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Abstract 

Positron Emission Tomography (PET) is a non-invasive imaging method which enables 

to obtain both molecular and biochemical information of physiological processes in 

vivo, which means that PET imaging shows the chemical functioning of organs and 

tissues in a living subject. In recent years microfluidic lab-on-a-chip devices have been 

explored as a promising alternative for radiotracer synthesis due to benefits such as (i) 

superior control over reaction conditions leading to high yields and conversion rates, (ii) 

reduced reagent consumption and radioactive waste production as well as (iii) potential 

for automation with minimised shielding requirement. That said, most devices presented 

so far have focused on the synthesis of the radiotracer, with relatively little emphasis on 

the integrated devices that perform activation, synthesis and purification steps in an 

automated fashion. FDG (fluorodeoxyglucose) is one of the most widely used 

radiopharmaceuticals in Positron Emission Tomography (PET). Moreover the 

availability of several other PET radionuclides makes fluorine-18 (
18

F) the most 

predominant in the fields of oncology and neuroscience. 

The aim of the Radiochemistry on chip (ROC) project was to develop such an 

integrated lab-on-chip device and, in particular, here results for on-chip pre-

concentration of fluoride, together with some preliminary results on the removal of 

Kryptofix (K2.2.2) and the purification of fluoroethyl-dimethyl-2-hydroxy-

ethylammonium (FECH) are presented. Here in, three microfluidic modules for fluoride 

pre-concentration are described, the first employs a dam structure, the second and the 

third magnetic forces. In the final part of the thesis, preliminary results on the 

purification of fluoroethylcholine (FECH) and a suitable detection method for Kryptofix 

(K2.2.2) are reported. 
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Firstly, the design, fabrication and implementation of a glass microfluidic device for 

recovery of [
18

F] and [
19

F]fluoride ions is described. The device was initially tested with 

non radioactive [
19

F]fluoride ions and shown to repeatedly trap and elute > 95% fluoride 

over 40 successive experimental runs with no decrease in efficiency. The same device 

was then tested for the trapping and release of [
18

F]fluoride ions, again over 20 

experiments were executed with no measurable decrease in performance. Finally, the 

[
18

F]fluoride ions were eluted as a K
18

F/K2.2.2 complex, dried by repeated dissolution 

in acetonitrile and evaporation of residual water, and reacted with EtDT leading to the 

formation of the desired product ([
18

F]fluoroethyltosylate) with 96 ± 3 % yield (RCY). 

The overall time needed for conditioning, trapping, elution and regeneration was less 

than 6 minutes. This approach will be of great benefit towards an integrated platform 

able to perform faster and safer radiochemical synthesis on the micro-scale. 

In the following chapter, magnetic microparticles are described as a method for the 

trapping and elution of [
18/19

F]fluoride ions via formation of a magnetic plug inside a 

glass microdevice. Even though the method was found to be not as fast and efficient as 

the packed bed of microparticles (Chapter 3), and still requires several manual steps 

which are time and labour consuming, the proof of principle illustrates an alternative 

process not yet reported in the literature, with potential for future on-chip pre-

concentration of fluoride. The results showed that by employing positively charged 

magnetic particles, fluoride could be trapped in yield of > 50 % and elution achieved 

with approximately 90 % recovery of fluoride. A subsequent method for reducing the 

inefficiencies of the plug of magnetic particles is described where a multilaminar flow 

microreactor was investigated in which functionalised magnetic particles can be 

deflected through streams of reagents with the final aim to perform trapping and elution 

of fluoride in continuous flow. In the final chapter preliminary studies into the detection 
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and removal of K2.2.2 and FECH are described. Two detection methods for K2.2.2 

analysis and detection of K2.2.2 in FDG are proposed and assessed towards real 

sampling of FDG. Also a suitable detection method for FECH and DMAE and 

TBAHCO3 was also optimised, with separation of the three analytes achieved with an 

isocratic IC method. Trapping of FECH was also achieved with cation exchange 

material trapped in micro-chamber, and the capacity of the material was found to be 5.5 

µg mg
-1

. 

In a final study the integration of different micro-chambers modules was assessed for 

potential towards FECH purification to establish an alternative method whereby all the 

by-products are trapped and only FECH is released; results on this study showed that it 

was not possible to completely purify FECH due to DMAE presence found in the 

purified solution in high trace (only 30 % was trapped and the rest released together 

with FECH). 
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1 Introduction 

1.1 Positron Emission Tomography (PET) 

Positron Emission Tomography (PET) is a molecular in vivo imaging technique with 

very high resolution and sensitivity compared to single photon imaging (planar and 

single photon emission computed tomography (SPECT))[1] which requires the labeling 

with positron emitting radioisotopes, also referred to as radiotracers. It covers a wide 

range of applications in the fields of oncology, cardiology and neurology. PET scans 

can be applied for diagnosis of malignancy, grading of malignancy, staging of diseases, 

detection of residual disease, detection of recurrence, measuring the response to therapy 

and identification of the site of disease. The reason why PET is so successful compared 

to other techniques, such as X-rays and MRI scan and single photon imaging compared 

to single photon imaging (planar and single photon emission computed tomography 

(SPECT))[1], is that PET not only shows the anatomy of the body, but also the chemical 

and metabolic aspect of any eventual disease with the added benefit of sensitivity and 

specificity. Furthermore, specificity and sensitivity can be increased when combined 

with computed tomography (PET CT SCAN) as shown in Figure 1 where CT and PET 

images are taken sequentially showing the anatomy and metabolic aspect within the 

same image [2]. The development of positron emission tomography illustrates how 

advances in basic science translate into benefits for human beings. In 1930 Ernest 

Lawrence and co-workers [3, 4] realised the first cyclotron. By 1938 Lawrence and 

Livingston [4] had designed a "medical cyclotron". In the mid-1950, while looking for a 

method to examine the oxygenation of tumors, Ter-Pogossian and Powers investigated 

C-11, N-13, O-15, and F-18 and found many uses in medical and physiological research 

[5]. These early experiments stimulated interest in the use of short-lived radioactive 
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gases, and led, in 1955 to the construction of the first medical cyclotron, located on the 

grounds of the Hammersmith Hospital in London. The introduction of 

fluorodeoxyglucose (FDG) represented another major step towards practical clinical use 

of positron-emitting tracers. In 1977, after a decade of development, Sokoloff et al. 

described in a classical paper the use of carbon-14 deoxyglucose for measurement of 

local cerebral glucose utilization [6]. Shortly afterwards Reivichv et al. extended the 

carbon-14 radiographic method to measurements of regional glucose utilization with 

fluorine-18 deoxyglucose [7], a tracer developed by Ido and colleagues [8]. It was a 

significant accomplishment not only the development of this tracer but also the 

modeling of its use to reveal regional cerebral glucose utilization, which gave birth to 

functional mapping of the human brain[9]. 
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Figure 1 (a) CT scan showing the anatomy of the brain (left), on the right PET scan showing the 

metabolic process of the brain. b) Fusion of CT and PET scan increasing sensitivity and specificity. 

1.2 Basic principles of PET imaging 

Several steps are required in the PET process, from the selection of a suitable molecular 

probe labelled with a positron emitting radionuclide, administration either by injecting 

into the vein, swallowing or inhaling, to imaging the distribution in the patient. Positron 

emitters are isotopes, which are neutron-deficient and reach their stability by conversion 

of a proton to a neutron. Figure 2 is a schematic representation of the positron emitted 

from the nucleus and the subsequent formation of two photons or gamma rays. 
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Figure 2 Schematic representation of positron emission and formation of 2 photons (gamma rays). 

Once the positron is emitted, energy in form of β
+
 radiation is given off. Once the 

radionuclide is emitted, annihilation process takes place, which is the energy produced 

between positron-electron and is produced outside the nucleus which takes place outside 

the positron emitting atom and gives rise to two photons or gamma rays (γ). Each of 

them has an energy of 0.511 MeV, given off at 180  opposite directions in order to 

maintain their momentum. This is the crucial phenomenon of the detection in PET 

where two photons are detected simultaneously by a circular array of detector in the 

PET scanner. The process of positron emission is described in more details below. 

There are two ways to produce a positron, by pair production and by nuclear 

transmutation. The general equation in positron decay is shown in equation 1: 

Z

AX Z 1

A Y 1

0 Q( e )    Equation 1 
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Where Q is energy, the atom X is a proton rich and achieves stability by converting a 

proton to a neutron [10]. The positive charge is carried away with the positron and to 

balance the charge an electron is ejected from the outer orbital (internal conversion); 

initially the positron has energy similar to the 
-
 decay, but it loses its kinetic energy by 

interaction with the surrounding matter via four types of interactions: 

 Inelastic collisions with atomic electrons. 

 Elastic scattering with atomic electrons, where positron is deflected but 

maintains energy and momentum. 

 Inelastic scattering with a nucleus, positron deflected emission of radiation. 

 Elastic scattering with a nucleus where positron is deflected but not transfer any 

energy to the nucleus. 

When a positron and electron combine and annihilate giving off electromagnetic 

radiation in the form of two photons as described above, in some cases three photons 

can be emitted (< 1% probability) [2, 11]. 

Once the positron is ejected from the nucleus, it loses energy by collision with other 

atoms and combines with another extra nuclear electron so the total mass of β
+ 

+ e
-
 is 

converted to energy according to Einstein equation (2): [11] 

Total mass of β
+
+e

-
 =18.219x10

-31 
kg 

Speed of light =2.998x10
8
 ms

-1
 

E=mc
2
 =1.6375x10

-13
 kg m

2 
s

-2
 (J)   Equation 2 

19

13

106022.1

106375.1

x

x
eV

 

= 1.022x 10
6 
eV = 1.022 MeV 

 Examples of isotopes which undergo decay via positron emission are shown in Table 

1:  
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Table 1 Properties of commonly used positron emitting radioisotopes [12]. 

Isotope Half-life 

(min) 

Maximum 

positron 

energy 

(MeV) 

Positron range in 

water (mm) 

Decay 

product 

Production 

method 

11
C 20.3  0.96 1.1 

11
B Cyclotron 

13
N 9.97  1.19 1.4 

13
C Cyclotron 

15
O 2.03 1.70 1.5 

15
N Cyclotron 

18
F 109.8 0.64 1.0 

18
O Cyclotron 

68
Ga 67.8 1.89 1.7 

68
Zn Generator 

64
Cu 762 3.15 1.7 

64
Ni Cyclotron 

 

1.3 Radiation detector 

Radiation detectors measure the energy lost or deposited by ionizing radiation when 

they pass the detector, typically they convert the energy into an electrical or charge 

signal. They are generally divided into three categories: gas chambers, semi-conductors 

and scintillation detectors. The latter one is the most used and successful for the 

detection of 511 KeV photons in PET imaging. They consist of an inorganic crystal 

(scintillator) which emits visible (scintillation) light photons after the interactions of the 

photons with the detector, a photo detector measures the number of scintillation photons 

during the interactions which is proportional to the energy deposited within the crystal 

[13]. 

1.4  Fluorine, 18F and its production 

The non radioactive 
19

F
-
 isotope is a group p-block element (electron configuration: 

[He] 2s
2
 2p

5
) has natural abundance of 100% and reacts readily with almost every 

element and compound when present in its gaseous form. This basically means that 
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neither any radioactive fluorine isotope nor gaseous fluorine will be found in nature. 

Fluorine is the most electronegative element present with a Sanderson electronegativity 

of 4.0. The most common oxidation number is -1. 

[
18

F]Fluorine itself is one of many known radioactive isotopes, and it consists of 9 

protons and 9 neutrons with a half life between 109.8 – 109.7 min. All other known 

radioactive positron emitting fluorine isotopes (there are three) have short half-lives for 

in vivo imaging purposes (e.g 
17

F, t1/2= 64.8 s) and their production is of relatively of 

little interest [14]. 

1.5 [18F]Fluorine radiopharmaceuticals 

[
18

F]Fluorine as part of the radiohalides is becoming increasingly the radionuclide of 

choice not only due to its physical and nuclear characteristics as described earlier but 

also due to the successful use in clinical oncology of 2-[
18

F]fluoro-2-deoxy-D-glucose 

[
18

F]FDG, which is currently the most widely used PET radiopharmaceutical. 

[
18

F]fluorine it decays in 97% of the cases by positron emission and 3% by electron 

capture to the stable isotope 
18

O [15]. In general it can react either as electrophile or 

nucleophile but due to its reactivity in the electrophile reaction, regioselectivity which 

makes the nucleophilic reaction of [
18

F]fluoride the preferred method. The most 

common method to produce nucleophilic [
18

F
-
]fluoride is the 

18
O (p, n) 

18
F nuclear 

reaction, i.e. the reaction of an accelerated proton with 
18

O to produce a neutron and 
18

F
-

. A variety of chemical reactions are available for 
18

F
-
, but they can be divided mainly in 

two categories; SN2-type (nucleophilic substitution bimolecular) reactions with the 

substrate containing a leaving group, and aromatic nucleophilic substitution reactions, 

which utilise an activated aromatic group. Its relative longer half-life makes it 
18

F
-
 a 

suitable candidate both on synthesis time and longer imaging applications [16]. 

Nucleophilic substitution with no-carrier-added (N.C.A) [
18

F]fluoride is still the only 
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way to obtain products with high specific activity which denotes the ratio of the 

radiotracer in question to the total amount of compound both labelled and unlabelled is 

expressed in GBq µmol
-1

 or mCi mmol
-1

. Several developments in the synthesis of 
18

F-

tracers have been achieved, with some of the common radiotracers used in PET shown 

in Table 2; peptide synthesis via prosthetic group labeling [
18

F]SFB, click chemistry 

formation of triazole between an azide and an acetylene, enzyme fluorination of 

adenosylmethionine but the three main methods of fluorination procedures are namely; 

i) direct fluorination (one step) [
18

F] such as flumazenil ii) direct fluorination followed 

by cleavage either basic/acid hydrolysis or oxidative cleavage such as FDG, iii) 

synthesis of a 
18

F-synthon (prosthetic group) either 2 or 3 steps such as FECH [15]. 
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Table 2 Common 
18

F radiotracers for PET with their application and structure [17-21]. 

Radiotracer Applications Structure References 

[
18

F]Fluoroethylcholine 

(FECH) 

Prostate, brain 

tumors 

 

 

[17] 

 

[
18

F]Fluoromisonidazole 

(FMISO) 

Hypoxia 

 

 

[18] 

[
18

F]Fluorothymidine 

(FLT) 

Cellular 

proliferation 

 

 

[19] 

[
18

F]2-Deoxy-2-fluoro-D-

glucose (FDG) 

Glucose 

metabolism 

and tumors  

 

[20] 

[
18

F]Fluorodopa (FDopa) Parkinson’s 

disease  

 

 

[21] 

 

1.6 [18F-]Fluorine radiochemistry systems for synthesis  

Currently the synthesis of radiocompounds is performed in a variety of formats 

depending on the type of chemistry and their requirements, commonly these platforms 

are referred to as radiosynthesisers or radiochemistry systems. Radiochemistry systems 

are able to perform a number of operations such as chemical reactions, neutralisation, 

purification and dilution. These are mainly used to synthesise radiopharmaceuticals, 

where due to the large amount required for clinical purposes, automation is an essential 

requirement in order to minimise handling of these high energy emitters which would 

be dangerous for the operators. There are many commercially available systems, a 
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classification of these will be presented below, but it will be restricted to systems for 

[
18

F
-
] labeling. 

Radiochemistry systems can be divided in three main categories: 

 Systems to be charged with reagents (1.6.1), 

 Systems with disposable cassettes (1.6.2), 

 ‘Modular’ systems (1.6.3), 

Functionality also varies between systems depending of their use; single dose FDG, and 

multi-dose where both nucleophilic substitutions and electrophilic reactions can be 

performed on the same system. Depending on the chemistry performed, the system can 

also be divided in two further categories; substitution in a reactor or in a loop as well as 

whether acid or basic hydrolysis is performed on reactor or on cartridges. 

From a technical point of view, they differ depending on the number of reactors 

available, their detector functions, and if they integrate a HPLC – preparative for their 

purifications [22]. 

1.6.1 Radiochemistry systems to be charged with reagents 

The first group of system are characterised by the fact that reagents and products are 

loaded onto reactor vessels either manually or in some cases by robotic arms. Common 

materials for vessels are plastic, glass or glassy carbon, with volumes reagents from 1 

mL to 10 mL. Reaction temperature are controlled by electrical resistance (25 – 250 °C) 

or via Peltier technology (-180 – 300 °C). In the next paragraphs some of the 

commercially available systems are described. 

Three synthesisers are available from GE (GE Healthcare, United Kingdom) under the 

name of TracerLab as shown in Figure 3: the “FX-FDG double” for FDG synthesis 

(Figure 3a) with a 60 % radiochemical yield (R.C.Y.) is able to perform two 

independent runs and it comes with three radiation detectors. The “FX-FN” or “FX-FE” 
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(Figure 3b), for both nucleophillic and electrophilic substitution which features built-in 

preparative radio / UV HPLC and the “FX-Dopa” (Figure 3c) which enable the 

synthesis of Fluoro-Dopa with a 20 % radiochemical yield in less than 40 min with 99% 

enantiomeric purity. 

 

Figure 3 a) GE Tracer Lab FX-FDG for synthesis of FDG which allows two consecutive runs 

without opening the hot-cell [23]. b) The TracerLab FX-FN/FE a versatile system for multiple 
18

F 

radio compounds[23, 24]. c) The TracerLab FX-DOPA for fully automated synthesis of [
18

F]F-

Dopa [25].  

 

Raytest (Raytest GmbH, Germany) also produce a series of synthesisers under the name 

of “Synchrom” as shown in Figure 4; for single run FDG synthesis as shown in Figure 

4(a) as well as a system for general radiosynthesis with an HPLC purification system 

built in as shown in Figure 4(c). 

 

Figure 4 Images of different modular systems from Raytest a) the “Synchrom FDG”, b) “Synchrom 

F2” and c) “Synchrom R&D” [26].  
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Furthermore there are Synthra synthesisers (Synthra GmbH, Germany) for FDG and F-

Dopa as shown in Figure 5(a-b) both with integrated heating / cooling systems and three 

radiation detectors as well as a system with built-in preparative Radio / HPLC 

purification. 

 

Figure 5 (a) The “Synthra FDG
two

” a fully automated system for FDG synthesis[27]. (b) the synthra 

F-Dopa for routine production of 6-[
18

F]fluoro-L-Dopa[27].  

(c) The “Synthra RN
plus

” a completely automated radio synthesis system for routine production of a 

wide variety of [18F]fluorine labelled compounds by nucleophilic substitution[27].  

 

1.6.2 Radiochemistry systems with disposable kits 

Another category of radiochemistry synthesisers consists of systems with disposable 

cassettes where chemicals, cartridges and solvents are already included and loaded into 

the cassette, thus allowing multiple back-to-back production runs for 
18

F-FDG, as well 

with the advantages of reducing maintenance and cross-contamination. 

 

Figure 6 Image of a disposable cassette system with reagents and chemicals already loaded the 

image shows a cassette system for the GE “FastLab” [28]. 

Two systems are available from GE Healthcare (GE HealthCare, United Kingdom), the 

“MX Tracer Lab” as shown in Figure 7(a) for synthesis of FDG in 60 % radiochemical 
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yield in less than 27 min as well as the “Fast Lab” which allows different cassette 

systems to be used (FDG, 
18

F-NaF) with a 70 % radiochemical yield for FDG in less 

than 23 min. 

 

Figure 7 (a) The “GE MX Tracer Lab” for FDG synthesis[29].(b) The “GE Fast Lab” a more 

versatile system for multiple synthesis of radiocompounds including FDG, FLT, FMISO [25].  

Cassette systems are also produced by IBA (IBA Solutions, Belgium) with the 

“Synthera” family for both FDG and FLT as shown in Figure 8. The “Synthera FDG” in 

Figure 8(a) enables FDG synthesis with a yield of 55 % and an automatic ejecting of the 

cassette. The “Synthera FLT” (Figure 8(b)) allows synthesis of FLT in a 20% yield in 

less than 40 min also available with the “Synthera HPLC” for on-line purification. 

 

Figure 8 Images of two types of “Synthera” produced by IBA. (a) The “Synthera FDG” for 

synthesis of FDG and (b) the “Synthera FLT” for synthesis of FLT [30]. 
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Also belonging to the category of the cassette systems is the Siemens “Explora” 

(Siemens Healthcare, Germany) with three different synthesisers; the “Explora FDG4” 

for synthesis of FDG with a non d.c.y. of 65 % in 45 min which allows up to four 

sequential runs of FDG and includes up to five radiodetectors. In the same product 

family is the “Explora FM+LC” for synthesis of FLT which allows for reagents 

measurements and integrates a semi-preparative HPLC. This instrument supports two 

batches of automated synthesis before cleaning is needed. 

 

Figure 9 (a) The “Explora FDG4“ a disposable system for FDG synthesis[31]. (b) The “Explora 

GN” for multiple synthesis of FDG[32]. (c) The “Explora FM+LC”, a fully automated system with 

built-in a semi-preparative LC system for purification [33].  

Bioscan which has recently been acquired by Eckert and Ziegler (Bioscan Europe Ltd., 

France), offers two synthesisers one for FDG synthesis with a yield of 55% as shown in 

Figure 10(a) as well as an automated loop system for synthesis of 
18

F-Choline and other 

alkylation syntheses like 
18

F-FBrEt or 
18

F-FBrMe which allows direct injection into the 

HPLC system. 



  Chapter 1 

31 

 

 

Figure 10 (a) The “FDG-Plus” synthesizer for multiple runs of FDG production[34].(b) “Autoloop” 

Module, a system that takes advantages of the ‘loop technique’ developed by Dr. Alan Wilson at the 

centre for Addiction and Mental Health in Toronto, where the reaction happen at room 

temperature in the closed loop [35]. 

1.6.3 Modular radiochemistry systems 

This category of synthesisers consists of small, sealed, stainless steel modules stacked 

and connected by tubing and by a single electrical cable. The use of multiple, 

replaceable modules allow the system to be applied for various isotopes and many types 

of reactions. Due to its multifunctionality these systems can replace several single-

purpose devices, which significantly reduce cost and lab space. Currently there are two 

companies that produce such systems. The first is by Eckert & Ziegler (Eckert & 

Ziegler Strahlen- und Medizintechnik AG, Germany) (Figure 11) where different 

modules (Figure 11(b)) can be assembled together for a custom synthesis process. Each 

individual modules are quite small (13 x 13 x 8 cm
3
) in Figure 12(a-b) both the 

modular–Lab for FDG and FECH are shown which allow synthesis of FDG in less than 

30 minutes and can produce up to four sequential FDG batches. 
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Figure 11 (a) Eckert & Ziegler modular system assembled and interfaced to a PC, (b) The 

individual components [36]. 

 

Figure12 The E&Z Modular Lab F-FDG for synthesis of FDG [37]. The Modular-Lab F-FECH for 

synthesis of FECH [38]. 

Also of similar concept are the Scintomics modular synthesisers (SCINTOMICS 

GmbH, Germany) with an example shown in Figure 13. 

 

Figure 13 (a) The Scintomics modular system, (b) The “AutoFEC” modular systems for synthesis of 

FEC [39].  
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1.6.4 “Microfluidic” radiochemistry systems 

This category consists of modular, liquid-flow-based 
18

F microchemistry system with 

the ability to combine both microscale and macroscale process steps in PET synthesis. 

The main difference to the modular systems is the integration of a microfluidic loop, 

commonly glass capillaries, for reactions [40, 41]. Current the only available system of 

this category is the Advion NanoTek LF (Advion, USA) as shown in Figure 14 which 

consists of a liquid flow reactor system, an auxiliary pump module as well as a 

concentrator and evaporator module, thus allows for a fast synthesis and enable 

production of multiple biomarkers from a single 
18

F batch. It features lower reagent 

usage and can integrate a purification system. In Figure 14(b) the microfuidic reactor 

loop is shown which consists of a coiled fused silica capillary. 

 

Figure 14 (a) The microfluidic systems from Advion (Advion “Nanotek LF”) which consists of a 

reactor module, a concentrator module and an evaporator module. (b) The microfluidic loops for 

reaction situated in the Advion “NanoTek LF” system which consists of a coiled glass capillary 

(approximately 2 m in length with a diameter of 150 µm)connected to a heating system [42]. 

Radiochemistry systems sizes comparisons 

The paragraphs above show that there is an expansive line of radiochemistry modules 

for small to medium scale synthesis and production of different PET imaging 

biomarkers. In Figure 15 an image of the variety of the systems described above are 
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compared in terms of their size. In Table 3 few examples of each of the categories 

described above are compared in terms of their synthesis time and yield obtained 

 

Figure 15 Comparison of the different radiochemistry modules described above in term of their 

size.
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Table 3 some of the commercially available synthesisers compared in terms of their timing and synthesis yield  

System Company Radiopharmaceutical Time for synthesis 

(FDG) 

R.C.Y Advantages 

1) Charged: 

 

“TracerLab” 

“Synthra FDG
TWO

” 

 

 

GE Healthcare 

Synthra 

 

 

FDG, Fluoro Dopa 

FDG 

 

 

< 30 min 

< 28 min 

 

 

70 % 

98 % R.C.P 

 

 

Two production runs per 

loading  

High starting activity 

 (555 GBq) 

2) Disposable:  

 

“FastLab” 

“Explora FDG4” 

 

 

GE Healthcare 

Siemens 

 

 

FDG 

FDG  

 

 

25 min 

45 min 

 

 

74 % 

65 % 

 

 

Quick set-up (< 1 min) 

Automatic self-cleaning 

3) Modular: 

 

“Modular Lab 
18

F- 

FDG” 

 

 

Eckert & Ziegler 

 

 

FDG 

 

 

<30 min 

 

 

Not 

reported 

 

 

Four sequential syntheses 

without user interaction 

4) Microfluidic: 

 

“NantoTek LF” 

 

 

Advion 

 

 

FECH 

 

 

< 90 s 

 

 

60-85 % 

 

 

“Dose on demand” 
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1.7 Preparation of nucleophilic [18F-] for radiosynthesis 

In the following paragraphs an in depth description for the preparation of nucleophillic 

[
18

F
-
] radiotracers will be presented.  

All radiosynthetic nucleophilic substitutions, to introduce [
18

F
-
] into molecules, start 

with a drying step, because the fluoride is obtained as an aqueous solution. This means 

that its nucleophilic properties are weak due to hydrogen bonding with water molecules 

[22, 43]. Therefore, prior to performing any synthesis, [
18

F
-
]fluoride is dried 

azeotropically under reduced pressure in the presence of acetonitrile. This step is 

commonly achieved in automated synthesis module or manually with a drying apparatus 

as shown in Figure 16 [15]. The first step after passing the [
18

F]F
- 
through an activated 

ion exchange cartridge is to remove the excess H2
18

O water under vacuum with air or a 

gas such as helium or argon [44, 45]. Subsequently the [
18

F]F
-
 is eluted from the 

cartridge with a solution of K2.2.2 and K2CO3 in acetonitrile and collected in a second 

drying vial, the choice of acetonitrile is mainly due to its suitability to form an 

azeotropic mixture with water which facilitates the drying step [46]. Once the elution 

steps are complete, the drying vial is heated at about 90-95 °C with a constant flow of 

nitrogen (or helium or argon) under reduced pressure and stirring to help the 

evaporation of the azeotrope (water/acetonitrile); this drying step usually takes 3-5 min. 

As a small amount of water stays in the vial (about 10 - 20 μL), another portion of 

acetonitrile is added (about 0.5 – 1.0 mL) and the drying continued. After the second 

drying step (another 2 – 3 min) the complex is dried. Some researchers will add a third 

step to ensure complete drying of the complex, which finally leaves the [
18

F
-
] in the vial 

as a slightly yellowish film which is ready for use in the synthetic step. In the case of 

automated synthesis modules, the risk of contamination and the reduction of human 

errors make the drying procedure a convenient approach [47]. 
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Figure 16 Experimental setup to manually dry 
18

F
-
: 1) The 

18
F

-
 in H2

18
O water has to be passed 

through the QMA cartridge (ion-exchange), the 
18

F
-
 stays on the resin and the H2

18
O water passes 

through; 2) a mixture of Kryptofix 2.2.2 (10-15 mg), K2CO3 (10-15 µL of a 1.0 M K2CO3 solution), 

water (40 µL) and acetonitrile (300-900 mL) elutes the 
18

F
- 
from the resin into the drying (reaction) 

vessel. Adapted from [47] 

FDG Synthesis 

[
18

F]FDG is a glucose analogue in which the hydroxyl group on the 2-carbon of a 

glucose molecule is replaced by a fluoride atom. Brown et al. [48] showed that the 

uptake of glucose was related to the expression of glucose transporter-1 (GLUT-1). 

After the transport of FDG across the cell membrane, it is phosphorylated to become 

FDG-6-phosphate. This compound is trapped intracellular and is resistant to further 

metabolic processes that would normally occur to glucose-6-phosphate. It is the 

increased number of glucose transporters located on the tumour cell membrane which 

allows an increased uptake of FDG and the trapping of FDG-6-phosphate in cancerous 
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tissue. This gradual accumulation of FDG in the malignant cells, allows the tumour to 

be visualised [49]. 

 

Figure 17 Schematic synthesis of FDG step by step; Step 1 activation and isolation of fluoride. Step 

2 solvent exchange from water to acetonitrile. Step 3 fluorination with mannose triflate. Step 4 

hydrolysis. Step 5 product purification [50]. 
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The first synthesis of FDG was carried out in Brookhaven National Laboratory by Wolf 

et al. [51] in 1976 by electrophilic fluorination (Figure 18 (a) shows the electrophilic 

mechanism); however, the first FDG trial in humans had a low yield and the synthesis 

time was long (several hours). Several improvements were made subsequently to try to 

incorporate other sugar precursors, but the main limitation was that the only 50 % of 

radioactive fluorine atoms were incorporated during the electrophilic fluorination step. 

Only several years later was there a breakthrough by Hamacher et al. [16] who through 

a nucleophilic substitution, with the use of Kryptofix 2.2.2 as phase transfer catalyst 

(P.T.C.), increased the yield over 50 % and reduced the synthesis times to 50 min. 

 

Figure 18 a) Electrophilic fluorination. b) Nucleophilic substitution. 

In the synthesis, the F
-
 ion is the nucleophile and the precursor is mannose triflate in 

which the 1,3,4 and 6 positions are protected with an acetyl group and triflate is the 

leaving group at the second carbon (Figure 17). Since fluoride has high hydration 

energy, water is not a suitable solvent; hence a polar aprotic solvent like acetonitrile 

must be used to isolate the fluoride from the irradiated water. As previously discussed, 

this is achieved by anion exchange where the trapped fluoride is eluted with a solution 
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of ACN/K2CO3 and K2.2.2 [52]. The presence of the kryptand complexes the K
+
 cations 

preventing the formation of KF and enhancing the reactivity of the fluoride [53]. Once 

the fluoride has been activated and isolated, it is necessary to evaporate any residual 

water from the solution, normally achieved by azeotropic distillation as described in 

Section 1.7. Then the fluorination takes place with the addition of the sugar derivative, 

mannose triflate, with acetyl protecting groups at position 1,3,4 and 6 preventing 

fluorination at these sites. The next step is to remove the acetyl protecting groups via 

either acid or base hydrolysis; whit the latter one being faster and taking place at room 

temperature [54]. The final step involves purification of the toxic compound K2.2.2 

[55], removal of any unreacted fluoride and non-hydrolysed by-products or partially 

acetylated FDG. This is achieved using a series of SPE columns [56], where the by-

products are retained and the FDG released. By this approach, FDG radiochemical 

yields of over 95% can be achieved and FDG is produced routinely in automated 

synthesis modules (ASMs) consisting of disposable cassettes with required chemical 

reagents as discussed in section 1.6 an example which is shown in Figure 19[57]. 

 

Figure 19 GE “FastLab” synthesiser by GE healthcare for synthesis of FDG [28]. 
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1.8 Microfluidics and Micro Total Analysis System (μTAS) 

Microfluidic devices consist of a network of channels etched in a solid substrate, the 

channels typically have dimensions in the range of 10 – 1000 µm. Such lab-on-a-chip 

devices are nowadays emerging as useful technology for the intensification and 

miniaturization of chemical processes. Microfluidic devices have found applications in 

a range of different research areas due to the advantages they offer over many of the 

bench top systems. Table 4 lists some of the key advantages of micro-reactors [58]. 

Table 4 General properties of microreactors and their benefits. 

Property Characteristics and benefits 

Size 

Heat transfer, diffusion and mass transfer, are 

improved. Better control over temperature and 

concentration gradients. 

Volumes 

Volumes in the range of nL-µL,  

reduced reagent consumption,  

increased safety. 

High surface to volume ratio 

More efficient heat transfer, increased rate of 

chemical reactions. 

Short mixing time 

Diffusion based mixing is in the s to min 

range, reaction time also reduced. 

Mode of flow 

Laminar flow where mixing is diffusion based 

can be regulated with hydrodynamic or 

electrokinetic controls.  

Parallel process 

Can be adapted for high throughput or 

combinatorial synthesis. 

 

Several fabrication methods are available. Chips can be fabricated from polymers, 

metals, quartz, silicon or glass depending on the properties required for an application 
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such as the nature of the reaction, material cost and reliability. Glass is often the first 

choice because it is mechanically strong, compatible with a wide range of chemical 

solvents and is optically transparent. Alternatively polymer based devices especially 

PDMS give good flexibility in fabrication and valve control ability but are restricted to 

applications not involving organic solvents that cause swelling or damage [58]. 

With the development of MEMS (micro-electro-mechanical-system) technology and 

microfluidic systems, a number of groups have been working towards miniaturised PET 

radiosynthesis devices [59]. With the aim of offering exciting advantages such as low 

sample and reagent consumption, high reproducibility and automation. Furthermore, 

working with radioactivity requires special equipment such as lead-shielded cabinets 

(hot cells) and computerised systems. A few of the advantages of micro-PET tracer 

synthesis systems over conventional system are i) controlled transfer of small volumes 

of radioactive liquid, ii) increase in surface area which enhances heat and mass transfer 

(hence faster reaction), iii) better product selectivity, iv) reduced volume of reagents and 

v) reduced space requirement and easy shielding [60]. Overall, microfluidic reactors 

seem to be suitable for performing rapid radiolabeling reactions since they are ideally 

suited to handle small amounts of reagents (normally ng to µg), especially important 

when dealing with radiotracers where the supply can be limited. Some examples of 

radiolabeling in microfluidic device have been reported however most of them are only 

a proof of concept and few are discussed below. 

The first example of [
18

F]FDG synthesis in a glass based micro-reactor started with the 

conventional azeotropic method for drying aqueous [
18

F] fluoride ions [61] where the 

dried K
18

F with kryptofix was introduced into one micro-reactor through one of the two 

inlets and the precursor from the other inlet at a rate of 5-100 µL min
-1

. Then the 

product was fed into another micro-reactor where the hydrolysis took place, and the 
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RCY obtained was 24% [61]. In 2006 Gillies et a.l. [46, 62] reported the use of a 

polycarbonate microfluidic reactor for radiolabeling using 
18

F. Exploying two modules 

to achieve the synthesis of FDG, one for the fluorination of the triflate protected 

mannose in DMF, the second to carry out the deprotonation using sodium methanolate 

in methanol, but the result was incomplete deprotection of the mannose triflate 

precursor with a significant proportion of F
-
 unreacted (Figure 20). 

 

Figure 20 Schematic of the two microfluidic devices used by Gillies et al. Chip 1 radiolabelling of 

the mannose triflate, chip 2 base deprotonation [62]. 

A year later, Steel et al. [63] reported a two stage glass device for synthesis of FDG. 

This presented significant advantages over the previous devices in terms of total 

processing time, taking only 18 min compared to the 30-60 min of the previous systems. 

However so far, only a few of the five processing steps required for the synthesis of 

FDG were performed on a microfluidic device, mainly the fluorination and the acetyl 

deprotection. The first micro-reactor capable of performing the five chemical process 
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steps was reported by Lee et al. [64] in 2005 however the device only produced enough 

FDG to conduct micro PET scans on a mouse model (Figure 21). 

 

 

Figure 21 (a) Schematic representation of the microfluidic reactor circuit used for FDG production 

b) view of the device and optical micrograph from Lee et al.[64]. 

This was a PDMS device capable of performing the five steps with an integrated anion 

exchange column for pre-concentration of fluoride. The main limitation of the device 

was the PDMS elastomer and the poor resistance to chemicals and solvents. Recently, in 

2010, the same group optimised a 5 µL coin-shaped reactor to produce sufficient 

quantity of FDG to be validated by in vivo imaging; however, the complexity of the 

system which consist of pressure valves and vacuum assisted mechanisms makes it still 

a batch process that is not yet ready to produce multiple human doses [65]. Since then 

not much has been achieved in terms of complete microfluidic synthesis due to the 

complex nature of the chemistry involved however several groups have attempted a 
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different approach for the separation of [
18

F
-
]fluoride from water using EOF [66] and 

electrochemical separation [67, 68]. 

So far, all the process have not been united in one system capable of fulfilling the 

important requirements of a system that i) is fast and high yielding production of a 

broad range of biomarkers, ii) reducing reagent consumption, iii) is autonomous and 

self-shielding, iv) is located at the clinic, v) is reliable and capable of performing many 

cycles without involvement of technical help. The application of micro-reactors in 

radiochemistry is therefore still in its infancy with limited number of examples, most of 

them proof of principle studies or investigations [69] not yet ready to be transferred to a 

large scale production. Only two products using microfluidic flow reactors in some 

stages of radiosynthesis which have recently became available. Advion offers a system 

flow based system called “Nanotek LF”. ScintOmics sells components for 

radiosynthesis system. These are described in Section 1.7.3-1.7.4 [59]. Nevertheless 

these so called ‘microscale’ systems still suffer from main limitations such as size, 

where apart from the micro-reactor (e.g the fused silica used in the Advion system) the 

rest of the components (pump, detector, heating system) still require a significant 

amount of space, as well extra engineering complexity (e.g. setting-up and stabilisation 

of the pressure pump) which make them only available to a specific group of experts. 

 

 

 

 

 

 

 



   Chapter 2     bjbk 

46 

 

 

 

Table 5 FDG synthesis in micro reactors and overview of the evolution. 

Entry Implementation of steps  

on chip 

Micro reactor Reference Year 

1 Solvent exchange 

Hydrolysis 

Glass [23] 2003 

2 Fluorination 

Base deprotonation 

Polycarbonate [24] 2005 

3 Fluorination 

Base deprotonation 

Glass [25] 2007 

4 All five steps as batch 

process 

PDMS [15] 2005 

 

1.9 [18F]Fluoride ion activation on-chip 

In order to address the challenges associated with performing the five steps, the first 

part of the thesis describes an investigation into the activation/isolation of 

[
18/19

F]fluoride. Since the nucleophilic substitution was reported by Amacher et al.[16] 

two main advantages were reported i) the [
18

F]fluorine is obtained as a solution in the 

irradiated water and ii) [
18

F]fluorine is obtained “no-carrier-added” (NCA). This means 

the [
18

F]fluoride ions has very high specific radioactivity, i.e. the ratio of [
18

F] fluoride 

ions to mass of the carrier or total fluoride ion (
19

F + 
18

F). Highly specific radioactivity 

is essential for radiotracers, which are targeted at low density proteins, because low 

specific radioactivity (high carrier) would mean that non-radioactive tracers would 

annul any signal from radiotracer binding. Highly specific radioactivity also enables 
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radiotracers to be injected into human subjects in low mass doses (typically less than 1–

10 nmol) without toxic or pharmacological effects [70]. 

1.9.1 Ion exchange process 

The first step in many fluorine based radiosyntheses is the fluoride pre-concentration (as 

described in section 1.7) achieved via an anion exchange solid-phase extraction (SPE) 

process. In general Ion Exchange (IC) is a separation method based on an ion-exchange 

process occurring between the mobile phase and the ion exchange group bound to a 

solid material. The technique can be used for the separation of both organic and 

inorganic anions and cations, with the separation of anions accomplished either by a 

weak anion exchanger (NH2 group bonded to a solid support) or strong anion exchanger 

(quaternary ammonium groups attached to the support), whereas sulfonate or carboxylic 

acid functionalities are used for the separation of cations. The solid support or resins 

employed in ion exchange chromatography carry the functional group with a fixed 

charge, and the counter ions are located near the functional group rendering the whole 

entity electrically neutral. 

The anions in the mobile phase are exchanged for the counter anions in the stationary 

phase according to the reversible equilibrium process given by the Equation 3: 

XBNRCBXNRC 33   Equation 3 

The separation of the ions is determined by their different affinities toward the 

stationary phase; the constant determining the equilibrium process is the selectivity 

coefficient K and is defined as follows: 

ms

ms

XB

BX
K     Equation 4 

Where [X
-
]m,s is the concentration of the sample ion in the mobile (m) or the stationary 

phase (s) 
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[B
-
]s,m is the anion concentration in the mobile phase (m) or the stationary phase (s). 

Selectivity provides a means for determining the relative affinities of ion-exchangers for 

different ions [71]. 

Some general rules can be offered to assist in the prediction of the affinity order [72] 

based on a number of properties: 

I. The charge on the solute ion, 

II. The solvated size of the solute ion, 

III. The polarisability of the solute ion, 

IV. The ion exchange capacity of the ion-exchanger, 

V. The functional group on the ion exchanger, 

 

Figure 22 Example of a bound quaternary ammonium functional group with chloride as counter 

ion. 

The first step of the synthesis of FDG and many 
18

F based radiotracers is the pre-

concentration (activation or isolation) of fluoride, and this is achieved by an anion 

exchange process by means of a solid phase extraction technique (SPE). There are four 

main phases in SPE as shown in Table 6: 
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Table 6 Different retention behavior between compounds for solid phase technique. 

Name of 

Phase  

Type of phase  Type of interaction Application 

Reversed 

phase  

Polar liquid phase,  

non-polar modified 

solid phase 

Non-polar interactions 

Van der Waals forces. 

Process 

purification of 

active 

biomolecules, 

separation 

Normal phase 

 

Non-Polar liquid 

phase, polar modified 

solid phase 

Polar-polar interactions 

Hydrogen bonding 

Π- Π interactions 

Dipole-dipole interactions. 

Separation of 

small organic 

compounds with 

similar 

structures 

Ion exchange  Anionic and cationic 

phase 

Electrostatic attraction of 

charged group on the 

sorbent’s surface. 

Separation of 

charged 

compounds 

Adsorption  Interaction of 

compounds with 

unmodified materials 

Hydrophobic and 

hydrophilic interactions 

may applied depend on 

solid phase. 

Separation of a 

wide variety of 

organic vapours 

and several 

types of 

inorganic gases. 
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1.9.2 Anion Exchange process 

Ion exchange SPE can be used for compounds that are charged when in solution; the 

primary retention mechanism is mainly based on the electrostatic attraction of the 

charged functional group on the compound to the charged group that is bonded to the 

surface. For the purpose described herein anion exchange will be investigated. The 

material is comprised of an aliphatic quaternary amine group as illustrated in Figure 22. 

The pKa of such a quaternary amine is high (greater than 14) which renders the 

functional group charged at all pHs when in an aqueous solution making it ideal for the 

separation of [
18

F]fluoride from [
18

O]water. Several types of anion exchange support 

exist: 

 Polymer based on PS-DVB (polystyrene crosslinked with divinyl benzene) 

 Silica based 

 Membrane based 

 Monolith based 

Release is achieved using a stronger eluent like high ionic strength salt like potassium 

carbonate (CO3
2-

) in the presence of phase transfer catalyst and acetonitrile. Other 

methods to isolate fluoride ions have been used recently, for example electrochemical 

procedures where an electrochemical cell was designed to allow anodic deposition of 

N.C.A. fluoride and recovery of deposited fluoride achieved in the presence of an 

aprotic solvent containing a phase transfer catalyst.[43] The use of the particles has been 

more a common choice due to surface area and volume ratios. There are three 

possibilities for the implementation of SPE in microfluidic device namely; i) to fill a 

channel with particles that serve as the extraction material, ii) to coat the channel wall 

with the functionality to act as the extraction material, iii) to fill a channel with a 

polymeric rod (monolithic phase) [73](Table 7). 
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The first example of wall coating was reported in 2000 by Kutter et al. [74] where the 

wall of a glass device was coated with C18 for enrichment of coumarin C460 but the 

method suffered from capacity problem due to the limited surface area. The 

implementation of beads in microfluidic was firstly introduced in 1995 by Ocvirk et al. 

[75]. This was a novel concept for liquid chromatography where a packed column was 

integrated in a silicon chip; a disadvantage of this early work was that the packing 

material could not be easily exchanged. Five years later, in 2000, Harrison et al. [76] 

reported the combination of solid phase extraction (SPE) and capillary 

electrochromatography (CEC) which allowed facile exchange of packing material. 

Several improvements were made later with Ekstrom et al. [77] utilising a weir based 

silicon microextraction chip packed with reversed phase beads for the purification and 

enrichment of peptide mixtures. Subsequently Bergkvist et al. [78] improved the design 

and replaced the weir with a grid structure to contain the beads. In addition to beads, 

monolithic porous polymers prepared by photoinitiaton within the channel were 

reported by Yu et al. [79] in 2001, where an increase in concentration by a factor as 

high as 10
3
 was achieved. Solid phase extraction on the chip was also later applied for 

DNA purification and extraction in 2007 by Wen et al. [80]. Even though the chip-

based SPE method improved the sample treatment in terms of minimising sample loss 

and contamination problems, as well as reducing analysis time, the real benefit is in the 

development of an integrated system capable of miniaturising sample treatment, 

transportation, reaction, separation and detection provide the key to the success of 

microfluidic systems in chemical analysis and medical diagnosis. 
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Table 7 Different approaches for SPE technique and their evolution in the last decade. 

Year References Type of SPE Applications  Problems 

1995 Ocvirk et al. 

[76] 

Filled channel 

with particles 

Liquid chromatography Particles difficult to 

exchange 

2000 Kutter et al. 

[75] 

Coated channel 

wall with C18 

Enrichment of Coumarin 

C460 

Capacity problem due 

to limited surface area 

2001 Yu et al. [80] Photoinitiated 

monolith 

Digestion of protein  Reproducibility 

2002 Ekstrom et al. 

[78] 

Weir based 

particle retention  

Enrichment and 

purification of peptide 

mixtures 

Not a complete 

integration of two steps 

2003 Bergkvist et.al. 

[79] 

Grid structure to 

contain the 

beads 

Enrichment and 

purification 

Not good extraction 

efficiency 

2007 Wen et al. [48] Sol-gel method DNA extraction Extraction efficiency 

not uniform 

1.10 Product purification and analysis 

As FDG is by far the most used radiopharmaceutical for clinical PET investigation, 

particular attention will be given to the purification of FDG, taking into consideration 

that the preparation of many other 
18

F radiotracers is based on the same step by step 

approach. The potentially toxic chemical impurities resulting from the fluorination step 

and the hydrolysis step include: [
19

F]FDG and FDM, K2.2.2, acetonitrile, together with 

radiochemical impurities of [
18

F]FDM, [
18

F] unreacted and partially or fully acetylated 

FDG. With this in mind, there are several quality controls and demands for FDG 

described in the European Pharmacopoeia which requires analysis for FDG and FDM 

by HPLC, K2.2.2 by colour spot test, 
18

F by TLC and residual solvent by GC [81]. 

Based on these stringent guidelines, purification of FDG is performed on a series of 
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solid phase extraction cartridges including an anion exchanger cartridge for 

neutralisation of the acidic hydrolysis, alumina for removal of unreacted fluoride and a 

series of C18 cartridges for removal of starting materials or acetylated by products. An 

example of such a multifunctional cartridge is shown in Figure 23 [82]. The most 

widely used method for [
18

F]FDG synthesis utilises the aminopolyether (K2.2.2 

Kryptofix) as a phase transfer reagent to facilitate the nucleophilic [
18

F]fluoride 

displacement of the triflate leaving group. Because of the toxicity of Kryptofix [IV rat 

LD50 = 35 mg / kg][83, 84] different method were developed to minimize the carryover 

of this reagent into the final product [85-87]; nevertheless verification for absence of 

K2.2.2 is still a mandatory requirement for quality control. 

Thin-Layer Chromatography (TLC) is the most widely used quality control method for 

K2.2.2 in FDG injection. The method consists of spotting 2 µL samples of [
18

F]FDG 

and K2.2.2 standard solutions on a silica gel plate and developing in methanol:NH4OH 

(9:1). Following hot-air drying, the plates are exposed to iodine vapours for an 

additional 15 to 20 min for visualization [88]. Using an acidic iodoplatinate spray 

reagent Alexoff et al. [85] were able to increase the sensitivity of this method from 25 

µg mL
-1

 to 2.5 µg mL
-1

 by spotting 5 µL samples [1 volume concentration hydrochloric 

acid to 4 volume colour reagent]; however, this method still requires the use of 

calibrated micropipettes and approximately 15-20 min to develop. A more rapid and 

sensitive method was developed by Mock et al. [55] where a colour spot test was able to 

confirm the presence of K2.2.2 in less than 5 min and utilised pre-treated strips of 

plastic-backed silica saturated with iodoplatinate reagent. Over spotting with the final 

product [
18

F]FDG and Kryptofix standard solution, a blue-black circular spot is visible 

at K2.2.2 concentrations as low as 2 µg mL
-1

; however as iodoplatinate is not specific 

for K2.2.2, it reacts with tertiary amines in general [89]. There is the possibility of a 
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false positive. If a negative colour reaction is observed however, this proves that 

Kryptofix is absent. Aside from techniques such as TLC a number of other analytical 

methods have been developed for detection of Kryptofix namely Gas Chromatography 

(GC) with a nitrogen-selective detector [90], HPLC with a conductivity detector [91] 

and Liquid Chromatography-tandem mass spectrometry (LC/MS/MS) which benefits 

from selective reaction monitoring [92]. Whilst the limit of detection for GC and HPLC 

are in the low µg mL
-1

 range, LC-MS/MS can be used to quantitatively detect ppb levels 

of K2.2.2 in radiopharmaceutical formulations. 

 

Figure 23 Example of a solid phase extraction cartridge used for FDG purification from ABX, 

Germany. 

1.11 FECH synthesis and purification 

Another important radiotracer that is briefly discussed in Chapter 6 is 2-[
18

F]Fluoroethyl 

choline ([
18

F]FECH), a tracer used in oncology to image prostate cancer [93]. It 

represents one of the few examples of ionic radiotracers used in PET. Two synthetic 

approaches are currently employed and are as shown in Figure 24. In both methods 
18

F-

labelling can be carried out by 
18

F-fluoroalkylation via small prosthetic groups. The 

most important 
18

F-fluoroalkylating agent is 2-[
18

F]fluoroethyl tosylate ([
18

F]FETos), 

first introduced by Block et al. [94] [
18

F]FETos can be synthesised easily in a 
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reproducible manner and purified using HPLC. In comparison 1-bromo-2-

[
18

F]fluoroethane ([
18

F]BFE), synthesised by Chi et al. [95] is less commonly used 

because the synthetic route includes a final distillation step which makes the integration 

into an automated system difficult. The most common route is a two step approach 

which consists of the synthesis of the tosylated compound (EtDt) with subsequent 

addition of a large excess of N,N-dimethylaminoethanol (DMAE) to yield the desired 

final compound [
18

F]FECH. In 2010 a one step approach was reported by Asti et al. 

[96] where the EtDt was reacted at the same time with DMAE in presence of 
18

F
-

/TBAHCO3/ACN (after elution from the cartridge). 

Purification of the final compound can be achieved using two routes. The first, reported 

by Hara et al. [97] utilised a semi-preparative HPLC, in the second approach by Asti et 

al. [96], the vial containing FECH was first washed with water, and the solution filtered 

through two C18 (reversed phase) cartridges connected with two anion exchange 

cartridges; finally the purified FECH was passed through a cation exchange cartridge 

and eluted with a solution of 0.9 % NaCl. Radiochemical purity (RCP) was assessed by 

TLC and chemical purity using an HPLC system equipped with a cation column and 

three different detectors (conductimetric, radiometric and UV detection at 206 nm). A 

GC with an FID detector was used to determine the concentration of volatile products 

such as ACN, EtOH. In both methods RCP of 99% was obtained. 
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Figure 24 a) Two steps approaches for 2-[
18

F]fluoroethyl choline (FECH) synthesis. b) One step 

approach for the synthesis of FECH. Adapted from [98]. 

1.12 Magnetism and magnetic particles 

In this thesis two of the chapters are dedicated to the investigation of fluoride pre-

concentration using magnetic particles. Such particles offer all of the advantages of 

polymeric particles some of which were described in Section 1.9 (i.e. high surface-to-

volume ratio, variety of surface functional groups, range of sizes etc.), but with the 

added benefit of being easy to manipulate by the application of external magnets. 

Before describing these particles in more detail, it is worth discussing some of the 

relevant magnetic theory.  

When an external magnetic field (B) is placed in proximity of a magnetic dipole 

moment (md), the dipole moment experiences a force (torque), τ, (in N m, or J), as the B 

field tries to align the dipole such that the moment (md) aligns parallel with the flux 

density (Equation 5). 

     xBmd     Equation 5 



   Chapter 2     bjbk 

57 

 

The extent to which a medium responds to the magnetic field (H) depends on the 

permeability of the material, µ, (in Henry per metre, H m
-1

, corresponding to N A
-2

). 

The relationship between the H, B and µ terms is given by Equation 6 [98] 

     HB       Equation 6 

The field of magnetic flux density (B) consists of lines of magnetic flux, Φm (in Weber, 

Wb), within a unit area; hence a B field of 1 Tesla = 1 Wb m
-2

. A greater number of 

lines per unit area give a greater value of B, indicating a stronger magnetic field. The 

value of B decreases rapidly with increasing distance from the surface of a magnet as 

the flux density lines move further apart, as shown in Figure 25 for a typical rectangular 

(bar) magnet. 

 

Figure 25 Characteristics of a typical rectangular magnet, illustrating a) the magnetic flux density, 

B, in and around the magnet, and b) the decrease in B with increasing distance from the magnet 

surface in the x-direction. Adapted from [99]. 

Additionally, when two permanent magnets are placed in proximity, different results are 

observed depending on their relative orientation. Figure 26a shows two magnets placed 

with their opposite poles facing, where the black lines represent the magnetic flux 

density, the colour shown indicates the relative magnitude of B field (where purple 

shows the highest value of B and blue the lowest). In the case shown in Figure 26 (a) 

the lines of magnetic flux density pass from the north pole of one magnet to the south 

pole of the other creating loop from one magnet to another. The flux lines between the 
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magnets are concentrated into a small space, and the result is an attractive force between 

them as shown in Figure 26 (a) [100]. In the case shown in Figure 26 (b) the field lines 

cannot cross, and they instead “push” against each other, generating a repulsive force 

between the magnets 

 

Figure 26 Magnetic flux lines and their density (B field) between two permanent magnets. a) When 

the opposite poles of two magnets are facing, the B field flows from the north pole of one magnet to 

the south pole of the other, and there is a resultant attractive force between the magnets. b) When 

the like poles of two magnets are facing, the field lines cannot cross, and they instead “push” 

against each other, generating a repulsive force between the magnets. Additionally, an area of low 

field is created between the facing poles. Adapted from [99]. 

Superparamagnetism 

The main characteristic is that this materials exist as small, single domain nanoparticles 

[101, 102]. This means that all of the magnetic moments of the atoms in a particle align 

without the application of a magnetic field, forming a magnetic domain. However, due 

to the small size of the nanoparticles they are affected by thermal energy (kBT), with the 

thermal motion continuously causing the moment of the particle to randomly flip. 

Hence, without an applied magnetic field the dipole moment becomes zero. 
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Figure 27 Magnetisation (M-H) curve for a superparamagnetic nanoparticle. As the applied field 

increases, so too does the particle magnetisation, until it is saturated. material, there is no magnetic 

remanence, meaning that upon removal of the field the particle essentially becomes non-magnetic. 

When a magnetic field is applied, the moments of the particles align with the direction 

of the field, producing a magnetisation. However, when the field is removed, thermal 

energy is again able to affect the moments of the particles, returning them to their 

original state whereby they exhibit no magnetic moment. As a result, the particles lose 

their magnetisation and disperse back into the media they are present in. Hence, the 

particles act like paramagnets, except with very large magnetic susceptibilities and 

magnetic moments, and thus they are known as superparamagnetic particles. Figure 27 

shows a typical M-H curve of a superparamagnetic nanoparticle, reaching saturation as 

seen in ferromagnetic materials but without the hysteresis, hence having no magnetic 

remanence (i.e. no magnetic “memory”). 

 

1.12.1 Superparamagnetic particles 

Superparamagnetic particles can be fabricated or purchased in a range of sizes and with 

differing magnetic properties. The synthesis of superparamagnetic nanoparticles has 

been reviewed previously by Lu [103], Osaka [104], and Gijs [102, 105]. After the 

fabrication or synthesis of the magnetic particles, they can be coated with a layer of 



   Chapter 2     bjbk 

60 

 

material (such as a polymer, surfactant, silica, carbon, precious metal etc.) to 

prevent/reduce their agglomeration due to van der Waal’s, magnetic and electrostatic 

forces. As well as these protective coatings, the surface can also be functionalised with a 

range of chemical or biological species (as with the microparticles in Section 1.2), 

including antibodies, antigens, DNA and chemical functional groups. Regarding their 

use in biomedicine, Osaka et al. [104] For their application to bioassays, and Palacek 

and Fojta [106] for their use in electrochemical DNA and protein biosensing. 

Additionally, reviews by Saiyed et al. and Safarik et al. [107] detail the use of magnetic 

particles (both nanoparticles and microparticles) in drug delivery and biomedicine, and 

for the isolation and purification of proteins and peptides. A review by Wu et al. [108] 

also summarises the most recent applications of magnetic nanoparticles in biomedicine, 

while a review by Krishnan [109] details their use in imaging, diagnostics, and therapy. 

Some of these applications include hyperthermia, drug targeting, MRI (magnetic 

resonance imaging) contrast enhancement and cell/particle separations [101, 110]. 

Two important uses of magnetic particles (both nanometre and micrometre sized) are 

their application to bioassays and particle/cell separations. Monodisperse magnetic 

microparticles can be purchased commercially from a number of sources and the brand 

names include Dynabeads (Invitrogen, Paisley, UK), Micromer particles (Micromod 

Partikeltechnologie GmbH, Rostock, Germany), Compel (Bangs Laboratorie, Inc., 

Indiana, USA), MACS MicroBeads (Miltenyi Biotec GmbH, Bergisch Gladbach, 

Germany), Adembeads (Ademtech, Pessac, France), SiMAG (Chemicell, Berlin, 

Germany), as well as Seradyn and MagnaBind particles (Thermo Fisher Scientific Inc., 

Illinois, USA).  

Superparamagnetic microparticles (hereafter referred to simply as magnetic particles) 

are typically the same as polystyrene or silica microparticles, as described in Section 
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1.2, except that, crucially, they contain either a core of iron oxide (Figure 28a) or 

dispersion of iron oxide nanoparticles throughout the particle (Figure 28b). As well as 

polystyrene, various other polymer matrices can be used to fabricate the particles, and, 

in the case of SiMAG, a silicon matrix is also applied. The iron oxide core/nanoparticles 

are typically in the form of ferrimagnetic magnetite (Fe3O4) and maghemite (-Fe2O3), 

though sometimes other ferrites such as cobalt ferrite and manganese ferrite can be 

used. 

 

Figure 28 Cross-section of two types of superparamagnetic microparticle: a) an iron oxide core is 

encased in a polymer matrix, and b) iron oxide nanoparticles are dispersed throughout the polymer 

matrix, before being sealed inside with an extra layer of polymeric material. 

Due to the size of the iron oxide nanoparticles, the microparticle as a whole displays 

superparamagnetic behaviour. Is due to its properties that superparamagnetic particles 

are becoming popular as mobile solid supports that can be easily manipulated with 

magnetic fields. The wide variety of possible surface functionalities, as with 

conventional polystyrene microparticles allows for their use in any number of reaction 

and/or separation procedures. 
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Figure 29 A typical reaction or separation using magnetic particles, where (1) the particles are 

introduced into the sample or reagent solution, (2) they bind to the target analyte/reagent, (3) the 

particles are collected using an external magnet, (4) the supernatant is removed and (5) the 

particles are resuspended in fresh buffer solution. Steps 3-5 are repeated several times to ensure 

any unbound material is removed from the particle surfaces. Adapted from [99] 

A typical magnetic particle based bioassay or separation takes place in an Eppendorf 

tube or similar vessel, as shown in Figure 29. The tube contains the reagent or sample of 

interest into which the magnetic particles, featuring surface groups for binding specific 

targets, are introduced. The suspension is incubated with agitation, allowing the 

particles to bind to the target molecules, after which they are drawn to the side of the 

tube by application of an external magnetic field. The supernatant can then be removed, 

and fresh solution added. This washing step is repeated several times to ensure any 

unbound material are removed from the surface of the particles. Thus, the particles have 

successfully either removed the analyte of interest from the sample mixture, or been 

used to perform a bioassay or chemical reaction on their surface followed by their 

separation from the reagent solution.  

This type of magnetic particles have gained particular attention in the field of 

microfluidics.some of their applications will now be presented. 

The applications of magnetic particles in microfluidic devices have been reviewed in 

more detail by Pamme [111-113] and Gijs et al. [102] within a review of on-chip 

particle trapping methods by Nilsson et al. [114], and in reviews of on-chip continuous 
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flow particle separations by Pamme [115], Lenshof et al. [116], Gossett et al. [117], 

Kersaudy-Kerhoas et al. [118] and Tsutsui et al.[119]. 

 

1.12.2 On-chip magnetic trap and release procedures 

Microfluidic methods of performing magnetic particle-based processes often employ a 

‘trap and release’ technique (Figure 30). Here, functionalised particles are pumped 

through a micro-channel and trapped in a magnetic field, before having wash solutions 

or reagents flushed over them. A common use of the trap and release method is for the 

on-chip separation of magnetic particles that have been suitably functionalised to bind 

to a particular target analyte, from the original sample matrix. The particles are trapped 

and washed with buffer solution, which removes the unwanted non-magnetic material 

from the system and they are then released for collection or downstream analysis. Such 

processes have been achieved using permanent magnets [109, 120, 121] integrated 

micro-electromagnets [122, 123] external electromagnets [124, 125] and integrated 

metallic or microcircuit structures that are subsequently magnetised by an external 

applied field [126-128]. These set-ups have typically only been used to separate 

magnetic particles from their carrier fluid, but it has also been shown that different 

magnetic particle populations can be separated and trapped when combined with 

dielectrophoresis [121], along with the successful separation and detection of 

magnetically labelled dengue virus has been reported [120]. 
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Figure 30 Trap and release method of magnetic particle handling in microchannels. a) Magnetic 

particles are loaded into the channel and trapped in a magnetic field, b) a sample or reagent is 

flushed over the trapped particles, allowing reactions to occur on the particles surface, before being 

washed with buffer solution, c) the field is removed and the particles released for downstream 

detection or further processing. Adapted from [99]. 

Here, functionalised particles are trapped in the micro-channel by a magnetic field, and 

a reagent solution is flushed over them, allowing the reagent to bind to the particle 

surfaces. The reagent is replaced with buffer solution in order to wash the particles, 

which are then released from the magnetic field for downstream detection, or other 

reactions and assays i.e. streptavidin-biotin and protein [129, 130], purification and 

enrichment of dengue virus samples for RNA amplification and detection [131], mRNA 

isolation [132], DNA hybridization [133, 134], separation [135] and protein digestion 

[136, 137]. The above examples show a selection of microfluidic ‘trap and release’ 

methods however, the ‘trap and release’ is a batch method, and as such suffers from 

the same inefficiencies as off-chip methodologies in that they can be laborious and 

time-consuming due to the number of reaction and washing steps that must be 

performed. One method of reducing these inefficiencies is to perform the separations, 

reactions and assays in continuous flow. This offers the advantages of combining all of 

the reaction and washing steps into one single process, thereby decreasing the amount 

of time and labour required and user intervention required, rendering the procedure 

relatively automated once developed. 
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1.12.3 On-chip magnetic particles separation in continuous flow 

As previously mentioned continuous flow separations offer the potential to eliminate 

some of the inefficiencies associated with batch microfluidic methods, allowing 

continuous introduction and separation of the sample, as will be discussed in Section 

4.2; magnets produce magnetic field gradients with respect to the distance from their 

surface. When in proximity to a micro-channel (~ few mm), these gradients are 

sufficient to exercise a pN force on a particle. An immediately obvious advantage of a 

magnetic force over other forces is its simplicity. Sorting of magnetic material is readily 

achievable with a very basic fluidic and magnetic set-up. For example, Kim and Park 

[138] presented a device with two inlets, a single channel and two outlets. Using a 

simple permanent magnet placed adjacent to the channel they were able to isolate 

fluorescent particles agglomerated with magnetic nanoparticles via an immunoassay 

procedure from a sample stream. The magnetic field gradient across the channel could 

be varied by simply moving the magnet closer or further from the channel edge[139-

141]. 

 

Figure 31 A common microfluidic method for continuous magnetic particle separation, known as a 

H-filter. A particle mixture is introduced into a wide channel alongside a buffer stream, and a 
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magnet used to deflect the magnetic particles into the buffer stream while the non-magnetic 

particles remain unaffected. The two particle populations are thus separated via two outlets. 

Adapted from [138]. 

In order to fractionate out material according to magnetic properties, a chamber with 

multiple outlets is required. The development of free-flow magnetophoresis using a 

small permanent magnet was first developed by Pamme et al. [142] in which a 

separation chamber was fabricated in glass with multiple exits. Magnetic particles were 

introduced and deflected from flow by the application of a magnetic field on the 

opposite side of the chamber, perpendicular to flow, as shown in Figure 32. 

 

 

Figure 32 (a) Principle of on-chip free-flow magnetophoresis. A mixture of particles is introduced 

into a microfluidic chamber and deflected laterally by a magnetic field, allowing different particle 

types to exit the chip by different outlets [142]. (b) Experimental particle trajectories of 4.5 µm and 

2.0 µm magnetic particles, as well as non-magnetic particles, demonstrating their separation as they 

traverse the chamber. Adapted from [113]. 

The on-chip free-flow magnetophoresis microfluidic device featured a wide chamber 

into which a mixture of particles was introduced into the bottom corner (Figure 32). A 

series of inlets allow the introduction of a buffer stream parallel to the sample stream, 

with the two streams flowing side-by-side due to laminar flow, and a series of outlets 

provide a number of potential exit points for the particles; as well as allowing the 

removal of sample and buffer waste. An inhomogeneous magnetic field was generated 

across the chamber, perpendicular to the direction of laminar flow, via an external 
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permanent magnet. When a mixture of magnetic particles of different sizes and 

magnetic susceptibilities was introduced into the chamber, they were deflected from the 

direction of flow by the magnetic field, traversing the chamber diagonally until they 

exited via one of the outlets. However, the different particle types deflected towards the 

magnet to different extents, such that the two particle populations exited through 

different outlets, thus achieving a continuous, simultaneous separation of two types of 

magnetic particles. Later, Pamme and Wilhelm [111] also used the technique to separate 

magnetically labelled cells. Thus, the technique of on-chip free-flow magnetophoresis 

has been demonstrated for the simultaneous separation of different magnetic particle 

types, and for the deflection and separation of magnetically labelled cells. 

1.13 Aims of the project 

The aim of this project was to develop an integrated modular microfluidic platform for 

the pre-concentration of [
18

F]fluoride and purification of 
18

F fluorine based 

radiopharmaceuticals employed in Positron Emission Tomography (PET). Micro Total 

Analysis Systems (µTAS) have been applied to the synthetic pathways typical for 

radiotracers in order to improve the traditional approach in terms of efficiency and 

safety. The work of this thesis was part of a European Union Radiochemistry on Chip 

project (CP-FP 213803-2 ROC as part of the FP7 Theme 4-NMP/Nanosciences, 

Nanotechnologies, Material and new Production Technologies) which consisted of a 

collaboration of industrial and academic partners as shown in Figure 33. The objective 

of this work package (WP4) was to implement microfluidic modules for 
18

F pre-

concentration (the starting material for radiosynthesis) and the final product 

purification.  

The work performed throughout the PhD is split into different sections in this thesis. 

Firstly, the materials and methods used will be detailed in the Experimental Chapter. 
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This will be followed by several Results Chapters, which are divided into two main 

sections describing those experiments performed for the fluoride pre-concentration 

using magnetic and non-magnetic particles followed by the experiments on the 

investigation of the product purification. A Conclusions Chapter summarises the work 

performed along with recommendations for future of the work. References will then be 

listed, followed by an Appendix containing publications related to the work described 

here. 

 

Figure 33 Image showing the different work packages (WP) involved in the FP7 EU project, with 

their deliverable and task. 

2 Experimental 

This Chapter describes the experimental set-up and procedures utilised for work in this 

thesis, detailing (Section 2.1) the chemicals, particles and instrumentation employed, 

the design of the microfluidic chips, the chip set-up and the particle visualisation (2.2, 

2.3, 2.4), the off-chip fluoride pre-concentration experiments (2.5), on-chip fluoride pre-

concentration via dam-structure experiments (2.6), on-chip fluoride pre-concentration 

via plug of magnetic particles experiments (2.7), on-chip fluoride pre-concentration via 
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free flow magnetophoresis (2.8), Kryptofix 2.2.2 detection and removal (2.10), FECH 

detection and purification (2.11). 

2.1 Chemicals, particles and instrumentation 

Solvents and reagents were purchased from the distributors shown in Table 7. All 

chemicals were of analytical grade. Aqueous solutions were prepared in water with a 

resistivity of 18.2 MΩ cm at 25 °C, obtained from an ELGA Option 4 that fed into an 

ELGA UHG PS water purification system (both devices from ELGA Process Water, 

Marlow Buckinghamshire, UK), unless otherwise stated. Prepared solutions were 

filtered through 0.20 µm syringe filters (Whatman, VWR, Lutterworth, Leicestershire, 

UK) prior to introduction into microfluidic devices. 

Table 7 Chemicals, solvents and reagents used in the experiments described herein. 

Chemical Supplier 

Solvents 

Acetone 

 

 

Fisher Scientific, Leicestershire, UK 

Acetonitrile Fisher Scientific, Leicestershire, UK 

Chloroform Fisher Scientific, Leicestershire, UK 

Cycloexane Fisher Scientific, Leicestershire, UK 

Ethanol Fisher Scientific, Leicestershire, UK 

Hexadecane 

 

Fisher Scientific, Leicestershire, UK 

Methanol Fisher Scientific, Leicestershire, UK 

Propan-2-ol Fisher Scientific, Leicestershire, UK 

Toluene Fisher Scientific, Leicestershire, UK 

2,2,4-Trimethyl pentane (isooctane) Fisher Scientific, Leicestershire, UK 

Acids and Bases and buffers 

Hydrochloric acid (36%) 

Hydrochloric acid (36 

%) 

 

Fisher Scientific, Leicestershire, UK 

Methanesulfonic acid (MSA) Sigma-Aldrich, Dorset, UK 

Potassium carbonate Sigma-Aldrich, Dorset, UK 

Phosphate buffered saline tablets (PBS) Sigma-Aldrich, Dorset, UK 
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Potassium bicarbonate Sigma-Aldrich, Dorset, UK 

Potassium fluoride Sigma-Aldrich, Dorset, UK 

Potassium hydroxide Sigma-Aldrich, Dorset, UK 

Sulphuric acid (98%) Fisher Scientific, Leicestershire, UK 

Sodium fluoride Sigma-Aldrich, Dorset, UK 

Sodium hydroxide Sigma-Aldrich, Dorset, UK 

Sodium chloride Sigma-Aldrich, Dorset, UK 

Surface treatments and silanising agents 

Agarose (low melting point) Sigma-Aldrich, Dorset, UK 

(3-Aminopropyl)triethoxysilane 

(APTES) 

Sigma-Aldrich, Dorset, UK 

Dimethyloctadecyl[3-(trimethoxysilyl)-

propyl]ammonium chloride (42 % wt. in 

MeOH) (QAS) 

Sigma-Aldrich, Dorset, UK 
 

 

Octadecyltrichlorosilane (OTS) Sigma-Aldrich, Dorset, UK 

Trichloro(1H,1H, 2H,2H-

perfluorooctyl)silane (FDTS) 

Sigma-Aldrich, Dorset, UK 

Surfactants and additives 

Tween 20 (polysorbate 20) Sigma-Aldrich, Dorset, UK 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich, Dorset, UK 

Fluoride pre-concentration 

Kryptofix 2.2.2 (K2.2.2) 

(4,7,13,16,21,24-hexaoxa-1,10-

diazabicyclo-[8.8.8]-hexacosane) 

Sigma-Aldrich, Dorset, UK 

12-Crown-4 (1,4,7,10- 

Tetraoxacyclododecane) 

Sigma-Aldrich, Dorset, UK 

Tetrabutyl ammonium bicarbonate 

(TBAHCO3) 

ABX, Radeberg, Germany 

FDG synthesis 

Mannose triflate, 1,3,4,6-tetra-O-acetyl-

2-O-trifluoro-methanesulfonyl-beta-D-

mannopyranose 

ABX, Radeberg, Germany 

2-Deoxy-2-fluoro-D-glucose (FDG) ABX, Radeberg, Germany 
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2-fluoro-2-deoxy-glucose tetraacetate 

(ACY- FDG) 

ABX, Radeberg, Germany 

2-Fluoro-2-deoxy-D-mannopyranose 

(FDM) 

ABX, Radeberg, Germany 

FECH synthesis 

1,2-Bis(tosyloxy)ethane (Ethylene 

glycol ditosylate) 

ABX, Radeberg, Germany 

N-(2-Fluoroethyl)-2-hydroxy-N,N-

dimethyl-chloride (FECH chloride) 

ABX, Radeberg, Germany 

2-(Dimethylamino)ethanol (DMAE)  Sigma-Aldrich, Dorset, UK 

 

2.1.1 SPE with non magnetic particles 

Several commercially available solid phase extraction (SPE) chromatography cartridges 

were investigated. The particle content was extracted from the cartridges; the specific 

details are reported in the Tables 8-11: 

The most popular method for the purification of proteins and other charged molecules is 

ion exchange chromatography as described in Section 1.10.1. In cation exchange 

chromatography, positively charged molecules are attracted to a negatively charged 

solid support. Conversely, in anion exchange chromatography, negatively charged 

molecules are attracted to a positively charged solid support. 

Anion exchange particles: 

For a comparative study, the following commercial anion exchange cartridges and 

resins, commonly used in the pre-concentration of fluoride during the FDG preparation, 

were obtained; QMA Sepak light particles, (Waters, Massachusetts, USA), Chromabond 

PS-HCO3 (Macherey-Nagel, Duren, Germany), Strata SAX particles (Phenomenex, 

Macclesfield, UK) and Source 15Q (GE Healthcare, Uppsala, Sweden) details of which 

are reported in Table 8. The cartridges were delivered in sealed packages except for the 
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source 15Q delivered as suspension of particles in 20% ethanol and 80% water. Before 

use, each cartridge was washed with purified water to remove any residual contaminants 

that may have been present. 

Table 8 Commercially available SPE cartridges for anion exchange chromatography used in this 

work. 

Cartridge / 

Particles type 
Application 

Particle 

diameter / 

µm  

Functional 

group and 

counterion 

Protein 

Binding 

capacity*  

(mg g
-1

) 

Matrix 

core 

material 

Sep-Pak 

Accell Plus 

QMA 

(Waters UK) 

Strong anion 

exchanger 

60 Quaternary 

ammonium 

(Cl-) 

222 Silica 

Chromabond 

PS-HCO3 

(Macherey–

Nagel) 

Strong basic 

anion 

exchanger 

100 Quaternary 

ammonium 

(HCO3
-
) 

0.90 PS-DVB 

Chromabond 

PS-OH
-
 

(Macherey–

Nagel) 

Strong basic 

anion 

exchanger 

100 Quaternary 

ammonium 

(OH
-
) 

0.53 PS-DVB 

Strata SAX 

(Phenomenex) 

Strong anion 

exchanger 

57 Quaternary 

ammonium 

(Cl
-
) 

30 Silica 

Source 15Q 

(GE 

Healthcare) 

Strong anion 

exchanger 

15 Quaternary 

ammonium 

(Cl
-
) 

40 PS-DVB 

* As reported from the manufacturers MSDS 

Reversed phase particles 

Separation via reversed phase chromatography arises from the adsorption of 

hydrophobic molecules onto a hydrophobic solid support in a polar mobile phase. 

Decreasing the mobile phase polarity, using organic solvents, reduces the hydrophobic 

interaction between the solute and the solid support resulting in desorption. The more 

hydrophobic the molecule the more avidly it will adsorb onto the solid support. This 
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requires a higher concentration of organic solvent to promote desorption. Reversed 

phased cartridges were therefore investigated for removal of K2.2.2 (Table 9). 

Table 9 Reversed phase chromatography cartridges investigated during the removal of K222. 

Particles Type Application 

Particle 

diameter 

/ µm 

Functional 

group 

Binding 

capacity* 

/ mg g
-1

 

Matrix 

core 

material 

Chromabond 

HR-P 

(Macherey–Nagel) 

 

Reverse phase 

chromatography 
85 

Octadecyl 

carbon 

chain 

300 ± 100 

(caffeine) 
PS-DVB 

Strata-X 33u 

Polymeric 

reversed  

phase 

(Phenomenex) 

Reverse phase 

chromatography 
33 

Octadecyl 

carbon 

chain 

Not 

reported 
Polymer 

SEP-PAK C18 

(Waters UK) 

Reverse phase 

chromatography 
55-104 

Octadecyl 

mono 

functional 

silane 

Not 

reported 
Silica 

* As reported from the manufacturers MSDS 

Cation exchange particles 

Table 10 Commercially available SPE cartridges for cation exchange chromatography. 

Particles type Application 

Particles 

diameter 

/ µm 

Functional 

group 

Binding 

capacity* 

/ mg g
-1

 

Matrix 

core 

materia

l 

SEP-Pak Accell 

Plus CM 

(Waters UK) 

Strong cation 

exchanger 
53 Sulfonic acid 201 Silica 

Chromabond 

PS-H 

(Macherey- 

Nagel) 

Strong acid 

cation 

exchanger 

100 Sulfonic acid 0.35 PS-DVB 

* As reported from the manufacturers MSDS 

Normal Phase particles 

Neutral aluminum particles were also used for removal of fluoride during the 

purification step in the FDG synthesis (Table 11). 
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Table 11 Commercially available SPE cartridge for unreacted fluoride removal during purification 

of [
18

F
-
]fluorine based radiocompounds. 

Particle 

name 
Application 

Particle 

diameter 

/ µm 

Functional 

group 

Binding 

capacity*/ 

mg g
-1

 

Matrix 

core 

material 

ALOX-N 

Macherey- 

Nagel 

Normal 

phase 
100 

Aluminum 

oxide 
0.29[143] 

Aluminium 

oxide 

2.1.2 Magnetic particles 

Dynabeads superparamagnetic particles of 1 µm and 2.8 µm diameter were purchased 

from Invitrogen (Paisley, UK) and featured a variety of surface functionalities, as 

detailed in Table 12, and were supplied in a buffer suspension. Others particles were 

purchased from Chemicell (Chemicell, Germany). Table 12 lists the magnetic particles 

used during the work in this thesis with their characteristics and specifications. 

Table 12 List of superparamagnetic particles employed in this work. Details are given of particle 

sizes, surface groups, number of particles, all as stated by the manufacturer. 

Particle Type Application 

Particles 

diameter 

/ µm 

Surface 

group 

 

Particles 

concentratio

n / particles 

g
-1

 

Matrix 

core 

materi

al 

Dynabeads 

SAX 

(Invitrogen) 

Strong anion 

exchanger 
1.0 

Quaternary 

amine 

(Cl
-
) 

1.8 x 10
12

 PS 

Dynabeads 

M-270 Amine  

(Invitrogen) 

Weak anion 

exchanger 
2.8 

Amine  

(-NH2) 
2 x 10

9
 PS 

Dynabeads 

MyOne 

Carboxylic 

Acid 

(Invitrogen) 

Weak anion 

exchanger 
1.05 

Carboxylic 

acid  

(-COOH) 
7 - 12 x 109 PS 

SiMAG –Q 

(Chemicell) 

Strong anion 

exchanger 
1.0 

Quaternary 

ammonium  

(Cl
-
) 

1.8 x 10
12 

 Silica 

SiMAG –Q 

(Chemicell) 

Strong anion 

exchanger 
3.0 

Quaternary 

ammonium  

(Cl
- 
counter 

ion) 

6.8 x 10
10

  Silica 
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Dynabeads 

RPC 18  

(Invitrogen) 

Reversed phase 

chromatography 
1.0 

Octadecyl 

carbon 

chain 

2.3 x 10
10*

 PS 

SiMAG-

DEAE 

(Chemicell) 

Weak anion 

exchanger 
1.0 

Diethylamin

oethyl 
1.8 x 10

12
 Silica 

SiMAG- 

Carboxyl 

(Chemicell) 

Weak cation 

exchanger 
1.0 

Sodium 

carboxylate 
1.8 x 10

12
 Silica 

SiMAG- 

Phosphonate 

(Chemicell) 

Weak cation 

exchanger 
1.0 

Sodium 

phosphonate 
1.8 x 10

12
 Silica 

SiMAG- 

Sulfon 

(Chemicell) 

Strong cation 

exchanger 
1.0 

Sodium 

sulfonate 
1.8 x 10

12
 Silica 

 

*the only value given by the particles supplier was 12.5 mg beads mL
-1

, since the exact 

density of  the particles is not known, an assumption can be made in which the density 

is an approximate to that of polystyrene particles, so the following calculation was 

performed to obtain the number of particles per mL: 

3

3

4
rV       Equation 7 

Density of polystyrene particles approximate 1.07 g mL
-1

, hence by knowing the 

volume and the density the number of particles was calculated. 

 

2.1.3 Detection instruments 

In this paragraph a detailed list of several detection methods for some of the common 

analytes used in the synthesis of FDG reported in the literature are presented (Table 13). 

It is worth noting that not all of the below instrumentations were used or described in 

more detail by the author of this thesis, but it should give a general overview to the 
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reader in understanding the variety of detection methods available with a 

comprehensive list of their detection limit when reported. 

 

Table 13 Methods applied to the detection of product and impurities after the synthesis of 2-

[
18

F]fluoro-2-deoxy-D-glucose. 

Analyte Detection method 
Limit of 

detection 

[
19

F]Fluoride 

IC with conductivity detector [144]  

Fluoride selective electrode [145] 

0.05 g mL
-1

 

1.9 g mL
-1

 

[
18

F]fluoride Radio-TLC* Not reported 

[
19

F]FDG 

HPLC-PAD (IC-PAD or HPAEC-PAD)* [56, 82, 85, 

146]  

HPLC-RID[20] 

GC [147] 

GC-MS [64] 

HPLC-UV (after derivatisation with 2-CA) (276 nm) 

[148]  

HPLC-UV (after derivatisation with PMP) (210 nm) 

[149]  

Not reported 

Not reported 

Not reported 

0.31 g mL
-1

 

0.02 g mL
-1 

Not reported 

 

Not reported 

[
18

F]FDG 

Radio-TLC* [16, 22, 62, 65, 67, 85, 150, 151]  

Radio-HPLC* [20, 50, 82, 152] 

Not reported 

Not reported 

Kryptofix 

2.2.2 

Colour spot test on TLC plate* [22, 55, 57, 82, 153] 

TLC [85, 86, 88] 

GC with nitrogen selective detector [90]  

LC-MS-MS [154] 

Titration with lead (II) perchlorate [155]  

2 g mL
-1

 

25 g mL
-1

 

0.25 g mL
-1

 

1 ng mL
-1

 

1 x 10
-5

 M 
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UV-Vis (after forming a lead (II) complex) (250 nm) 

[156]  

HPLC-UV (210 nm)[149]  

NMR [157] 

IR [157] 

< 10 g mL
-1

 

 

0.5 g mL
-1

 

Not reported 

Not reported 

Acetonitrile 

GC-FID* [22, 151, 158]  

GC-MS [159] 

HPLC-RID [20] 

0.1 g mL
-1

 

< 10 g mL
-1

 

< 30 g mL
-1

 

* Denotes recommended method of analysis according to the European Pharmacopeia 

[160]. 

 

2.1.4 Detection of [19F]Fluoride ions 

For detection of cold fluoride [
19

F] three systems were compared namely; ion selective 

electrodes (ISE), Colourimetric detection and ion chromatography (IC). 

In the first part of the project the fluoride ion detection was investigated using an ion 

selective electrode (Jenway 924-305 Fluoride (F
-
), Jenway, Dunmow, Essex, UK). This 

is the most commonly used ion-electrode, responding to a wide range of fluoride 

concentration with little interference. The sensor is a crystal of lanthanum fluoride, 

whose surface potential changes when placed in solutions of different concentrations. 

The experiment was carried out to evaluate the dynamic range of fluoride concentration. 

The relationship between potential and fluoride concentration is given in the modified 

Nernst equation. 

 FFF aEE log0591.0*   [145]   Equation 8 
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Where: EF
- 
is a constant. A change in electrode potential of 59.16 mV will be associated 

with a ten-fold change in fluoride concentration. 

A calibration graph of potential (mV) vs. log [F
-
] could be plotted from which the 

concentration of the unknown could be determined.  

The mV-reader was a Horiba pH/COND Meter D-54 (Horiba, Japan). A magnetic hot 

plate stirrer was used to stir the solutions before taking the measurement and to keep the 

temperature constant (20 ± 3 ºC). All the solutions were placed in a plastic beaker 

before the measurement. The electrode was clamped in a vertical position so that the 

sensor was immersed in a beaker and was washed and dried when transferring between 

solutions. The electrode was immersed in the solutions for 7 min to obtain a steady 

reading. Due to its sensitivity, the electrode was immersed in the most dilute standard 

first.  

For the colorimetric detection of fluoride, two different spectrophotometers were 

employed: i) Perkin-Elmer UV/vis Spectrometer Lamba Bio 10 (Perkin-Elmer, 

Cambridge, UK) with UV win lab software and ii) Camspec M508 UV/vis 

Spectrophotometer (Camspec Analytical Instrument Ltd., Leeds, UK). The first was 

used to scan the wavelength range between 200 – 800 nm and the second for single 

wavelength calibration experiments. Optically transparent polystyrene disposable 

cuvettes (Fisher, UK) of 1000 µL volume and 10 mm pathlength were used for 

wavelength below 400 nm.  

Later on an ion exchange chromatograph was set-up and used for detection of fluoride. 

The system employed was an ICS 2000 (Dionex, USA) with a conductivity detector and 

a self-regenerating suppressor AS11-HC column (250 mm column length, 2.5 mm 

diameter, 0.25 mL min
-1

 flow rate, 15 mM KOH as eluent) which was employed to 

quantify the trapping and elution of fluoride and was used in isocratic mode. Due to the 
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interferences of carbonate ions with the IC detector only concentrations lower than 

0.001 M (mol L
-1

) were employed to elute the fluoride 

 

2.1.5 Detection of K2.2.2 

All experiments for the detection of Kryptofix by HPLC-MS were performed with a 

Varian MS 500 (Varian, USA) quadruple ion trap mass spectrometer equipped with an 

atmospheric pressure ionization interface of electrospray ionization and dual gradient 

pump with an autosampler (Varian, USA). Electrospray ionization was performed in 

positive ion mode and the data were processed using Xcalibur software. HPLC analysis 

was performed on an analytical column HS C18, 150 mm x 2.1 mm, 3 µm particles, 

(Supelco, UK), with an isocratic mobile phase consisting of 50% water, 50% 

acetonitrile at a flow rate of 0.4 mL min
-1

 and an injection volume of 10 µL. Under 

these conditions the total run time was 10 min and the retention time of Kryptofix was 

1.46 min. For the colorimetric detection of Kryptofix, two different spectrophotometers 

were employed; i) Perkin-Elmer UV/vis Spectrometer Lamba Bio 10 (Perkin-Elmer, 

Cambridge, UK) with UV win lab software, ii) Camspec M508 UV/vis 

Spectrophotometer (Camspec Analytical Instrument Ltd., Leeds, UK). The first to scan 

the wavelength range between 200 – 800 nm and the second for single wavelength 

calibration experiments. Optically transparent polystyrene disposable cuvettes (Fisher, 

UK) of 1000 µL volume and 10 mm pathlength were used. 

2.1.6 Radioactive detection instrumentation 

18
F Fluoride was produced at a cyclotron in Pisa (PETrace, GE, USA) by proton 

bombardment (Ep = 16.7 MeV, 5-10 min at 20-25 µA) of a 1.3 mL 
18

O-water 

(enrichment >98 %) silver target. Radio HPLC was performed on a Waters Delta 600 

pump system equipped with a RaytestGabi Star Gamma detector connected in series to 
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a Waters 996 Photo Diode Array (PDA) detector and a Synergi Fusion-RP C-18 column 

(4 x 150 mm) (Phenomenex, UK). 

Radioactive tests and labeling reactions were conducted using an Advion Nanotek 

system (Advion, USA) as shown in Figure 34. The chips were connected to the system 

by modifying the standard plumbing whereby the inlet of the chip was interfaced to a 

port of an 8-way bridged valve bearing a 0.5 mL high pressure syringe. Three radiation 

detectors were integrated in the system in order to follow the distribution of the 

radioactive species during the experiments. 

The operation for trapping and elution was software controlled, minimising direct 

intervention of the user. Solutions employed were; i) for conditioning 1.0 M NaHCO3; 

ii) for trapping and release of irradiated target water containing the fluoride, Kryptofix 

2.2.2 10 mg in 1 mL acetonitrile and 80 µL of 5 % w/v K2CO3. Trapping of fluoride 

took place at 500 µL min
-1

 and elution of fluoride at 250 µL min
-1

. 

 

Figure 34 Image of the modular, liquid-flow-based “NanoTek LF” microfluidic synthesis system 

[42]. 

2.1.6.1 [19F]Fluoride pre-concentration 

All chemicals were of analytical grade and used without further purification. Ultrapure 

water (18 MΩ cm
-1

) was employed unless otherwise stated. A solution of [
19

F
-
] (1 µg 

mL
-1

) prepared from sodium fluoride was used as a reference standard. The elution 
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solution consisted of 10 mg of Kryptofix 2.2.2 (K2.2.2) dissolved in 900 µL anhydrous 

acetonitrile (MeCN) and 100 µL of 0.01 M aqueous potassium carbonate (K2CO3). 

Required amount of fluoride: The amount of [
19

F]fluoride ions used for experiments and 

the amount of ion exchange packing used in the device were chosen according to the 

amount of [
18

F]fluoride ion routinely used for FDG tracer synthesis. The radioactivity of 

1-2 mL “hot water” used for FDG production can be as high as 150 GBq. Considering a 

specific activity between 300 GBq µmol
-1

 and 43,000 GBq µmol
-1

 (maximum 

theoretical activity = 63,000 GBq µmol
-1

), it was calculated that the maximum amount 

of [
18

F]fluoride ions present in cyclotron irradiated water should not exceed 9.5 µg, with 

a typical average of 0.5 µg [156, 161, 162]. The experiments with the radioactive 

fluoride isotope were carried out with hot water as would routinely be used for FDG 

synthesis. Experiments involving standard solutions of fluoride were carried out with 1 

µg of fluoride ions. 

On-chip procedure: The on-chip particle bed was activated prior to trapping by flushing 

with 2 mL ethanol and 2 mL purified water at a flow rate of 1000 µL min
-1

. For 

trapping, 1 mL of fluoride standard solution was pumped through the particle packing at 

a flow rate of 500 - 1800 µL min
-1

, this was followed by flushing with 1 mL water. The 

trapped fluoride was subsequently eluted with the K2.2.2/acetonitrile/K2CO3 solution at 

a flow rate of 500 µL min
-1

. The particle bed was then regenerated by flushing the chip 

with 2 mL of 1.0 M KHCO3, followed by 3 mL of purified water at 1000 µL min
-1

. 

Fluoride detection: Eluted solutions were collected after both the trapping and elution 

steps for the quantification of fluoride. 25 µL of each collected solution was injected 

into an ion chromatography system (ICS-2000, Dionex, USA) equipped with an AS-

11HC analytical anion exchange column and a conductivity detector. The flow rate was 

0.25 mL min
-1

 and 15 mM potassium hydroxide was used as the eluent. 
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2.1.6.2 [18F]Fluoride pre-concentration 

Chemicals and solutions: High-purity solvents were stored on molecular sieves and 

vented through a sodalime molecular sieve trap during radiochemical experiments.
 

[
18

F]Fluoride ion was produced at a cyclotron (PETtrace, GE, USA) by proton 

bombardment (Ep = 16.7 MeV, 5-10 min at 20-25 µA) of 1.3 mL 
18

O-water 

(enrichment > 98%) using a 1.5 mL silver target-holder. The produced target water with 

a starting activity of 5-7 GBq was diluted with pure water to a volume of 4 mL. Ethyl 

ditosylate (EtDT) was synthesized as published [93, 163]. 

Fluorination mixture analysis: HPLC with radioactivity detection was performed using 

a Delta 600 pump (Waters, USA) equipped with a Synergi Fusion-RP C-18 column 

(Phenomenex, UK) (4 m, 3 mm x 150 mm) and a Gabi Star gamma detector (Raytest, 

Germany) connected in series to a 996 Photo Diode Array detector (Waters, USA). 

Microfluidic chip set-up for fluoride trapping test: The microfluidic chips were 

connected to an Advion Nanotek radiotracer synthesis system (Advion, USA) by 

modifying the standard connections (Fig. 35). The inlet of the chip was interfaced to a 

port of an 8-way bridged valve bearing a 0.5 mL syringe on the common port and was 

operated under negative or positive pressure as required. The remaining vials were 

connected to vials containing (i) a solution of aqueous 1.0 M sodium bicarbonate 

(NaHCO3) or H2O, (ii) (K2.2.2) solution which was prepared by adding a solution of 10 

mg K2.2.2 in 1 mL acetonitrile to 80 µL aqueous K2CO3 (5% w/v), (iii) air for drying 

the particle bed and (iv) irradiated target water. The remaining ports on the valve were 

blocked off. The chip outlet was connected to software controlled solenoid valve (SV) 

to direct the fluids towards either a waste or a collection vial. 
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Figure 35 Schematic representation of the microfluidic chip integrated with the Advion synthesis 

system, showing the 8 way valve connected to a driving syringe, vials with target water (containing 

aqueous radioactive [
18

F]fluoride ions), aqueous carbonate solution or water, K2.2.2/acetonitrile 

elution solution, air and finally the microfluidic anion-exchange chip. The chip outlet was 

connected to a solenoid valve (SV) which could direct liquid either to a waste vial or a collection 

vial. Radioactivity detectors were placed on the anion-exchange chip, next to the waste vial and 

next to the collection vial. 

 

Figure 36 Image of the microchip device (packed bed microchip) integrated with the Advion 

Nanotek LF, showing the microchamber glass device and one of the three radiodetector probes 

placed on top the device for real time monitoring of the radioactivity. 
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Procedure for trapping and releasing of fluoride: A flow rate of 500 µL min
-1 

was 

employed for all steps. 0.5 mL of target irradiated water (activity ranging from 620-875 

MBq) was delivered into the microfluidic chip packed with Chromabond PS-HCO3 

particles followed by 1 mL of air to dry the particles. The solenoid valve was then 

turned off/on to direct liquid to the collection vial. 0.5 mL of K2.2.2 solution was 

pumped through the chip followed by 1 mL of air to ensure recovery of the [
18

F]fluoride 

complexed solution. The solenoid valve was turned back to direct liquid to the waste 

vial and additional 0.5 mL of pure H2O was delivered to waste. The entire procedure 

took 6 min. 

Procedure for regeneration of the ion-exchange particles: The packed chip was rinsed 

with 2 mL of NaHCO3 and subsequently with 2 mL of H2O, both at a flow rate of 500 

µL min
-1

, the reconditioning procedure lasted 4 min. 

Three radiation probes were employed for continuous on-line count rate monitoring at 

different locations of the hardware; one was placed on top of the microfluidic chamber 

(Figure 36) to measure the radiation in the particle bed, the second for measuring 

radioactivity in the waste vessel and the third for measuring radioactivity in the 

collection vessel. The hardware operations for the trapping and releasing of 

[
18

F]fluoride ions, as well as regeneration of the particle bed, were programmed using 

Advion’s software (Version 1.4) in order to minimise direct intervention of the operator. 

At the end of each trap, release and reconditioning cycle, the waste vials and collection 

vials were counted and replaced with empty ones. The cycles were repeated for as long 

as target water was available; a maximum of eight consecutive runs was possible from 

the same batch of [
18

F]fluoride ion solution.  
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2.1.6.3  Fluoride labeling reaction 

When the fluoride solution was used for labeling reactions, the whole volume of target 

water (1.5 mL), containing [
18

F]fluoride ion,
 
was trapped in the chip and the elution step 

was performed at a slower flow rate, thus allowing the delivery of 100 µL drops directly 

into  separate 3 mL V-vials (preheated at 110 °C) while applying nitrogen flow (1.2 bar) 

and a vacuum to aid evaporation. Azeotropic evaporation of the excess water was 

achieved by dropwise addition of 0.5 mL acetonitrile under the same nitrogen flow, 

leading to a bubble-free evaporation. This last step was done alternating the recovery of 

a 100 µL drop in the collecting vial to a 20 s pause allowing evaporation; this confined 

the entire radioactivity to the bottom of the V-shaped vial. The dry residue was then 

reconstituted with 0.5 mL of acetonitrile, and the labeling medium was charged into a 

403 µL storage loop. A solution of EtDT (25 mg mL
-1

 in acetonitrile) was pumped into 

a second 429 µL storage loop. Finally, several labeling reactions were conducted by 

employing 10 µL aliquots of both reactants dispensed at 20 µL min
-1

, each into a 15.7 

µL fused silica reactor preheated to 150 °C. The fluidic scheme for this procedure is 

shown in Figure 37. 

 

Figure 37 Schematic representation of the EtDT labeling reaction process within the Advion 

automated system after drying of excess of water has been performed. The precursor solution was 

pumped into the loop of pump 1 (P1) while the labeling solution was introduced into the sample 

loop of pump 3 (P3). (a) In the reaction step, fluoride complex and precursor solution aliquots were 

delivered into the capillary micro-reactor (MR) preheated at a temperature 150 °C from the 

storage loops by pushing with pure solvent (acetonitrile); in this phase the fluids moved through the 
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lines indicated in bold. (b) In the sweep step, the micro-reactor system was rinsed with pure solvent 

through the lines indicated in bold and prepared for a further reaction with other aliquots of 

reagents. 

2.2 Microchip designs 

Several chip designs were used throughout the experiments described here; 1) a dam 

structure chip design for fluoride pre-concentration, K2.2.2 removal and FECH 

purification, 2) four different glass devices with parallel channels for the pre-

concentration of fluoride via plug of magnetic particles and 3) two different devices one 

with four inlets and four outlets the second with five inlets and five outlets for the 

magnetophoresis experiments. 

2.2.1 Parallel channel chip  

Four different chip designs were investigated (Figures 38-39) the difference between 

them was the number of parallel channels and the width of each individual channel. All 

of them were fabricated in glass with a depth between 20-30 µm. Preliminary 

experiments as described in Section 4.3 were carried out using the designs in Figure 38 

featuring 16 parallel channels (PC16) of 200 µm width and 32 parallel channels (PC32) 

with a width of 100 µm each. The 64 channels (PC64) had a width of 200 µm for each 

individual channel whilst the 128 channels (PC128) had a width of 100 µm each 

channel.  

 

Figure 38 Schematic view of chips design for investigation on magnetic plug left device featuring a) 

PC16 and b) PC32. 
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Figure 39 Schematic of chips design, featuring a) 64 parallel channels (PC64) and b) 128 channels 

(PC128). 

2.2.2 Dam structure device 

The chips design were patterned onto glass wafers using the photolithography technique 

and wet etching method of chip fabrication [164]. For the dam structure a double etched 

design was used to obtain 2 different depths to allow particles trapping, 3 mm glass 

wafers coated with chromium layer and photoresist layer were used (B270 glass, Telic, 

Valencia, CA, USA). The top plate was etched to a depth of 50 µm and the bottom 250 

µm for a total depth of 300 µm. Particles were introduced via the larger hole (1.5 mm 

diameter) which was also the inlet for introduction of fluid. The outlet hole was drilled 

at 400 µm diameter. A schematic view as well as a photo of the empty chamber are 

shown in Figure 40. 
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Figure 40 Schematic view of the dam structure chip device. a) 3D view, b) top view featuring 

dimension of the chamber and holes, c) cross sectional view featuring the depth of the double 

etched plates and d) a photo of the empty glass chip. 

2.2.3 Free-flow magnetophoresis chip 

Two different devices (FL1 and FL2) were used for the investigation of the free-flow 

magnetophoresis experiments. Both were fabricated in 1 mm thick B-270 glass to a 

depth of 20 µm. FL1 featured an 8 mm x 3 mm reaction chamber with a depth of 20 µm 

with a symmetrical inlet and outlet system of five channels (Figure 41). Each of the 

inlet and outlet channels was 240 µm wide, before branching into two 120 µm wide 

channels prior to the reaction chamber. Inlet 1 was used for the introduction of particles 

into the chamber, with inlets 2 to 5 used as reagent and buffer inlet channels, depending 

on the experiment being performed. 
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Figure 41 Schematic of chip design FL1, featuring an 8 mm x 3 mm reaction chamber, five inlets, 

and five outlets. 

 

Figure 42 Schematic of chip design FL2, featuring a 6 mm x 4 mm reaction chamber, four inlets, 

and four outlets. 

FL2 featured a reaction chamber of 4 x 6 mm etched at a depth of 20 µm with a 

symmetrical inlet and outlet system of four channels with a width of 200 µm. 

2.3 Chip setup and interfacing 

Chip designs FL1 and FL2 were utilised for the on-chip free-flow magnetophoresis 

experiments. Before the use of the pressure pump, glue was used for fixing capillaries 

into the inlets and outlets of the microchip. For most of the experiments described here, 

fused silica capillaries (150 µm i.d., 363 µm o.d., Polymicro Technologies LLC, 

Composite Metal Services Ltd., UK) were inserted into the inlet / outlets holes and 

glued in place using Araldite Rapid Glass & Ceramic epoxy resin. For the dam structure 

device where the inlet hole was 1.5 mm in diameter  a piece of PTFE (0.3 mm i.d., 1.58 

mm o.d., Supelco, UK) tubing was used and at the outlet a piece of poly ether ether 

ketone tubing (PEEK, 150 µm i.d., 360 µm o.d., Cole-Parmer Instrument Co., UK) was 



   Chapter 2     bjbk 

90 

 

glued using Araldite Rapid Glass & Ceramic epoxy resin, into the inlets and outlets 

holes of the chip and interfaced to a 5 mL syringe (Henke-Sass Wolf (HSW) 

polypropylene syringe, VWR), via Tygon tubing (1.0 mm i.d., 1.8 mm o.d., Cole-

Parmer). A syringe infuse rate between 400 µL h
-1

 to 1.7 mL min
-1

 was applied using a 

syringe pump (Pump 11 Plus, Harvard Apparatus, UK). 

Microfluidic chip interfacing with chip holder 

Later in the project to avoid gluing issues with blocked channels when glue seeped into 

the inlet or outlet holes, a chip holder was used where chips could be fixed in place and 

the capillaries introduced and sealed without the need for glue. The chip holder was 

prepared in-house by the Engineering Workshop in the Department of Chemistry, and 

was fabricated from aluminium. The holder was built in two identical sections, each 

consisting of a bottom plate, onto which the chip was placed, with a top plate placed 

over the inlet holes of the chip and screwed into the lower plate (Figure 43). The top 

plate featured a matrix of holes, each 5 mm apart, such that the access holes of the chip 

could be aligned to allow capillaries to be connected to the chip.  

 

Figure 43 Photographs of the chip holders fabricated in-house, and the nuts used to connect the 

capillaries to the chip. a) Chip holder design, consisting of sliding sections to accommodate different 

sized chips. b) Schematic demonstrating the interfacing of capillaries to a microfluidic device when 

using a chip holder. The capillary is held by a ferrule that covers the inlet hole of the chip, and the 

ferrule is sealed against the chip by a PEEK nut that screws directly into the chip holder. The top 

and bottom plate are made of Aluminium and are held together in place by eight screws (four for 

the inlets side and four for the outlets). Adapted from [99]. 
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Whether the capillaries were glued into a chip or a holder was used for the connections, 

the subsequent steps remained the same for each setup. Tygon tubing (0.254 mm i.d., 

0.762 mm o.d., Cole-Parmer) was attached to each of the outlet capillaries and fed into a 

sample vial for waste collection. Tefzel ferrules (1/16 inch, Anachem Ltd., UK), with a 

sleeve of poly(tetrafluoroethylene) tubing (PTFE, 0.3 mm i.d., 1.58 mm o.d., Supelco, 

UK) inside them, and PEEK nuts (1/16 inch, Anachem Ltd.) were attached to the ends 

of each inlet capillary by inserting the capillary into the PTFE sleeve, and the chips then 

underwent a washing procedure. The washing solutions varied depending on the 

experiment. A PEEK syringe adaptor (1/4-28 Female to Female Luer adaptor, Anachem 

Ltd.) was screwed onto the nut of one of the capillaries, and the first washing solution 

was pumped through the chip via a 1 mL syringe (BD Plastipak, Becton Dickinson UK 

Ltd., UK). Positive pressure was used for all the experiments, syringes with the 

appropriate particle suspension and reagents were loaded onto a syringe pump with a 

multi-syringe rack (PHD 22/2000, Harvard Apparatus). The syringe pump was activated 

to start pumping the particle suspensions, reagents and buffers through the chip if using 

positive pressure. Flow rate between 10-30 µL h
-1

 were employed unless the pressure 

pump was used. 

2.4 Particle visualization 

Chips were placed onto the stage of a Nikon Ti inverted fluorescence microscope 

(Nikon Instruments Europe B.V., Surrey, UK), equipped with 2x, 4x, 10x, 20x, and 40x 

objectives (Figure 56). Videos and images were captured using colour CCD camera 

(MTV-63V1N, Mintron Enterprise, Taiwan) and WinDVD Creator 2 software 

(InterVideo (Corel UK Ltd.), Berkshire, UK). 
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2.5 [19F]Fluoride pre-concentration off-chip 

Initial investigations into non-radioactive fluoride pre-concentration were performed off 

chip in order to gain familiarity with the new detection methods and to optimize a 

suitable method for quantification of fluoride during the trapping and elution steps.  

2.5.1 Preparation of anion standards for fluoride calibration 

Seven anion standards were used to aid the analysis of fluoride by ion chromatography 

(IC) and to help identify the different peaks and their retention times. The standard was 

prepared by the dissolution of high purity salts in the concentration range between 10 -

100 ppm in high purity deionised water. 

2.5.2 Preparation of stock solutions 

A stock solution of NaF was prepared by dissolving 2.21 g of sodium fluoride (Sigma 

Aldrich, UK) in 1 L of water which gave 1000 ppm of F
-
 (1000 µg mL

-1
).  Fluoride 

standard solutions were prepared in the range 0.1 – 100 ppm by serial dilution of the 

stock and stored in plastic beakers. A solution of 0.25 M K2CO3 (Sigma Aldrich, UK) 

was prepared by dissolving 6.9105 g in 200 mL water. A solution of 1.0 M KHCO3 

(Sigma Aldrich, UK) was prepared by dissolving 10.012g of potassium bicarbonate in 

100 mL water. 

2.5.3 Off-chip pre-concentration via non magnetic particles 

The experiments were carried out by pumping solutions through the different cartridges 

listed in Table 8 using a syringe pump (Harvard apparatus 11 plus and Harvard 

apparatus PHD 2000, USA) with a disposable 1 mL plastic syringe (BD Plastipak, UK). 

Figure 44 shows the schematic procedures for trapping and elution of fluoride which 

includes the five steps cycle needed for the pre-concentration of fluoride; i) 

conditioning, ii) washing, iii) trapping, iv) elution, and v) regeneration. 
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conditioning

excess

X-

pH 9-11

trapping

1 mL  fluoride 

solution

F-elution

200 µL K2CO3 

(0.01M) solution

CO3
2-

Resin beads

X-

pH 5-7

 

Figure 44 Schematic representation of fluoride activation; first conditioning of the resin, washing 

with water to neutralise the resin, trapping, elution and regeneration. 

2.5.4 Off-chip pre-concentration via magnetic particles 

Two different superparamagnetic particles, 1 and 3 µm diameter, featuring quaternary 

ammonium groups in the chloride form were tested during the off chip experiment to 

identify the binding efficiency of the particles to the fluoride ion in an aqueous 

environment. The particle suspension was vortexed for 20 s and the particles collected 

at one side of the Eppendorf tube (1.5 mL, VWR, UK) via an external magnet. The 

supernatant was removed and fresh water was added; the process was repeated twice. 

When loading of the counter ions was performed the last wash was replaced with a 

solution of NaCl (1.0 M). A schematic representation of the steps used during the 

magnetic approach for fluoride pre-concentration is shown in Figure 45. 
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Figure 45 Steps by steps trapping of fluoride and elution. Step 1 fluoride solution was introduces 

into the Eppendorf containing the magnetic particles. Step 2 the adsorption of fluoride onto the 

particles surface takes place. Step 3 an external magnet is applied on the side of the Eppendorf and 

the particles with the fluoride ions collected on the side, a further washing step is sometimes 

performed with fresh buffer solution. Step 4 the carbonate anions in solution (less volume then the 

original solution is then introduced and the exchange between fluoride and carbonate takes place. 

2.6 Fluoride pre-concentration on-chip (dam structure) 

The first part of the experiment was the preparation of the microchamber (described in 

2.2.2) this was achieved by deconstructing the available cartridge and filling the 

chamber with the particles. For the pre-concentration of fluoride, the chamber was filled 

with commercially available anion exchange particles, (PS-HCO3 or Sep-Pak Light Plus 

QMA) as described in Section 2.1.2. The particles were introduced as a dry powder 

from the larger hole by using a micro spatula and constantly tapping the device in a 

vertical position to obtain a homogenous packing, as shown in Figure 46 a). 20-30 mg 

of ion exchange particles could be trapped in the chamber. It has to be noted that during 

the gluing of the inlet tubing the tube was insert into the inlet hole (in top plate) in such 

a way that it will be in contact with the chamber (bottom plate) in order to ensure that 

when solution was pumped through the particles bed was fully wet. The on-chip particle 

bed was activated prior to trapping by flushing with 2 mL ethanol and 2 mL purified 

water at a flow rate of 1000 µL min
-1

. For trapping, 1 mL of fluoride standard solution 

was pumped through the particle packing at a flow rate of 500 - 1800 µL min
-1

, 

followed by flushing with 1 mL water. The trapped fluoride was subsequently eluted 
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with the K2.2.2/acetonitrile/K2CO3 solution at a flow rate of 500 µL min
-1

. The particle 

bed was then regenerated by flushing the chip with 2 mL of 1.0 M (KHCO3) followed 

by 3 mL of purified water at 1000 µL min
-1

. 

 

Figure 46 Pre-concentration of fluoride on trapped anion exchange particles, including (a) loading 

of the particles into a microfluidic device, (b) trapping of fluoride from solution and (c) elution of 

fluoride. 

 

Figure 47 SPE cartridges commercially available. Silica based QMA from Water (50 µm average 

particles diameter), Chromabond polystyrene cross linked with divinyl benzene (100 µm average 

particles diameter) and silica based Strata SAX (60 µm average particles diameter). 

 

Figure 48 Dam structure device filled with two different anion exchange particles namely; silica (Si) 

and polystyrene (PS). 
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2.6.1 Pressure measurement on dam structure chip 

Investigation on the maximum flow rate and pressure exerted on the dam structure chip 

were performed using a pressure meter DPG 120 (OMEGA Engineering INC., US) 

connected with PEEK tubing to the inlet of the chip allowing correlation of the pressure 

with the flow rate from the syringe pump; the experimental set-up for this study is 

shown in Figure 49. 

 

 

Figure 49 Set-up used to measure the pressure within the chamber of the packed bed device. 

2.7 Fluoride pre-concentration on-chip via plug of magnetic particles 

Magnetic microparticles can be captured on-chip with external magnets. As described in 

Section 1.13.2, fluoride can be trapped and subsequently eluted from the particle bed. 

The schematic representation for the pre-concentration of fluoride via magnetic plug 

trapping is shown in Figure 50, with the loading of the magnetic particles first and the 

trapping and release of the fluoride in the same device. 
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Figure 50 Schematic of the magnetic capture approach. Magnetic microparticles can be captured 

on-chip with external magnet; fluoride can be trapped and subsequently eluted from the particle 

bed. 

Microchip pre-treatment 

Before each experiment, the microchip was flushed with water to remove any air from 

the chamber and the channels by manual pumping. The microchip was then flushed 

with 100 mM NaOH using the syringe pump at a rate of 100 μL h
-1

 for 3 min. The 

NaOH was flushed out of the microchip with water, and EtOH was pumped through for 

another 3 min.  

2.7.1 On-chip plug formation 

1 µm and 3 µm Simag-Q superparamagnetic particles functionalised with a quaternary 

ammonium group in the chloride form were purchased from Chemicell (Berlin, 

Germany). The particles were received as a concentrated suspension (4.2 x10
10

 particles 

mL
-1

 for the 1 µm i.d. and 1.57 x 10
9
 particles mL

-1
 for the 3 µm i.d. particles); the stock 

suspensions was stored in a refrigerator at 6° C. 

Fused silica capillary of ~ 8 cm length (100 µm i.d., 360 µm o.d., Polymicro 

Technologies LLC, Composite Metal Services Ltd, UK) was used. The polyimide 

coating was partly removed using a flame from a lighter to allow observation under the 

microscope. The capillary was then mounted onto a glass slide; tygon tubing (254 µm 

i.d., 762 µm o.d., Cole Parmer, UK) was pushed over the ends of the capillary. One end 

was dipped into the Eppendorf tube (1.5 ml VWR, UK) the other end the tubing was 

pushed over a 25G syringe needle (Terumo, Surrey, UK) which was luer locked to a 1 
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mL glass syringe (SGE Analytical Science, Australia). The sample was pulled from the 

sample tube through the capillary by application of negative pressure with a pump 

(Harvard Apparatus 11plus, Harvard application, USA). NdFeB magnets of 5 mm 

length and 2 mm diameter were purchased from Magnet Sales (Swindon, UK). A pair of 

magnets was glued to a glass support such that the opposite poles were facing each 

other over a 5 mm gap. The magnet holder was placed on the capillary support such that 

the capillary ran through the gap of the poles. Blu tac adhesive was used to fix the 

magnet holder. The whole set-up was placed on the stage of an inverted microscope 

(Nikon) with images captured and recorded with a CCD camera (PV10, Olympus, 

Japan) and Image pro capture software (Open source software 

http:\\rsb.info.nih.gov/ij.index.html). An image of the experimental set-up is shown in 

Figure 51. 

 

Figure 51 (a) Set-up of the glass capillary and the magnet pairs positioned on a glass slide, (b) Set-

up of the microfluidic device under the microscope. 

2.7.2 Magnet set-up for parallel channels experiment 

For parallel channels experiments most commonly, a 10 x 10 x 5 mm
3
 rectangular 

NdFeB magnet (Magnet Sales, UK) was placed on top of the chip, in the case when 128 

or 256 parallel channels chip was used three magnets facing opposite poles were used.  
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Figure 51 Image showing the device PC128 filled with red ink for visualization and the position and 

orientation of the NdFeB magnets.  

2.8 Fluoride pre-concentration on-chip via free-flow magnetophoresis 

This section describes the experimental parameters, chemicals, particles and set-up 

employed for the study of magnetic particle deflection behaviour in a microfluidic 

chamber with the aim of achieving the pre-concentration of fluoride via free-flow 

magnetophoresis. 

 

Figure 52 Schematic of the set-up of chip design for performing fluoride trapping  in continuous 

flow. Magnetic particles were pumped into inlet 1, and fluoride ion in solution in inlet 2-3. 

Dynabeads SAX particles (1 µm diameter), as described in Section 2.1.3, were 

purchased from Invitrogen and prepared as per the manufacturer’s instructions. ~ 2 x 

10
6
 particles) were dispersed in 1 mL of PBS buffer in a 1.5 mL Eppendorf tube and 

underwent the following particle washing procedure; the suspension was vortexed for 

20 s, the particles were collected at the side of the tube via an external magnet and the 

supernatant removed prior to the addition of fresh PBS. This washing process was 
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repeated twice more and once the supernatant had been removed for the last time the 

particles were resuspended in fresh PBS. 

When a magnet was placed next to the deflection chamber, magnetic particles in the 

chamber experienced not only an attractive force in the y-direction but also upwards, in 

the z-direction, which could result in particles becoming stuck against the top surface of 

the chamber. Therefore, by positioning a magnet in the same horizontal plane as the 

particles, they would experience no upwards force and so should flow through the 

chamber without being pulled against the chip surfaces, thus helping to reduce 

‘sticking’. With this in mind, some of the chips had a section of glass cut out next to the 

chamber so that the magnet could be placed in line with the chamber. An example of a 

chip with a section of glass cut out is shown in the chip holder in Figure 53. 

 

Figure 53 Glass chip featuring a box magnet 20 x 10 x 5 mm
3
 within the glass cut out. 

 

Figure 54 Chip design with the 4 x 4 x 5 mm
3 
 NdFeB magnet placed on top of the chip, next to the 

reaction chamber. 
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2.8.1 Pressure pump  

In some experiment the syringe pump was replaced with a pressure control pump and 

the interface between the glass device and the tubing was substituted with a chip holder 

fabricated in house, the set-up of which is shown in Figure 56. The MicroFluidic 

Control System (MFCS) (Fluigent, France) is a high precision pneumatic pressure 

controller designed to handle fluid in microfluidics systems. It allows a stable and 

pulsation free flow with short response time (100 ms) and a stabilisation time a low as 1 

s. With the MFCS it is also possible to control several independent channels at the same 

time as shown in Figure 55 thanks to the individually controlled vials. The user friendly 

software allows you to create scripts for complex flow patterns or dynamic coupling for 

user-controlled dependence between channels. 

 

Figure 55 a) Schematic of the Fluigent pressure pump with the fluiwell + the reservoirs, b-c) image 

showing the front and back of the fluiwell (vials rack), d) showing the principle of the flow of the 

liquid via pressurized gas [165]. 
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Figure 56 Full system set-up comprising of pressure pump connected to the chip and microscope 

for visualization. 

2.8.2 Magnet setup for magnetophoresis experiment 

Most commonly, a 4 x 4 x 5 mm
3 

rectangular NdFeB magnet (Magnet Sales UK) was 

placed on top of the chip, next to the chamber, as shown in Fig 54. When a magnet was 

placed onto the chip surface, magnetic particles in the chamber experienced not only an 

attractive force in the y-direction but also upwards, in the z-direction, which could result 

in particles being drawn towards the top of the chamber and becoming stuck against the 

surface of the chamber. Therefore, by positioning a magnet in the same horizontal plane 

as the particles they would experience no upwards force, and so should flow through the 

chamber without being pulled against the chip surfaces, thus helping to reduce sticking. 

With this in mind, some of the FL2 design chips had a section of glass cut out next to 

the chamber so that the magnet could be placed in line with the chamber. An example of 

a chip with a section of glass cut out is shown in the chip holder in Figure 57. When this 

setup was used, a 20 x 10 x 5 mm
3
 NdFeB rectangular magnet was placed in this 

position rather than the smaller magnet used above. 
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Figure 57 Chip holder featuring a glass device with cut out for magnet. 

 

2.9 Surface treatment 

In an effort to reduce the sticking of particles to the glass surfaces of the microfluidic 

channels, several treatments were performed to modify the glass. Initial attempts to 

perform surface treatments involved the introduction of chemicals through fused silica 

capillaries. However, it was found that this also treated the capillaries themselves, and 

always resulted in increased back pressure and difficulties in introducing particles into 

the chips. It was hypothesised that this was due to the presence of water (possibly from 

moisture in the air) that reacted with the silanising agent to form residues that partially 

blocked the capillaries. Silanisation of a glass surface requires a small amount of water 

to be present, but too much water will cause the formation of powdery residues, and 

were typically only used for 2 – 3 weeks after being opened. Due to the suspected 

blocking of the capillaries, subsequent attempts to treat the chips involved pumping the 

required solutions directly into the chip via one of the following methods.  
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Table 14 Silanising agents and their properties. References show where the application methods for 

each agent were adapted from. 

Silanising agent  Abbrev. 
Leaving 

group 
Solvent 

Effect on the 

glass surface 

Octadecyltrichlorosilan

e [166, 167] 
OTS  - Cl 

4:1 

Hexadecane: 

Chloroform  

Hydrophobic 

uncharged  

Trichloro(1H,1H,2H,2

H-perfluorooctyl)silane 

[168, 169] 

FDTS  - Cl 

Isooctane 

(2,4,4-

trimethyl-

pentane 

Hydrophobic

; 

fluorophilic; 

lyophobic; 

uncharged 

2-[Methoxy 

(polyethyleneoxy)propy

l] [170] 

PEG-silane  - OMe Toluene  
Hydrophilic; 

uncharged  

(3-aminopropyl) 

triethoxysilane [171] 
APTES  - OEt Ethanol  

Positively 

charged at 

low pH  

Dimethyloctadecyl[3-

(trimethoxysilyl)propyl] 

ammonium chloride 

[172] 

QAS 

(quaternar

y 

ammonium 

silane)  

 

- OMe 

 

 

Methanol  
Positively 

charged  

 

A chip, having been cleaned via a furnace (500 °C for 6 h) and/or in piranha (80:20 

H2SO4:H2O2) solution, and with no tubing attached, was flushed with acetone by 

placing a syringe directly over one of the inlet holes, then a syringe filled with air used 

to remove the acetone. The chips were placed in a 60 °C oven overnight to ensure that 

the surfaces were dry. These steps were to ensure that no water was present in the chips 

ahead of silanisation treatments, where the presence of water can produce unwanted by-

products and cause blockages. For the silanisation procedure, solutions were prepared 

by dissolving the silanising agent in an appropriate solvent to a concentration of 1 % v/v 

(Table 14). 
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Table 15 Chemical structures of the silanising agents. 

Silanising Agent Chemical Structure 

OTS 

 

FDTS 

 

PEG - Silane 

 

APTES 

 

QAS 

 

 

The chips were flushed first with the pure solvent via a syringe, before filling them with 

the silanisation solution list of the different surface treatment compounds is reported in 

Table 14 and leaving it to react for 10 min. Finally, the chips were flushed with the 

solvent again, followed by acetone and then water, leaving the chip ready for use in 

experiments. The silanising agents were used to render the glass chip surfaces 

hydrophobic, hydrophilic (more so than native glass), or positively charged, depending 

on the type of agent used. Each agent featured a silane group with four substituents, one 

of which was the group (-R) responsible for conferring the desired physical effect on the 
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system, and the other three of which were hydrolysable leaving groups of either 

methoxy (-OMe), ethoxy (-OEt) or chlorine (-Cl), used to link the silane to the glass 

surface. Table 14 shows the different silanising agents used in this work, together with 

their abbreviations, the effect on the glass surface, the leaving group, and the solvents 

used to prepare the 1 % v/v solutions. Table 15 shows the chemical structures of each of 

the silanising agents. Figure 58 shows the mechanism by which silane modification 

takes place on a surface featuring hydroxyl groups (-OH), such as the surface groups on 

glass [173, 174]. Firstly, the alkoxy (methoxy, -OMe, or ethoxy, -OEt) leaving groups 

of the silane are hydrolysed by water to form silanols. Hence, a small amount of water 

is typically required in the system to perform the surface treatment, and may come from 

the atmosphere or be present in small quantities on the surface of the glass. For those 

silanising agents featuring chlorine leaving groups, anhydrous alcohols are usually used 

as the solvent, and the chlorosilane reacts with the alcohol to produce an alkoxysilane 

and hydrochloric acid. Some of the hydrochloric acid then reacts with the alcohol to 

produce small quantities of alkyl halide and water, the latter of which causes the 

formation of silanol groups from the alkoxysilanes. Thus, whether an alkoxysilane (with 

methoxy or ethoxy groups) or a chlorosilane (with chlorine groups) is used as the 

starting material, both become silanols as a result of hydrolysis, albeit by slightly 

different mechanisms. In general, the reactivity of the silanising agents with the 

hydroxylated groups of the substrate surface is greater for the chlorosilanes than the 

alkoxysilanes, but nevertheless the latter type are the most widely used due to the non-

corrosive and volatile byproducts, and for the methoxysilanes there is the advantage that 

they are able to modify surfaces under dry condition. 
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Figure 58 The deposition of silanising agents onto a glass substrate. The example shows an 

alkoxysilane featuring three hydrolysable methoxy groups. 

Once hydrolysis of the silanes has been performed, the silanols produced undergo 

condensation to form oligomers, which in turn hydrogen bond with the hydroxyl groups 

of the substrate. Finally, a covalent bond is formed with the substrate due to loss of 

water by drying or curing, securing the silane and the properties of its R group to the 

glass surface. These steps are described sequentially, but can actually occur 

simultaneously after the hydrolysis step. Chips silanised with a hydrophobic treatment 

were tested by examining the water-air interface in a channel to observe the contact 

angle, where it was found that hydrophobic surfaces gave a contact angle of around 90 

while untreated surfaces exhibited contact angles of < 30. 
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2.10 Kryptofix detection and removal 

This section describes the experimental parameters, chemicals, particles, and set-up for 

the study of detection and removal of K2.2.2 in a microfluidic chamber. 

2.10.1 Preparation of stock solution 

Kryptofix standards were prepared in water by serial dilution of 1.0 mg mL
-1

 in 

acetonitrile. Kryptofix standards between 1 – 100 µg mL
-1

 were used in this study. 

 

Figure 59 The chemical structure of Kryptofix K2.2.2 when complexes with K
+
 ion. 

2.10.2 TLC silica for detection of K2.2.2 

Thin Layer Chromatography (TLC) is the most widely used quality control method for 

K2.2.2 in FDG injection. The method consists of spotting 2 µL samples of [
18

F]FDG 

and K2.2.2 standards solution on silica gel plate and developing in methanol:NH4OH 

(9:1). Following hot-air drying, the plates are exposed to iodine vapors for an additional 

15 to 20 min for visualization [88]. When the Alexoff et al. [85] method was used an 

acidic iodoplatinate solution was prepared as described in Section 2.10 and the stock 

solution was applied to strips of plastic-backed silica gel 60 thin-layer chromatographic 

plates (Sigma-Aldrich, UK). 

 

 

 



   Chapter 2     bjbk 

109 

 

 

2.10.3 Colourimetric test for Kryptofix detection 

4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo [8.8.8]-hexacosane, Kryptofix (98%), 

chloroplatinic acid 6 hydrate, potassium iodide and hydrochloric acid 36 %  were 

purchased from Sigma Aldrich, UK.  

Following the published method [55], stock iodoplatinate reagent was prepared by 

mixing 5 mL of 5% chloroplatinic acid in water with 45 mL 10% potassium iodide in 

water and diluting with an additional 100 mL of water. Acidic iodoplatinate was 

prepared by mixing 1 part conc. HCL with 10 part stock reagent. 

 

Figure 60 Image of the setup for of the colour change reaction between K2.2.2 and iodoplatinate 

reagent. 

2.10.4 HPLC–MS for Kryptofix detection 

Owing to its increased sensitivity, an HPLC-MS-MS method was investigated which 

enabled quantitative experiments for the purification steps to be performed such as the 

amount of resin needed to remove the Kryptofix. The method of Ma et al. [92] was 

slightly modified as the use of ammonium acetate as mobile phase was found to be 

detrimental for the LC pump causing several stalling and blockages; consequently 

ammonium acetate was replaced with water (50:50 water: acetonitrile). The standard 
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stock solution of K2.2.2 was prepared in acetonitrile, from which the working solution 

of K2.2.2 was diluted to give a range of concentrations from 1.0 –100 ng mL
-1

, all 

solutions were stored in a refrigerator. 

2.11 FECH detection and on-chip removal 

For the detection and analysis of FECH experiments, starting materials and by-products 

were purchased; EtDt, [
19

F]Fluororethylcholine (FECH) was delivered in 20 mg vials 

and prepared from a stock solution by serial dilution in the concentration range 1-100 

ppm in water, DMAE, dry acetonitrile (ACN) and tetrabutylammoniumbicarbonate 

delivered as liquid (TBAHCO3). Kryptofix 2.2.2/K2CO3 solutions were prepared in the 

same concentration as used during the pre-concentration of fluoride experiments 

described in the experimental chapter Section 2.1.5.1. The microchamber glass device 

was prepared in the same way as described in Section 2.6 with the difference being the 

type of particles introduced in this case both CM cation exchange particles, as well as 

reversed phase particles were used. The on-chip particle bed was activated prior to 

trapping of FECH and K2.2.2 by flushing with 2 mL ethanol for the reversed phase 

particles and NaCl 0.1 M solution for the CM cation particles and subsequently washed 

with 2 mL purified water at a flow rate of 1000 µL min
-1

. For trapping of FECH, 1 mL 

of FECH (10 µg mL
-1

) standard solution was pumped through the particle packing at a 

flow rate of 500 - 1000 µL min
-1

. This was followed by flushing with 1 mL water. The 

particle bed was then regenerated by flushing the chip with 2 mL of 1.0 M NaCl, 

followed by 3 mL of purified water at 1000 µL min
-1

.  

FECH and by-products detection: Solutions of DMAE, FECH and TBAHCO3 were 

analysed by IC. Different mixtures at different concentrations between 1-100ppm were 

injected into the ion chromatography system (ICS-2000, Dionex, USA) equipped with a 
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CS18 IonPAC analytical cation exchange column and a conductivity detector. The flow 

rate was 0.25 mL min
-1

 and 20 mM potassium hydroxide (KOH) was used as the eluent. 
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3 On-chip pre-concentration of [18/19F]fluoride via regenerable 

anion exchange resin  

This Chapter describes the on-chip pre-concentration of fluoride with both 

[
18/19

F]fluoride via a packed bed of anion exchange chromatography resin, this work has 

been published in the Journal of Chromatography A [1]. 

3.1 Introduction 

As previously reported in Section 1.5 the most common reaction with radioactive 

fluoride is the nucleophilic substitution. When this reaction was described by Amacher 

et al. [16] two main advantages were reported i) the [
18

F]fluorine is obtained as a 

solution in the irradiated water and ii) [
18

F]fluorine is obtained “no-carrier-added” 

(NCA). This means the [
18

F] fluoride ion has very high specific radioactivity (i.e., ratio 

of [
18

F] fluoride ion to its mass of carrier or total fluoride ion 
19

F + 
18

F). The 

nucleophilic substitution is achieved in the presence of a phase transfer catalyst, in this 

case K2.2.2, in Figure 46 and 61 the mechanism of the pre-concentration and activation 

of the [
18/19

F]fluoride ions in the presence of K2.2.2 via a packed bed of anion exchange 

chromatography particles is described. 

 

 

Figure 61 Principle of anion exchange process after the production of 
18

F
-
 from proton 

bombardment of 
18

O water in a cyclotron. The fluoride ions are exchanged with the counter anions 

(CO3
2-

) and subsequently eluted with high ionic strength salt (K2CO3) in the  presence of 

acetonitrile and Kryptofix as phase transfer catalyst, to obtain the activated fluoride. 
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In Figure 62 is shown the schematic of the chip design already described in Section 

1.2.2 as well as a photo of a glass device filled with two different types on AE particles. 

The amount of particles contained in the individual chamber was between 20-30 mg. 

 

 
 
Figure 62 (a) Schematic representation of the chip design. The bottom plate features two chambers 

(3 cm long, 5 mm wide, 250 µm deep). The top plate, etched to a depth of 50 µm, also featured two 

chambers (3 cm long, 5 mm wide). This top plate also featured a triangular section (2.5 mm long), 

leading to a channel of 100 µm width that formed a shallow section for bead trapping when the top 

and bottom plates were thermally bonded. On the inlets side, 1.5 mm diameter holes were drilled 

into the top plates, while on the outlets, 400 µm diameter holes were drilled for the outlets. (b) 

Photograph of the glass device. One chamber was filled with polystyrene (Chromabond PS-HCO3) 

particles and the lower chamber filled with silica (Sep-Pak Light Plus QMA) particles. 

3.2 Non-radioactive [19F]fluoride ion detection methods 

The first part of the work was dedicated to the investigation and optimisation of a low 

limit of detection method for non-radioactive fluoride, [
19

F]fluoride. Three methods 

were investigated namely, (i) ion selective electrode, (ii) spectrophotometric detection 

and (iii) ion exchange chromatography with conductivity detector.  

3.2.1 Ion Selective Electrode (ISE) 

The fluoride electrode (described in 2.1.5) was first tested due to its ready availability 

and ease of use. The aim of this experiment was to prepare a series of standards in the 

range 1 x 10
-2 

M to 1 x 10
-7 

M of [
19

F]fluoride and plot a calibration graph to measure 

the concentration of fluoride in an unknown solution.  
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Figure 63 Calibration graph of Potential/mV versus the logarithm of [F
-
]. 

Table 16 Table showing the values of the potential /mV and the concentration of fluoride. 

[Fluoride] /M 
Potential /mV 

(mean n=3) 
Log [F

-
] 

0.000001 -238 -6 

0.00001 -292 -5 

0.0001 -334 -4 

0.001 -397 -3 

0.01 -458 -2 

0.1 -513 -1 

 

From the results shown in Figure 63 it can be seen that there was a linear response. 

However, the working range was limited between 1 x 10 
-2

 to 1x 10 
-6

 M. The volume 

required for the measurement was around 200 µL and the error found while measuring 

the potential was found to be ±15 mV possibly due to factors such as temperature, time 

needed to take the reading, differences in volume and dilution factor. Owing to the limit 

of detection of only 1 x 10
-6

 M (19 µg mL
-1

 of fluoride), as well as the amount of 

volume required for analysis, >200 µL, the method was not optimised further.  
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3.2.2 Spectrophotometric detections: Alizarin fluorine blue 

A spectrophotometric method was also considered with the intent to use it as a 

continuous on-line method for fluoride detection as described in experimental section 

2.1.5. UV-vis spectra were obtained for each standard of fluoride in the range 10-50 

ppm as shown in Figure 64. The maximum absorbance was at λ = 625 nm. As shown in 

Figure 65 a linear response was obtained, and it also shows that the absorbance was 

proportional to the concentration. Preliminary results obtained showed that the method 

had good sensitivity in the microgram range for the detection of fluoride. So was 

decided to carry out a further optimisation both for sensitivity and interferences. 

Table 17 Mass of fluoride versus absorbance at 625 nm. 

Mass  

[
19

F]fluoride/( g/ 

mL) = ppm 

Absorbance 

At 625nm 

(mean n=3) 

40 

30 

20 

10 

1.1654 

1.1071 

0.9504 

0.8362 

 

Results of the concentration of [
19

F]fluoride versus the absorbance found at λ= 625 nm 

are shown in Table 17. The spectra of a range of [
19

F]fluoride concentrations are shown 

in Figure 64 and a calibration graph of the mass of fluoride versus the absorbance is 

plotted in Figure 65. 
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Figure 64 Absorption spectra at 625 nm of different fluoride concentrations (10-40 ppm). 

 

Figure 65 Calibration graph of absorbance vs concentration of fluoride. 

A further test was performed to identify the effect of carbonate anions since pre-

concentration of fluoride for radiosynthesis is performed in the presence of carbonate 

anions, introduced during the elution step as described in Chapter 1 Section 1.8. The 

results are shown in Table 18 and the graph plotted in Figure 67. The method was the 
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same as outlined previously. The only addition was a known amount of potassium 

carbonate in each of standards, and the absorbance was measured at 625 nm. 

Table 18 Effect of K2CO3 in the absorbance at 625 nm. 

Concentration  

of [
19

F]fluoride g mL
-1

 

Volume of 

K2CO3(0.25 M) / ml 

Absorbance 

At 625nm 

40 2 0.1433 

30 2 0.5221 

20 2 0.5710 

10 2 0.8045 

 

As shown in Figure 66 there is no linearity between the peaks and the maximum 

absorbance recorded, as compared with the spectra in Figure 64. 

 

 

Figure 66 Absorption spectra of fluoride (10-40 ppm) and K2CO3 (0.25 M) at 625 nm. 

When potassium carbonate was added to the reaction mixture, it can be seen that there is 

no maximum absorbance as shown in Figure 66, possibly due to the carbonate (CO3
2-

) 

anions reacting with the alizarin solution. Hence no proportionality between absorbance 

and fluoride concentration was observed. The method could not be used further for this 
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research since most of the detection of fluoride will be in the presence of carbonate 

anions as the eluting agent; as reported in Section 1.8. 

3.2.3 Ion exchange chromatography (IEC) 

Ion Chromatography (IC) is one of the most common detection methods for the 

determination of anions in solution. A series of standard solutions, with [
19

F]fluoride 

concentration between 1 and 40 ppm was injected via an injection loop of the 

instrument, and the area in µs min
-1

 was obtained. Subsequently a calibration graph was 

plotted from which unknown concentrations could be determined. 

Table 19 Values of Area/µs min
-1

 vs concentration of fluoride/ppm. 

Concentration/ 

ppm 

Area /µs min
-

1
(mean n=3) 

1 3.703 

10 7.892 

20 19.149 

30 26.244 

40 32.762 

50 40.375 

 

 

Figure 67 Chromatogram of a 30 ppm [
19

F]fluoride standard showing the retention time for 

[
19

F]fluoride at 2.893 minutes. 
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Figure 68 Calibration graph of area µs min
-1

 vs series of concentrations of fluoride in the range 1-50 

ppm. 

As shown in Figure 68 there is a good linearity with an R
2
= 0.992, so for this reason a 

further investigation to determine the limit of detection was carried out, and the results 

are shown in Figure 69. For further calculation the slope of the graph in Figure 68 was 

used for subsequent studies. A series of standard solutions of fluoride were prepared in 

the range between 1 ppm to 10 ppb. The average of a series of repeated concentrations 

was plotted and the limit of detection calculated using the formula: (equation 9) 

(Limit of detection = (3 x standard errors)/gradient)    Equation 9 

Table 20 Average area/ µs min
-1

 with errors of different concentration of fluoride. 

Concentration / ppm Area1/µs 

min
-1

 

Area2/ 

µs min
-1

 

Area3/µs 

min
-1

 

Mean STD 

0.5 3.079 2.996 3.255 3.11 0.1322 

0.1 1.517 1.456 1.689 1.554 0.1208 

0.01 0.265 0.298 0.369 0.310667 0.0531 
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Figure 69 Determination of the LOD for [
19

F]fluoride using ion chromatography. 

The average standard error was calculated to be 0.102 ppm which gives a limit of 

detection of 0.06 ppm (3.15 x 10
-6

 mol L
-1

). For the purpose of this research this was a 

good starting point for the detection of [
19

F]fluoride since it was very close to the 

concentration of fluoride ions in water after the cyclotron bombardment (6.25 x 10
-7

 

mol L
-1

) as explained previously in Section 1.10. 

The detection method was tested for interferences with carbonate anions. Three 

different experiments were carried out to investigate the minimum amount of carbonate 

that was possible to inject in the IC without affecting the resolution of the other anions 

in particular the fluoride anion. Three different solution were injected into the IC with 

the fluoride amount kept constant at 30 ppm (30 µg / mL
-1

), only the carbonate (K2CO3) 

concentration was varied, 0.1, 0.01 and 0.001 M.  
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Figure 70 Chromatogram showing the effect of the carbonate ions on the resolution of the analytes 

at 0.1 M K2CO3. 

 

Figure 71 Chromatogram showing the effect of the carbonate ions on the resolution of the peaks. 

With 0.01 M K2CO3 the fluoride peak is resolved, but the interference is still present for further 

detection of other ions. 
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Figure 72 Chromatogram showing the effect of the carbonate ions on the resolution of the peaks. 

With 0.001 M K2CO3 fluoride peak and other peaks present in water fully resolved without 

interference of carbonate. 

As can be seen from the chromatogram in Figure 70, in the presence of carbonate anions 

at high concentration (0.1 M) the fluoride peak cannot be resolved. When lower 

concentrations of carbonate were tested (0.01 M) it was possible to observe the fluoride 

peak as shown in Figure. 71, but the area and the height of the fluoride peak was not the 

same as the area observed when the same concentration of fluoride was run without 

carbonate; (Figure 67). Only when the carbonate concentration was lowered to 0.001 M 

the fluoride peak and the other anions were fully resolved. The experiment showed that 

IC could be used as a detection method for fluoride in the presence of carbonate anions 

without use of any buffer. Therefore this detection method seemed to be best suited in 

terms of the detection limit and volume required for analysis particularly when 

compared to the fluoride electrode. 
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In summary a suitable detection method for fluoride ions in solution at low 

concentration and in the microliter range volume was investigated. Three commonly 

used methods were compared; a colourimetric assay, an anion selective electrode and 

ion exchange chromatography. The first one proved not to be suitable for our purpose 

due to the volume required for the measurement (1 mL) and the interferences of other 

anions with the measurement. The second technique featured improved sensitivity (0.20 

-1 ppm) and the time for the measurement but still the volume required was considered 

high for the purpose described herein (200 µL). Ion exchange chromatography proved 

capable to detect fluoride as low as 0.001-1 ppm in a reasonable time same as electrode 

(5 min) with low sample volume required (>25 µL). Table 21 compares the three 

different detection methods in terms of their sensitivity, volume, interferences and time 

required for test. 

Table 21 Summary of the detections method. 

Detection Sensitivity Volume Interferences Time / min 

Colourimetric 1 ppm 1 mL CO3
2- 

 9  

ISE 1ppm 200 µL pH  5  

IEC 0.01 ppm 25 µL High 

concentration 

salt (CO3
2-

) 

 5  

3.3 Initial test of [19F]fluoride trapping off-chip 

Prior to performing on-chip experiments, three different commercially available 

disposable cartridges were employed to ensure that fluoride could be quantitatively 

trapped and eluted. For these experiments, different resin forms were employed as 

described in 2.1.2, featuring chloride, bicarbonate and hydroxide as their counter ions. 

Detection of fluoride was achieved with Ion Exchange Chromatography (IEC), 

[
19

F]fluoride was measured after collection at the outlet of the cartridge and after elution 
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with K2CO3. The first experiments were carried out to determine the minimum amount 

of K2CO3 where no interferences from the CO3
2-

 with the fluoride peak were observed; 

as previously described this was found to be 0.001 M (mol L
-1

). This amount was found 

to be sufficient to release 1 µg of [
19

F]fluoride from the resin. A comparison of the three 

cartridges illustrated the bicarbonate form as being the most suitable resin for further 

experimentation. The hydroxide resin could not quantitatively trap and recover the 

fluoride as shown in Figure 73. Only 80% of fluoride could be trapped over a series of 

four regeneration steps. The chloride resin gave >90 % trapping efficiency over the four 

runs, but a significant amount of chloride ions were detected over the course of the 

experiments even after excessive washing of the resin with NaHCO3. Chloride has been 

reported to compete in the FDG synthesis step by forming 2-chloro-2deoxy-glucose 

(CIDG) hence affecting the final FDG yield [82]. For this reason, the bicarbonate resin 

was chosen for all future experiments. 

 

 

Figure 73 Graph comparing three different resin forms (hydroxide, chloride and bicarbonate) and 

their efficiency over a series of four runs. 
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3.4 [19F]Fluoride elution off-chip on QMA cartridge 

This part of the work was carried out in collaboration with Dr. Victoria Hammond at the 

Chemistry Department, the University of Hull. During her research she investigated the 

on-chip fluorination of propylditosylate and mannose triflate using first a KF mixture, 

containing K2.2.2 : K2CO3 : KF (1.5 : 1.5 : 1) and consequently she assessed the 

activated [
19

F]fluoride solution obtained by the conventional trapping elution method as 

described in Section 2.1. Due to the higher concentrations needed in cold chemistry for 

detection purposes (HPLC-UV or HPLC with electrochemical detection) it was 

necessary to use the Sep-Pak QMA cartridges rather than the packed bed micro-reactors 

for the trapping of [
19

F]fluoride and its elution with K2.2.2 and potassium carbonate 

previously described in Section 2.5.3. When using the KF mixture a particulate 

formation was observed during the reaction, therefore the fluorination step was 

performed with the activated fluoride from the cartridge. 

The [
19

F]fluoride trapping and release were carried out as outlined in Section 2.5.3. The 

[
19

F]fluoride solution was then used in a directly comparable experiment to those 

performed above with the KF mixture, and no fluorination of the expected compound 

was observed. The [
19

F]fluoride production was repeated a number of times (using 

freshly made solutions) and at no point was any fluorination observed. It was believed 

that there may not have been enough carbonate in the [
19

F]fluoride solution to promote 

the fluorination and to render the solution basic enough compared to the micro-reactor, 

as previous experiments have shown that some carbonate is required for efficient  

fluorination. The amount of carbonate was increased (up to 50 equivalents), however no 

fluorination was observed in the micro-reactor.  

At this point it was speculated that there was a problem with the [
19

F]fluoride 

production. This was confirmed by testing the [
19

F]fluoride solutions by IC; it was 
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found that the [
19

F]fluoride was being trapped on the cartridge but not being eluted in 

the K2.2.2 and carbonate solution. It is believed that this was a concentration effect, 

even though the method had been scaled up accordingly. It was thought that the most 

likely problem was the amount of water in the elution solution may not be enough to 

dissolve all the carbonate which is needed to replace the [
19

F]fluoride on the cartridge. It 

is known that when the elution solution uses 100% water as the solvent, all the fluoride 

is eluted off the cartridge, but at the 8% water and 92% acetonitrile currently used 

resulted in no fluoride being eluted. The amount of water was doubled, and still no 

fluorination was observed. A study was then carried out to determine at which 

percentage of acetonitrile (required for the reaction) in the elution solution the fluoride 

stopped eluting from the cartridge. The results can be seen in Figure 74, showing that 

when the acetonitrile percentage rose above 60% the fluoride was no longer fully eluted 

from the cartridge the test was repeated twice in two different experimental days (n=1 

each day) . Any drop in the concentration of fluoride in the final solution would have a 

direct effect on the amount of fluorination that would occur in the micro-reactor, 

meaning it is important to elute as much of the fluoride as possible from the cartridge  

 

 

Figure 74 Percentage of fluoride eluted in respect to the acetonitrile content from 0-85%. 
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An experiment was then conducted to determine whether it was possible to use the 

elution solution (60% acetonitrile, 40% water) directly in the micro-reactor to perform 

the fluorination of the tosylate compounds system set-up used by Dr Victoria Hammond 

is shown in Figure 75. The experiment was done using a residence time of 30 s in the 

micro-reactor, over a temperature range of 60 to 180 °C. There was no fluorination 

observed in any of the samples, and it was also noticed that particles were forming in 

the channels of the micro-reactor. This shows that the elution solution was not suitable 

for direct use in the fluorination reaction and needed to undergo solvent exchange in a 

module between the fluoride production and fluorination reaction module. It should be 

noted that the particles forming could have been due to reactant insolubility in water and 

there may have been too much water present for it to remain in solution. 

 

 

Figure 75 (left) Labtrix ® start system from Chemtrix BV. Temperature range -15ºC to 190 ºC for 

experiments. Pressure set to 15 bar. Also shown the microreactor (supplied with the instrument) in 

a holder that can be placed over the heated element. The tubing goes directly into the holder where 

it connected to the microreactor by `O` rings (made from Perlast®) so no leakage can occur. 

Courtesy of Victoria Hammond. 

3.5 On-chip [19F]fluoride trapping, elution and regeneration 

Optimisation of fluoride detection: The first step involved the calibration of the ion 

exchange chromatography instrument for fluoride detection in the lowest ppm region, 

which was sufficient for the amount of fluoride to be detected. It was found that 

carbonate, which was the eluent used for releasing the fluoride from the on-chip solid 
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phase packing at a concentration of 0.36 M, interfered with the fluoride peak. After the 

first trapping, another peak overlapping with the fluoride was observed and was found 

to be acetate which has a retention time close to that of fluoride, as shown in Figure 76 

(top and middle). These species were probably formed via a reaction between KHCO3 

and acetic acid (present in the polymeric particle packing) during the regeneration step. 

For this reason, the height of the peak was used to determine the amount of fluoride 

trapped, rather than the area under the peak.  

Initial tests on anion-exchange particle beds: Both silica (Sep-Pak Light Plus QMA) and 

polystyrene (PS) (Chromabond PS-HCO3) particles were tested initially to compare 

their performance for the trapping and subsequent release of fluoride. In each case a 

microfluidic chamber was filled with particles as described in Section 2.1 and the 

fluoride standard (1µg mL
-1

) was trapped and subsequently eluted, with no difference in 

performance observed between the two types of anion-exchange particles. However 

during the regeneration steps a significant chloride peak was detected in the eluate from 

the silica-based ion exchange material. This material was originally in the chloride form 

but was rinsed with 2 mL of 1 M KHCO3 solution prior to its use in our experiment as 

previously discussed. The presence of chloride can interfere with the following 

radiofluorination reaction by forming undesired chlorinated by-products, affecting the 

synthesis of FDG [82]. Moreover, the silica particles were found to be difficult to 

remove from the device while the polystyrene particles (PS) could be easily removed by 

treating the chip in a furnace at 500 °C for several hours. For these reasons, the 

Chromabond PS-HCO3 particles in the carbonate form were selected over silica in the 

chloride form for subsequent investigations. 
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Trapping and elution efficiency: The PS particle chip was then tested for the trapping 

and elution of fluoride. 1 µg mL
-1

 fluoride standard was pumped through the chip 

containing the PS particles in the bicarbonate form at a maximum flow of 1500 µL  

min
-1

. Each collected aliquot was analysed for the presence of fluoride. The peak height 

of fluoride was normalised against the peak height of fluoride present in purified water 

and then converted to a percentage to give the amount of trapped fluoride. The fluoride 

was eluted with a 1 mL solution containing 10 mg K2.2.2 in 900 µL acetonitrile and 

100 µL K2CO3 (0.01 M) pumped at 250 µL min
-1

 through the chip. The eluted solution 

was dried and reconstituted with 1 mL water, as acetonitrile is not a suitable solvent for 

ion chromatography, prior to being analysed for the presence of fluoride. This 

experiment was repeated up to 40 times, and it was found that the [
19

F]fluoride could be 

trapped and released in all cases with more than 90 % efficiency.  

 

Figure 76 Chromatograms obtained for the trapping and elution of non-radioactive [
19

F]fluoride 

ions, showing 1µg mL
-1

 fluoride before trapping (bottom), the diminished fluoride peak of waste 

solution collected during trapping (middle) and the full fluoride peak following elution (top). 

3.5.1 Resin breakthrough for [19F]fluoride  

The full capacity of the particle packing with respect to the [
19

F]fluoride ion  was 

investigated by the determination of the breakthrough capacity. 1 mL aliquots of 



   Chapter 3     bjbk 

130 

 

fluoride solutions (1 µg mL
-1

) were consecutively introduced into the chip, at a flow rate 

of 500 µL min
-1

, until fluoride was detected at the outlet; the percentage of fluoride 

trapped versus the mass of fluoride introduced is shown in Figure 79. The amount of 

fluoride trapped was about 90 % over the first ten injections, before gradually 

decreasing down to 40 %, as expected due to the reduced number of binding sites 

present in the particle bed. The trapping capacity determined by breakthrough analysis 

specific for [
19

F]fluoride ion was found to be 11 ± 4 µg of per 20 ± 5 mg of dry particles 

which is equal to 0.55 µg g
-1

 of particles (0.028 meq g
-1

). This was found to be 28 times 

less than the maximum loading capacity provided by the manufacturer (0.80 milli-

equivalents g
-1

) to be noted that the manufactures protocols uses different binding 

molecules and detection method [175]. 

 

 

Figure 77 Breakthrough plot of the anion-exchange chip showing the trapping efficiency versus the 

amount of [
19

F]fluoride ions introduced into the chip. As the mass of fluoride was increased, the 

trapping efficiency decayed linearly as the number of trapping sites on the particles decreased. The 

maximum capacity of the anion exchange particles (Chromabond PS-HCO3) before loss of 

efficiency was determined to be 0.55 µg mg
-1

. 
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3.5.2 [19F]Fluoride trapping and regeneration at maximum flow rate 

The reusability of the resin bed was accomplished by regenerating the particles at the 

end of each trapping and elution by pumping 2 mL of NaHCO3 (1.0 M) at flow rate of 1 

mL min
-1

 and subsequently washing extensively (3-5 mL) with purified water at the 

same flow rate. This would replace the original counter ion present on the resin by 

washing out all the other anions bound to the particles. A total of 40 runs were 

performed on the same resin bed, and no significant decrease in trapping of fluoride was 

observed (>90 % trapping efficiencies in all the runs). After establishing the reusability 

of the chip we investigated the maximum flow rate at which the fluoride could be 

quantitatively trapped. In this experiment the same chip was employed, and the 

detection of fluoride (%) towards different flow rate was plotted the results Figure 80 

show significant decrease in trapping efficiency (< 80 %) at a flow rate 1850 µL min
-1

 

and above. The same chip was used repeatedly for these experiments to confirm that the 

decrease in efficiency was due to the high flow rate rather than the decrease in capacity 

of the resin, to prove this, after the 2000 µL min
-1

 runs a standard fluoride of 1 ppm was 

introduced with flow rate of 700 µL min
-1

 and this resulted in trapping efficiency of 93 

%. 
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Figure 78 Graph showing the efficiency of the fluoride trapping onchip (%) vs flow rate µL min
-1

 

showing a decrease in efficiency of about 15-20 % after flow rate of 1800 µL min
-1

. 

3.5.3 Pressure study on-chip 

As part of a modular system which at the end will constitute an integrated platform for 

the synthesis of radiotracers together with four other modules, pressure testing was 

performed on the chip to ascertain a suitable pressure which the chip could withstand. A 

pressure gauge was employed to measure the back pressure resulting from the packed 

bed (typical set-up described in Section 1.6.1) and was found that the device did not 

leak or cracked at a maximum pressure of 12 Bar (188 psi) in Figure 81 a graph 

showing the relation between the pressure and the flow rate is plotted. 
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Figure 79 Calibration graph of the flow rate µL min
-1

 vs pressure / bar. 

3.5.4  [19F]Fluoride trapping and elution efficiency on-chip 

Next the on-chip elution was investigated, 1 µg of fluoride was trapped on chip at a 

flow rate of 500 µL min
-1

 then the elution solution consisting of 1 mL (900 µl aqueous 

K2CO3 (5%) + 100 µL MeCN (10 mg K2.2.2)) was pumped. 50 µl aliquots were 

collected at different flow rates ranging from 10 to 200 µl min
-1

 and analysed for 

presence of fluoride. The area of the peak was used for quantification and calculated 

with respect to the reference peak area of the starting fluoride solution a graph of the 

results is shown in Figure 80 (n=1). Since it was not possible to exactly match the area 

of the starting fluoride against the sum of the areas of the different aliquots, to make 

sure that the fluoride was completely eluted the experiment was performed until no 

fluoride was measured in the eluent, this value was found constant between the different 

flow rates to be a volume of 250 µl; as shown in Figure 83 no fluoride was measured 

within the 300 µl aliquot. Furthermore, no linear trend or correlation was observed 
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between flow rates and percentage of trapped fluoride eluted, however it can be seen 

that at a higher flow rate fluoride is eluted quickly. 

 

 

Figure 80 Elution of trapped fluoride from PS-HCO3 particles at different flow rates.  In all cases, 

100 % of fluoride was eluted in the first 250 µL collected from the chip, with higher flow rates 

typically affording faster elution times of the total fluoride. 

3.6 On-chip [18F]fluoride trapping and release 

Conditioning and regeneration of the integrated anion-exchange chip: After experiments 

carried out on the trapping procedure with non-radioactive fluoride, the method was 

tested for radioactive [
18

F]fluoride ion as outlined in the experimental section 2.6. The 

possibility of trapping and releasing several aliquots of aqueous [
18

F]fluoride ion was 

investigated. The first aspect to be considered was the set-up of a suitable procedure for 

pre-conditioning of the anion-exchange particle bed. Since the chosen polymer was 

polystyrene based, at the beginning of each experimental day 2 mL of 96% ethanol 

(EtOH) solution was flushed through the chip in order to fully wet the particle bed. 

However, before re-conditioning the counter anion with NaHCO3, an additional rinse of 

the chip with 2 mL of pure water was required, since it was found that passing 
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bicarbonate solution immediately after EtOH caused copious salt precipitation in the 

hardware. After this first EtOH/H2O pre-conditioning step, the system was ready for 

bicarbonate re-conditioning. This was performed by flushing the chip with 2 mL 

NaHCO3 (1M), followed 2 mL H2O and no further EtOH preconditioning cycles were 

required during the same experimental day. The trapping of [
18

F]fluoride ions was 

conducted using 0.5 mL portions withdrawn from a batch of irradiated water, with total 

starting radioactivity ranging from 5 to 7 GBq, and whose volume was adjusted to 4 mL 

with pure water. This process was chosen for conducting as many experiments as 

possible with one batch of irradiated water.  

3.6.1 [18F]Fluoride trapping in the integrated chip 

 [
18

F]fluoride ion trapping in the integrated chip: Radioactivity, as indicated earlier, was 

monitored in three key positions of the hardware; the microfluidic chamber, waste vial 

and collection vial. As shown in Figure 81, complete trapping of the radioactivity was 

always observed in the chip, and during the delivery of [
18

F]fluoride ion into the chip 

there was no radioactivity detected in the waste vial (Figure 81, red line/solid line). 

Experiments were also conducted by trapping the whole 4 mL of target water in order to 

determine whether volume or fluoride mass was detrimental for trapping, whereupon it 

was found that the performance of the chip remained excellent, and there was no escape 

of radioactivity. In this trapping step, as well as in the elution step, it was important to 

dry the system void volume by using 1 mL of air. We also tested flow rates from 50 to 

500 µL min
-1

 to investigate any flow related effects and found that the total radioactivity 

was always trapped on the particles, independent of the applied flow rate. 
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3.6.2 [18F]Fluoride elution in the integrated chip 

[
18

F]fluoride ion elution in the integrated chip: 0.5 mL of K2.2.2 in acetonitrile solution 

containing 5 % K2CO3 (0.36 M) was used for elution of the fluoride complex from the 

anion-exchange particle bed. This volume was sufficient for eluting more than 95 % of 

the radioactive fluoride trapped on the particles. As a matter of fact, by monitoring the 

signal from the radioactivity detector placed on the chip, we noticed that the first 200-

250 µL of eluent already removed all of the radioactivity from the particle bed; the rest 

of the volume and the air served for emptying the tubing up to the collecting vial and 

drying the system. Also in this case, we tested various flow rates from 50 to 500 µL 

min
-1

 and found no decrease in the performance of the elution step. Hence, the 

maximum flow rate was adopted as the optimal working condition, in order to perform 

the fastest possible processing times. 

After elution, 0.5 mL of H2O was used to rinse the system and prepare it for the re-

conditioning cycle, and also to avoid the previously described precipitation problems 

encountered when using concentrated bicarbonate solution. During this stage, a small 

decrease in radioactivity counts was observed in the chip; this was justified by the 

elution of fluoride residuals from the anion-exchange particles. This remaining 

radioactivity was completely recovered in the waste vial during the NaHCO3/H2O 

reconditioning phase, as illustrated in Figure 81. The waste vial counting revealed that 

the amount of [
18

F]fluoride ions that could not be recovered as elution complex with 

this procedure was < 5 % of the total radioactivity. No radioactivity was detected in the 

particle bed at the end of the whole cycle, the on-chip detector always returned to 

background reading. The same chip was used for performing a total of 20 trap and 

release cycles over three experimental days, and the performance of the system was 
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always consistent in recovering >95% of the total radioactivity in the acetonitrile/K2.2.2 

elution phase.  

 

Figure 81 Seven consecutive runs of the trapping and elution of radioactive [
18

F]fluoride ions. 

Counts per second (c.p.s) was measured by three independent radioactivity detectors: on the chip 

(blue / dashed line), in the collection vessel after elution (green/ dotted line), and in the waste vessel 

(red / solid line). 

3.7 [18F]Fluoride labeling reaction 

Labeling reaction: To demonstrate the reactivity of the [
18

F]fluoride ion solution 

produced via this process, its efficiency for labeling was tested in a model aliphatic 

substitution reaction frequently used in our laboratory, namely the fluorine substitution 

of the tosylate group of ethyl ditosylate (EtDT). The concentrated [
18

F]fluoride solution 

eluted from the chip was collected and excess water was removed by azeotropic 

distillation as described in Section 2.4. The dried, activated labeling solution was used 

to perform sequential on-capillary reactions with EtDT precursor solution using a 

commercial Advion “NanoTek” microfluidic module. Briefly, the reactants were 

charged into small-bore PEEK loops of adequate volume and delivered, by pushing pure 
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solvent on the opposite head of the loops into the 2 m long micro capillary (100 µm i.d.) 

housed in a heater (Figure 82(a)). After each run, the system was cleaned with pure 

solvent (the sweep step, (Figure 83 (b)), and a further run performed in a similar 

manner. A sample from each consecutive run was analysed by Radio-HPLC and an 

average incorporation yield of 96 % (Figure 82 top) demonstrated very good chemical 

reactivity and high process stability over repeated runs. 

 

Figure 82 Typical Radio-HPLC profile for the labeling of ethyl ditosylate (EtDT) to yield 

[
18

F]fluoroethyltosylate. The top trace represents the radioactivity , and it shows the percentage of 

unreacted fluoride against the percentage of product formed, while the bottom trace represents the 

UV absorbance at 254 nm showing the unreacted EtDT peak (Rt = 7.3min). 
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Figure 83 Schematic representation of the EtDT labeling reaction process within the Advion 

automated system after drying of excess of water has been performed. The precursor solution was 

pumped into the loop of pump 1 (P1) while the labeling solution was introduced into the sample 

loop of pump 3 (P3). (a) In the reaction step, fluoride complex and precursor solution aliquots were 

delivered into the capillary microreactor (MR) preheated at a temperature 150 °C from the storage 

loops by pushing with pure solvent (acetonitrile); in this phase the fluids moved through the lines 

indicated in bold. (b) In the sweep step, the microreactor system was rinsed with pure solvent 

through the lines indicated in bold and prepared for a further reaction with other aliquots of 

reagents. 

3.7.1 Particle stability 

After successfully demonstrating the reusability and the efficiency of the packed micro-

chamber module with both non-radioactive and radioactive fluoride it was decided to 

see if in any way the particles were affected by the radioactivity or from the 

regeneration steps. A series of SEM pictures of the particles before and after treatment 

with both radioactive and non radioactive fluoride were taken as shown in Figure 84, (a) 

SEM pictures of the resin before any treatment showing the monodispersity of PS-DVB 

beads, (b) SEM picture after a series of trapping of [
19

F]fluoride treatments which 

shows a slight formation of crystals possibly due to the salt washing (NaHCO3) and (c) 

SEM picture of resin after a series of radioactive treatments showing a significant 

crystal formation identified as Na crystals by elemental analysis, due to a non 

extensively washing with water after the regeneration step. 
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Figure 84 (a) SEM picture of PS-DVB particles. (b) SEM picture of PS-DVB particles after several 

treatment with [
19

F]fluoride. (c) SEM picture of PS-DVB particles after a series of treatment with 

18 F fluoride, showing some crystal formation which was identified to be Na by elemental analysis 

due to non sufficient washing after the conditioning and regeneration steps. 

3.8 Summary 

Both radioactive [
18

F] and non-radioactive [
19

F]fluoride ions could be repeatedly 

recovered by employing a chip containing a smaller amount of anion exchange particles 

than conventional cartridges. The entire process required less than 6 min and had a 

trapping efficiency >90%, while the particles could be repeatedly regenerated and 

reused up to 40 times via a multicycle approach, without loss of performance. The 

radioactive solution resulting from this innovative process was highly reactive and 

could be employed in the radiofluorination of EtDT. On this basis, the chip could easily 

be integrated into automated systems to provide highly reactive fluoride complexes for 

the production of fluorinated PET radiotracers in high yields. The ability to regenerate 

the anion-exchange chip would also allow many batches of radiopharmaceuticals to be 
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synthesized without requiring continuous manual interaction of personnel within the 

shielded synthesiser. 
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4 On-chip preconcentration of [18/19F]fluoride via magnetic 

batch approach 

In this chapter, proof-of-principle experiments are described in which plugs of 

positively charged superparamagnetic particles were formed inside a parallel channel 

glass device. Both [
18/19

F]fluoride was trapped on the particles and subsequently eluted  

This initial study has been published in the proceedings of the MicroTAS 2010 

conference [176]. 

4.1 Introduction 

Microparticles are most commonly used as packing materials in microfluidic devices, 

acting as a high surface area solid-support for reactions. Magnetic particles can be 

formed into plugs of particles using simple magnetic set-ups, and this has already been 

demonstrated for many analytical applications [59, 64]. So far, to our knowledge, 

nothing has been reported for such a method for pre-concentration of [
18/19

F]fluoride 

used for radiotracer synthesis that involves the use of magnetic forces. Here, we 

investigate this method. The schematic shown in Figure 85 describes the concept the 

loading of the magnetic particles which, under the influence of the magnetic forces, 

form a plug. Pumping of the fluoride ions in aqueous solution results in trapping via 

exchange reaction onto the magnetic particles and finally, elution can be performed via 

a high ionic strength salt (K2CO3). 
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Figure 85 Schematic of the magnetic capture approach. Using an external magnet; fluoride can be 

trapped and subsequently eluted from the particle bed. 

4.2 Off-chip test for [19F]fluoride trapping and elution 

A series of off-chip tests were performed to ensure and quantify the trapping efficiency 

of the magnetic particles for fluoride. The main objective was to determine the number 

of particles needed to trap 1 µg of fluoride. From preliminary results using non 

magnetic particles (Chapter 3) it was known that trapping of fluoride was achieved via 

strong anion exchanger solid support, hence two different commercially available types 

of magnetic particles were employed as described in Section 2.1.3. Firstly the 

manufacturer’s protocols were followed together with the method employed in Chapter 

3 for the on-chip pre-concentration via packed bed. However it was not possible to 

measure any trapping of cold fluoride even with very high number of particles mL
-1

. 

Even at 1 x 10
10 

particles mL
-1

, no significant trapping efficiency could be measured in 

the ion exchange chromatography. A deviation from the manufacturer’s protocol was 

then tested in which the magnetic particles suspension was firstly washed with high 

concentration of HCl in a way that the particles counter ions (in the case of Invitrogen 

SAX and Chemicell SiMAG-Q Chloride counter ion Cl
-
) could be always be present in 

excess. By using 0.1 M of HCl during the last washing step of the stock preparation it 

was possible to observe and measure, trapping of fluoride. The number of particles 

needed to trap 1 µg of fluoride was found to be 1 x 10
7
 particles mL

-1
 of Chemicell 

SiMAG-Q particles. 
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In Figure 86 the set-up for the off-chip experiment shows the magnet one on side and 

the particles attracted to it, and subsequently the supernatant solution is analysed via IC 

for presence of fluoride. 

 

Figure 86 Photo of the off-chip set-up used to determine trapping and elution efficiency of fluoride, 

in this image is shown an Eppendorf tube with the box magnet placed on the side to allow the 

magnetic particles to be trapped on one side so that the supernatant can be analysed for presence of 

fluoride, Particles used in this image are Chemicell SiMAG-Q.  

4.3 Optimisation of chip design  

In parallel to studying the trapping efficiency of the magnetic particles, the formation of 

a magnetic plug in a capillary was investigated; the set-up is shown in Figure 89 and 

described in Section 2.7.1. Using a solution of 1 x 10 
4
 particles mL

-1
, particles were 

successfully trapped within the two magnets. Magnetic plugs were formed in the 

capillary according to the method described in Section 2.1.5, with different flow rates 

investigated. The maximum was found to be 60-120 µL hr
-1 

(1-2.5 mm s
-1

); photographs 

of the plug formed can be seen in Figure 87. 
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Figure 87 Single on capillary formation of plug at 120 µL h
-1

.
 
  

However from the off-chip experiments it was known that the number of particles to 

trap 1 µg of fluoride was not sufficient. So a design with several parallel channels was 

fabricated, first a design consisting of 16 and 32 parallel channels as shown in Figure 

38. The design with 32 parallel channels was tested, 1 x 10
8
 particles were pumped 

through the chip at a flow rate of 350 µL h
-1

 but this caused blocking and clogging of 

the device at several points. Finally a device with 128 parallel channels was used 

(PC128 section 2.2.1). Some sticking of the magnetic particles on the glass surface was 

observed possibly due to the negatively charged silanol groups interacting with the 

positively charged functional groups of the magnetic particles. However, formation of 

plugs on the channels was achieved by placing three box magnets on top of the device. 

Several flow rates were investigated to determine the maximum flow for the formation 

of plug with minimum particles escaping. This was found to be 900 µL h
-1

. At this 

particular flow, most of the particles were trapped on chip, the exact number of particles 

was not possible to determine however as shown in Figure 88 the middle vial represent 

the solution collected at the outlet of the device during the trapping experiment and 

clearly can be seen the clear solution collected with a minimum amount of particles 

demonstrating successful trapping and plugs formation. 
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Figure 88 Magnetic particles suspensions (left) before introducing in chip as very dense 

concentrated solution, (middle) solution collected at the outlet of the 128 paralle channels showing 

the most of the particles have formed magnetic plugs, (right) residual particles at the end of the 

experiment found at the bottom of the syringe. 

 

Figure 89 (top) Set-up of the magnet pairs to form plug, magnet held in place) by a clamp and 

placed on top and bottom of the glass device (at distance of 2 mm from the glass device for 

magnetic field improvement. (bottom) Image of the 16 parallel channels glass device. 
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Figure 90 CAD image of the 128 parallel channels on the left and the formation of plug image 

downstream the magnet. Showing the position of the three magnets, which were always in the top 

middle of the glass device. 

As shown in Figure 90 plugs were successfully formed on chip, even though not in all 

the channels was possible to observe a uniform and constant plug formation. A FEMM 

simulation was performed to model the magnetic field gradient across the parallel 

channels and as shown in Figure. 92. Interestingly was found that plugs formation was 

more readily formed at the edges of the series of magnets where the magnetic field 

gradient is stronger, and leaving some of the central channels with no plug formation as 

shown in Figure 91 (bottom area). 

 

Figure 91 image of the plug formation on chip showing some of inner channels where no plug was 

formed possibly due to the weaker magnetic field gradient suggested using the FEMM simulation. 

In Figure 92 two-dimensional simulation of the magnet flux density, B, over the 128 

parallel channels glass device, as observed from a side-on view. FEMM software was 

used to generate the model. As shown in the simulation, the magnetic field is stronger at 
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the edges of the magnets and weaker in the middle magnet, possibly this explain why 

fewer particles were trapped between the border of the magnets as shown in Figure 90 

between the south pole of one magnet and the north pole of the next magnet less 

particles plug formation is observed. 

  

Figure 92 FEMM simulation of the magnetic flux density of 3 magnets facing opposite poles (10 x 

10 x 5 mm
3
 NdFeB magnets across the microfluidic chamber from a side-on cross-sectional view. 

4.4 [19F]Fluoride trapping and elution on-chip 

After investigating the plug formation we performed an experiment where after forming 

a plug with 1 x 10
7
 particles mL

-1
 at 900 µL h

-1
 (Figure 93) a solution of standard 

fluoride 1 µg mL
-1

 to was pumped to perform the trapping step. Initially the solution 

was pumped at low flow rate of 300 µL h
-1

 and by carefully observing under the 

microscope if any of the plugs were disrupted gradually it was increased up to 700 µL  

h
-1

 where some deformation of the plugs was observed so it was decided to pump all the 

remaining solution using this flow rate. 
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Figure 93 Photographs of magnetic particle plugs formed on chip (a) upstream from the magnet, (c) 

downstream from the magnets, (b) image of the 128 parallel channels device filled with red ink for 

visualization and showing the position and orientation of the NdFeB magnets. 

Subsequently the solution was collected at the outlet and analysed using IEC for 

presence of fluoride. In this case we used the area of the fluoride peak and was found 

that 0.5 µg of fluoride was trapped on the magnetic beads. A significant amount of 

chloride was observed during the analysis, but there was no interference with the 

fluoride peak. In Figure 94 a series of four chromatograms representing the fluoride 

peak in the water background (d), the peak of the fluoride standard (e), the trapping of 

fluoride after passing through the magnetic plugs and finally the release of the fluoride 

with K2CO3 (0.001M) are illustrated. Subsequently, a third step for the release of the 

fluoride was performed, in this case 1 mL of solution of K2CO3 (0.001M) was pumped 

at a flow rate of 500 µL h
-1

 and the solution collected at the outlet was analysed with 

IEC, and as a result 70 % (3.5 µg) of the trapped fluoride was successfully released. 
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Figure 94 (a) Chromatogram of water (background signal), showing the presence of fluoride at 

very low concentration, (b) chromatogram of 1 µg mL
-1

 fluoride solution (reference standard). (c) 

Chromatogram after passing fluoride solution through the magnetic particles plugs, showing a 

small fluoride peak and a large chloride peak (the counter-ion on the resin) (d) Chromatogram of 

eluted fluoride solution featuring the fluoride peak and indicating that 70 % (3.5µg)  of fluoride 

had been released. 

With the proof of principle demonstrating that indeed cold fluoride could be trapped and 

eluted on chip via a formation of magnetic particles plugs, the set-up and experiments 

were transferred on the radioactive trapping and elution of fluoride. 

4.5 [18F]Fluoride trapping off-chip 

This work was carried out in collaboration with Dr Giancarlo Pascali in the radioactive 

facilities of the Institute of Clinical Physiology of National Research Council (IFC-

CNR) in Pisa (Italy). In order to corroborate the experiments carried out in Hull with 

non radioactive fluoride. First off-chip tests were repeated in the same way as described 

in Section 2.7.1. 
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Figure 95(top) set-up of the on-chip trapping and elution of [
18

F]fluoride via plug formation of 

magnetic particles, showing a syringe pump, glass syringe and glass device, through a glass window 

for radioactivity shielding. (bottom) image of the glass device at the end of the experiment showing 

the brownish color given by the particles on the left and the clear side after the magnet on the right. 

100 µL of Chemicell particles (1 x 10 
9
 particles mL

-1
) in 900 µL of solution of HCl in 

water (0.1M) was first prepared in the Eppendorf tube, vortexed for 30 s and the 

supernatant washed away, subsequently an activity of 63.4 mCi of [
18

F]fluoride was 

added to the Eppendorf  tube, with mixing by shaking for about 1 min. The magnet was 

then applied on the side, the supernatant washed away, and the activity was measured 

on the vial which now contained only particles without solution, it was measured as 8.4 

mCi n.d.c, (8.6 d.c.) the washed solution also was measured and found to be 50 mCi 

n.d.c (52.25 d.c.). This procedure was repeated for three times, but no significant 

trapping and elution of activity was measured, the total activity trapped at the end was 

only 3 % of the starting fluoride. It was known from the non radioactive test that off 

chip experiment was not giving great results for fluoride trapping; in the case of the 

radioactive test it may be that the incubation time was not enough for the exchange 

mechanism between F
- 
with Cl

-
. 
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4.6 [18F]Fluoride trapping and elution on-chip 

Despite the unsuccessful results with the off-chip radioactive fluoride the experiments 

was tested on-chip and the setup and procedure are described in Section 2.7.1. This time 

30 µl of Chemicell particles (1 x 10
7 

particles mL
-1

) were loaded in the glass syringe and 

the plug was formed at 20 µL min
-1

 as shown in Figure 95. 500 µL of [
18

F]fluoride with 

activity of 38.3 mCi was pumped through the chip at a flow rate of 15 µL min
-1

, at the 

end of the solution activity was measured first in the syringe and found to be 3.7 mCi as 

well as in the collection vial where was measured at 20.18 mCi which is equal to 45 % 

of radioactive fluoride successfully trapped on the plug. Subsequently a 100 µL solution 

of K2.2.2 + K2CO3 and MeCN was pumped at 10 µL min
-1

 for the elution steps, at the 

end of the solution, activity was measured in the vial, and only 50 % of the fluoride was 

eluted, this steps were repeated again with another 100 µL elution solution where finally 

another 40 % of fluoride was successfully eluted. 

5.0

693.0

0

T

t

eAA     Equation 10 

A0 = Initial Activity 

A = Activity 

T0.5 = half life of [
18

F]fluoride 109.7 min or 6586 s 

t = time elapsed since initial activity 

Since the activity at any given time was measured Equation 10 was rearranged in order 

to solve the initial Activity A0: 

5.0/693.00 Tt
e

A
A     Equation 11 

Activity of fluoride at the start of the experiments 38.3 mCi at time 0. 
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The amount of fluoride trapped was calculated by subtracting the amount of activity left 

in the empty syringe plus the activity at the outlet minus the starting fluoride activity, 

decay corrected using Equation 11. 

Table 22 Values of the trapping and elution activity during the on-chip experiments. 

 Initial 

activity 
Activity N0 Time / s Efficiency / % 

Glass syringe (A) 3.7 4.55 1980  

Collection vial (B) 13.18 16.23 1980  

Trapped activity D=(C-

(A+B)) 

 17.31 1980 45 

Fluoride elution 1 3.3 4.49 2940 25 

Fluoride elution 2 4 6.2 4200 35 

Fluoride elution 3 2.6 6.33 8460 35 

 

As reported in Table 22 the trapped activity was measured indirectly by difference. 

What has to be noted is first results of this experiment are based on the theoretical decay 

of the fluoride at different time points, especially within such a long experiment (elution 

step was after 141 minutes, 109.7 half life of fluoride) and is not considering any 

possibilities of fluoride sticking on the glass surface which is an issue already reported 

in literature [156]. The experiment was then repeated once more using the same settings 

with the difference being that between the trapping and the elution 200 µL of pure 

MeCN were pumped at 8 µL min
-1

 to actually prove if the fluoride was trapped onto the 

particles, or there was any sticking of fluoride in the tubing. Using this approach 35 % 
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trapping of fluoride and 60 % elution of fluoride, with another 30 % of the trapped 

fluoride being washed away by the MeCN was observed. 

4.7 Summary 

Investigations were performed into trapping and elution of [
18/19

F]fluoride via formation 

of magnetic plug inside a glass micro-device even though the method was not as fast or 

as efficient as the packed bed of micro-particles (Chapter 3). The proof of principle 

showed that an alternative process that uses magnetic forces can be adapted for future 

on-chip systems for pre-concentration of fluoride. However by employing positively 

charged magnetic particles, fluoride could be trapped and eluted; although the efficiency 

and the volume throughput were not as high as expected. Further optimisation of the 

set-up however could have potential for any future dose-on-demand applications [177]. 
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5 On-chip free-flow magnetophoresis: towards a continuous 

method for pre-concentration of [18/19F]fluoride 

The work described in this chapter concerns the determination of laminar flow and 

study of magnetic particle characteristics in a microfluidic device with the ultimate aim 

to develop a continuous method of [
18/19

F]fluoride pre-concentration. 

5.1 Introduction 

As described in Section 1.5, the principle of on-chip free-flow magnetophoresis was 

further developed such that continuous flow trapping and elution of [
18/19

F]fluoride be 

performed on mobile AE magnetic particles. Briefly, laminar flow is generated in the x-

direction across a wide chamber, as in the magnetophoresis device, but with the flow 

now consisting of alternating streams of reagents and buffer solutions (Figure 96). 

Functionalised magnetic particles are then introduced into the chamber and deflected 

sequentially through each of the streams, allowing consecutive reactions to take place 

on the particle surfaces. 

The principle of this method was a modification of a similar process currently under 

investigation in our Research group (Dr. Pamme, The University of Hull), three types of 

applications were investigated: (i) bioassays (by Sally Peyman)[178, 179],(ii) DNA 

hybridisation (by Martin Vojtisek) [180] and (iii) chemical reactions/depositions (by 

Mark D. Tarn) [181-183]. 

Here, a departure from the more bioanalytical assays was investigated, in which fluoride 

pre-concentration could be performed in continuous flow, possibly even combined with 

solvent exchange. One envisaged concept is shown in Figure 96, whereby magnetic 

particles with anion-exchange groups on their surface are deflected through a chamber 
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with several laminar reagent streams. The particles first pass through a fluoride-

containing stream where the fluoride binds to the particle surface. The particles are then 

dragged into a stream which would elute the fluoride, either an aqueous solution of 

carbonate or, alternatively, an acetonitrile based solution containing some carbonate. 

The fluoride on the particle surface will be replaced by the carbonate. The fluoride ions 

will leave the micro-chamber and can be guided to the synthesis step, whereas the 

magnetic particles are further deflected for separate collection. Whilst the previous 

applications were already performed (immunoassays, DNA hybridisation), the capture 

of anions and the pulling of particles through interfaces of different solvents, has not yet 

been studied. 

 

Figure 96 Continuous flow magnetic approach showing the principle of the multi laminar flow 

regime where AE particles are introduced into the reaction chamber and deflected via magnetic 

field (left). The green streams show the trapping while the red stream shows the elution of the 

fluoride. 

5.2 Multilaminar flow approach 

Before performing particle experiments in the multilaminar flow chips, the flow 

regimes were tested to confirm that they were laminar. Previous work by Peyman et 

al.[179] had already established that the diffusion between the laminar streams was not 

sufficient to cause cross-contamination between reagents; however the experiments and 

the set-up were repeated during the work herein, to gain confidence and practicality 

with such a precise and specific process. Figure 99 shows the laminar flow regime of 
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alternating streams of aqueous dye within two different chips designs. The figure clearly 

shows that laminar flow was obtained, with the coloured streams liquids flowing side-

by-side through the microfluidic chamber. During this part of the work the previously 

used hydrodynamic pump described in experimental section 2.3 was replaced by a 

pressure driven pump as described in Section 2.8.1 and shown in Figure 55, where 

instead of having the liquid pumped through the chip by controlling the flow rate, a 

difference in pressures between the inlets and the outlets of the device allows the liquid 

to flow in the y direction. It is due to this pressure drop between inlets and outlets that 

the particles and liquid within the microfluidic chamber can be manoeuvred. 

 

Figure 97 Laminar flow inside the chamber of two different chips design FDL1-FDL2, showing 

stable stream with minimal diffusion. 

Pressure drop  

As a liquid flows through a pipe or channel the pressure decreases from one end of the 

channel (the source of the pressure) to the other due to frictional forces, an effect known 

as the pressure drop. These frictional forces arise from a resistance to the flow exerted 

by a channel based on its dimensions and the viscosity η (N m s
-1

) of the fluid flowing 

through it [3]. The pressure drop within the device chamber during the experiments was 

achieved by controlling the pressure at the inlets and outlets using the MFCS fluigent 

pump as described in Section 2.8.1. However it can also be calculated theoretically by 

first determining the flow resistance Rϕ (Kg m
-4

 s
-1

) as shown in Equation 12:  
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2

2

wd

lfR
R e     Equation 12 

Where l = channel length (m), w = channel width (m), d = channel depth (m), fRe = the 

friction coefficient which is related to the shape of the microchannel (assumed to be 24 

for a microfluidic chamber). The hydrodynamic diameter, δ (in m), can be calculated for 

a rectangular cross-section using Equation 13:  

dw

wd2
    Equation 13 

The pressure drop, Δp (Pa), is then determined from the flow resistance, Rϕ, and the 

applied flow rate, ϕ (m
3 

s
-1

), using Equation 14. This can be also be likened to the 

calculation of the voltage, or potential difference (V), from the current (I) and resistance 

(R) in an electronic circuit according to Ohm’s law, (V = I R)  

Rp     Equation 14 

As in an electrical circuit, the flow resistance of multiple channels in a microfluidic chip 

may be treated like electrical resistors, and Kirchhoff’s laws can be applied to find the 

total flow resistance, Rϕ (tot), for the chip and its individual sections. When the 

channels in a microfluidic chip are in a serial arrangement (i.e. one channel follows 

another) the total flow resistance can be calculated using Equation 15, where R1, R2 etc. 

refer to resistance values for individual channels. 

iRRRRR .....321    Equation 15 

When the channels are in a parallel arrangement (i.e. when a single channel splits to 

give two parallel channels) in the case of the magnetophoresis chip the total resistance 

can be calculated by determining the value of 1/R(tot) from each of the parallel channels 

as shown in Equation 16, before taking the inverse of this number to give Rϕ(tot). 
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RiRRRR tot

1
...

1111

321

   Equation 16 

The velocity of the laminar flow profile depends on the distance x from the centre of the 

chamber with a depth, d, and the length l, of the chamber. It also depends on the 

pressure drop, Δp, over the chamber and the viscosity, η; of the pumped medium: 

2

2

24
x

d

L

p
v    Equation 17 

As an example, the theoretical flow velocity within the separation chamber was 

calculated for a pressure difference of 50 mbar in each of the 4 inlets of the glass device 

with 4 inlets 4 outlets with a depth of 20 um and a width of 3 mm and a length of 6 mm, 

assuming viscosity of 1.002 N s m
-2 

and x
2
 = 0 at distance x due to the parabolic flow 

velocity. Then the total linear velocity was calculated to be 200 µm s
-1 

by using 

Equation 17 and the theoretical volumetric flow rate was calculated and found to be 43 

µL h
-1

 using Equation 14. The calculated values were compared to the experimental 

results, in fact a different experiment was carried out to be able to determine the speed 

of the liquid inside the chamber, where a calibration of the particles speed against the 

pressure differences were plotted as shown in Figure 100, The particles were forced in 

the y-direction from the inlet pressure that was always kept constant at 200 mbar and 

series of video were recorded of the particles crossing the chamber whilst changing the 

pressure at the outlet from 195-140 mbar. The videos were then analysed by recording 

the time that a particle takes from point a to b and the particles speed was recorded. As 

shown in Figure 100, linearity was observed (n=20) however as expected due to the 

laminar flow profile a significant error especially at high pressure differences within 30-

60 mbar, was observed. 
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Figure 98 Plot of the particles speed µm s
-1

 vs pressur difference between inlets and outlet, particles 

used were Dynabeads M280. 

As shown in Figure 98 at 50 mbar difference in pressure corresponds an average particle 

speed of 460 µm s
-1 

which surprisingly was nearly double the theoretical linear velocity 

calculated previously to be 200 µm s
-1

, a possible explanation of this difference could be 

the fact that the particles anlaysed under the microscope were at a different distance 

within the parabolic flow regime, which means that particles at a different depth within 

the 20 µm structure could have experienced a variations in their velocity up to 50%, 

phenomena that are already reported previously [184]. Nevertheless 50 mbar was then 

used for all the further experiments. 
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5.3 Off-chip AE particles deflection 

Once the laminar flow within the chamber was determined, an off chip experiment to 

pull particles through a water: acetonitrile interface was carried out (Figure 99). 

However since acetonitrile is a polar solvent and miscible with water, at first it was not 

possible to investigate the transfer of particles through the two interface layer especially 

off chip where mixing happens rapidly, nevertheless using a reported method it was 

possible to separate the two layers by adding excess of high ionic strength salt. In this 

case K2CO3 (3 g in 5 mL solution 80:20 ACN:H2O) was added and the magnetic 

particles transported from the water layer to the acetonitrile layer using a small 

permanent magnet. As clearly shown in Figure 99(a-b) [185]. The experiment suggested 

that the particles can indeed be mobilised through this interface by means of the 

conventional small permanent magnets. 

 

Figure 99 a) Separation of water-acetonitrile layers. b) Pulling of 3 µm particles from water to 

acetonitrile with small permanent magnet. 

5.4 On-chip surface treatment optimisation  

After the laminar flow optimisation and the study of solvent effects on the magnetic 

particles, an experiment with particles inside the device was carried out, as detailed in 

Section 2.7.4. Invitrogen SAX particles were introduced into the microfluidic chamber 

of chip design FDL1 via inlet 1, with a stream of water: MeCN: K222: K2CO3 in inlet 4, 
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and aqueous fluoride solution (1 µg mL
-1

) from inlets 2 and 3. The principle of the 

experiment is shown in Figure 96. However, in initial experiments; the particles simply 

stuck to the surface of the glass upon entering the chamber and would not move 

thereafter as shown in Figure 100. This likely occurred as a result of two factors, the 

first being that the particles have experienced an upwards magnetic force due to the 

NdFeB magnet being placed on top of the chip, which would have drawn the particles 

towards the upper surface of the glass chamber. Secondly, the quaternary ammonium 

particles are positively charged (Figure 22 section 1.9) at pH between 2-14 and 

therefore experienced an electrostatic attraction to the surface of the glass chip which 

possessed a negative charge. Experiments with the magnet placed in-plane with the 

chamber by having a cut out to place the magnet were also carried out which gave 

similar effect without improving adhesion.When silanisation of the chip was performed 

that chip was only used for 1-2 experiments. 

 

Figure 100 Image showing the Invitrogen SAX particles stuck in the glass device with no treatment. 

In an effort to reduce this effect, the glass channels were treated with 

octadecyltrichlorosilane (OTS) as described in section 2.4 to render the chip surfaces 

uncharged, albeit hydrophobic, but no significant improvement was observed. An 

attempt to reduce the sticking was made using trichloro (1H,1H,2H,2H-perfluorooctyl) 

silane (FDTS) to treat the glass surfaces rather than OTS. FDTS features a 



  Chapter 5     bjbk 

163 

 

perfluoroalkyl chain (Table 15) that, when coated onto the glass surfaces, formed 

uncharged and hydrophobic surfaces that prefer to be wetted by fluorinated species. 

Tests to confirm the successful treatment of the hydrophobic coating were done by 

measuring the contact angles between at the air-water interfaces as shown in Figure 101. 

 

Figure 101 (a) Contact angle measurement using water/air interface without silanisation(°44.218), 

(b) after silanisation (°89.518). 

As the chip design used to test the success of the surface treatment was a different 

design previously used for magnetic plug (Chapter 4), the coating method was then 

applied to the newer chip design. On chip contact angle measurements were performed 

via water-air interface, the value before treatment was 45 ° ±5 and after treatment was 

90° ± 5. This proves that after the treatment the channels were hydrophobic, the 

negative charges on the glass surface were replaced by the silanol functional group as 

described in Figure 58. Further attempts to manoeuvre the particles through the chamber 

included a positively charged surface treatments (QAS, quaternary ammonium silane) 

that would actually repel the positively charged particles away from the surface and a 

primary amine such as APTES, however no significant improvement was observed, the 

different surface coating were compared by analysing the average percentage of 

particles sticking within a specific area in the chamber. 
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Table 23 Table showing the compounds name structure and functionality with their relative results 

for the particles sticking. 

Compound name Functionality Adhesion 

Trichloro-(octadecyl)silane Hydrophobic 24% 

Trichloro-(1H,1H,2H,2H-perfluorooctyl)silane Hydrophobic 15% 

(3-Aminopropyl)-triethoxysilane (APTES) Positively charged 22 % 

Quaternary ammonium silane (QAS) Positively charged 29 % 

Poly(allylamine)hydrochloride (PAH) Positively charged 30 % 

 

The different surface treatments as reported in Table 15, were tested using the same 

design chip of 5 inlets and 5 outlets with pressure difference of 15 mbar, the pressure 

was reduced to be able to visualize the particles during the video analysis. Using 1 x 10
6 

particles mL
-1

 of Invitrogen SAX 1 µm, with no surface treatment and no magnet 

present, each individual chip was first treated and then particles pumped through the 

chamber from inlet 1, videos were taken and recorded for 5 min at inlet 1 and particles 

counted, the average particles per minute was recorded to be 120, then images were 

taken at the inlet and at the end of the chamber, with the aid of image J software the 

image of the inlet was subtracted to the outlet so that the difference will be only the 

particles stuck at the outlet, as shown in Figure 102(b) and103(b). Detailed results on 

percentages are reported in Table 23 with the FDTS showing the least number of 

particles stuck within the chamber. 
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Flow

100µm

Inlets

a)
b)

 

Figure 102 Image of the chip of the particles at time 0 showing very little sticking as proved by the 

back ground image (b) where the small black dots represent the particles stuck. 

100µm

Flow

outlets

a) b)

 

Figure 103 image of the video at the outlet of the chamber after 2 minutes showing particles stuck 

at the surface as proved by the background image, then the number of particles was counted before 

and after and percentage of sticking recorded. 

However sticking of the particles was never completely resolved, furthermore what was 

observed was that the number of particles sticking within an experiment was increasing 

during the time, in fact there were approximately 120 particles per minute going 

through the inlet channel at a flow rate of 10-20 µL h
-1

 and in the best case only 15% of 

these were stuck on the glass surface, however during the same experiment after 60 min 

of pumping the solution the number of particles had increased from 15 to 900, as well as 

the number of particles sticking on the surface within the same experiments, it was 

observed that as the number of particles stuck increased, less particles were going 
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through the chamber and exit at the outlet. In fact each individual particle was acting as 

a small magnet sometimes forming cluster of two or more particles. An example of a 

device with particles stuck after 30 min is shown in Figure 104, to be noted the different 

sizes of the dots where the small dot represent one or two particles whilst the big dots 

are cluster of two or more particles.  

50 µm

Big dot

Small dot

Flow

 

Figure 104 Image of a glass device inlet with APTES surface treatment where the different size of 

the dots  represent the small one or two particles and the big dots a cluster of two or more particles 

agglomerate. 

Once the optimum surface treatment was determined to be the FDTS a deflection 

experiment was attempted and to avoid the pulling of the particles towards the top of the 

glass device a chip with a cut out near the top side of the chamber was used as described 

in section 2.8, However with the first box magnet 10 x10 x 5 mm
3
 placed at 1 mm from 

the chamber the particles could not deflect, possibly due to the strong field of the 

magnet, then the distance of the magnet from the chamber was changed, from 1 to 2, 3 

and then 4 mm and in all the cases particles were not deflecting along the chamber, but 

they were stuck on the glass as soon as they enter the chamber. The smaller box magnet 

was tested 4 x 4 x 5 mm
3
 and even when placed in the recess of the device no deflection 
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was observed and the particles were following the flow of the liquid and going out at 

the outlet, also it was placed on top of the chamber however no deflection or particles 

sticking was observed.  

As such, the mechanism behind the sticking of the particles to the surface is not fully 

understood, other than to say that an apparent lack of repulsive forces causes the van der 

Waal’s forces of attraction to dominate. Therefore, this remains an important factor to 

consider regarding the potential of the multilaminar flow system for applications in 

which solvents and charged particles are required, including many types of organic 

synthesis. To overcome this limitation as it is at present, future work should involve a 

rigorous study into the electrostatic, van der Waal’s, hydration, and hydrophobic forces 

at work in the system from a more physical chemistry-based viewpoint. This would 

include characterisation of the particles in different media, the effect of the glass 

surfaces with different treatments (e.g. hydrophilic, charged, and hydrophobic 

silanisation), and the influence of different surfactants at varying concentrations. With 

this type of information, a wider range of practical uses for the multilaminar flow 

technique could become available, with the possibility of tailoring the type of chip 

surface, particle functionalisation, and liquid media to suit specific processes.  

5.5 Particle deflection studies 

A further test was carried out in order to understand if the surface functionality of the 

particles was the main reasons of this sticking issue, or others were the factor to 

consider, so other chromatography particles were tested with different functional 

groups, strong anion exchange particles, weak anion exchange particles, cation 

exchange particles and reversed phase particles specific details are reported in Section 

2.1.2. The experiment was performed with chip design FDL1 with no surface treatment 
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with a pressure difference of 50 mbar without presence of magnet with 1 x 10
7
 particles 

mL
-1

, and as expected it was found that both cation and reversed phase magnetic 

particles could be deflected in some way along the chamber whilst the weak anion could 

be partially deflected, some particles would stop along the deflection trajectory, but they 

will continue their flow when disruption of the capillary was performed. Figure 105 

shows a device with no magnet and a stream of MyOne weak cation exchange particles 

(with a carboxylic functional group, as shown in Table 12 experimental section 2.1.3) 

flowing from inlet towards the outlet with no major sticking observed, a box magnet 10 

x 10 x 5 mm
3
 was placed in the cut out of the glass and as shown in Fig 106 particles 

were deflected even though has to be noted some sticking at the tip of the inlet was 

observed most of which was due to a cluster of particles which observed a stronger 

magnetic field. 

 

Figure 105 Image showing a stream of MyOne weak cation exchange particles flowing with very 

limited sticking from inlet to the outlet without magnet.  
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Figure 106 Image showing MyOne weak cation exchange particles deflected across the chamber 

towards the outlet in presence of a magnet. 

The same experiment was repeated with reversed phase C18 particles, and similar 

deflection was observed. When weak anion particles (primary amine) were tested a 

different behaviour was observed where deflection could only be achieved if capillary 

were flicked at different interval demonstrating the electrostatic interactions between the 

negative glass surface and a partially positive charge of the primary amine was not too 

strong such as particles would stick on to the surface. 

Table 24 Magnetic particles types with their size, showing that deflection was not possible to 

achieve with the strong anion magnetic particles. 

Magnetic particle type Size (µm) Deflection across chamber 

Strong anion (-NH3
+
) 1.0 No (≈ 20% sticking) 

Reversed phase (-C18) 1.0 Yes 

Weak cation (-COO
-
) 1.0 Yes 

Weak anion (-NH3
+
) 2.7 Yes (some sticking) 
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5.6 Summary 

Investigations were performed into deflection of AE superparamagnetic particles with a 

view towards fluoride trapping and elution in continuous flow. However, due to the 

charge of the particles, the charge of the chamber surface itself, and perhaps further as 

yet unknown reasons, deflecting particles across the chamber proved difficult as they 

would stick to the surface, thus preventing them from crossing the reagent stream. 

Different surface treatments were also tested with no major improvement; however a 

more dedicated study would need to be carried on in order to understand the effect of 

variable like magnet size, distance from the chamber and speed of particles. To prove 

that most probably is the interaction between the strongly positive magnetic particles 

and the negatively charge of the wall surface was the reason of the sticking, other 

chromatography magnetic particles were also tested for deflection within the 

microfluidic device results are shown in Table 24.  
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6 Towards Radiotracer purification 

In this chapter a suitable method for removal of Kryptofix as well as an investigation 

into the purification of FECH was investigated using the chip design for performing 

fluoride pre-concentration as described in Chapter 3. 

6.1 Introduction 

The vast majority of all 
18

F-PET-tracers are purified after the reaction by means of 

HPLC or SPE, mostly using C18 reversed phase materials (RP) or ion exchange 

materials (an image of the cartridge used for FDG purification is shown in Figure 107) 

[82]. 

 

Figure 107 Image of an example of cartridge used for FDG purification and on the right the 

materials contained and the type of phase. 

One of the compounds present in many radiotracers that needs to be removed is the 

phase transfer catalyst K2.2.2. In the following pages, two detection methods are 

examined, the first being the colourimetric detection, a modification of the colour spot 

test procedures by Mock et al. [55], the second a more sensitive method which consists 

of a modification of the LC-MS-MS method by Ma et al. [92]. 
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Together with the investigation of Kryptofix removal a method for detection and 

removal of 2-[
18

F]fluoroethyl choline [FECH] was also investigated, one of the few 

examples of ionic radiotracer for PET. The synthesis starts from the production of 

[
18

F]fluoroethyltosylate which reacts with N,N-dimethylamino ethanol (DMAE) in 

presence of MeCN as described in Fig 108. As the FECH product is the only charged 

compound present in the reaction mixture the solution is passed through a cation 

exchange cartridge, where the un-reacted compounds will pass through while the FECH 

is trapped and subsequently eluted with a saline solution. 

 

Figure 108 Synthesis of FECH in two steps reaction first fluoroethyltosylate is produced and then is 

reacted with excess of DMAE to yield the final FECH. 

6.2 Kryptofix detection and removal 

6.2.1  Colourimetric detection 

In the first instance the method of the colour spot test was reproduced as reported by 

Mock et al. In this method however it was only possible to compare the colour of the 

spot between a reference standard and the unknown concentration of Kryptofix and by 

colour comparison determine if the solution was less than 20 µg mL
-1

. This method is 
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based on TLC silica plate as described in Section 2.10.2. What was observed during the 

experiments was that when K2.2.2 in different concentration was reacted with the stock 

iodoplatinate reagent a different colour changes from orange / red colour to blue / purple 

with significant colour change at above 50 µg mL
-1 

was observed as shown in Figure 60.  

It was decided to investigate a semi-quantitative method for the determination of K2.2.2 

by using a spectrophotometer to measure the absorbance. Firstly a quartz cuvette was 

used and investigated the minimum amount of K2.2.2 needed for the reaction with 

iodoplatinate to occur. It was found that 1:1 volume K2.2.2 : iodoplatinate was 

sufficient to obtain a color changes and all the experiment were carried out using 10 µL 

standards kryptofix with 10 µL iodoplatinate reagent made up in 800 µL water. Since 

this is a precipitation reaction the best method was found to be the addition of the 

reagents first, followed by the addition of water. A full spectrum of the different 

concentrations from 1 - 200 µg mL
-1

 was run and it was found that the absorbance 

increased with an increase in concentration of K2.2.2 as shown in Figure 109. Two 

major peaks were observed, at about 600 nm and the other at 365 nm, due to some 

overlapping issue with some standards at 600 nm, 365 nm was chosen to carry out a 

calibration. 
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Figure 109 Spectrum range of Kryptofix standards (1 -200 ppm). 

The absorbance was plotted against the log scale of the concentration ranges between 5 

-200 ppm as shown in Figure110 (n=3). Below 5 ppm the method is not sensitive 

enough and the absorbance of the standards interfere with the blank sometimes giving a 

negative value. The method was tested with a real sample of FDG after purification; the 

absorbance value obtained was very close to zero so was not possible to quantify the 

K2.2.2 amount in FDG. 
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Figure 110 Calibration curve of the log scale of the concentration of standard Kryptofix solution 

(10 µL) + acidified iodoplatinate reagent (10 µL) and 800 µL water vs the absorbance measured at λ 

365 nm. 

6.2.2 HPLC-MS detection 

A more sensitive method which uses an HPLC-MS-MS was investigated which would 

enable some quantitative experiments for the purification steps to be performed, such as 

the amount of resin needed to remove the K2.2.2. The method from Ma et al.[92] was 

slightly modified, the use of the ammonium acetate as mobile phase was found to be 

detrimental for the LC pump causing several stalling and blockages so the ammonium 

acetate was substituted with water (50:50 water:ACN), and it was still possible to 

identify the K2.2.2 standards peak. As shown in Figure 111 a typical HPLC mass 

spectrum of K2.2.2 in ACN solution with retention time of 1.46 min, illustrates some 

uncomplexed K2.2.2 and K2.2.2 with sodium. The standards were prepared in ACN 

solution since in the presence of water the two peaks were found to co-elute. Another 

interesting fact is that it could not be possible to see the K2.2.2 + K at 416 m/z even 

after spiking the standard with potassium fluoride; this was of particular interest since it 
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is known that K2.2.2 exhibits particular affinity for potassium ions amongst other alkali 

metal cations [186]. 

 

 

Figure 111 HPLC spectrum showing a typical chromatogram of Kryptofix. 

 

Figure 112 Typical MS spectrum of Kryptofix showing the empty kryptofic at 377 m/z and the 

sodiated Kryptofix at 399 m/z. 
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Once the feasibility of the detection method was established the limit of detection 

(LOD) was determined to be 0.59 µg mL
-1

 by plotting the peak area against the 

concentration of K2.2.2 standards as shown in Figure 113 (n=1) and was calculated 

using the formula: 

LOD = (3.3 * standard deviation of the lowest value)/gradient of the slope) Equation 19 

 

Figure 113 Concentration of kryptofix standards (0.1- 100 ppm) vs peak area measured with 

HPLC-MS. 

Even though the method was not as sensitive as the one previously reported by Ma et. 

al. [92] it is suitable to quantify K2.2.2 below the required level which is 25 µg mL
-1

. 

In Table 25 the two methods for detection of K2.2.2 are compared, and the most 

accurate and specific for our experimentation was found to be the HPLC-MS. 

Table 25 Comparisons between HPLC-MS and spectrophotometric detection 

 HPLC -MS Spectrophotometric 

Run time 2-5 min <2 min 

Preparation time < 2 min 10-30 min 
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Volume required 10 µL (injection) 10 µL  

LOD 0.6 ppm 10 ppm 

User friendliness Commercial system Wet chemistry 

Advantages Accurate  Inexpensive 

Disadvantages Expensive Semi-quantitative 

6.3 Removal of K2.2.2 in FDG 

After establishing that HPLC-MS was the most suitable method for detection of K2.2.2 

it was tested on a real sample of [
19

F]FDG prepared according to Gomzina et al. [22] 

procedures The [
19

F]FDG sample was provided by Dr Victoria Hammond and after the 

product was purified it was analysed for the presence of K2.2.2. Figure 114 shows the 

chromatogram of the peak identified during the run. This shows very low counts for 

K2.2.2 and in the spectrum below, the intensity of the K2.2.2 peak at 377 m/z together 

with some background ions. It was not possible to quantify, but it was concluded to be 

below our detection limit of 0.59 µg mL
-1

. 
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Figure 114. HPLC-MS spectrum of FDG showing very low count intensity for Kryptofix which was 

identified to be less than 100 ng. 

6.4 FECH detection and removal 

The next part of the chapter is focused towards the development of a new purification 

route for the synthesis of FECH. Since the purification of the FDG is already state of the 

art with single cartridges available to trap all the by-products and release only the final 

FDG product, it was decided to investigate a new approach for the FECH compound 

based on the same idea where all the by-products are trapped and the FECH released. 

Table 26 shows the compounds present in the FECH reaction. These include starting 
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materials, by-products and products with the corresponding type of purification 

material, as well as the detection method used for analysis. 

Table 26 Starting materials and products for the FECH synthesis with their solid phase material 

for extraction as well as the detection method. 

Compounds Resin Detection 

Ethyl-di-tosylate (EtdT) C18 HPLC-UV 

18
F-EtOTs C18 HPLC-UV 

DMAE Cation IEC 

diMM Cation IEC 

FECH Cation IEC 

K2.2.2 C18 HPLC-MS / TLC 

TBAHCO3 Cation IEC 

 

The first step was the identification of a suitable detection method for the final product. 

Since the final product is a positively charged compound the IEC instrument previously 

used for fluoride detection was used, with the difference being a switch from anion to 

cation exchange, which involved replacing the column, the mobile phase and suppressor 

to be able to identify cations. The starting material and final compounds were purchased 

from ABX compounds and not synthesized, one of the by-products (diMM) was not 

readily available and for this reason was not analysed. A known amount of both FECH 

(15 ppm) and DMAE (10 ppm) was injected into the IEC and it was possible to separate 

and identify both compounds. However for some reason, when FECH was injected at a 

concentration lower than 5 ppm, no peak was observed. It was proposed that this is due 

to the sensitivity of the instrument, which was unexpected since typically LOD up to 

ppb level can be analysed with the IC in cation mode. However further work to evaluate 

parameters such as temperature of the column, injection volume or trying a gradient 
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elution could help to analyse lower concentration of FECH. Figure 115 shows an 

isocratic run where it was possible to separate DMAE and FECH within the same run.  

 

Figure 115 IC chromatogram of a mixture of DMAE and FECH separated with a CS18 cation 

column, 20 mM methanesulfonic acid 0.25 mL min
-1

. 

It is reported in the literature [96] that sometimes TBAHCO3 is used during synthesis of 

FECH due to it being less toxic than K2.2.2 and easily removed with a cation cartridge. 

TBAHCO3 was purchased from ABX. A mixture of FECH (10ppm) DMAE (10 ppm) 

and TBAHCO3 (10 ppm) was injected in the IEC and surprisingly it was possible to 

separate the three compounds with an isocratic run. As shown in Figure 116, within 8 

min the three compounds were eluted from the cation column. So far separation and 

identification of the three compounds was not reported in the same run. However, 

further studies in the limit of detection and quantification would need to be carried out 

in order to optimize the method to be able to analyse much lower concentration 

commonly obtained during radiotracer synthesis. 
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Figure 116 IC chromatogram of a mixture of DMAE and FECH and TBAHCO3separated with a 

CS18 cation column, 20 mM methanesulfonic acid 0.25 mL min
-1

. 

Once the method for detection of FECH and DMAE was optimised, the chip design 

used for the pre-concentration of fluoride in Chapter 3 was prepared and filled with 

cation exchange particles from the CM cartridge (Waters, UK) describe in Section 2.1.2. 

Approximately 20 mg of dried particles were filled in each chamber of the chip as 

shown in Figure 117. 

 

Figure 117 Image of glass device used for FECH removal showing the two chambers filled with 

approximately 20 mg each of cation exchange particles extracted from a CM cartridge from Waters 

UK 
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Once the device was prepared it was connected to a syringe pump as described in 

section 2.1.7.1. In detail 1 mL of 10 ppm of FECH (10 µg mL
-1

) was pumped through 

the chip at 600 µl min
-
1(n=1). The solution was collected at the outlet and analysed for 

presence of FECH, in order to measure the resin specific capacity for FECH trapping. 

As shown in Figure 118, the percentage of FECH trapped was plotted against the 

number of times that a 1 mL solution was pumped through the chip, which was equal to 

10 µg mL
-1

 per run. 

 

 

Figure 118 Graph showing the % of FECH trapped vs the number of runs which equal to 10 µg 

mL
-1

 per run. 

The maximum trapping capacity where more than 90% FECH was trapped was found to 

be 110 µg of FECH per 20 mg resin, which is equal to 5.5 µg mg
-1

 of resin. Since the 

amount of FECH is much lower that the capacity determined using the method above, it 

would be possible to reduce the amount of resin, and as a consequence the design of the 

microchamber could be much smaller for real FECH purification during the 
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radiosynthesis. The next step was to investigate the possibility to have a single use 

system where different radiotracers could be purified. It has to be noted that in the 

current radiotracer synthesis there is no need of such a system. However many research 

groups are currently working on microfluidic modular platforms, with the final goal to 

be able to produce different doses of different radiotracers at the touch of a button, with 

the final aim to have a versatile, small and fully automated systems. By combining the 

need for such as a system as well as the knowledge that SPE purification of any product 

is basically performed on four different types of chromatography material together with 

the awareness that these materials could be regenerated as proven with the anion 

exchange resin during the pre-concentration of fluoride in Chapter 3. The concept was 

to fill four of the chamber micro-devices with the different materials (Alumina, Cation, 

Anion and Reversed phase resins). Describe in Section 2.1.2 of experimental chapter 

and be able to connect them with the use of tubing valve and T-connector. In this way 

the product could be directed into any of the four chambers, so that a product could be 

purified and collected at the outlet and each individual chamber could be regenerated 

independently; using its own regenerant solution. Figure 119 in more detail shows 

example how crude FDG could go pass through the four chambers for purification and 

be collected at the outlet. Subsequently the individual materials could be regenerated 

independently by introduction of separate solutions; such as, reversed phase with an 

excess of ethanol, cation and anion with an excess of salt/base (NaCl, K2CO3) and 

alumina could be stripped of its un-reacted fluoride by washing with acid. In this way 

the different materials could be ready to be used in the next purification step. In the case 

of FECH, the unpurified mixture could be passed first through the reversed phase where 

starting materials (tosylated by products, DMAE and K2.2.2) could be trapped, 

subsequently FECH will be trapped in the cation resin whilst un-reacted fluoride is 
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retained by the alumina and a final step would be the release of the FECH via chip 2 by 

washing with a saline solution. However, it will be difficult to integrate this system in 

any of the current platforms due to stringent quality requirements, with the possibilities 

of cross contamination. However this approach could not be used in the current 

cartridge approach where all the materials are in direct contact, as shown in Figure 109 

with the FDG base hydrolysis cartridge which contains all the materials in the same 

tube. It would not be possible to pass, for example, a solution of strong acid through an 

anion exchange material or a strong base through the cation exchange materials. 

 

Figure 119 Schematic of four different micro-chambers independently connected where it will be 

possible to redirect the liquid solution in the desired chamber by using a valve or T junction to 

allow multiple radiotracers purification and subsequently the regeneration of each individual 

material. 

The schematic shown in Figure 119 was investigated to prove the concept for FECH 

purification by trapping all the by-products and starting materials except the final 

FECH. This was achieved by connecting three different micro-devices with the three 

materials: i) reversed phase ii) anion resin and iii) alumina as shown in Figure 120. 2 

mL solution containing 40 µg of FECH, 200 µg of K2.2.2. 3 µg 
19

F
-
, 200 µg DMAE 
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was pumped through the chip at a flow rate 600 µl min
-1,

 the solution collected at the 

outlet of the T-valve and analysed for the presence of different compounds. The 

colourimetric method was used to prove that K2.2.2 was present in less than 10 µg, Ion 

selective electrode for fluoride which proved to be less than 0.5 µg, FECH analysed by 

IEC where it shows that more than 90% was released. However, DMAE was not fully 

trapped. Only 30 % was trapped in the chips with 70 % released, possibly there was not 

enough reversed phase resin for both DMAE and K2.2.2. Further work will be the study 

of DMAE and the reversed phase resins capacity. 

 

Figure 120 Image showing the three chips with different chromatography materials integrated and 

connected together used for FECH purification by trapping the byproduct and release the final 

product FECH. 

6.5 Summary 

Investigations were performed into the detection and removal of K2.2.2, with two 

detection methods identified for K2.2.2 analysis. Subsequently the method was applied 

to K2.2.2 in FDG samples to prove the suitability of the method. In addition, a suitable 

detection method for FECH, DMAE and TBAHCO3 was also optimised by development 

of an isocratic IEC method. It was possible to achieve separation of three compounds in 

the same run. Trapping of FECH was also achieved with cation exchange material 

trapped in micro-chamber, and the capacity of the material was also studied and found 

to be 5.5 µg mg
-1

 of resin. Finally a study towards the integration of different micro-

chambers was tested with FECH by integrating three different resin materials to 
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establish an alternative method for purification of FECH where all the by-products are 

trapped and FECH released. However, results of this study showed it was not possible 

to completely purify FECH, and DMAE presence was found in the collected solution in 

high traces (only 30 % was trapped and the rest released together with FECH.) 
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7 Conclusion 

The aim of this work was to develop and implement a microfluidic platform for pre-

concentration of [
18/19

F]fluoride with possibilities to use it for further on-chip solid 

phase extraction purification techniques . In order to achieve this, the research employed 

three different approaches; 1) Anion exchange microparticles packed in micro-

chambers, 2) characterisation of suitable magnetic particles and their optimisation for 

trapping and elution of fluoride in a micro glass device and 3) the investigation of a 

possible continuous flow trapping and elution of fluoride by means of free-flow 

magnetophoresis. In addition, preliminary studies and results on the on-chip removal of 

K2.2.2 as well as a new route for purification of FECH were also investigated. In this 

Chapter the achievements of the work will be summarised and discussed, along with 

considerations for future work on the project. 

7.1  On-chip pre-concentration via packed bed (batch method) 

While pre-concentration of [
18/19

F]fluoride on-chip had been previously and extensively 

investigated one important factor in both the macro a micro scale method had not been 

considered yet, the regeneration of the solid phase extraction of the anion exchange 

material. Both radioactive [
18

F] and non-radioactive [
19

F]fluoride ions could be 

repeatedly recovered by employing a chip containing a reduced amount of anion 

exchange particles than conventional cartridges. The entire process required less than 6 

min and had trapping efficiency > 90 %, while the particles could be regenerated and re-

used up to 40 times via a multicycle approach, without loss of performance. The 

radioactive solution resulting from this innovative process was highly reactive and 

could be employed in the radiofluorination of EtDT. On this basis, the standalone chip 

could easily be integrated into automated systems to provide highly reactive fluoride 
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complexes for the production of fluorinated PET radiotracers in high yields. The ability 

to regenerate the anion-exchange chip would also allow many batches of 

radiopharmaceuticals to be synthesised without requiring continuous user interaction 

within the shielded synthesiser. As a standalone chip, the design and optimisation was 

demonstrated to be a reliable and ready to use module for successful pre-concentration 

of [
18/19

F]fluoride, however future work would need to include the possibility of 

integration with other microfluidic platform systems, where synthesis of radiotracers 

could be achieved in a series of micro-devices including synthesis, hydrolysis and 

purification steps. An effort towards this was currently under investigation by the ROC 

consortium and which preliminary results are shown in Figure 121, where indeed a 

platform was built in which four of the five steps required during the synthesis of FDG 

are integrated, (pre-concentration, solvent exchange, synthesis and hydrolysis) 

significant results were achieved (FDG was synthesised successfully) and they are 

currently been submitted to Proceedings of the National Academy of Sciences Journal 

(PNAS). Figure 121 shows an image of the prototype (http://www.roc-project.eu/site/) 

 

Figure 121 Image of the prototype modular system built by Siemens showing the four modules 

connected together in order the pre-concentration module, followed by the micro-reactor, the 

solvent exchange and the second micro-reactor. 
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7.2 On-chip pre-concentration via magnetic plugs (batch approach) 

Many methods were reported on pre-concentration of fluoride however so far, there is 

no report in the literature for any trapping and elution of [
18/19

F]fluoride via magnetic 

forces. Investigations were performed into trapping and elution of [
18/19

F]fluoride via 

formation of magnetic plug inside a glass micro-device. Even though the method was 

not as fast as efficient as the packed bed of microparticles (Chapter 3) the proof of 

principle showed that an alternative process using magnetic forces can be adapted for 

future on-chip systems for pre-concentration of fluoride. Employing positively charged 

magnetic particles, fluoride could be trapped in yield of >50% and elution achieved 

with approximately 90% recovery of fluoride. However, this proof of principle was 

more labour intensive and time consuming than current methods for trapping and 

elution of fluoride, overall the process took nearly two hours (which includes loading of 

particles trapping of fluoride and elution of fluoride). Future work would therefore 

include optimisation of the number of magnetic particles required for trapping the 

fluoride, as well as a new chip design where number of channels and the depth could be 

increased in order to increase the volume throughput and the speed of the process. It 

also could be considered to investigate more accurate set-up including the magnets and 

the magnetic field. 

7.3 Towards on-chip continuous method for pre-concentration  

To further explore the use of magnetic forces in the pre-concentration of fluoride, a 

continuous method for the trapping and elution of fluoride was investigated, with the 

aim of having pre-concentration and solvent exchange performed on the same chip in 

continuous mode, which so far has not been reported in the literature. A multilaminar 

flow micro-reactor has been investigated and described in which anion magnetic 

particles can be deflected through streams of reagents with the final aim to perform 
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trapping and elution of fluoride in continuous flow. Previously, the platform had been 

applied to proof-of-principle bioassays [181, 187] and DNA hybridisation [180], to 

great effect. Herein, studies were undertaken to determine the possibility to deflect 

anion exchange superparamagnetic particles, with a view towards fluoride trapping and 

elution in continuous flow. However, due to the charge of the particles, the charge of the 

chamber surface itself, and perhaps further as yet not considered phenomena, deflecting 

particles across the chamber proved difficult as they would stick to the surface, thus 

preventing them from crossing the reagent stream. Different surface treatments were 

also tested with no major improvement however a more dedicated study would need to 

be carried on in order to understand the effect of variables such as magnet size, distance 

from the chamber, speed of particles as well as a more in depth study from a Physical 

chemistry point of view to understand the adhesion phenomena.  

7.4 Towards radiotracer purification 

Once the pre-concentration method via packed bed was optimised (Chapter 3), the same 

chip design was investigated for the purification, with the aim to have single 

independent chambers, where the different phase materials are connected, filled with 

different solid phase materials instead of individual cartridges (Figure 107), approach 

which is yet not reported in the literature and which would be beneficial since the 

independent materials could be regenerated and possibly reused for further purification 

experiments. Also an investigation was performed into the detection and removal of 

K2.2.2, with two detection methods identified for K2.2.2 analysis, with detection of 

K2.2.2 in FDG samples used to prove the suitability of the method. As suitable 

detection method for FECH and DMAE and TBAHCO3 was also optimised by 

separation of the three compounds was achieved in the same run with IEC. Trapping of 

FECH was also achieved with cation exchange material trapped in micro-chamber and 
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the capacity of the material was also studied and found to be 5.5 µg mg
-1

 of resin. A 

subsequent study towards the possibilities of integrating different micro-chambers was 

tested with FECH. By integrating three different materials it was proposed that an 

alternative method for purification of FECH could be developed, where all the by-

products are trapped and FECH released. Unfortunately, this study showed that it was 

not possible to completely purify FECH, with DMAE detected in the collected solution, 

with only 30 % trapped and the rest released with the FECH). Future work could 

include the optimisation of the device for removal of K2.2.2 with studies on the 

breakthrough of the reversed phase resin and tests on other radiocompounds rather than 

FDG. A more detailed study would need to be carried out for the purification FECH, 

first by repeating the experiments with a real sample of radioactive [
18

F]FECH and a 

subsequent study on the breakthrough of each individual resin to identify the exact 

amount of solid phase materials required. Finally further work could be explored in 

which the series of micro-chambers could be used to purify different radiotracers. 
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