sequence #5, plus a branch from the cut-sequence #2.

Therefore, by using the Boolean idempotent law (A + A  A) we have the following:

“SystemFailure” =

C<A . C<B + (1)

A<B<C + (2.1)

A<C<B + (2.2)

A<C . A|B + (2.3)

B<A<C + (5.1)

S.C|A|B + (3)

S . B<A . B|C + (4)

B<A<C + (5.1)

B<C<A (5.2)

B<C . B|A (5.3)

A<B<C + (2.1)

S . A<B . A|C (6)

Then the application of RCL #8 gives:

“SystemFailure” =

C<A . C<B + (1)

A<C + (25)

S.C|A|B + (3)

S . B<A . B|C + (4)

B<C + (52)

105

S . A<B . A|C (6)

By application of the absorption law #15 on both (4) and (6) we will get:

“SystemFailure” =

C<A . C<B + (1)

A<C + (25)

S.C|A|B + (3)

S . B<A . B|C + (4.1)

S . B<C<A + (4.2)

S . B<A<C + (4.3)

B<C + (52)

S . A<B . A|C + (6.1)

S . A<C<B + (6.2)

S . A<B<C (6.3)

We can also apply the 3-event absorption law (i.e., law #17) on cut-sequence (3),

then the Boolean distributive law “A . (B + C)  A . B + A . C” on the obtained sub-

branches to get the following:

“SystemFailure” =

C<A . C<B + (1)

A<C + (25)

S . (C<A<B + (3.1)

C<B<A + (3.2)

C<A . C|B + (3.3)

C<B .C|A + (3.4)

106

C|A|B) (3.5)

S . B<A . B|C + (4.1)

S . B<C<A + (4.2)

S . B<A<C + (4.3)

B<C + (52)

S . A<B . A|C + (6.1)

S . A<C<B + (6.2)

S . A<B<C (6.3)

Next, we associate all of (3.1), (3.2), (3.3), (3.4), (3.5), (4.1), (4.2), (4.3), (6.1),

(6.2) and (6.3) by using the Boolean distributive law “A . (B + C)  A . B + A . C”.

Therefore, we have:

“SystemFailure” =

C<A . C<B + (1)

A<C + (25)

S . (C<A<B + (3.1)

C<B<A + (3.2)

C<A . C|B + (3.3)

C<B .C|A + (3.4)

C|A|B + (3.5)

B<A . B|C + (4.1)

B<C<A + (4.2)

B<A<C + (4.3)

A<B . A|C + (6.1)

107

A<C<B + (6.2)

A<B<C) (6.3)

B<C + (52)

We also obtain the following by applying the Boolean absorption law “ A + A.B

 A” on (25) and (52):

“SystemFailure” =

C<A . C<B + (1)

S . A<C + (25.1)

A<C + (25.2)

S . (C<A<B + (3.1)

C<B<A + (3.2)

C<A . C|B + (3.3)

C<B .C|A + (3.4)

C|A|B + (3.5)

B<A . B|C + (4.1)

B<C<A + (4.2)

B<A<C + (4.3)

A<B . A|C + (6.1)

A<C<B + (6.2)

A<B<C) + (6.3)

S . B<C + (52.1)

B<C (52.2)

108

(25.1) and (52.1) can be associated with (3.1), (3.2), (3.3), (3.4), (3.5), (4.1), (4.2),

(4.3), (6.1), (6.2) and (6.3) by using the Boolean distributive law “A . (B + C)  A . B +

A . C”, and hence:

“SystemFailure” =

C<A . C<B + (1)

A<C + (25.2)

B<C + (52.2)

S . (

A<C + (25.1)

B<C + (52.1)

C<A<B + (3.1)

C<B<A + (3.2)

C<A . C|B + (3.3)

C<B .C|A + (3.4)

C|A|B + (3.5)

B<A . B|C + (4.1)

B<C<A + (4.2)

B<A<C + (4.3)

A<B . A|C + (6.1)

A<C<B + (6.2)

A<B<C (6.3)

)

109

In the next step, we apply the Boolean Algebra Idempotence law of the logical

disjunction on (3,2), (4.2), (4.3), (3,1), (6.2) and (6.3). This is to get them duplicated for

the purpose of:

a) Reducing (25.1), (52.1) (3.1), (3.2), (3.3), (3.4), (3.5), (4.2), (6.2), (4.3) and

(6.3) to C by using the 3-event RCL #9.

b) Reducing (3,2), (4.1), (4.2) and (4.3) to B<A by using the RCL #8.

c) Reducing (3,1), (6.1), (6.2) and (6.3) to A<B by using the RCL #8.

The application of the disjunction Idempotence law gives the following:

“SystemFailure” =

C<A . C<B + (1)

A<C + (25.2)

B<C + (52.2)

S . (

A<C + (25.1)

B<C + (52.1)

C<A<B + (3.1)

C<B<A + (3.2)

C<A . C|B + (3.3)

C<B .C|A + (3.4)

C|A|B + (3.5)

B<C<A + (4.2)

C<B<A + (3.2)

B<A . B|C + (4.1)

110

B<C<A + (4.2)

B<A<C + (4.3)

C<A<B + (3.1)

A<B . A|C + (6.1)

A<C<B + (6.2)

B<A<C + (4.3)

A<B<C + (6.3)

A<C<B + (6.2)

A<B<C (6.3)

)

Then, by application of the reductions a), b) and c) mentioned earlier, we have:

“SystemFailure” = C<A . C<B + A<C + B<C + S . (C + B<A + A<B)

Finally (and by application of RCL #1, i.e., A<B + B<A  A . B) we have the following:

“SystemFailure” = C<A . C<B + A<C + B<C + S . (C + A . B)

These are the cut-sequences described by Figure 3—4 (c).

3.4 Discussion

In this chapter, we have presented an overview of a recent temporal qualitative analysis

technique so-called Pandora. The technique not only extends standard fault trees with

temporal information modelling capabilities, but also provides a set of temporal laws

besides the Boolean logic laws. These are useful to preserve the significance of the

temporal semantics all along the logical reduction of the fault trees, and as demonstrated

through the case study example in section 3.3.

We have highlighted three temporal gates introduced by Pandora: PAND, POR

and SAND. The latter (which is conceived to model the simultaneity of events) has been

removed and the original temporal laws were adapted correspondingly. The main reason

111

which has driven the alteration of the original temporal laws is our use of SMs (which

describe the failure behaviour of systems) to generate the fault trees. The generated fault

trees are, therefore, in all cases (whether static or dynamic) without any SAND gate.

Representation of simultaneity (at the level of the SMs) is useful to be made if we

assume common failure modes by which events may occur at the same time. Such an

assumption was made in the second case study of this thesis (see chapter 6 about the

brake-by-wire system) to model the dynamics of the vehicle (section 6.1).

112

4 Automatic Generation of Temporal Fault Trees from

State Machine Models of Systems

4.1 Introduction:

State machines are an expressive, high-level form of modelling the behaviour of systems.

They readily express the different effects of events on a system in different states, making

them well-suited to modelling the effect of failure and fault events on a system. We

observed in the literature chapter how the use of SMs is becoming prevalent and

particularly important for modelling dynamic systems — like for example in (and among

other modelling approaches) Altarica [(Rauzy, 2002), (Griffault A. , 2003) and (Bernard

R. , 2009)], FSAP/NuSMV-SA [(Bozzano et al., 2003) and (Bozzano et al., 2006)],

representation of SEFTs [(Kaiser et al., 2007) and (Grunske et al., 2005)], analysis of

DFTs and SEFTs using Markov chains [(Dehlinger et al., 2008), (Dugan et al., 1992),

(Dugan et al., 1997), (Dugan et al., 2000), (Kaiser et al., 2007) and (Vesely et al., 2002)]

and, most recently, AADL [(Feiler et al., 2007), (Joshi et al., 2007), (Rugina A., 2007)

and (Rugina et al., 2008)]. HiP-HOPS also defines an extension with state automata

modelling capabilities as described in (Papadopoulos Y., 2000).

We have discussed two different approaches to perform dependability analysis on

dynamic systems. The first approach consists of converting the SMs to GSPNs as with

AADL error models
78

 [(Rugina A. , 2007) and (Rugina et al., 2008)]. Yet this approach is

less suitable for qualitative analysis
79

. An alternative approach involves conversion of

state machines to combinatorial fault trees, like in (Joshi et al, 2007) with AADL and in

(Rauzy, 2002) with Altarica. The problem highlighted with this type of conversion

consists, in particular, of the loss of the temporal semantics expressed by state machines

during their translation to combinatorial (i.e., static) fault trees — these have no concept

of event order or sequence, and this can potentially cause serious errors.

78
 These are effectively SMs (showing transitions from normal to degraded and failed states) as

observed in (Feiler et al., 2007).

79
 I.e., establishment of direct relationships between causes and effects of failure, as in FMEA.

Qualitative analysis is particularly important when probabilistic data are not available, e.g. at early

stages of design.

113

In (Rauzy, 2002), this problem emerging from the conversion of SMs to

combinatorial FTs was noted when a conjunction of two mutually exclusive paths

through the SM for a k-out-of-n system both became results of the fault tree analysis.

This was solved by incorporating NOT gates into the conversion to introduce a partial

order, so that different paths through the SM could be distinguished by indicating that

some events did not occur. However, although this will work in certain cases (e.g. to

prevent the result (A AND B) OR (A AND C) OR (B AND C) when A and B are

mutually exclusive), it still cannot distinguish SM paths that differ only in sequence. If,

for example, the state machine defines that different sequences of faults, e.g. A before B

and B before A, lead the system into two mutually exclusive failure states, the fault trees

for these two states will show the combination of A and B as a common cause of both

states. This result is logically and probabilistically incorrect, and will thus lead to

incorrect conclusions regarding the dependability of the system.

This approach of converting SMs to combinatorial fault trees for dependability

analysis is being used in conjunction with influential modelling languages including

AADL and Altarica. The former is gaining growing acceptance in the aerospace

community and the latter was already used together with the conversion algorithm

described in (Rauzy, 2002) in an industrial context. For example, this algoritnm (which

compiles mode automata into combinatorial FTs) was used as part of the OCAS tool

which has been developped by Dassault Aviation in a certification process of its Falcon

7X flight controls. Thereafter, the Aralia tool — described in (Dutuit et al., 1997) — was

used to handle the analysis of the generated FTs from Altarica models (both qualitatively

and quantitatively). Besides, the Altarica’s modelling and analysis platform — a tool

which uses computer-performed generation of fault trees — was qualified as a validation

tool in several aerospace projects, including Airbus civil aircraft programs (Bernard R. ,

2009).

The potential for erroneous results arising from application of this approach in a

subset of SMs must therefore be addressed. To correct the conceptual flaw discussed

above and allow true qualitative temporal safety analysis, in this chapter, we outline our

technique to enable conversion of SMs to temporal FTs as opposed to static FTs, thereby

preserving the significance of the sequencing of faults. The fault trees can then be

analysed using Pandora (see chapter 3) to enable qualitative analysis of the generated

TFTs. The approach is generally applicable to error models expressed as SMs, including

the AADL error model. It can also in principle be combined with a compositional

analysis technique like HiP-HOPS (Papadopoulos Y. , 2000), which would enable

114

automatic synthesis and analysis of temporal fault trees from complex models where the

error behaviour of the system has been described by SMs.

Our aim in this chapter is, precisely, to propose a new approach for safety

analysis of dynamic systems with SM-based failure behavioural models. The core of our

approach consists of the conversion of the SMs to dynamic analysis models (i.e.,

temporal FTs). These will be consequently analysed using a temporal qualitative analysis

technique like Pandora. The significance of the temporal semantics expressed by SMs

will be, therefore, preserved during the conversion to TFTs, and along the logical

reduction of these TFTs by using the temporal laws of Pandora.

We use the primary standby (PS) example system — described in chapter 1 — to

demonstrate how the proposed method has helped us analyse the system, and therefore

correct the analysis results produced using a conversion of the system’s SM to static

models (like pure combinatorial FTs), which limits any consequent analysis to static

techniques like FTA. The PS example system will also serve in the following chapter to

be scaled up from a single to a triple redundancy. The example is, therefore, useful not

only to show how we can reuse some of the failure behavioural models in the analysis of

larger systems; but it will also serve, mainly and most importantly, to propose a

compositional approach for our technique and to demonstrate how it can contribute to an

improvement in the overall safety of increasingly complex modern safety-critical

systems.

Figure 4—1 captures in a single view the PS example system in (a), the SM

which represents its failure behaviour in (b) and its corresponding FT in (c) — where A,

B and S represent abbreviations of ‘A fails’, ‘B fails’ and ‘S fails’ respectively. Briefly,

the system (as explained in chapter 1) operates either in primary mode (i.e., with

component A) or standby mode (i.e., with component B). The sensor S serves to activate

B upon detection of an output deviation (e.g. omission of output) from A.

115

Figure 4—1. (a) The PS example system. (b) SM failure behavioural model of the PS.

(c) FT of the PS.

‘I’ is the input to the system and ‘Out’ is an abstraction of the output, which we omit to

consider in the analysis for the sake of clarity. The SM in (b) shows that an omission of

input ‘O-I’ is a single point of failure of the system, failures of A and B together will lead

the system to a total failure (irrespective of the order of the two failures); but about A and

S, only a failure of S preceding that one of A is relevant to the system failure behaviour

— if this happens in this order, then B cannot be activated upon failure of A; otherwise,

the system can still continue operating in standby mode, i.e., A failing first will cause the

SM to transit to the top state
80

 (B active and A failed, i.e. the system is only degraded),

and thus a subsequent failure of S will have no impact on the system (i.e., no transition).

This SM clearly shows how the order in which the same two events occur can affect the

overall outcome — the system, as a result, will be either degraded or totally failed

depending on which one has failed first.

80
 In this case, S has already detected that something went wrong with A and has, therefore,

activated B before failing.

116

Different sequences of the same events causing different effects is not an

uncommon pattern of events; many safety-critical systems feature the ability to continue

operating with a subset of functionality, e.g. some aeroplanes can continue to fly even

after an engine failure. In this case, one event may be a failure of the fire extinguishing

system and the other one an engine fire. If the fire extinguishing system fails first, the fire

cannot be extinguished and may spread, whereas if an engine fire occurs first, the fire can

be extinguished and the aeroplane can continue to fly, albeit in a degraded state.

By transforming a SM to FTs, each of the system failures (i.e., final states of the

SM) would become the head (i.e., top event) of their own fault tree, with the root causes

beneath. All paths through the SM to a given final state become a disjunction of possible

causes of the corresponding top event, and each cause is represented as a conjunction of

all failure events in that path which have caused the system to enter the final state. Each

conjunction represents one cut set of the fault tree, and if it contains no redundancies,

then it is a minimal cut set (MCS). By applying this to the SM of Figure 4—1 (b), we

would obtain ‘System Failure’ as top event of the fault tree as follows and where ‘.’ and

‘+’ represent the logical gates ‘AND’ and ‘OR’ respectively:

System Failure = O-I.S + A.S + O-I.B + A.B + O-I + B.A + O-I.A

The SM has seven different paths leading to a unique final state (System Failure), and

hence the seven cut sets of the unique fault tree expression above. This fault tree

expression can be logically reduced according to the absorption law X + X.Y = X, thus

we would obtain:

System Failure = A.S + A.B + O-I + B.A

The idempotent law X + X = X would help us to further reduce the expression to become:

System Failure = A.S + A.B + O-I.

Hence the minimised fault tree of Figure 4—1 (c).

Clearly, by transforming the SM of the PS to a combinatorial fault tree, we would

obtain the conjunction of the failures of A and S as a cause of the total failure of the

system. This, however, is not accurate and invalidates application of this approach to this

and other cases where the temporal ordering of failures is significant — the results are not

an accurate representation of the behaviour shown in the SM. Note that any consequent

quantitative analysis would also be incorrect. Thus, this kind of transformation can

potentially lead to serious errors in the analysis. Therefore, we need firstly to compile

117

SMs into FTs that have representation capabilities of concept of time or event

sequencing, then secondly to be able to preserve the significance of the temporal

semantics and event sequencing these new FTs contain along their logical reduction.

4.2 Compilation of SMs into TFTs

Our approach consists of the conversion of SMs (which are dynamic models) to temporal

FTs (which are also dynamic) rather pure combinatorial FTs (which are static). We

observed in the literature chapter different approaches which extend FTs with temporal

capabilities for modelling sequence-dependent failures (a situation frequently exhibited

by dynamic systems). Therefore, we start this section by presenting the reasons which

have influenced our initial choice concerning the TFT approach targeted by the

transformation from the SMs.

4.2.1 The Pandora choice

It is necessary but not sufficient to preserve the significance of the temporal semantics

expressed by the SMs during their transformation to the corresponding FTs. The

generated FTs (with temporal information if necessary) need to be logically analysed. If

these are not already in their minimal form, then a logical reduction is needed. It also

necessary to preserve the significance of the temporal semantics (transferred from the

SMs to the generated FTs) during all the reduction process.

The approaches to dynamic FTs observed in chapter 2 focus primarily on

quantitative analysis, like SEFTs (Kaiser et al., 2007) and DFTs (Vesely et al., 2002)

which are solved with Markov chains. The approach in (Merle, 2010), however, attempts

to qualitatively analyse dynamic FTs by determining minimal canonical forms of the

structure functions corresponding to the FTs. However, a minimal canonical form is not

necessarily unique
81

 for a structure function of a dynamic FT and the complexity involved

was beyond the scope of the work in (Merle, 2010). TFT minimisation itself is also

beyond the scope of work of this doctoral thesis.

81
 There are typically as many minimal canonical forms of the structure function as there are

minimization criteria.

118

Pandora (chapter 3) was designed mainly for temporal qualitative analysis. It not

only extends FTs with its three temporal gates (PAND, POR and SAND), but also

provides sets of temporal laws which complete the Boolean laws — like (among others)

temporal commutative, associative and distributive laws, also completion, absorption and

reductive laws . Briefly (and as seen in chapter 3), Pandora provides two different

approaches to the reduction of its TFTs. One of these relies on temporal logic (i.e., logical

reduction through redundancy, contradiction and completion); the other approach is a

hierarchical reduction technique which uses dependency trees to model relationships of

events.

For the purpose of our study, we use a variation of Pandora where the SAND gate

is omitted. We avoid non-determinism in the state machine by assuming a common

failure mode by which two (or more) failures occur simultaneously. This assumption was

also observed being used in other state-transition based modelling techniques like Markov

chains in for instance (ARP4761, 1996), and where a simultaneous failure of two or more

components was given one failure rate. Consequently, the temporal laws identified in

chapter 3 to be used for the logical reduction of the generated FTs are variations (without

SAND operators) of their corresponding Pandora laws. Temporal expressions are

generally complex, particularly when compared with Boolean ones. Therefore, the

temporal laws are very useful in order to reduce the complexity involved through

minimisation of the generated temporal expressions.

4.2.2 Representing SMs using Pandora logic

A state machine will have as many fault trees as there are final states. Each final state

represents a system failure (i.e., one fault tree top-event) and each transition between

states represents an event in a fault tree. Every full path between the initial state and a

given final state becomes a new branch of its corresponding FT — i.e., represented by the

conjunction of the events that label that path. In the case where some system failures are

sequence-dependent, then the corresponding FTs should be temporal. Thus, not all SMs

require the use of temporal gates when transformed to fault trees. In many cases, standard

Boolean logic is adequate to represent the behaviour and perform a correct analysis; for

example a SM where two events e.g. A then B lead to a ‘Degraded’ state and two other

different events e.g. C then D lead to a ‘Failed’ state as in Figure 4—2.

119

Figure 4—2. SM example of a static system.

In this case, we are concerned with separate combinations of events, i.e., the two

branches have no events in common and each event contributes only to a single end state

(and ultimately, contributes to only one top event). Here, a change in the sequence of the

events (e.g. D before C instead of C before D) will not lead to a different failure. In the

case that D happens first, the system simply stays in the initial state and when C occurs it

performs two instantaneous transitions to reach the final failed state; thus the failure

behaviour is not sequence-dependent as in the case of the SM of the PS in Figure 4—1

(b). Therefore, in this scenario, Boolean logic is sufficient to model the situation

unambiguously (Degraded = A.B and Failed = C.D) and thus the simpler transformation

of SMs into fault trees described in (Joshi et al., 2007) is sufficient to obtain an accurate

analysis.

Imposing temporal constraints during the conversion depends on whether or not

the SM has at least one event appearing in more than one path. Typically, if there is at

least one event that contributes to the occurrence of more than one system failure, then

conversion to temporal fault trees may be needed. It may also be true even if there is an

event that is a contributory factor to the occurrence of only one system failure, but as a

result of more than one sequence of events. In such cases, an accurate analysis depends

upon the correct preservation of the temporal semantics, as different sequences of those

shared events – or other events relative to those shared events – may lead to different

final states (and thus different system failures). The application of our approach allows

complex dynamic analysis to be applied only when necessary, depending on whether each

part of the system is static or dynamic.

4.2.3 Pandora description of the PS state machine

Figure 4—1 (b) presents a more detailed view of the failure behaviour of the PS example

from Figure 4—1 (a). Note that two paths for a combination A and B have been shown

120

here for clarity, though as will be seen this does not affect the results. Likewise, the state

machine shows that the final state "System Failure" is dependent on different sequences

of events. For example, the sequence in which S failing before A can lead to system

failure is shown, but the failure of S after A does not lead to system failure (as it has no

effect). Other paths that are clearly redundant, such as failures of A then S then B, are

omitted.

This type of sequence-dependent failure behaviour is clearly visible from the

state machine, but cannot easily be analysed in this form. We could convert it to a

combinatorial fault tree, but as explained earlier, the temporal semantics would be lost.

Instead, we must convert it into a Pandora temporal fault tree. The first step in the process

is to identify shared events, i.e. events that are present in more than one path through the

state machine. For example, the event "A fails" contributes to multiple paths through this

SM: "A fails  B fails", "B fails  A fails" and "S fails  A fails". These sequences of

events are all different causes of the same system failure, and since fault trees do not

represent states explicitly, only events, it is necessary to use a temporal fault tree to

represent this type of failure behaviour.

To see how the sequence of events affects the conversion process, let us consider

three paths, each sufficient on its own to cause the system failure:

Path 1: A fails  B fails

Path 2: B fails  A fails

Path 3: S fails  A fails

The event ‘A fails’ (which we shall abbreviate to just ‘A’, and similarly ‘B’ = ‘B fails’,

‘S’ = ‘S fails’, and ‘I’ = ‘O-I’) influences the state of the system in all three paths.

However, which path is taken from the initial state depends on whether A, B, or S occurs

first, assuming no omission of input occurs before. For example, in the case that A occurs

first, we are already in path 1 and S does not influence the state of the system; only a

subsequent failure of B (or O-I) leads to system failure. However, if S occurs first

(leading us into path 3) then a subsequent failure of A is sufficient to cause system

failure.

The only way to accurately model this in a fault tree is to use temporal operators.

In particular, we want to ensure that the relative ordering of each event that leaves the

initial state (e.g. in this case, A, B, and S each leads to a different path depending on

which occurs first) is explicitly represented. The main sequence operator in Pandora is the

121

PAND gate, and we can use this to unambiguously distinguish between a path in which A

occurs first (i.e. path 1) and a path in which S occurs first (i.e. path 3):

Path 1: A < B

Path 3 S < A

However, the situation is more complex than it first appears, as we also want to express

priority – the idea that one event must occur first – without also implying that another

event must occur. For example, to distinguish between path 2 and path 3, we need to

know whether S or B occurs first, but S and B are not shared between these paths – only

A is. Thus to distinguish path 3 from path 2, we need to say that S occurred before B, but

only if B occurs; B does not have to occur for path 3 to be completed leading to system

failure.

To do this, we can take advantage of Pandora's POR gate. The POR gate

represents this concept of priority – that one event should take priority over others and

must occur first, but without specifying that the other events must also occur. Thus we

can represent the three paths as follows:

Path 1: (A < B) . (A | S)

Path 2: (B < A) . (B | S)

Path 3: (S < A) . (S | B)

Thus path 1 specifies two constraints: firstly that both A and B must occur, with A

occurring first, and secondly that if S also occurs at all, it must occur after A. The second

constraint represents a situation where S has already served its purpose and activated the

backup, in which case its subsequent failure has no effect. Thus, in path 1, both A and B

must occur for the system to fail as a whole. The PAND gate alone would not work in this

type of situation as it would mean that all three events must occur. Only the POR gate

correctly represents the temporal semantics and allows us to preserve the sequences of

events in the state machine.

Using two operators like this enables us to accurately represent the temporal

semantics of the SM, but it does lead to more complex expressions and thus a more

complex translation process. By using Pandora's temporal laws, it is possible to simplify

the generation of these expressions so that they require only one operator – the POR. The

122

law A<B <=> (A|B).B means that any expression containing a PAND can be converted to

use a POR instead, e.g. for Path 1:

 (A < B) . (A | S) <=> (A | B) . B . (A | S) <=>

 (A | B | S) . B <=> A | B | S . B

A second law was also applied here: A|B . A|C <=> A|B|C. Note that A|B|C is not

equivalent to A|(B|C); after the first event, the others can occur in any order, so A|B|C

<=> A|C|B. Thus we can represent the three paths as follows:

Path 1: A | B | S . B

Path 2: B | A | S . A

Path 3: S | A | B . A

This form allows us to see both the temporal constraints (represented by the PORs) and

the purely combinatorial constraints (represented by ordinary conjunctions).

4.2.4 Automatic generation of Pandora formulae

Informally, normalised graphical notations, e.g. Figure 4—1 (b), describe SMs of

systems, subsystems or components. States are represented by ellipses or circles and

events are represented by arrows that join states. Each ellipse or circle contains a textual

description of its corresponding state. Similarly, arrows are labelled with textual

descriptions of the corresponding events.

A state machine has a finite number of states. It may change state when an event

occurs, but at each instant it is in only one state. Definition 1 formally describes a state

machine.

123

For example, consider again Figure 4—1 (b). The SM that formally describes the PS is

defined as follows:

 S = {A active, B active A failed, A active B failed, A active S failed, System Failure}.

 Σ = {A fails, B fails, S fails, O-I}.

 δ is defined as shown in the SM figure.

 s0 = A active.

For the purpose of this study, we assume a state machine to be acyclic. A cyclic

SM may imply that failures are repairable or repeatable, which is incompatible with the

semantics of Pandora. There is, therefore, a finite set of possible paths in the state

machine. If  is a path from u to u' (u, u') ∈S
2
, we write it as u u’.

We write u u’ iff ∃∈P s.t. u u’. In such a case, state u' is said to be reachable from

state u. However, if there exists a one-event path from u to u', then u' is said to be

immediately reachable from u and we write it as u u’ (i.e., u u’ iff ∃e∈Σ s.t. u

 u’).

We assume that from s0 we can reach any other state, i.e.,t≠s0∈S s0 t. Also,

∈P ∃(u, u')∈S
2
 s.t. u u’ and Seq = ⟨u0, u1, . . . , un⟩ is the sequence of the states of

the path , where n = length() is the number of events that label  and the sequence is

ordered for backward traversal, i.e., u0=u' and un=u.

124

A state machine path can be traversed forwards or backwards. The Pandora

formula which corresponds to a final state is generated by performing backward

traversals of all paths starting from that final state to the initial state. Forward traversals

are performed starting from every ‘join’ state (i.e., with an out-degree strictly greater than

1) to, at worst, all reachable final states, or until the condition for imposing a temporal

constraint is satisfied.

The choice of an event in uniquely determines the state that the event is

incident to. As for

, an event incident to u needs to be distinguished from every

possible identical event also incident to u, but from a different state. This is done by

associating each event with the state from which it is incident, and hence the definition 3

above.

All final states are permanent states — there are no events that lead from a final

state to any other state.

There is a corresponding Pandora formula for each final state. Let 𝜙s s∈F be the formula

for a final state s. 𝜙s is the disjunction over the paths  (from the initial state s0 to s) of the

conjunction of events that label . Moreover, any one of the events e that label , which

is incident from a state u with an out-degree of two or more (a state at which paths

diverge), is the input event, which must occur first or alone, of a POR gate that associates

it with the disjunction of other events e’ incident from u to the states u’ if, and only if, the

subpath of  from u to s shares an event with the paths from u through u’ to any state.

Algorithm 1 generates a set Φ of Pandora formulae: Φ = {𝜙s | s∈F} — one

formula 𝜙s for each final state s. These expressions can then be analysed by Pandora. For

each join state during a path traversal (line 11 of the Algorithm), and for each event

125

e’≠ ∈ Σ

 (line 14), a temporal constraint is imposed (line 21) if, and only if, the two

subsets Ω (line 12) and Σ’ (initially as in line 15) of Σ share an event (Σ’ ⋂ Ω ≠ ∅). Ω

represents the set of the events that label the subpath h of the current full path i s.t.

s (i.e., h is the part of i which has already been traversed) and Σ’, which is

initialised as {e’} (e' as specified in lines 14 and 16), may possibly be further populated

as shown in Algorithm 2 — PopulateAt(t = δ(, e’)).

126

This additional population of Σ’ (performed by algorithm 2) can happen only if

e’Ω (lines 15 and 17 of algorithm 1) and the state that e’ is incident to is not a final state

(line 17) — i.e., t∈S = δ(, e’) is such that ≠ ∅ (to explore, perhaps exhaustively,

paths that diverge from the join state through the state t). In such a case, the paths from

t are traversed forwards as long as Σ’ and Ω remain disjoint sets (line 5 and line 8 of

127

Algorithm 2). In other words, a temporal constraint needs to be imposed if, and only if,

e’∈ Ω or ∃(y∈Σ, ’∈P, f∈S, v∈S in ’, w∈S in ’) s.t. t f, v

 w and y∈ Ω —

i.e., either e’ must be one of the events that label h (the subpath of i s.t. s) or h and

’ must share an event.

4.2.5 Conversion of the PS state machine

In general, for every final state of the SM, the algorithm generates a fault tree (possibly a

temporal one) with that final state as the top event. A backwards traversal is performed,

starting with each final state and ending at the starting state, and thus every path between

those states becomes a new branch in the fault tree. Initially, only AND gates are used, so

that all events in each path are represented as a conjunction. Next, for each visited state

that is common to more than one path (known as a ‘join’ state), the algorithm tries to

detect whether a temporal operator is required to unambiguously distinguish one path

from another. For example, the final state of the PS state machine is ‘System Failure’, and

the join states encountered during backwards traversal are all those visited states with

more than one output path for each – thus every state in our example SM is a join state

except the final one.

At this stage, the algorithm examines the events forming the branches so far and

checks to see if any are shared. In the example SM, it would find that A is a shared event

for join state ‘A active’. Thus to distinguish e.g. path 1 from path 3, the algorithm would

determine that the order of A and S is important and would add a temporal constraint to

128

each branch (A|S for path 1, S|A for path 3). Similarly, since path 2 and path 3 both

emerge from the same join state, it would examine the events that cause transitions away

from the join state (i.e. B and S in this case) and add the appropriate constraints to

distinguish them, i.e. ‘S|B’ for path 3 and ‘B|S’ for path 2. Since the temporal operators

are only added later, SMs with no shared events, like the one in Figure 4—2, will have no

temporal constraints and will consist only of logical conjunctions:

Degraded = B.A

Failed = D.C

No further refinements are necessary in that case. But in a situation like the one in Figure

4—3, A and B are shared events and the join state is the initial one. Therefore we have:

Degraded = B.A|B = A<B

Failed = A.B|A = B<A

Figure 4—3. Example of a SM with shared events

The result of the algorithm is a set of (possibly temporal) fault trees, one per final

error state, each containing one branch for each path through the SM to the given final

state. Each sequence or combination of events in the fault trees will be unambiguous, i.e.

any shared events will be part of sequences to ensure that the same sequence cannot lead

to the top event of more than one fault tree.

Application of the conversion algorithm on the SM of the PS yields the following

cut sequences (represented in traversed order), which provide an unambiguous

description of the different event sequences that can cause the system to fail:

1) B . A | S | B

2) A . B | S | A

129

3) A . S | A | B

4) I . A | I | S | B

5) I . B | I | S | A

6) I | S | A | B

7) I . S | I | A | B.

These results show how the sequence of the sensor failure relative to the failure of A, the

failure of both primary and standby, and the omission of input alone or relative to other

failures are all important in causing system failures.

4.2.6 Minimisation of the generated TFTs

Although the seven results shown previously are sufficient to unambiguously describe the

sequences of events that can lead to system failure, these are not minimal. Just as with the

initial results of an ordinary fault tree analysis, the sequences can be reduced to a

simplified form to give a clearer view of exactly which events are necessary, and in

which order should they occur to cause system failure.

We can apply the relevant temporal laws of the variation of Pandora (in which

simultaneity is omitted) to perform this minimisation. In the version of Pandora which is

adapted to state machines, the laws which include the SAND operator have been

modified to remove it. In particular, the three main laws of Pandora, i.e., the Completion

Laws (which relate temporal operators to Boolean ones) have their SAND terms are

removed in this situation. The three modified Completion Laws are therefore:

X . Y <=> X<Y + Y<X (the Conjunctive Law)

X + Y <=> X|Y + Y|X (the Disjunctive Law)

X <=> Y<X + X|Y (the Reductive Law)

These laws are particularly useful for minimising the results from the conversion

algorithm. By applying the Reductive Law, we can both add extra terms to an expression

and also reduce multiple cut sequences into one. In this case, cut sequences #4 to #7 can

be reduced to just "I" on its own. The other three cut sequences, #1 - #3, can likewise be

130

reduced. Each can be simplified and expanded by the law X<Y . X|Z <=> X<Z<Y +

X<Y|Z to obtain the following cut sequences:

A<S<B

A<B|S

B<S<A

B<A|S

S<B<A

S<A|B

These in turn describe constituents of the 3-event Reductive Law, X<Y <=> X<Z<Y +

Z<X<Y + X<Y|Z, and can be reduced to even simpler forms. For example, S<B<A +

B<S<A + B<A|S reduces to just B<A, and similarly for S<A. Another law, X|Y <=>

X<Y + X|Y, means we can obtain S<A<B from S<A|B and thus also reduce

S<A|B + A<S<B + A<B|S to just A<B. One further minimisation is then possible here:

we can apply the Conjunctive Law to A<B and B<A to obtain A.B. Thus the final

minimal cut sequences are as follows:

A.B

S<A

I

These minimised cut sequences give an instant understanding of the failure behaviour of

the system: it will fail if both A and B fail, if the sensor S fails before A, or if there is no

input. By converting the SM to a temporal fault tree and minimising the expressions

produced, we have obtained a concise set of results that provides an more accurate view

of the system failure behaviour than the results of the standard FTA expressed by Figure

4—1 (c). In this case, it is clear that preserving the order of A and S is vital in

determining whether a system failure will be caused.

131

4.3 Complexity analysis of the conversion algorithm

The conversion algorithm is biased towards increasingly dynamic systems. The best-case

complexity of checking the necessity of a temporal order is O(n) and the worst case is

O(n
2
), n being the number of paths from the initial state to the final states in the SM. The

best case is a SM where for every divergent path; there exists a sharable event
82

 that is

incident to the immediately reachable state from the join state at which the path diverges.

In such a situation, the price to pay for each join state j is an O(m
2
) operation of temporal

order enforcement, and where m is the out-degree of j. The worst case is a SM where for

every divergent path, either there are no sharable events or there exists only one sharable

event — immediately before the last reachable final state. A SM where there are no

sharable events at all (e.g. SM of a static system) is also a worst-case scenario.

To show the quadratic growth of the conversion algorithm with the number of

full paths, we define a marking function that marks every state with the number of paths

to the final states (these latter states are special cases which are marked with 1). Let M be

that marking function s.t. M : S ℕ+
. The number of paths from a state u to the

final states is the sum, for all events incident from u to its successors (i.e., the

immediately reachable states from u), of the number of paths from these successors to the

final states (i.e., their corresponding markings), and hence:

{

∑

 Σ

This algorithm will add the marking of each successor v as many times as there

are events that are incident from u to v. Apart from the final states, every state u will be

marked such that M(u) = |P
u
|, where P

u
 = {∈P | u f, f∈F} . For example, marking the

states of the SM of the PS in Figure 4—1 (b) gives M(A active) = M(δ(A active, A fails))

+ M(δ(A active, O-I)) + M(δ(A active, B fails)) + M(δ(A active, S fails)), since we have:

82
 An event which causes the condition for imposing a temporal constraint to be satisfied.

132

M(δ(A active, A fails)) = M(B active A failed) = M(δ(B active A failed, O-I)) + M(δ(B

active A failed, B fails)) = 2.

M(δ(A active, O-I)) = M(System Failure) = 1.

M(δ(A active, B fails)) = M(A active B failed) = M(δ(A active B failed, A fails)) + M(δ(A

active B failed, O-I)) = 2.

M(δ(A active, S fails)) = M(A active S failed) = M(δ(A active S failed, A fails)) + M(δ(A

active S failed, O-I)) = 2.

Therefore, the marking of the initial state M(A active) is totalling seven full paths in the

SM. This marking conforms to the backward traversals that are performed from each of

the final states (line 9 of Algorithm 1 in section 4.2.4).

Let N be the total number of paths (from the initial state to the final states).

During each backward traversal starting from a final state s, at every visited state u that is

a join state (i.e., line 11 of Algorithm 1), at worst, all remaining paths to all possible final

states will be exhaustively traversed forwards by Algorithm 2. This results in a total

number M(u) of traversed paths. This number is preserved along the backward traversal at

every state that is not a join state until another join state gets visited, ultimately the initial

state s0 with M(s0) equals to N. This will be repeated Ns times for the final state s, where

Ns is the total number of paths from s0 to s. Thus, for all final states we have a total

number of traversed paths which is equal to N × ∑ ∈ , i.e., N
2
. Note that to determine

each Ns s∈F, we can use another version M’ of the marking function M, which marks the

initial state with 1. Thereafter, the number of paths reaching a state u is the sum, for all

elements in

, of the number of paths that reach each predecessor u' (i.e., u’u), and

hence:

{

 ∑

133

4.4 Supplemental application of the conversion algorithm

In this section, we present an additional contribution by showing that we can apply the

conversion algorithm on Markov state diagrams for the purpose to automatically optimise

these. Markov models are well-known with the state explosion problem and, therefore, a

work which contributes to their optimisation by reducing their size while preserving the

quantitative results can have a positive impact overall.

To illuminate this point, let us assume a system with two components A and B

with the failure rates A and B respectively. Figure 4—4 (a) represents the corresponding

Markov model such that initially both components are working (which is described by the

initial state “A B”). Thereafter, if B fails first there will be a transition to the state “A X”

(i.e., A is working and B is failed) and then only a failure of A can cause a complete

failure of the system. However, if A fails first then the system fails immediately.

(a) before optimisation (b) after optimisation

Figure 4—4. A Markov model optimisation example

For the sake of clarity, in the following we use the symbols A and B to designate

the failure events which correspond to the failure rates A and B respectively. The

application of the conversion algorithm on the state-transition diagram (a) gives:

“Total failure” = A|B + A.B|A

We can perform some Pandora minimisation on the failure expression generated by the

algorithm as follows:

“Total failure” = A|B + B<A (using the temporal law Y.X|Y  X<Y)

134

 = A<B + A.¬ B + B<A (using the temporal law X|Y  X<Y + X.¬Y)

 = A. B + A.¬ B (using the temporal law X.Y  X<Y + Y<X)

 = A.(B + ¬B) (using the distributive law)

 = A. 1 (tautology)

Therefore, we can simply have: “Total failure” = A and the corresponding optimised

Markov model is as represented by Figure 4—4 (b).

Let us now compare the quantitative results provided by the Markov solutions

corresponding to both models, i.e., (a) and (b).

1) The left hand side model (a):

 PAB(t) = – (A+ B) PAB(t) where PAB is the probability for the state “AB”.

 PAX(t) = B PAB(t) – A PAX(t) where PAX is the probability for the state “AX”.

 PF(t) = A PAB(t) + A PAX(t) where PF is the probability for the final state.

The solution of the differential equations is given by:

PAB(t) = –  

PAX(t) = – – –  

Concerning PF(t) we have:

 PF(t) = A PAB(t) + A PAX(t) = A –   + A – – A –   = A –

⇒ PF(t) = – – + Cste (the constant is 1 since PF(0) = 0 = Cste –  = Cste – 1)

⇒ PF(t) = 1 – –

2) The right hand side model (b):

 PAB(t) = –A PAB(t)

135

 PF(t) = A PAB(t) = A

–

The solution of the differential equations is given by:

PAB(t) = –

PF(t) = ∫  dt = – – + Cste (where Cste is a constant)

Since at time t0 = 0 we have PAB(t0) = 1 and PF(t0) = 0 then Cste must be 1

This means that PF(t) = 1 – – and this is exactly the same solution as for the previous

model.

A similar optimization example consists of the model represented by Figure 4—5

(a). This can be the description of a system with three components A, B and C with

failure rates A, B and C respectively. Like in the previous example, the sequence

“ABC” in the model means a state where all components are working. A failed

component is replaced by the symbol ‘X’ in that sequence — e.g., “AXC” means a state

where all components are working except B is failed and the states “AXX1” and “AXX2”

mean that both B and C are failed; B has failed before C for the former and after C for the

latter.

(a) before optimisation (b) after optimisation

Figure 4—5. A second Markov model optimisation example

The application of the conversion algorithm on the state-transition diagram of

Figure 4—5 (a) generates a failure expression which can be minimised (using the Pandora

temporal laws) to simply the failure event with rate A (this is fully detailed in appendix

136

A — 5), and for which the corresponding Markov model is represented by Figure 4—

5(b). The Markov solutions give identical final state probabilities in both models (a) and

(b).

Similar redundancies can be removed from the Markov model of the generic

primary-standby system (depicted in chapter 2 section 2.3.4), and which is represented in

Figure 4—6 such that the failure states are all merged into one final state (i.e., the

complete failure of the system). The meanings of the transition labels and the state names

appearing in the figure are as follows:

λA, λB and λS are failure rates for A, B and S resp.

A B S (system functioning with A, none is failed)

X B S (system functioning with B, only A is failed)

A B X (system functioning with A, only S is failed)

A X S (system functioning with A, only B is failed)

X B X (system functioning with B, both A and S are failed)

A X X (system functioning with A, both B and S are failed)

This representation with one system failure state helps to show some redundant

transitions which are similar to those appearing in the Markov model examples of

figuresFigure 4—4 andFigure 4—5. For example in the top of the figure from the state

“XBS”, either the two transitions labelled with S then B lead the system to a total

failure, or simply only the transition with rate B can cause the same effect (from that

state). Those together can be optimised to only one transition labelled with B. Similarly,

we have two transitions labelled with S then A leading the system (from the state

“AXS”, see bottom of Figure 4—6) to the “Total Failure” state, as well as only one

transition with the rate A also leading the system to a complete failure (from the same

state). Those two scenarios together can, thus, be optimised into a one-transition scenario

(labelled with the rate A).

137

Figure 4—6. Markov model of the PS (all failure states merged into one state)

Like the previous examples, we apply the conversion algorithm on the Markov

model to generate the following TFTs, and where (for the sake of clarity) A, B and S

replace the rates A, B and S respectively.

“Total Failure” =

B.S|B.A|S|B + (1)

A.B|A.S|B|A + (2)

A.S|A.B|S|A + (3)

138

A|B.S|B|A + (4)

B|S.A|S|B + (5)

A|S.B|S|A (6)

The application of the POR transformation law (Y.X|Y  X<Y) gives:

“Total Failure” =

S<B . A<B . A<S + (1)

B<A . S<A . S<B + (2)

S<A . B<A . B<S + (3)

A|B . S<A . S|B + (4)

B|S . A<B . A|S + (5)

A|S . B<A . B|S (6)

Then, the application of the extension law (X<Y . Y<Z  X<Y . Y<Z . X<Z 

X<Y<Z) on (1), (2) and (3) gives:

“Total Failure” =

A<S<B + (1)

S<B<A + (2)

B<S<A + (3)

A|B . S<A . S|B + (4)

B|S . A<B . A|S + (5)

A|S . B<A . B|S (6)

Next, we apply the extension law (X<Y . Y|Z  X<Y . Y|Z . X|Z) on (4), (5) and

(6); hence:

“Total Failure” =

A<S<B + (1)

139

S<B<A + (2)

B<S<A + (3)

A|B . S<A + (4)

B|S . A<B + (5)

A|S . B<A (6)

By application of the absorption law (X<Y|Z  X<Y<Z + X<Y . Y|Z) on (4), (5)

and (6), we get the following:

“Total Failure” =

A<S<B + (1)

S<B<A + (2)

B<S<A + (3)

S<A<B + (4.1)

S<A . A|B + (4.2)

A<B<S + (5.1)

A<B . B|S + (5.2)

B<A<S + (6.1)

B<A . A|S (6.2)

(1), (4.1), (5.1) and (5.2) reduce to A<B by using the completion law (X<Y 

Z<X<Y + X<Z<Y + X<Y<Z + X<Y . Y|Z); these show that the occurrence of S is

irrelevant. Similarly, (2), (3), (6.1) and (6.2) reduce to B<A by using the same law.

However, before reducing we need to preserve (2), (3) and (4.1) for a further reduction

afterwards. This can be done by using the Boolean absorption law (X + X  X), and

hence:

140

“Total Failure” =

A<B +

S<B<A + (2)

B<S<A + (3)

S<A<B + (4.1)

S<A . A|B + (4.2)

B<A

Finally, by using the same previous completion law we can reduce (2), (3), (4.1)

and (4.2) to S<A; these show that the occurrence of B is irrelevant. Therefore, we have:

“Total Failure” =

A<B +

S<A +

B<A

These constitute the TFT description of the obtained Markov model of Figure

4—7, and where the state 1 is a state of the PS in which the components A, B and S are

all OK, and the states 2, 3 and 4 represent states of the system in which A has failed, S

has failed or B has failed, respectively.

Figure 4—7. The PS Markov model produced without redundancies

In appendix A — 6, we show that the optimised Markov model of the PS preserves the

same probabilistic result for the “Total Failure” state.

141

The use of the optimised Markov model is sufficient if the emphasis is mainly put

on computing a probabilistic measure for the complete failure of the system. However, it

is always possible to build the full Markov model from the optimised one if some

probabilistic results
83

 related to partial loss of functionality are required. This can be

performed by applying the algorithm below:

Algorithm 3: construction of an elaborated Markov model

Input: optimised Markov model or a reduced SM representation of the failure

behaviour of a system.

1. Initiate the construction of the full Model starting from a state where all the

system components are operational.

2. Generate a set of target states (with the associated transition rates) by

considering the effect of failure of every component.

3. Determine for every new state whether it is an operational or a failed state

by checking it against the optimised Markov (or the reduced SM) model.

4. Repeat the same (as steps 2 and 3) for every newly generated state, but only

by considering the effects of the remaining failures (which have not already

been treated in a same path from the initial state).

5. Stop when no more failure scenarios remain — i.e., all paths have been

exhaustively constructed.

For the sake of clarity, to compute the probability of being in a state where, e.g.,

the PS system is in primary mode but both the backup component and the sensor are

failed, we only highlight the two failure scenarios of interest rather than running

completely the algorithm to build the full Markov model. We start from the initial state in

which all components are functional. Next, if the sensor (resp. backup) fails first, then the

generated state would match with state 3 (resp. state 4) of the optimised model in Figure

83
 Though irrelevant to a complete system failure since the corresponding states were removed

during optimisation.

142

4—7, and which shows that the system is still operational. A subsequent failure of the

backup (resp. the sensor) leads to the generation of a new state in the full model to build

which best matches with the current, i.e. the same state in the optimised model — state 3

(resp. state 4), since only a failure of the primary component causes a change of state in

the optimised version. This means that the recently generated state of the full model is

still an operational state.

Algorithm 3 is not only useful
84

 considering an optimised Markov model as

input. But, it is mainly important if the input is an abstract state-transition representation

of the failure behaviour of a system. In some circumstances quantitative results may be

required directly if it is possible, i.e., without passing through the qualitative analysis

process. For example, we have presented in chapter 3 section 3.3 an abstract SM

description of the failure behaviour of the vehicle management system VMS (Figure 3—

4). That SM is used as input to the algorithm which generates TFTs, and after a

minimisation process we can obtain the minimal cut-sequences as demonstrated in that

chapter. These obtained cut-sequences can then be quantitatively analysed, e.g., based on

the work in (Merle, 2010) which accomodates any failure distribution of basic events.

However, if the failure distribution of the basic events is particularly exponential and if a

Markov solution is required directly from that reduced SM, we can then apply algorithm

3 to generate the corresponding Markov model — every new state will be tagged

operational or failed by checking against the reduced SM along the exceution of the

algorithm and every transition label will be substituted with the corresponding failure

rate.

4.5 Quantitative analysis of TFTs

The work in (Merle, 2010), i.e., quantitative analysis of dynamic fault trees (DFTs) based

on the structure function presents a state-of-the-art method which enables performing

probabilistic assessments on dynamic systems irrespective of the failure distribution of

the basic failure events. The method uses algebraic expressions for the top-events of

DFTs and the probabilistic models of the dynamic gates are given. To facilitate the

quantitative analysis, these DFT expressions can be reduced to sum-of-product canonical

84
 To calculate probabilities related to non-complete failure states that have been removed during

optimisation.

143

forms. Minimisation is complex, but this is not uncommon when it comes to qualitatively

analyse dynamic or temporal fault trees and there can be many minimisation criteria.

In (Merle, 2010), faults or failure events are considered non-repairable and can be

treated as functions of time. For example, let a(t) be a function of time ‘t’ describing a

fault ‘a’. the possible two values of a(t) are 0 for no fault and 1 for fault. Let d(a) be the

date of occurrence of a fault, i.e., single change of the value of a(t) from 0 to 1 at d(a).

Therefore, we have:

 {

In the algebraic models of static gates, this allows functions of time to be manipulated as

classical boolean values, though with the help of two identity elements — i.e., one for a

fault which always occurs and another one for a fault which never occurs.

To express sequences of events, temporal and dynamic gates were also

introduced in Merle’s work. But here we focus mainly on the temporal operator ‘’ used

in the algebraic framework (called non-inclusive BEFORE) and which has exactly the

same semantics as the Priority-OR operator ‘|’ of Pandora — i.e., to be true, the second

input event of the non-inclusive BEFORE has to occur strictly after the first input event

or to not occur at all. Its probabilstic model is given by (assuming that the basic events

are statistically independent, and this hypothesis is maintained for all this section):

Pr[AB](t) = ∫

 (1)

Where ‘a’ and ‘b’ are two events and for an event ‘x’, is the cumulative distribution

function and is the probability density function s.t.
 .

Similarly, the probabilistic model given for the Priority-AND is as follows:

Pr[B.(AB)](t) = ∫

 (2)

Where B.(AB) is equivalent to A<B (i.e., A PAND B) in Pandora, the cumulative

distribution and the probability density functions are as defined previously (i.e., and

 for an event x, respectively).

A central issue with these probabilistic models is that they accommodate any

failure distribution and are, thus, more realistic since lots of components do not conform

to the exponential failure distribution. However, the latter is the more common failure

144

distribution of basic events and to illustrate this aspect on this particular case, let us

assume that A and B are the failure rates which are associated with the events A and B,

respectively. Therefore, we have:

 –

  –

Similarly,

 –

  –

Therefore, for the particular case of exponential failure distribution for the basic

events, we have:

Pr[AB](t) = ∫

= ∫  –

 –

= ∫  –

 – = ∫ 

–  

At t = 0, Pr[AB](0) = 0. Thus we have:

Pr[AB](t) =


 
 –   +



 
 (3)

Concerning the PAND-equivalent expression in Merle’s probabilistic model, for the case

of exponential distribution we have:

Pr[B.(AB)](t) = ∫

= ∫  –

 –

At t = 0, Pr[B.(AB)](0) = 0. Therefore, we have:

Pr[B.(AB)](t) =


 
 –    – +



 
 (4)

The application of the probabilistic model of the PAND given in (2) to the particular case

of exponential distribution given in (4) shows the same result given in (Fussell et al.,

1976) for a PAND gate with two input events.

145

There have been considerable works in the literature around solving DFTs

quantitatively [e.g., in (Amari et al., 2003) & (Fussell et al., 1976)]. However during the

period of this thesis, the only
85

 novel and mathematically sound approach that includes

POR-like
86

 gate (i.e., non-inclusive BEFORE) and accommodates any failure distribution

for the basic events is in (Merle, 2010), it also deals with qualitative analysis.

4.5.1 Some comparisons with combinatorial techniques

As stated previously in this section, the following hold under the hypothesis of statistical

independence, exponential failure distribution and non-simultaneity of occurrence of

failure events. Let A and B be two failure events with rates A and B, respectively.

Therefore, we have:

P(A AND B) = P(A) × P(B) = (1 – –) × (1 – –) (5)

= –   – – – – + 1

It was previously shown in chapter 2 section 2.3.4 that (5) gives the same result as the

result given by the Markov model of Figure 2—20, which describes the conjunctive

failure of two parallel components. Moreover, the Markov model which was optimised

for the particular case where the failure rates are identical (i.e., A = B = ) also gives the

same result as given by (5) — i.e., P(A AND B) = – - 2 + 1.

Let us now compare it with the results given using the probabilistic model in (4)

for the PAND gate. The first completion Pandora law given in chapter 3 shows that: A.B

 A<B + B<A. Also, “A<B” and “B<A” are mutually exclusive. Therefore, we have:

P(A AND B) = P(A PAND B) + P(B PAND A)

=


 
 –    – +



 
 for “A PAND B” given by (4)

+



 
 –    – +



 
 for “B PAND A” given by (4)

85
 i.e., which is found published in the literature.

86
 i.e., semantically like the Pandora POR gate.

146

= –   – – – – + 1

and this is the same result given in (5).

Let us now compare it using NOT operator (‘¬’), i.e., we deduct from one the

probabilities of either A or B occurring alone (not both) as well as the probability of

neither A nor B occurs, and as follows:

P(A failing AND B failing) = 1  P(A AND ¬B)  P(¬A AND B) – P(¬A AND ¬B)

= 1  (–  –  )  (–  –  )  (– × –)

= 1 – – – – + –  

and this is the same result given in (5).

4.5.2 Some comparisons with Markov solutions

Let us assume two components whose failure events A and B are associated with their

respective failure rates A and B. Figure 4—8 represents a Markov model for the two

failure events occurring in sequence. If B fails first, then a transition to state numbered 2

occurs. Otherwise (i.e., A fails first), a transition to state 3 occurs and will be followed by

a transition to state 4 upon a subsequent failure of B. Thus, state numbered 4 is the state

which we use to determine the Markov probabilistic model for A PAND B.

Figure 4—8. Markov model of a PAND gate with two input events (state 4)

147

If we use this Markov model (which is a state-transition diagram) as input to the

conversion algorithm presented in section 4.2.4, we also get A APAND B for state 4, as

follows (for the sake of clarity we use A and B instead of A and B, respectively):

Expression(state 2) = B|A

Expression(state 4) = B . A|B  A<B (POR transformation law #1, see chapter 3)

The differential equations are as follows:

 P1(t) = – (A+ B) P1(t)

 P2(t) = B P1(t)

 P3(t) = A P1(t) – B P3(t)

 P4(t) = B P3(t)

and the solution of the differential equations is given by:

P1(t) = –  

P2(t) =


 
 –   +



 

P3(t) = – – –  

P4(t) =


 
 –   – – +



 

On the one hand, This Markov solution shows that P2(t) is the same result given

in (3) after swapping A and B, i.e. it is the probability Pr[BA](t), or Pr[B|A](t) by using

the vocabulary of Pandora. The corresponding algebraic expression generated by the

conversion algorithm is Expression(state 2), which is equal to “B POR A” (i.e., B|A). On

the other hand, it shows that P4(t) is the result of Pr[B.(AB)](t) given in (4) or

Pr[A<B](t) by using the vocabulary of Pandora. The corresponding algebraic expression

generated by the conversion algorithm is Expression(state 4), which equal to “A PAND

B” (i.e., A<B).

Since the probability of being in state 2 is the probability of “B|A”, then the

probability of being in the lower path of the Markov model is the probability of “A|B”.

148

State 3 represents a situation where A occurred and B has not occurred (i.e., “A.¬B”).

State 4 represents, as seen earlier, a situation where both A and B occurred, but in

sequence (i.e., “A<B”). Since “A|B” means that either A occurs alone (B does not occur

at all) or both A and B occur in sequence (A occurs before B occurs), then the probability

of “A.¬B + A<B” should be equal to P3(t) + P4(t), and which should also be equal to

Pr[AB](t) — i.e., the probabilistic model given in (3), and as demonstrated next.

To calculate the probability of “A.¬B + A<B” (i.e., probability of “A|B”), we

need to recognise whether the events are independent or mutually exclusive. Statistical

independence of events is crucial in probability and statistics. Two events are statistically

independent if the occurrence of either event has no effect on the occurrence of the other.

However, “A.¬B” and “A<B” are mutually exclusive (i.e., we do not deduct the product

of their probabilities from their sum), and hence:

On the one hand, we have:

Pr(A|B) = Pr(A.¬B) + Pr(A<B)

= F(a).(1 – F(b)) + ∫

And for the particular case of exponential distribution, we have:

Pr(A|B) = – . – + ∫  –

 –

=


 
 –   +



 
 and which is the same as given in (3)

On the other hand, we have:

P3(t) + P4(t) = – – –  

+



 
 –   – – +



 

=


 
 –   +



 
 = Pr[AB](t)

and which is also the same as given in (3).

149

This means that we can optimise the Markov model of Figure 4—8 to adjust it for

the purpose of quantifying a POR gate with two input events, and hence a more accurate

model for such a POR gate is described by Figure 4—9.

Figure 4—9. Markov model of a POR gate with two input events

The differential equations are as follows:

 P1(t) = – (A+ B) P1(t)

 P2(t) = B P1(t)

 P3(t) = A P1(t)

and the solution of the differential equations is given by:

P1(t) = –  

P2(t) =


 
 –   +



 
 = Pr[B|A](t) = Pr[BA](t), as given in (3)

by swapping A and B

P3(t) =


 
 –   +



 
 = Pr[A|B](t) = Pr[AB](t), as in (3)

150

4.5.3 Probabilistic model of a POR gate with n input events

The model described by Figure 4—9 is more accurate for representing a POR gate with

two input events than the preceding model. Indeed, the model of Figure 4—8 was

originally intended to describe a PAND gate with two input events, but as we have seen it

can also be used to calculate the probabilistic expression of a POR as well. One reason to

consider the model of Figure 4—9 as more accurate for this purpose is that it does not

only serve to produce exactly the same probabilistic results for a POR as from the

preceding model, but it also represents a better candidate model for a POR gate with two

input events that we can extend easily to n input events (n N
+
 s.t. n2, see Figure 4—

10).

Figure 4—10. Markov model of a POR gate with n input events

In Figure 4—10, each i 1≤i≤n represents the failure rate associated with the

failure input event Fi 1≤i≤n of the POR gate. Therefore, the probability of being in state 3

represents the probability for the expression F1|F2|F3| … |Fn (where n2) which means that

either F1 has occurred alone (none of the Fi 2≤i≤n has occurred) or F1 has occurred first,

i.e., before any other Fi 2≤i≤n has occurred.

The differential equations are as follows:

 P1(t) = – (1+ 2+ … +n) P1(t)

151

 P2(t) = (2+3+ … +n) P1(t)

 P3(t) = 1 P1(t)

and the solution of the differential equations is given by:

P1(t) = – ∑ 

P3(t) = Pr[F1|F2|F3| … |Fn](t) =


∑ 

 – ∑ 

 +



∑ 

P3(t) represents the probabilistic model of a POR gate with n input events (n2)

for the particular case of exponential failure distribution for the basic events. It gives

exactly the same result as given in (3) for the particular case where n=2 (i.e., a POR gate

with two input events). We emphasise, once again, that the expression given in (3) is also

a particular case for the application of the exponential failure distribution to the

expression of Merle (2010) given in (1), and which accommodates any failure distribution

for the basic events.

4.6 Discussion

To better model the dynamic failure behaviour, state machines are often used, but these

typically require conversion to some other format (like fault trees or Petri nets) before

they can be analysed. Existing SM-to-FT methods focus on converting them to standard

combinatorial fault trees, but this can result in errors in situations where different

sequences of the same events have different outcomes.

In this chapter, we have presented a different approach which converts state

machines into Pandora temporal fault trees. This has the benefit of better capturing the

dynamic behaviour represented by the original state machines, thus allowing more

detailed analysis of different sequences of events. Also, our approach helps to reduce the

complexity of performing temporal FTA by generating temporal fault tree expressions

only if necessary, resulting in a more manageable logical reduction of the fault trees

overall.

We demonstrated this technique on a simple generic redundant system and

showed how the corresponding SM can be converted into temporal expressions and

subsequently analysed to produce useful qualitative information about the dynamic

152

failure behaviour of the system. We also demonstrated the quadratic growth of the

conversion algorithm with the number of full paths (from the initial state to the final

states) in the SM. The algorithm has been implemented and we hope that this approach

can be developed further and become automated as part of the HiP-HOPS safety analysis

tool framework. We also aim to extend it further and potentially make it compatible with

other SM-based modelling approaches, such as AADL.

An additional application of the conversion algorithm for the purpose of

optimising Markov models has been presented. These models are state-transition

diagrams and are well-known with the state explosion problem. Therefore, a solution

which enables the automatic reduction of the size of a Markov model (while preserving

the quantitative results for the “completely failed” state) can help to facilitate the

probabilistic assessments. Moreover, we have thoroughly investigated in this chapter

different approaches for the quantitative analysis of TFTs and presented a probabilistic

model for the quantification of a POR gate with n input events (n2). The conversion

algorithm relies mainly on the POR operator to differentiate sequences of events.

In summary, performing meaningful qualitative safety analysis on dynamic

systems means using both dynamic modelling and dynamic analysis approaches; by

converting SMs to temporal FTs, it becomes possible to do both and thus can analyse

more accurately systems which exhibit dynamic behaviour.

153

5 Compositional synthesis of Temporal Fault Trees from

State Machines

5.1 Introduction

Despite the greater expressiveness and higher-level formalism of SMs (and their

extensions like statecharts and mode automata), some open research issues still remain. A

central issue is representing large-scale dynamic systems in a way which can serve as a

solid basis for a subsequent accurate and dynamic analysis. Indeed, it is difficult to

represent in a single coherent and complete picture how a large system which is

embedded with several complex interrelated components behaves (with its constituent

parts) in conditions of failure. Also, the analysis can be unmanageable due to a

considerable number of failure events which increases with the number of components

involved.

To remedy this problem, we propose a solution which extends the analysis

approach presented in chapter 4 — i.e., conversion of SMs to TFTs. The fault trees are

generated from the SMs of the individual components of a system. These ‘sub-models’

(i.e., the SMs) are relatively small and thus easier to understand, thereby making their

corresponding TFTs tractable. For example, Figure 5—1 (b) shows the SM of one of the

components (the sensor) of the PS system.

The sensor ‘S’ is initially monitoring the primary component ‘A’. A premature
87

failure of ‘S’ causes the redundant component (‘B’) to be irrevocably disabled; as a

consequence, the composed system (the PS) relies exclusively on a single component (the

primary ‘A’). In such a situation, the failure state of ‘S’ may only deteriorate to a severe

level should an omission of output from ‘A’ (‘O-A’) occur
88

. This wouldn’t happen if the

failure of ‘S’ was not premature, as B can take over A’s job (which is still a safe level).

Therefore, the effect omission of alert signal (‘O-S’) from the sensor is restricted to a

severe failure of ‘S’. ‘O-S’ is a non-atomic
89

 event which impacts another component of

87
 During time at which the monitored component is active — i.e., if A fails, S will not be

operational to wake B up.

88
 Typically due to an internal failure of ‘A’ (omission of input ‘O-I’ is a single point of failure).

89
 i.e., a fault which is caused by failures in some other components (i.e., it can be expanded into a

combination or a sequence of events). It represents one or a group of final state in a component’s

SM.

154

the PS — i.e., similar faults typically cause another component’s SM (or the composed

system) to change its state.

(a). The PS system.

(b). SM of the sensor S.

Figure 5—1. SM of the sensor of the PS example system.

For example, if the SM of ‘S’ enters the state “Severely Failed” and thus causing

the effect ‘O-S’, this will impact the SM of ‘B’ (Figure 5—2) by a transition from “OFF”

to “Permanently OFF” (unlike ‘A’
90

, the initial state of ‘B’ is “OFF”). Otherwise (i.e., if

‘O-A’ happens first), then ‘S’ wakes ‘B’ up instead (i.e., this alters the state of ‘B’ to

“ON”), and in which case nothing more but an internal failure of ‘B’ leads the SM to a

severe level of failure (the same if ‘B’ fails dormant then ‘O-A’ occurs). Omission of

input ‘O-I’ is a single point of failure for the system. It is, therefore, represented at system

level — i.e., in the SM of the PS (see Figure 5—3).

90
 Initially, the PS system is functioning in primary mode.

155

Figure 5—2. SM of the backup B of the PS system.

Unlike the detailed SM of the PS presented in the previous chapters, it is here a

highly abstract description of the monolithic behaviour of the system. The system fails as

a whole (see Figure 5—3) if there is an omission of input (‘O-I’) or if the backup is

unable to take over a failed primary component (and thus omission of output ‘O-B’ from

‘B’) — assuming that the ‘Out’ component of Figure 5—1 (a) does not fail on its own (it

only abstracts the output of the system).

Figure 5—3. Highly abstract SM depicting the monolithic behaviour of the PS.

In this way, the SM of the systems is an abstraction of a hierarchy of the SMs of its

components. An event causing a transition in a SM is possibly due to another SM

entering one of possible final states (e.g., if the event is not an internal failure). For

instance, if the SM of ‘B’ enters either “Permanently OFF” or “Severely Failed”, this will

156

cause ‘O-B’ to occur in the SM of the PS. Similarly, if the SM of ‘S’ enters its “Severely

Failed” final state, this will cause ‘O-S’ to occur in the SM of ‘B’.

Modelling the behavioural aspects of the components in this way forms the basis

of our compositional approach. The TFTs will be generated from the individual

component SMs, and no longer from a single full-scale SM of the system as in the

previous chapter. The relatively small component TFTs will be thereafter synthesised by

merging then into bigger ones (ultimately extensive system TFTs). For example, Figure

5—4 shows the fault tree with top-event ‘O-S’ (generated from the SM of ‘S’) merged

into the fault tree with top-event ‘O-B’ (generated from the SM of ‘B’). These are

synthesised to form one expansive cut-sequence of the system fault tree with top-event

‘PS Failed’ (the left branch of Figure 5—4).

Figure 5—4. Synthesised fault trees.

Using a simple system like the presented PS, we have shown an example for the

synthesis of the system TFT (which corresponds to the system failure ‘PS Failed’) from

157

the fault trees which are generated from the SMs of the components. In this chapter, we

develop this technique to enable such compositional synthesis of TFTs on a large-scale.

Work on TFT minimisation itself is out of the scope of the thesis; nevertheless,

minimising the resulted fault trees does not necessarily take place only after the synthesis

completes (i.e., once the system TFTs become extensively developed). Indeed, the local

TFTs (which are generated from the components’ SMs) can be logically reduced

wherever possible to remove any new redundancies or contradictions before synthesising

them.

5.2 The TFT synthesis approach

Our synthesis technique relies, mainly, on an accurate compositional description of the

failure information which complements the architecture of the system to analyse — a

state automata model in the form of compositional SMs. The second pillar of the

proposed approach is a variation of the conversion algorithm presented in4. We use the

algorithm to generate the necessary failure expressions from the individual SMs (we

concentrate on the expressions of the final states
91

 that represent output deviations). The

third pillar is the synthesis algorithm by which the fault trees of these expressions will be

merged into (ultimately) comprehensive system fault trees.

The synthesis works backwards by starting with the TFTs of the system failures

(i.e., total failures as top events). For instance, in the context of the PS system studied

earlier (Figure 5—1.a), we start to generate the first level of the system fault tree of the

top event ‘PS Failed’ from the highly abstract SM of the PS (see Figure 5—3). Thus, the

generated preliminary fault tree for the example system is ‘PS Failed’ = ‘O-B’ OR ‘O-I’.

Thereafter, for each event that is derived from the component failures, the synthesis

method expands the preliminary system TFTs with the fault trees of the components.

Such non-atomic events are typically represented each by the top event of a component’s

fault tree. For example, ‘O-B’ (which is an output deviation of the component B) is the

top event of the fault tree ‘O-S’ OR (‘O-A’ AND ‘B fails’). Therefore, expanding ‘PS

Failed’ gives ‘O-S’ OR (‘O-A’ AND ‘B fails’) OR ‘O-I’. This will be repeated at each

level of every system TFT until no more non-atomic events remain — i.e., the expression

of each system failure cannot be expanded any further as all possible substitutions have

91
 We turn our attention to the final states that impact other components or the super-component,

i.e., entering such a final state causes a transition in another SM in the hierarchy.

158

taken place, and the complete fault tree has been synthesised for that particular system

failure. For the PS, by substituting ‘O-S’ with ‘S fails’ PAND ‘O-A’ (TFT of component

S) then ‘O-A’ with ‘A fails’ (FT of component A), the extensive system-wide TFT of ‘PS

Failed’ becomes (‘S fails’ PAND ‘A fails’) OR (‘A fails’ AND ‘B fails’) OR ‘O-I’.

At the end of the synthesis, for every fully developed system (temporal) FT, a

final analysis takes place to obtain more reduced cut sequences wherever possible (or

minimal cut sets, if the fault tree contains no temporal logic), by using a temporal

qualitative analysis approach like Pandora
92

. From this point onwards we will refer to the

proposed technique, i.e., the transformation from State Automata to synthesised Fault-

trees extended (if necessary) with PandORA temporal information as SAF-ORA
93

.

5.2.1 Compositional modelling of the analysis-related information

The first central issue mentioned earlier and on which Safora relies is the compositional

modelling of the system behaviour. This consists of a highly abstract SM which describes

the monolithic failure behaviour of the system at the top-level of the hierarchy and the

components (and sub-components) SMs at the lower levels (see Figure 5—5). Typically,

each event of the abstract SM of the system is the effect of one (or more) final state(s)

being reached in a (or some) component SM(s). If it is the effect of more than one

component SM each reaching a final state, then the order in which the final states were

entered may affect the overall outcome (and in which case the conversion algorithm will

enforce a temporal order as seen in chapter 4).

For example, if two of the SMs of the sub-components level (those which are

downstream in the event-causal chain, see Figure 5—5 bottom) each enters a final state,

then the remaining SM of the same level (which is upstream) enters its final state too.

Thereafter, the conversion algorithm (when applied to the latter SM) will determine if the

temporal order in which the first two final states were reached is relevant (and thus needs

to be preserved). Moreover, several final states in a SM can each (when entered) cause a

92
 The version which is adapted to SMs, i.e., without simultaneity of events.

93
 Although half of Safora (SAF) is an acronym — State Automata to Fault-trees, the other half

(ORA) is not, but preserves the meaning of hour or “time” from its Greek origin (ώρα in Greek).

The reason is that Safora is conceived for the premier purpose to produce synthesised temporal

FTs from state automata. Nevertheless, Safora has the dual benefit to produce both types of FTs

(i.e., static and dynamic) — e.g., if the temporal flavour is not deemed necessary for a fault tree,

then it will be static.

159

same event to occur in any SM upstream in the event-causal chain. In Figure 5—2 for

instance, reaching either final state “Permanently OFF” or “Severely Failed” in the SM of

the standby component B will cause the event ‘O-B’ (omission of output from B) to occur

in the SM of the PS system — i.e., a disjunction of final states being reached.

Figure 5—5. Compositional modelling of the system failure behaviour.

Figure 5—5 (top) also shows a situation where a disjunctive combination of entered final

states can cause a safety issue upstream (i.e., a system failure in the case of Figure 5—5).

In other words, the final state of the abstract SM (top of Figure 5—5) is reached through

160

different paths; each path has an event which is the effect of reaching a final state in a SM

downstream (middle of Figure 5—5).

In this section, we have shown and discussed a way to describe how a system and

its constituent parts behave in conditions of failure. The use of compositional SMs for this

purpose forms the basis of Safora. In that sense, the generated (temporal) FTs, their

synthesis and the produced analysis results all depend on the precision of the state

automata representation of the failure behaviour.

5.2.2 The Safora automatic generation and synthesis of TFTs

Assuming a system which is embedded with several complex interrelated

components, each modelled by its own SM; the idea of Safora makes it possible to

construct the system TFTs for a final analysis in a compositional manner. The first step

consists of transforming the hierarchy top level SM — i.e., a highly abstract description

of the monolithic behaviour of the system — to produce a set of preliminary TFTs (see

Figure 5—6).

161

Figure 5—6. Overview of the Safora method.

Algorithm 1 takes the top level SM as parameter. Then, for each final state (line 3), it

generates the corresponding failure expression (line 4) of a preliminary system TFT (the

definitions used are the same definitions
94

 of chapter 4, section 4.2.4). Ultimately, the

algorithm produces a set of system failure expressions (line 7); each corresponds to the

first level of a system TFT.

94
 Briefly, a SM is a quadruple which consists of: S (a finite set of states), Σ (a finite set of events),

δ (a function: S × Σ → S s.t. for (u, u’)∈S
2
 and e∈Σ, u’ = δ(u, e) iff e is incident from u to u’, i.e.,

u

 u’) and s0 (the initial state). F is a subset of S containing the final states of the SM.

162

The ‘GenrateFailureExpression’ method in line 4 of the algorithm takes the

system abstract SM as first parameter and a final state for which it generates a failure

expression as second parameter. Then, Algorithm 2 generates that failure expression; it is

a variation of the two algorithms of chapter 4 section 4.2.4) merged together. It is distinct

in the sense that it produces only the failure expression of the designated final state (the

second parameter), rather than a set of expressions i.e. one per final state like in chapter 4.

At this stage, since these failure expressions are generated from a highly abstract

SM, each typically contains mainly non-atomic (i.e., expandable) events. For example,

Figure 5—6 shows the first level of the system fault tree composed of two non-atomic

events, each is a fault tree top-event which corresponds to a SM final state of a lower

level component — entering one of these final states causes a transition to the final state

in the SM upstream, i.e. a complete failure which corresponds to the top-event of the

preliminary system FT. Algorithm 3 is developed to synthesise the lower levels of such

FTs by expanding
95

 every non-atomic event (lines 2 and 3). We would like to emphasise,

though, that a non-atomic event is handled indistinguishably in the Safora approach. In

that sense, such event can be the effect of a source component SM as well as a sub-

component SM being in a final state — both cases are commonly referred to as

downstream SMs in the state automata hierarchy of Figure 5—6.

95
 A non-atomic event which represents a failure of a component without a corresponding SM

remains undeveloped.

163

In the case of a source connected component SM that is in an affecting
96

 final state; this

typically represents an output deviation from the source component which corresponds to

a matching input deviation into the impacted component — e.g., the final state ‘Severely

Failed’ of the sensor SM (see Figure 5—1.b) which affects the SM of the backup

component B of the PS (see Figure 5—2). In the second case (i.e., a sub-component’s SM

being in an affecting final state), this typically represents an output deviation from the

sub-component which causes the composed component’s SM to change its state — e.g.

96
 i.e., it impacts a component upstream.

164

the final states of the SM of backup B (see Figure 5—2) each causes the change of state

to ‘Failed’ in the top-level SM of the PS (see Figure 5—3).

The synthesis is done by working backwards, starting with the expressions of the system

failures. The input of algorithm 3 is the set of expressions which are generated from a

highly abstract system SM (like the top-level SM of Figure 5—6). The outcome consists

of synthesised system fault trees, reached by recursively merging the component fault tree

expression which corresponds to a non-atomic event into the higher level expression (line

3) — the ‘SynthesiseFaultTree’ method is first invoked to expand the non-atomic events

of the preliminary failure expressions (like the events which are immediately below the

top event of Figure 5—6), then it recursively synthesises them into, ultimately, full-scale

system-wide TFTs (algorithm 4).

165

If distinct final states of a component’s SM represent the same failure — i.e., an identical

output deviation (e.g. omission of output) from that particular component — then the

TFTs which correspond to these final states need to be merged, such that each TFT

becomes a new branch of a common bigger tree in a disjunctive form; this is because

either branch can lead to that same failure.

Therefore, given a failure expression  and a non-atomic event  of , if the

‘SynthesiseFaultTree’ method finds the state machine which produces the output failure 

(line 1 of algorithm 4), then it generates a disjunction of local TFT expressions — one

expression for each final state that represents  (lines 3 through 5). The newly generated

TFTs for each component can then be minimised if appropriate to obtain a simplified

intermediate form; this helps to remove any redundancies or complexities as early in the

process as possible. Next, these TFTs (combined in a disjunctive form) will be merged

into  by substituting  (line 6). The newly merged disjunctive tree can contain both

symbols which represent basic events (e.g. internal failures of the component from which

it was generated) as well as non-atomic events. In the case of newly introduced non-

atomic events , the algorithm (lines 7 through 9) recursively synthesises each

166

corresponding TFT into the fault tree represented by  (assuming the state automata

contains the SM which produces ).

When no more non-atomic events remain in the expression, the system fault tree

has been thoroughly synthesised for that particular system failure as all possible

substitutions have taken place. At this point, a final analysis takes place to further reduce

the cut sequences (or the cut sets, if it contains no temporal logic) and thus determines the

minimal sequences or combinations of events that lead to that system failure.

5.3 Case study

5.3.1 A generic triple-module redundant system

To better illustrate how our proposed compositional approach works, we use a Generic

Triple-module Redundant (GTR) system, as depicted by Figure 5—7 (originally used in

Walker & Papadopoulos, 2006). Components A, B and C are abstract representations of

any kind of input, control or actuating device. These are arranged in a redundant series

such that A is the primary component which is backed up, in order, by components B and

C. S1 and S2 are monitoring sensors designed to detect omission of output from A and B

respectively and to activate, in response, the next backup
97

 in the series. D is simply an

abstraction of the output of the GTR and ‘I’ represents the input to the system.

Figure 5—7. GTR system

97
 If S1 detects omission of output from A it should activate B, and if S2 detects omission of

output from B it should activate C.

167

The results of standard FTA performed on the system can be expressed as the

following list of MCSs (Walker M. , 2009):

1. Omission of input at I.

2. All of A, B, and C fail.

3. Both A and S1 fail (B will not be activated).

4. All of A, B, and S2 fail (C is not activated).

5. Failure of D.

At first glance, all appear to be correct. If there is no input to the system, then it cannot

operate; similarly, if the output component of the system fails, then the system cannot

function. If all three main components (A, B, and C) fail, then the system will likewise

fail as well. However, MCS #3 and MCS #4 are more complex. These detail situations

where the monitoring sensors themselves fail, and are thus unable to detect a failure of

the monitored component. In consequence, the next backup cannot be activated and

thereby leading to premature system failure.

However, like the system of Figure 5—1.a, the GTR system exhibits dynamic

behaviour: its true failure behaviour depends on the chronology of events. The system can

function in any of three modes – with A active, B active, or C active – and the transition

between those modes is triggered by omission failures detected by the monitors S1 and

S2. Different sequences of failure events can lead to the system failing in different ways,

and not all of them are correctly represented by the results.

For example, assume that B fails first, and then A fails second; in this case,

sensor S1 will not be able to activate B when it detects omission of output from A, and

sensor S2 will not activate C because B was never activated — it can only detect an

omission of output once its monitored component is activated. Thus the sequence "B fails

before A fails" will cause the system to fail regardless of the status of C and S2. This

means that MCSs #2 and #4 are unduly optimistic — in certain cases, the system will fail

without all of the events in those MCSs having to occur.

Similarly, S1 failing before A means that component B will not be activated upon

omission of output from A, since the monitor is not operational and thus unable to detect

the omission. Again, this means that the system can fail irrespective of the state of S2 and

C. However, if S1 fails after A, then it has no effect on the system: it has already served

its purpose and activated B, so unless there are further failures elsewhere, the system will

168

continue to operate. Thus MCS #3 can be unnecessarily pessimistic in this case. The same

is also true of the relationship between B and S2 — if S2 fails after it has detected

omission of B, then it has no effect on the system.

Clearly, standard combinatorial fault trees do not always produce accurate results

for even simple dynamic systems like this one. In this example, we have seen that

although FTA suggests a failure of all of A, B, and C is necessary to cause system failure,

a failure of B before A is sufficient, giving a false sense of security; this information, had

it been known, may have resulted in a different system design, e.g. a triple voter or some

other different redundancy architecture.

To remedy this problem, we show how we can generate the TFTs from the SMs

of the individual components. Thereafter, we demonstrate the Safora approach by

building the system TFT (in this case there is only one — i.e., total failure of the GTR

system as top event) and then performing the post-synthesis temporal qualitative analysis

on it — some temporal logical reductions may be possible to perform during the synthesis

of the component TFTs.

5.3.2 State automata of the GTR

The highly abstract description of the monolithic failure behaviour of the GTR system is

depicted by Figure 5—8. It corresponds to the top-level SM of the state automata

hierarchy (see system level of Figure 5—5. Compositional modelling of the system failure

behaviour.) — the remaining SMs in this section correspond to the components level of

Figure 5—5 (each one of these represents the failure behaviour of a component). The

system is initially active (state ‘ON’); but it totally fails if there is omission of output

from component D (i.e., ‘O-D’) or omission of input to the system (i.e., ‘O-I’).

Figure 5—8. Abstract SM of the GTR

169

Despite the fact that ‘I’ is input to all three components A, B and C (see Figure

5—7 of the GTR), ‘O-I’ is represented at the system level rather than repeated in each

component, as can be seen in Figure 5—8. This is because ‘O-I’ affects the whole GTR

(it is a single point of failure for the system). Thus, the SM of component A (Figure 5—9)

has simply one path from ‘ON’ to ‘Failed’, with the effect of omission of output from A

(‘O-A’). The state transition of A is assumed to be triggered only by a basic event of the

component (e.g. an internal failure ‘A fails’), since a lack of input is represented by O-I at

the system level.

Figure 5—9. SM of A

Sensors S1 and S2 have similar jobs (which is to activate the next backup if

omission of output is detected from the monitored component). There is, therefore,

potential for reuse of the sensor SM from Figure 5—1 (b), with ‘O-A’ replaced by an

input failure from A or B and ‘S fails’ becoming ‘S1 fails’ or ‘S2 fails’ as appropriate.

The state machine for S1 is shown in Figure 5—10; it is identical to Figure 5—1 (b)

except that ‘S1 fails’ and ‘O-S1’ replace ‘S fails’ and ‘O-S’, respectively.

Figure 5—10. SM of S1

170

However, for the SM of S2 (shown in Figure 5—11), we need to distinguish

between two types of omission of output from B. ‘O-B Not Severe’ is a detectable

omission of output from B and occurs when B has been activated by S1 upon failure of A

and then subsequently fails; it is the effect of entering state ‘Safely Failed’ in the SM of B

(see Figure 5—12) and allows S2 to activate C, assuming S2 itself has not yet failed. The

other kind of omission is ‘O-B Severe’, an undetectable omission of B caused either by B

failing dormant or S1 failing prematurely; either case means that S1 is unable to activate

B upon failure of A. This omission is the effect of B entering the ‘Permanently OFF’ or

‘Severely Failed’ states, as seen in Figure 5—12.

Figure 5—11. SM of S2

Figure 5—12. SM of B

171

As can be seen from Figure 5—14, ‘O-B Severe’ will lead the system to a total

failure by causing an omission of output from D (‘O-D’). This in turn alters the state of

the GTR system to ‘Failed’ (i.e., complete failure of the system) as shown in Figure 5—8.

The SM of D also shows an additional cause for O-D: the basic event ‘D fails’. This is the

only other single point of failure for the system.

For component C (SM of Figure 5—13), there are two final states, both with

omission of output from C (O-C) as common effect. The state ‘Permanently OFF’ means

that C will never be activated and is caused by O-S2 (i.e. S2 has prematurely failed and

both A and B have failed in sequence). The other final state is a state where A and B have

failed in sequence and where C has also failed (caused by the event ‘C fails’). Omission

from C is the third cause of failure for output component D, leading to O-D, and thereby

causing a total failure of the system.

Figure 5—13. SM of C

Note that A and D are each initially in state ‘ON’ — i.e. the GTR system is

initially working with its primary component, and the output is being delivered by the

system. Backup components have their initial states set to ‘OFF’ and sensors are initially

set to ‘Monitoring’.

172

Figure 5—14. SM of D

5.3.3 Synthesis and analysis of TFTs

At this stage, we are ready to start with the highly abstract SM of the GTR, to generate a

set of preliminary system fault trees — one TFT per final state in general (there is only

one final state in the SM of the GTR in particular). The first level of the GTR system fault

tree is represented as follows (by application of algorithms 1 then 2 of section 5.2.2 “The

Safora automatic generation and synthesis of TFTs”):

Failed (of the GTR system) = O-I + O-D

No logical reduction is possible here at this stage. Thereafter, the application of algorithm

3 (in the same section as above) on the system failure expression will call the method

‘SynthesiseFaultTree’ to expand the non-atomic event ‘O-D’. This is done by searching

in the state automata model for the state machine that produces ‘O-D’ as effect of

entering, at least, one of its final states.

Thereafter, by application of the algorithm of the method ‘SynthesiseFaultTree’

(i.e., algorithm 4) on the SM of component D
98

, we generate a disjunction of failure

expressions; each corresponds to a final state that represents ‘O-D’ (lines 3 to 5).

98
 We assume that all necessary state machines exist in the Safora model (i.e., we have a complete

state automata). If, for example, the SM of D is not part of the model, then ‘O-D’ will be treated

like an atomic event (i.e., it remains as it is and no further work needs to be done, see algorithm 4

line 1) — this is the case of ‘O-I’ as it represents an input deviation which cannot be expanded any

further.

173

Therefore, we have:

From SM of D:

For the sake of clarity, ‘D’ is an abbreviation of ‘D fails’ in the expression.

 Failed(of component D) = D

 OFF = O-C + O-B Severe

Similarly, later on in this section we use the same notation for all the internal failures of

the components — i.e., ‘A’ is an abbreviation of ‘A fails’, ‘B’ is an abbreviation of ‘B

fails’…etc. The failure expression leading to ‘O-D’ is the disjunction of the above

expressions leading to the final states “Failed” and “OFF”. Therefore, we have:

O-D = D + O-C + O-B Severe

Again no logical reduction of the expression is possible at this stage. So, we proceed with

merging (line 6) the fault tree with top event ‘O-D’ into the first level of the system fault

tree to obtain the following result in the next level:

Failed = O-I + D + O-C + O-B Severe

The inserted fault tree expression leading to the top event ‘O-D’ has introduced new non-

atomic events into the expanded system expression. These events also represent each a

top event of a component’s (temporal) fault tree. Therefore, their corresponding

expressions need to be merged into the system expression. Algorithm 4 iterates over these

non-atomic events (lines 7 through 9), recursively calls the ‘SynthesiseFaultTree’ method

for each one of these (line 8) in order to determine the corresponding local failure

expression (lines 3 through 5), and then synthesise each generated expression into the

system failure expression (line 6). Thus, the system fault tree becomes gradually more

expanded since, at each iteration, a failure expression local to a component is generated

from the component’s SM and then synthesised into the system expression.

For example, the newly introduced expandable events into the system failure

expression of the second level are ‘O-B Severe’ and ‘O-C’, each is represented by two

final states of the SM producing it — the states “Permanently OFF” and “Severely

Failed” of the SM of B each represents ‘O-B Severe’ (see Figure 5—12), and similarly

the states “Permanently OFF” and “Failed” of the SM of C each represents ‘O-C’ (see

Figure 5—13). Thus, each top event will be replaced with the disjunction of the failure

174

expressions of the final states representing it. Lines 3 through 5 of algorithm 4 generate

the below failure expressions through the method ‘GenerateFailureExpression’

(described in algorithm 2) to construct the fault trees leading to the output deviations ‘O-

B Severe’ and ‘O-C’.

From SM of B:

 Permanently OFF = O-S1

 Severely Failed = O-A.(B|O-A)

(equivalent to B<O-A)

Therefore, the TFT which leads to ‘O-B Severe’ is represented by the below disjunction

of failure expressions:

O-B Severe = O-S1 + O-A.B|O-A

Some initial minimisation of this failure expression can take place using the temporal law

(A|B).B  A<B.

Thus, we have now:

O-B Severe = O-S1 + B<O-A

As a result, the following is a more expanded system failure expression, and which

corresponds to a temporal fault tree (the use of a temporal gate is necessary):

Failed = O-I + D + O-C + O-S1 + B<O-A

‘O-A’ and ‘O-S1’ are now the most recently introduced non-atomic events and the

synthesis algorithm is a depth first traversal and expansion of the fault tree.

Therefore, we have:

From SM of A:

O-A = Failed(of component A) = A

Therefore, the system failure expression becomes as follows:

Failed = O-I + D + O-C + O-S1 + B<A

175

From SM of S1:

O-S1 = Severely Failed(of the sensor S1) = O-A.S1|O-A

Again, we can use the law (A|B).B  A<B to apply an initial minimisation on the failure

expression of the sensor. Thus, we now have:

O-S1 = S1<O-A

Therefore, we have:

Failed = O-I + D + O-C + S1<O-A + B<A

Since the substitution of ‘O-S1’ with its corresponding expression has introduced ‘O-A’

again, the algorithm synthesises once more the expression leading to ‘O-A’ into the

system expression. Thus, we have now:

Failed = O-I + D + O-C + S1<A + B<A

At this stage, the remaining non-atomic event is O-C — it was introduced after

synthesising the fault tree of component D into the system-wide fault tree (through the

synthesis of the corresponding expressions).

Therefore,

From SM of C:

 Permanently OFF = O-S2

 Failed = C.(O-B Not Severe)

The fault tree which leads to O-C is thus the below disjunction of the two expressions:

O-C = O-S2 + C.(O-B Not Severe)

A more expanded system failure expression is, thus, as follows:

Failed = O-I + D + O-S2 + C.(O-B Not Severe) + S1<A + B<A

Obviously, at this level of the system TFT synthesis, new non-atomic events were also

introduced through the local failure expression of component C which leads to ‘O-C’,

namely ‘O-S2’ and ‘O-B Not Severe’. Omission from sensor S2 (‘O-S2’) is caused by a

severe failure of the sensor which has a TFT expression similar to that one of sensor S1,

176

but according to the output omission from its monitored component (see section 5.3.2

about the sensor S2).

Therefore,

From SM of S2:

O-S2 = Severely Failed(of the sensor S2) = (O-B Not Severe).S2|(O-B Not Severe)

Similarly, the expression can be minimised to become as follows:

O-S2 = S2<(O-B Not Severe)

The synthesis of the failure expression of ‘O-S2’ into the system failure expression gives:

Failed = O-I + D + S2<(O-B Not Severe) + C.(O-B Not Severe) + S1<A +

B<A

However, the local failure expression of the sensor has also introduced the non-atomic

event ‘O-B Not Severe’.

Therefore:

From SM of B:

O-B Not Severe = Safely Failed = B.O-A|B

The expression can also be logically reduced to become as follows (using the same

temporal law as in the previous reduction (A|B).B  A<B):

O-B Not Severe = O-A<B

This gives a more expanded system failure expression by substituting the first occurrence

of ‘O-B Not Severe’ with its minimised failure expression, such as:

Failed = O-I + D + S2<(O-B Not Severe) + C.(O-A<B) + S1<A + B<A

Thereafter, the newly introduced ‘O-A’ will be substituted with ‘A fails’ (abbreviated A),

and hence:

Failed = O-I + D + S2<(O-B Not Severe) + C.(A<B) + S1<A + B<A

177

Similarly, substituting the second occurrence of ‘O-B Not Severe’ gives:

Failed = O-I + D + S2<(O-A<B) + C.(A<B) + S1<A + B<A

Then we synthesise the expression of the last occurrence of ‘O-A’ into the system

expression, and hence:

Failed = O-I + D + S2<(A<B) + C.(A<B) + S1<A + B<A

Despite the substitution of all non-atomic events, the system failure expression can be

expanded further. The cut-sequence ‘S2<(A<B)’ shows that there is no order between

‘S2’ and ‘A’. Indeed, ‘S2<(A<B)’ is true if ‘S2’ occurs before the PAND gate with the

two inputs ‘A’ before ‘B’ evaluates to true. Therefore, we can expand it into a disjunctive

form of other cut-sequences, each with a possible order in which the events can occur

while preserving the same overall outcome, and hence:

S2<(A<B) = S2<A<B + A<S2<B

In the two possibilities of events order (i.e., ‘S2<A<B’ and ‘A<S2<B’), ‘S2’ occurs

before ‘B’ and then also before ‘A<B’ evaluates to true. Therefore, the final expansion of

the system failure expression gives:

Failed = O-I + D + S2<A<B + A<S2<B + C.(A<B) + S1<A + B<A

Figure 5—15 summarises the synthesis process of the system TFT through a depth first

expansion of the non-atomic events. The figure (which is a graphical representation of the

system failure expression) clearly shows the below results contrasted against the results

obtained from FTA (see Table 5—1).

178

Figure 5—15. Synthesized TFT of the GTR (depth first expansion of non-atomic events)

Table 5—1. Comparison with FTA results

FTA minimal cut sets

(Walker M. , 2009)

Safora generated cut-sequences

(minimised using Pandora)

Omission of input at I Idem

Failure of D Idem

All of A, B, and C fail

B<A

C.A<B

179

Both A and S1 fail S1<A

All of A, B, and S2 fail

S2<A<B

A<S2<B

While one of the FTA results suggests all three components A, B and C need to

fail for a total failure, the expressions which are generated by the Safora technique (and

minimised using Pandora) show it as a dangerously optimistic assumption. Indeed, the

system can fail for less than that — i.e., a total failure does not require C to fail if B fails

before A; C is required to fail otherwise. Another FTA result, which suggests both A and

S1 need to fail for a complete failure of the system, seems to be overly pessimistic. Our

method shows that the combination of failures of S1 and A is order sensitive — i.e., while

S1 failing before A is relevant to the system failure behaviour, the opposite is still a safe

situation. Finally, the Safora technique also shows that the combination of failures of A,

B and S2 is order sensitive. The combination is relevant to the system failure behaviour

irrespective of the order in which A and S2 fail, but each needs to fail before B.

5.3.4 Comparative evaluation

This part is aimed at evaluating the Safora technique by comparing it against the

approach where the system is directly modelled with TFTs for a subsequent Pandora

qualitative analysis. If the system was originally and entirely modelled as a TFT instead

of using component SMs, we may have arrived at a fault tree expression such as the

following (Mahmud et al., 2012):

Failed = D + (A)

O-I + (B)

S1<(A+O-I) + (C)

(B + O-I)<(A+O-I) + (D)

S2<((A + O-I)<B + (A + O-I)<O-I) + (E)

180

C . ((A + O-I)<B + (A + O-I)<O-I) (F)

In this approach, minimisation of the system failure expression is considerably

more complex. (A) and (B) are each a single point of failure, the remaining expressions

can be analysed as follows:

(C) S1<(A+O-I):

1. S1<(A+O-I)

2. (S1|A).(S1|O-I).(A+O-I)

3. (S1|A).(S1|O-I).A + (S1|A).(S1|O-I).O-I

4. (S1<A).(S1|O-I) + (S1|A).(S1<O-I)

5. S1<A|O-I + S1<O-I<A + S1<O-I|A + S1<A<O-I

6. S1<A|O-I + S1<O-I|A + S1<A<O-I

7. S1<A|O-I + S1<O-I|A

(D) (B + O-I)<(A+O-I):

Using the temporal law (X + Y)<Z  X<Z + Y<Z, The cut-sequence (D) can be

expressed as a disjunctive form B<(A + O-I) + O-I<(A + O-I), where B<(A + O-I) is

similar to (C) and thus can be substituted in the same way with B<A|O-I + B<O-I|A,

while O-I<(A + O-I) contains a contradiction and will be, therefore, eliminated:

1. O-I<(A+O-I)

2. (O-I|A).(O-I|O-I).(A+O-I)

3. (O-I|A).0.(A+O-I)

4. 0

181

(E) S2<((A + O-I)<B + (A + O-I)<O-I):

(E) is more complex, and hence more difficult to reduce:

1. S2<((A + O-I)<B + (A + O-I)<O-I)

2. S2<(A<B + O-I<B + A<O-I + O-I<O-I)

3. S2<(A<B + O-I<B + A<O-I + 0)

4. S2<(A<B + O-I<B + A<O-I)

5. S2|(A<B) . S2|(O-I<B + A<O-I) . (A<B + O-I<B + A<O-I)

6. S2|(A<B) . S2|(O-I<B + A<O-I) . A<B + S2|(A<B). S2|(O-I<B + A<O-I) .

(O-I<B + A<O-I)

7. S2|(A<B) . S2|(O-I<B + A<O-I) . A<B + S2|(A<B). S2|(O-I<B) . S2|(A<O-

I) . (O-I<B + A<O-I)

8. S2|(A<B) . S2|(O-I<B + A<O-I) . A<B + S2|(A<B) . S2|(O-I<B) . S2|(A<O-

I) . O-I<B + S2|(A<B) . S2|(O-I<B) . S2|(A<O-I) . A<O-I

9. S2|(A<B) . S2|(O-I<B) . S2|(A<O-I) . A<B + S2|(A<B) . S2|(O-I<B) .

S2|(A<O-I) . O-I<B + S2|(A<B) . S2|(O-I<B) . S2|(A<O-I) . A<O-I

10. S2<(A<B) . S2|(O-I<B) . S2|(A<O-I) + S2|(A<B) . S2<(O-I<B) . S2|(A<O-I)

+ S2|(A<B) . S2|(O-I<B). S2<(A<O-I)

11. O-I<S2<A<B + S2<O-I<A<B + S2<A<O-I<B + S2<A<B|O-I + O-

I<A<S2<B + A<S2<O-I<B + A<S2<B|O-I + A<S2<O-I<B + S2<A<O-I<B

+ S2<O-I<A<B + S2<O-I<B|A + O-I<A<S2<B + O-I<S2<A<B + O-

I<S2<B|A + B<S2<A<O-I + S2<B<A<O-I + S2<A<B<O-I + S2<A<O-I|B +

B<A<S2<O-I + A<S2<B<O-I + A<S2<O-I|B

(F) C . ((A + O-I)<B + (A + O-I)<O-I):

This cut-sequence is relatively easier to reduce and as follows:

1. C.((A + O-I)<B + (A + O-I)<O-I)

182

2. C.(A<B + O-I<B + A<O-I + O-I<O-I)

3. C.(A<B + O-I<B + A<O-I + 0)

4. C.(A<B + O-I<B + A<O-I)

5. C.A<B + C.O-I<B + C.A<O-I

Therefore, the system failure expression is the disjunction of the following cut-sequences:

1. D

2. O-I

3. S1<A|O-I

4. S1<O-I|A

5. B<A|O-I

6. B<O-I|A

7. O-I<S2<A<B

8. S2<O-I<A<B

9. S2<A<O-I<B

10. S2<A<B|O-I

11. O-I<A<S2<B

12. A<S2<O-I<B

13. A<S2<B|O-I

14. A<S2<O-I<B

15. S2<A<O-I<B

16. S2<O-I<A<B

17. S2<O-I<B|A

18. O-I<A<S2<B

183

19. O-I<S2<A<B

20. O-I<S2<B|A

21. B<S2<A<O-I

22. S2<B<A<O-I

23. S2<A<B<O-I

24. S2<A<O-I|B

25. B<A<S2<O-I

26. A<S2<B<O-I

27. A<S2<O-I|B

28. C.A<B

29. C.O-I<B

30. C.A<O-I

At this stage of the minimisation, the individual cut-sequences have been each

logically reduced independently. We can also minimise the cut-sequences against each

other. For example, we can apply the rule A|B+B  A+B to several cut-sequences (e.g.

cut-sequences 2, 3 and 5) and the Boolean absorption laws A<B + A  A and A<B + B

 B to many others (such as 4 and 6). This gives the following final list of seven

minimal cut-sequences:

1. D

2. O-I

3. S1< A

4. B< A

5. S2<A<B

6. A<S2<B

184

7. C.A<B

These results are the same as those obtained using the Safora method, but they are much

more complex and they required more steps and thus more time and effort to achieve

them.

5.4 Discussion

We have presented a method for the compositional synthesis of TFTs from SMs — each

SM describes the failure behaviour of a component, except one which is a highly abstract

description of the monolithic failure behaviour of the system. As for the analysis, it can

be performed at the component level wherever possible — i.e., logical reduction of the

local TFT which is generated from a component’s SM before its synthesis into the system

TFT. This makes the entire process (i.e., failure modelling, analysis and synthesis)

substantially compositional and potentially more scalable; as large-scale system TFTs are

synthesised from smaller component TFTs.

The technique works backwards, starting with the first level of each system TFT

(i.e., total failures as top events) generated from the abstract system SM, and then

recursively generates the TFTs from the SMs of the components which cause the top

events. Next, these local TFTs are analysed as much as possible then merged into their

corresponding system-wide TFTs. A final analysis takes place once we obtain a fully

expanded system TFT (or set of TFTs) in order to determine the root causes of the

failures. The TFTs are generated, synthesised and analysed without sacrificing any

information about the dynamic behaviour of the system.

A central issue of the approach is the compositional modelling of the failure

behaviour. Firstly, this helps to better manage the complexity involved in the

transformations from SMs to TFTs — the worst case complexity of the conversion

algorithm is O(n
2
), n being the number of paths from the initial state to the final states in

the SM (see chapter 4, section 4.3). Secondly, the hierarchical modelling of the failure

behaviour also simplifies the task of the system designers, allowing them to focus on

modelling local failures in each component. Thirdly, the generated TFTs are

correspondingly much smaller and then simpler to analyse and to synthesise into system

TFTs.

185

Concerning the analysis outcome, the accuracy of the results relies strongly on

the preciseness of the failure behavioural models (i.e., the state automata); though, this

not uncommon in dependability modelling and analysis — e.g., the Markov differential

solutions depend chiefly on the Markov state diagrams or on whichever dependability

models that the Markov chains are checked against (e.g. DFTs).

The technique we have proposed is simpler to understand from both a modelling

and analysis perspective and is considerably more scalable than using TFTs directly. We

have used a dual-purpose case study based on a generic triple redundant system. First, we

have shown how the approach enables a more accurate and full analysis of an

increasingly complex dynamic system. Second, we have evaluated the scaling benefits

(like clarity and ease of analysis) of using compositional SMs for the initial dynamic

modelling by contrast with a direct modelling of the system with a full-scale TFT.

Another important issue of the proposed method is the ability to combine it with a

compositional analysis technique like HiP-HOPS, which would enable automatic

synthesis and analysis of TFTs from complex models of systems in which the error

behaviour is described with state automata.

186

6 Brake-By-Wire case study

This brake-by-wire (BBW) example system is a supplemental case study based mainly on

the research prototype used in (Walker, Papadopoulos et al., 2009). The aim is to apply

the Safora method in a similar manner as for the GTR example system in order to re-

confirm the benefits of the approach. For this purpose, it is sufficient to consider the

BBW components which are relevant to the study — i.e., principally the vehicle

dynamics, actuators, sensors and the communication bus (see Figure 6—1). The more

realistic BBW system is very complex and since the purpose of the study is not to

manipulate a huge number of components with their corresponding fault trees; we need

therefore to abstract the system to the level shown in Figure 6—1.

The BBW of the figure operates using one actuator and one rotation sensor at

each wheel of the vehicle. The actuators are controlled by two electronic control units

(ECUs) through a dual communication bus. The latter carries signals from the sensors

towards the ECUs and braking commands back from the ECUs through the comparator to

the actuators — the comparator forwards the braking commands only in case of identical

output from both ECUs. The remaining component is the ‘Vehicle Dynamics’ which

abstracts the output of the system. In that sense, this component describes the different

braking effects which are relevant to the BBW system failure behaviour — we put

emphasis on braking failures with catastrophic and critical effects as shown in Figure 6—

2, and which describes the monolithic failure behaviour of the system.

6.1 Compositional modelling of the BBW failure data

Initially, the BBW system is operating normally — i.e., the corresponding SM is in the

“Regular” initial state (see Figure 6—2). Thereafter, we consider only the input

deviations that lead the system to either a catastrophic or a critical situation — i.e., the

deviations ‘Dev-CatastrophicWheelLock’ and ‘Dev-CriticalWheelLock’ respectively.

Any input deviation that causes a moderate or a marginal system failure will not be

considered at the top level, and thus such a deviation is not part of the highly abstract

description of the system monolithic failure behaviour, as represented by Figure 6—2.

187

‘Dev-CatastrophicWheelLock’ is the effect of entering the states (of the ‘Vehicle

Dynamics’ SM, see Figure 6—3) and where: a) both front brakes
99

 fail irrespective of the

order or at the same time, b) one front and one rear brake both on the same side (either

the driver or the passenger side) fail simultaneously, c) the two front brakes and the rear

one behind the driver fail at the same time, d) the two rear brakes and the front brake on

the driver’s side fail simultaneously and finally e) all four brakes of the vehicle

99
 In Figure 6—3, commission failures of the actuators label the SM transitions — an actuator

commission directly causes a failure of the corresponding brake.

188

Figure 6—1. Architecture of the brake-by-wire system
100

100
 Compiled from Maenad (http://www.maenad.eu, 2012 — Torchiaro et al., 2011), Atesst2

(http://www.atesst.org, 2010), (Walker, Papadopoulos et al., 2009) and (Papadopoulos Y. , 2000).

http://www.maenad.eu/
http://www.atesst.org/

189

fail at the same time. The other relevant output deviation of the ‘Vehicle Dynamics’ SM

is the ‘Dev-CriticalWheelLock’ which is the effect of entering the states where: a) anyone

of the front brakes fails followed by a failure of the rear brake of the same side — i.e.,

either both on the left or on the right side of the vehicle, b) both rear brakes fail

irrespective of the order, but not at the same time — which has a moderate effect rather

than critical, finally c) a simultaneous failure of the front brake on the driver’s side with

the rear brake on the passenger’s side (i.e., opposite to the front one).

Figure 6—2. A highly abstract BBW SM

The events and state names of Figure 6—3 have suffixes like ‘FD’, ‘FP’, ‘RD’,

‘RP’ which respectively mean “Front on the Driver’s side”, “Front on the Passenger’s

side”, “Rear on the Driver’s side (i.e., behind the driver)” and finally “Rear on the

Passenger’s side (i.e., behind the front passenger)”. The reason of this specification

(rather than using ‘Right’ and ‘Left’) is to make the case study valid for vehicles

manufactured to be used in countries like the UK (where vehicles drive on the right) or

for vehicles manufactured to be used in countries like France or the US.

190

Table 6—1 (which forms the foundation of the ‘Vehicle Dynamics’ SM) shows

the different sequences of braking failures (actuator commissions) with their

corresponding effects on the vehicle. We assume, though, that simultaneous failures are

due to common failure modes, and which cause separate
101

 transitions in the

corresponding SM. Therefore, when it comes to simultaneous failures we express these

by preceding the suffixes with ‘Diag’ (two failures at the same time of diagonally

opposed actuators) or ‘Trig’ (three failures at the same time of actuators forming a

triangle). For example, the actuator commission failure ‘C-ActuatorDiagD’ represents a

common cause failure by which ‘C-ActuatorFD’ and ‘C-ActuatorRP’ occur

simultaneously — the prefix ‘C-’ is to express a commission output deviation and this

applies to all the BBW components’ SMs. The letter ‘D’ which follows ‘Diag’ means that

the diagonal line first extremity is the front actuator on the Driver’s side, the other

extremity being necessarily (since the line is diagonal) the rear actuator on the

passenger’s side — the other diagonally opposed actuators are at the front on the

Passenger’s side and at the rear behind the driver, thus ‘C-ActuatorDiagP’
102

 would

represent a common cause failure by which ‘C-ActuatorFP’ and ‘C-ActuatorRD’ occur

simultaneously.

101
 A similar approach can be found in Markov state diagrams where transitions due to common

failure modes are often labelled with separate failure rates like in (ARP4761, 1996).

102
 This failure (i.e., ‘C-ActuatorDiagP’) is omitted in the study since it causes less critical effects

(an acceptable equilibrium of the vehicle can be regained by the locking of the opposite wheel)

and does not impact the sequencing of the other failures. However, ‘C-ActuatorDiagD’ is

considered in the study due to the critical effects it may cause since the vehicle veers plausibly

from the side into oncoming traffic before equilibrium can be regained by the locking of the

opposite wheel.

191

Table 6—1 also shows commission failures represented like:

‘C-ActuatorD’: causes a simultaneous failure of the front brake on the Driver’s

side and the rear brake behind it on the same side.

‘C-ActuatorP’: causes a simultaneous failure of the front brake on the

Passenger’s side and the rear brake behind it on the same side.

‘C-ActuatorF’: causes a simultaneous failure of the two Front brakes.

‘C-ActuatorR’: causes a simultaneous failure of the two Rear brakes.

The dynamics of the BBW system are highly complex in the automotive industry.

We have, therefore, simplified the models and particularly the failure behavioural

description of the “Vehicle Dynamics” component to the level presented in Figure 6—3.

Complexity analysis of the conversion algorithm is provided in chapter 4 (section 4.3).

Thus, it is not intended in this case study to demonstrate the conversions of large scale

SMs and to produce huge amounts of complex TFTs. The main purpose is, by contrast, to

emphasise and to analyse some relevant sequencing of faults.

In order to limit the complexity of the study, we only focus on sequences of no

more than two (strictly ordered) actuator commissions — i.e., sequences of up to two

braking failures — and as seen in Figure 6—3. We assume that sequences of three

braking failures or more (the four brakes fail in order) are due to common failure modes

by which the corresponding wheels actually lock at the same time. Moreover, in the

reality it is very rare to observe more than two wheels locking in sequence; but like in

Figure 6—3, we treat such situations (even though rare) as simultaneous locking of

wheels by representing these as separate events in the vehicle dynamics’ SM — i.e., same

time commissions of the corresponding actuators.

Indeed, we turn our attention to the more critical effects of common failure

modes (by which some wheels may lock simultaneously). In this context, ‘C-

ActuatorTrigFD’ represents a simultaneous failure of the three actuators ‘C-ActuatorFD’,

‘C-ActuatorFP’ and ’C-ActuatorRD’ — which form a triangle (abbrev. Trig) with the

Front actuator on the Driver’s side as the summit (suffix FD). Similarly, ‘C-

ActuatorTrigRD’ represents a simultaneous failure of the three actuators ‘C-ActuatorRD’,

‘C-ActuatorRP’ and ‘C-ActuatorFD’. Each of those triangles of commissions of actuators

includes those which occur on the driver’s side due to their higher criticality — i.e., ‘C-

192

ActuatorTrigFP’
103

 and ‘C-ActuatorTrigRP’
104

 are omitted from this study, since each one

of these includes the failures of the actuators which occur on the Passenger’s side and are

thus less critical. Finally, ‘C-ActuatorAll’ represents a simultaneous failure of all

actuators which means that the four brakes fail at the same time, and thus locking all

wheels at once.

Figure 6—4 represents the failure behaviour of an actuator. This one executes the

ECU command by applying braking pressure on the corresponding wheel (there is one

actuator for each wheel see Figure 6—1). Each actuator is initially in a ‘Regular’ state

which means that it is functioning properly. The actuator’s SM enters the ‘Inaccurate’

state due to a commission failure represented by the event ‘ActCommission’
105

 (i.e., the

actuator applies a braking pressure without being commanded to do so) or due to a false

braking signal (e.g., an incorrect command to brake) received from the bus, and which is

represented by the event ‘C-BusCommand’.

103
 A common failure mode by which ‘C-ActuatorFP’, ‘C-ActuatorFD’ and ‘C-ActuatorRP’ fail

simultaneously.

104
 Same as the previous but for the simultaneous failure of ‘C-ActuatorRP’, ‘C-ActuatorRD’ and

‘C-ActuatorFP’.

105
 An internal failure like in the case where a jam occurs while the actuator is applying a braking

pressure, and which therefore persists when the braking is required to stop.

193

Table 6—1. Effect classification of the vehicle wheel locking —

information gathered from (Walker, 2009) and (Walker et al., 2009).

Failure Effect Severity

either C-ActuatorFD or C-ActuatorFP
Average loss of stability and control with

manageable consequences.
Moderate

C-ActuatorRD (resp. C-ActuatorRP)

Low loss of stability which can be regained by

managing braking through C-ActuatorFP (resp. C-

ActuatorFD).

Marginal

C-ActuatorFD < C-ActuatorRD

High loss of stability and control with possible

severe consequences — narrow margin to

manoeuvre.

Critical

C-ActuatorFP < C-ActuatorRP

High loss of stability and control — the vehicle

veers plausibly towards the driver’s side (i.e.,

possible severe consequences).

Critical

C-ActuatorRD < C-ActuatorFD
Average loss of stability with better possibility of

manoeuvring.
Moderate

C-ActuatorRP < C-ActuatorFP
Average loss of stability with better possibility of

manoeuvring.
Moderate

C-ActuatorD

(i.e., C-ActuatorFD & C-ActuatorRD)

High loss of stability and control with limited

possibilities of manoeuvring — the vehicle veers

plausibly towards the driver’s side.

Catastrophic

C-ActuatorP

(i.e., C-ActuatorFP & C-ActuatorRP)

High loss of stability and control with very limited

possibility of manoeuvring (whether automatically

or manually).

Catastrophic

194

C-ActuatorFD < C-ActuatorRP

Average loss of control and the vehicle can regain

stability through the locking of opposite wheels —

better possibilities of manoeuvring.

Moderate

C-ActuatorRP < C-ActuatorFD

Low loss of stability which can be regained

through the locking of opposite wheels — good

possibilities of manoeuvring.

Marginal

C-ActuatorDiagD

(i.e., C-ActuatorFD & C-ActuatorRP)

High loss of stability and control — locking of

opposite wheels offers, however, some margin to

manoeuvre.

Critical

C-ActuatorFD < C-ActuatorFP

(resp. C-ActuatorFP < C-ActuatorFD)

Locking of the two front wheels causes severe

braking and loss of control — the vehicle veers

plausibly to the driver’s side (resp. passenger’s

side).

Catastrophic

C-ActuatorF

(i.e., C-ActuatorFD & C-ActuatorFP)

Locking of the two front wheels causes severe

braking and loss of control — the vehicle veers

less severely due to simultaneous brake locking.

Catastrophic

C-ActuatorRD < C-ActuatorRP

(resp. C-ActuatorRP < C-ActuatorRD)

Better margin to manoeuvre with locked rear

wheels than front — the vehicle veers plausibly to

the driver’s side (resp. passenger’s side).

Critical

C-ActuatorR

(i.e., C-ActuatorRD & C-ActuatorRP)

Simultaneous locking of rear wheels is more

manageable than front — better potential to regain

stability.

Moderate

C-ActuatorTrigFD

(i.e., C-ActuatorFD & C-ActuatorFP

&C-ActuatorRD)

Severe loss of stability — very difficult to

manoeuvre.
Catastrophic

195

C-ActuatorTrigRD

(i.e., C-ActuatorRD & C-ActuatorRP

&C-ActuatorFD)

Severe loss of stability — very difficult to

manoeuvre.
Catastrophic

C-ActuatorAll

(i.e., C-ActuatorFD & C-ActuatorFP

& C-ActuatorRD & C-ActuatorRP)

Severe loss of stability — very difficult to

manoeuvre.
Catastrophic

196

Figure 6—3. Vehicle Dynamics SM

197

Figure 6—4. Actuator SM

Similarly, the SM of the bus (see Figure 6—5) is initially in the ‘Regular’ state

and can transit to either the “Command Incorrect” or the “Data Incorrect” state. The

former transition is due to an incorrect command to brake (i.e., ‘C-BrakeCommand’)

which is propagated from the ECUs through the bus to the actuators. The latter is due to

an internal failure of the bus (i.e., ‘BusCommission’) — e.g., electromagnetic interference

or memory bits that are stuck in the bus. Corrupted data is plausibly also due to incorrect

sensor data (i.e., ‘C-SensorData’) since the bus is a dual communication means — i.e.,

communicating data from the sensors to the ECUs and then brake commands from the

ECUs to the actuators.

Figure 6—5. Bus SM

198

The comparator whose failure behaviour is described in Figure 6—6 forwards the

brake commands from the two ECUs to the actuators only if the commands are identical.

This is to prevent accidental braking signals generated from one ECU to cause undesired

wheel locking. Therefore, an incorrect braking command must be duplicated for its

propagation to the actuators (as seen in Figure 6—6 where both twin C-ECUs are

required to enter the state ‘Propagating’).

Figure 6—6. Comparator SM

Concerning the ECU, the corresponding SM transits from the state ‘Sound’ to the

state ‘Unsound’ only due to corrupted data received through the communication bus (i.e.,

‘C-BusData’). We assume that both ECUs do not fail internally since these often recover

quickly from their own hardware or software malfunctions.

Figure 6—7. ECU SM

Figure 6—8 describes the SM of a sensor. Each sensor measures the rotation

speed of the corresponding wheel, it then supplies the ECUs with the related data based

on which braking commands may be produced. The ECUs command to brake if the

sensor data indicates that the corresponding wheel is turning too fast or may jeopardise

the control of the vehicle. The sensors may fail completely; but this is a situation which

199

can be detected by the ECUs since these would not receive any sensor data after a pre-

determined period of time. For the purpose of this case study, however, we only consider

sensor high-bias internal failures (i.e., ‘SenCommission’) that cause high value errors.

These sensor errors lead to an interpretation that the rotation speed of the corresponding

wheel is too high, and hence causing braking commands to be made by the ECUs.

Figure 6—8. Sensor SM

The failure behaviour of each sensor (resp. actuator) needs to be described only once

since the sensors (resp. the actuators) are all identical. Similarly, representing the SM of

one ECU is sufficient since both ECUs are the same.

6.2 Compositional synthesis of the BBW system fault trees

The application of the Safora method (see chapter 5 section 5.2.2) to the BBW

compositional SMs starts with the conversion of the abstract system’s SM to generate a

set of preliminary system FTs like:

“Catastrophically Failed” = Dev-CatastrophicWheelLock

“Critically Failed” = Dev- CriticalWheelLock

The relevant system failure states of the study, i.e., “Catastrophically Failed” and

“Critically Failed” are respectively reached through the input deviations ‘Dev-

CatastrophicWheelLock’ and ‘Dev- CriticalWheelLock’. The corresponding matching

output deviations can be expanded by applying the conversion algorithm on the ‘Vehicle

Dynamics’ SM (see Figure 6—3).

200

The failure expression of the first output deviation (i.e., ‘Dev-

CatastrophicWheelLock’) is thus as follows:

Dev-CatastrophicWheelLock =

C-ActuatorFP.C-ActuatorFD|C-ActuatorRD|C-ActuatorFP|C-ActuatorRP +

C-ActuatorFD.C-ActuatorFP|C-ActuatorRD|C-ActuatorRP|C-ActuatorFD +

C-ActuatorF +

C-ActuatorTrigFD +

C-ActuatorTrigRD +

C-ActuatorAll +

C-ActuatorD +

C-ActuatorP

Some minimisation is possible at this first level using the law of POR transformation like:

B . A|B  A<B

Therefore, the system failure expression of ‘Dev-CatastrophicWheelLock’ becomes as

follows:

Dev-CatastrophicWheelLock =

C-ActuatorFD<C-ActuatorFP.(C-ActuatorFD|C-ActuatorRD|C-ActuatorRP) + (1)

C-ActuatorFP <C-ActuatorFD.(C-ActuatorFP|C-ActuatorRD|C-ActuatorRP|) + (2)

C-ActuatorF +

C-ActuatorTrigFD +

C-ActuatorTrigRD +

C-ActuatorAll +

C-ActuatorD +

C-ActuatorP

201

The failure expression of the second output deviation (i.e., ‘Dev- CriticalWheelLock’) is

as follows:

Dev-CriticalWheelLock =

C-ActuatorRD.C-ActuatorFD|C-ActuatorRD|C-ActuatorFP|C-ActuatorRP +

C-ActuatorRP.C-ActuatorFP|C-ActuatorRD|C-ActuatorRP|C-ActuatorFD +

C-ActuatorRD.C-ActuatorRP|C-ActuatorRD|C-ActuatorFP|C-ActuatorFD +

C-ActuatorRP.C-ActuatorRD|C-ActuatorFP|C-ActuatorRP|C-ActuatorFD +

C-ActuatorDiagD

Like the first minimisation which has been performed on the ‘Dev-

CatastrophicWheelLock’ branch, we can also reduce ‘Dev-CriticalWheelLock’ at this

level using the POR transformation mentioned earlier. This gives:

Dev-CriticalWheelLock =

C-ActuatorFD<C-ActuatorRD.(C-ActuatorFD|C-ActuatorFP|C-ActuatorRP) + (3)

C-ActuatorFP<C-ActuatorRP.(C-ActuatorFP|C-ActuatorRD|C-ActuatorFD) + (4)

C-ActuatorRP<C-ActuatorRD.(C-ActuatorRP|C-ActuatorFP|C-ActuatorFD) + (5)

C-ActuatorRD<C-ActuatorRP.(C-ActuatorRD|C-ActuatorFP|C-ActuatorFD) + (6)

C-ActuatorDiagD

The two expressions of ‘Dev-CatastrophicWheelLock’ and ‘Dev-CriticalWheelLock’ can

be further reduced using some information produced by the conversion of the SM

representing the “Vehicle Dynamics” to TFTs. The conversion also produces sequences

of failures which have moderate or marginal effects; we can merge these results like in:

Dev-Moderate-OR-MarginalWheelLock =

C-ActuatorRP.C-ActuatorFD|C-ActuatorRD|C-ActuatorFP|C-ActuatorRP +

C-ActuatorFD.C-ActuatorRP|C-ActuatorRD|C-ActuatorFP|C-ActuatorFD +

202

C-ActuatorFP.C-ActuatorRP|C-ActuatorRD|C-ActuatorFP|C-ActuatorFD +

C-ActuatorFD.C-ActuatorRD|C-ActuatorFP|C-ActuatorRP|C-ActuatorFD +

C-ActuatorR

This branch, even though irrelevant as suggested in the study, can complete the picture to

make a global view of the effects of the sequencing of the actuator commissions or, as

consequences, unwanted locking of wheels. It can be minimised using the POR

transformation as well like in the following:

Dev-Moderate-OR-MarginalWheelLock =

C-ActuatorFD<C-ActuatorRP.(C-ActuatorFD|C-ActuatorRD|C-ActuatorFP) + (7)

C-ActuatorRP<C-ActuatorFD.(C-ActuatorRP|C-ActuatorRD|C-ActuatorFP) + (8)

C-ActuatorRP<C-ActuatorFP.(C-ActuatorRP|C-ActuatorRD|C-ActuatorFD) + (9)

C-ActuatorRD<C-ActuatorFD.(C-ActuatorRD|C-ActuatorFP|C-ActuatorRP) + (10)

C-ActuatorR

By applying a temporal extension law to (1), we have the different order possibilities for

the occurrence of the events ‘C-ActuatorRD’ and ‘C-ActuatorRP’ as follows:

C-ActuatorFD< C-ActuatorRD<C-ActuatorRP<C-ActuatorFP + (1.1)

C-ActuatorFD< C-ActuatorRP<C-ActuatorRD<C-ActuatorFP + (1.2)

C-ActuatorFD<C-ActuatorFP<C-ActuatorRD<C-ActuatorRP + (1.3)

C-ActuatorFD<C-ActuatorFP<C-ActuatorRP<C-ActuatorRD + (1.4)

C-ActuatorFD<C-ActuatorRD<C-ActuatorFP<C-ActuatorRP + (1.5)

C-ActuatorFD<C-ActuatorRP<C-ActuatorFP<C-ActuatorRD + (1.6)

C-ActuatorFD< C-ActuatorRD<C-ActuatorFP.(C-ActuatorFD|C-ActuatorRP) + (1.7)

C-ActuatorFD<C-ActuatorFP<C-ActuatorRD.(C-ActuatorFD|C-ActuatorRP) + (1.8)

C-ActuatorFD< C-ActuatorRP<C-ActuatorFP.(C-ActuatorFD|C-ActuatorRD) + (1.9)

203

C-ActuatorFD<C-ActuatorFP<C-ActuatorRP.(C-ActuatorFD|C-ActuatorRD) + (1.10)

C-ActuatorFD<C-ActuatorFP.(C-ActuatorFD|C-ActuatorRD|C-ActuatorRP) (1.11)

However, by conformance to the hypothesis made earlier, i.e., sequences of up to two

failures — or simultaneous failures otherwise; the extension of (1) can be expressed as

follows:

C-ActuatorFD< C-ActuatorRD + (1.1)

C-ActuatorFD< C-ActuatorRP + (1.2)

C-ActuatorFD<C-ActuatorFP + (1.3)

C-ActuatorFD<C-ActuatorFP.(C-ActuatorFD|C-ActuatorRD|C-ActuatorRP) (1.4)

‘C-ActuatorRD’, as one of the POR optional input events, should not occur before ‘C-

ActuatorFD’; otherwise the effect would be moderate and not catastrophic (see Figure

6—3 and branch 10 of ‘Dev-Moderate-OR-MarginalWheelLock’). Similarly, ‘C-

ActuatorRP’ (as another POR optional input event) should not occur before ‘C-

ActuatorFD’; otherwise the effect would be marginal (see Figure 6—3 and branch 8).

Therefore, we can express all the failure sequence possibilities (with respect to the

hypothesis) as follows:

C-ActuatorFD< C-ActuatorRD + (1.1)

C-ActuatorFD< C-ActuatorRP + (1.2)

C-ActuatorFD<C-ActuatorFP (1.3)

At this stage of the minimisation of (1), the branch (1.1) produces a critical effect

and not catastrophic. It would, thus, be absorbed through the expansion of branch (3) of

‘Dev-CriticalWheelLock’. Moreover, (1.2) produces a moderate and not a catastrophic

effect (see Figure 6—3). It would, thus, be absorbed through the expansion of (7) of

‘Dev-Moderate-OR-MarginalWheelLock’. This means that (1) can be reduced to simply

(1.3), i.e., C-ActuatorFD<C-ActuatorFP. In a similar way, we can reduce (2) to C-

ActuatorFP<C-ActuatorFD and thus, together with (1.3), would minimise to C-

ActuatorFD . C-ActuatorFP (their simultaneous occurrence is treated as a separate event,

i.e., ‘C-ActuatorF’). Therefore, the order in which the front brakes fail is not relevant to

204

the catastrophic effect. It is, however, relevant in the case where we like to speculate

about the veer side of the vehicle, but such thing is more conceptual and then requires us

to preserve the corresponding states separate (as in Figure 6—3) rather than unifying their

effects under the ‘Dev-CatastrophicWheelLock’ output deviation.

By proceeding in a similar manner, we can minimise the expressions of ‘Dev-

CriticalWheelLock’ to get the following results:

Dev-CriticalWheelLock =

C-ActuatorFD<C-ActuatorRD + (3)

C-ActuatorFP<C-ActuatorRP + (4)

C-ActuatorRP<C-ActuatorRD + (5)

C-ActuatorRD<C-ActuatorRP + (6)

C-ActuatorDiagD

Thereafter, we can merge (5) and (6) using the logical AND gate — this should not be

interpreted as the common failure mode by which the rear brakes fail simultaneously, and

which has a moderate effect instead. This gives therefore:

Dev-CriticalWheelLock =

C-ActuatorFD<C-ActuatorRD + (3)

C-ActuatorFP<C-ActuatorRP + (4)

C-ActuatorRD . C-ActuatorRP + (5’)

C-ActuatorDiagD

After minimising as much as possible, both expressions of ‘Dev-CatastrophicWheelLock’

and ‘Dev-CriticalWheelLock’ will be synthesised respectively into the “Catastrophically

Failed” and “Critically Failed” system fault trees at the next level. At this stage of the

synthesis, we have already seen how the Safora method preserves the significance of the

temporal order of events through its conversion approach of the SMs to TFTs, and also

along the logical reduction of the produced results by using the Pandora temporal laws.

Though as stated earlier, we do not intend to produce vast amount of complex TFTs to

minimise and synthesise, so we rather select one branch like (4) to compare our results

205

with those in (Walker M. et al., 2009). At the level of the branch (4), we need to expand

the ‘C-ActuatorFP’ and ‘C-ActuatorRP’ actuator commission input deviations, where

each needs to be substituted with the failure expression of the matching output deviation

from the corresponding actuator. Since the actuators are all identical and with the same

failure behaviour (described in Figure 6—4), we need to apply the conversion algorithm

only once to the actuator’s SM and then, at a later stage, we designate to which wheel the

expression is by using the suffix representations mentioned earlier (idem concerning the

sensors). Therefore, we get from the SM of one actuator the following expression:

C-Actuator = ActCommission + C-BusCommand

Thereafter, we get from the SM of the bus the failure expression of the matching output

deviation of ‘C-BusCommand’, and hence:

C-BusCommand = C-BrakeCommand

Its synthesis into the ‘C-Actuator’ failure expression gives:

C-Actuator = ActCommission + C-BrakeCommand

Similarly the ‘C-BrakeCommand’ input deviation can be expanded with its corresponding

failure expression (of the matching output deviation) by converting the SM of the

comparator as follows:

C-BrakeCommand = C-ECU1 . C-ECU2(“the twin”)

However, in order to propagate ‘C-BrakeCommand’ the comparator ensures that ‘C-

ECU1’ and ‘C-ECU2’ are identical. Therefore, some minimisation is possible at this level

of the synthesis such that:

C-BrakeCommand = C-ECU1 . C-ECU2

 = C-ECU . C-ECU (where ‘C-ECU’ = ‘C-ECU1’ = ‘C-ECU2’)

 = C-ECU (using the Boolean Idempotent law, i.e., A .A  A)

Thus, the synthesis of the failure expression of ‘C-BrakeCommand’ into the ‘C-Actuator’

failure expression gives:

C-Actuator = ActCommission + C-ECU

206

To extend ‘C-Actuator’ with the failure expression of ‘C-ECU’, we need to apply the

conversion algorithm on the SM of the ECU. Therefore, we have:

C-ECU = C-BusData

After synthesis into the C-Actuator failure expression we have:

C-Actuator = ActCommission + C-BusData

At this level, there is a newly introduced input deviation (i.e., ‘C-BusData’)

which is derived from failures and/or errors propagated through the bus. The expansion of

‘C-BusData’ by applying the conversion algorithm on the SM of the bus gives:

C-BusData = C-SensorData + BusCommission

After the substitution of ‘C-BusData’ with “C-SensorData + BusCommission” into the

failure expression of ‘C-Actuator’ we get:

C-Actuator = ActCommission + (C-SensorData + BusCommission)

The full synthesis of the ‘C-Actuator’ failure expression requires its extension

with the failure expression of the ‘sub’-fault-tree whose top-event is ‘C-SensorData’. The

conversion of the SM of the sensor gives:

C-SensorData = SenCommission

The last step of the synthesis of the ‘C-Actuator’ failure expression, therefore, gives:

C-Actuator = ActCommission + (SenCommission + BusCommission)

Then, by the Boolean associative law we have:

C-Actuator = ActCommission + SenCommission + BusCommission

These were common Safora steps of SM conversions, minimisation wherever possible

and synthesis of produced results. Therefore, we have the following for both actuator

commissions of (4):

C-ActuatorFP = ActCommissionFP + SenCommissionFP + BusCommission

And

C-ActuatorRP = ActCommissionRP + SenCommissionRP + BusCommission

207

 The failure of the dual communication bus ‘BusCommission’ is a common cause failure

for all actuators leading to the locking of all wheels.

The cut-sequence (4) — i.e., C-ActuatorFP<C-ActuatorRP — leading to a critical

output deviation can , therefore, have its events substituted as follows:

(ActCommissionFP + SenCommissionFP + BusCommission) < (ActCommissionRP +

SenCommissionRP + BusCommission)

By using the distributive temporal law, the cut-sequence becomes:

ActCommissionFP < (ActCommissionRP + SenCommissionRP + BusCommission) +

(4.1)

SenCommissionFP < (ActCommissionRP + SenCommissionRP + BusCommission) +

(4.2)

BusCommission < (ActCommissionRP + SenCommissionRP + BusCommission)

 (4.3)

(4.3) can be substituted with the following by using the temporal law A<(B+C)  A|B .

A|C . (B+C), and hence:

(4.3)  (BusCommission|ActCommissionRP) . (BusCommission|SenCommissionRP) .

(BusCommission|BusCommission) . (ActCommissionRP + SenCommissionRP

+ BusCommission)

Therefore, (4.3) can be completely eliminated using first the simultaneity law, i.e. A|A 

0 and thus the conjunct (BusCommission|BusCommission)  0, then second the Boolean

law A.0  0, and hence:

(4.3)  (BusCommission|ActCommissionRP) . (BusCommission|SenCommissionRP) .

0 . (ActCommissionRP + SenCommissionRP + BusCommission)

  0

Thereafter, using the Boolean law A+0  0, (4) becomes only as follows:

ActCommissionFP < (ActCommissionRP + SenCommissionRP + BusCommission) +

(4.1)

208

SenCommissionFP < (ActCommissionRP + SenCommissionRP + BusCommission) +

(4.2)

At this stage, we can also expand both (4.1) and (4.2) using the same temporal law as

before, i.e. A<(B+C)  A|B . A|C . (B+C). therefore, (4) is equivalent to:

(ActCommissionFP|ActCommissionRP).(ActCommissionFP|SenCommissionRP).

(ActCommissionFP|BusCommission). (ActCommissionRP + SenCommissionRP +

BusCommission) + (4.1)

(SenCommissionFP|ActCommissionRP).(SenCommissionFP|SenCommissionRP).

(SenCommissionFP|BusCommission). (ActCommissionRP + SenCommissionRP +

BusCommission) (4.2)

With the Boolean distributive law, i.e. A.(B+C)  A.B + A.C, each one of (4.1) and

(4.2) can be expanded to three disjunctions totalling six for both as follows:

(ActCommissionFP|ActCommissionRP).(ActCommissionFP|SenCommissionRP).

(ActCommissionFP|BusCommission) . ActCommissionRP + (4.1.1)

(ActCommissionFP|ActCommissionRP).(ActCommissionFP|SenCommissionRP).

(ActCommissionFP|BusCommission) . SenCommissionRP + (4.1.2)

(ActCommissionFP|ActCommissionRP).(ActCommissionFP|SenCommissionRP).

(ActCommissionFP|BusCommission) . BusCommission + (4.1.3)

(SenCommissionFP|ActCommissionRP).(SenCommissionFP|SenCommissionRP).

(SenCommissionFP|BusCommission) . ActCommissionRP + (4.2.1)

(SenCommissionFP|ActCommissionRP).(SenCommissionFP|SenCommissionRP).

(SenCommissionFP|BusCommission) . SenCommissionRP + (4.2.2)

(SenCommissionFP|ActCommissionRP).(SenCommissionFP|SenCommissionRP).

(SenCommissionFP|BusCommission) . BusCommission (4.2.3)

Now we can use the temporal law B.A|B  A<B to minimise as follows:

(ActCommissionFP<ActCommissionRP).(ActCommissionFP|SenCommissionRP).

(ActCommissionFP|BusCommission) + (4.1.1)

209

(ActCommissionFP|ActCommissionRP).(ActCommissionFP<SenCommissionRP).

(ActCommissionFP|BusCommission) + (4.1.2)

(ActCommissionFP|ActCommissionRP).(ActCommissionFP|SenCommissionRP).

(ActCommissionFP<BusCommission) + (4.1.3)

(SenCommissionFP<ActCommissionRP).(SenCommissionFP|SenCommissionRP).

(SenCommissionFP|BusCommission) + (4.2.1)

(SenCommissionFP|ActCommissionRP).(SenCommissionFP<SenCommissionRP).

(SenCommissionFP|BusCommission) + (4.2.2)

(SenCommissionFP|ActCommissionRP).(SenCommissionFP|SenCommissionRP).

(SenCommissionFP<BusCommission) (4.2.3)

Those results clearly show that for the sequence where the brake at the front on

the passenger’s side (FP) fail before the brake at the rear same side (RP) — i.e., the

output deviations from their corresponding actuators occur in the same order C-

ActuatorFP<C-ActuatorRP — one of the following is sufficient to happen (see Figure

6—9):

(a) Internal failures of the corresponding actuators occur in the same order.

(b) Internal failures of the corresponding sensors occur in the same order.

(c) An internal failure of the actuator FP occurs before an internal failure of the

sensor RP.

(d) An internal failure of the sensor FP occurs before an internal failure of the

actuator RP.

(e) An internal failure of the actuator FP occurs before the bus fails.

(f) An internal failure of the sensor FP occurs before the bus fails.

210

Figure 6—9. [C-ActuatorFP < C-ActuatorRP] cut-sequence (4) of the “Critically Failed”

hazard

6.3 Discussion

A simplified version of a BBW system has been used for this study. A compositional

modelling of the analysis related information has been provided, and as required by the

Safora method in order to generate and synthesise the system TFTs from those which are

211

local to the components. Once a hierarchical description has been provided, the method

started with the conversion of the highly abstract SM (which describes the monolithic

failure behaviour of the BBW system) to the first system FTs — though, emphasis at this

level was put on the input deviations which lead the system to catastrophic or critical

situations. Marginal and moderate situations were considered at the level of a downstream

SM (which describes the vehicle dynamics) — the related states can influence the fault

sequences and, therefore, impose a temporal order on faults leading to the more severe

states. For example, if a commission failure occurs from the actuator FP before a

commission occurs from the actuator RP (which was thoroughly studied in section 6.2)

this will lead to a critical situation. However, a reverse order in which those commission

failures occur will lead to a less critical situation (i.e., moderate see Figure 6—3).

More emphasis was put on one cut-sequence causing a critical effect — it was

not intended in the case study to go through all the generated cut-sequences (with

catastrophic and critical effects together), as this would have produced vast amounts of

complex results which exceed the space allowed for the thesis. However, we have

demonstrated the benefits of Safora since the method (given a hierarchical description of

complex failure behaviour of a dynamic system) automatically detects when to impose

temporal constraints to distinguish the severe sequences of faults from those which are

less severe. The process is repeated for all the components until the system (temporal)

fault trees become fully synthesised. Minimisation was performed wherever possible

during the synthesis, but this one often needs to be completed afterwards to logically

reduce the produced large-scale TFTs.

The ability to reduce the complexity of the produced results was another

highlighted benefit of Safora. This was particularly demonstrated in the GTR case study

of chapter 5 due to the nature of the example system — i.e., several system constituents

exhibit dynamic behaviour with more complex component interdependencies. This has

helped us to show how we can minimise, wherever possible, the TFTs which are local to

the system components before synthesising them into larger TFTs, and thus significantly

reduce the complexity which is inherent in analysing TFTs. In this regard, a full

comparison with a direct TFT modelling of the system has been provided (see section

5.3.4). The BBW example system, however, exhibits the dynamic behaviour at the level

of one of its components (i.e., the “Vehicle Dynamics” see Figure 6—3). This has also

provided a good case to demonstrate the benefits of our approach concerning the

generation of both static and dynamic fault trees, the necessity of the temporal order of

failure events being automatically detected during the conversion of the component SMs

212

— e.g., the SM of Figure 6—3 (which is highly dynamic and thus produces mainly TFTs)

vs. the remaining component SMs (which produce static fault trees).

213

7 Conclusions

In this thesis we set out to study the existing safety analysis techniques which are

performed on systems exhibiting dynamic behaviour. We started to explore the modelling

approaches that are used to describe how such systems can fail. In the literature survey,

we observed the widespread use of state transition models for this purpose (whether

higher level descriptions e.g. SMs or lower level formalisms like Petri nets and Markov

models). We pointed out SMs as a prevalent and expressive paradigm being used in

several approaches, e.g., the state extension of HiP-HOPS in (Papadopoulos, 2000) and

also with some influential modelling languages which are highly accepted in the

aerospace community, like Altarica in (Rauzy, 2002) and AADL in (Joshi et al., 2007).

This dissertation has presented our approach to the analysis of dynamic systems

whose behavioural aspects are represented using SMs. The contributions of this thesis can

be summarised as follows:

 We have outlined an important problem in the existing approaches to the SM-

based analysis of dynamic systems. Briefly, one approach is based on the

conversion of SMs to static fault trees [like in (Rauzy, 2002) and (Joshi,

Vestal, & Binns, 2007)]. In this approach, the significance of the SM temporal

semantics is lost during the conversion. The other identified approach consists

of the conversion of SMs to GSPNs and Markov models. This is applied to

AADL descriptions like in (Rugina A. , 2007); however, this approach is less

suitable for qualitative analysis.

 A novel algorithm which generates (temporal) fault trees from SMs has been

presented. One of the advantages of the algorithm is that the temporal

constraints are imposed only when necessary during the conversion. This will

positively impact the efforts needed for the minimisation of the generated fault

trees — minimisation of TFTs is known for being a complex process.

 Minimisation is done using the Pandora sets of temporal laws; these include

the SAND operator (for simultaneity). Therefore, we have identified then

adapted a selection of temporal laws to the TFTs which we generate from the

SMs — the generated TFTs are without SAND gates.

 We have suggested a novel, compositional (and hence potentially more

scalable) method which is based on our approach to generate TFTs from SMs.

214

The method relies on a hierarchical description of the failure information

(which is based on the failure behavioural descriptions local to the components

of the system), then synthesises large system TFTs from smaller component

TFTs (generated from the individual component SMs).

 We have presented a contribution regarding the optimisation of Markov

models. These are state-transition based models and known with the state

explosion problem. We have demonstrated how we can apply the conversion

algorithm on these models, and hence we generate TFTs which we minimise

using Pandora. This allows an automatic optimisation by identifying the

redundancies to remove from the Markov models.

 The algorithm which converts SMs to TFTs mainly uses POR gates to impose

temporal constraints during the conversion. Therefore and from a quantitative

perspective, the probabilistic models given in (Merle, 2010), and which

accommodate any failure distribution for the basic events, were thoroughly

investigated. Some detailed comparisons with combinatorial techniques as well

as with Markov solutions were made and a probabilistic model for a POR gate

with n input events (n N
+
 s.t. n2) was proposed in this thesis.

Considerable work remains to be done such as:

 Further development of this analysis approach to make it automated as part of

the HiP-HOPS safety analysis tool framework.

 Potentially make the approach compatible with other SM-based modelling

approaches, like interfacing with OSATE
106

 (an Open Source AADL Tool

Environment). This would allow Pandora TFTs to be generated from AADL

state machines.

 The algorithm worst-case complexity of checking the necessity of a temporal

order during the conversion is O(n
2
), n being the number of paths from the

initial state to the final states in the SM. An improvement can be done, e.g., to

ensure that paths diverging at join states are not traversed more than once each.

106
 http://www.aadl.info/aadl/currentsite/tool/osate.html

215

 We assumed that events are non-repairable which is compatible with the

semantics of Pandora. This also conforms to (Vesely et al., 1981) and, in

consequence, we have also made the assumption that the SMs are acyclic.

However, repairable events would be worth being considererd as many users

aim at modeling repairable systems. This would imply the existence of cyclic

behaviours and hence revision of the algorithm of this dissertation. The current

implementation version simply breaks the cycles found during path traversals

and acknowledge users where these have been detected in the SM.

 The TFTs which are generated by the algorithm of this thesis are logically

reduced using the sets of Pandora temporal laws. Work on minimisation such

as ensuring that the reduced cut-sequences are minimal and related automation

issues is not part of this thesis, but can be found in (Walker M., 2009).

However, we would like also to study further the work presented in (Merle,

2010) concerning the determination of the structure function of dynamic fault

trees. Also, we want to investigate the complexity involved in the

simplification of a structure function to a minimal canonical form and the

calculation of this canonical form.

Closing this thesis, we wish to say that our approach to dynamic safety analysis

contributes to solving some of the problems encountered in the application of similar

techniques. This potentially could have a positive impact whether in the industry, where

the generation of fault trees from SMs has been applied to Altarica models (in some

Airbus projects for instance), or in the research domain like with AADL models.

Moreover, the SM conversion algorithm that we developed, in theory, could enable its

application in large and complex systems. In this context, we have presented in chapter 5

a method for the compositional synthesis of TFTs from SMs, which could improve the

scalability of the application of this algorithm; also we have carried out two case

studies
107

 of significant complexity and demonstrated in principle both the feasibility and

value of the approach. However, a conclusive evaluation of the scalability of our

approach could only be achieved in a much wider and more realistic context of

application.

107
 See chapter 5 (section 5.3) and chapter 6.

216

References:

AADL Website: http://www.aadl.info/aadl/currentsite/.

AADL-Committee-As2cAnnexE. (2006). SAE Architecture Analysis and Design

Language (AADL) Annex Volume 1, Annex A: Graphical AADL Notation,

Annex C: AADL Meta-Model and Interchange Formats, Annex D: Language

Compliance and Application Program Interface Annex E: Error Model Annex,

AS5506/1. from: http://standards.sae.org/as5506/1/.

AADL-Subcommittee. (2007). AADL Behavior Language Compliance and Application

Program Interface, Apr 2007:

http://aadl.sei.cmu.edu/aadl/documents/Behaviour_Annex1.6.pdf.

Abele, A., Hagl, F., Sjöstedt, C.-J., Lönn, H., & Sandberg, A. (2010). Advancing Traffic

Efficiency and Safety through Software Technology phase 2 (ATESST2),

Deliverable D6.1.2, Case Study. Stappert, F. (Ed.). ATESST2 - Grant

Agreement 224442.

http://www.atesst.org/home/liblocal/docs/ATESST2_Deliverable_D6.1.2_V1.0.

pdf.

Amari, S., Dill, G., & Howals, E. (2003). A new approach to solve dynamic fault-trees. In

Proceedings IEEE Annual Reliability and Maintainability Symposium (RAMS

2003), pages 374–379, Tampa, FL, USA, 2003. 16, 52.

ANSI/IEEE-Std.352. (1987). IEEE Guide for General Principles of Reliability Analysis

of Nuclear Power Generating Station Safety Systems, ANSI/IEEE Std 352-1987

(Revision of ANSI/IEEE Std 352-1975). doi: 10.1109/IEEESTD.1987.101069.

URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=159367&isnumber=

4154.

Arnold, A., Point, G., Griffault, A., & Rauzy, A. (2005). AltaRica Manuel

méthodologique. LaBRI, Université Bordeaux I et CNRS (UMR 5800).

217

ARP4761. (1996). Aerospace Recommended Practice: Guidelines and methods for

conducting the safety assessment process on civil airborne systems and

equipment. Society of Automotive Engineering. Warrendale, PA: SAE.

Avižienis, A., Laprie, J.-C., & Randell, B. (2001). Fundamental Concepts of Computer

System Dependability. In: IARP/IEEE-RAS Workshop on Robot Dependability:

Technological Challenge of Dependable Robots in Human Environments –

Seoul, Korea, May 21-22, 2001 .

Avižienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic Concepts and

Taxonomy of Dependable and Secure Computing. In: IEEE Trans. Dependable

Secur. Comput. , 1, 11-33.

Béounes, C., Aguéra, M., Arlat, J., Bachmann, S., Bourdeau, C., Doucet, J.-E., et al.

(1993). Surf-2: a program for dependability evaluation of complex hardware

and software systems. in 23rd IEEE Int. Symposium on Fault Tolerant

Computing, (Toulouse, France), pp.668-673, 1993.

Bernard, R. (2009). Multi-system safety analyses. PhD Thesis. N° d'ordre: 3885.

Université Bordeaux I, École Doctorale de Mathématiques et Informatique,

France.

Bernard, R., & Pouzolz, F. (2010). Presentation: Failure propagation modeling: multi-

system safety analysis. EADB Safety Reliability Directives & Innovation,

Airbus, France.

"http://cisec.enseeiht.fr/index.php?option=com_content&view=article&id=53:

news&catid=37:past-events&Itemid=61".

Bieber, P., Castel, C., & Seguin, C. (2002). Combination of fault tree analysis and model

checking for safety assessment of complex system. In Proceedings of the 4th

European Depting Conference on Dependable Computing (EDCC), ser. LNCS,

vol. 2485. Springer, pp. 19–31.

Biehl, M., DeJiu, C., & Törngren, M. (2010). Integrating Safety Analysis into the Model-

based Development Toolchain of Automotive Embedded Systems. In

Proceedings of the LCTES 2010, ACM Press.

Bondavalli, A., & Simoncini, L. (1990). Failure classification with respect to detection.

PDCS: Predictably Dependable Computing Systems, Esprit Project Nr 3092.

218

Bozzano, M., & Villafiorita, A. (2003). Improving System Reliability via Model

Checking: the FSAP /NuSMV-SA Safety Analysis Platform. In: Proceedings of

SAFECOMP 2003, Edinburgh, Scotland, United Kingdom, 23-26 September,

2003 , 49-62.

Bozzano, M., Jochim, C., & Tapparo, F. (2006). The FSAP/NuSMV-SA Safety Analysis

Platform. Presented at ECAI 2006. Riva del Garda, Italy, August 28 -

September 1 2006.

Cavada, R., Cimatti, A., Jochim, C. A., Keighren, G., Olivetti, E., Pistore, M., et al.

(1998). NuSMV 2.4 User Manual. Italy: ITC-irst - Via Sommarive 18, 38055

Povo (Trento). Italy.

Ciardo, G., & Lindemann, C. (1993). Analysis of deterministic and stochastic Petri nets.

Proceedings of the fifth international workshop on Petri Nets and performance

models (PNPM’93), Toulouse, France, October 1993.

Codetta-Raiteri, D. (2005). Extended Fault Trees Analysis supported by Stochastic Petri

Nets. PhD Thesis. Dipartimento di Informatica, Università degli Studi di

Torino, Italy.

Dehlinger, J., & Dugan, J. (2008). Analyzing Dynamic Fault Trees Derived from Model-

based System Architectures. Retrieved from Nuclear Engineering and

Technology, VOL.40 NO.5 AUGUST 2008:

http://article.nuclear.or.kr/jknsfile/v40/JK0400365.pdf

Dugan, J. B., Bavuso, S. J., & Boyd, M. A. (1992). Dynamic fault-tree models for fault-

tolerant computer systems. Reliability, IEEE Transactions on , vol.41, no.3,

pp.363-377, Sep 1992. doi: 10.1109/24.159800. URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=159800&isnumber

=4184 .

Dugan, J. B., Venkataraman, B., & Gulati, R. (1997). DIFtree: a software package for the

analysis of dynamic fault tree models. Reliability and Maintainability

Symposium. 1997 Proceedings, Annual, pp.64-70, 13-16 Jan 1997, doi:

10.1109/RAMS.1997.571666, ISSN: 0149-144X. URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=571666&isnumber

=12344.

219

Dugan, J., Sullivan, K., & Coppit, D. (2000). Developing a Low-Cost, High-Quality

Software Tool for Fault Tree Analysis. IEEE Transactions on Reliability, Vol

49 Issue 1, Mar 2000, ISSN 0018-9529. pp 49-59 .

Dutuit, Y., & Rauzy, A. (1997). Exact and truncated computations of prime implicants of

coherent and non-coherent fault trees within aralia. Reliability Engineering and

System Safety, 58 :127–144, 1997 .

Ericson, C. (1999). Fault Tree Analysis – A History. In: Proceedings of the 17th

International System Safety Conference.

Feiler, P. H., & Rugina, A. E. (2007). Dependability Modeling with the Architecture

Analysis and Design Language (AADL). Carnegie Mellon Software Engineering

Institute, N°CMU/SEI-2007-TN-043, 2007.

Feiler, P. H., Gluch, D. P., & Hudak, J. J. (2006). The Architecture Analysis & Design

Language (AADL): An Introduction. Carnegie Mellon Software Engineering

Institute (SEI), N°CMU/SEI-2006-TN-011 February 2006.

Fenelon, P., & McDermid, J. A. (1993). An integrated toolset for software safety analysis.

Journal of Systems and Software 21(3), pp 279-290.

Fenelon, P., & McDermid, J. A. (1992). New directions in software safety: Causal

modelling as an aid to integration. Technical report, High Integrity Systems

Engineering Group, Dept of Computer Science, University of York, 1992.

Freund, U., Gurrieri, O., Küster, J., Lönn, H., Migge, J., Reiser, M.-O., et al. (2003). An

Architecture Description Language for developing Automotive ECU-Software.

Internal Report N° A03-R-337 || freund03a (2003) - http://hal.inria.fr/inria-

00099774/fr/.

Fussell, J., Aber, E., & Rahl, R. (1976). On the Quantitative Analysis of Priority-AND

Failure Logic. IEEE Transactions on Reliability, vol. R-25, no. 5, pp 324–326,

1976. 2, 12, 52 .

Gaufillet, P., Bodeveix, J.-P., Filali, M., & Vernadat, F. (2006). AADL behavior Annex

presentation (from SAE AS2C, Detroit, Apr 2006):

http://www.aadl.info/aadl/documents/MamounBehaviorAnnexApril2006.pdf.

220

German, R., & Mitzlaff, J. (1995). Transient analysis of deterministic and stochastic Petri

nets with TimeNET. Proceedings of the 8th International Conference on

Computer Performance Evaluation, Modelling Techniques, and Tools and

MMB (Lecture Notes in Computer Science, vol 977, o209-223). Heidelberg,

Germany, 1995.

Griffault, A. (2003). Conception et validation d’un protocole avec le modèle AltaRica. In:

Jean-Marc Jézéquel, ed., AFADL : Approches Formelles dans l'Assistance au

Développement de Logiciels, LABRI UMR CNRS 5800, université Bordeaux I ,

293-307.

Griffault, A., Arnold, A., Point, G., & Rauzy, A. (1999). The Altarica Formalism for

Describing Concurrent Systems. Fundamenta Informaticae, 34, 1999 .

Grunske, L., & Neumann, R. (2002). Quality improvement by integrating non-functional

properties in software architecture specification. In proceedings of the 2nd

Workshop on Evaluating and Architecting System dependabilitY (EASY 02) at

ASPLOS-X, pp 23-32, San Jose, California, Oct 2002.

Grunske, L., Kaiser, B., & Papadopoulos, Y. (2005). Model-driven Safety Evaluation

with State-Event-Based Component Failure Annotations. Component-Based

Software Engineering, 8th International Symposium, CBSE 2005, Proceedings,

pp 33-48 .

Güdemann, M., Ortmeier, F., & Reif, W. (2008). Computing Ordered Minimal Critical

Sets. In G. Tarnai, & E. Schnieder (Ed.), Proceedings of Formal Methods for

Automation and Safety in Railway and Automotive Systems (FORMS/FORMAT

2008).

Güdemann, M., Ortmeier, F., & Reif, W. (2007). Using deductive cause-consequence

analysis (DCCA) with SCADE. In F. Saglietti, & N. Oster (Ed.), Computer

Safety, Reliability, and Security, 26th International Conference, SAFECOMP

2007, ser. LNCS, vol. 4680. Springer, pp. 465–478.

Hadjidj, R., & Boucheneb, H. (2011). Efficient Reachability Analysis for Time Petri

Nets. IEEE Transactions on Computers, vol.60, no.8, pp.1085-1099, Aug. 2011.

doi: 10.1109/TC.2010.195. URL:

221

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5601689&isnumber

=5929503. Preprint published online 23 Sept. 2010.

Hecht, M., Lam, A., & Vogl, C. (2011). A Tool Set for Integrated Software and Hardware

Dependability Analysis Using the Architecture Analysis and Design Language

(AADL) and Error Model Annex. 16th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS), pp.361-366, 27-29 April

2011, doi: 10.1109/ICECCS.2011.44. URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5773411&isnumber

=5773374.

Hecht, M., Lam, A., Howes, R., & Vogl, C. (2010). Automated Generation of Failure

Modes and Effects Analyses from AADL Architectural and Error Models. Proc.

2010 Systems and Software Development Conference, Salt Lake City, UT, May,

2010, available online at http://sstc-online.org/2010/.

IEC-60812. (2006). Analysis Techniques for System Reliability – Procedure for Failure

Mode and Effects Analysis (FMEA). 3 rue de Varembé, CH-1211 Geneva 20,

Switzerland: International Electrotechnical Commission IEC-60812.

IEC-61508. (1997). Functional Safety of Electrical/Electronic/Programmable Electronic

Safety-related Systems. 3 rue de Varembé CH 1211 Geneva Switzerland:

International Electrotechnical Commission 65A/179-185, IEC-61508.

Isograph. (2002). Fault Tree+ v10.1. Reliability Analysis Software. Retrieved March 12,

2012, from http://www.isograph-software.com/index.htm

Johannessen, P., Grante, C., Alminger, A., Eklund, U., & Torin, J. (2001). Hazard

Analysis in Object Oriented Design of Dependable Systems. Proceedings of the

International Conference on Dependable Systems and Networks (DSN 2001)

(formerly: FTCS), 1-4 July 2001, Göteborg, Sweden.

Joshi, A., Vestal, S., & Binns, P. (2007). Automatic Generation of Static Fault Trees from

AADL Models. In: DSN Workshop on Architecting Dependable Systems,

Edinburgh, Scotland - UK.

Kaiser, B., Gramlich, C., & Förster, M. (2007). State/event fault trees – A safety analysis

method for software controlled systems. Reliability Engineering & System

Safety, vol 92, pp 1521-1537 .

222

Kaiser, B., Liggesmeyer, P., & Mäckel, O. (2003). A new component concept for fault

trees. (P. Lindsay, & T. Cant, Eds.) In Proceedings of the 8th Australian

workshop on Safety critical systems and software - Vol. 33 (SCS '03).

Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 37-46 .

KLETZ, T. A. (1997). HAZOP – Past and Future. Reliability Engineering and System

Safety, 55(3), pp 263-266.

Laprie, J.-C. (1998). Dependability of computer systems: from concepts to limits. In:

Proc. of IFIP Intern. Workshop on Dependable Computing and Its Applications

(DCIA98) .

Laprie, J.-C. (Ed.). (1992). Dependability: Basic concepts and terminology in English,

French, German, Italian and Japanese. Vienna, Austria. Dependable Computing

and Fault Tolerance. Springer-Verlag, 265 p.

Laprie, J.-C. (1985). Dependable Computing and Fault Tolerance: Concepts and

Terminology. In: Proceedings of the 15th International Symposium on Fault-

Tolerant Computing (FTCS-15), (pp. 2–11). Ann Arbor.

Mahmud, N., Papadopoulos, Y., & Walker, M. (2010). A Translation of State Machines

to Temporal Fault Trees. In: Proceedings of Dependable Systems and Networks

Workshops, 40th IEEE/IFIP International Conference on Dependable Systems

and Networks Workshops (DSN-W '2010) — PFARM workshop, pp. 45-51,

ISBN: 978-1-4244-7729-6.

Mahmud, N., Walker, M., & Papadopoulos, Y. (2011). Compositional Synthesis of

Temporal Fault Trees from State Machines. International Conference on

Availability, Reliability and Security (ARES 2011), Second Workshop and Tool

Session on DYnamic Aspects in DEpendability Models for Fault-Tolerant

Systems (DYADEM-FTS), Aug. 2011, Vienna, pp. 429-435, ISBN: 978-0-7695-

4485-4.

Mahmud, N., Walker, M., & Papadopoulos, Y. (2012). Compositional synthesis of

Temporal Fault Trees from State Machines. (S. Distefano, A. Puliafito, & K. S.

Trivedi, Eds.) ACM SIGMETRICS, Performance Evaluation Review, Special

Issue on Modeling Dynamic Behaviors of Complex Distributed Systems, vol. 39,

no. 4, April 2012. pp. 79-88. ISSN: 0163-5999.

223

DOI=10.1145/2185395.2185444 http://doi.acm.org/10.1145/2185395.2185444

.

Merle, G. (2010). Algebraic modelling of Dynamic Fault Trees, contribution to

qualitative and quantitative analysis. Ph.D. Thesis N° ENSC-2010/233, École

Normale Supérieure de Cachan - ENSC, Laboratoire Universitaire de

Recherche en Production Automatisée (LURPA ENS CACHAN / EA 1385),

France.

MIL-STD-1629A. (1980). Procedures for performing a failure mode, effects and

criticality analysis. http://www.sre.org/pubs/Mil-Std-1629A.pdf.

NASA. (2007). Systems Engineering Handbook. National Aeronautics and Space

Administration. NASA/SP-2007-6105 Rev1. NASA Headquarters .Washington,

D.C. 20546. December 2007.

Ortmeier, F., Reif, W., & Schellhorn, G. (2005). Deductive Cause-Consequence Analysis

(DCCA). Proceedings of the 16th IFAC World Congress Elsevier Jun-2006

ISBN: 978-0-08-045108-4 and 0-08-045108-X.

Papadopoulos, Y. (2000). Safety-Directed System Monitoring Using Safety Cases. PhD

Thesis. The University of York, Department of Computer Science.

Papadopoulos, Y., & Maruhn, M. (2001). Model-Based Automated Synthesis of Fault

Trees from Matlab-Simulink Models. Int. Conf. On Dependable Systems and

Networks Pages 77-82.

Papadopoulos, Y., & McDermid, J. (1999). Hierarchically Performed Hazard Origin and

Propagation Studies. Proceedings of SAFECOMP’99, 18th international

Conference on Computer Safety, Reliability and Security, Toulouse, 1999.

Papadopoulos, Y., & Petersen, U. (2003). Combining ship machinery system design and

first principle safety analysis. IMDC’03, 8th Int’l Marine Design Conference,

Athens , pages 1:415-426.

Papadopoulos, Y., Walker, M., Parker, D., Rüde, E., Hamann, R., Uhlig, A., et al. (2011).

Engineering Failure Analysis and Design Optimisation with HiP-HOPS.

Journal of Engineering Failure Analysis, DOI:

10.1016/j.engfailanal.2010.09.025, Elsevier Science, ISSN: 1350 6307 .

224

Parker, D. (2010). Multi-Objective Optimisation of Safety-Critical Hierarchical Systems.

PhD Thesis. University of Hull.

Pouzolz, F. (2010). Presentation: Overview of Model Based Safety Assessment based on

Altarica language in Airbus. ROSAS project RObustnessand SAfety in the

System design, EADB Safety Reliability Directives & Innovation, Airbus,

France. "http://cisec.enseeiht.fr/images/docs/100209MBSA/04-

fpz_rosas_missa_summary_20100209.pdf.pdf".

Pumfrey, J. (1999). The Principled Design of Computer System Safety Analyses. Ph.D.

Thesis, The University of York.

Rausand, M., & Høyland, A. (2004). System Reliability Theory: Models and Statistical

Methods - Second Edition. New Jersey, USA, ISBN 0-471-47133-X: Wiley.

Rauzy, A. (2002). Mode automata and their compilation into fault trees. Reliability

Engineering and System Safety, 78(1) , 1-21.

Redmill, F., Chudleigh, M., & Catmur, J. (1999). System safety: HAZOP and software

HAZOP. ISBN 0471982806: Wiley.

Rugina, A. (2007). Dependability Modeling and Evaluation – From AADL to Stochastic

Petri Nets. Ph.D. Thesis, Institut National Polytechnique de Toulouse - INPT,

France.

Rugina, A. E., Kanoun, K., & Kaaniche, M. (2008). The ADAPT Tool: From AADL

Architectural Models to Stochastic Petri Nets through Model Transformation.

7th European Dependable Computing Conference (EDCC), Kaunas, Lituanie,

2008.

Sullivan, K. J., Dugan, J. B., & Coppit, D. (1999). The Galileo fault tree analysis tool.

Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth Annual

International Symposium on, pp.232-235, 1999, doi:

10.1109/FTCS.1999.781056. URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=781056&isnumber

=16917.

Torchiaro, S., Rösel, B., Chen, D., Naseer, T., Hagl, F., & Lönn, H. (2011). (S. Cerchio,

Eds.) Model-based Analysis & Engineering of Novel Architectures for

225

Dependable Electric Vehicles (MAENAD). Deliverable D6.1.1. Preliminary

case study definition and evaluation metrics. Grant Agreement 260057.

http://www.maenad.eu.

Törngren, M., Walker, M., Papadopoulos, Y., Mahmud, N., Espinoza, H., Tagliabò, F., et

al. (2008). Advancing Traffic Efficiency and Safety through Software

Technology phase 2 (ATESST2), Deliverable D2.1, State of practice and State

of the art. ATESST2 - Grant Agreement 224442. http://www.atesst.org.

Trivedi, K. S. (2001). Probability and Statistics with Reliability, Queuing, and Computer

Science Applications. John Wiley and Sons, New York, 2001, Second Edition,

ISBN 0-471-33341-7.

Vesely, W. E. (1981). Fault Tree Handbook, US Nuclear Regulatory Committee Report

NUREG-0492. US NRC Washington DC United States.

Vesely, W. E., Goldberg, F. F., Roberts, N. H., & Haasl, D. F. (1981). Fault Tree

Handbook. Washington D.C., USA. US Nuclear Regulatory Commission.

Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., Minarick III, J., & Railsback, J.

(2002). Fault Tree Handbook with Aerospace Applications. NASA Office of

Safety and Mission Assurance, NASA Headquarters, Washington DC 20546,

from: http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf.

Villemeur, A. (1992). Reliability, Availability, Maintainability and Safety Assessment:

Volume 1. Chichester, UK. John Wiley & Sons.

Walker, M. (2009). Pandora – A Logic for the Qualitative Analysis of Temporal Fault

Trees. PhD Thesis. University of Hull, UK.

Walker, M., & Papadopoulos, Y. (2006). Pandora: The Time of Priority-AND gates. 12th

IFAC Symposium on Information Control Problems in Manufacturing

(INCOM'06), St Etienne, France. pp 237- 242. (Best Paper in Track Award).

Walker, M., & Papadopoulos, Y. (2008). Synthesis and analysis of temporal fault trees

with PANDORA: The time of Priority AND gates. Nonlinear Analysis: Hybrid

Systems, Volume 2, Issue 2, June 2008, Pages 368-382, ISSN 1751-570X,

10.1016/j.nahs.2006.05.003.

http://www.sciencedirect.com/science/article/pii/S1751570X06000574 .

226

Walker, M., Bottaci, L., & Papadopoulos, Y. (2007). Compositional Temporal Fault Tree

Analysis. (F. Saglietti, & N. Oster, Eds.) Computer Safety, Reliability, and

Security — SAFECOMP'07, Lecture Notes in Computer Science 4680, pp. 105-

119. Springer ISBN 978-3-540-7 .

Walker, M., Mahmud, N., Papadopoulos, Y., Tagliabò, F., Torchiaro, S., Schierano, W.,

et al. (2010). Advancing Traffic Efficiency and Safety through Software

Technology phase 2 (ATESST2), D2.1 Appendix A3.2, Review of relevant Safety

Analysis Techniques. ATESST2 - Grant Agreement 224442.

http://www.atesst.org.

Walker, M., Papadopoulos, Y., Parker, D., Lönn, H., Törngren, M., Chen, D., et al.

(2009). Semi-Automatic FMEA Supporting Complex Systems with

Combinations and Sequences of Failures. SAE Int. J. Passeng. Cars - Mech.

Syst. 2(1):791-802, 2009, doi:10.4271/2009-01-0738 .

Wallace, M. (2005). Modular architectural representation and analysis of fault

propagation and transformation. Electronic Notes in Theoretical Computer

Science. 141(3):53-71 .

Worrell, R. B., & Stack, D. W. (1978). A SETS User Manual for the Fault Tree Analyst.

U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research.

NUREG CR-04651.

227

Appendices

A — 1. HiP-HOPS Fault trees displayed using Isograph FaultTree+

Figure A — 1 represents the fault trees synthesised by HiP-HOPS (as those of

Figure 2—12), but displayed using the editor of the tool Isograph FaultTree+.

Figure A — 1. HiP-HOPS synthesised fault tree displayed using FaultTree+

228

A — 2. Outcome of HiP-HOPS Cut-set calculator

Figure A — 2 describes three cut-sets of order one and one cut-set of order two

— i.e., a result of the HiP-HOPS analysis of the failure annotations of the model

described in Figure 2—11.

Figure A — 2. Cut-sets determined by HiP-HOPS for the omission on output y

of Subsystem2

A — 3. A HiP-HOPS FMEA table showing the further effects of the

failure modes

Figure A — 3 shows the further effect of a failure of, e.g., component F of

Subsystem2 — i.e., an omission on the output of Subsystem2, but with a contributing

failure of component P (i.e., FailedP).

Figure A — 3. Fragment of an FMEA table synthesised by HiP-HOPS (a further

effects view)

229

A — 4. AADL error model with input / output propagation

Figure A — 4. AADL SM for a component with an input-output deviation

Table A — 1. AADL textual description of a component SM propagating an input /

output deviation

Declaration Implementation

error model Example2

features

ON: initial error state;

OFF: error state;

Fail, Repair: error event;

Deviation: in out error propagation

 {Occurrence => fixed 0.8};

end Example2;

error model implementation Example2.basic

transitions

ON- [Fail] ->OFF;

OFF- [out Deviation] ->OFF;

OFF- [Repair] ->ON;

ON- [in Deviation] ->OFF;

Properties

Occurrence => poisson 1.0e-3 applies to Fail;

Occurrence => poisson 1.0e-4 applies to Repair;

end Example2.basic;

230

A — 5. Optimisation example of a Markov model

Figure A — 5. A reducible Markov model

A, B and C are the three components of the system with the failure rates A, B

and C respectively (see Figure A — 5). The application of the conversion algorithm (see

chapter 4) on the Markov model of the figure gives the following failure expression:

“Total Failure” = A|C|B + (1)

 A.B|A.C|A|B + (2)

 A|B.C|A|B + (3)

 A.C|A.B|C|A + (4)

 A|C.B|C|A (5)

where (for the sake of clarity) A, B and C represent the failure events assigned with the

rates A, B and C respectively.

Now, by using the temporal law Y.X|Y  X<Y then by redundancy elimination we have:

Cut-sequence (2)  B<A.C<A.C<B  C<B<A

231

Cut-sequence (3)  A|B.C<A.C|B  A|B.C<A

Cut-sequence (4)  C<A.B<C.B<A  B<C<A

Cut-sequence (5)  A|C.B<A.B|C  A|C.B<A

Then, by expansion we have:

Cut-sequence (1)  A<B<C + A<C<B + A<B.A|C + A<C.A|B + A|C|B

Cut-sequence (3)  C<A<B + A|B.C<A

Thus, we have:

“Total Failure” = A<B<C + (1.1)

 A<C<B + (1.2)

 A<B.A|C + (1.3)

 A<C.A|B + (1.4)

 A|C|B + (1.5)

 C<B<A + (2)

 C<A<B + (3.1)

 A|B.C<A + (3.2)

 B<C<A + (4)

 A|C.B<A (5)

Similarly, we can apply the expansion law to (5) s.t.:

(5)  B<A<C + A|C.B<A

Thus, we now have:

“Total Failure” = A<B<C + (1.1)

 A<C<B + (1.2)

232

 A<B.A|C + (1.3)

 A<C.A|B + (1.4)

 A|C|B + (1.5)

 C<B<A + (2)

 C<A<B + (3.1)

 A|B.C<A + (3.2)

 B<C<A + (4)

 B<A<C + (5.1)

 A|C.B<A (5.2)

The expanded cut-sequences show that the occurrences of B and C, both after A or before

A and in any order between them, or either B or C occurs before A and the other one after

A, or either B or C occurs alone and irrespective of its order with A, or simply the two

(i.e., B and C) do not occur; all these compose the “Total Failure” expression. Therefore,

the occurrences of B and C are completely irrelevant and the “Total Failure” expression

can simply be minimised to A such that:

“Total Failure” = A.

233

A — 6. Markov solutions for the PS (before and after optimisation)

We present in this appendix the two Markov models for the PS (before and after

optimisation) and show that the reduced Model preserves the quantitative result which

corresponds to the “Total Failure” state. For the sake of clarity, the states of the Markov

model of the PS (presented in chapter 4 section 4.4) are numbered in Figure A — 6. This

also helps to better link the states to their corresponding probabilities. The meanings of

the transition labels and the state numbers appearing in the figure are as follows:

λA, λB and λS are failure rates for A, B and S resp.

State 1 corresponds to the state A B S (system functioning with A, none is failed)

State 2 corresponds to the state X B S (system functioning with B, only A is failed)

State 3 corresponds to the state A B X (system functioning with A, only S is failed)

State 4 corresponds to the state A X S (system functioning with A, only B is failed)

State 5 corresponds to the state X B X (system functioning with B, both A and S are

failed)

State 6 corresponds to the state A X X (system functioning with A, both B and S are

failed)

State 7 corresponds to the total failure state.

Figure A — 6. Markov model of the PS (before optimisation)

234

The quantitative results provided by the Markov solution of the model before

optimisation are given by solving the following differential equations:

 P1(t) = – (A+B+S) P1(t)

 P2(t) = A P1(t) – (S+B) P2(t)

 P3(t) = S P1(t) – (A+B) P3(t)

 P4(t) = B P1(t) – (A+S) P4(t)

 P5(t) = S P2(t) – B P5(t)

 P6(t) = B P3(t) + S P4(t) – A P6(t)

 P7(t) = B (P5(t) + P2(t)) + A (P3(t) + P4(t) + P6(t))

The solution of the differential equations is given by:

P1(t) = –   

P2(t) = –   – –   

P3(t) = –   – –   

P4(t) = –   – –   

P5(t) =


 
 – +



 
 –    – –  

P6(t) = –    – –   – –   + –

P7(t) =


 
 –    –



 
 – – – + 1 (total failure probability)

Figure A — 7 represents an optimised Markov model for the PS. State 1 is a state

in which the components A, B and S are all OK, and the states 2, 3 and 4 represent states

of the system in which A has failed, S has failed or B has failed, respectively. State 5 is

the total failure state of the system.

235

Figure A — 7. Markov model of the PS (after optimisation)

The quantitative results provided by the corresponding Markov solution are given by

solving the differential equations shown next.

 P1(t) = – (A+B+S) P1(t)

 P2(t) = A P1(t) – B P2(t)

 P3(t) = S P1(t) – A P3(t)

 P4(t) = B P1(t) – A P4(t)

 P5(t) = B P2(t) + A P3(t) + A P4(t)

The solution of the differential equations is given by:

P1(t) = –   

P2(t) =


 
 – –



 
 –   

P3(t) =


 
 – –



 
 –   

P4(t) =


 
 – –



 
 –   

P5(t) =


 
 –    –



 
 – – – + 1 (total failure probability)

P5(t) is the same as the probabilistic result P7(t) of the total failure (state 7) in the model

before optimisation.

